FRT presentation of the Onsager algebras
NASA Astrophysics Data System (ADS)
Baseilhac, Pascal; Belliard, Samuel; Crampé, Nicolas
2018-03-01
A presentation à la Faddeev-Reshetikhin-Takhtajan (FRT) of the Onsager, augmented Onsager and sl_2 -invariant Onsager algebras is given, using the framework of the nonstandard classical Yang-Baxter algebras. Associated current algebras are identified, and generating functions of mutually commuting quantities are obtained.
TDIGG - TWO-DIMENSIONAL, INTERACTIVE GRID GENERATION CODE
NASA Technical Reports Server (NTRS)
Vu, B. T.
1994-01-01
TDIGG is a fast and versatile program for generating two-dimensional computational grids for use with finite-difference flow-solvers. Both algebraic and elliptic grid generation systems are included. The method for grid generation by algebraic transformation is based on an interpolation algorithm and the elliptic grid generation is established by solving the partial differential equation (PDE). Non-uniform grid distributions are carried out using a hyperbolic tangent stretching function. For algebraic grid systems, interpolations in one direction (univariate) and two directions (bivariate) are considered. These interpolations are associated with linear or cubic Lagrangian/Hermite/Bezier polynomial functions. The algebraic grids can subsequently be smoothed using an elliptic solver. For elliptic grid systems, the PDE can be in the form of Laplace (zero forcing function) or Poisson. The forcing functions in the Poisson equation come from the boundary or the entire domain of the initial algebraic grids. A graphics interface procedure using the Silicon Graphics (GL) Library is included to allow users to visualize the grid variations at each iteration. This will allow users to interactively modify the grid to match their applications. TDIGG is written in FORTRAN 77 for Silicon Graphics IRIS series computers running IRIX. This package requires either MIT's X Window System, Version 11 Revision 4 or SGI (Motif) Window System. A sample executable is provided on the distribution medium. It requires 148K of RAM for execution. The standard distribution medium is a .25 inch streaming magnetic IRIX tape cartridge in UNIX tar format. This program was developed in 1992.
Exceptional quantum geometry and particle physics
NASA Astrophysics Data System (ADS)
Dubois-Violette, Michel
2016-11-01
Based on an interpretation of the quark-lepton symmetry in terms of the unimodularity of the color group SU (3) and on the existence of 3 generations, we develop an argumentation suggesting that the "finite quantum space" corresponding to the exceptional real Jordan algebra of dimension 27 (the Euclidean Albert algebra) is relevant for the description of internal spaces in the theory of particles. In particular, the triality which corresponds to the 3 off-diagonal octonionic elements of the exceptional algebra is associated to the 3 generations of the Standard Model while the representation of the octonions as a complex 4-dimensional space C ⊕C3 is associated to the quark-lepton symmetry (one complex for the lepton and 3 for the corresponding quark). More generally it is suggested that the replacement of the algebra of real functions on spacetime by the algebra of functions on spacetime with values in a finite-dimensional Euclidean Jordan algebra which plays the role of "the algebra of real functions" on the corresponding almost classical quantum spacetime is relevant in particle physics. This leads us to study the theory of Jordan modules and to develop the differential calculus over Jordan algebras (i.e. to introduce the appropriate notion of differential forms). We formulate the corresponding definition of connections on Jordan modules.
ERIC Educational Resources Information Center
Lee, Kerry; Ng, Ee Lynn; Ng, Swee Fong
2009-01-01
Solving algebraic word problems involves multiple cognitive phases. The authors used a multitask approach to examine the extent to which working memory and executive functioning are associated with generating problem models and producing solutions. They tested 255 11-year-olds on working memory (Counting Recall, Letter Memory, and Keep Track),…
A grid spacing control technique for algebraic grid generation methods
NASA Technical Reports Server (NTRS)
Smith, R. E.; Kudlinski, R. A.; Everton, E. L.
1982-01-01
A technique which controls the spacing of grid points in algebraically defined coordinate transformations is described. The technique is based on the generation of control functions which map a uniformly distributed computational grid onto parametric variables defining the physical grid. The control functions are smoothed cubic splines. Sets of control points are input for each coordinate directions to outline the control functions. Smoothed cubic spline functions are then generated to approximate the input data. The technique works best in an interactive graphics environment where control inputs and grid displays are nearly instantaneous. The technique is illustrated with the two-boundary grid generation algorithm.
Algebraic Bethe ansatz for the sℓ (2) Gaudin model with boundary
NASA Astrophysics Data System (ADS)
Cirilo António, N.; Manojlović, N.; Ragoucy, E.; Salom, I.
2015-04-01
Following Sklyanin's proposal in the periodic case, we derive the generating function of the Gaudin Hamiltonians with boundary terms. Our derivation is based on the quasi-classical expansion of the linear combination of the transfer matrix of the XXX Heisenberg spin chain and the central element, the so-called Sklyanin determinant. The corresponding Gaudin Hamiltonians with boundary terms are obtained as the residues of the generating function. By defining the appropriate Bethe vectors which yield strikingly simple off shell action of the generating function, we fully implement the algebraic Bethe ansatz, obtaining the spectrum of the generating function and the corresponding Bethe equations.
Algebraic Structure of tt * Equations for Calabi-Yau Sigma Models
NASA Astrophysics Data System (ADS)
Alim, Murad
2017-08-01
The tt * equations define a flat connection on the moduli spaces of {2d, \\mathcal{N}=2} quantum field theories. For conformal theories with c = 3 d, which can be realized as nonlinear sigma models into Calabi-Yau d-folds, this flat connection is equivalent to special geometry for threefolds and to its analogs in other dimensions. We show that the non-holomorphic content of the tt * equations, restricted to the conformal directions, in the cases d = 1, 2, 3 is captured in terms of finitely many generators of special functions, which close under derivatives. The generators are understood as coordinates on a larger moduli space. This space parameterizes a freedom in choosing representatives of the chiral ring while preserving a constant topological metric. Geometrically, the freedom corresponds to a choice of forms on the target space respecting the Hodge filtration and having a constant pairing. Linear combinations of vector fields on that space are identified with the generators of a Lie algebra. This Lie algebra replaces the non-holomorphic derivatives of tt * and provides these with a finer and algebraic meaning. For sigma models into lattice polarized K3 manifolds, the differential ring of special functions on the moduli space is constructed, extending known structures for d = 1 and 3. The generators of the differential rings of special functions are given by quasi-modular forms for d = 1 and their generalizations in d = 2, 3. Some explicit examples are worked out including the case of the mirror of the quartic in {\\mathbbm{P}^3}, where due to further algebraic constraints, the differential ring coincides with quasi modular forms.
Algebras Generated by Geometric Scalar Forms and their Applications in Physics and Social Sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Jaime
2008-09-17
The present paper analyzes the consequences of defining that the geometric scalar form is not necessarily quadratic, but in general K-atic, that is obtained from the K{sup th} power of the linear form, requiring {l_brace}e{sub i};i = 1,...,N;(e{sub i}){sup K} = 1{r_brace} and d-vector {sigma}{sub i}x{sub i}e{sub i}. We consider the algebras which are thus generated, for positive integer K, a generalization of the geometric algebras we know under the names of Clifford or Grassmann algebras. We then obtain a set of geometric K-algebras. We also consider the generalization of special functions of geometry which corresponds to the K-order scalarmore » forms (as trigonometric functions and other related geometric functions which are based on the use of quadratic forms). We present an overview of the use of quadratic forms in physics as in our general theory, we have called START. And, in order to give an introduction to the use of the more general K-algebras and to the possible application to sciences other than physics, the application to social sciences is considered.For the applications to physics we show that quadratic spaces are a fundamental clue to understand the structure of theoretical physics (see, for example, Keller in ICNAAM 2005 and 2006)« less
Elliptic surface grid generation on minimal and parmetrized surfaces
NASA Technical Reports Server (NTRS)
Spekreijse, S. P.; Nijhuis, G. H.; Boerstoel, J. W.
1995-01-01
An elliptic grid generation method is presented which generates excellent boundary conforming grids in domains in 2D physical space. The method is based on the composition of an algebraic and elliptic transformation. The composite mapping obeys the familiar Poisson grid generation system with control functions specified by the algebraic transformation. New expressions are given for the control functions. Grid orthogonality at the boundary is achieved by modification of the algebraic transformation. It is shown that grid generation on a minimal surface in 3D physical space is in fact equivalent to grid generation in a domain in 2D physical space. A second elliptic grid generation method is presented which generates excellent boundary conforming grids on smooth surfaces. It is assumed that the surfaces are parametrized and that the grid only depends on the shape of the surface and is independent of the parametrization. Concerning surface modeling, it is shown that bicubic Hermite interpolation is an excellent method to generate a smooth surface which is passing through a given discrete set of control points. In contrast to bicubic spline interpolation, there is extra freedom to model the tangent and twist vectors such that spurious oscillations are prevented.
Gauss-Manin Connection in Disguise: Calabi-Yau Threefolds
NASA Astrophysics Data System (ADS)
Alim, Murad; Movasati, Hossein; Scheidegger, Emanuel; Yau, Shing-Tung
2016-06-01
We describe a Lie Algebra on the moduli space of non-rigid compact Calabi-Yau threefolds enhanced with differential forms and its relation to the Bershadsky-Cecotti-Ooguri-Vafa holomorphic anomaly equation. In particular, we describe algebraic topological string partition functions {{F}g^alg, g ≥ 1}, which encode the polynomial structure of holomorphic and non-holomorphic topological string partition functions. Our approach is based on Grothendieck's algebraic de Rham cohomology and on the algebraic Gauss-Manin connection. In this way, we recover a result of Yamaguchi-Yau and Alim-Länge in an algebraic context. Our proofs use the fact that the special polynomial generators defined using the special geometry of deformation spaces of Calabi-Yau threefolds correspond to coordinates on such a moduli space. We discuss the mirror quintic as an example.
Topics in elementary particle physics
NASA Astrophysics Data System (ADS)
Jin, Xiang
The author of this thesis discusses two topics in elementary particle physics:
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hounkonnou, Mahouton Norbert; Nkouankam, Elvis Benzo Ngompe
2010-10-15
From the realization of q-oscillator algebra in terms of generalized derivative, we compute the matrix elements from deformed exponential functions and deduce generating functions associated with Rogers-Szego polynomials as well as their relevant properties. We also compute the matrix elements associated with the (p,q)-oscillator algebra (a generalization of the q-one) and perform the Fourier-Gauss transform of a generalization of the deformed exponential functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yun, E-mail: ygao@yorku.ca; Hu, Naihong, E-mail: nhhu@math.ecnu.edu.cn; Zhang, Honglian, E-mail: hlzhangmath@shu.edu.cn
In this paper, we define the two-parameter quantum affine algebra for type G{sub 2}{sup (1)} and give the (r, s)-Drinfeld realization of U{sub r,s}(G{sub 2}{sup (1)}), as well as establish and prove its Drinfeld isomorphism. We construct and verify explicitly the level-one vertex representation of two-parameter quantum affine algebra U{sub r,s}(G{sub 2}{sup (1)}), which also supports an evidence in nontwisted type G{sub 2}{sup (1)} for the uniform defining approach via the two-parameter τ-invariant generating functions proposed in Hu and Zhang [Generating functions with τ-invariance and vertex representations of two-parameter quantum affine algebras U{sub r,s}(g{sup ^}): Simply laced cases e-print http://arxiv.org/abs/1401.4925more » ].« less
NASA Astrophysics Data System (ADS)
Fazlul Hoque, Md; Marquette, Ian; Zhang, Yao-Zhong
2015-11-01
We introduce a new family of N dimensional quantum superintegrable models consisting of double singular oscillators of type (n, N-n). The special cases (2,2) and (4,4) have previously been identified as the duals of 3- and 5-dimensional deformed Kepler-Coulomb systems with u(1) and su(2) monopoles, respectively. The models are multiseparable and their wave functions are obtained in (n, N-n) double-hyperspherical coordinates. We obtain the integrals of motion and construct the finitely generated polynomial algebra that is the direct sum of a quadratic algebra Q(3) involving three generators, so(n), so(N-n) (i.e. Q(3) ⨁ so(n) ⨁ so(N-n)). The structure constants of the quadratic algebra itself involve the Casimir operators of the two Lie algebras so(n) and so(N-n). Moreover, we obtain the finite dimensional unitary representations (unirreps) of the quadratic algebra and present an algebraic derivation of the degenerate energy spectrum of the superintegrable model.
Algebraic grid generation with corner singularities
NASA Technical Reports Server (NTRS)
Vinokur, M.; Lombard, C. K.
1983-01-01
A simple noniterative algebraic procedure is presented for generating smooth computational meshes on a quadrilateral topology. Coordinate distribution and normal derivative are provided on all boundaries, one of which may include a slope discontinuity. The boundary conditions are sufficient to guarantee continuity of global meshes formed of joined patches generated by the procedure. The method extends to 3-D. The procedure involves a synthesis of prior techniques stretching functions, cubic blending functions, and transfinite interpolation - to which is added the functional form of the corner solution. The procedure introduces the concept of generalized blending, which is implemented as an automatic scaling of the boundary derivatives for effective interpolation. Some implications of the treatment at boundaries for techniques solving elliptic PDE's are discussed in an Appendix.
Diffeomorphism invariance and black hole entropy
NASA Astrophysics Data System (ADS)
Huang, Chao-Guang; Guo, Han-Ying; Wu, Xiaoning
2003-11-01
The Noether-charge and the Hamiltonian realizations for the diff(M) algebra in diffeomorphism-invariant gravitational theories without a cosmological constant in any dimension are studied in a covariant formalism. We analyze how the Hamiltonian functionals form the diff(M) algebra under the Poisson brackets and show how the Noether charges with respect to the diffeomorphism generated by the vector fields and their variations in n-dimensional general relativity form this algebra. The asymptotic behaviors of vector fields generating diffeomorphism of the manifold with boundaries are discussed. It is shown that the “central extension” for a large class of vector fields is always zero on the Killing horizon. We also check whether choosing the vector fields near the horizon may pick up the Virasoro algebra. The conclusion is unfortunately negative in any dimension.
Asymptotics of bivariate generating functions with algebraic singularities
NASA Astrophysics Data System (ADS)
Greenwood, Torin
Flajolet and Odlyzko (1990) derived asymptotic formulae the coefficients of a class of uni- variate generating functions with algebraic singularities. Gao and Richmond (1992) and Hwang (1996, 1998) extended these results to classes of multivariate generating functions, in both cases by reducing to the univariate case. Pemantle and Wilson (2013) outlined new multivariate ana- lytic techniques and used them to analyze the coefficients of rational generating functions. After overviewing these methods, we use them to find asymptotic formulae for the coefficients of a broad class of bivariate generating functions with algebraic singularities. Beginning with the Cauchy integral formula, we explicity deform the contour of integration so that it hugs a set of critical points. The asymptotic contribution to the integral comes from analyzing the integrand near these points, leading to explicit asymptotic formulae. Next, we use this formula to analyze an example from current research. In the following chapter, we apply multivariate analytic techniques to quan- tum walks. Bressler and Pemantle (2007) found a (d + 1)-dimensional rational generating function whose coefficients described the amplitude of a particle at a position in the integer lattice after n steps. Here, the minimal critical points form a curve on the (d + 1)-dimensional unit torus. We find asymptotic formulae for the amplitude of a particle in a given position, normalized by the number of steps n, as n approaches infinity. Each critical point contributes to the asymptotics for a specific normalized position. Using Groebner bases in Maple again, we compute the explicit locations of peak amplitudes. In a scaling window of size the square root of n near the peaks, each amplitude is asymptotic to an Airy function.
Plethystic vertex operators and boson-fermion correspondences
NASA Astrophysics Data System (ADS)
Fauser, Bertfried; Jarvis, Peter D.; King, Ronald C.
2016-10-01
We study the algebraic properties of plethystic vertex operators, introduced in (2010 J. Phys. A: Math. Theor. 43 405202), underlying the structure of symmetric functions associated with certain generalized universal character rings of subgroups of the general linear group, defined to stabilize tensors of Young symmetry type characterized by a partition of arbitrary shape π. Here we establish an extension of the well-known boson-fermion correspondence involving Schur functions and their associated (Bernstein) vertex operators: for each π, the modes generated by the plethystic vertex operators and their suitably constructed duals, satisfy the anticommutation relations of a complex Clifford algebra. The combinatorial manipulations underlying the results involve exchange identities exploiting the Hopf-algebraic structure of certain symmetric function series and their plethysms.
Quantum Hurwitz numbers and Macdonald polynomials
NASA Astrophysics Data System (ADS)
Harnad, J.
2016-11-01
Parametric families in the center Z(C[Sn]) of the group algebra of the symmetric group are obtained by identifying the indeterminates in the generating function for Macdonald polynomials as commuting Jucys-Murphy elements. Their eigenvalues provide coefficients in the double Schur function expansion of 2D Toda τ-functions of hypergeometric type. Expressing these in the basis of products of power sum symmetric functions, the coefficients may be interpreted geometrically as parametric families of quantum Hurwitz numbers, enumerating weighted branched coverings of the Riemann sphere. Combinatorially, they give quantum weighted sums over paths in the Cayley graph of Sn generated by transpositions. Dual pairs of bases for the algebra of symmetric functions with respect to the scalar product in which the Macdonald polynomials are orthogonal provide both the geometrical and combinatorial significance of these quantum weighted enumerative invariants.
Regularization of Mickelsson generators for nonexceptional quantum groups
NASA Astrophysics Data System (ADS)
Mudrov, A. I.
2017-08-01
Let g' ⊂ g be a pair of Lie algebras of either symplectic or orthogonal infinitesimal endomorphisms of the complex vector spaces C N-2 ⊂ C N and U q (g') ⊂ U q (g) be a pair of quantum groups with a triangular decomposition U q (g) = U q (g-) U q (g+) U q (h). Let Z q (g, g') be the corresponding step algebra. We assume that its generators are rational trigonometric functions h ∗ → U q (g±). We describe their regularization such that the resulting generators do not vanish for any choice of the weight.
Identities of Finitely Generated Algebras Over AN Infinite Field
NASA Astrophysics Data System (ADS)
Kemer, A. R.
1991-02-01
It is proved that for each finitely generated associative PI-algebra U over an infinite field F, there is a finite-dimensional F-algebra C such that the ideals of identities of the algebras U and C coincide. This yields a positive solution to the local problem of Specht for algebras over an infinite field: A finitely generated free associative algebra satisfies the maximum condition for T-ideals.
Quantum theory of the generalised uncertainty principle
NASA Astrophysics Data System (ADS)
Bruneton, Jean-Philippe; Larena, Julien
2017-04-01
We extend significantly previous works on the Hilbert space representations of the generalized uncertainty principle (GUP) in 3 + 1 dimensions of the form [X_i,P_j] = i F_{ij} where F_{ij} = f({{P}}^2) δ _{ij} + g({{P}}^2) P_i P_j for any functions f. However, we restrict our study to the case of commuting X's. We focus in particular on the symmetries of the theory, and the minimal length that emerge in some cases. We first show that, at the algebraic level, there exists an unambiguous mapping between the GUP with a deformed quantum algebra and a quadratic Hamiltonian into a standard, Heisenberg algebra of operators and an aquadratic Hamiltonian, provided the boost sector of the symmetries is modified accordingly. The theory can also be mapped to a completely standard Quantum Mechanics with standard symmetries, but with momentum dependent position operators. Next, we investigate the Hilbert space representations of these algebraically equivalent models, and focus specifically on whether they exhibit a minimal length. We carry the functional analysis of the various operators involved, and show that the appearance of a minimal length critically depends on the relationship between the generators of translations and the physical momenta. In particular, because this relationship is preserved by the algebraic mapping presented in this paper, when a minimal length is present in the standard GUP, it is also present in the corresponding Aquadratic Hamiltonian formulation, despite the perfectly standard algebra of this model. In general, a minimal length requires bounded generators of translations, i.e. a specific kind of quantization of space, and this depends on the precise shape of the function f defined previously. This result provides an elegant and unambiguous classification of which universal quantum gravity corrections lead to the emergence of a minimal length.
Dolan Grady relations and noncommutative quasi-exactly solvable systems
NASA Astrophysics Data System (ADS)
Klishevich, Sergey M.; Plyushchay, Mikhail S.
2003-11-01
We investigate a U(1) gauge invariant quantum mechanical system on a 2D noncommutative space with coordinates generating a generalized deformed oscillator algebra. The Hamiltonian is taken as a quadratic form in gauge covariant derivatives obeying the nonlinear Dolan-Grady relations. This restricts the structure function of the deformed oscillator algebra to a quadratic polynomial. The cases when the coordinates form the {\\mathfrak{su}}(2) and {\\mathfrak{sl}}(2,{\\bb {R}}) algebras are investigated in detail. Reducing the Hamiltonian to 1D finite-difference quasi-exactly solvable operators, we demonstrate partial algebraization of the spectrum of the corresponding systems on the fuzzy sphere and noncommutative hyperbolic plane. A completely covariant method based on the notion of intrinsic algebra is proposed to deal with the spectral problem of such systems.
Spherical Hecke algebra in the Nekrasov-Shatashvili limit
NASA Astrophysics Data System (ADS)
Bourgine, Jean-Emile
2015-01-01
The Spherical Hecke central (SHc) algebra has been shown to act on the Nekrasov instanton partition functions of gauge theories. Its presence accounts for both integrability and AGT correspondence. On the other hand, a specific limit of the Omega background, introduced by Nekrasov and Shatashvili (NS), leads to the appearance of TBA and Bethe like equations. To unify these two points of view, we study the NS limit of the SHc algebra. We provide an expression of the instanton partition function in terms of Bethe roots, and define a set of operators that generates infinitesimal variations of the roots. These operators obey the commutation relations defining the SHc algebra at first order in the equivariant parameter ɛ 2. Furthermore, their action on the bifundamental contributions reproduces the Kanno-Matsuo-Zhang transformation. We also discuss the connections with the Mayer cluster expansion approach that leads to TBA-like equations.
Partition functions for heterotic WZW conformal field theories
NASA Astrophysics Data System (ADS)
Gannon, Terry
1993-08-01
Thus far in the search for, and classification of, "physical" modular invariant partition functions ΣN LRχ Lχ R∗ the attention has been focused on the symmetric case where the holomorphic and anti-holomorphic sectors, and hence the characters χLand χR, are associated with the same Kac-Moody algebras ĝL = ĝR and levels κ L = κ R. In this paper we consider the more general possibility where ( ĝL, κ L) may not equal ( ĝR, κ R). We discuss which choices of algebras and levels may correspond to well-defined conformal field theories, we find the "smallest" such heterotic (i.e. asymmetric) partition functions, and we give a method, generalizing the Roberts-Terao-Warner lattice method, for explicitly constructing many other modular invariants. We conclude the paper by proving that this new lattice method will succeed in generating all the heterotic partition functions, for all choices of algebras and levels.
Generalized -deformed correlation functions as spectral functions of hyperbolic geometry
NASA Astrophysics Data System (ADS)
Bonora, L.; Bytsenko, A. A.; Guimarães, M. E. X.
2014-08-01
We analyze the role of vertex operator algebra and 2d amplitudes from the point of view of the representation theory of infinite-dimensional Lie algebras, MacMahon and Ruelle functions. By definition p-dimensional MacMahon function, with , is the generating function of p-dimensional partitions of integers. These functions can be represented as amplitudes of a two-dimensional c = 1 CFT, and, as such, they can be generalized to . With some abuse of language we call the latter amplitudes generalized MacMahon functions. In this paper we show that generalized p-dimensional MacMahon functions can be rewritten in terms of Ruelle spectral functions, whose spectrum is encoded in the Patterson-Selberg function of three-dimensional hyperbolic geometry.
Graphs in kinematics—a need for adherence to principles of algebraic functions
NASA Astrophysics Data System (ADS)
Sokolowski, Andrzej
2017-11-01
Graphs in physics are central to the analysis of phenomena and to learning about a system’s behavior. The ways students handle graphs are frequently researched. Students’ misconceptions are highlighted, and methods of improvement suggested. While kinematics graphs are to represent a real motion, they are also algebraic entities that must satisfy conditions for being algebraic functions. To be algebraic functions, they must pass certain tests before they can be used to infer more about motion. A preliminary survey of some physics resources has revealed that little attention is paid to verifying if the position, velocity and acceleration versus time graphs, that are to depict real motion, satisfy the most critical condition for being an algebraic function; the vertical line test. The lack of attention to this adherence shows as vertical segments in piecewise graphs. Such graphs generate unrealistic interpretations and may confuse students. A group of 25 college physics students was provided with such a graph and asked to analyse its adherence to reality. The majority of the students (N = 16, 64%) questioned the graph’s validity. It is inferred that such graphs might not only jeopardize the function principles studied in mathematics but also undermine the purpose of studying these principles. The aim of this study was to bring this idea forth and suggest a better alignment of physics and mathematics methods.
Umbral Calculus and Holonomic Modules in Positive Characteristic
NASA Astrophysics Data System (ADS)
Kochubei, Anatoly N.
2006-03-01
In the framework of analysis over local fields of positive characteristic, we develop algebraic tools for introducing and investigating various polynomial systems. In this survey paper we describe a function field version of umbral calculus developed on the basis of a relation of binomial type satisfied by the Carlitz polynomials. We consider modules over the Weyl-Carlitz ring, a function field counterpart of the Weyl algebra. It is shown that some basic objects of function field arithmetic, like the Carlitz module, Thakur's hypergeometric polynomials, and analogs of binomial coefficients arising in the positive characteristic version of umbral calculus, generate holonomic modules.
A non-commutative *-algebra of Borel functions
NASA Astrophysics Data System (ADS)
Hart, Robert
To the pair (E, sigma), where E is a countable Borel equivalence relation on a standard Borel space ( X, A ) and sigma a normalized Borel T -valued 2-cocycle on E, we associate a sequentially weakly closed Borel *-algebra B*r (E, sigma), contained in the bounded linear operators on ℓ2(E). Associated to B*r (E, sigma) is a natural (Borel) Cartan subalgebra (Definition 6.4.10) L( Bo (X)) isomorphic to the bounded Borel functions on X. Then L( Bo (X)) and its normalizer (the set of the unitaries u ∈ B*r (E, sigma) such that u* fu ∈ L( Bo (X)), f ∈ L( Bo (X))) countably generates the Borel *-algebra B*r (E, sigma). In this thesis, we study B*r (E, sigma) and in particular prove that: i) If E is smooth, then B*r (E, sigma) is a type I Borel *-algebra (Definition 6.3.10). ii) If E is a hyperfinite, then B*r (E, sigma) is a Borel AF-algebra (Definition 7.5.1). iii) Generalizing Kumjian's definition, we define a Borel twist Gamma over E and its associated sequentially closed Borel *-algebra B*r (Gamma). iv) Let a Borel Cartan pair ( B,B0 ) denote a sequentially closed Borel *-algebra B with a Borel Cartan subalgebra B0 , where B is countably B0 -generated. Generalizing Feldman-Moore's result, we prove that any pair ( B,B0 ) can be realized uniquely as a pair ( B*r (E, sigma), L( Bo (X))). Moreover, we show that the pair ( B*r (E), L( Bo (X))) is a complete invariant of the countable Borel equivalence relation E. v) We prove a Krieger type theorem, by showing that two aperiodic hyperfinite countable equivalence relations are isomorphic if and only if their associated Borel *-algebras B*r (E1) and B*r (E2) are isomorphic.
Directed Abelian algebras and their application to stochastic models.
Alcaraz, F C; Rittenberg, V
2008-10-01
With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma_(tau)=32 ). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma_(tau)=1.780+/-0.005 .
Line defect Schur indices, Verlinde algebras and U(1) r fixed points
NASA Astrophysics Data System (ADS)
Neitzke, Andrew; Yan, Fei
2017-11-01
Given an N=2 superconformal field theory, we reconsider the Schur index ℐ L ( q) in the presence of a half line defect L. Recently Cordova-Gaiotto-Shao found that ℐ L ( q) admits an expansion in terms of characters of the chiral algebra A introduced by Beem et al., with simple coefficients υ L, β ( q). We report a puzzling new feature of this expansion: the q → 1 limit of the coefficients υ L, β ( q) is linearly related to the vacuum expectation values 〈 L〉 in U(1) r -invariant vacua of the theory compactified on S 1. This relation can be expressed algebraically as a commutative diagram involving three algebras: the algebra generated by line defects, the algebra of functions on U(1) r -invariant vacua, and a Verlindelike algebra associated to A . Our evidence is experimental, by direct computation in the Argyres-Douglas theories of type ( A 1, A 2), ( A 1, A 4), ( A 1, A 6), ( A 1, D 3) and ( A 1, D 5). In the latter two theories, which have flavor symmetries, the Verlinde-like algebra which appears is a new deformation of algebras previously considered.
Interactive algebraic grid-generation technique
NASA Technical Reports Server (NTRS)
Smith, R. E.; Wiese, M. R.
1986-01-01
An algebraic grid generation technique and use of an associated interactive computer program are described. The technique, called the two boundary technique, is based on Hermite cubic interpolation between two fixed, nonintersecting boundaries. The boundaries are referred to as the bottom and top, and they are defined by two ordered sets of points. Left and right side boundaries which intersect the bottom and top boundaries may also be specified by two ordered sets of points. when side boundaries are specified, linear blending functions are used to conform interior interpolation to the side boundaries. Spacing between physical grid coordinates is determined as a function of boundary data and uniformly space computational coordinates. Control functions relating computational coordinates to parametric intermediate variables that affect the distance between grid points are embedded in the interpolation formulas. A versatile control function technique with smooth-cubic-spline functions is presented. The technique works best in an interactive graphics environment where computational displays and user responses are quickly exchanged. An interactive computer program based on the technique and called TBGG (two boundary grid generation) is also described.
Geometry of quantum state manifolds generated by the Lie algebra operators
NASA Astrophysics Data System (ADS)
Kuzmak, A. R.
2018-03-01
The Fubini-Study metric of quantum state manifold generated by the operators which satisfy the Heisenberg Lie algebra is calculated. The similar problem is studied for the manifold generated by the so(3) Lie algebra operators. Using these results, we calculate the Fubini-Study metrics of state manifolds generated by the position and momentum operators. Also the metrics of quantum state manifolds generated by some spin systems are obtained. Finally, we generalize this problem for operators of an arbitrary Lie algebra.
Operator algebra as an application of logarithmic representation of infinitesimal generators
NASA Astrophysics Data System (ADS)
Iwata, Yoritaka
2018-02-01
The operator algebra is introduced based on the framework of logarithmic representation of infinitesimal generators. In conclusion a set of generally-unbounded infinitesimal generators is characterized as a module over the Banach algebra.
On Maximal Subalgebras and the Hypercentre of Lie Algebras.
ERIC Educational Resources Information Center
Honda, Masanobu
1997-01-01
Derives two sufficient conditions for a finitely generated Lie algebra to have the nilpotent hypercenter. Presents a relatively large class of generalized soluble Lie algebras. Proves that if a finitely generated Lie algebra has a nilpotent maximal subalgebra, the Fitting radical is nilpotent. (DDR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquette, Ian, E-mail: i.marquette@uq.edu.au; Quesne, Christiane, E-mail: cquesne@ulb.ac.be
2015-06-15
We extend the construction of 2D superintegrable Hamiltonians with separation of variables in spherical coordinates using combinations of shift, ladder, and supercharge operators to models involving rational extensions of the two-parameter Lissajous systems on the sphere. These new families of superintegrable systems with integrals of arbitrary order are connected with Jacobi exceptional orthogonal polynomials of type I (or II) and supersymmetric quantum mechanics. Moreover, we present an algebraic derivation of the degenerate energy spectrum for the one- and two-parameter Lissajous systems and the rationally extended models. These results are based on finitely generated polynomial algebras, Casimir operators, realizations as deformedmore » oscillator algebras, and finite-dimensional unitary representations. Such results have only been established so far for 2D superintegrable systems separable in Cartesian coordinates, which are related to a class of polynomial algebras that display a simpler structure. We also point out how the structure function of these deformed oscillator algebras is directly related with the generalized Heisenberg algebras spanned by the nonpolynomial integrals.« less
NASA Astrophysics Data System (ADS)
Hoek, Jaap
1983-02-01
A set of programs to calculate algebraically the generating functional (free energy) of a gauge system with arbitrary external sources on a lattice has been developed. It makes use of the strong coupling expansion. For theories with the standard Tr(UUU †U †) action results have been obtained up to fourth order.
Cyclotomic Gaudin Models: Construction and Bethe Ansatz
NASA Astrophysics Data System (ADS)
Vicedo, Benoît; Young, Charles
2016-05-01
To any finite-dimensional simple Lie algebra g and automorphism {σ: gto g we associate a cyclotomic Gaudin algebra. This is a large commutative subalgebra of {U(g)^{⊗ N}} generated by a hierarchy of cyclotomic Gaudin Hamiltonians. It reduces to the Gaudin algebra in the special case {σ =id}. We go on to construct joint eigenvectors and their eigenvalues for this hierarchy of cyclotomic Gaudin Hamiltonians, in the case of a spin chain consisting of a tensor product of Verma modules. To do so we generalize an approach to the Bethe ansatz due to Feigin, Frenkel and Reshetikhin involving vertex algebras and the Wakimoto construction. As part of this construction, we make use of a theorem concerning cyclotomic coinvariants, which we prove in a companion paper. As a byproduct, we obtain a cyclotomic generalization of the Schechtman-Varchenko formula for the weight function.
On the ``Matrix Approach'' to Interacting Particle Systems
NASA Astrophysics Data System (ADS)
de Sanctis, L.; Isopi, M.
2004-04-01
Derrida et al. and Schütz and Stinchcombe gave algebraic formulas for the correlation functions of the partially asymmetric simple exclusion process. Here we give a fairly general recipe of how to get these formulas and extend them to the whole time evolution (starting from the generator of the process), for a certain class of interacting systems. We then analyze the algebraic relations obtained to show that the matrix approach does not work with some models such as the voter and the contact processes.
NASA Astrophysics Data System (ADS)
Angeli, C.; Cimiraglia, R.
2005-02-01
Starting from a CAS-SCF calculation a sequence of contracted functions can be generated by applying strings of spin-traced replacement operators to the CAS-SCF solution. The laborious task of producing the Hamiltonian matrix elements between such functions can be substantially reduced making use of a computer algebra system. An implementation employing the MuPAD system is presented and illustrated.
Affine group formulation of the Standard Model coupled to gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Ching-Yi, E-mail: l2897107@mail.ncku.edu.tw; Ita, Eyo, E-mail: ita@usna.edu; Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw
In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of themore » Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.« less
NASA Astrophysics Data System (ADS)
Foda, O.; Welsh, T. A.
2016-04-01
We study the Andrews-Gordon-Bressoud (AGB) generalisations of the Rogers-Ramanujan q-series identities in the context of cylindric partitions. We recall the definition of r-cylindric partitions, and provide a simple proof of Borodin’s product expression for their generating functions, that can be regarded as a limiting case of an unpublished proof by Krattenthaler. We also recall the relationships between the r-cylindric partition generating functions, the principal characters of {\\hat{{sl}}}r algebras, the {{\\boldsymbol{ M }}}r r,r+d minimal model characters of {{\\boldsymbol{ W }}}r algebras, and the r-string abaci generating functions, providing simple proofs for each. We then set r = 2, and use two-cylindric partitions to re-derive the AGB identities as follows. Firstly, we use Borodin’s product expression for the generating functions of the two-cylindric partitions with infinitely long parts, to obtain the product sides of the AGB identities, times a factor {(q;q)}∞ -1, which is the generating function of ordinary partitions. Next, we obtain a bijection from the two-cylindric partitions, via two-string abaci, into decorated versions of Bressoud’s restricted lattice paths. Extending Bressoud’s method of transforming between restricted paths that obey different restrictions, we obtain sum expressions with manifestly non-negative coefficients for the generating functions of the two-cylindric partitions which contains a factor {(q;q)}∞ -1. Equating the product and sum expressions of the same two-cylindric partitions, and canceling a factor of {(q;q)}∞ -1 on each side, we obtain the AGB identities.
A round trip from Caldirola to Bateman systems
NASA Astrophysics Data System (ADS)
Guerrero, J.; López-Ruiz, F. F.; Aldaya, V.; Cossío, F.
2011-03-01
For the quantum Caldirola-Kanai Hamiltonian, describing a quantum damped harmonic oscillator, a couple of constant of motion operators generating the Heisenberg algebra can be found. The inclusion in this algebra, in a unitary manner, of the standard time evolution generator , which is not a constant of motion, requires a non-trivial extension of this basic algebra and the physical system itself, which now includes a new dual particle. This enlarged algebra, when exponentiated, leads to a group, named the Bateman group, which admits unitary representations with support in the Hilbert space of functions satisfying the Schrodinger equation associated with the quantum Bateman Hamiltonian, either as a second order differential operator as well as a first order one. The classical Bateman Hamiltonian describes a dual system of a damped (losing energy) particle and a dual (gaining energy) particle. The classical Bateman system has a solution submanifold containing the trajectories of the original system as a submanifold. When restricted to this submanifold, the Bateman dual classical Hamiltonian leads to the Caldirola-Kanai Hamiltonian for a single damped particle. This construction can also be done at the quantum level, and the Caldirola-Kanai Hamiltonian operator can be derived from the Bateman Hamiltonian operator when appropriate constraints are imposed.
Numerical Function Generators Using LUT Cascades
2007-06-01
either algebraically (for example, sinðxÞ) or as a table of input/ output values. The user defines the numerical function by using the syntax of Scilab ...defined function in Scilab or specify it directly. Note that, by changing the parser of our system, any format can be used for the design entry. First...Methods for Multiple-Valued Input Address Generators,” Proc. 36th IEEE Int’l Symp. Multiple-Valued Logic (ISMVL ’06), May 2006. [29] Scilab 3.0, INRIA-ENPC
An algebra for spatio-temporal information generation
NASA Astrophysics Data System (ADS)
Pebesma, Edzer; Scheider, Simon; Gräler, Benedikt; Stasch, Christoph; Hinz, Matthias
2016-04-01
When we accept the premises of James Frew's laws of metadata (Frew's first law: scientists don't write metadata; Frew's second law: any scientist can be forced to write bad metadata), but also assume that scientists try to maximise the impact of their research findings, can we develop our information infrastructures such that useful metadata is generated automatically? Currently, sharing of data and software to completely reproduce research findings is becoming standard, e.g. in the Journal of Statistical Software [1]. The reproduction (e.g. R) scripts however convey correct syntax, but still limited semantics. We propose [2] a new, platform-neutral way to algebraically describe how data is generated, e.g. by observation, and how data is derived, e.g. by processing observations. It starts with forming functions composed of four reference system types (space, time, quality, entity), which express for instance continuity of objects over time, and continuity of fields over space and time. Data, which is discrete by definition, is generated by evaluating such functions at discrete space and time instances, or by evaluating a convolution (aggregation) over them. Derived data is obtained by inputting data to data derivation functions, which for instance interpolate, estimate, aggregate, or convert fields into objects and vice versa. As opposed to the traditional when, where and what semantics of data sets, our algebra focuses on describing how a data set was generated. We argue that it can be used to discover data sets that were derived from a particular source x, or derived by a particular procedure y. It may also form the basis for inferring meaningfulness of derivation procedures [3]. Current research focuses on automatically generating provenance documentation from R scripts. [1] http://www.jstatsoft.org/ (open access) [2] http://www.meaningfulspatialstatistics.org has the full paper (in review) [3] Stasch, C., S. Scheider, E. Pebesma, W. Kuhn, 2014. Meaningful Spatial Prediction and Aggregation. Environmental Modelling & Software, 51, 149-165 (open access)
Eisenstein type series for Calabi-Yau varieties
NASA Astrophysics Data System (ADS)
Movasati, Hossein
2011-06-01
In this article we introduce an ordinary differential equation associated to the one parameter family of Calabi-Yau varieties which is mirror dual to the universal family of smooth quintic three folds. It is satisfied by seven functions written in the q-expansion form and the Yukawa coupling turns out to be rational in these functions. We prove that these functions are algebraically independent over the field of complex numbers, and hence, the algebra generated by such functions can be interpreted as the theory of (quasi) modular forms attached to the one parameter family of Calabi-Yau varieties. Our result is a reformulation and realization of a problem of Griffiths around seventies on the existence of automorphic functions for the moduli of polarized Hodge structures. It is a generalization of the Ramanujan differential equation satisfied by three Eisenstein series.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spotz, William F.
PyTrilinos is a set of Python interfaces to compiled Trilinos packages. This collection supports serial and parallel dense linear algebra, serial and parallel sparse linear algebra, direct and iterative linear solution techniques, algebraic and multilevel preconditioners, nonlinear solvers and continuation algorithms, eigensolvers and partitioning algorithms. Also included are a variety of related utility functions and classes, including distributed I/O, coloring algorithms and matrix generation. PyTrilinos vector objects are compatible with the popular NumPy Python package. As a Python front end to compiled libraries, PyTrilinos takes advantage of the flexibility and ease of use of Python, and the efficiency of themore » underlying C++, C and Fortran numerical kernels. This paper covers recent, previously unpublished advances in the PyTrilinos package.« less
An Algebraic Formulation of Level One Wess-Zumino Models
NASA Astrophysics Data System (ADS)
Böckenhauer, Jens
The highest weight modules of the chiral algebra of orthogonal WZW models at level one possess a realization in fermionic representation spaces; the Kac-Moody and Virasoro generators are represented as unbounded limits of even CAR algebras. It is shown that the representation theory of the underlying even CAR algebras reproduces precisely the sectors of the chiral algebra. This fact allows to develop a theory of local von Neumann algebras on the punctured circle, fitting nicely in the Doplicher-Haag-Roberts framework. The relevant localized endomorphisms which generate the charged sectors are explicitly constructed by means of Bogoliubov transformations. Using CAR theory, the fusion rules in terms of sector equivalence classes are proven.
ERIC Educational Resources Information Center
Zandieh, Michelle; Ellis, Jessica; Rasmussen, Chris
2017-01-01
As part of a larger study of student understanding of concepts in linear algebra, we interviewed 10 university linear algebra students as to their conceptions of functions from high school algebra and linear transformation from their study of linear algebra. An overarching goal of this study was to examine how linear algebra students see linear…
A non-symmetric Yang-Baxter algebra for the quantum nonlinear Schrödinger model
NASA Astrophysics Data System (ADS)
Vlaar, Bart
2013-06-01
We study certain non-symmetric wavefunctions associated with the quantum nonlinear Schrödinger model, introduced by Komori and Hikami using Gutkin’s propagation operator, which involves representations of the degenerate affine Hecke algebra. We highlight how these functions can be generated using a vertex-type operator formalism similar to the recursion defining the symmetric (Bethe) wavefunction in the quantum inverse scattering method. Furthermore, some of the commutation relations encoded in the Yang-Baxter equation for the relevant monodromy matrix are generalized to the non-symmetric case.
A comparison of different methods to implement higher order derivatives of density functionals
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Dam, Hubertus J.J.
Density functional theory is the dominant approach in electronic structure methods today. To calculate properties higher order derivatives of the density functionals are required. These derivatives might be implemented manually,by automatic differentiation, or by symbolic algebra programs. Different authors have cited different reasons for using the particular method of their choice. This paper presents work where all three approaches were used and the strengths and weaknesses of each approach are considered. It is found that all three methods produce code that is suffficiently performanted for practical applications, despite the fact that our symbolic algebra generated code and our automatic differentiationmore » code still have scope for significant optimization. The automatic differentiation approach is the best option for producing readable and maintainable code.« less
Chinese Algebra: Using Historical Problems to Think about Current Curricula
ERIC Educational Resources Information Center
Tillema, Erik
2005-01-01
The Chinese used the idea of generating equivalent expressions for solving problems where the problems from a historical Chinese text are studied to understand the ways in which the ideas can lead into algebraic calculations and help students to learn algebra. The texts unify algebraic problem solving through complex algebraic thought and afford…
Linear {GLP}-algebras and their elementary theories
NASA Astrophysics Data System (ADS)
Pakhomov, F. N.
2016-12-01
The polymodal provability logic {GLP} was introduced by Japaridze in 1986. It is the provability logic of certain chains of provability predicates of increasing strength. Every polymodal logic corresponds to a variety of polymodal algebras. Beklemishev and Visser asked whether the elementary theory of the free {GLP}-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable [1]. For every positive integer n we solve the corresponding question for the logics {GLP}_n that are the fragments of {GLP} with n modalities. We prove that the elementary theory of the free {GLP}_n-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable for all n. We introduce the notion of a linear {GLP}_n-algebra and prove that all free {GLP}_n-algebras generated by the constants \\mathbf{0}, \\mathbf{1} are linear. We also consider the more general case of the logics {GLP}_α whose modalities are indexed by the elements of a linearly ordered set α: we define the notion of a linear algebra and prove the latter result in this case.
Towards classical spectrum generating algebras for f-deformations
NASA Astrophysics Data System (ADS)
Kullock, Ricardo; Latini, Danilo
2016-01-01
In this paper we revise the classical analog of f-oscillators, a generalization of q-oscillators given in Man'ko et al. (1997) [8], in the framework of classical spectrum generating algebras (SGA) introduced in Kuru and Negro (2008) [9]. We write down the deformed Poisson algebra characterizing the entire family of non-linear oscillators and construct its general solution algebraically. The latter, covering the full range of f-deformations, shows an energy dependence both in the amplitude and the frequency of the motion.
Polynomial functors and combinatorial Dyson-Schwinger equations
NASA Astrophysics Data System (ADS)
Kock, Joachim
2017-04-01
We present a general abstract framework for combinatorial Dyson-Schwinger equations, in which combinatorial identities are lifted to explicit bijections of sets, and more generally equivalences of groupoids. Key features of combinatorial Dyson-Schwinger equations are revealed to follow from general categorical constructions and universal properties. Rather than beginning with an equation inside a given Hopf algebra and referring to given Hochschild 1-cocycles, our starting point is an abstract fixpoint equation in groupoids, shown canonically to generate all the algebraic structures. Precisely, for any finitary polynomial endofunctor P defined over groupoids, the system of combinatorial Dyson-Schwinger equations X = 1 + P(X) has a universal solution, namely the groupoid of P-trees. The isoclasses of P-trees generate naturally a Connes-Kreimer-like bialgebra, in which the abstract Dyson-Schwinger equation can be internalised in terms of canonical B+-operators. The solution to this equation is a series (the Green function), which always enjoys a Faà di Bruno formula, and hence generates a sub-bialgebra isomorphic to the Faà di Bruno bialgebra. Varying P yields different bialgebras, and cartesian natural transformations between various P yield bialgebra homomorphisms and sub-bialgebras, corresponding for example to truncation of Dyson-Schwinger equations. Finally, all constructions can be pushed inside the classical Connes-Kreimer Hopf algebra of trees by the operation of taking core of P-trees. A byproduct of the theory is an interpretation of combinatorial Green functions as inductive data types in the sense of Martin-Löf type theory (expounded elsewhere).
Algebraic special functions and SO(3,2)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celeghini, E., E-mail: celeghini@fi.infn.it; Olmo, M.A. del, E-mail: olmo@fta.uva.es
2013-06-15
A ladder structure of operators is presented for the associated Legendre polynomials and the sphericas harmonics. In both cases these operators belong to the irreducible representation of the Lie algebra so(3,2) with quadratic Casimir equals to −5/4. As both are also bases of square-integrable functions, the universal enveloping algebra of so(3,2) is thus shown to be homomorphic to the space of linear operators acting on the L{sup 2} functions defined on (−1,1)×Z and on the sphere S{sup 2}, respectively. The presence of a ladder structure is suggested to be the general condition to obtain a Lie algebra representation defining inmore » this way the “algebraic special functions” that are proposed to be the connection between Lie algebras and square-integrable functions so that the space of linear operators on the L{sup 2} functions is homomorphic to the universal enveloping algebra. The passage to the group, by means of the exponential map, shows that the associated Legendre polynomials and the spherical harmonics support the corresponding unitary irreducible representation of the group SO(3,2). -- Highlights: •The algebraic ladder structure is constructed for the associated Legendre polynomials (ALP). •ALP and spherical harmonics support a unitary irreducible SO(3,2)-representation. •A ladder structure is the condition to get a Lie group representation defining “algebraic special functions”. •The “algebraic special functions” connect Lie algebras and L{sup 2} functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genest, Vincent X.; Vinet, Luc; Zhedanov, Alexei
The algebra H of the dual -1 Hahn polynomials is derived and shown to arise in the Clebsch-Gordan problem of sl{sub -1}(2). The dual -1 Hahn polynomials are the bispectral polynomials of a discrete argument obtained from the q{yields}-1 limit of the dual q-Hahn polynomials. The Hopf algebra sl{sub -1}(2) has four generators including an involution, it is also a q{yields}-1 limit of the quantum algebra sl{sub q}(2) and furthermore, the dynamical algebra of the parabose oscillator. The algebra H, a two-parameter generalization of u(2) with an involution as additional generator, is first derived from the recurrence relation of themore » -1 Hahn polynomials. It is then shown that H can be realized in terms of the generators of two added sl{sub -1}(2) algebras, so that the Clebsch-Gordan coefficients of sl{sub -1}(2) are dual -1 Hahn polynomials. An irreducible representation of H involving five-diagonal matrices and connected to the difference equation of the dual -1 Hahn polynomials is constructed.« less
Classical affine W-algebras associated to Lie superalgebras
NASA Astrophysics Data System (ADS)
Suh, Uhi Rinn
2016-02-01
In this paper, we prove classical affine W-algebras associated to Lie superalgebras (W-superalgebras), which can be constructed in two different ways: via affine classical Hamiltonian reductions and via taking quasi-classical limits of quantum affine W-superalgebras. Also, we show that a classical finite W-superalgebra can be obtained by a Zhu algebra of a classical affine W-superalgebra. Using the definition by Hamiltonian reductions, we find free generators of a classical W-superalgebra associated to a minimal nilpotent. Moreover, we compute generators of the classical W-algebra associated to spo(2|3) and its principal nilpotent. In the last part of this paper, we introduce a generalization of classical affine W-superalgebras called classical affine fractional W-superalgebras. We show these have Poisson vertex algebra structures and find generators of a fractional W-superalgebra associated to a minimal nilpotent.
On the construction of unitary quantum group differential calculus
NASA Astrophysics Data System (ADS)
Pyatov, Pavel
2016-10-01
We develop a construction of the unitary type anti-involution for the quantized differential calculus over {{GL}}q(n) in the case | q| =1. To this end, we consider a joint associative algebra of quantized functions, differential forms and Lie derivatives over {{GL}}q(n)/{{SL}}q(n), which is bicovariant with respect to {{GL}}q(n)/{{SL}}q(n) coactions. We define a specific non-central spectral extension of this algebra by the spectral variables of three matrices of the algebra generators. In the spectrally expended algebra, we construct a three-parametric family of its inner automorphisms. These automorphisms are used for the construction of the unitary anti-involution for the (spectrally extended) calculus over {{GL}}q(n). This work has been funded by the Russian Academic Excellence Project ‘5-100’. The results of section 5 (propositions 5.2, 5.3 and theorem 5.5) have been obtained under support of the RSF grant No.16-11-10160.
Macdonald index and chiral algebra
NASA Astrophysics Data System (ADS)
Song, Jaewon
2017-08-01
For any 4d N = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. We conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type ( A 1 , A 2 n ) and ( A 1 , D 2 n+1) where the chiral algebras are given by Virasoro and \\widehat{su}(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.
Macdonald index and chiral algebra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Jaewon
For any 4dN = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. Here, we conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type (A 1, A 2n) and (A 1, D 2n+1) where the chiral algebras are given by Virasoro andmore » $$ˆ\\atop{su}$$(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.« less
Macdonald index and chiral algebra
Song, Jaewon
2017-08-10
For any 4dN = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. Here, we conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type (A 1, A 2n) and (A 1, D 2n+1) where the chiral algebras are given by Virasoro andmore » $$ˆ\\atop{su}$$(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.« less
An Analysis of Elliptic Grid Generation Techniques Using an Implicit Euler Solver.
1986-06-09
automatic determination of the control fu.nction, . elements of covariant metric tensor in the elliptic grid generation system , from the Cm = 1,2,3...computational fluid d’nan1-cs code. Tne code Inclues a tnree-dimensional current research is aimed primaril: at algebraic generation system based on transfinite...start the iterative solution of the f. ow, nea, transfer, and combustion proble:s. elliptic generation system . Tn13 feature also .:ven-.ts :.t be made
Correlation functions from a unified variational principle: Trial Lie groups
NASA Astrophysics Data System (ADS)
Balian, R.; Vénéroni, M.
2015-11-01
Time-dependent expectation values and correlation functions for many-body quantum systems are evaluated by means of a unified variational principle. It optimizes a generating functional depending on sources associated with the observables of interest. It is built by imposing through Lagrange multipliers constraints that account for the initial state (at equilibrium or off equilibrium) and for the backward Heisenberg evolution of the observables. The trial objects are respectively akin to a density operator and to an operator involving the observables of interest and the sources. We work out here the case where trial spaces constitute Lie groups. This choice reduces the original degrees of freedom to those of the underlying Lie algebra, consisting of simple observables; the resulting objects are labeled by the indices of a basis of this algebra. Explicit results are obtained by expanding in powers of the sources. Zeroth and first orders provide thermodynamic quantities and expectation values in the form of mean-field approximations, with dynamical equations having a classical Lie-Poisson structure. At second order, the variational expression for two-time correlation functions separates-as does its exact counterpart-the approximate dynamics of the observables from the approximate correlations in the initial state. Two building blocks are involved: (i) a commutation matrix which stems from the structure constants of the Lie algebra; and (ii) the second-derivative matrix of a free-energy function. The diagonalization of both matrices, required for practical calculations, is worked out, in a way analogous to the standard RPA. The ensuing structure of the variational formulae is the same as for a system of non-interacting bosons (or of harmonic oscillators) plus, at non-zero temperature, classical Gaussian variables. This property is explained by mapping the original Lie algebra onto a simpler Lie algebra. The results, valid for any trial Lie group, fulfill consistency properties and encompass several special cases: linear responses, static and time-dependent fluctuations, zero- and high-temperature limits, static and dynamic stability of small deviations.
Classical affine W-algebras associated to Lie superalgebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, Uhi Rinn, E-mail: uhrisu1@math.snu.ac.kr
2016-02-15
In this paper, we prove classical affine W-algebras associated to Lie superalgebras (W-superalgebras), which can be constructed in two different ways: via affine classical Hamiltonian reductions and via taking quasi-classical limits of quantum affine W-superalgebras. Also, we show that a classical finite W-superalgebra can be obtained by a Zhu algebra of a classical affine W-superalgebra. Using the definition by Hamiltonian reductions, we find free generators of a classical W-superalgebra associated to a minimal nilpotent. Moreover, we compute generators of the classical W-algebra associated to spo(2|3) and its principal nilpotent. In the last part of this paper, we introduce a generalizationmore » of classical affine W-superalgebras called classical affine fractional W-superalgebras. We show these have Poisson vertex algebra structures and find generators of a fractional W-superalgebra associated to a minimal nilpotent.« less
HOMAR: A computer code for generating homotopic grids using algebraic relations: User's manual
NASA Technical Reports Server (NTRS)
Moitra, Anutosh
1989-01-01
A computer code for fast automatic generation of quasi-three-dimensional grid systems for aerospace configurations is described. The code employs a homotopic method to algebraically generate two-dimensional grids in cross-sectional planes, which are stacked to produce a three-dimensional grid system. Implementation of the algebraic equivalents of the homotopic relations for generating body geometries and grids are explained. Procedures for controlling grid orthogonality and distortion are described. Test cases with description and specification of inputs are presented in detail. The FORTRAN computer program and notes on implementation and use are included.
A Discrete Global Grid System Programming Language Using MapReduce
NASA Astrophysics Data System (ADS)
Peterson, P.; Shatz, I.
2016-12-01
A discrete global grid system (DGGS) is a powerful mechanism for storing and integrating geospatial information. As a "pixelization" of the Earth, many image processing techniques lend themselves to the transformation of data values referenced to the DGGS cells. It has been shown that image algebra, as an example, and advanced algebra, like Fast Fourier Transformation, can be used on the DGGS tiling structure for geoprocessing and spatial analysis. MapReduce has been shown to provide advantages for processing and generating large data sets within distributed and parallel computing. The DGGS structure is ideally suited for big distributed Earth data. We proposed that basic expressions could be created to form the atoms of a generalized DGGS language using the MapReduce programming model. We created three very efficient expressions: Selectors (aka filter) - A selection function that generate a set of cells, cell collections, or geometries; Calculators (aka map) - A computational function (including quantization of raw measurements and data sources) that generate values in a DGGS cell; and Aggregators (aka reduce) - A function that generate spatial statistics from cell values within a cell. We found that these three basic MapReduce operations along with a forth function, the Iterator, for horizontal and vertical traversing of any DGGS structure, provided simple building block resulting in very efficient operations and processes that could be used with any DGGS. We provide examples and a demonstration of their effectiveness using the ISEA3H DGGS on the PYXIS Studio.
On an algebraic structure of dimensionally reduced magical supergravity theories
NASA Astrophysics Data System (ADS)
Fukuchi, Shin; Mizoguchi, Shun'ya
2018-06-01
We study an algebraic structure of magical supergravities in three dimensions. We show that if the commutation relations among the generators of the quasi-conformal group in the super-Ehlers decomposition are in a particular form, then one can always find a parameterization of the group element in terms of various 3d bosonic fields that reproduces the 3d reduced Lagrangian of the corresponding magical supergravity. This provides a unified treatment of all the magical supergravity theories in finding explicit relations between the 3d dimensionally reduced Lagrangians and particular coset nonlinear sigma models. We also verify that the commutation relations of E 6 (+ 2), the quasi-conformal group for A = C, indeed satisfy this property, allowing the algebraic interpretation of the structure constants and scalar field functions as was done in the F 4 (+ 4) magical supergravity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoek, J.
A set of programs to calculate algebraically the generating functional (free energy) of a gauge system with arbitrary external sources on a lattice has been developed. It makes use of the strong coupling expansion. For theories with the standard Tr(UUU/sup dagger/U/sup dagger/) action results have been obtained up to fourth order.
Cubic map algebra functions for spatio-temporal analysis
Mennis, J.; Viger, R.; Tomlin, C.D.
2005-01-01
We propose an extension of map algebra to three dimensions for spatio-temporal data handling. This approach yields a new class of map algebra functions that we call "cube functions." Whereas conventional map algebra functions operate on data layers representing two-dimensional space, cube functions operate on data cubes representing two-dimensional space over a third-dimensional period of time. We describe the prototype implementation of a spatio-temporal data structure and selected cube function versions of conventional local, focal, and zonal map algebra functions. The utility of cube functions is demonstrated through a case study analyzing the spatio-temporal variability of remotely sensed, southeastern U.S. vegetation character over various land covers and during different El Nin??o/Southern Oscillation (ENSO) phases. Like conventional map algebra, the application of cube functions may demand significant data preprocessing when integrating diverse data sets, and are subject to limitations related to data storage and algorithm performance. Solutions to these issues include extending data compression and computing strategies for calculations on very large data volumes to spatio-temporal data handling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gadella, M.; Negro, J.; Santander, M.
In this paper, we construct a Spectrum Generating Algebra (SGA) for a quantum system with purely continuous spectrum: the quantum free particle in a Lobachevski space with constant negative curvature. The SGA contains the geometrical symmetry algebra of the system plus a subalgebra of operators that give the spectrum of the system and connects the eigenfunctions of the Hamiltonian among themselves. In our case, the geometrical symmetry algebra is so(3,1) and the SGA is so(4,2). We start with a representation of so(4,2) by functions on a realization of the Lobachevski space given by a two-sheeted hyperboloid, where the Lie algebramore » commutators are the usual Poisson-Dirac brackets. Then, we introduce a quantized version of the representation in which functions are replaced by operators on a Hilbert space and Poisson-Dirac brackets by commutators. Eigenfunctions of the Hamiltonian are given and 'naive' ladder operators are identified. The previously defined 'naive' ladder operators shift the eigenvalues by a complex number so that an alternative approach is necessary. This is obtained by a non-self-adjoint function of a linear combination of the ladder operators, which gives the correct relation among the eigenfunctions of the Hamiltonian. We give an eigenfunction expansion of functions over the upper sheet of a two-sheeted hyperboloid in terms of the eigenfunctions of the Hamiltonian.« less
The algebra of supertraces for 2+1 super de Sitter gravity
NASA Technical Reports Server (NTRS)
Urrutia, L. F.; Waelbroeck, H.; Zertuche, F.
1993-01-01
The algebra of the observables for 2+1 super de Sitter gravity, for one genus of the spatial surface is calculated. The algebra turns out to be an infinite Lie algebra subject to non-linear constraints. The constraints are solved explicitly in terms of five independent complex supertraces. These variables are the true degrees of freedom of the system and their quantized algebra generates a new structure which is referred to as a 'central extension' of the quantum algebra SU(2)q.
Computer algebra and operators
NASA Technical Reports Server (NTRS)
Fateman, Richard; Grossman, Robert
1989-01-01
The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.
TBGG- INTERACTIVE ALGEBRAIC GRID GENERATION
NASA Technical Reports Server (NTRS)
Smith, R. E.
1994-01-01
TBGG, Two-Boundary Grid Generation, applies an interactive algebraic grid generation technique in two dimensions. The program incorporates mathematical equations that relate the computational domain to the physical domain. TBGG has application to a variety of problems using finite difference techniques, such as computational fluid dynamics. Examples include the creation of a C-type grid about an airfoil and a nozzle configuration in which no left or right boundaries are specified. The underlying two-boundary technique of grid generation is based on Hermite cubic interpolation between two fixed, nonintersecting boundaries. The boundaries are defined by two ordered sets of points, referred to as the top and bottom. Left and right side boundaries may also be specified, and call upon linear blending functions to conform interior interpolation to the side boundaries. Spacing between physical grid coordinates is determined as a function of boundary data and uniformly spaced computational coordinates. Control functions relating computational coordinates to parametric intermediate variables that affect the distance between grid points are embedded in the interpolation formulas. A versatile control function technique with smooth cubic spline functions is also presented. The TBGG program is written in FORTRAN 77. It works best in an interactive graphics environment where computational displays and user responses are quickly exchanged. The program has been implemented on a CDC Cyber 170 series computer using NOS 2.4 operating system, with a central memory requirement of 151,700 (octal) 60 bit words. TBGG requires a Tektronix 4015 terminal and the DI-3000 Graphics Library of Precision Visuals, Inc. TBGG was developed in 1986.
NASA Astrophysics Data System (ADS)
Lewis, Debra
2013-05-01
Relative equilibria of Lagrangian and Hamiltonian systems with symmetry are critical points of appropriate scalar functions parametrized by the Lie algebra (or its dual) of the symmetry group. Setting aside the structures - symplectic, Poisson, or variational - generating dynamical systems from such functions highlights the common features of their construction and analysis, and supports the construction of analogous functions in non-Hamiltonian settings. If the symmetry group is nonabelian, the functions are invariant only with respect to the isotropy subgroup of the given parameter value. Replacing the parametrized family of functions with a single function on the product manifold and extending the action using the (co)adjoint action on the algebra or its dual yields a fully invariant function. An invariant map can be used to reverse the usual perspective: rather than selecting a parametrized family of functions and finding their critical points, conditions under which functions will be critical on specific orbits, typically distinguished by isotropy class, can be derived. This strategy is illustrated using several well-known mechanical systems - the Lagrange top, the double spherical pendulum, the free rigid body, and the Riemann ellipsoids - and generalizations of these systems.
Genetic algorithms in teaching artificial intelligence (automated generation of specific algebras)
NASA Astrophysics Data System (ADS)
Habiballa, Hashim; Jendryscik, Radek
2017-11-01
The problem of teaching essential Artificial Intelligence (AI) methods is an important task for an educator in the branch of soft-computing. The key focus is often given to proper understanding of the principle of AI methods in two essential points - why we use soft-computing methods at all and how we apply these methods to generate reasonable results in sensible time. We present one interesting problem solved in the non-educational research concerning automated generation of specific algebras in the huge search space. We emphasize above mentioned points as an educational case study of an interesting problem in automated generation of specific algebras.
A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra
NASA Astrophysics Data System (ADS)
Foulis, David J.; Jenčová, Anna; Pulmannová, Sylvia
2017-10-01
A generalized Hermitian (GH-) algebra is a generalization of the partially ordered Jordan algebra of all Hermitian operators on a Hilbert space. We introduce the notion of a gh-tribe, which is a commutative GH-algebra of functions on a nonempty set X with pointwise partial order and operations, and we prove that every commutative GH-algebra is the image of a gh-tribe under a surjective GH-morphism. Using this result, we prove that each element a of a GH-algebra A corresponds to a real observable ξa on the σ-orthomodular lattice of projections in A and that ξa determines the spectral resolution of a. Also, if f is a continuous function defined on the spectrum of a, we formulate a definition of f (a), thus obtaining a continuous functional calculus for A.
Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nataf, J.M.; Winkelmann, F.
We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK's symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less
Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nataf, J.M.; Winkelmann, F.
We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK`s symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less
Capitalizing on Basic Brain Processes in Developmental Algebra--Part 2
ERIC Educational Resources Information Center
Laughbaum, Edward D.
2011-01-01
Basic brain function is not a mystery. Given that neuroscientists understand its basic functioning processes, one wonders what their research suggests to teachers of developmental algebra. What if we knew how to teach so as to improve understanding of the algebra taught to developmental algebra students? What if we knew how the brain processes…
Capitalizing on Basic Brain Processes in Developmental Algebra--Part One
ERIC Educational Resources Information Center
Laughbaum, Edward D.
2011-01-01
Basic brain function is not a mystery. Given that neuroscientists understand the brain's basic functioning processes, one wonders what their research suggests to teachers of developmental algebra. What if we knew how to teach so as to improve understanding of the algebra taught to developmental algebra students? What if we knew how the brain…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balian, R., E-mail: roger.balian@cea.fr; Vénéroni, M.
Time-dependent expectation values and correlation functions for many-body quantum systems are evaluated by means of a unified variational principle. It optimizes a generating functional depending on sources associated with the observables of interest. It is built by imposing through Lagrange multipliers constraints that account for the initial state (at equilibrium or off equilibrium) and for the backward Heisenberg evolution of the observables. The trial objects are respectively akin to a density operator and to an operator involving the observables of interest and the sources. We work out here the case where trial spaces constitute Lie groups. This choice reduces themore » original degrees of freedom to those of the underlying Lie algebra, consisting of simple observables; the resulting objects are labeled by the indices of a basis of this algebra. Explicit results are obtained by expanding in powers of the sources. Zeroth and first orders provide thermodynamic quantities and expectation values in the form of mean-field approximations, with dynamical equations having a classical Lie–Poisson structure. At second order, the variational expression for two-time correlation functions separates–as does its exact counterpart–the approximate dynamics of the observables from the approximate correlations in the initial state. Two building blocks are involved: (i) a commutation matrix which stems from the structure constants of the Lie algebra; and (ii) the second-derivative matrix of a free-energy function. The diagonalization of both matrices, required for practical calculations, is worked out, in a way analogous to the standard RPA. The ensuing structure of the variational formulae is the same as for a system of non-interacting bosons (or of harmonic oscillators) plus, at non-zero temperature, classical Gaussian variables. This property is explained by mapping the original Lie algebra onto a simpler Lie algebra. The results, valid for any trial Lie group, fulfill consistency properties and encompass several special cases: linear responses, static and time-dependent fluctuations, zero- and high-temperature limits, static and dynamic stability of small deviations.« less
Functors of White Noise Associated to Characters of the Infinite Symmetric Group
NASA Astrophysics Data System (ADS)
Bożejko, Marek; Guţă, Mădălin
The characters of the infinite symmetric group are extended to multiplicative positive definite functions on pair partitions by using an explicit representation due to Veršik and Kerov. The von Neumann algebra generated by the fields with f in an infinite dimensional real Hilbert space is infinite and the vacuum vector is not separating. For a family depending on an integer N< - 1 an ``exclusion principle'' is found allowing at most ``identical particles'' on the same state:
On Correspondence of BRST-BFV, Dirac, and Refined Algebraic Quantizations of Constrained Systems
NASA Astrophysics Data System (ADS)
Shvedov, O. Yu.
2002-11-01
The correspondence between BRST-BFV, Dirac, and refined algebraic (group averaging, projection operator) approaches to quantizing constrained systems is analyzed. For the closed-algebra case, it is shown that the component of the BFV wave function corresponding to maximal (minimal) value of number of ghosts and antighosts in the Schrodinger representation may be viewed as a wave function in the refined algebraic (Dirac) quantization approach. The Giulini-Marolf group averaging formula for the inner product in the refined algebraic quantization approach is obtained from the Batalin-Marnelius prescription for the BRST-BFV inner product, which should be generally modified due to topological problems. The considered prescription for the correspondence of states is observed to be applicable to the open-algebra case. The refined algebraic quantization approach is generalized then to the case of nontrivial structure functions. A simple example is discussed. The correspondence of observables for different quantization methods is also investigated.
Cascade Raman sidebands generation and orbital angular momentum relations for paraxial beam modes
NASA Astrophysics Data System (ADS)
Strohaber, James; Schuessler, Hans; Kolomenskii, Alexandre; Zhu, Feng
2015-05-01
In this work, the nonlinear parametric interaction of optical radiation in various transverse modes in a Raman-active medium is investigated both experimentally and theoretically. Verification of the orbital angular momentum algebra (OAM-algebra) was performed for high-order Laguerre Gaussian modes. It was found that this same algebra also describes the coherent transfer of OAM when Ince-Gaussian modes were used. New theoretical considerations extend the OAM-algebra to even and odd Laguerre Gaussian, and Hermite Gaussian beam modes through a change of basis. The results of this work provide details in the spatiotemporal synthesis of custom broadband pulses of radiation from Raman sideband generation.
A calculus based on a q-deformed Heisenberg algebra
Cerchiai, B. L.; Hinterding, R.; Madore, J.; ...
1999-04-27
We show how one can construct a differential calculus over an algebra where position variables $x$ and momentum variables p have be defined. As the simplest example we consider the one-dimensional q-deformed Heisenberg algebra. This algebra has a subalgebra generated by cursive Greek chi and its inverse which we call the coordinate algebra. A physical field is considered to be an element of the completion of this algebra. We can construct a derivative which leaves invariant the coordinate algebra and so takes physical fields into physical fields. A generalized Leibniz rule for this algebra can be found. Based on thismore » derivative differential forms and an exterior differential calculus can be constructed.« less
Two and three dimensional grid generation by an algebraic homotopy procedure
NASA Technical Reports Server (NTRS)
Moitra, Anutosh
1990-01-01
An algebraic method for generating two- and three-dimensional grid systems for aerospace vehicles is presented. The method is based on algebraic procedures derived from homotopic relations for blending between inner and outer boundaries of any given configuration. Stable properties of homotopic maps have been exploited to provide near-orthogonality and specified constant spacing at the inner boundary. The method has been successfully applied to analytically generated blended wing-body configurations as well as discretely defined geometries such as the High-Speed Civil Transport Aircraft. Grid examples representative of the capabilities of the method are presented.
Quantum walled Brauer algebra: commuting families, Baxterization, and representations
NASA Astrophysics Data System (ADS)
Semikhatov, A. M.; Tipunin, I. Yu
2017-02-01
For the quantum walled Brauer algebra, we construct its Specht modules and (for generic parameters of the algebra) seminormal modules. The latter construction yields the spectrum of a commuting family of Jucys-Murphy elements. We also propose a Baxterization prescription; it involves representing the quantum walled Brauer algebra in terms of morphisms in a braided monoidal category and introducing parameters into these morphisms, which allows constructing a ‘universal transfer matrix’ that generates commuting elements of the algebra.
ERIC Educational Resources Information Center
Palmer, Loretta
A basic algebra unit was developed at Utah Valley State College to emphasize applications of mathematical concepts in the work world, using video and computer-generated graphics to integrate textual material. The course was implemented in three introductory algebra sections involving 80 students and taught algebraic concepts using such areas as…
A Process Algebra Approach to Quantum Electrodynamics
NASA Astrophysics Data System (ADS)
Sulis, William
2017-12-01
The process algebra program is directed towards developing a realist model of quantum mechanics free of paradoxes, divergences and conceptual confusions. From this perspective, fundamental phenomena are viewed as emerging from primitive informational elements generated by processes. The process algebra has been shown to successfully reproduce scalar non-relativistic quantum mechanics (NRQM) without the usual paradoxes and dualities. NRQM appears as an effective theory which emerges under specific asymptotic limits. Space-time, scalar particle wave functions and the Born rule are all emergent in this framework. In this paper, the process algebra model is reviewed, extended to the relativistic setting, and then applied to the problem of electrodynamics. A semiclassical version is presented in which a Minkowski-like space-time emerges as well as a vector potential that is discrete and photon-like at small scales and near-continuous and wave-like at large scales. QED is viewed as an effective theory at small scales while Maxwell theory becomes an effective theory at large scales. The process algebra version of quantum electrodynamics is intuitive and realist, free from divergences and eliminates the distinction between particle, field and wave. Computations are carried out using the configuration space process covering map, although the connection to second quantization has not been fully explored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, Uhi Rinn, E-mail: uhrisu1@math.snu.ac.kr
We introduce a classical BRST complex (See Definition 3.2.) and show that one can construct a classical affine W-algebra via the complex. This definition clarifies that classical affine W-algebras can be considered as quasi-classical limits of quantum affine W-algebras. We also give a definition of a classical affine fractional W-algebra as a Poisson vertex algebra. As in the classical affine case, a classical affine fractional W-algebra has two compatible λ-brackets and is isomorphic to an algebra of differential polynomials as a differential algebra. When a classical affine fractional W-algebra is associated to a minimal nilpotent, we describe explicit forms ofmore » free generators and compute λ-brackets between them. Provided some assumptions on a classical affine fractional W-algebra, we find an infinite sequence of integrable systems related to the algebra, using the generalized Drinfel’d and Sokolov reduction.« less
The Hurwitz Enumeration Problem of Branched Covers and Hodge Integrals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yun S.
We use algebraic methods to compute the simple Hurwitz numbers for arbitrary source and target Riemann surfaces. For an elliptic curve target, we reproduce the results previously obtained by string theorists. Motivated by the Gromov-Witten potentials, we find a general generating function for the simple Hurwitz numbers in terms of the representation theory of the symmetric group S{sub n}. We also find a generating function for Hodge integrals on the moduli space {bar M}{sub g,2} of Riemann surfaces with two marked points, similar to that found by Faber and Pandharipande for the case of one marked point.
ERIC Educational Resources Information Center
Wasserman, Nicholas H.
2017-01-01
This article draws on semi-structured, task-based interviews to explore secondary teachers' (N = 7) understandings of inverse functions in relation to abstract algebra. In particular, a concept map task is used to understand the degree to which participants, having recently taken an abstract algebra course, situated inverse functions within its…
Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model
NASA Astrophysics Data System (ADS)
Cirilo António, N.; Manojlović, N.; Salom, I.
2014-12-01
We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model.
The interplay between group crossed products, semigroup crossed products and toeplitz algebras
NASA Astrophysics Data System (ADS)
Yusnitha, I.
2018-05-01
Realization of group crossed products constructed by decomposition, as semigroup crossed products. And connected it to Toeplitz algebra of ordered group quotient to get some preliminaries description for the further study on the structure of Toeplitz algebras of ordered group which is finitely generated.
Derive Workshop Matrix Algebra and Linear Algebra.
ERIC Educational Resources Information Center
Townsley Kulich, Lisa; Victor, Barbara
This document presents the course content for a workshop that integrates the use of the computer algebra system Derive with topics in matrix and linear algebra. The first section is a guide to using Derive that provides information on how to write algebraic expressions, make graphs, save files, edit, define functions, differentiate expressions,…
Massless conformal fields, AdS (d+1)/CFT d higher spin algebras and their deformations
Fernando, Sudarshan; Gunaydin, Murat
2016-02-04
Here, we extend our earlier work on the minimal unitary representation of SO(d, 2)and its deformations for d=4, 5and 6to arbitrary dimensions d. We show that there is a one-to-one correspondence between the minrep of SO(d, 2)and its deformations and massless conformal fields in Minkowskian spacetimes in ddimensions. The minrep describes a massless conformal scalar field, and its deformations describe massless conformal fields of higher spin. The generators of Joseph ideal vanish identically as operators for the quasiconformal realization of the minrep, and its enveloping algebra yields directly the standard bosonic AdS (d+1)/CFT d higher spin algebra. For deformed minrepsmore » the generators of certain deformations of Joseph ideal vanish as operators and their enveloping algebras lead to deformations of the standard bosonic higher spin algebra. In odd dimensions there is a unique deformation of the higher spin algebra corresponding to the spinor singleton. In even dimensions one finds infinitely many deformations of the higher spin algebra labelled by the eigenvalues of Casimir operator of the little group SO(d–2)for massless representations.« less
University of Chicago School Mathematics Project (UCSMP) Algebra. WWC Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2009
2009-01-01
University of Chicago School Mathematics Project (UCSMP) Algebra is a one-year course covering three primary topics: (1) linear and quadratic expressions, sentences, and functions; (2) exponential expressions and functions; and (3) linear systems. Topics from geometry, probability, and statistics are integrated with the appropriate algebra.…
Do-It-Yourself Fractal Functions
ERIC Educational Resources Information Center
Shriver, Janet; Willard, Teri; McDaniel, Mandy
2017-01-01
In the set of fractal activities described in this article, students will accomplish much more than just creating a fun set of cards that simply resemble an art project. Goals of this activity, designed for an algebra 1 class, are to encourage students to generate data, look for and analyze patterns, and create their own models--all from a set of…
On the structure of quantum L∞ algebras
NASA Astrophysics Data System (ADS)
Blumenhagen, Ralph; Fuchs, Michael; Traube, Matthias
2017-10-01
It is believed that any classical gauge symmetry gives rise to an L∞ algebra. Based on the recently realized relation between classical W algebras and L∞ algebras, we analyze how this generalizes to the quantum case. Guided by the existence of quantum W algebras, we provide a physically well motivated definition of quantum L∞ algebras describing the consistency of global symmetries in quantum field theories. In this case we are restricted to only two non-trivial graded vector spaces X 0 and X -1 containing the symmetry variations and the symmetry generators. This quantum L∞ algebra structure is explicitly exemplified for the quantum W_3 algebra. The natural quantum product between fields is the normal ordered one so that, due to contractions between quantum fields, the higher L∞ relations receive off-diagonal quantum corrections. Curiously, these are not present in the loop L∞ algebra of closed string field theory.
Designing Virtual Worlds for Use in Mathematics Education.
ERIC Educational Resources Information Center
Winn, William; Bricken, William
Virtual Reality (VR) is a computer generated, multi-dimensional, inclusive environment that can build axioms of algebra into the behavior of the world. This paper discusses the use of VR to represent part of the algebra curriculum in order to improve students' classroom experiences in learning algebra. Students learn to construct their knowledge…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernando, Sudarshan; Gunaydin, Murat
Here, we extend our earlier work on the minimal unitary representation of SO(d, 2)and its deformations for d=4, 5and 6to arbitrary dimensions d. We show that there is a one-to-one correspondence between the minrep of SO(d, 2)and its deformations and massless conformal fields in Minkowskian spacetimes in ddimensions. The minrep describes a massless conformal scalar field, and its deformations describe massless conformal fields of higher spin. The generators of Joseph ideal vanish identically as operators for the quasiconformal realization of the minrep, and its enveloping algebra yields directly the standard bosonic AdS (d+1)/CFT d higher spin algebra. For deformed minrepsmore » the generators of certain deformations of Joseph ideal vanish as operators and their enveloping algebras lead to deformations of the standard bosonic higher spin algebra. In odd dimensions there is a unique deformation of the higher spin algebra corresponding to the spinor singleton. In even dimensions one finds infinitely many deformations of the higher spin algebra labelled by the eigenvalues of Casimir operator of the little group SO(d–2)for massless representations.« less
ERIC Educational Resources Information Center
Buerman, Margaret
2007-01-01
Finding real-world examples for middle school algebra classes can be difficult but not impossible. As we strive to accomplish teaching our students how to solve and graph equations, we neglect to teach the big ideas of algebra. One of those big ideas is functions. This article gives three examples of functions that are found in Arches National…
Maple (Computer Algebra System) in Teaching Pre-Calculus: Example of Absolute Value Function
ERIC Educational Resources Information Center
Tuluk, Güler
2014-01-01
Modules in Computer Algebra Systems (CAS) make Mathematics interesting and easy to understand. The present study focused on the implementation of the algebraic, tabular (numerical), and graphical approaches used for the construction of the concept of absolute value function in teaching mathematical content knowledge along with Maple 9. The study…
NASA Astrophysics Data System (ADS)
Jensen, Iwan
2017-01-01
More than 15 years ago Guttmann and Vöge (2002 J. Stat. Plan. Inference 101 107), introduced a model of friendly walkers. Since then it has remained unsolved. In this paper we provide the exact solution to a closely allied model which essentially only differs in the boundary conditions. The exact solution is expressed in terms of the reciprocal of the generating function for vicious walkers which is a D-finite function. However, ratios of D-finite functions are inherently not D-finite and in this case we prove that the friendly walkers generating function is the solution to a non-linear differential equation with polynomial coefficients, it is in other words D-algebraic. We find using numerically exact calculations a conjectured expression for the generating function of the original model as a ratio of a D-finite function and the generating function for vicious walkers. We obtain an expression for this D-finite function in terms of a {{}2}{{F}1} hypergeometric function with a rational pullback and its first and second derivatives. Dedicated to Tony Guttmann on the occasion of his 70th birthday.
Asymptotic aspect of derivations in Banach algebras.
Roh, Jaiok; Chang, Ick-Soon
2017-01-01
We prove that every approximate linear left derivation on a semisimple Banach algebra is continuous. Also, we consider linear derivations on Banach algebras and we first study the conditions for a linear derivation on a Banach algebra. Then we examine the functional inequalities related to a linear derivation and their stability. We finally take central linear derivations with radical ranges on semiprime Banach algebras and a continuous linear generalized left derivation on a semisimple Banach algebra.
ERIC Educational Resources Information Center
Arendasy, Martin; Sommer, Markus
2007-01-01
This article deals with the investigation of the psychometric quality and constructs validity of algebra word problems generated by means of a schema-based version of the automatic min-max approach. Based on review of the research literature in algebra word problem solving and automatic item generation this new approach is introduced as a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirilo Antonio, N.; Manojlovic, N.; Departamento de Matematica, FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro
sl{sub 2} Gaudin model with jordanian twist is studied. This system can be obtained as the semiclassical limit of the XXX spin chain deformed by the jordanian twist. The appropriate creation operators that yield the Bethe states of the Gaudin model and consequently its spectrum are defined. Their commutation relations with the generators of the corresponding loop algebra as well as with the generating function of integrals of motion are given. The inner products and norms of Bethe states and the relation to the solutions of the Knizhnik-Zamolodchikov equations are discussed.
The hopf algebra of vector fields on complex quantum groups
NASA Astrophysics Data System (ADS)
Drabant, Bernhard; Jurčo, Branislav; Schlieker, Michael; Weich, Wolfgang; Zumino, Bruno
1992-10-01
We derive the equivalence of the complex quantum enveloping algebra and the algebra of complex quantum vector fields for the Lie algebra types A n , B n , C n , and D n by factorizing the vector fields uniquely into a triangular and a unitary part and identifying them with the corresponding elements of the algebra of regular functionals.
A Representation for Fermionic Correlation Functions
NASA Astrophysics Data System (ADS)
Feldman, Joel; Knörrer, Horst; Trubowitz, Eugene
Let dμS(a) be a Gaussian measure on the finitely generated Grassmann algebra A. Given an even W(a)∈A, we construct an operator R on A such that
Verburgt, Lukas M
2016-01-01
This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.
Asymptotic symmetries of colored gravity in three dimensions
NASA Astrophysics Data System (ADS)
Joung, Euihun; Kim, Jaewon; Kim, Jihun; Rey, Soo-Jong
2018-03-01
Three-dimensional colored gravity refers to nonabelian isospin extension of Einstein gravity. We investigate the asymptotic symmetry algebra of the SU( N)-colored gravity in (2+1)-dimensional anti-de Sitter spacetime. Formulated by the Chern-Simons theory with SU( N, N) × SU( N, N) gauge group, the theory contains graviton, SU( N) Chern-Simons gauge fields and massless spin-two multiplets in the SU( N) adjoint representation, thus extending diffeomorphism to colored, nonabelian counterpart. We identify the asymptotic symmetry as Poisson algebra of generators associated with the residual global symmetries of the nonabelian diffeomorphism set by appropriately chosen boundary conditions. The resulting asymptotic symmetry algebra is a nonlinear extension of \\widehat{su(N)} Kac-Moody algebra, supplemented by additional generators corresponding to the massless spin-two adjoint matter fields.
Strategies Toward Automation of Overset Structured Surface Grid Generation
NASA Technical Reports Server (NTRS)
Chan, William M.
2017-01-01
An outline of a strategy for automation of overset structured surface grid generation on complex geometries is described. The starting point of the process consists of an unstructured surface triangulation representation of the geometry derived from a native CAD, STEP, or IGES definition, and a set of discretized surface curves that captures all geometric features of interest. The procedure for surface grid generation is decomposed into an algebraic meshing step, a hyperbolic meshing step, and a gap-filling step. This paper will focus primarily on the high-level plan with details on the algebraic step. The algorithmic procedure for the algebraic step involves analyzing the topology of the network of surface curves, distributing grid points appropriately on these curves, identifying domains bounded by four curves that can be meshed algebraically, concatenating the resulting grids into fewer patches, and extending appropriate boundaries of the concatenated grids to provide proper overlap. Results are presented for grids created on various aerospace vehicle components.
NASA Astrophysics Data System (ADS)
He, Yang-Hui; Jejjala, Vishnu; Matti, Cyril; Nelson, Brent D.; Stillman, Michael
2015-10-01
We present an intriguing and precise interplay between algebraic geometry and the phenomenology of generations of particles. Using the electroweak sector of the MSSM as a testing ground, we compute the moduli space of vacua as an algebraic variety for multiple generations of Standard Model matter and Higgs doublets. The space is shown to have Calabi-Yau, Grassmannian, and toric signatures, which sensitively depend on the number of generations of leptons, as well as inclusion of Majorana mass terms for right-handed neutrinos. We speculate as to why three generations is special.
NASA Astrophysics Data System (ADS)
Mozrzymas, Marek; Studziński, Michał; Horodecki, Michał
2018-03-01
Herein we continue the study of the representation theory of the algebra of permutation operators acting on the n -fold tensor product space, partially transposed on the last subsystem. We develop the concept of partially reduced irreducible representations, which allows us to significantly simplify previously proved theorems and, most importantly, derive new results for irreducible representations of the mentioned algebra. In our analysis we are able to reduce the complexity of the central expressions by getting rid of sums over all permutations from the symmetric group, obtaining equations which are much more handy in practical applications. We also find relatively simple matrix representations for the generators of the underlying algebra. The obtained simplifications and developments are applied to derive the characteristics of a deterministic port-based teleportation scheme written purely in terms of irreducible representations of the studied algebra. We solve an eigenproblem for the generators of the algebra, which is the first step towards a hybrid port-based teleportation scheme and gives us new proofs of the asymptotic behaviour of teleportation fidelity. We also show a connection between the density operator characterising port-based teleportation and a particular matrix composed of an irreducible representation of the symmetric group, which encodes properties of the investigated algebra.
NASA Astrophysics Data System (ADS)
Ravera, Lucrezia
2018-03-01
The purpose of this paper is to show that the so-called Maxwell superalgebra in four dimensions, which naturally involves the presence of a nilpotent fermionic generator, can be interpreted as a hidden superalgebra underlying N=1, {D}=4 supergravity extended to include a 2-form gauge potential associated to a 2-index antisymmetric tensor. In this scenario, the theory is appropriately discussed in the context of Free Differential Algebras (an extension of the Maurer-Cartan equations to involve higher-degree differential forms). The study is then extended to the Free Differential Algebra describing D = 11 supergravity, showing that, also in this case, there exists a super-Maxwell algebra underlying the theory. The same extra spinors dual to the nilpotent fermionic generators whose presence is crucial for writing a supersymmetric extension of the Maxwell algebras, both in the D = 4 and in the D = 11 case, turn out to be fundamental ingredients also to reproduce the D = 4 and D = 11 Free Differential Algebras on ordinary superspace, whose basis is given by the supervielbein. The analysis of the gauge structure of the supersymmetric Free Differential Algebras is carried on taking into account the gauge transformations from the hidden supergroup-manifold associated with the Maxwell superalgebras.
Introducing Algebra through the Graphical Representation of Functions: A Study among LD Students
ERIC Educational Resources Information Center
Sauriol, Jennifer
2013-01-01
This longitudinal study evaluates the impact of a new Algebra 1 course at a High School for language-based learning-disabled (LD) students. The new course prioritized the teaching of relationship graphs and functions as an introduction to algebra. Across three studies, the dissertation documents and evaluates the progress made by LD high school…
q-Derivatives, quantization methods and q-algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Twarock, Reidun
1998-12-15
Using the example of Borel quantization on S{sup 1}, we discuss the relation between quantization methods and q-algebras. In particular, it is shown that a q-deformation of the Witt algebra with generators labeled by Z is realized by q-difference operators. This leads to a discrete quantum mechanics. Because of Z, the discretization is equidistant. As an approach to a non-equidistant discretization of quantum mechanics one can change the Witt algebra using not the number field Z as labels but a quadratic extension of Z characterized by an irrational number {tau}. This extension is denoted as quasi-crystal Lie algebra, because thismore » is a relation to one-dimensional quasicrystals. The q-deformation of this quasicrystal Lie algebra is discussed. It is pointed out that quasicrystal Lie algebras can be considered also as a 'deformed' Witt algebra with a 'deformation' of the labeling number field. Their application to the theory is discussed.« less
On differential operators generating iterative systems of linear ODEs of maximal symmetry algebra
NASA Astrophysics Data System (ADS)
Ndogmo, J. C.
2017-06-01
Although every iterative scalar linear ordinary differential equation is of maximal symmetry algebra, the situation is different and far more complex for systems of linear ordinary differential equations, and an iterative system of linear equations need not be of maximal symmetry algebra. We illustrate these facts by examples and derive families of vector differential operators whose iterations are all linear systems of equations of maximal symmetry algebra. Some consequences of these results are also discussed.
a Triangular Deformation of the Two-Dimensional POINCARÉ Algebra
NASA Astrophysics Data System (ADS)
Khorrami, M.; Shariati, A.; Abolhassani, M. R.; Aghamohammadi, A.
Contracting the h-deformation of SL(2, ℝ), we construct a new deformation of two-dimensional Poincaré's algebra, the algebra of functions on its group and its differential structure. It is seen that these dual Hopf algebras are isomorphic to each other. It is also shown that the Hopf algebra is triangular, and its universal R-matrix is also constructed explicitly. We then find a deformation map for the universal enveloping algebra, and at the end, give the deformed mass shells and Lorentz transformation.
Grid generation methodology and CFD simulations in sliding vane compressors and expanders
NASA Astrophysics Data System (ADS)
Bianchi, Giuseppe; Rane, Sham; Kovacevic, Ahmed; Cipollone, Roberto; Murgia, Stefano; Contaldi, Giulio
2017-08-01
The limiting factor for the employment of advanced 3D CFD tools in the analysis and design of rotary vane machines is the unavailability of methods for generation of computational grids suitable for fast and reliable numerical analysis. The paper addresses this challenge presenting the development of an analytical grid generation for vane machines that is based on the user defined nodal displacement. In particular, mesh boundaries are defined as parametric curves generated using trigonometrical modelling of the axial cross section of the machine while the distribution of computational nodes is performed using algebraic algorithms with transfinite interpolation, post orthogonalisation and smoothing. Algebraic control functions are introduced for distribution of nodes on the rotor and casing boundaries in order to achieve good grid quality in terms of cell size and expansion. In this way, the moving and deforming fluid domain of the sliding vane machine is discretized and the conservation of intrinsic quantities in ensured by maintaining the cell connectivity and structure. For validation of generated grids, a mid-size air compressor and a small-scale expander for Organic Rankine Cycle applications have been investigated in this paper. Remarks on implementation of the mesh motion algorithm, stability and robustness experienced with the ANSYS CFX solver as well as the obtained flow results are presented.
Powell, Sarah R.; Fuchs, Lynn S.
2014-01-01
According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 2nd- grade students, we administered (a) measures of calculations and word problems in the fall and (b) an assessment of pre-algebraic reasoning, with items that assessed solving equations and functions, in the spring. Based on the calculation and word-problem measures, we placed 148 students into 1 of 4 difficulty status categories: typically performing, calculation difficulty, word-problem difficulty, or difficulty with calculations and word problems. Analyses of variance were conducted on the 148 students; path analytic mediation analyses were conducted on the larger sample of 789 students. Across analyses, results corroborated the finding that word-problem difficulty is more strongly associated with difficulty with pre-algebraic reasoning. As an indicator of later algebra difficulty, word-problem difficulty may be a more useful predictor than calculation difficulty, and students with word-problem difficulty may require a different level of algebraic reasoning intervention than students with calculation difficulty. PMID:25309044
NASA Astrophysics Data System (ADS)
Ma'rufi, Budayasa, I. Ketut; Juniati, Dwi
2017-08-01
The aim of this study was to describe the analysis of mathematics teachers' learning on algebra function limit material based on teaching experience difference. The purpose of this study is to describe the analysis of mathematics teacher's learning on limit algebraic functions in terms of the differences of teaching experience. Learning analysis focused on Pedagogical Content Knowledge (PCK) of teachers in mathematics on limit algebraic functions related to the knowledge of pedagogy. PCK of teachers on limit algebraic function is a type of specialized knowledge for teachers on how to teach limit algebraic function that can be understood by students. Subjects are two high school mathematics teacher who has difference of teaching experience they are one Novice Teacher (NP) and one Experienced Teacher (ET). Data are collected through observation of learning in the class, videos of learning, and then analyzed using qualitative analysis. Teacher's knowledge of Pedagogic defined as a knowledge and understanding of teacher about planning and organizing of learning, and application of learning strategy. The research results showed that the Knowledge of Pedagogy on subject NT in mathematics learning on the material of limit function algebra showed that the subject NT tended to describe procedurally, without explaining the reasons why such steps were used, asking questions which tended to be monotonous not be guiding and digging deeper, and less varied in the use of learning strategies while subject ET gave limited guidance and opportunities to the students to find their own answers, exploit the potential of students to answer questions, provide an opportunity for students to interact and work in groups, and subject ET tended to combine conceptual and procedural explanation.
Boundaries for algebras of holomorphic functions on Marcinkiewicz sequence spaces
NASA Astrophysics Data System (ADS)
Choi, Yun Sung; Han, Kwang Hee
2006-11-01
Let be the Banach algebra of all complex-valued bounded continuous functions on the closed unit ball BE of a complex Banach space E and holomorphic in the interior of BE and let be the closed subalgebra of those functions which are uniformly continuous on BE. For the case whose bidual is a Marcinkiewicz sequence space Mw, we describe some sufficient conditions for a set to be a boundary of either or . Moreover, we consider some analogous problems on to those which were studied on the Gowers space Gp of characteristic p by Grados and Moraes [L.R. Grados, L.A. Moraes, Boundaries for algebras of holomorphic functions, J. Math. Anal. Appl. 281 (2003) 575-586; L.R. Grados, L.A. Moraes, Boundaries for an algebra of bounded holomorphic functions, J. Korean Math. Soc. 41 (1) (2004) 231-242].
ERIC Educational Resources Information Center
Aydin, Sinan
2014-01-01
Linear algebra is a basic mathematical subject taught in mathematics and science depar-tments of universities. The teaching and learning of this course has always been difficult. This study aims to contribute to the research in linear algebra education, focusing on linear dependence and independence concepts. This was done by introducing…
General Algebraic Modeling System Tutorial | High-Performance Computing |
power generation from two different fuels. The goal is to minimize the cost for one of the fuels while Here's a basic tutorial for modeling optimization problems with the General Algebraic Modeling System (GAMS). Overview The GAMS (General Algebraic Modeling System) package is essentially a compiler for a
A path model for Whittaker vectors
NASA Astrophysics Data System (ADS)
Di Francesco, Philippe; Kedem, Rinat; Turmunkh, Bolor
2017-06-01
In this paper we construct weighted path models to compute Whittaker vectors in the completion of Verma modules, as well as Whittaker functions of fundamental type, for all finite-dimensional simple Lie algebras, affine Lie algebras, and the quantum algebra U_q(slr+1) . This leads to series expressions for the Whittaker functions. We show how this construction leads directly to the quantum Toda equations satisfied by these functions, and to the q-difference equations in the quantum case. We investigate the critical limit of affine Whittaker functions computed in this way.
OVERGRID: A Unified Overset Grid Generation Graphical Interface
NASA Technical Reports Server (NTRS)
Chan, William M.; Akien, Edwin W. (Technical Monitor)
1999-01-01
This paper presents a unified graphical interface and gridding strategy for performing overset grid generation. The interface called OVERGRID has been specifically designed to follow an efficient overset gridding strategy, and contains general grid manipulation capabilities as well as modules that are specifically suited for overset grids. General grid utilities include functions for grid redistribution, smoothing, concatenation, extraction, extrapolation, projection, and many others. Modules specially tailored for overset grids include a seam curve extractor, hyperbolic and algebraic surface grid generators, a hyperbolic volume grid generator, and a Cartesian box grid generator, Grid visualization is achieved using OpenGL while widgets are constructed with Tcl/Tk. The software is portable between various platforms from UNIX workstations to personal computers.
On generalized Melvin solution for the Lie algebra E_6
NASA Astrophysics Data System (ADS)
Bolokhov, S. V.; Ivashchuk, V. D.
2017-10-01
A multidimensional generalization of Melvin's solution for an arbitrary simple Lie algebra G is considered. The gravitational model in D dimensions, D ≥ 4, contains n 2-forms and l ≥ n scalar fields, where n is the rank of G. The solution is governed by a set of n functions H_s(z) obeying n ordinary differential equations with certain boundary conditions imposed. It was conjectured earlier that these functions should be polynomials (the so-called fluxbrane polynomials). The polynomials H_s(z), s = 1,\\ldots ,6, for the Lie algebra E_6 are obtained and a corresponding solution for l = n = 6 is presented. The polynomials depend upon integration constants Q_s, s = 1,\\ldots ,6. They obey symmetry and duality identities. The latter ones are used in deriving asymptotic relations for solutions at large distances. The power-law asymptotic relations for E_6-polynomials at large z are governed by the integer-valued matrix ν = A^{-1} (I + P), where A^{-1} is the inverse Cartan matrix, I is the identity matrix and P is a permutation matrix, corresponding to a generator of the Z_2-group of symmetry of the Dynkin diagram. The 2-form fluxes Φ ^s, s = 1,\\ldots ,6, are calculated.
The Automation of Stochastization Algorithm with Use of SymPy Computer Algebra Library
NASA Astrophysics Data System (ADS)
Demidova, Anastasya; Gevorkyan, Migran; Kulyabov, Dmitry; Korolkova, Anna; Sevastianov, Leonid
2018-02-01
SymPy computer algebra library is used for automatic generation of ordinary and stochastic systems of differential equations from the schemes of kinetic interaction. Schemes of this type are used not only in chemical kinetics but also in biological, ecological and technical models. This paper describes the automatic generation algorithm with an emphasis on application details.
Method of generating features optimal to a dataset and classifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruillard, Paul J.; Gosink, Luke J.; Jarman, Kenneth D.
A method of generating features optimal to a particular dataset and classifier is disclosed. A dataset of messages is inputted and a classifier is selected. An algebra of features is encoded. Computable features that are capable of describing the dataset from the algebra of features are selected. Irredundant features that are optimal for the classifier and the dataset are selected.
Recurrence approach and higher order polynomial algebras for superintegrable monopole systems
NASA Astrophysics Data System (ADS)
Hoque, Md Fazlul; Marquette, Ian; Zhang, Yao-Zhong
2018-05-01
We revisit the MIC-harmonic oscillator in flat space with monopole interaction and derive the polynomial algebra satisfied by the integrals of motion and its energy spectrum using the ad hoc recurrence approach. We introduce a superintegrable monopole system in a generalized Taub-Newman-Unti-Tamburino (NUT) space. The Schrödinger equation of this model is solved in spherical coordinates in the framework of Stäckel transformation. It is shown that wave functions of the quantum system can be expressed in terms of the product of Laguerre and Jacobi polynomials. We construct ladder and shift operators based on the corresponding wave functions and obtain the recurrence formulas. By applying these recurrence relations, we construct higher order algebraically independent integrals of motion. We show that the integrals form a polynomial algebra. We construct the structure functions of the polynomial algebra and obtain the degenerate energy spectra of the model.
Homomorphisms in C*-ternary algebras and JB*-triples
NASA Astrophysics Data System (ADS)
Park, Choonkil; Rassias, Themistocles M.
2008-01-01
In this paper, we investigate homomorphisms between C*-ternary algebras and derivations on C*-ternary algebras, and homomorphisms between JB*-triples and derivations on JB*-triples, associated with the following Apollonius type additive functional equation
Kouri, Donald J; Markovich, Thomas; Maxwell, Nicholas; Bodmann, Bernhard G
2009-07-02
We discuss a periodic variant of the Heisenberg-Weyl algebra, associated with the group of translations and modulations on the circle. Our study of uncertainty minimizers leads to a periodic version of canonical coherent states. Unlike the canonical, Cartesian case, there are states for which the uncertainty product associated with the generators of the algebra vanishes. Next, we explore the supersymmetric (SUSY) quantum mechanical setting for the uncertainty-minimizing states and interpret them as leading to a family of "hindered rotors". Finally, we present a standard quantum mechanical treatment of one of these hindered rotor systems, including numerically generated eigenstates and energies.
Global exponential stability of octonion-valued neural networks with leakage delay and mixed delays.
Popa, Călin-Adrian
2018-06-08
This paper discusses octonion-valued neural networks (OVNNs) with leakage delay, time-varying delays, and distributed delays, for which the states, weights, and activation functions belong to the normed division algebra of octonions. The octonion algebra is a nonassociative and noncommutative generalization of the complex and quaternion algebras, but does not belong to the category of Clifford algebras, which are associative. In order to avoid the nonassociativity of the octonion algebra and also the noncommutativity of the quaternion algebra, the Cayley-Dickson construction is used to decompose the OVNNs into 4 complex-valued systems. By using appropriate Lyapunov-Krasovskii functionals, with double and triple integral terms, the free weighting matrix method, and simple and double integral Jensen inequalities, delay-dependent criteria are established for the exponential stability of the considered OVNNs. The criteria are given in terms of complex-valued linear matrix inequalities, for two types of Lipschitz conditions which are assumed to be satisfied by the octonion-valued activation functions. Finally, two numerical examples illustrate the feasibility, effectiveness, and correctness of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Steinthorsson, E.; Shih, T. I-P.; Roelke, R. J.
1991-01-01
In order to generate good quality systems for complicated three-dimensional spatial domains, the grid-generation method used must be able to exert rather precise controls over grid-point distributions. Several techniques are presented that enhance control of grid-point distribution for a class of algebraic grid-generation methods known as the two-, four-, and six-boundary methods. These techniques include variable stretching functions from bilinear interpolation, interpolating functions based on tension splines, and normalized K-factors. The techniques developed in this study were incorporated into a new version of GRID3D called GRID3D-v2. The usefulness of GRID3D-v2 was demonstrated by using it to generate a three-dimensional grid system in the coolent passage of a radial turbine blade with serpentine channels and pin fins.
Roughness in Lattice Ordered Effect Algebras
Xin, Xiao Long; Hua, Xiu Juan; Zhu, Xi
2014-01-01
Many authors have studied roughness on various algebraic systems. In this paper, we consider a lattice ordered effect algebra and discuss its roughness in this context. Moreover, we introduce the notions of the interior and the closure of a subset and give some of their properties in effect algebras. Finally, we use a Riesz ideal induced congruence and define a function e(a, b) in a lattice ordered effect algebra E and build a relationship between it and congruence classes. Then we study some properties about approximation of lattice ordered effect algebras. PMID:25170523
Computer Algebra Systems in Undergraduate Instruction.
ERIC Educational Resources Information Center
Small, Don; And Others
1986-01-01
Computer algebra systems (such as MACSYMA and muMath) can carry out many of the operations of calculus, linear algebra, and differential equations. Use of them with sketching graphs of rational functions and with other topics is discussed. (MNS)
Functional Thinking Ways in Relation to Linear Function Tables of Elementary School Students
ERIC Educational Resources Information Center
Tanisli, Dilek
2011-01-01
One of the basic components of algebraic thinking is functional thinking. Functional thinking involves focusing on the relationship between two (or more) varying quantities and such thinking facilitates the studies on both algebra and the notion of function. The development of functional thinking of students should start in the early grades and it…
Drinfeld-Sokolov reduction in quantum algebras: canonical form of generating matrices
NASA Astrophysics Data System (ADS)
Gurevich, Dimitri; Saponov, Pavel; Talalaev, Dmitry
2018-04-01
We define the second canonical forms for the generating matrices of the Reflection Equation algebras and the braided Yangians, associated with all even skew-invertible involutive and Hecke symmetries. By using the Cayley-Hamilton identities for these matrices, we show that they are similar to their canonical forms in the sense of Chervov and Talalaev (J Math Sci (NY) 158:904-911, 2008).
NASA Astrophysics Data System (ADS)
Hoque, Md. Fazlul; Marquette, Ian; Post, Sarah; Zhang, Yao-Zhong
2018-04-01
We introduce an extended Kepler-Coulomb quantum model in spherical coordinates. The Schrödinger equation of this Hamiltonian is solved in these coordinates and it is shown that the wave functions of the system can be expressed in terms of Laguerre, Legendre and exceptional Jacobi polynomials (of hypergeometric type). We construct ladder and shift operators based on the corresponding wave functions and obtain their recurrence formulas. These recurrence relations are used to construct higher-order, algebraically independent integrals of motion to prove superintegrability of the Hamiltonian. The integrals form a higher rank polynomial algebra. By constructing the structure functions of the associated deformed oscillator algebras we derive the degeneracy of energy spectrum of the superintegrable system.
Realization of bicovariant differential calculus on the Lie algebra type noncommutative spaces
NASA Astrophysics Data System (ADS)
Meljanac, Stjepan; Krešić–Jurić, Saša; Martinić, Tea
2017-07-01
This paper investigates bicovariant differential calculus on noncommutative spaces of the Lie algebra type. For a given Lie algebra g0, we construct a Lie superalgebra g =g0⊕g1 containing noncommutative coordinates and one-forms. We show that g can be extended by a set of generators TAB whose action on the enveloping algebra U (g ) gives the commutation relations between monomials in U (g0 ) and one-forms. Realizations of noncommutative coordinates, one-forms, and the generators TAB as formal power series in a semicompleted Weyl superalgebra are found. In the special case dim(g0 ) =dim(g1 ) , we also find a realization of the exterior derivative on U (g0 ) . The realizations of these geometric objects yield a bicovariant differential calculus on U (g0 ) as a deformation of the standard calculus on the Euclidean space.
Spin Number Coherent States and the Problem of Two Coupled Oscillators
NASA Astrophysics Data System (ADS)
Ojeda-Guillén, D.; Mota, R. D.; Granados, V. D.
2015-07-01
From the definition of the standard Perelomov coherent states we introduce the Perelomov number coherent states for any su(2) Lie algebra. With the displacement operator we apply a similarity transformation to the su(2) generators and construct a new set of operators which also close the su(2) Lie algebra, being the Perelomov number coherent states the new basis for its unitary irreducible representation. We apply our results to obtain the energy spectrum, the eigenstates and the partition function of two coupled oscillators. We show that the eigenstates of two coupled oscillators are the SU(2) Perelomov number coherent states of the two-dimensional harmonic oscillator with an appropriate choice of the coherent state parameters. Supported by SNI-México, COFAA-IPN, EDD-IPN, EDI-IPN, SIP-IPN Project No. 20150935
NASA Astrophysics Data System (ADS)
Manojlović, N.; Salom, I.
2017-10-01
The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.
NASA Astrophysics Data System (ADS)
Rerikh, K. V.
1998-02-01
Using classic results of algebraic geometry for birational plane mappings in plane CP 2 we present a general approach to algebraic integrability of autonomous dynamical systems in C 2 with discrete time and systems of two autonomous functional equations for meromorphic functions in one complex variable defined by birational maps in C 2. General theorems defining the invariant curves, the dynamics of a birational mapping and a general theorem about necessary and sufficient conditions for integrability of birational plane mappings are proved on the basis of a new idea — a decomposition of the orbit set of indeterminacy points of direct maps relative to the action of the inverse mappings. A general method of generating integrable mappings and their rational integrals (invariants) I is proposed. Numerical characteristics Nk of intersections of the orbits Φn- kOi of fundamental or indeterminacy points Oi ɛ O ∩ S, of mapping Φn, where O = { O i} is the set of indeterminacy points of Φn and S is a similar set for invariant I, with the corresponding set O' ∩ S, where O' = { O' i} is the set of indeterminacy points of inverse mapping Φn-1, are introduced. Using the method proposed we obtain all nine integrable multiparameter quadratic birational reversible mappings with the zero fixed point and linear projective symmetry S = CΛC-1, Λ = diag(±1), with rational invariants generated by invariant straight lines and conics. The relations of numbers Nk with such numerical characteristics of discrete dynamical systems as the Arnold complexity and their integrability are established for the integrable mappings obtained. The Arnold complexities of integrable mappings obtained are determined. The main results are presented in Theorems 2-5, in Tables 1 and 2, and in Appendix A.
Combinatorial quantization of the Hamiltonian Chern-Simons theory II
NASA Astrophysics Data System (ADS)
Alekseev, Anton Yu.; Grosse, Harald; Schomerus, Volker
1996-01-01
This paper further develops the combinatorial approach to quantization of the Hamiltonian Chern Simons theory advertised in [1]. Using the theory of quantum Wilson lines, we show how the Verlinde algebra appears within the context of quantum group gauge theory. This allows to discuss flatness of quantum connections so that we can give a mathematically rigorous definition of the algebra of observables A CS of the Chern Simons model. It is a *-algebra of “functions on the quantum moduli space of flat connections” and comes equipped with a positive functional ω (“integration”). We prove that this data does not depend on the particular choices which have been made in the construction. Following ideas of Fock and Rosly [2], the algebra A CS provides a deformation quantization of the algebra of functions on the moduli space along the natural Poisson bracket induced by the Chern Simons action. We evaluate a volume of the quantized moduli space and prove that it coincides with the Verlinde number. This answer is also interpreted as a partition partition function of the lattice Yang-Mills theory corresponding to a quantum gauge group.
Weak completions, bornologies and rigid cohomology
NASA Astrophysics Data System (ADS)
Cortiñas, Guillermo; Cuntz, Joachim; Meyer, Ralf; Tamme, Georg
2018-07-01
Let V be a complete discrete valuation ring with residue field k of positive characteristic and with fraction field K of characteristic 0. We clarify the analysis behind the Monsky-Washnitzer completion of a commutative V-algebra using completions of bornological V-algebras. This leads us to a functorial chain complex for a finitely generated commutative algebra over the residue field k that computes its rigid cohomology in the sense of Berthelot.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruberti, M.; Averbukh, V.; Decleva, P.
2014-10-28
We present the first implementation of the ab initio many-body Green's function method, algebraic diagrammatic construction (ADC), in the B-spline single-electron basis. B-spline versions of the first order [ADC(1)] and second order [ADC(2)] schemes for the polarization propagator are developed and applied to the ab initio calculation of static (photoionization cross-sections) and dynamic (high-order harmonic generation spectra) quantities. We show that the cross-section features that pose a challenge for the Gaussian basis calculations, such as Cooper minima and high-energy tails, are found to be reproduced by the B-spline ADC in a very good agreement with the experiment. We also presentmore » the first dynamic B-spline ADC results, showing that the effect of the Cooper minimum on the high-order harmonic generation spectrum of Ar is correctly predicted by the time-dependent ADC calculation in the B-spline basis. The present development paves the way for the application of the B-spline ADC to both energy- and time-resolved theoretical studies of many-electron phenomena in atoms, molecules, and clusters.« less
Volume-preserving normal forms of Hopf-zero singularity
NASA Astrophysics Data System (ADS)
Gazor, Majid; Mokhtari, Fahimeh
2013-10-01
A practical method is described for computing the unique generator of the algebra of first integrals associated with a large class of Hopf-zero singularity. The set of all volume-preserving classical normal forms of this singularity is introduced via a Lie algebra description. This is a maximal vector space of classical normal forms with first integral; this is whence our approach works. Systems with a nonzero condition on their quadratic parts are considered. The algebra of all first integrals for any such system has a unique (modulo scalar multiplication) generator. The infinite level volume-preserving parametric normal forms of any nondegenerate perturbation within the Lie algebra of any such system is computed, where it can have rich dynamics. The associated unique generator of the algebra of first integrals are derived. The symmetry group of the infinite level normal forms are also discussed. Some necessary formulas are derived and applied to appropriately modified Rössler and generalized Kuramoto-Sivashinsky equations to demonstrate the applicability of our theoretical results. An approach (introduced by Iooss and Lombardi) is applied to find an optimal truncation for the first level normal forms of these examples with exponentially small remainders. The numerically suggested radius of convergence (for the first integral) associated with a hypernormalization step is discussed for the truncated first level normal forms of the examples. This is achieved by an efficient implementation of the results using Maple.
NASA Astrophysics Data System (ADS)
Morozov, Oleg I.
2018-06-01
The important unsolved problem in theory of integrable systems is to find conditions guaranteeing existence of a Lax representation for a given PDE. The exotic cohomology of the symmetry algebras opens a way to formulate such conditions in internal terms of the PDE s under the study. In this paper we consider certain examples of infinite-dimensional Lie algebras with nontrivial second exotic cohomology groups and show that the Maurer-Cartan forms of the associated extensions of these Lie algebras generate Lax representations for integrable systems, both known and new ones.
Zhao, Shouwei
2011-06-01
A Lie algebraic condition for global exponential stability of linear discrete switched impulsive systems is presented in this paper. By considering a Lie algebra generated by all subsystem matrices and impulsive matrices, when not all of these matrices are Schur stable, we derive new criteria for global exponential stability of linear discrete switched impulsive systems. Moreover, simple sufficient conditions in terms of Lie algebra are established for the synchronization of nonlinear discrete systems using a hybrid switching and impulsive control. As an application, discrete chaotic system's synchronization is investigated by the proposed method.
Mathematics in the Real World.
ERIC Educational Resources Information Center
Borenstein, Matt
1997-01-01
The abstract nature of algebra causes difficulties for many students. Describes "Real-World Data," an algebra course designed for students with low grades in algebra and provides multidisciplinary experiments (linear functions and variations; quadratic, square-root, and inverse relations; and exponential and periodic variation)…
Bäcklund transformation of Painlevé III(D 8) τ function
NASA Astrophysics Data System (ADS)
Bershtein, M. A.; Shchechkin, A. I.
2017-03-01
We study the explicit formula (suggested by Gamayun, Iorgov and Lisovyy) for the Painlevé III(D 8) τ function in terms of Virasoro conformal blocks with a central charge of 1. The Painlevé equation has two types of bilinear forms, which we call Toda-like and Okamoto-like. We obtain these equations from the representation theory using an embedding of the direct sum of two Virasoro algebras in a certain superalgebra. These two types of bilinear forms correspond to the Neveu-Schwarz sector and the Ramond sector of this algebra. We also obtain the τ functions of the algebraic solutions of the Painlevé III(D 8) from the special representations of the Virasoro algebra of the highest weight (n + 1/4)2.
ERIC Educational Resources Information Center
Wilkie, Karina J.; Clarke, Doug M.
2016-01-01
Spatial visualisation of geometric patterns and their generalisation have become a recognised pathway to developing students' functional thinking and understanding of variables in algebra. This design-based research project investigated upper primary students' development of explicit generalisation of functional relationships and their…
Constructive Learning in Undergraduate Linear Algebra
ERIC Educational Resources Information Center
Chandler, Farrah Jackson; Taylor, Dewey T.
2008-01-01
In this article we describe a project that we used in our undergraduate linear algebra courses to help our students successfully master fundamental concepts and definitions and generate interest in the course. We describe our philosophy and discuss the projects overall success.
NASA Technical Reports Server (NTRS)
Moitra, Anutosh
1989-01-01
A fast and versatile procedure for algebraically generating boundary conforming computational grids for use with finite-volume Euler flow solvers is presented. A semi-analytic homotopic procedure is used to generate the grids. Grids generated in two-dimensional planes are stacked to produce quasi-three-dimensional grid systems. The body surface and outer boundary are described in terms of surface parameters. An interpolation scheme is used to blend between the body surface and the outer boundary in order to determine the field points. The method, albeit developed for analytically generated body geometries is equally applicable to other classes of geometries. The method can be used for both internal and external flow configurations, the only constraint being that the body geometries be specified in two-dimensional cross-sections stationed along the longitudinal axis of the configuration. Techniques for controlling various grid parameters, e.g., clustering and orthogonality are described. Techniques for treating problems arising in algebraic grid generation for geometries with sharp corners are addressed. A set of representative grid systems generated by this method is included. Results of flow computations using these grids are presented for validation of the effectiveness of the method.
Learning Activity Package, Algebra.
ERIC Educational Resources Information Center
Evans, Diane
A set of ten teacher-prepared Learning Activity Packages (LAPs) in beginning algebra and nine in intermediate algebra, these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radicals,…
Günaydin, Murat; Lüst, Dieter; Malek, Emanuel
2016-11-07
We propose a non-associative phase space algebra for M-theory backgrounds with locally non-geometric fluxes based on the non-associative algebra of octonions. Our proposal is based on the observation that the non-associative algebra of the non-geometric R-flux background in string theory can be obtained by a proper contraction of the simple Malcev algebra generated by imaginary octonions. Furthermore, by studying a toy model of a four-dimensional locally non-geometric M-theory background which is dual to a twisted torus, we show that the non-geometric background is “missing” a momentum mode. The resulting seven-dimensional phase space can thus be naturally identified with the imaginarymore » octonions. This allows us to interpret the full uncontracted algebra of imaginary octonions as the uplift of the string theory R-flux algebra to M-theory, with the contraction parameter playing the role of the string coupling constant g s.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Günaydin, Murat; Lüst, Dieter; Malek, Emanuel
We propose a non-associative phase space algebra for M-theory backgrounds with locally non-geometric fluxes based on the non-associative algebra of octonions. Our proposal is based on the observation that the non-associative algebra of the non-geometric R-flux background in string theory can be obtained by a proper contraction of the simple Malcev algebra generated by imaginary octonions. Furthermore, by studying a toy model of a four-dimensional locally non-geometric M-theory background which is dual to a twisted torus, we show that the non-geometric background is “missing” a momentum mode. The resulting seven-dimensional phase space can thus be naturally identified with the imaginarymore » octonions. This allows us to interpret the full uncontracted algebra of imaginary octonions as the uplift of the string theory R-flux algebra to M-theory, with the contraction parameter playing the role of the string coupling constant g s.« less
Higher spins and Yangian symmetries
Gaberdiel, Matthias R.; Gopakumar, Rajesh; Li, Wei; ...
2017-04-26
The relation between the bosonic higher spin W∞[λ]W∞[λ] algebra, the affine Yangian of gl 1, and the SH c algebra is established in detail. For generic λ we find explicit expressions for the low-lying W∞[λ] modes in terms of the affine Yangian generators, and deduce from this the precise identification between λ and the parameters of the affine Yangian. Furthermore, for the free field cases corresponding to λ = 0 and λ = 1 we give closed-form expressions for the affine Yangian generators in terms of the free fields. Interestingly, the relation between the W∞ modes and those of themore » affine Yangian is a non-local one, in general. We also establish the explicit dictionary between the affine Yangian and the SH c generators. Lastly, given that Yangian algebras are the hallmark of integrability, these identifications should pave the way towards uncovering the relation between the integrable and the higher spin symmetries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaberdiel, Matthias R.; Gopakumar, Rajesh; Li, Wei
The relation between the bosonic higher spin W∞[λ]W∞[λ] algebra, the affine Yangian of gl 1, and the SH c algebra is established in detail. For generic λ we find explicit expressions for the low-lying W∞[λ] modes in terms of the affine Yangian generators, and deduce from this the precise identification between λ and the parameters of the affine Yangian. Furthermore, for the free field cases corresponding to λ = 0 and λ = 1 we give closed-form expressions for the affine Yangian generators in terms of the free fields. Interestingly, the relation between the W∞ modes and those of themore » affine Yangian is a non-local one, in general. We also establish the explicit dictionary between the affine Yangian and the SH c generators. Lastly, given that Yangian algebras are the hallmark of integrability, these identifications should pave the way towards uncovering the relation between the integrable and the higher spin symmetries.« less
Quantum deformations of conformal algebras with mass-like deformation parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frydryszak, Andrzej; Lukierski, Jerzy; Mozrzymas, Marek
1998-12-15
We recall the mathematical apparatus necessary for the quantum deformation of Lie algebras, namely the notions of coboundary Lie algebras, classical r-matrices, classical Yang-Baxter equations (CYBE), Froebenius algebras and parabolic subalgebras. Then we construct the quantum deformation of D=1, D=2 and D=3 conformal algebras, showing that this quantization introduce fundamental mass parameters. Finally we consider with more details the quantization of D=4 conformal algebra. We build three classes of sl(4,C) classical r-matrices, satisfying CYBE and depending respectively on 8, 10 and 12 generators of parabolic subalgebras. We show that only the 8-dimensional r-matrices allow to impose the D=4 conformal o(4,2){approx_equal}su(2,2)more » reality conditions. Weyl reflections and Dynkin diagram automorphisms for o(4,2) define the class of admissible bases for given classical r-matrices.« less
Quantum teleportation and Birman-Murakami-Wenzl algebra
NASA Astrophysics Data System (ADS)
Zhang, Kun; Zhang, Yong
2017-02-01
In this paper, we investigate the relationship of quantum teleportation in quantum information science and the Birman-Murakami-Wenzl (BMW) algebra in low-dimensional topology. For simplicity, we focus on the two spin-1/2 representation of the BMW algebra, which is generated by both the Temperley-Lieb projector and the Yang-Baxter gate. We describe quantum teleportation using the Temperley-Lieb projector and the Yang-Baxter gate, respectively, and study teleportation-based quantum computation using the Yang-Baxter gate. On the other hand, we exploit the extended Temperley-Lieb diagrammatical approach to clearly show that the tangle relations of the BMW algebra have a natural interpretation of quantum teleportation. Inspired by this interpretation, we construct a general representation of the tangle relations of the BMW algebra and obtain interesting representations of the BMW algebra. Therefore, our research sheds a light on a link between quantum information science and low-dimensional topology.
Lie-algebraic Approach to Dynamics of Closed Quantum Systems and Quantum-to-Classical Correspondence
NASA Astrophysics Data System (ADS)
Galitski, Victor
2012-02-01
I will briefly review our recent work on a Lie-algebraic approach to various non-equilibrium quantum-mechanical problems, which has been motivated by continuous experimental advances in the field of cold atoms. First, I will discuss non-equilibrium driven dynamics of a generic closed quantum system. It will be emphasized that mathematically a non-equilibrium Hamiltonian represents a trajectory in a Lie algebra, while the evolution operator is a trajectory in a Lie group generated by the underlying algebra via exponentiation. This turns out to be a constructive statement that establishes, in particular, the fact that classical and quantum unitary evolutions are two sides of the same coin determined uniquely by the same dynamic generators in the group. An equation for these generators - dubbed dual Schr"odinger-Bloch equation - will be derived and analyzed for a few of specific examples. This non-linear equation allows one to construct new exact non-linear solutions to quantum-dynamical systems. An experimentally-relevant example of a family of exact solutions to the many-body Landau-Zener problem will be presented. One practical application of the latter result includes dynamical means to optimize molecular production rate following a quench across the Feshbach resonance.
Quantum superintegrable system with a novel chain structure of quadratic algebras
NASA Astrophysics Data System (ADS)
Liao, Yidong; Marquette, Ian; Zhang, Yao-Zhong
2018-06-01
We analyse the n-dimensional superintegrable Kepler–Coulomb system with non-central terms. We find a novel underlying chain structure of quadratic algebras formed by the integrals of motion. We identify the elements for each sub-structure and obtain the algebra relations satisfied by them and the corresponding Casimir operators. These quadratic sub-algebras are realized in terms of a chain of deformed oscillators with factorized structure functions. We construct the finite-dimensional unitary representations of the deformed oscillators, and give an algebraic derivation of the energy spectrum of the superintegrable system.
Shiraishi, Emi; Maeda, Kazuhiro; Kurata, Hiroyuki
2009-02-01
Numerical simulation of differential equation systems plays a major role in the understanding of how metabolic network models generate particular cellular functions. On the other hand, the classical and technical problems for stiff differential equations still remain to be solved, while many elegant algorithms have been presented. To relax the stiffness problem, we propose new practical methods: the gradual update of differential-algebraic equations based on gradual application of the steady-state approximation to stiff differential equations, and the gradual update of the initial values in differential-algebraic equations. These empirical methods show a high efficiency for simulating the steady-state solutions for the stiff differential equations that existing solvers alone cannot solve. They are effective in extending the applicability of dynamic simulation to biochemical network models.
Algebraic Functions, Computer Programming, and the Challenge of Transfer
ERIC Educational Resources Information Center
Schanzer, Emmanuel Tanenbaum
2015-01-01
Students' struggles with algebra are well documented. Prior to the introduction of functions, mathematics is typically focused on applying a set of arithmetic operations to compute an answer. The introduction of functions, however, marks the point at which mathematics begins to focus on building up abstractions as a way to solve complex problems.…
ERIC Educational Resources Information Center
Daher, Wajeeh M.; Anabousi, Anlam A.
2015-01-01
The topic of function transformations is a difficult mathematical topic for school and college students. This article examines how students conceive function transformations after working with GeoGebra, when this conceiving relates to the algebraic representation. The research participants were 19 ninth grade high achieving students who learned,…
Topologically massive gravity and galilean conformal algebra: a study of correlation functions
NASA Astrophysics Data System (ADS)
Bagchi, Arjun
2011-02-01
The Galilean Conformal Algebra (GCA) arises from the conformal algebra in the non-relativistic limit. In two dimensions, one can view it as a limit of linear combinations of the two copies Virasoro algebra. Recently, it has been argued that Topologically Massive Gravity (TMG) realizes the quantum 2d GCA in a particular scaling limit of the gravitational Chern-Simons term. To add strength to this claim, we demonstrate a matching of correlation functions on both sides of this correspondence. A priori looking for spatially dependent correlators seems to force us to deal with high spin operators in the bulk. We get around this difficulty by constructing the non-relativistic Energy-Momentum tensor and considering its correlation functions. On the gravity side, our analysis makes heavy use of recent results of Holographic Renormalization in Topologically Massive Gravity.
Chiropractic biophysics technique: a linear algebra approach to posture in chiropractic.
Harrison, D D; Janik, T J; Harrison, G R; Troyanovich, S; Harrison, D E; Harrison, S O
1996-10-01
This paper discusses linear algebra as applied to human posture in chiropractic, specifically chiropractic biophysics technique (CBP). Rotations, reflections and translations are geometric functions studied in vector spaces in linear algebra. These mathematical functions are termed rigid body transformations and are applied to segmental spinal movement in the literature. Review of the literature indicates that these linear algebra concepts have been used to describe vertebral motion. However, these rigid body movers are presented here as applying to the global postural movements of the head, thoracic cage and pelvis. The unique inverse functions of rotations, reflections and translations provide a theoretical basis for making postural corrections in neutral static resting posture. Chiropractic biophysics technique (CBP) uses these concepts in examination procedures, manual spinal manipulation, instrument assisted spinal manipulation, postural exercises, extension traction and clinical outcome measures.
Yangian of the Queer Lie Superalgebra
NASA Astrophysics Data System (ADS)
Nazarov, Maxim
Consider the complex matrix Lie superalgebra with the standard generators , where . Define an involutory automorphism η of by . The twisted polynomial current Lie superalgebra
Algebraic and geometric structures of analytic partial differential equations
NASA Astrophysics Data System (ADS)
Kaptsov, O. V.
2016-11-01
We study the problem of the compatibility of nonlinear partial differential equations. We introduce the algebra of convergent power series, the module of derivations of this algebra, and the module of Pfaffian forms. Systems of differential equations are given by power series in the space of infinite jets. We develop a technique for studying the compatibility of differential systems analogous to the Gröbner bases. Using certain assumptions, we prove that compatible systems generate infinite manifolds.
On alphabetic presentations of Clifford algebras and their possible applications
NASA Astrophysics Data System (ADS)
Toppan, Francesco; Verbeek, Piet W.
2009-12-01
In this paper, we address the problem of constructing a class of representations of Clifford algebras that can be named "alphabetic (re)presentations." The Clifford algebra generators are expressed as m-letter words written with a three-character or a four-character alphabet. We formulate the problem of the alphabetic presentations, deriving the main properties and some general results. At the end, we briefly discuss the motivations of this work and outline some possible applications.
Elliptic complexes over C∗-algebras of compact operators
NASA Astrophysics Data System (ADS)
Krýsl, Svatopluk
2016-03-01
For a C∗-algebra A of compact operators and a compact manifold M, we prove that the Hodge theory holds for A-elliptic complexes of pseudodifferential operators acting on smooth sections of finitely generated projective A-Hilbert bundles over M. For these C∗-algebras and manifolds, we get a topological isomorphism between the cohomology groups of an A-elliptic complex and the space of harmonic elements of the complex. Consequently, the cohomology groups appear to be finitely generated projective C∗-Hilbert modules and especially, Banach spaces. We also prove that in the category of Hilbert A-modules and continuous adjointable Hilbert A-module homomorphisms, the property of a complex of being self-adjoint parametrix possessing characterizes the complexes of Hodge type.
Application of numerical grid generation for improved CFD analysis of multiphase screw machines
NASA Astrophysics Data System (ADS)
Rane, S.; Kovačević, A.
2017-08-01
Algebraic grid generation is widely used for discretization of the working domain of twin screw machines. Algebraic grid generation is fast and has good control over the placement of grid nodes. However, the desired qualities of grid which should be able to handle multiphase flows such as oil injection, may be difficult to achieve at times. In order to obtain fast solution of multiphase screw machines, it is important to further improve the quality and robustness of the computational grid. In this paper, a deforming grid of a twin screw machine is generated using algebraic transfinite interpolation to produce initial mesh upon which an elliptic partial differential equations (PDE) of the Poisson’s form is solved numerically to produce smooth final computational mesh. The quality of numerical cells and their distribution obtained by the differential method is greatly improved. In addition, a similar procedure was introduced to fully smoothen the transition of the partitioning rack curve between the rotors thus improving continuous movement of grid nodes and in turn improve robustness and speed of the Computational Fluid Dynamic (CFD) solver. Analysis of an oil injected twin screw compressor is presented to compare the improvements in grid quality factors in the regions of importance such as interlobe space, radial tip and the core of the rotor. The proposed method that combines algebraic and differential grid generation offer significant improvement in grid quality and robustness of numerical solution.
Funny Face Contest: A Formative Assessment
ERIC Educational Resources Information Center
Colen, Yong S.
2010-01-01
Many American students begin their high school mathematics study with the algebra 1-geometry-algebra 2 sequence. After algebra 2, then, students with average or below-average mathematical ability face a dilemma in choosing their next mathematics course. For students to succeed in higher mathematics, understanding the concept of functions is…
ERIC Educational Resources Information Center
Lin, Cheng-Yao; Kuo, Yu-Chun; Ko, Yi-Yin
2015-01-01
The purpose of this study was to investigate elementary pre-service teachers' content knowledge in algebra (Linear Equation, Quadratic Equation, Functions, System Equations and Polynomials) as well as their technological pedagogical content knowledge (TPACK) in teaching algebra. Participants were 79 undergraduate pre-service teachers who were…
Seeing through Symbols: The Case of Equivalent Expressions.
ERIC Educational Resources Information Center
Kieran, Carolyn; Sfard, Anna
1999-01-01
Presents a teaching experiment to turn students from external observers into active participants in a game of algebra learning where students use graphs to build meaning for equivalence of algebraic expressions. Concludes that the graphic-functional approach seems to make the introduction to algebra much more meaningful for the learner. (ASK)
Symmetries of the quantum damped harmonic oscillator
NASA Astrophysics Data System (ADS)
Guerrero, J.; López-Ruiz, F. F.; Aldaya, V.; Cossío, F.
2012-11-01
For the non-conservative Caldirola-Kanai system, describing a quantum damped harmonic oscillator, a couple of constant-of-motion operators generating the Heisenberg-Weyl algebra can be found. The inclusion of the standard time evolution generator (which is not a symmetry) as a symmetry in this algebra, in a unitary manner, requires a non-trivial extension of this basic algebra and hence of the physical system itself. Surprisingly, this extension leads directly to the so-called Bateman dual system, which now includes a new particle acting as an energy reservoir. In addition, the Caldirola-Kanai dissipative system can be retrieved by imposing constraints. The algebra of symmetries of the dual system is presented, as well as a quantization that implies, in particular, a first-order Schrödinger equation. As opposed to other approaches, where it is claimed that the spectrum of the Bateman Hamiltonian is complex and discrete, we obtain that it is real and continuous, with infinite degeneracy in all regimes.
NASA Technical Reports Server (NTRS)
Byrnes, C. I.
1980-01-01
It is noted that recent work by Kamen (1979) on the stability of half-plane digital filters shows that the problem of the existence of a feedback law also arises for other Banach algebras in applications. This situation calls for a realization theory and stabilizability criteria for systems defined over Banach for Frechet algebra A. Such a theory is developed here, with special emphasis placed on the construction of finitely generated realizations, the existence of coprime factorizations for T(s) defined over A, and the solvability of the quadratic optimal control problem and the associated algebraic Riccati equation over A.
Quantum Field Theory on Spacetimes with a Compactly Generated Cauchy Horizon
NASA Astrophysics Data System (ADS)
Kay, Bernard S.; Radzikowski, Marek J.; Wald, Robert M.
1997-02-01
We prove two theorems which concern difficulties in the formulation of the quantum theory of a linear scalar field on a spacetime, (M,g_{ab}), with a compactly generated Cauchy horizon. These theorems demonstrate the breakdown of the theory at certain base points of the Cauchy horizon, which are defined as 'past terminal accumulation points' of the horizon generators. Thus, the theorems may be interpreted as giving support to Hawking's 'Chronology Protection Conjecture', according to which the laws of physics prevent one from manufacturing a 'time machine'. Specifically, we prove: Theorem 1. There is no extension to (M,g_{ab}) of the usual field algebra on the initial globally hyperbolic region which satisfies the condition of F-locality at any base point. In other words, any extension of the field algebra must, in any globally hyperbolic neighbourhood of any base point, differ from the algebra one would define on that neighbourhood according to the rules for globally hyperbolic spacetimes. Theorem 2. The two-point distribution for any Hadamard state defined on the initial globally hyperbolic region must (when extended to a distributional bisolution of the covariant Klein-Gordon equation on the full spacetime) be singular at every base point x in the sense that the difference between this two point distribution and a local Hadamard distribution cannot be given by a bounded function in any neighbourhood (in M 2 M) of (x,x). In consequence of Theorem 2, quantities such as the renormalized expectation value of J2 or of the stress-energy tensor are necessarily ill-defined or singular at any base point. The proof of these theorems relies on the 'Propagation of Singularities' theorems of Duistermaat and Hörmander.
Enhanced asymptotic symmetry algebra of (2 +1 ) -dimensional flat space
NASA Astrophysics Data System (ADS)
Detournay, Stéphane; Riegler, Max
2017-02-01
In this paper we present a new set of asymptotic boundary conditions for Einstein gravity in (2 +1 ) -dimensions with a vanishing cosmological constant that are a generalization of the Barnich-Compère boundary conditions [G. Barnich and G. Compere, Classical Quantum Gravity 24, F15 (2007), 10.1088/0264-9381/24/5/F01]. These new boundary conditions lead to an asymptotic symmetry algebra that is generated by a bms3 algebra and two affine u ^(1 ) current algebras. We then apply these boundary conditions to topologically massive gravity (TMG) and determine how the presence of the gravitational Chern-Simons term affects the central extensions of the asymptotic symmetry algebra. We furthermore determine the thermal entropy of solutions obeying our new boundary conditions for both Einstein gravity and TMG.
Study of high-performance canonical molecular orbitals calculation for proteins
NASA Astrophysics Data System (ADS)
Hirano, Toshiyuki; Sato, Fumitoshi
2017-11-01
The canonical molecular orbital (CMO) calculation can help to understand chemical properties and reactions in proteins. However, it is difficult to perform the CMO calculation of proteins because of its self-consistent field (SCF) convergence problem and expensive computational cost. To certainly obtain the CMO of proteins, we work in research and development of high-performance CMO applications and perform experimental studies. We have proposed the third-generation density-functional calculation method of calculating the SCF, which is more advanced than the FILE and direct method. Our method is based on Cholesky decomposition for two-electron integrals calculation and the modified grid-free method for the pure-XC term evaluation. By using the third-generation density-functional calculation method, the Coulomb, the Fock-exchange, and the pure-XC terms can be given by simple linear algebraic procedure in the SCF loop. Therefore, we can expect to get a good parallel performance in solving the SCF problem by using a well-optimized linear algebra library such as BLAS on the distributed memory parallel computers. The third-generation density-functional calculation method is implemented to our program, ProteinDF. To achieve computing electronic structure of the large molecule, not only overcoming expensive computation cost and also good initial guess for safe SCF convergence are required. In order to prepare a precise initial guess for the macromolecular system, we have developed the quasi-canonical localized orbital (QCLO) method. The QCLO has the characteristics of both localized and canonical orbital in a certain region of the molecule. We have succeeded in the CMO calculations of proteins by using the QCLO method. For simplified and semi-automated calculation of the QCLO method, we have also developed a Python-based program, QCLObot.
Langevin dynamics for vector variables driven by multiplicative white noise: A functional formalism
NASA Astrophysics Data System (ADS)
Moreno, Miguel Vera; Arenas, Zochil González; Barci, Daniel G.
2015-04-01
We discuss general multidimensional stochastic processes driven by a system of Langevin equations with multiplicative white noise. In particular, we address the problem of how time reversal diffusion processes are affected by the variety of conventions available to deal with stochastic integrals. We present a functional formalism to build up the generating functional of correlation functions without any type of discretization of the Langevin equations at any intermediate step. The generating functional is characterized by a functional integration over two sets of commuting variables, as well as Grassmann variables. In this representation, time reversal transformation became a linear transformation in the extended variables, simplifying in this way the complexity introduced by the mixture of prescriptions and the associated calculus rules. The stochastic calculus is codified in our formalism in the structure of the Grassmann algebra. We study some examples such as higher order derivative Langevin equations and the functional representation of the micromagnetic stochastic Landau-Lifshitz-Gilbert equation.
Method of orbit sums in the theory of modular vector invariants
NASA Astrophysics Data System (ADS)
Stepanov, S. A.
2006-12-01
Let F be a field, V a finite-dimensional F-vector space, G\\leqslant \\operatorname{GL}_F(V) a finite group, and V^m=V\\oplus\\dots\\oplus V the m-fold direct sum with the diagonal action of G. The group G acts naturally on the symmetric graded algebra A_m=F \\lbrack V^m \\rbrack as a group of non-degenerate linear transformations of the variables. Let A_m^G be the subalgebra of invariants of the polynomial algebra A_m with respect to G. A classical result of Noether [1] says that if \\operatorname{char}F=0, then A_m^G is generated as an F-algebra by homogeneous polynomials of degree at most \\vert G\\vert, no matter how large m can be. On the other hand, it was proved by Richman [2], [3] that this result does not hold when the characteristic of F is positive and divides the order \\vert G\\vert of G. Let p, p>2, be a prime number, F=F_p a finite field of p elements, V a linear F_p-vector space of dimension n, and H\\leqslant \\operatorname{GL}_{F_p}(V) a cyclic group of order p generated by a matrix \\gamma of a certain special form. In this paper we describe explicitly (Theorem 1) one complete set of generators of A_m^H. After that, for an arbitrary complete set of generators of this algebra we find a lower bound for the highest degree of the generating elements of this algebra. This is a significant extension of the corresponding result of Campbell and Hughes [4] for the particular case of n=2. As a consequence we show (Theorem 3) that if m>n and G\\ge H is an arbitrary finite group, then each complete set of generators of A_m^G contains an element of degree at least 2(m-n+2r)(p-1)/r, where r=r(H) is a positive integer dependent on the structure of the generating matrix \\gamma of the group H. This result refines considerably the earlier lower bound obtained by Richman [3].
Relativistic differential-difference momentum operators and noncommutative differential calculus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mir-Kasimov, R. M., E-mail: mirkr@theor.jinr.ru
2013-09-15
The relativistic kinetic momentum operators are introduced in the framework of the Quantum Mechanics (QM) in the Relativistic Configuration Space (RCS). These operators correspond to the half of the non-Euclidean distance in the Lobachevsky momentum space. In terms of kinetic momentum operators the relativistic kinetic energy is separated as the independent term of the total Hamiltonian. This relativistic kinetic energy term is not distinguishing in form from its nonrelativistic counterpart. The role of the plane wave (wave function of the motion with definite value of momentum and energy) plays the generating function for the matrix elements of the unitary irrepsmore » of Lorentz group (generalized Jacobi polynomials). The kinetic momentum operators are the interior derivatives in the framework of the noncommutative differential calculus over the commutative algebra generated by the coordinate functions over the RCS.« less
Differential calculus and gauge transformations on a deformed space
NASA Astrophysics Data System (ADS)
Wess, Julius
2007-08-01
We consider a formalism by which gauge theories can be constructed on noncommutative space time structures. The coordinates are supposed to form an algebra, restricted by certain requirements that allow us to realise the algebra in terms of star products. In this formulation it is useful to define derivatives and to extend the algebra of coordinates by these derivatives. The elements of this extended algebra are deformed differential operators. We then show that there is a morphism between these deformed differential operators and the usual higher order differential operators acting on functions of commuting coordinates. In this way we obtain deformed gauge transformations and a deformed version of the algebra of diffeomorphisms. The deformation of these algebras can be clearly seen in the category of Hopf algebras. The comultiplication will be twisted. These twisted algebras can be realised on noncommutative spaces and allow the construction of deformed gauge theories and deformed gravity theory.
ERIC Educational Resources Information Center
Wilkie, Karina J,; Clarke, Doug
2014-01-01
This design-based research project investigated the development of functional thinking in algebra for the upper primary years of schooling. Ten teachers and their students were involved in a sequence of five cycles of collaborative planning, team-teaching, evaluating and revising five lessons on functional thinking for their students over one…
NASA Technical Reports Server (NTRS)
Desmarais, R. N.
1982-01-01
The method is capable of generating approximations of arbitrary accuracy. It is based on approximating the algebraic part of the nonelementary integrals in the kernel by exponential functions and then integrating termwise. The exponent spacing in the approximation is a geometric sequence. The coefficients and exponent multiplier of the exponential approximation are computed by least squares so the method is completely automated. Exponential approximates generated in this manner are two orders of magnitude more accurate than the exponential approximation that is currently most often used for this purpose. The method can be used to generate approximations to attain any desired trade-off between accuracy and computing cost.
The Koslowski-Sahlmann representation: quantum configuration space
NASA Astrophysics Data System (ADS)
Campiglia, Miguel; Varadarajan, Madhavan
2014-09-01
The Koslowski-Sahlmann (KS) representation is a generalization of the representation underlying the discrete spatial geometry of loop quantum gravity (LQG), to accommodate states labelled by smooth spatial geometries. As shown recently, the KS representation supports, in addition to the action of the holonomy and flux operators, the action of operators which are the quantum counterparts of certain connection dependent functions known as ‘background exponentials’. Here we show that the KS representation displays the following properties which are the exact counterparts of LQG ones: (i) the abelian * algebra of SU(2) holonomies and ‘U(1)’ background exponentials can be completed to a C* algebra, (ii) the space of semianalytic SU(2) connections is topologically dense in the spectrum of this algebra, (iii) there exists a measure on this spectrum for which the KS Hilbert space is realized as the space of square integrable functions on the spectrum, (iv) the spectrum admits a characterization as a projective limit of finite numbers of copies of SU(2) and U(1), (v) the algebra underlying the KS representation is constructed from cylindrical functions and their derivations in exactly the same way as the LQG (holonomy-flux) algebra except that the KS cylindrical functions depend on the holonomies and the background exponentials, this extra dependence being responsible for the differences between the KS and LQG algebras. While these results are obtained for compact spaces, they are expected to be of use for the construction of the KS representation in the asymptotically flat case.
Using trees to compute approximate solutions to ordinary differential equations exactly
NASA Technical Reports Server (NTRS)
Grossman, Robert
1991-01-01
Some recent work is reviewed which relates families of trees to symbolic algorithms for the exact computation of series which approximate solutions of ordinary differential equations. It turns out that the vector space whose basis is the set of finite, rooted trees carries a natural multiplication related to the composition of differential operators, making the space of trees an algebra. This algebraic structure can be exploited to yield a variety of algorithms for manipulating vector fields and the series and algebras they generate.
The Existence of the Solution to One Kind of Algebraic Riccati Equation
NASA Astrophysics Data System (ADS)
Liu, Jianming
2018-03-01
The matrix equation ATX + XA + XRX + Q = O is called algebraic Riccati equation, which is very important in the fields of automatic control and other engineering applications. Many researchers have studied the solutions to various algebraic Riccati equations and most of them mainly applied the matrix methods, while few used the functional analysis theories. This paper mainly studies the existence of the solution to the following kind of algebraic Riccati equation from the functional view point: ATX + XA + XRX ‑λX + Q = O Here, X, A, R, Q ∈ n×n , Q is a symmetric matrix, and R is a positive or negative semi-definite matrix, λ is arbitrary constants. This paper uses functional approach such as fixed point theorem and contraction mapping thinking so as to provide two sufficient conditions for the solvability about this kind of Riccati equation and to arrive at some relevant conclusions.
NASA Astrophysics Data System (ADS)
Jurco, B.; Schraml, S.; Schupp, P.; Wess, J.
2000-11-01
An enveloping algebra-valued gauge field is constructed, its components are functions of the Lie algebra-valued gauge field and can be constructed with the Seiberg-Witten map. This allows the formulation of a dynamics for a finite number of gauge field components on non-commutative spaces.
Exact Baker-Campbell-Hausdorff formula for the contact Heisenberg algebra
NASA Astrophysics Data System (ADS)
Bravetti, Alessandro; Garcia-Chung, Angel; Tapias, Diego
2017-03-01
In this work we introduce the contact Heisenberg algebra which is the restriction of the Jacobi algebra on contact manifolds to the linear and constant functions. We give the exact expression of its corresponding Baker-Campbell-Hausdorff formula. We argue that this result is relevant to the quantization of contact systems.
Kac determinant and singular vector of the level N representation of Ding-Iohara-Miki algebra
NASA Astrophysics Data System (ADS)
Ohkubo, Yusuke
2018-05-01
In this paper, we obtain the formula for the Kac determinant of the algebra arising from the level N representation of the Ding-Iohara-Miki algebra. It is also discovered that its singular vectors correspond to generalized Macdonald functions (the q-deformed version of the AFLT basis).
Linear maps preserving maximal deviation and the Jordan structure of quantum systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamhalter, Jan
2012-12-15
In the algebraic approach to quantum theory, a quantum observable is given by an element of a Jordan algebra and a state of the system is modelled by a normalized positive functional on the underlying algebra. Maximal deviation of a quantum observable is the largest statistical deviation one can obtain in a particular state of the system. The main result of the paper shows that each linear bijective transformation between JBW algebras preserving maximal deviations is formed by a Jordan isomorphism or a minus Jordan isomorphism perturbed by a linear functional multiple of an identity. It shows that only onemore » numerical statistical characteristic has the power to determine the Jordan algebraic structure completely. As a consequence, we obtain that only very special maps can preserve the diameter of the spectra of elements. Nonlinear maps preserving the pseudometric given by maximal deviation are also described. The results generalize hitherto known theorems on preservers of maximal deviation in the case of self-adjoint parts of von Neumann algebras proved by Molnar.« less
A Learning Progression for Elementary Students' Functional Thinking
ERIC Educational Resources Information Center
Stephens, Ana C.; Fonger, Nicole; Strachota, Susanne; Isler, Isil; Blanton, Maria; Knuth, Eric; Murphy Gardiner, Angela
2017-01-01
In this article we advance characterizations of and supports for elementary students' progress in generalizing and representing functional relationships as part of a comprehensive approach to early algebra. Our learning progressions approach to early algebra research involves the coordination of a curricular framework and progression, an…
Algebraic solutions of shape-invariant position-dependent effective mass systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amir, Naila, E-mail: naila.amir@live.com, E-mail: naila.amir@seecs.edu.pk; Iqbal, Shahid, E-mail: sic80@hotmail.com, E-mail: siqbal@sns.nust.edu.pk
2016-06-15
Keeping in view the ordering ambiguity that arises due to the presence of position-dependent effective mass in the kinetic energy term of the Hamiltonian, a general scheme for obtaining algebraic solutions of quantum mechanical systems with position-dependent effective mass is discussed. We quantize the Hamiltonian of the pertaining system by using symmetric ordering of the operators concerning momentum and the spatially varying mass, initially proposed by von Roos and Lévy-Leblond. The algebraic method, used to obtain the solutions, is based on the concepts of supersymmetric quantum mechanics and shape invariance. In order to exemplify the general formalism a class ofmore » non-linear oscillators has been considered. This class includes the particular example of a one-dimensional oscillator with different position-dependent effective mass profiles. Explicit expressions for the eigenenergies and eigenfunctions in terms of generalized Hermite polynomials are presented. Moreover, properties of these modified Hermite polynomials, like existence of generating function and recurrence relations among the polynomials have also been studied. Furthermore, it has been shown that in the harmonic limit, all the results for the linear harmonic oscillator are recovered.« less
ERIC Educational Resources Information Center
Caglayan, Günhan
2013-01-01
This study is about prospective secondary mathematics teachers' understanding and sense making of representational quantities generated by algebra tiles, the quantitative units (linear vs. areal) inherent in the nature of these quantities, and the quantitative addition and multiplication operations--referent preserving versus referent…
Spontaneous PT-Symmetry Breaking for Systems of Noncommutative Euclidean Lie Algebraic Type
NASA Astrophysics Data System (ADS)
Dey, Sanjib; Fring, Andreas; Mathanaranjan, Thilagarajah
2015-11-01
We propose a noncommutative version of the Euclidean Lie algebra E 2. Several types of non-Hermitian Hamiltonian systems expressed in terms of generic combinations of the generators of this algebra are investigated. Using the breakdown of the explicitly constructed Dyson maps as a criterium, we identify the domains in the parameter space in which the Hamiltonians have real energy spectra and determine the exceptional points signifying the crossover into the different types of spontaneously broken PT-symmetric regions with pairs of complex conjugate eigenvalues. We find exceptional points which remain invariant under the deformation as well as exceptional points becoming dependent on the deformation parameter of the algebra.
Moving frames and prolongation algebras
NASA Technical Reports Server (NTRS)
Estabrook, F. B.
1982-01-01
Differential ideals generated by sets of 2-forms which can be written with constant coefficients in a canonical basis of 1-forms are considered. By setting up a Cartan-Ehresmann connection, in a fiber bundle over a base space in which the 2-forms live, one finds an incomplete Lie algebra of vector fields in the fields in the fibers. Conversely, given this algebra (a prolongation algebra), one can derive the differential ideal. The two constructs are thus dual, and analysis of either derives properties of both. Such systems arise in the classical differential geometry of moving frames. Examples of this are discussed, together with examples arising more recently: the Korteweg-de Vries and Harrison-Ernst systems.
Parametric Equations: Push 'Em Back, Push 'Em Back, Way Back!
ERIC Educational Resources Information Center
Cieply, Joseph F.
1993-01-01
Stresses using the features of graphing calculators to teach parametric equations much earlier in the curriculum than is presently done. Examples using parametric equations to teach slopes and lines in beginning algebra, inverse functions in advanced algebra, the wrapping function, and simulations of physical phenomena are presented. (MAZ)
Processes and Reasoning in Representations of Linear Functions
ERIC Educational Resources Information Center
Adu-Gyamfi, Kwaku; Bossé, Michael J.
2014-01-01
This study examined student actions, interpretations, and language in respect to questions raised regarding tabular, graphical, and algebraic representations in the context of functions. The purpose was to investigate students' interpretations and specific ways of working within table, graph, and the algebraic on notions fundamental to a…
More on the hidden symmetries of 11D supergravity
NASA Astrophysics Data System (ADS)
Andrianopoli, Laura; D'Auria, Riccardo; Ravera, Lucrezia
2017-09-01
In this paper we clarify the relations occurring among the osp (1 | 32) algebra, the M-algebra and the hidden superalgebra underlying the Free Differential Algebra of D=11 supergravity (to which we will refer as DF-algebra) that was introduced in the literature by D'Auria and Frè in 1981 and is actually a (Lorentz valued) central extension of the M-algebra including a nilpotent spinor generator, Q‧. We focus in particular on the 4-form cohomology in 11D superspace of the supergravity theory, strictly related to the presence in the theory of a 3-form A (3). Once formulated in terms of its hidden superalgebra of 1-forms, we find that A (3) can be decomposed into the sum of two parts having different group-theoretical meaning: One of them allows to reproduce the FDA of the 11D Supergravity due to non-trivial contributions to the 4-form cohomology in superspace, while the second one does not contribute to the 4-form cohomology, being a closed 3-form in the vacuum, defining however a one parameter family of trilinear forms invariant under a symmetry algebra related to osp (1 | 32) by redefining the spin connection and adding a new Maurer-Cartan equation. We further discuss about the crucial role played by the 1-form spinor η (dual to the nilpotent generator Q‧) for the 4-form cohomology of the eleven dimensional theory on superspace.
Simultaneous Heat and Mass Transfer Model for Convective Drying of Building Material
NASA Astrophysics Data System (ADS)
Upadhyay, Ashwani; Chandramohan, V. P.
2018-04-01
A mathematical model of simultaneous heat and moisture transfer is developed for convective drying of building material. A rectangular brick is considered for sample object. Finite-difference method with semi-implicit scheme is used for solving the transient governing heat and mass transfer equation. Convective boundary condition is used, as the product is exposed in hot air. The heat and mass transfer equations are coupled through diffusion coefficient which is assumed as the function of temperature of the product. Set of algebraic equations are generated through space and time discretization. The discretized algebraic equations are solved by Gauss-Siedel method via iteration. Grid and time independent studies are performed for finding the optimum number of nodal points and time steps respectively. A MATLAB computer code is developed to solve the heat and mass transfer equations simultaneously. Transient heat and mass transfer simulations are performed to find the temperature and moisture distribution inside the brick.
Modular forms, Schwarzian conditions, and symmetries of differential equations in physics
NASA Astrophysics Data System (ADS)
Abdelaziz, Y.; Maillard, J.-M.
2017-05-01
We give examples of infinite order rational transformations that leave linear differential equations covariant. These examples are non-trivial yet simple enough illustrations of exact representations of the renormalization group. We first illustrate covariance properties on order-two linear differential operators associated with identities relating the same {}_2F1 hypergeometric function with different rational pullbacks. These rational transformations are solutions of a differentially algebraic equation that already emerged in a paper by Casale on the Galoisian envelopes. We provide two new and more general results of the previous covariance by rational functions: a new Heun function example and a higher genus {}_2F1 hypergeometric function example. We then focus on identities relating the same {}_2F1 hypergeometric function with two different algebraic pullback transformations: such remarkable identities correspond to modular forms, the algebraic transformations being solution of another differentially algebraic Schwarzian equation that also emerged in Casale’s paper. Further, we show that the first differentially algebraic equation can be seen as a subcase of the last Schwarzian differential condition, the restriction corresponding to a factorization condition of some associated order-two linear differential operator. Finally, we also explore generalizations of these results, for instance, to {}_3F2 , hypergeometric functions, and show that one just reduces to the previous {}_2F1 cases through a Clausen identity. The question of the reduction of these Schwarzian conditions to modular correspondences remains an open question. In a _2F1 hypergeometric framework the Schwarzian condition encapsulates all the modular forms and modular equations of the theory of elliptic curves, but these two conditions are actually richer than elliptic curves or {}_2F1 hypergeometric functions, as can be seen on the Heun and higher genus example. This work is a strong incentive to develop more differentially algebraic symmetry analysis in physics.
New developments in FeynCalc 9.0
NASA Astrophysics Data System (ADS)
Shtabovenko, Vladyslav; Mertig, Rolf; Orellana, Frederik
2016-10-01
In this note we report on the new version of FEYNCALC, a MATHEMATICA package for symbolic semi-automatic evaluation of Feynman diagrams and algebraic expressions in quantum field theory. The main features of version 9.0 are: improved tensor reduction and partial fractioning of loop integrals, new functions for using FEYNCALC together with tools for reduction of scalar loop integrals using integration-by-parts (IBP) identities, better interface to FEYNARTS and support for SU(N) generators with explicit fundamental indices.
ERIC Educational Resources Information Center
Ferrara, Francesca; Sinclair, Nathalie
2016-01-01
This paper focuses on pattern generalisation as a way to introduce young students to early algebra. We build on research on patterning activities that feature, in their work with algebraic thinking, both looking for sameness recursively in a pattern (especially figural patterns, but also numerical ones) and conjecturing about function-based…
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Roelke, R. J.; Steinthorsson, E.
1991-01-01
In order to study numerically details of the flow and heat transfer within coolant passages of turbine blades, a method must first be developed to generate grid systems within the very complicated geometries involved. In this study, a grid generation package was developed that is capable of generating the required grid systems. The package developed is based on an algebraic grid generation technique that permits the user considerable control over how grid points are to be distributed in a very explicit way. These controls include orthogonality of grid lines next to boundary surfaces and ability to cluster about arbitrary points, lines, and surfaces. This paper describes that grid generation package and shows how it can be used to generate grid systems within complicated-shaped coolant passages via an example.
Equations of motion for a spectrum-generating algebra: Lipkin Meshkov Glick model
NASA Astrophysics Data System (ADS)
Rosensteel, G.; Rowe, D. J.; Ho, S. Y.
2008-01-01
For a spectrum-generating Lie algebra, a generalized equations-of-motion scheme determines numerical values of excitation energies and algebra matrix elements. In the approach to the infinite particle number limit or, more generally, whenever the dimension of the quantum state space is very large, the equations-of-motion method may achieve results that are impractical to obtain by diagonalization of the Hamiltonian matrix. To test the method's effectiveness, we apply it to the well-known Lipkin-Meshkov-Glick (LMG) model to find its low-energy spectrum and associated generator matrix elements in the eigenenergy basis. When the dimension of the LMG representation space is 106, computation time on a notebook computer is a few minutes. For a large particle number in the LMG model, the low-energy spectrum makes a quantum phase transition from a nondegenerate harmonic vibrator to a twofold degenerate harmonic oscillator. The equations-of-motion method computes critical exponents at the transition point.
Category of trees in representation theory of quantum algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moskaliuk, N. M.; Moskaliuk, S. S., E-mail: mss@bitp.kiev.ua
2013-10-15
New applications of categorical methods are connected with new additional structures on categories. One of such structures in representation theory of quantum algebras, the category of Kuznetsov-Smorodinsky-Vilenkin-Smirnov (KSVS) trees, is constructed, whose objects are finite rooted KSVS trees and morphisms generated by the transition from a KSVS tree to another one.
Bethe vectors for XXX-spin chain
NASA Astrophysics Data System (ADS)
Burdík, Čestmír; Fuksa, Jan; Isaev, Alexei
2014-11-01
The paper deals with algebraic Bethe ansatz for XXX-spin chain. Generators of Yang-Baxter algebra are expressed in basis of free fermions and used to calculate explicit form of Bethe vectors. Their relation to N-component models is used to prove conjecture about their form in general. Some remarks on inhomogeneous XXX-spin chain are included.
Fractions as a Foundation for Algebra within a Sample of Prospective Teachers
ERIC Educational Resources Information Center
Zientek, Linda Reichwein; Younes, Rayya; Nimon, Kim; Mittag, Kathleen Cage; Taylor, Sharon
2013-01-01
Improving the mathematical skills of the next generation of students will require that elementary and middle school teachers are competent and confident in their abilities to perform fraction operations and to solve algebra equations The present study was conducted to (a) quantify relationships between prospective teachers' abilities to perform…
Strengthening Grade 3-5 Students' Foundational Knowledge of Rational Numbers
ERIC Educational Resources Information Center
Good, Thomas L.; Wood, Marcy B.; Sabers, Darrell; Olson, Amy M.; Lavigne, Alyson Leah; Sun, Huaping; Kalinec-Craig, Crystal
2013-01-01
Background: American students have done poorly in algebra and that has generated policy concerns about preparing students for STEM careers. There has been growing recognition that the algebra problem may begin in earlier grades when students do not adequately master rational numbers. Purpose: The study provided a series of workshops organized…
Developing a TI-92 Manual Generator Based on Computer Algebra Systems
ERIC Educational Resources Information Center
Jun, Youngcook
2004-01-01
The electronic medium suitable for mathematics learning and teaching is often designed with a notebook interface provided in a computer algebra system. Such a notebook interface facilitates a workspace for mathematical activities along with an online help system. In this paper, the proposed feature is implemented in the Mathematica's notebook…
ERIC Educational Resources Information Center
Lewis, Virginia Vimpeny
2011-01-01
Number Concepts; Measurement; Geometry; Probability; Statistics; and Patterns, Functions and Algebra. Procedural Errors were further categorized into the following content categories: Computation; Measurement; Statistics; and Patterns, Functions, and Algebra. The results of the analysis showed the main sources of error for 6th, 7th, and 8th…
An Authentic Task That Models Quadratics
ERIC Educational Resources Information Center
Baron, Lorraine M.
2015-01-01
As students develop algebraic reasoning in grades 5 to 9, they learn to recognize patterns and understand expressions, equations, and variables. Linear functions are a focus in eighth-grade mathematics, and by algebra 1, students must make sense of functions that are not linear. This article describes how students worked through a classroom task…
Counting the number of Feynman graphs in QCD
NASA Astrophysics Data System (ADS)
Kaneko, T.
2018-05-01
Information about the number of Feynman graphs for a given physical process in a given field theory is especially useful for confirming the result of a Feynman graph generator used in an automatic system of perturbative calculations. A method of counting the number of Feynman graphs with weight of symmetry factor was established based on zero-dimensional field theory, and was used in scalar theories and QED. In this article this method is generalized to more complicated models by direct calculation of generating functions on a computer algebra system. This method is applied to QCD with and without counter terms, where many higher order are being calculated automatically.
The quantum holonomy-diffeomorphism algebra and quantum gravity
NASA Astrophysics Data System (ADS)
Aastrup, Johannes; Grimstrup, Jesper Møller
2016-03-01
We introduce the quantum holonomy-diffeomorphism ∗-algebra, which is generated by holonomy-diffeomorphisms on a three-dimensional manifold and translations on a space of SU(2)-connections. We show that this algebra encodes the canonical commutation relations of canonical quantum gravity formulated in terms of Ashtekar variables. Furthermore, we show that semiclassical states exist on the holonomy-diffeomorphism part of the algebra but that these states cannot be extended to the full algebra. Via a Dirac-type operator we derive a certain class of unbounded operators that act in the GNS construction of the semiclassical states. These unbounded operators are the type of operators, which we have previously shown to entail the spatial three-dimensional Dirac operator and Dirac-Hamiltonian in a semiclassical limit. Finally, we show that the structure of the Hamilton constraint emerges from a Yang-Mills-type operator over the space of SU(2)-connections.
A braided monoidal category for free super-bosons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Runkel, Ingo, E-mail: ingo.runkel@uni-hamburg.de
The chiral conformal field theory of free super-bosons is generated by weight one currents whose mode algebra is the affinisation of an abelian Lie super-algebra h with non-degenerate super-symmetric pairing. The mode algebras of a single free boson and of a single pair of symplectic fermions arise for even|odd dimension 1|0 and 0|2 of h, respectively. In this paper, the representations of the untwisted mode algebra of free super-bosons are equipped with a tensor product, a braiding, and an associator. In the symplectic fermion case, i.e., if h is purely odd, the braided monoidal structure is extended to representations ofmore » the Z/2Z-twisted mode algebra. The tensor product is obtained by computing spaces of vertex operators. The braiding and associator are determined by explicit calculations from three- and four-point conformal blocks.« less
Three-dimensional fractional-spin gravity
NASA Astrophysics Data System (ADS)
Boulanger, Nicolas; Sundell, Per; Valenzuela, Mauricio
2014-02-01
Using Wigner-deformed Heisenberg oscillators, we construct 3D Chern-Simons models consisting of fractional-spin fields coupled to higher-spin gravity and internal nonabelian gauge fields. The gauge algebras consist of Lorentz-tensorial Blencowe-Vasiliev higher-spin algebras and compact internal algebras intertwined by infinite-dimensional generators in lowest-weight representations of the Lorentz algebra with fractional spin. In integer or half-integer non-unitary cases, there exist truncations to gl(ℓ , ℓ ± 1) or gl(ℓ|ℓ ± 1) models. In all non-unitary cases, the internal gauge fields can be set to zero. At the semi-classical level, the fractional-spin fields are either Grassmann even or odd. The action requires the enveloping-algebra representation of the deformed oscillators, while their Fock-space representation suffices on-shell. The project was funded in part by F.R.S.-FNRS " Ulysse" Incentive Grant for Mobility in Scientific Research.
Algebraic Construction of Exact Difference Equations from Symmetry of Equations
NASA Astrophysics Data System (ADS)
Itoh, Toshiaki
2009-09-01
Difference equations or exact numerical integrations, which have general solutions, are treated algebraically. Eliminating the symmetries of the equation, we can construct difference equations (DCE) or numerical integrations equivalent to some ODEs or PDEs that means both have the same solution functions. When arbitrary functions are given, whether we can construct numerical integrations that have solution functions equal to given function or not are treated in this work. Nowadays, Lie's symmetries solver for ODE and PDE has been implemented in many symbolic software. Using this solver we can construct algebraic DCEs or numerical integrations which are correspond to some ODEs or PDEs. In this work, we treated exact correspondence between ODE or PDE and DCE or numerical integration with Gröbner base and Janet base from the view of Lie's symmetries.
What Students Choose to Do and Have to Say about Use of Multiple Representations in College Algebra
ERIC Educational Resources Information Center
Herman, Marlena
2007-01-01
This report summarizes findings on strategies chosen by students (n=38) when solving algebra problems related to various functions with the freedom to use a TI-83 graphing calculator, influences on student problem-solving strategy choices, student ability to approach algebra problems with use of multiple representations, and student beliefs on how…
ERIC Educational Resources Information Center
Hitt, Fernando; Morasse, Christian
2009-01-01
Introduction: In this document we stress the importance of developing in children a structure for advanced numerical-algebraic thinking that can provide an element of control when solving mathematical situations. We analyze pupils' conceptions that induce errors in algebra due to a lack of control in connection with their numerical thinking. We…
Symbolic integration of a class of algebraic functions. [by an algorithmic approach
NASA Technical Reports Server (NTRS)
Ng, E. W.
1974-01-01
An algorithm is presented for the symbolic integration of a class of algebraic functions. This class consists of functions made up of rational expressions of an integration variable x and square roots of polynomials, trigonometric and hyperbolic functions of x. The algorithm is shown to consist of the following components:(1) the reduction of input integrands to conical form; (2) intermediate internal representations of integrals; (3) classification of outputs; and (4) reduction and simplification of outputs to well-known functions.
The Resolvent Algebra of Non-relativistic Bose Fields: Observables, Dynamics and States
NASA Astrophysics Data System (ADS)
Buchholz, Detlev
2018-05-01
The structure of the gauge invariant (particle number preserving) C*-algebra generated by the resolvents of a non-relativistic Bose field is analyzed. It is shown to form a dense subalgebra of the bounded inverse limit of a directed system of approximately finite dimensional C*-algebras. Based on this observation, it is proven that the closure of the gauge invariant algebra is stable under the dynamics induced by Hamiltonians involving pair potentials. These facts allow to proceed to a description of interacting Bosons in terms of C*-dynamical systems. It is outlined how the present approach leads to simplifications in the construction of infinite bosonic states and sheds new light on topics in many body theory.
Commutative Algebras of Toeplitz Operators in Action
NASA Astrophysics Data System (ADS)
Vasilevski, Nikolai
2011-09-01
We will discuss a quite unexpected phenomenon in the theory of Toeplitz operators on the Bergman space: the existence of a reach family of commutative C*-algebras generated by Toeplitz operators with non-trivial symbols. As it tuns out the smoothness properties of symbols do not play any role in the commutativity, the symbols can be merely measurable. Everything is governed here by the geometry of the underlying manifold, the hyperbolic geometry of the unit disk. We mention as well that the complete characterization of these commutative C*-algebras of Toeplitz operators requires the Berezin quantization procedure. These commutative algebras come with a powerful research tool, the spectral type representation for the operators under study, which permit us to answer to many important questions in the area.
Symbolic Algebra Development for Higher-Order Electron Propagator Formulation and Implementation.
Tamayo-Mendoza, Teresa; Flores-Moreno, Roberto
2014-06-10
Through the use of symbolic algebra, implemented in a program, the algebraic expression of the elements of the self-energy matrix for the electron propagator to different orders were obtained. In addition, a module for the software package Lowdin was automatically generated. Second- and third-order electron propagator results have been calculated to test the correct operation of the program. It was found that the Fortran 90 modules obtained automatically with our algorithm succeeded in calculating ionization energies with the second- and third-order electron propagator in the diagonal approximation. The strategy for the development of this symbolic algebra program is described in detail. This represents a solid starting point for the automatic derivation and implementation of higher-order electron propagator methods.
Algebraic criteria for positive realness relative to the unit circle.
NASA Technical Reports Server (NTRS)
Siljak, D. D.
1973-01-01
A definition is presented of the circle positive realness of real rational functions relative to the unit circle in the complex variable plane. The problem of testing this kind of positive reality is reduced to the algebraic problem of determining the distribution of zeros of a real polynomial with respect to and on the unit circle. Such reformulation of the problem avoids the search for explicit information about imaginary poles of rational functions. The stated algebraic problem is solved by applying the polynomial criteria of Marden (1966) and Jury (1964), and a completely recursive algorithm for circle positive realness is obtained.
Vortex algebra by multiply cascaded four-wave mixing of femtosecond optical beams.
Hansinger, Peter; Maleshkov, Georgi; Garanovich, Ivan L; Skryabin, Dmitry V; Neshev, Dragomir N; Dreischuh, Alexander; Paulus, Gerhard G
2014-05-05
Experiments performed with different vortex pump beams show for the first time the algebra of the vortex topological charge cascade, that evolves in the process of nonlinear wave mixing of optical vortex beams in Kerr media due to competition of four-wave mixing with self-and cross-phase modulation. This leads to the coherent generation of complex singular beams within a spectral bandwidth larger than 200nm. Our experimental results are in good agreement with frequency-domain numerical calculations that describe the newly generated spectral satellites.
Finite element solution of optimal control problems with state-control inequality constraints
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Hodges, Dewey H.
1992-01-01
It is demonstrated that the weak Hamiltonian finite-element formulation is amenable to the solution of optimal control problems with inequality constraints which are functions of both state and control variables. Difficult problems can be treated on account of the ease with which algebraic equations can be generated before having to specify the problem. These equations yield very accurate solutions. Owing to the sparse structure of the resulting Jacobian, computer solutions can be obtained quickly when the sparsity is exploited.
Non Lyapunov stability of a constant spatially developing 2-D gas flow
NASA Astrophysics Data System (ADS)
Balint, Agneta M.; Balint, Stefan; Tanasie, Loredana
2017-01-01
Different types of stabilities (global, local) and instabilities (global absolute, local convective) of the constant spatially developing 2-D gas flow are analyzed in a particular phase space of continuously differentiable functions, endowed with the usual algebraic operations and the topology generated by the uniform convergence on the plane. For this purpose the Euler equations linearized at the constant flow are used. The Lyapunov stability analysis was presented in [1] and this paper is a continuation of [1].
ERIC Educational Resources Information Center
Magiera, Marta T.; van den Kieboom, Leigh A.; Moyer, John C.
2017-01-01
In this study, we examined the ability of grades 1-8 pre-service teachers (PSTs) to engage in thinking about patterns, relationships, and functional rules. Using the algebraic habit of mind Building Rules to Represent Functions as a framework, we examined whether and how well our PSTs (n = 18) used seven features of this habit of mind: organize…
On Special Functions in the Context of Clifford Analysis
NASA Astrophysics Data System (ADS)
Malonek, H. R.; Falcão, M. I.
2010-09-01
Considering the foundation of Quaternionic Analysis by R. Fueter and his collaborators in the beginning of the 1930s as starting point of Clifford Analysis, we can look back to 80 years of work in this field. However the interest in multivariate analysis using Clifford algebras only started to grow significantly in the 70s. Since then a great amount of papers on Clifford Analysis referring different classes of Special Functions have appeared. This situation may have been triggered by a more systematic treatment of monogenic functions by their multiple series development derived from Gegenbauer or associated Legendre polynomials (and not only by their integral representation). Also approaches to Special Functions by means of algebraic methods, either Lie algebras or through Lie groups and symmetric spaces gained by that time importance and influenced their treatment in Clifford Analysis. In our talk we will rely on the generalization of the classical approach to Special Functions through differential equations with respect to the hypercomplex derivative, which is a more recently developed tool in Clifford Analysis. In this context special attention will be payed to the role of Special Functions as intermediator between continuous and discrete mathematics. This corresponds to a more recent trend in combinatorics, since it has been revealed that many algebraic structures have hidden combinatorial underpinnings.
Unique Factorization in Cyclotomic Integers of Degree Seven
ERIC Educational Resources Information Center
Duckworth, W. Ethan
2008-01-01
This article provides a survey of some basic results in algebraic number theory and applies this material to prove that the cyclotomic integers generated by a seventh root of unity are a unique factorization domain. Part of the proof uses the computer algebra system Maple to find and verify factorizations. The proofs use a combination of historic…
An Insurrectionary Generation: Young People, Poverty, Education, and Obama
ERIC Educational Resources Information Center
Gillen, Jay
2009-01-01
The Baltimore Algebra Project is a student-run, student-staffed nonprofit that employs public high schoolers and recent graduates as math study group leaders and as organized advocates for quality education as a constitutional right. In this essay Jay Gillen draws on his experiences as a facilitator of the Algebra Project to argue that only a…
Updating Algebra for All?: Evidence of a Middle-Grades Math Acceleration Policy
ERIC Educational Resources Information Center
Dougherty, Shaun M.; Goodman, Joshua; Hill, Darryl; Litke, Erica; Page, Lindsay
2014-01-01
The Wake County Public School System (WCPSS) in North Carolina recently addressed the issue of advancement in and equitable access to advanced mathematics. Under a recent policy, WCPSS uses a SAS-generated predicted probabilities of students' success in obtaining a passing score on the NC Algebra I End-of-Course (EOC) exam, to determine…
Meta-Representation in an Algebra I Classroom
ERIC Educational Resources Information Center
Izsak, Andrew; Caglayan, Gunhan; Olive, John
2009-01-01
We describe how 1 Algebra I teacher and her 8th-grade students used meta-representational knowledge when generating and evaluating equations to solve word problems. Analyzing data from a sequence of 4 lessons, we found that the teacher and her students used criteria for evaluating equations, in addition to other types of knowledge (e.g., different…
ERIC Educational Resources Information Center
Alibali, Martha W.; Kao, Yvonne S.; Brown, Alayna N.; Nathan, Mitchell J.; Stephens, Ana C.
2009-01-01
This study investigated middle school students' conceptual understanding of algebraic equations. Participants in the study--257 sixth- and seventh-grade students--were asked to solve one set of algebraic equations and to generate story problems corresponding with another set of equations. Structural aspects of the equations, including the number…
ERIC Educational Resources Information Center
Grassl, R.; Mingus, T. T. Y.
2007-01-01
Experiences in designing and teaching a reformed abstract algebra course are described. This effort was partially a result of a five year statewide National Science Foundation (NSF) grant entitled the Rocky Mountain Teacher Enhancement Collaborative. The major thrust of this grant was to implement reform in core mathematics courses that would…
Upper Primary School Teachers' Mathematical Knowledge for Teaching Functional Thinking in Algebra
ERIC Educational Resources Information Center
Wilkie, Karina J.
2014-01-01
This article is based on a project that investigated teachers' knowledge in teaching an important aspect of algebra in the middle years of schooling--functions, relations and joint variation. As part of the project, 105 upper primary teachers were surveyed during their participation in Contemporary Teaching and Learning of Mathematics, a research…
ERIC Educational Resources Information Center
Novak, Melissa A.
2017-01-01
The purpose of this qualitative practitioner research study was to describe middle school algebra students' experiences of learning linear functions through kinesthetic movement. Participants were comprised of 8th grade algebra students. Practitioner research was used because I wanted to improve my teaching so students will have more success in…
ERIC Educational Resources Information Center
Kopp, Jaine; Bergman, Lincoln
This teacher guide helps build a solid foundation in algebra for students in grades 3-5 in which students gain essential understanding of properties of numbers, variables, functions, equations, and formulas. Throughout the problem solving activities, students use computational skills and gain a deeper understanding of the number system. Students…
Sign Lines, Asymptotes, and Tangent Carriers--An Introduction to Curve Sketching.
ERIC Educational Resources Information Center
Spikell, Mark A.; Deane, William R.
This paper discusses methods of sketching various types of algebraic functions from an analysis of the portions of the plane where the curve will be found and where it will not be found. The discussion is limited to rational functions. Methods and techniques presented are applicable to the secondary mathematics curriculum from algebra through…
ERIC Educational Resources Information Center
Wilkie, Karina J.
2016-01-01
Algebra has been explicit in many school curriculum programs from the early years but there are competing views on what content and approaches are appropriate for different levels of schooling. This study investigated 12-13-year-old Australian students' algebraic thinking in a hybrid environment of functional and equation-based approaches to…
NASA Astrophysics Data System (ADS)
Matone, Marco
2016-11-01
Recently it has been introduced an algorithm for the Baker-Campbell-Hausdorff (BCH) formula, which extends the Van-Brunt and Visser recent results, leading to new closed forms of BCH formula. More recently, it has been shown that there are 13 types of such commutator algebras. We show, by providing the explicit solutions, that these include the generators of the semisimple complex Lie algebras. More precisely, for any pair, X, Y of the Cartan-Weyl basis, we find W, linear combination of X, Y, such that exp (X) exp (Y)=exp (W). The derivation of such closed forms follows, in part, by using the above mentioned recent results. The complete derivation is provided by considering the structure of the root system. Furthermore, if X, Y, and Z are three generators of the Cartan-Weyl basis, we find, for a wide class of cases, W, a linear combination of X, Y and Z, such that exp (X) exp (Y) exp (Z)=exp (W). It turns out that the relevant commutator algebras are type 1c-i, type 4 and type 5. A key result concerns an iterative application of the algorithm leading to relevant extensions of the cases admitting closed forms of the BCH formula. Here we provide the main steps of such an iteration that will be developed in a forthcoming paper.
Symmetries and Invariants of Twisted Quantum Algebras and Associated Poisson Algebras
NASA Astrophysics Data System (ADS)
Molev, A. I.; Ragoucy, E.
We construct an action of the braid group BN on the twisted quantized enveloping algebra U q'( {o}N) where the elements of BN act as automorphisms. In the classical limit q → 1, we recover the action of BN on the polynomial functions on the space of upper triangular matrices with ones on the diagonal. The action preserves the Poisson bracket on the space of polynomials which was introduced by Nelson and Regge in their study of quantum gravity and rediscovered in the mathematical literature. Furthermore, we construct a Poisson bracket on the space of polynomials associated with another twisted quantized enveloping algebra U q'( {sp}2n). We use the Casimir elements of both twisted quantized enveloping algebras to reproduce and construct some well-known and new polynomial invariants of the corresponding Poisson algebras.
Correlation functions of warped CFT
NASA Astrophysics Data System (ADS)
Song, Wei; Xu, Jianfei
2018-04-01
Warped conformal field theory (WCFT) is a two dimensional quantum field theory whose local symmetry algebra consists of a Virasoro algebra and a U(1) Kac-Moody algebra. In this paper, we study correlation functions for primary operators in WCFT. Similar to conformal symmetry, warped conformal symmetry is very constraining. The form of the two and three point functions are determined by the global warped conformal symmetry while the four point functions can be determined up to an arbitrary function of the cross ratio. The warped conformal bootstrap equation are constructed by formulating the notion of crossing symmetry. In the large central charge limit, four point functions can be decomposed into global warped conformal blocks, which can be solved exactly. Furthermore, we revisit the scattering problem in warped AdS spacetime (WAdS), and give a prescription on how to match the bulk result to a WCFT retarded Green's function. Our result is consistent with the conjectured holographic dualities between WCFT and WAdS.
Algebraic grid generation using tensor product B-splines. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Saunders, B. V.
1985-01-01
Finite difference methods are more successful if the accompanying grid has lines which are smooth and nearly orthogonal. The development of an algorithm which produces such a grid when given the boundary description. Topological considerations in structuring the grid generation mapping are discussed. The concept of the degree of a mapping and how it can be used to determine what requirements are necessary if a mapping is to produce a suitable grid is examined. The grid generation algorithm uses a mapping composed of bicubic B-splines. Boundary coefficients are chosen so that the splines produce Schoenberg's variation diminishing spline approximation to the boundary. Interior coefficients are initially chosen to give a variation diminishing approximation to the transfinite bilinear interpolant of the function mapping the boundary of the unit square onto the boundary grid. The practicality of optimizing the grid by minimizing a functional involving the Jacobian of the grid generation mapping at each interior grid point and the dot product of vectors tangent to the grid lines is investigated. Grids generated by using the algorithm are presented.
Visual Thinking, Algebraic Thinking, and a Full Unit-Circle Diagram.
ERIC Educational Resources Information Center
Shear, Jonathan
1985-01-01
The study of trigonometric functions in terms of the unit circle offer an example of how students can learn algebraic relations and operations while using visually oriented thinking. Illustrations are included. (MNS)
Mathematical Methods for Optical Physics and Engineering
NASA Astrophysics Data System (ADS)
Gbur, Gregory J.
2011-01-01
1. Vector algebra; 2. Vector calculus; 3. Vector calculus in curvilinear coordinate systems; 4. Matrices and linear algebra; 5. Advanced matrix techniques and tensors; 6. Distributions; 7. Infinite series; 8. Fourier series; 9. Complex analysis; 10. Advanced complex analysis; 11. Fourier transforms; 12. Other integral transforms; 13. Discrete transforms; 14. Ordinary differential equations; 15. Partial differential equations; 16. Bessel functions; 17. Legendre functions and spherical harmonics; 18. Orthogonal functions; 19. Green's functions; 20. The calculus of variations; 21. Asymptotic techniques; Appendices; References; Index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giorda, Paolo; Zanardi, Paolo; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
We analyze the dynamical-algebraic approach to universal quantum control introduced in P. Zanardi and S. Lloyd, e-print quant-ph/0305013. The quantum state space H encoding information decomposes into irreducible sectors and subsystems associated with the group of available evolutions. If this group coincides with the unitary part of the group algebra CK of some group K then universal control is achievable over the K-irreducible components of H. This general strategy is applied to different kinds of bosonic systems. We first consider massive bosons in a double well and show how to achieve universal control over all finite-dimensional Fock sectors. We thenmore » discuss a multimode massless case giving the conditions for generating the whole infinite-dimensional multimode Heisenberg-Weyl enveloping algebra. Finally we show how to use an auxiliary bosonic mode coupled to finite-dimensional systems to generate high-order nonlinearities needed for universal control.« less
NASA Astrophysics Data System (ADS)
Loubert, Joseph William
This thesis consists of two parts. In the first we prove that the Khovanov-Lauda-Rouquier algebras Ralpha of finite type are (graded) affine cellular in the sense of Koenig and Xi. In fact, we establish a stronger property, namely that the affine cell ideals in Ralpha are generated by idempotents. This in particular implies the (known) result that the global dimension of Ralpha is finite. In the second part we use the presentation of the Specht modules given by Kleshchev-Mathas-Ram to derive results about Specht modules. In particular, we determine all homomorphisms from an arbitrary Specht module to a fixed Specht module corresponding to any hook partition. Along the way, we give a complete description of the action of the standard KLR generators on the hook Specht module. This work generalizes a result of James. This dissertation includes previously published coauthored material.
NASA Astrophysics Data System (ADS)
Rosas-Ortiz, Oscar; Zelaya, Kevin
2018-01-01
A set of Hamiltonians that are not self-adjoint but have the spectrum of the harmonic oscillator is studied. The eigenvectors of these operators and those of their Hermitian conjugates form a bi-orthogonal system that provides a mathematical procedure to satisfy the superposition principle. In this form the non-Hermitian oscillators can be studied in much the same way as in the Hermitian approaches. Two different nonlinear algebras generated by properly constructed ladder operators are found and the corresponding generalized coherent states are obtained. The non-Hermitian oscillators can be steered to the conventional one by the appropriate selection of parameters. In such limit, the generators of the nonlinear algebras converge to generalized ladder operators that would represent either intensity-dependent interactions or multi-photon processes if the oscillator is associated with single mode photon fields in nonlinear media.
A generalization of algebraic surface drawing
NASA Technical Reports Server (NTRS)
Blinn, J. F.
1982-01-01
An implicit surface mathematical description of three-dimensional space is defined in terms of all points which satisfy some equation F(x, y, z) equals 0. This form is ideal for space-shaded picture drawing, where the coordinates are substituted for x and y and the equation is solved for z. A new algorithm is presented which is applicable to functional forms other than those of first- and second-order polynomial functions, such as the summation of several Gaussian density distributions. The algorithm was created in order to model electron density maps of molecular structures, but is shown to be capable of generating shapes of esthetic interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skrypnyk, T.
2009-10-15
We analyze symmetries of the integrable generalizations of Jaynes-Cummings and Dicke models associated with simple Lie algebras g and their reductive subalgebras g{sub K}[T. Skrypnyk, 'Generalized n-level Jaynes-Cummings and Dicke models, classical rational r-matrices and nested Bethe ansatz', J. Phys. A: Math. Theor. 41, 475202 (2008)]. We show that their symmetry algebras contain commutative subalgebras isomorphic to the Cartan subalgebras of g, which can be added to the commutative algebras of quantum integrals generated with the help of the quantum Lax operators. We diagonalize additional commuting integrals and constructed with their help the most general integrable quantum Hamiltonian of themore » generalized n-level many-mode Jaynes-Cummings and Dicke-type models using nested algebraic Bethe ansatz.« less
Dynamical Correspondence in a Generalized Quantum Theory
NASA Astrophysics Data System (ADS)
Niestegge, Gerd
2015-05-01
In order to figure out why quantum physics needs the complex Hilbert space, many attempts have been made to distinguish the C*-algebras and von Neumann algebras in more general classes of abstractly defined Jordan algebras (JB- and JBW-algebras). One particularly important distinguishing property was identified by Alfsen and Shultz and is the existence of a dynamical correspondence. It reproduces the dual role of the selfadjoint operators as observables and generators of dynamical groups in quantum mechanics. In the paper, this concept is extended to another class of nonassociative algebras, arising from recent studies of the quantum logics with a conditional probability calculus and particularly of those that rule out third-order interference. The conditional probability calculus is a mathematical model of the Lüders-von Neumann quantum measurement process, and third-order interference is a property of the conditional probabilities which was discovered by Sorkin (Mod Phys Lett A 9:3119-3127, 1994) and which is ruled out by quantum mechanics. It is shown then that the postulates that a dynamical correspondence exists and that the square of any algebra element is positive still characterize, in the class considered, those algebras that emerge from the selfadjoint parts of C*-algebras equipped with the Jordan product. Within this class, the two postulates thus result in ordinary quantum mechanics using the complex Hilbert space or, vice versa, a genuine generalization of quantum theory must omit at least one of them.
Symmetries of the Space of Linear Symplectic Connections
NASA Astrophysics Data System (ADS)
Fox, Daniel J. F.
2017-01-01
There is constructed a family of Lie algebras that act in a Hamiltonian way on the symplectic affine space of linear symplectic connections on a symplectic manifold. The associated equivariant moment map is a formal sum of the Cahen-Gutt moment map, the Ricci tensor, and a translational term. The critical points of a functional constructed from it interpolate between the equations for preferred symplectic connections and the equations for critical symplectic connections. The commutative algebra of formal sums of symmetric tensors on a symplectic manifold carries a pair of compatible Poisson structures, one induced from the canonical Poisson bracket on the space of functions on the cotangent bundle polynomial in the fibers, and the other induced from the algebraic fiberwise Schouten bracket on the symmetric algebra of each fiber of the cotangent bundle. These structures are shown to be compatible, and the required Lie algebras are constructed as central extensions of their! linear combinations restricted to formal sums of symmetric tensors whose first order term is a multiple of the differential of its zeroth order term.
Quantized Algebras of Functions on Homogeneous Spaces with Poisson Stabilizers
NASA Astrophysics Data System (ADS)
Neshveyev, Sergey; Tuset, Lars
2012-05-01
Let G be a simply connected semisimple compact Lie group with standard Poisson structure, K a closed Poisson-Lie subgroup, 0 < q < 1. We study a quantization C( G q / K q ) of the algebra of continuous functions on G/ K. Using results of Soibelman and Dijkhuizen-Stokman we classify the irreducible representations of C( G q / K q ) and obtain a composition series for C( G q / K q ). We describe closures of the symplectic leaves of G/ K refining the well-known description in the case of flag manifolds in terms of the Bruhat order. We then show that the same rules describe the topology on the spectrum of C( G q / K q ). Next we show that the family of C*-algebras C( G q / K q ), 0 < q ≤ 1, has a canonical structure of a continuous field of C*-algebras and provides a strict deformation quantization of the Poisson algebra {{C}[G/K]} . Finally, extending a result of Nagy, we show that C( G q / K q ) is canonically KK-equivalent to C( G/ K).
Upon Generating (2+1)-dimensional Dynamical Systems
NASA Astrophysics Data System (ADS)
Zhang, Yufeng; Bai, Yang; Wu, Lixin
2016-06-01
Under the framework of the Adler-Gel'fand-Dikii(AGD) scheme, we first propose two Hamiltonian operator pairs over a noncommutative ring so that we construct a new dynamical system in 2+1 dimensions, then we get a generalized special Novikov-Veselov (NV) equation via the Manakov triple. Then with the aid of a special symmetric Lie algebra of a reductive homogeneous group G, we adopt the Tu-Andrushkiw-Huang (TAH) scheme to generate a new integrable (2+1)-dimensional dynamical system and its Hamiltonian structure, which can reduce to the well-known (2+1)-dimensional Davey-Stewartson (DS) hierarchy. Finally, we extend the binormial residue representation (briefly BRR) scheme to the super higher dimensional integrable hierarchies with the help of a super subalgebra of the super Lie algebra sl(2/1), which is also a kind of symmetric Lie algebra of the reductive homogeneous group G. As applications, we obtain a super 2+1 dimensional MKdV hierarchy which can be reduced to a super 2+1 dimensional generalized AKNS equation. Finally, we compare the advantages and the shortcomings for the three schemes to generate integrable dynamical systems.
The Standard Model Algebra - a summary
NASA Astrophysics Data System (ADS)
Cristinel Stoica, Ovidiu
2017-08-01
A generation of leptons and quarks and the gauge symmetries of the Standard Model can be obtained from the Clifford algebra ℂℓ 6. An instance of ℂℓ 6 is implicitly generated by the Dirac algebra combined with the electroweak symmetry, while the color symmetry gives another instance of ℂℓ 6 with a Witt decomposition. The minimal mathematical model proposed here results by identifying the two instances of ℂℓ 6. The left ideal decomposition generated by the Witt decomposition represents the leptons and quarks, and their antiparticles. The SU(3)c and U(1)em symmetries of the SM are the symmetries of this ideal decomposition. The patterns of electric charges, colors, chirality, weak isospins, and hypercharges, follow from this, without predicting additional particles or forces, or proton decay. The electroweak symmetry is present in its broken form, due to the geometry. The predicted Weinberg angle is given by sin2 W = 0.25. The model shares common features with previously known models, particularly with Chisholm and Farwell, 1996, Trayling and Baylis, 2004, and Furey, 2016.
The algebraic criteria for the stability of control systems
NASA Technical Reports Server (NTRS)
Cremer, H.; Effertz, F. H.
1986-01-01
This paper critically examines the standard algebraic criteria for the stability of linear control systems and their proofs, reveals important previously unnoticed connections, and presents new representations. Algebraic stability criteria have also acquired significance for stability studies of non-linear differential equation systems by the Krylov-Bogoljubov-Magnus Method, and allow realization conditions to be determined for classes of broken rational functions as frequency characteristics of electrical network.
NASA Technical Reports Server (NTRS)
Thompson, J. F.; Warsi, Z. U. A.; Mastin, C. W.
1982-01-01
A comprehensive review of methods of numerically generating curvilinear coordinate systems with coordinate lines coincident with all boundary segments is given. Some general mathematical framework and error analysis common to such coordinate systems is also included. The general categories of generating systems are those based on conformal mapping, orthogonal systems, nearly orthogonal systems, systems produced as the solution of elliptic and hyperbolic partial differential equations, and systems generated algebraically by interpolation among the boundaries. Also covered are the control of coordinate line spacing by functions embedded in the partial differential operators of the generating system and by subsequent stretching transformation. Dynamically adaptive coordinate systems, coupled with the physical solution, and time-dependent systems that follow moving boundaries are treated. References reporting experience using such coordinate systems are reviewed as well as those covering the system development.
Patterns, Functions, and Algebra: Wired for Space. NASA Connect: Program 3 in the 2000-2001 Series.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.
This teaching unit is designed to help students in grades 5 to 8 explore the concepts of patterns, functions, and algebra in the context of propelling spacecraft. The units in the series have been developed to enhance and enrich mathematics, science, and technology education and to accommodate different teaching and learning styles. Each unit…
ERIC Educational Resources Information Center
Hinds, Lillian R.
Seventy Cleveland, Ohio, inner city adult illiterates, 33 from an experimental group and 37 from a contrast group, were studied to determine the efficiency and effectiveness of Words in Color or the Morphologico-Algebraic approach to teaching reading. Results indicated that the reading achievement gain of functionally illiterate adults taught by…
NASA Astrophysics Data System (ADS)
Wilkie, Karina J.
2016-06-01
A key aspect of learning algebra in the middle years of schooling is exploring the functional relationship between two variables: noticing and generalising the relationship, and expressing it mathematically. This article describes research on the professional learning of upper primary school teachers for developing their students' functional thinking through pattern generalisation. This aspect of algebra learning has been explicitly brought to the attention of upper primary teachers in the recently introduced Australian curriculum. Ten practising teachers participated over 1 year in a design-based research project involving a sequence of geometric pattern generalisation lessons with their classes. Initial and final survey responses and teachers' interactions in regular meetings and lessons were analysed from cognitive and situated perspectives on professional learning, using a theoretical model for the different types of knowledge needed for teaching mathematics. The teachers demonstrated an increase in certain aspects of their mathematical knowledge for teaching algebra as well as some residual issues. Implications for the professional learning of practising and pre-service teachers to develop their mathematics knowledge for teaching functional thinking, and challenges with operationalising knowledge categories for field-based research are presented.
Image Algebra Matlab language version 2.3 for image processing and compression research
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Ritter, Gerhard X.; Hayden, Eric
2010-08-01
Image algebra is a rigorous, concise notation that unifies linear and nonlinear mathematics in the image domain. Image algebra was developed under DARPA and US Air Force sponsorship at University of Florida for over 15 years beginning in 1984. Image algebra has been implemented in a variety of programming languages designed specifically to support the development of image processing and computer vision algorithms and software. The University of Florida has been associated with development of the languages FORTRAN, Ada, Lisp, and C++. The latter implementation involved a class library, iac++, that supported image algebra programming in C++. Since image processing and computer vision are generally performed with operands that are array-based, the Matlab™ programming language is ideal for implementing the common subset of image algebra. Objects include sets and set operations, images and operations on images, as well as templates and image-template convolution operations. This implementation, called Image Algebra Matlab (IAM), has been found to be useful for research in data, image, and video compression, as described herein. Due to the widespread acceptance of the Matlab programming language in the computing community, IAM offers exciting possibilities for supporting a large group of users. The control over an object's computational resources provided to the algorithm designer by Matlab means that IAM programs can employ versatile representations for the operands and operations of the algebra, which are supported by the underlying libraries written in Matlab. In a previous publication, we showed how the functionality of IAC++ could be carried forth into a Matlab implementation, and provided practical details of a prototype implementation called IAM Version 1. In this paper, we further elaborate the purpose and structure of image algebra, then present a maturing implementation of Image Algebra Matlab called IAM Version 2.3, which extends the previous implementation of IAM to include polymorphic operations over different point sets, as well as recursive convolution operations and functional composition. We also show how image algebra and IAM can be employed in image processing and compression research, as well as algorithm development and analysis.
Decomposition Theory in the Teaching of Elementary Linear Algebra.
ERIC Educational Resources Information Center
London, R. R.; Rogosinski, H. P.
1990-01-01
Described is a decomposition theory from which the Cayley-Hamilton theorem, the diagonalizability of complex square matrices, and functional calculus can be developed. The theory and its applications are based on elementary polynomial algebra. (KR)
Higher spin black holes with soft hair
NASA Astrophysics Data System (ADS)
Grumiller, Daniel; Pérez, Alfredo; Prohazka, Stefan; Tempo, David; Troncoso, Ricardo
2016-10-01
We construct a new set of boundary conditions for higher spin gravity, inspired by a recent "soft Heisenberg hair"-proposal for General Relativity on three-dimensional Anti-de Sitter space. The asymptotic symmetry algebra consists of a set of affine û(1) current algebras. Its associated canonical charges generate higher spin soft hair. We focus first on the spin-3 case and then extend some of our main results to spin- N , many of which resemble the spin-2 results: the generators of the asymptotic W 3 algebra naturally emerge from composite operators of the û(1) charges through a twisted Sugawara construction; our boundary conditions ensure regularity of the Euclidean solutions space independently of the values of the charges; solutions, which we call "higher spin black flowers", are stationary but not necessarily spherically symmetric. Finally, we derive the entropy of higher spin black flowers, and find that for the branch that is continuously connected to the BTZ black hole, it depends only on the affine purely gravitational zero modes. Using our map to W -algebra currents we recover well-known expressions for higher spin entropy. We also address higher spin black flowers in the metric formalism and achieve full consistency with previous results.
Pole-placement Predictive Functional Control for under-damped systems with real numbers algebra.
Zabet, K; Rossiter, J A; Haber, R; Abdullah, M
2017-11-01
This paper presents the new algorithm of PP-PFC (Pole-placement Predictive Functional Control) for stable, linear under-damped higher-order processes. It is shown that while conventional PFC aims to get first-order exponential behavior, this is not always straightforward with significant under-damped modes and hence a pole-placement PFC algorithm is proposed which can be tuned more precisely to achieve the desired dynamics, but exploits complex number algebra and linear combinations in order to deliver guarantees of stability and performance. Nevertheless, practical implementation is easier by avoiding complex number algebra and hence a modified formulation of the PP-PFC algorithm is also presented which utilises just real numbers while retaining the key attributes of simple algebra, coding and tuning. The potential advantages are demonstrated with numerical examples and real-time control of a laboratory plant. Copyright © 2017 ISA. All rights reserved.
Asymptotic structure of the Einstein-Maxwell theory on AdS3
NASA Astrophysics Data System (ADS)
Pérez, Alfredo; Riquelme, Miguel; Tempo, David; Troncoso, Ricardo
2016-02-01
The asymptotic structure of AdS spacetimes in the context of General Relativity coupled to the Maxwell field in three spacetime dimensions is analyzed. Although the fall-off of the fields is relaxed with respect to that of Brown and Henneaux, the variation of the canonical generators associated to the asymptotic Killing vectors can be shown to be finite once required to span the Lie derivative of the fields. The corresponding surface integrals then acquire explicit contributions from the electromagnetic field, and become well-defined provided they fulfill suitable integrability conditions, implying that the leading terms of the asymptotic form of the electromagnetic field are functionally related. Consequently, for a generic choice of boundary conditions, the asymptotic symmetries are broken down to {R}⊗ U(1)⊗ U(1) . Nonetheless, requiring compatibility of the boundary conditions with one of the asymptotic Virasoro symmetries, singles out the set to be characterized by an arbitrary function of a single variable, whose precise form depends on the choice of the chiral copy. Remarkably, requiring the asymptotic symmetries to contain the full conformal group selects a very special set of boundary conditions that is labeled by a unique constant parameter, so that the algebra of the canonical generators is given by the direct sum of two copies of the Virasoro algebra with the standard central extension and U (1). This special set of boundary conditions makes the energy spectrum of electrically charged rotating black holes to be well-behaved.
SD-CAS: Spin Dynamics by Computer Algebra System.
Filip, Xenia; Filip, Claudiu
2010-11-01
A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples. Copyright © 2010 Elsevier Inc. All rights reserved.
Smooth function approximation using neural networks.
Ferrari, Silvia; Stengel, Robert F
2005-01-01
An algebraic approach for representing multidimensional nonlinear functions by feedforward neural networks is presented. In this paper, the approach is implemented for the approximation of smooth batch data containing the function's input, output, and possibly, gradient information. The training set is associated to the network adjustable parameters by nonlinear weight equations. The cascade structure of these equations reveals that they can be treated as sets of linear systems. Hence, the training process and the network approximation properties can be investigated via linear algebra. Four algorithms are developed to achieve exact or approximate matching of input-output and/or gradient-based training sets. Their application to the design of forward and feedback neurocontrollers shows that algebraic training is characterized by faster execution speeds and better generalization properties than contemporary optimization techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibarra-Sierra, V.G.; Sandoval-Santana, J.C.; Cardoso, J.L.
We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra ismore » later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai–Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators. -- Highlights: •We deal with the general quadratic Hamiltonian and a particle in electromagnetic fields. •The evolution operator is worked out through the Lie algebraic approach. •We also obtain the propagator and Heisenberg picture position and momentum operators. •Analytical expressions for a rotating quadrupole field ion trap are presented. •Exact solutions for magneto-transport in variable electromagnetic fields are shown.« less
Undecidability of the elementary theory of the semilattice of GLP-words
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pakhomov, Fedor N
The Lindenbaum algebra of Peano PA can be enriched by the n-consistency operators which assign, to a given formula, the statement that the formula is compatible with the theory PA extended by the set of all true {Pi}{sub n}-sentences. In the Lindenbaum algebra of PA, a lower semilattice is generated from 1 by the n-consistency operators. We prove the undecidability of the elementary theory of this semilattice and the decidability of the elementary theory of the subsemilattice (of this semilattice) generated by the 0-consistency and 1-consistency operators only. Bibliography: 16 titles.
Loop Quantization and Symmetry: Configuration Spaces
NASA Astrophysics Data System (ADS)
Fleischhack, Christian
2018-06-01
Given two sets S 1, S 2 and unital C *-algebras A_1, A_2 of functions thereon, we show that a map {σ : {S}_1 \\longrightarrow {S}_2} can be lifted to a continuous map \\barσ : spec A_1 \\longrightarrow spec A_2 iff σ^\\ast A_2 := σ^\\ast f | f \\in A_2 \\subseteq A_1. Moreover, \\bar σ is unique if existing, and injective iff σ^\\ast A_2 is dense. Then, we apply these results to loop quantum gravity and loop quantum cosmology. For all usual technical conventions, we decide whether the cosmological quantum configuration space is embedded into the gravitational one; indeed, both are spectra of some C *-algebras, say, A_cosm and A_grav, respectively. Typically, there is no embedding, but one can always get an embedding by the defining A_cosm := C^\\ast(σ^\\ast A_grav), where {σ} denotes the embedding between the classical configuration spaces. Finally, we explicitly determine {C^\\ast(σ^\\ast A_grav) in the homogeneous isotropic case for A_grav generated by the matrix functions of parallel transports along analytic paths. The cosmological quantum configuration space so equals the disjoint union of R and the Bohr compactification of R, appropriately glued together.
Loop Quantization and Symmetry: Configuration Spaces
NASA Astrophysics Data System (ADS)
Fleischhack, Christian
2018-04-01
Given two sets S 1, S 2 and unital C *-algebras A_1, A_2 of functions thereon, we show that a map σ : S_1 \\longrightarrow S_2 can be lifted to a continuous map \\barσ : spec A_1 \\longrightarrow spec A_2 iff σ^\\ast A_2 := σ^\\ast f | f \\in A_2 \\subseteq A_1. Moreover, \\bar σ is unique if existing, and injective iff {σ^\\ast A_2 is dense. Then, we apply these results to loop quantum gravity and loop quantum cosmology. For all usual technical conventions, we decide whether the cosmological quantum configuration space is embedded into the gravitational one; indeed, both are spectra of some C *-algebras, say, A_cosm and A_grav, respectively. Typically, there is no embedding, but one can always get an embedding by the defining A_cosm := C^\\ast(σ^\\ast A_grav), where σ denotes the embedding between the classical configuration spaces. Finally, we explicitly determine C^\\ast(σ^\\ast A_grav) in the homogeneous isotropic case for A_grav generated by the matrix functions of parallel transports along analytic paths. The cosmological quantum configuration space so equals the disjoint union of R and the Bohr compactification of R , appropriately glued together.
A Electro-Optical Image Algebra Processing System for Automatic Target Recognition
NASA Astrophysics Data System (ADS)
Coffield, Patrick Cyrus
The proposed electro-optical image algebra processing system is designed specifically for image processing and other related computations. The design is a hybridization of an optical correlator and a massively paralleled, single instruction multiple data processor. The architecture of the design consists of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined in terms of basic operations of an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how it implements the natural decomposition of algebraic functions into spatially distributed, point use operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The implementation of the proposed design may be accomplished in many ways. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control a large variety of the arithmetic and logic operations of the image algebra's generalized matrix product. The generalized matrix product is the most powerful fundamental operation in the algebra, thus allowing a wide range of applications. No other known device or design has made this claim of processing speed and general implementation of a heterogeneous image algebra.
2007-03-01
mathematical frame- 1-6 work of linear algebra and functional analysis [122, 33], while Kalman-Bucy filtering [96, 32] is an especially important...Engineering, Air Force Institute of Technology (AU), Wright- Patterson AFB, Ohio, March 2002. 85. Hoffman, Kenneth and Ray Kunze. Linear Algebra (Second Edition...Engineering, Air Force Institute of Technology (AU), Wright- Patterson AFB, Ohio, December 1989. 189. Strang, Gilbert. Linear Algebra and Its Applications
NASA Astrophysics Data System (ADS)
Ma'rufi, Budayasa, I. Ketut; Juniati, Dwi
2017-02-01
Teacher is one of the key aspects of student's achievement. Teachers should master content material taught, how to teach it, and can interpret the students' thinking so that students easily understand the subject matter. This research was a qualitative research that aimed at describing profile of PCK's teachers in mathematics on limit algebraic functions in terms of the differences of teaching experience. Pedagogical Content Knowledge (PCK) and understanding of teachers is defined as involving the relationship between knowledge of teaching materials, how to transfer the subject matter, and the knowledge of students in mathematics on limit algebraic functions that the subject matter may be understood by students. The PCK components in this research were knowledge of subject matter, knowledge of pedagogy, and knowledge of students. Knowledge of pedagogy defines as knowledge and understanding of teachers about the planning and organization of the learning and teaching strategy of limit algebraic function. The subjects were two mathematics high school teachers who teach in class XI IPS. Data were collected through observation of learning during five meetings and interviews before and after the lesson continued with qualitative data analysis. Focus of this article was to describe novice teacher's knowledge of student in mathematics learning on limit algebraic function. Based on the results of the analysis of qualitative data the data concluded that novice teacher's knowledge of pedagogy in mathematics on limit algebraic function showed: 1) in teaching the definitions tend to identify prior knowledge of the student experience with the material to be studied, but not in the form of a problem, 2) in posing the questions tend to be monotonous non lead and dig, 3) in response to student questions preservice teachers do not take advantage of the characteristics or the potential of other students, 4) in addressing the problem of students, tend to use the drill approach and did not give illustrations easily to understand by students, 5) in teaching application concepts, tend to explain procedurally, without explaining the reasons why these steps are carried out, 6) less varied in the use of learning strategies.
Classes of exact Einstein Maxwell solutions
NASA Astrophysics Data System (ADS)
Komathiraj, K.; Maharaj, S. D.
2007-12-01
We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.
Tensor Algebra Library for NVidia Graphics Processing Units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liakh, Dmitry
This is a general purpose math library implementing basic tensor algebra operations on NVidia GPU accelerators. This software is a tensor algebra library that can perform basic tensor algebra operations, including tensor contractions, tensor products, tensor additions, etc., on NVidia GPU accelerators, asynchronously with respect to the CPU host. It supports a simultaneous use of multiple NVidia GPUs. Each asynchronous API function returns a handle which can later be used for querying the completion of the corresponding tensor algebra operation on a specific GPU. The tensors participating in a particular tensor operation are assumed to be stored in local RAMmore » of a node or GPU RAM. The main research area where this library can be utilized is the quantum many-body theory (e.g., in electronic structure theory).« less
Recursive boson system in the Cuntz algebra O{sub {infinity}}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamura, Katsunori
2007-09-15
Bosons and fermions are often written by elements of other algebras. Abe (private communication) gave a realization of bosons by formal infinite sums of the canonical generators of the Cuntz algebra O{sub {infinity}}. We show that such formal infinite sum always makes sense on a certain dense subspace of any permutative representation of O{sub {infinity}}. In this meaning, we can regard as if the algebra B of bosons was a unital *-subalgebra of O{sub {infinity}} on a given permutative representation. According to this relation, we compute branching laws arising from restrictions of representations of O{sub {infinity}} on B. For example,more » it is shown that the Fock representation of B is given as the restriction of the standard representation of O{sub {infinity}} on B.« less
Octupolar tensors for liquid crystals
NASA Astrophysics Data System (ADS)
Chen, Yannan; Qi, Liqun; Virga, Epifanio G.
2018-01-01
A third-rank three-dimensional symmetric traceless tensor, called the octupolar tensor, has been introduced to study tetrahedratic nematic phases in liquid crystals. The octupolar potential, a scalar-valued function generated on the unit sphere by that tensor, should ideally have four maxima (on the vertices of a tetrahedron), but it was recently found to possess an equally generic variant with three maxima instead of four. It was also shown that the irreducible admissible region for the octupolar tensor in a three-dimensional parameter space is bounded by a dome-shaped surface, beneath which is a separatrix surface connecting the two generic octupolar states. The latter surface, which was obtained through numerical continuation, may be physically interpreted as marking a possible intra-octupolar transition. In this paper, by using the resultant theory of algebraic geometry and the E-characteristic polynomial of spectral theory of tensors, we give a closed-form, algebraic expression for both the dome-shaped surface and the separatrix surface. This turns the envisaged intra-octupolar transition into a quantitative, possibly observable prediction.
Examples of Complete Solvability of 2D Classical Superintegrable Systems
NASA Astrophysics Data System (ADS)
Chen, Yuxuan; Kalnins, Ernie G.; Li, Qiushi; Miller, Willard, Jr.
2015-11-01
Classical (maximal) superintegrable systems in n dimensions are Hamiltonian systems with 2n-1 independent constants of the motion, globally defined, the maximum number possible. They are very special because they can be solved algebraically. In this paper we show explicitly, mostly through examples of 2nd order superintegrable systems in 2 dimensions, how the trajectories can be determined in detail using rather elementary algebraic, geometric and analytic methods applied to the closed quadratic algebra of symmetries of the system, without resorting to separation of variables techniques or trying to integrate Hamilton's equations. We treat a family of 2nd order degenerate systems: oscillator analogies on Darboux, nonzero constant curvature, and flat spaces, related to one another via contractions, and obeying Kepler's laws. Then we treat two 2nd order nondegenerate systems, an analogy of a caged Coulomb problem on the 2-sphere and its contraction to a Euclidean space caged Coulomb problem. In all cases the symmetry algebra structure provides detailed information about the trajectories, some of which are rather complicated. An interesting example is the occurrence of ''metronome orbits'', trajectories confined to an arc rather than a loop, which are indicated clearly from the structure equations but might be overlooked using more traditional methods. We also treat the Post-Winternitz system, an example of a classical 4th order superintegrable system that cannot be solved using separation of variables. Finally we treat a superintegrable system, related to the addition theorem for elliptic functions, whose constants of the motion are only rational in the momenta. It is a system of special interest because its constants of the motion generate a closed polynomial algebra. This paper contains many new results but we have tried to present most of the materials in a fashion that is easily accessible to nonexperts, in order to provide entrée to superintegrablity theory.
ADAM: analysis of discrete models of biological systems using computer algebra.
Hinkelmann, Franziska; Brandon, Madison; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard
2011-07-20
Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics.
ERIC Educational Resources Information Center
Matsumoto, Paul S.
2014-01-01
The article describes the use of Mathematica, a computer algebra system (CAS), in a high school chemistry course. Mathematica was used to generate a graph, where a slider controls the value of parameter(s) in the equation; thus, students can visualize the effect of the parameter(s) on the behavior of the system. Also, Mathematica can show the…
A representation of solution of stochastic differential equations
NASA Astrophysics Data System (ADS)
Kim, Yoon Tae; Jeon, Jong Woo
2006-03-01
We prove that the logarithm of the formal power series, obtained from a stochastic differential equation, is an element in the closure of the Lie algebra generated by vector fields being coefficients of equations. By using this result, we obtain a representation of the solution of stochastic differential equations in terms of Lie brackets and iterated Stratonovich integrals in the algebra of formal power series.
On squares of representations of compact Lie algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeier, Robert, E-mail: robert.zeier@ch.tum.de; Zimborás, Zoltán, E-mail: zimboras@gmail.com
We study how tensor products of representations decompose when restricted from a compact Lie algebra to one of its subalgebras. In particular, we are interested in tensor squares which are tensor products of a representation with itself. We show in a classification-free manner that the sum of multiplicities and the sum of squares of multiplicities in the corresponding decomposition of a tensor square into irreducible representations has to strictly grow when restricted from a compact semisimple Lie algebra to a proper subalgebra. For this purpose, relevant details on tensor products of representations are compiled from the literature. Since the summore » of squares of multiplicities is equal to the dimension of the commutant of the tensor-square representation, it can be determined by linear-algebra computations in a scenario where an a priori unknown Lie algebra is given by a set of generators which might not be a linear basis. Hence, our results offer a test to decide if a subalgebra of a compact semisimple Lie algebra is a proper one without calculating the relevant Lie closures, which can be naturally applied in the field of controlled quantum systems.« less
BFV-BRST analysis of the classical and quantum q-deformations of the sl(2) algebra
NASA Astrophysics Data System (ADS)
Dayi, O. F.
1994-01-01
BFV--BRST charge for q-deformed algebras is not unique. Different constructions of it in the classical as well as in the quantum phase space for the $q$-deformed algebra sl_q(2) are discussed. Moreover, deformation of the phase space without deforming the generators of sl(2) is considered. $\\hbar$-q-deformation of the phase space is shown to yield the Witten's second deformation. To study the BFV--BRST cohomology problem when both the quantum phase space and the group are deformed, a two parameter deformation of sl(2) is proposed, and its BFV-BRST charge is given.
Beauty and the beast: Superconformal symmetry in a monster module
NASA Astrophysics Data System (ADS)
Dixon, L.; Ginsparg, P.; Harvey, J.
1988-06-01
Frenkel, Lepowsky, and Meurman have constructed a representation of the largest sporadic simple finite group, the Fischer-Griess monster, as the automorphism group of the operator product algebra of a conformal field theory with central charge c=24. In string terminology, their construction corresponds to compactification on a Z 2 asymmetric orbifold constructed from the torus R 24/∧, where ∧ is the Leech lattice. In this note we point out that their construction naturally embodies as well a larger algebraic structure, namely a super-Virasoro algebra with central charge ĉ=16, with the supersymmetry generator constructed in terms of bosonic twist fields.
NASA Astrophysics Data System (ADS)
Li, Huanan
2013-03-01
Based on a two-time observation protocol, we consider heat transfer in a given time interval tM in a lead-junction-lead system taking coupling between the leads into account. In view of the two-time observation, consistency conditions are carefully verified in our specific family of quantum histories. Furthermore, its implication is briefly explored. Then using the nonequilibrium Green's function method, we obtain an exact formula for the cumulant generating function for heat transfer between the two leads, valid in both transient and steady-state regimes. Also, a compact formula for the cumulant generating function in the long-time limit is derived, for which the Gallavotti-Cohen fluctuation symmetry is explicitly verified. In addition, we briefly discuss Di Ventra's repartitioning trick regarding whether the repartitioning procedure of the total Hamiltonian affects the nonequilibrium steady-state current fluctuation. All kinds of properties of nonequilibrium current fluctuations, such as the fluctuation theorem in different time regimes, could be readily given according to these exact formulas. Finally a practical formalism dealing with cumulants of heat transfer across general nonlinear quantum systems is established based on field theoretical/algebraic method.
Hine, N D M; Haynes, P D; Mostofi, A A; Payne, M C
2010-09-21
We present calculations of formation energies of defects in an ionic solid (Al(2)O(3)) extrapolated to the dilute limit, corresponding to a simulation cell of infinite size. The large-scale calculations required for this extrapolation are enabled by developments in the approach to parallel sparse matrix algebra operations, which are central to linear-scaling density-functional theory calculations. The computational cost of manipulating sparse matrices, whose sizes are determined by the large number of basis functions present, is greatly improved with this new approach. We present details of the sparse algebra scheme implemented in the ONETEP code using hierarchical sparsity patterns, and demonstrate its use in calculations on a wide range of systems, involving thousands of atoms on hundreds to thousands of parallel processes.
NASA Astrophysics Data System (ADS)
Balint, Stefan; Balint, Agneta M.
2017-01-01
Different types of stabilities (global, local) and instabilities (global absolute, local convective) of the constant spatially developing 1-D gas flow are analyzed in the phase space of continuously differentiable functions, endowed with the usual algebraic operations and the topology generated by the uniform convergence on the real axis. For this purpose the Euler equations linearized at the constant flow are used. The Lyapunov stability analysis was presented in [1] and this paper is a continuation of [1].
Deformed twistors and higher spin conformal (super-)algebras in four dimensions
Govil, Karan; Gunaydin, Murat
2015-03-05
Massless conformal scalar field in d = 4 corresponds to the minimal unitary representation (minrep) of the conformal group SU(2, 2) which admits a one-parameter family of deformations that describe massless fields of arbitrary helicity. The minrep and its deformations were obtained by quantization of the nonlinear realization of SU(2, 2) as a quasiconformal group in arXiv:0908.3624. We show that the generators of SU(2,2) for these unitary irreducible representations can be written as bilinears of deformed twistorial oscillators which transform nonlinearly under the Lorentz group and apply them to define and study higher spin algebras and superalgebras in AdS 5.more » The higher spin (HS) algebra of Fradkin-Vasiliev type in AdS 5 is simply the enveloping algebra of SU(2, 2) quotiented by a two-sided ideal (Joseph ideal) which annihilates the minrep. We show that the Joseph ideal vanishes identically for the quasiconformal realization of the minrep and its enveloping algebra leads directly to the HS algebra in AdS 5. Furthermore, the enveloping algebras of the deformations of the minrep define a one parameter family of HS algebras in AdS 5 for which certain 4d covariant deformations of the Joseph ideal vanish identically. These results extend to superconformal algebras SU(2, 2|N) and we find a one parameter family of HS superalgebras as enveloping algebras of the minimal unitary supermultiplet and its deformations. Our results suggest the existence of a family of (supersymmetric) HS theories in AdS 5 which are dual to free (super)conformal field theories (CFTs) or to interacting but integrable (supersymmetric) CFTs in 4d. We also discuss the corresponding picture in HS algebras in AdS 4 where the corresponding 3d conformal group Sp(4,R) admits only two massless representations (minreps), namely the scalar and spinor singletons.« less
Connecting Functions in Geometry and Algebra
ERIC Educational Resources Information Center
Steketee, Scott; Scher, Daniel
2016-01-01
One goal of a mathematics education is that students make significant connections among different branches of mathematics. Connections--such as those between arithmetic and algebra, between two-dimensional and three-dimensional geometry, between compass-and-straight-edge constructions and transformations, and between calculus and analytic…
On boundary fusion and functional relations in the Baxterized affine Hecke algebra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babichenko, A., E-mail: babichen@weizmann.ac.il; Regelskis, V., E-mail: v.regelskis@surrey.ac.uk
2014-04-15
We construct boundary type operators satisfying fused reflection equation for arbitrary representations of the Baxterized affine Hecke algebra. These operators are analogues of the fused reflection matrices in solvable half-line spin chain models. We show that these operators lead to a family of commuting transfer matrices of Sklyanin type. We derive fusion type functional relations for these operators for two families of representations.
ERIC Educational Resources Information Center
Bardini, Caroline; Pierce, Robyn U.; Stacey, Kaye
2004-01-01
This study analyses some of the consequences of adopting a functional/modelling approach to the teaching of algebra. The teaching of one class of 17 students was observed over five weeks, with 15 students undertaking both pre- and post-tests and 6 students and the teacher being interviewed individually. Use of graphics calculators made the…
Kleene Algebra and Bytecode Verification
2016-04-27
computing the star (Kleene closure) of a matrix of transfer functions. In this paper we show how this general framework applies to the problem of Java ...bytecode verification. We show how to specify transfer functions arising in Java bytecode verification in such a way that the Kleene algebra operations...potentially improve the performance over the standard worklist algorithm when a small cutset can be found. Key words: Java , bytecode, verification, static
NASA Astrophysics Data System (ADS)
Carlson, Shawn
2016-01-01
Energy conservation is a deep principle that is obeyed by all of the fundamental forces of nature. It puts stringent constraints on all systems, particularly systems that are ‘isolated,’ meaning that no energy can enter or escape. Notwithstanding the success of the principle of stationary action, it is fair to wonder to what extent physics can be formulated from the principle of stationary energy. We show that if one interprets mechanical energy as a state function, then its stationarity leads to a novel formulation of classical mechanics. However, unlike Lagrangian and Hamiltonian mechanics, which deliver their state functions via algebraic proscriptions (i.e., the Lagrangian is always the difference between a system’s kinetic and potential energies), this new formalism identifies its state functions as the solutions to a differential equation. This is an important difference because differential equations can generate more general solutions than algebraic recipes. When applied to Newtonian systems for which the energy function is separable, these state functions are always the mechanical energy. However, while the stationary state function for a charged particle moving in an electromagnetic field proves not to be energy, the function nevertheless correctly encodes the dynamics of the system. Moreover, the stationary state function for a free relativistic particle proves not to be the energy either. Rather, our differential equation yields the relativistic free-particle Lagrangian (plus a non-dynamical constant) in its correct dynamical context. To explain how this new formalism can consistently deliver stationary state functions that give the correct dynamics but that are not always the mechanical energy, we propose that energy conservation is a specific realization of a deeper principle of stationarity that governs both relativistic and non-relativistic mechanics.
The Dixmier Map for Nilpotent Super Lie Algebras
NASA Astrophysics Data System (ADS)
Herscovich, Estanislao
2012-07-01
In this article we prove that there exists a Dixmier map for nilpotent super Lie algebras. In other words, if we denote by {Prim({U}({g}))} the set of (graded) primitive ideals of the enveloping algebra {{U}({g})} of a nilpotent Lie superalgebra {{g}} and {{A}d0} the adjoint group of {{g}0}, we prove that the usual Dixmier map for nilpotent Lie algebras can be naturally extended to the context of nilpotent super Lie algebras, i.e. there exists a bijective map I : {g}0^{*}/{A}d0 rightarrow Prim({U}({g})) defined by sending the equivalence class [ λ] of a functional λ to a primitive ideal I( λ) of {{U}({g})}, and which coincides with the Dixmier map in the case of nilpotent Lie algebras. Moreover, the construction of the previous map is explicit, and more or less parallel to the one for Lie algebras, a major difference with a previous approach ( cf. [18]). One key fact in the construction is the existence of polarizations for super Lie algebras, generalizing the concept defined for Lie algebras. As a corollary of the previous description, we obtain the isomorphism {{U}({g})/I(λ) ˜eq Cliffq(k) ⊗ Ap(k)}, where {(p,q) = (dim({g}0/{g}0^{λ})/2,dim({g}1/{g}1^{λ}))}, we get a direct construction of the maximal ideals of the underlying algebra of {{U}({g})} and also some properties of the stabilizers of the primitive ideals of {{U}({g})}.
Leikin, Mark; Waisman, Ilana; Shaul, Shelley; Leikin, Roza
2014-03-01
This paper presents a small part of a larger interdisciplinary study that investigates brain activity (using event related potential methodology) of male adolescents when solving mathematical problems of different types. The study design links mathematics education research with neurocognitive studies. In this paper we performed a comparative analysis of brain activity associated with the translation from visual to symbolic representations of mathematical objects in algebra and geometry. Algebraic tasks require translation from graphical to symbolic representation of a function, whereas tasks in geometry require translation from a drawing of a geometric figure to a symbolic representation of its property. The findings demonstrate that electrical activity associated with the performance of geometrical tasks is stronger than that associated with solving algebraic tasks. Additionally, we found different scalp topography of the brain activity associated with algebraic and geometric tasks. Based on these results, we argue that problem solving in algebra and geometry is associated with different patterns of brain activity.
Quantization of spinor fields. III. Fermions on coherent (Bose) domains
NASA Astrophysics Data System (ADS)
Garbaczewski, Piotr
1983-02-01
A formulation of the c-number classics-quanta correspondence rule for spinor systems requires all elements of the quantum field algebra to be expanded into power series with respect to the generators of the canonical commutation relation (CCR) algebra. On the other hand, the asymptotic completeness demand would result in the (Haag) expansions with respect to the canonical anticommutation relation (CAR) generators. We establish the conditions under which the above correspondence rule can be reconciled with the existence of Haag expansions in terms of asymptotic free Fermi fields. Then, the CAR become represented on the state space of the Bose (CCR) system.
Implementation of control point form of algebraic grid-generation technique
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Miller, David P.; Reno, Charles J.
1991-01-01
The control point form (CPF) provides explicit control of physical grid shape and grid spacing through the movement of the control points. The control point array, called a control net, is a space grid type arrangement of locations in physical space with an index for each direction. As an algebraic method CPF is efficient and works well with interactive computer graphics. A family of menu-driven, interactive grid-generation computer codes (TURBO) is being developed by using CPF. Key features of TurboI (a TURBO member) are discussed and typical results are presented. TurboI runs on any IRIS 4D series workstation.
The algebra of two dimensional generalized Chebyshev-Koornwinder oscillator
NASA Astrophysics Data System (ADS)
Borzov, V. V.; Damaskinsky, E. V.
2014-10-01
In the previous works of Borzov and Damaskinsky ["Chebyshev-Koornwinder oscillator," Theor. Math. Phys. 175(3), 765-772 (2013)] and ["Ladder operators for Chebyshev-Koornwinder oscillator," in Proceedings of the Days on Diffraction, 2013], the authors have defined the oscillator-like system that is associated with the two variable Chebyshev-Koornwinder polynomials. We call this system the generalized Chebyshev-Koornwinder oscillator. In this paper, we study the properties of infinite-dimensional Lie algebra that is analogous to the Heisenberg algebra for the Chebyshev-Koornwinder oscillator. We construct the exact irreducible representation of this algebra in a Hilbert space H of functions that are defined on a region which is bounded by the Steiner hypocycloid. The functions are square-integrable with respect to the orthogonality measure for the Chebyshev-Koornwinder polynomials and these polynomials form an orthonormalized basis in the space H. The generalized oscillator which is studied in the work can be considered as the simplest nontrivial example of multiboson quantum system that is composed of three interacting oscillators.
Quantization of Poisson Manifolds from the Integrability of the Modular Function
NASA Astrophysics Data System (ADS)
Bonechi, F.; Ciccoli, N.; Qiu, J.; Tarlini, M.
2014-10-01
We discuss a framework for quantizing a Poisson manifold via the quantization of its symplectic groupoid, combining the tools of geometric quantization with the results of Renault's theory of groupoid C*-algebras. This setting allows very singular polarizations. In particular, we consider the case when the modular function is multiplicatively integrable, i.e., when the space of leaves of the polarization inherits a groupoid structure. If suitable regularity conditions are satisfied, then one can define the quantum algebra as the convolution algebra of the subgroupoid of leaves satisfying the Bohr-Sommerfeld conditions. We apply this procedure to the case of a family of Poisson structures on , seen as Poisson homogeneous spaces of the standard Poisson-Lie group SU( n + 1). We show that a bihamiltonian system on defines a multiplicative integrable model on the symplectic groupoid; we compute the Bohr-Sommerfeld groupoid and show that it satisfies the needed properties for applying Renault theory. We recover and extend Sheu's description of quantum homogeneous spaces as groupoid C*-algebras.
Natural differential operations on manifolds: an algebraic approach
NASA Astrophysics Data System (ADS)
Katsylo, P. I.; Timashev, D. A.
2008-10-01
Natural algebraic differential operations on geometric quantities on smooth manifolds are considered. A method for the investigation and classification of such operations is described, the method of IT-reduction. With it the investigation of natural operations reduces to the analysis of rational maps between k-jet spaces, which are equivariant with respect to certain algebraic groups. On the basis of the method of IT-reduction a finite generation theorem is proved: for tensor bundles \\mathscr{V},\\mathscr{W}\\to M all the natural differential operations D\\colon\\Gamma(\\mathscr{V})\\to\\Gamma(\\mathscr{W}) of degree at most d can be algebraically constructed from some finite set of such operations. Conceptual proofs of known results on the classification of natural linear operations on arbitrary and symplectic manifolds are presented. A non-existence theorem is proved for natural deformation quantizations on Poisson manifolds and symplectic manifolds.Bibliography: 21 titles.
Cryptographic Properties of Monotone Boolean Functions
2016-01-01
Algebraic attacks on stream ciphers with linear feedback, in: Advances in Cryptology (Eurocrypt 2003), Lecture Notes in Comput. Sci. 2656, Springer, Berlin...spectrum, algebraic immu- nity MSC 2010: 06E30, 94C10, 94A60, 11T71, 05E99 || Communicated by: Carlo Blundo 1 Introduction Let F 2 be the prime eld of...7]. For the reader’s convenience, we recall some basic notions below. Any f ∈ Bn can be expressed in algebraic normal form (ANF) as f(x 1 , x 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Won Sang, E-mail: mimip4444@hanmail.net; Hounkonnou, Mahouton Norbert, E-mail: norbert.hounkonnou@cipma.uac.bj; Arjika, Sama, E-mail: rjksama2008@gmail.com
In this paper, we propose a full characterization of a generalized q-deformed Tamm-Dancoff oscillator algebra and investigate its main mathematical and physical properties. Specifically, we study its various representations and find the condition satisfied by the deformed q-number to define the algebra structure function. Particular Fock spaces involving finite and infinite dimensions are examined. A deformed calculus is performed as well as a coordinate realization for this algebra. A relevant example is exhibited. Associated coherent states are constructed. Finally, some thermodynamics aspects are computed and discussed.
NASA Astrophysics Data System (ADS)
Schertzer, D. J. M.; Tchiguirinskaia, I.
2016-12-01
Multifractal fields, whose definition is rather independent of their domain dimension, have opened a new approach of geophysics enabling to explore its spatial extension that is of prime importance as underlined by the expression "spatial chaos". However multifractals have been until recently restricted to be scalar valued, i.e. to one-dimensional codomains. This has prevented to deal with the key question of complex component interactions and their non trivial symmetries. We first emphasize that the Lie algebra of stochastic generators of cascade processes enables us to generalize multifractals to arbitrarily large codomains, e.g. flows of vector fields on large dimensional manifolds. In particular, we have recently investigated the neat example of stable Levy generators on Clifford algebra that have a number of seductive properties, e.g. universal statistical and robust algebra properties, both defining the basic symmetries of the corresponding fields (Schertzer and Tchiguirinskaia, 2015). These properties provide a convenient multifractal framework to study both the symmetries of the fields and how they stochastically break the symmetries of the underlying equations due to boundary conditions, large scale rotations and forcings. These developments should help us to answer to challenging questions such as the climatology of (exo-) planets based on first principles (Pierrehumbert, 2013), to fully address the question of the limitations of quasi- geostrophic turbulence (Schertzer et al., 2012) and to explore the peculiar phenomenology of turbulent dynamics of the atmosphere or oceans that is neither two- or three-dimensional. Pierrehumbert, R.T., 2013. Strange news from other stars. Nature Geoscience, 6(2), pp.8183. Schertzer, D. et al., 2012. Quasi-geostrophic turbulence and generalized scale invariance, a theoretical reply. Atmos. Chem. Phys., 12, pp.327336. Schertzer, D. & Tchiguirinskaia, I., 2015. Multifractal vector fields and stochastic Clifford algebra. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(12), p.123127
Dual number algebra method for Green's function derivatives in 3D magneto-electro-elasticity
NASA Astrophysics Data System (ADS)
Dziatkiewicz, Grzegorz
2018-01-01
The Green functions are the basic elements of the boundary element method. To obtain the boundary integral formulation the Green function and its derivative should be known for the considered differential operator. Today the interesting group of materials are electronic composites. The special case of the electronic composite is the magnetoelectroelastic continuum. The mentioned continuum is a model of the piezoelectric-piezomagnetic composites. The anisotropy of their physical properties makes the problem of Green's function determination very difficult. For that reason Green's functions for the magnetoelectroelastic continuum are not known in the closed form and numerical methods should be applied to determine such Green's functions. These means that the problem of the accurate and simply determination of Green's function derivatives is even harder. Therefore in the present work the dual number algebra method is applied to calculate numerically the derivatives of 3D Green's functions for the magnetoelectroelastic materials. The introduced method is independent on the step size and it can be treated as a special case of the automatic differentiation method. Therefore, the dual number algebra method can be applied as a tool for checking the accuracy of the well-known finite difference schemes.
NASA Astrophysics Data System (ADS)
Gainutdinov, A. M.; Read, N.; Saleur, H.
2016-01-01
We develop in this paper the principles of an associative algebraic approach to bulk logarithmic conformal field theories (LCFTs). We concentrate on the closed {gl(1|1)} spin-chain and its continuum limit—the {c=-2} symplectic fermions theory—and rely on two technical companion papers, Gainutdinov et al. (Nucl Phys B 871:245-288, 2013) and Gainutdinov et al. (Nucl Phys B 871:289-329, 2013). Our main result is that the algebra of local Hamiltonians, the Jones-Temperley-Lieb algebra JTL N , goes over in the continuum limit to a bigger algebra than {V}, the product of the left and right Virasoro algebras. This algebra, {S}—which we call interchiral, mixes the left and right moving sectors, and is generated, in the symplectic fermions case, by the additional field {S(z,bar{z})≡ S_{αβ} ψ^α(z)bar{ψ}^β(bar{z})}, with a symmetric form {S_{αβ}} and conformal weights (1,1). We discuss in detail how the space of states of the LCFT (technically, a Krein space) decomposes onto representations of this algebra, and how this decomposition is related with properties of the finite spin-chain. We show that there is a complete correspondence between algebraic properties of finite periodic spin chains and the continuum limit. An important technical aspect of our analysis involves the fundamental new observation that the action of JTL N in the {gl(1|1)} spin chain is in fact isomorphic to an enveloping algebra of a certain Lie algebra, itself a non semi-simple version of {sp_{N-2}}. The semi-simple part of JTL N is represented by {U sp_{N-2}}, providing a beautiful example of a classical Howe duality, for which we have a non semi-simple version in the full JTL N image represented in the spin-chain. On the continuum side, simple modules over {S} are identified with "fundamental" representations of {sp_∞}.
Transfer Functions Via Laplace- And Fourier-Borel Transforms
NASA Technical Reports Server (NTRS)
Can, Sumer; Unal, Aynur
1991-01-01
Approach to solution of nonlinear ordinary differential equations involves transfer functions based on recently-introduced Laplace-Borel and Fourier-Borel transforms. Main theorem gives transform of response of nonlinear system as Cauchy product of transfer function and transform of input function of system, together with memory effects. Used to determine responses of electrical circuits containing variable inductances or resistances. Also possibility of doing all noncommutative algebra on computers in such symbolic programming languages as Macsyma, Reduce, PL1, or Lisp. Process of solution organized and possibly simplified by algebraic manipulations reducing integrals in solutions to known or tabulated forms.
Descriptions of Free and Freeware Software in the Mathematics Teaching
NASA Astrophysics Data System (ADS)
Antunes de Macedo, Josue; Neves de Almeida, Samara; Voelzke, Marcos Rincon
2016-05-01
This paper presents the analysis and the cataloging of free and freeware mathematical software available on the internet, a brief explanation of them, and types of licenses for use in teaching and learning. The methodology is based on the qualitative research. Among the different types of software found, it stands out in algebra, the Winmat, that works with linear algebra, matrices and linear systems. In geometry, the GeoGebra, which can be used in the study of functions, plan and spatial geometry, algebra and calculus. For graphing, can quote the Graph and Graphequation. With Graphmatica software, it is possible to build various graphs of mathematical equations on the same screen, representing cartesian equations, inequalities, parametric among other functions. The Winplot allows the user to build graphics in two and three dimensions functions and mathematical equations. Thus, this work aims to present the teachers some free math software able to be used in the classroom.
Luenser, Arne; Kussmann, Jörg; Ochsenfeld, Christian
2016-09-28
We present a (sub)linear-scaling algorithm to determine indirect nuclear spin-spin coupling constants at the Hartree-Fock and Kohn-Sham density functional levels of theory. Employing efficient integral algorithms and sparse algebra routines, an overall (sub)linear scaling behavior can be obtained for systems with a non-vanishing HOMO-LUMO gap. Calculations on systems with over 1000 atoms and 20 000 basis functions illustrate the performance and accuracy of our reference implementation. Specifically, we demonstrate that linear algebra dominates the runtime of conventional algorithms for 10 000 basis functions and above. Attainable speedups of our method exceed 6 × in total runtime and 10 × in the linear algebra steps for the tested systems. Furthermore, a convergence study of spin-spin couplings of an aminopyrazole peptide upon inclusion of the water environment is presented: using the new method it is shown that large solvent spheres are necessary to converge spin-spin coupling values.
Using CAS to Solve Classical Mathematics Problems
ERIC Educational Resources Information Center
Burke, Maurice J.; Burroughs, Elizabeth A.
2009-01-01
Historically, calculus has displaced many algebraic methods for solving classical problems. This article illustrates an algebraic method for finding the zeros of polynomial functions that is closely related to Newton's method (devised in 1669, published in 1711), which is encountered in calculus. By exploring this problem, precalculus students…
Using Visualization to Generalize on Quadratic Patterning Tasks
ERIC Educational Resources Information Center
Kirwan, J. Vince
2017-01-01
Patterning tasks engage students in a core aspect of algebraic thinking-generalization (Kaput 2008). The National Council of Teachers of Mathematics (NCTM) Algebra Standard states that students in grades 9-12 should "generalize patterns using explicitly defined and recursively defined functions" (NCTM 2000, p. 296). Although educators…
Algebra, Home Mortgages, and Recessions
ERIC Educational Resources Information Center
Mariner, Jean A. Miller; Miller, Richard A.
2009-01-01
The current financial crisis and recession in the United States present an opportunity to discuss relevant applications of some topics in typical first-and second-year algebra and precalculus courses. Real-world applications of percent change, exponential functions, and sums of finite geometric sequences can help students understand the problems…
Connections between Kac-Moody algebras and M-theory
NASA Astrophysics Data System (ADS)
Cook, Paul P.
2007-11-01
We investigate some of the motivations and consequences of the conjecture that the Kac-Moody algebra E11 is the symmetry algebra of M-theory, and we develop methods to aid the further investigation of this idea. The definitions required to work with abstract root systems of Lie algebras are given in review leading up to the definition of a Kac-Moody algebra. The motivations for the E11 conjecture are presented and the nonlinear realisation of gravity relevant to the conjecture is described. We give a beginner's guide to producing the algebras of E11, relevant to M-theory, and K27, relevant to the bosonic string theory, along with their l1 representations are constructed. Reference tables of low level roots are produced for both the adjoint and l1 representations of these algebras. In addition a particular group element, having a generic form for all G+++ algebras, is shown to encode all the half-BPS brane solutions of the maximally oxidised supergravities. Special analysis is given to the role of space-time signature in the context of this group element and subsequent to this analysis spacelike brane solutions are derived from the same solution generating group element. Finally the appearance of U-duality charge multiplets from E11 is reviewed. General formulae for finding the content of arbitrary brane charge multiplets are given and the content of the particle and string multiplets in dimensions 4,5,6,7 and 8 is shown to be contained in the l1 representation of E11.
NASA Astrophysics Data System (ADS)
Krsolarlak, Ilona
We analyze a certain class of von Neumann algebras generated by selfadjoint elements , for satisfying the general commutation relations:
Laplace-Runge-Lenz vector for arbitrary spin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikitin, A. G.
2013-12-15
A countable set of superintegrable quantum mechanical systems is presented which admit the dynamical symmetry with respect to algebra so(4). This algebra is generated by the Laplace-Runge-Lenz vector generalized to the case of arbitrary spin. The presented systems describe neutral particles with non-trivial multipole momenta. Their spectra can be found algebraically like in the case of hydrogen atom. Solutions for the systems with spins 1/2 and 1 are presented explicitly, solutions for spin 3/2 can be expressed via solutions of an ordinary differential equation of first order. A more extended version of this paper including detailed calculations is published asmore » an e-print arXiv:1308.4279.« less
Strings on complex multiplication tori and rational conformal field theory with matrix level
NASA Astrophysics Data System (ADS)
Nassar, Ali
Conformal invariance in two dimensions is a powerful symmetry. Two-dimensional quantum field theories which enjoy conformal invariance, i.e., conformal field theories (CFTs) are of great interest in both physics and mathematics. CFTs describe the dynamics of the world sheet in string theory where conformal symmetry arises as a remnant of reparametrization invariance of the world-sheet coordinates. In statistical mechanics, CFTs describe the critical points of second order phase transitions. On the mathematics side, conformal symmetry gives rise to infinite dimensional chiral algebras like the Virasoro algebra or extensions thereof. This gave rise to the study of vertex operator algebras (VOAs) which is an interesting branch of mathematics. Rational conformal theories are a simple class of CFTs characterized by a finite number of representations of an underlying chiral algebra. The chiral algebra leads to a set of Ward identities which gives a complete non-perturbative solution of the RCFT. Identifying the chiral algebra of an RCFT is a very important step in solving it. Particularly interesting RCFTs are the ones which arise from the compactification of string theory as sigma-models on a target manifold M. At generic values of the geometric moduli of M, the corresponding CFT is not rational. Rationality can arise at particular values of the moduli of M. At these special values of the moduli, the chiral algebra is extended. This interplay between the geometric picture and the algebraic description encoded in the chiral algebra makes CFTs/RCFTs a perfect link between physics and mathematics. It is always useful to find a geometric interpretation of a chiral algebra in terms of a sigma-model on some target manifold M. Then the next step is to figure out the conditions on the geometric moduli of M which gives a RCFT. In this thesis, we limit ourselves to the simplest class of string compactifications, i.e., strings on tori. As Gukov and Vafa proved, rationality selects the complex-multiplication tori. On the other hand, the study of the matrix-level affine algebra Um,K is motivated by conformal field theory and the fractional quantum Hall effect. Gannon completed the classification of U m,K modular-invariant partition functions. Here we connect the algebra U2,K to strings on 2-tori describable by rational conformal field theories. We point out that the rational conformal field theories describing strings on complex-multiplication tori have characters and partition functions identical to those of the matrix-level algebra Um,K. This connection makes obvious that the rational theories are dense in the moduli space of strings on Tm, and may prove useful in other ways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Govil, Karan; Gunaydin, Murat
Massless conformal scalar field in d = 4 corresponds to the minimal unitary representation (minrep) of the conformal group SU(2, 2) which admits a one-parameter family of deformations that describe massless fields of arbitrary helicity. The minrep and its deformations were obtained by quantization of the nonlinear realization of SU(2, 2) as a quasiconformal group in arXiv:0908.3624. We show that the generators of SU(2,2) for these unitary irreducible representations can be written as bilinears of deformed twistorial oscillators which transform nonlinearly under the Lorentz group and apply them to define and study higher spin algebras and superalgebras in AdS 5.more » The higher spin (HS) algebra of Fradkin-Vasiliev type in AdS 5 is simply the enveloping algebra of SU(2, 2) quotiented by a two-sided ideal (Joseph ideal) which annihilates the minrep. We show that the Joseph ideal vanishes identically for the quasiconformal realization of the minrep and its enveloping algebra leads directly to the HS algebra in AdS 5. Furthermore, the enveloping algebras of the deformations of the minrep define a one parameter family of HS algebras in AdS 5 for which certain 4d covariant deformations of the Joseph ideal vanish identically. These results extend to superconformal algebras SU(2, 2|N) and we find a one parameter family of HS superalgebras as enveloping algebras of the minimal unitary supermultiplet and its deformations. Our results suggest the existence of a family of (supersymmetric) HS theories in AdS 5 which are dual to free (super)conformal field theories (CFTs) or to interacting but integrable (supersymmetric) CFTs in 4d. We also discuss the corresponding picture in HS algebras in AdS 4 where the corresponding 3d conformal group Sp(4,R) admits only two massless representations (minreps), namely the scalar and spinor singletons.« less
Reusable Software Component Retrieval via Normalized Algebraic Specifications
1991-12-01
outputs. In fact, this method of query is simpler for matching since it relieves the system from the burden of generating a test set. Eichmann [Eich9l...September 1991. [Eich9l] Eichmann , David A., "Selecting Reusable Components Using Algebraic Specifications", Proceedings of the Second International...Technology Atlanta, Georgia 30332-0800 12. Dr. David Eichmann 1 Department of Statistics and Computer Science Knapp Hall West Virginia University Morgantown, West Virginia 26506 226
An Algebraic Approach to Inference in Complex Networked Structures
2015-07-09
44], [45],[46] where the shift is the elementary non-trivial filter that generates, under an appropriate notion of shift invariance, all linear ... elementary filter, and its output is a graph signal with the value at vertex n of the graph given approximately by a weighted linear combination of...AFRL-AFOSR-VA-TR-2015-0265 An Algebraic Approach to Inference in Complex Networked Structures Jose Moura CARNEGIE MELLON UNIVERSITY Final Report 07
Caustics, counting maps and semi-classical asymptotics
NASA Astrophysics Data System (ADS)
Ercolani, N. M.
2011-02-01
This paper develops a deeper understanding of the structure and combinatorial significance of the partition function for Hermitian random matrices. The coefficients of the large N expansion of the logarithm of this partition function, also known as the genus expansion (and its derivatives), are generating functions for a variety of graphical enumeration problems. The main results are to prove that these generating functions are, in fact, specific rational functions of a distinguished irrational (algebraic) function, z0(t). This distinguished function is itself the generating function for the Catalan numbers (or generalized Catalan numbers, depending on the choice of weight of the parameter t). It is also a solution of the inviscid Burgers equation for certain initial data. The shock formation, or caustic, of the Burgers characteristic solution is directly related to the poles of the rational forms of the generating functions. As an intriguing application, one gains new insights into the relation between certain derivatives of the genus expansion, in a double-scaling limit, and the asymptotic expansion of the first Painlevé transcendent. This provides a precise expression of the Painlevé asymptotic coefficients directly in terms of the coefficients of the partial fractions expansion of the rational form of the generating functions established in this paper. Moreover, these insights point towards a more general program relating the first Painlevé hierarchy to the higher order structure of the double-scaling limit through the specific rational structure of generating functions in the genus expansion. The paper closes with a discussion of the relation of this work to recent developments in understanding the asymptotics of graphical enumeration. As a by-product, these results also yield new information about the asymptotics of recurrence coefficients for orthogonal polynomials with respect to exponential weights, the calculation of correlation functions for certain tied random walks on a 1D lattice, and the large time asymptotics of random matrix partition functions.
Racing against Time: Using Technology To Explore Distance, Rate, and Time.
ERIC Educational Resources Information Center
Essex, N. Kathryn; Lambdin, Diana V.; McGraw, Rebecca H.
2002-01-01
Investigates ways to analyze change in various contexts. Focuses on computer technology providing contexts for children's investigations of patterns of change and helping to develop foundational ideas of algebra and calculus. Discusses relationships between patterns of change, fundamental algebraic notions as linear and nonlinear functions, and…
The Transformation App Redux: The Notion of Linearity
ERIC Educational Resources Information Center
Domenick, Anthony
2015-01-01
The notion of linearity is perhaps the most fundamental idea in algebraic thinking. It sets the transition to functions and culminates with the instantaneous rate of change in calculus. Despite its simplicity, this concept poses complexities to a considerable number of first semester college algebra students. The purpose of this observational…
Optical linear algebra processors: noise and error-source modeling.
Casasent, D; Ghosh, A
1985-06-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
Optical linear algebra processors - Noise and error-source modeling
NASA Technical Reports Server (NTRS)
Casasent, D.; Ghosh, A.
1985-01-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
Using Computer Symbolic Algebra to Solve Differential Equations.
ERIC Educational Resources Information Center
Mathews, John H.
1989-01-01
This article illustrates that mathematical theory can be incorporated into the process to solve differential equations by a computer algebra system, muMATH. After an introduction to functions of muMATH, several short programs for enhancing the capabilities of the system are discussed. Listed are six references. (YP)
Yu, Zhaoyuan; Yuan, Linwang; Luo, Wen; Feng, Linyao; Lv, Guonian
2015-01-01
Passive infrared (PIR) motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA)-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks. PMID:26729123
Yu, Zhaoyuan; Yuan, Linwang; Luo, Wen; Feng, Linyao; Lv, Guonian
2015-12-30
Passive infrared (PIR) motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA)-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks.
NASA Astrophysics Data System (ADS)
Nurhayati, D. M.; Herman, T.; Suhendra, S.
2017-09-01
This study aims to determine the difficulties of algebraic thinking ability of students in one of secondary school on quadrilateral subject and to describe Math-Talk Learning Community as the alternative way that can be done to overcome the difficulties of the students’ algebraic thinking ability. Research conducted by using quantitative approach with descriptive method. The population in this research was all students of that school and twenty three students as the sample that was chosen by purposive sampling technique. Data of algebraic thinking were collected through essay test. The results showed the percentage of achievement of students’ algebraic thinking’s indicators on three aspects: a) algebra as generalized arithmetic with the indicators (conceptually based computational strategies and estimation); b) algebra as the language of mathematics (meaning of variables, variable expressions and meaning of solution); c) algebra as a tool for functions and mathematical modelling (representing mathematical ideas using equations, tables, or words and generalizing patterns and rules in real-world contexts) is still low. It is predicted that because the secondary school students was not familiar with the abstract problem and they are still at a semi-concrete stage where the stage of cognitive development is between concrete and abstract. Based on the percentage achievement of each indicators, it can be concluded that the level of achievement of student’s mathematical communication using conventional learning is still low, so students’ algebraic thinking ability need to be improved.
NASA Astrophysics Data System (ADS)
Couvreur, A.
2009-05-01
The theory of algebraic-geometric codes has been developed in the beginning of the 80's after a paper of V.D. Goppa. Given a smooth projective algebraic curve X over a finite field, there are two different constructions of error-correcting codes. The first one, called "functional", uses some rational functions on X and the second one, called "differential", involves some rational 1-forms on this curve. Hundreds of papers are devoted to the study of such codes. In addition, a generalization of the functional construction for algebraic varieties of arbitrary dimension is given by Y. Manin in an article of 1984. A few papers about such codes has been published, but nothing has been done concerning a generalization of the differential construction to the higher-dimensional case. In this thesis, we propose a differential construction of codes on algebraic surfaces. Afterwards, we study the properties of these codes and particularly their relations with functional codes. A pretty surprising fact is that a main difference with the case of curves appears. Indeed, if in the case of curves, a differential code is always the orthogonal of a functional one, this assertion generally fails for surfaces. Last observation motivates the study of codes which are the orthogonal of some functional code on a surface. Therefore, we prove that, under some condition on the surface, these codes can be realized as sums of differential codes. Moreover, we show that some answers to some open problems "a la Bertini" could give very interesting informations on the parameters of these codes.
Current algebra, statistical mechanics and quantum models
NASA Astrophysics Data System (ADS)
Vilela Mendes, R.
2017-11-01
Results obtained in the past for free boson systems at zero and nonzero temperatures are revisited to clarify the physical meaning of current algebra reducible functionals which are associated to systems with density fluctuations, leading to observable effects on phase transitions. To use current algebra as a tool for the formulation of quantum statistical mechanics amounts to the construction of unitary representations of diffeomorphism groups. Two mathematical equivalent procedures exist for this purpose. One searches for quasi-invariant measures on configuration spaces, the other for a cyclic vector in Hilbert space. Here, one argues that the second approach is closer to the physical intuition when modelling complex systems. An example of application of the current algebra methodology to the pairing phenomenon in two-dimensional fermion systems is discussed.
Thought beyond language: neural dissociation of algebra and natural language.
Monti, Martin M; Parsons, Lawrence M; Osherson, Daniel N
2012-08-01
A central question in cognitive science is whether natural language provides combinatorial operations that are essential to diverse domains of thought. In the study reported here, we addressed this issue by examining the role of linguistic mechanisms in forging the hierarchical structures of algebra. In a 3-T functional MRI experiment, we showed that processing of the syntax-like operations of algebra does not rely on the neural mechanisms of natural language. Our findings indicate that processing the syntax of language elicits the known substrate of linguistic competence, whereas algebraic operations recruit bilateral parietal brain regions previously implicated in the representation of magnitude. This double dissociation argues against the view that language provides the structure of thought across all cognitive domains.
ERIC Educational Resources Information Center
Alexander, John W., Jr.; Rosenberg, Nancy S.
This document consists of two modules. The first of these views applications of algebra and elementary calculus to curve fitting. The user is provided with information on how to: 1) construct scatter diagrams; 2) choose an appropriate function to fit specific data; 3) understand the underlying theory of least squares; 4) use a computer program to…
Symmetries and integrability of a fourth-order Euler-Bernoulli beam equation
NASA Astrophysics Data System (ADS)
Bokhari, Ashfaque H.; Mahomed, F. M.; Zaman, F. D.
2010-05-01
The complete symmetry group classification of the fourth-order Euler-Bernoulli ordinary differential equation, where the elastic modulus and the area moment of inertia are constants and the applied load is a function of the normal displacement, is obtained. We perform the Lie and Noether symmetry analysis of this problem. In the Lie analysis, the principal Lie algebra which is one dimensional extends in four cases, viz. the linear, exponential, general power law, and a negative fractional power law. It is further shown that two cases arise in the Noether classification with respect to the standard Lagrangian. That is, the linear case for which the Noether algebra dimension is one less than the Lie algebra dimension as well as the negative fractional power law. In the latter case the Noether algebra is three dimensional and is isomorphic to the Lie algebra which is sl(2,R). This exceptional case, although admitting the nonsolvable algebra sl(2,R), remarkably allows for a two-parameter family of exact solutions via the Noether integrals. The Lie reduction gives a second-order ordinary differential equation which has nonlocal symmetry.
Generation of Custom DSP Transform IP Cores: Case Study Walsh-Hadamard Transform
2002-09-01
mathematics and hardware design What I know: Finite state machine Pipelining Systolic array … What I know: Linear algebra Digital signal processing...state machine Pipelining Systolic array … What I know: Linear algebra Digital signal processing Adaptive filter theory … A math guy A hardware engineer...Synthesis Technology Libary Bit-width (8) HF factor (1,2,3,6) VF factor (1,2,4, ... 32) Xilinx FPGA Place&Route Xilinx FPGA Place&Route Performance
Differential calculus on quantized simple lie groups
NASA Astrophysics Data System (ADS)
Jurčo, Branislav
1991-07-01
Differential calculi, generalizations of Woronowicz's four-dimensional calculus on SU q (2), are introduced for quantized classical simple Lie groups in a constructive way. For this purpose, the approach of Faddeev and his collaborators to quantum groups was used. An equivalence of Woronowicz's enveloping algebra generated by the dual space to the left-invariant differential forms and the corresponding quantized universal enveloping algebra, is obtained for our differential calculi. Real forms for q ∈ ℝ are also discussed.
Towards Cohomology of Renormalization: Bigrading the Combinatorial Hopf Algebra of Rooted Trees
NASA Astrophysics Data System (ADS)
Broadhurst, D. J.; Kreimer, D.
The renormalization of quantum field theory twists the antipode of a noncocommutative Hopf algebra of rooted trees, decorated by an infinite set of primitive divergences. The Hopf algebra of undecorated rooted trees, ℌR, generated by a single primitive divergence, solves a universal problem in Hochschild cohomology. It has two nontrivial closed Hopf subalgebras: the cocommutative subalgebra ℌladder of pure ladder diagrams and the Connes-Moscovici noncocommutative subalgebra ℌCM of noncommutative geometry. These three Hopf algebras admit a bigrading by n, the number of nodes, and an index k that specifies the degree of primitivity. In each case, we use iterations of the relevant coproduct to compute the dimensions of subspaces with modest values of n and k and infer a simple generating procedure for the remainder. The results for ℌladder are familiar from the theory of partitions, while those for ℌCM involve novel transforms of partitions. Most beautiful is the bigrading of ℌR, the largest of the three. Thanks to Sloane's superseeker, we discovered that it saturates all possible inequalities. We prove this by using the universal Hochschild-closed one-cocycle B+, which plugs one set of divergences into another, and by generalizing the concept of natural growth beyond that entailed by the Connes-Moscovici case. We emphasize the yet greater challenge of handling the infinite set of decorations of realistic quantum field theory.
NASA Astrophysics Data System (ADS)
Dias, David P.
2008-08-01
Given a C^*-dynamical system (A, G, α) one defines a homomorphism, called the Chern-Connes character, that take an element in K_0(A) oplus K_1(A), the K-theory groups of the C^*-algebra A, and maps it into H_{{R}}^*(G), the real deRham cohomology ring of G. We explictly compute this homomorphism for the examples (overline{Psi_{cl}^0(S^1)}, S^1, α) and (overline{Psi_{cl}^0(S^2)}, SO(3), α), where overline{Psi_{cl}^0(M)} denotes the C^*-algebra generated by the classical pseudodifferential operators of zero order in the manifold M and α the action of conjugation by the regular representation (translations).
LETTER TO THE EDITOR: Landau levels on the hyperbolic plane
NASA Astrophysics Data System (ADS)
Fakhri, H.; Shariati, M.
2004-11-01
The quantum states of a spinless charged particle on a hyperbolic plane in the presence of a uniform magnetic field with a generalized quantization condition are proved to be the bases of the irreducible Hilbert representation spaces of the Lie algebra u(1, 1). The dynamical symmetry group U(1, 1) with the explicit form of the Lie algebra generators is extracted. It is also shown that the energy has an infinite-fold degeneracy in each of the representation spaces which are allocated to the different values of the magnetic field strength. Based on the simultaneous shift of two parameters, it is also noted that the quantum states realize the representations of Lie algebra u(2) by shifting the magnetic field strength.
Algebraic, geometric, and stochastic aspects of genetic operators
NASA Technical Reports Server (NTRS)
Foo, N. Y.; Bosworth, J. L.
1972-01-01
Genetic algorithms for function optimization employ genetic operators patterned after those observed in search strategies employed in natural adaptation. Two of these operators, crossover and inversion, are interpreted in terms of their algebraic and geometric properties. Stochastic models of the operators are developed which are employed in Monte Carlo simulations of their behavior.
High Level Technology in a Low Level Mathematics Course.
ERIC Educational Resources Information Center
Schultz, James E.; Noguera, Norma
2000-01-01
Describes a teaching experiment in which spreadsheets and computer algebra systems were used to teach a low-level college consumer mathematics course. Students were successful in using different types of functions to solve a variety of problems drawn from real-world situations. Provides an existence proof that computer algebra systems can assist…
Algebraic grid adaptation method using non-uniform rational B-spline surface modeling
NASA Technical Reports Server (NTRS)
Yang, Jiann-Cherng; Soni, B. K.
1992-01-01
An algebraic adaptive grid system based on equidistribution law and utilized by the Non-Uniform Rational B-Spline (NURBS) surface for redistribution is presented. A weight function, utilizing a properly weighted boolean sum of various flow field characteristics is developed. Computational examples are presented to demonstrate the success of this technique.
ERIC Educational Resources Information Center
What Works Clearinghouse, 2011
2011-01-01
The "University of Chicago School Mathematics Project ("UCSMP") 6-12 Curriculum" is a series of yearlong courses--(1) Transition Mathematics; (2) Algebra; (3) Geometry; (4) Advanced Algebra; (5) Functions, Statistics, and Trigonometry; and (6) Precalculus and Discrete Mathematics--emphasizing problem solving, real-world applications, and the use…
ERIC Educational Resources Information Center
Williams-Candek, Maryellen
2016-01-01
How better to begin the study of linear equations in an algebra class than to determine what students already know about the subject? A seventh-grade algebra class in a suburban school undertook a project early in the school year that was completed before they began studying linear relations and functions. The project, which might have been…
Bicycles, Birds, Bats and Balloons: New Applications for Algebra Classes.
ERIC Educational Resources Information Center
Yoshiwara, Bruce; Yoshiwara, Kathy
This collection of activities is intended to enhance the teaching of college algebra through the use of modeling. The problems use real data and involve the representation and interpretation of the data. The concepts addressed include rates of change, linear and quadratic regression, and functions. The collection consists of eight problems, four…
Graphs in Kinematics--A Need for Adherence to Principles of Algebraic Functions
ERIC Educational Resources Information Center
Sokolowski, Andrzej
2017-01-01
Graphs in physics are central to the analysis of phenomena and to learning about a system's behavior. The ways students handle graphs are frequently researched. Students' misconceptions are highlighted, and methods of improvement suggested. While kinematics graphs are to represent a real motion, they are also algebraic entities that must satisfy…
A Third Grader's Way of Thinking about Linear Function Tables
ERIC Educational Resources Information Center
Martinez, Mara; Brizuela, Barbara M.
2006-01-01
This paper is inscribed within the research effort to produce evidence regarding primary school students' learning of algebra. Given the results obtained so far in the research community, we are convinced that young elementary school students can successfully learn algebra. Moreover, children this young can make use of different representational…
Prospective Middle Grade Mathematics Teachers' Knowledge of Algebra for Teaching
ERIC Educational Resources Information Center
Huang, Rongjin; Kulm, Gerald
2012-01-01
This study examined prospective middle grade mathematics teachers' knowledge of algebra for teaching with a focus on knowledge for teaching the concept of function. 115 prospective teachers from an interdisciplinary program for mathematics and science middle teacher preparation at a large public university in the USA participated in a survey. It…
Focus in High School Mathematics: Reasoning and Sense Making in Algebra
ERIC Educational Resources Information Center
Graham, Karen; Cuoco, Albert; Zimmermann, Gwendolyn
2010-01-01
This book examines the five key elements (meaningful use of symbols, mindful manipulation, reasoned solving, connection algebra with geometry, and linking expressions and functions) identified in "Focus in High School Mathematics: Reasoning and Sense Making" in more detail and elaborates on the associated reasoning habits. This volume is one of a…
Tasks That Promote Functional Reasoning in Early Elementary School Students
ERIC Educational Resources Information Center
Payne, Nancy Tilley
2012-01-01
Algebra is often described as the gateway to higher mathematics (Carpenter, Franke, & Levi, 2003; Kaput, 2008; Kaput & Blanton, 2001; Mason, 2008). Unfortunately, many students do not navigate this gateway successfully. Kaput (2008) and Mason (2008) suggested that this is due in part to the abrupt switch from arithmetic to algebra that…
Balance point characterization of interstitial fluid volume regulation.
Dongaonkar, R M; Laine, G A; Stewart, R H; Quick, C M
2009-07-01
The individual processes involved in interstitial fluid volume and protein regulation (microvascular filtration, lymphatic return, and interstitial storage) are relatively simple, yet their interaction is exceedingly complex. There is a notable lack of a first-order, algebraic formula that relates interstitial fluid pressure and protein to critical parameters commonly used to characterize the movement of interstitial fluid and protein. Therefore, the purpose of the present study is to develop a simple, transparent, and general algebraic approach that predicts interstitial fluid pressure (P(i)) and protein concentrations (C(i)) that takes into consideration all three processes. Eight standard equations characterizing fluid and protein flux were solved simultaneously to yield algebraic equations for P(i) and C(i) as functions of parameters characterizing microvascular, interstitial, and lymphatic function. Equilibrium values of P(i) and C(i) arise as balance points from the graphical intersection of transmicrovascular and lymph flows (analogous to Guyton's classical cardiac output-venous return curves). This approach goes beyond describing interstitial fluid balance in terms of conservation of mass by introducing the concept of inflow and outflow resistances. Algebraic solutions demonstrate that P(i) and C(i) result from a ratio of the microvascular filtration coefficient (1/inflow resistance) and effective lymphatic resistance (outflow resistance), and P(i) is unaffected by interstitial compliance. These simple algebraic solutions predict P(i) and C(i) that are consistent with reported measurements. The present work therefore presents a simple, transparent, and general balance point characterization of interstitial fluid balance resulting from the interaction of microvascular, interstitial, and lymphatic function.
XLWrap - Querying and Integrating Arbitrary Spreadsheets with SPARQL
NASA Astrophysics Data System (ADS)
Langegger, Andreas; Wöß, Wolfram
In this paper a novel approach is presented for generating RDF graphs of arbitrary complexity from various spreadsheet layouts. Currently, none of the available spreadsheet-to-RDF wrappers supports cross tables and tables where data is not aligned in rows. Similar to RDF123, XLWrap is based on template graphs where fragments of triples can be mapped to specific cells of a spreadsheet. Additionally, it features a full expression algebra based on the syntax of OpenOffice Calc and various shift operations, which can be used to repeat similar mappings in order to wrap cross tables including multiple sheets and spreadsheet files. The set of available expression functions includes most of the native functions of OpenOffice Calc and can be easily extended by users of XLWrap.
Supersymmetric quantum spin chains and classical integrable systems
NASA Astrophysics Data System (ADS)
Tsuboi, Zengo; Zabrodin, Anton; Zotov, Andrei
2015-05-01
For integrable inhomogeneous supersymmetric spin chains (generalized graded magnets) constructed employing Y( gl( N| M))-invariant R-matrices in finite-dimensional representations we introduce the master T-operator which is a sort of generating function for the family of commuting quantum transfer matrices. Any eigenvalue of the master T-operator is the tau-function of the classical mKP hierarchy. It is a polynomial in the spectral parameter which is identified with the 0-th time of the hierarchy. This implies a remarkable relation between the quantum supersymmetric spin chains and classical many-body integrable systems of particles of the Ruijsenaars-Schneider type. As an outcome, we obtain a system of algebraic equations for the spectrum of the spin chain Hamiltonians.
Singular vectors for the WN algebras
NASA Astrophysics Data System (ADS)
Ridout, David; Siu, Steve; Wood, Simon
2018-03-01
In this paper, we use free field realisations of the A-type principal, or Casimir, WN algebras to derive explicit formulae for singular vectors in Fock modules. These singular vectors are constructed by applying screening operators to Fock module highest weight vectors. The action of the screening operators is then explicitly evaluated in terms of Jack symmetric functions and their skew analogues. The resulting formulae depend on sequences of pairs of integers that completely determine the Fock module as well as the Jack symmetric functions.
Which Q-analogue of the squeezed oscillator?
NASA Technical Reports Server (NTRS)
Solomon, Allan I.
1993-01-01
The noise (variance squared) of a component of the electromagnetic field - considered as a quantum oscillator - in the vacuum is equal to one half, in appropriate units (taking Planck's constant and the mass and frequency of the oscillator all equal to 1). A practical definition of a squeezed state is one for which the noise is less than the vacuum value - and the amount of squeezing is determined by the appropriate ratio. Thus the usual coherent (Glauber) states are not squeezed, as they produce the same variance as the vacuum. However, it is not difficult to define states analogous to coherent states which do have this noise-reducing effect. In fact, they are coherent states in the more general group sense but with respect to groups other than the Heisenberg-Weyl Group which defines the Glauber states. The original, conventional squeezed state in quantum optics is that associated with the group SU(1,1). Just as the annihilation operator a of a single photon mode (and its hermitian conjugate a, the creation operator) generates the Heisenberg Weyl algebra, so the pair-photon operator a(sup 2) and its conjugate generates the algebra of the group SU(1,1). Another viewpoint, more productive from the calculational stance, is to note that the automorphism group of the Heisenberg-Weyl algebra is SU(1,1). Needless to say, each of these viewpoints generalizes differently to the quantum group context. Both are discussed. The following topics are addressed: conventional coherent and squeezed states; eigenstate definitions; exponential definitions; algebra (group) definitions; automorphism group definition; example: signal-to-noise ratio; q-coherent and q-squeezed states; M and P q-bosons; eigenstate definitions; exponential definitions; algebra (q-group) definitions; and automorphism q-group definition.
Computational approach to compact Riemann surfaces
NASA Astrophysics Data System (ADS)
Frauendiener, Jörg; Klein, Christian
2017-01-01
A purely numerical approach to compact Riemann surfaces starting from plane algebraic curves is presented. The critical points of the algebraic curve are computed via a two-dimensional Newton iteration. The starting values for this iteration are obtained from the resultants with respect to both coordinates of the algebraic curve and a suitable pairing of their zeros. A set of generators of the fundamental group for the complement of these critical points in the complex plane is constructed from circles around these points and connecting lines obtained from a minimal spanning tree. The monodromies are computed by solving the defining equation of the algebraic curve on collocation points along these contours and by analytically continuing the roots. The collocation points are chosen to correspond to Chebychev collocation points for an ensuing Clenshaw-Curtis integration of the holomorphic differentials which gives the periods of the Riemann surface with spectral accuracy. At the singularities of the algebraic curve, Puiseux expansions computed by contour integration on the circles around the singularities are used to identify the holomorphic differentials. The Abel map is also computed with the Clenshaw-Curtis algorithm and contour integrals. As an application of the code, solutions to the Kadomtsev-Petviashvili equation are computed on non-hyperelliptic Riemann surfaces.
NASA Technical Reports Server (NTRS)
Smith, R. E.
1981-01-01
A grid generation technique called the two boundary technique is developed and applied for the solution of the three dimensional Navier-Stokes equations. The Navier-Stokes equations are transformed from a cartesian coordinate system to a computational coordinate system, and the grid generation technique provides the Jacobian matrix describing the transformation. The two boundary technique is based on algebraically defining two distinct boundaries of a flow domain and the distribution of the grid is achieved by applying functions to the uniform computational grid which redistribute the computational independent variables and consequently concentrate or disperse the grid points in the physical domain. The Navier-Stokes equations are solved using a MacCormack time-split technique. Grids and supersonic laminar flow solutions are obtained for a family of three dimensional corners and two spike-nosed bodies.
Tomographic PIV: particles versus blobs
NASA Astrophysics Data System (ADS)
Champagnat, Frédéric; Cornic, Philippe; Cheminet, Adam; Leclaire, Benjamin; Le Besnerais, Guy; Plyer, Aurélien
2014-08-01
We present an alternative approach to tomographic particle image velocimetry (tomo-PIV) that seeks to recover nearly single voxel particles rather than blobs of extended size. The baseline of our approach is a particle-based representation of image data. An appropriate discretization of this representation yields an original linear forward model with a weight matrix built with specific samples of the system’s point spread function (PSF). Such an approach requires only a few voxels to explain the image appearance, therefore it favors much more sparsely reconstructed volumes than classic tomo-PIV. The proposed forward model is general and flexible and can be embedded in a classical multiplicative algebraic reconstruction technique (MART) or a simultaneous multiplicative algebraic reconstruction technique (SMART) inversion procedure. We show, using synthetic PIV images and by way of a large exploration of the generating conditions and a variety of performance metrics, that the model leads to better results than the classical tomo-PIV approach, in particular in the case of seeding densities greater than 0.06 particles per pixel and of PSFs characterized by a standard deviation larger than 0.8 pixels.
Moyal deformations of Clifford gauge theories of gravity
NASA Astrophysics Data System (ADS)
Castro, Carlos
2016-12-01
A Moyal deformation of a Clifford Cl(3, 1) Gauge Theory of (Conformal) Gravity is performed for canonical noncommutativity (constant Θμν parameters). In the very special case when one imposes certain constraints on the fields, there are no first-order contributions in the Θμν parameters to the Moyal deformations of Clifford gauge theories of gravity. However, when one does not impose constraints on the fields, there are first-order contributions in Θμν to the Moyal deformations in variance with the previous results obtained by other authors and based on different gauge groups. Despite that the generators of U(2, 2),SO(4, 2),SO(2, 3) can be expressed in terms of the Clifford algebra generators this does not imply that these algebras are isomorphic to the Clifford algebra. Therefore one should not expect identical results to those obtained by other authors. In particular, there are Moyal deformations of the Einstein-Hilbert gravitational action with a cosmological constant to first-order in Θμν. Finally, we provide a mechanism which furnishes a plausible cancellation of the huge vacuum energy density.
Workflows in bioinformatics: meta-analysis and prototype implementation of a workflow generator.
Garcia Castro, Alexander; Thoraval, Samuel; Garcia, Leyla J; Ragan, Mark A
2005-04-07
Computational methods for problem solving need to interleave information access and algorithm execution in a problem-specific workflow. The structures of these workflows are defined by a scaffold of syntactic, semantic and algebraic objects capable of representing them. Despite the proliferation of GUIs (Graphic User Interfaces) in bioinformatics, only some of them provide workflow capabilities; surprisingly, no meta-analysis of workflow operators and components in bioinformatics has been reported. We present a set of syntactic components and algebraic operators capable of representing analytical workflows in bioinformatics. Iteration, recursion, the use of conditional statements, and management of suspend/resume tasks have traditionally been implemented on an ad hoc basis and hard-coded; by having these operators properly defined it is possible to use and parameterize them as generic re-usable components. To illustrate how these operations can be orchestrated, we present GPIPE, a prototype graphic pipeline generator for PISE that allows the definition of a pipeline, parameterization of its component methods, and storage of metadata in XML formats. This implementation goes beyond the macro capacities currently in PISE. As the entire analysis protocol is defined in XML, a complete bioinformatic experiment (linked sets of methods, parameters and results) can be reproduced or shared among users. http://if-web1.imb.uq.edu.au/Pise/5.a/gpipe.html (interactive), ftp://ftp.pasteur.fr/pub/GenSoft/unix/misc/Pise/ (download). From our meta-analysis we have identified syntactic structures and algebraic operators common to many workflows in bioinformatics. The workflow components and algebraic operators can be assimilated into re-usable software components. GPIPE, a prototype implementation of this framework, provides a GUI builder to facilitate the generation of workflows and integration of heterogeneous analytical tools.
Multifractal vector fields and stochastic Clifford algebra.
Schertzer, Daniel; Tchiguirinskaia, Ioulia
2015-12-01
In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.
ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra
2011-01-01
Background Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. Results We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Conclusions Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics. PMID:21774817
On superintegrable monopole systems
NASA Astrophysics Data System (ADS)
Fazlul Hoque, Md; Marquette, Ian; Zhang, Yao-Zhong
2018-02-01
Superintegrable systems with monopole interactions in flat and curved spaces have attracted much attention. For example, models in spaces with a Taub-NUT metric are well-known to admit the Kepler-type symmetries and provide non-trivial generalizations of the usual Kepler problems. In this paper, we overview new families of superintegrable Kepler, MIC-harmonic oscillator and deformed Kepler systems interacting with Yang-Coulomb monopoles in the flat and curved Taub-NUT spaces. We present their higher-order, algebraically independent integrals of motion via the direct and constructive approaches which prove the superintegrability of the models. The integrals form symmetry polynomial algebras of the systems with structure constants involving Casimir operators of certain Lie algebras. Such algebraic approaches provide a deeper understanding to the degeneracies of the energy spectra and connection between wave functions and differential equations and geometry.
Some applications of mathematics in theoretical physics - A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bora, Kalpana
2016-06-21
Mathematics is a very beautiful subject−very much an indispensible tool for Physics, more so for Theoretical Physics (by which we mean here mainly Field Theory and High Energy Physics). These branches of Physics are based on Quantum Mechanics and Special Theory of Relativity, and many mathematical concepts are used in them. In this work, we shall elucidate upon only some of them, like−differential geometry, infinite series, Mellin transforms, Fourier and integral transforms, special functions, calculus, complex algebra, topology, group theory, Riemannian geometry, functional analysis, linear algebra, operator algebra, etc. We shall also present, some physics issues, where these mathematical toolsmore » are used. It is not wrong to say that Mathematics is such a powerful tool, without which, there can not be any Physics theory!! A brief review on our research work is also presented.« less
Approximating smooth functions using algebraic-trigonometric polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharapudinov, Idris I
2011-01-14
The problem under consideration is that of approximating classes of smooth functions by algebraic-trigonometric polynomials of the form p{sub n}(t)+{tau}{sub m}(t), where p{sub n}(t) is an algebraic polynomial of degree n and {tau}{sub m}(t)=a{sub 0}+{Sigma}{sub k=1}{sup m}a{sub k} cos k{pi}t + b{sub k} sin k{pi}t is a trigonometric polynomial of order m. The precise order of approximation by such polynomials in the classes W{sup r}{sub {infinity}(}M) and an upper bound for similar approximations in the class W{sup r}{sub p}(M) with 4/3
Some applications of mathematics in theoretical physics - A review
NASA Astrophysics Data System (ADS)
Bora, Kalpana
2016-06-01
Mathematics is a very beautiful subject-very much an indispensible tool for Physics, more so for Theoretical Physics (by which we mean here mainly Field Theory and High Energy Physics). These branches of Physics are based on Quantum Mechanics and Special Theory of Relativity, and many mathematical concepts are used in them. In this work, we shall elucidate upon only some of them, like-differential geometry, infinite series, Mellin transforms, Fourier and integral transforms, special functions, calculus, complex algebra, topology, group theory, Riemannian geometry, functional analysis, linear algebra, operator algebra, etc. We shall also present, some physics issues, where these mathematical tools are used. It is not wrong to say that Mathematics is such a powerful tool, without which, there can not be any Physics theory!! A brief review on our research work is also presented.
Supersymmetric symplectic quantum mechanics
NASA Astrophysics Data System (ADS)
de Menezes, Miralvo B.; Fernandes, M. C. B.; Martins, Maria das Graças R.; Santana, A. E.; Vianna, J. D. M.
2018-02-01
Symplectic Quantum Mechanics SQM considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space HΓ to construct a unitary representation for the Galilei group. From this unitary representation the Schrödinger equation is rewritten in phase space variables and the Wigner function can be derived without the use of the Liouville-von Neumann equation. In this article we extend the methods of supersymmetric quantum mechanics SUSYQM to SQM. With the purpose of applications in quantum systems, the factorization method of the quantum mechanical formalism is then set within supersymmetric SQM. A hierarchy of simpler hamiltonians is generated leading to new computation tools for solving the eigenvalue problem in SQM. We illustrate the results by computing the states and spectra of the problem of a charged particle in a homogeneous magnetic field as well as the corresponding Wigner function.
Cut and join operator ring in tensor models
NASA Astrophysics Data System (ADS)
Itoyama, H.; Mironov, A.; Morozov, A.
2018-07-01
Recent advancement of rainbow tensor models based on their superintegrability (manifesting itself as the existence of an explicit expression for a generic Gaussian correlator) has allowed us to bypass the long-standing problem seen as the lack of eigenvalue/determinant representation needed to establish the KP/Toda integrability. As the mandatory next step, we discuss in this paper how to provide an adequate designation to each of the connected gauge-invariant operators that form a double coset, which is required to cleverly formulate a tree-algebra generalization of the Virasoro constraints. This problem goes beyond the enumeration problem per se tied to the permutation group, forcing us to introduce a few gauge fixing procedures to the coset. We point out that the permutation-based labeling, which has proven to be relevant for the Gaussian averages is, via interesting complexity, related to the one based on the keystone trees, whose algebra will provide the tensor counterpart of the Virasoro algebra for matrix models. Moreover, our simple analysis reveals the existence of nontrivial kernels and co-kernels for the cut operation and for the join operation respectively that prevent a straightforward construction of the non-perturbative RG-complete partition function and the identification of truly independent time variables. We demonstrate these problems by the simplest non-trivial Aristotelian RGB model with one complex rank-3 tensor, studying its ring of gauge-invariant operators, generated by the keystone triple with the help of four operations: addition, multiplication, cut and join.
Constraint algebra in Smolin's G →0 limit of 4D Euclidean gravity
NASA Astrophysics Data System (ADS)
Varadarajan, Madhavan
2018-05-01
Smolin's generally covariant GNewton→0 limit of 4d Euclidean gravity is a useful toy model for the study of the constraint algebra in loop quantum gravity (LQG). In particular, the commutator between its Hamiltonian constraints has a metric dependent structure function. While a prior LQG-like construction of nontrivial anomaly free constraint commutators for the model exists, that work suffers from two defects. First, Smolin's remarks on the inability of the quantum dynamics to generate propagation effects apply. Second, the construction only yields the action of a single Hamiltonian constraint together with the action of its commutator through a continuum limit of corresponding discrete approximants; the continuum limit of a product of two or more constraints does not exist. Here, we incorporate changes in the quantum dynamics through structural modifications in the choice of discrete approximants to the quantum Hamiltonian constraint. The new structure is motivated by that responsible for propagation in an LQG-like quantization of paramatrized field theory and significantly alters the space of physical states. We study the off shell constraint algebra of the model in the context of these structural changes and show that the continuum limit action of multiple products of Hamiltonian constraints is (a) supported on an appropriate domain of states, (b) yields anomaly free commutators between pairs of Hamiltonian constraints, and (c) is diffeomorphism covariant. Many of our considerations seem robust enough to be applied to the setting of 4d Euclidean gravity.
Deriving Differential Equations from Process Algebra Models in Reagent-Centric Style
NASA Astrophysics Data System (ADS)
Hillston, Jane; Duguid, Adam
The reagent-centric style of modeling allows stochastic process algebra models of biochemical signaling pathways to be developed in an intuitive way. Furthermore, once constructed, the models are amenable to analysis by a number of different mathematical approaches including both stochastic simulation and coupled ordinary differential equations. In this chapter, we give a tutorial introduction to the reagent-centric style, in PEPA and Bio-PEPA, and the way in which such models can be used to generate systems of ordinary differential equations.
Reduction of quantum systems and the local Gauss law
NASA Astrophysics Data System (ADS)
Stienstra, Ruben; van Suijlekom, Walter D.
2018-05-01
We give an operator-algebraic interpretation of the notion of an ideal generated by the unbounded operators associated with the elements of the Lie algebra of a Lie group that implements the symmetries of a quantum system. We use this interpretation to establish a link between Rieffel induction and the implementation of a local Gauss law in lattice gauge theories similar to the method discussed by Kijowski and Rudolph (J Math Phys 43:1796-1808, 2002; J Math Phys 46:032303, 2004).
NASA Astrophysics Data System (ADS)
Wilkie, Karina J.; Clarke, Doug M.
2016-06-01
Spatial visualisation of geometric patterns and their generalisation have become a recognised pathway to developing students' functional thinking and understanding of variables in algebra. This design-based research project investigated upper primary students' development of explicit generalisation of functional relationships and their representation descriptively, graphically and symbolically. Ten teachers and their classes were involved in a sequence of tasks involving growing patterns and geometric structures over 1 year. This article focuses on two aspects of the study: visualising the structure of a geometric pattern in different ways and using this to generalise the functional relationship between two quantifiable aspects (variables). It was found that in an initial assessment task ( n = 222), students' initial visualisations could be categorised according to different types and some of these were more likely to lead either to recursive or explicit generalisation. In a later task, a small number of students demonstrated the ability to find more than one way to visualise the same geometric structure and thus represent their explicit generalisations as different but equivalent symbolic equations (using pronumerals). Implications for the teaching of functional thinking in middle-school algebra are discussed.
An Algebraic Approach for Solving Quadratic Inequalities
ERIC Educational Resources Information Center
Mahmood, Munir; Al-Mirbati, Rudaina
2017-01-01
In recent years most text books utilise either the sign chart or graphing functions in order to solve a quadratic inequality of the form ax[superscript 2] + bx + c < 0 This article demonstrates an algebraic approach to solve the above inequality. To solve a quadratic inequality in the form of ax[superscript 2] + bx + c < 0 or in the…
NASA Technical Reports Server (NTRS)
O'Hara, Charles G. (Inventor); Shrestha, Bijay (Inventor); Vijayaraj, Veeraraghavan (Inventor); Mali, Preeti (Inventor)
2011-01-01
A compositing process for selecting spatial data collected over a period of time, creating temporal data cubes from the spatial data, and processing and/or analyzing the data using temporal mapping algebra functions. In some embodiments, the temporal data cube is creating a masked cube using the data cubes, and computing a composite from the masked cube by using temporal mapping algebra.
Foundation Mathematics for the Physical Sciences
NASA Astrophysics Data System (ADS)
Riley, K. F.; Hobson, M. P.
2011-03-01
1. Arithmetic and geometry; 2. Preliminary algebra; 3. Differential calculus; 4. Integral calculus; 5. Complex numbers and hyperbolic functions; 6. Series and limits; 7. Partial differentiation; 8. Multiple integrals; 9. Vector algebra; 10. Matrices and vector spaces; 11. Vector calculus; 12. Line, surface and volume integrals; 13. Laplace transforms; 14. Ordinary differential equations; 15. Elementary probability; Appendices; Index.
ERIC Educational Resources Information Center
Hatem, Neil
2010-01-01
This study investigates the relationship between the use of graphing calculators employed as Type II technology and student achievement, as determined by assessing students' problem solving skills associated with the concept of function, at the college algebra and pre-calculus level. In addition, this study explores the integration of graphing…
Student Solution Manual for Foundation Mathematics for the Physical Sciences
NASA Astrophysics Data System (ADS)
Riley, K. F.; Hobson, M. P.
2011-03-01
1. Arithmetic and geometry; 2. Preliminary algebra; 3. Differential calculus; 4. Integral calculus; 5. Complex numbers and hyperbolic functions; 6. Series and limits; 7. Partial differentiation; 8. Multiple integrals; 9. Vector algebra; 10. Matrices and vector spaces; 11. Vector calculus; 12. Line, surface and volume integrals; 13. Laplace transforms; 14. Ordinary differential equations; 15. Elementary probability; Appendix.
ERIC Educational Resources Information Center
Dagher, Antoine
1996-01-01
Examines possibilities for learning offered by a piece of software, Fonctuse, likely to encourage the linking of algebraic and graphical representations of functions. Studied the influence of prior algebraic knowledge on the cognitive processes and constructions of knowledge at play in this environment. (Author/MKR)
Examinations in the Final Year of Transition to Mathematical Methods Computer Algebra System (CAS)
ERIC Educational Resources Information Center
Leigh-Lancaster, David; Les, Magdalena; Evans, Michael
2010-01-01
2009 was the final year of parallel implementation for Mathematical Methods Units 3 and 4 and Mathematical Methods (CAS) Units 3 and 4. From 2006-2009 there was a common technology-free short answer examination that covered the same function, algebra, calculus and probability content for both studies with corresponding expectations for key…
ERIC Educational Resources Information Center
Hegedus, Stephen J.; Kaput, James J.
2004-01-01
We present two vignettes of classroom episodes that exemplify new activity structures for introducing core algebra ideas such as linear functions, slope as rate and parametric variation within a new educational technology environment that combines two kinds of classroom technology affordances, one based in dynamic representation and the other…
NASA Astrophysics Data System (ADS)
Plymen, Roger; Robinson, Paul
1995-01-01
Infinite-dimensional Clifford algebras and their Fock representations originated in the quantum mechanical study of electrons. In this book, the authors give a definitive account of the various Clifford algebras over a real Hilbert space and of their Fock representations. A careful consideration of the latter's transformation properties under Bogoliubov automorphisms leads to the restricted orthogonal group. From there, a study of inner Bogoliubov automorphisms enables the authors to construct infinite-dimensional spin groups. Apart from assuming a basic background in functional analysis and operator algebras, the presentation is self-contained with complete proofs, many of which offer a fresh perspective on the subject.
IGB grid: User's manual (A turbomachinery grid generation code)
NASA Technical Reports Server (NTRS)
Beach, T. A.; Hoffman, G.
1992-01-01
A grid generation code called IGB is presented for use in computational investigations of turbomachinery flowfields. It contains a combination of algebraic and elliptic techniques coded for use on an interactive graphics workstation. The instructions for use and a test case are included.
A three-dimensional algebraic grid generation scheme for gas turbine combustors with inclined slots
NASA Technical Reports Server (NTRS)
Yang, S. L.; Cline, M. C.; Chen, R.; Chang, Y. L.
1993-01-01
A 3D algebraic grid generation scheme is presented for generating the grid points inside gas turbine combustors with inclined slots. The scheme is based on the 2D transfinite interpolation method. Since the scheme is a 2D approach, it is very efficient and can easily be extended to gas turbine combustors with either dilution hole or slot configurations. To demonstrate the feasibility and the usefulness of the technique, a numerical study of the quick-quench/lean-combustion (QQ/LC) zones of a staged turbine combustor is given. Preliminary results illustrate some of the major features of the flow and temperature fields in the QQ/LC zones. Formation of co- and counter-rotating bulk flow and shape temperature fields can be observed clearly, and the resulting patterns are consistent with experimental observations typical of the confined slanted jet-in-cross flow. Numerical solutions show the method to be an efficient and reliable tool for generating computational grids for analyzing gas turbine combustors with slanted slots.
DEGAS: Dynamic Exascale Global Address Space Programming Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demmel, James
The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speedmore » and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics.« less
On Various Nonlinearity Measures for Boolean Functions*
Boyar, Joan; Find, Magnus Gausdal; Peralta, René
2016-01-01
A necessary condition for the security of cryptographic functions is to be “sufficiently distant” from linear, and cryptographers have proposed several measures for this distance. In this paper, we show that six common measures, nonlinearity, algebraic degree, annihilator immunity, algebraic thickness, normality, and multiplicative complexity, are incomparable in the sense that for each pair of measures, μ1, μ2, there exist functions f1, f2 with f1 being more nonlinear than f2 according to μ1, but less nonlinear according to μ2. We also present new connections between two of these measures. Additionally, we give a lower bound on the multiplicative complexity of collision-free functions. PMID:27458499
Explorations in fuzzy physics and non-commutative geometry
NASA Astrophysics Data System (ADS)
Kurkcuoglu, Seckin
Fuzzy spaces arise as discrete approximations to continuum manifolds. They are usually obtained through quantizing coadjoint orbits of compact Lie groups and they can be described in terms of finite-dimensional matrix algebras, which for large matrix sizes approximate the algebra of functions of the limiting continuum manifold. Their ability to exactly preserve the symmetries of their parent manifolds is especially appealing for physical applications. Quantum Field Theories are built over them as finite-dimensional matrix models preserving almost all the symmetries of their respective continuum models. In this dissertation, we first focus our attention to the study of fuzzy supersymmetric spaces. In this regard, we obtain the fuzzy supersphere S2,2F through quantizing the supersphere, and demonstrate that it has exact supersymmetry. We derive a finite series formula for the *-product of functions over S2,2F and analyze the differential geometric information encoded in this formula. Subsequently, we show that quantum field theories on S2,2F are realized as finite-dimensional supermatrix models, and in particular we obtain the non-linear sigma model over the fuzzy supersphere by constructing the fuzzy supersymmetric extensions of a certain class of projectors. We show that this model too, is realized as a finite-dimensional supermatrix model with exact supersymmetry. Next, we show that fuzzy spaces have a generalized Hopf algebra structure. By focusing on the fuzzy sphere, we establish that there is a *-homomorphism from the group algebra SU(2)* of SU(2) to the fuzzy sphere. Using this and the canonical Hopf algebra structure of SU(2)* we show that both the fuzzy sphere and their direct sum are Hopf algebras. Using these results, we discuss processes in which a fuzzy sphere with angular momenta J splits into fuzzy spheres with angular momenta K and L. Finally, we study the formulation of Chern-Simons (CS) theory on an infinite strip of the non-commutative plane. We develop a finite-dimensional matrix model, whose large size limit approximates the CS theory on the infinite strip, and show that there are edge observables in this model obeying a finite-dimensional Lie algebra, that resembles the Kac-Moody algebra.
Yang-Baxter maps, discrete integrable equations and quantum groups
NASA Astrophysics Data System (ADS)
Bazhanov, Vladimir V.; Sergeev, Sergey M.
2018-01-01
For every quantized Lie algebra there exists a map from the tensor square of the algebra to itself, which by construction satisfies the set-theoretic Yang-Baxter equation. This map allows one to define an integrable discrete quantum evolution system on quadrilateral lattices, where local degrees of freedom (dynamical variables) take values in a tensor power of the quantized Lie algebra. The corresponding equations of motion admit the zero curvature representation. The commuting Integrals of Motion are defined in the standard way via the Quantum Inverse Problem Method, utilizing Baxter's famous commuting transfer matrix approach. All elements of the above construction have a meaningful quasi-classical limit. As a result one obtains an integrable discrete Hamiltonian evolution system, where the local equation of motion are determined by a classical Yang-Baxter map and the action functional is determined by the quasi-classical asymptotics of the universal R-matrix of the underlying quantum algebra. In this paper we present detailed considerations of the above scheme on the example of the algebra Uq (sl (2)) leading to discrete Liouville equations, however the approach is rather general and can be applied to any quantized Lie algebra.
Coherent orthogonal polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celeghini, E., E-mail: celeghini@fi.infn.it; Olmo, M.A. del, E-mail: olmo@fta.uva.es
2013-08-15
We discuss a fundamental characteristic of orthogonal polynomials, like the existence of a Lie algebra behind them, which can be added to their other relevant aspects. At the basis of the complete framework for orthogonal polynomials we include thus–in addition to differential equations, recurrence relations, Hilbert spaces and square integrable functions–Lie algebra theory. We start here from the square integrable functions on the open connected subset of the real line whose bases are related to orthogonal polynomials. All these one-dimensional continuous spaces allow, besides the standard uncountable basis (|x〉), for an alternative countable basis (|n〉). The matrix elements that relatemore » these two bases are essentially the orthogonal polynomials: Hermite polynomials for the line and Laguerre and Legendre polynomials for the half-line and the line interval, respectively. Differential recurrence relations of orthogonal polynomials allow us to realize that they determine an infinite-dimensional irreducible representation of a non-compact Lie algebra, whose second order Casimir C gives rise to the second order differential equation that defines the corresponding family of orthogonal polynomials. Thus, the Weyl–Heisenberg algebra h(1) with C=0 for Hermite polynomials and su(1,1) with C=−1/4 for Laguerre and Legendre polynomials are obtained. Starting from the orthogonal polynomials the Lie algebra is extended both to the whole space of the L{sup 2} functions and to the corresponding Universal Enveloping Algebra and transformation group. Generalized coherent states from each vector in the space L{sup 2} and, in particular, generalized coherent polynomials are thus obtained. -- Highlights: •Fundamental characteristic of orthogonal polynomials (OP): existence of a Lie algebra. •Differential recurrence relations of OP determine a unitary representation of a non-compact Lie group. •2nd order Casimir originates a 2nd order differential equation that defines the corresponding OP family. •Generalized coherent polynomials are obtained from OP.« less
Deformation of supersymmetric and conformal quantum mechanics through affine transformations
NASA Technical Reports Server (NTRS)
Spiridonov, Vyacheslav
1993-01-01
Affine transformations (dilatations and translations) are used to define a deformation of one-dimensional N = 2 supersymmetric quantum mechanics. Resulting physical systems do not have conserved charges and degeneracies in the spectra. Instead, superpartner Hamiltonians are q-isospectral, i.e. the spectrum of one can be obtained from another (with possible exception of the lowest level) by q(sup 2)-factor scaling. This construction allows easily to rederive a special self-similar potential found by Shabat and to show that for the latter a q-deformed harmonic oscillator algebra of Biedenharn and Macfarlane serves as the spectrum generating algebra. A general class of potentials related to the quantum conformal algebra su(sub q)(1,1) is described. Further possibilities for q-deformation of known solvable potentials are outlined.
Quantum coherence generating power, maximally abelian subalgebras, and Grassmannian geometry
NASA Astrophysics Data System (ADS)
Zanardi, Paolo; Campos Venuti, Lorenzo
2018-01-01
We establish a direct connection between the power of a unitary map in d-dimensions (d < ∞) to generate quantum coherence and the geometry of the set Md of maximally abelian subalgebras (of the quantum system full operator algebra). This set can be seen as a topologically non-trivial subset of the Grassmannian over linear operators. The natural distance over the Grassmannian induces a metric structure on Md, which quantifies the lack of commutativity between the pairs of subalgebras. Given a maximally abelian subalgebra, one can define, on physical grounds, an associated measure of quantum coherence. We show that the average quantum coherence generated by a unitary map acting on a uniform ensemble of quantum states in the algebra (the so-called coherence generating power of the map) is proportional to the distance between a pair of maximally abelian subalgebras in Md connected by the unitary transformation itself. By embedding the Grassmannian into a projective space, one can pull-back the standard Fubini-Study metric on Md and define in this way novel geometrical measures of quantum coherence generating power. We also briefly discuss the associated differential metric structures.
Spectral simplicity of apparent complexity. I. The nondiagonalizable metadynamics of prediction
NASA Astrophysics Data System (ADS)
Riechers, Paul M.; Crutchfield, James P.
2018-03-01
Virtually all questions that one can ask about the behavioral and structural complexity of a stochastic process reduce to a linear algebraic framing of a time evolution governed by an appropriate hidden-Markov process generator. Each type of question—correlation, predictability, predictive cost, observer synchronization, and the like—induces a distinct generator class. Answers are then functions of the class-appropriate transition dynamic. Unfortunately, these dynamics are generically nonnormal, nondiagonalizable, singular, and so on. Tractably analyzing these dynamics relies on adapting the recently introduced meromorphic functional calculus, which specifies the spectral decomposition of functions of nondiagonalizable linear operators, even when the function poles and zeros coincide with the operator's spectrum. Along the way, we establish special properties of the spectral projection operators that demonstrate how they capture the organization of subprocesses within a complex system. Circumventing the spurious infinities of alternative calculi, this leads in the sequel, Part II [P. M. Riechers and J. P. Crutchfield, Chaos 28, 033116 (2018)], to the first closed-form expressions for complexity measures, couched either in terms of the Drazin inverse (negative-one power of a singular operator) or the eigenvalues and projection operators of the appropriate transition dynamic.
Spinor Structure and Internal Symmetries
NASA Astrophysics Data System (ADS)
Varlamov, V. V.
2015-10-01
Spinor structure and internal symmetries are considered within one theoretical framework based on the generalized spin and abstract Hilbert space. Complex momentum is understood as a generating kernel of the underlying spinor structure. It is shown that tensor products of biquaternion algebras are associated with the each irreducible representation of the Lorentz group. Space-time discrete symmetries P, T and their combination PT are generated by the fundamental automorphisms of this algebraic background (Clifford algebras). Charge conjugation C is presented by a pseudoautomorphism of the complex Clifford algebra. This description of the operation C allows one to distinguish charged and neutral particles including particle-antiparticle interchange and truly neutral particles. Spin and charge multiplets, based on the interlocking representations of the Lorentz group, are introduced. A central point of the work is a correspondence between Wigner definition of elementary particle as an irreducible representation of the Poincaré group and SU(3)-description (quark scheme) of the particle as a vector of the supermultiplet (irreducible representation of SU(3)). This correspondence is realized on the ground of a spin-charge Hilbert space. Basic hadron supermultiplets of SU(3)-theory (baryon octet and two meson octets) are studied in this framework. It is shown that quark phenomenologies are naturally incorporated into presented scheme. The relationship between mass and spin is established. The introduced spin-mass formula and its combination with Gell-Mann-Okubo mass formula allows one to take a new look at the problem of mass spectrum of elementary particles.
Zooming in on AdS3/CFT2 near a BPS bound
NASA Astrophysics Data System (ADS)
Hartong, Jelle; Lei, Yang; Obers, Niels; Oling, Gerben
2018-05-01
Any ( d + 1)-dimensional CFT with a U(1) flavor symmetry, a BPS bound and an exactly marginal coupling admits a decoupling limit in which one zooms in on the spectrum close to the bound. This limit is an Inönü-Wigner contraction of so(2 , d+1)⊕ u(1) that leads to a relativistic algebra with a scaling generator but no conformal generators. In 2D CFTs, Lorentz boosts are abelian and by adding a second u(1) we find a contraction of two copies of sl(2, ℝ) ⊕ u(1) to two copies of P 2 c , the 2-dimensional centrally extended Poincaré algebra. We show that the bulk is described by a novel non-Lorentzian geometry that we refer to as pseudo-Newton-Cartan geometry. Both the Chern-Simons action on sl(2, ℝ) ⊕ u(1) and the entire phase space of asymptotically AdS3 spacetimes are well-behaved in the corresponding limit if we fix the radial component for the u(1) connection. With this choice, the resulting Newton-Cartan foliation structure is now associated not with time, but with the emerging holographic direction. Since the leaves of this foliation do not mix, the emergence of the holographic direction is much simpler than in AdS3 holography. Furthermore, we show that the asymptotic symmetry algebra of the limit theory consists of a left- and a right-moving warped Virasoro algebra.
Measurements and mathematical formalism of quantum mechanics
NASA Astrophysics Data System (ADS)
Slavnov, D. A.
2007-03-01
A scheme for constructing quantum mechanics is given that does not have Hilbert space and linear operators as its basic elements. Instead, a version of algebraic approach is considered. Elements of a noncommutative algebra (observables) and functionals on this algebra (elementary states) associated with results of single measurements are used as primary components of the scheme. On the one hand, it is possible to use within the scheme the formalism of the standard (Kolmogorov) probability theory, and, on the other hand, it is possible to reproduce the mathematical formalism of standard quantum mechanics, and to study the limits of its applicability. A short outline is given of the necessary material from the theory of algebras and probability theory. It is described how the mathematical scheme of the paper agrees with the theory of quantum measurements, and avoids quantum paradoxes.
Benhammouda, Brahim
2016-01-01
Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems.
An Analytic Conception of Equation and Teachers' Views of School Algebra
ERIC Educational Resources Information Center
Chazan, Daniel; Yerushalmy, Michal; Leikin, Roza
2008-01-01
This interview study takes place in the context of a single small district in the United States. In the algebra curriculum of this district, there was a shift in the conception of equation, from a statement about unknown numbers to a question about the comparison of two functions over the domain of the real numbers. Using two of Shulman's…
Solving a System of Nonlinear Algebraic Equations You Only Get Error Messages--What to Do Next?
ERIC Educational Resources Information Center
Shacham, Mordechai; Brauner, Neima
2017-01-01
Chemical engineering problems often involve the solution of systems of nonlinear algebraic equations (NLE). There are several software packages that can be used for solving NLE systems, but they may occasionally fail, especially in cases where the mathematical model contains discontinuities and/or regions where some of the functions are undefined.…
ERIC Educational Resources Information Center
Lee, Kerry; Ng, Swee Fong; Bull, Rebecca; Pe, Madeline Lee; Ho, Ringo Ho Moon
2011-01-01
Although mathematical pattern tasks are often found in elementary school curricula and are deemed a building block for algebra, a recent report (National Mathematics Advisory Panel, 2008) suggests the resources devoted to its teaching and assessment need to be rebalanced. We examined whether children's developing proficiency in solving algebraic…
Lewis Jordan; Ray Souter; Bernard Parresol; Richard F. Daniels
2006-01-01
Biomass estimation is critical for looking at ecosystem processes and as a measure of stand yield. The density-integral approach allows for coincident estimation of stem profile and biomass. The algebraic difference approach (ADA) permits the derivation of dynamic or nonstatic functions. In this study we applied the ADA to develop a self-referencing specific gravity...
Joao P. Carvalho; Bernard R. Parresol
2005-01-01
This paper presents a growth model for dominant-height and site-quality estimations for Pyrenean oak (Quercus pyrenaica Willd.) stands. The BertalanffyâRichards function is used with the generalized algebraic difference approach to derive a dynamic site equation. This allows dominant-height and site-index estimations in a compatible way, using any...
Maple procedures for the coupling of angular momenta. IX. Wigner D-functions and rotation matrices
NASA Astrophysics Data System (ADS)
Pagaran, J.; Fritzsche, S.; Gaigalas, G.
2006-04-01
The Wigner D-functions, Dpqj(α,β,γ), are known for their frequent use in quantum mechanics. Defined as the matrix elements of the rotation operator Rˆ(α,β,γ) in R and parametrized in terms of the three Euler angles α, β, and γ, these functions arise not only in the transformation of tensor components under the rotation of the coordinates, but also as the eigenfunctions of the spherical top. In practice, however, the use of the Wigner D-functions is not always that simple, in particular, if expressions in terms of these and other functions from the theory of angular momentum need to be simplified before some computations can be carried out in detail. To facilitate the manipulation of such Racah expressions, here we present an extension to the RACAH program [S. Fritzsche, Comput. Phys. Comm. 103 (1997) 51] in which the properties and the algebraic rules of the Wigner D-functions and reduced rotation matrices are implemented. Care has been taken to combine the standard knowledge about the rotation matrices with the previously implemented rules for the Clebsch-Gordan coefficients, Wigner n-j symbols, and the spherical harmonics. Moreover, the application of the program has been illustrated below by means of three examples. Program summaryTitle of program:RACAH Catalogue identifier:ADFv_9_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADFv_9_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Catalogue identifier of previous version: ADFW, ADHW, title RACAH Journal reference of previous version(s): S. Fritzsche, Comput. Phys. Comm. 103 (1997) 51; S. Fritzsche, S. Varga, D. Geschke, B. Fricke, Comput. Phys. Comm. 111 (1998) 167; S. Fritzsche, T. Inghoff, M. Tomaselli, Comput. Phys. Comm. 153 (2003) 424. Does the new version supersede the previous one: Yes, in addition to the spherical harmonics and recoupling coefficients, the program now supports also the occurrence of the Wigner rotation matrices in the algebraic expressions to be evaluated. Licensing provisions:None Computer for which the program is designed and others on which it is operable: All computers with a license for the computer algebra package Maple [Maple is a registered trademark of Waterloo Maple Inc.] Installations:University of Kassel (Germany) Operating systems under which the program has been tested: Linux 8.2+ Program language used:MAPLE, Release 8 and 9 Memory required to execute with typical data:10-50 MB No. of lines in distributed program, including test data, etc.:52 653 No. of bytes in distributed program, including test data, etc.:1 195 346 Distribution format:tar.gzip Nature of the physical problem: The Wigner D-functions and (reduced) rotation matrices occur very frequently in physical applications. They are known not only as the (infinite) representation of the rotation group but also to obey a number of integral and summation rules, including those for their orthogonality and completeness. Instead of the direct computation of these matrices, therefore, one first often wishes to find algebraic simplifications before the computations can be carried out in practice. Reasons for new version: The RACAH program has been found an efficient tool during recent years, in order to evaluate and simplify expressions from Racah's algebra. Apart from the Wigner n-j symbols ( j=3,6,9) and spherical harmonics, we now extended the code to allow for Wigner rotation matrices. This extension will support the study of those quantum processes especially where different axis of quantization occurs in course of the theoretical deviations. Summary of revisions: In a revised version of the RACAH program [S. Fritzsche, Comput. Phys. Comm. 103 (1997) 51; S. Fritzsche, T. Inghoff, M. Tomaselli, Comput. Phys. Comm. 153 (2003) 424], we now also support the occurrence of the Wigner D-functions and reduced rotation matrices. By following our previous design, the (algebraic) properties of these rotation matrices as well as a number of summation and integration rules are implemented to facilitate the algebraic simplification of expressions from the theories of angular momentum and the spherical tensor operators. Restrictions onto the complexity of the problem: The definition as well as the properties of the rotation matrices, as used in our implementation, are based mainly on the book of Varshalovich et al. [D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific, Singapore, 1988], Chapter 4. From this monograph, most of the relations involving the Wigner D-functions and rotation matrices are taken into account although, in practice, only a rather selected set was needed to be implemented explicitly owing to the symmetries of these functions. In the integration over the rotation matrices, products of up to three Wigner D-functions or reduced matrices (with the same angular arguments) are recognized and simplified properly; for the integration over a solid angle, however, the domain of integration must be specified for the Euler angles α and γ. This restriction arose because MAPLE does not generate a constant of integration when the limits in the integral are omitted. For any integration over the angle β the range of the integration, if omitted, is always taken from 0 to π. Unusual features of the program: The RACAH program is designed for interactive use that allows a quick and algebraic evaluation of (complex) expression from Racah's algebra. It is based on a number of well-defined data structures that are now extended to incorporate the Wigner rotation matrices. For these matrices, the transformation properties, sum rules, recursion relations, as well as a variety of special function expansions have been added to the previous functionality of the RACAH program. Moreover, the knowledge about the orthogonality as well as the completeness of the Wigner D-functions is also implemented. Typical running time:All the examples presented in Section 4 take only a few seconds on a 1.5 GHz Pentium Pro computer.
The quantum n-body problem in dimension d ⩾ n – 1: ground state
NASA Astrophysics Data System (ADS)
Miller, Willard, Jr.; Turbiner, Alexander V.; Escobar-Ruiz, M. A.
2018-05-01
We employ generalized Euler coordinates for the n body system in dimensional space, which consists of the centre-of-mass vector, relative (mutual) mass-independent distances r ij and angles as remaining coordinates. We prove that the kinetic energy of the quantum n-body problem for can be written as the sum of three terms: (i) kinetic energy of centre-of-mass, (ii) the second order differential operator which depends on relative distances alone and (iii) the differential operator which annihilates any angle-independent function. The operator has a large reflection symmetry group and in variables is an algebraic operator, which can be written in terms of generators of the hidden algebra . Thus, makes sense of the Hamiltonian of a quantum Euler–Arnold top in a constant magnetic field. It is conjectured that for any n, the similarity-transformed is the Laplace–Beltrami operator plus (effective) potential; thus, it describes a -dimensional quantum particle in curved space. This was verified for . After de-quantization the similarity-transformed becomes the Hamiltonian of the classical top with variable tensor of inertia in an external potential. This approach allows a reduction of the dn-dimensional spectral problem to a -dimensional spectral problem if the eigenfunctions depend only on relative distances. We prove that the ground state function of the n body problem depends on relative distances alone.
AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S
NASA Technical Reports Server (NTRS)
Klumpp, A. R.
1994-01-01
This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.
pySecDec: A toolbox for the numerical evaluation of multi-scale integrals
NASA Astrophysics Data System (ADS)
Borowka, S.; Heinrich, G.; Jahn, S.; Jones, S. P.; Kerner, M.; Schlenk, J.; Zirke, T.
2018-01-01
We present pySECDEC, a new version of the program SECDEC, which performs the factorization of dimensionally regulated poles in parametric integrals, and the subsequent numerical evaluation of the finite coefficients. The algebraic part of the program is now written in the form of python modules, which allow a very flexible usage. The optimization of the C++ code, generated using FORM, is improved, leading to a faster numerical convergence. The new version also creates a library of the integrand functions, such that it can be linked to user-specific codes for the evaluation of matrix elements in a way similar to analytic integral libraries.
Algebraic approach to electronic spectroscopy and dynamics.
Toutounji, Mohamad
2008-04-28
Lie algebra, Zassenhaus, and parameter differentiation techniques are utilized to break up the exponential of a bilinear Hamiltonian operator into a product of noncommuting exponential operators by the virtue of the theory of Wei and Norman [J. Math. Phys. 4, 575 (1963); Proc. Am. Math. Soc., 15, 327 (1964)]. There are about three different ways to find the Zassenhaus exponents, namely, binomial expansion, Suzuki formula, and q-exponential transformation. A fourth, and most reliable method, is provided. Since linearly displaced and distorted (curvature change upon excitation/emission) Hamiltonian and spin-boson Hamiltonian may be classified as bilinear Hamiltonians, the presented algebraic algorithm (exponential operator disentanglement exploiting six-dimensional Lie algebra case) should be useful in spin-boson problems. The linearly displaced and distorted Hamiltonian exponential is only treated here. While the spin-boson model is used here only as a demonstration of the idea, the herein approach is more general and powerful than the specific example treated. The optical linear dipole moment correlation function is algebraically derived using the above mentioned methods and coherent states. Coherent states are eigenvectors of the bosonic lowering operator a and not of the raising operator a(+). While exp(a(+)) translates coherent states, exp(a(+)a(+)) operation on coherent states has always been a challenge, as a(+) has no eigenvectors. Three approaches, and the results, of that operation are provided. Linear absorption spectra are derived, calculated, and discussed. The linear dipole moment correlation function for the pure quadratic coupling case is expressed in terms of Legendre polynomials to better show the even vibronic transitions in the absorption spectrum. Comparison of the present line shapes to those calculated by other methods is provided. Franck-Condon factors for both linear and quadratic couplings are exactly accounted for by the herein calculated linear absorption spectra. This new methodology should easily pave the way to calculating the four-point correlation function, F(tau(1),tau(2),tau(3),tau(4)), of which the optical nonlinear response function may be procured, as evaluating F(tau(1),tau(2),tau(3),tau(4)) is only evaluating the optical linear dipole moment correlation function iteratively over different time intervals, which should allow calculating various optical nonlinear temporal/spectral signals.
High-performance image processing architecture
NASA Astrophysics Data System (ADS)
Coffield, Patrick C.
1992-04-01
The proposed architecture is a logical design specifically for image processing and other related computations. The design is a hybrid electro-optical concept consisting of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined by an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how elegantly it handles the natural decomposition of algebraic functions into spatially distributed, point-wise operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The logical architecture may take any number of physical forms. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control all the arithmetic and logic operations of the image algebra's generalized matrix product. This is the most powerful fundamental formulation in the algebra, thus allowing a wide range of applications.
Azad, Ariful; Buluç, Aydın
2016-05-16
We describe parallel algorithms for computing maximal cardinality matching in a bipartite graph on distributed-memory systems. Unlike traditional algorithms that match one vertex at a time, our algorithms process many unmatched vertices simultaneously using a matrix-algebraic formulation of maximal matching. This generic matrix-algebraic framework is used to develop three efficient maximal matching algorithms with minimal changes. The newly developed algorithms have two benefits over existing graph-based algorithms. First, unlike existing parallel algorithms, cardinality of matching obtained by the new algorithms stays constant with increasing processor counts, which is important for predictable and reproducible performance. Second, relying on bulk-synchronous matrix operations,more » these algorithms expose a higher degree of parallelism on distributed-memory platforms than existing graph-based algorithms. We report high-performance implementations of three maximal matching algorithms using hybrid OpenMP-MPI and evaluate the performance of these algorithm using more than 35 real and randomly generated graphs. On real instances, our algorithms achieve up to 200 × speedup on 2048 cores of a Cray XC30 supercomputer. Even higher speedups are obtained on larger synthetically generated graphs where our algorithms show good scaling on up to 16,384 cores.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dancer, K. A.; Isac, P. S.; Links, J.
2006-10-15
Quantum doubles of finite group algebras form a class of quasitriangular Hopf algebras that algebraically solve the Yang-Baxter equation. Each representation of the quantum double then gives a matrix solution of the Yang-Baxter equation. Such solutions do not depend on a spectral parameter, and to date there has been little investigation into extending these solutions such that they do depend on a spectral parameter. Here we first explicitly construct the matrix elements of the generators for all irreducible representations of quantum doubles of the dihedral groups D{sub n}. These results may be used to determine constant solutions of the Yang-Baxtermore » equation. We then discuss Baxterization ansaetze to obtain solutions of the Yang-Baxter equation with a spectral parameter and give several examples, including a new 21-vertex model. We also describe this approach in terms of minimal-dimensional representations of the quantum doubles of the alternating group A{sub 4} and the symmetric group S{sub 4}.« less
Bimodule structure of the mixed tensor product over Uq sℓ (2 | 1) and quantum walled Brauer algebra
NASA Astrophysics Data System (ADS)
Bulgakova, D. V.; Kiselev, A. M.; Tipunin, I. Yu.
2018-03-01
We study a mixed tensor product 3⊗m ⊗3 ‾ ⊗ n of the three-dimensional fundamental representations of the Hopf algebra Uq sℓ (2 | 1), whenever q is not a root of unity. Formulas for the decomposition of tensor products of any simple and projective Uq sℓ (2 | 1)-module with the generating modules 3 and 3 ‾ are obtained. The centralizer of Uq sℓ (2 | 1) on the mixed tensor product is calculated. It is shown to be the quotient Xm,n of the quantum walled Brauer algebra qw Bm,n. The structure of projective modules over Xm,n is written down explicitly. It is known that the walled Brauer algebras form an infinite tower. We have calculated the corresponding restriction functors on simple and projective modules over Xm,n. This result forms a crucial step in decomposition of the mixed tensor product as a bimodule over Xm,n ⊠Uq sℓ (2 | 1). We give an explicit bimodule structure for all m , n.
Application of geometric algebra for the description of polymer conformations.
Chys, Pieter
2008-03-14
In this paper a Clifford algebra-based method is applied to calculate polymer chain conformations. The approach enables the calculation of the position of an atom in space with the knowledge of the bond length (l), valence angle (theta), and rotation angle (phi) of each of the preceding bonds in the chain. Hence, the set of geometrical parameters {l(i),theta(i),phi(i)} yields all the position coordinates p(i) of the main chain atoms. Moreover, the method allows the calculation of side chain conformations and the computation of rotations of chain segments. With these features it is, in principle, possible to generate conformations of any type of chemical structure. This method is proposed as an alternative for the classical approach by matrix algebra. It is more straightforward and its final symbolic representation considerably simpler than that of matrix algebra. Approaches for realistic modeling by means of incorporation of energetic considerations can be combined with it. This article, however, is entirely focused at showing the suitable mathematical framework on which further developments and applications can be built.
NASA Technical Reports Server (NTRS)
Ingels, F. M.; Mo, C. D.
1978-01-01
An empirical study of the performance of the Viterbi decoders in bursty channels was carried out and an improved algebraic decoder for nonsystematic codes was developed. The hybrid algorithm was simulated for the (2,1), k = 7 code on a computer using 20 channels having various error statistics, ranging from pure random error to pure bursty channels. The hybrid system outperformed both the algebraic and the Viterbi decoders in every case, except the 1% random error channel where the Viterbi decoder had one bit less decoding error.
Vector fields and nilpotent Lie algebras
NASA Technical Reports Server (NTRS)
Grayson, Matthew; Grossman, Robert
1987-01-01
An infinite-dimensional family of flows E is described with the property that the associated dynamical system: x(t) = E(x(t)), where x(0) is a member of the set R to the Nth power, is explicitly integrable in closed form. These flows E are of the form E = E1 + E2, where E1 and E2 are the generators of a nilpotent Lie algebra, which is either free, or satisfies some relations at a point. These flows can then be used to approximate the flows of more general types of dynamical systems.
Higher symmetries of the Schrödinger operator in Newton-Cartan geometry
NASA Astrophysics Data System (ADS)
Gundry, James
2017-03-01
We establish several relationships between the non-relativistic conformal symmetries of Newton-Cartan geometry and the Schrödinger equation. In particular we discuss the algebra sch(d) of vector fields conformally-preserving a flat Newton-Cartan spacetime, and we prove that its curved generalisation generates the symmetry group of the covariant Schrödinger equation coupled to a Newtonian potential and generalised Coriolis force. We provide intrinsic Newton-Cartan definitions of Killing tensors and conformal Schrödinger-Killing tensors, and we discuss their respective links to conserved quantities and to the higher symmetries of the Schrödinger equation. Finally we consider the role of conformal symmetries in Newtonian twistor theory, where the infinite-dimensional algebra of holomorphic vector fields on twistor space corresponds to the symmetry algebra cnc(3) on the Newton-Cartan spacetime.
Clifford Algebra Implying Three Fermion Generations Revisited
NASA Astrophysics Data System (ADS)
Krolikowski, Wojciech
2002-09-01
The author's idea of algebraic compositeness of fundamental particles, allowing to understand the existence in Nature of three fermion generations, is revisited. It is based on two postulates. Primo, for all fundamental particles of matter the Dirac square-root procedure √ {p2} → {Γ }(N)p works, leading to a sequence N = 1,2,3, ... of Dirac-type equations, where four Dirac-type matrices {Γ }(N)μ are embedded into a Clifford algebra via a Jacobi definition introducing four ``centre-of-mass'' and (N-1)× four ``relative'' Dirac-type matrices. These define one ``centre-of-mass'' and (N-1) ``relative'' Dirac bispinor indices. Secundo, the ``centre-of-mass'' Dirac bispinor index is coupled to the Standard Model gauge fields, while (N-1) ``relative'' Dirac bispinor indices are all free indistinguishable physical objects obeying Fermi statistics along with the Pauli principle which requires the full antisymmetry with respect to ``relative'' Dirac indices. This allows only for three Dirac-type equations with N = 1,3,5 in the case of N odd, and two with N = 2,4 in the case of N even. The first of these results implies unavoidably the existence of three and only three generations of fundamental fermions, namely leptons and quarks, as labelled by the Standard Model signature. At the end, a comment is added on the possible shape of Dirac 3x3 mass matrices for four sorts of spin-1/2 fundamental fermions appearing in three generations. For charged leptons a prediction is mτ = 1776.80 MeV, when the input of experimental me and mμ is used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guedes, Carlos; Oriti, Daniele; Raasakka, Matti
The phase space given by the cotangent bundle of a Lie group appears in the context of several models for physical systems. A representation for the quantum system in terms of non-commutative functions on the (dual) Lie algebra, and a generalized notion of (non-commutative) Fourier transform, different from standard harmonic analysis, has been recently developed, and found several applications, especially in the quantum gravity literature. We show that this algebra representation can be defined on the sole basis of a quantization map of the classical Poisson algebra, and identify the conditions for its existence. In particular, the corresponding non-commutative star-productmore » carried by this representation is obtained directly from the quantization map via deformation quantization. We then clarify under which conditions a unitary intertwiner between such algebra representation and the usual group representation can be constructed giving rise to the non-commutative plane waves and consequently, the non-commutative Fourier transform. The compact groups U(1) and SU(2) are considered for different choices of quantization maps, such as the symmetric and the Duflo map, and we exhibit the corresponding star-products, algebra representations, and non-commutative plane waves.« less
ERIC Educational Resources Information Center
Rebholz, Joachim A.
2017-01-01
Graphing functions is an important topic in algebra and precalculus high school courses. The functions that are usually discussed include polynomials, rational, exponential, and trigonometric functions along with their inverses. These functions can be used to teach different aspects of function theory: domain, range, monotonicity, inverse…
ERIC Educational Resources Information Center
Lane, Rebekah M.
2011-01-01
This investigation utilized the qualitative case study method. Seventy-one College Algebra students were given a mathematical processing instrument. This testing device measured a student's preference for visual thinking. Two students were purposefully selected using the instrument. The visual mathematical learner (VL) was discussed in this…
Space Mathematics: A Resource for Secondary School Teachers
NASA Technical Reports Server (NTRS)
Kastner, Bernice
1985-01-01
A collection of mathematical problems related to NASA space science projects is presented. In developing the examples and problems, attention was given to preserving the authenticity and significance of the original setting while keeping the level of mathematics within the secondary school curriculum. Computation and measurement, algebra, geometry, probability and statistics, exponential and logarithmic functions, trigonometry, matrix algebra, conic sections, and calculus are among the areas addressed.
Finding Rational Parametric Curves of Relative Degree One or Two
ERIC Educational Resources Information Center
Boyles, Dave
2010-01-01
A plane algebraic curve, the complete set of solutions to a polynomial equation: f(x, y) = 0, can in many cases be drawn using parametric equations: x = x(t), y = y(t). Using algebra, attempting to parametrize by means of rational functions of t, one discovers quickly that it is not the degree of f but the "relative degree," that describes how…
Computing the Moore-Penrose Inverse of a Matrix with a Computer Algebra System
ERIC Educational Resources Information Center
Schmidt, Karsten
2008-01-01
In this paper "Derive" functions are provided for the computation of the Moore-Penrose inverse of a matrix, as well as for solving systems of linear equations by means of the Moore-Penrose inverse. Making it possible to compute the Moore-Penrose inverse easily with one of the most commonly used Computer Algebra Systems--and to have the blueprint…
Tensor models, Kronecker coefficients and permutation centralizer algebras
NASA Astrophysics Data System (ADS)
Geloun, Joseph Ben; Ramgoolam, Sanjaye
2017-11-01
We show that the counting of observables and correlators for a 3-index tensor model are organized by the structure of a family of permutation centralizer algebras. These algebras are shown to be semi-simple and their Wedderburn-Artin decompositions into matrix blocks are given in terms of Clebsch-Gordan coefficients of symmetric groups. The matrix basis for the algebras also gives an orthogonal basis for the tensor observables which diagonalizes the Gaussian two-point functions. The centres of the algebras are associated with correlators which are expressible in terms of Kronecker coefficients (Clebsch-Gordan multiplicities of symmetric groups). The color-exchange symmetry present in the Gaussian model, as well as a large class of interacting models, is used to refine the description of the permutation centralizer algebras. This discussion is extended to a general number of colors d: it is used to prove the integrality of an infinite family of number sequences related to color-symmetrizations of colored graphs, and expressible in terms of symmetric group representation theory data. Generalizing a connection between matrix models and Belyi maps, correlators in Gaussian tensor models are interpreted in terms of covers of singular 2-complexes. There is an intriguing difference, between matrix and higher rank tensor models, in the computational complexity of superficially comparable correlators of observables parametrized by Young diagrams.
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.
2017-01-01
A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. We would like it to match the well-defined algebra of spectral functions describing lights and surface reflectances, but an exact correspondence is impossible after the spectra have been projected to a three-dimensional color space, because of metamerism physically different spectra can produce the same color sensation. Metameric spectra are interchangeable for the purposes of addition, but not multiplication, so any color algebra is necessarily an approximation to physical reality. Nevertheless, because the majority of naturally-occurring spectra are well-behaved (e.g., continuous and slowly-varying), color algebras can be formulated that are largely accurate and agree well with human intuition. Here we explore the family of algebras that result from associating each color with a member of a three-dimensional manifold of spectra. This association can be used to construct a color product, defined as the color of the spectrum of the wavelength-wise product of the spectra associated with the two input colors. The choice of the spectral manifold determines the behavior of the resulting system, and certain special subspaces allow computational efficiencies. The resulting systems can be used to improve computer graphic rendering techniques, and to model various perceptual phenomena such as color constancy.
NASA Technical Reports Server (NTRS)
Bailey, R. T.; Shih, T. I.-P.; Nguyen, H. L.; Roelke, R. J.
1990-01-01
An efficient computer program, called GRID2D/3D, was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no modifications are needed in the grid generation part of the program. The theory and method used in GRID2D/3D is described.
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.
1990-01-01
An efficient computer program, called GRID2D/3D was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no modifications are needed in the grid generation part of the program. This technical memorandum describes the theory and method used in GRID2D/3D.
On an example of a system of differential equations that are integrated in Abelian functions
NASA Astrophysics Data System (ADS)
Malykh, M. D.; Sevastianov, L. A.
2017-12-01
The short review of the theory of Abelian functions and its applications in mechanics and analytical theory of differential equations is given. We think that Abelian functions are the natural generalization of commonly used functions because if the general solution of the 2nd order differential equation depends algebraically on the constants of integration, then integrating this equation does not lead out of the realm of commonly used functions complemented by the Abelian functions (Painlevé theorem). We present a relatively simple example of a dynamical system that is integrated in Abelian integrals by “pairing” two copies of a hyperelliptic curve. Unfortunately, initially simple formulas unfold into very long ones. Apparently the theory of Abelian functions hasn’t been finished in the last century because without computer algebra systems it was impossible to complete the calculations to the end. All calculations presented in our report are performed in Sage.
How the twain can meet: Prospect theory and models of heuristics in risky choice.
Pachur, Thorsten; Suter, Renata S; Hertwig, Ralph
2017-03-01
Two influential approaches to modeling choice between risky options are algebraic models (which focus on predicting the overt decisions) and models of heuristics (which are also concerned with capturing the underlying cognitive process). Because they rest on fundamentally different assumptions and algorithms, the two approaches are usually treated as antithetical, or even incommensurable. Drawing on cumulative prospect theory (CPT; Tversky & Kahneman, 1992) as the currently most influential instance of a descriptive algebraic model, we demonstrate how the two modeling traditions can be linked. CPT's algebraic functions characterize choices in terms of psychophysical (diminishing sensitivity to probabilities and outcomes) as well as psychological (risk aversion and loss aversion) constructs. Models of heuristics characterize choices as rooted in simple information-processing principles such as lexicographic and limited search. In computer simulations, we estimated CPT's parameters for choices produced by various heuristics. The resulting CPT parameter profiles portray each of the choice-generating heuristics in psychologically meaningful ways-capturing, for instance, differences in how the heuristics process probability information. Furthermore, CPT parameters can reflect a key property of many heuristics, lexicographic search, and track the environment-dependent behavior of heuristics. Finally, we show, both in an empirical and a model recovery study, how CPT parameter profiles can be used to detect the operation of heuristics. We also address the limits of CPT's ability to capture choices produced by heuristics. Our results highlight an untapped potential of CPT as a measurement tool to characterize the information processing underlying risky choice. Copyright © 2017 Elsevier Inc. All rights reserved.
Trace of totally positive algebraic integers and integer transfinite diameter
NASA Astrophysics Data System (ADS)
Flammang, V.
2009-06-01
Explicit auxiliary functions can be used in the ``Schur-Siegel- Smyth trace problem''. In the previous works, these functions were constructed only with polynomials having all their roots positive. Here, we use several polynomials with complex roots, which are found with Wu's algorithm, and we improve the known lower bounds for the absolute trace of totally positive algebraic integers. This improvement has a consequence for the search of Salem numbers that have a negative trace. The same method also gives a small improvement of the upper bound for the integer transfinite diameter of [0,1].
An Ada Linear-Algebra Software Package Modeled After HAL/S
NASA Technical Reports Server (NTRS)
Klumpp, Allan R.; Lawson, Charles L.
1990-01-01
New avionics software written more easily. Software package extends Ada programming language to include linear-algebra capabilities similar to those of HAL/S programming language. Designed for such avionics applications as Space Station flight software. In addition to built-in functions of HAL/S, package incorporates quaternion functions used in Space Shuttle and Galileo projects and routines from LINPAK solving systems of equations involving general square matrices. Contains two generic programs: one for floating-point computations and one for integer computations. Written on IBM/AT personal computer running under PC DOS, v.3.1.
Exact joint density-current probability function for the asymmetric exclusion process.
Depken, Martin; Stinchcombe, Robin
2004-07-23
We study the asymmetric simple exclusion process with open boundaries and derive the exact form of the joint probability function for the occupation number and the current through the system. We further consider the thermodynamic limit, showing that the resulting distribution is non-Gaussian and that the density fluctuations have a discontinuity at the continuous phase transition, while the current fluctuations are continuous. The derivations are performed by using the standard operator algebraic approach and by the introduction of new operators satisfying a modified version of the original algebra. Copyright 2004 The American Physical Society
The 6th International Conference on Computer Science and Computational Mathematics (ICCSCM 2017)
NASA Astrophysics Data System (ADS)
2017-09-01
The ICCSCM 2017 (The 6th International Conference on Computer Science and Computational Mathematics) has aimed to provide a platform to discuss computer science and mathematics related issues including Algebraic Geometry, Algebraic Topology, Approximation Theory, Calculus of Variations, Category Theory; Homological Algebra, Coding Theory, Combinatorics, Control Theory, Cryptology, Geometry, Difference and Functional Equations, Discrete Mathematics, Dynamical Systems and Ergodic Theory, Field Theory and Polynomials, Fluid Mechanics and Solid Mechanics, Fourier Analysis, Functional Analysis, Functions of a Complex Variable, Fuzzy Mathematics, Game Theory, General Algebraic Systems, Graph Theory, Group Theory and Generalizations, Image Processing, Signal Processing and Tomography, Information Fusion, Integral Equations, Lattices, Algebraic Structures, Linear and Multilinear Algebra; Matrix Theory, Mathematical Biology and Other Natural Sciences, Mathematical Economics and Financial Mathematics, Mathematical Physics, Measure Theory and Integration, Neutrosophic Mathematics, Number Theory, Numerical Analysis, Operations Research, Optimization, Operator Theory, Ordinary and Partial Differential Equations, Potential Theory, Real Functions, Rings and Algebras, Statistical Mechanics, Structure Of Matter, Topological Groups, Wavelets and Wavelet Transforms, 3G/4G Network Evolutions, Ad-Hoc, Mobile, Wireless Networks and Mobile Computing, Agent Computing & Multi-Agents Systems, All topics related Image/Signal Processing, Any topics related Computer Networks, Any topics related ISO SC-27 and SC- 17 standards, Any topics related PKI(Public Key Intrastructures), Artifial Intelligences(A.I.) & Pattern/Image Recognitions, Authentication/Authorization Issues, Biometric authentication and algorithms, CDMA/GSM Communication Protocols, Combinatorics, Graph Theory, and Analysis of Algorithms, Cryptography and Foundation of Computer Security, Data Base(D.B.) Management & Information Retrievals, Data Mining, Web Image Mining, & Applications, Defining Spectrum Rights and Open Spectrum Solutions, E-Comerce, Ubiquitous, RFID, Applications, Fingerprint/Hand/Biometrics Recognitions and Technologies, Foundations of High-performance Computing, IC-card Security, OTP, and Key Management Issues, IDS/Firewall, Anti-Spam mail, Anti-virus issues, Mobile Computing for E-Commerce, Network Security Applications, Neural Networks and Biomedical Simulations, Quality of Services and Communication Protocols, Quantum Computing, Coding, and Error Controls, Satellite and Optical Communication Systems, Theory of Parallel Processing and Distributed Computing, Virtual Visions, 3-D Object Retrievals, & Virtual Simulations, Wireless Access Security, etc. The success of ICCSCM 2017 is reflected in the received papers from authors around the world from several countries which allows a highly multinational and multicultural idea and experience exchange. The accepted papers of ICCSCM 2017 are published in this Book. Please check http://www.iccscm.com for further news. A conference such as ICCSCM 2017 can only become successful using a team effort, so herewith we want to thank the International Technical Committee and the Reviewers for their efforts in the review process as well as their valuable advices. We are thankful to all those who contributed to the success of ICCSCM 2017. The Secretary
NASA Astrophysics Data System (ADS)
Rerikh, K. V.
A smooth reversible dynamical system (SRDS) and a system of nonlinear functional equations, defined by a certain rational quadratic Cremona mapping and arising from the static model of the dispersion approach in the theory of strong interactions (the Chew-Low equations for p- wave πN- scattering) are considered. This SRDS is splitted into 1- and 2-dimensional ones. An explicit Cremona transformation that completely determines the exact solution of the two-dimensional system is found. This solution depends on an odd function satisfying a nonlinear autonomous 3-point functional equation. Non-algebraic integrability of SRDS under consideration is proved using the method of Poincaré normal forms and the Siegel theorem on biholomorphic linearization of a mapping at a non-resonant fixed point. The proof is based on the classical Feldman-Baker theorem on linear forms of logarithms of algebraic numbers, which, in turn, relies upon solving the 7th Hilbert problem by A.I. Gel'fond and T. Schneider and new powerful methods of A. Baker in the theory of transcendental numbers. The general theorem, following from the Feldman-Baker theorem, on applicability of the Siegel theorem to the set of the eigenvalues λ ɛ Cn of a mapping at a non-resonant fixed point which belong to the algebraic number field A is formulated and proved. The main results are presented in Theorems 1-3, 5, 7, 8 and Remarks 3, 7.
NASA Astrophysics Data System (ADS)
Temme, F. P.
1991-06-01
For many-body spin cluster problems, dual-symmetry recoupled tensors over Liouville space provide suitable bases for a generalized torque formalism using the Sn-adapted density operator in which to discuss NMR and related techniques. The explicit structure of such tensors is considered in the context of the Cayley algebra of scalar invariants over a field, specified by the inner ki rank labels of the Tkq(kl-kn)s. The pertinence of both lexical combinatorial architectures over inner rank sets and SU2 propagative topologies in specifying the structure of dual recoupling tensors is considered in the context of the Sn partitional aspects of spin clusters. The form of Heisenberg superoperator generators whose algebra underlies the Gel'fand pattern algebra of SU(2) and SU(2)×Sn tensor bases over Liouville space is presented together with both the related s-boson algebras and a description of the associated {||2k 0>>} pattern sets of CF29H carrier space under the appropriate symmetry. These concepts are correlated with recent work on SU(2)×Sn induced symmetry hierarchies over Liouville spin space. The pertinence of this theoretical work to an understanding of multiquantum NMR in Liouville space formalisms is stressed in a discussion of the nature of pathways for intracluster J coupling, which also gives a valuable physical insight into the nature of coherence transfer in more general spin-1/2 systems.
Two dissimilar approaches to dynamical systems on hyper MV -algebras and their information entropy
NASA Astrophysics Data System (ADS)
Mehrpooya, Adel; Ebrahimi, Mohammad; Davvaz, Bijan
2017-09-01
Measuring the flow of information that is related to the evolution of a system which is modeled by applying a mathematical structure is of capital significance for science and usually for mathematics itself. Regarding this fact, a major issue in concern with hyperstructures is their dynamics and the complexity of the varied possible dynamics that exist over them. Notably, the dynamics and uncertainty of hyper MV -algebras which are hyperstructures and extensions of a central tool in infinite-valued Lukasiewicz propositional calculus that models many valued logics are of primary concern. Tackling this problem, in this paper we focus on the subject of dynamical systems on hyper MV -algebras and their entropy. In this respect, we adopt two varied approaches. One is the set-based approach in which hyper MV -algebra dynamical systems are developed by employing set functions and set partitions. By the other method that is based on points and point partitions, we establish the concept of hyper injective dynamical systems on hyper MV -algebras. Next, we study the notion of entropy for both kinds of systems. Furthermore, we consider essential ergodic characteristics of those systems and their entropy. In particular, we introduce the concept of isomorphic hyper injective and hyper MV -algebra dynamical systems, and we demonstrate that isomorphic systems have the same entropy. We present a couple of theorems in order to help calculate entropy. In particular, we prove a contemporary version of addition and Kolmogorov-Sinai Theorems. Furthermore, we provide a comparison between the indispensable properties of hyper injective and semi-independent dynamical systems. Specifically, we present and prove theorems that draw comparisons between the entropies of such systems. Lastly, we discuss some possible relationships between the theories of hyper MV -algebra and MV -algebra dynamical systems.
An interactive grid generation procedure for axial and radial flow turbomachinery
NASA Technical Reports Server (NTRS)
Beach, Timothy A.
1989-01-01
A combination algebraic/elliptic technique is presented for the generation of three dimensional grids about turbo-machinery blade rows for both axial and radial flow machinery. The technique is built around use of an advanced engineering workstation to construct several two dimensional grids interactively on predetermined blade-to-blade surfaces. A three dimensional grid is generated by interpolating these surface grids onto an axisymmetric grid. On each blade-to-blade surface, a grid is created using algebraic techniques near the blade to control orthogonality within the boundary layer region and elliptic techniques in the mid-passage to achieve smoothness. The interactive definition of bezier curves as internal boundaries is the key to simple construction. This procedure lends itself well to zonal grid construction, an important example being the tip clearance region. Calculations done to date include a space shuttle main engine turbopump blade, a radial inflow turbine blade, and the first stator of the United Technologies Research Center large scale rotating rig. A finite Navier-Stokes solver was used in each case.
Canonical gravity, diffeomorphisms and objective histories
NASA Astrophysics Data System (ADS)
Samuel, Joseph
2000-11-01
This paper discusses the implementation of diffeomorphism invariance in purely Hamiltonian formulations of general relativity. We observe that, if a constrained Hamiltonian formulation derives from a manifestly covariant Lagrangian, the diffeomorphism invariance of the Lagrangian results in the following properties of the constrained Hamiltonian theory: the diffeomorphisms are generated by constraints on the phase space so that: (a) the algebra of the generators reflects the algebra of the diffeomorphism group; (b) the Poisson brackets of the basic fields with the generators reflects the spacetime transformation properties of these basic fields. This suggests that in a purely Hamiltonian approach the requirement of diffeomorphism invariance should be interpreted to include (b) and not just (a) as one might naively suppose. Giving up (b) amounts to giving up objective histories, even at the classical level. This observation has implications for loop quantum gravity which are spelled out in a companion paper. We also describe an analogy between canonical gravity and relativistic particle dynamics to illustrate our main point.
NASA Astrophysics Data System (ADS)
Rahman, Md. Saifur; Lee, Yiu-Yin
2017-10-01
In this study, a new modified multi-level residue harmonic balance method is presented and adopted to investigate the forced nonlinear vibrations of axially loaded double beams. Although numerous nonlinear beam or linear double-beam problems have been tackled and solved, there have been few studies of this nonlinear double-beam problem. The geometric nonlinear formulations for a double-beam model are developed. The main advantage of the proposed method is that a set of decoupled nonlinear algebraic equations is generated at each solution level. This heavily reduces the computational effort compared with solving the coupled nonlinear algebraic equations generated in the classical harmonic balance method. The proposed method can generate the higher-level nonlinear solutions that are neglected by the previous modified harmonic balance method. The results from the proposed method agree reasonably well with those from the classical harmonic balance method. The effects of damping, axial force, and excitation magnitude on the nonlinear vibrational behaviour are examined.
Systems of nonlinear algebraic equations with positive solutions.
Ciurte, Anca; Nedevschi, Sergiu; Rasa, Ioan
2017-01-01
We are concerned with the positive solutions of an algebraic system depending on a parameter [Formula: see text] and arising in economics. For [Formula: see text] we prove that the system has at least a solution. For [Formula: see text] we give three proofs of the existence and a proof of the uniqueness of the solution. Brouwer's theorem and inequalities involving convex functions are essential tools in our proofs.
Proposed method to construct Boolean functions with maximum possible annihilator immunity
NASA Astrophysics Data System (ADS)
Goyal, Rajni; Panigrahi, Anupama; Bansal, Rohit
2017-07-01
Nonlinearity and Algebraic(annihilator) immunity are two core properties of a Boolean function because optimum values of Annihilator Immunity and nonlinearity are required to resist fast algebraic attack and differential cryptanalysis respectively. For a secure cypher system, Boolean function(S-Boxes) should resist maximum number of attacks. It is possible if a Boolean function has optimal trade-off among its properties. Before constructing Boolean functions, we fixed the criteria of our constructions based on its properties. In present work, our construction is based on annihilator immunity and nonlinearity. While keeping above facts in mind,, we have developed a multi-objective evolutionary approach based on NSGA-II and got the optimum value of annihilator immunity with good bound of nonlinearity. We have constructed balanced Boolean functions having the best trade-off among balancedness, Annihilator immunity and nonlinearity for 5, 6 and 7 variables by the proposed method.
1989-03-03
address global parameter space mapping issues for first order differential equations. The rigorous criteria for the existence of exact lumping by linear projective transformations was also established.
THE FUNDAMENTAL GROUP OF THE COMPLEMENT OF A HYPERSURFACE IN \\mathbf C^n
NASA Astrophysics Data System (ADS)
Kulikov, Vik S.
1992-04-01
Let D be a complex algebraic hypersurface in \\mathbf C^n not passing through the point o \\in \\mathbf C^n. The generators of the fundamental group \\pi_1(\\mathbf C^n\\setminus D, o) and the relations among them are described in terms of the real cone over D with apex at o. This description is a generalization to the algebraic case of Wirtinger's corepresentation of the fundamental group of a knot in \\mathbf R^3. A new proof of Zariski's conjecture about commutativity of the fundamental group \\pi_1(\\mathbf P^2\\setminus C) for a projective nodal curve C is given in the second part of the paper based on the description of the generators and the relations in the group \\pi_1(\\mathbf C^n\\setminus D, o) obtained in the first part.
Lie algebraic similarity transformed Hamiltonians for lattice model systems
NASA Astrophysics Data System (ADS)
Wahlen-Strothman, Jacob M.; Jiménez-Hoyos, Carlos A.; Henderson, Thomas M.; Scuseria, Gustavo E.
2015-01-01
We present a class of Lie algebraic similarity transformations generated by exponentials of two-body on-site Hermitian operators whose Hausdorff series can be summed exactly without truncation. The correlators are defined over the entire lattice and include the Gutzwiller factor ni ↑ni ↓ , and two-site products of density (ni ↑+ni ↓) and spin (ni ↑-ni ↓) operators. The resulting non-Hermitian many-body Hamiltonian can be solved in a biorthogonal mean-field approach with polynomial computational cost. The proposed similarity transformation generates locally weighted orbital transformations of the reference determinant. Although the energy of the model is unbound, projective equations in the spirit of coupled cluster theory lead to well-defined solutions. The theory is tested on the one- and two-dimensional repulsive Hubbard model where it yields accurate results for small and medium sized interaction strengths.
Pseudorandom number generation using chaotic true orbits of the Bernoulli map
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, Asaki, E-mail: saito@fun.ac.jp; Yamaguchi, Akihiro
We devise a pseudorandom number generator that exactly computes chaotic true orbits of the Bernoulli map on quadratic algebraic integers. Moreover, we describe a way to select the initial points (seeds) for generating multiple pseudorandom binary sequences. This selection method distributes the initial points almost uniformly (equidistantly) in the unit interval, and latter parts of the generated sequences are guaranteed not to coincide. We also demonstrate through statistical testing that the generated sequences possess good randomness properties.
NASA Astrophysics Data System (ADS)
Drescher, A. C.; Gadgil, A. J.; Price, P. N.; Nazaroff, W. W.
Optical remote sensing and iterative computed tomography (CT) can be applied to measure the spatial distribution of gaseous pollutant concentrations. We conducted chamber experiments to test this combination of techniques using an open path Fourier transform infrared spectrometer (OP-FTIR) and a standard algebraic reconstruction technique (ART). Although ART converged to solutions that showed excellent agreement with the measured ray-integral concentrations, the solutions were inconsistent with simultaneously gathered point-sample concentration measurements. A new CT method was developed that combines (1) the superposition of bivariate Gaussians to represent the concentration distribution and (2) a simulated annealing minimization routine to find the parameters of the Gaussian basis functions that result in the best fit to the ray-integral concentration data. This method, named smooth basis function minimization (SBFM), generated reconstructions that agreed well, both qualitatively and quantitatively, with the concentration profiles generated from point sampling. We present an analysis of two sets of experimental data that compares the performance of ART and SBFM. We conclude that SBFM is a superior CT reconstruction method for practical indoor and outdoor air monitoring applications.
The BRST complex of homological Poisson reduction
NASA Astrophysics Data System (ADS)
Müller-Lennert, Martin
2017-02-01
BRST complexes are differential graded Poisson algebras. They are associated with a coisotropic ideal J of a Poisson algebra P and provide a description of the Poisson algebra (P/J)^J as their cohomology in degree zero. Using the notion of stable equivalence introduced in Felder and Kazhdan (Contemporary Mathematics 610, Perspectives in representation theory, 2014), we prove that any two BRST complexes associated with the same coisotropic ideal are quasi-isomorphic in the case P = R[V] where V is a finite-dimensional symplectic vector space and the bracket on P is induced by the symplectic structure on V. As a corollary, the cohomology of the BRST complexes is canonically associated with the coisotropic ideal J in the symplectic case. We do not require any regularity assumptions on the constraints generating the ideal J. We finally quantize the BRST complex rigorously in the presence of infinitely many ghost variables and discuss the uniqueness of the quantization procedure.
Simplifications for hydronic system models in modelica
Jorissen, F.; Wetter, M.; Helsen, L.
2018-01-12
Building systems and their heating, ventilation and air conditioning flow networks, are becoming increasingly complex. Some building energy simulation tools simulate these flow networks using pressure drop equations. These flow network models typically generate coupled algebraic nonlinear systems of equations, which become increasingly more difficult to solve as their sizes increase. This leads to longer computation times and can cause the solver to fail. These problems also arise when using the equation-based modelling language Modelica and Annex 60-based libraries. This may limit the applicability of the library to relatively small problems unless problems are restructured. This paper discusses two algebraicmore » loop types and presents an approach that decouples algebraic loops into smaller parts, or removes them completely. The approach is applied to a case study model where an algebraic loop of 86 iteration variables is decoupled into smaller parts with a maximum of five iteration variables.« less
SEGMENTATION OF MITOCHONDRIA IN ELECTRON MICROSCOPY IMAGES USING ALGEBRAIC CURVES.
Seyedhosseini, Mojtaba; Ellisman, Mark H; Tasdizen, Tolga
2013-01-01
High-resolution microscopy techniques have been used to generate large volumes of data with enough details for understanding the complex structure of the nervous system. However, automatic techniques are required to segment cells and intracellular structures in these multi-terabyte datasets and make anatomical analysis possible on a large scale. We propose a fully automated method that exploits both shape information and regional statistics to segment irregularly shaped intracellular structures such as mitochondria in electron microscopy (EM) images. The main idea is to use algebraic curves to extract shape features together with texture features from image patches. Then, these powerful features are used to learn a random forest classifier, which can predict mitochondria locations precisely. Finally, the algebraic curves together with regional information are used to segment the mitochondria at the predicted locations. We demonstrate that our method outperforms the state-of-the-art algorithms in segmentation of mitochondria in EM images.
More on quantum groups from the quantization point of view
NASA Astrophysics Data System (ADS)
Jurčo, Branislav
1994-12-01
Star products on the classical double group of a simple Lie group and on corresponding symplectic groupoids are given so that the quantum double and the “quantized tangent bundle” are obtained in the deformation description. “Complex” quantum groups and bicovariant quantum Lie algebras are discussed from this point of view. Further we discuss the quantization of the Poisson structure on the symmetric algebra S(g) leading to the quantized enveloping algebra U h (g) as an example of biquantization in the sense of Turaev. Description of U h (g) in terms of the generators of the bicovariant differential calculus on F(G q ) is very convenient for this purpose. Finaly we interpret in the deformation framework some well known properties of compact quantum groups as simple consequences of corresponding properties of classical compact Lie groups. An analogue of the classical Kirillov's universal character formula is given for the unitary irreducble representation in the compact case.
The First Fundamental Theorem of Invariant Theory for the Orthosymplectic Supergroup
NASA Astrophysics Data System (ADS)
Lehrer, G. I.; Zhang, R. B.
2017-01-01
We give an elementary and explicit proof of the first fundamental theorem of invariant theory for the orthosymplectic supergroup by generalising the geometric method of Atiyah, Bott and Patodi to the supergroup context. We use methods from super-algebraic geometry to convert invariants of the orthosymplectic supergroup into invariants of the corresponding general linear supergroup on a different space. In this way, super Schur-Weyl-Brauer duality is established between the orthosymplectic supergroup of superdimension ( m|2 n) and the Brauer algebra with parameter m - 2 n. The result may be interpreted either in terms of the group scheme OSp( V) over C, where V is a finite dimensional super space, or as a statement about the orthosymplectic Lie supergroup over the infinite dimensional Grassmann algebra {Λ}. We take the latter point of view here, and also state a corresponding theorem for the orthosymplectic Lie superalgebra, which involves an extra invariant generator, the super-Pfaffian.
NASA Astrophysics Data System (ADS)
Souleymanou, Abbagari; Thomas, B. Bouetou; Timoleon, C. Kofane
2013-08-01
The prolongation structure methodologies of Wahlquist—Estabrook [H.D. Wahlquist and F.B. Estabrook, J. Math. Phys. 16 (1975) 1] for nonlinear differential equations are applied to a more general set of coupled integrable dispersionless system. Based on the obtained prolongation structure, a Lie-Algebra valued connection of a closed ideal of exterior differential forms related to the above system is constructed. A Lie-Algebra representation of some hidden structural symmetries of the previous system, its Bäcklund transformation using the Riccati form of the linear eigenvalue problem and their general corresponding Lax-representation are derived. In the wake of the previous results, we extend the above prolongation scheme to higher-dimensional systems from which a new (2 + 1)-dimensional coupled integrable dispersionless system is unveiled along with its inverse scattering formulation, which applications are straightforward in nonlinear optics where additional propagating dimension deserves some attention.
Polynomial algebra of discrete models in systems biology.
Veliz-Cuba, Alan; Jarrah, Abdul Salam; Laubenbacher, Reinhard
2010-07-01
An increasing number of discrete mathematical models are being published in Systems Biology, ranging from Boolean network models to logical models and Petri nets. They are used to model a variety of biochemical networks, such as metabolic networks, gene regulatory networks and signal transduction networks. There is increasing evidence that such models can capture key dynamic features of biological networks and can be used successfully for hypothesis generation. This article provides a unified framework that can aid the mathematical analysis of Boolean network models, logical models and Petri nets. They can be represented as polynomial dynamical systems, which allows the use of a variety of mathematical tools from computer algebra for their analysis. Algorithms are presented for the translation into polynomial dynamical systems. Examples are given of how polynomial algebra can be used for the model analysis. alanavc@vt.edu Supplementary data are available at Bioinformatics online.
Complex Functions with GeoGebra
ERIC Educational Resources Information Center
Breda, Ana Maria D'azevedo; Dos Santos, José Manuel Dos Santos
2016-01-01
Complex functions, generally feature some interesting peculiarities, seen as extensions of real functions. The visualization of complex functions properties usually requires the simultaneous visualization of two-dimensional spaces. The multiple Windows of GeoGebra, combined with its ability of algebraic computation with complex numbers, allow the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borzov, V. V., E-mail: borzov.vadim@yandex.ru; Damaskinsky, E. V., E-mail: evd@pdmi.ras.ru
In the previous works of Borzov and Damaskinsky [“Chebyshev-Koornwinder oscillator,” Theor. Math. Phys. 175(3), 765–772 (2013)] and [“Ladder operators for Chebyshev-Koornwinder oscillator,” in Proceedings of the Days on Diffraction, 2013], the authors have defined the oscillator-like system that is associated with the two variable Chebyshev-Koornwinder polynomials. We call this system the generalized Chebyshev-Koornwinder oscillator. In this paper, we study the properties of infinite-dimensional Lie algebra that is analogous to the Heisenberg algebra for the Chebyshev-Koornwinder oscillator. We construct the exact irreducible representation of this algebra in a Hilbert space H of functions that are defined on a region which ismore » bounded by the Steiner hypocycloid. The functions are square-integrable with respect to the orthogonality measure for the Chebyshev-Koornwinder polynomials and these polynomials form an orthonormalized basis in the space H. The generalized oscillator which is studied in the work can be considered as the simplest nontrivial example of multiboson quantum system that is composed of three interacting oscillators.« less
Compressed Continuous Computation v. 12/20/2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorodetsky, Alex
2017-02-17
A library for performing numerical computation with low-rank functions. The (C3) library enables performing continuous linear and multilinear algebra with multidimensional functions. Common tasks include taking "matrix" decompositions of vector- or matrix-valued functions, approximating multidimensional functions in low-rank format, adding or multiplying functions together, integrating multidimensional functions.
GENIE(++): A Multi-Block Structured Grid System
NASA Technical Reports Server (NTRS)
Williams, Tonya; Nadenthiran, Naren; Thornburg, Hugh; Soni, Bharat K.
1996-01-01
The computer code GENIE++ is a continuously evolving grid system containing a multitude of proven geometry/grid techniques. The generation process in GENIE++ is based on an earlier version. The process uses several techniques either separately or in combination to quickly and economically generate sculptured geometry descriptions and grids for arbitrary geometries. The computational mesh is formed by using an appropriate algebraic method. Grid clustering is accomplished with either exponential or hyperbolic tangent routines which allow the user to specify a desired point distribution. Grid smoothing can be accomplished by using an elliptic solver with proper forcing functions. B-spline and Non-Uniform Rational B-splines (NURBS) algorithms are used for surface definition and redistribution. The built in sculptured geometry definition with desired distribution of points, automatic Bezier curve/surface generation for interior boundaries/surfaces, and surface redistribution is based on NURBS. Weighted Lagrance/Hermite transfinite interpolation methods, interactive geometry/grid manipulation modules, and on-line graphical visualization of the generation process are salient features of this system which result in a significant time savings for a given geometry/grid application.
GridMan: A grid manipulation system
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.; Wang, Zhu
1992-01-01
GridMan is an interactive grid manipulation system. It operates on grids to produce new grids which conform to user demands. The input grids are not constrained to come from any particular source. They may be generated by algebraic methods, elliptic methods, hyperbolic methods, parabolic methods, or some combination of methods. The methods are included in the various available structured grid generation codes. These codes perform the basic assembly function for the various elements of the initial grid. For block structured grids, the assembly can be quite complex due to a large number of clock corners, edges, and faces for which various connections and orientations must be properly identified. The grid generation codes are distinguished among themselves by their balance between interactive and automatic actions and by their modest variations in control. The basic form of GridMan provides a much more substantial level of grid control and will take its input from any of the structured grid generation codes. The communication link to the outside codes is a data file which contains the grid or section of grid.
N=2 gauge theories and degenerate fields of Toda theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanno, Shoichi; Matsuo, Yutaka; Shiba, Shotaro
We discuss the correspondence between degenerate fields of the W{sub N} algebra and punctures of Gaiotto's description of the Seiberg-Witten curve of N=2 superconformal gauge theories. Namely, we find that the type of degenerate fields of the W{sub N} algebra, with null states at level one, is classified by Young diagrams with N boxes, and that the singular behavior of the Seiberg-Witten curve near the puncture agrees with that of W{sub N} generators. We also find how to translate mass parameters of the gauge theory to the momenta of the Toda theory.
Schwinger-Keldysh formalism. Part II: thermal equivariant cohomology
NASA Astrophysics Data System (ADS)
Haehl, Felix M.; Loganayagam, R.; Rangamani, Mukund
2017-06-01
Causally ordered correlation functions of local operators in near-thermal quantum systems computed using the Schwinger-Keldysh formalism obey a set of Ward identities. These can be understood rather simply as the consequence of a topological (BRST) algebra, called the universal Schwinger-Keldysh superalgebra, as explained in our compan-ion paper [1]. In the present paper we provide a mathematical discussion of this topological algebra. In particular, we argue that the structures can be understood in the language of extended equivariant cohomology. To keep the discussion self-contained, we provide a ba-sic review of the algebraic construction of equivariant cohomology and explain how it can be understood in familiar terms as a superspace gauge algebra. We demonstrate how the Schwinger-Keldysh construction can be succinctly encoded in terms a thermal equivariant cohomology algebra which naturally acts on the operator (super)-algebra of the quantum system. The main rationale behind this exploration is to extract symmetry statements which are robust under renormalization group flow and can hence be used to understand low-energy effective field theory of near-thermal physics. To illustrate the general prin-ciples, we focus on Langevin dynamics of a Brownian particle, rephrasing some known results in terms of thermal equivariant cohomology. As described elsewhere, the general framework enables construction of effective actions for dissipative hydrodynamics and could potentially illumine our understanding of black holes.
NASA Technical Reports Server (NTRS)
Moitra, A.
1982-01-01
An implicit finite-difference algorithm is developed for the numerical solution of the incompressible three dimensional Navier-Stokes equations in the non-conservative primitive-variable formulation. The flow field about an airfoil spanning a wind-tunnel is computed. The coordinate system is generated by an extension of the two dimensional body-fitted coordinate generation techniques of Thompson, as well as that of Sorenson, into three dimensions. Two dimensional grids are stacked along a spanwise coordinate defined by a simple analytical function. A Poisson pressure equation for advancing the pressure in time is arrived at by performing a divergence operation on the momentum equations. The pressure at each time-step is calculated on the assumption that continuity be unconditionally satisfied. An eddy viscosity coefficient, computed according to the algebraic turbulence formulation of Baldwin and Lomax, simulates the effects of turbulence.
NASA Astrophysics Data System (ADS)
Giorgino, Toni
2018-07-01
The proper choice of collective variables (CVs) is central to biased-sampling free energy reconstruction methods in molecular dynamics simulations. The PLUMED 2 library, for instance, provides several sophisticated CV choices, implemented in a C++ framework; however, developing new CVs is still time consuming due to the need to provide code for the analytical derivatives of all functions with respect to atomic coordinates. We present two solutions to this problem, namely (a) symbolic differentiation and code generation, and (b) automatic code differentiation, in both cases leveraging open-source libraries (SymPy and Stan Math, respectively). The two approaches are demonstrated and discussed in detail implementing a realistic example CV, the local radius of curvature of a polymer. Users may use the code as a template to streamline the implementation of their own CVs using high-level constructs and automatic gradient computation.
NASA Technical Reports Server (NTRS)
Nieten, Joseph L.; Seraphine, Kathleen M.
1991-01-01
Procedural modeling systems, rule based modeling systems, and a method for converting a procedural model to a rule based model are described. Simulation models are used to represent real time engineering systems. A real time system can be represented by a set of equations or functions connected so that they perform in the same manner as the actual system. Most modeling system languages are based on FORTRAN or some other procedural language. Therefore, they must be enhanced with a reaction capability. Rule based systems are reactive by definition. Once the engineering system has been decomposed into a set of calculations using only basic algebraic unary operations, a knowledge network of calculations and functions can be constructed. The knowledge network required by a rule based system can be generated by a knowledge acquisition tool or a source level compiler. The compiler would take an existing model source file, a syntax template, and a symbol table and generate the knowledge network. Thus, existing procedural models can be translated and executed by a rule based system. Neural models can be provide the high capacity data manipulation required by the most complex real time models.
Exact formulas for multipole moments using Slater-type molecular orbitals
NASA Technical Reports Server (NTRS)
Jones, H. W.
1986-01-01
A triple infinite sum of formulas expressed as an expansion in Legendre polynomials is generated by use of computer algebra to represent the potential from the midpoint of two Slater-type orbitals; the charge density that determines the potential is given as the product of the two orbitals. An example using 1s orbitals shows that only a few terms are needed to obtain four-figure accuracy. Exact formulas are obtained for multipole moments by means of a careful study of expanded formulas, allowing an 'extrapolation to infinity'. This Loewdin alpha-function approach augmented by using a C matrix to characterize Slater-type orbitals can be readily generalized to all cases.
A new art code for tomographic interferometry
NASA Technical Reports Server (NTRS)
Tan, H.; Modarress, D.
1987-01-01
A new algebraic reconstruction technique (ART) code based on the iterative refinement method of least squares solution for tomographic reconstruction is presented. Accuracy and the convergence of the technique is evaluated through the application of numerically generated interferometric data. It was found that, in general, the accuracy of the results was superior to other reported techniques. The iterative method unconditionally converged to a solution for which the residual was minimum. The effects of increased data were studied. The inversion error was found to be a function of the input data error only. The convergence rate, on the other hand, was affected by all three parameters. Finally, the technique was applied to experimental data, and the results are reported.
Chaos, Fractals, and Polynomials.
ERIC Educational Resources Information Center
Tylee, J. Louis; Tylee, Thomas B.
1996-01-01
Discusses chaos theory; linear algebraic equations and the numerical solution of polynomials, including the use of the Newton-Raphson technique to find polynomial roots; fractals; search region and coordinate systems; convergence; and generating color fractals on a computer. (LRW)
Quantum corrections to Bekenstein-Hawking black hole entropy and gravity partition functions
NASA Astrophysics Data System (ADS)
Bytsenko, A. A.; Tureanu, A.
2013-08-01
Algebraic aspects of the computation of partition functions for quantum gravity and black holes in AdS3 are discussed. We compute the sub-leading quantum corrections to the Bekenstein-Hawking entropy. It is shown that the quantum corrections to the classical result can be included systematically by making use of the comparison with conformal field theory partition functions, via the AdS3/CFT2 correspondence. This leads to a better understanding of the role of modular and spectral functions, from the point of view of the representation theory of infinite-dimensional Lie algebras. Besides, the sum of known quantum contributions to the partition function can be presented in a closed form, involving the Patterson-Selberg spectral function. These contributions can be reproduced in a holomorphically factorized theory whose partition functions are associated with the formal characters of the Virasoro modules. We propose a spectral function formulation for quantum corrections to the elliptic genus from supergravity states.
Nekrasov and Argyres-Douglas theories in spherical Hecke algebra representation
NASA Astrophysics Data System (ADS)
Rim, Chaiho; Zhang, Hong
2017-06-01
AGT conjecture connects Nekrasov instanton partition function of 4D quiver gauge theory with 2D Liouville conformal blocks. We re-investigate this connection using the central extension of spherical Hecke algebra in q-coordinate representation, q being the instanton expansion parameter. Based on AFLT basis together with intertwiners we construct gauge conformal state and demonstrate its equivalence to the Liouville conformal state, with careful attention to the proper scaling behavior of the state. Using the colliding limit of regular states, we obtain the formal expression of irregular conformal states corresponding to Argyres-Douglas theory, which involves summation of functions over Young diagrams.
Twisted sigma-model solitons on the quantum projective line
NASA Astrophysics Data System (ADS)
Landi, Giovanni
2018-04-01
On the configuration space of projections in a noncommutative algebra, and for an automorphism of the algebra, we use a twisted Hochschild cocycle for an action functional and a twisted cyclic cocycle for a topological term. The latter is Hochschild-cohomologous to the former and positivity in twisted Hochschild cohomology results into a lower bound for the action functional. While the equations for the critical points are rather involved, the use of the positivity and the bound by the topological term lead to self-duality equations (thus yielding twisted noncommutative sigma-model solitons, or instantons). We present explicit nontrivial solutions on the quantum projective line.
Algebraic independence results for reciprocal sums of Fibonacci and Lucas numbers
NASA Astrophysics Data System (ADS)
Stein, Martin
2011-09-01
Let Fn and Ln denote the Fibonacci and Lucas numbers, respectively. D. Duverney, Ke. Nishioka, Ku. Nishioka and I. Shiokawa proved that the values of the Fibonacci zeta function ζF(2s) = Σn = 1∞Fn-2s are transcendental for any s∈N using Nesterenko's theorem on Ramanujan functions P(q), Q(q), and R(q). They obtained similar results for the Lucas zeta function ζL(2s) = Σn = 1∞Ln-2s and some related series. Later, C. Elsner, S. Shimomura and I. Shiokawa found conditions for the algebraic independence of these series. In my PhD thesis I generalized their approach and treated the following problem: We investigate all subsets of { ∑ n = 1∞1/Fn2s1, ∑ n = 1∞(-1)n+1/Fn2s2, ∑ n = 1∞1/Ln2s3, ∑ n = 1∞(-1)n+1/Ln2s4:s1,s2,s3,s4∈N} and decide on their algebraic independence over Q. Actually this is a special case of a more general theorem for reciprocal sums of binary recurrent sequences.
Algebraic approach to electronic spectroscopy and dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toutounji, Mohamad
Lie algebra, Zassenhaus, and parameter differentiation techniques are utilized to break up the exponential of a bilinear Hamiltonian operator into a product of noncommuting exponential operators by the virtue of the theory of Wei and Norman [J. Math. Phys. 4, 575 (1963); Proc. Am. Math. Soc., 15, 327 (1964)]. There are about three different ways to find the Zassenhaus exponents, namely, binomial expansion, Suzuki formula, and q-exponential transformation. A fourth, and most reliable method, is provided. Since linearly displaced and distorted (curvature change upon excitation/emission) Hamiltonian and spin-boson Hamiltonian may be classified as bilinear Hamiltonians, the presented algebraic algorithm (exponentialmore » operator disentanglement exploiting six-dimensional Lie algebra case) should be useful in spin-boson problems. The linearly displaced and distorted Hamiltonian exponential is only treated here. While the spin-boson model is used here only as a demonstration of the idea, the herein approach is more general and powerful than the specific example treated. The optical linear dipole moment correlation function is algebraically derived using the above mentioned methods and coherent states. Coherent states are eigenvectors of the bosonic lowering operator a and not of the raising operator a{sup +}. While exp(a{sup +}) translates coherent states, exp(a{sup +}a{sup +}) operation on coherent states has always been a challenge, as a{sup +} has no eigenvectors. Three approaches, and the results, of that operation are provided. Linear absorption spectra are derived, calculated, and discussed. The linear dipole moment correlation function for the pure quadratic coupling case is expressed in terms of Legendre polynomials to better show the even vibronic transitions in the absorption spectrum. Comparison of the present line shapes to those calculated by other methods is provided. Franck-Condon factors for both linear and quadratic couplings are exactly accounted for by the herein calculated linear absorption spectra. This new methodology should easily pave the way to calculating the four-point correlation function, F({tau}{sub 1},{tau}{sub 2},{tau}{sub 3},{tau}{sub 4}), of which the optical nonlinear response function may be procured, as evaluating F({tau}{sub 1},{tau}{sub 2},{tau}{sub 3},{tau}{sub 4}) is only evaluating the optical linear dipole moment correlation function iteratively over different time intervals, which should allow calculating various optical nonlinear temporal/spectral signals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pramanik, Souvik, E-mail: souvick.in@gmail.com; Moussa, Mohamed, E-mail: mohamed.ibrahim@fsc.bu.edu.eg; Faizal, Mir, E-mail: f2mir@uwaterloo.ca
In this paper, the deformation of the Heisenberg algebra, consistent with both the generalized uncertainty principle and doubly special relativity, has been analyzed. It has been observed that, though this algebra can give rise to fractional derivative terms in the corresponding quantum mechanical Hamiltonian, a formal meaning can be given to them by using the theory of harmonic extensions of function. Depending on this argument, the expression of the propagator of the path integral corresponding to the deformed Heisenberg algebra, has been obtained. In particular, the consistent expression of the one dimensional free particle propagator has been evaluated explicitly. Withmore » this propagator in hand, it has been shown that, even in free particle case, normal generalized uncertainty principle and doubly special relativity show very much different result.« less
Quantum group structure and local fields in the algebraic approach to 2D gravity
NASA Astrophysics Data System (ADS)
Schnittger, J.
1995-07-01
This review contains a summary of the work by J.-L. Gervais and the author on the operator approach to 2d gravity. Special emphasis is placed on the construction of local observables — the Liouville exponentials and the Liouville field itself — and the underlying algebra of chiral vertex operators. The double quantum group structure arising from the presence of two screening charges is discussed and the generalized algebra and field operators are derived. In the last part, we show that our construction gives rise to a natural definition of a quantum tau function, which is a noncommutative version of the classical group-theoretic representation of the Liouville fields by Leznov and Saveliev.
An algebraic interpretation of PSP composition.
Vaucher, G
1998-01-01
The introduction of time in artificial neurons is a delicate problem on which many groups are working. Our approach combines some properties of biological models and the algebraic properties of McCulloch and Pitts artificial neuron (AN) (McCulloch and Pitts, 1943) to produce a new model which links both characteristics. In this extended artificial neuron, postsynaptic potentials (PSPs) are considered as numerical elements, having two degrees of freedom, on which the neuron computes operations. Modelled in this manner, a group of neurons can be seen as a computer with an asynchronous architecture. To formalize the functioning of this computer, we propose an algebra of impulses. This approach might also be interesting in the modelling of the passive electrical properties in some biological neurons.
Continuum limit and symmetries of the periodic gℓ(1|1) spin chain
NASA Astrophysics Data System (ADS)
Gainutdinov, A. M.; Read, N.; Saleur, H.
2013-06-01
This paper is the first in a series devoted to the study of logarithmic conformal field theories (LCFT) in the bulk. Building on earlier work in the boundary case, our general strategy consists in analyzing the algebraic properties of lattice regularizations (quantum spin chains) of these theories. In the boundary case, a crucial step was the identification of the space of states as a bimodule over the Temperley-Lieb (TL) algebra and the quantum group Uqsℓ(2). The extension of this analysis in the bulk case involves considerable difficulties, since the Uqsℓ(2) symmetry is partly lost, while the TL algebra is replaced by a much richer version (the Jones-Temperley-Lieb — JTL — algebra). Even the simplest case of the gℓ(1|1) spin chain — corresponding to the c=-2 symplectic fermions theory in the continuum limit — presents very rich aspects, which we will discuss in several papers. In this first work, we focus on the symmetries of the spin chain, that is, the centralizer of the JTL algebra in the alternating tensor product of the gℓ(1|1) fundamental representation and its dual. We prove that this centralizer is only a subalgebra of Uqsℓ(2) at q=i that we dub Uqoddsℓ(2). We then begin the analysis of the continuum limit of the JTL algebra: using general arguments about the regularization of the stress-energy tensor, we identify families of JTL elements going over to the Virasoro generators Ln,L in the continuum limit. We then discuss the sℓ(2) symmetry of the (continuum limit) symplectic fermions theory from the lattice and JTL point of view. The analysis of the spin chain as a bimodule over Uqoddsℓ(2) and JTLN is discussed in the second paper of this series.
Mathematics for generative processes: Living and non-living systems
NASA Astrophysics Data System (ADS)
Giannantoni, Corrado
2006-05-01
The traditional Differential Calculus often shows its limits when describing living systems. These in fact present such a richness of characteristics that are, in the majority of cases, much wider than the description capabilities of the usual differential equations. Such an aspect became particularly evident during the research (completed in 2001) for an appropriate formulation of Odum's Maximum Em-Power Principle (proposed by the Author as a possible Fourth Thermodynamic Principle). In fact, in such a context, the particular non-conservative Algebra, adopted to account for both Quality and quantity of generative processes, suggested we introduce a faithfully corresponding concept of "derivative" (of both integer and fractional order) to describe dynamic conditions however variable. The new concept not only succeeded in pointing out the corresponding differential bases of all the rules of Emergy Algebra, but also represented the preferential guide in order to recognize the most profound physical nature of the basic processes which mostly characterize self-organizing Systems (co-production, co-injection, inter-action, feed-back, splits, etc.).From a mathematical point of view, the most important novelties introduced by such a new approach are: (i) the derivative of any integer or fractional order can be obtained independently from the evaluation of its lower order derivatives; (ii) the exponential function plays an extremely hinge role, much more marked than in the case of traditional differential equations; (iii) wide classes of differential equations, traditionally considered as being non-linear, become "intrinsically" linear when reconsidered in terms of "incipient" derivatives; (iv) their corresponding explicit solutions can be given in terms of new classes of functions (such as "binary" and "duet" functions); (v) every solution shows a sort of "persistence of form" when representing the product generated with respect to the agents of the generating process; (iv) and, at the same time, an intrinsic "genetic" ordinality which reflects the fact that any product "generated" is something more than the sum of the generating elements. Consequently all these properties enable us to follow the evolution of the "product" of any generative process from the very beginning, in its "rising", in its "incipient" act of being born. This is why the new "operator" introduced, specifically apt when describing the above-mentioned aspects, was termed as "incipient" (or "spring") derivative.In addition, even if the considered approach was suggested by the analysis of self-organizing living Systems, some specific examples of non-living Systems will also be mentioned. In fact, what is much more surprising is that such an approach is even more valid (than the traditional one) to describe non-living Systems too. In fact the resulting "drift" between traditional solutions and "incipient" solutions led us to reconsider the phenomenon of Mercury's precessions. The satisfactory agreement with the astronomical data suggested, as a consequential hypothesis, a different interpretation of its physical origin, substantially based on the Maximum Em-Power Principle.
Exploring Nonroutine Functions Algebraically and Graphically
ERIC Educational Resources Information Center
Trinter, Christine P.; Garofalo, Joe
2011-01-01
Nonroutine function tasks are more challenging than most typical high school mathematics tasks. Nonroutine tasks encourage students to expand their thinking about functions and their approaches to problem solving. As a result, they gain greater appreciation for the power of multiple representations and a richer understanding of functions. This…
Multiple-generator errors are unavoidable under model misspecification.
Jewett, D L; Zhang, Z
1995-08-01
Model misspecification poses a major problem for dipole source localization (DSL) because it causes insidious multiple-generator errors (MulGenErrs) to occur in the fitted dipole parameters. This paper describes how and why this occurs, based upon simple algebraic considerations. MulGenErrs must occur, to some degree, in any DSL analysis of real data because there is model misspecification and mathematically the equations used for the simultaneously active generators must be of a different form than the equations for each generator active alone.
SYVA: A program to analyze symmetry of molecules based on vector algebra
NASA Astrophysics Data System (ADS)
Gyevi-Nagy, László; Tasi, Gyula
2017-06-01
Symmetry is a useful concept in physics and chemistry. It can be used to find out some simple properties of a molecule or simplify complex calculations. In this paper a simple vector algebraic method is described to determine all symmetry elements of an arbitrary molecule. To carry out the symmetry analysis, a program has been written, which is also capable of generating the framework group of the molecule, revealing the symmetry properties of normal modes of vibration and symmetrizing the structure. To demonstrate the capabilities of the program, it is compared to other common widely used stand-alone symmetry analyzer (SYMMOL, Symmetrizer) and molecular modeling (NWChem, ORCA, MRCC) software. SYVA can generate input files for molecular modeling programs, e.g. Gaussian, using precisely symmetrized molecular structures. Possible applications are also demonstrated by integrating SYVA with the GAMESS and MRCC software.
Families of vector-like deformations of relativistic quantum phase spaces, twists and symmetries
NASA Astrophysics Data System (ADS)
Meljanac, Daniel; Meljanac, Stjepan; Pikutić, Danijel
2017-12-01
Families of vector-like deformed relativistic quantum phase spaces and corresponding realizations are analyzed. A method for a general construction of the star product is presented. The corresponding twist, expressed in terms of phase space coordinates, in the Hopf algebroid sense is presented. General linear realizations are considered and corresponding twists, in terms of momenta and Poincaré-Weyl generators or gl(n) generators are constructed and R-matrix is discussed. A classification of linear realizations leading to vector-like deformed phase spaces is given. There are three types of spaces: (i) commutative spaces, (ii) κ -Minkowski spaces and (iii) κ -Snyder spaces. The corresponding star products are (i) associative and commutative (but non-local), (ii) associative and non-commutative and (iii) non-associative and non-commutative, respectively. Twisted symmetry algebras are considered. Transposed twists and left-right dual algebras are presented. Finally, some physical applications are discussed.
Higgsing the stringy higher spin symmetry
Gaberdiel, Matthias R.; Peng, Cheng; Zadeh, Ida G.
2015-10-01
It has recently been argued that the symmetric orbifold theory of T 4 is dual to string theory on AdS 3 × S 3 × T 4 at the tensionless point. At this point in moduli space, the theory possesses a very large symmetry algebra that includes, in particular, a W ∞ algebra capturing the gauge fields of a dual higher spin theory. Using conformal perturbation theory, we study the behaviour of the symmetry generators of the symmetric orbifold theory under the deformation that corresponds to switching on the string tension. We show that the generators fall nicely into Reggemore » trajectories, with the higher spin fields corresponding to the leading Regge trajectory. We also estimate the form of the Regge trajectories for large spin, and find evidence for the familiar logarithmic behaviour, thereby suggesting that the symmetric orbifold theory is dual to an AdS background with pure RR flux.« less
ERIC Educational Resources Information Center
Muir, Tracey; Bragg, Leicha A.; Livy, Sharyn
2015-01-01
The concept of functional thinking as a foundational idea associated with algebraic thinking is explored by Tracey Muir, Leicha Bragg and Sharyn Livy. They provide ideas for using children's literature as a context to promote functional thinking
USSR and Eastern Europe Scientific Abstracts, Electronics and Electrical Engineering, Number 33.
1977-09-27
reduces to an infinite system of linear homogeneous algebraic equations and leads to Mathieu functions of the k-th order. The solution is convergent in...cylinder walls to be infinitesimally thin ideal conductors. The problem is reduced to a system of Fredholm linear algebraic equations of the second...EXPECTED DEVELOPMENTS OF TRANSISTORIZED LOW-NOISE MICROWAVE AMPLIFIERS Prague SDELOVACI TECHNIKA in Czech Vol 25, No 2, Feb 77 pp 47-49 TALLO, ANTON
Microscopic analysis of currency and stock exchange markets.
Kador, L
1999-08-01
Recently it was shown that distributions of short-term price fluctuations in foreign-currency exchange exhibit striking similarities to those of velocity differences in turbulent flows. Similar profiles represent the spectral-diffusion behavior of impurity molecules in disordered solids at low temperatures. It is demonstrated that a microscopic statistical theory of the spectroscopic line shapes can be applied to the other two phenomena. The theory interprets the financial data in terms of information which becomes available to the traders and their reactions as a function of time. The analysis shows that there is no characteristic time scale in financial markets, but that instead stretched-exponential or algebraic memory functions yield good agreement with the price data. For an algebraic function, the theory yields truncated Lévy distributions which are often observed in stock exchange markets.
Microscopic analysis of currency and stock exchange markets
NASA Astrophysics Data System (ADS)
Kador, L.
1999-08-01
Recently it was shown that distributions of short-term price fluctuations in foreign-currency exchange exhibit striking similarities to those of velocity differences in turbulent flows. Similar profiles represent the spectral-diffusion behavior of impurity molecules in disordered solids at low temperatures. It is demonstrated that a microscopic statistical theory of the spectroscopic line shapes can be applied to the other two phenomena. The theory interprets the financial data in terms of information which becomes available to the traders and their reactions as a function of time. The analysis shows that there is no characteristic time scale in financial markets, but that instead stretched-exponential or algebraic memory functions yield good agreement with the price data. For an algebraic function, the theory yields truncated Lévy distributions which are often observed in stock exchange markets.
The Functionator 3000: Transforming Numbers and Children
ERIC Educational Resources Information Center
Fisher, Elaine Cerrato; Roy, George; Reeves, Charles
2013-01-01
Mrs. Fisher's class was learning about arithmetic functions by pretending to operate real-world "function machines" (Reeves 2006). Functions are a unifying mathematics topic, and a great deal of emphasis is placed on understanding them in prekindergarten through grade 12 (Kilpatrick and Izsák 2008). In its Algebra Content Standard, the…
NASA Astrophysics Data System (ADS)
Liska, Sebastian; Colonius, Tim
2017-02-01
A new parallel, computationally efficient immersed boundary method for solving three-dimensional, viscous, incompressible flows on unbounded domains is presented. Immersed surfaces with prescribed motions are generated using the interpolation and regularization operators obtained from the discrete delta function approach of the original (Peskin's) immersed boundary method. Unlike Peskin's method, boundary forces are regarded as Lagrange multipliers that are used to satisfy the no-slip condition. The incompressible Navier-Stokes equations are discretized on an unbounded staggered Cartesian grid and are solved in a finite number of operations using lattice Green's function techniques. These techniques are used to automatically enforce the natural free-space boundary conditions and to implement a novel block-wise adaptive grid that significantly reduces the run-time cost of solutions by limiting operations to grid cells in the immediate vicinity and near-wake region of the immersed surface. These techniques also enable the construction of practical discrete viscous integrating factors that are used in combination with specialized half-explicit Runge-Kutta schemes to accurately and efficiently solve the differential algebraic equations describing the discrete momentum equation, incompressibility constraint, and no-slip constraint. Linear systems of equations resulting from the time integration scheme are efficiently solved using an approximation-free nested projection technique. The algebraic properties of the discrete operators are used to reduce projection steps to simple discrete elliptic problems, e.g. discrete Poisson problems, that are compatible with recent parallel fast multipole methods for difference equations. Numerical experiments on low-aspect-ratio flat plates and spheres at Reynolds numbers up to 3700 are used to verify the accuracy and physical fidelity of the formulation.
Generalized EMV-Effect Algebras
NASA Astrophysics Data System (ADS)
Borzooei, R. A.; Dvurečenskij, A.; Sharafi, A. H.
2018-04-01
Recently in Dvurečenskij and Zahiri (2017), new algebraic structures, called EMV-algebras which generalize both MV-algebras and generalized Boolean algebras, were introduced. We present equivalent conditions for EMV-algebras. In addition, we define a partial algebraic structure, called a generalized EMV-effect algebra, which is close to generalized MV-effect algebras. Finally, we show that every generalized EMV-effect algebra is either an MV-effect algebra or can be embedded into an MV-effect algebra as a maximal ideal.
C*-algebras associated with reversible extensions of logistic maps
NASA Astrophysics Data System (ADS)
Kwaśniewski, Bartosz K.
2012-10-01
The construction of reversible extensions of dynamical systems presented in a previous paper by the author and A.V. Lebedev is enhanced, so that it applies to arbitrary mappings (not necessarily with open range). It is based on calculating the maximal ideal space of C*-algebras that extends endomorphisms to partial automorphisms via partial isometric representations, and involves a new set of 'parameters' (the role of parameters is played by chosen sets or ideals). As model examples, we give a thorough description of reversible extensions of logistic maps and a classification of systems associated with compression of unitaries generating homeomorphisms of the circle. Bibliography: 34 titles.
Electromagnetic duality and the electric memory effect
NASA Astrophysics Data System (ADS)
Hamada, Yuta; Seo, Min-Seok; Shiu, Gary
2018-02-01
We study large gauge transformations for soft photons in quantum electrodynamics which, together with the helicity operator, form an ISO(2) algebra. We show that the two non-compact generators of the ISO(2) algebra correspond respectively to the residual gauge symmetry and its electromagnetic dual gauge symmetry that emerge at null infinity. The former is helicity universal (electric in nature) while the latter is helicity distinguishing (magnetic in nature). Thus, the conventional large gauge transformation is electric in nature, and is naturally associated with a scalar potential. We suggest that the electric Aharonov-Bohm effect is a direct measure for the electromagnetic memory arising from large gauge transformations.
Tropical geometry of statistical models.
Pachter, Lior; Sturmfels, Bernd
2004-11-16
This article presents a unified mathematical framework for inference in graphical models, building on the observation that graphical models are algebraic varieties. From this geometric viewpoint, observations generated from a model are coordinates of a point in the variety, and the sum-product algorithm is an efficient tool for evaluating specific coordinates. Here, we address the question of how the solutions to various inference problems depend on the model parameters. The proposed answer is expressed in terms of tropical algebraic geometry. The Newton polytope of a statistical model plays a key role. Our results are applied to the hidden Markov model and the general Markov model on a binary tree.
Remarks towards the spectrum of the Heisenberg spin chain type models
NASA Astrophysics Data System (ADS)
Burdík, Č.; Fuksa, J.; Isaev, A. P.; Krivonos, S. O.; Navrátil, O.
2015-05-01
The integrable close and open chain models can be formulated in terms of generators of the Hecke algebras. In this review paper, we describe in detail the Bethe ansatz for the XXX and the XXZ integrable close chain models. We find the Bethe vectors for two-component and inhomogeneous models. We also find the Bethe vectors for the fermionic realization of the integrable XXX and XXZ close chain models by means of the algebraic and coordinate Bethe ansatz. Special modification of the XXZ closed spin chain model ("small polaron model") is considered. Finally, we discuss some questions relating to the general open Hecke chain models.
On the elliptic genera of manifolds of Spin(7) holonomy
Benjamin, Nathan; Harrison, Sarah M.; Kachru, Shamit; ...
2015-12-16
Superstring compactification on a manifold of Spin(7) holonomy gives rise to a 2d worldsheet conformal field theory with an extended supersymmetry algebra. The N=1 superconformal algebra is extended by additional generators of spins 2 and 5/2, and instead of just superconformal symmetry one has a c = 12 realization of the symmetry group SW(3/2,2). In this paper, we compute the characters of this supergroup and decompose the elliptic genus of a general Spin(7) compactification in terms of these characters. Here, we find suggestive relations to various sporadic groups, which are made more precise in a companion paper.
Analytical solutions for systems of partial differential-algebraic equations.
Benhammouda, Brahim; Vazquez-Leal, Hector
2014-01-01
This work presents the application of the power series method (PSM) to find solutions of partial differential-algebraic equations (PDAEs). Two systems of index-one and index-three are solved to show that PSM can provide analytical solutions of PDAEs in convergent series form. What is more, we present the post-treatment of the power series solutions with the Laplace-Padé (LP) resummation method as a useful strategy to find exact solutions. The main advantage of the proposed methodology is that the procedure is based on a few straightforward steps and it does not generate secular terms or depends of a perturbation parameter.
Inquiry-Based Learning of Transcendental Functions in Calculus
ERIC Educational Resources Information Center
Ekici, Celil; Gard, Andrew
2017-01-01
In a series of group activities supplemented with independent explorations and assignments, calculus students investigate functions similar to their own derivatives. Graphical, numerical, and algebraic perspectives are suggested, leading students to develop deep intuition into elementary transcendental functions even as they lay the foundation for…
Improved finite-difference computation of the van der Waals force: One-dimensional case
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinto, Fabrizio
2009-10-15
We present an improved demonstration of the calculation of Casimir forces in one-dimensional systems based on the recently proposed numerical imaginary frequency Green's function computation approach. The dispersion force on two thick lossy dielectric slabs separated by an empty gap and placed within a perfectly conducting cavity is obtained from the Green's function of the modified Helmholtz equation by means of an ordinary finite-difference method. In order to demonstrate the possibility to develop algorithms to explore complex geometries in two and three dimensions to higher order in the mesh spacing, we generalize existing classical electromagnetism algebraic methods to generate themore » difference equations for dielectric boundaries not coinciding with any grid points. Diagnostic tests are presented to monitor the accuracy of our implementation of the method and follow-up applications in higher dimensions are introduced.« less
NASA Astrophysics Data System (ADS)
Saito, Asaki; Yasutomi, Shin-ichi; Tamura, Jun-ichi; Ito, Shunji
2015-06-01
We introduce a true orbit generation method enabling exact simulations of dynamical systems defined by arbitrary-dimensional piecewise linear fractional maps, including piecewise linear maps, with rational coefficients. This method can generate sufficiently long true orbits which reproduce typical behaviors (inherent behaviors) of these systems, by properly selecting algebraic numbers in accordance with the dimension of the target system, and involving only integer arithmetic. By applying our method to three dynamical systems—that is, the baker's transformation, the map associated with a modified Jacobi-Perron algorithm, and an open flow system—we demonstrate that it can reproduce their typical behaviors that have been very difficult to reproduce with conventional simulation methods. In particular, for the first two maps, we show that we can generate true orbits displaying the same statistical properties as typical orbits, by estimating the marginal densities of their invariant measures. For the open flow system, we show that an obtained true orbit correctly converges to the stable period-1 orbit, which is inherently possessed by the system.
Symmetries for Light-Front Quantization of Yukawa Model with Renormalization
NASA Astrophysics Data System (ADS)
Żochowski, Jan; Przeszowski, Jerzy A.
2017-12-01
In this work we discuss the Yukawa model with the extra term of self-interacting scalar field in D=1+3 dimensions. We present the method of derivation the light-front commutators and anti-commutators from the Heisenberg equations induced by the kinematical generating operator of the translation P+. Mentioned Heisenberg equations are the starting point for obtaining this algebra of the (anti-) commutators. Some discrepancies between existing and proposed method of quantization are revealed. The Lorentz and the CPT symmetry, together with some features of the quantum theory were applied to obtain the two-point Wightman function for the free fermions. Moreover, these Wightman functions were computed especially without referring to the Fock expansion. The Gaussian effective potential for the Yukawa model was found in the terms of the Wightman functions. It was regularized by the space-like point-splitting method. The coupling constants within the model were redefined. The optimum mass parameters remained regularization independent. Finally, the Gaussian effective potential was renormalized.