Sample records for algebraic model checking

  1. Algebraic model checking for Boolean gene regulatory networks.

    PubMed

    Tran, Quoc-Nam

    2011-01-01

    We present a computational method in which modular and Groebner bases (GB) computation in Boolean rings are used for solving problems in Boolean gene regulatory networks (BN). In contrast to other known algebraic approaches, the degree of intermediate polynomials during the calculation of Groebner bases using our method will never grow resulting in a significant improvement in running time and memory space consumption. We also show how calculation in temporal logic for model checking can be done by means of our direct and efficient Groebner basis computation in Boolean rings. We present our experimental results in finding attractors and control strategies of Boolean networks to illustrate our theoretical arguments. The results are promising. Our algebraic approach is more efficient than the state-of-the-art model checker NuSMV on BNs. More importantly, our approach finds all solutions for the BN problems.

  2. A Hierarchy of Proof Rules for Checking Differential Invariance of Algebraic Sets

    DTIC Science & Technology

    2014-11-01

    linear hybrid systems by linear algebraic methods. In SAS, volume 6337 of LNCS, pages 373–389. Springer, 2010. [19] E. W. Mayr. Membership in polynomial...383–394, 2009. [31] A. Tarski. A decision method for elementary algebra and geometry. Bull. Amer. Math. Soc., 59, 1951. [32] A. Tiwari. Abstractions...A Hierarchy of Proof Rules for Checking Differential Invariance of Algebraic Sets Khalil Ghorbal1 Andrew Sogokon2 André Platzer1 November 2014 CMU

  3. An effective automatic procedure for testing parameter identifiability of HIV/AIDS models.

    PubMed

    Saccomani, Maria Pia

    2011-08-01

    Realistic HIV models tend to be rather complex and many recent models proposed in the literature could not yet be analyzed by traditional identifiability testing techniques. In this paper, we check a priori global identifiability of some of these nonlinear HIV models taken from the recent literature, by using a differential algebra algorithm based on previous work of the author. The algorithm is implemented in a software tool, called DAISY (Differential Algebra for Identifiability of SYstems), which has been recently released (DAISY is freely available on the web site http://www.dei.unipd.it/~pia/ ). The software can be used to automatically check global identifiability of (linear and) nonlinear models described by polynomial or rational differential equations, thus providing a general and reliable tool to test global identifiability of several HIV models proposed in the literature. It can be used by researchers with a minimum of mathematical background.

  4. Intelligently deciphering unintelligible designs: algorithmic algebraic model checking in systems biology

    PubMed Central

    Mishra, Bud

    2009-01-01

    Systems biology, as a subject, has captured the imagination of both biologists and systems scientists alike. But what is it? This review provides one researcher's somewhat idiosyncratic view of the subject, but also aims to persuade young scientists to examine the possible evolution of this subject in a rich historical context. In particular, one may wish to read this review to envision a subject built out of a consilience of many interesting concepts from systems sciences, logic and model theory, and algebra, culminating in novel tools, techniques and theories that can reveal deep principles in biology—seen beyond mere observations. A particular focus in this review is on approaches embedded in an embryonic program, dubbed ‘algorithmic algebraic model checking’, and its powers and limitations. PMID:19364723

  5. A Practical Approach to Implementing Real-Time Semantics

    NASA Technical Reports Server (NTRS)

    Luettgen, Gerald; Bhat, Girish; Cleaveland, Rance

    1999-01-01

    This paper investigates implementations of process algebras which are suitable for modeling concurrent real-time systems. It suggests an approach for efficiently implementing real-time semantics using dynamic priorities. For this purpose a proces algebra with dynamic priority is defined, whose semantics corresponds one-to-one to traditional real-time semantics. The advantage of the dynamic-priority approach is that it drastically reduces the state-space sizes of the systems in question while preserving all properties of their functional and real-time behavior. The utility of the technique is demonstrated by a case study which deals with the formal modeling and verification of the SCSI-2 bus-protocol. The case study is carried out in the Concurrency Workbench of North Carolina, an automated verification tool in which the process algebra with dynamic priority is implemented. It turns out that the state space of the bus-protocol model is about an order of magnitude smaller than the one resulting from real-time semantics. The accuracy of the model is proved by applying model checking for verifying several mandatory properties of the bus protocol.

  6. Model Checking with Edge-Valued Decision Diagrams

    NASA Technical Reports Server (NTRS)

    Roux, Pierre; Siminiceanu, Radu I.

    2010-01-01

    We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library. We provide efficient algorithms for manipulating EVMDDs and review the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi- Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools. Compared to the CUDD package, our tool is several orders of magnitude faster

  7. Analysis of DIRAC's behavior using model checking with process algebra

    NASA Astrophysics Data System (ADS)

    Remenska, Daniela; Templon, Jeff; Willemse, Tim; Bal, Henri; Verstoep, Kees; Fokkink, Wan; Charpentier, Philippe; Graciani Diaz, Ricardo; Lanciotti, Elisa; Roiser, Stefan; Ciba, Krzysztof

    2012-12-01

    DIRAC is the grid solution developed to support LHCb production activities as well as user data analysis. It consists of distributed services and agents delivering the workload to the grid resources. Services maintain database back-ends to store dynamic state information of entities such as jobs, queues, staging requests, etc. Agents use polling to check and possibly react to changes in the system state. Each agent's logic is relatively simple; the main complexity lies in their cooperation. Agents run concurrently, and collaborate using the databases as shared memory. The databases can be accessed directly by the agents if running locally or through a DIRAC service interface if necessary. This shared-memory model causes entities to occasionally get into inconsistent states. Tracing and fixing such problems becomes formidable due to the inherent parallelism present. We propose more rigorous methods to cope with this. Model checking is one such technique for analysis of an abstract model of a system. Unlike conventional testing, it allows full control over the parallel processes execution, and supports exhaustive state-space exploration. We used the mCRL2 language and toolset to model the behavior of two related DIRAC subsystems: the workload and storage management system. Based on process algebra, mCRL2 allows defining custom data types as well as functions over these. This makes it suitable for modeling the data manipulations made by DIRAC's agents. By visualizing the state space and replaying scenarios with the toolkit's simulator, we have detected race-conditions and deadlocks in these systems, which, in several cases, were confirmed to occur in the reality. Several properties of interest were formulated and verified with the tool. Our future direction is automating the translation from DIRAC to a formal model.

  8. Computing with impure numbers - Automatic consistency checking and units conversion using computer algebra

    NASA Technical Reports Server (NTRS)

    Stoutemyer, D. R.

    1977-01-01

    The computer algebra language MACSYMA enables the programmer to include symbolic physical units in computer calculations, and features automatic detection of dimensionally-inhomogeneous formulas and conversion of inconsistent units in a dimensionally homogeneous formula. Some examples illustrate these features.

  9. Using computer algebra and SMT-solvers to analyze a mathematical model of cholera propagation

    NASA Astrophysics Data System (ADS)

    Trujillo Arredondo, Mariana

    2014-06-01

    We analyze a mathematical model for the transmission of cholera. The model is already defined and involves variables such as the pathogen agent, which in this case is the bacterium Vibrio cholera, and the human population. The human population is divided into three classes: susceptible, infectious and removed. Using Computer Algebra, specifically Maple we obtain two equilibrium states: the disease free state and the endemic state. Using Maple it is possible to prove that the disease free state is locally asymptotically stable if and only if R0 < 1. Using Maple it is possible to prove that the endemic equilibrium state is locally stable when it exists, it is to say when R0 > 1. Using the package Red-Log of the Computer algebra system Reduce and the SMT-Solver Z3Py it is possible to obtain numerical conditions for the model. The formula for the basic reproductive number makes a synthesis with all epidemic parameters in the model. Also it is possible to make numerical simulations which are very illustrative about the epidemic patters that are expected to be observed in real situations. We claim that these kinds of software are very useful in the analysis of epidemic models given that the symbolic computation provides algebraic formulas for the basic reproductive number and such algebraic formulas are very useful to derive control measures. For other side, computer algebra software is a powerful tool to make the stability analysis for epidemic models given that the all steps in the stability analysis can be made automatically: finding the equilibrium points, computing the jacobian, computing the characteristic polynomial for the jacobian, and applying the Routh-Hurwitz theorem to the characteristic polynomial. Finally, using SMT-Solvers is possible to make automatically checks of satisfiability, validity and quantifiers elimination being these computations very useful to analyse complicated epidemic models.

  10. Anti-commutative Gröbner-Shirshov basis of a free Lie algebra

    NASA Astrophysics Data System (ADS)

    Bokut, L. A.; Chen, Yuqun; Li, Yu

    2009-03-01

    One of the natural ways to prove that the Hall words (Philip Hall, 1933) consist of a basis of a free Lie algebra is a direct construction: to start with a linear space spanned by Hall words, to define the Lie product of Hall words, and then to check that the product yields the Lie identities (Marshall Hall, 1950). Here we suggest another way using the Composition-Diamond lemma for free anti-commutative (non-associative) algebras (A.I. Shirshov, 1962).

  11. Statistical mechanics of broadcast channels using low-density parity-check codes.

    PubMed

    Nakamura, Kazutaka; Kabashima, Yoshiyuki; Morelos-Zaragoza, Robert; Saad, David

    2003-03-01

    We investigate the use of Gallager's low-density parity-check (LDPC) codes in a degraded broadcast channel, one of the fundamental models in network information theory. Combining linear codes is a standard technique in practical network communication schemes and is known to provide better performance than simple time sharing methods when algebraic codes are used. The statistical physics based analysis shows that the practical performance of the suggested method, achieved by employing the belief propagation algorithm, is superior to that of LDPC based time sharing codes while the best performance, when received transmissions are optimally decoded, is bounded by the time sharing limit.

  12. Model-Checking with Edge-Valued Decision Diagrams

    NASA Technical Reports Server (NTRS)

    Roux, Pierre; Siminiceanu, Radu I.

    2010-01-01

    We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library along with state-of-the-art algorithms for building the transition relation and the state space of discrete state systems. We provide efficient algorithms for manipulating EVMDDs and give upper bounds of the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi-Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools: EVMDDs for encoding arithmetic expressions, identity-reduced MDDs for representing the transition relation, and the saturation algorithm for reachability analysis. We compare our new symbolic model checking EVMDD library with the widely used CUDD package and show that, in many cases, our tool is several orders of magnitude faster than CUDD.

  13. RealSurf - A Tool for the Interactive Visualization of Mathematical Models

    NASA Astrophysics Data System (ADS)

    Stussak, Christian; Schenzel, Peter

    For applications in fine art, architecture and engineering it is often important to visualize and to explore complex mathematical models. In former times there were static models of them collected in museums respectively in mathematical institutes. In order to check their properties for esthetical reasons it could be helpful to explore them interactively in 3D in real time. For the class of implicitly given algebraic surfaces we developed the tool RealSurf. Here we give an introduction to the program and some hints for the design of interesting surfaces.

  14. Reflective thinking in solving an algebra problem: a case study of field independent-prospective teacher

    NASA Astrophysics Data System (ADS)

    Agustan, S.; Juniati, Dwi; Yuli Eko Siswono, Tatag

    2017-10-01

    Nowadays, reflective thinking is one of the important things which become a concern in learning mathematics, especially in solving a mathematical problem. The purpose of this paper is to describe how the student used reflective thinking when solved an algebra problem. The subject of this research is one female student who has field independent cognitive style. This research is a descriptive exploratory study with data analysis using qualitative approach to describe in depth reflective thinking of prospective teacher in solving an algebra problem. Four main categories are used to analyse the reflective thinking in solving an algebra problem: (1) formulation and synthesis of experience, (2) orderliness of experience, (3) evaluating the experience and (4) testing the selected solution based on the experience. The results showed that the subject described the problem by using another word and the subject also found the difficulties in making mathematical modelling. The subject analysed two concepts used in solving problem. For instance, geometry related to point and line while algebra is related to algebra arithmetic operation. The subject stated that solution must have four aspect to get effective solution, specifically the ability to (a) understand the meaning of every words; (b) make mathematical modelling; (c) calculate mathematically; (d) interpret solution obtained logically. To test the internal consistency or error in solution, the subject checked and looked back related procedures and operations used. Moreover, the subject tried to resolve the problem in a different way to compare the answers which had been obtained before. The findings supported the assertion that reflective thinking provides an opportunity for the students in improving their weakness in mathematical problem solving. It can make a grow accuracy and concentration in solving a mathematical problem. Consequently, the students will get the right and logic answer by reflective thinking.

  15. Virasoro constraints for D 2n + 1 -, E 6 -, E 7 -, E 8 -type minimal models coupled to 2D gravity

    NASA Astrophysics Data System (ADS)

    Yen, Tim

    1990-12-01

    We find Virasoro constraints for D 2 n + 1 -, E 6 -, E 7 -, E 8 -type models analogous to the recently discovered Virasoro constraints for A n-type models by Fukuma et al., and Dijkgraaf et al. We verify that the proposed Virasoro constraints give operator scaling dimensions identical to those found by Kostov. We check that these Virasoro constraints and, more generally, W-algebra constraints can be used to express correlation functions with non-primary operator in terms of correlation functions of primary operators only.

  16. Verification of Compartmental Epidemiological Models using Metamorphic Testing, Model Checking and Visual Analytics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramanathan, Arvind; Steed, Chad A; Pullum, Laura L

    Compartmental models in epidemiology are widely used as a means to model disease spread mechanisms and understand how one can best control the disease in case an outbreak of a widespread epidemic occurs. However, a significant challenge within the community is in the development of approaches that can be used to rigorously verify and validate these models. In this paper, we present an approach to rigorously examine and verify the behavioral properties of compartmen- tal epidemiological models under several common modeling scenarios including birth/death rates and multi-host/pathogen species. Using metamorphic testing, a novel visualization tool and model checking, we buildmore » a workflow that provides insights into the functionality of compartmental epidemiological models. Our initial results indicate that metamorphic testing can be used to verify the implementation of these models and provide insights into special conditions where these mathematical models may fail. The visualization front-end allows the end-user to scan through a variety of parameters commonly used in these models to elucidate the conditions under which an epidemic can occur. Further, specifying these models using a process algebra allows one to automatically construct behavioral properties that can be rigorously verified using model checking. Taken together, our approach allows for detecting implementation errors as well as handling conditions under which compartmental epidemiological models may fail to provide insights into disease spread dynamics.« less

  17. Examples of testing global identifiability of biological and biomedical models with the DAISY software.

    PubMed

    Saccomani, Maria Pia; Audoly, Stefania; Bellu, Giuseppina; D'Angiò, Leontina

    2010-04-01

    DAISY (Differential Algebra for Identifiability of SYstems) is a recently developed computer algebra software tool which can be used to automatically check global identifiability of (linear and) nonlinear dynamic models described by differential equations involving polynomial or rational functions. Global identifiability is a fundamental prerequisite for model identification which is important not only for biological or medical systems but also for many physical and engineering systems derived from first principles. Lack of identifiability implies that the parameter estimation techniques may not fail but any obtained numerical estimates will be meaningless. The software does not require understanding of the underlying mathematical principles and can be used by researchers in applied fields with a minimum of mathematical background. We illustrate the DAISY software by checking the a priori global identifiability of two benchmark nonlinear models taken from the literature. The analysis of these two examples includes comparison with other methods and demonstrates how identifiability analysis is simplified by this tool. Thus we illustrate the identifiability analysis of other two examples, by including discussion of some specific aspects related to the role of observability and knowledge of initial conditions in testing identifiability and to the computational complexity of the software. The main focus of this paper is not on the description of the mathematical background of the algorithm, which has been presented elsewhere, but on illustrating its use and on some of its more interesting features. DAISY is available on the web site http://www.dei.unipd.it/ approximately pia/. 2010 Elsevier Ltd. All rights reserved.

  18. Diffeomorphism invariance and black hole entropy

    NASA Astrophysics Data System (ADS)

    Huang, Chao-Guang; Guo, Han-Ying; Wu, Xiaoning

    2003-11-01

    The Noether-charge and the Hamiltonian realizations for the diff(M) algebra in diffeomorphism-invariant gravitational theories without a cosmological constant in any dimension are studied in a covariant formalism. We analyze how the Hamiltonian functionals form the diff(M) algebra under the Poisson brackets and show how the Noether charges with respect to the diffeomorphism generated by the vector fields and their variations in n-dimensional general relativity form this algebra. The asymptotic behaviors of vector fields generating diffeomorphism of the manifold with boundaries are discussed. It is shown that the “central extension” for a large class of vector fields is always zero on the Killing horizon. We also check whether choosing the vector fields near the horizon may pick up the Virasoro algebra. The conclusion is unfortunately negative in any dimension.

  19. Computational technique for stepwise quantitative assessment of equation correctness

    NASA Astrophysics Data System (ADS)

    Othman, Nuru'l Izzah; Bakar, Zainab Abu

    2017-04-01

    Many of the computer-aided mathematics assessment systems that are available today possess the capability to implement stepwise correctness checking of a working scheme for solving equations. The computational technique for assessing the correctness of each response in the scheme mainly involves checking the mathematical equivalence and providing qualitative feedback. This paper presents a technique, known as the Stepwise Correctness Checking and Scoring (SCCS) technique that checks the correctness of each equation in terms of structural equivalence and provides quantitative feedback. The technique, which is based on the Multiset framework, adapts certain techniques from textual information retrieval involving tokenization, document modelling and similarity evaluation. The performance of the SCCS technique was tested using worked solutions on solving linear algebraic equations in one variable. 350 working schemes comprising of 1385 responses were collected using a marking engine prototype, which has been developed based on the technique. The results show that both the automated analytical scores and the automated overall scores generated by the marking engine exhibit high percent agreement, high correlation and high degree of agreement with manual scores with small average absolute and mixed errors.

  20. Towards a model of pion generalized parton distributions from Dyson-Schwinger equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moutarde, H.

    2015-04-10

    We compute the pion quark Generalized Parton Distribution H{sup q} and Double Distributions F{sup q} and G{sup q} in a coupled Bethe-Salpeter and Dyson-Schwinger approach. We use simple algebraic expressions inspired by the numerical resolution of Dyson-Schwinger and Bethe-Salpeter equations. We explicitly check the support and polynomiality properties, and the behavior under charge conjugation or time invariance of our model. We derive analytic expressions for the pion Double Distributions and Generalized Parton Distribution at vanishing pion momentum transfer at a low scale. Our model compares very well to experimental pion form factor or parton distribution function data.

  1. An Algorithm for Interactive Modeling of Space-Transportation Engine Simulations: A Constraint Satisfaction Approach

    NASA Technical Reports Server (NTRS)

    Mitra, Debasis; Thomas, Ajai; Hemminger, Joseph; Sakowski, Barbara

    2001-01-01

    In this research we have developed an algorithm for the purpose of constraint processing by utilizing relational algebraic operators. Van Beek and others have investigated in the past this type of constraint processing from within a relational algebraic framework, producing some unique results. Apart from providing new theoretical angles, this approach also gives the opportunity to use the existing efficient implementations of relational database management systems as the underlying data structures for any relevant algorithm. Our algorithm here enhances that framework. The algorithm is quite general in its current form. Weak heuristics (like forward checking) developed within the Constraint-satisfaction problem (CSP) area could be also plugged easily within this algorithm for further enhancements of efficiency. The algorithm as developed here is targeted toward a component-oriented modeling problem that we are currently working on, namely, the problem of interactive modeling for batch-simulation of engineering systems (IMBSES). However, it could be adopted for many other CSP problems as well. The research addresses the algorithm and many aspects of the problem IMBSES that we are currently handling.

  2. Vertex Algebras W(p)Am and W(p)Dm and Constant Term Identities

    NASA Astrophysics Data System (ADS)

    Adamović, Dražen; Lin, Xianzu; Milas, Antun

    2015-03-01

    We consider AD-type orbifolds of the triplet vertex algebras W(p) extending the well-known c=1 orbifolds of lattice vertex algebras. We study the structure of Zhu's algebras A(W(p)^{A_m}) and A(W(p)^{D_m}), where A_m and D_m are cyclic and dihedral groups, respectively. A combinatorial algorithm for classification of irreducible W(p)^Γ-modules is developed, which relies on a family of constant term identities and properties of certain polynomials based on constant terms. All these properties can be checked for small values of m and p with a computer software. As a result, we argue that if certain constant term properties hold, the irreducible modules constructed in [Commun. Contemp. Math. 15 (2013), 1350028, 30 pages; Internat. J. Math. 25 (2014), 1450001, 34 pages] provide a complete list of irreducible W(p)^{A_m} and W(p)^{D_m}-modules. This paper is a continuation of our previous work on the ADE subalgebras of the triplet vertex algebra W(p).

  3. Dual number algebra method for Green's function derivatives in 3D magneto-electro-elasticity

    NASA Astrophysics Data System (ADS)

    Dziatkiewicz, Grzegorz

    2018-01-01

    The Green functions are the basic elements of the boundary element method. To obtain the boundary integral formulation the Green function and its derivative should be known for the considered differential operator. Today the interesting group of materials are electronic composites. The special case of the electronic composite is the magnetoelectroelastic continuum. The mentioned continuum is a model of the piezoelectric-piezomagnetic composites. The anisotropy of their physical properties makes the problem of Green's function determination very difficult. For that reason Green's functions for the magnetoelectroelastic continuum are not known in the closed form and numerical methods should be applied to determine such Green's functions. These means that the problem of the accurate and simply determination of Green's function derivatives is even harder. Therefore in the present work the dual number algebra method is applied to calculate numerically the derivatives of 3D Green's functions for the magnetoelectroelastic materials. The introduced method is independent on the step size and it can be treated as a special case of the automatic differentiation method. Therefore, the dual number algebra method can be applied as a tool for checking the accuracy of the well-known finite difference schemes.

  4. Anomaly-corrected supersymmetry algebra and supersymmetric holographic renormalization

    NASA Astrophysics Data System (ADS)

    An, Ok Song

    2017-12-01

    We present a systematic approach to supersymmetric holographic renormalization for a generic 5D N=2 gauged supergravity theory with matter multiplets, including its fermionic sector, with all gauge fields consistently set to zero. We determine the complete set of supersymmetric local boundary counterterms, including the finite counterterms that parameterize the choice of supersymmetric renormalization scheme. This allows us to derive holographically the superconformal Ward identities of a 4D superconformal field theory on a generic background, including the Weyl and super-Weyl anomalies. Moreover, we show that these anomalies satisfy the Wess-Zumino consistency condition. The super-Weyl anomaly implies that the fermionic operators of the dual field theory, such as the supercurrent, do not transform as tensors under rigid supersymmetry on backgrounds that admit a conformal Killing spinor, and their anticommutator with the conserved supercharge contains anomalous terms. This property is explicitly checked for a toy model. Finally, using the anomalous transformation of the supercurrent, we obtain the anomaly-corrected supersymmetry algebra on curved backgrounds admitting a conformal Killing spinor.

  5. DAISY: a new software tool to test global identifiability of biological and physiological systems.

    PubMed

    Bellu, Giuseppina; Saccomani, Maria Pia; Audoly, Stefania; D'Angiò, Leontina

    2007-10-01

    A priori global identifiability is a structural property of biological and physiological models. It is considered a prerequisite for well-posed estimation, since it concerns the possibility of recovering uniquely the unknown model parameters from measured input-output data, under ideal conditions (noise-free observations and error-free model structure). Of course, determining if the parameters can be uniquely recovered from observed data is essential before investing resources, time and effort in performing actual biomedical experiments. Many interesting biological models are nonlinear but identifiability analysis for nonlinear system turns out to be a difficult mathematical problem. Different methods have been proposed in the literature to test identifiability of nonlinear models but, to the best of our knowledge, so far no software tools have been proposed for automatically checking identifiability of nonlinear models. In this paper, we describe a software tool implementing a differential algebra algorithm to perform parameter identifiability analysis for (linear and) nonlinear dynamic models described by polynomial or rational equations. Our goal is to provide the biological investigator a completely automatized software, requiring minimum prior knowledge of mathematical modelling and no in-depth understanding of the mathematical tools. The DAISY (Differential Algebra for Identifiability of SYstems) software will potentially be useful in biological modelling studies, especially in physiology and clinical medicine, where research experiments are particularly expensive and/or difficult to perform. Practical examples of use of the software tool DAISY are presented. DAISY is available at the web site http://www.dei.unipd.it/~pia/.

  6. High level language-based robotic control system

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Inventor); Kruetz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)

    1994-01-01

    This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.

  7. High level language-based robotic control system

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Inventor); Kreutz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)

    1996-01-01

    This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.

  8. Think Inside the Box. Integrating Math in Your Classroom

    ERIC Educational Resources Information Center

    Naylor, Michael

    2005-01-01

    This brief article describes a few entertaining math "puzzles" that are easy to use with students at any grade level and with any operation. Not only do these puzzles help provide practice with facts and operations, they are also self-checking and may lead to some interesting big ideas in algebra.

  9. A Mathematics Entrance Exam for General (Non-Majors) Physics

    ERIC Educational Resources Information Center

    Chediak, Alex

    2010-01-01

    In a previous issue of "The Physics Teacher", John Hubisz explained how a mathematics background check has been used at three different colleges to determine the appropriate physics sequence for incoming students. Based on their performance, students are placed into either calculus-based physics (CBP), algebra-trig physics (ATP), or a year of…

  10. DAISY: a new software tool to test global identifiability of biological and physiological systems

    PubMed Central

    Bellu, Giuseppina; Saccomani, Maria Pia; Audoly, Stefania; D’Angiò, Leontina

    2009-01-01

    A priori global identifiability is a structural property of biological and physiological models. It is considered a prerequisite for well-posed estimation, since it concerns the possibility of recovering uniquely the unknown model parameters from measured input-output data, under ideal conditions (noise-free observations and error-free model structure). Of course, determining if the parameters can be uniquely recovered from observed data is essential before investing resources, time and effort in performing actual biomedical experiments. Many interesting biological models are nonlinear but identifiability analysis for nonlinear system turns out to be a difficult mathematical problem. Different methods have been proposed in the literature to test identifiability of nonlinear models but, to the best of our knowledge, so far no software tools have been proposed for automatically checking identifiability of nonlinear models. In this paper, we describe a software tool implementing a differential algebra algorithm to perform parameter identifiability analysis for (linear and) nonlinear dynamic models described by polynomial or rational equations. Our goal is to provide the biological investigator a completely automatized software, requiring minimum prior knowledge of mathematical modelling and no in-depth understanding of the mathematical tools. The DAISY (Differential Algebra for Identifiability of SYstems) software will potentially be useful in biological modelling studies, especially in physiology and clinical medicine, where research experiments are particularly expensive and/or difficult to perform. Practical examples of use of the software tool DAISY are presented. DAISY is available at the web site http://www.dei.unipd.it/~pia/. PMID:17707944

  11. Validation of DNA-based identification software by computation of pedigree likelihood ratios.

    PubMed

    Slooten, K

    2011-08-01

    Disaster victim identification (DVI) can be aided by DNA-evidence, by comparing the DNA-profiles of unidentified individuals with those of surviving relatives. The DNA-evidence is used optimally when such a comparison is done by calculating the appropriate likelihood ratios. Though conceptually simple, the calculations can be quite involved, especially with large pedigrees, precise mutation models etc. In this article we describe a series of test cases designed to check if software designed to calculate such likelihood ratios computes them correctly. The cases include both simple and more complicated pedigrees, among which inbred ones. We show how to calculate the likelihood ratio numerically and algebraically, including a general mutation model and possibility of allelic dropout. In Appendix A we show how to derive such algebraic expressions mathematically. We have set up these cases to validate new software, called Bonaparte, which performs pedigree likelihood ratio calculations in a DVI context. Bonaparte has been developed by SNN Nijmegen (The Netherlands) for the Netherlands Forensic Institute (NFI). It is available free of charge for non-commercial purposes (see www.dnadvi.nl for details). Commercial licenses can also be obtained. The software uses Bayesian networks and the junction tree algorithm to perform its calculations. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Computing algebraic transfer entropy and coupling directions via transcripts

    NASA Astrophysics Data System (ADS)

    Amigó, José M.; Monetti, Roberto; Graff, Beata; Graff, Grzegorz

    2016-11-01

    Most random processes studied in nonlinear time series analysis take values on sets endowed with a group structure, e.g., the real and rational numbers, and the integers. This fact allows to associate with each pair of group elements a third element, called their transcript, which is defined as the product of the second element in the pair times the first one. The transfer entropy of two such processes is called algebraic transfer entropy. It measures the information transferred between two coupled processes whose values belong to a group. In this paper, we show that, subject to one constraint, the algebraic transfer entropy matches the (in general, conditional) mutual information of certain transcripts with one variable less. This property has interesting practical applications, especially to the analysis of short time series. We also derive weak conditions for the 3-dimensional algebraic transfer entropy to yield the same coupling direction as the corresponding mutual information of transcripts. A related issue concerns the use of mutual information of transcripts to determine coupling directions in cases where the conditions just mentioned are not fulfilled. We checked the latter possibility in the lowest dimensional case with numerical simulations and cardiovascular data, and obtained positive results.

  13. Mathematical Modeling for Inherited Diseases.

    PubMed

    Anis, Saima; Khan, Madad; Khan, Saqib

    2017-01-01

    We introduced a new nonassociative algebra, namely, left almost algebra, and discussed some of its genetic properties. We discussed the relation of this algebra with flexible algebra, Jordan algebra, and generalized Jordan algebra.

  14. Mathematical Modeling for Inherited Diseases

    PubMed Central

    Khan, Saqib

    2017-01-01

    We introduced a new nonassociative algebra, namely, left almost algebra, and discussed some of its genetic properties. We discussed the relation of this algebra with flexible algebra, Jordan algebra, and generalized Jordan algebra. PMID:28781606

  15. Differences in the Processes of Solving Physics Problems between Good Physics Problem Solvers and Poor Physics Problem Solvers.

    ERIC Educational Resources Information Center

    Finegold, M.; Mass, R.

    1985-01-01

    Good problem solvers and poor problem solvers in advanced physics (N=8) were significantly different in their ability in translating, planning, and physical reasoning, as well as in problem solving time; no differences in reliance on algebraic solutions and checking problems were noted. Implications for physics teaching are discussed. (DH)

  16. Algebra for Enterprise Ontology: towards analysis and synthesis of enterprise models

    NASA Astrophysics Data System (ADS)

    Suga, Tetsuya; Iijima, Junichi

    2018-03-01

    Enterprise modeling methodologies have made enterprises more likely to be the object of systems engineering rather than craftsmanship. However, the current state of research in enterprise modeling methodologies lacks investigations of the mathematical background embedded in these methodologies. Abstract algebra, a broad subfield of mathematics, and the study of algebraic structures may provide interesting implications in both theory and practice. Therefore, this research gives an empirical challenge to establish an algebraic structure for one aspect model proposed in Design & Engineering Methodology for Organizations (DEMO), which is a major enterprise modeling methodology in the spotlight as a modeling principle to capture the skeleton of enterprises for developing enterprise information systems. The results show that the aspect model behaves well in the sense of algebraic operations and indeed constructs a Boolean algebra. This article also discusses comparisons with other modeling languages and suggests future work.

  17. A Structural Model of Algebra Achievement: Computational Fluency and Spatial Visualisation as Mediators of the Effect of Working Memory on Algebra Achievement

    ERIC Educational Resources Information Center

    Tolar, Tammy Daun; Lederberg, Amy R.; Fletcher, Jack M.

    2009-01-01

    The goal of this study was to develop and evaluate a structural model of the relations among cognitive abilities and arithmetic skills and college students' algebra achievement. The model of algebra achievement was compared to a model of performance on the Scholastic Assessment in Mathematics (SAT-M) to determine whether the pattern of relations…

  18. Pure field theories and MACSYMA algorithms

    NASA Technical Reports Server (NTRS)

    Ament, W. S.

    1977-01-01

    A pure field theory attempts to describe physical phenomena through singularity-free solutions of field equations resulting from an action principle. The physics goes into forming the action principle and interpreting specific results. Algorithms for the intervening mathematical steps are sketched. Vacuum general relativity is a pure field theory, serving as model and providing checks for generalizations. The fields of general relativity are the 10 components of a symmetric Riemannian metric tensor; those of the Einstein-Straus generalization are the 16 components of a nonsymmetric. Algebraic properties are exploited in top level MACSYMA commands toward performing some of the algorithms of that generalization. The light cone for the theory as left by Einstein and Straus is found and simplifications of that theory are discussed.

  19. Development and evaluation of form three mathematics i-Think module (Mi-T3) on algebraic formulae topic

    NASA Astrophysics Data System (ADS)

    Sam, Sazilah; Abdullah, Mohd Faizal Nizam Lee

    2017-05-01

    This article introduces the Form Three Mathematics i-Think Module (Mi-T3). The main objective of this Mi-T3 is to assist form three students develop their higher order thinking skills (HOTS). The Sidek Module Development Model (SMDM) and eight innovative thinking maps (i-Think) were applied as a guideline in developing Mi-T3. A validation stage was carried out by eight experts, and content validation achievement more than 90% obtained. A group of form three students and teachers was piloted to check the module's reliability through one to one and small group evaluation and Cronbach Alpha more than 0.90 was obtained. Implications of the study are discussed in this article.

  20. On explicit algebraic stress models for complex turbulent flows

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.; Speziale, C. G.

    1992-01-01

    Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models. This represents a generalization of the model derived by Pope who based his analysis on the Launder, Reece, and Rodi model restricted to two-dimensional turbulent flows in an inertial frame. The relationship between the new models and traditional algebraic stress models -- as well as anistropic eddy visosity models -- is theoretically established. The need for regularization is demonstrated in an effort to explain why traditional algebraic stress models have failed in complex flows. It is also shown that these explicit algebraic stress models can shed new light on what second-order closure models predict for the equilibrium states of homogeneous turbulent flows and can serve as a useful alternative in practical computations.

  1. Yang-Baxter algebras, integrable theories and Bethe Ansatz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Vega, H.J.

    1990-03-10

    This paper presents the Yang-Baxter algebras (YBA) in a general framework stressing their power to exactly solve the lattice models associated to them. The algebraic Behe Ansatz is developed as an eigenvector construction based on the YBA. The six-vertex model solution is given explicitly. The generalization of YB algebras to face language is considered. The algebraic BA for the SOS model of Andrews, Baxter and Forrester is described using these face YB algebras. It is explained how these lattice models yield both solvable massive QFT and conformal models in appropriated scaling (continuous) limits within the lattice light-cone approach. This approachmore » permit to define and solve rigorously massive QFT as an appropriate continuum limit of gapless vertex models. The deep links between the YBA and Lie algebras are analyzed including the quantum groups that underlay the trigonometric/hyperbolic YBA. Braid and quantum groups are derived from trigonometric/hyperbolic YBA in the limit of infinite spectral parameter. To conclude, some recent developments in the domain of integrable theories are summarized.« less

  2. A Direct Algorithm Maple Package of One-Dimensional Optimal System for Group Invariant Solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Han, Zhong; Chen, Yong

    2018-01-01

    To construct the one-dimensional optimal system of finite dimensional Lie algebra automatically, we develop a new Maple package One Optimal System. Meanwhile, we propose a new method to calculate the adjoint transformation matrix and find all the invariants of Lie algebra in spite of Killing form checking possible constraints of each classification. Besides, a new conception called invariance set is raised. Moreover, this Maple package is proved to be more efficiency and precise than before by applying it to some classic examples. Supported by the Global Change Research Program of China under Grant No. 2015CB95390, National Natural Science Foundation of China under Grant Nos. 11675054 and 11435005, and Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things under Grant No. ZF1213

  3. Algebraic K-theory, K-regularity, and -duality of -stable C ∗-algebras

    NASA Astrophysics Data System (ADS)

    Mahanta, Snigdhayan

    2015-12-01

    We develop an algebraic formalism for topological -duality. More precisely, we show that topological -duality actually induces an isomorphism between noncommutative motives that in turn implements the well-known isomorphism between twisted K-theories (up to a shift). In order to establish this result we model topological K-theory by algebraic K-theory. We also construct an E ∞ -operad starting from any strongly self-absorbing C ∗-algebra . Then we show that there is a functorial topological K-theory symmetric spectrum construction on the category of separable C ∗-algebras, such that is an algebra over this operad; moreover, is a module over this algebra. Along the way we obtain a new symmetric spectra valued functorial model for the (connective) topological K-theory of C ∗-algebras. We also show that -stable C ∗-algebras are K-regular providing evidence for a conjecture of Rosenberg. We conclude with an explicit description of the algebraic K-theory of a x+ b-semigroup C ∗-algebras coming from number theory and that of -stabilized noncommutative tori.

  4. Virasoro algebra in the KN algebra; Bosonic string with fermionic ghosts on Riemann surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koibuchi, H.

    1991-10-10

    In this paper the bosonic string model with fermionic ghosts is considered in the framework of the KN algebra. The authors' attentions are paid to representations of KN algebra and a Clifford algebra of the ghosts. The authors show that a Virasoro-like algebra is obtained from KN algebra when KN algebra has certain antilinear anti-involution, and that it is isomorphic to the usual Virasoro algebra. The authors show that there is an expected relation between a central charge of this Virasoro-like algebra and an anomaly of the combined system.

  5. Spin wave Feynman diagram vertex computation package

    NASA Astrophysics Data System (ADS)

    Price, Alexander; Javernick, Philip; Datta, Trinanjan

    Spin wave theory is a well-established theoretical technique that can correctly predict the physical behavior of ordered magnetic states. However, computing the effects of an interacting spin wave theory incorporating magnons involve a laborious by hand derivation of Feynman diagram vertices. The process is tedious and time consuming. Hence, to improve productivity and have another means to check the analytical calculations, we have devised a Feynman Diagram Vertex Computation package. In this talk, we will describe our research group's effort to implement a Mathematica based symbolic Feynman diagram vertex computation package that computes spin wave vertices. Utilizing the non-commutative algebra package NCAlgebra as an add-on to Mathematica, symbolic expressions for the Feynman diagram vertices of a Heisenberg quantum antiferromagnet are obtained. Our existing code reproduces the well-known expressions of a nearest neighbor square lattice Heisenberg model. We also discuss the case of a triangular lattice Heisenberg model where non collinear terms contribute to the vertex interactions.

  6. A comparison of three algebraic stress closures for combustor flow calculations

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; So, R. M. C.; Hwang, B. C.

    1985-01-01

    A comparison is made of the performance of two locally nonequilibrium and one equilibrium algebraic stress closures in calculating combustor flows. Effects of four different pressure-strain models on these closure models are also analyzed. The results show that the pressure-strain models have a much greater influence on the calculated mean velocity and turbulence field than the algebraic stress closures, and that the best mean strain model for the pressure-strain terms is that proposed by Launder, Reece and Rodi (1975). However, the equilibrium algebraic stress closure with the Rotta return-to-isotropy model (1951) for the pressure-strain terms gives as good a correlation with measurements as when the Launder et al. mean strain model is included in the pressure-strain model. Finally, comparison of the calculations with the standard k-epsilon closure results show that the algebraic stress closures are better suited for simple turbulent flow calculations.

  7. Highest weight representation for Sklyanin algebra sl(3)(u) with application to the Gaudin model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdik, C., E-mail: burdik@kmlinux.fjfi.cvut.cz; Navratil, O.

    2011-06-15

    We study the infinite-dimensional Sklyanin algebra sl(3)(u). Specifically we construct the highest weight representation for this algebra in an explicit form. Its application to the Gaudin model is mentioned.

  8. Asymptotically spacelike warped anti-de Sitter spacetimes in generalized minimal massive gravity

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Adami, H.

    2017-06-01

    In this paper we show that warped AdS3 black hole spacetime is a solution of the generalized minimal massive gravity (GMMG) and introduce suitable boundary conditions for asymptotically warped AdS3 spacetimes. Then we find the Killing vector fields such that transformations generated by them preserve the considered boundary conditions. We calculate the conserved charges which correspond to the obtained Killing vector fields and show that the algebra of the asymptotic conserved charges is given as the semi direct product of the Virasoro algebra with U(1) current algebra. We use a particular Sugawara construction to reconstruct the conformal algebra. Thus, we are allowed to use the Cardy formula to calculate the entropy of the warped black hole. We demonstrate that the gravitational entropy of the warped black hole exactly coincides with what we obtain via Cardy’s formula. As we expect, the warped Cardy formula also gives us exactly the same result as we obtain from the usual Cardy’s formula. We calculate mass and angular momentum of the warped black hole and then check that obtained mass, angular momentum and entropy to satisfy the first law of the black hole mechanics. According to the results of this paper we believe that the dual theory of the warped AdS3 black hole solution of GMMG is a warped CFT.

  9. Topics in elementary particle physics

    NASA Astrophysics Data System (ADS)

    Jin, Xiang

    The author of this thesis discusses two topics in elementary particle physics: n-ary algebras and their applications to M-theory (Part I), and functional evolution and Renormalization Group flows (Part II). In part I, Lie algebra is extended to four different n-ary algebraic structure: generalized Lie algebra, Filippov algebra, Nambu algebra and Nambu-Poisson tensor; though there are still many other n-ary algebras. A natural property of Generalized Lie algebras — the Bremner identity, is studied, and proved with a totally different method from its original version. We extend Bremner identity to n-bracket cases, where n is an arbitrary odd integer. Filippov algebras do not focus on associativity, and are defined by the Fundamental identity. We add associativity to Filippov algebras, and give examples of how to construct Filippov algebras from su(2), bosonic oscillator, Virasoro algebra. We try to include fermionic charges into the ternary Virasoro-Witt algebra, but the attempt fails because fermionic charges keep generating new charges that make the algebra not closed. We also study the Bremner identity restriction on Nambu algebras and Nambu-Poisson tensors. So far, the only example 3-algebra being used in physics is the BLG model with 3-algebra A4, describing two M2-branes interactions. Its extension with Nambu algebra, BLG-NB model, is believed to describe infinite M2-branes condensation. Also, there is another propose for M2-brane interactions, the ABJM model, which is constructed by ordinary Lie algebra. We compare the symmetry properties between them, and discuss the possible approaches to include these three models into a grand unification theory. In Part II, we give an approximate solution for Schroeder's equations, based on series and conjugation methods. We use the logistic map as an example, and demonstrate that this approximate solution converges to known analytical solutions around the fixed point, around which the approximate solution is constructed. Although the closed-form solutions for Schroeder's equations can not always be approached analytically, by fitting the approximation solutions, one can still obtain closed-form solutions sometimes. Based on Schroeder's theory, approximate solutions for trajectories, velocities and potentials can also be constructed. The approximate solution is significantly useful to calculate the beta function in renormalization group trajectory. By "wrapping" the series solutions with the conjugations from different inverse functions, we generate different branches of the trajectory, and construct a counterexample for a folk theorem about limited cycles.

  10. Third-rank chromatic aberrations of electron lenses.

    PubMed

    Liu, Zhixiong

    2018-02-01

    In this paper the third-rank chromatic aberration coefficients of round electron lenses are analytically derived and numerically calculated by Mathematica. Furthermore, the numerical results are cross-checked by the differential algebraic (DA) method, which verifies that all the formulas for the third-rank chromatic aberration coefficients are completely correct. It is hoped that this work would be helpful for further chromatic aberration correction in electron microscopy. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. An Algebraic Approach to the Eigenstates of the Calogero Model

    NASA Astrophysics Data System (ADS)

    Ujino, Hideaki

    2002-11-01

    An algebraic treatment of the eigenstates of the (AN-1-) Calogero model is presented, which provides an algebraic construction of the nonsymmetric orthogonal eigenvectors, symmetrization, antisymmetrization and calculation of square norms in a unified way.

  12. A set for relational reasoning: Facilitation of algebraic modeling by a fraction task.

    PubMed

    DeWolf, Melissa; Bassok, Miriam; Holyoak, Keith J

    2016-12-01

    Recent work has identified correlations between early mastery of fractions and later math achievement, especially in algebra. However, causal connections between aspects of reasoning with fractions and improved algebra performance have yet to be established. The current study investigated whether relational reasoning with fractions facilitates subsequent algebraic reasoning using both pre-algebra students and adult college students. Participants were first given either a relational reasoning fractions task or a fraction algebra procedures control task. Then, all participants solved word problems and constructed algebraic equations in either multiplication or division format. The word problems and the equation construction tasks involved simple multiplicative comparison statements such as "There are 4 times as many students as teachers in a classroom." Performance on the algebraic equation construction task was enhanced for participants who had previously completed the relational fractions task compared with those who completed the fraction algebra procedures task. This finding suggests that relational reasoning with fractions can establish a relational set that promotes students' tendency to model relations using algebraic expressions. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. General Algebraic Modeling System Tutorial | High-Performance Computing |

    Science.gov Websites

    power generation from two different fuels. The goal is to minimize the cost for one of the fuels while Here's a basic tutorial for modeling optimization problems with the General Algebraic Modeling System (GAMS). Overview The GAMS (General Algebraic Modeling System) package is essentially a compiler for a

  14. On the quantum symmetry of the chiral Ising model

    NASA Astrophysics Data System (ADS)

    Vecsernyés, Peter

    1994-03-01

    We introduce the notion of rational Hopf algebras that we think are able to describe the superselection symmetries of rational quantum field theories. As an example we show that a six-dimensional rational Hopf algebra H can reproduce the fusion rules, the conformal weights, the quantum dimensions and the representation of the modular group of the chiral Ising model. H plays the role of the global symmetry algebra of the chiral Ising model in the following sense: (1) a simple field algebra F and a representation π on Hπ of it is given, which contains the c = {1}/{2} unitary representations of the Virasoro algebra as subrepresentations; (2) the embedding U: H → B( Hπ) is such that the observable algebra π( A) - is the invariant subalgebra of B( Hπ) with respect to the left adjoint action of H and U(H) is the commutant of π( A); (3) there exist H-covariant primary fields in B( Hπ), which obey generalized Cuntz algebra properties and intertwine between the inequivalent sectors of the observables.

  15. Category-theoretic models of algebraic computer systems

    NASA Astrophysics Data System (ADS)

    Kovalyov, S. P.

    2016-01-01

    A computer system is said to be algebraic if it contains nodes that implement unconventional computation paradigms based on universal algebra. A category-based approach to modeling such systems that provides a theoretical basis for mapping tasks to these systems' architecture is proposed. The construction of algebraic models of general-purpose computations involving conditional statements and overflow control is formally described by a reflector in an appropriate category of algebras. It is proved that this reflector takes the modulo ring whose operations are implemented in the conventional arithmetic processors to the Łukasiewicz logic matrix. Enrichments of the set of ring operations that form bases in the Łukasiewicz logic matrix are found.

  16. An Algebraic Formulation of Level One Wess-Zumino Models

    NASA Astrophysics Data System (ADS)

    Böckenhauer, Jens

    The highest weight modules of the chiral algebra of orthogonal WZW models at level one possess a realization in fermionic representation spaces; the Kac-Moody and Virasoro generators are represented as unbounded limits of even CAR algebras. It is shown that the representation theory of the underlying even CAR algebras reproduces precisely the sectors of the chiral algebra. This fact allows to develop a theory of local von Neumann algebras on the punctured circle, fitting nicely in the Doplicher-Haag-Roberts framework. The relevant localized endomorphisms which generate the charged sectors are explicitly constructed by means of Bogoliubov transformations. Using CAR theory, the fusion rules in terms of sector equivalence classes are proven.

  17. Constructing and Modeling Algebraic Statements in the Multiplicative Domain: Investigating Fourth-Grade Student and Teacher Learning

    ERIC Educational Resources Information Center

    Grandau, Laura

    2013-01-01

    This study of fourth-grade students and teachers explores mathematics teaching and learning that focuses on discovering and modeling algebraic relationships. The study has two parts: an investigation of how students learn to construct algebraic statements and models for comparisons and measurement situations in the multiplicative domain, and an…

  18. Designing Cognitively Diagnostic Assessment for Algebraic Content Knowledge and Thinking Skills

    ERIC Educational Resources Information Center

    Zhang, Zhidong

    2018-01-01

    This study explored a diagnostic assessment method that emphasized the cognitive process of algebra learning. The study utilized a design and a theory-driven model to examine the content knowledge. Using the theory driven model, the thinking skills of algebra learning was also examined. A Bayesian network model was applied to represent the theory…

  19. Using Students' Interests as Algebraic Models

    ERIC Educational Resources Information Center

    Whaley, Kenneth A.

    2012-01-01

    Fostering algebraic thinking is an important goal for middle-grades mathematics teachers. Developing mathematical reasoning requires that teachers cultivate students' habits of mind. Teachers develop students' understanding of algebra by engaging them in tasks that involve modeling and representation. This study was designed to investigate how…

  20. Turbulence Model Predictions of Strongly Curved Flow in a U-Duct

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Gatski, Thomas B.; Morrison, Joseph H.

    2000-01-01

    The ability of three types of turbulence models to accurately predict the effects of curvature on the flow in a U-duct is studied. An explicit algebraic stress model performs slightly better than one- or two-equation linear eddy viscosity models, although it is necessary to fully account for the variation of the production-to-dissipation-rate ratio in the algebraic stress model formulation. In their original formulations, none of these turbulence models fully captures the suppressed turbulence near the convex wall, whereas a full Reynolds stress model does. Some of the underlying assumptions used in the development of algebraic stress models are investigated and compared with the computed flowfield from the full Reynolds stress model. Through this analysis, the assumption of Reynolds stress anisotropy equilibrium used in the algebraic stress model formulation is found to be incorrect in regions of strong curvature. By the accounting for the local variation of the principal axes of the strain rate tensor, the explicit algebraic stress model correctly predicts the suppressed turbulence in the outer part of the boundary layer near the convex wall.

  1. Hopf algebras of rooted forests, cocyles, and free Rota-Baxter algebras

    NASA Astrophysics Data System (ADS)

    Zhang, Tianjie; Gao, Xing; Guo, Li

    2016-10-01

    The Hopf algebra and the Rota-Baxter algebra are the two algebraic structures underlying the algebraic approach of Connes and Kreimer to renormalization of perturbative quantum field theory. In particular, the Hopf algebra of rooted trees serves as the "baby model" of Feynman graphs in their approach and can be characterized by certain universal properties involving a Hochschild 1-cocycle. Decorated rooted trees have also been applied to study Feynman graphs. We will continue the study of universal properties of various spaces of decorated rooted trees with such a 1-cocycle, leading to the concept of a cocycle Hopf algebra. We further apply the universal properties to equip a free Rota-Baxter algebra with the structure of a cocycle Hopf algebra.

  2. Rupture or Continuity: The Arithmetico-Algebraic Thinking as an Alternative in a Modelling Process in a Paper and Pencil and Technology Environment

    ERIC Educational Resources Information Center

    Hitt, Fernando; Saboya, Mireille; Zavala, Carlos Cortés

    2017-01-01

    Part of the research community that has followed the Early Algebra paradigm is currently delimiting the differences between arithmetic thinking and algebraic thinking. This trend could prevent new research approaches to the problem of learning algebra, hiding the importance of considering an arithmetico-algebraic thinking, a new approach which…

  3. Inflation in Flatland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinterbichler, Kurt; Joyce, Austin; Khoury, Justin, E-mail: kurt.hinterbichler@case.edu, E-mail: austin.joyce@columbia.edu, E-mail: jkhoury@sas.upenn.edu

    We investigate the symmetry structure of inflation in 2+1 dimensions. In particular, we show that the asymptotic symmetries of three-dimensional de Sitter space are in one-to-one correspondence with cosmological adiabatic modes for the curvature perturbation. In 2+1 dimensions, the asymptotic symmetry algebra is infinite-dimensional, given by two copies of the Virasoro algebra, and can be traced to the conformal symmetries of the two-dimensional spatial slices of de Sitter. We study the consequences of this infinite-dimensional symmetry for inflationary correlation functions, finding new soft theorems that hold only in 2+1 dimensions. Expanding the correlation functions as a power series in themore » soft momentum q , these relations constrain the traceless part of the tensorial coefficient at each order in q in terms of a lower-point function. As a check, we verify that the O( q {sup 2}) identity is satisfied by inflationary correlation functions in the limit of small sound speed.« less

  4. Versatile and declarative dynamic programming using pair algebras.

    PubMed

    Steffen, Peter; Giegerich, Robert

    2005-09-12

    Dynamic programming is a widely used programming technique in bioinformatics. In sharp contrast to the simplicity of textbook examples, implementing a dynamic programming algorithm for a novel and non-trivial application is a tedious and error prone task. The algebraic dynamic programming approach seeks to alleviate this situation by clearly separating the dynamic programming recurrences and scoring schemes. Based on this programming style, we introduce a generic product operation of scoring schemes. This leads to a remarkable variety of applications, allowing us to achieve optimizations under multiple objective functions, alternative solutions and backtracing, holistic search space analysis, ambiguity checking, and more, without additional programming effort. We demonstrate the method on several applications for RNA secondary structure prediction. The product operation as introduced here adds a significant amount of flexibility to dynamic programming. It provides a versatile testbed for the development of new algorithmic ideas, which can immediately be put to practice.

  5. A new family of N dimensional superintegrable double singular oscillators and quadratic algebra Q(3) ⨁ so(n) ⨁ so(N-n)

    NASA Astrophysics Data System (ADS)

    Fazlul Hoque, Md; Marquette, Ian; Zhang, Yao-Zhong

    2015-11-01

    We introduce a new family of N dimensional quantum superintegrable models consisting of double singular oscillators of type (n, N-n). The special cases (2,2) and (4,4) have previously been identified as the duals of 3- and 5-dimensional deformed Kepler-Coulomb systems with u(1) and su(2) monopoles, respectively. The models are multiseparable and their wave functions are obtained in (n, N-n) double-hyperspherical coordinates. We obtain the integrals of motion and construct the finitely generated polynomial algebra that is the direct sum of a quadratic algebra Q(3) involving three generators, so(n), so(N-n) (i.e. Q(3) ⨁ so(n) ⨁ so(N-n)). The structure constants of the quadratic algebra itself involve the Casimir operators of the two Lie algebras so(n) and so(N-n). Moreover, we obtain the finite dimensional unitary representations (unirreps) of the quadratic algebra and present an algebraic derivation of the degenerate energy spectrum of the superintegrable model.

  6. Dynamical systems defined on infinite dimensional lie algebras of the ''current algebra'' or ''Kac-Moody'' type

    NASA Astrophysics Data System (ADS)

    Hermann, Robert

    1982-07-01

    Recent work by Morrison, Marsden, and Weinstein has drawn attention to the possibility of utilizing the cosymplectic structure of the dual of the Lie algebra of certain infinite dimensional Lie groups to study hydrodynamical and plasma systems. This paper treats certain models arising in elementary particle physics, considered by Lee, Weinberg, and Zumino; Sugawara; Bardacki, Halpern, and Frishman; Hermann; and Dolan. The lie algebras involved are associated with the ''current algebras'' of Gell-Mann. This class of Lie algebras contains certain of the algebras that are called ''Kac-Moody algebras'' in the recent mathematics and mathematical physics literature.

  7. Tensor models, Kronecker coefficients and permutation centralizer algebras

    NASA Astrophysics Data System (ADS)

    Geloun, Joseph Ben; Ramgoolam, Sanjaye

    2017-11-01

    We show that the counting of observables and correlators for a 3-index tensor model are organized by the structure of a family of permutation centralizer algebras. These algebras are shown to be semi-simple and their Wedderburn-Artin decompositions into matrix blocks are given in terms of Clebsch-Gordan coefficients of symmetric groups. The matrix basis for the algebras also gives an orthogonal basis for the tensor observables which diagonalizes the Gaussian two-point functions. The centres of the algebras are associated with correlators which are expressible in terms of Kronecker coefficients (Clebsch-Gordan multiplicities of symmetric groups). The color-exchange symmetry present in the Gaussian model, as well as a large class of interacting models, is used to refine the description of the permutation centralizer algebras. This discussion is extended to a general number of colors d: it is used to prove the integrality of an infinite family of number sequences related to color-symmetrizations of colored graphs, and expressible in terms of symmetric group representation theory data. Generalizing a connection between matrix models and Belyi maps, correlators in Gaussian tensor models are interpreted in terms of covers of singular 2-complexes. There is an intriguing difference, between matrix and higher rank tensor models, in the computational complexity of superficially comparable correlators of observables parametrized by Young diagrams.

  8. An Example of Competence-Based Learning: Use of Maxima in Linear Algebra for Engineers

    ERIC Educational Resources Information Center

    Diaz, Ana; Garcia, Alfonsa; de la Villa, Agustin

    2011-01-01

    This paper analyses the role of Computer Algebra Systems (CAS) in a model of learning based on competences. The proposal is an e-learning model Linear Algebra course for Engineering, which includes the use of a CAS (Maxima) and focuses on problem solving. A reference model has been taken from the Spanish Open University. The proper use of CAS is…

  9. Spatial-Operator Algebra For Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo; Kreutz, Kenneth K.; Milman, Mark H.

    1991-01-01

    Report discusses spatial-operator algebra developed in recent studies of mathematical modeling, control, and design of trajectories of robotic manipulators. Provides succinct representation of mathematically complicated interactions among multiple joints and links of manipulator, thereby relieving analyst of most of tedium of detailed algebraic manipulations. Presents analytical formulation of spatial-operator algebra, describes some specific applications, summarizes current research, and discusses implementation of spatial-operator algebra in the Ada programming language.

  10. Prediction of Complex Aerodynamic Flows with Explicit Algebraic Stress Models

    NASA Technical Reports Server (NTRS)

    Abid, Ridha; Morrison, Joseph H.; Gatski, Thomas B.; Speziale, Charles G.

    1996-01-01

    An explicit algebraic stress equation, developed by Gatski and Speziale, is used in the framework of K-epsilon formulation to predict complex aerodynamic turbulent flows. The nonequilibrium effects are modeled through coefficients that depend nonlinearly on both rotational and irrotational strains. The proposed model was implemented in the ISAAC Navier-Stokes code. Comparisons with the experimental data are presented which clearly demonstrate that explicit algebraic stress models can predict the correct response to nonequilibrium flow.

  11. Selections from Kuang-Ming JIH-PAO (Source Span: 17 May - 26 June 1961), Number 8 Communist China.

    DTIC Science & Technology

    1961-08-31

    to have a feeling of being unaccustomed to a certain new method, much like the feeling they have towards the use of phonetic symbols, Romanization or...seems to me that there is a certain unanimity among those who advocate the checking of Chinese words through phonetic sounds. The differences are...children’s mental development. We could not possibly ask children in kindergarten to learn algebra because natural maturity is also important. We have

  12. HAL/S - The programming language for Shuttle

    NASA Technical Reports Server (NTRS)

    Martin, F. H.

    1974-01-01

    HAL/S is a higher order language and system, now operational, adopted by NASA for programming Space Shuttle on-board software. Program reliability is enhanced through language clarity and readability, modularity through program structure, and protection of code and data. Salient features of HAL/S include output orientation, automatic checking (with strictly enforced compiler rules), the availability of linear algebra, real-time control, a statement-level simulator, and compiler transferability (for applying HAL/S to additional object and host computers). The compiler is described briefly.

  13. OBJ-1, A Study in Executable Algebraic Formal Specification.

    DTIC Science & Technology

    1981-07-01

    natural way; 2. Achievement of a high level of abstraction in a natural way; 3. The possibility of executing test cases; 4I. User definition of data types...languages. Goguen has defined a new data type, called symboltree, in OBJ. The purpose of this data type is to provide for fast checking of certain... data type work, is given in Appendix C of this report. K. Parsaye-Ghomi, with A. B. C. Sampaio of UCLA, has written a specification of a hardware

  14. A Modeling-Based College Algebra Course and Its Effect on Student Achievement

    ERIC Educational Resources Information Center

    Ellington, Aimee J.

    2005-01-01

    In Fall 2004, Virginia Commonwealth University (VCU) piloted a modeling-based approach to college algebra. This paper describes the course and an assessment that was conducted to determine the effect of this approach on student achievement in comparison to a traditional approach to college algebra. The results show that compared with their…

  15. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.

    1991-01-01

    A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.

  16. Comparison of the Effectiveness of a Traditional Intermediate Algebra Course With That of a Less Rigorous Intermediate Algebra Course in Preparing Students for Success in a Subsequent Mathematics Course

    ERIC Educational Resources Information Center

    Sworder, Steven C.

    2007-01-01

    An experimental two-track intermediate algebra course was offered at Saddleback College, Mission Viejo, CA, between the Fall, 2002 and Fall, 2005 semesters. One track was modeled after the existing traditional California community college intermediate algebra course and the other track was a less rigorous intermediate algebra course in which the…

  17. Lattice Virasoro algebra and corner transfer matrices in the Baxter eight-vertex model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoyama, H.; Thacker, H.B.

    1987-04-06

    A lattice Virasoro algebra is constructed for the Baxter eight-vertex model. The operator L/sub 0/ is obtained from the logarithm of the corner transfer matrix and is given by the first moment of the XYZ spin-chain Hamiltonian. The algebra is valid even when the Hamiltonian includes a mass term, in which case it represents lattice coordinate transformations which distinguish between even and odd sublattices. We apply the quantum inverse scattering method to demonstrate that the Virasoro algebra follows from the Yang-Baxter relations.

  18. Affine q-deformed symmetry and the classical Yang-Baxter σ-model

    NASA Astrophysics Data System (ADS)

    Delduc, F.; Kameyama, T.; Magro, M.; Vicedo, B.

    2017-03-01

    The Yang-Baxter σ-model is an integrable deformation of the principal chiral model on a Lie group G. The deformation breaks the G × G symmetry to U(1)rank( G) × G. It is known that there exist non-local conserved charges which, together with the unbroken U(1)rank( G) local charges, form a Poisson algebra [InlineMediaObject not available: see fulltext.], which is the semiclassical limit of the quantum group {U}_q(g) , with g the Lie algebra of G. For a general Lie group G with rank( G) > 1, we extend the previous result by constructing local and non-local conserved charges satisfying all the defining relations of the infinite-dimensional Poisson algebra [InlineMediaObject not available: see fulltext.], the classical analogue of the quantum loop algebra {U}_q(Lg) , where Lg is the loop algebra of g. Quite unexpectedly, these defining relations are proved without encountering any ambiguity related to the non-ultralocality of this integrable σ-model.

  19. An algebraic cluster model based on the harmonic oscillator basis

    NASA Technical Reports Server (NTRS)

    Levai, Geza; Cseh, J.

    1995-01-01

    We discuss the semimicroscopic algebraic cluster model introduced recently, in which the internal structure of the nuclear clusters is described by the harmonic oscillator shell model, while their relative motion is accounted for by the Vibron model. The algebraic formulation of the model makes extensive use of techniques associated with harmonic oscillators and their symmetry group, SU(3). The model is applied to some cluster systems and is found to reproduce important characteristics of nuclei in the sd-shell region. An approximate SU(3) dynamical symmetry is also found to hold for the C-12 + C-12 system.

  20. Open-Closed Homotopy Algebras and Strong Homotopy Leibniz Pairs Through Koszul Operad Theory

    NASA Astrophysics Data System (ADS)

    Hoefel, Eduardo; Livernet, Muriel

    2012-08-01

    Open-closed homotopy algebras (OCHA) and strong homotopy Leibniz pairs (SHLP) were introduced by Kajiura and Stasheff in 2004. In an appendix to their paper, Markl observed that an SHLP is equivalent to an algebra over the minimal model of a certain operad, without showing that the operad is Koszul. In the present paper, we show that both OCHA and SHLP are algebras over the minimal model of the zeroth homology of two versions of the Swiss-cheese operad and prove that these two operads are Koszul. As an application, we show that the OCHA operad is non-formal as a 2-colored operad but is formal as an algebra in the category of 2-collections.

  1. A description of pseudo-bosons in terms of nilpotent Lie algebras

    NASA Astrophysics Data System (ADS)

    Bagarello, Fabio; Russo, Francesco G.

    2018-02-01

    We show how the one-mode pseudo-bosonic ladder operators provide concrete examples of nilpotent Lie algebras of dimension five. It is the first time that an algebraic-geometric structure of this kind is observed in the context of pseudo-bosonic operators. Indeed we do not find the well known Heisenberg algebras, which are involved in several quantum dynamical systems, but different Lie algebras which may be decomposed into the sum of two abelian Lie algebras in a prescribed way. We introduce the notion of semidirect sum (of Lie algebras) for this scope and find that it describes very well the behavior of pseudo-bosonic operators in many quantum models.

  2. Predicting NonInertial Effects with Algebraic Stress Models which Account for Dissipation Rate Anisotropies

    NASA Technical Reports Server (NTRS)

    Jongen, T.; Machiels, L.; Gatski, T. B.

    1997-01-01

    Three types of turbulence models which account for rotational effects in noninertial frames of reference are evaluated for the case of incompressible, fully developed rotating turbulent channel flow. The different types of models are a Coriolis-modified eddy-viscosity model, a realizable algebraic stress model, and an algebraic stress model which accounts for dissipation rate anisotropies. A direct numerical simulation of a rotating channel flow is used for the turbulent model validation. This simulation differs from previous studies in that significantly higher rotation numbers are investigated. Flows at these higher rotation numbers are characterized by a relaminarization on the cyclonic or suction side of the channel, and a linear velocity profile on the anticyclonic or pressure side of the channel. The predictive performance of the three types of models are examined in detail, and formulation deficiencies are identified which cause poor predictive performance for some of the models. Criteria are identified which allow for accurate prediction of such flows by algebraic stress models and their corresponding Reynolds stress formulations.

  3. Bootstrapping non-commutative gauge theories from L∞ algebras

    NASA Astrophysics Data System (ADS)

    Blumenhagen, Ralph; Brunner, Ilka; Kupriyanov, Vladislav; Lüst, Dieter

    2018-05-01

    Non-commutative gauge theories with a non-constant NC-parameter are investigated. As a novel approach, we propose that such theories should admit an underlying L∞ algebra, that governs not only the action of the symmetries but also the dynamics of the theory. Our approach is well motivated from string theory. We recall that such field theories arise in the context of branes in WZW models and briefly comment on its appearance for integrable deformations of AdS5 sigma models. For the SU(2) WZW model, we show that the earlier proposed matrix valued gauge theory on the fuzzy 2-sphere can be bootstrapped via an L∞ algebra. We then apply this approach to the construction of non-commutative Chern-Simons and Yang-Mills theories on flat and curved backgrounds with non-constant NC-structure. More concretely, up to the second order, we demonstrate how derivative and curvature corrections to the equations of motion can be bootstrapped in an algebraic way from the L∞ algebra. The appearance of a non-trivial A∞ algebra is discussed, as well.

  4. Integrability and superintegrability of the generalized n-level many-mode Jaynes-Cummings and Dicke models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrypnyk, T.

    2009-10-15

    We analyze symmetries of the integrable generalizations of Jaynes-Cummings and Dicke models associated with simple Lie algebras g and their reductive subalgebras g{sub K}[T. Skrypnyk, 'Generalized n-level Jaynes-Cummings and Dicke models, classical rational r-matrices and nested Bethe ansatz', J. Phys. A: Math. Theor. 41, 475202 (2008)]. We show that their symmetry algebras contain commutative subalgebras isomorphic to the Cartan subalgebras of g, which can be added to the commutative algebras of quantum integrals generated with the help of the quantum Lax operators. We diagonalize additional commuting integrals and constructed with their help the most general integrable quantum Hamiltonian of themore » generalized n-level many-mode Jaynes-Cummings and Dicke-type models using nested algebraic Bethe ansatz.« less

  5. Symmetric linear systems - An application of algebraic systems theory

    NASA Technical Reports Server (NTRS)

    Hazewinkel, M.; Martin, C.

    1983-01-01

    Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.

  6. Chiral algebras in Landau-Ginzburg models

    NASA Astrophysics Data System (ADS)

    Dedushenko, Mykola

    2018-03-01

    Chiral algebras in the cohomology of the {\\overline{Q}}+ supercharge of two-dimensional N=(0,2) theories on flat spacetime are discussed. Using the supercurrent multiplet, we show that the answer is renormalization group invariant for theories with an R-symmetry. For N=(0,2) Landau-Ginzburg models, the chiral algebra is determined by the operator equations of motion, which preserve their classical form, and quantum renormalization of composite operators. We study these theories and then specialize to the N=(2,2) models and consider some examples.

  7. Performance of Renormalization Group Algebraic Turbulence Model on Boundary Layer Transition Simulation

    NASA Technical Reports Server (NTRS)

    Ahn, Kyung H.

    1994-01-01

    The RNG-based algebraic turbulence model, with a new method of solving the cubic equation and applying new length scales, is introduced. An analysis is made of the RNG length scale which was previously reported and the resulting eddy viscosity is compared with those from other algebraic turbulence models. Subsequently, a new length scale is introduced which actually uses the two previous RNG length scales in a systematic way to improve the model performance. The performance of the present RNG model is demonstrated by simulating the boundary layer flow over a flat plate and the flow over an airfoil.

  8. Deformed oscillator algebra approach of some quantum superintegrable Lissajous systems on the sphere and of their rational extensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquette, Ian, E-mail: i.marquette@uq.edu.au; Quesne, Christiane, E-mail: cquesne@ulb.ac.be

    2015-06-15

    We extend the construction of 2D superintegrable Hamiltonians with separation of variables in spherical coordinates using combinations of shift, ladder, and supercharge operators to models involving rational extensions of the two-parameter Lissajous systems on the sphere. These new families of superintegrable systems with integrals of arbitrary order are connected with Jacobi exceptional orthogonal polynomials of type I (or II) and supersymmetric quantum mechanics. Moreover, we present an algebraic derivation of the degenerate energy spectrum for the one- and two-parameter Lissajous systems and the rationally extended models. These results are based on finitely generated polynomial algebras, Casimir operators, realizations as deformedmore » oscillator algebras, and finite-dimensional unitary representations. Such results have only been established so far for 2D superintegrable systems separable in Cartesian coordinates, which are related to a class of polynomial algebras that display a simpler structure. We also point out how the structure function of these deformed oscillator algebras is directly related with the generalized Heisenberg algebras spanned by the nonpolynomial integrals.« less

  9. Explorations in fuzzy physics and non-commutative geometry

    NASA Astrophysics Data System (ADS)

    Kurkcuoglu, Seckin

    Fuzzy spaces arise as discrete approximations to continuum manifolds. They are usually obtained through quantizing coadjoint orbits of compact Lie groups and they can be described in terms of finite-dimensional matrix algebras, which for large matrix sizes approximate the algebra of functions of the limiting continuum manifold. Their ability to exactly preserve the symmetries of their parent manifolds is especially appealing for physical applications. Quantum Field Theories are built over them as finite-dimensional matrix models preserving almost all the symmetries of their respective continuum models. In this dissertation, we first focus our attention to the study of fuzzy supersymmetric spaces. In this regard, we obtain the fuzzy supersphere S2,2F through quantizing the supersphere, and demonstrate that it has exact supersymmetry. We derive a finite series formula for the *-product of functions over S2,2F and analyze the differential geometric information encoded in this formula. Subsequently, we show that quantum field theories on S2,2F are realized as finite-dimensional supermatrix models, and in particular we obtain the non-linear sigma model over the fuzzy supersphere by constructing the fuzzy supersymmetric extensions of a certain class of projectors. We show that this model too, is realized as a finite-dimensional supermatrix model with exact supersymmetry. Next, we show that fuzzy spaces have a generalized Hopf algebra structure. By focusing on the fuzzy sphere, we establish that there is a *-homomorphism from the group algebra SU(2)* of SU(2) to the fuzzy sphere. Using this and the canonical Hopf algebra structure of SU(2)* we show that both the fuzzy sphere and their direct sum are Hopf algebras. Using these results, we discuss processes in which a fuzzy sphere with angular momenta J splits into fuzzy spheres with angular momenta K and L. Finally, we study the formulation of Chern-Simons (CS) theory on an infinite strip of the non-commutative plane. We develop a finite-dimensional matrix model, whose large size limit approximates the CS theory on the infinite strip, and show that there are edge observables in this model obeying a finite-dimensional Lie algebra, that resembles the Kac-Moody algebra.

  10. The Effect of Scheduling Models for Introductory Algebra on 9th-Grade Students, Test Scores and Grades

    ERIC Educational Resources Information Center

    O'Hanlon, Angela L.

    2011-01-01

    The purpose of the study was to determine the effect of pacing and scheduling of algebra coursework on assigned 9th-grade students who traditionally would qualify for pre-algebra instruction and same course 9th-grade students who traditionally would qualify for standard algebra instruction. Students were selected based on completion of first-year…

  11. Mathematical models for space shuttle ground systems

    NASA Technical Reports Server (NTRS)

    Tory, E. G.

    1985-01-01

    Math models are a series of algorithms, comprised of algebraic equations and Boolean Logic. At Kennedy Space Center, math models for the Space Shuttle Systems are performed utilizing the Honeywell 66/80 digital computers, Modcomp II/45 Minicomputers and special purpose hardware simulators (MicroComputers). The Shuttle Ground Operations Simulator operating system provides the language formats, subroutines, queueing schemes, execution modes and support software to write, maintain and execute the models. The ground systems presented consist primarily of the Liquid Oxygen and Liquid Hydrogen Cryogenic Propellant Systems, as well as liquid oxygen External Tank Gaseous Oxygen Vent Hood/Arm and the Vehicle Assembly Building (VAB) High Bay Cells. The purpose of math modeling is to simulate the ground hardware systems and to provide an environment for testing in a benign mode. This capability allows the engineers to check out application software for loading and launching the vehicle, and to verify the Checkout, Control, & Monitor Subsystem within the Launch Processing System. It is also used to train operators and to predict system response and status in various configurations (normal operations, emergency and contingent operations), including untried configurations or those too dangerous to try under real conditions, i.e., failure modes.

  12. BRST Formalism in Self-Dual Chern-Simons Theory with Matter Fields

    NASA Astrophysics Data System (ADS)

    Dai, Jialiang; Fan, Engui

    2018-04-01

    We apply BRST method to the self-dual Chern-Simons gauge theory with matter fields and the generators of symmetries of the system from an elegant Lie algebra structure under the operation of Poisson bracket. We discuss four different cases: abelian, nonabelian, relativistic, and nonrelativistic situations and extend the system to the whole phase space including ghost fields. In addition, we obtain the BRST charge of the field system and check its nilpotence of the BRST transformation which plays an important role such as in topological quantum field theory and string theory.

  13. Low Density Parity Check Codes Based on Finite Geometries: A Rediscovery and More

    NASA Technical Reports Server (NTRS)

    Kou, Yu; Lin, Shu; Fossorier, Marc

    1999-01-01

    Low density parity check (LDPC) codes with iterative decoding based on belief propagation achieve astonishing error performance close to Shannon limit. No algebraic or geometric method for constructing these codes has been reported and they are largely generated by computer search. As a result, encoding of long LDPC codes is in general very complex. This paper presents two classes of high rate LDPC codes whose constructions are based on finite Euclidean and projective geometries, respectively. These classes of codes a.re cyclic and have good constraint parameters and minimum distances. Cyclic structure adows the use of linear feedback shift registers for encoding. These finite geometry LDPC codes achieve very good error performance with either soft-decision iterative decoding based on belief propagation or Gallager's hard-decision bit flipping algorithm. These codes can be punctured or extended to obtain other good LDPC codes. A generalization of these codes is also presented.

  14. A differential operator realisation approach for constructing Casimir operators of non-semisimple Lie algebras

    NASA Astrophysics Data System (ADS)

    Alshammari, Fahad; Isaac, Phillip S.; Marquette, Ian

    2018-02-01

    We introduce a search algorithm that utilises differential operator realisations to find polynomial Casimir operators of Lie algebras. To demonstrate the algorithm, we look at two classes of examples: (1) the model filiform Lie algebras and (2) the Schrödinger Lie algebras. We find that an abstract form of dimensional analysis assists us in our algorithm, and greatly reduces the complexity of the problem.

  15. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, Kenneth; Jain, Abhinandan

    1989-01-01

    A recently developed spatial operator algebra, useful for modeling, control, and trajectory design of manipulators is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics. Furthermore, implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection. Thus, the transition from an abstract problem formulation and solution to the detailed mechanizaton of specific algorithms is greatly simplified. The analytical formulation of the operator algebra, as well as its implementation in the Ada programming language are discussed.

  16. Filiform Lie algebras of order 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navarro, R. M., E-mail: rnavarro@unex.es

    2014-04-15

    The aim of this work is to generalize a very important type of Lie algebras and superalgebras, i.e., filiform Lie (super)algebras, into the theory of Lie algebras of order F. Thus, the concept of filiform Lie algebras of order F is obtained. In particular, for F = 3 it has been proved that by using infinitesimal deformations of the associated model elementary Lie algebra it can be obtained families of filiform elementary lie algebras of order 3, analogously as that occurs into the theory of Lie algebras [M. Vergne, “Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de lamore » variété des algèbres de Lie nilpotentes,” Bull. Soc. Math. France 98, 81–116 (1970)]. Also we give the dimension, using an adaptation of the sl(2,C)-module Method, and a basis of such infinitesimal deformations in some generic cases.« less

  17. Conformal field algebras with quantum symmetry from the theory of superselection sectors

    NASA Astrophysics Data System (ADS)

    Mack, Gerhard; Schomerus, Volker

    1990-11-01

    According to the theory of superselection sectors of Doplicher, Haag, and Roberts, field operators which make transitions between different superselection sectors—i.e. different irreducible representations of the observable algebra—are to be constructed by adjoining localized endomorphisms to the algebra of local observables. We find the relevant endomorphisms of the chiral algebra of observables in the minimal conformal model with central charge c=1/2 (Ising model). We show by explicit and elementary construction how they determine a representation of the braid group B ∞ which is associated with a Temperley-Lieb-Jones algebra. We recover fusion rules, and compute the quantum dimensions of the superselection sectors. We exhibit a field algebra which is quantum group covariant and acts in the Hilbert space of physical states. It obeys local braid relations in an appropriate weak sense.

  18. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, K.; Milman, M.

    1988-01-01

    A powerful new spatial operator algebra for modeling, control, and trajectory design of manipulators is discussed along with its implementation in the Ada programming language. Applications of this algebra to robotics include an operator representation of the manipulator Jacobian matrix; the robot dynamical equations formulated in terms of the spatial algebra, showing the complete equivalence between the recursive Newton-Euler formulations to robot dynamics; the operator factorization and inversion of the manipulator mass matrix which immediately results in O(N) recursive forward dynamics algorithms; the joint accelerations of a manipulator due to a tip contact force; the recursive computation of the equivalent mass matrix as seen at the tip of a manipulator; and recursive forward dynamics of a closed chain system. Finally, additional applications and current research involving the use of the spatial operator algebra are discussed in general terms.

  19. Computational algebraic geometry of epidemic models

    NASA Astrophysics Data System (ADS)

    Rodríguez Vega, Martín.

    2014-06-01

    Computational Algebraic Geometry is applied to the analysis of various epidemic models for Schistosomiasis and Dengue, both, for the case without control measures and for the case where control measures are applied. The models were analyzed using the mathematical software Maple. Explicitly the analysis is performed using Groebner basis, Hilbert dimension and Hilbert polynomials. These computational tools are included automatically in Maple. Each of these models is represented by a system of ordinary differential equations, and for each model the basic reproductive number (R0) is calculated. The effects of the control measures are observed by the changes in the algebraic structure of R0, the changes in Groebner basis, the changes in Hilbert dimension, and the changes in Hilbert polynomials. It is hoped that the results obtained in this paper become of importance for designing control measures against the epidemic diseases described. For future researches it is proposed the use of algebraic epidemiology to analyze models for airborne and waterborne diseases.

  20. On the correspondence between boundary and bulk lattice models and (logarithmic) conformal field theories

    NASA Astrophysics Data System (ADS)

    Belletête, J.; Gainutdinov, A. M.; Jacobsen, J. L.; Saleur, H.; Vasseur, R.

    2017-12-01

    The relationship between bulk and boundary properties is one of the founding features of (rational) conformal field theory (CFT). Our goal in this paper is to explore the possibility of having an equivalent relationship in the context of lattice models. We focus on models based on the Temperley-Lieb algebra, and use the concept of ‘braid translation’, which is a natural way, in physical terms, to ‘close’ an open spin chain by adding an interaction between the first and last spins using braiding to ‘bring’ them next to each other. The interaction thus obtained is in general non-local, but has the key feature that it is expressed solely in terms of the algebra for the open spin chain—the ‘ordinary’ Temperley-Lieb algebra and its blob algebra generalization. This is in contrast with the usual periodic spin chains which involve only local interactions, and are described by the periodic Temperley-Lieb algebra. We show that for the restricted solid-on-solid models, which are known to be described by minimal unitary CFTs (with central charge c<1 ) in the continuum limit, the braid translation in fact does provide the ordinary periodic model starting from the open model with fixed (identical) boundary conditions on the two sides of the strip. This statement has a precise mathematical formulation, which is a pull-back map between irreducible modules of, respectively, the blob algebra and the affine Temperley-Lieb algebra. We then turn to the same kind of analysis for two models whose continuum limits are logarithmic CFTs (LCFTs)—the alternating gl(1\\vert 1) and sl(2\\vert 1) spin chains. We find that the result for minimal models does not hold any longer: braid translation of the relevant (in that case, indecomposable but not irreducible) modules of the Temperley-Lieb algebra does not give rise to the modules known to be present in the periodic chains. In the gl(1\\vert 1) case, the content in terms of the irreducibles is the same, as well as the spectrum, but the detailed structure (like logarithmic coupling) is profoundly different. This carries over to the continuum limit. The situation is similar for the sl(2\\vert 1) case. The problem of relating bulk and boundary lattice models for LCFTs thus remains open.

  1. Analysis of algebraic reasoning ability of cognitive style perspectives on field dependent field independent and gender

    NASA Astrophysics Data System (ADS)

    Rosita, N. T.

    2018-03-01

    The purpose of this study is to analyse algebraic reasoning ability using the SOLO model as a theoretical framework to assess students’ algebraic reasoning abilities of Field Dependent cognitive (FD), Field Independent (FI) and Gender perspectives. The method of this study is a qualitative research. The instrument of this study is the researcher himself assisted with algebraic reasoning tests, the problems have been designed based on NCTM indicators and algebraic reasoning according to SOLO model. While the cognitive style of students is determined using Group Embedded Figure Test (GEFT), as well as interviews on the subject as triangulation. The subjects are 15 female and 15 males of the sixth semester students of mathematics education, STKIP Sebelas April. The results of the qualitative data analysis is that most subjects are at the level of unistructural and multi-structural, subjects at the relational level have difficulty in forming a new linear pattern. While the subjects at the extended abstract level are able to meet all the indicators of algebraic reasoning ability even though some of the answers are not perfect yet. Subjects of FI tend to have higher algebraic reasoning abilities than of the subject of FD.

  2. A note on probabilistic models over strings: the linear algebra approach.

    PubMed

    Bouchard-Côté, Alexandre

    2013-12-01

    Probabilistic models over strings have played a key role in developing methods that take into consideration indels as phylogenetically informative events. There is an extensive literature on using automata and transducers on phylogenies to do inference on these probabilistic models, in which an important theoretical question is the complexity of computing the normalization of a class of string-valued graphical models. This question has been investigated using tools from combinatorics, dynamic programming, and graph theory, and has practical applications in Bayesian phylogenetics. In this work, we revisit this theoretical question from a different point of view, based on linear algebra. The main contribution is a set of results based on this linear algebra view that facilitate the analysis and design of inference algorithms on string-valued graphical models. As an illustration, we use this method to give a new elementary proof of a known result on the complexity of inference on the "TKF91" model, a well-known probabilistic model over strings. Compared to previous work, our proving method is easier to extend to other models, since it relies on a novel weak condition, triangular transducers, which is easy to establish in practice. The linear algebra view provides a concise way of describing transducer algorithms and their compositions, opens the possibility of transferring fast linear algebra libraries (for example, based on GPUs), as well as low rank matrix approximation methods, to string-valued inference problems.

  3. Applied Algebra: The Modeling Technique of Least Squares

    ERIC Educational Resources Information Center

    Zelkowski, Jeremy; Mayes, Robert

    2008-01-01

    The article focuses on engaging students in algebra through modeling real-world problems. The technique of least squares is explored, encouraging students to develop a deeper understanding of the method. (Contains 2 figures and a bibliography.)

  4. Tracking problem solving by multivariate pattern analysis and Hidden Markov Model algorithms.

    PubMed

    Anderson, John R

    2012-03-01

    Multivariate pattern analysis can be combined with Hidden Markov Model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first "mind reading" application involves using fMRI activity to track what students are doing as they solve a sequence of algebra problems. The methodology achieves considerable accuracy at determining both what problem-solving step the students are taking and whether they are performing that step correctly. The second "model discovery" application involves using statistical model evaluation to determine how many substates are involved in performing a step of algebraic problem solving. This research indicates that different steps involve different numbers of substates and these substates are associated with different fluency in algebra problem solving. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. A rigorous approach to investigating common assumptions about disease transmission: Process algebra as an emerging modelling methodology for epidemiology.

    PubMed

    McCaig, Chris; Begon, Mike; Norman, Rachel; Shankland, Carron

    2011-03-01

    Changing scale, for example, the ability to move seamlessly from an individual-based model to a population-based model, is an important problem in many fields. In this paper, we introduce process algebra as a novel solution to this problem in the context of models of infectious disease spread. Process algebra allows us to describe a system in terms of the stochastic behaviour of individuals, and is a technique from computer science. We review the use of process algebra in biological systems, and the variety of quantitative and qualitative analysis techniques available. The analysis illustrated here solves the changing scale problem: from the individual behaviour we can rigorously derive equations to describe the mean behaviour of the system at the level of the population. The biological problem investigated is the transmission of infection, and how this relates to individual interactions.

  6. Cognitive Tutor[R] Algebra I. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2009

    2009-01-01

    The "Cognitive Tutor[R] Algebra I" curriculum, published by Carnegie Learning, is an approach that combines algebra textbooks with interactive software. The software is developed around an artificial intelligence model that identifies strengths and weaknesses in each individual student's mastery of mathematical concepts. It then customizes prompts…

  7. Mathematical Modelling in Engineering: A Proposal to Introduce Linear Algebra Concepts

    ERIC Educational Resources Information Center

    Cárcamo Bahamonde, Andrea; Gómez Urgelles, Joan; Fortuny Aymemí, Josep

    2016-01-01

    The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasise the development of mathematical abilities primarily associated with modelling and interpreting, which are not exclusively calculus abilities. Considering this, an instructional design was created based on mathematical modelling and…

  8. Algebraic approach to small-world network models

    NASA Astrophysics Data System (ADS)

    Rudolph-Lilith, Michelle; Muller, Lyle E.

    2014-01-01

    We introduce an analytic model for directed Watts-Strogatz small-world graphs and deduce an algebraic expression of its defining adjacency matrix. The latter is then used to calculate the small-world digraph's asymmetry index and clustering coefficient in an analytically exact fashion, valid nonasymptotically for all graph sizes. The proposed approach is general and can be applied to all algebraically well-defined graph-theoretical measures, thus allowing for an analytical investigation of finite-size small-world graphs.

  9. Modelling of nanoscale quantum tunnelling structures using algebraic topology method

    NASA Astrophysics Data System (ADS)

    Sankaran, Krishnaswamy; Sairam, B.

    2018-05-01

    We have modelled nanoscale quantum tunnelling structures using Algebraic Topology Method (ATM). The accuracy of ATM is compared to the analytical solution derived based on the wave nature of tunnelling electrons. ATM provides a versatile, fast, and simple model to simulate complex structures. We are currently expanding the method for modelling electrodynamic systems.

  10. Designing Tasks for Math Modeling in College Algebra: A Critical Review

    ERIC Educational Resources Information Center

    Staats, Susan; Robertson, Douglas

    2014-01-01

    Over the last decade, the pedagogical approach known as mathematical modeling has received increased interest in college algebra classes in the United States. Math modeling assignments ask students to develop their own problem-solving tools to address non-routine, realistic scenarios. The open-ended quality of modeling activities creates dilemmas…

  11. Spatial-Operator Algebra For Flexible-Link Manipulators

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan; Rodriguez, Guillermo

    1994-01-01

    Method of computing dynamics of multiple-flexible-link robotic manipulators based on spatial-operator algebra, which originally applied to rigid-link manipulators. Aspects of spatial-operator-algebra approach described in several previous articles in NASA Tech Briefs-most recently "Robot Control Based on Spatial-Operator Algebra" (NPO-17918). In extension of spatial-operator algebra to manipulators with flexible links, each link represented by finite-element model: mass of flexible link apportioned among smaller, lumped-mass rigid bodies, coupling of motions expressed in terms of vibrational modes. This leads to operator expression for modal-mass matrix of link.

  12. Braided Categories of Endomorphisms as Invariants for Local Quantum Field Theories

    NASA Astrophysics Data System (ADS)

    Giorgetti, Luca; Rehren, Karl-Henning

    2018-01-01

    We want to establish the "braided action" (defined in the paper) of the DHR category on a universal environment algebra as a complete invariant for completely rational chiral conformal quantum field theories. The environment algebra can either be a single local algebra, or the quasilocal algebra, both of which are model-independent up to isomorphism. The DHR category as an abstract structure is captured by finitely many data (superselection sectors, fusion, and braiding), whereas its braided action encodes the full dynamical information that distinguishes models with isomorphic DHR categories. We show some geometric properties of the "duality pairing" between local algebras and the DHR category that are valid in general (completely rational) chiral CFTs. Under some additional assumptions whose status remains to be settled, the braided action of its DHR category completely classifies a (prime) CFT. The approach does not refer to the vacuum representation, or the knowledge of the vacuum state.

  13. Recurrence approach and higher order polynomial algebras for superintegrable monopole systems

    NASA Astrophysics Data System (ADS)

    Hoque, Md Fazlul; Marquette, Ian; Zhang, Yao-Zhong

    2018-05-01

    We revisit the MIC-harmonic oscillator in flat space with monopole interaction and derive the polynomial algebra satisfied by the integrals of motion and its energy spectrum using the ad hoc recurrence approach. We introduce a superintegrable monopole system in a generalized Taub-Newman-Unti-Tamburino (NUT) space. The Schrödinger equation of this model is solved in spherical coordinates in the framework of Stäckel transformation. It is shown that wave functions of the quantum system can be expressed in terms of the product of Laguerre and Jacobi polynomials. We construct ladder and shift operators based on the corresponding wave functions and obtain the recurrence formulas. By applying these recurrence relations, we construct higher order algebraically independent integrals of motion. We show that the integrals form a polynomial algebra. We construct the structure functions of the polynomial algebra and obtain the degenerate energy spectra of the model.

  14. Three-dimensional fractional-spin gravity

    NASA Astrophysics Data System (ADS)

    Boulanger, Nicolas; Sundell, Per; Valenzuela, Mauricio

    2014-02-01

    Using Wigner-deformed Heisenberg oscillators, we construct 3D Chern-Simons models consisting of fractional-spin fields coupled to higher-spin gravity and internal nonabelian gauge fields. The gauge algebras consist of Lorentz-tensorial Blencowe-Vasiliev higher-spin algebras and compact internal algebras intertwined by infinite-dimensional generators in lowest-weight representations of the Lorentz algebra with fractional spin. In integer or half-integer non-unitary cases, there exist truncations to gl(ℓ , ℓ ± 1) or gl(ℓ|ℓ ± 1) models. In all non-unitary cases, the internal gauge fields can be set to zero. At the semi-classical level, the fractional-spin fields are either Grassmann even or odd. The action requires the enveloping-algebra representation of the deformed oscillators, while their Fock-space representation suffices on-shell. The project was funded in part by F.R.S.-FNRS " Ulysse" Incentive Grant for Mobility in Scientific Research.

  15. Optical linear algebra processors: noise and error-source modeling.

    PubMed

    Casasent, D; Ghosh, A

    1985-06-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  16. Inverse Modelling Problems in Linear Algebra Undergraduate Courses

    ERIC Educational Resources Information Center

    Martinez-Luaces, Victor E.

    2013-01-01

    This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…

  17. Optical linear algebra processors - Noise and error-source modeling

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Ghosh, A.

    1985-01-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  18. Quantum walks, deformed relativity and Hopf algebra symmetries.

    PubMed

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2016-05-28

    We show how the Weyl quantum walk derived from principles in D'Ariano & Perinotti (D'Ariano & Perinotti 2014Phys. Rev. A90, 062106. (doi:10.1103/PhysRevA.90.062106)), enjoying a nonlinear Lorentz symmetry of dynamics, allows one to introduce Hopf algebras for position and momentum of the emerging particle. We focus on two special models of Hopf algebras-the usual Poincaré and theκ-Poincaré algebras. © 2016 The Author(s).

  19. A Cohomological Perspective on Algebraic Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Hawkins, Eli

    2018-05-01

    Algebraic quantum field theory is considered from the perspective of the Hochschild cohomology bicomplex. This is a framework for studying deformations and symmetries. Deformation is a possible approach to the fundamental challenge of constructing interacting QFT models. Symmetry is the primary tool for understanding the structure and properties of a QFT model. This perspective leads to a generalization of the algebraic quantum field theory framework, as well as a more general definition of symmetry. This means that some models may have symmetries that were not previously recognized or exploited. To first order, a deformation of a QFT model is described by a Hochschild cohomology class. A deformation could, for example, correspond to adding an interaction term to a Lagrangian. The cohomology class for such an interaction is computed here. However, the result is more general and does not require the undeformed model to be constructed from a Lagrangian. This computation leads to a more concrete version of the construction of perturbative algebraic quantum field theory.

  20. Wall-crossing invariants: from quantum mechanics to knots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galakhov, D., E-mail: galakhov@itep.ru, E-mail: galakhov@physics.rutgers.edu; Mironov, A., E-mail: mironov@lpi.ru; Morozov, A., E-mail: morozov@itep.ru

    2015-03-15

    We offer a pedestrian-level review of the wall-crossing invariants. The story begins from the scattering theory in quantum mechanics where the spectrum reshuffling can be related to permutations of S-matrices. In nontrivial situations, starting from spin chains and matrix models, the S-matrices are operatorvalued and their algebra is described in terms of R- and mixing (Racah) U-matrices. Then the Kontsevich-Soibelman (KS) invariants are nothing but the standard knot invariants made out of these data within the Reshetikhin-Turaev-Witten approach. The R and Racah matrices acquire a relatively universal form in the semiclassical limit, where the basic reshufflings with the change ofmore » moduli are those of the Stokes line. Natural from this standpoint are matrices provided by the modular transformations of conformal blocks (with the usual identification R = T and U = S), and in the simplest case of the first degenerate field (2, 1), when the conformal blocks satisfy a second-order Shrödinger-like equation, the invariants coincide with the Jones (N = 2) invariants of the associated knots. Another possibility to construct knot invariants is to realize the cluster coordinates associated with reshufflings of the Stokes lines immediately in terms of check-operators acting on solutions of the Knizhnik-Zamolodchikov equations. Then the R-matrices are realized as products of successive mutations in the cluster algebra and are manifestly described in terms of quantum dilogarithms, ultimately leading to the Hikami construction of knot invariants.« less

  1. The roles of prefrontal and posterior parietal cortex in algebra problem solving: a case of using cognitive modeling to inform neuroimaging data.

    PubMed

    Danker, Jared F; Anderson, John R

    2007-04-15

    In naturalistic algebra problem solving, the cognitive processes of representation and retrieval are typically confounded, in that transformations of the equations typically require retrieval of mathematical facts. Previous work using cognitive modeling has associated activity in the prefrontal cortex with the retrieval demands of algebra problems and activity in the posterior parietal cortex with the transformational demands of algebra problems, but these regions tend to behave similarly in response to task manipulations (Anderson, J.R., Qin, Y., Sohn, M.-H., Stenger, V.A., Carter, C.S., 2003. An information-processing model of the BOLD response in symbol manipulation tasks. Psychon. Bull. Rev. 10, 241-261; Qin, Y., Carter, C.S., Silk, E.M., Stenger, A., Fissell, K., Goode, A., Anderson, J.R., 2004. The change of brain activation patterns as children learn algebra equation solving. Proc. Natl. Acad. Sci. 101, 5686-5691). With this study we attempt to isolate activity in these two regions by using a multi-step algebra task in which transformation (parietal) is manipulated in the first step and retrieval (prefrontal) is manipulated in the second step. Counter to our initial predictions, both brain regions were differentially active during both steps. We designed two cognitive models, one encompassing our initial assumptions and one in which both processes were engaged during both steps. The first model provided a poor fit to the behavioral and neural data, while the second model fit both well. This simultaneously emphasizes the strong relationship between retrieval and representation in mathematical reasoning and demonstrates that cognitive modeling can serve as a useful tool for understanding task manipulations in neuroimaging experiments.

  2. Mathematical modelling in engineering: an alternative way to teach Linear Algebra

    NASA Astrophysics Data System (ADS)

    Domínguez-García, S.; García-Planas, M. I.; Taberna, J.

    2016-10-01

    Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic classroom approach in which students modelled real-world problems and turn gain a deeper knowledge of the Linear Algebra subject. Considering that most students are digital natives, we use the e-portfolio as a tool of communication between students and teachers, besides being a good place making the work visible. In this article, we present an overview of the design and implementation of a project-based learning for a Linear Algebra course taught during the 2014-2015 at the 'ETSEIB'of Universitat Politècnica de Catalunya (UPC).

  3. The Effects of Representations, Constructivist Approaches, and Engagement on Middle School Students' Algebraic Procedure and Conceptual Understanding

    ERIC Educational Resources Information Center

    Ross, Amanda; Willson, Victor

    2012-01-01

    This study examined the effects of types of representations, constructivist teaching approaches, and student engagement on middle school algebra students' procedural knowledge and conceptual understanding. Data gathered from 16 video lessons and algebra pretest/posttests were used to run three multilevel structural equation models. Symbolic…

  4. Mathematical Modelling and the Learning Trajectory: Tools to Support the Teaching of Linear Algebra

    ERIC Educational Resources Information Center

    Cárcamo Bahamonde, Andrea Dorila; Fortuny Aymemí, Josep Maria; Gómez i Urgellés, Joan Vicenç

    2017-01-01

    In this article we present a didactic proposal for teaching linear algebra based on two compatible theoretical models: emergent models and mathematical modelling. This proposal begins with a problematic situation related to the creation and use of secure passwords, which leads students toward the construction of the concepts of spanning set and…

  5. pyomo.dae: a modeling and automatic discretization framework for optimization with differential and algebraic equations

    DOE PAGES

    Nicholson, Bethany; Siirola, John D.; Watson, Jean-Paul; ...

    2017-12-20

    We describe pyomo.dae, an open source Python-based modeling framework that enables high-level abstract specification of optimization problems with differential and algebraic equations. The pyomo.dae framework is integrated with the Pyomo open source algebraic modeling language, and is available at http://www.pyomo.org. One key feature of pyomo.dae is that it does not restrict users to standard, predefined forms of differential equations, providing a high degree of modeling flexibility and the ability to express constraints that cannot be easily specified in other modeling frameworks. Other key features of pyomo.dae are the ability to specify optimization problems with high-order differential equations and partial differentialmore » equations, defined on restricted domain types, and the ability to automatically transform high-level abstract models into finite-dimensional algebraic problems that can be solved with off-the-shelf solvers. Moreover, pyomo.dae users can leverage existing capabilities of Pyomo to embed differential equation models within stochastic and integer programming models and mathematical programs with equilibrium constraint formulations. Collectively, these features enable the exploration of new modeling concepts, discretization schemes, and the benchmarking of state-of-the-art optimization solvers.« less

  6. pyomo.dae: a modeling and automatic discretization framework for optimization with differential and algebraic equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, Bethany; Siirola, John D.; Watson, Jean-Paul

    We describe pyomo.dae, an open source Python-based modeling framework that enables high-level abstract specification of optimization problems with differential and algebraic equations. The pyomo.dae framework is integrated with the Pyomo open source algebraic modeling language, and is available at http://www.pyomo.org. One key feature of pyomo.dae is that it does not restrict users to standard, predefined forms of differential equations, providing a high degree of modeling flexibility and the ability to express constraints that cannot be easily specified in other modeling frameworks. Other key features of pyomo.dae are the ability to specify optimization problems with high-order differential equations and partial differentialmore » equations, defined on restricted domain types, and the ability to automatically transform high-level abstract models into finite-dimensional algebraic problems that can be solved with off-the-shelf solvers. Moreover, pyomo.dae users can leverage existing capabilities of Pyomo to embed differential equation models within stochastic and integer programming models and mathematical programs with equilibrium constraint formulations. Collectively, these features enable the exploration of new modeling concepts, discretization schemes, and the benchmarking of state-of-the-art optimization solvers.« less

  7. The Standard Model in noncommutative geometry: fundamental fermions as internal forms

    NASA Astrophysics Data System (ADS)

    Dąbrowski, Ludwik; D'Andrea, Francesco; Sitarz, Andrzej

    2018-05-01

    Given the algebra, Hilbert space H, grading and real structure of the finite spectral triple of the Standard Model, we classify all possible Dirac operators such that H is a self-Morita equivalence bimodule for the associated Clifford algebra.

  8. BOOK REVIEW: Modern Supersymmetry

    NASA Astrophysics Data System (ADS)

    Kulish, Petr P.

    2006-12-01

    We have spent more than twenty years applying supersymmetry (SUSY) to elementary particle physics and attempting to find an experimental manifestation of this symmetry. Terning's monograph demonstrates the strong influence of SUSY on theoretical elaborations in the field of elementary particles. It gives both an overview of modern supersymmetry in elementary particle physics and calculation techniques. The author, trying to be closer to applications of SUSY in the real world of elementary particles, is also anticipating the importance of supersymmetry for rigorous study of nonperturbative phenomena in quantum field theory. In particular, he presents the `exact' SUSY β function using instanton methods, phenomena of anomalies and dualities. Supersymmetry algebra is introduced by adding two anticommuting spinor generators to Poincaré algebra and by presenting massive and massless supermultiplets of its representations. The author prefers to use mostly the component description of field contents of the theories in question rather than the superfield formalism. Such a style makes the account closer to physical chartacteristics. Relations required by SUSY among β functions of the gauge, Yukawa and quartic interactions are checked by direct calculations as well as to all orders in perturbation theory, thus demonstrating that SUSY survives quantization. A discussion is included of the hierarchy problem of different scales of weak and strong interactions and its possible solution by the minimal supersymmetric standard model. Different SUSY breaking mechanisms are presented corresponding to a realistic phenomenology. The monograph can also be considered as a guide to `duality' relations connecting different SUSY gauge theories, supergravities and superstrings. This is demonstrated referring to the particular properties and characteristics of these theories (field contents, scaling dimensions of appropriate operators etc). In particular, the last chapter deals with the AdS/CFT correspondence. The author explains clearly most of the arguments in discussions and refers for further details to original papers (with corresponding arXiv numbers), selected lists of which appear at the end of each chapter (there are more than 300 references in the book). Considered as a whole the book covers primers on quantum fields, Feynman diagrams, renormalization procedure and renormalization groups, as well as the representation theory of classical linear Lie algebras. Some necessary information on irreducible representations of su(N), so(N) and sp(2N) is given in an appendix. There are in the text short historical and biographical notes concerning those scientists who made important contributions to the subject of the monograph: S Coleman, Yu Golfand, E Witten and others. Most of the seventeen chapters contain a few exercises to check the reader's understanding of the corresponding material. This monograph will be useful for graduate students and researchers in the field of elementary particles.

  9. Current algebra, statistical mechanics and quantum models

    NASA Astrophysics Data System (ADS)

    Vilela Mendes, R.

    2017-11-01

    Results obtained in the past for free boson systems at zero and nonzero temperatures are revisited to clarify the physical meaning of current algebra reducible functionals which are associated to systems with density fluctuations, leading to observable effects on phase transitions. To use current algebra as a tool for the formulation of quantum statistical mechanics amounts to the construction of unitary representations of diffeomorphism groups. Two mathematical equivalent procedures exist for this purpose. One searches for quasi-invariant measures on configuration spaces, the other for a cyclic vector in Hilbert space. Here, one argues that the second approach is closer to the physical intuition when modelling complex systems. An example of application of the current algebra methodology to the pairing phenomenon in two-dimensional fermion systems is discussed.

  10. Survey of Turbulence Models for the Computation of Turbulent Jet Flow and Noise

    NASA Technical Reports Server (NTRS)

    Nallasamy, N.

    1999-01-01

    The report presents an overview of jet noise computation utilizing the computational fluid dynamic solution of the turbulent jet flow field. The jet flow solution obtained with an appropriate turbulence model provides the turbulence characteristics needed for the computation of jet mixing noise. A brief account of turbulence models that are relevant for the jet noise computation is presented. The jet flow solutions that have been directly used to calculate jet noise are first reviewed. Then, the turbulent jet flow studies that compute the turbulence characteristics that may be used for noise calculations are summarized. In particular, flow solutions obtained with the k-e model, algebraic Reynolds stress model, and Reynolds stress transport equation model are reviewed. Since, the small scale jet mixing noise predictions can be improved by utilizing anisotropic turbulence characteristics, turbulence models that can provide the Reynolds stress components must now be considered for jet flow computations. In this regard, algebraic stress models and Reynolds stress transport models are good candidates. Reynolds stress transport models involve more modeling and computational effort and time compared to algebraic stress models. Hence, it is recommended that an algebraic Reynolds stress model (ASM) be implemented in flow solvers to compute the Reynolds stress components.

  11. A finite element computation of turbulent boundary layer flows with an algebraic stress turbulence model

    NASA Technical Reports Server (NTRS)

    Kim, Sang-Wook; Chen, Yen-Sen

    1988-01-01

    An algebraic stress turbulence model and a computational procedure for turbulent boundary layer flows which is based on the semidiscrete Galerkin FEM are discussed. In the algebraic stress turbulence model, the eddy viscosity expression is obtained from the Reynolds stress turbulence model, and the turbulent kinetic energy dissipation rate equation is improved by including a production range time scale. Good agreement with experimental data is found for the examples of a fully developed channel flow, a fully developed pipe flow, a flat plate boundary layer flow, a plane jet exhausting into a moving stream, a circular jet exhausting into a moving stream, and a wall jet flow.

  12. A Galilean Invariant Explicit Algebraic Reynolds Stress Model for Curved Flows

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath

    1996-01-01

    A Galilean invariant weak-equilbrium hypothesis that is sensitive to streamline curvature is proposed. The hypothesis leads to an algebraic Reynolds stress model for curved flows that is fully explicit and self-consistent. The model is tested in curved homogeneous shear flow: the agreement is excellent with Reynolds stress closure model and adequate with available experimental data.

  13. Continual Lie algebras and noncommutative counterparts of exactly solvable models

    NASA Astrophysics Data System (ADS)

    Zuevsky, A.

    2004-01-01

    Noncommutative counterparts of exactly solvable models are introduced on the basis of a generalization of Saveliev-Vershik continual Lie algebras. Examples of noncommutative Liouville and sin/h-Gordon equations are given. The simplest soliton solution to the noncommutative sine-Gordon equation is found.

  14. Shapes and stability of algebraic nuclear models

    NASA Technical Reports Server (NTRS)

    Lopez-Moreno, Enrique; Castanos, Octavio

    1995-01-01

    A generalization of the procedure to study shapes and stability of algebraic nuclear models introduced by Gilmore is presented. One calculates the expectation value of the Hamiltonian with respect to the coherent states of the algebraic structure of the system. Then equilibrium configurations of the resulting energy surface, which depends in general on state variables and a set of parameters, are classified through the Catastrophe theory. For one- and two-body interactions in the Hamiltonian of the interacting Boson model-1, the critical points are organized through the Cusp catastrophe. As an example, we apply this Separatrix to describe the energy surfaces associated to the Rutenium and Samarium isotopes.

  15. A path model for Whittaker vectors

    NASA Astrophysics Data System (ADS)

    Di Francesco, Philippe; Kedem, Rinat; Turmunkh, Bolor

    2017-06-01

    In this paper we construct weighted path models to compute Whittaker vectors in the completion of Verma modules, as well as Whittaker functions of fundamental type, for all finite-dimensional simple Lie algebras, affine Lie algebras, and the quantum algebra U_q(slr+1) . This leads to series expressions for the Whittaker functions. We show how this construction leads directly to the quantum Toda equations satisfied by these functions, and to the q-difference equations in the quantum case. We investigate the critical limit of affine Whittaker functions computed in this way.

  16. The Model Method: Singapore Children's Tool for Representing and Solving Algebraic Word Problems

    ERIC Educational Resources Information Center

    Ng, Swee Fong; Lee, Kerry

    2009-01-01

    Solving arithmetic and algebraic word problems is a key component of the Singapore elementary mathematics curriculum. One heuristic taught, the model method, involves drawing a diagram to represent key information in the problem. We describe the model method and a three-phase theoretical framework supporting its use. We conducted 2 studies to…

  17. Early Childhood Teachers' Professional Learning in Early Algebraic Thinking: A Model that Supports New Knowledge and Pedagogy

    ERIC Educational Resources Information Center

    Warren, Elizabeth

    2009-01-01

    The implementation of a new mathematics syllabus in the elementary context is problematic, especially if it contains a new content area. A professional development model, Transformative Teaching in the Early Years Mathematics (TTEYM) was specifically developed to support the implementation of the new Patterns and Algebra strand. The model was…

  18. Unification of the general non-linear sigma model and the Virasoro master equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boer, J. de; Halpern, M.B.

    1997-06-01

    The Virasoro master equation describes a large set of conformal field theories known as the affine-Virasoro constructions, in the operator algebra (affinie Lie algebra) of the WZW model, while the einstein equations of the general non-linear sigma model describe another large set of conformal field theories. This talk summarizes recent work which unifies these two sets of conformal field theories, together with a presumable large class of new conformal field theories. The basic idea is to consider spin-two operators of the form L{sub ij}{partial_derivative}x{sup i}{partial_derivative}x{sup j} in the background of a general sigma model. The requirement that these operators satisfymore » the Virasoro algebra leads to a set of equations called the unified Einstein-Virasoro master equation, in which the spin-two spacetime field L{sub ij} cuples to the usual spacetime fields of the sigma model. The one-loop form of this unified system is presented, and some of its algebraic and geometric properties are discussed.« less

  19. Comparing the Impact of Traditional and Modeling College Algebra Courses on Student Performance in Survey of Calculus

    ERIC Educational Resources Information Center

    West, Jerry G.

    2013-01-01

    Students in higher education deserve opportunities to succeed and learning environments which maximize success. Mathematics courses can create a barrier for success for some students. College algebra is a course that serves as a gateway to required courses in many bachelor's degree programs. The content in college algebra should serve to…

  20. Wronski Brackets and the Ferris Wheel

    NASA Astrophysics Data System (ADS)

    Martin, Keye

    2005-11-01

    We connect the Bayesian order on classical states to a certain Lie algebra on C^infty[0,1]. This special Lie algebra structure, made precise by an idea we introduce called a Wronski bracket, suggests new phenomena the Bayesian order naturally models. We then study Wronski brackets on associative algebras, and in the commutative case, discover the beautiful result that they are equivalent to derivations.

  1. Global identifiability of linear compartmental models--a computer algebra algorithm.

    PubMed

    Audoly, S; D'Angiò, L; Saccomani, M P; Cobelli, C

    1998-01-01

    A priori global identifiability deals with the uniqueness of the solution for the unknown parameters of a model and is, thus, a prerequisite for parameter estimation of biological dynamic models. Global identifiability is however difficult to test, since it requires solving a system of algebraic nonlinear equations which increases both in nonlinearity degree and number of terms and unknowns with increasing model order. In this paper, a computer algebra tool, GLOBI (GLOBal Identifiability) is presented, which combines the topological transfer function method with the Buchberger algorithm, to test global identifiability of linear compartmental models. GLOBI allows for the automatic testing of a priori global identifiability of general structure compartmental models from general multi input-multi output experiments. Examples of usage of GLOBI to analyze a priori global identifiability of some complex biological compartmental models are provided.

  2. On superintegrable monopole systems

    NASA Astrophysics Data System (ADS)

    Fazlul Hoque, Md; Marquette, Ian; Zhang, Yao-Zhong

    2018-02-01

    Superintegrable systems with monopole interactions in flat and curved spaces have attracted much attention. For example, models in spaces with a Taub-NUT metric are well-known to admit the Kepler-type symmetries and provide non-trivial generalizations of the usual Kepler problems. In this paper, we overview new families of superintegrable Kepler, MIC-harmonic oscillator and deformed Kepler systems interacting with Yang-Coulomb monopoles in the flat and curved Taub-NUT spaces. We present their higher-order, algebraically independent integrals of motion via the direct and constructive approaches which prove the superintegrability of the models. The integrals form symmetry polynomial algebras of the systems with structure constants involving Casimir operators of certain Lie algebras. Such algebraic approaches provide a deeper understanding to the degeneracies of the energy spectra and connection between wave functions and differential equations and geometry.

  3. Polynomial algebra of discrete models in systems biology.

    PubMed

    Veliz-Cuba, Alan; Jarrah, Abdul Salam; Laubenbacher, Reinhard

    2010-07-01

    An increasing number of discrete mathematical models are being published in Systems Biology, ranging from Boolean network models to logical models and Petri nets. They are used to model a variety of biochemical networks, such as metabolic networks, gene regulatory networks and signal transduction networks. There is increasing evidence that such models can capture key dynamic features of biological networks and can be used successfully for hypothesis generation. This article provides a unified framework that can aid the mathematical analysis of Boolean network models, logical models and Petri nets. They can be represented as polynomial dynamical systems, which allows the use of a variety of mathematical tools from computer algebra for their analysis. Algorithms are presented for the translation into polynomial dynamical systems. Examples are given of how polynomial algebra can be used for the model analysis. alanavc@vt.edu Supplementary data are available at Bioinformatics online.

  4. Mathematical Modelling in Engineering: An Alternative Way to Teach Linear Algebra

    ERIC Educational Resources Information Center

    Domínguez-García, S.; García-Planas, M. I.; Taberna, J.

    2016-01-01

    Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic…

  5. Super-Lie n-algebra extensions, higher WZW models and super-p-branes with tensor multiplet fields

    NASA Astrophysics Data System (ADS)

    Fiorenza, Domenico; Sati, Hisham; Schreiber, Urs

    2015-12-01

    We formalize higher-dimensional and higher gauge WZW-type sigma-model local prequantum field theory, and discuss its rationalized/perturbative description in (super-)Lie n-algebra homotopy theory (the true home of the "FDA"-language used in the supergravity literature). We show generally how the intersection laws for such higher WZW-type σ-model branes (open brane ending on background brane) are encoded precisely in (super-)L∞-extension theory and how the resulting "extended (super-)space-times" formalize spacetimes containing σ-model brane condensates. As an application we prove in Lie n-algebra homotopy theory that the complete super-p-brane spectrum of superstring/M-theory is realized this way, including the pure σ-model branes (the "old brane scan") but also the branes with tensor multiplet worldvolume fields, notably the D-branes and the M5-brane. For instance the degree-0 piece of the higher symmetry algebra of 11-dimensional (11D) spacetime with an M2-brane condensate turns out to be the "M-theory super-Lie algebra". We also observe that in this formulation there is a simple formal proof of the fact that type IIA spacetime with a D0-brane condensate is the 11D sugra/M-theory spacetime, and of (prequantum) S-duality for type IIB string theory. Finally we give the non-perturbative description of all this by higher WZW-type σ-models on higher super-orbispaces with higher WZW terms in stacky differential cohomology.

  6. Non-associativity in non-geometric string and M-theory backgrounds, the algebra of octonions, and missing momentum modes

    DOE PAGES

    Günaydin, Murat; Lüst, Dieter; Malek, Emanuel

    2016-11-07

    We propose a non-associative phase space algebra for M-theory backgrounds with locally non-geometric fluxes based on the non-associative algebra of octonions. Our proposal is based on the observation that the non-associative algebra of the non-geometric R-flux background in string theory can be obtained by a proper contraction of the simple Malcev algebra generated by imaginary octonions. Furthermore, by studying a toy model of a four-dimensional locally non-geometric M-theory background which is dual to a twisted torus, we show that the non-geometric background is “missing” a momentum mode. The resulting seven-dimensional phase space can thus be naturally identified with the imaginarymore » octonions. This allows us to interpret the full uncontracted algebra of imaginary octonions as the uplift of the string theory R-flux algebra to M-theory, with the contraction parameter playing the role of the string coupling constant g s.« less

  7. Non-associativity in non-geometric string and M-theory backgrounds, the algebra of octonions, and missing momentum modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Günaydin, Murat; Lüst, Dieter; Malek, Emanuel

    We propose a non-associative phase space algebra for M-theory backgrounds with locally non-geometric fluxes based on the non-associative algebra of octonions. Our proposal is based on the observation that the non-associative algebra of the non-geometric R-flux background in string theory can be obtained by a proper contraction of the simple Malcev algebra generated by imaginary octonions. Furthermore, by studying a toy model of a four-dimensional locally non-geometric M-theory background which is dual to a twisted torus, we show that the non-geometric background is “missing” a momentum mode. The resulting seven-dimensional phase space can thus be naturally identified with the imaginarymore » octonions. This allows us to interpret the full uncontracted algebra of imaginary octonions as the uplift of the string theory R-flux algebra to M-theory, with the contraction parameter playing the role of the string coupling constant g s.« less

  8. An algebraic interpretation of PSP composition.

    PubMed

    Vaucher, G

    1998-01-01

    The introduction of time in artificial neurons is a delicate problem on which many groups are working. Our approach combines some properties of biological models and the algebraic properties of McCulloch and Pitts artificial neuron (AN) (McCulloch and Pitts, 1943) to produce a new model which links both characteristics. In this extended artificial neuron, postsynaptic potentials (PSPs) are considered as numerical elements, having two degrees of freedom, on which the neuron computes operations. Modelled in this manner, a group of neurons can be seen as a computer with an asynchronous architecture. To formalize the functioning of this computer, we propose an algebra of impulses. This approach might also be interesting in the modelling of the passive electrical properties in some biological neurons.

  9. Metacognitive gimmicks and their use by upper level physics students

    NASA Astrophysics Data System (ADS)

    White, Gary; Sikorski, Tiffany-Rose; Landay, Justin

    2017-01-01

    We report on the initial phases of a study of three particular metacognitive gimmicks that upper-level physics students can use as a tool in their problem-solving kit, namely: checking units for consistency, discerning whether limiting cases match physical intuition, and computing numerical values for reasonable-ness. Students in a one semester Griffiths electromagnetism course at a small private urban university campus are asked to respond to explicit prompts that encourage adopting these three methods for checking answers to physics problems, especially those problems for which an algebraic expression is part of the final answer. We explore how, and to what extent, these students adopt these gimmicks, as well as the time development of their use. While the term ``gimmick'' carries with it some pejorative baggage, we feel it describes the essential nature of the pedagogical idea adequately in that it gets attention, is easy for the students to remember, and represents, albeit perhaps in a surface way, some key ideas about which professional physicists care.

  10. Comparing Cognitive Models of Domain Mastery and Task Performance in Algebra: Validity Evidence for a State Assessment

    ERIC Educational Resources Information Center

    Warner, Zachary B.

    2013-01-01

    This study compared an expert-based cognitive model of domain mastery with student-based cognitive models of task performance for Integrated Algebra. Interpretations of student test results are limited by experts' hypotheses of how students interact with the items. In reality, the cognitive processes that students use to solve each item may be…

  11. Entanglement in a model for Hawking radiation: An application of quadratic algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bambah, Bindu A., E-mail: bbsp@uohyd.ernet.in; Mukku, C., E-mail: mukku@iiit.ac.in; Shreecharan, T., E-mail: shreecharan@gmail.com

    2013-03-15

    Quadratic polynomially deformed su(1,1) and su(2) algebras are utilized in model Hamiltonians to show how the gravitational system consisting of a black hole, infalling radiation and outgoing (Hawking) radiation can be solved exactly. The models allow us to study the long-time behaviour of the black hole and its outgoing modes. In particular, we calculate the bipartite entanglement entropies of subsystems consisting of (a) infalling plus outgoing modes and (b) black hole modes plus the infalling modes, using the Janus-faced nature of the model. The long-time behaviour also gives us glimpses of modifications in the character of Hawking radiation. Finally, wemore » study the phenomenon of superradiance in our model in analogy with atomic Dicke superradiance. - Highlights: Black-Right-Pointing-Pointer We examine a toy model for Hawking radiation with quantized black hole modes. Black-Right-Pointing-Pointer We use quadratic polynomially deformed su(1,1) algebras to study its entanglement properties. Black-Right-Pointing-Pointer We study the 'Dicke Superradiance' in black hole radiation using quadratically deformed su(2) algebras. Black-Right-Pointing-Pointer We study the modification of the thermal character of Hawking radiation due to quantized black hole modes.« less

  12. ADAM: analysis of discrete models of biological systems using computer algebra.

    PubMed

    Hinkelmann, Franziska; Brandon, Madison; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard

    2011-07-20

    Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics.

  13. SATA II - Stochastic Algebraic Topology and Applications

    DTIC Science & Technology

    2017-01-30

    AFRL-AFOSR-UK-TR-2017-0018 SATA II - Stochastic Algebraic Topology and Applications 150032 Robert Adler TECHNION ISRAEL INSTITUTE OF TECHNOLOGY Final...REPORT TYPE Final 3. DATES COVERED (From - To) 15 Dec 2014 to 14 Dec 2016 4. TITLE AND SUBTITLE SATA II - Stochastic Algebraic Topology and Applications ...has recently been submitted to AFOSR. 15. SUBJECT TERMS Network Theory, Sensor Technology, Mathematical Modeling, EOARD 16. SECURITY CLASSIFICATION OF

  14. Stability Analysis of Finite Difference Schemes for Hyperbolic Systems, and Problems in Applied and Computational Linear Algebra.

    DTIC Science & Technology

    FINITE DIFFERENCE THEORY, * LINEAR ALGEBRA , APPLIED MATHEMATICS, APPROXIMATION(MATHEMATICS), BOUNDARY VALUE PROBLEMS, COMPUTATIONS, HYPERBOLAS, MATHEMATICAL MODELS, NUMERICAL ANALYSIS, PARTIAL DIFFERENTIAL EQUATIONS, STABILITY.

  15. RANS modeling of scalar dispersion from localized sources within a simplified urban-area model

    NASA Astrophysics Data System (ADS)

    Rossi, Riccardo; Capra, Stefano; Iaccarino, Gianluca

    2011-11-01

    The dispersion of a passive scalar downstream a localized source within a simplified urban-like geometry is examined by means of RANS scalar flux models. The computations are conducted under conditions of neutral stability and for three different incoming wind directions (0°, 45°, 90°) at a roughness Reynolds number of Ret = 391. A Reynolds stress transport model is used to close the flow governing equations whereas both the standard eddy-diffusivity closure and algebraic flux models are employed to close the transport equation for the passive scalar. The comparison with a DNS database shows improved reliability from algebraic scalar flux models towards predicting both the mean concentration and the plume structure. Since algebraic flux models do not increase substantially the computational effort, the results indicate that the use of tensorial-diffusivity can be promising tool for dispersion simulations for the urban environment.

  16. Algebraic method for parameter identification of circuit models for batteries under non-zero initial condition

    NASA Astrophysics Data System (ADS)

    Devarakonda, Lalitha; Hu, Tingshu

    2014-12-01

    This paper presents an algebraic method for parameter identification of Thevenin's equivalent circuit models for batteries under non-zero initial condition. In traditional methods, it was assumed that all capacitor voltages have zero initial conditions at the beginning of each charging/discharging test. This would require a long rest time between two tests, leading to very lengthy tests for a charging/discharging cycle. In this paper, we propose an algebraic method which can extract the circuit parameters together with initial conditions. This would theoretically reduce the rest time to 0 and substantially accelerate the testing cycles.

  17. Classical Yang-Baxter equations and quantum integrable systems

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    1989-06-01

    Quantum integrable models associated with nondegenerate solutions of classical Yang-Baxter equations related to the simple Lie algebras are investigated. These models are diagonalized for rational and trigonometric solutions in the cases of sl(N)/gl(N)/, o(N) and sp(N) algebras. The analogy with the quantum inverse scattering method is demonstrated.

  18. Validating Cognitive Models of Task Performance in Algebra on the SAT®. Research Report No. 2009-3

    ERIC Educational Resources Information Center

    Gierl, Mark J.; Leighton, Jacqueline P.; Wang, Changjiang; Zhou, Jiawen; Gokiert, Rebecca; Tan, Adele

    2009-01-01

    The purpose of the study is to present research focused on validating the four algebra cognitive models in Gierl, Wang, et al., using student response data collected with protocol analysis methods to evaluate the knowledge structures and processing skills used by a sample of SAT test takers.

  19. Effective Lagrangians and Current Algebra in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Ferretti, Gabriele

    In this thesis we study three dimensional field theories that arise as effective Lagrangians of quantum chromodynamics in Minkowski space with signature (2,1) (QCD3). In the first chapter, we explain the method of effective Langrangians and the relevance of current algebra techniques to field theory. We also provide the physical motivations for the study of QCD3 as a toy model for confinement and as a theory of quantum antiferromagnets (QAF). In chapter two, we derive the relevant effective Lagrangian by studying the low energy behavior of QCD3, paying particular attention to how the global symmetries are realized at the quantum level. In chapter three, we show how baryons arise as topological solitons of the effective Lagrangian and also show that their statistics depends on the number of colors as predicted by the quark model. We calculate mass splitting and magnetic moments of the soliton and find logarithmic corrections to the naive quark model predictions. In chapter four, we drive the current algebra of the theory. We find that the current algebra is a co -homologically non-trivial generalization of Kac-Moody algebras to three dimensions. This fact may provide a new, non -perturbative way to quantize the theory. In chapter five, we discuss the renormalizability of the model in the large-N expansion. We prove the validity of the non-renormalization theorem and compute the critical exponents in a specific limiting case, the CP^ {N-1} model with a Chern-Simons term. Finally, chapter six contains some brief concluding remarks.

  20. Directed Abelian algebras and their application to stochastic models.

    PubMed

    Alcaraz, F C; Rittenberg, V

    2008-10-01

    With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma_(tau)=32 ). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma_(tau)=1.780+/-0.005 .

  1. Two dissimilar approaches to dynamical systems on hyper MV -algebras and their information entropy

    NASA Astrophysics Data System (ADS)

    Mehrpooya, Adel; Ebrahimi, Mohammad; Davvaz, Bijan

    2017-09-01

    Measuring the flow of information that is related to the evolution of a system which is modeled by applying a mathematical structure is of capital significance for science and usually for mathematics itself. Regarding this fact, a major issue in concern with hyperstructures is their dynamics and the complexity of the varied possible dynamics that exist over them. Notably, the dynamics and uncertainty of hyper MV -algebras which are hyperstructures and extensions of a central tool in infinite-valued Lukasiewicz propositional calculus that models many valued logics are of primary concern. Tackling this problem, in this paper we focus on the subject of dynamical systems on hyper MV -algebras and their entropy. In this respect, we adopt two varied approaches. One is the set-based approach in which hyper MV -algebra dynamical systems are developed by employing set functions and set partitions. By the other method that is based on points and point partitions, we establish the concept of hyper injective dynamical systems on hyper MV -algebras. Next, we study the notion of entropy for both kinds of systems. Furthermore, we consider essential ergodic characteristics of those systems and their entropy. In particular, we introduce the concept of isomorphic hyper injective and hyper MV -algebra dynamical systems, and we demonstrate that isomorphic systems have the same entropy. We present a couple of theorems in order to help calculate entropy. In particular, we prove a contemporary version of addition and Kolmogorov-Sinai Theorems. Furthermore, we provide a comparison between the indispensable properties of hyper injective and semi-independent dynamical systems. Specifically, we present and prove theorems that draw comparisons between the entropies of such systems. Lastly, we discuss some possible relationships between the theories of hyper MV -algebra and MV -algebra dynamical systems.

  2. Asymptotic identity in min-plus algebra: a report on CPNS.

    PubMed

    Li, Ming; Zhao, Wei

    2012-01-01

    Network calculus is a theory initiated primarily in computer communication networks, especially in the aspect of real-time communications, where min-plus algebra plays a role. Cyber-physical networking systems (CPNSs) are recently developing fast and models in data flows as well as systems in CPNS are, accordingly, greatly desired. Though min-plus algebra may be a promising tool to linearize any node in CPNS as can be seen from its applications to the Internet computing, there are tough problems remaining unsolved in this regard. The identity in min-plus algebra is one problem we shall address. We shall point out the confusions about the conventional identity in the min-plus algebra and present an analytical expression of the asymptotic identity that may not cause confusions.

  3. Asymptotic Identity in Min-Plus Algebra: A Report on CPNS

    PubMed Central

    Li, Ming; Zhao, Wei

    2012-01-01

    Network calculus is a theory initiated primarily in computer communication networks, especially in the aspect of real-time communications, where min-plus algebra plays a role. Cyber-physical networking systems (CPNSs) are recently developing fast and models in data flows as well as systems in CPNS are, accordingly, greatly desired. Though min-plus algebra may be a promising tool to linearize any node in CPNS as can be seen from its applications to the Internet computing, there are tough problems remaining unsolved in this regard. The identity in min-plus algebra is one problem we shall address. We shall point out the confusions about the conventional identity in the min-plus algebra and present an analytical expression of the asymptotic identity that may not cause confusions. PMID:21822446

  4. Entanglement entropy in Galilean conformal field theories and flat holography.

    PubMed

    Bagchi, Arjun; Basu, Rudranil; Grumiller, Daniel; Riegler, Max

    2015-03-20

    We present the analytical calculation of entanglement entropy for a class of two-dimensional field theories governed by the symmetries of the Galilean conformal algebra, thus providing a rare example of such an exact computation. These field theories are the putative holographic duals to theories of gravity in three-dimensional asymptotically flat spacetimes. We provide a check of our field theory answers by an analysis of geodesics. We also exploit the Chern-Simons formulation of three-dimensional gravity and adapt recent proposals of calculating entanglement entropy by Wilson lines in this context to find an independent confirmation of our results from holography.

  5. Existence of standard models of conic fibrations over non-algebraically-closed fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avilov, A A

    2014-12-31

    We prove an analogue of Sarkisov's theorem on the existence of a standard model of a conic fibration over an algebraically closed field of characteristic different from two for three-dimensional conic fibrations over an arbitrary field of characteristic zero with an action of a finite group. Bibliography: 16 titles.

  6. Solution of Algebraic Equations in the Analysis, Design, and Optimization of Continuous Ultrafiltration

    ERIC Educational Resources Information Center

    Foley, Greg

    2011-01-01

    Continuous feed and bleed ultrafiltration, modeled with the gel polarization model for the limiting flux, is shown to provide a rich source of non-linear algebraic equations that can be readily solved using numerical and graphical techniques familiar to undergraduate students. We present a variety of numerical problems in the design, analysis, and…

  7. Geometric model of topological insulators from the Maxwell algebra

    NASA Astrophysics Data System (ADS)

    Palumbo, Giandomenico

    2017-11-01

    We propose a novel geometric model of time-reversal-invariant topological insulators in three dimensions in presence of an external electromagnetic field. Their gapped boundary supports relativistic quantum Hall states and is described by a Chern-Simons theory, where the gauge connection takes values in the Maxwell algebra. This represents a non-central extension of the Poincaré algebra and takes into account both the Lorentz and magnetic-translation symmetries of the surface states. In this way, we derive a relativistic version of the Wen-Zee term and we show that the non-minimal coupling between the background geometry and the electromagnetic field in the model is in agreement with the main properties of the relativistic quantum Hall states in the flat space.

  8. The 6th International Conference on Computer Science and Computational Mathematics (ICCSCM 2017)

    NASA Astrophysics Data System (ADS)

    2017-09-01

    The ICCSCM 2017 (The 6th International Conference on Computer Science and Computational Mathematics) has aimed to provide a platform to discuss computer science and mathematics related issues including Algebraic Geometry, Algebraic Topology, Approximation Theory, Calculus of Variations, Category Theory; Homological Algebra, Coding Theory, Combinatorics, Control Theory, Cryptology, Geometry, Difference and Functional Equations, Discrete Mathematics, Dynamical Systems and Ergodic Theory, Field Theory and Polynomials, Fluid Mechanics and Solid Mechanics, Fourier Analysis, Functional Analysis, Functions of a Complex Variable, Fuzzy Mathematics, Game Theory, General Algebraic Systems, Graph Theory, Group Theory and Generalizations, Image Processing, Signal Processing and Tomography, Information Fusion, Integral Equations, Lattices, Algebraic Structures, Linear and Multilinear Algebra; Matrix Theory, Mathematical Biology and Other Natural Sciences, Mathematical Economics and Financial Mathematics, Mathematical Physics, Measure Theory and Integration, Neutrosophic Mathematics, Number Theory, Numerical Analysis, Operations Research, Optimization, Operator Theory, Ordinary and Partial Differential Equations, Potential Theory, Real Functions, Rings and Algebras, Statistical Mechanics, Structure Of Matter, Topological Groups, Wavelets and Wavelet Transforms, 3G/4G Network Evolutions, Ad-Hoc, Mobile, Wireless Networks and Mobile Computing, Agent Computing & Multi-Agents Systems, All topics related Image/Signal Processing, Any topics related Computer Networks, Any topics related ISO SC-27 and SC- 17 standards, Any topics related PKI(Public Key Intrastructures), Artifial Intelligences(A.I.) & Pattern/Image Recognitions, Authentication/Authorization Issues, Biometric authentication and algorithms, CDMA/GSM Communication Protocols, Combinatorics, Graph Theory, and Analysis of Algorithms, Cryptography and Foundation of Computer Security, Data Base(D.B.) Management & Information Retrievals, Data Mining, Web Image Mining, & Applications, Defining Spectrum Rights and Open Spectrum Solutions, E-Comerce, Ubiquitous, RFID, Applications, Fingerprint/Hand/Biometrics Recognitions and Technologies, Foundations of High-performance Computing, IC-card Security, OTP, and Key Management Issues, IDS/Firewall, Anti-Spam mail, Anti-virus issues, Mobile Computing for E-Commerce, Network Security Applications, Neural Networks and Biomedical Simulations, Quality of Services and Communication Protocols, Quantum Computing, Coding, and Error Controls, Satellite and Optical Communication Systems, Theory of Parallel Processing and Distributed Computing, Virtual Visions, 3-D Object Retrievals, & Virtual Simulations, Wireless Access Security, etc. The success of ICCSCM 2017 is reflected in the received papers from authors around the world from several countries which allows a highly multinational and multicultural idea and experience exchange. The accepted papers of ICCSCM 2017 are published in this Book. Please check http://www.iccscm.com for further news. A conference such as ICCSCM 2017 can only become successful using a team effort, so herewith we want to thank the International Technical Committee and the Reviewers for their efforts in the review process as well as their valuable advices. We are thankful to all those who contributed to the success of ICCSCM 2017. The Secretary

  9. Deriving Differential Equations from Process Algebra Models in Reagent-Centric Style

    NASA Astrophysics Data System (ADS)

    Hillston, Jane; Duguid, Adam

    The reagent-centric style of modeling allows stochastic process algebra models of biochemical signaling pathways to be developed in an intuitive way. Furthermore, once constructed, the models are amenable to analysis by a number of different mathematical approaches including both stochastic simulation and coupled ordinary differential equations. In this chapter, we give a tutorial introduction to the reagent-centric style, in PEPA and Bio-PEPA, and the way in which such models can be used to generate systems of ordinary differential equations.

  10. Sampled-Data Kalman Filtering and Multiple Model Adaptive Estimation for Infinite-Dimensional Continuous-Time Systems

    DTIC Science & Technology

    2007-03-01

    mathematical frame- 1-6 work of linear algebra and functional analysis [122, 33], while Kalman-Bucy filtering [96, 32] is an especially important...Engineering, Air Force Institute of Technology (AU), Wright- Patterson AFB, Ohio, March 2002. 85. Hoffman, Kenneth and Ray Kunze. Linear Algebra (Second Edition...Engineering, Air Force Institute of Technology (AU), Wright- Patterson AFB, Ohio, December 1989. 189. Strang, Gilbert. Linear Algebra and Its Applications

  11. Quantum walks, deformed relativity and Hopf algebra symmetries

    PubMed Central

    2016-01-01

    We show how the Weyl quantum walk derived from principles in D'Ariano & Perinotti (D'Ariano & Perinotti 2014 Phys. Rev. A 90, 062106. (doi:10.1103/PhysRevA.90.062106)), enjoying a nonlinear Lorentz symmetry of dynamics, allows one to introduce Hopf algebras for position and momentum of the emerging particle. We focus on two special models of Hopf algebras–the usual Poincaré and the κ-Poincaré algebras. PMID:27091171

  12. Little strings, quasi-topological sigma model on loop group, and toroidal Lie algebras

    NASA Astrophysics Data System (ADS)

    Ashwinkumar, Meer; Cao, Jingnan; Luo, Yuan; Tan, Meng-Chwan; Zhao, Qin

    2018-03-01

    We study the ground states and left-excited states of the Ak-1 N = (2 , 0) little string theory. Via a theorem by Atiyah [1], these sectors can be captured by a supersymmetric nonlinear sigma model on CP1 with target space the based loop group of SU (k). The ground states, described by L2-cohomology classes, form modules over an affine Lie algebra, while the left-excited states, described by chiral differential operators, form modules over a toroidal Lie algebra. We also apply our results to analyze the 1/2 and 1/4 BPS sectors of the M5-brane worldvolume theory.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xin, Qiaoling, E-mail: xinqiaoling0923@163.com; Jiang, Lining, E-mail: jianglining@bit.edu.cn

    Let G be a finite group and H a normal subgroup. D(H; G) is the crossed product of C(H) and CG which is only a subalgebra of D(G), the double algebra of G. One can construct a C*-subalgebra F{sub H} of the field algebra F of G-spin models, so that F{sub H} is a D(H; G)-module algebra, whereas F is not. Then the observable algebra A{sub (H,G)} is obtained as the D(H; G)-invariant subalgebra of F{sub H}, and there exists a unique C*-representation of D(H; G) such that D(H; G) and A{sub (H,G)} are commutants with each other.

  14. A lattice approach to the conformal OSp(2S+2|2S) supercoset sigma model. Part I: Algebraic structures in the spin chain. The Brauer algebra

    NASA Astrophysics Data System (ADS)

    Candu, Constantin; Saleur, Hubert

    2009-02-01

    We define and study a lattice model which we argue is in the universality class of the OSp(2S+2|2S) supercoset sigma model for a large range of values of the coupling constant gσ2. In this first paper, we analyze in details the symmetries of this lattice model, in particular the decomposition of the space of the quantum spin chain V as a bimodule over OSp(2S+2|2S) and its commutant, the Brauer algebra B(2). It turns out that V is a nonsemisimple module for both OSp(2S+2|2S) and B(2). The results are used in the companion paper to elucidate the structure of the (boundary) conformal field theory.

  15. Exceptional quantum geometry and particle physics

    NASA Astrophysics Data System (ADS)

    Dubois-Violette, Michel

    2016-11-01

    Based on an interpretation of the quark-lepton symmetry in terms of the unimodularity of the color group SU (3) and on the existence of 3 generations, we develop an argumentation suggesting that the "finite quantum space" corresponding to the exceptional real Jordan algebra of dimension 27 (the Euclidean Albert algebra) is relevant for the description of internal spaces in the theory of particles. In particular, the triality which corresponds to the 3 off-diagonal octonionic elements of the exceptional algebra is associated to the 3 generations of the Standard Model while the representation of the octonions as a complex 4-dimensional space C ⊕C3 is associated to the quark-lepton symmetry (one complex for the lepton and 3 for the corresponding quark). More generally it is suggested that the replacement of the algebra of real functions on spacetime by the algebra of functions on spacetime with values in a finite-dimensional Euclidean Jordan algebra which plays the role of "the algebra of real functions" on the corresponding almost classical quantum spacetime is relevant in particle physics. This leads us to study the theory of Jordan modules and to develop the differential calculus over Jordan algebras (i.e. to introduce the appropriate notion of differential forms). We formulate the corresponding definition of connections on Jordan modules.

  16. Developing Algebra Structure Module and Model of Cooperative Learning Helping Concept Map Media for Improving Proofing Ability

    ERIC Educational Resources Information Center

    Syafari

    2017-01-01

    This research was purposed to develop module and learning model and instrument of proofing ability in algebra structure through cooperative learning with helping map concept media for students of mathematic major and mathematics education in State University and Private University in North Sumatra province. The subject of this research was the…

  17. A site model for Pyrenean oak (Quercus pyrenaica) stands using a dynamic algebraic difference equation

    Treesearch

    Joao P. Carvalho; Bernard R. Parresol

    2005-01-01

    This paper presents a growth model for dominant-height and site-quality estimations for Pyrenean oak (Quercus pyrenaica Willd.) stands. The Bertalanffy–Richards function is used with the generalized algebraic difference approach to derive a dynamic site equation. This allows dominant-height and site-index estimations in a compatible way, using any...

  18. Algebraic models of local period maps and Yukawa algebras

    NASA Astrophysics Data System (ADS)

    Bandiera, Ruggero; Manetti, Marco

    2018-02-01

    We describe some L_{∞} model for the local period map of a compact Kähler manifold. Applications include the study of deformations with associated variation of Hodge structure constrained by certain closed strata of the Grassmannian of the de Rham cohomology. As a by-product, we obtain an interpretation in the framework of deformation theory of the Yukawa coupling.

  19. Microscopic approach based on a multiscale algebraic version of the resonating group model for radiative capture reactions

    NASA Astrophysics Data System (ADS)

    Solovyev, Alexander S.; Igashov, Sergey Yu.

    2017-12-01

    A microscopic approach to description of radiative capture reactions based on a multiscale algebraic version of the resonating group model is developed. The main idea of the approach is to expand wave functions of discrete spectrum and continuum for a nuclear system over different bases of the algebraic version of the resonating group model. These bases differ from each other by values of oscillator radius playing a role of scale parameter. This allows us in a unified way to calculate total and partial cross sections (astrophysical S factors) as well as branching ratio for the radiative capture reaction, to describe phase shifts for the colliding nuclei in the initial channel of the reaction, and at the same time to reproduce breakup thresholds of the final nucleus. The approach is applied to the theoretical study of the mirror 3H(α ,γ )7Li and 3He(α ,γ )7Be reactions, which are of great interest to nuclear astrophysics. The calculated results are compared with existing experimental data and with our previous calculations in the framework of the single-scale algebraic version of the resonating group model.

  20. ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra

    PubMed Central

    2011-01-01

    Background Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. Results We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Conclusions Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics. PMID:21774817

  1. Invariants of the Jacobi-Porstendorfer room model for radon progeny in indoor air.

    PubMed

    Thomas, Josef; Jilek, Karel

    2012-06-01

    The Jacobi-Porstendörfer room model, describing the dynamical behaviour of radon and radon progeny in indoor air, has been successfully used for decades. The inversion of the model-the determination of the five parameters from measured results which provide better information on the room environment than mere ratios of unattached and attached radon progeny-is treated as an algebraic task. The linear interdependence of the used equations strongly limits the algebraic invertibility of experimental results. For a unique solution, the fulfilment of two invariants of the room model for the measured results is required. Non-fulfilment of these model invariants by the measured results leads to a set of non-identical solutions and indicates the violation of the conditions required by the room model or the incorrectness or excessive uncertainties of the measured results. The limited and non-unique algebraic invertibility of the room model is analysed numerically using our own data for the radon progeny.

  2. Energy spectra of vibron and cluster models in molecular and nuclear systems

    NASA Astrophysics Data System (ADS)

    Jalili Majarshin, A.; Sabri, H.; Jafarizadeh, M. A.

    2018-03-01

    The relation of the algebraic cluster model, i.e., of the vibron model and its extension, to the collective structure, is discussed. In the first section of the paper, we study the energy spectra of vibron model, for diatomic molecule then we derive the rotation-vibration spectrum of 2α, 3α and 4α configuration in the low-lying spectrum of 8Be, 12C and 16O nuclei. All vibrational and rotational states with ground and excited A, E and F states appear to have been observed, moreover the transitional descriptions of the vibron model and α-cluster model were considered by using an infinite-dimensional algebraic method based on the affine \\widehat{SU(1,1)} Lie algebra. The calculated energy spectra are compared with experimental data. Applications to the rotation-vibration spectrum for the diatomic molecule and many-body nuclear clusters indicate that there are solvable models and they can be approximated very well using the transitional theory.

  3. Quantization, Frobenius and Bi algebras from the Categorical Framework of Quantum Mechanics to Natural Language Semantics

    NASA Astrophysics Data System (ADS)

    Sadrzadeh, Mehrnoosh

    2017-07-01

    Compact Closed categories and Frobenius and Bi algebras have been applied to model and reason about Quantum protocols. The same constructions have also been applied to reason about natural language semantics under the name: ``categorical distributional compositional'' semantics, or in short, the ``DisCoCat'' model. This model combines the statistical vector models of word meaning with the compositional models of grammatical structure. It has been applied to natural language tasks such as disambiguation, paraphrasing and entailment of phrases and sentences. The passage from the grammatical structure to vectors is provided by a functor, similar to the Quantization functor of Quantum Field Theory. The original DisCoCat model only used compact closed categories. Later, Frobenius algebras were added to it to model long distance dependancies such as relative pronouns. Recently, bialgebras have been added to the pack to reason about quantifiers. This paper reviews these constructions and their application to natural language semantics. We go over the theory and present some of the core experimental results.

  4. Adler-Kostant-Symes scheme for face and Calogero-Moser-Sutherland-type models

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter

    1998-07-01

    We give the construction of quantum Lax equations for IRF models and the difference version of the Calogero-Moser-Sutherland model introduced by Ruijsenaars. We solve the equations using factorization properties of the underlying face Hopf algebras/elliptic quantum groups. This construction is in the spirit of the Adler-Kostant-Symes method and generalizes our previous work to the case of face Hopf algebras/elliptic quantum groups with dynamical R matrices.

  5. Sample Size and Statistical Conclusions from Tests of Fit to the Rasch Model According to the Rasch Unidimensional Measurement Model (Rumm) Program in Health Outcome Measurement.

    PubMed

    Hagell, Peter; Westergren, Albert

    Sample size is a major factor in statistical null hypothesis testing, which is the basis for many approaches to testing Rasch model fit. Few sample size recommendations for testing fit to the Rasch model concern the Rasch Unidimensional Measurement Models (RUMM) software, which features chi-square and ANOVA/F-ratio based fit statistics, including Bonferroni and algebraic sample size adjustments. This paper explores the occurrence of Type I errors with RUMM fit statistics, and the effects of algebraic sample size adjustments. Data with simulated Rasch model fitting 25-item dichotomous scales and sample sizes ranging from N = 50 to N = 2500 were analysed with and without algebraically adjusted sample sizes. Results suggest the occurrence of Type I errors with N less then or equal to 500, and that Bonferroni correction as well as downward algebraic sample size adjustment are useful to avoid such errors, whereas upward adjustment of smaller samples falsely signal misfit. Our observations suggest that sample sizes around N = 250 to N = 500 may provide a good balance for the statistical interpretation of the RUMM fit statistics studied here with respect to Type I errors and under the assumption of Rasch model fit within the examined frame of reference (i.e., about 25 item parameters well targeted to the sample).

  6. Algebraic properties of automata associated to Petri nets and applications to computation in biological systems.

    PubMed

    Egri-Nagy, Attila; Nehaniv, Chrystopher L

    2008-01-01

    Biochemical and genetic regulatory networks are often modeled by Petri nets. We study the algebraic structure of the computations carried out by Petri nets from the viewpoint of algebraic automata theory. Petri nets comprise a formalized graphical modeling language, often used to describe computation occurring within biochemical and genetic regulatory networks, but the semantics may be interpreted in different ways in the realm of automata. Therefore, there are several different ways to turn a Petri net into a state-transition automaton. Here, we systematically investigate different conversion methods and describe cases where they may yield radically different algebraic structures. We focus on the existence of group components of the corresponding transformation semigroups, as these reflect symmetries of the computation occurring within the biological system under study. Results are illustrated by applications to the Petri net modelling of intermediary metabolism. Petri nets with inhibition are shown to be computationally rich, regardless of the particular interpretation method. Along these lines we provide a mathematical argument suggesting a reason for the apparent all-pervasiveness of inhibitory connections in living systems.

  7. Using Technology to Balance Algebraic Explorations

    ERIC Educational Resources Information Center

    Kurz, Terri L.

    2013-01-01

    In 2000, the "National Council of Teachers of Mathematics" recommended that Algebra Standards, "instructional programs from prekindergarten through grade 12 should enable all students to use mathematical models to represent and understand quantitative relationships." In this article, the authors suggest the "Balance"…

  8. A Algebraic Approach to the Quantization of Constrained Systems: Finite Dimensional Examples.

    NASA Astrophysics Data System (ADS)

    Tate, Ranjeet Shekhar

    1992-01-01

    General relativity has two features in particular, which make it difficult to apply to it existing schemes for the quantization of constrained systems. First, there is no background structure in the theory, which could be used, e.g., to regularize constraint operators, to identify a "time" or to define an inner product on physical states. Second, in the Ashtekar formulation of general relativity, which is a promising avenue to quantum gravity, the natural variables for quantization are not canonical; and, classically, there are algebraic identities between them. Existing schemes are usually not concerned with such identities. Thus, from the point of view of canonical quantum gravity, it has become imperative to find a framework for quantization which provides a general prescription to find the physical inner product, and is flexible enough to accommodate non -canonical variables. In this dissertation I present an algebraic formulation of the Dirac approach to the quantization of constrained systems. The Dirac quantization program is augmented by a general principle to find the inner product on physical states. Essentially, the Hermiticity conditions on physical operators determine this inner product. I also clarify the role in quantum theory of possible algebraic identities between the elementary variables. I use this approach to quantize various finite dimensional systems. Some of these models test the new aspects of the algebraic framework. Others bear qualitative similarities to general relativity, and may give some insight into the pitfalls lurking in quantum gravity. The previous quantizations of one such model had many surprising features. When this model is quantized using the algebraic program, there is no longer any unexpected behaviour. I also construct the complete quantum theory for a previously unsolved relativistic cosmology. All these models indicate that the algebraic formulation provides powerful new tools for quantization. In (spatially compact) general relativity, the Hamiltonian is constrained to vanish. I present various approaches one can take to obtain an interpretation of the quantum theory of such "dynamically constrained" systems. I apply some of these ideas to the Bianchi I cosmology, and analyze the issue of the initial singularity in quantum theory.

  9. Numerical solving of equations in the work of José Mariano Vallejo

    NASA Astrophysics Data System (ADS)

    Pacheco Castelao, José-Miguel; Pérez-Fern; ández, F. Javier; Suárez Alemán, Carlos-Oswaldo

    2007-09-01

    The progress of Mathematics during the nineteenth century was characterised both by an enormous acquisition of new knowledge and by the attempts to introduce rigour in reasoning patterns and mathematical writing. Cauchy's presentation of Mathematical Analysis was not immediately accepted, and many writers, though aware of that new style, did not use it in their own mathematical production. This paper is devoted to an episode of this sort that took place in Spain during the first half of the century: It deals with the presentation of a method for numerically solving algebraic equations by José Mariano Vallejo, a late Spanish follower of the Enlightenment ideas, politician, writer, and mathematician who published it in the fourth (1840) edition of his book Compendio de Mathemáticas Puras y Mistas, claiming to have discovered it on his own. Vallejo's main achievement was to write down the whole procedure in a very careful way taking into account the different types of roots, although he paid little attention to questions such as convergence checks and the fulfilment of the hypotheses of Rolle's Theorem. For sure this lack of mathematical care prevented Vallejo to occupy a place among the forerunners of Computational Algebra.

  10. Free vibration of functionally graded beams and frameworks using the dynamic stiffness method

    NASA Astrophysics Data System (ADS)

    Banerjee, J. R.; Ananthapuvirajah, A.

    2018-05-01

    The free vibration analysis of functionally graded beams (FGBs) and frameworks containing FGBs is carried out by applying the dynamic stiffness method and deriving the elements of the dynamic stiffness matrix in explicit algebraic form. The usually adopted rule that the material properties of the FGB vary continuously through the thickness according to a power law forms the fundamental basis of the governing differential equations of motion in free vibration. The differential equations are solved in closed analytical form when the free vibratory motion is harmonic. The dynamic stiffness matrix is then formulated by relating the amplitudes of forces to those of the displacements at the two ends of the beam. Next, the explicit algebraic expressions for the dynamic stiffness elements are derived with the help of symbolic computation. Finally the Wittrick-Williams algorithm is applied as solution technique to solve the free vibration problems of FGBs with uniform cross-section, stepped FGBs and frameworks consisting of FGBs. Some numerical results are validated against published results, but in the absence of published results for frameworks containing FGBs, consistency checks on the reliability of results are performed. The paper closes with discussion of results and conclusions.

  11. Strings on complex multiplication tori and rational conformal field theory with matrix level

    NASA Astrophysics Data System (ADS)

    Nassar, Ali

    Conformal invariance in two dimensions is a powerful symmetry. Two-dimensional quantum field theories which enjoy conformal invariance, i.e., conformal field theories (CFTs) are of great interest in both physics and mathematics. CFTs describe the dynamics of the world sheet in string theory where conformal symmetry arises as a remnant of reparametrization invariance of the world-sheet coordinates. In statistical mechanics, CFTs describe the critical points of second order phase transitions. On the mathematics side, conformal symmetry gives rise to infinite dimensional chiral algebras like the Virasoro algebra or extensions thereof. This gave rise to the study of vertex operator algebras (VOAs) which is an interesting branch of mathematics. Rational conformal theories are a simple class of CFTs characterized by a finite number of representations of an underlying chiral algebra. The chiral algebra leads to a set of Ward identities which gives a complete non-perturbative solution of the RCFT. Identifying the chiral algebra of an RCFT is a very important step in solving it. Particularly interesting RCFTs are the ones which arise from the compactification of string theory as sigma-models on a target manifold M. At generic values of the geometric moduli of M, the corresponding CFT is not rational. Rationality can arise at particular values of the moduli of M. At these special values of the moduli, the chiral algebra is extended. This interplay between the geometric picture and the algebraic description encoded in the chiral algebra makes CFTs/RCFTs a perfect link between physics and mathematics. It is always useful to find a geometric interpretation of a chiral algebra in terms of a sigma-model on some target manifold M. Then the next step is to figure out the conditions on the geometric moduli of M which gives a RCFT. In this thesis, we limit ourselves to the simplest class of string compactifications, i.e., strings on tori. As Gukov and Vafa proved, rationality selects the complex-multiplication tori. On the other hand, the study of the matrix-level affine algebra Um,K is motivated by conformal field theory and the fractional quantum Hall effect. Gannon completed the classification of U m,K modular-invariant partition functions. Here we connect the algebra U2,K to strings on 2-tori describable by rational conformal field theories. We point out that the rational conformal field theories describing strings on complex-multiplication tori have characters and partition functions identical to those of the matrix-level algebra Um,K. This connection makes obvious that the rational theories are dense in the moduli space of strings on Tm, and may prove useful in other ways.

  12. Analysis of Secondary School Students’ Algebraic Thinking and Math-Talk Learning Community to Help Students Learn

    NASA Astrophysics Data System (ADS)

    Nurhayati, D. M.; Herman, T.; Suhendra, S.

    2017-09-01

    This study aims to determine the difficulties of algebraic thinking ability of students in one of secondary school on quadrilateral subject and to describe Math-Talk Learning Community as the alternative way that can be done to overcome the difficulties of the students’ algebraic thinking ability. Research conducted by using quantitative approach with descriptive method. The population in this research was all students of that school and twenty three students as the sample that was chosen by purposive sampling technique. Data of algebraic thinking were collected through essay test. The results showed the percentage of achievement of students’ algebraic thinking’s indicators on three aspects: a) algebra as generalized arithmetic with the indicators (conceptually based computational strategies and estimation); b) algebra as the language of mathematics (meaning of variables, variable expressions and meaning of solution); c) algebra as a tool for functions and mathematical modelling (representing mathematical ideas using equations, tables, or words and generalizing patterns and rules in real-world contexts) is still low. It is predicted that because the secondary school students was not familiar with the abstract problem and they are still at a semi-concrete stage where the stage of cognitive development is between concrete and abstract. Based on the percentage achievement of each indicators, it can be concluded that the level of achievement of student’s mathematical communication using conventional learning is still low, so students’ algebraic thinking ability need to be improved.

  13. Simplifications for hydronic system models in modelica

    DOE PAGES

    Jorissen, F.; Wetter, M.; Helsen, L.

    2018-01-12

    Building systems and their heating, ventilation and air conditioning flow networks, are becoming increasingly complex. Some building energy simulation tools simulate these flow networks using pressure drop equations. These flow network models typically generate coupled algebraic nonlinear systems of equations, which become increasingly more difficult to solve as their sizes increase. This leads to longer computation times and can cause the solver to fail. These problems also arise when using the equation-based modelling language Modelica and Annex 60-based libraries. This may limit the applicability of the library to relatively small problems unless problems are restructured. This paper discusses two algebraicmore » loop types and presents an approach that decouples algebraic loops into smaller parts, or removes them completely. The approach is applied to a case study model where an algebraic loop of 86 iteration variables is decoupled into smaller parts with a maximum of five iteration variables.« less

  14. Testing an algebraic model of self-reflexion.

    PubMed

    Grice, James W; McDaniel, Brenda L; Thompsen, Dana

    2005-06-01

    Self-reflexion is the conscious process of taking the position of an observer in relation to one's own thoughts, feelings, and experiences. Building on the work of Lefebvre, Lefebvre, and Adams-Webber, we used a formal algebraic model of self-reflexion to derive several predictions regarding the frequencies with which individuals would rate themselves and others positively on bipolar scales anchored by adjective terms. The current results from 108 participants (41 men, 67 women; M age= 20.2 yr.) confirmed two predictions derived from the model. Three other predictions, however, were not supported even though the observed frequencies were close to the predicted values. Although not as promising as results reported by Lefebvre, et al., these mixed findings were interpreted as encouraging support for the validity of Lefebvre's algebraic model of self-reflexion. Differences between the current methods and those from previous investigations were also examined, and methodological implications for further studies were discussed.

  15. A Tale of Two Students

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    2008-01-01

    The article describes the performance of several individual students in a college algebra/precalculus course that focuses on the development of conceptual understanding and the use of mathematical modeling and discusses the likely differences in outcome if the students took a traditional algebra-skills focused course.

  16. Comparison of CFD Predictions with Shuttle Global Flight Thermal Imagery and Discrete Surface Measurements

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Kleb, William L.; Tang, chun Y.; Palmer, Grant E.; Hyatt, Andrew J.; Wise, Adam J.; McCloud, Peter L.

    2010-01-01

    Surface temperature measurements from the STS-119 boundary-layer transition experiment on the space shuttle orbiter Discovery provide a rare opportunity to assess turbulent CFD models at hypersonic flight conditions. This flight data was acquired by on-board thermocouples and by infrared images taken off-board by the Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team, and is suitable for hypersonic CFD turbulence assessment between Mach 6 and 14. The primary assessment is for the Baldwin-Lomax and Cebeci-Smith algebraic turbulence models in the DPLR and LAURA CFD codes, respectively. A secondary assessment is made of the Shear-Stress Transport (SST) two-equation turbulence model in the DPLR code. Based upon surface temperature comparisons at eleven thermocouple locations, the algebraic-model turbulent CFD results average 4% lower than the measurements for Mach numbers less than 11. For Mach numbers greater than 11, the algebraic-model turbulent CFD results average 5% higher than the three available thermocouple measurements. Surface temperature predictions from the two SST cases were consistently 3 4% higher than the algebraic-model results. The thermocouple temperatures exhibit a change in trend with Mach number at about Mach 11; this trend is not reflected in the CFD results. Because the temperature trends from the turbulent CFD simulations and the flight data diverge above Mach 11, extrapolation of the turbulent CFD accuracy to higher Mach numbers is not recommended.

  17. Motion Planning in a Society of Intelligent Mobile Agents

    NASA Technical Reports Server (NTRS)

    Esterline, Albert C.; Shafto, Michael (Technical Monitor)

    2002-01-01

    The majority of the work on this grant involved formal modeling of human-computer integration. We conceptualize computer resources as a multiagent system so that these resources and human collaborators may be modeled uniformly. In previous work we had used modal for this uniform modeling, and we had developed a process-algebraic agent abstraction. In this work, we applied this abstraction (using CSP) in uniformly modeling agents and users, which allowed us to use tools for investigating CSP models. This work revealed the power of, process-algebraic handshakes in modeling face-to-face conversation. We also investigated specifications of human-computer systems in the style of algebraic specification. This involved specifying the common knowledge required for coordination and process-algebraic patterns of communication actions intended to establish the common knowledge. We investigated the conditions for agents endowed with perception to gain common knowledge and implemented a prototype neural-network system that allows agents to detect when such conditions hold. The literature on multiagent systems conceptualizes communication actions as speech acts. We implemented a prototype system that infers the deontic effects (obligations, permissions, prohibitions) of speech acts and detects violations of these effects. A prototype distributed system was developed that allows users to collaborate in moving proxy agents; it was designed to exploit handshakes and common knowledge Finally. in work carried over from a previous NASA ARC grant, about fifteen undergraduates developed and presented projects on multiagent motion planning.

  18. A Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies

    NASA Astrophysics Data System (ADS)

    Lu, Wei

    2017-09-01

    We propose a Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies in the context of composite Higgs bosons. Standard model fermions are represented by algebraic spinors of six-dimensional binary Clifford algebra, while ternary Clifford algebra-related flavor projection operators control allowable flavor-mixing interactions. There are three composite electroweak Higgs bosons resulted from top quark, tau neutrino, and tau lepton condensations. Each of the three condensations gives rise to masses of four different fermions. The fermion mass hierarchies within these three groups are determined by four-fermion condensations, which break two global chiral symmetries. The four-fermion condensations induce axion-like pseudo-Nambu-Goldstone bosons and can be dark matter candidates. In addition to the 125 GeV Higgs boson observed at the Large Hadron Collider, we anticipate detection of tau neutrino composite Higgs boson via the charm quark decay channel.

  19. On the modelling of non-reactive and reactive turbulent combustor flows

    NASA Technical Reports Server (NTRS)

    Nikjooy, Mohammad; So, Ronald M. C.

    1987-01-01

    A study of non-reactive and reactive axisymmetric combustor flows with and without swirl is presented. Closure of the Reynolds equations is achieved by three models: kappa-epsilon, algebraic stress and Reynolds stress closure. Performance of two locally nonequilibrium and one equilibrium algebraic stress models is analyzed assuming four pressure strain models. A comparison is also made of the performance of a high and a low Reynolds number model for combustor flow calculations using Reynolds stress closures. Effects of diffusion and pressure-strain models on these closures are also investigated. Two models for the scalar transport are presented. One employs the second-moment closure which solves the transport equations for the scalar fluxes, while the other solves the algebraic equations for the scalar fluxes. In addition, two cases of non-premixed and one case of premixed combustion are considered. Fast- and finite-rate chemistry models are applied to non-premixed combustion. Both show promise for application in gas turbine combustors. However, finite rate chemistry models need to be examined to establish a suitable coupling of the heat release effects on turbulence field and rate constants.

  20. Yangians in Integrable Field Theories, Spin Chains and Gauge-String Dualities

    NASA Astrophysics Data System (ADS)

    Spill, Fabian

    In the following paper, which is based on the author's PhD thesis submitted to Imperial College London, we explore the applicability of Yangian symmetry to various integrable models, in particular, in relation with S-matrices. One of the main themes in this work is that, after a careful study of the mathematics of the symmetry algebras one finds that in an integrable model, one can directly reconstruct S-matrices just from the algebra. It has been known for a long time that S-matrices in integrable models are fixed by symmetry. However, Lie algebra symmetry, the Yang-Baxter equation, crossing and unitarity, which constrain the S-matrix in integrable models, are often taken to be separate, independent properties of the S-matrix. Here, we construct scattering matrices purely from the Yangian, showing that the Yangian is the right algebraic object to unify all required symmetries of many integrable models. In particular, we reconstruct the S-matrix of the principal chiral field, and, up to a CDD factor, of other integrable field theories with 𝔰𝔲(n) symmetry. Furthermore, we study the AdS/CFT correspondence, which is also believed to be integrable in the planar limit. We reconstruct the S-matrices at weak and at strong coupling from the Yangian or its classical limit. We give a pedagogical introduction into the subject, presenting a unified perspective of Yangians and their applications in physics. This paper should hence be accessible to mathematicians who would like to explore the application of algebraic objects to physics as well as to physicists interested in a deeper understanding of the mathematical origin of physical quantities.

  1. Dynamical Correspondence in a Generalized Quantum Theory

    NASA Astrophysics Data System (ADS)

    Niestegge, Gerd

    2015-05-01

    In order to figure out why quantum physics needs the complex Hilbert space, many attempts have been made to distinguish the C*-algebras and von Neumann algebras in more general classes of abstractly defined Jordan algebras (JB- and JBW-algebras). One particularly important distinguishing property was identified by Alfsen and Shultz and is the existence of a dynamical correspondence. It reproduces the dual role of the selfadjoint operators as observables and generators of dynamical groups in quantum mechanics. In the paper, this concept is extended to another class of nonassociative algebras, arising from recent studies of the quantum logics with a conditional probability calculus and particularly of those that rule out third-order interference. The conditional probability calculus is a mathematical model of the Lüders-von Neumann quantum measurement process, and third-order interference is a property of the conditional probabilities which was discovered by Sorkin (Mod Phys Lett A 9:3119-3127, 1994) and which is ruled out by quantum mechanics. It is shown then that the postulates that a dynamical correspondence exists and that the square of any algebra element is positive still characterize, in the class considered, those algebras that emerge from the selfadjoint parts of C*-algebras equipped with the Jordan product. Within this class, the two postulates thus result in ordinary quantum mechanics using the complex Hilbert space or, vice versa, a genuine generalization of quantum theory must omit at least one of them.

  2. Heterogeneous Software System Interoperability Through Computer-Aided Resolution of Modeling Differences

    DTIC Science & Technology

    2002-06-01

    techniques for addressing the software component retrieval problem. Steigerwald [Ste91] introduced the use of algebraic specifications for defining the...provided in terms of a specification written using Luqi’s Prototype Specification Description Language (PSDL) [LBY88] augmented with an algebraic

  3. Characterizing Preservice Teachers' Mathematical Understanding of Algebraic Relationships

    ERIC Educational Resources Information Center

    Nillas, Leah A.

    2010-01-01

    Qualitative research methods were employed to investigate characterization of preservice teachers' mathematical understanding. Responses on test items involving algebraic relationships were analyzed using with-in case analysis (Miles and Huberman, 1994) and Pirie and Kieren's (1994) model of growth of mathematical understanding. Five elementary…

  4. Algebraic signal processing theory: 2-D spatial hexagonal lattice.

    PubMed

    Pünschel, Markus; Rötteler, Martin

    2007-06-01

    We develop the framework for signal processing on a spatial, or undirected, 2-D hexagonal lattice for both an infinite and a finite array of signal samples. This framework includes the proper notions of z-transform, boundary conditions, filtering or convolution, spectrum, frequency response, and Fourier transform. In the finite case, the Fourier transform is called discrete triangle transform. Like the hexagonal lattice, this transform is nonseparable. The derivation of the framework makes it a natural extension of the algebraic signal processing theory that we recently introduced. Namely, we construct the proper signal models, given by polynomial algebras, bottom-up from a suitable definition of hexagonal space shifts using a procedure provided by the algebraic theory. These signal models, in turn, then provide all the basic signal processing concepts. The framework developed in this paper is related to Mersereau's early work on hexagonal lattices in the same way as the discrete cosine and sine transforms are related to the discrete Fourier transform-a fact that will be made rigorous in this paper.

  5. The connection-set algebra--a novel formalism for the representation of connectivity structure in neuronal network models.

    PubMed

    Djurfeldt, Mikael

    2012-07-01

    The connection-set algebra (CSA) is a novel and general formalism for the description of connectivity in neuronal network models, from small-scale to large-scale structure. The algebra provides operators to form more complex sets of connections from simpler ones and also provides parameterization of such sets. CSA is expressive enough to describe a wide range of connection patterns, including multiple types of random and/or geometrically dependent connectivity, and can serve as a concise notation for network structure in scientific writing. CSA implementations allow for scalable and efficient representation of connectivity in parallel neuronal network simulators and could even allow for avoiding explicit representation of connections in computer memory. The expressiveness of CSA makes prototyping of network structure easy. A C+ + version of the algebra has been implemented and used in a large-scale neuronal network simulation (Djurfeldt et al., IBM J Res Dev 52(1/2):31-42, 2008b) and an implementation in Python has been publicly released.

  6. Linear maps preserving maximal deviation and the Jordan structure of quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamhalter, Jan

    2012-12-15

    In the algebraic approach to quantum theory, a quantum observable is given by an element of a Jordan algebra and a state of the system is modelled by a normalized positive functional on the underlying algebra. Maximal deviation of a quantum observable is the largest statistical deviation one can obtain in a particular state of the system. The main result of the paper shows that each linear bijective transformation between JBW algebras preserving maximal deviations is formed by a Jordan isomorphism or a minus Jordan isomorphism perturbed by a linear functional multiple of an identity. It shows that only onemore » numerical statistical characteristic has the power to determine the Jordan algebraic structure completely. As a consequence, we obtain that only very special maps can preserve the diameter of the spectra of elements. Nonlinear maps preserving the pseudometric given by maximal deviation are also described. The results generalize hitherto known theorems on preservers of maximal deviation in the case of self-adjoint parts of von Neumann algebras proved by Molnar.« less

  7. Solution of the classical Yang-Baxter equation with an exotic symmetry, and integrability of a multi-species boson tunnelling model

    NASA Astrophysics Data System (ADS)

    Links, Jon

    2017-03-01

    Solutions of the classical Yang-Baxter equation provide a systematic method to construct integrable quantum systems in an algebraic manner. A Lie algebra can be associated with any solution of the classical Yang-Baxter equation, from which commuting transfer matrices may be constructed. This procedure is reviewed, specifically for solutions without skew-symmetry. A particular solution with an exotic symmetry is identified, which is not obtained as a limiting expansion of the usual Yang-Baxter equation. This solution facilitates the construction of commuting transfer matrices which will be used to establish the integrability of a multi-species boson tunnelling model. The model generalises the well-known two-site Bose-Hubbard model, to which it reduces in the one-species limit. Due to the lack of an apparent reference state, application of the algebraic Bethe Ansatz to solve the model is prohibitive. Instead, the Bethe Ansatz solution is obtained by the use of operator identities and tensor product decompositions.

  8. Exactly solvable model of transitional nuclei based on dual algebraic structure for the three level pairing model in the framework of sdg interacting boson model

    NASA Astrophysics Data System (ADS)

    Jafarizadeh, M. A.; Ranjbar, Z.; Fouladi, N.; Ghapanvari, M.

    2018-01-01

    In this paper, a successful algebraic method based on the dual algebraic structure for three level pairing model in the framework of sdg IBM is proposed for transitional nuclei which show transitional behavior from spherical to gamma-unstable quantum shape phase transition. In this method complicated sdg Hamiltonian, which is a three level pairing Hamiltonian is determined easily via the exactly solvable method. This description provides a better interpretation of some observables such as BE (4) in nuclei which exhibits the necessity of inclusion of g boson in the sd IBM, while BE (4) cannot be explained in the sd boson model. Some observables such as Energy levels, BE (2), BE (4), the two neutron separation energies signature splitting of the γ-vibrational band and expectation values of the g-boson number operator are calculated and examined for 46 104 - 110Pd isotopes.

  9. Noise limitations in optical linear algebra processors.

    PubMed

    Batsell, S G; Jong, T L; Walkup, J F; Krile, T F

    1990-05-10

    A general statistical noise model is presented for optical linear algebra processors. A statistical analysis which includes device noise, the multiplication process, and the addition operation is undertaken. We focus on those processes which are architecturally independent. Finally, experimental results which verify the analytical predictions are also presented.

  10. Tropical geometry of statistical models.

    PubMed

    Pachter, Lior; Sturmfels, Bernd

    2004-11-16

    This article presents a unified mathematical framework for inference in graphical models, building on the observation that graphical models are algebraic varieties. From this geometric viewpoint, observations generated from a model are coordinates of a point in the variety, and the sum-product algorithm is an efficient tool for evaluating specific coordinates. Here, we address the question of how the solutions to various inference problems depend on the model parameters. The proposed answer is expressed in terms of tropical algebraic geometry. The Newton polytope of a statistical model plays a key role. Our results are applied to the hidden Markov model and the general Markov model on a binary tree.

  11. Remarks towards the spectrum of the Heisenberg spin chain type models

    NASA Astrophysics Data System (ADS)

    Burdík, Č.; Fuksa, J.; Isaev, A. P.; Krivonos, S. O.; Navrátil, O.

    2015-05-01

    The integrable close and open chain models can be formulated in terms of generators of the Hecke algebras. In this review paper, we describe in detail the Bethe ansatz for the XXX and the XXZ integrable close chain models. We find the Bethe vectors for two-component and inhomogeneous models. We also find the Bethe vectors for the fermionic realization of the integrable XXX and XXZ close chain models by means of the algebraic and coordinate Bethe ansatz. Special modification of the XXZ closed spin chain model ("small polaron model") is considered. Finally, we discuss some questions relating to the general open Hecke chain models.

  12. Algebraic calculations for spectrum of superintegrable system from exceptional orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Hoque, Md. Fazlul; Marquette, Ian; Post, Sarah; Zhang, Yao-Zhong

    2018-04-01

    We introduce an extended Kepler-Coulomb quantum model in spherical coordinates. The Schrödinger equation of this Hamiltonian is solved in these coordinates and it is shown that the wave functions of the system can be expressed in terms of Laguerre, Legendre and exceptional Jacobi polynomials (of hypergeometric type). We construct ladder and shift operators based on the corresponding wave functions and obtain their recurrence formulas. These recurrence relations are used to construct higher-order, algebraically independent integrals of motion to prove superintegrability of the Hamiltonian. The integrals form a higher rank polynomial algebra. By constructing the structure functions of the associated deformed oscillator algebras we derive the degeneracy of energy spectrum of the superintegrable system.

  13. Universal vertex-IRF transformation for quantum affine algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buffenoir, E.; Roche, Ph.; Terras, V.

    2012-10-15

    We construct a universal solution of the generalized coboundary equation in the case of quantum affine algebras, which is an extension of our previous work to U{sub q}(A{sub r}{sup (1)}). This universal solution has a simple Gauss decomposition which is constructed using Sevostyanov's characters of twisted quantum Borel algebras. We show that in the evaluation representations it gives a vertex-face transformation between a vertex type solution and a face type solution of the quantum dynamical Yang-Baxter equation. In particular, in the evaluation representation of U{sub q}(A{sub 1}{sup (1)}), it gives Baxter's well-known transformation between the 8-vertex model and the interaction-round-facesmore » (IRF) height model.« less

  14. Stable homotopical algebra and [Gamma]-spaces

    NASA Astrophysics Data System (ADS)

    Schwede, Stefan

    1999-03-01

    In this paper we advertise the category of [Gamma]-spaces as a convenient framework for doing ‘algebra’ over ‘rings’ in stable homotopy theory. [Gamma]-spaces were introduced by Segal [Se] who showed that they give rise to a homotopy category equivalent to the usual homotopy category of connective (i.e. ([minus sign]1)-connected) spectra. Bousfield and Friedlander [BF] later provided model category structures for [Gamma]-spaces. The study of ‘rings, modules and algebras’ based on [Gamma]-spaces became possible when Lydakis [Ly] introduced a symmetric monoidal smash product with good homotopical properties. Here we develop model category structures for modules and algebras, set up (derived) smash products and associated spectral sequences and compare simplicial modules and algebras to their Eilenberg-MacLane spectra counterparts.

  15. Color Algebras

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.

  16. Analytic derivation of an approximate SU(3) symmetry inside the symmetry triangle of the interacting boson approximation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonatsos, Dennis; Karampagia, S.; Casten, R. F.

    2011-05-15

    Using a contraction of the SU(3) algebra to the algebra of the rigid rotator in the large-boson-number limit of the interacting boson approximation (IBA) model, a line is found inside the symmetry triangle of the IBA, along which the SU(3) symmetry is preserved. The line extends from the SU(3) vertex to near the critical line of the first-order shape/phase transition separating the spherical and prolate deformed phases, and it lies within the Alhassid-Whelan arc of regularity, the unique valley of regularity connecting the SU(3) and U(5) vertices in the midst of chaotic regions. In addition to providing an explanation formore » the existence of the arc of regularity, the present line represents an example of an analytically determined approximate symmetry in the interior of the symmetry triangle of the IBA. The method is applicable to algebraic models possessing subalgebras amenable to contraction. This condition is equivalent to algebras in which the equilibrium ground state and its rotational band become energetically isolated from intrinsic excitations, as typified by deformed solutions to the IBA for large numbers of valence nucleons.« less

  17. Combinatorial Formulas for Characteristic Classes, and Localization of Secondary Topological Invariants.

    NASA Astrophysics Data System (ADS)

    Smirnov, Mikhail

    1995-01-01

    The problems solved in this thesis originated from combinatorial formulas for characteristic classes. This thesis deals with Chern-Simons classes, their generalizations and related algebraic and analytic problems. (1) In this thesis, I describe a new class of algebras whose elements contain Chern and generalized Chern -Simons classes. There is a Poisson bracket in these algebras, similar to the bracket in Kontsevich's noncommutative symplectic geometry (Kon). I prove that the Poisson bracket gives rise to a graded Lie algebra containing differential forms representing Chern and Chern-Simons classes. This is a new result. I describe algebraic analogs of the dilogarithm and higher polylogarithms in the algebra corresponding to Chern-Simons classes. (2) I study the properties of this bracket. It is possible to write the exterior differential and other operations in the algebra using this bracket. The bracket of any two Chern classes is zero and the bracket of a Chern class and a Chern-Simons class is d-closed. The construction developed here easily gives explicit formulas for known secondary classes and makes it possible to construct new ones. (3) I develop an algebraic model for the action of the gauge group and describe how elements of algebra corresponding to the secondary characteristic classes change under this action (see theorem 3 page xi). (4) It is possible give new explicit formulas for cocycles on a gauge group of a bundle and for the corresponding cocycles on the Lie algebra of the gauge group. I use formulas for secondary characteristic classes and an algebraic approach developed in chapter 1. I also use the work of Faddeev, Reiman and Semyonov-Tian-Shanskii (FRS) on cocycles as quantum anomalies. (5) I apply the methods of differential geometry of formal power series to construct universal characteristic and secondary characteristic classes. Given a pair of gauge equivalent connections using local formulas I obtain dilogarithmic and trilogarithmic analogs of Chern-Simons classes.

  18. Affine group formulation of the Standard Model coupled to gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Ching-Yi, E-mail: l2897107@mail.ncku.edu.tw; Ita, Eyo, E-mail: ita@usna.edu; Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw

    In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of themore » Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.« less

  19. A Process Algebra Approach to Quantum Electrodynamics

    NASA Astrophysics Data System (ADS)

    Sulis, William

    2017-12-01

    The process algebra program is directed towards developing a realist model of quantum mechanics free of paradoxes, divergences and conceptual confusions. From this perspective, fundamental phenomena are viewed as emerging from primitive informational elements generated by processes. The process algebra has been shown to successfully reproduce scalar non-relativistic quantum mechanics (NRQM) without the usual paradoxes and dualities. NRQM appears as an effective theory which emerges under specific asymptotic limits. Space-time, scalar particle wave functions and the Born rule are all emergent in this framework. In this paper, the process algebra model is reviewed, extended to the relativistic setting, and then applied to the problem of electrodynamics. A semiclassical version is presented in which a Minkowski-like space-time emerges as well as a vector potential that is discrete and photon-like at small scales and near-continuous and wave-like at large scales. QED is viewed as an effective theory at small scales while Maxwell theory becomes an effective theory at large scales. The process algebra version of quantum electrodynamics is intuitive and realist, free from divergences and eliminates the distinction between particle, field and wave. Computations are carried out using the configuration space process covering map, although the connection to second quantization has not been fully explored.

  20. Digital Maps, Matrices and Computer Algebra

    ERIC Educational Resources Information Center

    Knight, D. G.

    2005-01-01

    The way in which computer algebra systems, such as Maple, have made the study of complex problems accessible to undergraduate mathematicians with modest computational skills is illustrated by some large matrix calculations, which arise from representing the Earth's surface by digital elevation models. Such problems are often considered to lie in…

  1. Excel Spreadsheets for Algebra: Improving Mental Modeling for Problem Solving

    ERIC Educational Resources Information Center

    Engerman, Jason; Rusek, Matthew; Clariana, Roy

    2014-01-01

    This experiment investigates the effectiveness of Excel spreadsheets in a high school algebra class. Students in the experiment group convincingly outperformed the control group on a post lesson assessment. The student responses, teacher observations involving Excel spreadsheet revealed that it operated as a mindtool, which formed the users'…

  2. A Linear Algebra Measure of Cluster Quality.

    ERIC Educational Resources Information Center

    Mather, Laura A.

    2000-01-01

    Discussion of models for information retrieval focuses on an application of linear algebra to text clustering, namely, a metric for measuring cluster quality based on the theory that cluster quality is proportional to the number of terms that are disjoint across the clusters. Explains term-document matrices and clustering algorithms. (Author/LRW)

  3. The Jukes-Cantor Model of Molecular Evolution

    ERIC Educational Resources Information Center

    Erickson, Keith

    2010-01-01

    The material in this module introduces students to some of the mathematical tools used to examine molecular evolution. This topic is standard fare in many mathematical biology or bioinformatics classes, but could also be suitable for classes in linear algebra or probability. While coursework in matrix algebra, Markov processes, Monte Carlo…

  4. Thinking Visually about Algebra

    ERIC Educational Resources Information Center

    Baroudi, Ziad

    2015-01-01

    Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…

  5. Prospective Mathematics Teachers' Sense Making of Polynomial Multiplication and Factorization Modeled with Algebra Tiles

    ERIC Educational Resources Information Center

    Caglayan, Günhan

    2013-01-01

    This study is about prospective secondary mathematics teachers' understanding and sense making of representational quantities generated by algebra tiles, the quantitative units (linear vs. areal) inherent in the nature of these quantities, and the quantitative addition and multiplication operations--referent preserving versus referent…

  6. A multiple-time-scale turbulence model based on variable partitioning of turbulent kinetic energy spectrum

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1987-01-01

    A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.

  7. A multiple-time-scale turbulence model based on variable partitioning of the turbulent kinetic energy spectrum

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1989-01-01

    A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.

  8. Horizon fluffs: In the context of generalized minimal massive gravity

    NASA Astrophysics Data System (ADS)

    Setare, Mohammad Reza; Adami, Hamed

    2018-02-01

    We consider a metric which describes Bañados geometries and show that the considered metric is a solution of the generalized minimal massive gravity (GMMG) model. We consider the Killing vector field which preserves the form of the considered metric. Using the off-shell quasi-local approach we obtain the asymptotic conserved charges of the given solution. Similar to the Einstein gravity in the presence of negative cosmological constant, for the GMMG model, we also show that the algebra among the asymptotic conserved charges is isomorphic to two copies of the Virasoro algebra. Eventually, we find a relation between the algebra of the near-horizon and the asymptotic conserved charges. This relation shows that the main part of the horizon fluffs proposed by Afshar et al., Sheikh-Jabbari and Yavartanoo appear for generic black holes in the class of Bañados geometries in the context of the GMMG model.

  9. Geometric Model of Topological Insulators from the Maxwell Algebra

    NASA Astrophysics Data System (ADS)

    Palumbo, Giandomenico

    I propose a novel geometric model of time-reversal-invariant topological insulators in three dimensions in presence of an external electromagnetic field. Their gapped boundary supports relativistic quantum Hall states and is described by a Chern-Simons theory, where the gauge connection takes values in the Maxwell algebra. This represents a non-central extension of the Poincare' algebra and takes into account both the Lorentz and magnetic-translation symmetries of the surface states. In this way, I derive a relativistic version of the Wen-Zee term and I show that the non-minimal coupling between the background geometry and the electromagnetic field in the model is in agreement with the main properties of the relativistic quantum Hall states in the flat space. This work is part of the DITP consortium, a program of the Netherlands Organisation for Scientific Research (NWO) that is funded by the Dutch Ministry of Education, Culture and Science (OCW).

  10. A study of the second and third order closure models of turbulence for prediction of separated shear flows

    NASA Technical Reports Server (NTRS)

    Amano, R. S.

    1985-01-01

    The hybrid model of the Reynolds-stress turbulence closure is tested for the computation of the flows over a step and disk. Here it is attempted to improve the redistributive action of the turbulence energy among the Reynolds stresses. By evaluating the existing models for the pressure-strain correlation, better coefficients are obtained for the prediction of separating shear flows. Furthermore, the diffusion rate of the Reynolds stresses is reevaluated adopting several algebraic correlations for the triple-velocity products. The models of Cormack et al., Daly-Harlow, Hanjalic-Launder, and Shir were tested for the reattaching shear flows. It was generally observed that all these algebraic models give considerably low values of the triple-velocity products. This is attributed to the fact that none of the algebraic models can take the convective effect of the triple-velocity products into account in the separating shear flows, thus resulting in much lower diffusion rate than Reynolds stresses. In order to improve the evaluation of these quantities correction factors are introduced based on the comparison with some experimental data.

  11. A computer code for calculations in the algebraic collective model of the atomic nucleus

    NASA Astrophysics Data System (ADS)

    Welsh, T. A.; Rowe, D. J.

    2016-03-01

    A Maple code is presented for algebraic collective model (ACM) calculations. The ACM is an algebraic version of the Bohr model of the atomic nucleus, in which all required matrix elements are derived by exploiting the model's SU(1 , 1) × SO(5) dynamical group. This paper reviews the mathematical formulation of the ACM, and serves as a manual for the code. The code enables a wide range of model Hamiltonians to be analysed. This range includes essentially all Hamiltonians that are rational functions of the model's quadrupole moments qˆM and are at most quadratic in the corresponding conjugate momenta πˆN (- 2 ≤ M , N ≤ 2). The code makes use of expressions for matrix elements derived elsewhere and newly derived matrix elements of the operators [ π ˆ ⊗ q ˆ ⊗ π ˆ ] 0 and [ π ˆ ⊗ π ˆ ] LM. The code is made efficient by use of an analytical expression for the needed SO(5)-reduced matrix elements, and use of SO(5) ⊃ SO(3) Clebsch-Gordan coefficients obtained from precomputed data files provided with the code.

  12. Does Calculation or Word-Problem Instruction Provide A Stronger Route to Pre-Algebraic Knowledge?

    PubMed Central

    Fuchs, Lynn S.; Powell, Sarah R.; Cirino, Paul T.; Schumacher, Robin F.; Marrin, Sarah; Hamlett, Carol L.; Fuchs, Douglas; Compton, Donald L.; Changas, Paul C.

    2014-01-01

    The focus of this study was connections among 3 aspects of mathematical cognition at 2nd grade: calculations, word problems, and pre-algebraic knowledge. We extended the literature, which is dominated by correlational work, by examining whether intervention conducted on calculations or word problems contributes to improved performance in the other domain and whether intervention in either or both domains contributes to pre-algebraic knowledge. Participants were 1102 children in 127 2nd-grade classrooms in 25 schools. Teachers were randomly assigned to 3 conditions: calculation intervention, word-problem intervention, and business-as-usual control. Intervention, which lasted 17 weeks, was designed to provide research-based linkages between arithmetic calculations or arithmetic word problems (depending on condition) to pre-algebraic knowledge. Multilevel modeling suggested calculation intervention improved calculation but not word-problem outcomes; word-problem intervention enhanced word-problem but not calculation outcomes; and word-problem intervention provided a stronger route than calculation intervention to pre-algebraic knowledge. PMID:25541565

  13. Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nataf, J.M.; Winkelmann, F.

    We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK's symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less

  14. Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nataf, J.M.; Winkelmann, F.

    We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK`s symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less

  15. An algebra of discrete event processes

    NASA Technical Reports Server (NTRS)

    Heymann, Michael; Meyer, George

    1991-01-01

    This report deals with an algebraic framework for modeling and control of discrete event processes. The report consists of two parts. The first part is introductory, and consists of a tutorial survey of the theory of concurrency in the spirit of Hoare's CSP, and an examination of the suitability of such an algebraic framework for dealing with various aspects of discrete event control. To this end a new concurrency operator is introduced and it is shown how the resulting framework can be applied. It is further shown that a suitable theory that deals with the new concurrency operator must be developed. In the second part of the report the formal algebra of discrete event control is developed. At the present time the second part of the report is still an incomplete and occasionally tentative working paper.

  16. Combinatorial operad actions on cochains

    NASA Astrophysics Data System (ADS)

    Berger, Clemens; Fresse, Benoit

    2004-07-01

    A classical E-infinity operad is formed by the bar construction of the symmetric groups. Such an operad has been introduced by M. Barratt and P. Eccles in the context of simplicial sets in order to have an analogue of the Milnor FK-construction for infinite loop spaces. The purpose of this paper is to prove that the associative algebra structure on the normalized cochain complex of a simplicial set extends to the structure of an algebra over the Barratt-Eccles operad. We also prove that differential graded algebras over the Barratt-Eccles operad form a closed model category. Similar results hold for the normalized Hochschild cochain complex of an associative algebra. More precisely, the Hochschild cochain complex is acted on by a suboperad of the Barratt-Eccles operad which is equivalent to the classical little squares operad.

  17. Optical systolic solutions of linear algebraic equations

    NASA Technical Reports Server (NTRS)

    Neuman, C. P.; Casasent, D.

    1984-01-01

    The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.

  18. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, K.; Jain, A.

    1989-01-01

    A spatial operator algebra for modeling the control and trajectory design of manipulation is discussed, with emphasis on its analytical formulation and implementation in the Ada programming language. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of the manipulator. Inversion is obtained using techniques of recursive filtering and smoothing. The operator alegbra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. Implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection, thus greatly simplifying the transition from an abstract problem formulation and solution to the detailed mechanization of a specific algorithm.

  19. Novel symmetries in Christ-Lee model

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Shukla, A.

    2016-07-01

    We demonstrate that the gauge-fixed Lagrangian of the Christ-Lee model respects four fermionic symmetries, namely; (anti-)BRST symmetries, (anti-)co-BRST symmetries within the framework of BRST formalism. The appropriate anticommutators amongst the fermionic symmetries lead to a unique bosonic symmetry. It turns out that the algebra obeyed by the symmetry transformations (and their corresponding conserved charges) is reminiscent of the algebra satisfied by the de Rham cohomological operators of differential geometry. We also provide the physical realizations of the cohomological operators in terms of the symmetry properties. Thus, the present model provides a simple model for the Hodge theory.

  20. Thin-layer approximation and algebraic model for separated turbulent flows

    NASA Technical Reports Server (NTRS)

    Baldwin, B.; Lomax, H.

    1978-01-01

    An algebraic turbulence model for two- and three-dimensional separated flows is specified that avoids the necessity for finding the edge of the boundary layer. Properties of the model are determined and comparisons made with experiment for an incident shock on a flat plate, separated flow over a compression corner, and transonic flow over an airfoil. Separation and reattachment points from numerical Navier-Stokes solutions agree with experiment within one boundary-layer thickness. Use of law-of-the-wall boundary conditions does not alter the predictions significantly. Applications of the model to other cases are contained in companion papers.

  1. An Algebraic Implicitization and Specialization of Minimum KL-Divergence Models

    NASA Astrophysics Data System (ADS)

    Dukkipati, Ambedkar; Manathara, Joel George

    In this paper we study representation of KL-divergence minimization, in the cases where integer sufficient statistics exists, using tools from polynomial algebra. We show that the estimation of parametric statistical models in this case can be transformed to solving a system of polynomial equations. In particular, we also study the case of Kullback-Csisźar iteration scheme. We present implicit descriptions of these models and show that implicitization preserves specialization of prior distribution. This result leads us to a Gröbner bases method to compute an implicit representation of minimum KL-divergence models.

  2. A convenient basis for the Izergin-Korepin model

    NASA Astrophysics Data System (ADS)

    Qiao, Yi; Zhang, Xin; Hao, Kun; Cao, Junpeng; Li, Guang-Liang; Yang, Wen-Li; Shi, Kangjie

    2018-05-01

    We propose a convenient orthogonal basis of the Hilbert space for the quantum spin chain associated with the A2(2) algebra (or the Izergin-Korepin model). It is shown that compared with the original basis the monodromy-matrix elements acting on this basis take relatively simple forms, which is quite similar as that for the quantum spin chain associated with An algebra in the so-called F-basis. As an application of our general results, we present the explicit recursive expressions of the Bethe states in this basis for the Izergin-Korepin model.

  3. Methods of mathematical modeling using polynomials of algebra of sets

    NASA Astrophysics Data System (ADS)

    Kazanskiy, Alexandr; Kochetkov, Ivan

    2018-03-01

    The article deals with the construction of discrete mathematical models for solving applied problems arising from the operation of building structures. Security issues in modern high-rise buildings are extremely serious and relevant, and there is no doubt that interest in them will only increase. The territory of the building is divided into zones for which it is necessary to observe. Zones can overlap and have different priorities. Such situations can be described using formulas algebra of sets. Formulas can be programmed, which makes it possible to work with them using computer models.

  4. Algebraic, geometric, and stochastic aspects of genetic operators

    NASA Technical Reports Server (NTRS)

    Foo, N. Y.; Bosworth, J. L.

    1972-01-01

    Genetic algorithms for function optimization employ genetic operators patterned after those observed in search strategies employed in natural adaptation. Two of these operators, crossover and inversion, are interpreted in terms of their algebraic and geometric properties. Stochastic models of the operators are developed which are employed in Monte Carlo simulations of their behavior.

  5. Algebraic grid adaptation method using non-uniform rational B-spline surface modeling

    NASA Technical Reports Server (NTRS)

    Yang, Jiann-Cherng; Soni, B. K.

    1992-01-01

    An algebraic adaptive grid system based on equidistribution law and utilized by the Non-Uniform Rational B-Spline (NURBS) surface for redistribution is presented. A weight function, utilizing a properly weighted boolean sum of various flow field characteristics is developed. Computational examples are presented to demonstrate the success of this technique.

  6. Student Connections of Linear Algebra Concepts: An Analysis of Concept Maps

    ERIC Educational Resources Information Center

    Lapp, Douglas A.; Nyman, Melvin A.; Berry, John S.

    2010-01-01

    This article examines the connections of linear algebra concepts in a first course at the undergraduate level. The theoretical underpinnings of this study are grounded in the constructivist perspective (including social constructivism), Vernaud's theory of conceptual fields and Pirie and Kieren's model for the growth of mathematical understanding.…

  7. Bicycles, Birds, Bats and Balloons: New Applications for Algebra Classes.

    ERIC Educational Resources Information Center

    Yoshiwara, Bruce; Yoshiwara, Kathy

    This collection of activities is intended to enhance the teaching of college algebra through the use of modeling. The problems use real data and involve the representation and interpretation of the data. The concepts addressed include rates of change, linear and quadratic regression, and functions. The collection consists of eight problems, four…

  8. A Method for the Microanalysis of Pre-Algebra Transfer

    ERIC Educational Resources Information Center

    Pavlik, Philip I., Jr.; Yudelson, Michael; Koedinger, Kenneth R.

    2011-01-01

    The objective of this research was to better understand the transfer of learning between different variations of pre-algebra problems. While the authors could have addressed a specific variation that might address transfer, they were interested in developing a general model of transfer, so we gathered data from multiple problem types and their…

  9. Bethe vectors for XXX-spin chain

    NASA Astrophysics Data System (ADS)

    Burdík, Čestmír; Fuksa, Jan; Isaev, Alexei

    2014-11-01

    The paper deals with algebraic Bethe ansatz for XXX-spin chain. Generators of Yang-Baxter algebra are expressed in basis of free fermions and used to calculate explicit form of Bethe vectors. Their relation to N-component models is used to prove conjecture about their form in general. Some remarks on inhomogeneous XXX-spin chain are included.

  10. An Authentic Task That Models Quadratics

    ERIC Educational Resources Information Center

    Baron, Lorraine M.

    2015-01-01

    As students develop algebraic reasoning in grades 5 to 9, they learn to recognize patterns and understand expressions, equations, and variables. Linear functions are a focus in eighth-grade mathematics, and by algebra 1, students must make sense of functions that are not linear. This article describes how students worked through a classroom task…

  11. Superitem Test: An Alternative Assessment Tool to Assess Students' Algebraic Solving Ability

    ERIC Educational Resources Information Center

    Lian, Lim Hooi; Yew, Wun Thiam; Idris, Noraini

    2010-01-01

    Superitem test based on the SOLO model (Structure of the Observing Learning Outcome) has become a powerful alternative assessment tool for monitoring the growth of students' cognitive ability in solving mathematics problems. This article focused on developing a superitem test to assess students' algebraic solving ability through interview method.…

  12. Proposing and Testing a Model to Explain Traits of Algebra Preparedness

    ERIC Educational Resources Information Center

    Venenciano, Linda; Heck, Ronald

    2016-01-01

    Early experiences with theoretical thinking and generalization in measurement are hypothesized to develop constructs we name here as logical reasoning and preparedness for algebra. Based on work of V. V. Davydov (1975), the Measure Up (MU) elementary grades experimental mathematics curriculum uses quantities of area, length, volume, and mass to…

  13. Developing Pre-Algebraic Thinking in Generalizing Repeating Pattern Using SOLO Model

    ERIC Educational Resources Information Center

    Lian, Lim Hooi; Yew, Wun Thiam

    2011-01-01

    In this paper, researchers discussed the application of the generalization perspective in helping the primary school pupils to develop their pre-algebraic thinking in generalizing repeating pattern. There are two main stages of the generalization perspective had been adapted, namely investigating and generalizing the pattern. Since the Biggs and…

  14. Developing CORE model-based worksheet with recitation task to facilitate students’ mathematical communication skills in linear algebra course

    NASA Astrophysics Data System (ADS)

    Risnawati; Khairinnisa, S.; Darwis, A. H.

    2018-01-01

    The purpose of this study was to develop a CORE model-based worksheet with recitation task that were valid and practical and could facilitate students’ communication skills in Linear Algebra course. This study was conducted in mathematics education department of one public university in Riau, Indonesia. Participants of the study were media and subject matter experts as validators as well as students from mathematics education department. The objects of this study are students’ worksheet and students’ mathematical communication skills. The results of study showed that: (1) based on validation of the experts, the developed students’ worksheet was valid and could be applied for students in Linear Algebra courses; (2) based on the group trial, the practicality percentage was 92.14% in small group and 90.19% in large group, so the worksheet was very practical and could attract students to learn; and (3) based on the post test, the average percentage of ideals was 87.83%. In addition, the results showed that the students’ worksheet was able to facilitate students’ mathematical communication skills in linear algebra course.

  15. A critical evaluation of various turbulence models as applied to internal fluid flows

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.

    1985-01-01

    Models employed in the computation of turbulent flows are described and their application to internal flows is evaluated by examining the predictions of various turbulence models in selected flow configurations. The main conclusions are: (1) the k-epsilon model is used in a majority of all the two-dimensional flow calculations reported in the literature; (2) modified forms of the k-epsilon model improve the performance for flows with streamline curvature and heat transfer; (3) for flows with swirl, the k-epsilon model performs rather poorly; the algebraic stress model performs better in this case; and (4) for flows with regions of secondary flow (noncircular duct flows), the algebraic stress model performs fairly well for fully developed flow, for developing flow, the algebraic stress model performance is not good; a Reynolds stress model should be used. False diffusion and inlet boundary conditions are discussed. Countergradient transport and its implications in turbulence modeling is mentioned. Two examples of recirculating flow predictions obtained using PHOENICS code are discussed. The vortex method, large eddy simulation (modeling of subgrid scale Reynolds stresses), and direct simulation, are considered. Some recommendations for improving the model performance are made. The need for detailed experimental data in flows with strong curvature is emphasized.

  16. Priority in Process Algebras

    NASA Technical Reports Server (NTRS)

    Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.

    1999-01-01

    This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.

  17. Algebraic Structure of tt * Equations for Calabi-Yau Sigma Models

    NASA Astrophysics Data System (ADS)

    Alim, Murad

    2017-08-01

    The tt * equations define a flat connection on the moduli spaces of {2d, \\mathcal{N}=2} quantum field theories. For conformal theories with c = 3 d, which can be realized as nonlinear sigma models into Calabi-Yau d-folds, this flat connection is equivalent to special geometry for threefolds and to its analogs in other dimensions. We show that the non-holomorphic content of the tt * equations, restricted to the conformal directions, in the cases d = 1, 2, 3 is captured in terms of finitely many generators of special functions, which close under derivatives. The generators are understood as coordinates on a larger moduli space. This space parameterizes a freedom in choosing representatives of the chiral ring while preserving a constant topological metric. Geometrically, the freedom corresponds to a choice of forms on the target space respecting the Hodge filtration and having a constant pairing. Linear combinations of vector fields on that space are identified with the generators of a Lie algebra. This Lie algebra replaces the non-holomorphic derivatives of tt * and provides these with a finer and algebraic meaning. For sigma models into lattice polarized K3 manifolds, the differential ring of special functions on the moduli space is constructed, extending known structures for d = 1 and 3. The generators of the differential rings of special functions are given by quasi-modular forms for d = 1 and their generalizations in d = 2, 3. Some explicit examples are worked out including the case of the mirror of the quartic in {\\mathbbm{P}^3}, where due to further algebraic constraints, the differential ring coincides with quasi modular forms.

  18. Numerical Methods for Forward and Inverse Problems in Discontinuous Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chartier, Timothy P.

    The research emphasis under this grant's funding is in the area of algebraic multigrid methods. The research has two main branches: 1) exploring interdisciplinary applications in which algebraic multigrid can make an impact and 2) extending the scope of algebraic multigrid methods with algorithmic improvements that are based in strong analysis.The work in interdisciplinary applications falls primarily in the field of biomedical imaging. Work under this grant demonstrated the effectiveness and robustness of multigrid for solving linear systems that result from highly heterogeneous finite element method models of the human head. The results in this work also give promise tomore » medical advances possible with software that may be developed. Research to extend the scope of algebraic multigrid has been focused in several areas. In collaboration with researchers at the University of Colorado, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory, the PI developed an adaptive multigrid with subcycling via complementary grids. This method has very cheap computing costs per iterate and is showing promise as a preconditioner for conjugate gradient. Recent work with Los Alamos National Laboratory concentrates on developing algorithms that take advantage of the recent advances in adaptive multigrid research. The results of the various efforts in this research could ultimately have direct use and impact to researchers for a wide variety of applications, including, astrophysics, neuroscience, contaminant transport in porous media, bi-domain heart modeling, modeling of tumor growth, and flow in heterogeneous porous media. This work has already led to basic advances in computational mathematics and numerical linear algebra and will continue to do so into the future.« less

  19. Assessment of an Explicit Algebraic Reynolds Stress Model

    NASA Technical Reports Server (NTRS)

    Carlson, Jan-Renee

    2005-01-01

    This study assesses an explicit algebraic Reynolds stress turbulence model in the in the three-dimensional Reynolds averaged Navier-Stokes (RANS) solver, ISAAC (Integrated Solution Algorithm for Arbitrary Con gurations). Additionally, it compares solutions for two select configurations between ISAAC and the RANS solver PAB3D. This study compares with either direct numerical simulation data, experimental data, or empirical models for several different geometries with compressible, separated, and high Reynolds number flows. In general, the turbulence model matched data or followed experimental trends well, and for the selected configurations, the computational results of ISAAC closely matched those of PAB3D using the same turbulence model.

  20. BOAST 2 for the IBM 3090 and RISC 6000

    NASA Astrophysics Data System (ADS)

    Hebert, P.; Bourgoyne, A. T., Jr.; Tyler, J.

    1993-05-01

    BOAST 2 simulates isothermal, darcy flow in three dimensions. It assumes that reservoir liquids can be described in three fluid phases (oil, gas, and water) of constant composition, with physical properties that depend on pressure, only. These reservoir fluid approximations are acceptable for a large percentage of the world's oil and gas reservoirs. Consequently, BOAST 2 has a wide range of applicability. BOAST 2 can simulate oil and/or gas recovery by fluid expansion, displacement, gravity drainage, and capillary imhibition mechanisms. Typical field production problems that BOAST 2 can handle include primary depletion studies, pressure maintenance by water and/or gas injection, and evaluation of secondary recovery waterflooding and displacement operations. Technically, BOAST 2 is a finite, implicit pressure, explicit saturation (IMPES) numerical simulator. It applies both direct and iterative solution techniques for solving systems of algebraic equations. The well model allows specification of rate or pressure constraints on well performance, and the user is free to add or to recomplete wells during the simulation. In addition, the user can define multiple rock and PVT regions and can choose from three aquifer models. BOAST 2 also provides flexible initialization, a bubble-point tracking scheme, automatic time-step control, and a material balance check on solution stability. The user controls output, which includes a run summary and line-printer plots of fieldwide performance.

  1. Algebraic Bethe ansatz for U(1) invariant integrable models: Compact and non-compact applications

    NASA Astrophysics Data System (ADS)

    Martins, M. J.; Melo, C. S.

    2009-10-01

    We apply the algebraic Bethe ansatz developed in our previous paper [C.S. Melo, M.J. Martins, Nucl. Phys. B 806 (2009) 567] to three different families of U(1) integrable vertex models with arbitrary N bond states. These statistical mechanics systems are based on the higher spin representations of the quantum group U[SU(2)] for both generic and non-generic values of q as well as on the non-compact discrete representation of the SL(2,R) algebra. We present for all these models the explicit expressions for both the on-shell and the off-shell properties associated to the respective transfer matrices eigenvalue problems. The amplitudes governing the vectors not parallel to the Bethe states are shown to factorize in terms of elementary building blocks functions. The results for the non-compact SL(2,R) model are argued to be derived from those obtained for the compact systems by taking suitable N→∞ limits. This permits us to study the properties of the non-compact SL(2,R) model starting from systems with finite degrees of freedom.

  2. On the symmetries of integrability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellon, M.; Maillard, J.M.; Viallet, C.

    1992-06-01

    In this paper the authors show that the Yang-Baxter equations for two-dimensional models admit as a group of symmetry the infinite discrete group A{sub 2}{sup (1)}. The existence of this symmetry explains the presence of a spectral parameter in the solutions of the equations. The authors show that similarly, for three-dimensional vertex models and the associated tetrahedron equations, there also exists an infinite discrete group of symmetry. Although generalizing naturally the previous one, it is a much bigger hyperbolic Coxeter group. The authors indicate how this symmetry can help to resolve the Yang-Baxter equations and their higher-dimensional generalizations and initiatemore » the study of three-dimensional vertex models. These symmetries are naturally represented as birational projective transformations. They may preserve non-trivial algebraic varieties, and lead to proper parametrizations of the models, be they integrable or not. The authors mention the relation existing between spin models and the Bose-Messner algebras of algebraic combinatorics. The authors' results also yield the generalization of the condition q{sup n} = 1 so often mentioned in the theory of quantum groups, when no q parameter is available.« less

  3. The Standard Model Algebra - a summary

    NASA Astrophysics Data System (ADS)

    Cristinel Stoica, Ovidiu

    2017-08-01

    A generation of leptons and quarks and the gauge symmetries of the Standard Model can be obtained from the Clifford algebra ℂℓ 6. An instance of ℂℓ 6 is implicitly generated by the Dirac algebra combined with the electroweak symmetry, while the color symmetry gives another instance of ℂℓ 6 with a Witt decomposition. The minimal mathematical model proposed here results by identifying the two instances of ℂℓ 6. The left ideal decomposition generated by the Witt decomposition represents the leptons and quarks, and their antiparticles. The SU(3)c and U(1)em symmetries of the SM are the symmetries of this ideal decomposition. The patterns of electric charges, colors, chirality, weak isospins, and hypercharges, follow from this, without predicting additional particles or forces, or proton decay. The electroweak symmetry is present in its broken form, due to the geometry. The predicted Weinberg angle is given by sin2 W = 0.25. The model shares common features with previously known models, particularly with Chisholm and Farwell, 1996, Trayling and Baylis, 2004, and Furey, 2016.

  4. Equivariant Verlinde Algebra from Superconformal Index and Argyres-Seiberg Duality

    NASA Astrophysics Data System (ADS)

    Gukov, Sergei; Pei, Du; Yan, Wenbin; Ye, Ke

    2018-02-01

    In this paper, we show the equivalence between two seemingly distinct 2d TQFTs: one comes from the "Coulomb branch index" of the class S theory {T[Σ,G]} on {L(k,1) × S^1}, the other is the {^L G} "equivariant Verlinde formula", or equivalently partition function of {^L G_C} complex Chern-Simons theory on {Σ× S^1}. We first derive this equivalence using the M-theory geometry and show that the gauge groups appearing on the two sides are naturally G and its Langlands dual {^L G}. When G is not simply-connected, we provide a recipe of computing the index of {T[Σ,G]} as summation over the indices of T[Σ,\\tilde{G}] with non-trivial background 't Hooft fluxes, where \\tilde{G} is the universal cover of G. Then we check explicitly this relation between the Coulomb index and the equivariant Verlinde formula for {G=SU(2)} or SO(3). In the end, as an application of this newly found relation, we consider the more general case where G is SU( N) or PSU( N) and show that equivariant Verlinde algebra can be derived using field theory via (generalized) Argyres-Seiberg duality. We also attach a Mathematica notebook that can be used to compute the SU(3) equivariant Verlinde coefficients.

  5. The smooth entropy formalism for von Neumann algebras

    NASA Astrophysics Data System (ADS)

    Berta, Mario; Furrer, Fabian; Scholz, Volkher B.

    2016-01-01

    We discuss information-theoretic concepts on infinite-dimensional quantum systems. In particular, we lift the smooth entropy formalism as introduced by Renner and collaborators for finite-dimensional systems to von Neumann algebras. For the smooth conditional min- and max-entropy, we recover similar characterizing properties and information-theoretic operational interpretations as in the finite-dimensional case. We generalize the entropic uncertainty relation with quantum side information of Tomamichel and Renner and discuss applications to quantum cryptography. In particular, we prove the possibility to perform privacy amplification and classical data compression with quantum side information modeled by a von Neumann algebra.

  6. The smooth entropy formalism for von Neumann algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berta, Mario, E-mail: berta@caltech.edu; Furrer, Fabian, E-mail: furrer@eve.phys.s.u-tokyo.ac.jp; Scholz, Volkher B., E-mail: scholz@phys.ethz.ch

    2016-01-15

    We discuss information-theoretic concepts on infinite-dimensional quantum systems. In particular, we lift the smooth entropy formalism as introduced by Renner and collaborators for finite-dimensional systems to von Neumann algebras. For the smooth conditional min- and max-entropy, we recover similar characterizing properties and information-theoretic operational interpretations as in the finite-dimensional case. We generalize the entropic uncertainty relation with quantum side information of Tomamichel and Renner and discuss applications to quantum cryptography. In particular, we prove the possibility to perform privacy amplification and classical data compression with quantum side information modeled by a von Neumann algebra.

  7. A matrix dependent/algebraic multigrid approach for extruded meshes with applications to ice sheet modeling

    DOE PAGES

    Tuminaro, Raymond S.; Perego, Mauro; Tezaur, Irina Kalashnikova; ...

    2016-10-06

    A multigrid method is proposed that combines ideas from matrix dependent multigrid for structured grids and algebraic multigrid for unstructured grids. It targets problems where a three-dimensional mesh can be viewed as an extrusion of a two-dimensional, unstructured mesh in a third dimension. Our motivation comes from the modeling of thin structures via finite elements and, more specifically, the modeling of ice sheets. Extruded meshes are relatively common for thin structures and often give rise to anisotropic problems when the thin direction mesh spacing is much smaller than the broad direction mesh spacing. Within our approach, the first few multigridmore » hierarchy levels are obtained by applying matrix dependent multigrid to semicoarsen in a structured thin direction fashion. After sufficient structured coarsening, the resulting mesh contains only a single layer corresponding to a two-dimensional, unstructured mesh. Algebraic multigrid can then be employed in a standard manner to create further coarse levels, as the anisotropic phenomena is no longer present in the single layer problem. The overall approach remains fully algebraic, with the minor exception that some additional information is needed to determine the extruded direction. Furthermore, this facilitates integration of the solver with a variety of different extruded mesh applications.« less

  8. Enlarged symmetry algebras of spin chains, loop models, and S-matrices

    NASA Astrophysics Data System (ADS)

    Read, N.; Saleur, H.

    2007-08-01

    The symmetry algebras of certain families of quantum spin chains are considered in detail. The simplest examples possess m states per site ( m⩾2), with nearest-neighbor interactions with U(m) symmetry, under which the sites transform alternately along the chain in the fundamental m and its conjugate representation m¯. We find that these spin chains, even with arbitrary coefficients of these interactions, have a symmetry algebra A much larger than U(m), which implies that the energy eigenstates fall into sectors that for open chains (i.e., free boundary conditions) can be labeled by j=0,1,…,L, for the 2 L-site chain such that the degeneracies of all eigenvalues in the jth sector are generically the same and increase rapidly with j. For large j, these degeneracies are much larger than those that would be expected from the U(m) symmetry alone. The enlarged symmetry algebra A(2L) consists of operators that commute in this space of states with the Temperley-Lieb algebra that is generated by the set of nearest-neighbor interaction terms; A(2L) is not a Yangian. There are similar results for supersymmetric chains with gl(m+n|n) symmetry of nearest-neighbor interactions, and a richer representation structure for closed chains (i.e., periodic boundary conditions). The symmetries also apply to the loop models that can be obtained from the spin chains in a spacetime or transfer matrix picture. In the loop language, the symmetries arise because the loops cannot cross. We further define tensor products of representations (for the open chains) by joining chains end to end. The fusion rules for decomposing the tensor product of representations labeled j and j take the same form as the Clebsch-Gordan series for SU(2). This and other structures turn the symmetry algebra A into a ribbon Hopf algebra, and we show that this is "Morita equivalent" to the quantum group U(sl) for m=q+q. The open-chain results are extended to the cases |m|<2 for which the algebras are no longer semisimple; these possess continuum limits that are critical (conformal) field theories, or massive perturbations thereof. Such models, for open and closed boundary conditions, arise in connection with disordered fermions, percolation, and polymers (self-avoiding walks), and certain non-linear sigma models, all in two dimensions. A product operation is defined in a related way for the Temperley-Lieb representations also, and the fusion rules for this are related to those for A or U(sl) representations; this is useful for the continuum limits also, as we discuss in a companion paper.

  9. A realizable explicit algebraic Reynolds stress model for compressible turbulent flow with significant mean dilatation

    NASA Astrophysics Data System (ADS)

    Grigoriev, I. A.; Wallin, S.; Brethouwer, G.; Johansson, A. V.

    2013-10-01

    The explicit algebraic Reynolds stress model of Wallin and Johansson [J. Fluid Mech. 403, 89 (2000)] is extended to compressible and variable-density turbulent flows. This is achieved by correctly taking into account the influence of the mean dilatation on the rapid pressure-strain correlation. The resulting model is formally identical to the original model in the limit of constant density. For two-dimensional mean flows the model is analyzed and the physical root of the resulting quartic equation is identified. Using a fixed-point analysis of homogeneously sheared and strained compressible flows, we show that the new model is realizable, unlike the previous model. Application of the model together with a K - ω model to quasi one-dimensional plane nozzle flow, transcending from subsonic to supersonic regime, also demonstrates realizability. Negative "dilatational" production of turbulence kinetic energy competes with positive "incompressible" production, eventually making the total production negative during the spatial evolution of the nozzle flow. Finally, an approach to include the baroclinic effect into the dissipation equation is proposed and an algebraic model for density-velocity correlations is outlined to estimate the corrections associated with density fluctuations. All in all, the new model can become a significant tool for CFD (computational fluid dynamics) of compressible flows.

  10. Nonlinear, nonbinary cyclic group codes

    NASA Technical Reports Server (NTRS)

    Solomon, G.

    1992-01-01

    New cyclic group codes of length 2(exp m) - 1 over (m - j)-bit symbols are introduced. These codes can be systematically encoded and decoded algebraically. The code rates are very close to Reed-Solomon (RS) codes and are much better than Bose-Chaudhuri-Hocquenghem (BCH) codes (a former alternative). The binary (m - j)-tuples are identified with a subgroup of the binary m-tuples which represents the field GF(2 exp m). Encoding is systematic and involves a two-stage procedure consisting of the usual linear feedback register (using the division or check polynomial) and a small table lookup. For low rates, a second shift-register encoding operation may be invoked. Decoding uses the RS error-correcting procedures for the m-tuple codes for m = 4, 5, and 6.

  11. Cyclotomic Gaudin Models: Construction and Bethe Ansatz

    NASA Astrophysics Data System (ADS)

    Vicedo, Benoît; Young, Charles

    2016-05-01

    To any finite-dimensional simple Lie algebra g and automorphism {σ: gto g we associate a cyclotomic Gaudin algebra. This is a large commutative subalgebra of {U(g)^{⊗ N}} generated by a hierarchy of cyclotomic Gaudin Hamiltonians. It reduces to the Gaudin algebra in the special case {σ =id}. We go on to construct joint eigenvectors and their eigenvalues for this hierarchy of cyclotomic Gaudin Hamiltonians, in the case of a spin chain consisting of a tensor product of Verma modules. To do so we generalize an approach to the Bethe ansatz due to Feigin, Frenkel and Reshetikhin involving vertex algebras and the Wakimoto construction. As part of this construction, we make use of a theorem concerning cyclotomic coinvariants, which we prove in a companion paper. As a byproduct, we obtain a cyclotomic generalization of the Schechtman-Varchenko formula for the weight function.

  12. Bethe states of the trigonometric SU(3) spin chain with generic open boundaries

    NASA Astrophysics Data System (ADS)

    Sun, Pei; Xin, Zhirong; Qiao, Yi; Wen, Fakai; Hao, Kun; Cao, Junpeng; Li, Guang-Liang; Yang, Tao; Yang, Wen-Li; Shi, Kangjie

    2018-06-01

    By combining the algebraic Bethe ansatz and the off-diagonal Bethe ansatz, we investigate the trigonometric SU (3) model with generic open boundaries. The eigenvalues of the transfer matrix are given in terms of an inhomogeneous T - Q relation, and the corresponding eigenstates are expressed in terms of nested Bethe-type eigenstates which have well-defined homogeneous limit. This exact solution provides a basis for further analyzing the thermodynamic properties and correlation functions of the anisotropic models associated with higher rank algebras.

  13. Constructing a Coherent Problem Model to Facilitate Algebra Problem Solving in a Chemistry Context

    ERIC Educational Resources Information Center

    Ngu, Bing Hiong; Yeung, Alexander Seeshing; Phan, Huy P.

    2015-01-01

    An experiment using a sample of 11th graders compared text editing and worked examples approaches in learning to solve dilution and molarity algebra word problems in a chemistry context. Text editing requires students to assess the structure of a word problem by specifying whether the problem text contains sufficient, missing, or irrelevant…

  14. Counter Conjectures: Using Manipulatives to Scaffold the Development of Number Sense and Algebra

    ERIC Educational Resources Information Center

    West, John

    2016-01-01

    This article takes the position that teachers can use simple manipulative materials to model relatively complex situations and in doing so scaffold the development of students' number sense and early algebra skills. While students' early experiences are usually dominated by the cardinal aspect of number (i.e., counting the number of items in a…

  15. Characterizing the Development of Specialized Mathematical Content Knowledge for Teaching in Algebraic Reasoning and Number Theory

    ERIC Educational Resources Information Center

    Bair, Sherry L.; Rich, Beverly S.

    2011-01-01

    This article characterizes the development of a deep and connected body of mathematical knowledge categorized by Ball and Bass' (2003b) model of Mathematical Knowledge for Teaching (MKT), as Specialized Content Knowledge for Teaching (SCK) in algebraic reasoning and number sense. The research employed multiple cases across three years from two…

  16. Is the Role of Equations in the Doing of Word Problems in School Algebra Changing? Initial Indications from Teacher Study Groups

    ERIC Educational Resources Information Center

    Chazan, Daniel; Sela, Hagit; Herbst, Patricio

    2012-01-01

    We illustrate a method, which is modeled on "breaching experiments," for studying tacit norms that govern classroom interaction around particular mathematical content. Specifically, this study explores norms that govern teachers' expectations for the doing of word problems in school algebra. Teacher study groups discussed representations of…

  17. Flipping an Algebra Classroom: Analyzing, Modeling, and Solving Systems of Linear Equations

    ERIC Educational Resources Information Center

    Kirvan, Rebecca; Rakes, Christopher R.; Zamora, Regie

    2015-01-01

    The present study investigated whether flipping an algebra classroom led to a stronger focus on conceptual understanding and improved learning of systems of linear equations for 54 seventh- and eighth-grade students using teacher journal data and district-mandated unit exam items. Multivariate analysis of covariance was used to compare scores on…

  18. Proof and Reasoning in Secondary School Algebra Textbooks

    ERIC Educational Resources Information Center

    Dituri, Philip

    2013-01-01

    The purpose of this study was to determine the extent to which the modeling of deductive reasoning and proof-type thinking occurs in a mathematics course in which students are not explicitly preparing to write formal mathematical proofs. Algebra was chosen because it is the course that typically directly precedes a student's first formal…

  19. Addressing Dynamic Issues of Program Model Checking

    NASA Technical Reports Server (NTRS)

    Lerda, Flavio; Visser, Willem

    2001-01-01

    Model checking real programs has recently become an active research area. Programs however exhibit two characteristics that make model checking difficult: the complexity of their state and the dynamic nature of many programs. Here we address both these issues within the context of the Java PathFinder (JPF) model checker. Firstly, we will show how the state of a Java program can be encoded efficiently and how this encoding can be exploited to improve model checking. Next we show how to use symmetry reductions to alleviate some of the problems introduced by the dynamic nature of Java programs. Lastly, we show how distributed model checking of a dynamic program can be achieved, and furthermore, how dynamic partitions of the state space can improve model checking. We support all our findings with results from applying these techniques within the JPF model checker.

  20. A Categorical Framework for Model Classification in the Geosciences

    NASA Astrophysics Data System (ADS)

    Hauhs, Michael; Trancón y Widemann, Baltasar; Lange, Holger

    2016-04-01

    Models have a mixed record of success in the geosciences. In meteorology, model development and implementation has been among the first and most successful examples of triggering computer technology in science. On the other hand, notorious problems such as the 'equifinality issue' in hydrology lead to a rather mixed reputation of models in other areas. The most successful models in geosciences are applications of dynamic systems theory to non-living systems or phenomena. Thus, we start from the hypothesis that the success of model applications relates to the influence of life on the phenomenon under study. We thus focus on the (formal) representation of life in models. The aim is to investigate whether disappointment in model performance is due to system properties such as heterogeneity and historicity of ecosystems, or rather reflects an abstraction and formalisation problem at a fundamental level. As a formal framework for this investigation, we use category theory as applied in computer science to specify behaviour at an interface. Its methods have been developed for translating and comparing formal structures among different application areas and seems highly suited for a classification of the current "model zoo" in the geosciences. The approach is rather abstract, with a high degree of generality but a low level of expressibility. Here, category theory will be employed to check the consistency of assumptions about life in different models. It will be shown that it is sufficient to distinguish just four logical cases to check for consistency of model content. All four cases can be formalised as variants of coalgebra-algebra homomorphisms. It can be demonstrated that transitions between the four variants affect the relevant observations (time series or spatial maps), the formalisms used (equations, decision trees) and the test criteria of success (prediction, classification) of the resulting model types. We will present examples from hydrology and ecology in which a transport problem is combined with the strategic behaviour of living agents. The living and the non-living aspects of the model belong to two different model types. If a model is built to combine strategic behaviour with the constraint of mass conservation, some critical assumptions appear as inevitable, or models may become logically inconsistent. The categorical assessment and the examples demonstrate that many models at ecosystem level, where both living and non-living aspects inevitably meet, pose so far unsolved, fundamental problems. Today, these are often pragmatically resolved at the level of software engineering. Some suggestions will be given how model documentation and benchmarking may help clarifying and resolving some of these issues.

  1. Quantum theory of the generalised uncertainty principle

    NASA Astrophysics Data System (ADS)

    Bruneton, Jean-Philippe; Larena, Julien

    2017-04-01

    We extend significantly previous works on the Hilbert space representations of the generalized uncertainty principle (GUP) in 3 + 1 dimensions of the form [X_i,P_j] = i F_{ij} where F_{ij} = f({{P}}^2) δ _{ij} + g({{P}}^2) P_i P_j for any functions f. However, we restrict our study to the case of commuting X's. We focus in particular on the symmetries of the theory, and the minimal length that emerge in some cases. We first show that, at the algebraic level, there exists an unambiguous mapping between the GUP with a deformed quantum algebra and a quadratic Hamiltonian into a standard, Heisenberg algebra of operators and an aquadratic Hamiltonian, provided the boost sector of the symmetries is modified accordingly. The theory can also be mapped to a completely standard Quantum Mechanics with standard symmetries, but with momentum dependent position operators. Next, we investigate the Hilbert space representations of these algebraically equivalent models, and focus specifically on whether they exhibit a minimal length. We carry the functional analysis of the various operators involved, and show that the appearance of a minimal length critically depends on the relationship between the generators of translations and the physical momenta. In particular, because this relationship is preserved by the algebraic mapping presented in this paper, when a minimal length is present in the standard GUP, it is also present in the corresponding Aquadratic Hamiltonian formulation, despite the perfectly standard algebra of this model. In general, a minimal length requires bounded generators of translations, i.e. a specific kind of quantization of space, and this depends on the precise shape of the function f defined previously. This result provides an elegant and unambiguous classification of which universal quantum gravity corrections lead to the emergence of a minimal length.

  2. Generalized EMV-Effect Algebras

    NASA Astrophysics Data System (ADS)

    Borzooei, R. A.; Dvurečenskij, A.; Sharafi, A. H.

    2018-04-01

    Recently in Dvurečenskij and Zahiri (2017), new algebraic structures, called EMV-algebras which generalize both MV-algebras and generalized Boolean algebras, were introduced. We present equivalent conditions for EMV-algebras. In addition, we define a partial algebraic structure, called a generalized EMV-effect algebra, which is close to generalized MV-effect algebras. Finally, we show that every generalized EMV-effect algebra is either an MV-effect algebra or can be embedded into an MV-effect algebra as a maximal ideal.

  3. Exponential Models of Legislative Turnover. [and] The Dynamics of Political Mobilization, I: A Model of the Mobilization Process, II: Deductive Consequences and Empirical Application of the Model. Applications of Calculus to American Politics. [and] Public Support for Presidents. Applications of Algebra to American Politics. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Units 296-300.

    ERIC Educational Resources Information Center

    Casstevens, Thomas W.; And Others

    This document consists of five units which all view applications of mathematics to American politics. The first three view calculus applications, the last two deal with applications of algebra. The first module is geared to teach a student how to: 1) compute estimates of the value of the parameters in negative exponential models; and draw…

  4. Analysis and synthesis of distributed-lumped-active networks by digital computer

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The use of digital computational techniques in the analysis and synthesis of DLA (distributed lumped active) networks is considered. This class of networks consists of three distinct types of elements, namely, distributed elements (modeled by partial differential equations), lumped elements (modeled by algebraic relations and ordinary differential equations), and active elements (modeled by algebraic relations). Such a characterization is applicable to a broad class of circuits, especially including those usually referred to as linear integrated circuits, since the fabrication techniques for such circuits readily produce elements which may be modeled as distributed, as well as the more conventional lumped and active ones.

  5. Color Algebras

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. We would like it to match the well-defined algebra of spectral functions describing lights and surface reflectances, but an exact correspondence is impossible after the spectra have been projected to a three-dimensional color space, because of metamerism physically different spectra can produce the same color sensation. Metameric spectra are interchangeable for the purposes of addition, but not multiplication, so any color algebra is necessarily an approximation to physical reality. Nevertheless, because the majority of naturally-occurring spectra are well-behaved (e.g., continuous and slowly-varying), color algebras can be formulated that are largely accurate and agree well with human intuition. Here we explore the family of algebras that result from associating each color with a member of a three-dimensional manifold of spectra. This association can be used to construct a color product, defined as the color of the spectrum of the wavelength-wise product of the spectra associated with the two input colors. The choice of the spectral manifold determines the behavior of the resulting system, and certain special subspaces allow computational efficiencies. The resulting systems can be used to improve computer graphic rendering techniques, and to model various perceptual phenomena such as color constancy.

  6. Program Model Checking: A Practitioner's Guide

    NASA Technical Reports Server (NTRS)

    Pressburger, Thomas T.; Mansouri-Samani, Masoud; Mehlitz, Peter C.; Pasareanu, Corina S.; Markosian, Lawrence Z.; Penix, John J.; Brat, Guillaume P.; Visser, Willem C.

    2008-01-01

    Program model checking is a verification technology that uses state-space exploration to evaluate large numbers of potential program executions. Program model checking provides improved coverage over testing by systematically evaluating all possible test inputs and all possible interleavings of threads in a multithreaded system. Model-checking algorithms use several classes of optimizations to reduce the time and memory requirements for analysis, as well as heuristics for meaningful analysis of partial areas of the state space Our goal in this guidebook is to assemble, distill, and demonstrate emerging best practices for applying program model checking. We offer it as a starting point and introduction for those who want to apply model checking to software verification and validation. The guidebook will not discuss any specific tool in great detail, but we provide references for specific tools.

  7. The optimal inventory policy for EPQ model under trade credit

    NASA Astrophysics Data System (ADS)

    Chung, Kun-Jen

    2010-09-01

    Huang and Huang [(2008), 'Optimal Inventory Replenishment Policy for the EPQ Model Under Trade Credit without Derivatives International Journal of Systems Science, 39, 539-546] use the algebraic method to determine the optimal inventory replenishment policy for the retailer in the extended model under trade credit. However, the algebraic method has its limit of application such that validities of proofs of Theorems 1-4 in Huang and Huang (2008) are questionable. The main purpose of this article is not only to indicate shortcomings but also to present the accurate proofs for Huang and Huang (2008).

  8. Spectral properties of the Preisach hysteresis model with random input. II. Universality classes for symmetric elementary loops

    NASA Astrophysics Data System (ADS)

    Radons, Günter

    2008-06-01

    The Preisach model with symmetric elementary hysteresis loops and uncorrelated input is treated analytically in detail. It is shown that the appearance of long-time tails in the output correlations is a quite general feature of this model. The exponent η of the algebraic decay t-η , which may take any positive value, is determined by the tails of the input and the Preisach density. We identify the system classes leading to identical algebraic tails. These results imply the occurrence of 1/f noise for a large class of hysteretic systems.

  9. Combinatorial quantization of the Hamiltonian Chern-Simons theory II

    NASA Astrophysics Data System (ADS)

    Alekseev, Anton Yu.; Grosse, Harald; Schomerus, Volker

    1996-01-01

    This paper further develops the combinatorial approach to quantization of the Hamiltonian Chern Simons theory advertised in [1]. Using the theory of quantum Wilson lines, we show how the Verlinde algebra appears within the context of quantum group gauge theory. This allows to discuss flatness of quantum connections so that we can give a mathematically rigorous definition of the algebra of observables A CS of the Chern Simons model. It is a *-algebra of “functions on the quantum moduli space of flat connections” and comes equipped with a positive functional ω (“integration”). We prove that this data does not depend on the particular choices which have been made in the construction. Following ideas of Fock and Rosly [2], the algebra A CS provides a deformation quantization of the algebra of functions on the moduli space along the natural Poisson bracket induced by the Chern Simons action. We evaluate a volume of the quantized moduli space and prove that it coincides with the Verlinde number. This answer is also interpreted as a partition partition function of the lattice Yang-Mills theory corresponding to a quantum gauge group.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guedes, Carlos; Oriti, Daniele; Raasakka, Matti

    The phase space given by the cotangent bundle of a Lie group appears in the context of several models for physical systems. A representation for the quantum system in terms of non-commutative functions on the (dual) Lie algebra, and a generalized notion of (non-commutative) Fourier transform, different from standard harmonic analysis, has been recently developed, and found several applications, especially in the quantum gravity literature. We show that this algebra representation can be defined on the sole basis of a quantization map of the classical Poisson algebra, and identify the conditions for its existence. In particular, the corresponding non-commutative star-productmore » carried by this representation is obtained directly from the quantization map via deformation quantization. We then clarify under which conditions a unitary intertwiner between such algebra representation and the usual group representation can be constructed giving rise to the non-commutative plane waves and consequently, the non-commutative Fourier transform. The compact groups U(1) and SU(2) are considered for different choices of quantization maps, such as the symmetric and the Duflo map, and we exhibit the corresponding star-products, algebra representations, and non-commutative plane waves.« less

  11. Learning coefficient of generalization error in Bayesian estimation and vandermonde matrix-type singularity.

    PubMed

    Aoyagi, Miki; Nagata, Kenji

    2012-06-01

    The term algebraic statistics arises from the study of probabilistic models and techniques for statistical inference using methods from algebra and geometry (Sturmfels, 2009 ). The purpose of our study is to consider the generalization error and stochastic complexity in learning theory by using the log-canonical threshold in algebraic geometry. Such thresholds correspond to the main term of the generalization error in Bayesian estimation, which is called a learning coefficient (Watanabe, 2001a , 2001b ). The learning coefficient serves to measure the learning efficiencies in hierarchical learning models. In this letter, we consider learning coefficients for Vandermonde matrix-type singularities, by using a new approach: focusing on the generators of the ideal, which defines singularities. We give tight new bound values of learning coefficients for the Vandermonde matrix-type singularities and the explicit values with certain conditions. By applying our results, we can show the learning coefficients of three-layered neural networks and normal mixture models.

  12. Equations of motion for a spectrum-generating algebra: Lipkin Meshkov Glick model

    NASA Astrophysics Data System (ADS)

    Rosensteel, G.; Rowe, D. J.; Ho, S. Y.

    2008-01-01

    For a spectrum-generating Lie algebra, a generalized equations-of-motion scheme determines numerical values of excitation energies and algebra matrix elements. In the approach to the infinite particle number limit or, more generally, whenever the dimension of the quantum state space is very large, the equations-of-motion method may achieve results that are impractical to obtain by diagonalization of the Hamiltonian matrix. To test the method's effectiveness, we apply it to the well-known Lipkin-Meshkov-Glick (LMG) model to find its low-energy spectrum and associated generator matrix elements in the eigenenergy basis. When the dimension of the LMG representation space is 106, computation time on a notebook computer is a few minutes. For a large particle number in the LMG model, the low-energy spectrum makes a quantum phase transition from a nondegenerate harmonic vibrator to a twofold degenerate harmonic oscillator. The equations-of-motion method computes critical exponents at the transition point.

  13. Continuum analogues of contragredient Lie algebras (Lie algebras with a Cartan operator and nonlinear dynamical systems)

    NASA Astrophysics Data System (ADS)

    Saveliev, M. V.; Vershik, A. M.

    1989-12-01

    We present an axiomatic formulation of a new class of infinitedimensional Lie algebras-the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras “continuum Lie algebras.” The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered.

  14. Verifying Multi-Agent Systems via Unbounded Model Checking

    NASA Technical Reports Server (NTRS)

    Kacprzak, M.; Lomuscio, A.; Lasica, T.; Penczek, W.; Szreter, M.

    2004-01-01

    We present an approach to the problem of verification of epistemic properties in multi-agent systems by means of symbolic model checking. In particular, it is shown how to extend the technique of unbounded model checking from a purely temporal setting to a temporal-epistemic one. In order to achieve this, we base our discussion on interpreted systems semantics, a popular semantics used in multi-agent systems literature. We give details of the technique and show how it can be applied to the well known train, gate and controller problem. Keywords: model checking, unbounded model checking, multi-agent systems

  15. A New Reynolds Stress Algebraic Equation Model

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Zhu, Jiang; Lumley, John L.

    1994-01-01

    A general turbulent constitutive relation is directly applied to propose a new Reynolds stress algebraic equation model. In the development of this model, the constraints based on rapid distortion theory and realizability (i.e. the positivity of the normal Reynolds stresses and the Schwarz' inequality between turbulent velocity correlations) are imposed. Model coefficients are calibrated using well-studied basic flows such as homogeneous shear flow and the surface flow in the inertial sublayer. The performance of this model is then tested in complex turbulent flows including the separated flow over a backward-facing step and the flow in a confined jet. The calculation results are encouraging and point to the success of the present model in modeling turbulent flows with complex geometries.

  16. Exact analysis of the spectral properties of the anisotropic two-bosons Rabi model

    NASA Astrophysics Data System (ADS)

    Cui, Shuai; Cao, Jun-Peng; Fan, Heng; Amico, Luigi

    2017-05-01

    We introduce the anisotropic two-photon Rabi model in which the rotating and counter rotating terms enters the Hamiltonian with two different coupling constants. Eigenvalues and eigenvectors are studied with exact means. We employ a variation of the Braak method based on Bogolubov rotation of the underlying su(1, 1) Lie algebra. Accordingly, the spectrum is provided by the analytical properties of a suitable meromorphic function. Our formalism applies to the two-modes Rabi model as well, sharing the same algebraic structure of the two-photon model. Through the analysis of the spectrum, we discover that the model displays close analogies to many-body systems undergoing quantum phase transitions.

  17. The oscillator model for the Lie superalgebra sh(2|2) and Charlier polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafarov, E. I.; Van der Jeugt, J.

    2013-10-15

    We investigate an algebraic model for the quantum oscillator based upon the Lie superalgebra sh(2|2), known as the Heisenberg–Weyl superalgebra or “the algebra of supersymmetric quantum mechanics,” and its Fock representation. The model offers some freedom in the choice of a position and a momentum operator, leading to a free model parameter γ. Using the technique of Jacobi matrices, we determine the spectrum of the position operator, and show that its wavefunctions are related to Charlier polynomials C{sub n} with parameter γ{sup 2}. Some properties of these wavefunctions are discussed, as well as some other properties of the current oscillatormore » model.« less

  18. Toward improved design of check dam systems: A case study in the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Pal, Debasish; Galelli, Stefano; Tang, Honglei; Ran, Qihua

    2018-04-01

    Check dams are one of the most common strategies for controlling sediment transport in erosion prone areas, along with soil and water conservation measures. However, existing mathematical models that simulate sediment production and delivery are often unable to simulate how the storage capacity of check dams varies with time. To explicitly account for this process-and to support the design of check dam systems-we developed a modelling framework consisting of two components, namely (1) the spatially distributed Soil Erosion and Sediment Delivery Model (WaTEM/SEDEM), and (2) a network-based model of check dam storage dynamics. The two models are run sequentially, with the second model receiving the initial sediment input to check dams from WaTEM/SEDEM. The framework is first applied to Shejiagou catchment, a 4.26 km2 area located in the Loess Plateau, China, where we study the effect of the existing check dam system on sediment dynamics. Results show that the deployment of check dams altered significantly the sediment delivery ratio of the catchment. Furthermore, the network-based model reveals a large variability in the life expectancy of check dams and abrupt changes in their filling rates. The application of the framework to six alternative check dam deployment scenarios is then used to illustrate its usefulness for planning purposes, and to derive some insights on the effect of key decision variables, such as the number, size, and site location of check dams. Simulation results suggest that better performance-in terms of life expectancy and sediment delivery ratio-could have been achieved with an alternative deployment strategy.

  19. Anomaly cancellation for super- W -gravity

    NASA Astrophysics Data System (ADS)

    Mansfield, P.; Spence, B.

    1991-08-01

    We generalise the description of minimal superconformal models coupled to supergravity, due to Distler, Hlousek and Kawaii, to super- W -gravity. When the chiral algebra is the generalisation of the W-algebra associated to any contragredient Lie superalgebra the total central charge vanishes as a result of Lie superalgebra identities. When the algebra has only fermionic simple roots there is N = 1 superconformal invariance and for this case we describe the Lax operators and construct gravitationally dressed primary superfields of weight zero. We also prove the anomaly cancellation associated with the generalised non-abelian Toda theories. Address from 1 October 1991: Physics Department, Imperial College, London SW7 2BZ, UK.

  20. The Heisenberg-Weyl algebra on the circle and a related quantum mechanical model for hindered rotation.

    PubMed

    Kouri, Donald J; Markovich, Thomas; Maxwell, Nicholas; Bodmann, Bernhard G

    2009-07-02

    We discuss a periodic variant of the Heisenberg-Weyl algebra, associated with the group of translations and modulations on the circle. Our study of uncertainty minimizers leads to a periodic version of canonical coherent states. Unlike the canonical, Cartesian case, there are states for which the uncertainty product associated with the generators of the algebra vanishes. Next, we explore the supersymmetric (SUSY) quantum mechanical setting for the uncertainty-minimizing states and interpret them as leading to a family of "hindered rotors". Finally, we present a standard quantum mechanical treatment of one of these hindered rotor systems, including numerically generated eigenstates and energies.

  1. Comparison of Turbulent Thermal Diffusivity and Scalar Variance Models

    NASA Technical Reports Server (NTRS)

    Yoder, Dennis A.

    2016-01-01

    In this study, several variable turbulent Prandtl number formulations are examined for boundary layers, pipe flow, and axisymmetric jets. The model formulations include simple algebraic relations between the thermal diffusivity and turbulent viscosity as well as more complex models that solve transport equations for the thermal variance and its dissipation rate. Results are compared with available data for wall heat transfer and profile measurements of mean temperature, the root-mean-square (RMS) fluctuating temperature, turbulent heat flux and turbulent Prandtl number. For wall-bounded problems, the algebraic models are found to best predict the rise in turbulent Prandtl number near the wall as well as the log-layer temperature profile, while the thermal variance models provide a good representation of the RMS temperature fluctuations. In jet flows, the algebraic models provide no benefit over a constant turbulent Prandtl number approach. Application of the thermal variance models finds that some significantly overpredict the temperature variance in the plume and most underpredict the thermal growth rate of the jet. The models yield very similar fluctuating temperature intensities in jets from straight pipes and smooth contraction nozzles, in contrast to data that indicate the latter should have noticeably higher values. For the particular low subsonic heated jet cases examined, changes in the turbulent Prandtl number had no effect on the centerline velocity decay.

  2. The Effects of Computer Algebra System on Undergraduate Students' Spatial Visualization Skills in a Calculus Course

    ERIC Educational Resources Information Center

    Karakus, Fatih; Aydin, Bünyamin

    2017-01-01

    This study aimed at determining the effects of using a computer algebra system (CAS) on undergraduate students' spatial visualization skills in a calculus course. This study used an experimental design. The "one group pretest-posttest design" was the research model. The participants were 41 sophomore students (26 female and 15 male)…

  3. A Symbolic Dance: The Interplay between Movement, Notation, and Mathematics on a Journey toward Solving Equations

    ERIC Educational Resources Information Center

    Hewitt, Dave

    2014-01-01

    This article analyzes the use of the software Grid Algebra with a mixed ability class of 21 nine-to-ten-year-old students who worked with complex formal notation involving all four arithmetic operations. Unlike many other models to support learning, Grid Algebra has formal notation ever present and allows students to "look through" that…

  4. The Contributions of Working Memory and Executive Functioning to Problem Representation and Solution Generation in Algebraic Word Problems

    ERIC Educational Resources Information Center

    Lee, Kerry; Ng, Ee Lynn; Ng, Swee Fong

    2009-01-01

    Solving algebraic word problems involves multiple cognitive phases. The authors used a multitask approach to examine the extent to which working memory and executive functioning are associated with generating problem models and producing solutions. They tested 255 11-year-olds on working memory (Counting Recall, Letter Memory, and Keep Track),…

  5. Solving a System of Nonlinear Algebraic Equations You Only Get Error Messages--What to Do Next?

    ERIC Educational Resources Information Center

    Shacham, Mordechai; Brauner, Neima

    2017-01-01

    Chemical engineering problems often involve the solution of systems of nonlinear algebraic equations (NLE). There are several software packages that can be used for solving NLE systems, but they may occasionally fail, especially in cases where the mathematical model contains discontinuities and/or regions where some of the functions are undefined.…

  6. The Automation of Stochastization Algorithm with Use of SymPy Computer Algebra Library

    NASA Astrophysics Data System (ADS)

    Demidova, Anastasya; Gevorkyan, Migran; Kulyabov, Dmitry; Korolkova, Anna; Sevastianov, Leonid

    2018-02-01

    SymPy computer algebra library is used for automatic generation of ordinary and stochastic systems of differential equations from the schemes of kinetic interaction. Schemes of this type are used not only in chemical kinetics but also in biological, ecological and technical models. This paper describes the automatic generation algorithm with an emphasis on application details.

  7. Extensions of algebraic image operators: An approach to model-based vision

    NASA Technical Reports Server (NTRS)

    Lerner, Bao-Ting; Morelli, Michael V.

    1990-01-01

    Researchers extend their previous research on a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets. Addition and multiplication are defined for the set of all grey-level images, which can then be described as polynomials of two variables. Utilizing this new algebraic structure, researchers devised an innovative, efficient edge detection scheme. An accurate method for deriving gradient component information from this edge detector is presented. Based upon this new edge detection system researchers developed a robust method for linear feature extraction by combining the techniques of a Hough transform and a line follower. The major advantage of this feature extractor is its general, object-independent nature. Target attributes, such as line segment lengths, intersections, angles of intersection, and endpoints are derived by the feature extraction algorithm and employed during model matching. The algebraic operators are global operations which are easily reconfigured to operate on any size or shape region. This provides a natural platform from which to pursue dynamic scene analysis. A method for optimizing the linear feature extractor which capitalizes on the spatially reconfiguration nature of the edge detector/gradient component operator is discussed.

  8. ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy.

    PubMed

    Afsharpour, H; Landry, G; D'Amours, M; Enger, S; Reniers, B; Poon, E; Carrier, J-F; Verhaegen, F; Beaulieu, L

    2012-06-07

    Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy.

  9. Implementing Model-Check for Employee and Management Satisfaction

    NASA Technical Reports Server (NTRS)

    Jones, Corey; LaPha, Steven

    2013-01-01

    This presentation will discuss methods to which ModelCheck can be implemented to not only improve model quality, but also satisfy both employees and management through different sets of quality checks. This approach allows a standard set of modeling practices to be upheld throughout a company, with minimal interaction required by the end user. The presenter will demonstrate how to create multiple ModelCheck standards, preventing users from evading the system, and how it can improve the quality of drawings and models.

  10. Many-core graph analytics using accelerated sparse linear algebra routines

    NASA Astrophysics Data System (ADS)

    Kozacik, Stephen; Paolini, Aaron L.; Fox, Paul; Kelmelis, Eric

    2016-05-01

    Graph analytics is a key component in identifying emerging trends and threats in many real-world applications. Largescale graph analytics frameworks provide a convenient and highly-scalable platform for developing algorithms to analyze large datasets. Although conceptually scalable, these techniques exhibit poor performance on modern computational hardware. Another model of graph computation has emerged that promises improved performance and scalability by using abstract linear algebra operations as the basis for graph analysis as laid out by the GraphBLAS standard. By using sparse linear algebra as the basis, existing highly efficient algorithms can be adapted to perform computations on the graph. This approach, however, is often less intuitive to graph analytics experts, who are accustomed to vertex-centric APIs such as Giraph, GraphX, and Tinkerpop. We are developing an implementation of the high-level operations supported by these APIs in terms of linear algebra operations. This implementation is be backed by many-core implementations of the fundamental GraphBLAS operations required, and offers the advantages of both the intuitive programming model of a vertex-centric API and the performance of a sparse linear algebra implementation. This technology can reduce the number of nodes required, as well as the run-time for a graph analysis problem, enabling customers to perform more complex analysis with less hardware at lower cost. All of this can be accomplished without the requirement for the customer to make any changes to their analytics code, thanks to the compatibility with existing graph APIs.

  11. The Mathematics of High School Physics

    NASA Astrophysics Data System (ADS)

    Kanderakis, Nikos

    2016-10-01

    In the seventeenth and eighteenth centuries, mathematicians and physical philosophers managed to study, via mathematics, various physical systems of the sublunar world through idealized and simplified models of these systems, constructed with the help of geometry. By analyzing these models, they were able to formulate new concepts, laws and theories of physics and then through models again, to apply these concepts and theories to new physical phenomena and check the results by means of experiment. Students' difficulties with the mathematics of high school physics are well known. Science education research attributes them to inadequately deep understanding of mathematics and mainly to inadequate understanding of the meaning of symbolic mathematical expressions. There seem to be, however, more causes of these difficulties. One of them, not independent from the previous ones, is the complex meaning of the algebraic concepts used in school physics (e.g. variables, parameters, functions), as well as the complexities added by physics itself (e.g. that equations' symbols represent magnitudes with empirical meaning and units instead of pure numbers). Another source of difficulties is that the theories and laws of physics are often applied, via mathematics, to simplified, and idealized physical models of the world and not to the world itself. This concerns not only the applications of basic theories but also all authentic end-of-the-chapter problems. Hence, students have to understand and participate in a complex interplay between physics concepts and theories, physical and mathematical models, and the real world, often without being aware that they are working with models and not directly with the real world.

  12. Symbolic LTL Compilation for Model Checking: Extended Abstract

    NASA Technical Reports Server (NTRS)

    Rozier, Kristin Y.; Vardi, Moshe Y.

    2007-01-01

    In Linear Temporal Logic (LTL) model checking, we check LTL formulas representing desired behaviors against a formal model of the system designed to exhibit these behaviors. To accomplish this task, the LTL formulas must be translated into automata [21]. We focus on LTL compilation by investigating LTL satisfiability checking via a reduction to model checking. Having shown that symbolic LTL compilation algorithms are superior to explicit automata construction algorithms for this task [16], we concentrate here on seeking a better symbolic algorithm.We present experimental data comparing algorithmic variations such as normal forms, encoding methods, and variable ordering and examine their effects on performance metrics including processing time and scalability. Safety critical systems, such as air traffic control, life support systems, hazardous environment controls, and automotive control systems, pervade our daily lives, yet testing and simulation alone cannot adequately verify their reliability [3]. Model checking is a promising approach to formal verification for safety critical systems which involves creating a formal mathematical model of the system and translating desired safety properties into a formal specification for this model. The complement of the specification is then checked against the system model. When the model does not satisfy the specification, model-checking tools accompany this negative answer with a counterexample, which points to an inconsistency between the system and the desired behaviors and aids debugging efforts.

  13. Testing Transitivity of Preferences on Two-Alternative Forced Choice Data

    PubMed Central

    Regenwetter, Michel; Dana, Jason; Davis-Stober, Clintin P.

    2010-01-01

    As Duncan Luce and other prominent scholars have pointed out on several occasions, testing algebraic models against empirical data raises difficult conceptual, mathematical, and statistical challenges. Empirical data often result from statistical sampling processes, whereas algebraic theories are nonprobabilistic. Many probabilistic specifications lead to statistical boundary problems and are subject to nontrivial order constrained statistical inference. The present paper discusses Luce's challenge for a particularly prominent axiom: Transitivity. The axiom of transitivity is a central component in many algebraic theories of preference and choice. We offer the currently most complete solution to the challenge in the case of transitivity of binary preference on the theory side and two-alternative forced choice on the empirical side, explicitly for up to five, and implicitly for up to seven, choice alternatives. We also discuss the relationship between our proposed solution and weak stochastic transitivity. We recommend to abandon the latter as a model of transitive individual preferences. PMID:21833217

  14. On Finding and Using Identifiable Parameter Combinations in Nonlinear Dynamic Systems Biology Models and COMBOS: A Novel Web Implementation

    PubMed Central

    DiStefano, Joseph

    2014-01-01

    Parameter identifiability problems can plague biomodelers when they reach the quantification stage of development, even for relatively simple models. Structural identifiability (SI) is the primary question, usually understood as knowing which of P unknown biomodel parameters p 1,…, pi,…, pP are-and which are not-quantifiable in principle from particular input-output (I-O) biodata. It is not widely appreciated that the same database also can provide quantitative information about the structurally unidentifiable (not quantifiable) subset, in the form of explicit algebraic relationships among unidentifiable pi. Importantly, this is a first step toward finding what else is needed to quantify particular unidentifiable parameters of interest from new I–O experiments. We further develop, implement and exemplify novel algorithms that address and solve the SI problem for a practical class of ordinary differential equation (ODE) systems biology models, as a user-friendly and universally-accessible web application (app)–COMBOS. Users provide the structural ODE and output measurement models in one of two standard forms to a remote server via their web browser. COMBOS provides a list of uniquely and non-uniquely SI model parameters, and–importantly-the combinations of parameters not individually SI. If non-uniquely SI, it also provides the maximum number of different solutions, with important practical implications. The behind-the-scenes symbolic differential algebra algorithms are based on computing Gröbner bases of model attributes established after some algebraic transformations, using the computer-algebra system Maxima. COMBOS was developed for facile instructional and research use as well as modeling. We use it in the classroom to illustrate SI analysis; and have simplified complex models of tumor suppressor p53 and hormone regulation, based on explicit computation of parameter combinations. It’s illustrated and validated here for models of moderate complexity, with and without initial conditions. Built-in examples include unidentifiable 2 to 4-compartment and HIV dynamics models. PMID:25350289

  15. Using process algebra to develop predator-prey models of within-host parasite dynamics.

    PubMed

    McCaig, Chris; Fenton, Andy; Graham, Andrea; Shankland, Carron; Norman, Rachel

    2013-07-21

    As a first approximation of immune-mediated within-host parasite dynamics we can consider the immune response as a predator, with the parasite as its prey. In the ecological literature of predator-prey interactions there are a number of different functional responses used to describe how a predator reproduces in response to consuming prey. Until recently most of the models of the immune system that have taken a predator-prey approach have used simple mass action dynamics to capture the interaction between the immune response and the parasite. More recently Fenton and Perkins (2010) employed three of the most commonly used prey-dependent functional response terms from the ecological literature. In this paper we make use of a technique from computing science, process algebra, to develop mathematical models. The novelty of the process algebra approach is to allow stochastic models of the population (parasite and immune cells) to be developed from rules of individual cell behaviour. By using this approach in which individual cellular behaviour is captured we have derived a ratio-dependent response similar to that seen in the previous models of immune-mediated parasite dynamics, confirming that, whilst this type of term is controversial in ecological predator-prey models, it is appropriate for models of the immune system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Finding Feasible Abstract Counter-Examples

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.; Dwyer, Matthew B.; Visser, Willem; Clancy, Daniel (Technical Monitor)

    2002-01-01

    A strength of model checking is its ability to automate the detection of subtle system errors and produce traces that exhibit those errors. Given the high computational cost of model checking most researchers advocate the use of aggressive property-preserving abstractions. Unfortunately, the more aggressively a system is abstracted the more infeasible behavior it will have. Thus, while abstraction enables efficient model checking it also threatens the usefulness of model checking as a defect detection tool, since it may be difficult to determine whether a counter-example is feasible and hence worth developer time to analyze. We have explored several strategies for addressing this problem by extending an explicit-state model checker, Java PathFinder (JPF), to search for and analyze counter-examples in the presence of abstractions. We demonstrate that these techniques effectively preserve the defect detection ability of model checking in the presence of aggressive abstraction by applying them to check properties of several abstracted multi-threaded Java programs. These new capabilities are not specific to JPF and can be easily adapted to other model checking frameworks; we describe how this was done for the Bandera toolset.

  17. 12 CFR Appendix C to Part 229 - Model Availability Policy Disclosures, Clauses, and Notices; Model Substitute Check Policy...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... processing regions)]. If you make the deposit in person to one of our employees, funds from the following... in different states or check processing regions)]. If you make the deposit in person to one of our...] Substitute Checks and Your Rights What Is a Substitute Check? To make check processing faster, federal law...

  18. What is special about the group of the standard model?

    NASA Astrophysics Data System (ADS)

    Nielsen, H. B.; Brene, N.

    1989-06-01

    The standard model is based on the algebra of U 1×SU 2×SU 3. The systematics of charges of the fundamental fermions seems to suggest the importance of a particular group having this algebra, viz. S(U 2×U 3). This group is distinguished from all other connected compact non semisimple groups with dimensionality up to 12 by a characteristic property: it is very “skew”. By this we mean that the group has relatively few “generalised outer automorphisms”. One may speculate about physical reasons for this fact.

  19. A non-symmetric Yang-Baxter algebra for the quantum nonlinear Schrödinger model

    NASA Astrophysics Data System (ADS)

    Vlaar, Bart

    2013-06-01

    We study certain non-symmetric wavefunctions associated with the quantum nonlinear Schrödinger model, introduced by Komori and Hikami using Gutkin’s propagation operator, which involves representations of the degenerate affine Hecke algebra. We highlight how these functions can be generated using a vertex-type operator formalism similar to the recursion defining the symmetric (Bethe) wavefunction in the quantum inverse scattering method. Furthermore, some of the commutation relations encoded in the Yang-Baxter equation for the relevant monodromy matrix are generalized to the non-symmetric case.

  20. Solving multi-customer FPR model with quality assurance and discontinuous deliveries using a two-phase algebraic approach.

    PubMed

    Chiu, Yuan-Shyi Peter; Chou, Chung-Li; Chang, Huei-Hsin; Chiu, Singa Wang

    2016-01-01

    A multi-customer finite production rate (FPR) model with quality assurance and discontinuous delivery policy was investigated in a recent paper (Chiu et al. in J Appl Res Technol 12(1):5-13, 2014) using differential calculus approach. This study employs mathematical modeling along with a two-phase algebraic method to resolve such a specific multi-customer FPR model. As a result, the optimal replenishment lot size and number of shipments can be derived without using the differential calculus. Such a straightforward method may assist practitioners who with insufficient knowledge of calculus in learning and managing the real multi-customer FPR systems more effectively.

  1. Interaction in Balanced Cross Nested Designs

    NASA Astrophysics Data System (ADS)

    Ramos, Paulo; Mexia, João T.; Carvalho, Francisco; Covas, Ricardo

    2011-09-01

    Commutative Jordan Algebras, CJA, are used in the study of mixed models obtained, through crossing and nesting, from simpler ones. In the study of cross nested models the interaction between nested factors have been systematically discarded. However this can constitutes an artificial simplification of the models. We point out that, when two crossed factors interact, such interaction is symmetric, both factors playing in it equivalent roles, while when two nested factors interact, the interaction is determined by the nesting factor. These interactions will be called interactions with nesting. In this work we present a coherent formulation of the algebraic structure of models enabling the choice of families of interactions between cross and nested factors using binary operations on CJA.

  2. The geometric semantics of algebraic quantum mechanics.

    PubMed

    Cruz Morales, John Alexander; Zilber, Boris

    2015-08-06

    In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Integrals of motion from quantum toroidal algebras

    NASA Astrophysics Data System (ADS)

    Feigin, B.; Jimbo, M.; Mukhin, E.

    2017-11-01

    We identify the Taylor coefficients of the transfer matrices corresponding to quantum toroidal algebras with the elliptic local and non-local integrals of motion introduced by Kojima, Shiraishi, Watanabe, and one of the authors. That allows us to prove the Litvinov conjectures on the Intermediate Long Wave model. We also discuss the ({gl_m, {gl_n) duality of XXZ models in quantum toroidal setting and the implications for the quantum KdV model. In particular, we conjecture that the spectrum of non-local integrals of motion of Bazhanov, Lukyanov, and Zamolodchikov is described by Gaudin Bethe ansatz equations associated to affine {sl}2 . Dedicated to the memory of Petr Petrovich Kulish.

  4. An algebraic method for constructing stable and consistent autoregressive filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harlim, John, E-mail: jharlim@psu.edu; Department of Meteorology, the Pennsylvania State University, University Park, PA 16802; Hong, Hoon, E-mail: hong@ncsu.edu

    2015-02-15

    In this paper, we introduce an algebraic method to construct stable and consistent univariate autoregressive (AR) models of low order for filtering and predicting nonlinear turbulent signals with memory depth. By stable, we refer to the classical stability condition for the AR model. By consistent, we refer to the classical consistency constraints of Adams–Bashforth methods of order-two. One attractive feature of this algebraic method is that the model parameters can be obtained without directly knowing any training data set as opposed to many standard, regression-based parameterization methods. It takes only long-time average statistics as inputs. The proposed method provides amore » discretization time step interval which guarantees the existence of stable and consistent AR model and simultaneously produces the parameters for the AR models. In our numerical examples with two chaotic time series with different characteristics of decaying time scales, we find that the proposed AR models produce significantly more accurate short-term predictive skill and comparable filtering skill relative to the linear regression-based AR models. These encouraging results are robust across wide ranges of discretization times, observation times, and observation noise variances. Finally, we also find that the proposed model produces an improved short-time prediction relative to the linear regression-based AR-models in forecasting a data set that characterizes the variability of the Madden–Julian Oscillation, a dominant tropical atmospheric wave pattern.« less

  5. Application of conditional moment tests to model checking for generalized linear models.

    PubMed

    Pan, Wei

    2002-06-01

    Generalized linear models (GLMs) are increasingly being used in daily data analysis. However, model checking for GLMs with correlated discrete response data remains difficult. In this paper, through a case study on marginal logistic regression using a real data set, we illustrate the flexibility and effectiveness of using conditional moment tests (CMTs), along with other graphical methods, to do model checking for generalized estimation equation (GEE) analyses. Although CMTs provide an array of powerful diagnostic tests for model checking, they were originally proposed in the econometrics literature and, to our knowledge, have never been applied to GEE analyses. CMTs cover many existing tests, including the (generalized) score test for an omitted covariate, as special cases. In summary, we believe that CMTs provide a class of useful model checking tools.

  6. Take the Reins on Model Quality with ModelCHECK and Gatekeeper

    NASA Technical Reports Server (NTRS)

    Jones, Corey

    2012-01-01

    Model quality and consistency has been an issue for us due to the diverse experience level and imaginative modeling techniques of our users. Fortunately, setting up ModelCHECK and Gatekeeper to enforce our best practices has helped greatly, but it wasn't easy. There were many challenges associated with setting up ModelCHECK and Gatekeeper including: limited documentation, restrictions within ModelCHECK, and resistance from end users. However, we consider ours a success story. In this presentation we will describe how we overcame these obstacles and present some of the details of how we configured them to work for us.

  7. On Some Nonclassical Algebraic Properties of Interval-Valued Fuzzy Soft Sets

    PubMed Central

    2014-01-01

    Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov's soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation =L. We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets. PMID:25143964

  8. On some nonclassical algebraic properties of interval-valued fuzzy soft sets.

    PubMed

    Liu, Xiaoyan; Feng, Feng; Zhang, Hui

    2014-01-01

    Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov's soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation = L . We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets.

  9. Diagnosing students' misconceptions in algebra: results from an experimental pilot study.

    PubMed

    Russell, Michael; O'Dwyer, Laura M; Miranda, Helena

    2009-05-01

    Computer-based diagnostic assessment systems hold potential to help teachers identify sources of poor performance and to connect teachers and students to learning activities designed to help advance students' conceptual understandings. The present article presents findings from a study that examined how students' performance in algebra and their overcoming of common algebraic misconceptions were affected by the use of a diagnostic assessment system that focused on important algebra concepts. This study used a four-group randomized cluster trial design in which teachers were assigned randomly to one of four groups: a "business as usual" control group, a partial intervention group that was provided with access to diagnostic tests results, a partial intervention group that was provided with access to the learning activities, and a full intervention group that was given access to the test results and learning activities. Data were collected from 905 students (6th-12th grade) nested within 44 teachers. We used hierarchical linear modeling techniques to compare the effects of full, partial, and no (control) intervention on students' algebraic ability and misconceptions. The analyses indicate that full intervention had a net positive effect on ability and misconception measures.

  10. Deformed quantum double realization of the toric code and beyond

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Pramod; Ibieta-Jimenez, Juan Pablo; Bernabe Ferreira, Miguel Jorge; Teotonio-Sobrinho, Paulo

    2016-09-01

    Quantum double models, such as the toric code, can be constructed from transfer matrices of lattice gauge theories with discrete gauge groups and parametrized by the center of the gauge group algebra and its dual. For general choices of these parameters the transfer matrix contains operators acting on links which can also be thought of as perturbations to the quantum double model driving it out of its topological phase and destroying the exact solvability of the quantum double model. We modify these transfer matrices with perturbations and extract exactly solvable models which remain in a quantum phase, thus nullifying the effect of the perturbation. The algebra of the modified vertex and plaquette operators now obey a deformed version of the quantum double algebra. The Abelian cases are shown to be in the quantum double phase whereas the non-Abelian phases are shown to be in a modified phase of the corresponding quantum double phase. These are illustrated with the groups Zn and S3. The quantum phases are determined by studying the excitations of these systems namely their fusion rules and the statistics. We then go further to construct a transfer matrix which contains the other Z2 phase namely the double semion phase. More generally for other discrete groups these transfer matrices contain the twisted quantum double models. These transfer matrices can be thought of as being obtained by introducing extra parameters into the transfer matrix of lattice gauge theories. These parameters are central elements belonging to the tensor products of the algebra and its dual and are associated to vertices and volumes of the three dimensional lattice. As in the case of the lattice gauge theories we construct the operators creating the excitations in this case and study their braiding and fusion properties.

  11. Identification of control targets in Boolean molecular network models via computational algebra.

    PubMed

    Murrugarra, David; Veliz-Cuba, Alan; Aguilar, Boris; Laubenbacher, Reinhard

    2016-09-23

    Many problems in biomedicine and other areas of the life sciences can be characterized as control problems, with the goal of finding strategies to change a disease or otherwise undesirable state of a biological system into another, more desirable, state through an intervention, such as a drug or other therapeutic treatment. The identification of such strategies is typically based on a mathematical model of the process to be altered through targeted control inputs. This paper focuses on processes at the molecular level that determine the state of an individual cell, involving signaling or gene regulation. The mathematical model type considered is that of Boolean networks. The potential control targets can be represented by a set of nodes and edges that can be manipulated to produce a desired effect on the system. This paper presents a method for the identification of potential intervention targets in Boolean molecular network models using algebraic techniques. The approach exploits an algebraic representation of Boolean networks to encode the control candidates in the network wiring diagram as the solutions of a system of polynomials equations, and then uses computational algebra techniques to find such controllers. The control methods in this paper are validated through the identification of combinatorial interventions in the signaling pathways of previously reported control targets in two well studied systems, a p53-mdm2 network and a blood T cell lymphocyte granular leukemia survival signaling network. Supplementary data is available online and our code in Macaulay2 and Matlab are available via http://www.ms.uky.edu/~dmu228/ControlAlg . This paper presents a novel method for the identification of intervention targets in Boolean network models. The results in this paper show that the proposed methods are useful and efficient for moderately large networks.

  12. Object-Image Correspondence for Algebraic Curves under Projections

    NASA Astrophysics Data System (ADS)

    Burdis, Joseph M.; Kogan, Irina A.; Hong, Hoon

    2013-03-01

    We present a novel algorithm for deciding whether a given planar curve is an image of a given spatial curve, obtained by a central or a parallel projection with unknown parameters. The motivation comes from the problem of establishing a correspondence between an object and an image, taken by a camera with unknown position and parameters. A straightforward approach to this problem consists of setting up a system of conditions on the projection parameters and then checking whether or not this system has a solution. The computational advantage of the algorithm presented here, in comparison to algorithms based on the straightforward approach, lies in a significant reduction of a number of real parameters that need to be eliminated in order to establish existence or non-existence of a projection that maps a given spatial curve to a given planar curve. Our algorithm is based on projection criteria that reduce the projection problem to a certain modification of the equivalence p! roblem of planar curves under affine and projective transformations. To solve the latter problem we make an algebraic adaptation of signature construction that has been used to solve the equivalence problems for smooth curves. We introduce a notion of a classifying set of rational differential invariants and produce explicit formulas for such invariants for the actions of the projective and the affine groups on the plane.

  13. Numerical algebraic geometry for model selection and its application to the life sciences

    PubMed Central

    Gross, Elizabeth; Davis, Brent; Ho, Kenneth L.; Bates, Daniel J.

    2016-01-01

    Researchers working with mathematical models are often confronted by the related problems of parameter estimation, model validation and model selection. These are all optimization problems, well known to be challenging due to nonlinearity, non-convexity and multiple local optima. Furthermore, the challenges are compounded when only partial data are available. Here, we consider polynomial models (e.g. mass-action chemical reaction networks at steady state) and describe a framework for their analysis based on optimization using numerical algebraic geometry. Specifically, we use probability-one polynomial homotopy continuation methods to compute all critical points of the objective function, then filter to recover the global optima. Our approach exploits the geometrical structures relating models and data, and we demonstrate its utility on examples from cell signalling, synthetic biology and epidemiology. PMID:27733697

  14. A framework for modeling and optimizing dynamic systems under uncertainty

    DOE PAGES

    Nicholson, Bethany; Siirola, John

    2017-11-11

    Algebraic modeling languages (AMLs) have drastically simplified the implementation of algebraic optimization problems. However, there are still many classes of optimization problems that are not easily represented in most AMLs. These classes of problems are typically reformulated before implementation, which requires significant effort and time from the modeler and obscures the original problem structure or context. In this work we demonstrate how the Pyomo AML can be used to represent complex optimization problems using high-level modeling constructs. We focus on the operation of dynamic systems under uncertainty and demonstrate the combination of Pyomo extensions for dynamic optimization and stochastic programming.more » We use a dynamic semibatch reactor model and a large-scale bubbling fluidized bed adsorber model as test cases.« less

  15. A framework for modeling and optimizing dynamic systems under uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, Bethany; Siirola, John

    Algebraic modeling languages (AMLs) have drastically simplified the implementation of algebraic optimization problems. However, there are still many classes of optimization problems that are not easily represented in most AMLs. These classes of problems are typically reformulated before implementation, which requires significant effort and time from the modeler and obscures the original problem structure or context. In this work we demonstrate how the Pyomo AML can be used to represent complex optimization problems using high-level modeling constructs. We focus on the operation of dynamic systems under uncertainty and demonstrate the combination of Pyomo extensions for dynamic optimization and stochastic programming.more » We use a dynamic semibatch reactor model and a large-scale bubbling fluidized bed adsorber model as test cases.« less

  16. Optical pattern recognition algorithms on neural-logic equivalent models and demonstration of their prospects and possible implementations

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Zaitsev, Alexandr V.; Voloshin, Victor M.

    2001-03-01

    Historic information regarding the appearance and creation of fundamentals of algebra-logical apparatus-`equivalental algebra' for description of neuro-nets paradigms and algorithms is considered which is unification of theory of neuron nets (NN), linear algebra and the most generalized neuro-biology extended for matrix case. A survey is given of `equivalental models' of neuron nets and associative memory is suggested new, modified matrix-tenzor neurological equivalental models (MTNLEMS) are offered with double adaptive-equivalental weighing (DAEW) for spatial-non- invariant recognition (SNIR) and space-invariant recognition (SIR) of 2D images (patterns). It is shown, that MTNLEMS DAEW are the most generalized, they can describe the processes in NN both within the frames of known paradigms and within new `equivalental' paradigm of non-interaction type, and the computing process in NN under using the offered MTNLEMs DAEW is reduced to two-step and multi-step algorithms and step-by-step matrix-tenzor procedures (for SNIR) and procedures of defining of space-dependent equivalental functions from two images (for SIR).

  17. A Reduced Model for the Magnetorotational Instability

    NASA Astrophysics Data System (ADS)

    Jamroz, Ben; Julien, Keith; Knobloch, Edgar

    2008-11-01

    The magnetorotational instability is investigated within the shearing box approximation in the large Elsasser number regime. In this regime, which is of fundamental importance to astrophysical accretion disk theory, shear is the dominant source of energy, but the instability itself requires the presence of a weaker vertical magnetic field. Dissipative effects are weaker still. However, they are sufficiently large to permit a nonlinear feedback mechanism whereby the turbulent stresses generated by the MRI act on and modify the local background shear in the angular velocity profile. To date this response has been omitted in shearing box simulations and is captured by a reduced pde model derived here from the global MHD fluid equations using multiscale asymptotic perturbation theory. Results from numerical simulations of the reduced pde model indicate a linear phase of exponential growth followed by a nonlinear adjustment to algebraic growth and decay in the fluctuating quantities. Remarkably, the velocity and magnetic field correlations associated with these algebraic growth and decay laws conspire to achieve saturation of the angular momentum transport. The inclusion of subdominant ohmic dissipation arrests the algebraic growth of the fluctuations on a longer, dissipative time scale.

  18. Deformation Theory and Physics Model Building

    NASA Astrophysics Data System (ADS)

    Sternheimer, Daniel

    2006-08-01

    The mathematical theory of deformations has proved to be a powerful tool in modeling physical reality. We start with a short historical and philosophical review of the context and concentrate this rapid presentation on a few interrelated directions where deformation theory is essential in bringing a new framework - which has then to be developed using adapted tools, some of which come from the deformation aspect. Minkowskian space-time can be deformed into Anti de Sitter, where massless particles become composite (also dynamically): this opens new perspectives in particle physics, at least at the electroweak level, including prediction of new mesons. Nonlinear group representations and covariant field equations, coming from interactions, can be viewed as some deformation of their linear (free) part: recognizing this fact can provide a good framework for treating problems in this area, in particular global solutions. Last but not least, (algebras associated with) classical mechanics (and field theory) on a Poisson phase space can be deformed to (algebras associated with) quantum mechanics (and quantum field theory). That is now a frontier domain in mathematics and theoretical physics called deformation quantization, with multiple ramifications, avatars and connections in both mathematics and physics. These include representation theory, quantum groups (when considering Hopf algebras instead of associative or Lie algebras), noncommutative geometry and manifolds, algebraic geometry, number theory, and of course what is regrouped under the name of M-theory. We shall here look at these from the unifying point of view of deformation theory and refer to a limited number of papers as a starting point for further study.

  19. Mathematical model for Dengue with three states of infection

    NASA Astrophysics Data System (ADS)

    Hincapie, Doracelly; Ospina, Juan

    2012-06-01

    A mathematical model for dengue with three states of infection is proposed and analyzed. The model consists in a system of differential equations. The three states of infection are respectively asymptomatic, partially asymptomatic and fully asymptomatic. The model is analyzed using computer algebra software, specifically Maple, and the corresponding basic reproductive number and the epidemic threshold are computed. The resulting basic reproductive number is an algebraic synthesis of all epidemic parameters and it makes clear the possible control measures. The microscopic structure of the epidemic parameters is established using the quantum theory of the interactions between the atoms and radiation. In such approximation, the human individual is represented by an atom and the mosquitoes are represented by radiation. The force of infection from the mosquitoes to the humans is considered as the transition probability from the fundamental state of atom to excited states. The combination of computer algebra software and quantum theory provides a very complete formula for the basic reproductive number and the possible control measures tending to stop the propagation of the disease. It is claimed that such result may be important in military medicine and the proposed method can be applied to other vector-borne diseases.

  20. Model checking for linear temporal logic: An efficient implementation

    NASA Technical Reports Server (NTRS)

    Sherman, Rivi; Pnueli, Amir

    1990-01-01

    This report provides evidence to support the claim that model checking for linear temporal logic (LTL) is practically efficient. Two implementations of a linear temporal logic model checker is described. One is based on transforming the model checking problem into a satisfiability problem; the other checks an LTL formula for a finite model by computing the cross-product of the finite state transition graph of the program with a structure containing all possible models for the property. An experiment was done with a set of mutual exclusion algorithms and tested safety and liveness under fairness for these algorithms.

  1. A Quantitative Study Analyzing Predictive Factors That Affect Achievement on Florida's Algebra I End-of-Course Exam (EOC)

    ERIC Educational Resources Information Center

    Holley, Hope D.

    2017-01-01

    Despite research that high-stakes tests do not improve knowledge, Florida requires students to pass an Algebra I End-of-Course exam (EOC) to earn a high school diploma. Test passing scores are determined by a raw score to t-score to scale score analysis. This method ultimately results as a comparative test model where students' passage is…

  2. On boundary fusion and functional relations in the Baxterized affine Hecke algebra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babichenko, A., E-mail: babichen@weizmann.ac.il; Regelskis, V., E-mail: v.regelskis@surrey.ac.uk

    2014-04-15

    We construct boundary type operators satisfying fused reflection equation for arbitrary representations of the Baxterized affine Hecke algebra. These operators are analogues of the fused reflection matrices in solvable half-line spin chain models. We show that these operators lead to a family of commuting transfer matrices of Sklyanin type. We derive fusion type functional relations for these operators for two families of representations.

  3. Explaining Gender Gaps in English Composition and College Algebra in College: The Mediating Role of Psychosocial Factors

    ERIC Educational Resources Information Center

    Ndum, Edwin; Allen, Jeff; Way, Jason; Casillas, Alex

    2018-01-01

    We examined the role of six psychosocial factors (PSFs) in explaining gender gaps in English Composition (n = 8,633) and College Algebra (n = 2,261) using data of first-year female (55%) and male students from 42 colleges. Using a multilevel model and controlling for prior achievement, we found that PSFs mediated between 3% and 41% of the gender…

  4. Teaching Linear Functions in Context with Graphics Calculators: Students' Responses and the Impact of the Approach on Their Use of Algebraic Symbols

    ERIC Educational Resources Information Center

    Bardini, Caroline; Pierce, Robyn U.; Stacey, Kaye

    2004-01-01

    This study analyses some of the consequences of adopting a functional/modelling approach to the teaching of algebra. The teaching of one class of 17 students was observed over five weeks, with 15 students undertaking both pre- and post-tests and 6 students and the teacher being interviewed individually. Use of graphics calculators made the…

  5. Software Development Of XML Parser Based On Algebraic Tools

    NASA Astrophysics Data System (ADS)

    Georgiev, Bozhidar; Georgieva, Adriana

    2011-12-01

    In this paper, is presented one software development and implementation of an algebraic method for XML data processing, which accelerates XML parsing process. Therefore, the proposed in this article nontraditional approach for fast XML navigation with algebraic tools contributes to advanced efforts in the making of an easier user-friendly API for XML transformations. Here the proposed software for XML documents processing (parser) is easy to use and can manage files with strictly defined data structure. The purpose of the presented algorithm is to offer a new approach for search and restructuring hierarchical XML data. This approach permits fast XML documents processing, using algebraic model developed in details in previous works of the same authors. So proposed parsing mechanism is easy accessible to the web consumer who is able to control XML file processing, to search different elements (tags) in it, to delete and to add a new XML content as well. The presented various tests show higher rapidity and low consumption of resources in comparison with some existing commercial parsers.

  6. Quantization of Poisson Manifolds from the Integrability of the Modular Function

    NASA Astrophysics Data System (ADS)

    Bonechi, F.; Ciccoli, N.; Qiu, J.; Tarlini, M.

    2014-10-01

    We discuss a framework for quantizing a Poisson manifold via the quantization of its symplectic groupoid, combining the tools of geometric quantization with the results of Renault's theory of groupoid C*-algebras. This setting allows very singular polarizations. In particular, we consider the case when the modular function is multiplicatively integrable, i.e., when the space of leaves of the polarization inherits a groupoid structure. If suitable regularity conditions are satisfied, then one can define the quantum algebra as the convolution algebra of the subgroupoid of leaves satisfying the Bohr-Sommerfeld conditions. We apply this procedure to the case of a family of Poisson structures on , seen as Poisson homogeneous spaces of the standard Poisson-Lie group SU( n + 1). We show that a bihamiltonian system on defines a multiplicative integrable model on the symplectic groupoid; we compute the Bohr-Sommerfeld groupoid and show that it satisfies the needed properties for applying Renault theory. We recover and extend Sheu's description of quantum homogeneous spaces as groupoid C*-algebras.

  7. Algebraic Thinking in Solving Linier Program at High School Level: Female Student’s Field Independent Cognitive Style

    NASA Astrophysics Data System (ADS)

    Hardiani, N.; Budayasa, I. K.; Juniati, D.

    2018-01-01

    The aim of this study was to describe algebraic thinking of high school female student’s field independent cognitive style in solving linier program problem by revealing deeply the female students’ responses. Subjects in this study were 7 female students having field independent cognitive style in class 11. The type of this research was descriptive qualitative. The method of data collection used was observation, documentation, and interview. Data analysis technique was by reduction, presentation, and conclusion. The results of this study showed that the female students with field independent cognitive style in solving the linier program problem had the ability to represent algebraic ideas from the narrative question that had been read by manipulating symbols and variables presented in tabular form, creating and building mathematical models in two variables linear inequality system which represented algebraic ideas, and interpreting the solutions as variables obtained from the point of intersection in the solution area to obtain maximum benefit.

  8. Multifractal vector fields and stochastic Clifford algebra.

    PubMed

    Schertzer, Daniel; Tchiguirinskaia, Ioulia

    2015-12-01

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  9. Final Report: Subcontract B623868 Algebraic Multigrid solvers for coupled PDE systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brannick, J.

    The Pennsylvania State University (“Subcontractor”) continued to work on the design of algebraic multigrid solvers for coupled systems of partial differential equations (PDEs) arising in numerical modeling of various applications, with a main focus on solving the Dirac equation arising in Quantum Chromodynamics (QCD). The goal of the proposed work was to develop combined geometric and algebraic multilevel solvers that are robust and lend themselves to efficient implementation on massively parallel heterogeneous computers for these QCD systems. The research in these areas built on previous works, focusing on the following three topics: (1) the development of parallel full-multigrid (PFMG) andmore » non-Galerkin coarsening techniques in this frame work for solving the Wilson Dirac system; (2) the use of these same Wilson MG solvers for preconditioning the Overlap and Domain Wall formulations of the Dirac equation; and (3) the design and analysis of algebraic coarsening algorithms for coupled PDE systems including Stokes equation, Maxwell equation and linear elasticity.« less

  10. 12 CFR Appendix C to Part 229 - Model Availability Policy Disclosures, Clauses, and Notices; Model Substitute Check Policy...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Model Availability Policy Disclosures, Clauses, and Notices; Model Substitute Check Policy Disclosure and Notices C Appendix C to Part 229 Banks and... OF FUNDS AND COLLECTION OF CHECKS (REGULATION CC) Pt. 229, App. C Appendix C to Part 229—Model...

  11. Using Linear Algebra to Introduce Computer Algebra, Numerical Analysis, Data Structures and Algorithms (and To Teach Linear Algebra, Too).

    ERIC Educational Resources Information Center

    Gonzalez-Vega, Laureano

    1999-01-01

    Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)

  12. From integrability to conformal symmetry: Bosonic superconformal Toda theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo-Yu Hou; Liu Chao

    In this paper the authors study the conformal integrable models obtained from conformal reductions of WZNW theory associated with second order constraints. These models are called bosonic superconformal Toda models due to their conformal spectra and their resemblance to the usual Toda theories. From the reduction procedure they get the equations of motion and the linearized Lax equations in a generic Z gradation of the underlying Lie algebra. Then, in the special case of principal gradation, they derive the classical r matrix, fundamental Poisson relation, exchange algebra of chiral operators and find out the classical vertex operators. The result showsmore » that their model is very similar to the ordinary Toda theories in that one can obtain various conformal properties of the model from its integrability.« less

  13. FAST TRACK COMMUNICATION: \\ {P}\\ {T}-symmetry, Cartan decompositions, Lie triple systems and Krein space-related Clifford algebras

    NASA Astrophysics Data System (ADS)

    Günther, Uwe; Kuzhel, Sergii

    2010-10-01

    Gauged \\ {P}\\ {T} quantum mechanics (PTQM) and corresponding Krein space setups are studied. For models with constant non-Abelian gauge potentials and extended parity inversions compact and noncompact Lie group components are analyzed via Cartan decompositions. A Lie-triple structure is found and an interpretation as \\ {P}\\ {T}-symmetrically generalized Jaynes-Cummings model is possible with close relation to recently studied cavity QED setups with transmon states in multilevel artificial atoms. For models with Abelian gauge potentials a hidden Clifford algebra structure is found and used to obtain the fundamental symmetry of Krein space-related J-self-adjoint extensions for PTQM setups with ultra-localized potentials.

  14. Application of the algebraic RNG model for transition simulation. [renormalization group theory

    NASA Technical Reports Server (NTRS)

    Lund, Thomas S.

    1990-01-01

    The algebraic form of the RNG model of Yakhot and Orszag (1986) is investigated as a transition model for the Reynolds averaged boundary layer equations. It is found that the cubic equation for the eddy viscosity contains both a jump discontinuity and one spurious root. A yet unpublished transformation to a quartic equation is shown to remove the numerical difficulties associated with the discontinuity, but only at the expense of merging both the physical and spurious root of the cubic. Jumps between the branches of the resulting multiple-valued solution are found to lead to oscillations in flat plate transition calculations. Aside from the oscillations, the transition behavior is qualitatively correct.

  15. Renormalization group flows and continual Lie algebras

    NASA Astrophysics Data System (ADS)

    Bakas, Ioannis

    2003-08-01

    We study the renormalization group flows of two-dimensional metrics in sigma models using the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by Script G(d/dt;1), with anti-symmetric Cartan kernel K(t,t') = delta'(t-t'); as such, it coincides with the Cartan matrix of the superalgebra sl(N|N+1) in the large-N limit. The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via Bäcklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Zn to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra Script G(d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown.

  16. A note on derivations of Murray-von Neumann algebras.

    PubMed

    Kadison, Richard V; Liu, Zhe

    2014-02-11

    A Murray-von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then describe our recent work on derivations of Murray-von Neumann algebras. We show that the "extended derivations" of a Murray-von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray-von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions of Singer's seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative and may even contain unbounded elements.

  17. Minimal models of compact symplectic semitoric manifolds

    NASA Astrophysics Data System (ADS)

    Kane, D. M.; Palmer, J.; Pelayo, Á.

    2018-02-01

    A symplectic semitoric manifold is a symplectic 4-manifold endowed with a Hamiltonian (S1 × R) -action satisfying certain conditions. The goal of this paper is to construct a new symplectic invariant of symplectic semitoric manifolds, the helix, and give applications. The helix is a symplectic analogue of the fan of a nonsingular complete toric variety in algebraic geometry, that takes into account the effects of the monodromy near focus-focus singularities. We give two applications of the helix: first, we use it to give a classification of the minimal models of symplectic semitoric manifolds, where "minimal" is in the sense of not admitting any blowdowns. The second application is an extension to the compact case of a well known result of Vũ Ngọc about the constraints posed on a symplectic semitoric manifold by the existence of focus-focus singularities. The helix permits to translate a symplectic geometric problem into an algebraic problem, and the paper describes a method to solve this type of algebraic problem.

  18. Quantum trilogy: discrete Toda, Y-system and chaos

    NASA Astrophysics Data System (ADS)

    Yamazaki, Masahito

    2018-02-01

    We discuss a discretization of the quantum Toda field theory associated with a semisimple finite-dimensional Lie algebra or a tamely-laced infinite-dimensional Kac-Moody algebra G, generalizing the previous construction of discrete quantum Liouville theory for the case G  =  A 1. The model is defined on a discrete two-dimensional lattice, whose spatial direction is of length L. In addition we also find a ‘discretized extra dimension’ whose width is given by the rank r of G, which decompactifies in the large r limit. For the case of G  =  A N or AN-1(1) , we find a symmetry exchanging L and N under appropriate spatial boundary conditions. The dynamical time evolution rule of the model is quantizations of the so-called Y-system, and the theory can be well described by the quantum cluster algebra. We discuss possible implications for recent discussions of quantum chaos, and comment on the relation with the quantum higher Teichmüller theory of type A N .

  19. Banach Synaptic Algebras

    NASA Astrophysics Data System (ADS)

    Foulis, David J.; Pulmannov, Sylvia

    2018-04-01

    Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Størmer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C∗-algebra. Also, we give conditions on a Banach synaptic algebra that are equivalent to the condition that it is isomorphic to the self-adjoint part of an AW∗-algebra. Moreover, we study some relationships between synaptic algebras and so-called generalized Hermitian algebras.

  20. Electrokinetics Models for Micro and Nano Fluidic Impedance Sensors

    DTIC Science & Technology

    2010-11-01

    primitive Differential-Algebraic Equations (DAEs), used to process and interpret the experimentally measured electrical impedance data (Sun and Morgan...field, and species respectively. A second-order scheme was used to calculate the ionic species distribution. The linearized algebraic equations were...is governed by the Poisson equation 2 0 0 r i i i F z cε ε φ∇ + =∑ where ε0 and εr are, respectively, the electrical permittivity in the vacuum

  1. An Integrity Framework for Image-Based Navigation Systems

    DTIC Science & Technology

    2010-06-01

    Anton H. and Rorres C. Elementary Linear Algebra . New York, NY: John Wiley & Sons, Inc., 2000. 4. Arthur T. “The Disparity of Parity, Determining...107. Spilker , James J.J. Digital Communications by Satellite. Englewood Cliffs NJ: Prentice Hall, 1977. 108. Strang G. Linear Algebra and its...2.3 The Linearized and Extended Kalman Filters . . . . . . 22 2.3.1 State and Measurement Model Equations . . . 23 2.3.2 The Linearized Kalman Filter

  2. The influence of social anxiety on the body checking behaviors of female college students.

    PubMed

    White, Emily K; Warren, Cortney S

    2014-09-01

    Social anxiety and eating pathology frequently co-occur. However, there is limited research examining the relationship between anxiety and body checking, aside from one study in which social physique anxiety partially mediated the relationship between body checking cognitions and body checking behavior (Haase, Mountford, & Waller, 2007). In an independent sample of 567 college women, we tested the fit of Haase and colleagues' foundational model but did not find evidence of mediation. Thus we tested the fit of an expanded path model that included eating pathology and clinical impairment. In the best-fitting path model (CFI=.991; RMSEA=.083) eating pathology and social physique anxiety positively predicted body checking, and body checking positively predicted clinical impairment. Therefore, women who endorse social physique anxiety may be more likely to engage in body checking behaviors and experience impaired psychosocial functioning. Published by Elsevier Ltd.

  3. Logarithmic conformal field theory

    NASA Astrophysics Data System (ADS)

    Gainutdinov, Azat; Ridout, David; Runkel, Ingo

    2013-12-01

    Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more complicated non-rational theories. Examples include critical percolation, supersymmetric string backgrounds, disordered electronic systems, sandpile models describing avalanche processes, and so on. In each case, the non-rationality and non-unitarity of the CFT suggested that a more general theoretical framework was needed. Driven by the desire to better understand these applications, the mid-1990s saw significant theoretical advances aiming to generalise the constructs of rational CFT to a more general class. In 1994, Nahm introduced an algorithm for computing the fusion product of representations which was significantly generalised two years later by Gaberdiel and Kausch who applied it to explicitly construct (chiral) representations upon which the energy operator acts non-diagonalisably. Their work made it clear that underlying the physically relevant correlation functions are classes of reducible but indecomposable representations that can be investigated mathematically to the benefit of applications. In another direction, Flohr had meanwhile initiated the study of modular properties of the characters of logarithmic CFTs, a topic which had already evoked much mathematical interest in the rational case. Since these seminal theoretical papers appeared, the field has undergone rapid development, both theoretically and with regard to applications. Logarithmic CFTs are now known to describe non-local observables in the scaling limit of critical lattice models, for example percolation and polymers, and are an integral part of our understanding of quantum strings propagating on supermanifolds. They are also believed to arise as duals of three-dimensional chiral gravity models, fill out hidden sectors in non-rational theories with non-compact target spaces, and describe certain transitions in various incarnations of the quantum Hall effect. Other physical applications range from two-dimensional turbulence and non-equilibrium systems to aspects of the AdS/CFT correspondence and describing supersymmetric sigma models beyond the topological sector. We refer the reader to the reviews in this collection for further applications and details. More recently, our understanding of logarithmic CFT has improved dramatically thanks largely to a better understanding of the underlying mathematical structures. This includes those associated to the vertex operator algebras themselves (representations, characters, modular transformations, fusion, braiding) as well as structures associated with applications to two-dimensional statistical models (diagram algebras, eg. Temperley-Lieb quantum groups). Not only are we getting to the point where we understand how these structures differ from standard (rational) theories, but we are starting to tackle applications both in the boundary and bulk settings. It is now clear that the logarithmic case is generic, so it is this case that one should expect to encounter in applications. We therefore feel that it is timely to review what has been accomplished in order to disseminate this improved understanding and motivate further applications. We now give a quick overview of the articles that constitute this special issue. Adamović and Milas provide a detailed summary of their rigorous results pertaining to logarithmic vertex operator (super)algebras constructed from lattices. This survey discusses the C2-cofiniteness of the (p, p') triplet models (this is the generalisation of rationality to the logarithmic setting), describes Zhu's algebra for (some of) these theories and outlines the difficulties involved in explicitly constructing the modules responsible for their logarithmic nature. Cardy gives an account of a popular approach to logarithmic theories that regards them, heuristically at least, as limits of ordinary (but non-rational) CFTs. More precisely, it seems that any given correlator may be computed as a limit of standard (non-logarithmic) correlators, any logarithmic singularities that arise do so because of a degeneration when taking the limit. He then illustrates this phenomenon in several theories describing statistical lattice models including the n → 0 limit of the O(n ) model and the Q → 1 limit of the Q-state Potts model. Creutzig and Ridout review the continuum approach to logarithmic CFT, using the percolation (boundary) CFT to detail the connection between module structure and logarithmic singularities in correlators before describing their proposed solution to the thorny issue of generalising modular data and Verlinde formulae to the logarithmic setting. They illustrate this proposal using the three best-understood examples of logarithmic CFTs: the (1, 2) models, related to symplectic fermions; the fractional level WZW model on , related to the beta gamma ghosts; and the WZW model on GL(1|1). The analysis in each case requires that the spectrum be continuous; C2-cofinite models are only recovered as orbifolds. Flohr and Koehn consider the characters of the irreducible modules in the spectrum of a CFT and discuss why these only span a proper subspace of the space of torus vacuum amplitudes in the logarithmic case. This is illustrated explicitly for the (1, 2) triplet model and conclusions are drawn for the action of the modular group. They then note that the irreducible characters of this model also admit fermionic sum forms which seem to fit well into Nahmrsquo;s well-known conjecture for rational theories. Quasi-particle interpretations are also introduced, leading to the conclusion that logarithmic C2-cofinite theories are not so terribly different to rational theories, at least in some respects. Fuchs, Schweigert and Stigner address the problem of constructing local logarithmic CFTs starting from the chiral theory. They first review the construction of the local theory in the non-logarithmic setting from an angle that will then generalise to logarithmic theories. In particular, they observe that the bulk space can be understood as a certain coend. The authors then show how to carry out the construction of the bulk space in the category of modules over a factorisable ribbon Hopf algebra, which shares many properties with the braided categories arising from logarithmic chiral theories. The authors proceed to construct the analogue of all-genus correlators in their setting and establish invariance under the mapping class group, i.e. locality of the correlators. Gainutdinov, Jacobsen, Read, Saleur and Vasseur review their approach based on the assumption that certain classes of logarithmic CFTs admit lattice regularisations with local degrees of freedom, for example quantum spin chains (with local interactions). They therefore study the finite-dimensional algebras generated by the hamiltonian densities (typically the Temperley-Lieb algebras and their extensions) that describe the dynamics of these lattice models. The authors then argue that the lattice algebras exhibit, in finite size, mathematical properties that are in correspondence with those of their continuum limits, allowing one to predict continuum structures directly from the lattice. Moreover, the lattice models considered admit quantum group symmetries that play a central role in the algebraic analysis (representation structure and fusion). Grumiller, Riedler, Rosseel and Zojer review the role that logarithmic CFTs may play in certain versions of the AdS/CFT correspondence, particularly for what is known as topologically massive gravity (TMG). This has been a very active subject over the last five years and the article takes great care to disentangle the contributions from the many groups that have participated. They begin with some general remarks on logarithmic behaviour, much in the spirit of Cardyrsquo;s review, before detailing the distinction between the chiral (no logs) and logarithmic proposals for critical TMG. The latter is then subjected to various consistency checks before discussing evidence for logarithmic behaviour in more general classes of gravity theories including those with boundaries, supersymmetry and galilean relativity. Gurarie has written an historical overview of his seminal contributions to this field, putting his results (and those of his collaborators) in the context of understanding applications to condensed matter physics. This includes the link between the non-diagonalisability of L0 and logarithmic singularities, a study of the c → 0 catastrophe, and a proposed resolution involving supersymmetric partners for the stress-energy tensor and its logarithmic partner field. Henkel and Rouhani describe a direction in which logarithmic singularities are observed in correlators of non-relativistic field theories. Their review covers the appropriate modifications of conformal invariance that are appropriate to non-equilibrium statistical mechanics, strongly anisotropic critical points and certain variants of TMG. The main variation away from the standard relativistic idea of conformal invariance is that time is explicitly distinguished from space when considering dilations and this leads to a variety of algebraic structures to explore. In this review, the link between non-diagonalisable representations and logarithmic singularities in correlators is generalised to these algebras, before two applications of the theory are discussed. Huang and Lepowsky give a non-technical overview of their work on braided tensor structures on suitable categories of representations of vertex operator algebras. They also place their work in historic context and compare it to related approaches. The authors sketch their construction of the so-called P(z)-tensor product of modules of a vertex operator algebra, and the construction of the associativity isomorphisms for this tensor product. They proceed to give a guide to their works leading to the first authorrsquo;s proof of modularity for a class of vertex operator algebras, and to their works, joint with Zhang, on logarithmic intertwining operators and the resulting tensor product theory. Morin-Duchesne and Saint-Aubin have contributed a research article describing their recent characterisation of when the transfer matrix of a periodic loop model fails to be diagonalisable. This generalises their recent result for non-periodic loop models and provides rigorous methods to justify what has often been assumed in the lattice approach to logarithmic CFT. The philosophy here is one of analysing lattice models with finite size, aiming to demonstrate that non-diagonalisability survives the scaling limit. This is extremely difficult in general (see also the review by Gainutdinov et al ), so it is remarkable that it is even possible to demonstrate this at any level of generality. Quella and Schomerus have prepared an extensive review covering their longstanding collaboration on the logarithmic nature of conformal sigma models on Lie supergroups and their cosets with applications to string theory and AdS/CFT. Beginning with a very welcome overview of Lie superalgebras and their representations, harmonic analysis and cohomological reduction, they then apply these mathematical tools to WZW models on type I Lie supergroups and their homogeneous subspaces. Along the way, deformations are discussed and potential dualities in the corresponding string theories are described. Ruelle provides an exhaustive account of his substantial contributions to the study of the abelian sandpile model. This is a statistical model which has the surprising feature that many correlation functions can be computed exactly, in the bulk and on the boundary, even though the spectrum of conformal weights is largely unknown. Nevertheless, there is much evidence suggesting that its scaling limit is described by an, as yet unknown, c = -2 logarithmic CFT. Semikhatov and Tipunin present their very recent results regarding the construction of logarithmic chiral W-algebra extensions of a fractional level algebra. The idea is that these algebras are the centralisers of a rank-two Nichols algebra which possesses at least one fermionic generator. In turn, these Nichols algebra generators are represented by screening operators which naturally appear in CFT bosonisation. The major advantage of using these generators is that they give strong hints about the representation theory and fusion rules of the chiral algebra. Simmons has contributed an article describing the calculation of various correlation functions in the logarithmic CFT that describes critical percolation. These calculations are interpreted geometrically in a manner that should be familiar to mathematicians studying Schramm-Loewner evolutions and point towards a (largely unexplored) bridge connecting logarithmic CFT with this branch of mathematics. Of course, the field of logarithmic CFT has benefited greatly from the work of many of researchers who are not represented in this special issue. The interested reader will find many links to their work in the bibliographies of the special issue articles and reviews. In summary, logarithmic CFT describes an extension of the incredibly successful methods of rational CFT to a more general setting. This extension is necessary to properly describe many different fundamental phenomena of physical interest. The formalism is moreover highly non-trivial from a mathematical point of view and so logarithmic theories are of significant interest to both physicists and mathematicians. We hope that the collection of articles that follows will serve as an inspiration, and a valuable resource, for both of these communities.

  4. The Unitality of Quantum B-algebras

    NASA Astrophysics Data System (ADS)

    Han, Shengwei; Xu, Xiaoting; Qin, Feng

    2018-02-01

    Quantum B-algebras as a generalization of quantales were introduced by Rump and Yang, which cover the majority of implicational algebras and provide a unified semantic for a wide class of substructural logics. Unital quantum B-algebras play an important role in the classification of implicational algebras. The main purpose of this paper is to construct unital quantum B-algebras from non-unital quantum B-algebras.

  5. Generalizing the bms3 and 2D-conformal algebras by expanding the Virasoro algebra

    NASA Astrophysics Data System (ADS)

    Caroca, Ricardo; Concha, Patrick; Rodríguez, Evelyn; Salgado-Rebolledo, Patricio

    2018-03-01

    By means of the Lie algebra expansion method, the centrally extended conformal algebra in two dimensions and the bms3 algebra are obtained from the Virasoro algebra. We extend this result to construct new families of expanded Virasoro algebras that turn out to be infinite-dimensional lifts of the so-called Bk, Ck and Dk algebras recently introduced in the literature in the context of (super)gravity. We also show how some of these new infinite-dimensional symmetries can be obtained from expanded Kač-Moody algebras using modified Sugawara constructions. Applications in the context of three-dimensional gravity are briefly discussed.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Uhi Rinn, E-mail: uhrisu1@math.snu.ac.kr

    We introduce a classical BRST complex (See Definition 3.2.) and show that one can construct a classical affine W-algebra via the complex. This definition clarifies that classical affine W-algebras can be considered as quasi-classical limits of quantum affine W-algebras. We also give a definition of a classical affine fractional W-algebra as a Poisson vertex algebra. As in the classical affine case, a classical affine fractional W-algebra has two compatible λ-brackets and is isomorphic to an algebra of differential polynomials as a differential algebra. When a classical affine fractional W-algebra is associated to a minimal nilpotent, we describe explicit forms ofmore » free generators and compute λ-brackets between them. Provided some assumptions on a classical affine fractional W-algebra, we find an infinite sequence of integrable systems related to the algebra, using the generalized Drinfel’d and Sokolov reduction.« less

  7. A note on derivations of Murray–von Neumann algebras

    PubMed Central

    Kadison, Richard V.; Liu, Zhe

    2014-01-01

    A Murray–von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then describe our recent work on derivations of Murray–von Neumann algebras. We show that the “extended derivations” of a Murray–von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray–von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions of Singer’s seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative and may even contain unbounded elements. PMID:24469831

  8. A double commutant theorem for Murray–von Neumann algebras

    PubMed Central

    Liu, Zhe

    2012-01-01

    Murray–von Neumann algebras are algebras of operators affiliated with finite von Neumann algebras. In this article, we study commutativity and affiliation of self-adjoint operators (possibly unbounded). We show that a maximal abelian self-adjoint subalgebra of the Murray–von Neumann algebra associated with a finite von Neumann algebra is the Murray–von Neumann algebra , where is a maximal abelian self-adjoint subalgebra of and, in addition, is . We also prove that the Murray–von Neumann algebra with the center of is the center of the Murray–von Neumann algebra . Von Neumann’s celebrated double commutant theorem characterizes von Neumann algebras as those for which , where , the commutant of , is the set of bounded operators on the Hilbert space that commute with all operators in . At the end of this article, we present a double commutant theorem for Murray–von Neumann algebras. PMID:22543165

  9. 12 CFR Appendix C to Part 229 - Model Availability Policy Disclosures, Clauses, and Notices; Model Substitute Check Policy...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... in different states or check processing regions)]. If you make the deposit in person to one of our... processing regions)]. If you make the deposit in person to one of our employees, funds from the following... Your Rights What Is a Substitute Check? To make check processing faster, federal law permits banks to...

  10. 12 CFR Appendix C to Part 229 - Model Availability Policy Disclosures, Clauses, and Notices; Model Substitute Check Policy...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in different states or check processing regions)]. If you make the deposit in person to one of our... processing regions)]. If you make the deposit in person to one of our employees, funds from the following... Your Rights What Is a Substitute Check? To make check processing faster, federal law permits banks to...

  11. 12 CFR Appendix C to Part 229 - Model Availability Policy Disclosures, Clauses, and Notices; Model Substitute Check Policy...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... in different states or check processing regions)]. If you make the deposit in person to one of our... processing regions)]. If you make the deposit in person to one of our employees, funds from the following... Your Rights What Is a Substitute Check? To make check processing faster, federal law permits banks to...

  12. Determination of MLC model parameters for Monaco using commercial diode arrays.

    PubMed

    Kinsella, Paul; Shields, Laura; McCavana, Patrick; McClean, Brendan; Langan, Brian

    2016-07-08

    Multileaf collimators (MLCs) need to be characterized accurately in treatment planning systems to facilitate accurate intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT). The aim of this study was to examine the use of MapCHECK 2 and ArcCHECK diode arrays for optimizing MLC parameters in Monaco X-ray voxel Monte Carlo (XVMC) dose calculation algorithm. A series of radiation test beams designed to evaluate MLC model parameters were delivered to MapCHECK 2, ArcCHECK, and EBT3 Gafchromic film for comparison. Initial comparison of the calculated and ArcCHECK-measured dose distributions revealed it was unclear how to change the MLC parameters to gain agreement. This ambiguity arose due to an insufficient sampling of the test field dose distributions and unexpected discrepancies in the open parts of some test fields. Consequently, the XVMC MLC parameters were optimized based on MapCHECK 2 measurements. Gafchromic EBT3 film was used to verify the accuracy of MapCHECK 2 measured dose distributions. It was found that adjustment of the MLC parameters from their default values resulted in improved global gamma analysis pass rates for MapCHECK 2 measurements versus calculated dose. The lowest pass rate of any MLC-modulated test beam improved from 68.5% to 93.5% with 3% and 2 mm gamma criteria. Given the close agreement of the optimized model to both MapCHECK 2 and film, the optimized model was used as a benchmark to highlight the relatively large discrepancies in some of the test field dose distributions found with ArcCHECK. Comparison between the optimized model-calculated dose and ArcCHECK-measured dose resulted in global gamma pass rates which ranged from 70.0%-97.9% for gamma criteria of 3% and 2 mm. The simple square fields yielded high pass rates. The lower gamma pass rates were attributed to the ArcCHECK overestimating the dose in-field for the rectangular test fields whose long axis was parallel to the long axis of the ArcCHECK. Considering ArcCHECK measurement issues and the lower gamma pass rates for the MLC-modulated test beams, it was concluded that MapCHECK 2 was a more suitable detector than ArcCHECK for the optimization process. © 2016 The Authors

  13. Propel: Tools and Methods for Practical Source Code Model Checking

    NASA Technical Reports Server (NTRS)

    Mansouri-Samani, Massoud; Mehlitz, Peter; Markosian, Lawrence; OMalley, Owen; Martin, Dale; Moore, Lantz; Penix, John; Visser, Willem

    2003-01-01

    The work reported here is an overview and snapshot of a project to develop practical model checking tools for in-the-loop verification of NASA s mission-critical, multithreaded programs in Java and C++. Our strategy is to develop and evaluate both a design concept that enables the application of model checking technology to C++ and Java, and a model checking toolset for C++ and Java. The design concept and the associated model checking toolset is called Propel. It builds upon the Java PathFinder (JPF) tool, an explicit state model checker for Java applications developed by the Automated Software Engineering group at NASA Ames Research Center. The design concept that we are developing is Design for Verification (D4V). This is an adaption of existing best design practices that has the desired side-effect of enhancing verifiability by improving modularity and decreasing accidental complexity. D4V, we believe, enhances the applicability of a variety of V&V approaches; we are developing the concept in the context of model checking. The model checking toolset, Propel, is based on extending JPF to handle C++. Our principal tasks in developing the toolset are to build a translator from C++ to Java, productize JPF, and evaluate the toolset in the context of D4V. Through all these tasks we are testing Propel capabilities on customer applications.

  14. Algebraic Reasoning in Solving Mathematical Problem Based on Learning Style

    NASA Astrophysics Data System (ADS)

    Indraswari, N. F.; Budayasa, I. K.; Ekawati, R.

    2018-01-01

    This study aimed to describe algebraic reasoning of secondary school’s pupils with different learning styles in solving mathematical problem. This study begins by giving the questionnaire to find out the learning styles and followed by mathematical ability test to get three subjects of 8th-grade whereas the learning styles of each pupil is visual, auditory, kinesthetic and had similar mathematical abilities. Then it continued with given algebraic problems and interviews. The data is validated using triangulation of time. The result showed that in the pattern of seeking indicator, subjects identified the things that were known and asked based on them observations. The visual and kinesthetic learners represented the known information in a chart, whereas the auditory learner in a table. In addition, they found the elements which makes the pattern and made a relationship between two quantities. In the pattern recognition indicator, they created conjectures on the relationship between two quantities and proved it. In the generalization indicator, they were determining the general rule of pattern found on each element of pattern using algebraic symbols and created a mathematical model. Visual and kinesthetic learners determined the general rule of equations which was used to solve problems using algebraic symbols, but auditory learner in a sentence.

  15. Optimal control in a model of malaria with differential susceptibility

    NASA Astrophysics Data System (ADS)

    Hincapié, Doracelly; Ospina, Juan

    2014-06-01

    A malaria model with differential susceptibility is analyzed using the optimal control technique. In the model the human population is classified as susceptible, infected and recovered. Susceptibility is assumed dependent on genetic, physiological, or social characteristics that vary between individuals. The model is described by a system of differential equations that relate the human and vector populations, so that the infection is transmitted to humans by vectors, and the infection is transmitted to vectors by humans. The model considered is analyzed using the optimal control method when the control consists in using of insecticide-treated nets and educational campaigns; and the optimality criterion is to minimize the number of infected humans, while keeping the cost as low as is possible. One first goal is to determine the effects of differential susceptibility in the proposed control mechanism; and the second goal is to determine the algebraic form of the basic reproductive number of the model. All computations are performed using computer algebra, specifically Maple. It is claimed that the analytical results obtained are important for the design and implementation of control measures for malaria. It is suggested some future investigations such as the application of the method to other vector-borne diseases such as dengue or yellow fever; and also it is suggested the possible application of free software of computer algebra like Maxima.

  16. Assessing Algebraic Solving Ability: A Theoretical Framework

    ERIC Educational Resources Information Center

    Lian, Lim Hooi; Yew, Wun Thiam

    2012-01-01

    Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…

  17. On the intersection of irreducible components of the space of finite-dimensional Lie algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorbatsevich, Vladimir V

    2012-07-31

    The irreducible components of the space of n-dimensional Lie algebras are investigated. The properties of Lie algebras belonging to the intersection of all the irreducible components of this kind are studied (these Lie algebras are said to be basic or founding Lie algebras). It is proved that all Lie algebras of this kind are nilpotent and each of these Lie algebras has an Abelian ideal of codimension one. Specific examples of founding Lie algebras of arbitrary dimension are described and, to describe the Lie algebras in general, we state a conjecture. The concept of spectrum of a Lie algebra ismore » considered and some of the most elementary properties of the spectrum are studied. Bibliography: 6 titles.« less

  18. Orbiting lidar simulations. I - Aerosol and cloud measurements by an independent-wavelength technique

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Morley, B. M.; Livingston, J. M.; Grams, G. W.; Patterson, E. M.

    1982-01-01

    Aerosol and cloud measurements have been simulated for a Space Shuttle lidar. Expected errors - in signal, transmission, density, and calibration - are calculated algebraically and checked by simulating measurements and retrievals using random-number generators. By day, vertical structure is retrieved for tenuous clouds, Saharan aerosols, and boundary layer aerosols (at 0.53 and 1.06 micron) as well as strong volcanic stratospheric aerosols (at 0.53 micron). By night, all these constituents are retrieved plus upper tropospheric and stratospheric aerosols (at 1.06 micron), mesospheric aerosols (at 0.53 micron), and noctilucent clouds (at 1.06 and 0.53 micron). The vertical resolution was 0.1-0.5 km in the troposphere, 0.5-2.0 km above, except 0.25-1.0 km in the mesospheric cloud and aerosol layers; horizontal resolution was 100-2000 km.

  19. Duncan F. Gregory, William Walton and the development of British algebra: 'algebraical geometry', 'geometrical algebra', abstraction.

    PubMed

    Verburgt, Lukas M

    2016-01-01

    This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.

  20. Program Model Checking as a New Trend

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Visser, Willem; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This paper introduces a special section of STTT (International Journal on Software Tools for Technology Transfer) containing a selection of papers that were presented at the 7th International SPIN workshop, Stanford, August 30 - September 1, 2000. The workshop was named SPIN Model Checking and Software Verification, with an emphasis on model checking of programs. The paper outlines the motivation for stressing software verification, rather than only design and model verification, by presenting the work done in the Automated Software Engineering group at NASA Ames Research Center within the last 5 years. This includes work in software model checking, testing like technologies and static analysis.

  1. From simplicial Lie algebras and hypercrossed complexes to differential graded Lie algebras via 1-jets

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    2012-12-01

    Let g be a simplicial Lie algebra with Moore complex Ng of length k. Let G be the simplicial Lie group integrating g, such that each Gn is simply connected. We use the 1-jet of the classifying space W¯ G to construct, starting from g, a Lie k-algebra L. The so constructed Lie k-algebra L is actually a differential graded Lie algebra. The differential and the brackets are explicitly described in terms (of a part) of the corresponding k-hypercrossed complex structure of Ng. The result can be seen as a geometric interpretation of Quillen's (purely algebraic) construction of the adjunction between simplicial Lie algebras and dg-Lie algebras.

  2. UTP and Temporal Logic Model Checking

    NASA Astrophysics Data System (ADS)

    Anderson, Hugh; Ciobanu, Gabriel; Freitas, Leo

    In this paper we give an additional perspective to the formal verification of programs through temporal logic model checking, which uses Hoare and He Unifying Theories of Programming (UTP). Our perspective emphasizes the use of UTP designs, an alphabetised relational calculus expressed as a pre/post condition pair of relations, to verify state or temporal assertions about programs. The temporal model checking relation is derived from a satisfaction relation between the model and its properties. The contribution of this paper is that it shows a UTP perspective to temporal logic model checking. The approach includes the notion of efficiency found in traditional model checkers, which reduced a state explosion problem through the use of efficient data structures

  3. Algebra: A Challenge at the Crossroads of Policy and Practice

    ERIC Educational Resources Information Center

    Stein, Mary Kay; Kaufman, Julia Heath; Sherman, Milan; Hillen, Amy F.

    2011-01-01

    The authors review what is known about early and universal algebra, including who is getting access to algebra and student outcomes associated with algebra course taking in general and specifically with universal algebra policies. The findings indicate that increasing numbers of students, some of whom are underprepared, are taking algebra earlier.…

  4. Making Algebra Work: Instructional Strategies that Deepen Student Understanding, within and between Algebraic Representations

    ERIC Educational Resources Information Center

    Star, Jon R.; Rittle-Johnson, Bethany

    2009-01-01

    Competence in algebra is increasingly recognized as a critical milestone in students' middle and high school years. The transition from arithmetic to algebra is a notoriously difficult one, and improvements in algebra instruction are greatly needed (National Research Council, 2001). Algebra historically has represented students' first sustained…

  5. 75 FR 28480 - Airworthiness Directives; Airbus Model A300 Series Airplanes; Model A300 B4-600, B4-600R, F4-600R...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... pressurise the hydraulic reservoirs, due to leakage of the Crissair reservoir air pressurisation check valves. * * * The leakage of the check valves was caused by an incorrect spring material. The affected Crissair check valves * * * were then replaced with improved check valves P/N [part number] 2S2794-1 * * *. More...

  6. Development of an algebraic stress/two-layer model for calculating thrust chamber flow fields

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Shang, H. M.; Huang, J.

    1993-01-01

    Following the consensus of a workshop in Turbulence Modeling for Liquid Rocket Thrust Chambers, the current effort was undertaken to study the effects of second-order closure on the predictions of thermochemical flow fields. To reduce the instability and computational intensity of the full second-order Reynolds Stress Model, an Algebraic Stress Model (ASM) coupled with a two-layer near wall treatment was developed. Various test problems, including the compressible boundary layer with adiabatic and cooled walls, recirculating flows, swirling flows and the entire SSME nozzle flow were studied to assess the performance of the current model. Detailed calculations for the SSME exit wall flow around the nozzle manifold were executed. As to the overall flow predictions, the ASM removes another assumption for appropriate comparison with experimental data, to account for the non-isotropic turbulence effects.

  7. Deformed coset models from gauged WZW actions

    NASA Astrophysics Data System (ADS)

    Park, Q.-Han

    1994-06-01

    A general Lagrangian formulation of integrably deformed G/H-coset models is given. We consider the G/H-coset model in terms of the gauged Wess-Zumino-Witten action and obtain an integrable deformation by adding a potential energy term Tr(gTg -1overlineT) , where algebra elements T, overlineT belong to the center of the algebra h associated with the subgroup H. We show that the classical equation of motion of the deformed coset model can be identified with the integrability condition of certain linear equations which makes the use of the inverse scattering method possible. Using the linear equation, we give a systematic way to construct infinitely many conserved currents as well as soliton solutions. In the case of the parafermionic SU(2)/U(1)-coset model, we derive n-solitons and conserved currents explicitly.

  8. Robot Control Based On Spatial-Operator Algebra

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo; Kreutz, Kenneth K.; Jain, Abhinandan

    1992-01-01

    Method for mathematical modeling and control of robotic manipulators based on spatial-operator algebra providing concise representation and simple, high-level theoretical frame-work for solution of kinematical and dynamical problems involving complicated temporal and spatial relationships. Recursive algorithms derived immediately from abstract spatial-operator expressions by inspection. Transition from abstract formulation through abstract solution to detailed implementation of specific algorithms to compute solution greatly simplified. Complicated dynamical problems like two cooperating robot arms solved more easily.

  9. Fast and accurate computation of system matrix for area integral model-based algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua

    2014-11-01

    Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.

  10. Twisted sigma-model solitons on the quantum projective line

    NASA Astrophysics Data System (ADS)

    Landi, Giovanni

    2018-04-01

    On the configuration space of projections in a noncommutative algebra, and for an automorphism of the algebra, we use a twisted Hochschild cocycle for an action functional and a twisted cyclic cocycle for a topological term. The latter is Hochschild-cohomologous to the former and positivity in twisted Hochschild cohomology results into a lower bound for the action functional. While the equations for the critical points are rather involved, the use of the positivity and the bound by the topological term lead to self-duality equations (thus yielding twisted noncommutative sigma-model solitons, or instantons). We present explicit nontrivial solutions on the quantum projective line.

  11. Algebraic perturbation theory for dense liquids with discrete potentials

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.

    2007-06-01

    A simple theory for the leading-order correction g1(r) to the structure of a hard-sphere liquid with discrete (e.g., square-well) potential perturbations is proposed. The theory makes use of a general approximation that effectively eliminates four-particle correlations from g1(r) with good accuracy at high densities. For the particular case of discrete perturbations, the remaining three-particle correlations can be modeled with a simple volume-exclusion argument, resulting in an algebraic and surprisingly accurate expression for g1(r) . The structure of a discrete “core-softened” model for liquids with anomalous thermodynamic properties is reproduced as an application.

  12. Variational data assimilation system "INM RAS - Black Sea"

    NASA Astrophysics Data System (ADS)

    Parmuzin, Eugene; Agoshkov, Valery; Assovskiy, Maksim; Giniatulin, Sergey; Zakharova, Natalia; Kuimov, Grigory; Fomin, Vladimir

    2013-04-01

    Development of Informational-Computational Systems (ICS) for Data Assimilation Procedures is one of multidisciplinary problems. To study and solve these problems one needs to apply modern results from different disciplines and recent developments in: mathematical modeling; theory of adjoint equations and optimal control; inverse problems; numerical methods theory; numerical algebra and scientific computing. The problems discussed above are studied in the Institute of Numerical Mathematics of the Russian Academy of Science (INM RAS) in ICS for Personal Computers (PC). Special problems and questions arise while effective ICS versions for PC are being developed. These problems and questions can be solved with applying modern methods of numerical mathematics and by solving "parallelism problem" using OpenMP technology and special linear algebra packages. In this work the results on the ICS development for PC-ICS "INM RAS - Black Sea" are presented. In the work the following problems and questions are discussed: practical problems that can be studied by ICS; parallelism problems and their solutions with applying of OpenMP technology and the linear algebra packages used in ICS "INM - Black Sea"; Interface of ICS. The results of ICS "INM RAS - Black Sea" testing are presented. Efficiency of technologies and methods applied are discussed. The work was supported by RFBR, grants No. 13-01-00753, 13-05-00715 and by The Ministry of education and science of Russian Federation, project 8291, project 11.519.11.1005 References: [1] V.I. Agoshkov, M.V. Assovskii, S.A. Lebedev, Numerical simulation of Black Sea hydrothermodynamics taking into account tide-forming forces. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 5-31 [2] E.I. Parmuzin, V.I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black Sea dynamics. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 69-94 [3] V.B. Zalesny, N.A. Diansky, V.V. Fomin, S.N. Moshonkin, S.G. Demyshev, Numerical model of the circulation of Black Sea and Sea of Azov. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 95-111 [4] V.I. Agoshkov, S.V. Giniatulin, G.V. Kuimov. OpenMP technology and linear algebra packages in the variation data assimilation systems. - Abstracts of the 1-st China-Russia Conference on Numerical Algebra with Applications in Radiactive Hydrodynamics, Beijing, China, October 16-18, 2012. [5] Zakharova N.B., Agoshkov V.I., Parmuzin E.I., The new method of ARGO buoys system observation data interpolation. Russian Journal of Numerical Analysis and Mathematical Modelling. Vol. 28, Issue 1, 2013.

  13. A Procedure for Deriving Formulas to Convert Transition Rates to Probabilities for Multistate Markov Models.

    PubMed

    Jones, Edmund; Epstein, David; García-Mochón, Leticia

    2017-10-01

    For health-economic analyses that use multistate Markov models, it is often necessary to convert from transition rates to transition probabilities, and for probabilistic sensitivity analysis and other purposes it is useful to have explicit algebraic formulas for these conversions, to avoid having to resort to numerical methods. However, if there are four or more states then the formulas can be extremely complicated. These calculations can be made using packages such as R, but many analysts and other stakeholders still prefer to use spreadsheets for these decision models. We describe a procedure for deriving formulas that use intermediate variables so that each individual formula is reasonably simple. Once the formulas have been derived, the calculations can be performed in Excel or similar software. The procedure is illustrated by several examples and we discuss how to use a computer algebra system to assist with it. The procedure works in a wide variety of scenarios but cannot be employed when there are several backward transitions and the characteristic equation has no algebraic solution, or when the eigenvalues of the transition rate matrix are very close to each other.

  14. Generalized Clifford Algebras as Algebras in Suitable Symmetric Linear Gr-Categories

    NASA Astrophysics Data System (ADS)

    Cheng, Tao; Huang, Hua-Lin; Yang, Yuping

    2016-01-01

    By viewing Clifford algebras as algebras in some suitable symmetric Gr-categories, Albuquerque and Majid were able to give a new derivation of some well known results about Clifford algebras and to generalize them. Along the same line, Bulacu observed that Clifford algebras are weak Hopf algebras in the aforementioned categories and obtained other interesting properties. The aim of this paper is to study generalized Clifford algebras in a similar manner and extend the results of Albuquerque, Majid and Bulacu to the generalized setting. In particular, by taking full advantage of the gauge transformations in symmetric linear Gr-categories, we derive the decomposition theorem and provide categorical weak Hopf structures for generalized Clifford algebras in a conceptual and simpler manner.

  15. Quantum Anosov flows: A new family of examples

    NASA Astrophysics Data System (ADS)

    Peter, Ingo J.; Emch, Gérard G.

    1998-09-01

    A quantum version is presented for the Anosov system defined by the time evolution implemented by the geodesic coflow on the cotangent bundle of any compact quotient manifold obtained from the Poincaré half-plane. While the canonical Weyl algebra does not close under time evolution, the symplectic structure of these classical systems can be exploited to produce objects akin to the CCR algebras encountered in quantum field theory. This construction allows one to lift both the geodesic and the horocyclic flows to a Weyl algebra describing the quantum dynamics corresponding to the systems under consideration. The Anosov relations as proposed in Ref. Reference 1 are found to be valid for these models. A quantum version of the classical ergodicity of these systems is discussed in the last section.

  16. Pions as gluons in higher dimensions

    NASA Astrophysics Data System (ADS)

    Cheung, Clifford; Remmen, Grant N.; Shen, Chia-Hsien; Wen, Congkao

    2018-04-01

    We derive the nonlinear sigma model as a peculiar dimensional reduction of Yang-Mills theory. In this framework, pions are reformulated as higher-dimensional gluons arranged in a kinematic configuration that only probes cubic interactions. This procedure yields a purely cubic action for the nonlinear sigma model that exhibits a symmetry enforcing color-kinematics duality. Remarkably, the associated kinematic algebra originates directly from the Poincaré algebra in higher dimensions. Applying the same construction to gravity yields a new quartic action for Born-Infeld theory and, applied once more, a cubic action for the special Galileon theory. Since the nonlinear sigma model and special Galileon are subtly encoded in the cubic sectors of Yang-Mills theory and gravity, respectively, their double copy relationship is automatic.

  17. Assessment of check-dam groundwater recharge with water-balance calculations

    NASA Astrophysics Data System (ADS)

    Djuma, Hakan; Bruggeman, Adriana; Camera, Corrado; Eliades, Marinos

    2017-04-01

    Studies on the enhancement of groundwater recharge by check-dams in arid and semi-arid environments mainly focus on deriving water infiltration rates from the check-dam ponding areas. This is usually achieved by applying simple water balance models, more advanced models (e.g., two dimensional groundwater models) and field tests (e.g., infiltrometer test or soil pit tests). Recharge behind the check-dam can be affected by the built-up of sediment as a result of erosion in the upstream watershed area. This natural process can increase the uncertainty in the estimates of the recharged water volume, especially for water balance calculations. Few water balance field studies of individual check-dams have been presented in the literature and none of them presented associated uncertainties of their estimates. The objectives of this study are i) to assess the effect of a check-dam on groundwater recharge from an ephemeral river; and ii) to assess annual sedimentation at the check-dam during a 4-year period. The study was conducted on a check-dam in the semi-arid island of Cyprus. Field campaigns were carried out to measure water flow, water depth and check-dam topography in order to establish check-dam water height, volume, evaporation, outflow and recharge relations. Topographic surveys were repeated at the end of consecutive hydrological years to estimate the sediment built up in the reservoir area of the check dam. Also, sediment samples were collected from the check-dam reservoir area for bulk-density analyses. To quantify the groundwater recharge, a water balance model was applied at two locations: at the check-dam and corresponding reservoir area, and at a 4-km stretch of the river bed without check-dam. Results showed that a check-dam with a storage capacity of 25,000 m3 was able to recharge to the aquifer, in four years, a total of 12 million m3 out of the 42 million m3 of measured (or modelled) streamflow. Recharge from the analyzed 4-km long river section without check-dam was estimated to be 1 million m3. Upper and lower limits of prediction intervals were computed to assess the uncertainties of the results. The model was rerun with these values and resulted in recharge values of 0.4 m3 as lower and 38 million m3 as upper limit. The sediment survey in the check-dam reservoir area showed that the reservoir area was filled with 2,000 to 3,000 tons of sediment after one rainfall season. This amount of sediment corresponds to 0.2 to 2 t h-1 y-1 sediment yield at the watershed level and reduces the check-dam storage capacity by approximately 10%. Results indicate that check-dams are valuable structures for increasing groundwater resources, but special attention should be given to soil erosion occurring in the upstream area and the resulting sediment built-up in the check-dam reservoir area. This study has received funding from the EU FP7 RECARE Project (GA 603498)

  18. On the validation of a code and a turbulence model appropriate to circulation control airfoils

    NASA Technical Reports Server (NTRS)

    Viegas, J. R.; Rubesin, M. W.; Maccormack, R. W.

    1988-01-01

    A computer code for calculating flow about a circulation control airfoil within a wind tunnel test section has been developed. This code is being validated for eventual use as an aid to design such airfoils. The concept of code validation being used is explained. The initial stages of the process have been accomplished. The present code has been applied to a low-subsonic, 2-D flow about a circulation control airfoil for which extensive data exist. Two basic turbulence models and variants thereof have been successfully introduced into the algorithm, the Baldwin-Lomax algebraic and the Jones-Launder two-equation models of turbulence. The variants include adding a history of the jet development for the algebraic model and adding streamwise curvature effects for both models. Numerical difficulties and difficulties in the validation process are discussed. Turbulence model and code improvements to proceed with the validation process are also discussed.

  19. Prediction of High-Lift Flows using Turbulent Closure Models

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Gatski, Thomas B.; Ying, Susan X.; Bertelrud, Arild

    1997-01-01

    The flow over two different multi-element airfoil configurations is computed using linear eddy viscosity turbulence models and a nonlinear explicit algebraic stress model. A subset of recently-measured transition locations using hot film on a McDonnell Douglas configuration is presented, and the effect of transition location on the computed solutions is explored. Deficiencies in wake profile computations are found to be attributable in large part to poor boundary layer prediction on the generating element, and not necessarily inadequate turbulence modeling in the wake. Using measured transition locations for the main element improves the prediction of its boundary layer thickness, skin friction, and wake profile shape. However, using measured transition locations on the slat still yields poor slat wake predictions. The computation of the slat flow field represents a key roadblock to successful predictions of multi-element flows. In general, the nonlinear explicit algebraic stress turbulence model gives very similar results to the linear eddy viscosity models.

  20. Efficient model checking of network authentication protocol based on SPIN

    NASA Astrophysics Data System (ADS)

    Tan, Zhi-hua; Zhang, Da-fang; Miao, Li; Zhao, Dan

    2013-03-01

    Model checking is a very useful technique for verifying the network authentication protocols. In order to improve the efficiency of modeling and verification on the protocols with the model checking technology, this paper first proposes a universal formalization description method of the protocol. Combined with the model checker SPIN, the method can expediently verify the properties of the protocol. By some modeling simplified strategies, this paper can model several protocols efficiently, and reduce the states space of the model. Compared with the previous literature, this paper achieves higher degree of automation, and better efficiency of verification. Finally based on the method described in the paper, we model and verify the Privacy and Key Management (PKM) authentication protocol. The experimental results show that the method of model checking is effective, which is useful for the other authentication protocols.

  1. An Integrated Environment for Efficient Formal Design and Verification

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The general goal of this project was to improve the practicality of formal methods by combining techniques from model checking and theorem proving. At the time the project was proposed, the model checking and theorem proving communities were applying different tools to similar problems, but there was not much cross-fertilization. This project involved a group from SRI that had substantial experience in the development and application of theorem-proving technology, and a group at Stanford that specialized in model checking techniques. Now, over five years after the proposal was submitted, there are many research groups working on combining theorem-proving and model checking techniques, and much more communication between the model checking and theorem proving research communities. This project contributed significantly to this research trend. The research work under this project covered a variety of topics: new theory and algorithms; prototype tools; verification methodology; and applications to problems in particular domains.

  2. Representations of the quantum doubles of finite group algebras and spectral parameter dependent solutions of the Yang-Baxter equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dancer, K. A.; Isac, P. S.; Links, J.

    2006-10-15

    Quantum doubles of finite group algebras form a class of quasitriangular Hopf algebras that algebraically solve the Yang-Baxter equation. Each representation of the quantum double then gives a matrix solution of the Yang-Baxter equation. Such solutions do not depend on a spectral parameter, and to date there has been little investigation into extending these solutions such that they do depend on a spectral parameter. Here we first explicitly construct the matrix elements of the generators for all irreducible representations of quantum doubles of the dihedral groups D{sub n}. These results may be used to determine constant solutions of the Yang-Baxtermore » equation. We then discuss Baxterization ansaetze to obtain solutions of the Yang-Baxter equation with a spectral parameter and give several examples, including a new 21-vertex model. We also describe this approach in terms of minimal-dimensional representations of the quantum doubles of the alternating group A{sub 4} and the symmetric group S{sub 4}.« less

  3. Application of geometric algebra for the description of polymer conformations.

    PubMed

    Chys, Pieter

    2008-03-14

    In this paper a Clifford algebra-based method is applied to calculate polymer chain conformations. The approach enables the calculation of the position of an atom in space with the knowledge of the bond length (l), valence angle (theta), and rotation angle (phi) of each of the preceding bonds in the chain. Hence, the set of geometrical parameters {l(i),theta(i),phi(i)} yields all the position coordinates p(i) of the main chain atoms. Moreover, the method allows the calculation of side chain conformations and the computation of rotations of chain segments. With these features it is, in principle, possible to generate conformations of any type of chemical structure. This method is proposed as an alternative for the classical approach by matrix algebra. It is more straightforward and its final symbolic representation considerably simpler than that of matrix algebra. Approaches for realistic modeling by means of incorporation of energetic considerations can be combined with it. This article, however, is entirely focused at showing the suitable mathematical framework on which further developments and applications can be built.

  4. Software for Training in Pre-College Mathematics

    NASA Technical Reports Server (NTRS)

    Shelton, Robert O.; Moebes, Travis A.; VanAlstine, Scot

    2003-01-01

    The Intelligent Math Tutor (IMT) is a computer program for training students in pre-college and college-level mathematics courses, including fundamentals, intermediate algebra, college algebra, and trigonometry. The IMT can be executed on a server computer for access by students via the Internet; alternatively, it can be executed on students computers equipped with compact- disk/read-only-memory (CD-ROM) drives. The IMT provides interactive exercises, assessment, tracking, and an on-line graphing calculator with algebraic-manipulation capabilities. The IMT provides an innovative combination of content, delivery mechanism, and artificial intelligence. Careful organization and presentation of the content make it possible to provide intelligent feedback to the student based on performance on exercises and tests. The tracking and feedback mechanisms are implemented within the capabilities of a commercial off-the-shelf development software tool and are written in the Unified Modeling Language to maximize reuse and minimize development cost. The graphical calculator is a standard feature of most college and pre-college algebra and trigonometry courses. Placing this functionality in a Java applet decreases the cost, provides greater capabilities, and provides an opportunity to integrate the calculator with the lessons.

  5. A voice-actuated wind tunnel model leak checking system

    NASA Technical Reports Server (NTRS)

    Larson, William E.

    1989-01-01

    A computer program has been developed that improves the efficiency of wind tunnel model leak checking. The program uses a voice recognition unit to relay a technician's commands to the computer. The computer, after receiving a command, can respond to the technician via a voice response unit. Information about the model pressure orifice being checked is displayed on a gas-plasma terminal. On command, the program records up to 30 seconds of pressure data. After the recording is complete, the raw data and a straight line fit of the data are plotted on the terminal. This allows the technician to make a decision on the integrity of the orifice being checked. All results of the leak check program are stored in a database file that can be listed on the line printer for record keeping purposes or displayed on the terminal to help the technician find unchecked orifices. This program allows one technician to check a model for leaks instead of the two or three previously required.

  6. Parametric modelling of cardiac system multiple measurement signals: an open-source computer framework for performance evaluation of ECG, PCG and ABP event detectors.

    PubMed

    Homaeinezhad, M R; Sabetian, P; Feizollahi, A; Ghaffari, A; Rahmani, R

    2012-02-01

    The major focus of this study is to present a performance accuracy assessment framework based on mathematical modelling of cardiac system multiple measurement signals. Three mathematical algebraic subroutines with simple structural functions for synthetic generation of the synchronously triggered electrocardiogram (ECG), phonocardiogram (PCG) and arterial blood pressure (ABP) signals are described. In the case of ECG signals, normal and abnormal PQRST cycles in complicated conditions such as fascicular ventricular tachycardia, rate dependent conduction block and acute Q-wave infarctions of inferior and anterolateral walls can be simulated. Also, continuous ABP waveform with corresponding individual events such as systolic, diastolic and dicrotic pressures with normal or abnormal morphologies can be generated by another part of the model. In addition, the mathematical synthetic PCG framework is able to generate the S4-S1-S2-S3 cycles in normal and in cardiac disorder conditions such as stenosis, insufficiency, regurgitation and gallop. In the PCG model, the amplitude and frequency content (5-700 Hz) of each sound and variation patterns can be specified. The three proposed models were implemented to generate artificial signals with varies abnormality types and signal-to-noise ratios (SNR), for quantitative detection-delineation performance assessment of several ECG, PCG and ABP individual event detectors designed based on the Hilbert transform, discrete wavelet transform, geometric features such as area curve length (ACLM), the multiple higher order moments (MHOM) metric, and the principal components analysed geometric index (PCAGI). For each method the detection-delineation operating characteristics were obtained automatically in terms of sensitivity, positive predictivity and delineation (segmentation) error rms and checked by the cardiologist. The Matlab m-file script of the synthetic ECG, ABP and PCG signal generators are available in the Appendix.

  7. Use of posterior predictive checks as an inferential tool for investigating individual heterogeneity in animal population vital rates

    PubMed Central

    Chambert, Thierry; Rotella, Jay J; Higgs, Megan D

    2014-01-01

    The investigation of individual heterogeneity in vital rates has recently received growing attention among population ecologists. Individual heterogeneity in wild animal populations has been accounted for and quantified by including individually varying effects in models for mark–recapture data, but the real need for underlying individual effects to account for observed levels of individual variation has recently been questioned by the work of Tuljapurkar et al. (Ecology Letters, 12, 93, 2009) on dynamic heterogeneity. Model-selection approaches based on information criteria or Bayes factors have been used to address this question. Here, we suggest that, in addition to model-selection, model-checking methods can provide additional important insights to tackle this issue, as they allow one to evaluate a model's misfit in terms of ecologically meaningful measures. Specifically, we propose the use of posterior predictive checks to explicitly assess discrepancies between a model and the data, and we explain how to incorporate model checking into the inferential process used to assess the practical implications of ignoring individual heterogeneity. Posterior predictive checking is a straightforward and flexible approach for performing model checks in a Bayesian framework that is based on comparisons of observed data to model-generated replications of the data, where parameter uncertainty is incorporated through use of the posterior distribution. If discrepancy measures are chosen carefully and are relevant to the scientific context, posterior predictive checks can provide important information allowing for more efficient model refinement. We illustrate this approach using analyses of vital rates with long-term mark–recapture data for Weddell seals and emphasize its utility for identifying shortfalls or successes of a model at representing a biological process or pattern of interest. We show how posterior predictive checks can be used to strengthen inferences in ecological studies. We demonstrate the application of this method on analyses dealing with the question of individual reproductive heterogeneity in a population of Antarctic pinnipeds. PMID:24834335

  8. A Novel Method to Verify Multilevel Computational Models of Biological Systems Using Multiscale Spatio-Temporal Meta Model Checking

    PubMed Central

    Gilbert, David

    2016-01-01

    Insights gained from multilevel computational models of biological systems can be translated into real-life applications only if the model correctness has been verified first. One of the most frequently employed in silico techniques for computational model verification is model checking. Traditional model checking approaches only consider the evolution of numeric values, such as concentrations, over time and are appropriate for computational models of small scale systems (e.g. intracellular networks). However for gaining a systems level understanding of how biological organisms function it is essential to consider more complex large scale biological systems (e.g. organs). Verifying computational models of such systems requires capturing both how numeric values and properties of (emergent) spatial structures (e.g. area of multicellular population) change over time and across multiple levels of organization, which are not considered by existing model checking approaches. To address this limitation we have developed a novel approximate probabilistic multiscale spatio-temporal meta model checking methodology for verifying multilevel computational models relative to specifications describing the desired/expected system behaviour. The methodology is generic and supports computational models encoded using various high-level modelling formalisms because it is defined relative to time series data and not the models used to generate it. In addition, the methodology can be automatically adapted to case study specific types of spatial structures and properties using the spatio-temporal meta model checking concept. To automate the computational model verification process we have implemented the model checking approach in the software tool Mule (http://mule.modelchecking.org). Its applicability is illustrated against four systems biology computational models previously published in the literature encoding the rat cardiovascular system dynamics, the uterine contractions of labour, the Xenopus laevis cell cycle and the acute inflammation of the gut and lung. Our methodology and software will enable computational biologists to efficiently develop reliable multilevel computational models of biological systems. PMID:27187178

  9. A Novel Method to Verify Multilevel Computational Models of Biological Systems Using Multiscale Spatio-Temporal Meta Model Checking.

    PubMed

    Pârvu, Ovidiu; Gilbert, David

    2016-01-01

    Insights gained from multilevel computational models of biological systems can be translated into real-life applications only if the model correctness has been verified first. One of the most frequently employed in silico techniques for computational model verification is model checking. Traditional model checking approaches only consider the evolution of numeric values, such as concentrations, over time and are appropriate for computational models of small scale systems (e.g. intracellular networks). However for gaining a systems level understanding of how biological organisms function it is essential to consider more complex large scale biological systems (e.g. organs). Verifying computational models of such systems requires capturing both how numeric values and properties of (emergent) spatial structures (e.g. area of multicellular population) change over time and across multiple levels of organization, which are not considered by existing model checking approaches. To address this limitation we have developed a novel approximate probabilistic multiscale spatio-temporal meta model checking methodology for verifying multilevel computational models relative to specifications describing the desired/expected system behaviour. The methodology is generic and supports computational models encoded using various high-level modelling formalisms because it is defined relative to time series data and not the models used to generate it. In addition, the methodology can be automatically adapted to case study specific types of spatial structures and properties using the spatio-temporal meta model checking concept. To automate the computational model verification process we have implemented the model checking approach in the software tool Mule (http://mule.modelchecking.org). Its applicability is illustrated against four systems biology computational models previously published in the literature encoding the rat cardiovascular system dynamics, the uterine contractions of labour, the Xenopus laevis cell cycle and the acute inflammation of the gut and lung. Our methodology and software will enable computational biologists to efficiently develop reliable multilevel computational models of biological systems.

  10. Model Checking Temporal Logic Formulas Using Sticker Automata

    PubMed Central

    Feng, Changwei; Wu, Huanmei

    2017-01-01

    As an important complex problem, the temporal logic model checking problem is still far from being fully resolved under the circumstance of DNA computing, especially Computation Tree Logic (CTL), Interval Temporal Logic (ITL), and Projection Temporal Logic (PTL), because there is still a lack of approaches for DNA model checking. To address this challenge, a model checking method is proposed for checking the basic formulas in the above three temporal logic types with DNA molecules. First, one-type single-stranded DNA molecules are employed to encode the Finite State Automaton (FSA) model of the given basic formula so that a sticker automaton is obtained. On the other hand, other single-stranded DNA molecules are employed to encode the given system model so that the input strings of the sticker automaton are obtained. Next, a series of biochemical reactions are conducted between the above two types of single-stranded DNA molecules. It can then be decided whether the system satisfies the formula or not. As a result, we have developed a DNA-based approach for checking all the basic formulas of CTL, ITL, and PTL. The simulated results demonstrate the effectiveness of the new method. PMID:29119114

  11. Foundations of the Bandera Abstraction Tools

    NASA Technical Reports Server (NTRS)

    Hatcliff, John; Dwyer, Matthew B.; Pasareanu, Corina S.; Robby

    2003-01-01

    Current research is demonstrating that model-checking and other forms of automated finite-state verification can be effective for checking properties of software systems. Due to the exponential costs associated with model-checking, multiple forms of abstraction are often necessary to obtain system models that are tractable for automated checking. The Bandera Tool Set provides multiple forms of automated support for compiling concurrent Java software systems to models that can be supplied to several different model-checking tools. In this paper, we describe the foundations of Bandera's data abstraction mechanism which is used to reduce the cardinality (and the program's state-space) of data domains in software to be model-checked. From a technical standpoint, the form of data abstraction used in Bandera is simple, and it is based on classical presentations of abstract interpretation. We describe the mechanisms that Bandera provides for declaring abstractions, for attaching abstractions to programs, and for generating abstracted programs and properties. The contributions of this work are the design and implementation of various forms of tool support required for effective application of data abstraction to software components written in a programming language like Java which has a rich set of linguistic features.

  12. Full implementation of a distributed hydrological model based on check dam trapped sediment volumes

    NASA Astrophysics Data System (ADS)

    Bussi, Gianbattista; Francés, Félix

    2014-05-01

    Lack of hydrometeorological data is one of the most compelling limitations to the implementation of distributed environmental models. Mediterranean catchments, in particular, are characterised by high spatial variability of meteorological phenomena and soil characteristics, which may prevents from transferring model calibrations from a fully gauged catchment to a totally o partially ungauged one. For this reason, new sources of data are required in order to extend the use of distributed models to non-monitored or low-monitored areas. An important source of information regarding the hydrological and sediment cycle is represented by sediment deposits accumulated at the bottom of reservoirs. Since the 60s, reservoir sedimentation volumes were used as proxy data for the estimation of inter-annual total sediment yield rates, or, in more recent years, as a reference measure of the sediment transport for sediment model calibration and validation. Nevertheless, the possibility of using such data for constraining the calibration of a hydrological model has not been exhaustively investigated so far. In this study, the use of nine check dam reservoir sedimentation volumes for hydrological and sedimentological model calibration and spatio-temporal validation was examined. Check dams are common structures in Mediterranean areas, and are a potential source of spatially distributed information regarding both hydrological and sediment cycle. In this case-study, the TETIS hydrological and sediment model was implemented in a medium-size Mediterranean catchment (Rambla del Poyo, Spain) by taking advantage of sediment deposits accumulated behind the check dams located in the catchment headwaters. Reservoir trap efficiency was taken into account by coupling the TETIS model with a pond trap efficiency model. The model was calibrated by adjusting some of its parameters in order to reproduce the total sediment volume accumulated behind a check dam. Then, the model was spatially validated by obtaining the simulated sedimentation volume at the other eight check dams and comparing it to the observed sedimentation volumes. Lastly, the simulated water discharge at the catchment outlet was compared with observed water discharge records in order to check the hydrological sub-model behaviour. Model results provided highly valuable information concerning the spatial distribution of soil erosion and sediment transport. Spatial validation of the sediment sub-model provided very good results at seven check dams out of nine. This study shows that check dams can be a useful tool also for constraining hydrological model calibration, as model results agree with water discharge observations. In fact, the hydrological model validation at a downstream water flow gauge obtained a Nash-Sutcliffe efficiency of 0.8. This technique is applicable to all catchments with presence of check dams, and only requires rainfall and temperature data and soil characteristics maps.

  13. On the ``Matrix Approach'' to Interacting Particle Systems

    NASA Astrophysics Data System (ADS)

    de Sanctis, L.; Isopi, M.

    2004-04-01

    Derrida et al. and Schütz and Stinchcombe gave algebraic formulas for the correlation functions of the partially asymmetric simple exclusion process. Here we give a fairly general recipe of how to get these formulas and extend them to the whole time evolution (starting from the generator of the process), for a certain class of interacting systems. We then analyze the algebraic relations obtained to show that the matrix approach does not work with some models such as the voter and the contact processes.

  14. The algebraic theory of latent projectors in lambda matrices

    NASA Technical Reports Server (NTRS)

    Denman, E. D.; Leyva-Ramos, J.; Jeon, G. J.

    1981-01-01

    Multivariable systems such as a finite-element model of vibrating structures, control systems, and large-scale systems are often formulated in terms of differential equations which give rise to lambda matrices. The present investigation is concerned with the formulation of the algebraic theory of lambda matrices and the relationship of latent roots, latent vectors, and latent projectors to the eigenvalues, eigenvectors, and eigenprojectors of the companion form. The chain rule for latent projectors and eigenprojectors for the repeated latent root or eigenvalues is given.

  15. A Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics. Part 1. Analysis Development

    DTIC Science & Technology

    1980-06-01

    sufficient. Dropping the time lag terms, the equations for Xu, Xx’, and X reduce to linear algebraic equations.Y Hence in the quasistatic case the...quasistatic variables now are not described by differential equations but rather by linear algebraic equations. The solution for x0 then is simply -365...matrices for two-bladed rotor 414 7. LINEAR SYSTEM ANALYSIS 425 7,1 State Variable Form 425 7.2 Constant Coefficient System 426 7.2. 1 Eigen-analysis 426

  16. The general symmetry algebra structure of the underdetermined equation ux=(vxx)2

    NASA Astrophysics Data System (ADS)

    Kersten, Paul H. M.

    1991-08-01

    In a recent paper, Anderson, Kamran, and Olver [``Interior, exterior, and generalized symmetries,'' preprint (1990)] obtained the first- and second-order generalized symmetry algebra for the system ux=(vxx)2, leading to the noncompact real form of the exceptional Lie algebra G2. Here, the structure of the general higher-order symmetry algebra is obtained. Moreover, the Lie algebra G2 is obtained as ordinary symmetry algebra of the associated first-order system. The general symmetry algebra for ux=f(u,v,vx,...,) is established also.

  17. A calculus based on a q-deformed Heisenberg algebra

    DOE PAGES

    Cerchiai, B. L.; Hinterding, R.; Madore, J.; ...

    1999-04-27

    We show how one can construct a differential calculus over an algebra where position variables $x$ and momentum variables p have be defined. As the simplest example we consider the one-dimensional q-deformed Heisenberg algebra. This algebra has a subalgebra generated by cursive Greek chi and its inverse which we call the coordinate algebra. A physical field is considered to be an element of the completion of this algebra. We can construct a derivative which leaves invariant the coordinate algebra and so takes physical fields into physical fields. A generalized Leibniz rule for this algebra can be found. Based on thismore » derivative differential forms and an exterior differential calculus can be constructed.« less

  18. Highest-weight representations of Brocherd`s algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slansky, R.

    1997-01-01

    General features of highest-weight representations of Borcherd`s algebras are described. to show their typical features, several representations of Borcherd`s extensions of finite-dimensional algebras are analyzed. Then the example of the extension of affine- su(2) to a Borcherd`s algebra is examined. These algebras provide a natural way to extend a Kac-Moody algebra to include the hamiltonian and number-changing operators in a generalized symmetry structure.

  19. Identities of Finitely Generated Algebras Over AN Infinite Field

    NASA Astrophysics Data System (ADS)

    Kemer, A. R.

    1991-02-01

    It is proved that for each finitely generated associative PI-algebra U over an infinite field F, there is a finite-dimensional F-algebra C such that the ideals of identities of the algebras U and C coincide. This yields a positive solution to the local problem of Specht for algebras over an infinite field: A finitely generated free associative algebra satisfies the maximum condition for T-ideals.

  20. Quantum cluster algebras and quantum nilpotent algebras.

    PubMed

    Goodearl, Kenneth R; Yakimov, Milen T

    2014-07-08

    A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein-Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405-455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337-397] for the case of symmetric Kac-Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1-52] associated with double Bruhat cells coincide with the corresponding cluster algebras.

  1. Quantum cluster algebras and quantum nilpotent algebras

    PubMed Central

    Goodearl, Kenneth R.; Yakimov, Milen T.

    2014-01-01

    A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197

  2. Calculation of turbulence-driven secondary motion in ducts with arbitrary cross section

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1989-01-01

    Calculation methods for turbulent duct flows are generalized for ducts with arbitrary cross-sections. The irregular physical geometry is transformed into a regular one in computational space, and the flow equations are solved with a finite-volume numerical procedure. The turbulent stresses are calculated with an algebraic stress model derived by simplifying model transport equations for the individual Reynolds stresses. Two variants of such a model are considered. These procedures enable the prediction of both the turbulence-driven secondary flow and the anisotropy of the Reynolds stresses, in contrast to some of the earlier calculation methods. Model predictions are compared to experimental data for developed flow in triangular duct, trapezoidal duct and a rod-bundle geometry. The correct trends are predicted, and the quantitative agreement is mostly fair. The simpler variant of the algebraic stress model procured better agreement with the measured data.

  3. Toda hierarchies and their applications

    NASA Astrophysics Data System (ADS)

    Takasaki, Kanehisa

    2018-05-01

    The 2D Toda hierarchy occupies a central position in the family of integrable hierarchies of the Toda type. The 1D Toda hierarchy and the Ablowitz–Ladik (aka relativistic Toda) hierarchy can be derived from the 2D Toda hierarchy as reductions. These integrable hierarchies have been applied to various problems of mathematics and mathematical physics since 1990s. A recent example is a series of studies on models of statistical mechanics called the melting crystal model. This research has revealed that the aforementioned two reductions of the 2D Toda hierarchy underlie two different melting crystal models. Technical clues are a fermionic realization of the quantum torus algebra, special algebraic relations therein called shift symmetries, and a matrix factorization problem. The two melting crystal models thus exhibit remarkable similarity with the Hermitian and unitary matrix models for which the two reductions of the 2D Toda hierarchy play the role of fundamental integrable structures.

  4. Computation of turbulent rotating channel flow with an algebraic Reynolds stress model

    NASA Technical Reports Server (NTRS)

    Warfield, M. J.; Lakshminarayana, B.

    1986-01-01

    An Algebraic Reynolds Stress Model has been implemented to modify the Kolmogorov-Prandtl eddy viscosity relation to produce an anisotropic turbulence model. The eddy viscosity relation becomes a function of the local turbulent production to dissipation ratio and local turbulence/rotation parameters. The model is used to predict fully-developed rotating channel flow over a diverse range of rotation numbers. In addition, predictions are obtained for a developing channel flow with high rotation. The predictions are compared with the experimental data available. Good predictions are achieved for mean velocity and wall shear stress over most of the rotation speeds tested. There is some prediction breakdown at high rotation (rotation number greater than .10) where the effects of the rotation on turbulence become quite complex. At high rotation and low Reynolds number, the laminarization on the trailing side represents a complex effect of rotation which is difficult to predict with the described models.

  5. SU(3)_C× SU(2)_L× U(1)_Y( × U(1)_X ) as a symmetry of division algebraic ladder operators

    NASA Astrophysics Data System (ADS)

    Furey, C.

    2018-05-01

    We demonstrate a model which captures certain attractive features of SU(5) theory, while providing a possible escape from proton decay. In this paper we show how ladder operators arise from the division algebras R, C, H, and O. From the SU( n) symmetry of these ladder operators, we then demonstrate a model which has much structural similarity to Georgi and Glashow's SU(5) grand unified theory. However, in this case, the transitions leading to proton decay are expected to be blocked, given that they coincide with presumably forbidden transformations which would incorrectly mix distinct algebraic actions. As a result, we find that we are left with G_{sm} = SU(3)_C× SU(2)_L× U(1)_Y / Z_6. Finally, we point out that if U( n) ladder symmetries are used in place of SU( n), it may then be possible to find this same G_{sm}=SU(3)_C× SU(2)_L× U(1)_Y / Z_6, together with an extra U(1)_X symmetry, related to B-L.

  6. The Feigin Tetrahedron

    NASA Astrophysics Data System (ADS)

    Rupel, Dylan

    2015-03-01

    The first goal of this note is to extend the well-known Feigin homomorphisms taking quantum groups to quantum polynomial algebras. More precisely, we define generalized Feigin homomorphisms from a quantum shuffle algebra to quantum polynomial algebras which extend the classical Feigin homomorphisms along the embedding of the quantum group into said quantum shuffle algebra. In a recent work of Berenstein and the author, analogous extensions of Feigin homomorphisms from the dual Hall-Ringel algebra of a valued quiver to quantum polynomial algebras were defined. To relate these constructions, we establish a homomorphism, dubbed the quantum shuffle character, from the dual Hall-Ringel algebra to the quantum shuffle algebra which relates the generalized Feigin homomorphisms. These constructions can be compactly described by a commuting tetrahedron of maps beginning with the quantum group and terminating in a quantum polynomial algebra. The second goal in this project is to better understand the dual canonical basis conjecture for skew-symmetrizable quantum cluster algebras. In the symmetrizable types it is known that dual canonical basis elements need not have positive multiplicative structure constants, while this is still suspected to hold for skew-symmetrizable quantum cluster algebras. We propose an alternate conjecture for the symmetrizable types: the cluster monomials should correspond to irreducible characters of a KLR algebra. Indeed, the main conjecture of this note would establish this ''KLR conjecture'' for acyclic skew-symmetrizable quantum cluster algebras: that is, we conjecture that the images of rigid representations under the quantum shuffle character give irreducible characters for KLR algebras. We sketch a proof in the symmetric case giving an alternative to the proof of Kimura-Qin that all non-initial cluster variables in an acyclic skew-symmetric quantum cluster algebra are contained in the dual canonical basis. With these results in mind we interpret the cluster mutations directly in terms of the representation theory of the KLR algebra.

  7. Form in Algebra: Reflecting, with Peacock, on Upper Secondary School Teaching.

    ERIC Educational Resources Information Center

    Menghini, Marta

    1994-01-01

    Discusses algebra teaching by looking back into the history of algebra and the work of George Peacock, who considered algebra from two points of view: symbolic and instrumental. Claims that, to be meaningful, algebra must be linked to real-world problems. (18 references) (MKR)

  8. How the twain can meet: Prospect theory and models of heuristics in risky choice.

    PubMed

    Pachur, Thorsten; Suter, Renata S; Hertwig, Ralph

    2017-03-01

    Two influential approaches to modeling choice between risky options are algebraic models (which focus on predicting the overt decisions) and models of heuristics (which are also concerned with capturing the underlying cognitive process). Because they rest on fundamentally different assumptions and algorithms, the two approaches are usually treated as antithetical, or even incommensurable. Drawing on cumulative prospect theory (CPT; Tversky & Kahneman, 1992) as the currently most influential instance of a descriptive algebraic model, we demonstrate how the two modeling traditions can be linked. CPT's algebraic functions characterize choices in terms of psychophysical (diminishing sensitivity to probabilities and outcomes) as well as psychological (risk aversion and loss aversion) constructs. Models of heuristics characterize choices as rooted in simple information-processing principles such as lexicographic and limited search. In computer simulations, we estimated CPT's parameters for choices produced by various heuristics. The resulting CPT parameter profiles portray each of the choice-generating heuristics in psychologically meaningful ways-capturing, for instance, differences in how the heuristics process probability information. Furthermore, CPT parameters can reflect a key property of many heuristics, lexicographic search, and track the environment-dependent behavior of heuristics. Finally, we show, both in an empirical and a model recovery study, how CPT parameter profiles can be used to detect the operation of heuristics. We also address the limits of CPT's ability to capture choices produced by heuristics. Our results highlight an untapped potential of CPT as a measurement tool to characterize the information processing underlying risky choice. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Towards Symbolic Model Checking for Multi-Agent Systems via OBDDs

    NASA Technical Reports Server (NTRS)

    Raimondi, Franco; Lomunscio, Alessio

    2004-01-01

    We present an algorithm for model checking temporal-epistemic properties of multi-agent systems, expressed in the formalism of interpreted systems. We first introduce a technique for the translation of interpreted systems into boolean formulae, and then present a model-checking algorithm based on this translation. The algorithm is based on OBDD's, as they offer a compact and efficient representation for boolean formulae.

  10. Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction

    ERIC Educational Resources Information Center

    Wasserman, Nicholas H.

    2016-01-01

    This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…

  11. Constructing Meanings and Utilities within Algebraic Tasks

    ERIC Educational Resources Information Center

    Ainley, Janet; Bills, Liz; Wilson, Kirsty

    2004-01-01

    The Purposeful Algebraic Activity project aims to explore the potential of spreadsheets in the introduction to algebra and algebraic thinking. We discuss two sub-themes within the project: tracing the development of pupils' construction of meaning for variable from arithmetic-based activity, through use of spreadsheets, and into formal algebra,…

  12. Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds

    NASA Astrophysics Data System (ADS)

    Liu, Chiu-Chu Melissa; Sheshmani, Artan

    2017-07-01

    An algebraic GKM manifold is a non-singular algebraic variety equipped with an algebraic action of an algebraic torus, with only finitely many torus fixed points and finitely many 1-dimensional orbits. In this expository article, we use virtual localization to express equivariant Gromov-Witten invariants of any algebraic GKM manifold (which is not necessarily compact) in terms of Hodge integrals over moduli stacks of stable curves and the GKM graph of the GKM manifold.

  13. Asymptotic aspect of derivations in Banach algebras.

    PubMed

    Roh, Jaiok; Chang, Ick-Soon

    2017-01-01

    We prove that every approximate linear left derivation on a semisimple Banach algebra is continuous. Also, we consider linear derivations on Banach algebras and we first study the conditions for a linear derivation on a Banach algebra. Then we examine the functional inequalities related to a linear derivation and their stability. We finally take central linear derivations with radical ranges on semiprime Banach algebras and a continuous linear generalized left derivation on a semisimple Banach algebra.

  14. On an algebraic structure of dimensionally reduced magical supergravity theories

    NASA Astrophysics Data System (ADS)

    Fukuchi, Shin; Mizoguchi, Shun'ya

    2018-06-01

    We study an algebraic structure of magical supergravities in three dimensions. We show that if the commutation relations among the generators of the quasi-conformal group in the super-Ehlers decomposition are in a particular form, then one can always find a parameterization of the group element in terms of various 3d bosonic fields that reproduces the 3d reduced Lagrangian of the corresponding magical supergravity. This provides a unified treatment of all the magical supergravity theories in finding explicit relations between the 3d dimensionally reduced Lagrangians and particular coset nonlinear sigma models. We also verify that the commutation relations of E 6 (+ 2), the quasi-conformal group for A = C, indeed satisfy this property, allowing the algebraic interpretation of the structure constants and scalar field functions as was done in the F 4 (+ 4) magical supergravity.

  15. Pointless strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Periwal, V.

    1988-01-01

    The author proves that bosonic string perturbation theory diverges and is not Borel summable. This is an indication of a non-perturbative instability of the bosonic string vacuum. He formulates two-dimensional sigma models in terms of algebras of functions. He extends this formulation to general C* algebras. He illustrates the utility of these algebraic notions by calculating some determinants of interest in the study of string propagation in orbifold backgrounds. He studies the geometry of spaces of field theories and show that the vanishing of the curvature of the natural Gel'fand-Naimark-Segal metric on such spaces is exactly the strong associativity conditionmore » of the operator product expansion.He shows that string scattering amplitudes arise as invariants of renormalization, when he formulates renormalization in terms of rescalings of the metric on the string world-sheet.« less

  16. Algebraic geometry and Bethe ansatz. Part I. The quotient ring for BAE

    NASA Astrophysics Data System (ADS)

    Jiang, Yunfeng; Zhang, Yang

    2018-03-01

    In this paper and upcoming ones, we initiate a systematic study of Bethe ansatz equations for integrable models by modern computational algebraic geometry. We show that algebraic geometry provides a natural mathematical language and powerful tools for understanding the structure of solution space of Bethe ansatz equations. In particular, we find novel efficient methods to count the number of solutions of Bethe ansatz equations based on Gröbner basis and quotient ring. We also develop analytical approach based on companion matrix to perform the sum of on-shell quantities over all physical solutions without solving Bethe ansatz equations explicitly. To demonstrate the power of our method, we revisit the completeness problem of Bethe ansatz of Heisenberg spin chain, and calculate the sum rules of OPE coefficients in planar N=4 super-Yang-Mills theory.

  17. Transfer matrix spectrum for cyclic representations of the 6-vertex reflection algebra by quantum separation of variables

    NASA Astrophysics Data System (ADS)

    Pezelier, Baptiste

    2018-02-01

    In this proceeding, we recall the notion of quantum integrable systems on a lattice and then introduce the Sklyanin’s Separation of Variables method. We sum up the main results for the transfer matrix spectral problem for the cyclic representations of the trigonometric 6-vertex reflection algebra associated to the Bazanov-Stroganov Lax operator. These results apply as well to the spectral analysis of the lattice sine-Gordon model with open boundary conditions. The transfer matrix spectrum (both eigenvalues and eigenstates) is completely characterized in terms of the set of solutions to a discrete system of polynomial equations. We state an equivalent characterization as the set of solutions to a Baxter’s like T-Q functional equation, allowing us to rewrite the transfer matrix eigenstates in an algebraic Bethe ansatz form.

  18. Lie algebra of conformal Killing-Yano forms

    NASA Astrophysics Data System (ADS)

    Ertem, Ümit

    2016-06-01

    We provide a generalization of the Lie algebra of conformal Killing vector fields to conformal Killing-Yano forms. A new Lie bracket for conformal Killing-Yano forms that corresponds to slightly modified Schouten-Nijenhuis bracket of differential forms is proposed. We show that conformal Killing-Yano forms satisfy a graded Lie algebra in constant curvature manifolds. It is also proven that normal conformal Killing-Yano forms in Einstein manifolds also satisfy a graded Lie algebra. The constructed graded Lie algebras reduce to the graded Lie algebra of Killing-Yano forms and the Lie algebras of conformal Killing and Killing vector fields in special cases.

  19. Generalized Galilean algebras and Newtonian gravity

    NASA Astrophysics Data System (ADS)

    González, N.; Rubio, G.; Salgado, P.; Salgado, S.

    2016-04-01

    The non-relativistic versions of the generalized Poincaré algebras and generalized AdS-Lorentz algebras are obtained. These non-relativistic algebras are called, generalized Galilean algebras of type I and type II and denoted by GBn and GLn respectively. Using a generalized Inönü-Wigner contraction procedure we find that the generalized Galilean algebras of type I can be obtained from the generalized Galilean algebras type II. The S-expansion procedure allows us to find the GB5 algebra from the Newton Hooke algebra with central extension. The procedure developed in Ref. [1] allows us to show that the nonrelativistic limit of the five dimensional Einstein-Chern-Simons gravity is given by a modified version of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.

  20. On the structure of quantum L∞ algebras

    NASA Astrophysics Data System (ADS)

    Blumenhagen, Ralph; Fuchs, Michael; Traube, Matthias

    2017-10-01

    It is believed that any classical gauge symmetry gives rise to an L∞ algebra. Based on the recently realized relation between classical W algebras and L∞ algebras, we analyze how this generalizes to the quantum case. Guided by the existence of quantum W algebras, we provide a physically well motivated definition of quantum L∞ algebras describing the consistency of global symmetries in quantum field theories. In this case we are restricted to only two non-trivial graded vector spaces X 0 and X -1 containing the symmetry variations and the symmetry generators. This quantum L∞ algebra structure is explicitly exemplified for the quantum W_3 algebra. The natural quantum product between fields is the normal ordered one so that, due to contractions between quantum fields, the higher L∞ relations receive off-diagonal quantum corrections. Curiously, these are not present in the loop L∞ algebra of closed string field theory.

  1. Structural identifiability analyses of candidate models for in vitro Pitavastatin hepatic uptake.

    PubMed

    Grandjean, Thomas R B; Chappell, Michael J; Yates, James W T; Evans, Neil D

    2014-05-01

    In this paper a review of the application of four different techniques (a version of the similarity transformation approach for autonomous uncontrolled systems, a non-differential input/output observable normal form approach, the characteristic set differential algebra and a recent algebraic input/output relationship approach) to determine the structural identifiability of certain in vitro nonlinear pharmacokinetic models is provided. The Organic Anion Transporting Polypeptide (OATP) substrate, Pitavastatin, is used as a probe on freshly isolated animal and human hepatocytes. Candidate pharmacokinetic non-linear compartmental models have been derived to characterise the uptake process of Pitavastatin. As a prerequisite to parameter estimation, structural identifiability analyses are performed to establish that all unknown parameters can be identified from the experimental observations available. Copyright © 2013. Published by Elsevier Ireland Ltd.

  2. Genetic hotels for the standard genetic code: evolutionary analysis based upon novel three-dimensional algebraic models.

    PubMed

    José, Marco V; Morgado, Eberto R; Govezensky, Tzipe

    2011-07-01

    Herein, we rigorously develop novel 3-dimensional algebraic models called Genetic Hotels of the Standard Genetic Code (SGC). We start by considering the primeval RNA genetic code which consists of the 16 codons of type RNY (purine-any base-pyrimidine). Using simple algebraic operations, we show how the RNA code could have evolved toward the current SGC via two different intermediate evolutionary stages called Extended RNA code type I and II. By rotations or translations of the subset RNY, we arrive at the SGC via the former (type I) or via the latter (type II), respectively. Biologically, the Extended RNA code type I, consists of all codons of the type RNY plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The Extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. Since the dimensions of remarkable subsets of the Genetic Hotels are not necessarily integer numbers, we also introduce the concept of algebraic fractal dimension. A general decoding function which maps each codon to its corresponding amino acid or the stop signals is also derived. The Phenotypic Hotel of amino acids is also illustrated. The proposed evolutionary paths are discussed in terms of the existing theories of the evolution of the SGC. The adoption of 3-dimensional models of the Genetic and Phenotypic Hotels will facilitate the understanding of the biological properties of the SGC.

  3. Experimental Tests of the Algebraic Cluster Model

    NASA Astrophysics Data System (ADS)

    Gai, Moshe

    2018-02-01

    The Algebraic Cluster Model (ACM) of Bijker and Iachello that was proposed already in 2000 has been recently applied to 12C and 16O with much success. We review the current status in 12C with the outstanding observation of the ground state rotational band composed of the spin-parity states of: 0+, 2+, 3-, 4± and 5-. The observation of the 4± parity doublet is a characteristic of (tri-atomic) molecular configuration where the three alpha- particles are arranged in an equilateral triangular configuration of a symmetric spinning top. We discuss future measurement with electron scattering, 12C(e,e’) to test the predicted B(Eλ) of the ACM.

  4. Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model

    NASA Astrophysics Data System (ADS)

    Cirilo António, N.; Manojlović, N.; Salom, I.

    2014-12-01

    We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model.

  5. The analysis of convolutional codes via the extended Smith algorithm

    NASA Technical Reports Server (NTRS)

    Mceliece, R. J.; Onyszchuk, I.

    1993-01-01

    Convolutional codes have been the central part of most error-control systems in deep-space communication for many years. Almost all such applications, however, have used the restricted class of (n,1), also known as 'rate 1/n,' convolutional codes. The more general class of (n,k) convolutional codes contains many potentially useful codes, but their algebraic theory is difficult and has proved to be a stumbling block in the evolution of convolutional coding systems. In this article, the situation is improved by describing a set of practical algorithms for computing certain basic things about a convolutional code (among them the degree, the Forney indices, a minimal generator matrix, and a parity-check matrix), which are usually needed before a system using the code can be built. The approach is based on the classic Forney theory for convolutional codes, together with the extended Smith algorithm for polynomial matrices, which is introduced in this article.

  6. Error-correction coding for digital communications

    NASA Astrophysics Data System (ADS)

    Clark, G. C., Jr.; Cain, J. B.

    This book is written for the design engineer who must build the coding and decoding equipment and for the communication system engineer who must incorporate this equipment into a system. It is also suitable as a senior-level or first-year graduate text for an introductory one-semester course in coding theory. Fundamental concepts of coding are discussed along with group codes, taking into account basic principles, practical constraints, performance computations, coding bounds, generalized parity check codes, polynomial codes, and important classes of group codes. Other topics explored are related to simple nonalgebraic decoding techniques for group codes, soft decision decoding of block codes, algebraic techniques for multiple error correction, the convolutional code structure and Viterbi decoding, syndrome decoding techniques, and sequential decoding techniques. System applications are also considered, giving attention to concatenated codes, coding for the white Gaussian noise channel, interleaver structures for coded systems, and coding for burst noise channels.

  7. Ranging algebraically with more observations than unknowns

    NASA Astrophysics Data System (ADS)

    Awange, J. L.; Fukuda, Y.; Takemoto, S.; Ateya, I. L.; Grafarend, E. W.

    2003-07-01

    In the recently developed Spatial Reference System that is designed to check and control the accuracy of the three-dimensional coordinate measuring machines and tooling equipment (Metronom US., Inc., Ann Arbor: http://www.metronomus.com), the coordinates of the edges of the instrument are computed from distances of the bars. The use of distances in industrial application is fast gaining momentum just as in Geodesy and in Geophysical applications and thus necessitating efficient algorithms to solve the nonlinear distance equations. Whereas the ranging problem with minimum known stations was considered in our previous contribution in the same Journal, the present contribution extends to the case where one is faced with many distance observations than unknowns (overdetermined case) as is usually the case in practise. Using the Gauss-Jacobi Combinatorial approach, we demonstrate how one can proceed to position without reverting to iterative and linearizing procedures such as Newton's or Least Squares approach.

  8. On special Lie algebras having a faithful module with Krull dimension

    NASA Astrophysics Data System (ADS)

    Pikhtilkova, O. A.; Pikhtilkov, S. A.

    2017-02-01

    For special Lie algebras we prove an analogue of Markov's theorem on {PI}-algebras having a faithful module with Krull dimension: the solubility of the prime radical. We give an example of a semiprime Lie algebra that has a faithful module with Krull dimension but cannot be represented as a subdirect product of finitely many prime Lie algebras. We prove a criterion for a semiprime Lie algebra to be representable as such a subdirect product.

  9. Introducing DAE Systems in Undergraduate and Graduate Chemical Engineering Curriculum

    ERIC Educational Resources Information Center

    Mandela, Ravi Kumar; Sridhar, L. N.; Rengaswamy, Raghunathan

    2010-01-01

    Models play an important role in understanding chemical engineering systems. While differential equation models are taught in standard modeling and control courses, Differential Algebraic Equation (DAE) system models are not usually introduced. These models appear naturally in several chemical engineering problems. In this paper, the introduction…

  10. Compositional schedulability analysis of real-time actor-based systems.

    PubMed

    Jaghoori, Mohammad Mahdi; de Boer, Frank; Longuet, Delphine; Chothia, Tom; Sirjani, Marjan

    2017-01-01

    We present an extension of the actor model with real-time, including deadlines associated with messages, and explicit application-level scheduling policies, e.g.,"earliest deadline first" which can be associated with individual actors. Schedulability analysis in this setting amounts to checking whether, given a scheduling policy for each actor, every task is processed within its designated deadline. To check schedulability, we introduce a compositional automata-theoretic approach, based on maximal use of model checking combined with testing. Behavioral interfaces define what an actor expects from the environment, and the deadlines for messages given these assumptions. We use model checking to verify that actors match their behavioral interfaces. We extend timed automata refinement with the notion of deadlines and use it to define compatibility of actor environments with the behavioral interfaces. Model checking of compatibility is computationally hard, so we propose a special testing process. We show that the analyses are decidable and automate the process using the Uppaal model checker.

  11. Algebra for Everyone.

    ERIC Educational Resources Information Center

    Edwards, Edgar L., Jr., Ed.

    The fundamentals of algebra and algebraic thinking should be a part of the background of all citizens in society. The vast increase in the use of technology requires that school mathematics ensure the teaching of algebraic thinking as well as its use at both the elementary and secondary school levels. Algebra is a universal theme that runs through…

  12. Chinese Algebra: Using Historical Problems to Think about Current Curricula

    ERIC Educational Resources Information Center

    Tillema, Erik

    2005-01-01

    The Chinese used the idea of generating equivalent expressions for solving problems where the problems from a historical Chinese text are studied to understand the ways in which the ideas can lead into algebraic calculations and help students to learn algebra. The texts unify algebraic problem solving through complex algebraic thought and afford…

  13. Conceptualizing Routines of Practice That Support Algebraic Reasoning in Elementary Schools: A Constructivist Grounded Theory

    ERIC Educational Resources Information Center

    Store, Jessie Chitsanzo

    2012-01-01

    There is ample literature documenting that, for many decades, high school students view algebra as difficult and do not demonstrate understanding of algebraic concepts. Algebraic reasoning in elementary school aims at meaningfully introducing algebra to elementary school students in preparation for higher-level mathematics. While there is research…

  14. Derive Workshop Matrix Algebra and Linear Algebra.

    ERIC Educational Resources Information Center

    Townsley Kulich, Lisa; Victor, Barbara

    This document presents the course content for a workshop that integrates the use of the computer algebra system Derive with topics in matrix and linear algebra. The first section is a guide to using Derive that provides information on how to write algebraic expressions, make graphs, save files, edit, define functions, differentiate expressions,…

  15. Prospective Teachers' Views on the Use of Calculators with Computer Algebra System in Algebra Instruction

    ERIC Educational Resources Information Center

    Ozgun-Koca, S. Ash

    2010-01-01

    Although growing numbers of secondary school mathematics teachers and students use calculators to study graphs, they mainly rely on paper-and-pencil when manipulating algebraic symbols. However, the Computer Algebra Systems (CAS) on computers or handheld calculators create new possibilities for teaching and learning algebraic manipulation. This…

  16. A Richer Understanding of Algebra

    ERIC Educational Resources Information Center

    Foy, Michelle

    2008-01-01

    Algebra is one of those hard-to-teach topics where pupils seem to struggle to see it as more than a set of rules to learn, but this author recently used the software "Grid Algebra" from ATM, which engaged her Year 7 pupils in exploring algebraic concepts for themselves. "Grid Algebra" allows pupils to experience number,…

  17. On the tensionless limit of gauged WZW models

    NASA Astrophysics Data System (ADS)

    Bakas, I.; Sourdis, C.

    2004-06-01

    The tensionless limit of gauged WZW models arises when the level of the underlying Kac-Moody algebra assumes its critical value, equal to the dual Coxeter number, in which case the central charge of the Virasoro algebra becomes infinite. We examine this limit from the world-sheet and target space viewpoint and show that gravity decouples naturally from the spectrum. Using the two-dimensional black-hole coset SL(2,Bbb R)k/U(1) as illustrative example, we find for k = 2 that the world-sheet symmetry is described by a truncated version of Winfty generated by chiral fields with integer spin s geq 3, whereas the Virasoro algebra becomes abelian and it can be consistently factored out. The geometry of target space looks like an infinitely curved hyperboloid, which invalidates the effective field theory description and conformal invariance can no longer be used to yield reliable space-time interpretation. We also compare our results with the null gauging of WZW models, which correspond to infinite boost in target space and they describe the Liouville mode that decouples in the tensionless limit. A formal BRST analysis of the world-sheet symmetry suggests that the central charge of all higher spin generators should be fixed to a critical value, which is not seen by the contracted Virasoro symmetry. Generalizations to higher dimensional coset models are also briefly discussed in the tensionless limit, where similar observations are made.

  18. Application of polynomial su(1, 1) algebra to Pöschl-Teller potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hong-Biao, E-mail: zhanghb017@nenu.edu.cn; Lu, Lu

    2013-12-15

    Two novel polynomial su(1, 1) algebras for the physical systems with the first and second Pöschl-Teller (PT) potentials are constructed, and their specific representations are presented. Meanwhile, these polynomial su(1, 1) algebras are used as an algebraic technique to solve eigenvalues and eigenfunctions of the Hamiltonians associated with the first and second PT potentials. The algebraic approach explores an appropriate new pair of raising and lowing operators K-circumflex{sub ±} of polynomial su(1, 1) algebra as a pair of shift operators of our Hamiltonians. In addition, two usual su(1, 1) algebras associated with the first and second PT potentials are derivedmore » naturally from the polynomial su(1, 1) algebras built by us.« less

  19. Reduction by invariants and projection of linear representations of Lie algebras applied to the construction of nonlinear realizations

    NASA Astrophysics Data System (ADS)

    Campoamor-Stursberg, R.

    2018-03-01

    A procedure for the construction of nonlinear realizations of Lie algebras in the context of Vessiot-Guldberg-Lie algebras of first-order systems of ordinary differential equations (ODEs) is proposed. The method is based on the reduction of invariants and projection of lowest-dimensional (irreducible) representations of Lie algebras. Applications to the description of parameterized first-order systems of ODEs related by contraction of Lie algebras are given. In particular, the kinematical Lie algebras in (2 + 1)- and (3 + 1)-dimensions are realized simultaneously as Vessiot-Guldberg-Lie algebras of parameterized nonlinear systems in R3 and R4, respectively.

  20. (Fuzzy) Ideals of BN-Algebras

    PubMed Central

    Walendziak, Andrzej

    2015-01-01

    The notions of an ideal and a fuzzy ideal in BN-algebras are introduced. The properties and characterizations of them are investigated. The concepts of normal ideals and normal congruences of a BN-algebra are also studied, the properties of them are displayed, and a one-to-one correspondence between them is presented. Conditions for a fuzzy set to be a fuzzy ideal are given. The relationships between ideals and fuzzy ideals of a BN-algebra are established. The homomorphic properties of fuzzy ideals of a BN-algebra are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals are obtained. PMID:26125050

  1. ANSYS duplicate finite-element checker routine

    NASA Technical Reports Server (NTRS)

    Ortega, R.

    1995-01-01

    An ANSYS finite-element code routine to check for duplicated elements within the volume of a three-dimensional (3D) finite-element mesh was developed. The routine developed is used for checking floating elements within a mesh, identically duplicated elements, and intersecting elements with a common face. A space shuttle main engine alternate turbopump development high pressure oxidizer turbopump finite-element model check using the developed subroutine is discussed. Finally, recommendations are provided for duplicate element checking of 3D finite-element models.

  2. The algebra of supertraces for 2+1 super de Sitter gravity

    NASA Technical Reports Server (NTRS)

    Urrutia, L. F.; Waelbroeck, H.; Zertuche, F.

    1993-01-01

    The algebra of the observables for 2+1 super de Sitter gravity, for one genus of the spatial surface is calculated. The algebra turns out to be an infinite Lie algebra subject to non-linear constraints. The constraints are solved explicitly in terms of five independent complex supertraces. These variables are the true degrees of freedom of the system and their quantized algebra generates a new structure which is referred to as a 'central extension' of the quantum algebra SU(2)q.

  3. a Triangular Deformation of the Two-Dimensional POINCARÉ Algebra

    NASA Astrophysics Data System (ADS)

    Khorrami, M.; Shariati, A.; Abolhassani, M. R.; Aghamohammadi, A.

    Contracting the h-deformation of SL(2, ℝ), we construct a new deformation of two-dimensional Poincaré's algebra, the algebra of functions on its group and its differential structure. It is seen that these dual Hopf algebras are isomorphic to each other. It is also shown that the Hopf algebra is triangular, and its universal R-matrix is also constructed explicitly. We then find a deformation map for the universal enveloping algebra, and at the end, give the deformed mass shells and Lorentz transformation.

  4. Computer algebra and operators

    NASA Technical Reports Server (NTRS)

    Fateman, Richard; Grossman, Robert

    1989-01-01

    The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.

  5. Three-Dimensional Algebraic Models of the tRNA Code and 12 Graphs for Representing the Amino Acids.

    PubMed

    José, Marco V; Morgado, Eberto R; Guimarães, Romeu Cardoso; Zamudio, Gabriel S; de Farías, Sávio Torres; Bobadilla, Juan R; Sosa, Daniela

    2014-08-11

    Three-dimensional algebraic models, also called Genetic Hotels, are developed to represent the Standard Genetic Code, the Standard tRNA Code (S-tRNA-C), and the Human tRNA code (H-tRNA-C). New algebraic concepts are introduced to be able to describe these models, to wit, the generalization of the 2n-Klein Group and the concept of a subgroup coset with a tail. We found that the H-tRNA-C displayed broken symmetries in regard to the S-tRNA-C, which is highly symmetric. We also show that there are only 12 ways to represent each of the corresponding phenotypic graphs of amino acids. The averages of statistical centrality measures of the 12 graphs for each of the three codes are carried out and they are statistically compared. The phenotypic graphs of the S-tRNA-C display a common triangular prism of amino acids in 10 out of the 12 graphs, whilst the corresponding graphs for the H-tRNA-C display only two triangular prisms. The graphs exhibit disjoint clusters of amino acids when their polar requirement values are used. We contend that the S-tRNA-C is in a frozen-like state, whereas the H-tRNA-C may be in an evolving state.

  6. Eigenvectors determination of the ribosome dynamics model during mRNA translation using the Kleene Star algorithm

    NASA Astrophysics Data System (ADS)

    Ernawati; Carnia, E.; Supriatna, A. K.

    2018-03-01

    Eigenvalues and eigenvectors in max-plus algebra have the same important role as eigenvalues and eigenvectors in conventional algebra. In max-plus algebra, eigenvalues and eigenvectors are useful for knowing dynamics of the system such as in train system scheduling, scheduling production systems and scheduling learning activities in moving classes. In the translation of proteins in which the ribosome move uni-directionally along the mRNA strand to recruit the amino acids that make up the protein, eigenvalues and eigenvectors are used to calculate protein production rates and density of ribosomes on the mRNA. Based on this, it is important to examine the eigenvalues and eigenvectors in the process of protein translation. In this paper an eigenvector formula is given for a ribosome dynamics during mRNA translation by using the Kleene star algorithm in which the resulting eigenvector formula is simpler and easier to apply to the system than that introduced elsewhere. This paper also discusses the properties of the matrix {B}λ \\otimes n of model. Among the important properties, it always has the same elements in the first column for n = 1, 2,… if the eigenvalue is the time of initiation, λ = τin , and the column is the eigenvector of the model corresponding to λ.

  7. Pharmacist and Technician Perceptions of Tech-Check-Tech in Community Pharmacy Practice Settings.

    PubMed

    Frost, Timothy P; Adams, Alex J

    2018-04-01

    Tech-check-tech (TCT) is a practice model in which pharmacy technicians with advanced training can perform final verification of prescriptions that have been previously reviewed for appropriateness by a pharmacist. Few states have adopted TCT in part because of the common view that this model is controversial among members of the profession. This article aims to summarize the existing research on pharmacist and technician perceptions of community pharmacy-based TCT. A literature review was conducted using MEDLINE (January 1990 to August 2016) and Google Scholar (January 1990 to August 2016) using the terms "tech* and check," "tech-check-tech," "checking technician," and "accuracy checking tech*." Of the 7 studies identified we found general agreement among both pharmacists and technicians that TCT in community pharmacy settings can be safely performed. This agreement persisted in studies of theoretical TCT models and in studies assessing participants in actual community-based TCT models. Pharmacists who had previously worked with a checking technician were generally more favorable toward TCT. Both pharmacists and technicians in community pharmacy settings generally perceived TCT to be safe, in both theoretical surveys and in surveys following actual TCT demonstration projects. These perceptions of safety align well with the actual outcomes achieved from community pharmacy TCT studies.

  8. An Arithmetic-Algebraic Work Space for the Promotion of Arithmetic and Algebraic Thinking: Triangular Numbers

    ERIC Educational Resources Information Center

    Hitt, Fernando; Saboya, Mireille; Cortés Zavala, Carlos

    2016-01-01

    This paper presents an experiment that attempts to mobilise an arithmetic-algebraic way of thinking in order to articulate between arithmetic thinking and the early algebraic thinking, which is considered a prelude to algebraic thinking. In the process of building this latter way of thinking, researchers analysed pupils' spontaneous production…

  9. Spontaneous Meta-Arithmetic as a First Step toward School Algebra

    ERIC Educational Resources Information Center

    Caspi, Shai; Sfard, Anna

    2012-01-01

    Taking as the point of departure the vision of school algebra as a formalized meta-discourse of arithmetic, we have been following five pairs of 7th grade students as they progress in algebraic discourse during 24 months, from their informal algebraic talk to the formal algebraic discourse, as taught in school. Our analysis follows changes that…

  10. Littelmann path model for geometric crystals, Whittaker functions on Lie groups and Brownian motion

    NASA Astrophysics Data System (ADS)

    Chhaibi, Reda

    2013-02-01

    Generally speaking, this thesis focuses on the interplay between the representations of Lie groups and probability theory. It subdivides into essentially three parts. In a first rather algebraic part, we construct a path model for geometric crystals in the sense of Berenstein and Kazhdan, for complex semi-simple Lie groups. We will mainly describe the algebraic structure, its natural morphisms and parameterizations. The theory of total positivity will play a particularly important role. Then, we anticipate on the probabilistic part by exhibiting a canonical measure on geometric crystals. It uses as ingredients the superpotential for the flag manifold and a measure invariant under the crystal actions. The image measure under the weight map plays the role of Duistermaat-Heckman measure. Its Laplace transform defines Whittaker functions, providing an interesting formula for all Lie groups. Then it appears clearly that Whittaker functions are to geometric crystals, what characters are to combinatorial crystals. The Littlewood-Richardson rule is also exposed. Finally we present the probabilistic approach that allows to find the canonical measure. It is based on the fundamental idea that the Wiener measure will induce the adequate measure on the algebraic structures through the path model. In the last chapter, we show how our geometric model degenerates to the continuous classical Littelmann path model and thus recover known results. For example, the canonical measure on a geometric crystal of highest weight degenerates into a uniform measure on a polytope, and recovers the parameterizations of continuous crystals.

  11. Algebraic Reynolds stress modeling of turbulence subject to rapid homogeneous and non-homogeneous compression or expansion

    NASA Astrophysics Data System (ADS)

    Grigoriev, I. A.; Wallin, S.; Brethouwer, G.; Grundestam, O.; Johansson, A. V.

    2016-02-01

    A recently developed explicit algebraic Reynolds stress model (EARSM) by Grigoriev et al. ["A realizable explicit algebraic Reynolds stress model for compressible turbulent flow with significant mean dilatation," Phys. Fluids 25(10), 105112 (2013)] and the related differential Reynolds stress model (DRSM) are used to investigate the influence of homogeneous shear and compression on the evolution of turbulence in the limit of rapid distortion theory (RDT). The DRSM predictions of the turbulence kinetic energy evolution are in reasonable agreement with RDT while the evolution of diagonal components of anisotropy correctly captures the essential features, which is not the case for standard compressible extensions of DRSMs. The EARSM is shown to give a realizable anisotropy tensor and a correct trend of the growth of turbulence kinetic energy K, which saturates at a power law growth versus compression ratio, as well as retaining a normalized strain in the RDT regime. In contrast, an eddy-viscosity model results in a rapid exponential growth of K and excludes both realizability and high magnitude of the strain rate. We illustrate the importance of using a proper algebraic treatment of EARSM in systems with high values of dilatation and vorticity but low shear. A homogeneously compressed and rotating gas cloud with cylindrical symmetry, related to astrophysical flows and swirling supercritical flows, was investigated too. We also outline the extension of DRSM and EARSM to include the effect of non-homogeneous density coupled with "local mean acceleration" which can be important for, e.g., stratified flows or flows with heat release. A fixed-point analysis of direct numerical simulation data of combustion in a wall-jet flow demonstrates that our model gives quantitatively correct predictions of both streamwise and cross-stream components of turbulent density flux as well as their influence on the anisotropies. In summary, we believe that our approach, based on a proper formulation of the rapid pressure-strain correlation and accounting for the coupling with turbulent density flux, can be an important element in CFD tools for compressible flows.

  12. Gender differences in algebraic thinking ability to solve mathematics problems

    NASA Astrophysics Data System (ADS)

    Kusumaningsih, W.; Darhim; Herman, T.; Turmudi

    2018-05-01

    This study aimed to conduct a gender study on students' algebraic thinking ability in solving a mathematics problem, polyhedron concept, for grade VIII. This research used a qualitative method. The data was collected using: test and interview methods. The subjects in this study were eight male and female students with different level of abilities. It was found that the algebraic thinking skills of male students reached high group of five categories. They were superior in terms of reasoning and quick understanding in solving problems. Algebraic thinking ability of high-achieving group of female students also met five categories of algebraic thinking indicators. They were more diligent, tenacious and thorough in solving problems. Algebraic thinking ability of male students in medium category only satisfied three categories of algebraic thinking indicators. They were sufficient in terms of reasoning and understanding in solving problems. Algebraic thinking ability group of female students in medium group also satisfied three categories of algebraic thinking indicators. They were fairly diligent, tenacious and meticulous on working on the problems.

  13. Particle-like structure of coaxial Lie algebras

    NASA Astrophysics Data System (ADS)

    Vinogradov, A. M.

    2018-01-01

    This paper is a natural continuation of Vinogradov [J. Math. Phys. 58, 071703 (2017)] where we proved that any Lie algebra over an algebraically closed field or over R can be assembled in a number of steps from two elementary constituents, called dyons and triadons. Here we consider the problems of the construction and classification of those Lie algebras which can be assembled in one step from base dyons and triadons, called coaxial Lie algebras. The base dyons and triadons are Lie algebra structures that have only one non-trivial structure constant in a given basis, while coaxial Lie algebras are linear combinations of pairwise compatible base dyons and triadons. We describe the maximal families of pairwise compatible base dyons and triadons called clusters, and, as a consequence, we give a complete description of the coaxial Lie algebras. The remarkable fact is that dyons and triadons in clusters are self-organised in structural groups which are surrounded by casings and linked by connectives. We discuss generalisations and applications to the theory of deformations of Lie algebras.

  14. The Growing Importance of Linear Algebra in Undergraduate Mathematics.

    ERIC Educational Resources Information Center

    Tucker, Alan

    1993-01-01

    Discusses the theoretical and practical importance of linear algebra. Presents a brief history of linear algebra and matrix theory and describes the place of linear algebra in the undergraduate curriculum. (MDH)

  15. Building Your Own Regression Model

    ERIC Educational Resources Information Center

    Horton, Robert, M.; Phillips, Vicki; Kenelly, John

    2004-01-01

    Spreadsheets to explore regression with an algebra 2 class in a medium-sized rural high school are presented. The use of spreadsheets can help students develop sophisticated understanding of mathematical models and use them to describe real-world phenomena.

  16. Haag duality for Kitaev’s quantum double model for abelian groups

    NASA Astrophysics Data System (ADS)

    Fiedler, Leander; Naaijkens, Pieter

    2015-11-01

    We prove Haag duality for cone-like regions in the ground state representation corresponding to the translational invariant ground state of Kitaev’s quantum double model for finite abelian groups. This property says that if an observable commutes with all observables localized outside the cone region, it actually is an element of the von Neumann algebra generated by the local observables inside the cone. This strengthens locality, which says that observables localized in disjoint regions commute. As an application, we consider the superselection structure of the quantum double model for abelian groups on an infinite lattice in the spirit of the Doplicher-Haag-Roberts program in algebraic quantum field theory. We find that, as is the case for the toric code model on an infinite lattice, the superselection structure is given by the category of irreducible representations of the quantum double.

  17. A k-omega-multivariate beta PDF for supersonic combustion

    NASA Technical Reports Server (NTRS)

    Alexopoulos, G. A.; Baurle, R. A.; Hassan, H. A.

    1992-01-01

    In an attempt to study the interaction between combustion and turbulence in supersonic flows, an assumed PDF has been employed. This makes it possible to calculate the time average of the chemical source terms that appear in the species conservation equations. In order to determine the averages indicated in an equation, two transport equations, one for the temperature (enthalpy) variance and one for Q, are required. Model equations are formulated for such quantities. The turbulent time scale controls the evolution. An algebraic model similar to that used by Eklund et al was used in an attempt to predict the recent measurements of Cheng et al. Predictions were satisfactory before ignition but were less satisfactory after ignition. One of the reasons for this behavior is the inadequacy of the algebraic turbulence model employed. Because of this, the objective of this work is to develop a k-omega model to remedy the situation.

  18. Simulation of the Flow Through Porous Layers Composed of Converging-Diverging Capillary Fissures or Tubes

    NASA Astrophysics Data System (ADS)

    Walicka, A.

    2018-02-01

    In this paper, a porous medium is modelled by a network of converging-diverging capillaries which may be considered as fissures or tubes. This model makes it necessary to consider flows through capillary fissures or tubes. Therefore an analytical method for deriving the relationships between pressure drops, volumetric flow rates and velocities for the following fluids: Newtonian, polar, power-law, pseudoplastic (DeHaven and Sisko types) and Shulmanian, was developed. Next, considerations on the models of pore network for Newtonian and non-Newtonian fluids were presented. The models, similar to the schemes of central finite differences may provide a good basis for transforming the governing equations of a flow through the porous medium into a set of linear or quasi-linear algebraic equations. It was shown that the some coefficients in these algebraic equations depend on the kind of the capillary convergence.

  19. Learning to teach upper primary school algebra: changes to teachers' mathematical knowledge for teaching functional thinking

    NASA Astrophysics Data System (ADS)

    Wilkie, Karina J.

    2016-06-01

    A key aspect of learning algebra in the middle years of schooling is exploring the functional relationship between two variables: noticing and generalising the relationship, and expressing it mathematically. This article describes research on the professional learning of upper primary school teachers for developing their students' functional thinking through pattern generalisation. This aspect of algebra learning has been explicitly brought to the attention of upper primary teachers in the recently introduced Australian curriculum. Ten practising teachers participated over 1 year in a design-based research project involving a sequence of geometric pattern generalisation lessons with their classes. Initial and final survey responses and teachers' interactions in regular meetings and lessons were analysed from cognitive and situated perspectives on professional learning, using a theoretical model for the different types of knowledge needed for teaching mathematics. The teachers demonstrated an increase in certain aspects of their mathematical knowledge for teaching algebra as well as some residual issues. Implications for the professional learning of practising and pre-service teachers to develop their mathematics knowledge for teaching functional thinking, and challenges with operationalising knowledge categories for field-based research are presented.

  20. Representing k-graphs as Matrix Algebras

    NASA Astrophysics Data System (ADS)

    Rosjanuardi, R.

    2018-05-01

    For any commutative unital ring R and finitely aligned k-graph Λ with |Λ| < ∞ without cycles, we can realise Kumjian-Pask algebra KP R (Λ) as a direct sum of of matrix algebra over some vertices v with properties ν = νΛ, i.e: ⊕ νΛ=ν M |Λv|(R). When there is only a single vertex ν ∈ Λ° such that ν = νΛ, we can realise the Kumjian-Pask algebra as the matrix algebra M |ΛV|(R). Hence the matrix algebra M |vΛ|(R) can be regarded as a representation of the k-graph Λ. In this talk we will figure out the relation between finitely aligned k-graph and matrix algebra.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heroux, Michael Allen; Marker, Bryan

    This report summarizes the progress made as part of a one year lab-directed research and development (LDRD) project to fund the research efforts of Bryan Marker at the University of Texas at Austin. The goal of the project was to develop new techniques for automatically tuning the performance of dense linear algebra kernels. These kernels often represent the majority of computational time in an application. The primary outcome from this work is a demonstration of the value of model driven engineering as an approach to accurately predict and study performance trade-offs for dense linear algebra computations.

  2. An Algebraic Approach to the Study and Optimization of the Set of Rules of a Conditional Rewrite System

    NASA Astrophysics Data System (ADS)

    Makhortov, S. D.

    2018-03-01

    An algebraic system containing the semantics of a set of rules of the conditional equational theory (or the conditional term rewriting system) is introduced. The following basic questions are considered for the given model: existence of logical closure, structure of logical closure, possibility of equivalent transformations, and construction of logical reduction. The obtained results can be applied to the analysis and automatic optimization of the corresponding set of rules. The basis for the given research is the theory of lattices and binary relations.

  3. Muzzle Flash Onset: An Algebraic Criterion and Further Validation of the Muzzle Exhaust Flow Field Model

    DTIC Science & Technology

    1983-03-01

    Tic, equals to (NI/ Nic ) where Nic , defined as the net chemical production rate of i-th species, is in general the algebraic sum of terms which are...detailed analysis has shown that in preignition regions the chemical rates which make a significant contribution to any of the Nic are such that at least...Elkton Division Lab., Inc. ATTN. R. Biddle ATTN: M. Summeitield Tech Lib. 1041 US Hlighway One North P. 0. Box 241 Princeton, NJ 08540 Elkton, MD

  4. Monotonically improving approximate answers to relational algebra queries

    NASA Technical Reports Server (NTRS)

    Smith, Kenneth P.; Liu, J. W. S.

    1989-01-01

    We present here a query processing method that produces approximate answers to queries posed in standard relational algebra. This method is monotone in the sense that the accuracy of the approximate result improves with the amount of time spent producing the result. This strategy enables us to trade the time to produce the result for the accuracy of the result. An approximate relational model that characterizes appromimate relations and a partial order for comparing them is developed. Relational operators which operate on and return approximate relations are defined.

  5. The Geometry of Generations

    NASA Astrophysics Data System (ADS)

    He, Yang-Hui; Jejjala, Vishnu; Matti, Cyril; Nelson, Brent D.; Stillman, Michael

    2015-10-01

    We present an intriguing and precise interplay between algebraic geometry and the phenomenology of generations of particles. Using the electroweak sector of the MSSM as a testing ground, we compute the moduli space of vacua as an algebraic variety for multiple generations of Standard Model matter and Higgs doublets. The space is shown to have Calabi-Yau, Grassmannian, and toric signatures, which sensitively depend on the number of generations of leptons, as well as inclusion of Majorana mass terms for right-handed neutrinos. We speculate as to why three generations is special.

  6. A Model for Math Modeling

    ERIC Educational Resources Information Center

    Lin, Tony; Erfan, Sasan

    2016-01-01

    Mathematical modeling is an open-ended research subject where no definite answers exist for any problem. Math modeling enables thinking outside the box to connect different fields of studies together including statistics, algebra, calculus, matrices, programming and scientific writing. As an integral part of society, it is the foundation for many…

  7. The hopf algebra of vector fields on complex quantum groups

    NASA Astrophysics Data System (ADS)

    Drabant, Bernhard; Jurčo, Branislav; Schlieker, Michael; Weich, Wolfgang; Zumino, Bruno

    1992-10-01

    We derive the equivalence of the complex quantum enveloping algebra and the algebra of complex quantum vector fields for the Lie algebra types A n , B n , C n , and D n by factorizing the vector fields uniquely into a triangular and a unitary part and identifying them with the corresponding elements of the algebra of regular functionals.

  8. Algorithms for computations of Loday algebras' invariants

    NASA Astrophysics Data System (ADS)

    Hussain, Sharifah Kartini Said; Rakhimov, I. S.; Basri, W.

    2017-04-01

    The paper is devoted to applications of some computer programs to study structural determination of Loday algebras. We present how these computer programs can be applied in computations of various invariants of Loday algebras and provide several computer programs in Maple to verify Loday algebras' identities, the isomorphisms between the algebras, as a special case, to describe the automorphism groups, centroids and derivations.

  9. Algebra for All: The Effect of Algebra Coursework and Classroom Peer Academic Composition on Low-Achieving Students

    ERIC Educational Resources Information Center

    Nomi, Takako; Raudenbush, Stephen W.

    2014-01-01

    Algebra is often considered as a gateway for later achievement. A recent report by the Mathematics Advisory Panel (2008) underscores the importance of improving algebra learning in secondary school. Today, a growing number of states and districts require algebra for all students in ninth grade or earlier. Chicago is at the forefront of this…

  10. Derivation in INK-algebras

    NASA Astrophysics Data System (ADS)

    Kaviyarasu, M.; Indhira, K.

    2018-04-01

    In 2017 we introduced a new notion of algebra called IKN-algebra. Motivated by some result on derivations (rightleft)-derivation and (leftright)- derivation in ring. In this paper we introduce derivation in INK-Algebras and investigate some important result.

  11. The Robustness Analysis of Wireless Sensor Networks under Uncertain Interference

    PubMed Central

    Deng, Changjian

    2013-01-01

    Based on the complex network theory, robustness analysis of condition monitoring wireless sensor network under uncertain interference is present. In the evolution of the topology of sensor networks, the density weighted algebraic connectivity is taken into account, and the phenomenon of removing and repairing the link and node in the network is discussed. Numerical simulation is conducted to explore algebraic connectivity characteristics and network robustness performance. It is found that nodes density has the effect on algebraic connectivity distribution in the random graph model; high density nodes carry more connections, use more throughputs, and may be more unreliable. Moreover, the results show that, when network should be more error tolerant or robust by repairing nodes or adding new nodes, the network should be better clustered in median and high scale wireless sensor networks and be meshing topology in small scale networks. PMID:24363613

  12. Two- and four-dimensional representations of the PT - and CPT -symmetric fermionic algebras

    NASA Astrophysics Data System (ADS)

    Beygi, Alireza; Klevansky, S. P.; Bender, Carl M.

    2018-03-01

    Fermionic systems differ from their bosonic counterparts, the main difference with regard to symmetry considerations being that T2=-1 for fermionic systems. In PT -symmetric quantum mechanics an operator has both PT and CPT adjoints. Fermionic operators η , which are quadratically nilpotent (η2=0 ), and algebras with PT and CPT adjoints can be constructed. These algebras obey different anticommutation relations: η ηPT+ηPTη =-1 , where ηPT is the PT adjoint of η , and η ηCPT+ηCPTη =1 , where ηCPT is the CPT adjoint of η . This paper presents matrix representations for the operator η and its PT and CPT adjoints in two and four dimensions. A PT -symmetric second-quantized Hamiltonian modeled on quantum electrodynamics that describes a system of interacting fermions and bosons is constructed within this framework and is solved exactly.

  13. Toric Calabi-Yau threefolds as quantum integrable systems. R-matrix and RTT relations

    NASA Astrophysics Data System (ADS)

    Awata, Hidetoshi; Kanno, Hiroaki; Mironov, Andrei; Morozov, Alexei; Morozov, Andrey; Ohkubo, Yusuke; Zenkevich, Yegor

    2016-10-01

    R-matrix is explicitly constructed for simplest representations of the Ding-Iohara-Miki algebra. Calculation is straightforward and significantly simpler than the one through the universal R-matrix used for a similar calculation in the Yangian case by A. Smirnov but less general. We investigate the interplay between the R-matrix structure and the structure of DIM algebra intertwiners, i.e. of refined topological vertices and show that the R-matrix is diagonalized by the action of the spectral duality belonging to the SL(2, ℤ) group of DIM algebra automorphisms. We also construct the T-operators satisfying the RTT relations with the R-matrix from refined amplitudes on resolved conifold. We thus show that topological string theories on the toric Calabi-Yau threefolds can be naturally interpreted as lattice integrable models. Integrals of motion for these systems are related to q-deformation of the reflection matrices of the Liouville/Toda theories.

  14. Exact solution of the relativistic quantum Toda chain

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng

    2017-03-01

    The relativistic quantum Toda chain model is studied with the generalized algebraic Bethe Ansatz method. By employing a set of local gauge transformations, proper local vacuum states can be obtained for this model. The exact spectrum and eigenstates of the model are thus constructed simultaneously.

  15. Prediction of Transonic Vortex Flows Using Linear and Nonlinear Turbulent Eddy Viscosity Models

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Gatski, Thomas B.

    2000-01-01

    Three-dimensional transonic flow over a delta wing is investigated with a focus on the effect of transition and influence of turbulence stress anisotropies. The performance of linear eddy viscosity models and an explicit algebraic stress model is assessed at the start of vortex flow, and the results compared with experimental data. To assess the effect of transition location, computations that either fix transition or are fully turbulent are performed. To assess the effect of the turbulent stress anisotropy, comparisons are made between predictions from the algebraic stress model and the linear eddy viscosity models. Both transition location and turbulent stress anisotropy significantly affect the 3D flow field. The most significant effect is found to be the modeling of transition location. At a Mach number of 0.90, the computed solution changes character from steady to unsteady depending on transition onset. Accounting for the anisotropies in the turbulent stresses also considerably impacts the flow, most notably in the outboard region of flow separation.

  16. A near-wall turbulence model and its application to fully developed turbulent channel and pipe flows

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.

    1988-01-01

    A near wall turbulence model and its incorporation into a multiple-time-scale turbulence model are presented. In the method, the conservation of mass, momentum, and the turbulent kinetic energy equations are integrated up to the wall; and the energy transfer rate and the dissipation rate inside the near wall layer are obtained from algebraic equations. The algebraic equations for the energy transfer rate and the dissipation rate inside the near wall layer were obtained from a k-equation turbulence model and the near wall analysis. A fully developed turbulent channel flow and fully developed turbulent pipe flows were solved using a finite element method to test the predictive capability of the turbulence model. The computational results compared favorably with experimental data. It is also shown that the present turbulence model could resolve the over shoot phenomena of the turbulent kinetic energy and the dissipation rate in the region very close to the wall.

  17. Contractions and deformations of quasiclassical Lie algebras preserving a nondegenerate quadratic Casimir operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campoamor-Stursberg, R., E-mail: rutwig@mat.ucm.e

    2008-05-15

    By means of contractions of Lie algebras, we obtain new classes of indecomposable quasiclassical Lie algebras that satisfy the Yang-Baxter equations in its reformulation in terms of triple products. These algebras are shown to arise naturally from noncompact real simple algebras with nonsimple complexification, where we impose that a nondegenerate quadratic Casimir operator is preserved by the limiting process. We further consider the converse problem and obtain sufficient conditions on integrable cocycles of quasiclassical Lie algebras in order to preserve nondegenerate quadratic Casimir operators by the associated linear deformations.

  18. Roughness in Lattice Ordered Effect Algebras

    PubMed Central

    Xin, Xiao Long; Hua, Xiu Juan; Zhu, Xi

    2014-01-01

    Many authors have studied roughness on various algebraic systems. In this paper, we consider a lattice ordered effect algebra and discuss its roughness in this context. Moreover, we introduce the notions of the interior and the closure of a subset and give some of their properties in effect algebras. Finally, we use a Riesz ideal induced congruence and define a function e(a, b) in a lattice ordered effect algebra E and build a relationship between it and congruence classes. Then we study some properties about approximation of lattice ordered effect algebras. PMID:25170523

  19. D{sub {infinity}}-differential E{sub {infinity}}-algebras and spectral sequences of fibrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapin, Sergei V

    2007-10-31

    The notion of an E{sub {infinity}}-algebra with a filtration is introduced. The connections are established between E{sub {infinity}}-algebras with filtrations and the theory of D{sub {infinity}}-differential E{sub {infinity}}-algebras over fields. Based on the technique of D{sub {infinity}}-differential E{sub {infinity}}-algebras, the apparatus of spectral sequences is developed for E{sub {infinity}}-algebras with filtrations, and applications of this apparatus to the multiplicative cohomology spectral sequences of fibrations are given. Bibliography: 21 titles.

  20. Aspects géométriques et intégrables des modèles de matrices aléatoires

    NASA Astrophysics Data System (ADS)

    Marchal, Olivier

    2010-12-01

    This thesis deals with the geometric and integrable aspects associated with random matrix models. Its purpose is to provide various applications of random matrix theory, from algebraic geometry to partial differential equations of integrable systems. The variety of these applications shows why matrix models are important from a mathematical point of view. First, the thesis will focus on the study of the merging of two intervals of the eigenvalues density near a singular point. Specifically, we will show why this special limit gives universal equations from the Painlevé II hierarchy of integrable systems theory. Then, following the approach of (bi) orthogonal polynomials introduced by Mehta to compute partition functions, we will find Riemann-Hilbert and isomonodromic problems connected to matrix models, making the link with the theory of Jimbo, Miwa and Ueno. In particular, we will describe how the hermitian two-matrix models provide a degenerate case of Jimbo-Miwa-Ueno's theory that we will generalize in this context. Furthermore, the loop equations method, with its central notions of spectral curve and topological expansion, will lead to the symplectic invariants of algebraic geometry recently proposed by Eynard and Orantin. This last point will be generalized to the case of non-hermitian matrix models (arbitrary beta) paving the way to "quantum algebraic geometry" and to the generalization of symplectic invariants to "quantum curves". Finally, this set up will be applied to combinatorics in the context of topological string theory, with the explicit computation of an hermitian random matrix model enumerating the Gromov-Witten invariants of a toric Calabi-Yau threefold.

Top