Science.gov

Sample records for algebraic modeling slam

  1. Highly-accelerated quantitative 2D and 3D localized spectroscopy with linear algebraic modeling (SLAM) and sensitivity encoding

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Gabr, Refaat E.; Zhou, Jinyuan; Weiss, Robert G.; Bottomley, Paul A.

    2013-12-01

    Noninvasive magnetic resonance spectroscopy (MRS) with chemical shift imaging (CSI) provides valuable metabolic information for research and clinical studies, but is often limited by long scan times. Recently, spectroscopy with linear algebraic modeling (SLAM) was shown to provide compartment-averaged spectra resolved in one spatial dimension with many-fold reductions in scan-time. This was achieved using a small subset of the CSI phase-encoding steps from central image k-space that maximized the signal-to-noise ratio. Here, SLAM is extended to two- and three-dimensions (2D, 3D). In addition, SLAM is combined with sensitivity-encoded (SENSE) parallel imaging techniques, enabling the replacement of even more CSI phase-encoding steps to further accelerate scan-speed. A modified SLAM reconstruction algorithm is introduced that significantly reduces the effects of signal nonuniformity within compartments. Finally, main-field inhomogeneity corrections are provided, analogous to CSI. These methods are all tested on brain proton MRS data from a total of 24 patients with brain tumors, and in a human cardiac phosphorus 3D SLAM study at 3T. Acceleration factors of up to 120-fold versus CSI are demonstrated, including speed-up factors of 5-fold relative to already-accelerated SENSE CSI. Brain metabolites are quantified in SLAM and SENSE SLAM spectra and found to be indistinguishable from CSI measures from the same compartments. The modified reconstruction algorithm demonstrated immunity to maladjusted segmentation and errors from signal heterogeneity in brain data. In conclusion, SLAM demonstrates the potential to supplant CSI in studies requiring compartment-average spectra or large volume coverage, by dramatically reducing scan-time while providing essentially the same quantitative results.

  2. SLAM: a sodium-limestone concrete ablation model

    SciTech Connect

    Suo-Anttila, A.J.

    1983-12-01

    SLAM is a three-region model, containing a pool (sodium and reaction debris) region, a dry (boundary layer and dehydrated concrete) region, and a wet (hydrated concrete) region. The model includes a solution to the mass, momentum, and energy equations in each region. A chemical kinetics model is included to provide heat sources due to chemical reactions between the sodium and the concrete. Both isolated model as well as integrated whole code evaluations have been made with good results. The chemical kinetics and water migration models were evaluated separately, with good results. Several small and large-scale sodium limestone concrete experiments were simulated with reasonable agreement between SLAM and the experimental results. The SLAM code was applied to investigate the effects of mixing, pool temperature, pool depth and fluidization. All these phenomena were found to be of significance in the predicted response of the sodium concrete interaction. Pool fluidization is predicted to be the most important variable in large scale interactions.

  3. A SLAM II simulation model for analyzing space station mission processing requirements

    NASA Technical Reports Server (NTRS)

    Linton, D. G.

    1985-01-01

    Space station mission processing is modeled via the SLAM 2 simulation language on an IBM 4381 mainframe and an IBM PC microcomputer with 620K RAM, two double-sided disk drives and an 8087 coprocessor chip. Using a time phased mission (payload) schedule and parameters associated with the mission, orbiter (space shuttle) and ground facility databases, estimates for ground facility utilization are computed. Simulation output associated with the science and applications database is used to assess alternative mission schedules.

  4. Network simulation using the simulation language for alternate modeling (SLAM 2)

    NASA Technical Reports Server (NTRS)

    Shen, S.; Morris, D. W.

    1983-01-01

    The simulation language for alternate modeling (SLAM 2) is a general purpose language that combines network, discrete event, and continuous modeling capabilities in a single language system. The efficacy of the system's network modeling is examined and discussed. Examples are given of the symbolism that is used, and an example problem and model are derived. The results are discussed in terms of the ease of programming, special features, and system limitations. The system offers many features which allow rapid model development and provides an informative standardized output. The system also has limitations which may cause undetected errors and misleading reports unless the user is aware of these programming characteristics.

  5. Pseudolinear Model Based Solution to the SLAM Problem of Nonholonomic Mobile Robots

    NASA Astrophysics Data System (ADS)

    Pathiranage, Chandima Dedduwa; Watanabe, Keigo; Izumi, Kiyotaka

    This paper describes an improved solution to the simultaneous localization and mapping (SLAM) problem based on pseudolinear models. Accurate estimation of vehicle and landmark states is one of the key issues for successful mobile robot navigation if the configuration of the environment and initial robot location are unknown. A state estimator which can be designed to use the nonlinearity as it is coming from the original model has always been invaluable in which high accuracy is expected. Thus to accomplish the above highlighted point, pseudolinear model based Kalman filter (PLKF) state estimator is introduced. A less error prone vehicle process model is proposed to improve the accuracy and the faster convergence of state estimation. Evolution of vehicle motion is modeled using vehicle frame translation derived from successive dead reckoned poses as a control input. A measurement model with two sensor frames is proposed to improve the data association. The PLKF-based SLAM algorithm is simulated using Matlab for vehicle-landmarks system and results show that the proposed approach performs much accurately compared to the well known extended Kalman filter (EKF).

  6. MODEL IDENTIFICATION AND COMPUTER ALGEBRA.

    PubMed

    Bollen, Kenneth A; Bauldry, Shawn

    2010-10-07

    Multiequation models that contain observed or latent variables are common in the social sciences. To determine whether unique parameter values exist for such models, one needs to assess model identification. In practice analysts rely on empirical checks that evaluate the singularity of the information matrix evaluated at sample estimates of parameters. The discrepancy between estimates and population values, the limitations of numerical assessments of ranks, and the difference between local and global identification make this practice less than perfect. In this paper we outline how to use computer algebra systems (CAS) to determine the local and global identification of multiequation models with or without latent variables. We demonstrate a symbolic CAS approach to local identification and develop a CAS approach to obtain explicit algebraic solutions for each of the model parameters. We illustrate the procedures with several examples, including a new proof of the identification of a model for handling missing data using auxiliary variables. We present an identification procedure for Structural Equation Models that makes use of CAS and that is a useful complement to current methods.

  7. Bohr model as an algebraic collective model

    SciTech Connect

    Rowe, D. J.; Welsh, T. A.; Caprio, M. A.

    2009-05-15

    Developments and applications are presented of an algebraic version of Bohr's collective model. Illustrative examples show that fully converged calculations can be performed quickly and easily for a large range of Hamiltonians. As a result, the Bohr model becomes an effective tool in the analysis of experimental data. The examples are chosen both to confirm the reliability of the algebraic collective model and to show the diversity of results that can be obtained by its use. The focus of the paper is to facilitate identification of the limitations of the Bohr model with a view to developing more realistic, computationally tractable models.

  8. LERC-SLAM - THE NASA LEWIS RESEARCH CENTER SATELLITE LINK ATTENUATION MODEL PROGRAM (MACINTOSH VERSION)

    NASA Technical Reports Server (NTRS)

    Manning, R. M.

    1994-01-01

    The frequency and intensity of rain attenuation affecting the communication between a satellite and an earth terminal is an important consideration in planning satellite links. The NASA Lewis Research Center Satellite Link Attenuation Model Program (LeRC-SLAM) provides a static and dynamic statistical assessment of the impact of rain attenuation on a communications link established between an earth terminal and a geosynchronous satellite. The program is designed for use in the specification, design and assessment of satellite links for any terminal location in the continental United States. The basis for LeRC-SLAM is the ACTS Rain Attenuation Prediction Model, which uses a log-normal cumulative probability distribution to describe the random process of rain attenuation on satellite links. The derivation of the statistics for the rainrate process at the specified terminal location relies on long term rainfall records compiled by the U.S. Weather Service during time periods of up to 55 years in length. The theory of extreme value statistics is also utilized. The user provides 1) the longitudinal position of the satellite in geosynchronous orbit, 2) the geographical position of the earth terminal in terms of latitude and longitude, 3) the height above sea level of the terminal site, 4) the yearly average rainfall at the terminal site, and 5) the operating frequency of the communications link (within 1 to 1000 GHz, inclusive). Based on the yearly average rainfall at the terminal location, LeRC-SLAM calculates the relevant rain statistics for the site using an internal data base. The program then generates rain attenuation data for the satellite link. This data includes a description of the static (i.e., yearly) attenuation process, an evaluation of the cumulative probability distribution for attenuation effects, and an evaluation of the probability of fades below selected fade depths. In addition, LeRC-SLAM calculates the elevation and azimuth angles of the terminal

  9. LERC-SLAM - THE NASA LEWIS RESEARCH CENTER SATELLITE LINK ATTENUATION MODEL PROGRAM (IBM PC VERSION)

    NASA Technical Reports Server (NTRS)

    Manning, R. M.

    1994-01-01

    The frequency and intensity of rain attenuation affecting the communication between a satellite and an earth terminal is an important consideration in planning satellite links. The NASA Lewis Research Center Satellite Link Attenuation Model Program (LeRC-SLAM) provides a static and dynamic statistical assessment of the impact of rain attenuation on a communications link established between an earth terminal and a geosynchronous satellite. The program is designed for use in the specification, design and assessment of satellite links for any terminal location in the continental United States. The basis for LeRC-SLAM is the ACTS Rain Attenuation Prediction Model, which uses a log-normal cumulative probability distribution to describe the random process of rain attenuation on satellite links. The derivation of the statistics for the rainrate process at the specified terminal location relies on long term rainfall records compiled by the U.S. Weather Service during time periods of up to 55 years in length. The theory of extreme value statistics is also utilized. The user provides 1) the longitudinal position of the satellite in geosynchronous orbit, 2) the geographical position of the earth terminal in terms of latitude and longitude, 3) the height above sea level of the terminal site, 4) the yearly average rainfall at the terminal site, and 5) the operating frequency of the communications link (within 1 to 1000 GHz, inclusive). Based on the yearly average rainfall at the terminal location, LeRC-SLAM calculates the relevant rain statistics for the site using an internal data base. The program then generates rain attenuation data for the satellite link. This data includes a description of the static (i.e., yearly) attenuation process, an evaluation of the cumulative probability distribution for attenuation effects, and an evaluation of the probability of fades below selected fade depths. In addition, LeRC-SLAM calculates the elevation and azimuth angles of the terminal

  10. AUTOMATIC CALIBRATION OF A STOCHASTIC-LAGRANGIAN TRANSPORT MODEL (SLAM)

    EPA Science Inventory

    Numerical models are a useful tool in evaluating and designing NAPL remediation systems. Traditional constitutive finite difference and finite element models are complex and expensive to apply. For this reason, this paper presents the application of a simplified stochastic-Lagran...

  11. Teaching Modeling and Axiomatization with Boolean Algebra.

    ERIC Educational Resources Information Center

    De Villiers, Michael D.

    1987-01-01

    Presented is an alternative approach to the traditional teaching of Boolean algebra for secondary school mathematics. The main aim of the approach is to use Boolean algebra to teach pupils such mathematical processes as modeling and axiomatization. A course using the approach is described. (RH)

  12. Using Students' Interests as Algebraic Models

    ERIC Educational Resources Information Center

    Whaley, Kenneth A.

    2012-01-01

    Fostering algebraic thinking is an important goal for middle-grades mathematics teachers. Developing mathematical reasoning requires that teachers cultivate students' habits of mind. Teachers develop students' understanding of algebra by engaging them in tasks that involve modeling and representation. This study was designed to investigate how…

  13. Slamming Arkansas Schools!

    ERIC Educational Resources Information Center

    Scott, W. Clayton

    2010-01-01

    In this article, the author, a poet and teaching artist, shares how he successfully brought slam poetry to College Hill Middle School in Texarkana, Arkansas. In 2001 he discovered slam poetry--a poetry-reading format in which poets compete in dramatic readings of their works--and went to Slam Nationals in Seattle on the Arkansas slam team. He…

  14. GPS-Supported Visual SLAM with a Rigorous Sensor Model for a Panoramic Camera in Outdoor Environments

    PubMed Central

    Shi, Yun; Ji, Shunping; Shi, Zhongchao; Duan, Yulin; Shibasaki, Ryosuke

    2013-01-01

    Accurate localization of moving sensors is essential for many fields, such as robot navigation and urban mapping. In this paper, we present a framework for GPS-supported visual Simultaneous Localization and Mapping with Bundle Adjustment (BA-SLAM) using a rigorous sensor model in a panoramic camera. The rigorous model does not cause system errors, thus representing an improvement over the widely used ideal sensor model. The proposed SLAM does not require additional restrictions, such as loop closing, or additional sensors, such as expensive inertial measurement units. In this paper, the problems of the ideal sensor model for a panoramic camera are analysed, and a rigorous sensor model is established. GPS data are then introduced for global optimization and georeferencing. Using the rigorous sensor model with the geometric observation equations of BA, a GPS-supported BA-SLAM approach that combines ray observations and GPS observations is then established. Finally, our method is applied to a set of vehicle-borne panoramic images captured from a campus environment, and several ground control points (GCP) are used to check the localization accuracy. The results demonstrated that our method can reach an accuracy of several centimetres. PMID:23344377

  15. Algebraic operator approach to gas kinetic models

    NASA Astrophysics Data System (ADS)

    Il'ichov, L. V.

    1997-02-01

    Some general properties of the linear Boltzmann kinetic equation are used to present it in the form ∂ tϕ = - †Âϕ with the operators Âand† possessing some nontrivial algebraic properties. When applied to the Keilson-Storer kinetic model, this method gives an example of quantum ( q-deformed) Lie algebra. This approach provides also a natural generalization of the “kangaroo model”.

  16. A stochastic, Lagrangian model of sinking biogenic aggregates in the ocean (SLAMS 1.0): model formulation, validation and sensitivity

    NASA Astrophysics Data System (ADS)

    Jokulsdottir, Tinna; Archer, David

    2016-04-01

    We present a new mechanistic model, stochastic, Lagrangian aggregate model of sinking particles (SLAMS) for the biological pump in the ocean, which tracks the evolution of individual particles as they aggregate, disaggregate, sink, and are altered by chemical and biological processes. SLAMS considers the impacts of ballasting by mineral phases, binding of aggregates by transparent exopolymer particles (TEP), zooplankton grazing and the fractal geometry (porosity) of the aggregates. Parameterizations for age-dependent organic carbon (orgC) degradation kinetics, and disaggregation driven by zooplankton grazing and TEP degradation, are motivated by observed particle fluxes and size spectra throughout the water column. The model is able to explain observed variations in orgC export efficiency and rain ratio from the euphotic zone and to the sea floor as driven by sea surface temperature and the primary production rate and seasonality of primary production. The model provides a new mechanistic framework with which to predict future changes on the flux attenuation of orgC in response to climate change forcing.

  17. Host-virus specificity of morbilliviruses predicted by structural modeling of the marine mammal SLAM, a receptor.

    PubMed

    Ohishi, Kazue; Ando, Akiko; Suzuki, Rintaro; Takishita, Kiyotaka; Kawato, Masaru; Katsumata, Etsuko; Ohtsu, Dai; Okutsu, Kenji; Tokutake, Koji; Miyahara, Hirokazu; Nakamura, Hirotaka; Murayama, Tsukasa; Maruyama, Tadashi

    2010-05-01

    Signaling lymphocyte activation molecule (SLAM) is thought to be a major cellular receptor for high-host specificity morbilliviruses, which cause devastating and highly infectious diseases in mammals. We determined the sequences of SLAM cDNA from five species of marine mammal, including two cetaceans, two pinnipeds and one sirenian, and generated three-dimensional models to understand the receptor-virus interaction. Twenty-one amino acid residues in the immunoglobulin-like V domains of the SLAMs were shown to bind the viral protein. Notably, the sequences from pinnipeds and dogs were highly homologous, which is consistent with the fact that canine distemper virus was previously shown to cause a mass die-off of seals. Among these twenty-one residues, eight (63, 66, 68, 72, 84, 119, 121 and 130) were shared by animal groups susceptible to a particular morbillivirus species. This set of residues appears to determine host-virus specificity and may be useful for risk estimation for morbilliviruses.

  18. Computational algebraic geometry of epidemic models

    NASA Astrophysics Data System (ADS)

    Rodríguez Vega, Martín.

    2014-06-01

    Computational Algebraic Geometry is applied to the analysis of various epidemic models for Schistosomiasis and Dengue, both, for the case without control measures and for the case where control measures are applied. The models were analyzed using the mathematical software Maple. Explicitly the analysis is performed using Groebner basis, Hilbert dimension and Hilbert polynomials. These computational tools are included automatically in Maple. Each of these models is represented by a system of ordinary differential equations, and for each model the basic reproductive number (R0) is calculated. The effects of the control measures are observed by the changes in the algebraic structure of R0, the changes in Groebner basis, the changes in Hilbert dimension, and the changes in Hilbert polynomials. It is hoped that the results obtained in this paper become of importance for designing control measures against the epidemic diseases described. For future researches it is proposed the use of algebraic epidemiology to analyze models for airborne and waterborne diseases.

  19. Shapes and stability of algebraic nuclear models

    NASA Technical Reports Server (NTRS)

    Lopez-Moreno, Enrique; Castanos, Octavio

    1995-01-01

    A generalization of the procedure to study shapes and stability of algebraic nuclear models introduced by Gilmore is presented. One calculates the expectation value of the Hamiltonian with respect to the coherent states of the algebraic structure of the system. Then equilibrium configurations of the resulting energy surface, which depends in general on state variables and a set of parameters, are classified through the Catastrophe theory. For one- and two-body interactions in the Hamiltonian of the interacting Boson model-1, the critical points are organized through the Cusp catastrophe. As an example, we apply this Separatrix to describe the energy surfaces associated to the Rutenium and Samarium isotopes.

  20. A process algebra model of QED

    NASA Astrophysics Data System (ADS)

    Sulis, William

    2016-03-01

    The process algebra approach to quantum mechanics posits a finite, discrete, determinate ontology of primitive events which are generated by processes (in the sense of Whitehead). In this ontology, primitive events serve as elements of an emergent space-time and of emergent fundamental particles and fields. Each process generates a set of primitive elements, using only local information, causally propagated as a discrete wave, forming a causal space termed a causal tapestry. Each causal tapestry forms a discrete and finite sampling of an emergent causal manifold (space-time) M and emergent wave function. Interactions between processes are described by a process algebra which possesses 8 commutative operations (sums and products) together with a non-commutative concatenation operator (transitions). The process algebra possesses a representation via nondeterministic combinatorial games. The process algebra connects to quantum mechanics through the set valued process and configuration space covering maps, which associate each causal tapestry with sets of wave functions over M. Probabilities emerge from interactions between processes. The process algebra model has been shown to reproduce many features of the theory of non-relativistic scalar particles to a high degree of accuracy, without paradox or divergences. This paper extends the approach to a semi-classical form of quantum electrodynamics.

  1. Current algebra and the nonlinear σ-model

    NASA Astrophysics Data System (ADS)

    Ghosh, S.

    2007-06-01

    We present the current algebra of a particular form in the nonlinear σ-model. The algebra has a non-Abelian form with field-dependent structure functions. We comment on the connection of the model with noncommutative space.

  2. Kac-Moody algebra and nonlinear sigma model

    NASA Astrophysics Data System (ADS)

    Ogura, Waichi; Hosoya, Akio

    1985-12-01

    We investigate the nonlinear sigma model over an arbitrary homogeneous space. Then it is shown that the sigma model realizes the Kac-Moody algebra as current algebra only if the homogeneous space is restricted to the group manifold.

  3. An algebraic approach to the Hubbard model

    NASA Astrophysics Data System (ADS)

    de Leeuw, Marius; Regelskis, Vidas

    2016-02-01

    We study the algebraic structure of an integrable Hubbard-Shastry type lattice model associated with the centrally extended su (2 | 2) superalgebra. This superalgebra underlies Beisert's AdS/CFT worldsheet R-matrix and Shastry's R-matrix. The considered model specializes to the one-dimensional Hubbard model in a certain limit. We demonstrate that Yangian symmetries of the R-matrix specialize to the Yangian symmetry of the Hubbard model found by Korepin and Uglov. Moreover, we show that the Hubbard model Hamiltonian has an algebraic interpretation as the so-called secret symmetry. We also discuss Yangian symmetries of the A and B models introduced by Frolov and Quinn.

  4. MonoSLAM: real-time single camera SLAM.

    PubMed

    Davison, Andrew J; Reid, Ian D; Molton, Nicholas D; Stasse, Olivier

    2007-06-01

    We present a real-time algorithm which can recover the 3D trajectory of a monocular camera, moving rapidly through a previously unknown scene. Our system, which we dub MonoSLAM, is the first successful application of the SLAM methodology from mobile robotics to the "pure vision" domain of a single uncontrolled camera, achieving real time but drift-free performance inaccessible to Structure from Motion approaches. The core of the approach is the online creation of a sparse but persistent map of natural landmarks within a probabilistic framework. Our key novel contributions include an active approach to mapping and measurement, the use of a general motion model for smooth camera movement, and solutions for monocular feature initialization and feature orientation estimation. Together, these add up to an extremely efficient and robust algorithm which runs at 30 Hz with standard PC and camera hardware. This work extends the range of robotic systems in which SLAM can be usefully applied, but also opens up new areas. We present applications of MonoSLAM to real-time 3D localization and mapping for a high-performance full-size humanoid robot and live augmented reality with a hand-held camera.

  5. A New Reynolds Stress Algebraic Equation Model

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Zhu, Jiang; Lumley, John L.

    1994-01-01

    A general turbulent constitutive relation is directly applied to propose a new Reynolds stress algebraic equation model. In the development of this model, the constraints based on rapid distortion theory and realizability (i.e. the positivity of the normal Reynolds stresses and the Schwarz' inequality between turbulent velocity correlations) are imposed. Model coefficients are calibrated using well-studied basic flows such as homogeneous shear flow and the surface flow in the inertial sublayer. The performance of this model is then tested in complex turbulent flows including the separated flow over a backward-facing step and the flow in a confined jet. The calculation results are encouraging and point to the success of the present model in modeling turbulent flows with complex geometries.

  6. Lie-algebraic solutions of the type IIB matrix model

    NASA Astrophysics Data System (ADS)

    Chatzistavrakidis, Athanasios

    2011-11-01

    A systematic search for Lie-algebra solutions of the type IIB matrix model is performed. Our survey is based on the classification of all Lie algebras for dimensions up to five and of all nilpotent Lie algebras of dimension six. It is shown that Lie-type solutions of the equations of motion of the type IIB matrix model exist and they correspond to certain nilpotent and solvable Lie algebras. Their representation in terms of Hermitian matrices is discussed in detail. These algebras give rise to certain noncommutative spaces for which the corresponding star products are provided. Finally the issue of constructing quantized compact nilmanifolds and solvmanifolds based on the above algebras is addressed.

  7. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.

    1991-01-01

    A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.

  8. Preparing Secondary Mathematics Teachers: A Focus on Modeling in Algebra

    ERIC Educational Resources Information Center

    Jung, Hyunyi; Mintos, Alexia; Newton, Jill

    2015-01-01

    This study addressed the opportunities to learn (OTL) modeling in algebra provided to secondary mathematics pre-service teachers (PSTs). To investigate these OTL, we interviewed five instructors of required mathematics and mathematics education courses that had the potential to include opportunities for PSTs to learn algebra at three universities.…

  9. Chain models on hecke algebra for corner type representations

    NASA Astrophysics Data System (ADS)

    Isaev, A. P.; Ogievetsky, O. V.; Os'kin, A. F.

    2008-04-01

    We consider the integrable open chain models formulated in terms of generators of the Hecke algebra. The spectrum of Hamiltonians for the open Hecke chains of finite size with free boundary conditions is deduced for special (comer type) irreducible representations of the Hecke algebra.

  10. On explicit algebraic stress models for complex turbulent flows

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.; Speziale, C. G.

    1992-01-01

    Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models. This represents a generalization of the model derived by Pope who based his analysis on the Launder, Reece, and Rodi model restricted to two-dimensional turbulent flows in an inertial frame. The relationship between the new models and traditional algebraic stress models -- as well as anistropic eddy visosity models -- is theoretically established. The need for regularization is demonstrated in an effort to explain why traditional algebraic stress models have failed in complex flows. It is also shown that these explicit algebraic stress models can shed new light on what second-order closure models predict for the equilibrium states of homogeneous turbulent flows and can serve as a useful alternative in practical computations.

  11. Action Algebras and Model Algebras in Denotational Semantics

    NASA Astrophysics Data System (ADS)

    Guedes, Luiz Carlos Castro; Haeusler, Edward Hermann

    This article describes some results concerning the conceptual separation of model dependent and language inherent aspects in a denotational semantics of a programming language. Before going into the technical explanation, the authors wish to relate a story that illustrates how correctly and precisely posed questions can influence the direction of research. By means of his questions, Professor Mosses aided the PhD research of one of the authors of this article and taught the other, who at the time was a novice supervisor, the real meaning of careful PhD supervision. The student’s research had been partially developed towards the implementation of programming languages through denotational semantics specification, and the student had developed a prototype [12] that compared relatively well to some industrial compilers of the PASCAL language. During a visit to the BRICS lab in Aarhus, the student’s supervisor gave Professor Mosses a draft of an article describing the prototype and its implementation experiments. The next day, Professor Mosses asked the supervisor, “Why is the generated code so efficient when compared to that generated by an industrial compiler?” and “You claim that the efficiency is simply a consequence of the Object- Orientation mechanisms used by the prototype programming language (C++); this should be better investigated. Pay more attention to the class of programs that might have this good comparison profile.” As a result of these aptly chosen questions and comments, the student and supervisor made great strides in the subsequent research; the advice provided by Professor Mosses made them perceive that the code generated for certain semantic domains was efficient because it mapped to the “right aspect” of the language semantics. (Certain functional types, used to represent mappings such as Stores and Environments, were pushed to the level of the object language (as in gcc). This had the side-effect of generating

  12. Applied Algebra: The Modeling Technique of Least Squares

    ERIC Educational Resources Information Center

    Zelkowski, Jeremy; Mayes, Robert

    2008-01-01

    The article focuses on engaging students in algebra through modeling real-world problems. The technique of least squares is explored, encouraging students to develop a deeper understanding of the method. (Contains 2 figures and a bibliography.)

  13. Category-theoretic models of algebraic computer systems

    NASA Astrophysics Data System (ADS)

    Kovalyov, S. P.

    2016-01-01

    A computer system is said to be algebraic if it contains nodes that implement unconventional computation paradigms based on universal algebra. A category-based approach to modeling such systems that provides a theoretical basis for mapping tasks to these systems' architecture is proposed. The construction of algebraic models of general-purpose computations involving conditional statements and overflow control is formally described by a reflector in an appropriate category of algebras. It is proved that this reflector takes the modulo ring whose operations are implemented in the conventional arithmetic processors to the Łukasiewicz logic matrix. Enrichments of the set of ring operations that form bases in the Łukasiewicz logic matrix are found.

  14. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, K.; Milman, M.

    1988-01-01

    A powerful new spatial operator algebra for modeling, control, and trajectory design of manipulators is discussed along with its implementation in the Ada programming language. Applications of this algebra to robotics include an operator representation of the manipulator Jacobian matrix; the robot dynamical equations formulated in terms of the spatial algebra, showing the complete equivalence between the recursive Newton-Euler formulations to robot dynamics; the operator factorization and inversion of the manipulator mass matrix which immediately results in O(N) recursive forward dynamics algorithms; the joint accelerations of a manipulator due to a tip contact force; the recursive computation of the equivalent mass matrix as seen at the tip of a manipulator; and recursive forward dynamics of a closed chain system. Finally, additional applications and current research involving the use of the spatial operator algebra are discussed in general terms.

  15. An algebraic cluster model based on the harmonic oscillator basis

    NASA Technical Reports Server (NTRS)

    Levai, Geza; Cseh, J.

    1995-01-01

    We discuss the semimicroscopic algebraic cluster model introduced recently, in which the internal structure of the nuclear clusters is described by the harmonic oscillator shell model, while their relative motion is accounted for by the Vibron model. The algebraic formulation of the model makes extensive use of techniques associated with harmonic oscillators and their symmetry group, SU(3). The model is applied to some cluster systems and is found to reproduce important characteristics of nuclei in the sd-shell region. An approximate SU(3) dynamical symmetry is also found to hold for the C-12 + C-12 system.

  16. Bethe Algebra of the ??N+1 Gaudin Model and Algebra of Functions on the Critical Set of the Master Function

    NASA Astrophysics Data System (ADS)

    Mukhin, Evgeny; Tarasov, Vitaly; Varchenko, Alexander

    2011-10-01

    Consider a tensor product of finite-dimensional irreducible ??;N+1-modules and its decomposition into irreducible modules. The ??;N+1 Gaudin model assigns to each multiplicity space of that decomposition a commutative (Bethe) algebra of linear operators acting on the multiplicity space. The Bethe ansatz method is a method to find eigenvectors and eigenvalues of the Bethe algebra. One starts with a critical point of a suitable (master) function and constructs an eigenvector of the Bethe algebra. In this paper we consider the algebra of functions on the critical set of the associated master function and show that the action of this algebra on itself is isomorphic to the action of the Bethe algebra on a suitable subspace of the multiplicity space. As a byproduct we prove that the Bethe vectors corresponding to different critical points of the master function are linearly independent and, in particular, nonzero.

  17. Calculus and design of discrete velocity models using computer algebra

    NASA Astrophysics Data System (ADS)

    Babovsky, Hans; Grabmeier, Johannes

    2016-11-01

    In [2, 3], a framework for a calculus with Discrete Velocity Models (DVM) has been derived. The rotatonal symmetry of the discrete velocities can be modelled algebraically by the action of the cyclic group C4 - or including reflections of the dihedral group D4. Taking this point of view, the linearized collision operator can be represented in a compact form as a matrix of elements in the group algebra. Or in other words, by choosing a special numbering it exhibits a certain block structure which lets it appear as a matrix with entries in a certain polynomial ring. A convenient way for approaching such a structure is the use of a computer algebra system able to treat these (predefined) algebraic structures. We used the computer algebra system FriCAS/AXIOM [4, 5] for the generation of the velocity and the collision sets and for the analysis of the structure of the collision operator. Concerning the fluid dynamic limit, the system provides the characterization of sets of collisions and their contribution to the flow parameters. It allows the design of rotationally invariant symmetric models for prescribed Prandtl numbers. The implementation in FriCAS/AXIOM is explained and its results for a 25-velocity model are presented.

  18. Augmenting ViSP's 3D Model-Based Tracker with RGB-D SLAM for 3D Pose Estimation in Indoor Environments

    NASA Astrophysics Data System (ADS)

    Li-Chee-Ming, J.; Armenakis, C.

    2016-06-01

    This paper presents a novel application of the Visual Servoing Platform's (ViSP) for pose estimation in indoor and GPS-denied outdoor environments. Our proposed solution integrates the trajectory solution from RGBD-SLAM into ViSP's pose estimation process. Li-Chee-Ming and Armenakis (2015) explored the application of ViSP in mapping large outdoor environments, and tracking larger objects (i.e., building models). Their experiments revealed that tracking was often lost due to a lack of model features in the camera's field of view, and also because of rapid camera motion. Further, the pose estimate was often biased due to incorrect feature matches. This work proposes a solution to improve ViSP's pose estimation performance, aiming specifically to reduce the frequency of tracking losses and reduce the biases present in the pose estimate. This paper explores the integration of ViSP with RGB-D SLAM. We discuss the performance of the combined tracker in mapping indoor environments and tracking 3D wireframe indoor building models, and present preliminary results from our experiments.

  19. Optical linear algebra processors - Noise and error-source modeling

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Ghosh, A.

    1985-01-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  20. Optical linear algebra processors: noise and error-source modeling.

    PubMed

    Casasent, D; Ghosh, A

    1985-06-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  1. Inverse Modelling Problems in Linear Algebra Undergraduate Courses

    ERIC Educational Resources Information Center

    Martinez-Luaces, Victor E.

    2013-01-01

    This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…

  2. An algebraic approach to modeling in software engineering

    SciTech Connect

    Loegel, G.J. |; Ravishankar, C.V.

    1993-09-01

    Our work couples the formalism of universal algebras with the engineering techniques of mathematical modeling to develop a new approach to the software engineering process. Our purpose in using this combination is twofold. First, abstract data types and their specification using universal algebras can be considered a common point between the practical requirements of software engineering and the formal specification of software systems. Second, mathematical modeling principles provide us with a means for effectively analyzing real-world systems. We first use modeling techniques to analyze a system and then represent the analysis using universal algebras. The rest of the software engineering process exploits properties of universal algebras that preserve the structure of our original model. This paper describes our software engineering process and our experience using it on both research and commercial systems. We need a new approach because current software engineering practices often deliver software that is difficult to develop and maintain. Formal software engineering approaches use universal algebras to describe ``computer science`` objects like abstract data types, but in practice software errors are often caused because ``real-world`` objects are improperly modeled. There is a large semantic gap between the customer`s objects and abstract data types. In contrast, mathematical modeling uses engineering techniques to construct valid models for real-world systems, but these models are often implemented in an ad hoc manner. A combination of the best features of both approaches would enable software engineering to formally specify and develop software systems that better model real systems. Software engineering, like mathematical modeling, should concern itself first and foremost with understanding a real system and its behavior under given circumstances, and then with expressing this knowledge in an executable form.

  3. Directed Abelian algebras and their application to stochastic models

    NASA Astrophysics Data System (ADS)

    Alcaraz, F. C.; Rittenberg, V.

    2008-10-01

    With each directed acyclic graph (this includes some D -dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D -dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D . One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent στ=3/2 ). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found στ=1.780±0.005 .

  4. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, Kenneth; Jain, Abhinandan

    1989-01-01

    A recently developed spatial operator algebra, useful for modeling, control, and trajectory design of manipulators is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics. Furthermore, implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection. Thus, the transition from an abstract problem formulation and solution to the detailed mechanizaton of specific algorithms is greatly simplified. The analytical formulation of the operator algebra, as well as its implementation in the Ada programming language are discussed.

  5. Bridging computational approaches to speech production: The semantic–lexical–auditory–motor model (SLAM)

    PubMed Central

    Hickok, Gregory

    2017-01-01

    Speech production is studied from both psycholinguistic and motor-control perspectives, with little interaction between the approaches. We assessed the explanatory value of integrating psycholinguistic and motor-control concepts for theories of speech production. By augmenting a popular psycholinguistic model of lexical retrieval with a motor-control-inspired architecture, we created a new computational model to explain speech errors in the context of aphasia. Comparing the model fits to picture-naming data from 255 aphasic patients, we found that our new model improves fits for a theoretically predictable subtype of aphasia: conduction. We discovered that the improved fits for this group were a result of strong auditory-lexical feedback activation, combined with weaker auditory-motor feedforward activation, leading to increased competition from phonologically related neighbors during lexical selection. We discuss the implications of our findings with respect to other extant models of lexical retrieval. PMID:26223468

  6. Algebraic approach to small-world network models

    NASA Astrophysics Data System (ADS)

    Rudolph-Lilith, Michelle; Muller, Lyle E.

    2014-01-01

    We introduce an analytic model for directed Watts-Strogatz small-world graphs and deduce an algebraic expression of its defining adjacency matrix. The latter is then used to calculate the small-world digraph's asymmetry index and clustering coefficient in an analytically exact fashion, valid nonasymptotically for all graph sizes. The proposed approach is general and can be applied to all algebraically well-defined graph-theoretical measures, thus allowing for an analytical investigation of finite-size small-world graphs.

  7. Nearby clusters of hemagglutinin residues sustain SLAM-dependent canine distemper virus entry in peripheral blood mononuclear cells.

    PubMed

    von Messling, Veronika; Oezguen, Numan; Zheng, Qi; Vongpunsawad, Sompong; Braun, Werner; Cattaneo, Roberto

    2005-05-01

    Signaling lymphocytic activation molecule (SLAM, CD150) is the universal morbillivirus receptor. Based on the identification of measles virus (MV) hemagglutinin (H) amino acids supporting human SLAM-dependent cell entry, we mutated canine distemper virus (CDV) H and identified residues necessary for efficient canine SLAM-dependent membrane fusion. These residues are located in two nearby clusters in a new CDV H structural model. To completely abolish SLAM-dependent fusion, combinations of mutations were necessary. We rescued a SLAM-blind recombinant CDV with six mutations that did not infect ferret peripheral blood mononuclear cells while retaining full infectivity in epithelial cells.

  8. Super High Frequency (SHF) Link Analysis Model (SLAM) for Nonsatellite Applications

    DTIC Science & Technology

    1990-06-01

    developed by Stutzman and Dishman (1982) and includes both the horizontal and vertical spatial variations of rain. Stutzman and Dishman assume a uniform...excess of 10 mm/hr, the path-averaged rain rate decreases as the point rain rates increase and as path lengths increase. Stutzman and Dishman (1982...W. L., and W. K. Dishman . 1982. "A simple model for the estimation of rain-induced attenuation along earth-space paths at millimeter wavelengths

  9. Algebraic spin liquid in an exactly solvable spin model

    SciTech Connect

    Yao, Hong; Zhang, Shou-Cheng; Kivelson, Steven A.; /Stanford U., Phys. Dept.

    2010-03-25

    We have proposed an exactly solvable quantum spin-3/2 model on a square lattice. Its ground state is a quantum spin liquid with a half integer spin per unit cell. The fermionic excitations are gapless with a linear dispersion, while the topological 'vison' excitations are gapped. Moreover, the massless Dirac fermions are stable. Thus, this model is, to the best of our knowledge, the first exactly solvable model of half-integer spins whose ground state is an 'algebraic spin liquid.'

  10. Generalization of Richardson-Gaudin models to rank-2 algebras

    SciTech Connect

    Errea, B; Lerma, S; Dukelsky, J; Dimitrova, S S; Pittel, S; Van Isacker, P; Gueorguiev, V G

    2006-07-20

    A generalization of Richardson-Gaudin models to the rank-2 SO(5) and SO(3,2) algebras is used to describe systems of two kinds of fermions or bosons interacting through a pairing force. They are applied to the proton-neutron neutron isovector pairing model and to the Interacting Boson Model 2, in the transition from vibration to gamma-soft nuclei, respectively. In both cases, the integrals of motion and their eigenvalues are obtained.

  11. Models of quadratic quantum algebras and their relation to classical superintegrable systems

    SciTech Connect

    Kalnins, E. G.; Miller, W.; Post, S.

    2009-05-15

    We show how to construct realizations (models) of quadratic algebras for 2D second order superintegrable systems in terms of differential or difference operators in one variable. We demonstrate how various models of the quantum algebras arise naturally from models of the Poisson algebras for the corresponding classical superintegrable system. These techniques extend to quadratic algebras related to superintegrable systems in n dimensions and are intimately related to multivariable orthogonal polynomials.

  12. The Hamiltonian of the quantum trigonometric Calogero-Sutherland model in the exceptional algebra E8

    NASA Astrophysics Data System (ADS)

    Fernández Núñez, J.; García Fuertes, W.; Perelomov, A. M.

    2009-01-01

    We express the Hamiltonian of the quantum trigonometric Calogero-Sutherland model for the Lie algebra E8 and coupling constant κ by using the fundamental irreducible characters of the algebra as dynamical independent variables.

  13. Cognitive load and modelling of an algebra problem

    NASA Astrophysics Data System (ADS)

    Chinnappan, Mohan

    2010-09-01

    In the present study, I examine a modelling strategy as employed by a teacher in the context of an algebra lesson. The actions of this teacher suggest that a modelling approach will have a greater impact on enriching student learning if we do not lose sight of the need to manage associated cognitive loads that could either aid or hinder the integration of core concepts with processes that are at play. Results here also show that modelling a problem that is set within an authentic context helps learners develop a better appreciation of variables and relations that constitute the model. The teacher's scaffolding actions revealed the use of strategies that foster the development of connected, meaningful and more useable algebraic knowledge.

  14. Algebraic model checking for Boolean gene regulatory networks.

    PubMed

    Tran, Quoc-Nam

    2011-01-01

    We present a computational method in which modular and Groebner bases (GB) computation in Boolean rings are used for solving problems in Boolean gene regulatory networks (BN). In contrast to other known algebraic approaches, the degree of intermediate polynomials during the calculation of Groebner bases using our method will never grow resulting in a significant improvement in running time and memory space consumption. We also show how calculation in temporal logic for model checking can be done by means of our direct and efficient Groebner basis computation in Boolean rings. We present our experimental results in finding attractors and control strategies of Boolean networks to illustrate our theoretical arguments. The results are promising. Our algebraic approach is more efficient than the state-of-the-art model checker NuSMV on BNs. More importantly, our approach finds all solutions for the BN problems.

  15. Assessment of an Explicit Algebraic Reynolds Stress Model

    NASA Technical Reports Server (NTRS)

    Carlson, Jan-Renee

    2005-01-01

    This study assesses an explicit algebraic Reynolds stress turbulence model in the in the three-dimensional Reynolds averaged Navier-Stokes (RANS) solver, ISAAC (Integrated Solution Algorithm for Arbitrary Con gurations). Additionally, it compares solutions for two select configurations between ISAAC and the RANS solver PAB3D. This study compares with either direct numerical simulation data, experimental data, or empirical models for several different geometries with compressible, separated, and high Reynolds number flows. In general, the turbulence model matched data or followed experimental trends well, and for the selected configurations, the computational results of ISAAC closely matched those of PAB3D using the same turbulence model.

  16. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, K.; Jain, A.

    1989-01-01

    A spatial operator algebra for modeling the control and trajectory design of manipulation is discussed, with emphasis on its analytical formulation and implementation in the Ada programming language. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of the manipulator. Inversion is obtained using techniques of recursive filtering and smoothing. The operator alegbra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. Implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection, thus greatly simplifying the transition from an abstract problem formulation and solution to the detailed mechanization of a specific algorithm.

  17. Nuclear structure and triaxiality with the algebraic collective model

    SciTech Connect

    Caprio, M. A.; Rowe, D. J.; Welsh, T. A.

    2009-01-28

    A tractable scheme for numerical diagonalization of the Bohr Hamiltonian, based on SU(1,1)xSO(5) algebraic methods, has recently been proposed. The direct product basis obtained from an optimally chosen set of SU(1,1){beta} wave functions and the SO(5) spherical harmonics {psi}{sub v{alpha}}{sub LM}({gamma},{omega}) provides an exceedingly efficient basis for numerical solution, as compared to conventional diagonalization in a five-dimensional oscillator basis. In this contribution, the status of the SU(1,1)xSO(5) algebraic collective model is summarized and applications are presented. In particular, the transition from axially symmetric to triaxial structure is explored.

  18. A Realizable Reynolds Stress Algebraic Equation Model

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Zhu, Jiang; Lumley, John L.

    1993-01-01

    The invariance theory in continuum mechanics is applied to analyze Reynolds stresses in high Reynolds number turbulent flows. The analysis leads to a turbulent constitutive relation that relates the Reynolds stresses to the mean velocity gradients in a more general form in which the classical isotropic eddy viscosity model is just the linear approximation of the general form. On the basis of realizability analysis, a set of model coefficients are obtained which are functions of the time scale ratios of the turbulence to the mean strain rate and the mean rotation rate. The coefficients will ensure the positivity of each component of the mean rotation rate. These coefficients will ensure the positivity of each component of the turbulent kinetic energy - realizability that most existing turbulence models fail to satisfy. Separated flows over backward-facing step configurations are taken as applications. The calculations are performed with a conservative finite-volume method. Grid-independent and numerical diffusion-free solutions are obtained by using differencing schemes of second-order accuracy on sufficiently fine grids. The calculated results are compared in detail with the experimental data for both mean and turbulent quantities. The comparison shows that the present proposal significantly improves the predictive capability of K-epsilon based two equation models. In addition, the proposed model is able to simulate rotational homogeneous shear flows with large rotation rates which all conventional eddy viscosity models fail to simulate.

  19. Algebraic Turbulence-Chemistry Interaction Model

    NASA Technical Reports Server (NTRS)

    Norris, Andrew T.

    2012-01-01

    The results of a series of Perfectly Stirred Reactor (PSR) and Partially Stirred Reactor (PaSR) simulations are compared to each other over a wide range of operating conditions. It is found that the PaSR results can be simulated by a PSR solution with just an adjusted chemical reaction rate. A simple expression has been developed that gives the required change in reaction rate for a PSR solution to simulate the PaSR results. This expression is the basis of a simple turbulence-chemistry interaction model. The interaction model that has been developed is intended for use with simple one-step global reaction mechanisms and for steady-state flow simulations. Due to the simplicity of the model there is very little additional computational cost in adding it to existing CFD codes.

  20. A linear algebra model for quasispecies

    NASA Astrophysics Data System (ADS)

    García-Pelayo, Ricardo

    2002-06-01

    In the present work we present a simple model of the population genetics of quasispecies. We show that the error catastrophe arises because in Biology the mutation rates are almost zero and the mutations themselves are almost neutral. We obtain and discuss previously known results from the point of view of this model. New results are: the fitness of a sequence in terms of its abundance in the quasispecies, a formula for the stable distribution of a quasispecies in which the fitness depends only on the Hamming distance to the master sequence, the time it takes the master sequence to generate a stable quasispecies (such as in the infection by a virus) and the fitness of quasispecies.

  1. Slam Poetry and Cultural Experience for Children

    ERIC Educational Resources Information Center

    Boudreau, Kathryn E.

    2009-01-01

    Slam poetry, being not just recitation or memorization, affords children the opportunity to express their own personal cultural experiences and values. Slam is a spoken word performance; a competition among poets. Audience commentary is ongoing during the performance and vigorous audience participation is essential in a slam format. The founders…

  2. Rotational and frictional dynamics of the slamming of a door

    NASA Astrophysics Data System (ADS)

    Klein, Pascal; Müller, Andreas; Gröber, Sebastian; Molz, Alexander; Kuhn, Jochen

    2017-01-01

    A theoretical and experimental investigation of the rotational dynamics, including friction, of a slamming door is presented. Based on existing work regarding different damping models for rotational and oscillatory motions, we examine different forms for the (angular) velocity dependence (ωn, n = 0, 1, 2) of the frictional force. An analytic solution is given when all three friction terms are present and several solutions for specific cases known from the literature are reproduced. The motion of a door is investigated experimentally using a smartphone, and the data are compared with the theoretical results. A laboratory experiment under more controlled conditions is conducted to gain a deeper understanding of the movement of a slammed door. Our findings provide quantitative evidence that damping models involving quadratic air drag are most appropriate for the slamming of a door. Examining this everyday example of a physical phenomenon increases student motivation, because they can relate it to their own personal experience.

  3. Topological basis realization for BMW algebra and Heisenberg XXZ spin chain model

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Xue, Kang; Wang, Gangcheng; Liu, Ying; Sun, Chunfang

    2015-04-01

    In this paper, we study three-dimensional (3D) reduced Birman-Murakami-Wenzl (BMW) algebra based on topological basis theory. Several examples of BMW algebra representations are reviewed. We also discuss a special solution of BMW algebra, which can be used to construct Heisenberg XXZ model. The theory of topological basis provides a useful method to solve quantum spin chain models. It is also shown that the ground state of XXZ spin chain is superposition state of topological basis.

  4. Use of a SLAM transfected Vero cell line to isolate and characterize marine mammal morbilliviruses using an experimental ferret model.

    PubMed

    Nielsen, Ole; Smith, Greg; Weingartl, Hana; Lair, Stéphane; Measures, Lena

    2008-07-01

    Two ferrets (Mustela putorius furo) were experimentally infected with phocine distemper virus (PDV), from the 1988 seal epizootic in Europe, in order to determine whether the stable transfected Vero cell line (Vero.DogSLAMtag) expressing canine "signaling lymphocyte activation molecules" (SLAM; CD150) receptors, was more suitable for isolating and characterizing PDV when compared with Vero (American Type Culture Collection # C1008) and primary seal kidney (PSK) cells. Both ferrets displayed characteristic clinical signs of distemper, including fever and rash, 10 days postinoculation (dpi) and, due to increased morbidity, they were euthanized 12 dpi. Histologic lesions, suggestive of infection with morbilliviruses, were observed in tissues from both ferrets, and the tissues stained positive using immunohistochemistry. Isolation of PDV from isolated peripheral blood lymphocytes (PBLs), taken at 5 and 10 dpi, was achieved by cocultivation with Vero and PSK cells, following several passages. Cytopathic effects (CPE) were observed in Vero cell cultures at 29 dpi and in PSK cell cultures at 22 dpi. Phocine distemper virus was isolated from frozen infected ferret lung tissue within 48 hr, when isolation was attempted using the Vero.DogSLAMtag cell line. In addition, a reverse transcriptase polymerase chain reaction (RT-PCR) test was developed to detect a 114 base pair (bp) portion of the nucleocapsid gene found only in PDV. This RT-PCR methodology was used to confirm the identity of the virus subsequently isolated from the ferrets. Viral isolates from the infected ferrets, as well as cultures of virus originally isolated from a dolphin and a porpoise and maintained in Vero cells, also replicated faster and produced higher titers of virus when propagated in Vero.DogSLAMtag cells. These results indicate that Vero.DogSLAMtag cells offer a substantial improvement (including faster viral replication resulting in primary viral isolation in a shorter period of time, and higher

  5. Is the full susceptibility of the square-lattice Ising model a differentially algebraic function?

    NASA Astrophysics Data System (ADS)

    Guttmann, A. J.; Jensen, I.; Maillard, J.-M.; Pantone, J.

    2016-12-01

    We study the class of non-holonomic power series with integer coefficients that reduce, modulo primes, or powers of primes, to algebraic functions. In particular we try to determine whether the susceptibility of the square-lattice Ising model belongs to this class, and more broadly whether the susceptibility is a solution of a differentially algebraic equation. Initial results on Tutte's nonlinear ordinary differential equation (ODE) and other simple quadratic nonlinear ODEs suggest that a large set of differentially algebraic power series solutions with integer coefficients might reduce to algebraic functions modulo primes, or powers of primes. Since diagonals of rational functions are well-known to reduce, modulo primes, or powers of primes, to algebraic functions, a large subset of differentially algebraic power series with integer coefficients may be viewed as a natural ‘nonlinear’ generalisation of diagonals of rational functions. Here we give several examples of series with integer coefficients and non-zero radius of convergence that reduce to algebraic functions modulo (almost) every prime (or power of a prime). These examples satisfy differentially algebraic equations with the encoding polynomial occasionally possessing quite high degree (and thus difficult to identify even with long series). These examples shed important light on the very nature of such differentially algebraic series. Additionally, we have extended both the high- and low-temperature Ising square-lattice susceptibility series to 5043 coefficients. We find that even this long series is insufficient to determine whether it reduces to algebraic functions modulo 3, 5, etc. This negative result is in contrast to the comparatively easy confirmation that the corresponding series reduce to algebraic functions modulo powers of 2. Finally we show that even with 5043 terms we are unable to identify an underlying differentially algebraic equation for the susceptibility, ruling out a number of

  6. Algebraic direct methods for few-atoms structure models.

    PubMed

    Hauptman, Herbert A; Guo, D Y; Xu, Hongliang; Blessing, Robert H

    2002-07-01

    As a basis for direct-methods phasing at very low resolution for macromolecular crystal structures, normalized structure-factor algebra is presented for few-atoms structure models with N = 1, 2, 3, em leader equal atoms or polyatomic globs per unit cell. Main results include: [see text]. Triplet discriminant Delta(hk) and triplet weight W(hk) parameters, a approximately 4.0 and b approximately 3.0, respectively, were determined empirically in numerical error analyses. Tests with phases calculated for few-atoms 'super-glob' models of the protein apo-D-glyceraldehyde-3-phosphate dehydrogenase (approximately 10000 non-H atoms) showed that low-resolution phases from the new few-atoms tangent formula were much better than conventional tangent formula phases for N = 2 and 3; phases from the two formulae were essentially the same for N > or = 4.

  7. Algebraic geometrization of the Kuramoto model: Equilibria and stability analysis

    NASA Astrophysics Data System (ADS)

    Mehta, Dhagash; Daleo, Noah S.; Dörfler, Florian; Hauenstein, Jonathan D.

    2015-05-01

    Finding equilibria of the finite size Kuramoto model amounts to solving a nonlinear system of equations, which is an important yet challenging problem. We translate this into an algebraic geometry problem and use numerical methods to find all of the equilibria for various choices of coupling constants K, natural frequencies, and on different graphs. We note that for even modest sizes (N ˜ 10-20), the number of equilibria is already more than 100 000. We analyze the stability of each computed equilibrium as well as the configuration of angles. Our exploration of the equilibrium landscape leads to unexpected and possibly surprising results including non-monotonicity in the number of equilibria, a predictable pattern in the indices of equilibria, counter-examples to conjectures, multi-stable equilibrium landscapes, scenarios with only unstable equilibria, and multiple distinct extrema in the stable equilibrium distribution as a function of the number of cycles in the graph.

  8. Phases and phase transitions in the algebraic microscopic shell model

    NASA Astrophysics Data System (ADS)

    Georgieva, A. I.; Drumev, K. P.

    2016-01-01

    We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott's SU(3) basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3) basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.

  9. An algebraic turbulence model for three-dimensional viscous flows

    NASA Technical Reports Server (NTRS)

    Chima, R. V.; Giel, P. W.; Boyle, R. J.

    1993-01-01

    An algebraic turbulence model is proposed for use with three-dimensional Navier-Stokes analyses. It incorporates features of both the Baldwin-Lomax and Cebeci-Smith models. The Baldwin-Lomax model uses the maximum of a function f(y) to determine length and velocity scales. An analysis of the Baldwin-Lomax model shows that f(y) can have a spurious maximum close to the wall, causing numerical problems and non-physical results. The proposed model uses integral relations to determine delta(*) u(sub e) and delta used in the Cebeci-Smith mode. It eliminates a constant in the Baldwin-Lomax model and determines the two remaining constants by comparison to the Cebeci-Smith formulation. Pressure gradient effects, a new wake model, and the implementation of these features in a three-dimensional Navier-Stokes code are also described. Results are shown for a flat plate boundary layer, an annular turbine cascade, and endwall heat transfer in a linear turbine cascade. The heat transfer results agree well with experimental data which shows large variations in endwall Stanton number contours with Reynolds number.

  10. Re"modeling" College Algebra: An Active Learning Approach

    ERIC Educational Resources Information Center

    Pinzon, D.; Pinzon, K.; Stackpole, M.

    2016-01-01

    In this paper, we discuss active learning in College Algebra at Georgia Gwinnett College. This approach has been used in more than 20 sections of College Algebra taught by the authors in the past four semesters. Students work in small, structured groups on guided inquiry activities after watching 15-20 minutes of videos before class. We discuss a…

  11. A new algebraic transition model based on stress length function

    NASA Astrophysics Data System (ADS)

    Xiao, Meng-Juan; She, Zhen-Su

    2016-11-01

    Transition, as one of the two biggest challenges in turbulence research, is of critical importance for engineering application. For decades, the fundamental research seems to be unable to capture the quantitative details in real transition process. On the other hand, numerous empirical parameters in engineering transition models provide no unified description of the transition under varying physical conditions. Recently, we proposed a symmetry-based approach to canonical wall turbulence based on stress length function, which is here extended to describe the transition via a new algebraic transition model. With a multi-layer analytic form of the stress length function in both the streamwise and wall normal directions, the new model gives rise to accurate description of the mean field and friction coefficient, comparing with both the experimental and DNS results at different inlet conditions. Different types of transition process, such as the transition with varying incoming turbulence intensities or that with blow and suck disturbance, are described by only two or three model parameters, each of which has their own specific physical interpretation. Thus, the model enables one to extract physical information from both experimental and DNS data to reproduce the transition process, which may prelude to a new class of generalized transition model for engineering applications.

  12. A novel feature of the Kac-Moody algebra and nonlinear integrable models

    NASA Astrophysics Data System (ADS)

    Kawai, E.

    1991-11-01

    New light is shed on the Kac-Moody algebra to reveal its remarkable unknown feature which can be traced back to its curious connection with the Virasoro algebra. Further implication of this novel feature is examined and explicated in the context of nonlinear integrable models.

  13. Algebraic Statistical Model for Biochemical Network Dynamics Inference.

    PubMed

    Linder, Daniel F; Rempala, Grzegorz A

    2013-12-01

    With modern molecular quantification methods, like, for instance, high throughput sequencing, biologists may perform multiple complex experiments and collect longitudinal data on RNA and DNA concentrations. Such data may be then used to infer cellular level interactions between the molecular entities of interest. One method which formalizes such inference is the stoichiometric algebraic statistical model (SASM) of [2] which allows to analyze the so-called conic (or single source) networks. Despite its intuitive appeal, up until now the SASM has been only heuristically studied on few simple examples. The current paper provides a more formal mathematical treatment of the SASM, expanding the original model to a wider class of reaction systems decomposable into multiple conic subnetworks. In particular, it is proved here that on such networks the SASM enjoys the so-called sparsistency property, that is, it asymptotically (with the number of observed network trajectories) discards the false interactions by setting their reaction rates to zero. For illustration, we apply the extended SASM to in silico data from a generic decomposable network as well as to biological data from an experimental search for a possible transcription factor for the heat shock protein 70 (Hsp70) in the zebrafish retina.

  14. Analysis of DIRAC's behavior using model checking with process algebra

    NASA Astrophysics Data System (ADS)

    Remenska, Daniela; Templon, Jeff; Willemse, Tim; Bal, Henri; Verstoep, Kees; Fokkink, Wan; Charpentier, Philippe; Graciani Diaz, Ricardo; Lanciotti, Elisa; Roiser, Stefan; Ciba, Krzysztof

    2012-12-01

    DIRAC is the grid solution developed to support LHCb production activities as well as user data analysis. It consists of distributed services and agents delivering the workload to the grid resources. Services maintain database back-ends to store dynamic state information of entities such as jobs, queues, staging requests, etc. Agents use polling to check and possibly react to changes in the system state. Each agent's logic is relatively simple; the main complexity lies in their cooperation. Agents run concurrently, and collaborate using the databases as shared memory. The databases can be accessed directly by the agents if running locally or through a DIRAC service interface if necessary. This shared-memory model causes entities to occasionally get into inconsistent states. Tracing and fixing such problems becomes formidable due to the inherent parallelism present. We propose more rigorous methods to cope with this. Model checking is one such technique for analysis of an abstract model of a system. Unlike conventional testing, it allows full control over the parallel processes execution, and supports exhaustive state-space exploration. We used the mCRL2 language and toolset to model the behavior of two related DIRAC subsystems: the workload and storage management system. Based on process algebra, mCRL2 allows defining custom data types as well as functions over these. This makes it suitable for modeling the data manipulations made by DIRAC's agents. By visualizing the state space and replaying scenarios with the toolkit's simulator, we have detected race-conditions and deadlocks in these systems, which, in several cases, were confirmed to occur in the reality. Several properties of interest were formulated and verified with the tool. Our future direction is automating the translation from DIRAC to a formal model.

  15. Some results on the eigenfunctions of the quantum trigonometric Calogero-Sutherland model related to the Lie algebra E6

    NASA Astrophysics Data System (ADS)

    Fernández Núñez, J.; García Fuertes, W.; Perelomov, A. M.

    2005-07-01

    The quantum trigonometric Calogero-Sutherland models related to Lie algebras admit a parametrization in which the dynamical variables are the characters of the fundamental representations of the algebra. We develop here this approach for the case of the exceptional Lie algebra E6.

  16. Cohomology, cocyles and the current algebra for the nonlinear σ-model

    NASA Astrophysics Data System (ADS)

    Fujiwara, Takanori; Kitakado, Shinsaku; Nonoyama, Tatsuhiko

    1985-05-01

    Using the idea of cohomology defined for the Lie algebra of gauge transformations, we examine the extension of the current algebra for the system of the gauged nonlinear σ-model. An anomalous term in the current commutation relation is constructed and shown to be equivalent to that arising in the gauged nonlinear σ-model with the Wess-Zumino term. The relation with the anomalous Schwinger term given by Faddeev is also discussed.

  17. Kac-Moody Algebra for Two Dimensional Principal Chiral Models

    NASA Astrophysics Data System (ADS)

    Chou, Kuang-Chao; Song, Xing-Chang

    A Darboux transformation depending on single continuous parameter t is constructed for a principal chiral field. The transformation forms a nonlinear representation of the group for any fixed value of t. Part of the kernel in the Riemann-Hilbert transform is shown to be related to the Darboux transformation with its generators forming a Kac-Moody algebra. Conserved currents associated with the Kac-Moody algebra of the linearized equations and the Nöether current for the group transformations with fixed value of t are obtained.

  18. Excel Spreadsheets for Algebra: Improving Mental Modeling for Problem Solving

    ERIC Educational Resources Information Center

    Engerman, Jason; Rusek, Matthew; Clariana, Roy

    2014-01-01

    This experiment investigates the effectiveness of Excel spreadsheets in a high school algebra class. Students in the experiment group convincingly outperformed the control group on a post lesson assessment. The student responses, teacher observations involving Excel spreadsheet revealed that it operated as a mindtool, which formed the users'…

  19. From matrix models' topological expansion to topological string theories: counting surfaces with algebraic geometry

    NASA Astrophysics Data System (ADS)

    Orantin, N.

    2007-09-01

    The 2-matrix model has been introduced to study Ising model on random surfaces. Since then, the link between matrix models and combinatorics of discrete surfaces has strongly tightened. This manuscript aims to investigate these deep links and extend them beyond the matrix models, following my work's evolution. First, I take care to define properly the hermitian 2 matrix model which gives rise to generating functions of discrete surfaces equipped with a spin structure. Then, I show how to compute all the terms in the topological expansion of any observable by using algebraic geometry tools. They are obtained as differential forms on an algebraic curve associated to the model: the spectral curve. In a second part, I show how to define such differentials on any algebraic curve even if it does not come from a matrix model. I then study their numerous symmetry properties under deformations of the algebraic curve. In particular, I show that these objects coincide with the topological expansion of the observable of a matrix model if the algebraic curve is the spectral curve of this model. Finally, I show that fine tuning the parameters ensure that these objects can be promoted to modular invariants and satisfy the holomorphic anomaly equation of the Kodaira-Spencer theory. This gives a new hint that the Dijkgraaf-Vafa conjecture is correct.

  20. The case of bruce: A teacher's model of his students' algebraic thinking about equivalent expressions

    NASA Astrophysics Data System (ADS)

    Hallagan, Jean E.

    2006-05-01

    The purpose of this article is to describe a middle school mathematics teacher's model of his students' responses to algebraic tasks involving equivalent expressions and the distributive property. The teacher engaged in two model-eliciting activities designed for teachers by creating a library of his students' work and an accompanying "Ways of Thinking"[WOT] sheet (Doerr & Lesh, 2003). These activities were designed to help reveal the teachers' models of students' algebraic thinking and to promote the development of that model. Results of the analysis showed that the teacher developed a clearer understanding of the role of a variable in algebraic instruction. The teacher employed visual strategies for the first time and began to perceive their usefulness in helping students understand the equivalence of two expressions.

  1. Signs and Tools of Algebraic Reasoning: A Study of Models among Fifth Grade Students

    ERIC Educational Resources Information Center

    Richardson, Kerri

    2012-01-01

    This study focuses on the types of models created by students during algebraic pattern finding tasks. Attention is also given to the change in models over time. This is an important area of study because a closer look is needed to better understand the models created during mathematical activity, especially in the elementary classroom. It is…

  2. Algebraic turbulence models for the computation of two-dimensional high speed flows using unstructured grids

    NASA Technical Reports Server (NTRS)

    Rostand, Philippe

    1988-01-01

    The incorporation of algebraic turbulence models in a solver for the 2-D compressible Navier-Stokes equations using triangular grids is described. A practical way to use the Cebeci Smith model, and to modify it in separated regions is proposed. The ability of the model to predict high speed, perfect gas boundary layers is investigated from a numerical point of view.

  3. A Galilean Invariant Explicit Algebraic Reynolds Stress Model for Curved Flows

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath

    1996-01-01

    A Galilean invariant weak-equilbrium hypothesis that is sensitive to streamline curvature is proposed. The hypothesis leads to an algebraic Reynolds stress model for curved flows that is fully explicit and self-consistent. The model is tested in curved homogeneous shear flow: the agreement is excellent with Reynolds stress closure model and adequate with available experimental data.

  4. Mathematical Modelling and the Learning Trajectory: Tools to Support the Teaching of Linear Algebra

    ERIC Educational Resources Information Center

    Cárcamo Bahamonde, Andrea Dorila; Fortuny Aymemí, Josep Maria; Gómez i Urgellés, Joan Vicenç

    2017-01-01

    In this article we present a didactic proposal for teaching linear algebra based on two compatible theoretical models: emergent models and mathematical modelling. This proposal begins with a problematic situation related to the creation and use of secure passwords, which leads students toward the construction of the concepts of spanning set and…

  5. Designing Tasks for Math Modeling in College Algebra: A Critical Review

    ERIC Educational Resources Information Center

    Staats, Susan; Robertson, Douglas

    2014-01-01

    Over the last decade, the pedagogical approach known as mathematical modeling has received increased interest in college algebra classes in the United States. Math modeling assignments ask students to develop their own problem-solving tools to address non-routine, realistic scenarios. The open-ended quality of modeling activities creates dilemmas…

  6. AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.

    1994-01-01

    This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.

  7. The algebraic cluster model: Structure of 16O

    NASA Astrophysics Data System (ADS)

    Bijker, R.; Iachello, F.

    2017-01-01

    We discuss an algebraic treatment of four-body clusters which includes both continuous and discrete symmetries. In particular, tetrahedral configurations with Td symmetry are analyzed with respect to the energy spectrum, transition form factors and B (EL) values. It is concluded that the low-lying spectrum of 16O can be described by four α particles at the vertices of a regular tetrahedron, not as a rigid structure but rather a more floppy structure with relatively large rotation-vibration interactions and Coriolis forces.

  8. The Case of Bruce: A Teacher's Model of His Students' Algebraic Thinking about Equivalent Expressions

    ERIC Educational Resources Information Center

    Hallagan, Jean E.

    2006-01-01

    The purpose of this article is to describe a middle school mathematics teacher's model of his students' responses to algebraic tasks involving equivalent expressions and the distributive property. The teacher engaged in two model-eliciting activities designed for teachers by creating a library of his students' work and an accompanying "Ways…

  9. Mathematical modelling in engineering: an alternative way to teach Linear Algebra

    NASA Astrophysics Data System (ADS)

    Domínguez-García, S.; García-Planas, M. I.; Taberna, J.

    2016-10-01

    Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic classroom approach in which students modelled real-world problems and turn gain a deeper knowledge of the Linear Algebra subject. Considering that most students are digital natives, we use the e-portfolio as a tool of communication between students and teachers, besides being a good place making the work visible. In this article, we present an overview of the design and implementation of a project-based learning for a Linear Algebra course taught during the 2014-2015 at the 'ETSEIB'of Universitat Politècnica de Catalunya (UPC).

  10. A note on probabilistic models over strings: the linear algebra approach.

    PubMed

    Bouchard-Côté, Alexandre

    2013-12-01

    Probabilistic models over strings have played a key role in developing methods that take into consideration indels as phylogenetically informative events. There is an extensive literature on using automata and transducers on phylogenies to do inference on these probabilistic models, in which an important theoretical question is the complexity of computing the normalization of a class of string-valued graphical models. This question has been investigated using tools from combinatorics, dynamic programming, and graph theory, and has practical applications in Bayesian phylogenetics. In this work, we revisit this theoretical question from a different point of view, based on linear algebra. The main contribution is a set of results based on this linear algebra view that facilitate the analysis and design of inference algorithms on string-valued graphical models. As an illustration, we use this method to give a new elementary proof of a known result on the complexity of inference on the "TKF91" model, a well-known probabilistic model over strings. Compared to previous work, our proving method is easier to extend to other models, since it relies on a novel weak condition, triangular transducers, which is easy to establish in practice. The linear algebra view provides a concise way of describing transducer algorithms and their compositions, opens the possibility of transferring fast linear algebra libraries (for example, based on GPUs), as well as low rank matrix approximation methods, to string-valued inference problems.

  11. Accurate Mobile Urban Mapping via Digital Map-Based SLAM

    PubMed Central

    Roh, Hyunchul; Jeong, Jinyong; Cho, Younggun; Kim, Ayoung

    2016-01-01

    This paper presents accurate urban map generation using digital map-based Simultaneous Localization and Mapping (SLAM). Throughout this work, our main objective is generating a 3D and lane map aiming for sub-meter accuracy. In conventional mapping approaches, achieving extremely high accuracy was performed by either (i) exploiting costly airborne sensors or (ii) surveying with a static mapping system in a stationary platform. Mobile scanning systems recently have gathered popularity but are mostly limited by the availability of the Global Positioning System (GPS). We focus on the fact that the availability of GPS and urban structures are both sporadic but complementary. By modeling both GPS and digital map data as measurements and integrating them with other sensor measurements, we leverage SLAM for an accurate mobile mapping system. Our proposed algorithm generates an efficient graph SLAM and achieves a framework running in real-time and targeting sub-meter accuracy with a mobile platform. Integrated with the SLAM framework, we implement a motion-adaptive model for the Inverse Perspective Mapping (IPM). Using motion estimation derived from SLAM, the experimental results show that the proposed approaches provide stable bird’s-eye view images, even with significant motion during the drive. Our real-time map generation framework is validated via a long-distance urban test and evaluated at randomly sampled points using Real-Time Kinematic (RTK)-GPS. PMID:27548175

  12. Accurate Mobile Urban Mapping via Digital Map-Based SLAM †.

    PubMed

    Roh, Hyunchul; Jeong, Jinyong; Cho, Younggun; Kim, Ayoung

    2016-08-18

    This paper presents accurate urban map generation using digital map-based Simultaneous Localization and Mapping (SLAM). Throughout this work, our main objective is generating a 3D and lane map aiming for sub-meter accuracy. In conventional mapping approaches, achieving extremely high accuracy was performed by either (i) exploiting costly airborne sensors or (ii) surveying with a static mapping system in a stationary platform. Mobile scanning systems recently have gathered popularity but are mostly limited by the availability of the Global Positioning System (GPS). We focus on the fact that the availability of GPS and urban structures are both sporadic but complementary. By modeling both GPS and digital map data as measurements and integrating them with other sensor measurements, we leverage SLAM for an accurate mobile mapping system. Our proposed algorithm generates an efficient graph SLAM and achieves a framework running in real-time and targeting sub-meter accuracy with a mobile platform. Integrated with the SLAM framework, we implement a motion-adaptive model for the Inverse Perspective Mapping (IPM). Using motion estimation derived from SLAM, the experimental results show that the proposed approaches provide stable bird's-eye view images, even with significant motion during the drive. Our real-time map generation framework is validated via a long-distance urban test and evaluated at randomly sampled points using Real-Time Kinematic (RTK)-GPS.

  13. Web Algebra.

    ERIC Educational Resources Information Center

    Capani, Antonio; De Dominicis, Gabriel

    This paper proposes a model for a general interface between people and Computer Algebra Systems (CAS). The main features in the CAS interface are data navigation and the possibility of accessing powerful remote machines. This model is based on the idea of session management, in which the main engine of the tool enables interactions with the…

  14. Visual SLAM Using Variance Grid Maps

    NASA Technical Reports Server (NTRS)

    Howard, Andrew B.; Marks, Tim K.

    2011-01-01

    An algorithm denoted Gamma-SLAM performs further processing, in real time, of preprocessed digitized images acquired by a stereoscopic pair of electronic cameras aboard an off-road robotic ground vehicle to build accurate maps of the terrain and determine the location of the vehicle with respect to the maps. Part of the name of the algorithm reflects the fact that the process of building the maps and determining the location with respect to them is denoted simultaneous localization and mapping (SLAM). Most prior real-time SLAM algorithms have been limited in applicability to (1) systems equipped with scanning laser range finders as the primary sensors in (2) indoor environments (or relatively simply structured outdoor environments). The few prior vision-based SLAM algorithms have been feature-based and not suitable for real-time applications and, hence, not suitable for autonomous navigation on irregularly structured terrain. The Gamma-SLAM algorithm incorporates two key innovations: Visual odometry (in contradistinction to wheel odometry) is used to estimate the motion of the vehicle. An elevation variance map (in contradistinction to an occupancy or an elevation map) is used to represent the terrain. The Gamma-SLAM algorithm makes use of a Rao-Blackwellized particle filter (RBPF) from Bayesian estimation theory for maintaining a distribution over poses and maps. The core idea of the RBPF approach is that the SLAM problem can be factored into two parts: (1) finding the distribution over robot trajectories, and (2) finding the map conditioned on any given trajectory. The factorization involves the use of a particle filter in which each particle encodes both a possible trajectory and a map conditioned on that trajectory. The base estimate of the trajectory is derived from visual odometry, and the map conditioned on that trajectory is a Cartesian grid of elevation variances. In comparison with traditional occupancy or elevation grid maps, the grid elevation variance

  15. Fully-Explicit and Self-Consistent Algebraic Reynolds Stress Models

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.

    1995-01-01

    A fully-explicit, self-consistent algebraic expression for the Reynolds stress, which is the exact solution to the Reynolds stress transport equation in the 'weak equilibrium' limit for two-dimensional mean flows for all linear and some quasi-linear pressure-strain models, is derived. Current explicit algebraic Reynolds stress models derived by employing the 'weak equilibrium' assumption treat the production-to-dissipation (P/epsilon) ratio implicitly, resulting in an effective viscosity that can be singular away from the equilibrium limit. In the present paper, the set of simultaneous algebraic Reynolds stress equations are solved in the full non-linear form and the eddy viscosity is found to be non-singular. Preliminary tests indicate that the model performs adequately, even for three dimensional mean flow cases. Due to the explicit and non-singular nature of the effective viscosity, this model should mitigate many of the difficulties encountered in computing complex turbulent flows with the algebraic Reynolds stress models.

  16. Hyperbolic Kac-Moody algebras and chaos in Kaluza-Klein models

    NASA Astrophysics Data System (ADS)

    Damour, T.; Henneaux, M.; Julia, B.; Nicolai, H.

    2001-06-01

    Some time ago, it was found that the never-ending oscillatory chaotic behaviour discovered by Belinskii, Khalatnikov and Lifshitz (BKL) for the generic solution of the vacuum Einstein equations in the vicinity of a spacelike (``cosmological'') singularity disappears in spacetime dimensions /D≡d+1>10. Recently, a study of the generalization of the BKL chaotic behaviour to the superstring effective Lagrangians has revealed that this chaos is rooted in the structure of the fundamental Weyl chamber of some underlying hyperbolic Kac-Moody algebra. In this Letter we show that the same connection applies to pure gravity in any spacetime dimension />=4, where the relevant algebras are AEd. In this way the disappearance of chaos in pure gravity models in /D>=11 dimensions becomes linked to the fact that the Kac-Moody algebras AEd are no longer hyperbolic for /d>=10.

  17. Using computer algebra and SMT-solvers to analyze a mathematical model of cholera propagation

    NASA Astrophysics Data System (ADS)

    Trujillo Arredondo, Mariana

    2014-06-01

    We analyze a mathematical model for the transmission of cholera. The model is already defined and involves variables such as the pathogen agent, which in this case is the bacterium Vibrio cholera, and the human population. The human population is divided into three classes: susceptible, infectious and removed. Using Computer Algebra, specifically Maple we obtain two equilibrium states: the disease free state and the endemic state. Using Maple it is possible to prove that the disease free state is locally asymptotically stable if and only if R0 < 1. Using Maple it is possible to prove that the endemic equilibrium state is locally stable when it exists, it is to say when R0 > 1. Using the package Red-Log of the Computer algebra system Reduce and the SMT-Solver Z3Py it is possible to obtain numerical conditions for the model. The formula for the basic reproductive number makes a synthesis with all epidemic parameters in the model. Also it is possible to make numerical simulations which are very illustrative about the epidemic patters that are expected to be observed in real situations. We claim that these kinds of software are very useful in the analysis of epidemic models given that the symbolic computation provides algebraic formulas for the basic reproductive number and such algebraic formulas are very useful to derive control measures. For other side, computer algebra software is a powerful tool to make the stability analysis for epidemic models given that the all steps in the stability analysis can be made automatically: finding the equilibrium points, computing the jacobian, computing the characteristic polynomial for the jacobian, and applying the Routh-Hurwitz theorem to the characteristic polynomial. Finally, using SMT-Solvers is possible to make automatically checks of satisfiability, validity and quantifiers elimination being these computations very useful to analyse complicated epidemic models.

  18. Gup-Based and Snyder Noncommutative Algebras, Relativistic Particle Models, Deformed Symmetries and Interaction: a Unified Approach

    NASA Astrophysics Data System (ADS)

    Pramanik, Souvik; Ghosh, Subir

    2013-08-01

    We have developed a unified scheme for studying noncommutative algebras based on generalized uncertainty principle (GUP) and Snyder form in a relativistically covariant point particle Lagrangian (or symplectic) framework. Even though the GUP-based algebra and Snyder algebra are very distinct, the more involved latter algebra emerges from an approximation of the Lagrangian model of the former algebra. Deformed Poincaré generators for the systems that keep space-time symmetries of the relativistic particle models have been studied thoroughly. From a purely constrained dynamical analysis perspective the models studied here are very rich and provide insights on how to consistently construct approximate models from the exact ones when nonlinear constraints are present in the system. We also study dynamics of the GUP particle in presence of external electromagnetic field.

  19. Gup-Based and Snyder Noncommutative Algebras, Relativistic Particle Models, Deformed Symmetries and Interaction: a Unified Approach

    NASA Astrophysics Data System (ADS)

    Pramanik, Souvik; Ghosh, Subir

    2013-10-01

    We have developed a unified scheme for studying noncommutative algebras based on generalized uncertainty principle (GUP) and Snyder form in a relativistically covariant point particle Lagrangian (or symplectic) framework. Even though the GUP-based algebra and Snyder algebra are very distinct, the more involved latter algebra emerges from an approximation of the Lagrangian model of the former algebra. Deformed Poincaré generators for the systems that keep space-time symmetries of the relativistic particle models have been studied thoroughly. From a purely constrained dynamical analysis perspective the models studied here are very rich and provide insights on how to consistently construct approximate models from the exact ones when nonlinear constraints are present in the system. We also study dynamics of the GUP particle in presence of external electromagnetic field.

  20. Existence of standard models of conic fibrations over non-algebraically-closed fields

    SciTech Connect

    Avilov, A A

    2014-12-31

    We prove an analogue of Sarkisov's theorem on the existence of a standard model of a conic fibration over an algebraically closed field of characteristic different from two for three-dimensional conic fibrations over an arbitrary field of characteristic zero with an action of a finite group. Bibliography: 16 titles.

  1. Mathematical Modelling in Engineering: An Alternative Way to Teach Linear Algebra

    ERIC Educational Resources Information Center

    Domínguez-García, S.; García-Planas, M. I.; Taberna, J.

    2016-01-01

    Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic…

  2. Implementing a Flipped Instructional Model in College Algebra: Profiles of Student Activity

    ERIC Educational Resources Information Center

    Lesseig, Kristin; Krouss, Paul

    2017-01-01

    Flipped instruction is increasing in popularity, however research that moves beyond descriptions of its implementation in mathematics classes is lacking. We sought to better understand how students taking an introductory college algebra course used the resources provided within a flipped instructional model and how students viewed such resources…

  3. Color Algebras

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. We would like it to match the well-defined algebra of spectral functions describing lights and surface reflectances, but an exact correspondence is impossible after the spectra have been projected to a three-dimensional color space, because of metamerism physically different spectra can produce the same color sensation. Metameric spectra are interchangeable for the purposes of addition, but not multiplication, so any color algebra is necessarily an approximation to physical reality. Nevertheless, because the majority of naturally-occurring spectra are well-behaved (e.g., continuous and slowly-varying), color algebras can be formulated that are largely accurate and agree well with human intuition. Here we explore the family of algebras that result from associating each color with a member of a three-dimensional manifold of spectra. This association can be used to construct a color product, defined as the color of the spectrum of the wavelength-wise product of the spectra associated with the two input colors. The choice of the spectral manifold determines the behavior of the resulting system, and certain special subspaces allow computational efficiencies. The resulting systems can be used to improve computer graphic rendering techniques, and to model various perceptual phenomena such as color constancy.

  4. Global identifiability of linear compartmental models--a computer algebra algorithm.

    PubMed

    Audoly, S; D'Angiò, L; Saccomani, M P; Cobelli, C

    1998-01-01

    A priori global identifiability deals with the uniqueness of the solution for the unknown parameters of a model and is, thus, a prerequisite for parameter estimation of biological dynamic models. Global identifiability is however difficult to test, since it requires solving a system of algebraic nonlinear equations which increases both in nonlinearity degree and number of terms and unknowns with increasing model order. In this paper, a computer algebra tool, GLOBI (GLOBal Identifiability) is presented, which combines the topological transfer function method with the Buchberger algorithm, to test global identifiability of linear compartmental models. GLOBI allows for the automatic testing of a priori global identifiability of general structure compartmental models from general multi input-multi output experiments. Examples of usage of GLOBI to analyze a priori global identifiability of some complex biological compartmental models are provided.

  5. Teaching Algebra without Algebra

    ERIC Educational Resources Information Center

    Kalman, Richard S.

    2008-01-01

    Algebra is, among other things, a shorthand way to express quantitative reasoning. This article illustrates ways for the classroom teacher to convert algebraic solutions to verbal problems into conversational solutions that can be understood by students in the lower grades. Three reasonably typical verbal problems that either appeared as or…

  6. Large amplitude ship motions and bow flare slamming pressures in regular head seas

    SciTech Connect

    Tao, Z.; Incecik, A.

    1996-12-31

    In this paper, the motion equations incorporating nonlinear terms due to large amplitude motions and bow flare slamming pressures are described in regular head seas. Numerical predictions of ship motions based on a small amplitude linear theory and large amplitude nonlinear method and experimental data are compared with each other in the frequency and time domain. The nonlinear restoring force, nonlinear damping force and nonlinear fluid momentum force are considered in predicting ship motions. The frequency dependent added mass and damping coefficient are computed at the instantaneous submerged sections of the ship. The momentum slamming theory and Wagner theory are used to predict the bow flare slamming pressure. The total impact pressure is expressed as the sum of water immersion impact pressure and wave striking impact pressure. There is a satisfactory agreement between theoretical predictions and model test measurements.

  7. Predicting NonInertial Effects with Algebraic Stress Models which Account for Dissipation Rate Anisotropies

    NASA Technical Reports Server (NTRS)

    Jongen, T.; Machiels, L.; Gatski, T. B.

    1997-01-01

    Three types of turbulence models which account for rotational effects in noninertial frames of reference are evaluated for the case of incompressible, fully developed rotating turbulent channel flow. The different types of models are a Coriolis-modified eddy-viscosity model, a realizable algebraic stress model, and an algebraic stress model which accounts for dissipation rate anisotropies. A direct numerical simulation of a rotating channel flow is used for the turbulent model validation. This simulation differs from previous studies in that significantly higher rotation numbers are investigated. Flows at these higher rotation numbers are characterized by a relaminarization on the cyclonic or suction side of the channel, and a linear velocity profile on the anticyclonic or pressure side of the channel. The predictive performance of the three types of models are examined in detail, and formulation deficiencies are identified which cause poor predictive performance for some of the models. Criteria are identified which allow for accurate prediction of such flows by algebraic stress models and their corresponding Reynolds stress formulations.

  8. Interplay between the pairing and quadrupole interactions in the algebraic realization of the microscopic shell model

    NASA Astrophysics Data System (ADS)

    Drumev, Kalin; Georgieva, Ana

    2015-04-01

    We explore the algebraic realization of the Pairing-Plus-Quadrupole Model/PQM/ in the framework of the Elliott‘s SU(3) Model with the aim to obtain the complementary and competing features of the two interactions through the relation between the pairing and the SU(3) bases. First, we establish a correspondence between the SO(8) pairing basis and the Elliott's SU(3) basis. It is derived from their complementarity to the same LST coupling chain of the shell-model number-conserving algebra. The probability distribution of the SU(3) basis states within the SO(8) pairing states is also obtained and allows the investigation of the interplay between the pairing and quadrupole interactions in the Hamiltonian of the PQM, containing both of them as limiting cases. The description of some realistic N∼Z nuclear systems is investigated in a SU(3)-symmetry-adapted basis within a model space of one and two oscillator shells.

  9. Entanglement in a model for Hawking radiation: An application of quadratic algebras

    SciTech Connect

    Bambah, Bindu A.; Mukku, C.; Shreecharan, T.; Siva Prasad, K.

    2013-03-15

    Quadratic polynomially deformed su(1,1) and su(2) algebras are utilized in model Hamiltonians to show how the gravitational system consisting of a black hole, infalling radiation and outgoing (Hawking) radiation can be solved exactly. The models allow us to study the long-time behaviour of the black hole and its outgoing modes. In particular, we calculate the bipartite entanglement entropies of subsystems consisting of (a) infalling plus outgoing modes and (b) black hole modes plus the infalling modes, using the Janus-faced nature of the model. The long-time behaviour also gives us glimpses of modifications in the character of Hawking radiation. Finally, we study the phenomenon of superradiance in our model in analogy with atomic Dicke superradiance. - Highlights: Black-Right-Pointing-Pointer We examine a toy model for Hawking radiation with quantized black hole modes. Black-Right-Pointing-Pointer We use quadratic polynomially deformed su(1,1) algebras to study its entanglement properties. Black-Right-Pointing-Pointer We study the 'Dicke Superradiance' in black hole radiation using quadratically deformed su(2) algebras. Black-Right-Pointing-Pointer We study the modification of the thermal character of Hawking radiation due to quantized black hole modes.

  10. The periodic table of real geometric algebras, bits of space-time, and the Standard Model.

    NASA Astrophysics Data System (ADS)

    Marks, Dennis

    2007-04-01

    Real geometric algebras Rn;s in n dimensions with signature s are isomorphic to algebras of real, complex, or quaternionic matrices R(2^n 2), C(2^n-1 2), or H(2^n-2 2), or of block diagonal matrices ^2R(2^n-1 2) or ^2H(2^n-3 2), for | ( s+3 )8-4 | = 1, 2, 3, 0, or 4, respectively. Only for n = 2 or 4 and s = 0 or 2 is Rn;s isomorphic to real nxn matrices R(n). R2;2 and R2;0 describe the Euclidean plane and the Minkowskian plane. Their direct product, R4;2 = R2;0 R2;2, describes 4-d space-time with signature + + + -- and with dynamical elements (position, spin, momentum, and action) that satisfy the Heisenberg commutation relations. Quantum mechanics emerges naturally. Electromagnetism, described by U(1) C R1;-1, has one time-like coordinate; the weak force, described by SU(2) SO(3) R3;3, has three space-like coordinates. Thus the real algebra of the symmetry group of the electro-weak force is isomorphic to the real algebra of space-time. Finally, R8;2 = R4;0 R4;2 is isomorphic to R(16), into which can be fit three generations of weakly interacting Fermi doublets and three generations of three colors of quarks. Every 8 dimensions thereafter, geometric algebras factor into direct products of R(16), interpreted as a 4-d hexadecimal space-time lattice with four additional internal coordinates for the Standard Model.

  11. Intelligently deciphering unintelligible designs: algorithmic algebraic model checking in systems biology.

    PubMed

    Mishra, Bud

    2009-07-06

    Systems biology, as a subject, has captured the imagination of both biologists and systems scientists alike. But what is it? This review provides one researcher's somewhat idiosyncratic view of the subject, but also aims to persuade young scientists to examine the possible evolution of this subject in a rich historical context. In particular, one may wish to read this review to envision a subject built out of a consilience of many interesting concepts from systems sciences, logic and model theory, and algebra, culminating in novel tools, techniques and theories that can reveal deep principles in biology--seen beyond mere observations. A particular focus in this review is on approaches embedded in an embryonic program, dubbed 'algorithmic algebraic model checking', and its powers and limitations.

  12. Intelligently deciphering unintelligible designs: algorithmic algebraic model checking in systems biology

    PubMed Central

    Mishra, Bud

    2009-01-01

    Systems biology, as a subject, has captured the imagination of both biologists and systems scientists alike. But what is it? This review provides one researcher's somewhat idiosyncratic view of the subject, but also aims to persuade young scientists to examine the possible evolution of this subject in a rich historical context. In particular, one may wish to read this review to envision a subject built out of a consilience of many interesting concepts from systems sciences, logic and model theory, and algebra, culminating in novel tools, techniques and theories that can reveal deep principles in biology—seen beyond mere observations. A particular focus in this review is on approaches embedded in an embryonic program, dubbed ‘algorithmic algebraic model checking’, and its powers and limitations. PMID:19364723

  13. But Slams Will Never Hurt Them.

    ERIC Educational Resources Information Center

    Villalobos, Marco

    2003-01-01

    Describes Youth Speaks NY Fifth Annual Teen Poetry Slam. Considers how Youth Speaks offers free after school writing workshops for teens. Notes that this nonprofit spoken word program Youth Speaks plays host to an auditorium of teen poets who "bust at the seams with verse." (SG)

  14. The Wheeler-DeWitt Equation in Filćhenkov Model: The Lie Algebraic Approach

    NASA Astrophysics Data System (ADS)

    Panahi, H.; Zarrinkamar, S.; Baradaran, M.

    2016-11-01

    The Wheeler-DeWitt equation in Filćhenkov model with terms related to strings, dust, relativistic matter, bosons and fermions, and ultra stiff matter is solved in a quasi-exact analytical manner via the Lie algebraic approach. In the calculations, using the representation theory of sl(2), the general (N+1)-dimensional matrix equation is constructed whose determinant yields the solutions of the problem.

  15. ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra

    PubMed Central

    2011-01-01

    Background Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. Results We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Conclusions Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on

  16. Closure of the algebra of constraints for a nonprojectable Horava model

    SciTech Connect

    Bellorin, Jorge; Restuccia, Alvaro

    2011-02-15

    We perform the Hamiltonian analysis for a nonprojectable Horava model whose potential is composed of R and R{sup 2} terms. We show that Dirac's algorithm for the preservation of the constraints can be done in a closed way, hence the algebra of constraints for this model is consistent. The model has an extra, odd, scalar mode whose decoupling limit can be seen in a linear-order perturbative analysis on weakly varying backgrounds. Although our results for this model point in favor of the consistency of the Horava theory, the validity of the full nonprojectable theory still remains unanswered.

  17. Quantum trigonometric Calogero-Sutherland model, irreducible characters and Clebsch-Gordan series for the exceptional algebra E7

    NASA Astrophysics Data System (ADS)

    Fernández Núñez, J.; García Fuertes, W.; Perelomov, A. M.

    2005-10-01

    We reexpress the quantum Calogero-Sutherland model for the Lie algebra E7 and the particular value of the coupling constant κ =1 by using the fundamental irreducible characters of the algebra as dynamical variables. For that, we need to develop a systematic procedure to obtain all the Clebsch-Gordan series required to perform the change of variables. We describe how the resulting quantum Hamiltonian operator can be used to compute more characters and Clebsch-Gordan series for this exceptional algebra.

  18. Colloquium: An algebraic model of localized surface plasmons and their interactions

    NASA Astrophysics Data System (ADS)

    Davis, T. J.; Gómez, D. E.

    2017-01-01

    Although localized surface plasmons in metal nanoparticles can be modeled by Maxwells equations, the difficulty in solving them forces many researchers to use numerical methods. Such methods give accurate results but rarely provide much insight into the complex behaviors of the surface plasmons, nor do they provide a means to choose a configuration of metal nanoparticles to achieve a desired optical response. This Colloquium presents a simple algebraic approach for modeling localized surface plasmons, their excitation by light, and their interactions with one another. Although the method is not numerically accurate it yields useful insight into plasmon behavior and provides a basis for the design of complex plasmonic devices. The approach relies on a description of the surface plasmons in terms of a set of eigenmodes. However, the functional form of these modes is not usually required and the entire problem is reduced to a simple algebra involving the plasmon amplitudes, resonance terms, and their mutual coupling. The algebraic method is derived from an electrostatic formalism, appropriate for near-field interactions at optical frequencies, which is then used to demonstrate a variety of optical effects associated with localized surface plasmons, such as plasmon hybridization, induced transparency, Fano resonances, optical phase detection, and all-optical modulation, among others.

  19. A matrix dependent/algebraic multigrid approach for extruded meshes with applications to ice sheet modeling

    SciTech Connect

    Tuminaro, Raymond S.; Perego, Mauro; Tezaur, Irina Kalashnikova; Salinger, Andrew G.; Price, Stephen

    2016-10-06

    A multigrid method is proposed that combines ideas from matrix dependent multigrid for structured grids and algebraic multigrid for unstructured grids. It targets problems where a three-dimensional mesh can be viewed as an extrusion of a two-dimensional, unstructured mesh in a third dimension. Our motivation comes from the modeling of thin structures via finite elements and, more specifically, the modeling of ice sheets. Extruded meshes are relatively common for thin structures and often give rise to anisotropic problems when the thin direction mesh spacing is much smaller than the broad direction mesh spacing. Within our approach, the first few multigrid hierarchy levels are obtained by applying matrix dependent multigrid to semicoarsen in a structured thin direction fashion. After sufficient structured coarsening, the resulting mesh contains only a single layer corresponding to a two-dimensional, unstructured mesh. Algebraic multigrid can then be employed in a standard manner to create further coarse levels, as the anisotropic phenomena is no longer present in the single layer problem. The overall approach remains fully algebraic, with the minor exception that some additional information is needed to determine the extruded direction. Furthermore, this facilitates integration of the solver with a variety of different extruded mesh applications.

  20. A matrix dependent/algebraic multigrid approach for extruded meshes with applications to ice sheet modeling

    DOE PAGES

    Tuminaro, Raymond S.; Perego, Mauro; Tezaur, Irina Kalashnikova; ...

    2016-10-06

    A multigrid method is proposed that combines ideas from matrix dependent multigrid for structured grids and algebraic multigrid for unstructured grids. It targets problems where a three-dimensional mesh can be viewed as an extrusion of a two-dimensional, unstructured mesh in a third dimension. Our motivation comes from the modeling of thin structures via finite elements and, more specifically, the modeling of ice sheets. Extruded meshes are relatively common for thin structures and often give rise to anisotropic problems when the thin direction mesh spacing is much smaller than the broad direction mesh spacing. Within our approach, the first few multigridmore » hierarchy levels are obtained by applying matrix dependent multigrid to semicoarsen in a structured thin direction fashion. After sufficient structured coarsening, the resulting mesh contains only a single layer corresponding to a two-dimensional, unstructured mesh. Algebraic multigrid can then be employed in a standard manner to create further coarse levels, as the anisotropic phenomena is no longer present in the single layer problem. The overall approach remains fully algebraic, with the minor exception that some additional information is needed to determine the extruded direction. Furthermore, this facilitates integration of the solver with a variety of different extruded mesh applications.« less

  1. Geometrostatis and the current algebra of nonlinear sigma models on supergroup manifolds

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.

    1987-02-01

    The radiative correction of nonlinear sigma models on supermanifolds that have invertible metrics is investigated. It will be shown that the equation of motion for Riemannian supergravity (nonstandard supergravity) is derived from a consistency condition. This condition can be satisfied in the case of supergroup manifolds. We shall explicitly construct the model following the methods of Braaten, Curtright, and Zachos [E. Braaten, T. L. Curtright, and C. K. Zachos, Nucl. Phys. B 260, 630 (1985)] and of Witten [E. Witten, Commun. Math. Phys. 92, 455 (1984)]. Finally, super-Kac-Moody algebras of these models are derived.

  2. New boson realization of the Lipkin model obeying the su(2)-algebra

    NASA Astrophysics Data System (ADS)

    Tsue, Yasuhiko; Providência, Constança; da Providência, João; Yamamura, Masatoshi

    2015-06-01

    A new boson representation of the su(2)-algebra proposed by the present authors for describing the damped and amplified oscillator is examined in the Lipkin model as one of the simple many-fermion models. This boson representation is expressed in terms of two kinds of bosons with a certain positive parameter. In order to describe the case of any fermion number, a third boson is introduced. Through this examination, it is concluded that this representation is very workable for the boson realization of the Lipkin model in any fermion number.

  3. Teaching Algebra and Geometry Concepts by Modeling Telescope Optics

    ERIC Educational Resources Information Center

    Siegel, Lauren M.; Dickinson, Gail; Hooper, Eric J.; Daniels, Mark

    2008-01-01

    This article describes preparation and delivery of high school mathematics lessons that integrate mathematics and astronomy through The Geometer's Sketchpad models, traditional proof, and inquiry-based activities. The lessons were created by a University of Texas UTeach preservice teacher as part of a project-based field experience in which high…

  4. Extensions of algebraic image operators: An approach to model-based vision

    NASA Technical Reports Server (NTRS)

    Lerner, Bao-Ting; Morelli, Michael V.

    1990-01-01

    Researchers extend their previous research on a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets. Addition and multiplication are defined for the set of all grey-level images, which can then be described as polynomials of two variables. Utilizing this new algebraic structure, researchers devised an innovative, efficient edge detection scheme. An accurate method for deriving gradient component information from this edge detector is presented. Based upon this new edge detection system researchers developed a robust method for linear feature extraction by combining the techniques of a Hough transform and a line follower. The major advantage of this feature extractor is its general, object-independent nature. Target attributes, such as line segment lengths, intersections, angles of intersection, and endpoints are derived by the feature extraction algorithm and employed during model matching. The algebraic operators are global operations which are easily reconfigured to operate on any size or shape region. This provides a natural platform from which to pursue dynamic scene analysis. A method for optimizing the linear feature extractor which capitalizes on the spatially reconfiguration nature of the edge detector/gradient component operator is discussed.

  5. Some results on the eigenfunctions of the quantum trigonometric Calogero-Sutherland model related to the Lie algebra D4

    NASA Astrophysics Data System (ADS)

    Fernández Núñez, J.; García Fuertes, W.; Perelomov, A. M.

    2003-11-01

    We express the Hamiltonian of the quantum trigonometric Calogero-Sutherland model related to the Lie algebra D4 in terms of a set of Weyl-invariant variables, namely, the characters of the fundamental representations of the Lie algebra. This parametrization allows us to solve for the energy eigenfunctions of the theory and to study properties of the system of orthogonal polynomials associated with them such as recurrence relations and generating functions.

  6. Sensitivity analysis and model reduction of nonlinear differential-algebraic systems. Final progress report

    SciTech Connect

    Petzold, L.R.; Rosen, J.B.

    1997-12-30

    Differential-algebraic equations arise in a wide variety of engineering and scientific problems. Relatively little work has been done regarding sensitivity analysis and model reduction for this class of problems. Efficient methods for sensitivity analysis are required in model development and as an intermediate step in design optimization of engineering processes. Reduced order models are needed for modelling complex physical phenomena like turbulent reacting flows, where it is not feasible to use a fully-detailed model. The objective of this work has been to develop numerical methods and software for sensitivity analysis and model reduction of nonlinear differential-algebraic systems, including large-scale systems. In collaboration with Peter Brown and Alan Hindmarsh of LLNL, the authors developed an algorithm for finding consistent initial conditions for several widely occurring classes of differential-algebraic equations (DAEs). The new algorithm is much more robust than the previous algorithm. It is also very easy to use, having been designed to require almost no information about the differential equation, Jacobian matrix, etc. in addition to what is already needed to take the subsequent time steps. The new algorithm has been implemented in a version of the software for solution of large-scale DAEs, DASPK, which has been made available on the internet. The new methods and software have been used to solve a Tokamak edge plasma problem at LLNL which could not be solved with the previous methods and software because of difficulties in finding consistent initial conditions. The capability of finding consistent initial values is also needed for the sensitivity and optimization efforts described in this paper.

  7. Steady state analysis of Boolean molecular network models via model reduction and computational algebra

    PubMed Central

    2014-01-01

    Background A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. Results This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. Conclusions The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate

  8. RGB-D SLAM Combining Visual Odometry and Extended Information Filter

    PubMed Central

    Zhang, Heng; Liu, Yanli; Tan, Jindong; Xiong, Naixue

    2015-01-01

    In this paper, we present a novel RGB-D SLAM system based on visual odometry and an extended information filter, which does not require any other sensors or odometry. In contrast to the graph optimization approaches, this is more suitable for online applications. A visual dead reckoning algorithm based on visual residuals is devised, which is used to estimate motion control input. In addition, we use a novel descriptor called binary robust appearance and normals descriptor (BRAND) to extract features from the RGB-D frame and use them as landmarks. Furthermore, considering both the 3D positions and the BRAND descriptors of the landmarks, our observation model avoids explicit data association between the observations and the map by marginalizing the observation likelihood over all possible associations. Experimental validation is provided, which compares the proposed RGB-D SLAM algorithm with just RGB-D visual odometry and a graph-based RGB-D SLAM algorithm using the publicly-available RGB-D dataset. The results of the experiments demonstrate that our system is quicker than the graph-based RGB-D SLAM algorithm. PMID:26263990

  9. Application of the algebraic RNG model for transition simulation. [renormalization group theory

    NASA Technical Reports Server (NTRS)

    Lund, Thomas S.

    1990-01-01

    The algebraic form of the RNG model of Yakhot and Orszag (1986) is investigated as a transition model for the Reynolds averaged boundary layer equations. It is found that the cubic equation for the eddy viscosity contains both a jump discontinuity and one spurious root. A yet unpublished transformation to a quartic equation is shown to remove the numerical difficulties associated with the discontinuity, but only at the expense of merging both the physical and spurious root of the cubic. Jumps between the branches of the resulting multiple-valued solution are found to lead to oscillations in flat plate transition calculations. Aside from the oscillations, the transition behavior is qualitatively correct.

  10. Using process algebra to develop predator-prey models of within-host parasite dynamics.

    PubMed

    McCaig, Chris; Fenton, Andy; Graham, Andrea; Shankland, Carron; Norman, Rachel

    2013-07-21

    As a first approximation of immune-mediated within-host parasite dynamics we can consider the immune response as a predator, with the parasite as its prey. In the ecological literature of predator-prey interactions there are a number of different functional responses used to describe how a predator reproduces in response to consuming prey. Until recently most of the models of the immune system that have taken a predator-prey approach have used simple mass action dynamics to capture the interaction between the immune response and the parasite. More recently Fenton and Perkins (2010) employed three of the most commonly used prey-dependent functional response terms from the ecological literature. In this paper we make use of a technique from computing science, process algebra, to develop mathematical models. The novelty of the process algebra approach is to allow stochastic models of the population (parasite and immune cells) to be developed from rules of individual cell behaviour. By using this approach in which individual cellular behaviour is captured we have derived a ratio-dependent response similar to that seen in the previous models of immune-mediated parasite dynamics, confirming that, whilst this type of term is controversial in ecological predator-prey models, it is appropriate for models of the immune system.

  11. Vision Based SLAM in Dynamic Scenes

    DTIC Science & Technology

    2012-12-20

    cameras , while conventional studies are limited with a single camera (or a multi- camera rig where the relative positions between cameras are fixed...Our flexible configuration of cameras makes this algorithm applicable to robot teams, which also makes this study the world’s first vision based SLAM...algorithm for robot teams. Furthermore, the collaboration among multiple cameras allows us to deal with challenging dynamic scenes which make most

  12. A computer code for calculations in the algebraic collective model of the atomic nucleus

    NASA Astrophysics Data System (ADS)

    Welsh, T. A.; Rowe, D. J.

    2016-03-01

    A Maple code is presented for algebraic collective model (ACM) calculations. The ACM is an algebraic version of the Bohr model of the atomic nucleus, in which all required matrix elements are derived by exploiting the model's SU(1 , 1) × SO(5) dynamical group. This paper reviews the mathematical formulation of the ACM, and serves as a manual for the code. The code enables a wide range of model Hamiltonians to be analysed. This range includes essentially all Hamiltonians that are rational functions of the model's quadrupole moments qˆM and are at most quadratic in the corresponding conjugate momenta πˆN (- 2 ≤ M , N ≤ 2). The code makes use of expressions for matrix elements derived elsewhere and newly derived matrix elements of the operators [ π ˆ ⊗ q ˆ ⊗ π ˆ ] 0 and [ π ˆ ⊗ π ˆ ] LM. The code is made efficient by use of an analytical expression for the needed SO(5)-reduced matrix elements, and use of SO(5) ⊃ SO(3) Clebsch-Gordan coefficients obtained from precomputed data files provided with the code.

  13. Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model

    NASA Astrophysics Data System (ADS)

    Cirilo António, N.; Manojlović, N.; Salom, I.

    2014-12-01

    We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model.

  14. Modeling boyciana-fish-human interaction with partial differential algebraic equations.

    PubMed

    Jiang, Yushan; Zhang, Qingling; Wang, Haiyan

    2016-07-01

    Under the influence of human population distribution, the boyciana-fish ecological system is considered. First, the system can be described as a nonlinear partial differential algebraic equations system (PDAEs) with Neumann boundary conditions and ratio-dependent functional response. Second, we examine the system's persistence properties: the loacl stabilities of positive steady states, the absorbtion region and the global stability. And the proposed approach is illustrated by numerical simulation. Finally, by using the realistic data collected in the past fourteen years, the PDAEs parameter optimization model is built to predict the boyciana population.

  15. Numerical algebraic geometry for model selection and its application to the life sciences

    PubMed Central

    Gross, Elizabeth; Davis, Brent; Ho, Kenneth L.; Bates, Daniel J.

    2016-01-01

    Researchers working with mathematical models are often confronted by the related problems of parameter estimation, model validation and model selection. These are all optimization problems, well known to be challenging due to nonlinearity, non-convexity and multiple local optima. Furthermore, the challenges are compounded when only partial data are available. Here, we consider polynomial models (e.g. mass-action chemical reaction networks at steady state) and describe a framework for their analysis based on optimization using numerical algebraic geometry. Specifically, we use probability-one polynomial homotopy continuation methods to compute all critical points of the objective function, then filter to recover the global optima. Our approach exploits the geometrical structures relating models and data, and we demonstrate its utility on examples from cell signalling, synthetic biology and epidemiology. PMID:27733697

  16. Numerical algebraic geometry for model selection and its application to the life sciences.

    PubMed

    Gross, Elizabeth; Davis, Brent; Ho, Kenneth L; Bates, Daniel J; Harrington, Heather A

    2016-10-01

    Researchers working with mathematical models are often confronted by the related problems of parameter estimation, model validation and model selection. These are all optimization problems, well known to be challenging due to nonlinearity, non-convexity and multiple local optima. Furthermore, the challenges are compounded when only partial data are available. Here, we consider polynomial models (e.g. mass-action chemical reaction networks at steady state) and describe a framework for their analysis based on optimization using numerical algebraic geometry. Specifically, we use probability-one polynomial homotopy continuation methods to compute all critical points of the objective function, then filter to recover the global optima. Our approach exploits the geometrical structures relating models and data, and we demonstrate its utility on examples from cell signalling, synthetic biology and epidemiology.

  17. Fast and accurate computation of system matrix for area integral model-based algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua

    2014-11-01

    Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.

  18. Algebraic turbulence models for the computation of two-dimensional high-speed flows using unstructured grids

    NASA Technical Reports Server (NTRS)

    Rostand, Philippe

    1989-01-01

    The incorporation of algebraic turbulence models in a solver for the 2-D compressible Navier-Stokes equations using triangular grids is described. A practial way to use the Cebeci Smith model, and to modify it in separated regions is proposed. The ability of the model to predict high speed, perfect gas boundary layers is investigated from a numerical point of view.

  19. A posteriori testing of algebraic flame surface density models for LES

    NASA Astrophysics Data System (ADS)

    Ma, T.; Stein, O. T.; Chakraborty, N.; Kempf, A. M.

    2013-06-01

    In the application of Large Eddy Simulation (LES) to premixed combustion, the unknown filtered chemical source term can be modelled by the generalised flame surface density (FSD) using algebraic models for the wrinkling factor Ξ. The present study compares the behaviour of the various models by first examining the effect of sub-grid turbulent velocity fluctuation on Ξ through a one-dimensional analysis and by the LES of the ORACLES burner (Nguyen, Bruel, and Reichstadt, Flow, Turbulence and Combustion Vol. 82 [2009], pp. 155-183) and the Volvo Rig (Sjunnesson, Nelsson, and Max, Laser Anemometry, Vol. 3 [1991], pp. 83-90; Sjunnesson, Henrikson, and Löfström, AIAA Journal, Vol. 28 [1992], pp. AIAA-92-3650). Several sensitivity studies on parameters such as the turbulent viscosity and the grid resolution are also carried out. A statistically 1-D analysis of turbulent flame propagation reveals that counter gradient transport of the progress variable needs to be accounted for to obtain a realistic flame thickness from the simulations using algebraic FSD based closure. The two burner setups are found to operate mainly within the wrinkling/corrugated flamelet regime based on the premixed combustion diagram for LES (Pitsch and Duchamp de Lageneste, Proceedings of the Combustion Institute, Vol. 29 [2002], pp. 2001-2008) and this suggests that the models are operating within their ideal range. The performance of the algebraic models are then assessed by comparing velocity statistics, followed by a detailed error analysis for the ORACLES burner. Four of the tested models were found to perform reasonably well against experiments, and one of these four further excels in being the most grid-independent. For the Volvo Rig, more focus is placed upon the comparison of temperature data and identifying changes in flame structure amongst the different models. It is found that the few models which largely over-predict velocities in the ORACLES case and volume averaged ? in a

  20. Computation of turbulent rotating channel flow with an algebraic Reynolds stress model

    NASA Technical Reports Server (NTRS)

    Warfield, M. J.; Lakshminarayana, B.

    1986-01-01

    An Algebraic Reynolds Stress Model has been implemented to modify the Kolmogorov-Prandtl eddy viscosity relation to produce an anisotropic turbulence model. The eddy viscosity relation becomes a function of the local turbulent production to dissipation ratio and local turbulence/rotation parameters. The model is used to predict fully-developed rotating channel flow over a diverse range of rotation numbers. In addition, predictions are obtained for a developing channel flow with high rotation. The predictions are compared with the experimental data available. Good predictions are achieved for mean velocity and wall shear stress over most of the rotation speeds tested. There is some prediction breakdown at high rotation (rotation number greater than .10) where the effects of the rotation on turbulence become quite complex. At high rotation and low Reynolds number, the laminarization on the trailing side represents a complex effect of rotation which is difficult to predict with the described models.

  1. Topological expansion of the β-ensemble model and quantum algebraic geometry in the sectorwise approach

    NASA Astrophysics Data System (ADS)

    Chekhov, L. O.; Eynard, B.; Marchal, O.

    2011-02-01

    We construct the solution of the loop equations of the β-ensemble model in a form analogous to the solution in the case of the Hermitian matrices β = 1. The solution for β = 1 is expressed in terms of the algebraic spectral curve given by y2 = U(x). The spectral curve for arbitrary β converts into the Schrödinger equation (ħ∂)2 - U(x) ψ(x) = 0, where ħ ∝ {{( {{{sqrt β - 1} {sqrt β }}} {{{sqrt β - 1} {sqrt β }}} {sqrt β }}} )} N}}. The basic ingredients of the method based on the algebraic solution retain their meaning, but we use an alternative approach to construct a solution of the loop equations in which the resolvents are given separately in each sector. Although this approach turns out to be more involved technically, it allows consistently defining the B-cycle structure for constructing the quantum algebraic curve (a D-module of the form y2 - U(x), where [y, x] = ħ) and explicitly writing the correlation functions and the corresponding symplectic invariants Fh or the terms of the free energy in an 1/N2-expansion at arbitrary ħ. The set of "flat" coordinates includes the potential times tk and the occupation numbers tilde \\varepsilon _α . We define and investigate the properties of the A- and B-cycles, forms of the first, second, and third kinds, and the Riemann bilinear identities. These identities allow finding the singular part of mathcal{F}_0 , which depends only on tilde \\varepsilon _α.

  2. Algebraic solutions for two-level pairing model in IBM-2 and IVBM

    NASA Astrophysics Data System (ADS)

    Jalili-Majarshin, A.; Jafarizadeh, M. A.; Fouladi, N.

    2016-09-01

    In this paper the affine SU(1,1) approach is applied to numerically solve two pairing problems. A dynamical symmetry limit of the two-fluid interacting boson model-2 (IBM-2) and of the interacting vector boson model (IVBM) defined through the chains U_{π}(6) ⊗ U_{ν}(6) supset SO_{π}(5)⊗ SO_{ν}(5) supset SO_{π}(3) ⊗ SO_{ν}(3) supset SO(3) and U(6) supset U_{π}(3) ⊗ U_{ν}(3) supset SO_{π}(3) ⊗ SO_{ν}(3) supset SO(3) are introduced, respectively. The quantum phase transition between spherical and γ-soft shapes in medium-mass nuclei is analyzed using U(5) leftrightarrow SO(6) transitional nuclei in IBM-2 and one case U_{π}(3) ⊗ U_{ν}(3) leftrightarrow SO(6) transitional nuclei in IVBM found by using an infinite dimensional algebraic method based on affine SU(1,1) Lie algebra. The calculated energy spectra, energy ratio and energy staggering of Mo isotopes are compared with experimental results. The interplay between phase transitions and configuration mixing of intruder excitations between spherical vibrations and the γ-soft shapes in Mo isotopes is succinctly addressed and displays fingerprints of the transitional dynamical symmetry E(5).

  3. ηc elastic and transition form factors: Contact interaction and algebraic model

    NASA Astrophysics Data System (ADS)

    Bedolla, Marco A.; Raya, Khépani; Cobos-Martínez, J. J.; Bashir, Adnan

    2016-05-01

    For the flavor-singlet heavy-quark system of charmonia in the pseudoscalar [ηc(1 S ) ] channel, we calculate the elastic (EFF) and transition form factors (TFFs) [ηc(1 S )→γ γ* ] for a wide range of photon momentum transfer squared (Q2). The framework for this analysis is provided by a symmetry-preserving Schwinger-Dyson equation and Bethe-Salpeter equation treatment of a vector×vector contact interaction. We also employ an algebraic model, developed earlier to describe the light-quark systems. It correctly correlates infrared and ultraviolet dynamics of quantum chromodynamics (QCD). The contact interaction results agree with the lattice data for low Q2. For Q2≥Q02 , the results start deviating from the lattice results by more than 20%. Q02≈2.5 GeV2 for the EFF, and ≈25 GeV2 for the TFF. We also present the results for the EFF, TFF, and ηc(1 S ) parton distribution amplitude for the algebraic model. Wherever the comparison is possible, these results are in excellent agreement with the lattice, perturbative QCD, results obtained through a Schwinger-Dyson equation-Bethe-Salpeter equation study, employing refined truncations, and the experimental findings of the BABAR experiment.

  4. Multiobjective algebraic synthesis of neural control systems by implicit model following.

    PubMed

    Ferrari, Silvia

    2009-03-01

    The advantages brought about by using classical linear control theory in conjunction with neural approximators have long been recognized in the literature. In particular, using linear controllers to obtain the starting neural control design has been shown to be a key step for the successful development and implementation of adaptive-critic neural controllers. Despite their adaptive capabilities, neural controllers are often criticized for not providing the same performance and stability guarantees as classical linear designs. Therefore, this paper develops an algebraic synthesis procedure for designing dynamic output-feedback neural controllers that are closed-loop stable and meet the same performance objectives as any classical linear design. The performance synthesis problem is addressed by deriving implicit model-following algebraic relationships between model matrices, obtained from the classical design, and the neural control parameters. Additional linear matrix inequalities (LMIs) conditions for closed-loop exponential stability of the neural controller are derived using existing integral quadratic constraints (IQCs) for operators with repeated slope-restricted nonlinearities. The approach is demonstrated by designing a recurrent neural network controller for a highly maneuverable tailfin-controlled missile that meets multiple design objectives, including pole placement for transient tuning, H(infinity) and H(2) performance in the presence of parameter uncertainty, and command-input tracking.

  5. A rigorous approach to investigating common assumptions about disease transmission: Process algebra as an emerging modelling methodology for epidemiology.

    PubMed

    McCaig, Chris; Begon, Mike; Norman, Rachel; Shankland, Carron

    2011-03-01

    Changing scale, for example, the ability to move seamlessly from an individual-based model to a population-based model, is an important problem in many fields. In this paper, we introduce process algebra as a novel solution to this problem in the context of models of infectious disease spread. Process algebra allows us to describe a system in terms of the stochastic behaviour of individuals, and is a technique from computer science. We review the use of process algebra in biological systems, and the variety of quantitative and qualitative analysis techniques available. The analysis illustrated here solves the changing scale problem: from the individual behaviour we can rigorously derive equations to describe the mean behaviour of the system at the level of the population. The biological problem investigated is the transmission of infection, and how this relates to individual interactions.

  6. A possible framework of the Lipkin model obeying the SU(n) algebra in arbitrary fermion number. I: The SU(2) algebras extended from the conventional fermion pair and determination of the minimum weight states

    NASA Astrophysics Data System (ADS)

    Tsue, Yasuhiko; Providência, Constança; Providência, João da; Yamamura, Masatoshi

    2016-08-01

    The minimum weight states of the Lipkin model consisting of n single-particle levels and obeying the SU(n) algebra are investigated systematically. The basic idea is to use the SU(2) algebra, which is independent of the SU(n) algebra. This idea has already been presented by the present authors in the case of the conventional Lipkin model consisting of two single-particle levels and obeying the SU(2) algebra. If this idea is followed, the minimum weight states are determined for any fermion number appropriately occupying n single-particle levels. Naturally, the conventional minimum weight state is included: all fermions occupy energetically the lowest single-particle level in the absence of interaction. The cases n=2, 3, 4, and 5 are discussed in some detail.

  7. Quasi-exact-solvability of the {{A}_{2}}/{{G}_{2}} elliptic model: algebraic forms, sl(3)/{{g}^{(2)}} hidden algebra, and polynomial eigenfunctions

    NASA Astrophysics Data System (ADS)

    Sokolov, Vladimir V.; Turbiner, Alexander V.

    2015-04-01

    The potential of the A2 quantum elliptic model (three-body Calogero-Moser elliptic model) is defined by the pairwise three-body interaction through the Weierstrass ℘-function and has a single coupling constant. A change of variables has been found, which are A2 elliptic invariants, such that the potential becomes a rational function, while the flat space metric, as well as its associated vector, are polynomials in two variables. It is shown that the model possesses the hidden sl(3) algebra—the Hamiltonian is an element of the universal enveloping algebra {{U}sl(3)} for the arbitrary coupling constant—thus, it is equivalent to the sl(3)-quantum Euler-Arnold top. The integral, in a form of the third order differential operator with polynomial coefficients, is constructed explicitly, being also an element of {{U}sl(3)}. It is shown that there exists a discrete sequence of the coupling constants for which a finite number of polynomial eigenfunctions, up to a (non-singular) gauge factor, occurs. For these values of the coupling constants there exists a particular integral: it commutes with the Hamiltonian in action on the space of polynomial eigenfunctions, and the Hamiltonian is invariant with respect to two-dimensional projective transformations. It is shown that the A2 model has another hidden algebra {{g}(2)} introduced in Rosenbaum et al (1998 Int. J. Mod. Phys. A 13 3885). The potential of the G2 quantum elliptic model (three-body Wolfes elliptic model) is defined by the pairwise and three-body interactions through the Weierstrass ℘-function and has two coupling constants. A change of variables has been found, which are G2 elliptic invariants, such that the potential becomes a rational function, while the flat space metric, as well as its associated vector, are polynomials in two variables. It is shown the model possesses the hidden {{g}(2)} algebra. It is shown that there exists a discrete family of the coupling constants for which a finite number of

  8. Conceptual Model-Based Problem Solving That Facilitates Algebra Readiness: An Exploratory Study with Computer-Assisted Instruction

    ERIC Educational Resources Information Center

    Xin, Yan Ping; Si, Luo; Hord, Casey; Zhang, Dake; Cetinas, Suleyman; Park, Joo Young

    2012-01-01

    The study explored the effects of a computer-assisted COnceptual Model-based Problem-Solving (COMPS) program on multiplicative word-problem-solving performance of students with learning disabilities or difficulties. The COMPS program emphasizes mathematical modeling with algebraic expressions of relations. Participants were eight fourth and fifth…

  9. Performance of a parallel algebraic multilevel preconditioner for stabilized finite element semiconductor device modeling

    NASA Astrophysics Data System (ADS)

    Lin, Paul T.; Shadid, John N.; Sala, Marzio; Tuminaro, Raymond S.; Hennigan, Gary L.; Hoekstra, Robert J.

    2009-09-01

    In this study results are presented for the large-scale parallel performance of an algebraic multilevel preconditioner for solution of the drift-diffusion model for semiconductor devices. The preconditioner is the key numerical procedure determining the robustness, efficiency and scalability of the fully-coupled Newton-Krylov based, nonlinear solution method that is employed for this system of equations. The coupled system is comprised of a source term dominated Poisson equation for the electric potential, and two convection-diffusion-reaction type equations for the electron and hole concentration. The governing PDEs are discretized in space by a stabilized finite element method. Solution of the discrete system is obtained through a fully-implicit time integrator, a fully-coupled Newton-based nonlinear solver, and a restarted GMRES Krylov linear system solver. The algebraic multilevel preconditioner is based on an aggressive coarsening graph partitioning of the nonzero block structure of the Jacobian matrix. Representative performance results are presented for various choices of multigrid V-cycles and W-cycles and parameter variations for smoothers based on incomplete factorizations. Parallel scalability results are presented for solution of up to 108 unknowns on 4096 processors of a Cray XT3/4 and an IBM POWER eServer system.

  10. Conceptual explanation for the algebra in the noncommutative approach to the standard model.

    PubMed

    Chamseddine, Ali H; Connes, Alain

    2007-11-09

    The purpose of this Letter is to remove the arbitrariness of the ad hoc choice of the algebra and its representation in the noncommutative approach to the standard model, which was begging for a conceptual explanation. We assume as before that space-time is the product of a four-dimensional manifold by a finite noncommmutative space F. The spectral action is the pure gravitational action for the product space. To remove the above arbitrariness, we classify the irreducible geometries F consistent with imposing reality and chiral conditions on spinors, to avoid the fermion doubling problem, which amounts to have total dimension 10 (in the K-theoretic sense). It gives, almost uniquely, the standard model with all its details, predicting the number of fermions per generation to be 16, their representations and the Higgs breaking mechanism, with very little input.

  11. Free differential algebras and pure spinor action in IIB superstring sigma models

    NASA Astrophysics Data System (ADS)

    Oda, Ichiro; Tonin, Mario

    2011-06-01

    In this paper we extend to the case of IIB superstring sigma models the method proposed in hep-th/10023500 to derive the pure spinor approach for type IIA sigma models. In particular, starting from the (Free) Differential Algebra and superspace parametrization of type IIB supergravity, extended to include the BRST differential and all the ghosts, we derive the BRST transformations of fields and ghosts as well as the standard pure spinor constraints for the ghosts λ related to supersymmetry. Moreover, using the method first proposed by us, we derive the pure spinor action for type IIB superstrings in curved supergravity backgrounds (on shell), in full agreement with the action first obtained by Berkovits and Howe.

  12. Algebraic Nonlinear Collective Motion

    NASA Astrophysics Data System (ADS)

    Troupe, J.; Rosensteel, G.

    1998-11-01

    Finite-dimensional Lie algebras of vector fields determine geometrical collective models in quantum and classical physics. Every set of vector fields on Euclidean space that generates the Lie algebra sl(3, R) and contains the angular momentum algebra so(3) is determined. The subset of divergence-free sl(3, R) vector fields is proven to be indexed by a real numberΛ. TheΛ=0 solution is the linear representation that corresponds to the Riemann ellipsoidal model. The nonlinear group action on Euclidean space transforms a certain family of deformed droplets among themselves. For positiveΛ, the droplets have a neck that becomes more pronounced asΛincreases; for negativeΛ, the droplets contain a spherical bubble of radius |Λ|1/3. The nonlinear vector field algebra is extended to the nonlinear general collective motion algebra gcm(3) which includes the inertia tensor. The quantum algebraic models of nonlinear nuclear collective motion are given by irreducible unitary representations of the nonlinear gcm(3) Lie algebra. These representations model fissioning isotopes (Λ>0) and bubble and two-fluid nuclei (Λ<0).

  13. SLAM algorithm applied to robotics assistance for navigation in unknown environments

    PubMed Central

    2010-01-01

    results have shown a consistent reconstruction of the environment. The obtained map was stored inside the Muscle-Computer Interface. Conclusions The integration of a highly demanding processing algorithm (SLAM) with a MCI and the communication between both in real time have shown to be consistent and successful. The metric map generated by the mobile robot would allow possible future autonomous navigation without direct control of the user, whose function could be relegated to choose robot destinations. Also, the mobile robot shares the same kinematic model of a motorized wheelchair. This advantage can be exploited for wheelchair autonomous navigation. PMID:20163735

  14. Short Large-Amplitude Magnetic Structures (SLAMS) at Venus

    NASA Technical Reports Server (NTRS)

    Collinson, G. A.; Wilson, L. B.; Sibeck, D. G.; Shane, N.; Zhang, T. L.; Moore, T. E.; Coates, A. J.; Barabash, S.

    2012-01-01

    We present the first observation of magnetic fluctuations consistent with Short Large-Amplitude Magnetic Structures (SLAMS) in the foreshock of the planet Venus. Three monolithic magnetic field spikes were observed by the Venus Express on the 11th of April 2009. The structures were approx.1.5->11s in duration, had magnetic compression ratios between approx.3->6, and exhibited elliptical polarization. These characteristics are consistent with the SLAMS observed at Earth, Jupiter, and Comet Giacobini-Zinner, and thus we hypothesize that it is possible SLAMS may be found at any celestial body with a foreshock.

  15. Development and calibration of algebraic nonlinear models for terms in the Reynolds stress transport equations

    NASA Astrophysics Data System (ADS)

    Sjögren, Torbjörn; Johansson, Arne V.

    2000-06-01

    A simple and straightforward method is presented for the derivation and calibration of algebraic nonlinear models for terms in Reynolds stress turbulence closures. The method extensively utilizes data from direct numerical simulations to allow an investigation of the model performance over the entire Reynolds stress anisotropy-invariant map. The model constants are determined from the condition of minimizing the mean square error over the invariant map, in order to give good model behavior for as wide a class as possible of flow situations. A low Reynolds number closure is proposed based on the most general form for closing the Reynolds stress transport equations in terms of Reynolds stresses and total dissipation rate. It is shown that forcing the closure to satisfy realizability in a strict sense leads to a good model behavior even for the complicated flow situation near a wall, without any use of ad-hoc wall damping functions in the closure. The model behavior in homogeneous turbulent flow is analyzed by formulating equations for invariant measures, yielding several quite general results for the behavior of the present and other existing models. A new approach to the modeling effects of rotation in the context of Reynolds stress closures is presented and tested for some different homogeneous flows subjected to rotation.

  16. Modelling and temporal performances evaluation of networked control systems using (max, +) algebra

    NASA Astrophysics Data System (ADS)

    Ammour, R.; Amari, S.

    2015-01-01

    In this paper, we address the problem of temporal performances evaluation of producer/consumer networked control systems. The aim is to develop a formal method for evaluating the response time of this type of control systems. Our approach consists on modelling, using Petri nets classes, the behaviour of the whole architecture including the switches that support multicast communications used by this protocol. (max, +) algebra formalism is then exploited to obtain analytical formulas of the response time and the maximal and minimal bounds. The main novelty is that our approach takes into account all delays experienced at the different stages of networked automation systems. Finally, we show how to apply the obtained results through an example of networked control system.

  17. Extension of the algebraic transition model for the wall roughness effect

    NASA Astrophysics Data System (ADS)

    Straka, Petr; Příhoda, Jaromír

    2016-03-01

    The contribution deals with the simulation of the laminar/turbulent transition taking into account the effect of wall roughness. The correlation for the transition onset proposed by Straka and Příhoda [1] was modified for the effect of the wall roughness using the correlation according to Boyle and Stripf [2]. This correlation derived for the wall roughness formed by regularly distributed truncated cones was modified for flows over the distributed wall roughness. The algebraic transition model proposed by Straka and Příhoda [1] with the modified relation for the transition onset was verified by means of the incompressible flat-plate boundary-layer and the compressible flow through the turbine blade cascade with rough blades.

  18. Validating Cognitive Models of Task Performance in Algebra on the SAT®. Research Report No. 2009-3

    ERIC Educational Resources Information Center

    Gierl, Mark J.; Leighton, Jacqueline P.; Wang, Changjiang; Zhou, Jiawen; Gokiert, Rebecca; Tan, Adele

    2009-01-01

    The purpose of the study is to present research focused on validating the four algebra cognitive models in Gierl, Wang, et al., using student response data collected with protocol analysis methods to evaluate the knowledge structures and processing skills used by a sample of SAT test takers.

  19. Study of Transitions in the Atmospheric Boundary Layer Using Explicit Algebraic Turbulence Models

    NASA Astrophysics Data System (ADS)

    Lazeroms, W. M. J.; Svensson, G.; Bazile, E.; Brethouwer, G.; Wallin, S.; Johansson, A. V.

    2016-10-01

    We test a recently developed engineering turbulence model, a so-called explicit algebraic Reynolds-stress (EARS) model, in the context of the atmospheric boundary layer. First of all, we consider a stable boundary layer used as the well-known first test case from the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study (GABLS1). The model is shown to agree well with data from large-eddy simulations (LES), and this agreement is significantly better than for a standard operational scheme with a prognostic equation for turbulent kinetic energy. Furthermore, we apply the model to a case with a (idealized) diurnal cycle and make a qualitative comparison with a simpler first-order model. Some interesting features of the model are highlighted, pertaining to its stronger foundation on physical principles. In particular, the use of more prognostic equations in the model is shown to give a more realistic dynamical behaviour. This qualitative study is the first step towards a more detailed comparison, for which additional LES data are needed.

  20. The algebra of the general Markov model on phylogenetic trees and networks.

    PubMed

    Sumner, J G; Holland, B R; Jarvis, P D

    2012-04-01

    It is known that the Kimura 3ST model of sequence evolution on phylogenetic trees can be extended quite naturally to arbitrary split systems. However, this extension relies heavily on mathematical peculiarities of the associated Hadamard transformation, and providing an analogous augmentation of the general Markov model has thus far been elusive. In this paper, we rectify this shortcoming by showing how to extend the general Markov model on trees to include incompatible edges; and even further to more general network models. This is achieved by exploring the algebra of the generators of the continuous-time Markov chain together with the “splitting” operator that generates the branching process on phylogenetic trees. For simplicity, we proceed by discussing the two state case and then show that our results are easily extended to more states with little complication. Intriguingly, upon restriction of the two state general Markov model to the parameter space of the binary symmetric model, our extension is indistinguishable from the Hadamard approach only on trees; as soon as any incompatible splits are introduced the two approaches give rise to differing probability distributions with disparate structure. Through exploration of a simple example, we give an argument that our extension to more general networks has desirable properties that the previous approaches do not share. In particular, our construction allows for convergent evolution of previously divergent lineages; a property that is of significant interest for biological applications.

  1. Dynamical behavior in a stage-structured differential-algebraic prey-predator model with discrete time delay and harvesting

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Zhang, Qingling; Zhang, Xue; Duan, Xiaodong

    2009-09-01

    A differential-algebraic model system which considers a prey-predator system with stage structure for prey and harvest effort on predator is proposed. By using the differential-algebraic system theory and bifurcation theory, dynamic behavior of the proposed model system with and without discrete time delay is investigated. Local stability analysis of the model system without discrete time delay reveals that there is a phenomenon of singularity induced bifurcation due to variation of the economic interest of harvesting, and a state feedback controller is designed to stabilize the proposed model system at the interior equilibrium; Furthermore, local stability of the model system with discrete time delay is studied. It reveals that the discrete time delay has a destabilizing effect in the population dynamics, and a phenomenon of Hopf bifurcation occurs as the discrete time delay increases through a certain threshold. Finally, numerical simulations are carried out to show the consistency with theoretical analysis obtained in this paper.

  2. An algebraic model of an associative noise-like coding memory.

    PubMed

    Bottini, S

    1980-01-01

    A mathematical model of an associative memory is presented, sharing with the optical holography memory systems the properties which establish an analogy with biological memory. This memory system--developed from Gabor's model of memory--is based on a noise-like coding of the information by which it realizes a distributed, damage-tolerant, "equipotential" storage through simultaneous state changes of discrete substratum elements. Each two associated items being stored are coded by each other by means of two noise-like patterns obtained from them through a randomizing preprocessing. The algebraic transformations operating the information storage and retrieval are matrix-vector products involving Toeplitz type matrices. Several noise-like coded memory traces are superimposed on a common substratum without crosstalk interference; moreover, extraneous noise added to these memory traces does not injure the stored information. The main performances shown by this memory model are: i) the selective, complete recovering of stored information from incomplete keys, both mixed with extraneous information and translated from the position learnt; ii) a dynamic recollection where the information just recovered acts as a new key for a sequential retrieval process; iii) context-dependent responses. The hypothesis that the information is stored in the nervous system through a noise-like coding is suggested. The model has been simulated on a digital computer using bidimensional images.

  3. Algebraic and group structure for bipartite anisotropic Ising model on a non-local basis

    NASA Astrophysics Data System (ADS)

    Delgado, Francisco

    2015-01-01

    Entanglement is considered a basic physical resource for modern quantum applications as Quantum Information and Quantum Computation. Interactions based on specific physical systems able to generate and sustain entanglement are subject to deep research to get understanding and control on it. Atoms, ions or quantum dots are considered key pieces in quantum applications because they are elements in the development toward a scalable spin-based quantum computer through universal and basic quantum operations. Ising model is a type of interaction generating entanglement in quantum systems based on matter. In this work, a general bipartite anisotropic Ising model including an inhomogeneous magnetic field is analyzed in a non-local basis. This model summarizes several particular models presented in literature. When evolution is expressed in the Bell basis, it shows a regular block structure suggesting a SU(2) decomposition. Then, their algebraic properties are analyzed in terms of a set of physical parameters which define their group structure. In particular, finite products of pulses in this interaction are analyzed in terms of SU(4) covering. Thus, evolution denotes remarkable properties, in particular those related potentially with entanglement and control, which give a fruitful arena for further quantum developments and generalization.

  4. A computational neural model of orientation detection based on multiple guesses: comparison of geometrical and algebraic models.

    PubMed

    Wei, Hui; Ren, Yuan; Wang, Zi Yan

    2013-10-01

    The implementation of Hubel-Wiesel hypothesis that orientation selectivity of a simple cell is based on ordered arrangement of its afferent cells has some difficulties. It requires the receptive fields (RFs) of those ganglion cells (GCs) and LGN cells to be similar in size and sub-structure and highly arranged in a perfect order. It also requires an adequate number of regularly distributed simple cells to match ubiquitous edges. However, the anatomical and electrophysiological evidence is not strong enough to support this geometry-based model. These strict regularities also make the model very uneconomical in both evolution and neural computation. We propose a new neural model based on an algebraic method to estimate orientations. This approach synthesizes the guesses made by multiple GCs or LGN cells and calculates local orientation information subject to a group of constraints. This algebraic model need not obey the constraints of Hubel-Wiesel hypothesis, and is easily implemented with a neural network. By using the idea of a satisfiability problem with constraints, we also prove that the precision and efficiency of this model are mathematically practicable. The proposed model makes clear several major questions which Hubel-Wiesel model does not account for. Image-rebuilding experiments are conducted to check whether this model misses any important boundary in the visual field because of the estimation strategy. This study is significant in terms of explaining the neural mechanism of orientation detection, and finding the circuit structure and computational route in neural networks. For engineering applications, our model can be used in orientation detection and as a simulation platform for cell-to-cell communications to develop bio-inspired eye chips.

  5. Kiddie Algebra

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2009-01-01

    As educators and policymakers search for ways to prepare students for the rigors of algebra, teachers in the Helena, Montana, school system are starting early by attempting to nurture students' algebraic-reasoning ability, as well as their basic number skills, in early elementary school, rather than waiting until middle or early high school.…

  6. LNG pump anti-slam device

    SciTech Connect

    Tornay, E.G.

    1980-05-27

    In pumping LNG (liquefied natural gas) from one receiver to another, eg., from a vessel's tank to a shore installation, it is conventional to use a submerged pump, a riser pipe connecting the pump to a stop valve and flexible joint connecting the stop valve to a header. If a pocket of gaseous lng is present in the riser pipe, when the pump commences its operation, the advancing column of liquid in the riser pipe slams against the stop valve and may damage it. The invention provides the improvement of a removable or bypassable flow restrictor incorporated between the pump and the riser pipe, permitting to ensure that the riser pipe is completely liquid-filled, before the pump commences to operate.

  7. Mathematical Model for Dengue Epidemics with Differential Susceptibility and Asymptomatic Patients Using Computer Algebra

    NASA Astrophysics Data System (ADS)

    Saldarriaga Vargas, Clarita

    When there are diseases affecting large populations where the social, economic and cultural diversity is significant within the same region, the biological parameters that determine the behavior of the dispersion disease analysis are affected by the selection of different individuals. Therefore and because of the variety and magnitude of the communities at risk of contracting dengue disease around all over the world, suggest defining differentiated populations with individual contributions in the results of the dispersion dengue disease analysis. In this paper those conditions were taken in account when several epidemiologic models were analyzed. Initially a stability analysis was done for a SEIR mathematical model of Dengue disease without differential susceptibility. Both free disease and endemic equilibrium states were found in terms of the basic reproduction number and were defined in the Theorem (3.1). Then a DSEIR model was solved when a new susceptible group was introduced to consider the effects of important biological parameters of non-homogeneous populations in the spreading analysis. The results were compiled in the Theorem (3.2). Finally Theorems (3.3) and (3.4) resumed the basic reproduction numbers for three and n different susceptible groups respectively, giving an idea of how differential susceptibility affects the equilibrium states. The computations were done using an algorithmic method implemented in Maple 11, a general-purpose computer algebra system.

  8. Calculus domains modelled using an original bool algebra based on polygons

    NASA Astrophysics Data System (ADS)

    Oanta, E.; Panait, C.; Raicu, A.; Barhalescu, M.; Axinte, T.

    2016-08-01

    Analytical and numerical computer based models require analytical definitions of the calculus domains. The paper presents a method to model a calculus domain based on a bool algebra which uses solid and hollow polygons. The general calculus relations of the geometrical characteristics that are widely used in mechanical engineering are tested using several shapes of the calculus domain in order to draw conclusions regarding the most effective methods to discretize the domain. The paper also tests the results of several CAD commercial software applications which are able to compute the geometrical characteristics, being drawn interesting conclusions. The tests were also targeting the accuracy of the results vs. the number of nodes on the curved boundary of the cross section. The study required the development of an original software consisting of more than 1700 computer code lines. In comparison with other calculus methods, the discretization using convex polygons is a simpler approach. Moreover, this method doesn't lead to large numbers as the spline approximation did, in that case being required special software packages in order to offer multiple, arbitrary precision. The knowledge resulted from this study may be used to develop complex computer based models in engineering.

  9. Algebraic stress model for axial flow in a bare rod-bundle

    SciTech Connect

    de Lemos, M.J.S.

    1987-01-01

    The problem of predicting transport properties for momentum and heat across the boundaries of interconnected channels has been the subject of many investigations. In the particular case of axial flow through rod-bundles, transport coefficients for channel faces aligned with rod centers are known to be considerably higher than those calculated by simple isotropic theories. And yet, it was been found that secondary flows play only a minor role in this overall transport, being turbulence highly enhanced across that hypothetical surface. In order to numerically predict the correct amount of the quantity being transported, the approach taken by many investigators was then to artificially increase the diffusion coefficient obtained via a simple isopropic theory (usually the standard k-epsilon model) and numerically match the correct experimentally observed mixing rates. The present paper reports an attempt to describe the turbulent stresses by means of an Algebraic Stress Model for turbulence. Relative turbulent kinetic energy distribution in all three directions are presented and compared with experiments in a square lattice. The strong directional dependence of transport terms are then obtained via a model for the Reynolds stresses. The results identify a need for a better representation of the mean-flow field part of the pressure-strain correlation term.

  10. BatSLAM: Simultaneous localization and mapping using biomimetic sonar.

    PubMed

    Steckel, Jan; Peremans, Herbert

    2013-01-01

    We propose to combine a biomimetic navigation model which solves a simultaneous localization and mapping task with a biomimetic sonar mounted on a mobile robot to address two related questions. First, can robotic sonar sensing lead to intelligent interactions with complex environments? Second, can we model sonar based spatial orientation and the construction of spatial maps by bats? To address these questions we adapt the mapping module of RatSLAM, a previously published navigation system based on computational models of the rodent hippocampus. We analyze the performance of the proposed robotic implementation operating in the real world. We conclude that the biomimetic navigation model operating on the information from the biomimetic sonar allows an autonomous agent to map unmodified (office) environments efficiently and consistently. Furthermore, these results also show that successful navigation does not require the readings of the biomimetic sonar to be interpreted in terms of individual objects/landmarks in the environment. We argue that the system has applications in robotics as well as in the field of biology as a simple, first order, model for sonar based spatial orientation and map building.

  11. Modifications of the law of the wall and algebraic turbulence modelling for separated boundary layers

    NASA Technical Reports Server (NTRS)

    Baldwin, B. S.; Maccormack, R. W.

    1976-01-01

    Various modifications of the conventional algebraic eddy viscosity turbulence model are investigated for application to separated flows. Friction velocity is defined in a way that avoids singular behavior at separation and reattachment but reverts to the conventional definition for flows with small pressure gradients. This leads to a modified law of the wall for separated flows. The effect on the calculated flow field of changes in the model that affect the eddy viscosity at various distances from the wall are determined by (1) switching from Prandtl's form to an inner layer formula due to Clauser at various distances from the wall, (2) varying the constant in the Van Driest damping factor, (3) using Clauser's inner layer formula all the way to the wall, and (4) applying a relaxation procedure in the evaluation of the constant in Clauser's inner layer formula. Numerical solutions of the compressible Navier-Stokes equations are used to determine the effects of the modifications. Experimental results from shock-induced separated flows at Mach numbers 2.93 and 8.45 are used for comparison. For these cases improved predictions of wall pressure distribution and positions of separation and reattachment are obtained from the relaxation version of the Clauser inner layer eddy viscosity formula.

  12. Super-Lie n-algebra extensions, higher WZW models and super-p-branes with tensor multiplet fields

    NASA Astrophysics Data System (ADS)

    Fiorenza, Domenico; Sati, Hisham; Schreiber, Urs

    2015-12-01

    We formalize higher-dimensional and higher gauge WZW-type sigma-model local prequantum field theory, and discuss its rationalized/perturbative description in (super-)Lie n-algebra homotopy theory (the true home of the "FDA"-language used in the supergravity literature). We show generally how the intersection laws for such higher WZW-type σ-model branes (open brane ending on background brane) are encoded precisely in (super-)L∞-extension theory and how the resulting "extended (super-)space-times" formalize spacetimes containing σ-model brane condensates. As an application we prove in Lie n-algebra homotopy theory that the complete super-p-brane spectrum of superstring/M-theory is realized this way, including the pure σ-model branes (the "old brane scan") but also the branes with tensor multiplet worldvolume fields, notably the D-branes and the M5-brane. For instance the degree-0 piece of the higher symmetry algebra of 11-dimensional (11D) spacetime with an M2-brane condensate turns out to be the "M-theory super-Lie algebra". We also observe that in this formulation there is a simple formal proof of the fact that type IIA spacetime with a D0-brane condensate is the 11D sugra/M-theory spacetime, and of (prequantum) S-duality for type IIB string theory. Finally we give the non-perturbative description of all this by higher WZW-type σ-models on higher super-orbispaces with higher WZW terms in stacky differential cohomology.

  13. Seismo-Lineament Analysis Method (SLAM) Applied to the South Napa Earthquake

    NASA Astrophysics Data System (ADS)

    Worrell, V. E.; Cronin, V. S.

    2014-12-01

    We used the seismo-lineament analysis method (SLAM; http://bearspace.baylor.edu/Vince_Cronin/www/SLAM/) to "predict" the location of the fault that produced the M 6.0 South Napa earthquake of 24 August 2014, using hypocenter and focal mechanism data from NCEDC (http://www.ncedc.org/ncedc/catalog-search.html) and a digital elevation model from the USGS National Elevation Dataset (http://viewer.nationalmap.gov/viewer/). The ground-surface trace of the causative fault (i.e., the Browns Valley strand of the West Napa fault zone; Bryant, 2000, 1982) and virtually all of the ground-rupture sites reported by the USGS and California Geological Survey (http://www.eqclearinghouse.org/2014-08-24-south-napa/) were located within the north-striking seismo-lineament. We also used moment tensors published online by the USGS and GCMT (http://comcat.cr.usgs.gov/earthquakes/eventpage/nc72282711#scientific_moment-tensor) as inputs to SLAM and found that their northwest-striking seismo-lineaments correlated spatially with the causative fault. We concluded that SLAM could have been used as soon as these mechanism solutions were available to help direct the search for the trace of the causative fault and possible rupture-related damage. We then considered whether the seismogenic fault could have been identified using SLAM prior to the 24 August event, based on the focal mechanisms of smaller prior earthquakes reported by the NCEDC or ISC (http://www.isc.ac.uk). Seismo-lineaments from three M~3.5 events from 1990 and 2012, located in the Vallejo-Crockett area, correlate spatially with the Napa County Airport strand of the West Napa fault and extend along strike toward the Browns Valley strand (Bryant, 2000, 1982). Hence, we might have used focal mechanisms from smaller earthquakes to establish that the West Napa fault is likely seismogenic prior to the South Napa earthquake. Early recognition that a fault with a mapped ground-surface trace is seismogenic, based on smaller earthquakes

  14. "Generalized" algebraic Bethe ansatz, Gaudin-type models and Zp-graded classical r-matrices

    NASA Astrophysics Data System (ADS)

    Skrypnyk, T.

    2016-12-01

    We consider quantum integrable systems associated with reductive Lie algebra gl (n) and Cartan-invariant non-skew-symmetric classical r-matrices. We show that under certain restrictions on the form of classical r-matrices "nested" or "hierarchical" Bethe ansatz usually based on a chain of subalgebras gl (n) ⊃ gl (n - 1) ⊃ . . . ⊃ gl (1) is generalized onto the other chains or "hierarchies" of subalgebras. We show that among the r-matrices satisfying such the restrictions there are "twisted" or Zp-graded non-skew-symmetric classical r-matrices. We consider in detail example of the generalized Gaudin models with and without external magnetic field associated with Zp-graded non-skew-symmetric classical r-matrices and find the spectrum of the corresponding Gaudin-type hamiltonians using nested Bethe ansatz scheme and a chain of subalgebras gl (n) ⊃ gl (n -n1) ⊃ gl (n -n1 -n2) ⊃ gl (n - (n1 + . . . +np-1)), where n1 +n2 + . . . +np = n.

  15. A new model for algebraic Rossby solitary waves in rotation fluid and its solution

    NASA Astrophysics Data System (ADS)

    Chen, Yao-Deng; Yang, Hong-Wei; Gao, Yu-Fang; Yin, Bao-Shu; Feng, Xing-Ru

    2015-09-01

    A generalized Boussinesq equation that includes the dissipation effect is derived to describe a kind of algebraic Rossby solitary waves in a rotating fluid by employing perturbation expansions and stretching transformations of time and space. Using this equation, the conservation laws of algebraic Rossby solitary waves are discussed. It is found that the mass, the momentum, the energy, and the velocity of center of gravity of the algebraic solitary waves are conserved in the propagation process. Finally, the analytical solution of the equation is generated. Based on the analytical solution, the properties of the algebraic solitary waves and the dissipation effect are discussed. The results point out that, similar to classic solitary waves, the dissipation can cause the amplitude and the speed of solitary waves to decrease; however, unlike classic solitary waves, the algebraic solitary waves can split during propagation and the decrease of the detuning parameter can accelerate the occurrence of the solitary waves fission phenomenon. Project supported by the Shandong Provincial Key Laboratory of Marine Ecology and Environment and Disaster Prevention and Mitigation Project, China (Grant No. 2012010), the National Natural Science Foundation of China (Grant Nos. 41205082 and 41476019), the Special Funds for Theoretical Physics of the National Natural Science Foundation of China (Grant No. 11447205), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China.

  16. The relationship between the interacting boson model and the algebraic version of Bohrʼs collective model in its triaxial limit

    NASA Astrophysics Data System (ADS)

    Thiamova, G.; Rowe, D. J.; Caprio, M. A.

    2012-12-01

    Recent developments and applications of an algebraic version of Bohr's collective model, known as the algebraic collective model (ACM), have shown that fully converged calculations can be performed for a large range of Hamiltonians. Examining the algebraic structure underlying the Bohr model (BM) has also clarified its relationship with the interacting boson model (IBM), with which it has related solvable limits and corresponding dynamical symmetries. In particular, the algebraic structure of the IBM is obtained as a compactification of the BM and conversely the BM is regained in various contraction limits of the IBM. In a previous paper, corresponding contractions were identified and confirmed numerically for axially-symmetric states of relatively small deformation. In this paper, we extend the comparisons to realistic deformations and compare results of the two models in the rotor-vibrator limit. These models describe rotations and vibrations about an axially symmetric prolate or oblate rotor, and rotations and vibrations of a triaxial rotor. It is determined that most of the standard results of the BM can be obtained as contraction limits of the IBM in its U(5)-SO(6) dynamical symmetries.

  17. Irreducible Characters and Clebsch-Gordan Series for the Exceptional Algebra E6: An Approach through the Quantum Calogero-Sutherland Model

    NASA Astrophysics Data System (ADS)

    Fernandez-Nunez, J.; Garcia-Fuertes, W.; Perelomov, A. M.

    We re-express the quantum Calogero-Sutherland model for the Lie algebra $E_6$ and the particular value of the coupling constant $\\kappa=1$ by using the fundamental irreducible characters of the algebra as dynamical variables. For that, we need to develop a systematic procedure to obtain all the Clebsch-Gordan series required to perform the change of variables. We describe how the resulting quantum Hamiltonian operator can be used to compute more characters and Clebsch-Gordan series for this exceptional algebra.

  18. Solving multi-customer FPR model with quality assurance and discontinuous deliveries using a two-phase algebraic approach.

    PubMed

    Chiu, Yuan-Shyi Peter; Chou, Chung-Li; Chang, Huei-Hsin; Chiu, Singa Wang

    2016-01-01

    A multi-customer finite production rate (FPR) model with quality assurance and discontinuous delivery policy was investigated in a recent paper (Chiu et al. in J Appl Res Technol 12(1):5-13, 2014) using differential calculus approach. This study employs mathematical modeling along with a two-phase algebraic method to resolve such a specific multi-customer FPR model. As a result, the optimal replenishment lot size and number of shipments can be derived without using the differential calculus. Such a straightforward method may assist practitioners who with insufficient knowledge of calculus in learning and managing the real multi-customer FPR systems more effectively.

  19. A research on SLAM aided INS/GPS navigation system

    NASA Astrophysics Data System (ADS)

    Cao, Menglong; Cui, Pingyuan

    2007-11-01

    Simultaneous Localization and Mapping (SLAM) aided INS/GPS navigation system is a landmark based terrain aided autonomous integrated system that has the capability for online map building and simultaneously utilizing the generated map to bind the errors in the Inertial Navigation System (INS) when GPS is not available. If GPS information is available, the SLAM integrated system builds a landmark-based map using an INS/GPS solution. If GPS is not available, the previously newly generated map is used to constrain the INS errors. The SLAM augmented INS/GPS system shows two capabilities of landmark tracking and mapping using GPS information and more importantly, aiding the INS under GPS denied situation. The validity of the proposed method is demonstrated by computer simulation.

  20. Geometric projection filter: an efficient solution to the SLAM problem

    NASA Astrophysics Data System (ADS)

    Newman, Paul M.; Durrant-Whyte, Hugh F.

    2001-10-01

    This paper is concerned with the simultaneous localization and map building (SLAM) problem. The SLAM problem asks if it is possible for an autonomous vehicle to start in an unknown location in an unknown environment and then to incrementally build a map of this environment while simultaneously using this map to compute absolute vehicle location. Conventional approaches to this problem are plagued with a prohibitively large increase in computation with the size of the environment. This paper offers a new solution to the SLAM problem that is both consistent and computationally feasible. The proposed algorithm builds a map expressing the relationships between landmarks which is then transformed into landmark locations. Experimental results are presented employing the new algorithm on a subsea vehicle using a scanning sonar sensor.

  1. "Twisted" rational r-matrices and the algebraic Bethe ansatz: Applications to generalized Gaudin models, Bose-Hubbard dimers, and Jaynes-Cummings-Dicke-type models

    NASA Astrophysics Data System (ADS)

    Skrypnyk, T. V.

    2016-10-01

    We construct quantum integrable systems associated with the Lie algebra gl( n) and non-skew-symmetric "shifted and twisted" rational r-matrices. The obtained models include Gaudin-type models with and without an external magnetic field, n-level ( n-1)-mode Jaynes-Cummings-Dicke-type models in the Λ-configuration, a vector generalization of Bose-Hubbard dimers, etc. We diagonalize quantum Hamiltonians of the constructed integrable models using a nested Bethe ansatz.

  2. The connection-set algebra--a novel formalism for the representation of connectivity structure in neuronal network models.

    PubMed

    Djurfeldt, Mikael

    2012-07-01

    The connection-set algebra (CSA) is a novel and general formalism for the description of connectivity in neuronal network models, from small-scale to large-scale structure. The algebra provides operators to form more complex sets of connections from simpler ones and also provides parameterization of such sets. CSA is expressive enough to describe a wide range of connection patterns, including multiple types of random and/or geometrically dependent connectivity, and can serve as a concise notation for network structure in scientific writing. CSA implementations allow for scalable and efficient representation of connectivity in parallel neuronal network simulators and could even allow for avoiding explicit representation of connections in computer memory. The expressiveness of CSA makes prototyping of network structure easy. A C+ + version of the algebra has been implemented and used in a large-scale neuronal network simulation (Djurfeldt et al., IBM J Res Dev 52(1/2):31-42, 2008b) and an implementation in Python has been publicly released.

  3. Constructing a Coherent Problem Model to Facilitate Algebra Problem Solving in a Chemistry Context

    ERIC Educational Resources Information Center

    Ngu, Bing Hiong; Yeung, Alexander Seeshing; Phan, Huy P.

    2015-01-01

    An experiment using a sample of 11th graders compared text editing and worked examples approaches in learning to solve dilution and molarity algebra word problems in a chemistry context. Text editing requires students to assess the structure of a word problem by specifying whether the problem text contains sufficient, missing, or irrelevant…

  4. Developing Pre-Algebraic Thinking in Generalizing Repeating Pattern Using SOLO Model

    ERIC Educational Resources Information Center

    Lian, Lim Hooi; Yew, Wun Thiam

    2011-01-01

    In this paper, researchers discussed the application of the generalization perspective in helping the primary school pupils to develop their pre-algebraic thinking in generalizing repeating pattern. There are two main stages of the generalization perspective had been adapted, namely investigating and generalizing the pattern. Since the Biggs and…

  5. Proposing and Testing a Model to Explain Traits of Algebra Preparedness

    ERIC Educational Resources Information Center

    Venenciano, Linda; Heck, Ronald

    2016-01-01

    Early experiences with theoretical thinking and generalization in measurement are hypothesized to develop constructs we name here as logical reasoning and preparedness for algebra. Based on work of V. V. Davydov (1975), the Measure Up (MU) elementary grades experimental mathematics curriculum uses quantities of area, length, volume, and mass to…

  6. Algebraic grid adaptation method using non-uniform rational B-spline surface modeling

    NASA Technical Reports Server (NTRS)

    Yang, Jiann-Cherng; Soni, B. K.

    1992-01-01

    An algebraic adaptive grid system based on equidistribution law and utilized by the Non-Uniform Rational B-Spline (NURBS) surface for redistribution is presented. A weight function, utilizing a properly weighted boolean sum of various flow field characteristics is developed. Computational examples are presented to demonstrate the success of this technique.

  7. Key Contextual Features of Algebra Word Problems: A Theoretical Model and Review of the Literature.

    ERIC Educational Resources Information Center

    Nasser, Ramzi; Carifio, James

    One of the four algebra word problem structures found in K-12 textbooks is the propositional relation structure (Mayer, 1982). This type of problem asks students to establish equivalences between the variables or noun referents in the problem. The literature available indicates that students have inordinate difficulties, when trying to solve a…

  8. Meanings Generated while Using Algebraic-Like Formalism to Construct and Control Animated Models

    ERIC Educational Resources Information Center

    Kynigos, Chronis; Psycharis, Giorgos; Moustaki, Foteini

    2010-01-01

    This paper reports on a design experiment conducted to explore the construction of meanings by 17 year old students, emerging from their interpretations and uses of algebraic like formalism. The students worked collaboratively in groups of two or three, using MoPiX, a constructionist computational environment with which they could create concrete…

  9. Flipping an Algebra Classroom: Analyzing, Modeling, and Solving Systems of Linear Equations

    ERIC Educational Resources Information Center

    Kirvan, Rebecca; Rakes, Christopher R.; Zamora, Regie

    2015-01-01

    The present study investigated whether flipping an algebra classroom led to a stronger focus on conceptual understanding and improved learning of systems of linear equations for 54 seventh- and eighth-grade students using teacher journal data and district-mandated unit exam items. Multivariate analysis of covariance was used to compare scores on…

  10. Steinberg conformal algebras

    NASA Astrophysics Data System (ADS)

    Mikhalev, A. V.; Pinchuk, I. A.

    2005-06-01

    The structure of Steinberg conformal algebras is studied; these are analogues of Steinberg groups (algebras, superalgebras).A Steinberg conformal algebra is defined as an abstract algebra by a system of generators and relations between the generators. It is proved that a Steinberg conformal algebra is the universal central extension of the corresponding conformal Lie algebra; the kernel of this extension is calculated.

  11. Spatial-Operator Algebra For Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo; Kreutz, Kenneth K.; Milman, Mark H.

    1991-01-01

    Report discusses spatial-operator algebra developed in recent studies of mathematical modeling, control, and design of trajectories of robotic manipulators. Provides succinct representation of mathematically complicated interactions among multiple joints and links of manipulator, thereby relieving analyst of most of tedium of detailed algebraic manipulations. Presents analytical formulation of spatial-operator algebra, describes some specific applications, summarizes current research, and discusses implementation of spatial-operator algebra in the Ada programming language.

  12. A differential algebraic approach for the modeling of polycrystalline ferromagnetic hysteresis with minor loops and frequency dependence

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Wang, Linxiang; Melnik, Roderick

    2016-07-01

    In the current paper, a nonlinear differential algebraic approach is proposed for the modeling of hysteretic dynamics of polycrystalline ferromagnetic materials. The model is constructed by employing a phenomenological theory to the magnetization orientation switching. For the modeling of hysteresis in polycrystalline ferromagnetic materials, the single crystal model is applied to each magnetic domain along its own principal axis. The overall dynamics of the polycrystalline materials is obtained by taking a weighted combination of the dynamics of all magnetic domains. The weight function for the combination is taken as the distribution function of the principal axes. Numerical simulations are performed and comparisons with its experimental counterparts are presented. The hysteretic dynamics caused by orientation switching processes is accurately captured by the proposed model. Minor hysteresis loops associated with partial-amplitude loadings are also captured. Rate dependence of the hysteresis loops are inherently incorporated into the model due to its differential nature.

  13. Visual EKF-SLAM from Heterogeneous Landmarks †

    PubMed Central

    Esparza-Jiménez, Jorge Othón; Devy, Michel; Gordillo, José L.

    2016-01-01

    Many applications require the localization of a moving object, e.g., a robot, using sensory data acquired from embedded devices. Simultaneous localization and mapping from vision performs both the spatial and temporal fusion of these data on a map when a camera moves in an unknown environment. Such a SLAM process executes two interleaved functions: the front-end detects and tracks features from images, while the back-end interprets features as landmark observations and estimates both the landmarks and the robot positions with respect to a selected reference frame. This paper describes a complete visual SLAM solution, combining both point and line landmarks on a single map. The proposed method has an impact on both the back-end and the front-end. The contributions comprehend the use of heterogeneous landmark-based EKF-SLAM (the management of a map composed of both point and line landmarks); from this perspective, the comparison between landmark parametrizations and the evaluation of how the heterogeneity improves the accuracy on the camera localization, the development of a front-end active-search process for linear landmarks integrated into SLAM and the experimentation methodology. PMID:27070602

  14. Monocular SLAM for Autonomous Robots with Enhanced Features Initialization

    PubMed Central

    Guerra, Edmundo; Munguia, Rodrigo; Grau, Antoni

    2014-01-01

    This work presents a variant approach to the monocular SLAM problem focused in exploiting the advantages of a human-robot interaction (HRI) framework. Based upon the delayed inverse-depth feature initialization SLAM (DI-D SLAM), a known monocular technique, several but crucial modifications are introduced taking advantage of data from a secondary monocular sensor, assuming that this second camera is worn by a human. The human explores an unknown environment with the robot, and when their fields of view coincide, the cameras are considered a pseudo-calibrated stereo rig to produce estimations for depth through parallax. These depth estimations are used to solve a related problem with DI-D monocular SLAM, namely, the requirement of a metric scale initialization through known artificial landmarks. The same process is used to improve the performance of the technique when introducing new landmarks into the map. The convenience of the approach taken to the stereo estimation, based on SURF features matching, is discussed. Experimental validation is provided through results from real data with results showing the improvements in terms of more features correctly initialized, with reduced uncertainty, thus reducing scale and orientation drift. Additional discussion in terms of how a real-time implementation could take advantage of this approach is provided. PMID:24699284

  15. Monocular SLAM for autonomous robots with enhanced features initialization.

    PubMed

    Guerra, Edmundo; Munguia, Rodrigo; Grau, Antoni

    2014-04-02

    This work presents a variant approach to the monocular SLAM problem focused in exploiting the advantages of a human-robot interaction (HRI) framework. Based upon the delayed inverse-depth feature initialization SLAM (DI-D SLAM), a known monocular technique, several but crucial modifications are introduced taking advantage of data from a secondary monocular sensor, assuming that this second camera is worn by a human. The human explores an unknown environment with the robot, and when their fields of view coincide, the cameras are considered a pseudo-calibrated stereo rig to produce estimations for depth through parallax. These depth estimations are used to solve a related problem with DI-D monocular SLAM, namely, the requirement of a metric scale initialization through known artificial landmarks. The same process is used to improve the performance of the technique when introducing new landmarks into the map. The convenience of the approach taken to the stereo estimation, based on SURF features matching, is discussed. Experimental validation is provided through results from real data with results showing the improvements in terms of more features correctly initialized, with reduced uncertainty, thus reducing scale and orientation drift. Additional discussion in terms of how a real-time implementation could take advantage of this approach is provided.

  16. Classical Exchange Algebra of the Nonlinear Sigma Model on a Supercoset Target with Bbb Z2n Grading

    NASA Astrophysics Data System (ADS)

    Ke, San-Min; Li, Xin-Ying; Wang, Chun; Yue, Rui-Hong

    2011-10-01

    The classical exchange algebra satisfied by the monodromy matrix of the nonlinear sigma model on a supercoset target with Bbb Z2n grading is derived using a first-order Hamiltonian formulation and by adding to the Lax connection terms proportional to constraints. This enables us to show that the conserved charges of the theory are in involution. When n = 2, our results coincide with the results given by Magro for the pure spinor description of AdS5 × S5 string theory (when the ghost terms are omitted).

  17. On an Algebraic Property of the Disordered Phase of the Ising Model with Competing Interactions on a Cayley Tree

    NASA Astrophysics Data System (ADS)

    Mukhamedov, Farrukh; Barhoumi, Abdessatar; Souissi, Abdessatar

    2016-12-01

    It is known that the disordered phase of the classical Ising model on the Caley tree is extreme in some region of the temperature. If one considers the Ising model with competing interactions on the same tree, then about the extremity of the disordered phase there is no any information. In the present paper, we first aiming to analyze the correspondence between Gibbs measures and QMC's on trees. Namely, we establish that states associated with translation invariant Gibbs measures of the model can be seen as diagonal quantum Markov chains on some quasi local algebra. Then as an application of the established correspondence, we study some algebraic property of the disordered phase of the Ising model with competing interactions on the Cayley tree of order two. More exactly, we prove that a state corresponding to the disordered phase is not quasi-equivalent to other states associated with translation invariant Gibbs measures. This result shows how the translation invariant states relate to each other, which is even a new phenomena in the classical setting. To establish the main result we basically employ methods of quantum Markov chains.

  18. Experimental investigation of wave slamming on an open structure supported elastically

    NASA Astrophysics Data System (ADS)

    Ren, Bing; Liu, Ming; Li, Xue-lin; Wang, Yong-xue

    2016-12-01

    The superstructures of marine structures supported by the elastic legs and located in the splash zone will subject to violent wave slamming and vibrate consequently during storms. A series of model tests are carried out to investigate the wave impacting on the open structures supported elastically. Three kinds of models with different natural frequencies are designed. The characteristics of the wave pressures on the three models are compared. The durations of the uplift forces and the corresponding accelerations of the structure during wave impact are analyzed simultaneously. The distributions of the peak impact pressures on the subfaces of the plates with different supporting stiffness are given. The relationship between the uplift force on the three models and the relative clearance are obtained. The spectral properties of the slamming loads on the three different structures are compared. The experimental results indicate that the behaviors of the impact pressures, the uplift forces and accelerations of the plates with small natural frequencies are obviously different from those of the plates with larger natural frequencies within the range of the experimental parameters.

  19. The Effect of Scheduling Models for Introductory Algebra on 9th-Grade Students, Test Scores and Grades

    ERIC Educational Resources Information Center

    O'Hanlon, Angela L.

    2011-01-01

    The purpose of the study was to determine the effect of pacing and scheduling of algebra coursework on assigned 9th-grade students who traditionally would qualify for pre-algebra instruction and same course 9th-grade students who traditionally would qualify for standard algebra instruction. Students were selected based on completion of first-year…

  20. Genetic hotels for the standard genetic code: evolutionary analysis based upon novel three-dimensional algebraic models.

    PubMed

    José, Marco V; Morgado, Eberto R; Govezensky, Tzipe

    2011-07-01

    Herein, we rigorously develop novel 3-dimensional algebraic models called Genetic Hotels of the Standard Genetic Code (SGC). We start by considering the primeval RNA genetic code which consists of the 16 codons of type RNY (purine-any base-pyrimidine). Using simple algebraic operations, we show how the RNA code could have evolved toward the current SGC via two different intermediate evolutionary stages called Extended RNA code type I and II. By rotations or translations of the subset RNY, we arrive at the SGC via the former (type I) or via the latter (type II), respectively. Biologically, the Extended RNA code type I, consists of all codons of the type RNY plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The Extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. Since the dimensions of remarkable subsets of the Genetic Hotels are not necessarily integer numbers, we also introduce the concept of algebraic fractal dimension. A general decoding function which maps each codon to its corresponding amino acid or the stop signals is also derived. The Phenotypic Hotel of amino acids is also illustrated. The proposed evolutionary paths are discussed in terms of the existing theories of the evolution of the SGC. The adoption of 3-dimensional models of the Genetic and Phenotypic Hotels will facilitate the understanding of the biological properties of the SGC.

  1. Measles Virus (MV) Hemagglutinin: Evidence that Attachment Sites for MV Receptors SLAM and CD46 Overlap on the Globular Head

    PubMed Central

    Massé, Nicolas; Ainouze, Michelle; Néel, Benjamin; Wild, T. Fabian; Buckland, Robin; Langedijk, Johannes P. M.

    2004-01-01

    Measles virus hemagglutinin (MVH) residues potentially responsible for attachment to the wild-type (wt) MV receptor SLAM (CD150) have been identified and localized on the MVH globular head by reference to a revised hypothetical structural model for MVH (www.pepscan.nl/downloads/measlesH.pdb). We show that the mutation of five charged MVH residues which are conserved among morbillivirus H proteins has major effects on both SLAM downregulation and SLAM-dependent fusion. In the three-dimensional surface representation of the structural model, three of these residues (D505, D507, and R533) align the rim on one side of the cavity on the top surface of the MVH globular head and form the basis of a single continuous site that overlaps with the 546-548-549 CD46 binding site. We show that the overlapping sites fall within the footprint of an anti-MVH monoclonal antibody that neutralizes both wt and laboratory-vaccine MV strains and whose epitope contains R533. Our study does not exclude the possibility that Y481 binds CD46 directly but suggests that the N481Y mutation of wt MVH could influence, at a distance, the conformation of the overlapping sites so that affinity to CD46 increases. The relevance of these results to present concepts of MV receptor usage is discussed, and an explanation is proposed as to why morbillivirus attachment proteins are H, whereas those from the other paramyxoviruses are HN (hemagglutinin-neuraminidase). PMID:15308701

  2. Symplectic Clifford Algebraic Field Theory.

    NASA Astrophysics Data System (ADS)

    Dixon, Geoffrey Moore

    We develop a mathematical framework on which is built a theory of fermion, scalar, and gauge vector fields. This field theory is shown to be equivalent to the original Weinberg-Salam model of weak and electromagnetic interactions, but since the new framework is more rigid than that on which the original Weinberg-Salam model was built, a concomitant reduction in the number of assumptions lying outside of the framework has resulted. In particular, parity violation is actually hiding within our framework, and with little difficulty we are able to manifest it. The mathematical framework upon which we build our field theory is arrived at along two separate paths. The first is by the marriage of a Clifford algebra and a Lie superalgebra, the result being called a super Clifford algebra. The second is by providing a new characterization for a Clifford algebra employing its generators and a symmetric array of metric coefficients. Subsequently we generalize this characterization to the case of an antisymmetric array of metric coefficients, and we call the algebra which results a symplectic Clifford algebra. It is upon one of these that we build our field theory, and it is shown that this symplectic Clifford algebra is a particular subalgebra of a super Clifford algebra. The final ingredient is the operation of bracketing which involves treating the elements of our algebra as endomorphisms of a particular inner product space, and employing this space and its inner product to provide us with maps from our algebra to the reals. It is this operation which enables us to manifest the parity violation hiding in our algebra.

  3. Analyzing the nonlinear vibrational wave differential equation for the simplified model of Tower Cranes by Algebraic Method

    NASA Astrophysics Data System (ADS)

    Akbari, M. R.; Ganji, D. D.; Ahmadi, A. R.; Kachapi, Sayyid H. Hashemi

    2014-03-01

    In the current paper, a simplified model of Tower Cranes has been presented in order to investigate and analyze the nonlinear differential equation governing on the presented system in three different cases by Algebraic Method (AGM). Comparisons have been made between AGM and Numerical Solution, and these results have been indicated that this approach is very efficient and easy so it can be applied for other nonlinear equations. It is citable that there are some valuable advantages in this way of solving differential equations and also the answer of various sets of complicated differential equations can be achieved in this manner which in the other methods, so far, they have not had acceptable solutions. The simplification of the solution procedure in Algebraic Method and its application for solving a wide variety of differential equations not only in Vibrations but also in different fields of study such as fluid mechanics, chemical engineering, etc. make AGM be a powerful and useful role model for researchers in order to solve complicated nonlinear differential equations.

  4. Three-Dimensional Algebraic Models of the tRNA Code and 12 Graphs for Representing the Amino Acids

    PubMed Central

    José, Marco V.; Morgado, Eberto R.; Guimarães, Romeu Cardoso; Zamudio, Gabriel S.; de Farías, Sávio Torres; Bobadilla, Juan R.; Sosa, Daniela

    2014-01-01

    Three-dimensional algebraic models, also called Genetic Hotels, are developed to represent the Standard Genetic Code, the Standard tRNA Code (S-tRNA-C), and the Human tRNA code (H-tRNA-C). New algebraic concepts are introduced to be able to describe these models, to wit, the generalization of the 2n-Klein Group and the concept of a subgroup coset with a tail. We found that the H-tRNA-C displayed broken symmetries in regard to the S-tRNA-C, which is highly symmetric. We also show that there are only 12 ways to represent each of the corresponding phenotypic graphs of amino acids. The averages of statistical centrality measures of the 12 graphs for each of the three codes are carried out and they are statistically compared. The phenotypic graphs of the S-tRNA-C display a common triangular prism of amino acids in 10 out of the 12 graphs, whilst the corresponding graphs for the H-tRNA-C display only two triangular prisms. The graphs exhibit disjoint clusters of amino acids when their polar requirement values are used. We contend that the S-tRNA-C is in a frozen-like state, whereas the H-tRNA-C may be in an evolving state. PMID:25370377

  5. RGB-D SLAM Based on Extended Bundle Adjustment with 2D and 3D Information

    PubMed Central

    Di, Kaichang; Zhao, Qiang; Wan, Wenhui; Wang, Yexin; Gao, Yunjun

    2016-01-01

    In the study of SLAM problem using an RGB-D camera, depth information and visual information as two types of primary measurement data are rarely tightly coupled during refinement of camera pose estimation. In this paper, a new method of RGB-D camera SLAM is proposed based on extended bundle adjustment with integrated 2D and 3D information on the basis of a new projection model. First, the geometric relationship between the image plane coordinates and the depth values is constructed through RGB-D camera calibration. Then, 2D and 3D feature points are automatically extracted and matched between consecutive frames to build a continuous image network. Finally, extended bundle adjustment based on the new projection model, which takes both image and depth measurements into consideration, is applied to the image network for high-precision pose estimation. Field experiments show that the proposed method has a notably better performance than the traditional method, and the experimental results demonstrate the effectiveness of the proposed method in improving localization accuracy. PMID:27529256

  6. Algebraic Bethe ansatz for the sℓ (2) Gaudin model with boundary

    NASA Astrophysics Data System (ADS)

    Cirilo António, N.; Manojlović, N.; Ragoucy, E.; Salom, I.

    2015-04-01

    Following Sklyanin's proposal in the periodic case, we derive the generating function of the Gaudin Hamiltonians with boundary terms. Our derivation is based on the quasi-classical expansion of the linear combination of the transfer matrix of the XXX Heisenberg spin chain and the central element, the so-called Sklyanin determinant. The corresponding Gaudin Hamiltonians with boundary terms are obtained as the residues of the generating function. By defining the appropriate Bethe vectors which yield strikingly simple off shell action of the generating function, we fully implement the algebraic Bethe ansatz, obtaining the spectrum of the generating function and the corresponding Bethe equations.

  7. An Ada Linear-Algebra Software Package Modeled After HAL/S

    NASA Technical Reports Server (NTRS)

    Klumpp, Allan R.; Lawson, Charles L.

    1990-01-01

    New avionics software written more easily. Software package extends Ada programming language to include linear-algebra capabilities similar to those of HAL/S programming language. Designed for such avionics applications as Space Station flight software. In addition to built-in functions of HAL/S, package incorporates quaternion functions used in Space Shuttle and Galileo projects and routines from LINPAK solving systems of equations involving general square matrices. Contains two generic programs: one for floating-point computations and one for integer computations. Written on IBM/AT personal computer running under PC DOS, v.3.1.

  8. A Deterministic Interfacial Cyclic Oxidation Spalling Model. Part 2; Algebraic Approximation, Descriptive Parameters, and Normalized Universal Curve

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2002-01-01

    A cyclic oxidation interfacial spalling model has been developed in Part 1. The governing equations have been simplified here by substituting a new algebraic expression for the series (Good-Smialek approximation). This produced a direct relationship between cyclic oxidation weight change and model input parameters. It also allowed for the mathematical derivation of various descriptive parameters as a function of the inputs. It is shown that the maximum in weight change varies directly with the parabolic rate constant and cycle duration and inversely with the spall fraction, all to the 1/2 power. The number of cycles to reach maximum and zero weight change vary inversely with the spall fraction, and the ratio of these cycles is exactly 1:3 for most oxides. By suitably normalizing the weight change and cycle number, it is shown that all cyclic oxidation weight change model curves can be represented by one universal expression for a given oxide scale.

  9. Improving GOOGLE'S Cartographer 3d Mapping by Continuous-Time Slam

    NASA Astrophysics Data System (ADS)

    Nüchter, A.; Bleier, M.; Schauer, J.; Janotta, P.

    2017-02-01

    This paper shows how to use the result of Google's SLAM solution, called Cartographer, to bootstrap our continuous-time SLAM algorithm. The presented approach optimizes the consistency of the global point cloud, and thus improves on Google's results. We use the algorithms and data from Google as input for our continuous-time SLAM software. We also successfully applied our software to a similar backpack system which delivers consistent 3D point clouds even in absence of an IMU.

  10. Algebraic trigonometry

    NASA Astrophysics Data System (ADS)

    Vaninsky, Alexander

    2011-04-01

    This article introduces a trigonometric field (TF) that extends the field of real numbers by adding two new elements: sin and cos - satisfying an axiom sin2 + cos2 = 1. It is shown that by assigning meaningful names to particular elements of the field, all known trigonometric identities may be introduced and proved. Two different interpretations of the TF are discussed with many others potentially possible. The main objective of this article is to introduce a broader view of trigonometry that can serve as motivation for mathematics students and teachers to study and teach abstract algebraic structures.

  11. Hopf algebras of rooted forests, cocyles, and free Rota-Baxter algebras

    NASA Astrophysics Data System (ADS)

    Zhang, Tianjie; Gao, Xing; Guo, Li

    2016-10-01

    The Hopf algebra and the Rota-Baxter algebra are the two algebraic structures underlying the algebraic approach of Connes and Kreimer to renormalization of perturbative quantum field theory. In particular, the Hopf algebra of rooted trees serves as the "baby model" of Feynman graphs in their approach and can be characterized by certain universal properties involving a Hochschild 1-cocycle. Decorated rooted trees have also been applied to study Feynman graphs. We will continue the study of universal properties of various spaces of decorated rooted trees with such a 1-cocycle, leading to the concept of a cocycle Hopf algebra. We further apply the universal properties to equip a free Rota-Baxter algebra with the structure of a cocycle Hopf algebra.

  12. A Modeling Perspective for Meteor Burst Communication

    DTIC Science & Technology

    1988-12-01

    flexibility. I Approach To solve this problem, a MBC computer model was designed that consists of modules written in Borland’s Turbo 3 Pascal version 4.0...and the student PC version of the SLAM II simulation language. This approach exploits the strengths and the weaknesses of each language. Turbo Pascal ...capabilities. This computer model consists of a Pascal front-end module, a SLAM II single-link module, and several SLAM II network model examples

  13. Temporally Scalable Visual SLAM using a Reduced Pose Graph

    DTIC Science & Technology

    2012-05-25

    generated from Kinect data for illustration purposes. II. RELATED WORK The pose graph optimization approach to SLAM was first introduced by Lu and Milios [19...such as the Microsoft Kinect ) and results for both camera types are presented in Section V. Additionally, our approach can incorporate IMU (roll and...camera, a Kinect sensor and a Microstrain IMU among other sensors. The data was collected in a large building over a period of six months. There were

  14. Hopf algebras and topological recursion

    NASA Astrophysics Data System (ADS)

    Esteves, João N.

    2015-11-01

    We consider a model for topological recursion based on the Hopf algebra of planar binary trees defined by Loday and Ronco (1998 Adv. Math. 139 293-309 We show that extending this Hopf algebra by identifying pairs of nearest neighbor leaves, and thus producing graphs with loops, we obtain the full recursion formula discovered by Eynard and Orantin (2007 Commun. Number Theory Phys. 1 347-452).

  15. Derive Workshop Matrix Algebra and Linear Algebra.

    ERIC Educational Resources Information Center

    Townsley Kulich, Lisa; Victor, Barbara

    This document presents the course content for a workshop that integrates the use of the computer algebra system Derive with topics in matrix and linear algebra. The first section is a guide to using Derive that provides information on how to write algebraic expressions, make graphs, save files, edit, define functions, differentiate expressions,…

  16. Priority in Process Algebras

    NASA Technical Reports Server (NTRS)

    Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.

    1999-01-01

    This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.

  17. Insights into the algebraic structure of Lorenz-like systems using feedback circuit analysis and piecewise affine models

    NASA Astrophysics Data System (ADS)

    Letellier, Christophe; Amaral, Gleison F. V.; Aguirre, Luis A.

    2007-06-01

    The characterization of chaotic attractors has been a widely addressed problem and there are now many different techniques to define their nature in a rather accurate way, at least in the case of a three-dimensional system. Nevertheless, the link between the structure of the ordinary differential equations and the topology of their solutions is still missing and only a few necessary conditions on the algebraic structure are known today. By using a feedback circuit analysis, it is shown that it is possible to identify the relevant terms of the equations, that is, the terms that really contribute to the structure of the phase portrait. Such analysis also provides some guidelines for constructing piecewise affine models. Moreover, equivalence classes can be defined on the basis of the active feedback circuits involved.

  18. A two-dimensional algebraic quantum liquid produced by an atomic simulator of the quantum Lifshitz model

    PubMed Central

    Po, Hoi Chun; Zhou, Qi

    2015-01-01

    Bosons have a natural instinct to condense at zero temperature. It is a long-standing challenge to create a high-dimensional quantum liquid that does not exhibit long-range order at the ground state, as either extreme experimental parameters or sophisticated designs of microscopic Hamiltonians are required for suppressing the condensation. Here we show that synthetic gauge fields for ultracold atoms, using either the Raman scheme or shaken lattices, provide physicists a simple and practical scheme to produce a two-dimensional algebraic quantum liquid at the ground state. This quantum liquid arises at a critical Lifshitz point, where a two-dimensional quartic dispersion emerges in the momentum space, and many fundamental properties of two-dimensional bosons are changed in its proximity. Such an ideal simulator of the quantum Lifshitz model allows experimentalists to directly visualize and explore the deconfinement transition of topological excitations, an intriguing phenomenon that is difficult to access in other systems. PMID:26268154

  19. A two-dimensional algebraic quantum liquid produced by an atomic simulator of the quantum Lifshitz model.

    PubMed

    Po, Hoi Chun; Zhou, Qi

    2015-08-13

    Bosons have a natural instinct to condense at zero temperature. It is a long-standing challenge to create a high-dimensional quantum liquid that does not exhibit long-range order at the ground state, as either extreme experimental parameters or sophisticated designs of microscopic Hamiltonians are required for suppressing the condensation. Here we show that synthetic gauge fields for ultracold atoms, using either the Raman scheme or shaken lattices, provide physicists a simple and practical scheme to produce a two-dimensional algebraic quantum liquid at the ground state. This quantum liquid arises at a critical Lifshitz point, where a two-dimensional quartic dispersion emerges in the momentum space, and many fundamental properties of two-dimensional bosons are changed in its proximity. Such an ideal simulator of the quantum Lifshitz model allows experimentalists to directly visualize and explore the deconfinement transition of topological excitations, an intriguing phenomenon that is difficult to access in other systems.

  20. A Non-Econometric Analysis with Algebraic Models to Forecast the Numbers of Newly Hired and Retirement of Public Primary School Teachers in Taiwan

    ERIC Educational Resources Information Center

    Lung-Hsing, Kuo; Hung-Jen, Yang; Ying-Wen, Lin; Shang-Ming, Su

    2011-01-01

    In recent years, the "street teachers" issue has caused social concern in Taiwan. This study estimates the retirement of and needs for newly hired and public primary school teachers in 2010 using an algebraic model from the paper by Husssar (1999). This recursive methodology predicts the number of newly hired public primary school…

  1. The roles of prefrontal and posterior parietal cortex in algebra problem solving: a case of using cognitive modeling to inform neuroimaging data.

    PubMed

    Danker, Jared F; Anderson, John R

    2007-04-15

    In naturalistic algebra problem solving, the cognitive processes of representation and retrieval are typically confounded, in that transformations of the equations typically require retrieval of mathematical facts. Previous work using cognitive modeling has associated activity in the prefrontal cortex with the retrieval demands of algebra problems and activity in the posterior parietal cortex with the transformational demands of algebra problems, but these regions tend to behave similarly in response to task manipulations (Anderson, J.R., Qin, Y., Sohn, M.-H., Stenger, V.A., Carter, C.S., 2003. An information-processing model of the BOLD response in symbol manipulation tasks. Psychon. Bull. Rev. 10, 241-261; Qin, Y., Carter, C.S., Silk, E.M., Stenger, A., Fissell, K., Goode, A., Anderson, J.R., 2004. The change of brain activation patterns as children learn algebra equation solving. Proc. Natl. Acad. Sci. 101, 5686-5691). With this study we attempt to isolate activity in these two regions by using a multi-step algebra task in which transformation (parietal) is manipulated in the first step and retrieval (prefrontal) is manipulated in the second step. Counter to our initial predictions, both brain regions were differentially active during both steps. We designed two cognitive models, one encompassing our initial assumptions and one in which both processes were engaged during both steps. The first model provided a poor fit to the behavioral and neural data, while the second model fit both well. This simultaneously emphasizes the strong relationship between retrieval and representation in mathematical reasoning and demonstrates that cognitive modeling can serve as a useful tool for understanding task manipulations in neuroimaging experiments.

  2. Comparing the Impact of Traditional and Modeling College Algebra Courses on Student Performance in Survey of Calculus

    ERIC Educational Resources Information Center

    West, Jerry G.

    2013-01-01

    Students in higher education deserve opportunities to succeed and learning environments which maximize success. Mathematics courses can create a barrier for success for some students. College algebra is a course that serves as a gateway to required courses in many bachelor's degree programs. The content in college algebra should serve to…

  3. Quantum cluster algebras and quantum nilpotent algebras

    PubMed Central

    Goodearl, Kenneth R.; Yakimov, Milen T.

    2014-01-01

    A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197

  4. Implementation of algebraic stress models in a general 3-D Navier-Stokes method (PAB3D)

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.

    1995-01-01

    A three-dimensional multiblock Navier-Stokes code, PAB3D, which was developed for propulsion integration and general aerodynamic analysis, has been used extensively by NASA Langley and other organizations to perform both internal (exhaust) and external flow analysis of complex aircraft configurations. This code was designed to solve the simplified Reynolds Averaged Navier-Stokes equations. A two-equation k-epsilon turbulence model has been used with considerable success, especially for attached flows. Accurate predicting of transonic shock wave location and pressure recovery in separated flow regions has been more difficult. Two algebraic Reynolds stress models (ASM) have been recently implemented in the code that greatly improved the code's ability to predict these difficult flow conditions. Good agreement with Direct Numerical Simulation (DNS) for a subsonic flat plate was achieved with ASM's developed by Shih, Zhu, and Lumley and Gatski and Speziale. Good predictions were also achieved at subsonic and transonic Mach numbers for shock location and trailing edge boattail pressure recovery on a single-engine afterbody/nozzle model.

  5. Matrix-algebra-based calculations of the time evolution of the binary spin-bath model for magnetization transfer.

    PubMed

    Müller, Dirk K; Pampel, André; Möller, Harald E

    2013-05-01

    Quantification of magnetization-transfer (MT) experiments are typically based on the assumption of the binary spin-bath model. This model allows for the extraction of up to six parameters (relative pool sizes, relaxation times, and exchange rate constants) for the characterization of macromolecules, which are coupled via exchange processes to the water in tissues. Here, an approach is presented for estimating MT parameters acquired with arbitrary saturation schemes and imaging pulse sequences. It uses matrix algebra to solve the Bloch-McConnell equations without unwarranted simplifications, such as assuming steady-state conditions for pulsed saturation schemes or neglecting imaging pulses. The algorithm achieves sufficient efficiency for voxel-by-voxel MT parameter estimations by using a polynomial interpolation technique. Simulations, as well as experiments in agar gels with continuous-wave and pulsed MT preparation, were performed for validation and for assessing approximations in previous modeling approaches. In vivo experiments in the normal human brain yielded results that were consistent with published data.

  6. An algebraic model on the performance of a direct methanol fuel cell with consideration of methanol crossover

    NASA Astrophysics Data System (ADS)

    Yin, Ken-Ming

    An algebraic one-dimensional model on the membrane-electrode-assembly (MEA) of direct methanol fuel cell (DMFC) is proposed. Non-linear regression procedure was imposed on the model to retrieve important parameters: solid polymer electrolyte conductivity κ m, exchange current density of methanol electro-oxidation at anode catalyst surface i oM,ref, and mass diffusivity of methanol in aqueous phase within the porous electrode D a that correspond to the experimentally measured polarization curves. Although numerical iteration is required for a complete solution, the explicit relationships of methanol concentration, methanol crossover rate, oxygen concentration and cell discharge current density do provide a clear picture of the mass transport and electrochemical kinetics within the various porous media in the MEA. It is shown the cathode mixed potential induced by the parallel reactions of oxygen reduction and oxidation of crossover methanol elucidates the potential drop of the cathode and the decrease of the cell open circuit voltage (OCV). Methanol transport in the membrane is described by the diffusion, electro-osmosis, and pressure induced convection. Detailed accounts of the effects of anode methanol and cathode oxygen feed concentrations on the cell discharge performance are given with correlation to the physical structure and chemical compositions of the catalyst layers (CLs).

  7. Performance Analysis of the Microsoft Kinect Sensor for 2D Simultaneous Localization and Mapping (SLAM) Techniques

    PubMed Central

    Kamarudin, Kamarulzaman; Mamduh, Syed Muhammad; Shakaff, Ali Yeon Md; Zakaria, Ammar

    2014-01-01

    This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks. PMID:25490595

  8. Performance analysis of the Microsoft Kinect sensor for 2D Simultaneous Localization and Mapping (SLAM) techniques.

    PubMed

    Kamarudin, Kamarulzaman; Mamduh, Syed Muhammad; Shakaff, Ali Yeon Md; Zakaria, Ammar

    2014-12-05

    This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks.

  9. Multibeam 3D Underwater SLAM with Probabilistic Registration

    PubMed Central

    Palomer, Albert; Ridao, Pere; Ribas, David

    2016-01-01

    This paper describes a pose-based underwater 3D Simultaneous Localization and Mapping (SLAM) using a multibeam echosounder to produce high consistency underwater maps. The proposed algorithm compounds swath profiles of the seafloor with dead reckoning localization to build surface patches (i.e., point clouds). An Iterative Closest Point (ICP) with a probabilistic implementation is then used to register the point clouds, taking into account their uncertainties. The registration process is divided in two steps: (1) point-to-point association for coarse registration and (2) point-to-plane association for fine registration. The point clouds of the surfaces to be registered are sub-sampled in order to decrease both the computation time and also the potential of falling into local minima during the registration. In addition, a heuristic is used to decrease the complexity of the association step of the ICP from O(n2) to O(n). The performance of the SLAM framework is tested using two real world datasets: First, a 2.5D bathymetric dataset obtained with the usual down-looking multibeam sonar configuration, and second, a full 3D underwater dataset acquired with a multibeam sonar mounted on a pan and tilt unit. PMID:27104538

  10. Validation of Underwater Sensor Package Using Feature Based SLAM

    PubMed Central

    Cain, Christopher; Leonessa, Alexander

    2016-01-01

    Robotic vehicles working in new, unexplored environments must be able to locate themselves in the environment while constructing a picture of the objects in the environment that could act as obstacles that would prevent the vehicles from completing their desired tasks. In enclosed environments, underwater range sensors based off of acoustics suffer performance issues due to reflections. Additionally, their relatively high cost make them less than ideal for usage on low cost vehicles designed to be used underwater. In this paper we propose a sensor package composed of a downward facing camera, which is used to perform feature tracking based visual odometry, and a custom vision-based two dimensional rangefinder that can be used on low cost underwater unmanned vehicles. In order to examine the performance of this sensor package in a SLAM framework, experimental tests are performed using an unmanned ground vehicle and two feature based SLAM algorithms, the extended Kalman filter based approach and the Rao-Blackwellized, particle filter based approach, to validate the sensor package. PMID:26999142

  11. Multibeam 3D Underwater SLAM with Probabilistic Registration.

    PubMed

    Palomer, Albert; Ridao, Pere; Ribas, David

    2016-04-20

    This paper describes a pose-based underwater 3D Simultaneous Localization and Mapping (SLAM) using a multibeam echosounder to produce high consistency underwater maps. The proposed algorithm compounds swath profiles of the seafloor with dead reckoning localization to build surface patches (i.e., point clouds). An Iterative Closest Point (ICP) with a probabilistic implementation is then used to register the point clouds, taking into account their uncertainties. The registration process is divided in two steps: (1) point-to-point association for coarse registration and (2) point-to-plane association for fine registration. The point clouds of the surfaces to be registered are sub-sampled in order to decrease both the computation time and also the potential of falling into local minima during the registration. In addition, a heuristic is used to decrease the complexity of the association step of the ICP from O(n2) to O(n) . The performance of the SLAM framework is tested using two real world datasets: First, a 2.5D bathymetric dataset obtained with the usual down-looking multibeam sonar configuration, and second, a full 3D underwater dataset acquired with a multibeam sonar mounted on a pan and tilt unit.

  12. Profiles of Algebraic Competence

    ERIC Educational Resources Information Center

    Humberstone, J.; Reeve, R.A.

    2008-01-01

    The algebraic competence of 72 12-year-old female students was examined to identify profiles of understanding reflecting different algebraic knowledge states. Beginning algebraic competence (mapping abilities: word-to-symbol and vice versa, classifying, and solving equations) was assessed. One week later, the nature of assistance required to map…

  13. Writing to Learn Algebra.

    ERIC Educational Resources Information Center

    Miller, L. Diane; England, David A.

    1989-01-01

    Describes a study in a large metropolitan high school to ascertain what influence the use of regular writing in algebra classes would have on students' attitudes towards algebra and their skills in algebra. Reports the simpler and more direct the writing topics the better. (MVL)

  14. Algebraic theory of molecules

    NASA Technical Reports Server (NTRS)

    Iachello, Franco

    1995-01-01

    An algebraic formulation of quantum mechanics is presented. In this formulation, operators of interest are expanded onto elements of an algebra, G. For bound state problems in nu dimensions the algebra G is taken to be U(nu + 1). Applications to the structure of molecules are presented.

  15. Applied Algebra Curriculum Modules.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Marshall.

    This collection of 11 applied algebra curriculum modules can be used independently as supplemental modules for an existing algebra curriculum. They represent diverse curriculum styles that should stimulate the teacher's creativity to adapt them to other algebra concepts. The selected topics have been determined to be those most needed by students…

  16. Connecting Arithmetic to Algebra

    ERIC Educational Resources Information Center

    Darley, Joy W.; Leapard, Barbara B.

    2010-01-01

    Algebraic thinking is a top priority in mathematics classrooms today. Because elementary school teachers lay the groundwork to develop students' capacity to think algebraically, it is crucial for teachers to have a conceptual understanding of the connections between arithmetic and algebra and be confident in communicating these connections. Many…

  17. Ternary Virasoro - Witt algebra.

    SciTech Connect

    Zachos, C.; Curtright, T.; Fairlie, D.; High Energy Physics; Univ. of Miami; Univ. of Durham

    2008-01-01

    A 3-bracket variant of the Virasoro-Witt algebra is constructed through the use of su(1,1) enveloping algebra techniques. The Leibniz rules for 3-brackets acting on other 3-brackets in the algebra are discussed and verified in various situations.

  18. Comparison of an algebraic multigrid algorithm to two iterative solvers used for modeling ground water flow and transport

    USGS Publications Warehouse

    Detwiler, R.L.; Mehl, S.; Rajaram, H.; Cheung, W.W.

    2002-01-01

    Numerical solution of large-scale ground water flow and transport problems is often constrained by the convergence behavior of the iterative solvers used to solve the resulting systems of equations. We demonstrate the ability of an algebraic multigrid algorithm (AMG) to efficiently solve the large, sparse systems of equations that result from computational models of ground water flow and transport in large and complex domains. Unlike geometric multigrid methods, this algorithm is applicable to problems in complex flow geometries, such as those encountered in pore-scale modeling of two-phase flow and transport. We integrated AMG into MODFLOW 2000 to compare two- and three-dimensional flow simulations using AMG to simulations using PCG2, a preconditioned conjugate gradient solver that uses the modified incomplete Cholesky preconditioner and is included with MODFLOW 2000. CPU times required for convergence with AMG were up to 140 times faster than those for PCG2. The cost of this increased speed was up to a nine-fold increase in required random access memory (RAM) for the three-dimensional problems and up to a four-fold increase in required RAM for the two-dimensional problems. We also compared two-dimensional numerical simulations of steady-state transport using AMG and the generalized minimum residual method with an incomplete LU-decomposition preconditioner. For these transport simulations, AMG yielded increased speeds of up to 17 times with only a 20% increase in required RAM. The ability of AMG to solve flow and transport problems in large, complex flow systems and its ready availability make it an ideal solver for use in both field-scale and pore-scale modeling.

  19. Algebraic multigrid preconditioning within parallel finite-element solvers for 3-D electromagnetic modelling problems in geophysics

    NASA Astrophysics Data System (ADS)

    Koldan, Jelena; Puzyrev, Vladimir; de la Puente, Josep; Houzeaux, Guillaume; Cela, José María

    2014-06-01

    We present an elaborate preconditioning scheme for Krylov subspace methods which has been developed to improve the performance and reduce the execution time of parallel node-based finite-element (FE) solvers for 3-D electromagnetic (EM) numerical modelling in exploration geophysics. This new preconditioner is based on algebraic multigrid (AMG) that uses different basic relaxation methods, such as Jacobi, symmetric successive over-relaxation (SSOR) and Gauss-Seidel, as smoothers and the wave front algorithm to create groups, which are used for a coarse-level generation. We have implemented and tested this new preconditioner within our parallel nodal FE solver for 3-D forward problems in EM induction geophysics. We have performed series of experiments for several models with different conductivity structures and characteristics to test the performance of our AMG preconditioning technique when combined with biconjugate gradient stabilized method. The results have shown that, the more challenging the problem is in terms of conductivity contrasts, ratio between the sizes of grid elements and/or frequency, the more benefit is obtained by using this preconditioner. Compared to other preconditioning schemes, such as diagonal, SSOR and truncated approximate inverse, the AMG preconditioner greatly improves the convergence of the iterative solver for all tested models. Also, when it comes to cases in which other preconditioners succeed to converge to a desired precision, AMG is able to considerably reduce the total execution time of the forward-problem code-up to an order of magnitude. Furthermore, the tests have confirmed that our AMG scheme ensures grid-independent rate of convergence, as well as improvement in convergence regardless of how big local mesh refinements are. In addition, AMG is designed to be a black-box preconditioner, which makes it easy to use and combine with different iterative methods. Finally, it has proved to be very practical and efficient in the

  20. Rupture or Continuity: The Arithmetico-Algebraic Thinking as an Alternative in a Modelling Process in a Paper and Pencil and Technology Environment

    ERIC Educational Resources Information Center

    Hitt, Fernando; Saboya, Mireille; Zavala, Carlos Cortés

    2017-01-01

    Part of the research community that has followed the Early Algebra paradigm is currently delimiting the differences between arithmetic thinking and algebraic thinking. This trend could prevent new research approaches to the problem of learning algebra, hiding the importance of considering an arithmetico-algebraic thinking, a new approach which…

  1. Algebraic Lattices in QFT Renormalization

    NASA Astrophysics Data System (ADS)

    Borinsky, Michael

    2016-07-01

    The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, these lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework, a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.

  2. Computer algebra and operators

    NASA Technical Reports Server (NTRS)

    Fateman, Richard; Grossman, Robert

    1989-01-01

    The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.

  3. Using a Cognitive Architecture to Solve Simultaneous Localization and Mapping (SLAM) Problems

    DTIC Science & Technology

    2006-05-01

    Transactions on Robotics and Automation April 2001, 17 (2). 6. Newell, A. Soar: A Cognitive Architecture in Perspective, Kluwer Academic. Harvard...Choset, H.; Nagatani, K. Topological Simultaneous Localization and Mapping (SLAM): Toward Exact Localization without Explicit Localization. IEEE

  4. Large-scale monocular FastSLAM2.0 acceleration on an embedded heterogeneous architecture

    NASA Astrophysics Data System (ADS)

    Abouzahir, Mohamed; Elouardi, Abdelhafid; Bouaziz, Samir; Latif, Rachid; Tajer, Abdelouahed

    2016-12-01

    Simultaneous localization and mapping (SLAM) is widely used in many robotic applications and autonomous navigation. This paper presents a study of FastSLAM2.0 computational complexity based on a monocular vision system. The algorithm is intended to operate with many particles in a large-scale environment. FastSLAM2.0 was partitioned into functional blocks allowing a hardware software matching on a CPU-GPGPU-based SoC architecture. Performances in terms of processing time and localization accuracy were evaluated using a real indoor dataset. Results demonstrate that an optimized and efficient CPU-GPGPU partitioning allows performing accurate localization results and high-speed execution of a monocular FastSLAM2.0-based embedded system operating under real-time constraints.

  5. Conformal current algebra in two dimensions

    NASA Astrophysics Data System (ADS)

    Ashok, Sujay K.; Benichou, Raphael; Troost, Jan

    2009-06-01

    We construct a non-chiral current algebra in two dimensions consistent with conformal invariance. We show that the conformal current algebra is realized in non-linear sigma-models on supergroup manifolds with vanishing Killing form, with or without a Wess-Zumino term. The current algebra is computed using two distinct methods. First we exploit special algebraic properties of supergroups to compute the exact two- and three-point functions of the currents and from them we infer the current algebra. The algebra is also calculated by using conformal perturbation theory about the Wess-Zumino-Witten point and resumming the perturbation series. We also prove that these models realize a non-chiral Kac-Moody algebra and construct an infinite set of commuting operators that is closed under the action of the Kac-Moody generators. The supergroup models that we consider include models with applications to statistical mechanics, condensed matter and string theory. In particular, our results may help to systematically solve and clarify the quantum integrability of PSU(n|n) models and their cosets, which appear prominently in string worldsheet models on anti-deSitter spaces.

  6. Fine specificity and molecular competition in SLAM family receptor signalling.

    PubMed

    Wilson, Timothy J; Garner, Lee I; Metcalfe, Clive; King, Elliott; Margraf, Stefanie; Brown, Marion H

    2014-01-01

    SLAM family receptors regulate activation and inhibition in immunity through recruitment of activating and inhibitory SH2 domain containing proteins to immunoreceptor tyrosine based switch motifs (ITSMs). Binding of the adaptors, SAP and EAT-2 to ITSMs in the cytoplasmic regions of SLAM family receptors is important for activation. We analysed the fine specificity of SLAM family receptor phosphorylated ITSMs and the conserved tyrosine motif in EAT-2 for SH2 domain containing signalling proteins. Consistent with the literature describing dependence of CRACC (SLAMF7) on EAT-2, CRACC bound EAT-2 (KD = 0.003 μM) with approximately 2 orders of magnitude greater affinity than SAP (KD = 0.44 μM). RNA interference in cytotoxicity assays in NK92 cells showed dependence of CRACC on SAP in addition to EAT-2, indicating selectivity of SAP and EAT-2 may depend on the relative concentrations of the two adaptors. The concentration of SAP was four fold higher than EAT-2 in NK92 cells. Compared with SAP, the significance of EAT-2 recruitment and its downstream effectors are not well characterised. We identified PLCγ1 and PLCγ2 as principal binding partners for the EAT-2 tail. Both PLCγ1 and PLCγ2 are functionally important for cytotoxicity in NK92 cells through CD244 (SLAMF4), NTB-A (SLAMF6) and CRACC. Comparison of the specificity of SH2 domains from activating and inhibitory signalling mediators revealed a hierarchy of affinities for CD244 (SLAMF4) ITSMs. While binding of phosphatase SH2 domains to individual ITSMs of CD244 was weak compared with SAP or EAT-2, binding of tandem SH2 domains of SHP-2 to longer peptides containing tandem phosphorylated ITSMs in human CD244 increased the affinity ten fold. The concentration of the tyrosine phosphatase, SHP-2 was in the order of a magnitude higher than the adaptors, SAP and EAT-2. These data demonstrate a mechanism for direct recruitment of phosphatases in inhibitory signalling by ITSMs, while explaining competitive

  7. The Heisenberg-Weyl algebra on the circle and a related quantum mechanical model for hindered rotation.

    PubMed

    Kouri, Donald J; Markovich, Thomas; Maxwell, Nicholas; Bodmann, Bernhard G

    2009-07-02

    We discuss a periodic variant of the Heisenberg-Weyl algebra, associated with the group of translations and modulations on the circle. Our study of uncertainty minimizers leads to a periodic version of canonical coherent states. Unlike the canonical, Cartesian case, there are states for which the uncertainty product associated with the generators of the algebra vanishes. Next, we explore the supersymmetric (SUSY) quantum mechanical setting for the uncertainty-minimizing states and interpret them as leading to a family of "hindered rotors". Finally, we present a standard quantum mechanical treatment of one of these hindered rotor systems, including numerically generated eigenstates and energies.

  8. Computational algebraic geometry for statistical modeling FY09Q2 progress.

    SciTech Connect

    Thompson, David C.; Rojas, Joseph Maurice; Pebay, Philippe Pierre

    2009-03-01

    This is a progress report on polynomial system solving for statistical modeling. This is a progress report on polynomial system solving for statistical modeling. This quarter we have developed our first model of shock response data and an algorithm for identifying the chamber cone containing a polynomial system in n variables with n+k terms within polynomial time - a significant improvement over previous algorithms, all having exponential worst-case complexity. We have implemented and verified the chamber cone algorithm for n+3 and are working to extend the implementation to handle arbitrary k. Later sections of this report explain chamber cones in more detail; the next section provides an overview of the project and how the current progress fits into it.

  9. Discrete Minimal Surface Algebras

    NASA Astrophysics Data System (ADS)

    Arnlind, Joakim; Hoppe, Jens

    2010-05-01

    We consider discrete minimal surface algebras (DMSA) as generalized noncommutative analogues of minimal surfaces in higher dimensional spheres. These algebras appear naturally in membrane theory, where sequences of their representations are used as a regularization. After showing that the defining relations of the algebra are consistent, and that one can compute a basis of the enveloping algebra, we give several explicit examples of DMSAs in terms of subsets of sln (any semi-simple Lie algebra providing a trivial example by itself). A special class of DMSAs are Yang-Mills algebras. The representation graph is introduced to study representations of DMSAs of dimension d ≤ 4, and properties of representations are related to properties of graphs. The representation graph of a tensor product is (generically) the Cartesian product of the corresponding graphs. We provide explicit examples of irreducible representations and, for coinciding eigenvalues, classify all the unitary representations of the corresponding algebras.

  10. A Robust Approach for a Filter-Based Monocular Simultaneous Localization and Mapping (SLAM) System

    PubMed Central

    Munguía, Rodrigo; Castillo-Toledo, Bernardino; Grau, Antoni

    2013-01-01

    Simultaneous localization and mapping (SLAM) is an important problem to solve in robotics theory in order to build truly autonomous mobile robots. This work presents a novel method for implementing a SLAM system based on a single camera sensor. The SLAM with a single camera, or monocular SLAM, is probably one of the most complex SLAM variants. In this case, a single camera, which is freely moving through its environment, represents the sole sensor input to the system. The sensors have a large impact on the algorithm used for SLAM. Cameras are used more frequently, because they provide a lot of information and are well adapted for embedded systems: they are light, cheap and power-saving. Nevertheless, and unlike range sensors, which provide range and angular information, a camera is a projective sensor providing only angular measurements of image features. Therefore, depth information (range) cannot be obtained in a single step. In this case, special techniques for feature system-initialization are needed in order to enable the use of angular sensors (as cameras) in SLAM systems. The main contribution of this work is to present a novel and robust scheme for incorporating and measuring visual features in filtering-based monocular SLAM systems. The proposed method is based in a two-step technique, which is intended to exploit all the information available in angular measurements. Unlike previous schemes, the values of parameters used by the initialization technique are derived directly from the sensor characteristics, thus simplifying the tuning of the system. The experimental results show that the proposed method surpasses the performance of previous schemes. PMID:23823972

  11. An Algebraic Model of Adaptive Optics for Continuous-Wave Thermal Blooming.

    DTIC Science & Technology

    1979-01-01

    blooming. The aberrations modeled generally include those applied by an adaptive optics system to compensate the naturally occurring ones. For the...results when applied to thermal blooming. However, the analysis suggests novel remedies that will tend to optimize the corrections made, thus better realizing the full potential of adaptive optics . (Author)

  12. Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation.

    PubMed

    Augustin, Christoph M; Neic, Aurel; Liebmann, Manfred; Prassl, Anton J; Niederer, Steven A; Haase, Gundolf; Plank, Gernot

    2016-01-15

    Electromechanical (EM) models of the heart have been used successfully to study fundamental mechanisms underlying a heart beat in health and disease. However, in all modeling studies reported so far numerous simplifications were made in terms of representing biophysical details of cellular function and its heterogeneity, gross anatomy and tissue microstructure, as well as the bidirectional coupling between electrophysiology (EP) and tissue distension. One limiting factor is the employed spatial discretization methods which are not sufficiently flexible to accommodate complex geometries or resolve heterogeneities, but, even more importantly, the limited efficiency of the prevailing solver techniques which are not sufficiently scalable to deal with the incurring increase in degrees of freedom (DOF) when modeling cardiac electromechanics at high spatio-temporal resolution. This study reports on the development of a novel methodology for solving the nonlinear equation of finite elasticity using human whole organ models of cardiac electromechanics, discretized at a high para-cellular resolution. Three patient-specific, anatomically accurate, whole heart EM models were reconstructed from magnetic resonance (MR) scans at resolutions of 220 μm, 440 μm and 880 μm, yielding meshes of approximately 184.6, 24.4 and 3.7 million tetrahedral elements and 95.9, 13.2 and 2.1 million displacement DOF, respectively. The same mesh was used for discretizing the governing equations of both electrophysiology (EP) and nonlinear elasticity. A novel algebraic multigrid (AMG) preconditioner for an iterative Krylov solver was developed to deal with the resulting computational load. The AMG preconditioner was designed under the primary objective of achieving favorable strong scaling characteristics for both setup and solution runtimes, as this is key for exploiting current high performance computing hardware. Benchmark results using the 220 μm, 440 μm and 880 μm meshes demonstrate

  13. Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation

    PubMed Central

    Augustin, Christoph M.; Neic, Aurel; Liebmann, Manfred; Prassl, Anton J.; Niederer, Steven A.; Haase, Gundolf; Plank, Gernot

    2016-01-01

    Electromechanical (EM) models of the heart have been used successfully to study fundamental mechanisms underlying a heart beat in health and disease. However, in all modeling studies reported so far numerous simplifications were made in terms of representing biophysical details of cellular function and its heterogeneity, gross anatomy and tissue microstructure, as well as the bidirectional coupling between electrophysiology (EP) and tissue distension. One limiting factor is the employed spatial discretization methods which are not sufficiently flexible to accommodate complex geometries or resolve heterogeneities, but, even more importantly, the limited efficiency of the prevailing solver techniques which are not sufficiently scalable to deal with the incurring increase in degrees of freedom (DOF) when modeling cardiac electromechanics at high spatio-temporal resolution. This study reports on the development of a novel methodology for solving the nonlinear equation of finite elasticity using human whole organ models of cardiac electromechanics, discretized at a high para-cellular resolution. Three patient-specific, anatomically accurate, whole heart EM models were reconstructed from magnetic resonance (MR) scans at resolutions of 220 μm, 440 μm and 880 μm, yielding meshes of approximately 184.6, 24.4 and 3.7 million tetrahedral elements and 95.9, 13.2 and 2.1 million displacement DOF, respectively. The same mesh was used for discretizing the governing equations of both electrophysiology (EP) and nonlinear elasticity. A novel algebraic multigrid (AMG) preconditioner for an iterative Krylov solver was developed to deal with the resulting computational load. The AMG preconditioner was designed under the primary objective of achieving favorable strong scaling characteristics for both setup and solution runtimes, as this is key for exploiting current high performance computing hardware. Benchmark results using the 220 μm, 440 μm and 880 μm meshes demonstrate

  14. Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation

    NASA Astrophysics Data System (ADS)

    Augustin, Christoph M.; Neic, Aurel; Liebmann, Manfred; Prassl, Anton J.; Niederer, Steven A.; Haase, Gundolf; Plank, Gernot

    2016-01-01

    Electromechanical (EM) models of the heart have been used successfully to study fundamental mechanisms underlying a heart beat in health and disease. However, in all modeling studies reported so far numerous simplifications were made in terms of representing biophysical details of cellular function and its heterogeneity, gross anatomy and tissue microstructure, as well as the bidirectional coupling between electrophysiology (EP) and tissue distension. One limiting factor is the employed spatial discretization methods which are not sufficiently flexible to accommodate complex geometries or resolve heterogeneities, but, even more importantly, the limited efficiency of the prevailing solver techniques which is not sufficiently scalable to deal with the incurring increase in degrees of freedom (DOF) when modeling cardiac electromechanics at high spatio-temporal resolution. This study reports on the development of a novel methodology for solving the nonlinear equation of finite elasticity using human whole organ models of cardiac electromechanics, discretized at a high para-cellular resolution. Three patient-specific, anatomically accurate, whole heart EM models were reconstructed from magnetic resonance (MR) scans at resolutions of 220 μm, 440 μm and 880 μm, yielding meshes of approximately 184.6, 24.4 and 3.7 million tetrahedral elements and 95.9, 13.2 and 2.1 million displacement DOF, respectively. The same mesh was used for discretizing the governing equations of both electrophysiology (EP) and nonlinear elasticity. A novel algebraic multigrid (AMG) preconditioner for an iterative Krylov solver was developed to deal with the resulting computational load. The AMG preconditioner was designed under the primary objective of achieving favorable strong scaling characteristics for both setup and solution runtimes, as this is key for exploiting current high performance computing hardware. Benchmark results using the 220 μm, 440 μm and 880 μm meshes demonstrate

  15. Linear Algebraic Modeling of Power Flow in the HMP500-3 Transmission

    DTIC Science & Technology

    2012-08-01

    Tracked Vehicle Cross-Drive Transmission – Split-Torque Path Hydrostatic / Mechanical CVT – Six Planetary Gear Sets • Three in “Range Pack...becomes a fixed ratio • Model has Four Planetaries , One HSU – Each Planetary has sun gear , planet carrier, ring gear elements – HSU has A-end, B...losses estimated after solution 14-16 AUG 2012 UNCLASSIFIED: Distribution Statement A. Approved for public release. 4 Planetary Gear Equations

  16. Tests of Predictions of the Algebraic Cluster Model: the Triangular D 3h Symmetry of 12C

    NASA Astrophysics Data System (ADS)

    Gai, Moshe

    2016-07-01

    A new theoretical approach to clustering in the frame of the Algebraic Cluster Model (ACM) has been developed. It predicts rotation-vibration structure with rotational band of an oblate equilateral triangular symmetric spinning top with a D 3h symmetry characterized by the sequence of states: 0+, 2+, 3-, 4±, 5- with a degenerate 4+ and 4- (parity doublet) states. Our measured new 2+ 2 in 12C allows the first study of rotation-vibration structure in 12C. The newly measured 5- state and 4- states fit very well the predicted ground state rotational band structure with the predicted sequence of states: 0+, 2+, 3-, 4±, 5- with almost degenerate 4+ and 4- (parity doublet) states. Such a D 3h symmetry is characteristic of triatomic molecules, but it is observed in the ground state rotational band of 12C for the first time in a nucleus. We discuss predictions of the ACM of other rotation-vibration bands in 12 C such as the (0+) Hoyle band and the (1-) bending mode with prediction of (“missing 3- and 4-”) states that may shed new light on clustering in 12C and light nuclei. In particular, the observation (or non observation) of the predicted (“missing”) states in the Hoyle band will allow us to conclude the geometrical arrangement of the three alpha particles composing the Hoyle state at 7.6542 MeV in 12C. We discuss proposed research programs at the Darmstadt S-DALINAC and at the newly constructed ELI-NP facility near Bucharest to test the predictions of the ACM in isotopes of carbon.

  17. Splash jet and slamming generated by a rotating flap

    NASA Astrophysics Data System (ADS)

    Sun, S. Y.; Sun, S. L.; Ren, H. L.; Wu, G. X.

    2015-09-01

    The hydrodynamic problem of slamming generated by a rotating flap, commonly known as Oyster in the wave energy sector, plunging into water, is analysed based on the incompressible velocity potential theory. The problem is solved through the boundary element method in the time domain. Two typical case studies are undertaken. One is the flap plunging into calm water and the other into an incoming wave. The splash jet formed during the flap plunging is included in the simulation. When the jet meets the main flow, it is treated through the domain decomposition method without taking account the secondary impact, which is similar to the mathematical method of Riemann's second sheet in the complex plane. The problem is solved in each non-overlapping subdomain, and the velocity and pressure continuity condition is imposed on the interface of the subdomains. Detailed results for the flap plunging into water with different velocities or accelerations are provided. The gravity and wave effects are also investigated.

  18. The most important points in grand slam singles tennis.

    PubMed

    O'Donoghue, P G

    2001-06-01

    A computerized data management system was used to enter details of points played in 252 tennis matches from the men's and women's singles events of all four Grand Slam tournaments over a 2-year period. A supplementary data analysis system was developed to determine the proportion of points won by each player on serve at each game score from love all to deuce as well as the proportion of games the player went on to win from each score. Analysis of the 43 matches in which both players served at each score from love all to deuce revealed that the proportion of points won by the server was not significantly influenced by score, F(15, 495) = 0.8, p > .05. A further analysis of the 175 matches consisting of at least 100 points revealed that the proportion of points won by the superior player was not significantly influenced by gender, F(1, 165) = 0.1, p > .05, or surface, F(3, 165) = 0.1, p > .05. However, the proportion of points won when serving was significantly greater in men's singles than women's singles, F(1, 165) = 69.7, p < .001, R2 = .30. Surface also had a significant influence on the proportion of points won when serving, F(3, 165) = 8.1, p < .001, R2 = .13, with a significantly greater proportion of points won when serving by both winning and losing players at Wimbledon than at the Australian and French Opens, p < .05. This suggests that gender and surface should be accounted for when determining the importance of points in Grand Slam tennis.

  19. Canine Distemper Virus Fusion Activation: Critical Role of Residue E123 of CD150/SLAM

    PubMed Central

    Khosravi, Mojtaba; Bringolf, Fanny; Röthlisberger, Silvan; Bieringer, Maria; Schneider-Schaulies, Jürgen; Zurbriggen, Andreas; Origgi, Francesco

    2015-01-01

    ABSTRACT Measles virus (MeV) and canine distemper virus (CDV) possess tetrameric attachment proteins (H) and trimeric fusion proteins, which cooperate with either SLAM or nectin 4 receptors to trigger membrane fusion for cell entry. While the MeV H-SLAM cocrystal structure revealed the binding interface, two distinct oligomeric H assemblies were also determined. In one of the conformations, two SLAM units were sandwiched between two discrete H head domains, thus spotlighting two binding interfaces (“front” and “back”). Here, we investigated the functional relevance of both interfaces in activating the CDV membrane fusion machinery. While alanine-scanning mutagenesis identified five critical regulatory residues in the front H-binding site of SLAM, the replacement of a conserved glutamate residue (E at position 123, replaced with A [E123A]) led to the most pronounced impact on fusion promotion. Intriguingly, while determination of the interaction of H with the receptor using soluble constructs revealed reduced binding for the identified SLAM mutants, no effect was recorded when physical interaction was investigated with the full-length counterparts of both molecules. Conversely, although mutagenesis of three strategically selected residues within the back H-binding site of SLAM did not substantially affect fusion triggering, nevertheless, the mutants weakened the H-SLAM interaction recorded with the membrane-anchored protein constructs. Collectively, our findings support a mode of binding between the attachment protein and the V domain of SLAM that is common to all morbilliviruses and suggest a major role of the SLAM residue E123, located at the front H-binding site, in triggering the fusion machinery. However, our data additionally support the hypothesis that other microdomain(s) of both glycoproteins (including the back H-binding site) might be required to achieve fully productive H-SLAM interactions. IMPORTANCE A complete understanding of the measles virus

  20. Linear algebra of the permutation invariant Crow-Kimura model of prebiotic evolution.

    PubMed

    Bratus, Alexander S; Novozhilov, Artem S; Semenov, Yuri S

    2014-10-01

    A particular case of the famous quasispecies model - the Crow-Kimura model with a permutation invariant fitness landscape - is investigated. Using the fact that the mutation matrix in the case of a permutation invariant fitness landscape has a special tridiagonal form, a change of the basis is suggested such that in the new coordinates a number of analytical results can be obtained. In particular, using the eigenvectors of the mutation matrix as the new basis, we show that the quasispecies distribution approaches a binomial one and give simple estimates for the speed of convergence. Another consequence of the suggested approach is a parametric solution to the system of equations determining the quasispecies. Using this parametric solution we show that our approach leads to exact asymptotic results in some cases, which are not covered by the existing methods. In particular, we are able to present not only the limit behavior of the leading eigenvalue (mean population fitness), but also the exact formulas for the limit quasispecies eigenvector for special cases. For instance, this eigenvector has a geometric distribution in the case of the classical single peaked fitness landscape. On the biological side, we propose a mathematical definition, based on the closeness of the quasispecies to the binomial distribution, which can be used as an operational definition of the notorious error threshold. Using this definition, we suggest two approximate formulas to estimate the critical mutation rate after which the quasispecies delocalization occurs.

  1. Application of reduced order modeling techniques to problems in heat conduction, isoelectric focusing and differential algebraic equations

    NASA Astrophysics Data System (ADS)

    Mathai, Pramod P.

    the uncertainty in the parameters of the differential equations. There is a clear need to design better experiments for IEF without the current overhead of expensive chemicals and labor. We show how with a simpler modeling of the underlying chemistry, we can still achieve the accuracy that has been achieved in existing literature for modeling small ranges of pH (hydrogen ion concentration) in IEF, but with far less computational time. We investigate a further reduction of time by modeling the IEF problem using the Proper Orthogonal Decomposition (POD) technique and show why POD may not be sufficient due to the underlying constraints. The final problem that we address in this thesis addresses a certain class of dynamics with high stiffness - in particular, differential algebraic equations. With the help of simple examples, we show how the traditional POD procedure will fail to model certain high stiffness problems due to a particular behavior of the vector field which we will denote as twist. We further show how a novel augmentation to the traditional POD algorithm can model-reduce problems with twist in a computationally cheap manner without any additional data requirements.

  2. A modular approach to modeling an isolated power system on a finite voltage bus using a differential algebraic equation solving routine

    NASA Astrophysics Data System (ADS)

    Kipps, Mark R.

    1994-03-01

    The modeling of power systems has been primarily driven by the commercial power utility industry. These models usually involve the assumption that system bus voltage and frequency are constant. However, in applications such as shipboard power systems this infinite bus assumption is not valid. This thesis investigates the modeling of a synchronous generator and various loads in a modular fashion on a finite bus. The simulation presented allows the interconnection of multiple state-space models via a bus voltage model. The major difficulty encountered in building a model which computes bus voltage at each time step is that bus voltage is a function of current and current derivative terms. Bus voltage is also an input to the state equations which produce the current and current derivatives. This creates an algebraic loop which is a form of implicit differential equation. A routine has been developed by Linda Petzold of Lawrence Livermore Laboratory for solving these types of equations. The routine, called Differential Algebraic System Solver (DASSL), has been implemented in a pre-release version of the software Advanced Continuous Simulation Language (ACSL) and has been made available to the Naval Postgraduate School on a trial basis. An isolated power system is modeled using this software and the DASSL routine. The system response to several dynamic situations is studied and the results are presented.

  3. Sensor Fusion of Monocular Cameras and Laser Rangefinders for Line-Based Simultaneous Localization and Mapping (SLAM) Tasks in Autonomous Mobile Robots

    PubMed Central

    Zhang, Xinzheng; Rad, Ahmad B.; Wong, Yiu-Kwong

    2012-01-01

    This paper presents a sensor fusion strategy applied for Simultaneous Localization and Mapping (SLAM) in dynamic environments. The designed approach consists of two features: (i) the first one is a fusion module which synthesizes line segments obtained from laser rangefinder and line features extracted from monocular camera. This policy eliminates any pseudo segments that appear from any momentary pause of dynamic objects in laser data. (ii) The second characteristic is a modified multi-sensor point estimation fusion SLAM (MPEF-SLAM) that incorporates two individual Extended Kalman Filter (EKF) based SLAM algorithms: monocular and laser SLAM. The error of the localization in fused SLAM is reduced compared with those of individual SLAM. Additionally, a new data association technique based on the homography transformation matrix is developed for monocular SLAM. This data association method relaxes the pleonastic computation. The experimental results validate the performance of the proposed sensor fusion and data association method. PMID:22368478

  4. Sensor fusion of monocular cameras and laser rangefinders for line-based Simultaneous Localization and Mapping (SLAM) tasks in autonomous mobile robots.

    PubMed

    Zhang, Xinzheng; Rad, Ahmad B; Wong, Yiu-Kwong

    2012-01-01

    This paper presents a sensor fusion strategy applied for Simultaneous Localization and Mapping (SLAM) in dynamic environments. The designed approach consists of two features: (i) the first one is a fusion module which synthesizes line segments obtained from laser rangefinder and line features extracted from monocular camera. This policy eliminates any pseudo segments that appear from any momentary pause of dynamic objects in laser data. (ii) The second characteristic is a modified multi-sensor point estimation fusion SLAM (MPEF-SLAM) that incorporates two individual Extended Kalman Filter (EKF) based SLAM algorithms: monocular and laser SLAM. The error of the localization in fused SLAM is reduced compared with those of individual SLAM. Additionally, a new data association technique based on the homography transformation matrix is developed for monocular SLAM. This data association method relaxes the pleonastic computation. The experimental results validate the performance of the proposed sensor fusion and data association method.

  5. Prediction of Algebraic Instabilities

    NASA Astrophysics Data System (ADS)

    Zaretzky, Paula; King, Kristina; Hill, Nicole; Keithley, Kimberlee; Barlow, Nathaniel; Weinstein, Steven; Cromer, Michael

    2016-11-01

    A widely unexplored type of hydrodynamic instability is examined - large-time algebraic growth. Such growth occurs on the threshold of (exponentially) neutral stability. A new methodology is provided for predicting the algebraic growth rate of an initial disturbance, when applied to the governing differential equation (or dispersion relation) describing wave propagation in dispersive media. Several types of algebraic instabilities are explored in the context of both linear and nonlinear waves.

  6. Connecting Algebra and Chemistry.

    ERIC Educational Resources Information Center

    O'Connor, Sean

    2003-01-01

    Correlates high school chemistry curriculum with high school algebra curriculum and makes the case for an integrated approach to mathematics and science instruction. Focuses on process integration. (DDR)

  7. Z 2-graded classical r-matrices and algebraic Bethe ansatz: applications to integrable models of quantum optics and nuclear physics

    NASA Astrophysics Data System (ADS)

    Skrypnyk, T.

    2016-09-01

    We consider quantum integrable models based on the Lie algebra gl(n) and non-skew-symmetric classical r-matrices associated with Z 2-gradings of gl(n) of the following type: {gl}(n)={gl}{(n)}\\bar{0}+{gl}{(n)}\\bar{1}, where {gl}{(n)}\\bar{0}={gl}({n}1)\\oplus {gl}(n-{n}1). Among the considered models are Gaudin-type models with an external magnetic field, used in nuclear physics to produce proton-neutron Bardeen-Cooper-Schrieer-type models, n-level many-mode Jaynes-Cummings-Dicke-type models of quantum optics, matrix generalization of Bose-Hubbard dimers, etc. We diagonalize the constructed models by means of the ‘generalized’ nested Bethe ansatz.

  8. Gauged Ads-Maxwell Algebra and Gravity

    NASA Astrophysics Data System (ADS)

    Durka, R.; Kowalski-Glikman, J.; Szczachor, M.

    We deform the anti-de Sitter algebra by adding additional generators {Z}ab, forming in this way the negative cosmological constant counterpart of the Maxwell algebra. We gauge this algebra and construct a dynamical model with the help of a constrained BF theory. It turns out that the resulting theory is described by the Einstein-Cartan action with Holst term, and the gauge fields associated with the Maxwell generators {Z}ab appear only in topological terms that do not influence dynamical field equations. We briefly comment on the extension of this construction, which would lead to a nontrivial Maxwell fields dynamics.

  9. Algebraic distance on graphs.

    SciTech Connect

    Chen, J.; Safro, I.

    2011-01-01

    Measuring the connection strength between a pair of vertices in a graph is one of the most important concerns in many graph applications. Simple measures such as edge weights may not be sufficient for capturing the effects associated with short paths of lengths greater than one. In this paper, we consider an iterative process that smooths an associated value for nearby vertices, and we present a measure of the local connection strength (called the algebraic distance; see [D. Ron, I. Safro, and A. Brandt, Multiscale Model. Simul., 9 (2011), pp. 407-423]) based on this process. The proposed measure is attractive in that the process is simple, linear, and easily parallelized. An analysis of the convergence property of the process reveals that the local neighborhoods play an important role in determining the connectivity between vertices. We demonstrate the practical effectiveness of the proposed measure through several combinatorial optimization problems on graphs and hypergraphs.

  10. Superintegrability in Two Dimensions and the Racah-Wilson Algebra

    NASA Astrophysics Data System (ADS)

    Genest, Vincent X.; Vinet, Luc; Zhedanov, Alexei

    2014-08-01

    The analysis of the most general second-order superintegrable system in two dimensions: the generic 3-parameter model on the 2-sphere is cast in the framework of the Racah problem for the algebra. The Hamiltonian of the 3-parameter system and the generators of its quadratic symmetry algebra are seen to correspond to the total and intermediate Casimir operators of the combination of three algebras, respectively. The construction makes explicit the isomorphism between the Racah-Wilson algebra, which is the fundamental algebraic structure behind the Racah problem for , and the invariance algebra of the generic 3-parameter system. It also provides an explanation for the occurrence of the Racah polynomials as overlap coefficients in this context. The irreducible representations of the Racah-Wilson algebra are reviewed as well as their connection with the Askey scheme of classical orthogonal polynomials.

  11. Bicovariant quantum algebras and quantum Lie algebras

    NASA Astrophysics Data System (ADS)

    Schupp, Peter; Watts, Paul; Zumino, Bruno

    1993-10-01

    A bicovariant calculus of differential operators on a quantum group is constructed in a natural way, using invariant maps from Fun(mathfrak{G}_q ) to U q g, given by elements of the pure braid group. These operators—the “reflection matrix” Y≡L + SL - being a special case—generate algebras that linearly close under adjoint actions, i.e. they form generalized Lie algebras. We establish the connection between the Hopf algebra formulation of the calculus and a formulation in compact matrix form which is quite powerful for actual computations and as applications we find the quantum determinant and an orthogonality relation for Y in SO q (N).

  12. Catching Up on Algebra

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2008-01-01

    A popular humorist and avowed mathphobe once declared that in real life, there's no such thing as algebra. Kathie Wilson knows better. Most of the students in her 8th grade class will be thrust into algebra, the definitive course that heralds the beginning of high school mathematics, next school year. The problem: Many of them are about three…

  13. Parastatistics Algebras and Combinatorics

    NASA Astrophysics Data System (ADS)

    Popov, T.

    2005-03-01

    We consider the algebras spanned by the creation parafermionic and parabosonic operators which give rise to generalized parastatistics Fock spaces. The basis of such a generalized Fock space can be labelled by Young tableaux which are combinatorial objects. By means of quantum deformations a nice combinatorial structure of the algebra of the plactic monoid that lies behind the parastatistics is revealed.

  14. Algebraic Reasoning through Patterns

    ERIC Educational Resources Information Center

    Rivera, F. D.; Becker, Joanne Rossi

    2009-01-01

    This article presents the results of a three-year study that explores students' performance on patterning tasks involving prealgebra and algebra. The findings, insights, and issues drawn from the study are intended to help teach prealgebra and algebra. In the remainder of the article, the authors take a more global view of the three-year study on…

  15. Learning Activity Package, Algebra.

    ERIC Educational Resources Information Center

    Evans, Diane

    A set of ten teacher-prepared Learning Activity Packages (LAPs) in beginning algebra and nine in intermediate algebra, these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radicals,…

  16. Linear-Algebra Programs

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  17. Ready, Set, Algebra?

    ERIC Educational Resources Information Center

    Levy, Alissa Beth

    2012-01-01

    The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this dissertation,…

  18. Teaching Structure in Algebra

    ERIC Educational Resources Information Center

    Merlin, Ethan M.

    2013-01-01

    This article describes how the author has developed tasks for students that address the missed "essence of the matter" of algebraic transformations. Specifically, he has found that having students practice "perceiving" algebraic structure--by naming the "glue" in the expressions, drawing expressions using…

  19. Simple but novel test method for quantitatively comparing robot mapping algorithms using SLAM and dead reckoning

    NASA Astrophysics Data System (ADS)

    Davey, Neil S.; Godil, Haris

    2013-05-01

    This article presents a comparative study between a well-known SLAM (Simultaneous Localization and Mapping) algorithm, called Gmapping, and a standard Dead-Reckoning algorithm; the study is based on experimental results of both approaches by using a commercial skid-based turning robot, P3DX. Five main base-case scenarios are conducted to evaluate and test the effectiveness of both algorithms. The results show that SLAM outperformed the Dead Reckoning in terms of map-making accuracy in all scenarios but one, since SLAM did not work well in a rapidly changing environment. Although the main conclusion about the excellence of SLAM is not surprising, the presented test method is valuable to professionals working in this area of mobile robots, as it is highly practical, and provides solid and valuable results. The novelty of this study lies in its simplicity. The simple but novel test method for quantitatively comparing robot mapping algorithms using SLAM and Dead Reckoning and some applications using autonomous robots are being patented by the authors in U.S. Patent Application Nos. 13/400,726 and 13/584,862.

  20. Shocklets, SLAMS, and Field-Aligned Ion Beams in the Terrestrial Foreshock

    NASA Technical Reports Server (NTRS)

    Wilson, L. B.; Koval, A.; Sibeck, D. G.; Szabo, A.; Cattell, C. A.; Kasper, J. C.; Maruca, B. A.; Pulupa, M.; Salem, C. S.; Wilber, M.

    2012-01-01

    We present Wind spacecraft observations of ion distributions showing field- aligned beams (FABs) and large-amplitude magnetic fluctuations composed of a series of shocklets and short large-amplitude magnetic structures (SLAMS). The FABs are found to have T(sub k) approx 80-850 eV, V(sub b)/V(sub sw) approx 1.3-2.4, T(sub perpendicular,b)/T(sub paralell,b) approx 1-8, and n(sub b)/n(sub o) approx 0.2-11%. Saturation amplitudes for ion/ion resonant and non-resonant instabilities are too small to explain the observed SLAMS amplitudes. We show two examples where groups of SLAMS can act like a local quasi-perpendicular shock reflecting ions to produce the FABs, a scenario distinct from the more-common production at the quasi-perpendicular bow shock. The SLAMS exhibit a foot-like magnetic enhancement with a leading magnetosonic whistler train, consistent with previous observations. Strong ion and electron heating are observed within the series of shocklets and SLAMS with temperatures increasing by factors approx > 5 and approx >3, respectively. Both the core and halo electron components show strong perpendicular heating inside the feature.

  1. On-board SLAM for indoor UAV using a laser range finder

    NASA Astrophysics Data System (ADS)

    Alpen, M.; Willrodt, C.; Frick, K.; Horn, J.

    2010-04-01

    Here we present a real-time algorithm for on-board SLAM (simultaneous localization and mapping) of a quadrotor using a laser range finder. Based on successfully implemented techniques for ground robots, we developed an algorithm that merges a new scan into the global map without any iteration. This causes some inaccuracy of the global map which leads to an error propagation during the robot's mission. Therefore an optimization algorithm reducing this inaccuracy is essential. Within this optimization lines with the same orientation and an overlapping in one of the two possible coordinates of a 2D-plane are merged if their distance is below a certain threshold value. Due to reduction of the required computing power for SLAM calculation by using orthogonal SLAM a real time SLAM running on a microcontroller becomes possible. Because of the small weight and the low electric power consumption, this controller can be mounted on an industrial quadrotor. Therefore acting autonomously in an unknown indoor environment becomes possible. In this paper we also show the validation of the presented SLAM algorithm. The first step of validation is an offline implementation in Matlab and the second step is the online validation of our algorithm on the industrial quadrotor AR100B of the AirRobot Company.

  2. Lie n-algebras of BPS charges

    NASA Astrophysics Data System (ADS)

    Sati, Hisham; Schreiber, Urs

    2017-03-01

    We uncover higher algebraic structures on Noether currents and BPS charges. It is known that equivalence classes of conserved currents form a Lie algebra. We show that at least for target space symmetries of higher parameterized WZW-type sigma-models this naturally lifts to a Lie ( p + 1)-algebra structure on the Noether currents themselves. Applied to the Green-Schwarz-type action functionals for super p-brane sigma-models this yields super Lie ( p+1)-algebra refinements of the traditional BPS brane charge extensions of supersymmetry algebras. We discuss this in the generality of higher differential geometry, where it applies also to branes with (higher) gauge fields on their worldvolume. Applied to the M5-brane sigma-model we recover and properly globalize the M-theory super Lie algebra extension of 11-dimensional superisometries by 2-brane and 5-brane charges. Passing beyond the infinitesimal Lie theory we find cohomological corrections to these charges in higher analogy to the familiar corrections for D-brane charges as they are lifted from ordinary cohomology to twisted K-theory. This supports the proposal that M-brane charges live in a twisted cohomology theory.

  3. A Fast Map Merging Algorithm in the Field of Multirobot SLAM

    PubMed Central

    Fan, Xiaoping; Zhang, Heng

    2013-01-01

    In recent years, the research on single-robot simultaneous localization and mapping (SLAM) has made a great success. However, multirobot SLAM faces many challenging problems, including unknown robot poses, unshared map, and unstable communication. In this paper, a map merging algorithm based on virtual robot motion is proposed for multi-robot SLAM. The thinning algorithm is used to construct the skeleton of the grid map's empty area, and a mobile robot is simulated in one map. The simulated data is used as information sources in the other map to do partial map Monte Carlo localization; if localization succeeds, the relative pose hypotheses between the two maps can be computed easily. We verify these hypotheses using the rendezvous technique and use them as initial values to optimize the estimation by a heuristic random search algorithm. PMID:24302855

  4. Ultra Wide-Band Localization and SLAM: A Comparative Study for Mobile Robot Navigation

    PubMed Central

    Segura, Marcelo J.; Auat Cheein, Fernando A.; Toibero, Juan M.; Mut, Vicente; Carelli, Ricardo

    2011-01-01

    In this work, a comparative study between an Ultra Wide-Band (UWB) localization system and a Simultaneous Localization and Mapping (SLAM) algorithm is presented. Due to its high bandwidth and short pulses length, UWB potentially allows great accuracy in range measurements based on Time of Arrival (TOA) estimation. SLAM algorithms recursively estimates the map of an environment and the pose (position and orientation) of a mobile robot within that environment. The comparative study presented here involves the performance analysis of implementing in parallel an UWB localization based system and a SLAM algorithm on a mobile robot navigating within an environment. Real time results as well as error analysis are also shown in this work. PMID:22319397

  5. Algebraic invariants for homotopy types

    NASA Astrophysics Data System (ADS)

    Blanc, David

    1999-11-01

    We define a sequence of purely algebraic invariants - namely, classes in the Quillen cohomology of the [Pi]-algebra [pi][low asterisk]X - for distinguishing between different homotopy types of spaces. Another sequence of such cohomology classes allows one to decide whether a given abstract [Pi]-algebra can be realized as the homotopy [Pi]-algebra of a space.

  6. A Richer Understanding of Algebra

    ERIC Educational Resources Information Center

    Foy, Michelle

    2008-01-01

    Algebra is one of those hard-to-teach topics where pupils seem to struggle to see it as more than a set of rules to learn, but this author recently used the software "Grid Algebra" from ATM, which engaged her Year 7 pupils in exploring algebraic concepts for themselves. "Grid Algebra" allows pupils to experience number,…

  7. Resting lymphocyte transduction with measles virus glycoprotein pseudotyped lentiviral vectors relies on CD46 and SLAM

    SciTech Connect

    Zhou Qi; Schneider, Irene C.; Gallet, Manuela; Kneissl, Sabrina; Buchholz, Christian J.

    2011-05-10

    The measles virus (MV) glycoproteins hemagglutinin (H) and fusion (F) were recently shown to mediate transduction of resting lymphocytes by lentiviral vectors. MV vaccine strains use CD46 or signaling lymphocyte activation molecule (SLAM) as receptor for cell entry. A panel of H protein mutants derived from vaccine strain or wild-type MVs that lost or gained CD46 or SLAM receptor usage were investigated for their ability to mediate gene transfer into unstimulated T lymphocytes. The results demonstrate that CD46 is sufficient for efficient vector particle association with unstimulated lymphocytes. For stable gene transfer into these cells, however, both MV receptors were found to be essential.

  8. SLAM examination of solar cells and solar cell welds. [Scanning Laser Acoustic Microscope

    NASA Technical Reports Server (NTRS)

    Stella, P. M.; Vorres, C. L.; Yuhas, D. E.

    1981-01-01

    The scanning laser acoustic microscope (SLAM) has been evaluated for non-destructive examination of solar cells and interconnector bonds. Using this technique, it is possible to view through materials in order to reveal regions of discontinuity such as microcracks and voids. Of particular interest is the ability to evaluate, in a unique manner, the bonds produced by parallel gap welding. It is possible to not only determine the area and geometry of the bond between the tab and cell, but also to reveal any microcracks incurred during the welding. By correlating the SLAM results with conventional techniques of weld evaluation a more confident weld parameter optimization can be obtained.

  9. Application of simultaneous localization and mapping (SLAM) in autonomous exploration of urban environments

    NASA Astrophysics Data System (ADS)

    Cooke, Andrew R.; Greenway, Phil; le Maistre, Mike; Manley, Richard; Mullin, David; Nicholson, David; Swinnerton, James; Valachis, Dimitris; Wright, Andy

    2003-08-01

    This paper describes an autonomous navigation system capable of exploring an unknown environment, as implemented by the Advanced Technology Centre of BAE SYSTEMS (ATC). An overview of the enabling technology of the autonomous system, simultaneous localization and mapping (SLAM), is given before describing in detail the utility functions used to perform the strategic decision making required for autonomous exploration. Relevant studies, performed in simulation, of the major issues involved in multi-platform SLAM are also described. Initial results and conclusions are given at the end of the paper. All experiments are conducted on the Pioneer all terrain mobile robots using common off the shelf sensing devices.

  10. Pseudo-Riemannian Novikov algebras

    NASA Astrophysics Data System (ADS)

    Chen, Zhiqi; Zhu, Fuhai

    2008-08-01

    Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-type and Hamiltonian operators in formal variational calculus. Pseudo-Riemannian Novikov algebras denote Novikov algebras with non-degenerate invariant symmetric bilinear forms. In this paper, we find that there is a remarkable geometry on pseudo-Riemannian Novikov algebras, and give a special class of pseudo-Riemannian Novikov algebras.

  11. Weyl n-Algebras

    NASA Astrophysics Data System (ADS)

    Markarian, Nikita

    2017-03-01

    We introduce Weyl n-algebras and show how their factorization complex may be used to define invariants of manifolds. In the appendix, we heuristically explain why these invariants must be perturbative Chern-Simons invariants.

  12. Developing Algebraic Thinking.

    ERIC Educational Resources Information Center

    Alejandre, Suzanne

    2002-01-01

    Presents a teaching experience that resulted in students getting to a point of full understanding of the kinesthetic activity and the algebra behind it. Includes a lesson plan for a traffic jam activity. (KHR)

  13. Jordan Algebraic Quantum Categories

    NASA Astrophysics Data System (ADS)

    Graydon, Matthew; Barnum, Howard; Ududec, Cozmin; Wilce, Alexander

    2015-03-01

    State cones in orthodox quantum theory over finite dimensional complex Hilbert spaces enjoy two particularly essential features: homogeneity and self-duality. Orthodox quantum theory is not, however, unique in that regard. Indeed, all finite dimensional formally real Jordan algebras -- arenas for generalized quantum theories with close algebraic kinship to the orthodox theory -- admit homogeneous self-dual positive cones. We construct categories wherein these theories are unified. The structure of composite systems is cast from universal tensor products of the universal C*-algebras enveloping ambient spaces for the constituent state cones. We develop, in particular, a notion of composition that preserves the local distinction of constituent systems in quaternionic quantum theory. More generally, we explicitly derive the structure of hybrid quantum composites with subsystems of arbitrary Jordan algebraic type.

  14. Accounting Equals Applied Algebra.

    ERIC Educational Resources Information Center

    Roberts, Sondra

    1997-01-01

    Argues that students should be given mathematics credits for completing accounting classes. Demonstrates that, although the terminology is different, the mathematical concepts are the same as those used in an introductory algebra class. (JOW)

  15. Quantum walks, deformed relativity and Hopf algebra symmetries.

    PubMed

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2016-05-28

    We show how the Weyl quantum walk derived from principles in D'Ariano & Perinotti (D'Ariano & Perinotti 2014Phys. Rev. A90, 062106. (doi:10.1103/PhysRevA.90.062106)), enjoying a nonlinear Lorentz symmetry of dynamics, allows one to introduce Hopf algebras for position and momentum of the emerging particle. We focus on two special models of Hopf algebras-the usual Poincaré and theκ-Poincaré algebras.

  16. Covariant deformed oscillator algebras

    NASA Technical Reports Server (NTRS)

    Quesne, Christiane

    1995-01-01

    The general form and associativity conditions of deformed oscillator algebras are reviewed. It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami condition. As an example, an SU(sub q)(n) x SU(sub q)(m)-covariant q-bosonic algebra is discussed in some detail.

  17. Aprepro - Algebraic Preprocessor

    SciTech Connect

    2005-08-01

    Aprepro is an algebraic preprocessor that reads a file containing both general text and algebraic, string, or conditional expressions. It interprets the expressions and outputs them to the output file along witht the general text. Aprepro contains several mathematical functions, string functions, and flow control constructs. In addition, functions are included that, with some additional files, implement a units conversion system and a material database lookup system.

  18. Delayed Monocular SLAM Approach Applied to Unmanned Aerial Vehicles

    PubMed Central

    2016-01-01

    In recent years, many researchers have addressed the issue of making Unmanned Aerial Vehicles (UAVs) more and more autonomous. In this context, the state estimation of the vehicle position is a fundamental necessity for any application involving autonomy. However, the problem of position estimation could not be solved in some scenarios, even when a GPS signal is available, for instance, an application requiring performing precision manoeuvres in a complex environment. Therefore, some additional sensory information should be integrated into the system in order to improve accuracy and robustness. In this work, a novel vision-based simultaneous localization and mapping (SLAM) method with application to unmanned aerial vehicles is proposed. One of the contributions of this work is to design and develop a novel technique for estimating features depth which is based on a stochastic technique of triangulation. In the proposed method the camera is mounted over a servo-controlled gimbal that counteracts the changes in attitude of the quadcopter. Due to the above assumption, the overall problem is simplified and it is focused on the position estimation of the aerial vehicle. Also, the tracking process of visual features is made easier due to the stabilized video. Another contribution of this work is to demonstrate that the integration of very noisy GPS measurements into the system for an initial short period of time is enough to initialize the metric scale. The performance of this proposed method is validated by means of experiments with real data carried out in unstructured outdoor environments. A comparative study shows that, when compared with related methods, the proposed approach performs better in terms of accuracy and computational time. PMID:28033385

  19. Delayed Monocular SLAM Approach Applied to Unmanned Aerial Vehicles.

    PubMed

    Munguia, Rodrigo; Urzua, Sarquis; Grau, Antoni

    2016-01-01

    In recent years, many researchers have addressed the issue of making Unmanned Aerial Vehicles (UAVs) more and more autonomous. In this context, the state estimation of the vehicle position is a fundamental necessity for any application involving autonomy. However, the problem of position estimation could not be solved in some scenarios, even when a GPS signal is available, for instance, an application requiring performing precision manoeuvres in a complex environment. Therefore, some additional sensory information should be integrated into the system in order to improve accuracy and robustness. In this work, a novel vision-based simultaneous localization and mapping (SLAM) method with application to unmanned aerial vehicles is proposed. One of the contributions of this work is to design and develop a novel technique for estimating features depth which is based on a stochastic technique of triangulation. In the proposed method the camera is mounted over a servo-controlled gimbal that counteracts the changes in attitude of the quadcopter. Due to the above assumption, the overall problem is simplified and it is focused on the position estimation of the aerial vehicle. Also, the tracking process of visual features is made easier due to the stabilized video. Another contribution of this work is to demonstrate that the integration of very noisy GPS measurements into the system for an initial short period of time is enough to initialize the metric scale. The performance of this proposed method is validated by means of experiments with real data carried out in unstructured outdoor environments. A comparative study shows that, when compared with related methods, the proposed approach performs better in terms of accuracy and computational time.

  20. SLAM, a Mathematica interface for SUSY spectrum generators

    NASA Astrophysics Data System (ADS)

    Marquard, Peter; Zerf, Nikolai

    2014-03-01

    We present and publish a Mathematica package, which can be used to automatically obtain any numerical MSSM input parameter from SUSY spectrum generators, which follow the SLHA standard, like SPheno, SOFTSUSY, SuSeFLAV or Suspect. The package enables a very comfortable way of numerical evaluations within the MSSM using Mathematica. It implements easy to use predefined high scale and low scale scenarios like mSUGRA or mhmax and if needed enables the user to directly specify the input required by the spectrum generators. In addition it supports an automatic saving and loading of SUSY spectra to and from a SQL data base, avoiding the rerun of a spectrum generator for a known spectrum. Catalogue identifier: AERX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERX_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4387 No. of bytes in distributed program, including test data, etc.: 37748 Distribution format: tar.gz Programming language: Mathematica. Computer: Any computer where Mathematica version 6 or higher is running providing bash and sed. Operating system: Linux. Classification: 11.1. External routines: A SUSY spectrum generator such as SPheno, SOFTSUSY, SuSeFLAV or SUSPECT Nature of problem: Interfacing published spectrum generators for automated creation, saving and loading of SUSY particle spectra. Solution method: SLAM automatically writes/reads SLHA spectrum generator input/output and is able to save/load generated data in/from a data base. Restrictions: No general restrictions, specific restrictions are given in the manuscript. Running time: A single spectrum calculation takes much less than one second on a modern PC.

  1. Algebraic tools for dealing with the atomic shell model. I. Wavefunctions and integrals for hydrogen-like ions

    NASA Astrophysics Data System (ADS)

    Surzhykov, Andrey; Koval, Peter; Fritzsche, Stephan

    2005-01-01

    Today, the 'hydrogen atom model' is known to play its role not only in teaching the basic elements of quantum mechanics but also for building up effective theories in atomic and molecular physics, quantum optics, plasma physics, or even in the design of semiconductor devices. Therefore, the analytical as well as numerical solutions of the hydrogen-like ions are frequently required both, for analyzing experimental data and for carrying out quite advanced theoretical studies. In order to support a fast and consistent access to these (Coulomb-field) solutions, here we present the DIRAC program which has been developed originally for studying the properties and dynamical behavior of the (hydrogen-like) ions. In the present version, a set of MAPLE procedures is provided for the Coulomb wave and Green's functions by applying the (wave) equations from both, the nonrelativistic and relativistic theory. Apart from the interactive access to these functions, moreover, a number of radial integrals are also implemented in the DIRAC program which may help the user to construct transition amplitudes and cross sections as they occur frequently in the theory of ion-atom and ion-photon collisions. Program summaryTitle of program:DIRAC Catalogue number: ADUQ Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUQ Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Computer for which the program is designed and has been tested: All computers with a license of the computer algebra package MAPLE [1] Program language used: Maple 8 and 9 No. of lines in distributed program, including test data, etc.:2186 No. of bytes in distributed program, including test data, etc.: 162 591 Distribution format: tar gzip file CPC Program Library subprograms required: None Nature of the physical problem: Analytical solutions of the hydrogen atom are widely used in very different fields of physics [2,3]. Despite of the rather simple structure

  2. Development of an indoor positioning and navigation system using monocular SLAM and IMU

    NASA Astrophysics Data System (ADS)

    Mai, Yu-Ching; Lai, Ying-Chih

    2016-07-01

    The positioning and navigation systems based on Global Positioning System (GPS) have been developed over past decades and have been widely used for outdoor environment. However, high-rise buildings or indoor environments can block the satellite signal. Therefore, many indoor positioning methods have been developed to respond to this issue. In addition to the distance measurements using sonar and laser sensors, this study aims to develop a method by integrating a monocular simultaneous localization and mapping (MonoSLAM) algorithm with an inertial measurement unit (IMU) to build an indoor positioning system. The MonoSLAM algorithm measures the distance (depth) between the image features and the camera. With the help of Extend Kalman Filter (EKF), MonoSLAM can provide real-time position, velocity and camera attitude in world frame. Since the feature points will not always appear and can't be trusted at any time, a wrong estimation of the features will cause the estimated position diverge. To overcome this problem, a multisensor fusion algorithm was applied in this study by using the multi-rate Kalman Filter. Finally, from the experiment results, the proposed system was verified to be able to improve the reliability and accuracy of the MonoSLAM by integrating the IMU measurements.

  3. AUV SLAM and Experiments Using a Mechanical Scanning Forward-Looking Sonar

    PubMed Central

    He, Bo; Liang, Yan; Feng, Xiao; Nian, Rui; Yan, Tianhong; Li, Minghui; Zhang, Shujing

    2012-01-01

    Navigation technology is one of the most important challenges in the applications of autonomous underwater vehicles (AUVs) which navigate in the complex undersea environment. The ability of localizing a robot and accurately mapping its surroundings simultaneously, namely the simultaneous localization and mapping (SLAM) problem, is a key prerequisite of truly autonomous robots. In this paper, a modified-FastSLAM algorithm is proposed and used in the navigation for our C-Ranger research platform, an open-frame AUV. A mechanical scanning imaging sonar is chosen as the active sensor for the AUV. The modified-FastSLAM implements the update relying on the on-board sensors of C-Ranger. On the other hand, the algorithm employs the data association which combines the single particle maximum likelihood method with modified negative evidence method, and uses the rank-based resampling to overcome the particle depletion problem. In order to verify the feasibility of the proposed methods, both simulation experiments and sea trials for C-Ranger are conducted. The experimental results show the modified-FastSLAM employed for the navigation of the C-Ranger AUV is much more effective and accurate compared with the traditional methods. PMID:23012549

  4. AUV SLAM and experiments using a mechanical scanning forward-looking sonar.

    PubMed

    He, Bo; Liang, Yan; Feng, Xiao; Nian, Rui; Yan, Tianhong; Li, Minghui; Zhang, Shujing

    2012-01-01

    Navigation technology is one of the most important challenges in the applications of autonomous underwater vehicles (AUVs) which navigate in the complex undersea environment. The ability of localizing a robot and accurately mapping its surroundings simultaneously, namely the simultaneous localization and mapping (SLAM) problem, is a key prerequisite of truly autonomous robots. In this paper, a modified-FastSLAM algorithm is proposed and used in the navigation for our C-Ranger research platform, an open-frame AUV. A mechanical scanning imaging sonar is chosen as the active sensor for the AUV. The modified-FastSLAM implements the update relying on the on-board sensors of C-Ranger. On the other hand, the algorithm employs the data association which combines the single particle maximum likelihood method with modified negative evidence method, and uses the rank-based resampling to overcome the particle depletion problem. In order to verify the feasibility of the proposed methods, both simulation experiments and sea trials for C-Ranger are conducted. The experimental results show the modified-FastSLAM employed for the navigation of the C-Ranger AUV is much more effective and accurate compared with the traditional methods.

  5. Slam, a Service for Landslide Monitoring Based on EO-Data

    NASA Astrophysics Data System (ADS)

    Manunta, P.; Brugioni, M.; Casagli, N.; Colombo, D.; Deflorio, A. M.; Farina, P.; Ferretti, A.; Gontier, E.; Graf, K.; Haeberle, J.; Lateltin, O.; Meloni, E.; Mayoraz, R.; Montini, G.; Moretti, S.; Paganini, M.; Palazzo, F.; Spina, D.; Sulli, L.; Strozzi, T.

    2004-06-01

    Every year slope instabilities cause large socio-economic losses on life and property worldwide. Indeed, the casualties caused by mass movements are among the highest in the industrialized world. In this contest the SLAM project is aimed to the implementation of landslides mapping and monitoring service that can be integrated into the current landslide management procedures. The innovative aspect of the SLAM project is the integration of the SAR techniques and EO data with the in situ documentation currently in use for the landslide monitoring. In particular, SLAM is designed to realise three types of products: Landslide Motion Survey, Landslide Displacement Monitoring and Landslide Susceptibility Mapping. The realization of SLAM project, entirely funded by ESA, is carried out by an international Consortium led by Planetek Italia (I) and formed by other five partners: Tele-Rilevamento Europa (I), Gamma Remote Sensing (CH), Spacebel (B), Geotest (CH) and Earth Science Department of the University of Firenze (I). For the Italian service cases the interferometric analysis is based on the PS technique, developed and patented by the Politecnico di Milano (Italy) and improved by Tele-Rilevamento Europa. For the Swiss service cases, multi-pass SAR interferometry, including the Interferometric Point Target Analysis (IPTA), is applied by Gamma Remote Sensing.

  6. Multiple Integrated Navigation Sensors for Improved Occupancy Grid FastSLAM

    DTIC Science & Technology

    2011-03-01

    17 SIS Sequential Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 SIR Sampling...Importance Resampling ( SIR ) algorithm to select a new set of samples in Figure 3 [45]. In terms of the SLAM posterior, w [m] t is the ratio of distributions...process to adjust its particle distribution. This implementation uses a standard SIR process in a way that is both nonlinear and non- Gaussian [27]. It

  7. Shocklets, SLAMS, and field-aligned ion beams in the terrestrial foreshock

    NASA Astrophysics Data System (ADS)

    Wilson, L. B., III; Koval, A.; Sibeck, D. G.; Szabo, A.; Cattell, C. A.; Kasper, J. C.; Maruca, B. A.; Pulupa, M.; Salem, C. S.; Wilber, M.

    2012-12-01

    We present Wind spacecraft observations of ion distributions showing field-aligned beams (FABs) and large-amplitude magnetic fluctuations composed of a series of shocklets and short large-amplitude magnetic structures (SLAMS). We show that the SLAMS are acting like a local quasi-perpendicular shock reflecting ions to produce the FABs. Previous FAB observations reported the source as the quasi-perpendicular bow shock. The SLAMS exhibit a foot-like magnetic enhancement with a leading magnetosonic whistler train, consistent with previous observations. The FABs are found to have T_b ~ 80-850 eV, V_b/V_sw ~ 1-2, T_perp/T_para ~ 1-10, and n_b/n_i ~ 0.2-14%. Strong ion and electron heating are observed within the series of shocklets and SLAMS increasing by factors ≥ 5 and ≥ 3, respectively. Both the core and halo electron components show strong perpendicular heating inside the feature.

  8. Spatial-Operator Algebra For Flexible-Link Manipulators

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan; Rodriguez, Guillermo

    1994-01-01

    Method of computing dynamics of multiple-flexible-link robotic manipulators based on spatial-operator algebra, which originally applied to rigid-link manipulators. Aspects of spatial-operator-algebra approach described in several previous articles in NASA Tech Briefs-most recently "Robot Control Based on Spatial-Operator Algebra" (NPO-17918). In extension of spatial-operator algebra to manipulators with flexible links, each link represented by finite-element model: mass of flexible link apportioned among smaller, lumped-mass rigid bodies, coupling of motions expressed in terms of vibrational modes. This leads to operator expression for modal-mass matrix of link.

  9. Evaluating the structural identifiability of the parameters of the EBPR sub-model in ASM2d by the differential algebra method.

    PubMed

    Zhang, Tian; Zhang, Daijun; Li, Zhenliang; Cai, Qing

    2010-05-01

    The calibration of ASMs is a prerequisite for their application to simulation of a wastewater treatment plant. This work should be made based on the evaluation of structural identifiability of model parameters. An EBPR sub-model including denitrification phosphorus removal has been incorporated in ASM2d. Yet no report is presented on the structural identifiability of the parameters in the EBPR sub-model. In this paper, the differential algebra approach was used to address this issue. The results showed that the structural identifiability of parameters in the EBPR sub-model could be improved by increasing the measured variables. The reduction factor eta(NO)(3) was identifiable when combined data of aerobic process and anoxic process were assumed. For K(PP), X(PAO) and q(PHA) of the anaerobic process to be uniquely identifiable, one of them is needed to be determined by other ways. Likewise, if prior information on one of the parameters, K(PHA), X(PAO) and q(PP) of the aerobic process, is known, all the parameters are identifiable. The above results could be of interest to the parameter estimation of the EBPR sub-model. The algorithm proposed in the paper is also suitable for other sub-models of ASMs.

  10. Algebraic mesh quality metrics

    SciTech Connect

    KNUPP,PATRICK

    2000-04-24

    Quality metrics for structured and unstructured mesh generation are placed within an algebraic framework to form a mathematical theory of mesh quality metrics. The theory, based on the Jacobian and related matrices, provides a means of constructing, classifying, and evaluating mesh quality metrics. The Jacobian matrix is factored into geometrically meaningful parts. A nodally-invariant Jacobian matrix can be defined for simplicial elements using a weight matrix derived from the Jacobian matrix of an ideal reference element. Scale and orientation-invariant algebraic mesh quality metrics are defined. the singular value decomposition is used to study relationships between metrics. Equivalence of the element condition number and mean ratio metrics is proved. Condition number is shown to measure the distance of an element to the set of degenerate elements. Algebraic measures for skew, length ratio, shape, volume, and orientation are defined abstractly, with specific examples given. Combined metrics for shape and volume, shape-volume-orientation are algebraically defined and examples of such metrics are given. Algebraic mesh quality metrics are extended to non-simplical elements. A series of numerical tests verify the theoretical properties of the metrics defined.

  11. Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction

    ERIC Educational Resources Information Center

    Wasserman, Nicholas H.

    2016-01-01

    This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…

  12. Supersymmetry in physics: an algebraic overview

    SciTech Connect

    Ramond, P.

    1983-01-01

    In 1970, while attempting to generalize the Veneziano model (string model) to include fermions, I introduced a new algebraic structure which turned out to be a graded Lie algebra; it was used as a spectrum-generating algebra. This approach was soon after generalized to include interactions, yielding a complete model of fermions and boson (RNS model). In an unrelated work in the Soviet Union, it was shown how to generalize the Poincare group to include fermionic charges. However it was not until 1974 that an interacting field theory invariant under the Graded Poincare group in 3 + 1 dimensions was built (WZ model). Supersymmetric field theories turned out to have less divergent ultraviolet behavior than non-supersymmetric field theories. Gravity was generalized to include supersymmetry, to a theory called supergravity. By now many interacting local field theories exhibiting supersymmetry have been built and studied from 1 + 1 to 10 + 1 dimensions. Supersymmetric local field theories in less than 9 + 1 dimensions, can be understood as limits of multilocal (string) supersymmetric theories, in 9 + 1 dimensions. On the other hand, graded Lie algebras have been used in non-relativistic physics as approximate symmetries of Hamiltonians. The most striking such use so far helps comparing even and odd nuclei energy levels. It is believed that graded Lie algebras can be used whenever paired and unpaired fermions excitations can coexist. In this overview of a tremendously large field, I will only survey finite graded Lie algebras and their representations. For non-relativistic applications, all of GLA are potentially useful, while for relativistic applications, only these which include the Poincare group are to be considered.

  13. Computer-Intensive Algebra and Students' Conceptual Knowledge of Functions.

    ERIC Educational Resources Information Center

    O'Callaghan, Brian R.

    1998-01-01

    Describes a research project that examined the effects of the Computer-Intensive Algebra (CIA) and traditional algebra curricula on students' (N=802) understanding of the function concept. Results indicate that CIA students achieved a better understanding of functions and were better at the components of modeling, interpreting, and translating.…

  14. Critical exponents from infinite-dimensional symplectic algebras

    NASA Astrophysics Data System (ADS)

    Altschüler, D.

    1985-11-01

    Unitary representations of the Virasoro algebra with centrala c = 1 - 6/(n + 2) are important in the study of two-dimensional models in statistical mechanics. It is shown that they can be constructed using Kac-Moody algebras of symplectic type. At the same time, this provides a simple derivation of the critical exponents.

  15. Adaptive Algebraic Multigrid Methods

    SciTech Connect

    Brezina, M; Falgout, R; MacLachlan, S; Manteuffel, T; McCormick, S; Ruge, J

    2004-04-09

    Our ability to simulate physical processes numerically is constrained by our ability to solve the resulting linear systems, prompting substantial research into the development of multiscale iterative methods capable of solving these linear systems with an optimal amount of effort. Overcoming the limitations of geometric multigrid methods to simple geometries and differential equations, algebraic multigrid methods construct the multigrid hierarchy based only on the given matrix. While this allows for efficient black-box solution of the linear systems associated with discretizations of many elliptic differential equations, it also results in a lack of robustness due to assumptions made on the near-null spaces of these matrices. This paper introduces an extension to algebraic multigrid methods that removes the need to make such assumptions by utilizing an adaptive process. The principles which guide the adaptivity are highlighted, as well as their application to algebraic multigrid solution of certain symmetric positive-definite linear systems.

  16. Resonant algebras and gravity

    NASA Astrophysics Data System (ADS)

    Durka, R.

    2017-04-01

    The S-expansion framework is analyzed in the context of a freedom in closing the multiplication tables for the abelian semigroups. Including the possibility of the zero element in the resonant decomposition, and associating the Lorentz generator with the semigroup identity element, leads to a wide class of the expanded Lie algebras introducing interesting modifications to the gauge gravity theories. Among the results, we find all the Maxwell algebras of type {{B}m} , {{C}m} , and the recently introduced {{D}m} . The additional new examples complete the resulting generalization of the bosonic enlargements for an arbitrary number of the Lorentz-like and translational-like generators. Some further prospects concerning enlarging the algebras are discussed, along with providing all the necessary constituents for constructing the gravity actions based on the obtained results.

  17. On weak Lie 2-algebras

    NASA Astrophysics Data System (ADS)

    Roytenberg, Dmitry

    2007-11-01

    A Lie 2-algebra is a linear category equipped with a functorial bilinear operation satisfying skew-symmetry and Jacobi identity up to natural transformations which themselves obey coherence laws of their own. Functors and natural transformations between Lie 2-algebras can also be defined, yielding a 2-category. Passing to the normalized chain complex gives an equivalence of 2-categories between Lie 2-algebras and certain "up to homotopy" structures on the complex; for strictly skew-symmetric Lie 2-algebras these are L∞-algebras, by a result of Baez and Crans. Lie 2-algebras appear naturally as infinitesimal symmetries of solutions of the Maurer-Cartan equation in some differential graded Lie algebras and L∞-algebras. In particular, (quasi-) Poisson manifolds, (quasi-) Lie bialgebroids and Courant algebroids provide large classes of examples.

  18. Algebra for Gifted Third Graders.

    ERIC Educational Resources Information Center

    Borenson, Henry

    1987-01-01

    Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)

  19. A Holistic Approach to Algebra.

    ERIC Educational Resources Information Center

    Barbeau, Edward J.

    1991-01-01

    Described are two examples involving recursive mathematical sequences designed to integrate a holistic approach to learning algebra. These examples promote pattern recognition with algebraic justification, full class participation, and mathematical values that can be transferred to other situations. (MDH)

  20. Computer Program For Linear Algebra

    NASA Technical Reports Server (NTRS)

    Krogh, F. T.; Hanson, R. J.

    1987-01-01

    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  1. Integrated High-Fidelity CFD/FE FSI Code Development and Benchmark Full-Scale Validation EFD for Slamming Analysis

    DTIC Science & Technology

    2016-06-30

    Lehigh slamming load test fac ili ty, a.k.a. Numerette, was upgraded with more piezo-resistive film pressure sensors , single-point pressure sensors ...Lehigh slamming load test facility, a.k.a. Numerette, was upgraded with more piezo- resistive film pressure sensors , single-point pressure sensors ...output from an accelerometer mounted on bulkhead #5, as well as by using accelerometer and gyro data from sensors on bulkhead #2 and extrapolating

  2. An algebra of reversible computation.

    PubMed

    Wang, Yong

    2016-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  3. Permutation centralizer algebras and multimatrix invariants

    NASA Astrophysics Data System (ADS)

    Mattioli, Paolo; Ramgoolam, Sanjaye

    2016-03-01

    We introduce a class of permutation centralizer algebras which underly the combinatorics of multimatrix gauge-invariant observables. One family of such noncommutative algebras is parametrized by two integers. Its Wedderburn-Artin decomposition explains the counting of restricted Schur operators, which were introduced in the physics literature to describe open strings attached to giant gravitons and were subsequently used to diagonalize the Gaussian inner product for gauge invariants of two-matrix models. The structure of the algebra, notably its dimension, its center and its maximally commuting subalgebra, is related to Littlewood-Richardson numbers for composing Young diagrams. It gives a precise characterization of the minimal set of charges needed to distinguish arbitrary matrix gauge invariants, which are related to enhanced symmetries in gauge theory. The algebra also gives a star product for matrix invariants. The center of the algebra allows efficient computation of a sector of multimatrix correlators. These generate the counting of a certain class of bicoloured ribbon graphs with arbitrary genus.

  4. Hexagonal tessellations in image algebra

    NASA Astrophysics Data System (ADS)

    Eberly, David H.; Wenzel, Dennis J.; Longbotham, Harold G.

    1990-11-01

    In image algebra '' the concept of a coordinate set X is general in that such a set is simply a subset of ndimensional Euclidean space . The standard applications in 2-dimensional image processing use coordinate sets which are rectangular arrays X 72 x ZZm. However some applications may require other geometries for the coordinate set. We look at three such related applications in the context of image algebra. The first application is the modeling of photoreceptors in primate retinas. These receptors are inhomogeneously distributed on the retina. The largest receptor density occurs in the center of the fovea and decreases radially outwards. One can construct a hexagonal tessellation of the retina such that each hexagon contains approximately the same number of receptors. The resulting tessellation called a sunflower heart2 consists of concentric rings of hexagons whose sizes increase as the radius of the ring increases. The second application is the modeling of the primary visual . The neurons are assumed to be uniformly distributed as a regular hexagonal lattice. Cortical neural image coding is modeled by a recursive convolution of the retinal neural image using a special set of filters. The third application involves analysis of a hexagonally-tessellated image where the pixel resolution is variable .

  5. From Arithmetic to Algebra

    ERIC Educational Resources Information Center

    Ketterlin-Geller, Leanne R.; Jungjohann, Kathleen; Chard, David J.; Baker, Scott

    2007-01-01

    Much of the difficulty that students encounter in the transition from arithmetic to algebra stems from their early learning and understanding of arithmetic. Too often, students learn about the whole number system and the operations that govern that system as a set of procedures to solve addition, subtraction, multiplication, and division problems.…

  6. Computers in Abstract Algebra

    ERIC Educational Resources Information Center

    Nwabueze, Kenneth K.

    2004-01-01

    The current emphasis on flexible modes of mathematics delivery involving new information and communication technology (ICT) at the university level is perhaps a reaction to the recent change in the objectives of education. Abstract algebra seems to be one area of mathematics virtually crying out for computer instructional support because of the…

  7. Algebraic Thinking through Origami.

    ERIC Educational Resources Information Center

    Higginson, William; Colgan, Lynda

    2001-01-01

    Describes the use of paper folding to create a rich environment for discussing algebraic concepts. Explores the effect that changing the dimensions of two-dimensional objects has on the volume of related three-dimensional objects. (Contains 13 references.) (YDS)

  8. Computer Algebra versus Manipulation

    ERIC Educational Resources Information Center

    Zand, Hossein; Crowe, David

    2004-01-01

    In the UK there is increasing concern about the lack of skill in algebraic manipulation that is evident in students entering mathematics courses at university level. In this note we discuss how the computer can be used to ameliorate some of the problems. We take as an example the calculations needed in three dimensional vector analysis in polar…

  9. Unified algebraic method to non-Hermitian systems with Lie algebraic linear structure

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Biao; Jiang, Guang-Yuan; Wang, Gang-Cheng

    2015-07-01

    We suggest a generic algebraic method to solve non-Hermitian Hamiltonian systems with Lie algebraic linear structure. Such method can not only unify the non-Hermitian Hamiltonian and the Hermitian Hamiltonian with the same structure but also keep self-consistent between similarity transformation and unitary transformation. To clearly reveal the correctness and physical meaning of such algebraic method, we illustrate our method with two different types of non-Hermitian Hamiltonians: the non-Hermitian Hamiltonian with Heisenberg algebraic linear structure and the non-Hermitian Hamiltonian with su(1, 1) algebraic linear structure. We obtain energy eigenvalues and the corresponding eigenstates of non-Hermitian forced harmonic oscillator with Heisenberg algebra structure via a proper similarity transformation. We also calculate the eigen-problems of general non-Hermitian Hamiltonian with su(1, 1) structure in terms of the similarity transformation. As an application, we focus on studying the non-Hermitian single-mode squeezed and coherent harmonic oscillator system and find that such similarity transformation associated with this model is in fact gauge-like transformation for simple harmonic oscillator.

  10. The Symmetric Tensor Lichnerowicz Algebra and a Novel Associative Fourier-Jacobi Algebra

    NASA Astrophysics Data System (ADS)

    Hallowell, Karl; Waldron, Andrew

    2007-09-01

    Lichnerowicz's algebra of differential geometric operators acting on symmetric tensors can be obtained from generalized geodesic motion of an observer carrying a complex tangent vector. This relation is based upon quantizing the classical evolution equations, and identifying wavefunctions with sections of the symmetric tensor bundle and Noether charges with geometric operators. In general curved spaces these operators obey a deformation of the Fourier-Jacobi Lie algebra of sp(2,R). These results have already been generalized by the authors to arbitrary tensor and spinor bundles using supersymmetric quantum mechanical models and have also been applied to the theory of higher spin particles. These Proceedings review these results in their simplest, symmetric tensor setting. New results on a novel and extremely useful reformulation of the rank 2 deformation of the Fourier-Jacobi Lie algebra in terms of an associative algebra are also presented. This new algebra! was originally motivated by studies of operator orderings in enveloping algebras. It provides a new method that is superior in many respects to common techniques such as Weyl or normal ordering.

  11. An algebra of discrete event processes

    NASA Technical Reports Server (NTRS)

    Heymann, Michael; Meyer, George

    1991-01-01

    This report deals with an algebraic framework for modeling and control of discrete event processes. The report consists of two parts. The first part is introductory, and consists of a tutorial survey of the theory of concurrency in the spirit of Hoare's CSP, and an examination of the suitability of such an algebraic framework for dealing with various aspects of discrete event control. To this end a new concurrency operator is introduced and it is shown how the resulting framework can be applied. It is further shown that a suitable theory that deals with the new concurrency operator must be developed. In the second part of the report the formal algebra of discrete event control is developed. At the present time the second part of the report is still an incomplete and occasionally tentative working paper.

  12. Algebraic surface design and finite element meshes

    NASA Technical Reports Server (NTRS)

    Bajaj, Chandrajit L.

    1992-01-01

    Some of the techniques are summarized which are used in constructing C sup 0 and C sup 1 continuous meshes of low degree, implicitly defined, algebraic surface patches in three dimensional space. These meshes of low degree algebraic surface patches are used to construct accurate computer models of physical objects. These meshes are also used in the finite element simulation of physical phenomena (e.g., heat dissipation, stress/strain distributions, fluid flow characteristics) required in the computer prototyping of both the manufacturability and functionality of the geometric design.

  13. Algebraic connectivity and graph robustness.

    SciTech Connect

    Feddema, John Todd; Byrne, Raymond Harry; Abdallah, Chaouki T.

    2009-07-01

    Recent papers have used Fiedler's definition of algebraic connectivity to show that network robustness, as measured by node-connectivity and edge-connectivity, can be increased by increasing the algebraic connectivity of the network. By the definition of algebraic connectivity, the second smallest eigenvalue of the graph Laplacian is a lower bound on the node-connectivity. In this paper we show that for circular random lattice graphs and mesh graphs algebraic connectivity is a conservative lower bound, and that increases in algebraic connectivity actually correspond to a decrease in node-connectivity. This means that the networks are actually less robust with respect to node-connectivity as the algebraic connectivity increases. However, an increase in algebraic connectivity seems to correlate well with a decrease in the characteristic path length of these networks - which would result in quicker communication through the network. Applications of these results are then discussed for perimeter security.

  14. On Dunkl angular momenta algebra

    NASA Astrophysics Data System (ADS)

    Feigin, Misha; Hakobyan, Tigran

    2015-11-01

    We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl( N ) version of the subalge-bra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.

  15. The geometric semantics of algebraic quantum mechanics.

    PubMed

    Cruz Morales, John Alexander; Zilber, Boris

    2015-08-06

    In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects.

  16. An Evaluation of Saxon's Algebra Test.

    ERIC Educational Resources Information Center

    Johnson, Dale M.; Smith, Blaine

    1987-01-01

    John Saxon's incremental development model has been proclaimed as a superior teaching strategy for mathematics. This study evaluated the Saxon approach and textbook using 276 Algebra I students in experimental and control groups. The groups were compared in cognitive and affective areas. Results are presented. (Author/MT)

  17. Using Technology to Balance Algebraic Explorations

    ERIC Educational Resources Information Center

    Kurz, Terri L.

    2013-01-01

    In 2000, the "National Council of Teachers of Mathematics" recommended that Algebra Standards, "instructional programs from prekindergarten through grade 12 should enable all students to use mathematical models to represent and understand quantitative relationships." In this article, the authors suggest the "Balance"…

  18. Noise limitations in optical linear algebra processors.

    PubMed

    Batsell, S G; Jong, T L; Walkup, J F; Krile, T F

    1990-05-10

    A general statistical noise model is presented for optical linear algebra processors. A statistical analysis which includes device noise, the multiplication process, and the addition operation is undertaken. We focus on those processes which are architecturally independent. Finally, experimental results which verify the analytical predictions are also presented.

  19. A Microcomputer Lab for Algebra & Calculus.

    ERIC Educational Resources Information Center

    Avery, Chris; And Others

    An overview is provided of De Anza College's use of computerized instruction in its mathematics courses. After reviewing the ways in which computer technology is changing math instruction, the paper looks at the use of computers in several course sequences. The instructional model for the algebra sequence is based on a large group format of…

  20. A Linear Algebra Measure of Cluster Quality.

    ERIC Educational Resources Information Center

    Mather, Laura A.

    2000-01-01

    Discussion of models for information retrieval focuses on an application of linear algebra to text clustering, namely, a metric for measuring cluster quality based on the theory that cluster quality is proportional to the number of terms that are disjoint across the clusters. Explains term-document matrices and clustering algorithms. (Author/LRW)

  1. Digital Maps, Matrices and Computer Algebra

    ERIC Educational Resources Information Center

    Knight, D. G.

    2005-01-01

    The way in which computer algebra systems, such as Maple, have made the study of complex problems accessible to undergraduate mathematicians with modest computational skills is illustrated by some large matrix calculations, which arise from representing the Earth's surface by digital elevation models. Such problems are often considered to lie in…

  2. Sloshing-induced slamming in screen-equipped rectangular tanks in shallow-water conditions

    NASA Astrophysics Data System (ADS)

    Wei, Zhi-Jun; Faltinsen, Odd Magnus; Lugni, Claudio; Yue, Qian-Jin

    2015-03-01

    Sloshing-induced slamming in a rectangular tank with centralized slat-screens with high solidity ratios was experimentally studied under nearly two-dimensional shallow-water conditions with large-amplitude harmonic lateral excitation. The main objective was to identify the solidity ratio that provides an optimal suppressing function on the free-surface elevation and slamming pressure on the vertical tank walls with a frequency domain containing the three lowest natural sloshing frequencies in a clean tank with a water depth-to-tank length ratio of h/l = 0.125 and a high forced sway amplitude. The experiments show that the optimal solidity ratio among four considered slat-screens is approximately 0.6-0.7 for the applied filling level and excitation amplitude in the examined forced frequency range. The results have potential applications in areas such as swash bulkhead design and liquefied-cargo tank design in ship and offshore engineering.

  3. A theoretical method for determining slam impact pressure distributions on ship sections

    SciTech Connect

    Kaplan, P.

    1996-12-31

    A capability for time domain computer simulation of ship motions and structural loads, including the effects due to slamming, for monohull ships in a seaway has recently been demonstrated, with good correlation exhibited with experimental data. Such information is very useful for structural design purposes, where the global loads (such as bending moments and shears) results are used with finite element structural analyses and/or related reliability studies for purposes of assessment of ship structural survivability. The present paper describes a procedure for determining pressure distribution information by use of calculation and analysis procedures that are also employed within the work in the cited reference. In that way the desired pressure distribution information can then be adjoined to the motion and load results obtained from the output of the simulation procedure, so that a complete representation of all important features associated with ship slamming will then be available in a cohesive package.

  4. Quartic Poisson algebras and quartic associative algebras and realizations as deformed oscillator algebras

    SciTech Connect

    Marquette, Ian

    2013-07-15

    We introduce the most general quartic Poisson algebra generated by a second and a fourth order integral of motion of a 2D superintegrable classical system. We obtain the corresponding quartic (associative) algebra for the quantum analog, extend Daskaloyannis construction obtained in context of quadratic algebras, and also obtain the realizations as deformed oscillator algebras for this quartic algebra. We obtain the Casimir operator and discuss how these realizations allow to obtain the finite-dimensional unitary irreducible representations of quartic algebras and obtain algebraically the degenerate energy spectrum of superintegrable systems. We apply the construction and the formula obtained for the structure function on a superintegrable system related to type I Laguerre exceptional orthogonal polynomials introduced recently.

  5. Severe Psychosis, Drug Dependence, and Hepatitis C Related to Slamming Mephedrone

    PubMed Central

    Rodríguez-Salgado, Beatriz; Sánchez-Mateos, Daniel

    2016-01-01

    Background. Synthetic cathinones (SCs), also known as “bath salts,” are β-ketone amphetamine compounds derived from cathinone, a psychoactive substance found in Catha edulis. Mephedrone is the most representative SC. Slamming is the term used for the intravenous injection of these substances in the context of chemsex parties, in order to enhance sex experiences. Using IV mephedrone may lead to diverse medical and psychiatric complications like psychosis, aggressive behavior, and suicide ideation. Case. We report the case of a 25-year-old man admitted into a psychiatric unit, presenting with psychotic symptoms after slamming mephedrone almost every weekend for the last 4 months. He presents paranoid delusions, intense anxiety, and visual and kinesthetic hallucinations. He also shows intense craving, compulsive drug use, general malaise, and weakness. After four weeks of admission and antipsychotic treatment, delusions completely disappear. The patient is reinfected with hepatitis C. Discussion. Psychiatric and medical conditions related to chemsex and slamming have been reported in several European cities, but not in Spain. Psychotic symptoms have been associated with mephedrone and other SCs' consumption, with the IV route being prone to produce more severe symptomatology and addictive conducts. In the case we report, paranoid psychosis, addiction, and medical complications are described. PMID:27247820

  6. Severe Psychosis, Drug Dependence, and Hepatitis C Related to Slamming Mephedrone.

    PubMed

    Dolengevich-Segal, Helen; Rodríguez-Salgado, Beatriz; Gómez-Arnau, Jorge; Sánchez-Mateos, Daniel

    2016-01-01

    Background. Synthetic cathinones (SCs), also known as "bath salts," are β-ketone amphetamine compounds derived from cathinone, a psychoactive substance found in Catha edulis. Mephedrone is the most representative SC. Slamming is the term used for the intravenous injection of these substances in the context of chemsex parties, in order to enhance sex experiences. Using IV mephedrone may lead to diverse medical and psychiatric complications like psychosis, aggressive behavior, and suicide ideation. Case. We report the case of a 25-year-old man admitted into a psychiatric unit, presenting with psychotic symptoms after slamming mephedrone almost every weekend for the last 4 months. He presents paranoid delusions, intense anxiety, and visual and kinesthetic hallucinations. He also shows intense craving, compulsive drug use, general malaise, and weakness. After four weeks of admission and antipsychotic treatment, delusions completely disappear. The patient is reinfected with hepatitis C. Discussion. Psychiatric and medical conditions related to chemsex and slamming have been reported in several European cities, but not in Spain. Psychotic symptoms have been associated with mephedrone and other SCs' consumption, with the IV route being prone to produce more severe symptomatology and addictive conducts. In the case we report, paranoid psychosis, addiction, and medical complications are described.

  7. An approach to robot SLAM based on incremental appearance learning with omnidirectional vision

    NASA Astrophysics Data System (ADS)

    Wu, Hua; Qin, Shi-Yin

    2011-03-01

    Localisation and mapping with an omnidirectional camera becomes more difficult as the landmark appearances change dramatically in the omnidirectional image. With conventional techniques, it is difficult to match the features of the landmark with the template. We present a novel robot simultaneous localisation and mapping (SLAM) algorithm with an omnidirectional camera, which uses incremental landmark appearance learning to provide posterior probability distribution for estimating the robot pose under a particle filtering framework. The major contribution of our work is to represent the posterior estimation of the robot pose by incremental probabilistic principal component analysis, which can be naturally incorporated into the particle filtering algorithm for robot SLAM. Moreover, the innovative method of this article allows the adoption of the severe distorted landmark appearances viewed with omnidirectional camera for robot SLAM. The experimental results demonstrate that the localisation error is less than 1 cm in an indoor environment using five landmarks, and the location of the landmark appearances can be estimated within 5 pixels deviation from the ground truth in the omnidirectional image at a fairly fast speed.

  8. Activation by SLAM Family Receptors Contributes to NK Cell Mediated "Missing-Self" Recognition.

    PubMed

    Alari-Pahissa, Elisenda; Grandclément, Camille; Jeevan-Raj, Beena; Leclercq, Georges; Veillette, André; Held, Werner

    2016-01-01

    Natural Killer (NK) cells attack normal hematopoietic cells that do not express inhibitory MHC class I (MHC-I) molecules, but the ligands that activate NK cells remain incompletely defined. Here we show that the expression of the Signaling Lymphocyte Activation Molecule (SLAM) family members CD48 and Ly9 (CD229) by MHC-I-deficient tumor cells significantly contributes to NK cell activation. When NK cells develop in the presence of T cells or B cells that lack inhibitory MHC-I but express activating CD48 and Ly9 ligands, the NK cells' ability to respond to MHC-I-deficient tumor cells is severely compromised. In this situation, NK cells express normal levels of the corresponding activation receptors 2B4 (CD244) and Ly9 but these receptors are non-functional. This provides a partial explanation for the tolerance of NK cells to MHC-I-deficient cells in vivo. Activating signaling via 2B4 is restored when MHC-I-deficient T cells are removed, indicating that interactions with MHC-I-deficient T cells dominantly, but not permanently, impair the function of the 2B4 NK cell activation receptor. These data identify an important role of SLAM family receptors for NK cell mediated "missing-self" reactivity and suggest that NK cell tolerance in MHC-I mosaic mice is in part explained by an acquired dysfunction of SLAM family receptors.

  9. Slam haplotypes modulate the response to LPS in vivo through control of NKT cell number and function1

    PubMed Central

    Aktan, Idil; Chant, Alan; Borg, Zachary D.; Damby, David E.; Leenstra, Paige; Lilley, Graham; Petty, Joseph; Suratt, Benjamin T.; Teuscher, Cory; Wakeland, Edward K.; Poynter, Matthew E.; Boyson, Jonathan E.

    2011-01-01

    CD1d-restricted NKT cells comprise an innate-like T cell subset that hasbeen demonstrated to play a role in amplifying the response of innate immune leukocytesto TLR ligands. The Slam locus contains genes that have been implicated in both innate and adaptive immune responses. Here, we demonstrate that divergent Slam locus haplotypesmodulate the response of macrophages to TLR ligands such as LPS through their control of NKT cell number and function. In response to LPS challenge in vivo, macrophage TNF production in Slam haplotype-2-associated 129S1/SvImJ and 129X1/SvJ mice was significantly impaired in comparison to macrophage TNF production in Slam haplotype -1-positive C57BL/6J mice. Although no cell-intrinsic differences in macrophage responses to LPS were observed between strains, 129 mice were found to be deficient in liver NKT cell number, in NKT cell cytokine production in response to the CD1d ligand α-galactosylceramide, and in NKT cell IFN-γ production after LPS challenge in vivo. Using B6.129 c1congenic mice and adoptive transfer, we found that divergent Slam haplotypes controlled both the response to LPS in vivo as well as the diminished NKT cell number and function, and that these phenotypes were associated with differential expression of SLAM family receptors on NKT cells. These data suggest that the polymorphisms that distinguish two Slam haplotypes significantly modulate the innate immune response in vivothrough their effect on NKT cell s. PMID:20530260

  10. Algebraic Multigrid Benchmark

    SciTech Connect

    2013-05-06

    AMG2013 is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids. It has been derived directly from the Boomer AMG solver in the hypre library, a large linear solvers library that is being developed in the Center for Applied Scientific Computing (CASC) at LLNL. The driver provided in the benchmark can build various test problems. The default problem is a Laplace type problem on an unstructured domain with various jumps and an anisotropy in one part.

  11. Algebra of Majorana doubling.

    PubMed

    Lee, Jaehoon; Wilczek, Frank

    2013-11-27

    Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.

  12. The Algebra Artist

    ERIC Educational Resources Information Center

    Beigie, Darin

    2014-01-01

    Most people who are attracted to STEM-related fields are drawn not by a desire to take mathematics tests but to create things. The opportunity to create an algebra drawing gives students a sense of ownership and adventure that taps into the same sort of energy that leads a young person to get lost in reading a good book, building with Legos®,…

  13. Symmetric linear systems - An application of algebraic systems theory

    NASA Technical Reports Server (NTRS)

    Hazewinkel, M.; Martin, C.

    1983-01-01

    Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.

  14. A quantum affine algebra for the deformed Hubbard chain

    NASA Astrophysics Data System (ADS)

    Beisert, Niklas; Galleas, Wellington; Matsumoto, Takuya

    2012-09-01

    The integrable structure of the one-dimensional Hubbard model is based on Shastry's R-matrix and the Yangian of a centrally extended \\mathfrak {sl}(2|2) superalgebra. Alcaraz and Bariev have shown that the model admits an integrable deformation whose R-matrix has recently been found. This R-matrix is of trigonometric type and here we derive its underlying exceptional quantum affine algebra. We also show how the algebra reduces to the above-mentioned Yangian and to the conventional quantum affine \\mathfrak {sl}(2|2) algebra in two special limits.

  15. Double conformal space-time algebra

    NASA Astrophysics Data System (ADS)

    Easter, Robert Benjamin; Hitzer, Eckhard

    2017-01-01

    The Double Conformal Space-Time Algebra (DCSTA) is a high-dimensional 12D Geometric Algebra G 4,8that extends the concepts introduced with the Double Conformal / Darboux Cyclide Geometric Algebra (DCGA) G 8,2 with entities for Darboux cyclides (incl. parabolic and Dupin cyclides, general quadrics, and ring torus) in spacetime with a new boost operator. The base algebra in which spacetime geometry is modeled is the Space-Time Algebra (STA) G 1,3. Two Conformal Space-Time subalgebras (CSTA) G 2,4 provide spacetime entities for points, flats (incl. worldlines), and hyperbolics, and a complete set of versors for their spacetime transformations that includes rotation, translation, isotropic dilation, hyperbolic rotation (boost), planar reflection, and (pseudo)spherical inversion in rounds or hyperbolics. The DCSTA G 4,8 is a doubling product of two G 2,4 CSTA subalgebras that inherits doubled CSTA entities and versors from CSTA and adds new bivector entities for (pseudo)quadrics and Darboux (pseudo)cyclides in spacetime that are also transformed by the doubled versors. The "pseudo" surface entities are spacetime hyperbolics or other surface entities using the time axis as a pseudospatial dimension. The (pseudo)cyclides are the inversions of (pseudo)quadrics in rounds or hyperbolics. An operation for the directed non-uniform scaling (anisotropic dilation) of the bivector general quadric entities is defined using the boost operator and a spatial projection. DCSTA allows general quadric surfaces to be transformed in spacetime by the same complete set of doubled CSTA versor (i.e., DCSTA versor) operations that are also valid on the doubled CSTA point entity (i.e., DCSTA point) and the other doubled CSTA entities. The new DCSTA bivector entities are formed by extracting values from the DCSTA point entity using specifically defined inner product extraction operators. Quadric surface entities can be boosted into moving surfaces with constant velocities that display the length

  16. Clifford Algebras and Their Decomposition into Conjugate Fermionic Heisenberg Algebras

    NASA Astrophysics Data System (ADS)

    Catto, Sultan; Gürcan, Yasemin; Khalfan, Amish; Kurt, Levent; Kato La, V.

    2016-10-01

    We discuss a construction scheme for Clifford numbers of arbitrary dimension. The scheme is based upon performing direct products of the Pauli spin and identity matrices. Conjugate fermionic algebras can then be formed by considering linear combinations of the Clifford numbers and the Hermitian conjugates of such combinations. Fermionic algebras are important in investigating systems that follow Fermi-Dirac statistics. We will further comment on the applications of Clifford algebras to Fueter analyticity, twistors, color algebras, M-theory and Leech lattice as well as unification of ancient and modern geometries through them.

  17. Exponential Models of Legislative Turnover. [and] The Dynamics of Political Mobilization, I: A Model of the Mobilization Process, II: Deductive Consequences and Empirical Application of the Model. Applications of Calculus to American Politics. [and] Public Support for Presidents. Applications of Algebra to American Politics. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Units 296-300.

    ERIC Educational Resources Information Center

    Casstevens, Thomas W.; And Others

    This document consists of five units which all view applications of mathematics to American politics. The first three view calculus applications, the last two deal with applications of algebra. The first module is geared to teach a student how to: 1) compute estimates of the value of the parameters in negative exponential models; and draw…

  18. Duncan F. Gregory, William Walton and the development of British algebra: 'algebraical geometry', 'geometrical algebra', abstraction.

    PubMed

    Verburgt, Lukas M

    2016-01-01

    This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.

  19. Quantum computation using geometric algebra

    NASA Astrophysics Data System (ADS)

    Matzke, Douglas James

    This dissertation reports that arbitrary Boolean logic equations and operators can be represented in geometric algebra as linear equations composed entirely of orthonormal vectors using only addition and multiplication Geometric algebra is a topologically based algebraic system that naturally incorporates the inner and anticommutative outer products into a real valued geometric product, yet does not rely on complex numbers or matrices. A series of custom tools was designed and built to simplify geometric algebra expressions into a standard sum of products form, and automate the anticommutative geometric product and operations. Using this infrastructure, quantum bits (qubits), quantum registers and EPR-bits (ebits) are expressed symmetrically as geometric algebra expressions. Many known quantum computing gates, measurement operators, and especially the Bell/magic operators are also expressed as geometric products. These results demonstrate that geometric algebra can naturally and faithfully represent the central concepts, objects, and operators necessary for quantum computing, and can facilitate the design and construction of quantum computing tools.

  20. How Structure Sense for Algebraic Expressions or Equations Is Related to Structure Sense for Abstract Algebra

    ERIC Educational Resources Information Center

    Novotna, Jarmila; Hoch, Maureen

    2008-01-01

    Many students have difficulties with basic algebraic concepts at high school and at university. In this paper two levels of algebraic structure sense are defined: for high school algebra and for university algebra. We suggest that high school algebra structure sense components are sub-components of some university algebra structure sense…

  1. Applications of algebraic grid generation

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.; Smith, Robert E.

    1990-01-01

    Techniques and applications of algebraic grid generation are described. The techniques are univariate interpolations and transfinite assemblies of univariate interpolations. Because algebraic grid generation is computationally efficient, the use of interactive graphics in conjunction with the techniques is advocated. A flexible approach, which works extremely well in an interactive environment, called the control point form of algebraic grid generation is described. The applications discussed are three-dimensional grids constructed about airplane and submarine configurations.

  2. Anti-slamming bulbous bow and tunnel stern applications on a novel Deep-V catamaran for improved performance

    NASA Astrophysics Data System (ADS)

    Atlar, Mehmet; Seo, Kwangcheol; Sampson, Roderick; Danisman, Devrim Bulent

    2013-06-01

    While displacement type Deep-V mono hulls have superior seakeeping behaviour at speed, catamarans typically have modest behaviour in rough seas. It is therefore a logical progression to combine the superior seakeeping performance of a displacement type Deep-V mono-hull with the high-speed benefits of a catamaran to take the advantages of both hull forms. The displacement Deep-V catamaran concept was developed in Newcastle University and Newcastle University's own multi-purpose research vessel, which was launched in 2011, pushed the design envelope still further with the successful adoption of a novel anti-slamming bulbous bow and tunnel stern for improved efficiency. This paper presents the hullform development of this unique vessel to understand the contribution of the novel bow and stern features on the performance of the Deep-V catamaran. The study is also a further validation of the hull resistance by using advanced numerical analysis methods in conjunction with the model test. An assessment of the numerical predictions of the hull resistance is also made against physical model test results and shows a good agreement between them.

  3. f-Deformed Boson Algebra Related to Gentile Statistics

    NASA Astrophysics Data System (ADS)

    Chung, Won Sang; Hassanabadi, Hassan

    2017-02-01

    In this paper the deformed boson algebra giving the Gentile distribution function is constructed by using the model of ideal gas of deformed bosons and some properties of a root of unity. As an example we discuss the quantum optical problem related to the Gentile (or f-deformed) boson algebra with large but finite M. For this algebra we construct the Gentile (or f-deformed) coherent state and discuss its nonclassical properties such as sub-Poissonian statistics and anti-bunching effect.

  4. Algebra and Algebraic Thinking in School Math: 70th YB

    ERIC Educational Resources Information Center

    National Council of Teachers of Mathematics, 2008

    2008-01-01

    Algebra is no longer just for college-bound students. After a widespread push by the National Council of Teachers of Mathematics (NCTM) and teachers across the country, algebra is now a required part of most curricula. However, students' standardized test scores are not at the level they should be. NCTM's seventieth yearbook takes a look at the…

  5. Abstract Algebra to Secondary School Algebra: Building Bridges

    ERIC Educational Resources Information Center

    Christy, Donna; Sparks, Rebecca

    2015-01-01

    The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…

  6. Enrichment of hematopoietic stem cells with SLAM and LSK markers for the detection of hematopoietic stem cell function in normal and Trp53 null mice

    PubMed Central

    Chen, Jichun; Ellison, Felicia M.; Keyvanfar, Keyvan; Omokaro, Stephanie O.; Desierto, Marie J.; Eckhaus, Michael A.; Young, Neal S.

    2008-01-01

    Objective To test function of hematopoietic stem cells (HSCs) in vivo in C57BL/6 (B6) and Trp53-deficient (Trp53 null) mice by using two HSC enrichment schemes. Methods Bone marrow (BM) Lin-CD41-CD48-CD150+ (SLAM, signaling lymphocyte activation molecules), Lin-CD41-CD48-CD150- (SLAM-) and Lin-Sca1+CD117+ (LSK) cells were defined by fluorescence activated cell staining (FACS). Cellular reactive oxygen species (ROS) level was also analyzed by FACS. Sorted SLAM, SLAM- and LSK cells were tested in vivo in the competitive repopulation (CR) and serial transplantation assays. Results The SLAM cell fraction was 0.0078 ± 0.0010% and 0.0135 ± 0.0010% of total BM cells in B6 and Trp53 null mice, and was highly correlated (R2 = 0.7116) with LSK cells. CD150+ BM cells also contained more ROSlow cells than did CD150- cells. B6 SLAM cells repopulated recipients much better than B6 SLAM- cells, showing high HSC enrichment. B6 SLAM cells also engrafted recipients better than Trp53 null SLAM cells in the CR and the follow-up serial transplantation assays. Similarly, LSK cells from B6 donors also had higher repopulating ability than those from Trp53 null donors. However, whole BM cells from the same B6 and Trp53 null donors showed the opposite functional trend in recipient engraftment. Conclusion Both SLAM and LSK marker sets can enrich HSCs from B6 and Trp53 mice. Deficiency of Trp53 up-regulates HSC self-renewal but causes no gain of HSC function. PMID:18562080

  7. Statecharts Via Process Algebra

    NASA Technical Reports Server (NTRS)

    Luttgen, Gerald; vonderBeeck, Michael; Cleaveland, Rance

    1999-01-01

    Statecharts is a visual language for specifying the behavior of reactive systems. The Language extends finite-state machines with concepts of hierarchy, concurrency, and priority. Despite its popularity as a design notation for embedded system, precisely defining its semantics has proved extremely challenging. In this paper, a simple process algebra, called Statecharts Process Language (SPL), is presented, which is expressive enough for encoding Statecharts in a structure-preserving and semantic preserving manner. It is establish that the behavioral relation bisimulation, when applied to SPL, preserves Statecharts semantics

  8. Identification of key residues in virulent canine distemper virus hemagglutinin that control CD150/SLAM-binding activity.

    PubMed

    Zipperle, Ljerka; Langedijk, Johannes P M; Orvell, Claes; Vandevelde, Marc; Zurbriggen, Andreas; Plattet, Philippe

    2010-09-01

    Morbillivirus cell entry is controlled by hemagglutinin (H), an envelope-anchored viral glycoprotein determining interaction with multiple host cell surface receptors. Subsequent to virus-receptor attachment, H is thought to transduce a signal triggering the viral fusion glycoprotein, which in turn drives virus-cell fusion activity. Cell entry through the universal morbillivirus receptor CD150/SLAM was reported to depend on two nearby microdomains located within the hemagglutinin. Here, we provide evidence that three key residues in the virulent canine distemper virus A75/17 H protein (Y525, D526, and R529), clustering at the rim of a large recessed groove created by beta-propeller blades 4 and 5, control SLAM-binding activity without drastically modulating protein surface expression or SLAM-independent F triggering.

  9. Field Theoretic Investigations in Current Algebra

    NASA Astrophysics Data System (ADS)

    Jackiw, Roman

    The following sections are included: * Introduction * Canonical and Space-Time Constraints in Current Algebra * Canonical Theory of Currents * Space-Time Constraints on Commutators * Space-Time Constraints on Green's Functions * Space-Time Constraints on Ward Identities * Schwinger Terms * Discussion * The Bjorken-Johnson-Low Limit * The π 0 → 2γ Problem * Preliminaries * Sutherland-Veltman Theorem * Model Calculation * Anomalous Ward Identity * Anomalous Commutators * Anomalous Divergence of Axial Current * Discussion * Electroproduction Sum Rules * Preliminaries * Derivation of Sum Rules, Naive Method * Derivation of Sum Rules, Dispersive Method * Model Calculation * Anomalous Commutators * Discussion * Discussion of Anomalies in Current Algebra * Miscellaneous Anomalies * Non-Perturbative Arguments for Anomalies * Models without Anomalies * Discussion * Approximate Scale Symmetry * Introduction * Canonical Theory of Scale and Conformal Transformations * Ward Identities and Trace Identities * False Theorems * True Theorems * EXERCISES * SOLUTIONS

  10. Patterns to Develop Algebraic Reasoning

    ERIC Educational Resources Information Center

    Stump, Sheryl L.

    2011-01-01

    What is the role of patterns in developing algebraic reasoning? This important question deserves thoughtful attention. In response, this article examines some differing views of algebraic reasoning, discusses a controversy regarding patterns, and describes how three types of patterns--in contextual problems, in growing geometric figures, and in…

  11. Viterbi/algebraic hybrid decoder

    NASA Technical Reports Server (NTRS)

    Boyd, R. W.; Ingels, F. M.; Mo, C.

    1980-01-01

    Decoder computer program is hybrid between optimal Viterbi and optimal algebraic decoders. Tests have shown that hybrid decoder outperforms any strictly Viterbi or strictly algebraic decoder and effectively handles compound channels. Algorithm developed uses syndrome-detecting logic to direct two decoders to assume decoding load alternately, depending on real-time channel characteristics.

  12. Online Algebraic Tools for Teaching

    ERIC Educational Resources Information Center

    Kurz, Terri L.

    2011-01-01

    Many free online tools exist to complement algebraic instruction at the middle school level. This article presents findings that analyzed the features of algebraic tools to support learning. The findings can help teachers select appropriate tools to facilitate specific topics. (Contains 1 table and 4 figures.)

  13. Astro Algebra [CD-ROM].

    ERIC Educational Resources Information Center

    1997

    Astro Algebra is one of six titles in the Mighty Math Series from Edmark, a comprehensive line of math software for students from kindergarten through ninth grade. Many of the activities in Astro Algebra contain a unique technology that uses the computer to help students make the connection between concrete and abstract mathematics. This software…

  14. Elementary maps on nest algebras

    NASA Astrophysics Data System (ADS)

    Li, Pengtong

    2006-08-01

    Let , be algebras and let , be maps. An elementary map of is an ordered pair (M,M*) such that for all , . In this paper, the general form of surjective elementary maps on standard subalgebras of nest algebras is described. In particular, such maps are automatically additive.

  15. Linear algebra and image processing

    NASA Astrophysics Data System (ADS)

    Allali, Mohamed

    2010-09-01

    We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty.

  16. Linear Algebra and Image Processing

    ERIC Educational Resources Information Center

    Allali, Mohamed

    2010-01-01

    We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)

  17. Learning Algebra from Worked Examples

    ERIC Educational Resources Information Center

    Lange, Karin E.; Booth, Julie L.; Newton, Kristie J.

    2014-01-01

    For students to be successful in algebra, they must have a truly conceptual understanding of key algebraic features as well as the procedural skills to complete a problem. One strategy to correct students' misconceptions combines the use of worked example problems in the classroom with student self-explanation. "Self-explanation" is the…

  18. The Algebra of the Arches

    ERIC Educational Resources Information Center

    Buerman, Margaret

    2007-01-01

    Finding real-world examples for middle school algebra classes can be difficult but not impossible. As we strive to accomplish teaching our students how to solve and graph equations, we neglect to teach the big ideas of algebra. One of those big ideas is functions. This article gives three examples of functions that are found in Arches National…

  19. The Algebra of Complex Numbers.

    ERIC Educational Resources Information Center

    LePage, Wilbur R.

    This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…

  20. Explicit computations of low-lying eigenfunctions for the quantum trigonometric Calogero-Sutherland model related to the exceptional algebra E 7

    NASA Astrophysics Data System (ADS)

    Fernández Núñez, J.; García Fuertes, W.; Perelomov, A. M.

    2008-02-01

    In a previous paper, we studied the characters and Clebsch-Gordan series for the exceptional Lie algebra E7 by relating them to the quantum trigonometric Calogero-Sutherland Hamiltonian with the coupling constant κ = 1. We now extend that approach to the case of an arbitrary coupling constant.

  1. Thermodynamics. [algebraic structure

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.

    1976-01-01

    The fundamental structure of thermodynamics is purely algebraic, in the sense of atopological, and it is also independent of partitions, composite systems, the zeroth law, and entropy. The algebraic structure requires the notion of heat, but not the first law. It contains a precise definition of entropy and identifies it as a purely mathematical concept. It also permits the construction of an entropy function from heat measurements alone when appropriate conditions are satisfied. Topology is required only for a discussion of the continuity of thermodynamic properties, and then the weak topology is the relevant topology. The integrability of the differential form of the first law can be examined independently of Caratheodory's theorem and his inaccessibility axiom. Criteria are established by which one can determine when an integrating factor can be made intensive and the pseudopotential extensive and also an entropy. Finally, a realization of the first law is constructed which is suitable for all systems whether they are solids or fluids, whether they do or do not exhibit chemical reactions, and whether electromagnetic fields are or are not present.

  2. Comparison of the Effectiveness of a Traditional Intermediate Algebra Course With That of a Less Rigorous Intermediate Algebra Course in Preparing Students for Success in a Subsequent Mathematics Course

    ERIC Educational Resources Information Center

    Sworder, Steven C.

    2007-01-01

    An experimental two-track intermediate algebra course was offered at Saddleback College, Mission Viejo, CA, between the Fall, 2002 and Fall, 2005 semesters. One track was modeled after the existing traditional California community college intermediate algebra course and the other track was a less rigorous intermediate algebra course in which the…

  3. An Algebra-Integrated Physics and Chemistry Workshop for Teachers as a Model for Increasing the Number of Minority Students in Science and Engineering

    NASA Astrophysics Data System (ADS)

    Obot, V.; Brown, B.; Wu, T.; Wunsch, G.; Miles, A.; Morris, P.; Lindstrom, M.; Allen, J.

    The need to increase minority representation in science and engineering disciplines is well documented. Many strategies for achieving this goal have evolved over the years; yet, minority representation is still minimal. It appears that while students are naturally curious about the universe, once mention is made of mathematics as a pre-requisite to the study of science and engineering, interest seems to wane. Perhaps a possible way to get around this phobia is to incorporate the mathematics into the science courses and the science into the mathematics courses at the secondary level. This will require mathematics and science teachers to work together, re-enforcing each other so that lessons can be truly interdisciplinary. For the past two summers, we have conducted workshops for secondary school mathematics and science teachers in a large urban school district. The workshops are called "Algebra-Integrated Physics and Chemistry". These workshops are designed to introduce the teachers to mathematical modeling of physical and chemical phenomenon. T chnology (graphic calculators) is used to dis covere functions that model a particular process. We have modeled linear functions by looking at the Celsius and Fahrenheit scales. A simple experiment is heating water, measuring the temperature in both Celsius and Fahrenheit scales, plotting Celsius versus Fahrenheit temperatures, and determining their mathematical relationship. At this point, the science teacher can also go into a discussion of the meaning of temperature. In some cases readily available data can be analyzed. The ellipse and Kepler's third law is ideal when studying conic sections. In this case, available data can be used, and by plotting appropriately, cubic functions can be studied and motions of planets in their orbits near and far from the sun can be discussed. This new approach to mathematics and science will take the student to a certain comfort level so that statements such as either " I like science

  4. A possible framework of the Lipkin model obeying the SU(n) algebra in arbitrary fermion number. II: Two subalgebras in the SU(n) Lipkin model and an approach to the construction of a linearly independent basis

    NASA Astrophysics Data System (ADS)

    Tsue, Yasuhiko; Providência, Constança; Providência, João da; Yamamura, Masatoshi

    2016-08-01

    Based on the results for the minimum weight states obtained in the previous paper (I), an idea of how to construct the linearly independent basis is proposed for the SU(n) Lipkin model. This idea starts in setting up m independent SU(2) subalgebras in the cases with n=2m and n=2m+1 (m=2,3,4,…). The original representation is re-formed in terms of the spherical tensors for the SU(n) generators built under the SU(2) subalgebras. Through this re-formation, the SU(m) subalgebra can be found. For constructing the linearly independent basis, not only the SU(2) algebras but also the SU(m) subalgebra play a central role. Some concrete results in the cases with n=2, 3, 4, and 5 are presented.

  5. Dynamics of gelling liquids: algebraic relaxation.

    PubMed

    Srivastava, Sunita; Kumar, C N; Tankeshwar, K

    2009-08-19

    The sol-gel system which is known, experimentally, to exhibit a power law decay of stress autocorrelation function has been studied theoretically. A second-order nonlinear differential equation obtained from Mori's integro-differential equation is derived which provides the algebraic decay of a time correlation function. Involved parameters in the expression obtained are related to exact properties of the corresponding correlation function. The algebraic model has been applied to Lennard-Jones and sol-gel systems. The model shows the behaviour of viscosity as has been observed in computer simulation and theoretical studies. The expression obtained for the viscosity predicts a logarithmic divergence at a critical value of the parameter in agreement with the prediction of other theories.

  6. Using Linear Algebra to Introduce Computer Algebra, Numerical Analysis, Data Structures and Algorithms (and To Teach Linear Algebra, Too).

    ERIC Educational Resources Information Center

    Gonzalez-Vega, Laureano

    1999-01-01

    Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)

  7. An Example of Competence-Based Learning: Use of Maxima in Linear Algebra for Engineers

    ERIC Educational Resources Information Center

    Diaz, Ana; Garcia, Alfonsa; de la Villa, Agustin

    2011-01-01

    This paper analyses the role of Computer Algebra Systems (CAS) in a model of learning based on competences. The proposal is an e-learning model Linear Algebra course for Engineering, which includes the use of a CAS (Maxima) and focuses on problem solving. A reference model has been taken from the Spanish Open University. The proper use of CAS is…

  8. Quantum algebra of N superspace

    SciTech Connect

    Hatcher, Nicolas; Restuccia, A.; Stephany, J.

    2007-08-15

    We identify the quantum algebra of position and momentum operators for a quantum system bearing an irreducible representation of the super Poincare algebra in the N>1 and D=4 superspace, both in the case where there are no central charges in the algebra, and when they are present. This algebra is noncommutative for the position operators. We use the properties of superprojectors acting on the superfields to construct explicit position and momentum operators satisfying the algebra. They act on the projected wave functions associated to the various supermultiplets with defined superspin present in the representation. We show that the quantum algebra associated to the massive superparticle appears in our construction and is described by a supermultiplet of superspin 0. This result generalizes the construction for D=4, N=1 reported recently. For the case N=2 with central charges, we present the equivalent results when the central charge and the mass are different. For the {kappa}-symmetric case when these quantities are equal, we discuss the reduction to the physical degrees of freedom of the corresponding superparticle and the construction of the associated quantum algebra.

  9. Charge transfer in algebraic quantum field theory

    NASA Astrophysics Data System (ADS)

    Wright, Jill Dianne

    We discuss aspects of the algebraic structure of quantum field theory. We take the view that the superselection structure of a theory should be determinable from the vacuum representation of the observable algebra, and physical properties of the charge. Hence one determines the nature of the charge transfer operations: the automorphisms of the observable algebra corresponding to the movement of charge along space-time paths. New superselection sectors are obtained from the vacuum sector by an automorphism which is a limit of charge transfer operations along paths with an endpoint tending to spacelike infinity. Roberts has shown that for a gauge theory of the first kind, the charge transfer operations for a given charge form a certain kind of 1-cocycle over Minkowski space. The local 1-cohomology group of their equivalence classes corresponds to the superselection structure. The exact definition of the cohomology group depends on the properties of the charge. Using displaced Fock representations of free fields, we develop model field theories which illustrate this structure. The cohomological classification of displaced Fock representations has been elucidated by Araki. For more general representations, explicit determination of the cohomology group is a hard problem. Using our models, we can illustrate ways in which fields with reasonable physical properties depart fromthe abovementioned structure. In 1+1 dimensions, we use the Streater-Wilde model to illustrate explicitly the representation-dependence of the cohomology structure, and the direction-dependence of the limiting charge transfer operation. The cohomology structure may also be representation-dependent in higher-dimensional theories without strict localization of charge, for example the electromagnetic field. The algebraic structure of the electromagnetic field has many other special features, which we discuss in relation to the concept of charge transfer. We also give some indication of the modifications

  10. Investigating Teacher Noticing of Student Algebraic Thinking

    ERIC Educational Resources Information Center

    Walkoe, Janet Dawn Kim

    2013-01-01

    Learning algebra is critical for students in the U.S. today. Algebra concepts provide the foundation for much advanced mathematical content. In addition, algebra serves as a gatekeeper to opportunities such as admission to college. Yet many students in the U.S. struggle in algebra classes. Researchers claim that one reason for these difficulties…

  11. Central extensions of Lax operator algebras

    NASA Astrophysics Data System (ADS)

    Schlichenmaier, M.; Sheinman, O. K.

    2008-08-01

    Lax operator algebras were introduced by Krichever and Sheinman as a further development of Krichever's theory of Lax operators on algebraic curves. These are almost-graded Lie algebras of current type. In this paper local cocycles and associated almost-graded central extensions of Lax operator algebras are classified. It is shown that in the case when the corresponding finite-dimensional Lie algebra is simple the two-cohomology space is one-dimensional. An important role is played by the action of the Lie algebra of meromorphic vector fields on the Lax operator algebra via suitable covariant derivatives.

  12. Laser-Based Slam with Efficient Occupancy Likelihood Map Learning for Dynamic Indoor Scenes

    NASA Astrophysics Data System (ADS)

    Li, Li; Yao, Jian; Xie, Renping; Tu, Jinge; Feng, Chen

    2016-06-01

    Location-Based Services (LBS) have attracted growing attention in recent years, especially in indoor environments. The fundamental technique of LBS is the map building for unknown environments, this technique also named as simultaneous localization and mapping (SLAM) in robotic society. In this paper, we propose a novel approach for SLAMin dynamic indoor scenes based on a 2D laser scanner mounted on a mobile Unmanned Ground Vehicle (UGV) with the help of the grid-based occupancy likelihood map. Instead of applying scan matching in two adjacent scans, we propose to match current scan with the occupancy likelihood map learned from all previous scans in multiple scales to avoid the accumulation of matching errors. Due to that the acquisition of the points in a scan is sequential but not simultaneous, there unavoidably exists the scan distortion at different extents. To compensate the scan distortion caused by the motion of the UGV, we propose to integrate a velocity of a laser range finder (LRF) into the scan matching optimization framework. Besides, to reduce the effect of dynamic objects such as walking pedestrians often existed in indoor scenes as much as possible, we propose a new occupancy likelihood map learning strategy by increasing or decreasing the probability of each occupancy grid after each scan matching. Experimental results in several challenged indoor scenes demonstrate that our proposed approach is capable of providing high-precision SLAM results.

  13. CULA: hybrid GPU accelerated linear algebra routines

    NASA Astrophysics Data System (ADS)

    Humphrey, John R.; Price, Daniel K.; Spagnoli, Kyle E.; Paolini, Aaron L.; Kelmelis, Eric J.

    2010-04-01

    The modern graphics processing unit (GPU) found in many standard personal computers is a highly parallel math processor capable of nearly 1 TFLOPS peak throughput at a cost similar to a high-end CPU and an excellent FLOPS/watt ratio. High-level linear algebra operations are computationally intense, often requiring O(N3) operations and would seem a natural fit for the processing power of the GPU. Our work is on CULA, a GPU accelerated implementation of linear algebra routines. We present results from factorizations such as LU decomposition, singular value decomposition and QR decomposition along with applications like system solution and least squares. The GPU execution model featured by NVIDIA GPUs based on CUDA demands very strong parallelism, requiring between hundreds and thousands of simultaneous operations to achieve high performance. Some constructs from linear algebra map extremely well to the GPU and others map poorly. CPUs, on the other hand, do well at smaller order parallelism and perform acceptably during low-parallelism code segments. Our work addresses this via hybrid a processing model, in which the CPU and GPU work simultaneously to produce results. In many cases, this is accomplished by allowing each platform to do the work it performs most naturally.

  14. Translating cosmological special relativity into geometric algebra

    NASA Astrophysics Data System (ADS)

    Horn, Martin Erik

    2012-11-01

    Geometric algebra and Clifford algebra are important tools to describe and analyze the physics of the world we live in. Although there is enormous empirical evidence that we are living in four dimensional spacetime, mathematical worlds of higher dimensions can be used to present the physical laws of our world in an aesthetical and didactical more appealing way. In physics and mathematics education we are therefore confronted with the question how these high dimensional spaces should be taught. But as an immediate confrontation of students with high dimensional compactified spacetimes would expect too much from them at the beginning of their university studies, it seems reasonable to approach the mathematics and physics of higher dimensions step by step. The first step naturally is the step from four dimensional spacetime of special relativity to a five dimensional spacetime world. As a toy model for this artificial world cosmological special relativity, invented by Moshe Carmeli, can be used. This five dimensional non-compactified approach describes a spacetime which consists not only of one time dimension and three space dimensions. In addition velocity is regarded as a fifth dimension. This model very probably will not represent physics correctly. But it can be used to discuss and analyze the consequences of an additional dimension in a clear and simple way. Unfortunately Carmeli has formulated cosmological special relativity in standard vector notation. Therefore a translation of cosmological special relativity into the mathematical language of Grassmann and Clifford (Geometric algebra) is given and the physics of cosmological special relativity is discussed.

  15. Asymptotic aspect of derivations in Banach algebras.

    PubMed

    Roh, Jaiok; Chang, Ick-Soon

    2017-01-01

    We prove that every approximate linear left derivation on a semisimple Banach algebra is continuous. Also, we consider linear derivations on Banach algebras and we first study the conditions for a linear derivation on a Banach algebra. Then we examine the functional inequalities related to a linear derivation and their stability. We finally take central linear derivations with radical ranges on semiprime Banach algebras and a continuous linear generalized left derivation on a semisimple Banach algebra.

  16. Computing Matrix Representations of Filiform Lie Algebras

    NASA Astrophysics Data System (ADS)

    Ceballos, Manuel; Núñez, Juan; Tenorio, Ángel F.

    In this paper, we compute minimal faithful unitriangular matrix representations of filiform Lie algebras. To do it, we use the nilpotent Lie algebra, g_n, formed of n ×n strictly upper-triangular matrices. More concretely, we search the lowest natural number n such that the Lie algebra g_n contains a given filiform Lie algebra, also computing a representative of this algebra. All the computations in this paper have been done using MAPLE 9.5.

  17. Cartooning in Algebra and Calculus

    ERIC Educational Resources Information Center

    Moseley, L. Jeneva

    2014-01-01

    This article discusses how teachers can create cartoons for undergraduate math classes, such as college algebra and basic calculus. The practice of cartooning for teaching can be helpful for communication with students and for students' conceptual understanding.

  18. GCD, LCM, and Boolean Algebra?

    ERIC Educational Resources Information Center

    Cohen, Martin P.; Juraschek, William A.

    1976-01-01

    This article investigates the algebraic structure formed when the process of finding the greatest common divisor and the least common multiple are considered as binary operations on selected subsets of positive integers. (DT)

  19. Ada Linear-Algebra Program

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.; Lawson, C. L.

    1988-01-01

    Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.

  20. Algebraic isomorphism in two-dimensional anomalous gauge theories

    SciTech Connect

    Carvalhaes, C.G.; Natividade, C.P.

    1997-08-01

    The operator solution of the anomalous chiral Schwinger model is discussed on the basis of the general principles of Wightman field theory. Some basic structural properties of the model are analyzed taking a careful control on the Hilbert space associated with the Wightman functions. The isomorphism between gauge noninvariant and gauge invariant descriptions of the anomalous theory is established in terms of the corresponding field algebras. We show that (i) the {Theta}-vacuum representation and (ii) the suggested equivalence of vector Schwinger model and chiral Schwinger model cannot be established in terms of the intrinsic field algebra. {copyright} 1997 Academic Press, Inc.

  1. Coherent States for Hopf Algebras

    NASA Astrophysics Data System (ADS)

    Škoda, Zoran

    2007-07-01

    Families of Perelomov coherent states are defined axiomatically in the context of unitary representations of Hopf algebras. A global geometric picture involving locally trivial noncommutative fibre bundles is involved in the construction. If, in addition, the Hopf algebra has a left Haar integral, then a formula for noncommutative resolution of identity in terms of the family of coherent states holds. Examples come from quantum groups.

  2. Multiplier operator algebras and applications

    PubMed Central

    Blecher, David P.; Zarikian, Vrej

    2004-01-01

    The one-sided multipliers of an operator space X are a key to “latent operator algebraic structure” in X. We begin with a survey of these multipliers, together with several of the applications that they have had to operator algebras. We then describe several new results on one-sided multipliers, and new applications, mostly to one-sided M-ideals. PMID:14711990

  3. Studies on Three-Dimensional Slamming on Slender Ships

    DTIC Science & Technology

    2007-05-10

    Objectives This study is a joint effort among MIT, Seoul National University ( SNU ), and Korean Research Institute of Ships and Ocean Engineering (KRISO...model and laboratory experiments were carried out by SNU /KRISO. The key responsibility of MIT is to investigate the feasibility and effectiveness of

  4. Multifractal vector fields and stochastic Clifford algebra.

    PubMed

    Schertzer, Daniel; Tchiguirinskaia, Ioulia

    2015-12-01

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  5. Multifractal vector fields and stochastic Clifford algebra

    SciTech Connect

    Schertzer, Daniel Tchiguirinskaia, Ioulia

    2015-12-15

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  6. Extending the algebraic formalism for genome rearrangements to include linear chromosomes.

    PubMed

    Feijão, Pedro; Meidanis, João

    2013-01-01

    Algebraic rearrangement theory, as introduced by Meidanis and Dias, focuses on representing the order in which genes appear in chromosomes, and applies to circular chromosomes only. By shifting our attention to genome adjacencies, we introduce the adjacency algebraic theory, extending the original algebraic theory to linear chromosomes in a very natural way, also allowing the original algebraic distance formula to be used to the general multichromosomal case, with both linear and circular chromosomes. The resulting distance, which we call algebraic distance here, is very similar to, but not quite the same as, double-cut-and-join distance. We present linear time algorithms to compute it and to sort genomes. We show how to compute the rearrangement distance from the adjacency graph, for an easier comparison with other rearrangement distances. A thorough discussion on the relationship between the chromosomal and adjacency representation is also given, and we show how all classic rearrangement operations can be modeled using the algebraic theory.

  7. Novikov algebras with associative bilinear forms

    NASA Astrophysics Data System (ADS)

    Zhu, Fuhai; Chen, Zhiqi

    2007-11-01

    Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-type and Hamiltonian operators in formal variational calculus. The goal of this paper is to study Novikov algebras with non-degenerate associative symmetric bilinear forms, which we call quadratic Novikov algebras. Based on the classification of solvable quadratic Lie algebras of dimension not greater than 4 and Novikov algebras in dimension 3, we show that quadratic Novikov algebras up to dimension 4 are commutative. Furthermore, we obtain the classification of transitive quadratic Novikov algebras in dimension 4. But we find that not every quadratic Novikov algebra is commutative and give a non-commutative quadratic Novikov algebra in dimension 6.

  8. Development of kinematic 3D laser scanning system for indoor mapping and as-built BIM using constrained SLAM.

    PubMed

    Jung, Jaehoon; Yoon, Sanghyun; Ju, Sungha; Heo, Joon

    2015-10-16

    The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM). The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM) technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m) according to the guidelines of the General Services Administration for BIM accuracy.

  9. Development of Kinematic 3D Laser Scanning System for Indoor Mapping and As-Built BIM Using Constrained SLAM

    PubMed Central

    Jung, Jaehoon; Yoon, Sanghyun; Ju, Sungha; Heo, Joon

    2015-01-01

    The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM). The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM) technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m) according to the guidelines of the General Services Administration for BIM accuracy. PMID:26501292

  10. Universal Algebraic Varieties and Ideals in Physics:. Field Theory on Algebraic Varieties

    NASA Astrophysics Data System (ADS)

    Iguchi, Kazumoto

    A class of universal algebraic varieties in physics is discussed herein using the concepts of determinant ideals in algebraic geometry. It is shown that these algebraic varieties arise with very different physical contexts in many branches of physics and mathematics from high energy physics theory to chaos theory. In these physical systems the models are constructed by using the fields on usual manifolds such as vector fields in a Euclidean space and a Minkowskian space. But there is a universal mathematical aspect of linear algebra for linear vector spaces, where the linear independency and dependency are described using the Gramians of the vectors. These Gramians form a class of hypersurfaces in a higher-dimensional mathematical space: If there exist g vectors vi in an n-dimensional Euclidean space, the Gramian Gg is given as a g × g determinant Gg=Det[xij] with the inner products xij=(vi,vj), and exists in a g(g-1)/2-[g(g+1)/2-] dimensional space if the vectors are (not) normalized, xii=1 (xii ≠ 1). It is also shown that the Gramians are invariant under automorphisms of the vectors. The mathematical structure of the Gramians is revealed to be equivalent to the concepts of determinant ideals Ig(v), each element of which is a g × g determinant constructed from components of an arbitrary N×N matrix with N>n and which have inclusion relation: R=I0(v)⊃ I1(v) ⊃···⊃ Ig(v) ⊃···, and Ig(v)=0 if g>n. In the various physical systems the ideals naturally emerge to give us dynamical flows on the hypersurfaces, and therefore, it is called the field theory on algebraic varieties. This viewpoint provides us a grand viewpoint in physics and mathematics.

  11. SLAM- and Nectin-4-Independent Noncytolytic Spread of Canine Distemper Virus in Astrocytes

    PubMed Central

    Alves, Lisa; Khosravi, Mojtaba; Avila, Mislay; Ader-Ebert, Nadine; Bringolf, Fanny; Zurbriggen, Andreas; Vandevelde, Marc

    2015-01-01

    ABSTRACT Measles and canine distemper viruses (MeV and CDV, respectively) first replicate in lymphatic and epithelial tissues by using SLAM and nectin-4 as entry receptors, respectively. The viruses may also invade the brain to establish persistent infections, triggering fatal complications, such as subacute sclerosis pan-encephalitis (SSPE) in MeV infection or chronic, multiple sclerosis-like, multifocal demyelinating lesions in the case of CDV infection. In both diseases, persistence is mediated by viral nucleocapsids that do not require packaging into particles for infectivity but are directly transmitted from cell to cell (neurons in SSPE or astrocytes in distemper encephalitis), presumably by relying on restricted microfusion events. Indeed, although morphological evidence of fusion remained undetectable, viral fusion machineries and, thus, a putative cellular receptor, were shown to contribute to persistent infections. Here, we first showed that nectin-4-dependent cell-cell fusion in Vero cells, triggered by a demyelinating CDV strain, remained extremely limited, thereby supporting a potential role of nectin-4 in mediating persistent infections in astrocytes. However, nectin-4 could not be detected in either primary cultured astrocytes or the white matter of tissue sections. In addition, a bioengineered “nectin-4-blind” recombinant CDV retained full cell-to-cell transmission efficacy in primary astrocytes. Combined with our previous report demonstrating the absence of SLAM expression in astrocytes, these findings are suggestive for the existence of a hitherto unrecognized third CDV receptor expressed by glial cells that contributes to the induction of noncytolytic cell-to-cell viral transmission in astrocytes. IMPORTANCE While persistent measles virus (MeV) infection induces SSPE in humans, persistent canine distemper virus (CDV) infection causes chronic progressive or relapsing demyelination in carnivores. Common to both central nervous system (CNS

  12. Quantum Q systems: from cluster algebras to quantum current algebras

    NASA Astrophysics Data System (ADS)

    Di Francesco, Philippe; Kedem, Rinat

    2017-02-01

    This paper gives a new algebraic interpretation for the algebra generated by the quantum cluster variables of the A_r quantum Q-system (Di Francesco and Kedem in Int Math Res Not IMRN 10:2593-2642, 2014). We show that the algebra can be described as a quotient of the localization of the quantum algebra U_{√{q}}({n}[u,u^{-1}])subset U_{√{q}}(widehat{{sl}}_2), in the Drinfeld presentation. The generating current is made up of a subset of the cluster variables which satisfy the Q-system, which we call fundamental. The other cluster variables are given by a quantum determinant-type formula, and are polynomials in the fundamental generators. The conserved quantities of the discrete evolution (Di Francesco and Kedem in Adv Math 228(1):97-152, 2011) described by quantum Q-system generate the Cartan currents at level 0, in a non-standard polarization. The rest of the quantum affine algebra is also described in terms of cluster variables.

  13. Distinct and synergistic roles of FcγRIIB deficiency and 129 strain-derived SLAM family proteins in the development of spontaneous germinal centers and autoimmunity.

    PubMed

    Soni, Chetna; Domeier, Phillip P; Wong, Eric B; Shwetank; Khan, Tahsin N; Elias, Melinda J; Schell, Stephanie L; Lukacher, Aron E; Cooper, Timothy K; Rahman, Ziaur S M

    2015-09-01

    The inhibitory IgG Fc receptor (FcγRIIB) deficiency and 129 strain-derived signaling lymphocyte activation molecules (129-SLAMs) are proposed to contribute to the lupus phenotype in FcγRIIB-deficient mice generated using 129 ES cells and backcrossed to C57BL/6 mice (B6.129.RIIBKO). In this study, we examine the individual contributions and the cellular mechanisms by which FcγRIIB deficiency and 129-derived SLAM family genes promote dysregulated spontaneous germinal center (Spt-GC) B cell and follicular helper T cell (Tfh) responses in B6.129.RIIBKO mice. We find that B6 mice congenic for the 129-derived SLAM locus (B6.129-SLAM) and B6 mice deficient in FcγRIIB (B6.RIIBKO) have increased Spt-GC B cell responses compared to B6 controls but significantly lower than B6.129.RIIBKO mice. These data indicate that both FcγRIIB deficiency and 129-SLAMs contribute to elevated Spt-GC B cell responses in B6.129.RIIBKO mice. However, only 129-SLAMs contribute significantly to augmented Tfh responses in B6.129.RIIBKO mice, and do so by a combination of T cell-dependent effects and enhanced B cell and DC-dependent antigen presentation to T cells. Elevated Spt-GC B cell responses in mice with FcγRIIB deficiency and polymorphic 129-SLAMs were associated with elevated metabolic activity, improved GC B cell survival and increased differentiation of naïve B cells into GC B cell phenotype. Our data suggest that the interplay between 129-SLAM expression on B cells, T cells and DCs is central to the alteration of the GC tolerance checkpoint, and that deficiency of FcγRIIB on B cells is necessary to augment Spt-GC responses, pathogenic autoantibodies, and lupus disease.

  14. a Fast and Flexible Method for Meta-Map Building for Icp Based Slam

    NASA Astrophysics Data System (ADS)

    Kurian, A.; Morin, K. W.

    2016-06-01

    Recent developments in LiDAR sensors make mobile mapping fast and cost effective. These sensors generate a large amount of data which in turn improves the coverage and details of the map. Due to the limited range of the sensor, one has to collect a series of scans to build the entire map of the environment. If we have good GNSS coverage, building a map is a well addressed problem. But in an indoor environment, we have limited GNSS reception and an inertial solution, if available, can quickly diverge. In such situations, simultaneous localization and mapping (SLAM) is used to generate a navigation solution and map concurrently. SLAM using point clouds possesses a number of computational challenges even with modern hardware due to the shear amount of data. In this paper, we propose two strategies for minimizing the cost of computation and storage when a 3D point cloud is used for navigation and real-time map building. We have used the 3D point cloud generated by Leica Geosystems's Pegasus Backpack which is equipped with Velodyne VLP-16 LiDARs scanners. To improve the speed of the conventional iterative closest point (ICP) algorithm, we propose a point cloud sub-sampling strategy which does not throw away any key features and yet significantly reduces the number of points that needs to be processed and stored. In order to speed up the correspondence finding step, a dual kd-tree and circular buffer architecture is proposed. We have shown that the proposed method can run in real time and has excellent navigation accuracy characteristics.

  15. Differential expression of CD150 (SLAM) family receptors by human hematopoietic stem and progenitor cells

    PubMed Central

    Sintes, Jordi; Romero, Xavier; Marin, Pedro; Terhorst, Cox; Engel, Pablo

    2015-01-01

    Objectives Human hematopoietic stem cell (HSC)–containing grafts are most commonly used to treat various blood diseases, including leukemias and autoimmune disorders. CD150 (SLAM) family receptors have recently been shown to be differentially expressed by mouse HSC and progenitor cells. Members of the CD150 family are key regulators of leukocyte activation and differentiation. The goal of the present study is to analyze the expression patterns of the CD150 receptors CD48, CD84, CD150 (SLAM), CD229 (Ly9), and CD244 (2B4) on the different sources of human hematopoietic stem and progenitor cells. Materials and Methods Expression of CD150 receptors was analyzed on human mobilized peripheral blood CD133+-isolated cells and CD34+ bone marrow (BM) and umbilical cord blood (CB) cells using multicolor flow cytometry. Results CD244 was present on most CD133+Lin−-mobilized cells and CD34+Lin− BM and CB cells, including virtually all CD38−Lin− primitive progenitor cells. CD48 had a restricted expression pattern on CD133+Lin−CD38− cells, while its levels were significantly higher in CD34+Lin− BM and CB cells. In addition, CD84 was present on a significant number of CD133+Lin− cells, but only on a small fraction of CD133+Lin−CD38− peripheral blood mobilized cells. In contrast, CD84 was expressed on practically all CD34+Lin− BM cells. No CD150 expression was observed in mobilized peripheral blood CD133+Lin− or CD34+Lin− BM and CB cells. Furthermore, only a small fraction of CD34+Lin− BM and CB cells expressed CD229. Conclusions Our results show that CD150 family molecules are present on human hematopoietic stem and progenitor cells and that their expression patterns differ between humans and mice. PMID:18495325

  16. On an approach for computing the generating functions of the characters of simple Lie algebras

    NASA Astrophysics Data System (ADS)

    Fernández Núñez, José; García Fuertes, Wifredo; Perelomov, Askold M.

    2014-04-01

    We describe a general approach to obtain the generating functions of the characters of simple Lie algebras which is based on the theory of the quantum trigonometric Calogero-Sutherland model. We show how the method works in practice by means of a few examples involving some low rank classical algebras.

  17. Cognitive Tutor[R] Algebra I. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2009

    2009-01-01

    The "Cognitive Tutor[R] Algebra I" curriculum, published by Carnegie Learning, is an approach that combines algebra textbooks with interactive software. The software is developed around an artificial intelligence model that identifies strengths and weaknesses in each individual student's mastery of mathematical concepts. It then customizes prompts…

  18. Moving frames and prolongation algebras

    NASA Technical Reports Server (NTRS)

    Estabrook, F. B.

    1982-01-01

    Differential ideals generated by sets of 2-forms which can be written with constant coefficients in a canonical basis of 1-forms are considered. By setting up a Cartan-Ehresmann connection, in a fiber bundle over a base space in which the 2-forms live, one finds an incomplete Lie algebra of vector fields in the fields in the fibers. Conversely, given this algebra (a prolongation algebra), one can derive the differential ideal. The two constructs are thus dual, and analysis of either derives properties of both. Such systems arise in the classical differential geometry of moving frames. Examples of this are discussed, together with examples arising more recently: the Korteweg-de Vries and Harrison-Ernst systems.

  19. Strategic differences in algebraic problem solving: neuroanatomical correlates.

    PubMed

    Lee, Kerry; Lim, Zee Ying; Yeong, Stephanie H M; Ng, Swee Fong; Venkatraman, Vinod; Chee, Michael W L

    2007-06-25

    In this study, we built on previous neuroimaging studies of mathematical cognition and examined whether the same cognitive processes are engaged by two strategies used in algebraic problem solving. We focused on symbolic algebra, which uses alphanumeric equations to represent problems, and the model method, which uses pictorial representation. Eighteen adults, matched on academic proficiency and competency in the two methods, transformed algebraic word problems into equations or models, and validated presented solutions. Both strategies were associated with activation of areas linked to working memory and quantitative processing. These included the left frontal gyri, and bilateral activation of the intraparietal sulci. Contrasting the two strategies, the symbolic method activated the posterior superior parietal lobules and the precuneus. These findings suggest that the two strategies are effected using similar processes but impose different attentional demands.

  20. Reverse engineering: algebraic boundary representations to constructive solid geometry.

    SciTech Connect

    Buchele, S. F.; Ellingson, W. A.

    1997-12-17

    Recent advances in reverse engineering have focused on recovering a boundary representation (b-rep) of an object, often for integration with rapid prototyping. This boundary representation may be a 3-D point cloud, a triangulation of points, or piecewise algebraic or parametric surfaces. This paper presents work in progress to develop an algorithm to extend the current state of the art in reverse engineering of mechanical parts. This algorithm will take algebraic surface representations as input and will produce a constructive solid geometry (CSG) description that uses solid primitives such as rectangular block, pyramid, sphere, cylinder, and cone. The proposed algorithm will automatically generate a CSG solid model of a part given its algebraic b-rep, thus allowing direct input into a CAD system and subsequent CSG model generation.

  1. Colored Quantum Algebra and Its Bethe State

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Zheng; Jia, Xiao-Yu; Wang, Shi-Kun

    2014-12-01

    We investigate the colored Yang—Baxter equation. Based on a trigonometric solution of colored Yang—Baxter equation, we construct a colored quantum algebra. Moreover we discuss its algebraic Bethe ansatz state and highest wight representation.

  2. Using Number Theory to Reinforce Elementary Algebra.

    ERIC Educational Resources Information Center

    Covillion, Jane D.

    1995-01-01

    Demonstrates that using the elementary number theory in algebra classes helps students to use acquired algebraic skills as well as helping them to more clearly understand concepts that are presented. Discusses factoring, divisibility rules, and number patterns. (AIM)

  3. Algebraic orbifold conformal field theories

    PubMed Central

    Xu, Feng

    2000-01-01

    The unitary rational orbifold conformal field theories in the algebraic quantum field theory and subfactor theory framework are formulated. Under general conditions, it is shown that the orbifold of a given unitary rational conformal field theory generates a unitary modular category. Many new unitary modular categories are obtained. It is also shown that the irreducible representations of orbifolds of rank one lattice vertex operator algebras give rise to unitary modular categories and determine the corresponding modular matrices, which has been conjectured for some time. PMID:11106383

  4. Scalable Parallel Algebraic Multigrid Solvers

    SciTech Connect

    Bank, R; Lu, S; Tong, C; Vassilevski, P

    2005-03-23

    The authors propose a parallel algebraic multilevel algorithm (AMG), which has the novel feature that the subproblem residing in each processor is defined over the entire partition domain, although the vast majority of unknowns for each subproblem are associated with the partition owned by the corresponding processor. This feature ensures that a global coarse description of the problem is contained within each of the subproblems. The advantages of this approach are that interprocessor communication is minimized in the solution process while an optimal order of convergence rate is preserved; and the speed of local subproblem solvers can be maximized using the best existing sequential algebraic solvers.

  5. Reasoning algebraically with IT: A cognitive perspective

    NASA Astrophysics Data System (ADS)

    Mok, Ida; Johnson, David

    2000-12-01

    The focus of this paper is on the implications of key findings and theoretical positions from social psychology and cognitive developmental psychology (Piagetian/neo-Piagetian) for the use of IT tools to support learning in algebra. Particular reference is made to the research of the UK Cognitive Acceleration through Mathematics Education (CAME) project. The feasibility of the CAME model in the exploration of mathematical relationships supported by graphics calculators was addressed in a small-scale study in Hong Kong. The research provides evidence that, with appropriate mediation, cognitive conflict can be utilised to provide valuable appropriate for students to engage in increasingly higher levels of mathematical thinking.

  6. Symmetry algebras of linear differential equations

    NASA Astrophysics Data System (ADS)

    Shapovalov, A. V.; Shirokov, I. V.

    1992-07-01

    The local symmetries of linear differential equations are investigated by means of proven theorems on the structure of the algebra of local symmetries of translationally and dilatationally invariant differential equations. For a nonparabolic second-order equation, the absence of nontrivial nonlinear local symmetries is proved. This means that the local symmetries reduce to the Lie algebra of linear differential symmetry operators. For the Laplace—Beltrami equation, all local symmetries reduce to the enveloping algebra of the algebra of the conformal group.

  7. Twining characters and orbit Lie algebras

    SciTech Connect

    Fuchs, Jurgen; Ray, Urmie; Schellekens, Bert; Schweigert, Christoph

    1996-12-05

    We associate to outer automorphisms of generalized Kac-Moody algebras generalized character-valued indices, the twining characters. A character formula for twining characters is derived which shows that they coincide with the ordinary characters of some other generalized Kac-Moody algebra, the so-called orbit Lie algebra. Some applications to problems in conformal field theory, algebraic geometry and the theory of sporadic simple groups are sketched.

  8. Slam Dunk

    ERIC Educational Resources Information Center

    Herek, Matthew

    2011-01-01

    There's nothing like a worldwide financial meltdown to kick-start an alumni association's career networking offerings. In 2009, the Northwestern University alumni board provided clear direction to its regional affiliates and to the full-time staff working at the Evanston, Illinois, campus: Develop ways to purposefully connect alumni with each…

  9. Applications of Algebraic Logic and Universal Algebra to Computer Science

    DTIC Science & Technology

    1989-06-21

    conference, with roughly equal representation from Mathematics and Computer Science . The conference consisted of eight invited lectures (60 minutes...each) and 26 contributed talks (20-40 minutes each). There was also a round-table discussion on the role of algebra and logic in computer science . Keywords

  10. A Balancing Act: Making Sense of Algebra

    ERIC Educational Resources Information Center

    Gavin, M. Katherine; Sheffield, Linda Jensen

    2015-01-01

    For most students, algebra seems like a totally different subject than the number topics they studied in elementary school. In reality, the procedures followed in arithmetic are actually based on the properties and laws of algebra. Algebra should be a logical next step for students in extending the proficiencies they developed with number topics…

  11. Algebra? A Gate! A Barrier! A Mystery!

    ERIC Educational Resources Information Center

    Mathematics Educatio Dialogues, 2000

    2000-01-01

    This issue of Mathematics Education Dialogues focuses on the nature and the role of algebra in the K-14 curriculum. Articles on this theme include: (1) "Algebra For All? Why?" (Nel Noddings); (2) "Algebra For All: It's a Matter of Equity, Expectations, and Effectiveness" (Dorothy S. Strong and Nell B. Cobb); (3) "Don't Delay: Build and Talk about…

  12. Unifying the Algebra for All Movement

    ERIC Educational Resources Information Center

    Eddy, Colleen M.; Quebec Fuentes, Sarah; Ward, Elizabeth K.; Parker, Yolanda A.; Cooper, Sandi; Jasper, William A.; Mallam, Winifred A.; Sorto, M. Alejandra; Wilkerson, Trena L.

    2015-01-01

    There exists an increased focus on school mathematics, especially first-year algebra, due to recent efforts for all students to be college and career ready. In addition, there are calls, policies, and legislation advocating for all students to study algebra epitomized by four rationales of the "Algebra for All" movement. In light of this…

  13. UCSMP Algebra. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2007

    2007-01-01

    "University of Chicago School Mathematics Project (UCSMP) Algebra," designed to increase students' skills in algebra, is appropriate for students in grades 7-10, depending on the students' incoming knowledge. This one-year course highlights applications, uses statistics and geometry to develop the algebra of linear equations and inequalities, and…

  14. Constraint-Referenced Analytics of Algebra Learning

    ERIC Educational Resources Information Center

    Sutherland, Scot M.; White, Tobin F.

    2016-01-01

    The development of the constraint-referenced analytics tool for monitoring algebra learning activities presented here came from the desire to firstly, take a more quantitative look at student responses in collaborative algebra activities, and secondly, to situate those activities in a more traditional introductory algebra setting focusing on…

  15. Embedding Algebraic Thinking throughout the Mathematics Curriculum

    ERIC Educational Resources Information Center

    Vennebush, G. Patrick; Marquez, Elizabeth; Larsen, Joseph

    2005-01-01

    This article explores the algebra that can be uncovered in many middle-grades mathematics tasks that, on first inspection, do not appear to be algebraic. It shows connections to the other four Standards that occur in traditional algebra problems, and it offers strategies for modifying activities so that they can be used to foster algebraic…

  16. Teaching Strategies to Improve Algebra Learning

    ERIC Educational Resources Information Center

    Zbiek, Rose Mary; Larson, Matthew R.

    2015-01-01

    Improving student learning is the primary goal of every teacher of algebra. Teachers seek strategies to help all students learn important algebra content and develop mathematical practices. The new Institute of Education Sciences[IES] practice guide, "Teaching Strategies for Improving Algebra Knowledge in Middle and High School Students"…

  17. Build an Early Foundation for Algebra Success

    ERIC Educational Resources Information Center

    Knuth, Eric; Stephens, Ana; Blanton, Maria; Gardiner, Angela

    2016-01-01

    Research tells us that success in algebra is a factor in many other important student outcomes. Emerging research also suggests that students who are started on an algebra curriculum in the earlier grades may have greater success in the subject in secondary school. What's needed is a consistent, algebra-infused mathematics curriculum all…

  18. Teacher Actions to Facilitate Early Algebraic Reasoning

    ERIC Educational Resources Information Center

    Hunter, Jodie

    2015-01-01

    In recent years there has been an increased emphasis on integrating the teaching of arithmetic and algebra in primary school classrooms. This requires teachers to develop links between arithmetic and algebra and use pedagogical actions that facilitate algebraic reasoning. Drawing on findings from a classroom-based study, this paper provides an…

  19. Difficulties in Initial Algebra Learning in Indonesia

    ERIC Educational Resources Information Center

    Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja

    2014-01-01

    Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was…

  20. Cyclic homology for Hom-associative algebras

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Mohammad; Shapiro, Ilya; Sütlü, Serkan

    2015-12-01

    In the present paper we investigate the noncommutative geometry of a class of algebras, called the Hom-associative algebras, whose associativity is twisted by a homomorphism. We define the Hochschild, cyclic, and periodic cyclic homology and cohomology for this class of algebras generalizing these theories from the associative to the Hom-associative setting.

  1. Nonlinear holomorphic supersymmetry, Dolan-Grady relations and Onsager algebra

    NASA Astrophysics Data System (ADS)

    Klishevich, Sergey M.; Plyushchay, Mikhail S.

    2002-04-01

    Recently, it was noticed by us that the nonlinear holomorphic supersymmetry of order n∈ N, n>1 ( n-HSUSY) has an algebraic origin. We show that the Onsager algebra underlies n-HSUSY and investigate the structure of the former in the context of the latter. A new infinite set of mutually commuting charges is found which, unlike those from the Dolan-Grady set, include the terms quadratic in the Onsager algebra generators. This allows us to find the general form of the superalgebra of n-HSUSY and fix it explicitly for the cases of n=2,3,4,5,6. The similar results are obtained for a new, contracted form of the Onsager algebra generated via the contracted Dolan-Grady relations. As an application, the algebraic structure of the known 1D and 2D systems with n-HSUSY is clarified and a generalization of the construction to the case of nonlinear pseudo-supersymmetry is proposed. Such a generalization is discussed in application to some integrable spin models and with its help we obtain a family of quasi-exactly solvable systems appearing in the PT-symmetric quantum mechanics.

  2. Potential pathways for regulation of NK and T cell responses: differential X-linked lymphoproliferative syndrome gene product SAP interactions with SLAM and 2B4.

    PubMed

    Sayós, J; Nguyen, K B; Wu, C; Stepp, S E; Howie, D; Schatzle, J D; Kumar, V; Biron, C A; Terhorst, C

    2000-12-01

    SAP, the gene that is altered or absent in the X-linked lymphoproliferative syndrome (XLP), encodes a small protein that comprises a single SH2 domain and binds to the cell-surface protein SLAM which is present on activated or memory T and B cells. Because defective NK cell activity also has been reported in XLP patients, we studied the SAP gene in NK cells. SAP was induced upon viral infection of SCID mice and shown to be expressed in NK cells by in vitro culturing in the presence of IL-2. Moreover, SAP was expressed in the NK cell lines YT and RNK 16. Because SLAM, the cell-surface protein with which SAP interacts, and 2B4, a membrane protein having sequence homologies with SLAM, also were found to be expressed on the surfaces of activated NK and T cell populations, they may access SAP functions in these populations. Whereas we found that 2B4 also binds SAP, 2B4-SAP interactions occurred only upon tyrosine phosphorylation of 2B4. By contrast, SLAM-SAP interactions were independent of phosphorylation of Y281 and Y327 on SLAM. As CD48, the ligand for 2B4, is expressed on the surface of Epstein-Barr virus (EBV)-infected B cells, it is likely that SAP regulates signal transduction through this pair of cell-surface molecules. These data support the hypothesis that XLP is a result of both defective NK and T lymphocyte responses to EBV. The altered responses may be due to aberrant control of the signaling cascades which are initiated by the SLAM-SLAM and 2B4-CD48 interactions.

  3. Efficient isolation of wild strains of canine distemper virus in Vero cells expressing canine SLAM (CD150) and their adaptability to marmoset B95a cells.

    PubMed

    Seki, Fumio; Ono, Nobuyuki; Yamaguchi, Ryoji; Yanagi, Yusuke

    2003-09-01

    We have previously shown that canine signaling lymphocyte activation molecule (SLAM; also known as CD150) acts as a cellular receptor for canine distemper virus (CDV). In this study, we established Vero cells stably expressing canine SLAM (Vero.DogSLAMtag cells). Viruses were isolated in Vero.DogSLAMtag cells one day after inoculation with spleen samples from five out of seven dogs with distemper. By contrast, virus isolation with reportedly sensitive marmoset B95a cells was only successful from three diseased animals at 7 to 10 days after inoculation, and no virus was recovered from any dogs when Vero cells were used for isolation. The CDV strain isolated in Vero.DogSLAMtag cells did not cause cytopathic effects in B95a and human SLAM-expressing Vero cells, whereas the strain isolated in B95a cells from the same dog did so in canine or human SLAM-expressing Vero cells as well as B95a cells. There were two amino acid differences in the hemagglutinin sequence between these strains. Cell fusion analysis after expression of envelope proteins and vesicular stomatitis virus pseudotype assay showed that their hemagglutinins were responsible for the difference in cell tropism between them. Site-directed mutagenesis indicated that glutamic acid to lysine substitution at position 530 of the hemagglutinin was required for the adaptation to the usage of marmoset SLAM. Our results indicate that Vero cells stably expressing canine SLAM are highly sensitive to CDV in clinical specimens and that only a single amino acid substitution in the hemagglutinin can allow the virus to adapt to marmoset SLAM.

  4. Carry Groups: Abstract Algebra Projects

    ERIC Educational Resources Information Center

    Miller, Cheryl Chute; Madore, Blair F.

    2004-01-01

    Carry Groups are a wonderful collection of groups to introduce in an undergraduate Abstract Algebra course. These groups are straightforward to define but have interesting structures for students to discover. We describe these groups and give examples of in-class group projects that were developed and used by Miller.

  5. Algebra, Home Mortgages, and Recessions

    ERIC Educational Resources Information Center

    Mariner, Jean A. Miller; Miller, Richard A.

    2009-01-01

    The current financial crisis and recession in the United States present an opportunity to discuss relevant applications of some topics in typical first-and second-year algebra and precalculus courses. Real-world applications of percent change, exponential functions, and sums of finite geometric sequences can help students understand the problems…

  6. Exploring Algebraic Misconceptions with Technology

    ERIC Educational Resources Information Center

    Sakow, Matthew; Karaman, Ruveyda

    2015-01-01

    Many students struggle with algebra, from simplifying expressions to solving systems of equations. Students also have misconceptions about the meaning of variables. In response to the question "Can x + y + z ever equal x + p + z?" during a student interview, the student claimed, "Never . . . because p has to have a different value…

  7. Easing Students' Transition to Algebra

    ERIC Educational Resources Information Center

    Baroudi, Ziad

    2006-01-01

    Traditionally, students learn arithmetic throughout their primary schooling, and this is seen as the ideal preparation for the learning of algebra in the junior secondary school. The four operations are taught and rehearsed in the early years and from this, it is assumed, "children will induce the fundamental structure of arithmetic" (Warren &…

  8. Algebra for All. Research Brief

    ERIC Educational Resources Information Center

    Bleyaert, Barbara

    2009-01-01

    The call for "algebra for all" is not a recent phenomenon. Concerns about the inadequacy of math (and science) preparation in America's high schools have been a steady drumbeat since the 1957 launch of Sputnik; a call for raising standards and the number of math (and science) courses required for graduation has been a part of countless…

  9. Algebraic methods in system theory

    NASA Technical Reports Server (NTRS)

    Brockett, R. W.; Willems, J. C.; Willsky, A. S.

    1975-01-01

    Investigations on problems of the type which arise in the control of switched electrical networks are reported. The main results concern the algebraic structure and stochastic aspects of these systems. Future reports will contain more detailed applications of these results to engineering studies.

  10. Inequalities, Assessment and Computer Algebra

    ERIC Educational Resources Information Center

    Sangwin, Christopher J.

    2015-01-01

    The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in contemporary…

  11. Adventures in Flipping College Algebra

    ERIC Educational Resources Information Center

    Van Sickle, Jenna

    2015-01-01

    This paper outlines the experience of a university professor who implemented flipped learning in two sections of college algebra courses for two semesters. It details how the courses were flipped, what technology was used, advantages, challenges, and results. It explains what students do outside of class, what they do inside class, and discusses…

  12. Elementary Algebra Connections to Precalculus

    ERIC Educational Resources Information Center

    Lopez-Boada, Roberto; Daire, Sandra Arguelles

    2013-01-01

    This article examines the attitudes of some precalculus students to solve trigonometric and logarithmic equations and systems using the concepts of elementary algebra. With the goal of enticing the students to search for and use connections among mathematical topics, they are asked to solve equations or systems specifically designed to allow…

  13. Celestial mechanics with geometric algebra

    NASA Technical Reports Server (NTRS)

    Hestenes, D.

    1983-01-01

    Geometric algebra is introduced as a general tool for Celestial Mechanics. A general method for handling finite rotations and rotational kinematics is presented. The constants of Kepler motion are derived and manipulated in a new way. A new spinor formulation of perturbation theory is developed.

  14. Math Sense: Algebra and Geometry.

    ERIC Educational Resources Information Center

    Howett, Jerry

    This book is designed to help students gain the range of math skills they need to succeed in life, work, and on standardized tests; overcome math anxiety; discover math as interesting and purposeful; and develop good number sense. Topics covered in this book include algebra and geometry. Lessons are organized around four strands: (1) skill lessons…

  15. Weaving Geometry and Algebra Together

    ERIC Educational Resources Information Center

    Cetner, Michelle

    2015-01-01

    When thinking about student reasoning and sense making, teachers must consider the nature of tasks given to students along with how to plan to use the tasks in the classroom. Students should be presented with tasks in a way that encourages them to draw connections between algebraic and geometric concepts. This article focuses on the idea that it…

  16. Algebraic Activities Aid Discovery Lessons

    ERIC Educational Resources Information Center

    Wallace-Gomez, Patricia

    2013-01-01

    After a unit on the rules for positive and negative numbers and the order of operations for evaluating algebraic expressions, many students believe that they understand these principles well enough, but they really do not. They clearly need more practice, but not more of the same kind of drill. Wallace-Gomez provides three graphing activities that…

  17. Teachers' Understanding of Algebraic Generalization

    NASA Astrophysics Data System (ADS)

    Hawthorne, Casey Wayne

    Generalization has been identified as a cornerstone of algebraic thinking (e.g., Lee, 1996; Sfard, 1995) and is at the center of a rich conceptualization of K-8 algebra (Kaput, 2008; Smith, 2003). Moreover, mathematics teachers are being encouraged to use figural-pattern generalizing tasks as a basis of student-centered instruction, whereby teachers respond to and build upon the ideas that arise from students' explorations of these activities. Although more and more teachers are engaging their students in such generalizing tasks, little is known about teachers' understanding of generalization and their understanding of students' mathematical thinking in this domain. In this work, I addressed this gap, exploring the understanding of algebraic generalization of 4 exemplary 8th-grade teachers from multiple perspectives. A significant feature of this investigation is an examination of teachers' understanding of the generalization process, including the use of algebraic symbols. The research consisted of two phases. Phase I was an examination of the teachers' understandings of the underlying quantities and quantitative relationships represented by algebraic notation. In Phase II, I observed the instruction of 2 of these teachers. Using the lens of professional noticing of students' mathematical thinking, I explored the teachers' enacted knowledge of algebraic generalization, characterizing how it supported them to effectively respond to the needs and queries of their students. Results indicated that teachers predominantly see these figural patterns as enrichment activities, disconnected from course content. Furthermore, in my analysis, I identified conceptual difficulties teachers experienced when solving generalization tasks, in particular, connecting multiple symbolic representations with the quantities in the figures. Moreover, while the teachers strived to overcome the challenges of connecting different representations, they invoked both productive and unproductive

  18. Algebraic approximations for transcendental equations with applications in nanophysics

    NASA Astrophysics Data System (ADS)

    Barsan, Victor

    2015-09-01

    Using algebraic approximations of trigonometric or hyperbolic functions, a class of transcendental equations can be transformed in tractable, algebraic equations. Studying transcendental equations this way gives the eigenvalues of Sturm-Liouville problems associated to wave equation, mainly to Schroedinger equation; these algebraic approximations provide approximate analytical expressions for the energy of electrons and phonons in quantum wells, quantum dots (QDs) and quantum wires, in the frame of one-particle models of such systems. The advantage of this approach, compared to the numerical calculations, is that the final result preserves the functional dependence on the physical parameters of the problem. The errors of this method, situated between some few percentages and ?, are carefully analysed. Several applications, for quantum wells, QDs and quantum wires, are presented.

  19. The smooth entropy formalism for von Neumann algebras

    NASA Astrophysics Data System (ADS)

    Berta, Mario; Furrer, Fabian; Scholz, Volkher B.

    2016-01-01

    We discuss information-theoretic concepts on infinite-dimensional quantum systems. In particular, we lift the smooth entropy formalism as introduced by Renner and collaborators for finite-dimensional systems to von Neumann algebras. For the smooth conditional min- and max-entropy, we recover similar characterizing properties and information-theoretic operational interpretations as in the finite-dimensional case. We generalize the entropic uncertainty relation with quantum side information of Tomamichel and Renner and discuss applications to quantum cryptography. In particular, we prove the possibility to perform privacy amplification and classical data compression with quantum side information modeled by a von Neumann algebra.

  20. Large N Duality, Lagrangian Cycles, and Algebraic Knots

    NASA Astrophysics Data System (ADS)

    Diaconescu, D.-E.; Shende, V.; Vafa, C.

    2013-05-01

    We consider knot invariants in the context of large N transitions of topological strings. In particular we consider aspects of Lagrangian cycles associated to knots in the conifold geometry. We show how these can be explicitly constructed in the case of algebraic knots. We use this explicit construction to explain a recent conjecture relating study of stable pairs on algebraic curves with HOMFLY polynomials. Furthermore, for torus knots, using the explicit construction of the Lagrangian cycle, we also give a direct A-model computation and recover the HOMFLY polynomial for this case.

  1. LDRD final report : autotuning for scalable linear algebra.

    SciTech Connect

    Heroux, Michael Allen; Marker, Bryan

    2011-09-01

    This report summarizes the progress made as part of a one year lab-directed research and development (LDRD) project to fund the research efforts of Bryan Marker at the University of Texas at Austin. The goal of the project was to develop new techniques for automatically tuning the performance of dense linear algebra kernels. These kernels often represent the majority of computational time in an application. The primary outcome from this work is a demonstration of the value of model driven engineering as an approach to accurately predict and study performance trade-offs for dense linear algebra computations.

  2. The smooth entropy formalism for von Neumann algebras

    SciTech Connect

    Berta, Mario; Furrer, Fabian; Scholz, Volkher B.

    2016-01-15

    We discuss information-theoretic concepts on infinite-dimensional quantum systems. In particular, we lift the smooth entropy formalism as introduced by Renner and collaborators for finite-dimensional systems to von Neumann algebras. For the smooth conditional min- and max-entropy, we recover similar characterizing properties and information-theoretic operational interpretations as in the finite-dimensional case. We generalize the entropic uncertainty relation with quantum side information of Tomamichel and Renner and discuss applications to quantum cryptography. In particular, we prove the possibility to perform privacy amplification and classical data compression with quantum side information modeled by a von Neumann algebra.

  3. Explicit field realizations of W algebras

    NASA Astrophysics Data System (ADS)

    Wei, Shao-Wen; Liu, Yu-Xiao; Zhang, Li-Jie; Ren, Ji-Rong

    2009-06-01

    The fact that certain nonlinear W2,s algebras can be linearized by the inclusion of a spin-1 current can provide a simple way to realize W2,s algebras from linear W1,2,s algebras. In this paper, we first construct the explicit field realizations of linear W1,2,s algebras with double scalar and double spinor, respectively. Then, after a change of basis, the realizations of W2,s algebras are presented. The results show that all these realizations are Romans-type realizations.

  4. Array algebra estimation in signal processing

    NASA Astrophysics Data System (ADS)

    Rauhala, U. A.

    A general theory of linear estimators called array algebra estimation is interpreted in some terms of multidimensional digital signal processing, mathematical statistics, and numerical analysis. The theory has emerged during the past decade from the new field of a unified vector, matrix and tensor algebra called array algebra. The broad concepts of array algebra and its estimation theory cover several modern computerized sciences and technologies converting their established notations and terminology into one common language. Some concepts of digital signal processing are adopted into this language after a review of the principles of array algebra estimation and its predecessors in mathematical surveying sciences.

  5. On special classes of n-algebras

    NASA Astrophysics Data System (ADS)

    Vainerman, L.; Kerner, R.

    1996-05-01

    We define n-algebras as linear spaces on which the internal composition law involves n elements: m:V⊗n■V. It is known that such algebraic structures are interesting for their applications to problems of modern mathematical physics. Using the notion of a commutant of two subalgebras of an n-algebra, we distinguish certain classes of n-algebras with reasonable properties: semisimple, Abelian, nilpotent, solvable. We also consider a few examples of n-algebras of different types, and show their properties.

  6. A comparison of three algebraic stress closures for combustor flow calculations

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; So, R. M. C.; Hwang, B. C.

    1985-01-01

    A comparison is made of the performance of two locally nonequilibrium and one equilibrium algebraic stress closures in calculating combustor flows. Effects of four different pressure-strain models on these closure models are also analyzed. The results show that the pressure-strain models have a much greater influence on the calculated mean velocity and turbulence field than the algebraic stress closures, and that the best mean strain model for the pressure-strain terms is that proposed by Launder, Reece and Rodi (1975). However, the equilibrium algebraic stress closure with the Rotta return-to-isotropy model (1951) for the pressure-strain terms gives as good a correlation with measurements as when the Launder et al. mean strain model is included in the pressure-strain model. Finally, comparison of the calculations with the standard k-epsilon closure results show that the algebraic stress closures are better suited for simple turbulent flow calculations.

  7. Recursion and feedback in image algebra

    NASA Astrophysics Data System (ADS)

    Ritter, Gerhard X.; Davidson, Jennifer L.

    1991-04-01

    Recursion and feedback are two important processes in image processing. Image algebra, a unified algebraic structure developed for use in image processing and image analysis, provides a common mathematical environment for expressing image processing transforms. It is only recently that image algebra has been extended to include recursive operations [1]. Recently image algebra was shown to incorporate neural nets [2], including a new type of neural net, the morphological neural net [3]. This paper presents the relationship of the recursive image algebra to the field of fractions of the ring of matrices, and gives the two dimensional moving average filter as an example. Also, the popular multilayer perceptron with back propagation and a morphology neural network with learning rule are presented in image algebra notation. These examples show that image algebra can express these important feedback concepts in a succinct way.

  8. Deformed Kac Moody and Virasoro algebras

    NASA Astrophysics Data System (ADS)

    Balachandran, A. P.; Queiroz, A. R.; Marques, A. M.; Teotonio-Sobrinho, P.

    2007-07-01

    Whenever the group {\\bb R}^n acts on an algebra {\\cal A} , there is a method to twist \\cal A to a new algebra {\\cal A}_\\theta which depends on an antisymmetric matrix θ (θμν = -θνμ = constant). The Groenewold-Moyal plane {\\cal A}_\\theta({\\bb R}^{d+1}) is an example of such a twisted algebra. We give a general construction to realize this twist in terms of {\\cal A} itself and certain 'charge' operators Qμ. For {\\cal A}_\\theta({\\bb R}^{d+1}), Q_\\mu are translation generators. This construction is then applied to twist the oscillators realizing the Kac-Moody (KM) algebra as well as the KM currents. They give different deformations of the KM algebra. From one of the deformations of the KM algebra, we construct, via the Sugawara construction, the Virasoro algebra. These deformations have an implication for statistics as well.

  9. Proof and Reasoning in Secondary School Algebra Textbooks

    ERIC Educational Resources Information Center

    Dituri, Philip

    2013-01-01

    The purpose of this study was to determine the extent to which the modeling of deductive reasoning and proof-type thinking occurs in a mathematics course in which students are not explicitly preparing to write formal mathematical proofs. Algebra was chosen because it is the course that typically directly precedes a student's first formal…

  10. Studies of Diagnosis & Remediation with High School Algebra Students.

    ERIC Educational Resources Information Center

    Martinak, R.; And Others

    Six studies discussed in this paper compared error-specific or model-based remediation (MBR) with reteaching in algebra. MBR points out, and highlights as incorrect, errors specific to the student's solution before reteaching the correct procedures. Reteaching shows the student the correct procedure without addressing specific errors. Three of…

  11. Algebraic, geometric, and stochastic aspects of genetic operators

    NASA Technical Reports Server (NTRS)

    Foo, N. Y.; Bosworth, J. L.

    1972-01-01

    Genetic algorithms for function optimization employ genetic operators patterned after those observed in search strategies employed in natural adaptation. Two of these operators, crossover and inversion, are interpreted in terms of their algebraic and geometric properties. Stochastic models of the operators are developed which are employed in Monte Carlo simulations of their behavior.

  12. Teaching and Learning a New Algebra with Understanding.

    ERIC Educational Resources Information Center

    Kaput, James J.

    This paper suggests a route to deep, long-term algebra reform that begins not with more new approaches but with elementary school teachers and the reform efforts that currently exist. This route involves generalization and expression of that generality using increasingly formal languages, beginning with arithmetic, modeling situations, geometry,…

  13. Characterizing Preservice Teachers' Mathematical Understanding of Algebraic Relationships

    ERIC Educational Resources Information Center

    Nillas, Leah A.

    2010-01-01

    Qualitative research methods were employed to investigate characterization of preservice teachers' mathematical understanding. Responses on test items involving algebraic relationships were analyzed using with-in case analysis (Miles and Huberman, 1994) and Pirie and Kieren's (1994) model of growth of mathematical understanding. Five elementary…

  14. A Method for the Microanalysis of Pre-Algebra Transfer

    ERIC Educational Resources Information Center

    Pavlik, Philip I., Jr.; Yudelson, Michael; Koedinger, Kenneth R.

    2011-01-01

    The objective of this research was to better understand the transfer of learning between different variations of pre-algebra problems. While the authors could have addressed a specific variation that might address transfer, they were interested in developing a general model of transfer, so we gathered data from multiple problem types and their…

  15. Preliminary Use of the Seismo-Lineament Analysis Method (SLAM) to Investigate Seismogenic Faulting in the Grand Canyon Area, Northern Arizona

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.; Cleveland, D. M.; Prochnow, S. J.

    2007-12-01

    This is a progress report on our application of the Seismo-Lineament Analysis Method (SLAM) to the eastern Grand Canyon area of northern Arizona. SLAM is a new integrated method for identifying potentially seismogenic faults using earthquake focal-mechanism solutions, geomorphic analysis and field work. There are two nodal planes associated with any double-couple focal-mechanism solution, one of which is thought to coincide with the fault that produced the earthquake; the slip vector is normal to the other (auxiliary) plane. When no uncertainty in the orientation of the fault-plane solution is reported, we use the reported vertical and horizontal uncertainties in the focal location to define a tabular uncertainty volume whose orientation coincides with that of the fault-plane solution. The intersection of the uncertainty volume and the ground surface (represented by the DEM) is termed a seismo-lineament. An image of the DEM surface is illuminated perpendicular to the strike of the seismo- lineament to accentuate geomorphic features within the seismo-lineament that may be related to seismogenic faulting. This evaluation of structural geomorphology is repeated for several different azimuths and elevations of illumination. A map is compiled that includes possible geomorphic indicators of faulting as well as previously mapped faults within each seismo-lineament, constituting a set of hypotheses for the possible location of seismogenic fault segments that must be evaluated through fieldwork. A fault observed in the field that is located within a seismo-lineament, and that has an orientation and slip characteristics that are statistically compatible with the fault-plane solution, is considered potentially seismogenic. We compiled a digital elevation model (DEM) of the Grand Canyon area from published data sets. We used earthquake focal-mechanism solutions produced by David Brumbaugh (2005, BSSA, v. 95, p. 1561-1566) for five M > 3.5 events reported between 1989 and 1995

  16. Algebraic approach to electronic spectroscopy and dynamics.

    PubMed

    Toutounji, Mohamad

    2008-04-28

    Lie algebra, Zassenhaus, and parameter differentiation techniques are utilized to break up the exponential of a bilinear Hamiltonian operator into a product of noncommuting exponential operators by the virtue of the theory of Wei and Norman [J. Math. Phys. 4, 575 (1963); Proc. Am. Math. Soc., 15, 327 (1964)]. There are about three different ways to find the Zassenhaus exponents, namely, binomial expansion, Suzuki formula, and q-exponential transformation. A fourth, and most reliable method, is provided. Since linearly displaced and distorted (curvature change upon excitation/emission) Hamiltonian and spin-boson Hamiltonian may be classified as bilinear Hamiltonians, the presented algebraic algorithm (exponential operator disentanglement exploiting six-dimensional Lie algebra case) should be useful in spin-boson problems. The linearly displaced and distorted Hamiltonian exponential is only treated here. While the spin-boson model is used here only as a demonstration of the idea, the herein approach is more general and powerful than the specific example treated. The optical linear dipole moment correlation function is algebraically derived using the above mentioned methods and coherent states. Coherent states are eigenvectors of the bosonic lowering operator a and not of the raising operator a(+). While exp(a(+)) translates coherent states, exp(a(+)a(+)) operation on coherent states has always been a challenge, as a(+) has no eigenvectors. Three approaches, and the results, of that operation are provided. Linear absorption spectra are derived, calculated, and discussed. The linear dipole moment correlation function for the pure quadratic coupling case is expressed in terms of Legendre polynomials to better show the even vibronic transitions in the absorption spectrum. Comparison of the present line shapes to those calculated by other methods is provided. Franck-Condon factors for both linear and quadratic couplings are exactly accounted for by the herein calculated

  17. Algebraic complexities and algebraic curves over finite fields

    PubMed Central

    Chudnovsky, D. V.; Chudnovsky, G. V.

    1987-01-01

    We consider the problem of minimal (multiplicative) complexity of polynomial multiplication and multiplication in finite extensions of fields. For infinite fields minimal complexities are known [Winograd, S. (1977) Math. Syst. Theory 10, 169-180]. We prove lower and upper bounds on minimal complexities over finite fields, both linear in the number of inputs, using the relationship with linear coding theory and algebraic curves over finite fields. PMID:16593816

  18. Quasi-explicit algebraic turbulence closures for compressible reacting flows

    NASA Astrophysics Data System (ADS)

    Adumitroaie, Virgil

    A consistent and complete set of quasi-explicit algebraic closures for turbulent reacting flows is proposed as approximate solutions to the full second order moment equations. Quasi-explicit algebraic scalar flux models that are valid for three-dimensional turbulent flows are derived from a hierarchy of second-order moment closures. The mathematical procedure is based on the Cayley-Hamilton theorem and is an extension of the scheme developed by Taulbee (1992). Several closures for the pressure-scalar gradient correlations are considered and explicit algebraic relations are provided for the velocity-scalar correlations in both non-reacting and reacting flows. In the latter, the role of the Damkohler number is exhibited in isothermal turbulent flows with nonpremixed reactants. The relationship between these closures and traditional models based on the linear gradient diffusion approximation is theoretically established. The results of model predictions are assessed via comparison with available laboratory data in turbulent jet flows. The development of the quasi-explicit algebraic models for Reynolds stresses, temperature fluxes and reacting scalar fluxes is extended to high-speed turbulent reacting flows under a density weighted average formalism. New closures are proposed for the pressure-strain and the pressure-scalar gradient correlations. These accommodate compressibility corrections subject to the magnitude of the turbulent Mach number, the density gradient, the pressure gradient and the mean dilatation effects. Non-reacting and reacting flows with heat release are considered. In the latter, a second-order irreversible chemical reactions in turbulent flows with initially segregated reactants is considered. The models are tested in simple compressible free-shear flows. Comparisons are made between the full second order moment computations and the algebraic closure predictions. For a mixing layer, experimental data are used to validate the predicted results.

  19. Anyons and matrix product operator algebras

    NASA Astrophysics Data System (ADS)

    Bultinck, N.; Mariën, M.; Williamson, D. J.; Şahinoğlu, M. B.; Haegeman, J.; Verstraete, F.

    2017-03-01

    Quantum tensor network states and more particularly projected entangled-pair states provide a natural framework for representing ground states of gapped, topologically ordered systems. The defining feature of these representations is that topological order is a consequence of the symmetry of the underlying tensors in terms of matrix product operators. In this paper, we present a systematic study of those matrix product operators, and show how this relates entanglement properties of projected entangled-pair states to the formalism of fusion tensor categories. From the matrix product operators we construct a C∗-algebra and find that topological sectors can be identified with the central idempotents of this algebra. This allows us to construct projected entangled-pair states containing an arbitrary number of anyons. Properties such as topological spin, the S matrix, fusion and braiding relations can readily be extracted from the idempotents. As the matrix product operator symmetries are acting purely on the virtual level of the tensor network, the ensuing Wilson loops are not fattened when perturbing the system, and this opens up the possibility of simulating topological theories away from renormalization group fixed points. We illustrate the general formalism for the special cases of discrete gauge theories and string-net models.

  20. Alternative algebraic approaches in quantum chemistry

    SciTech Connect

    Mezey, Paul G.

    2015-01-22

    Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed.

  1. Algebraic Methods to Design Signals

    DTIC Science & Technology

    2015-08-27

    group theory are employed to investigate the theory of their construction methods leading to new families of these arrays and some generalizations...sequences and arrays with desirable correlation properties. The methods used are very algebraic and number theoretic. Many new families of sequences...context of optical quantum computing, we prove that infinite families of anticirculant block weighing matrices can be obtained from generic weighing

  2. Diagnosis of X-linked lymphoproliferative disease by analysis of SLAM-associated protein expression.

    PubMed

    Gilmour, K C; Cranston, T; Jones, A; Davies, E G; Goldblatt, D; Thrasher, A; Kinnon, C; Nichols, K E; Gaspar, H B

    2000-06-01

    X-linked lymphoproliferative disease (XLP) is an inherited immunodeficiency in which affected boys show abnormal responses to Epstein-Barr virus infection. The gene defective in XLP has been identified and designated SH2D1A and encodes a protein termed SLAM-associated protein (SAP). Mutation analysis in individuals with typical XLP presentations and family histories has only detected abnormalities in approximately 60% of patients. Thus, genetic analysis alone cannot confirm a diagnosis of XLP We have developed a SAP expression assay that can be used as a diagnostic indicator of XLP We show that SAP is constitutively expressed in normal individuals, in patients with severe sepsis and in patients with other primary immunodeficiencies. In six XLP patients, four with classical and two with atypical presentations, SAP expression was absent. In the latter two, who were previously assigned as having common variable immunodeficiency (CVID), the diagnosis of XLP was initially made using the protein expression assay. In two further patients in whom no mutation could be detected by genetic analysis, lack of SAP expression strongly suggests that these individuals have XLP. We therefore suggest that XLP should be suspected in certain boys previously diagnosed as having CVID and recommend that patients are investigated both by genetic analysis of SH2D1A and by expression of SAP protein.

  3. Computer algebra and transport theory.

    SciTech Connect

    Warsa, J. S.

    2004-01-01

    Modern symbolic algebra computer software augments and complements more traditional approaches to transport theory applications in several ways. The first area is in the development and enhancement of numerical solution methods for solving the Boltzmann transport equation. Typically, special purpose computer codes are designed and written to solve specific transport problems in particular ways. Different aspects of the code are often written from scratch and the pitfalls of developing complex computer codes are numerous and well known. Software such as MAPLE and MATLAB can be used to prototype, analyze, verify and determine the suitability of numerical solution methods before a full-scale transport application is written. Once it is written, the relevant pieces of the full-scale code can be verified using the same tools I that were developed for prototyping. Another area is in the analysis of numerical solution methods or the calculation of theoretical results that might otherwise be difficult or intractable. Algebraic manipulations are done easily and without error and the software also provides a framework for any additional numerical calculations that might be needed to complete the analysis. We will discuss several applications in which we have extensively used MAPLE and MATLAB in our work. All of them involve numerical solutions of the S{sub N} transport equation. These applications encompass both of the two main areas in which we have found computer algebra software essential.

  4. BLAS- BASIC LINEAR ALGEBRA SUBPROGRAMS

    NASA Technical Reports Server (NTRS)

    Krogh, F. T.

    1994-01-01

    The Basic Linear Algebra Subprogram (BLAS) library is a collection of FORTRAN callable routines for employing standard techniques in performing the basic operations of numerical linear algebra. The BLAS library was developed to provide a portable and efficient source of basic operations for designers of programs involving linear algebraic computations. The subprograms available in the library cover the operations of dot product, multiplication of a scalar and a vector, vector plus a scalar times a vector, Givens transformation, modified Givens transformation, copy, swap, Euclidean norm, sum of magnitudes, and location of the largest magnitude element. Since these subprograms are to be used in an ANSI FORTRAN context, the cases of single precision, double precision, and complex data are provided for. All of the subprograms have been thoroughly tested and produce consistent results even when transported from machine to machine. BLAS contains Assembler versions and FORTRAN test code for any of the following compilers: Lahey F77L, Microsoft FORTRAN, or IBM Professional FORTRAN. It requires the Microsoft Macro Assembler and a math co-processor. The PC implementation allows individual arrays of over 64K. The BLAS library was developed in 1979. The PC version was made available in 1986 and updated in 1988.

  5. Introduction to Image Algebra Ada

    NASA Astrophysics Data System (ADS)

    Wilson, Joseph N.

    1991-07-01

    Image Algebra Ada (IAA) is a superset of the Ada programming language designed to support use of the Air Force Armament Laboratory's image algebra in the development of computer vision application programs. The IAA language differs from other computer vision languages is several respects. It is machine independent, and an IAA translator has been implemented in the military standard Ada language. Its image operands and operations can be used to program a range of both low- and high-level vision algorithms. This paper provides an overview of the image algebra constructs supported in IAA and describes the embodiment of these constructs in the IAA extension of Ada. Examples showing the use of IAA for a range of computer vision tasks are given. The design of IAA as a superset of Ada and the implementation of the initial translator in Ada represent critical choices. The authors discuss the reasoning behind these choices as well as the benefits and drawbacks associated with them. Implementation strategies associated with the use of Ada as an implementation language for IAA are also discussed. While one can look on IAA as a program design language (PDL) for specifying Ada programs, it is useful to consider IAA as a separate language superset of Ada. This admits the possibility of directly translating IAA for implementation on special purpose architectures. This paper explores strategies for porting IAA to various architectures and notes the critical language and implementation features for porting to different architectures.

  6. Linking LEGO and Algebra

    ERIC Educational Resources Information Center

    Özgün-Koca, S. Asli; Edwards, Thomas G.; Chelst, Kenneth R.

    2015-01-01

    In mathematics, students should represent, model, and work with such real-world situations as those found in the physical world, the public policy realm, and society (CCSSI 2010). Additionally, students need to make decisions and be flexible enough to improve their decisions after analyzing realistic situations. The LEGO® Pets activity does just…

  7. Algebra: A Challenge at the Crossroads of Policy and Practice

    ERIC Educational Resources Information Center

    Stein, Mary Kay; Kaufman, Julia Heath; Sherman, Milan; Hillen, Amy F.

    2011-01-01

    The authors review what is known about early and universal algebra, including who is getting access to algebra and student outcomes associated with algebra course taking in general and specifically with universal algebra policies. The findings indicate that increasing numbers of students, some of whom are underprepared, are taking algebra earlier.…

  8. Paving a Way to Algebraic Word Problems Using a Nonalgebraic Route

    ERIC Educational Resources Information Center

    Amit, Miriam; Klass-Tsirulnikov, Bella

    2005-01-01

    A three-stage model for algebraic word problem solving is developed in which students' understanding of the intrinsic logical structure of word problems is strengthened by connecting real-life problems and formal mathematics. (Contains 3 figure.)

  9. Bilinear forms on fermionic Novikov algebras

    NASA Astrophysics Data System (ADS)

    Chen, Zhiqi; Zhu, Fuhai

    2007-05-01

    Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic type and Hamiltonian operators in formal variational calculus. Fermionic Novikov algebras correspond to a certain Hamiltonian super-operator in a super-variable. In this paper, we show that there is a remarkable geometry on fermionic Novikov algebras with non-degenerate invariant symmetric bilinear forms, which we call pseudo-Riemannian fermionic Novikov algebras. They are related to pseudo-Riemannian Lie algebras. Furthermore, we obtain a procedure to classify pseudo-Riemannian fermionic Novikov algebras. As an application, we give the classification in dimension <=4. Motivated by the one in dimension 4, we construct some examples in high dimensions.

  10. Numerical linear algebra algorithms and software

    NASA Astrophysics Data System (ADS)

    Dongarra, Jack J.; Eijkhout, Victor

    2000-11-01

    The increasing availability of advanced-architecture computers has a significant effect on all spheres of scientific computation, including algorithm research and software development in numerical linear algebra. Linear algebra - in particular, the solution of linear systems of equations - lies at the heart of most calculations in scientific computing. This paper discusses some of the recent developments in linear algebra designed to exploit these advanced-architecture computers. We discuss two broad classes of algorithms: those for dense, and those for sparse matrices.

  11. Symbolic Lie algebras manipulations using COMMON LISP

    NASA Astrophysics Data System (ADS)

    Cecchini, R.; Tarlini, M.

    1989-01-01

    We present a description and an implementation of a program in COMMON LISP to perform symbolic computations in a given Lie algebra. Using the general definitions of vector space Lie algebra and enveloping algebra, the program is able to compute commutators, to evaluate similarity transformations and the general Baker-Campbell-Hausdorff formula. All the computations are exact, including numerical coefficients. For the interactive user an optional menu facility and online help are available. LISP knowledge is unnecessary.

  12. Lie algebras of classical and stochastic electrodynamics

    NASA Astrophysics Data System (ADS)

    Neto, J. J. Soares; Vianna, J. D. M.

    1994-03-01

    The Lie algebras associated with infinitesimal symmetry transformations of third-order differential equations of interest to classical electrodynamics and stochastic electrodynamics have been obtained. The structure constants for a general case are presented and the Lie algebra for each particular application is easily achieved. By the method used here it is not necessary to know the explicit expressions of the infinitesimal generators in order to determine the structure constants of the Lie algebra.

  13. Algebraic logic of concepts and its machine implementation in the algebras of deontic and axiological notions

    NASA Astrophysics Data System (ADS)

    Manerowska, Anna; Nieznański, Edward; Mulawka, Jan

    2013-10-01

    Our aim is to present the algebra of concepts in two formal languages. First, after introducing a primary relation between concepts, which is subsumption, we shall specify in a language that uses quantifiers, the Boolean algebra of general concepts. Next, we shall note down the same algebra in simplified non-quantifying language, in order to use it as basis for two specific implementations, i.e. to create the Boolean algebras of deontic concepts and axiological concepts.

  14. Output Analysis and Comparison of Deployment Models with Varying Fidelity

    DTIC Science & Technology

    2007-11-02

    10 - IBCT Quick Look Tool Algebra ....................................................................- 11...Application of IBCT Quick Look Tool Algebra ............................................- 15 - Crystal Ball...spreadsheet models rooted in deterministic algebraic formulas to complex discrete event simulations that can provide a more detailed rendition of

  15. Dispersion Operators Algebra and Linear Canonical Transformations

    NASA Astrophysics Data System (ADS)

    Andriambololona, Raoelina; Ranaivoson, Ravo Tokiniaina; Hasimbola Damo Emile, Randriamisy; Rakotoson, Hanitriarivo

    2017-04-01

    This work intends to present a study on relations between a Lie algebra called dispersion operators algebra, linear canonical transformation and a phase space representation of quantum mechanics that we have introduced and studied in previous works. The paper begins with a brief recall of our previous works followed by the description of the dispersion operators algebra which is performed in the framework of the phase space representation. Then, linear canonical transformations are introduced and linked with this algebra. A multidimensional generalization of the obtained results is given.

  16. Dispersion Operators Algebra and Linear Canonical Transformations

    NASA Astrophysics Data System (ADS)

    Andriambololona, Raoelina; Ranaivoson, Ravo Tokiniaina; Hasimbola Damo Emile, Randriamisy; Rakotoson, Hanitriarivo

    2017-02-01

    This work intends to present a study on relations between a Lie algebra called dispersion operators algebra, linear canonical transformation and a phase space representation of quantum mechanics that we have introduced and studied in previous works. The paper begins with a brief recall of our previous works followed by the description of the dispersion operators algebra which is performed in the framework of the phase space representation. Then, linear canonical transformations are introduced and linked with this algebra. A multidimensional generalization of the obtained results is given.

  17. Banach Algebras Associated to Lax Pairs

    NASA Astrophysics Data System (ADS)

    Glazebrook, James F.

    2015-04-01

    Lax pairs featuring in the theory of integrable systems are known to be constructed from a commutative algebra of formal pseudodifferential operators known as the Burchnall- Chaundy algebra. Such pairs induce the well known KP flows on a restricted infinite-dimensional Grassmannian. The latter can be exhibited as a Banach homogeneous space constructed from a Banach *-algebra. It is shown that this commutative algebra of operators generating Lax pairs can be associated with a commutative C*-subalgebra in the C*-norm completion of the *-algebra. In relationship to the Bose-Fermi correspondence and the theory of vertex operators, this C*-algebra has an association with the CAR algebra of operators as represented on Fermionic Fock space by the Gelfand-Naimark-Segal construction. Instrumental is the Plücker embedding of the restricted Grassmannian into the projective space of the associated Hilbert space. The related Baker and tau-functions provide a connection between these two C*-algebras, following which their respective state spaces and Jordan-Lie-Banach algebras structures can be compared.

  18. Difficulties in initial algebra learning in Indonesia

    NASA Astrophysics Data System (ADS)

    Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja

    2014-12-01

    Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was significantly below the average student performance in other Southeast Asian countries such as Thailand, Malaysia, and Singapore. This fact gave rise to this study which aims to investigate Indonesian students' difficulties in algebra. In order to do so, a literature study was carried out on students' difficulties in initial algebra. Next, an individual written test on algebra tasks was administered, followed by interviews. A sample of 51 grade VII Indonesian students worked the written test, and 37 of them were interviewed afterwards. Data analysis revealed that mathematization, i.e., the ability to translate back and forth between the world of the problem situation and the world of mathematics and to reorganize the mathematical system itself, constituted the most frequently observed difficulty in both the written test and the interview data. Other observed difficulties concerned understanding algebraic expressions, applying arithmetic operations in numerical and algebraic expressions, understanding the different meanings of the equal sign, and understanding variables. The consequences of these findings on both task design and further research in algebra education are discussed.

  19. Multicloning and Multibroadcasting in Operator Algebras

    NASA Astrophysics Data System (ADS)

    Kaniowski, Krzysztof; Lubnauer, Katarzyna; Łuczak, Andrzej

    2015-12-01

    We investigate multicloning and multibroadcasting in the general operator algebra framework in arbitrary dimension, generalizing thus results obtained in this framework for simple cloning and broadcasting.

  20. A few Lie algebras and their applications for generating integrable hierarchies of evolution types

    NASA Astrophysics Data System (ADS)

    Zhang, Yufeng; Feng, Binlu

    2011-08-01

    A Lie algebra consisting of 3 × 3 matrices is introduced, whose induced Lie algebra by using an inverted linear transformation is obtained as well. As for application examples, we obtain a unified integrable model of the integrable couplings of the AKNS hierarchy, the D-AKNS hierarchy and the TD hierarchy as well as their induced integrable hierarchies. These integrable couplings are different from those results obtained before. However, the Hamiltonian structures of the integrable couplings cannot be obtained by using the quadratic-form identity or the variational identity. For solving the problem, we construct a higher-dimensional subalgebra R and its reduced algebra Q of the Lie algebra A2 by decomposing the induced Lie algebra and then again making some linear combinations. The subalgebras of the Lie algebras R and Q do not satisfy the relation ( G=G1⊕G2,[G1,G2]⊂G2), but we can deduce integrable couplings, which indicates that the above condition is not necessary to generate integrable couplings. As for application example, an expanding integrable model of the AKNS hierarchy is obtained whose Hamiltonian structure is generated by the trace identity. Finally, we give another Lie algebras which can be decomposed into two simple Lie subalgebras for which a nonlinear integrable coupling of the classical Boussinesq-Burgers (CBB) hierarchy is obtained.