Adaptive Algebraic Multigrid Methods
Brezina, M; Falgout, R; MacLachlan, S; Manteuffel, T; McCormick, S; Ruge, J
2004-04-09
Our ability to simulate physical processes numerically is constrained by our ability to solve the resulting linear systems, prompting substantial research into the development of multiscale iterative methods capable of solving these linear systems with an optimal amount of effort. Overcoming the limitations of geometric multigrid methods to simple geometries and differential equations, algebraic multigrid methods construct the multigrid hierarchy based only on the given matrix. While this allows for efficient black-box solution of the linear systems associated with discretizations of many elliptic differential equations, it also results in a lack of robustness due to assumptions made on the near-null spaces of these matrices. This paper introduces an extension to algebraic multigrid methods that removes the need to make such assumptions by utilizing an adaptive process. The principles which guide the adaptivity are highlighted, as well as their application to algebraic multigrid solution of certain symmetric positive-definite linear systems.
Layout optimization with algebraic multigrid methods
NASA Technical Reports Server (NTRS)
Regler, Hans; Ruede, Ulrich
1993-01-01
Finding the optimal position for the individual cells (also called functional modules) on the chip surface is an important and difficult step in the design of integrated circuits. This paper deals with the problem of relative placement, that is the minimization of a quadratic functional with a large, sparse, positive definite system matrix. The basic optimization problem must be augmented by constraints to inhibit solutions where cells overlap. Besides classical iterative methods, based on conjugate gradients (CG), we show that algebraic multigrid methods (AMG) provide an interesting alternative. For moderately sized examples with about 10000 cells, AMG is already competitive with CG and is expected to be superior for larger problems. Besides the classical 'multiplicative' AMG algorithm where the levels are visited sequentially, we propose an 'additive' variant of AMG where levels may be treated in parallel and that is suitable as a preconditioner in the CG algorithm.
Parallel Algebraic Multigrid Methods - High Performance Preconditioners
Yang, U M
2004-11-11
The development of high performance, massively parallel computers and the increasing demands of computationally challenging applications have necessitated the development of scalable solvers and preconditioners. One of the most effective ways to achieve scalability is the use of multigrid or multilevel techniques. Algebraic multigrid (AMG) is a very efficient algorithm for solving large problems on unstructured grids. While much of it can be parallelized in a straightforward way, some components of the classical algorithm, particularly the coarsening process and some of the most efficient smoothers, are highly sequential, and require new parallel approaches. This chapter presents the basic principles of AMG and gives an overview of various parallel implementations of AMG, including descriptions of parallel coarsening schemes and smoothers, some numerical results as well as references to existing software packages.
2013-05-06
AMG2013 is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids. It has been derived directly from the Boomer AMG solver in the hypre library, a large linear solvers library that is being developed in the Center for Applied Scientific Computing (CASC) at LLNL. The driver provided in the benchmark can build various test problems. The default problem is a Laplace type problem on an unstructured domain with various jumps and an anisotropy in one part.
2007-06-01
simple iterative method such as Jacobi or Gauss - Seidel . The method used to coarsening the grid defines if the multigrid method is geometric or algebraic...chosen here is Gauss - Seidel (GS) [25]. We achieved the best rates of convergence for AMG using an implementation that on the finest grid corresponds to...a Symmetric- Red - Black GS, while on the other grids we alternate the order of relaxation as we did on the finest grid, but based only on the order
NASA Technical Reports Server (NTRS)
Taasan, Shlomo; Zhang, Hong
1993-01-01
Waveform multigrid method is an efficient method for solving certain classes of time dependent PDEs. This paper studies the relationship between this method and the analogous multigrid method for steady-state problems. Using a Fourier-Laplace analysis, practical convergence rate estimates of the waveform multigrid iterations are obtained. Experimental results show that the analysis yields accurate performance prediction.
Report on the Copper Mountain Conference on Multigrid Methods
2001-04-06
OAK B188 Report on the Copper Mountain Conference on Multigrid Methods. The Copper Mountain Conference on Multigrid Methods was held on April 11-16, 1999. Over 100 mathematicians from all over the world attended the meeting. The conference had two major themes: algebraic multigrid and parallel multigrid. During the five day meeting 69 talks on current research topics were presented as well as 3 tutorials. Talks with similar content were organized into sessions. Session topics included: Fluids; Multigrid and Multilevel Methods; Applications; PDE Reformulation; Inverse Problems; Special Methods; Decomposition Methods; Student Paper Winners; Parallel Multigrid; Parallel Algebraic Multigrid; and FOSLS.
Introduction to multigrid methods
NASA Technical Reports Server (NTRS)
Wesseling, P.
1995-01-01
These notes were written for an introductory course on the application of multigrid methods to elliptic and hyperbolic partial differential equations for engineers, physicists and applied mathematicians. The use of more advanced mathematical tools, such as functional analysis, is avoided. The course is intended to be accessible to a wide audience of users of computational methods. We restrict ourselves to finite volume and finite difference discretization. The basic principles are given. Smoothing methods and Fourier smoothing analysis are reviewed. The fundamental multigrid algorithm is studied. The smoothing and coarse grid approximation properties are discussed. Multigrid schedules and structured programming of multigrid algorithms are treated. Robustness and efficiency are considered.
Reducing Communication in Algebraic Multigrid Using Additive Variants
Vassilevski, Panayot S.; Yang, Ulrike Meier
2014-02-12
Algebraic multigrid (AMG) has proven to be an effective scalable solver on many high performance computers. However, its increasing communication complexity on coarser levels has shown to seriously impact its performance on computers with high communication cost. Moreover, additive AMG variants provide not only increased parallelism as well as decreased numbers of messages per cycle but also generally exhibit slower convergence. Here we present various new additive variants with convergence rates that are significantly improved compared to the classical additive algebraic multigrid method and investigate their potential for decreased communication, and improved communication-computation overlap, features that are essential for good performance on future exascale architectures.
Parallel Algebraic Multigrids for Structural mechanics
Brezina, M; Tong, C; Becker, R
2004-05-11
This paper presents the results of a comparison of three parallel algebraic multigrid (AMG) preconditioners for structural mechanics applications. In particular, they are interested in investigating both the scalability and robustness of the preconditioners. Numerical results are given for a range of structural mechanics problems with various degrees of difficulty.
The algebraic multigrid projection for eigenvalue problems; backrotations and multigrid fixed points
NASA Technical Reports Server (NTRS)
Costiner, Sorin; Taasan, Shlomo
1994-01-01
The periods of the theorem for the algebraic multigrid projection (MGP) for eigenvalue problems, and of the multigrid fixed point theorem for multigrid cycles combining MGP with backrotations, are presented. The MGP and the backrotations are central eigenvector separation techniques for multigrid eigenvalue algorithms. They allow computation on coarse levels of eigenvalues of a given eigenvalue problem, and are efficient tools in the computation of eigenvectors.
Scalable Parallel Algebraic Multigrid Solvers
Bank, R; Lu, S; Tong, C; Vassilevski, P
2005-03-23
The authors propose a parallel algebraic multilevel algorithm (AMG), which has the novel feature that the subproblem residing in each processor is defined over the entire partition domain, although the vast majority of unknowns for each subproblem are associated with the partition owned by the corresponding processor. This feature ensures that a global coarse description of the problem is contained within each of the subproblems. The advantages of this approach are that interprocessor communication is minimized in the solution process while an optimal order of convergence rate is preserved; and the speed of local subproblem solvers can be maximized using the best existing sequential algebraic solvers.
Reducing Communication in Algebraic Multigrid Using Additive Variants
Vassilevski, Panayot S.; Yang, Ulrike Meier
2014-02-12
Algebraic multigrid (AMG) has proven to be an effective scalable solver on many high performance computers. However, its increasing communication complexity on coarser levels has shown to seriously impact its performance on computers with high communication cost. Moreover, additive AMG variants provide not only increased parallelism as well as decreased numbers of messages per cycle but also generally exhibit slower convergence. Here we present various new additive variants with convergence rates that are significantly improved compared to the classical additive algebraic multigrid method and investigate their potential for decreased communication, and improved communication-computation overlap, features that are essential for goodmore » performance on future exascale architectures.« less
Coarse Spaces by Algebraic Multigrid: Multigrid Convergence and Upscaled Error Estimates
Vassilevski, P S
2010-04-30
We give an overview of a number of algebraic multigrid methods targeting finite element discretization problems. The focus is on the properties of the constructed hierarchy of coarse spaces that guarantee (two-grid) convergence. In particular, a necessary condition known as 'weak approximation property', and a sufficient one, referred to as 'strong approximation property' are discussed. Their role in proving convergence of the TG method (as iterative method) and also on the approximation properties of the AMG coarse spaces if used as discretization tool is pointed out. Some preliminary numerical results illustrating the latter aspect are also reported.
Challenges of Algebraic Multigrid across Multicore Architectures
Baker, A H; Gamblin, T; Schulz, M; Yang, U M
2010-04-12
Algebraic multigrid (AMG) is a popular solver for large-scale scientific computing and an essential component of many simulation codes. AMG has shown to be extremely efficient on distributed-memory architectures. However, when executed on modern multicore architectures, we face new challenges that can significantly deteriorate AMG's performance. We examine its performance and scalability on three disparate multicore architectures: a cluster with four AMD Opteron Quad-core processors per node (Hera), a Cray XT5 with two AMD Opteron Hex-core processors per node (Jaguar), and an IBM BlueGene/P system with a single Quad-core processor (Intrepid). We discuss our experiences on these platforms and present results using both an MPI-only and a hybrid MPI/OpenMP model. We also discuss a set of techniques that helped to overcome the associated problems, including thread and process pinning and correct memory associations.
Augustin, Christoph M; Neic, Aurel; Liebmann, Manfred; Prassl, Anton J; Niederer, Steven A; Haase, Gundolf; Plank, Gernot
2016-01-15
Electromechanical (EM) models of the heart have been used successfully to study fundamental mechanisms underlying a heart beat in health and disease. However, in all modeling studies reported so far numerous simplifications were made in terms of representing biophysical details of cellular function and its heterogeneity, gross anatomy and tissue microstructure, as well as the bidirectional coupling between electrophysiology (EP) and tissue distension. One limiting factor is the employed spatial discretization methods which are not sufficiently flexible to accommodate complex geometries or resolve heterogeneities, but, even more importantly, the limited efficiency of the prevailing solver techniques which are not sufficiently scalable to deal with the incurring increase in degrees of freedom (DOF) when modeling cardiac electromechanics at high spatio-temporal resolution. This study reports on the development of a novel methodology for solving the nonlinear equation of finite elasticity using human whole organ models of cardiac electromechanics, discretized at a high para-cellular resolution. Three patient-specific, anatomically accurate, whole heart EM models were reconstructed from magnetic resonance (MR) scans at resolutions of 220 μm, 440 μm and 880 μm, yielding meshes of approximately 184.6, 24.4 and 3.7 million tetrahedral elements and 95.9, 13.2 and 2.1 million displacement DOF, respectively. The same mesh was used for discretizing the governing equations of both electrophysiology (EP) and nonlinear elasticity. A novel algebraic multigrid (AMG) preconditioner for an iterative Krylov solver was developed to deal with the resulting computational load. The AMG preconditioner was designed under the primary objective of achieving favorable strong scaling characteristics for both setup and solution runtimes, as this is key for exploiting current high performance computing hardware. Benchmark results using the 220 μm, 440 μm and 880 μm meshes demonstrate
Augustin, Christoph M.; Neic, Aurel; Liebmann, Manfred; Prassl, Anton J.; Niederer, Steven A.; Haase, Gundolf; Plank, Gernot
2016-01-01
Electromechanical (EM) models of the heart have been used successfully to study fundamental mechanisms underlying a heart beat in health and disease. However, in all modeling studies reported so far numerous simplifications were made in terms of representing biophysical details of cellular function and its heterogeneity, gross anatomy and tissue microstructure, as well as the bidirectional coupling between electrophysiology (EP) and tissue distension. One limiting factor is the employed spatial discretization methods which are not sufficiently flexible to accommodate complex geometries or resolve heterogeneities, but, even more importantly, the limited efficiency of the prevailing solver techniques which are not sufficiently scalable to deal with the incurring increase in degrees of freedom (DOF) when modeling cardiac electromechanics at high spatio-temporal resolution. This study reports on the development of a novel methodology for solving the nonlinear equation of finite elasticity using human whole organ models of cardiac electromechanics, discretized at a high para-cellular resolution. Three patient-specific, anatomically accurate, whole heart EM models were reconstructed from magnetic resonance (MR) scans at resolutions of 220 μm, 440 μm and 880 μm, yielding meshes of approximately 184.6, 24.4 and 3.7 million tetrahedral elements and 95.9, 13.2 and 2.1 million displacement DOF, respectively. The same mesh was used for discretizing the governing equations of both electrophysiology (EP) and nonlinear elasticity. A novel algebraic multigrid (AMG) preconditioner for an iterative Krylov solver was developed to deal with the resulting computational load. The AMG preconditioner was designed under the primary objective of achieving favorable strong scaling characteristics for both setup and solution runtimes, as this is key for exploiting current high performance computing hardware. Benchmark results using the 220 μm, 440 μm and 880 μm meshes demonstrate
NASA Astrophysics Data System (ADS)
Augustin, Christoph M.; Neic, Aurel; Liebmann, Manfred; Prassl, Anton J.; Niederer, Steven A.; Haase, Gundolf; Plank, Gernot
2016-01-01
Electromechanical (EM) models of the heart have been used successfully to study fundamental mechanisms underlying a heart beat in health and disease. However, in all modeling studies reported so far numerous simplifications were made in terms of representing biophysical details of cellular function and its heterogeneity, gross anatomy and tissue microstructure, as well as the bidirectional coupling between electrophysiology (EP) and tissue distension. One limiting factor is the employed spatial discretization methods which are not sufficiently flexible to accommodate complex geometries or resolve heterogeneities, but, even more importantly, the limited efficiency of the prevailing solver techniques which is not sufficiently scalable to deal with the incurring increase in degrees of freedom (DOF) when modeling cardiac electromechanics at high spatio-temporal resolution. This study reports on the development of a novel methodology for solving the nonlinear equation of finite elasticity using human whole organ models of cardiac electromechanics, discretized at a high para-cellular resolution. Three patient-specific, anatomically accurate, whole heart EM models were reconstructed from magnetic resonance (MR) scans at resolutions of 220 μm, 440 μm and 880 μm, yielding meshes of approximately 184.6, 24.4 and 3.7 million tetrahedral elements and 95.9, 13.2 and 2.1 million displacement DOF, respectively. The same mesh was used for discretizing the governing equations of both electrophysiology (EP) and nonlinear elasticity. A novel algebraic multigrid (AMG) preconditioner for an iterative Krylov solver was developed to deal with the resulting computational load. The AMG preconditioner was designed under the primary objective of achieving favorable strong scaling characteristics for both setup and solution runtimes, as this is key for exploiting current high performance computing hardware. Benchmark results using the 220 μm, 440 μm and 880 μm meshes demonstrate
Tuminaro, Raymond S.; Perego, Mauro; Tezaur, Irina Kalashnikova; Salinger, Andrew G.; Price, Stephen
2016-10-06
A multigrid method is proposed that combines ideas from matrix dependent multigrid for structured grids and algebraic multigrid for unstructured grids. It targets problems where a three-dimensional mesh can be viewed as an extrusion of a two-dimensional, unstructured mesh in a third dimension. Our motivation comes from the modeling of thin structures via finite elements and, more specifically, the modeling of ice sheets. Extruded meshes are relatively common for thin structures and often give rise to anisotropic problems when the thin direction mesh spacing is much smaller than the broad direction mesh spacing. Within our approach, the first few multigrid hierarchy levels are obtained by applying matrix dependent multigrid to semicoarsen in a structured thin direction fashion. After sufficient structured coarsening, the resulting mesh contains only a single layer corresponding to a two-dimensional, unstructured mesh. Algebraic multigrid can then be employed in a standard manner to create further coarse levels, as the anisotropic phenomena is no longer present in the single layer problem. The overall approach remains fully algebraic, with the minor exception that some additional information is needed to determine the extruded direction. Furthermore, this facilitates integration of the solver with a variety of different extruded mesh applications.
Multigrid methods in structural mechanics
NASA Technical Reports Server (NTRS)
Raju, I. S.; Bigelow, C. A.; Taasan, S.; Hussaini, M. Y.
1986-01-01
Although the application of multigrid methods to the equations of elasticity has been suggested, few such applications have been reported in the literature. In the present work, multigrid techniques are applied to the finite element analysis of a simply supported Bernoulli-Euler beam, and various aspects of the multigrid algorithm are studied and explained in detail. In this study, six grid levels were used to model half the beam. With linear prolongation and sequential ordering, the multigrid algorithm yielded results which were of machine accuracy with work equivalent to 200 standard Gauss-Seidel iterations on the fine grid. Also with linear prolongation and sequential ordering, the V(1,n) cycle with n greater than 2 yielded better convergence rates than the V(n,1) cycle. The restriction and prolongation operators were derived based on energy principles. Conserving energy during the inter-grid transfers required that the prolongation operator be the transpose of the restriction operator, and led to improved convergence rates. With energy-conserving prolongation and sequential ordering, the multigrid algorithm yielded results of machine accuracy with a work equivalent to 45 Gauss-Seidel iterations on the fine grid. The red-black ordering of relaxations yielded solutions of machine accuracy in a single V(1,1) cycle, which required work equivalent to about 4 iterations on the finest grid level.
Tuminaro, Raymond S.; Perego, Mauro; Tezaur, Irina Kalashnikova; ...
2016-10-06
A multigrid method is proposed that combines ideas from matrix dependent multigrid for structured grids and algebraic multigrid for unstructured grids. It targets problems where a three-dimensional mesh can be viewed as an extrusion of a two-dimensional, unstructured mesh in a third dimension. Our motivation comes from the modeling of thin structures via finite elements and, more specifically, the modeling of ice sheets. Extruded meshes are relatively common for thin structures and often give rise to anisotropic problems when the thin direction mesh spacing is much smaller than the broad direction mesh spacing. Within our approach, the first few multigridmore » hierarchy levels are obtained by applying matrix dependent multigrid to semicoarsen in a structured thin direction fashion. After sufficient structured coarsening, the resulting mesh contains only a single layer corresponding to a two-dimensional, unstructured mesh. Algebraic multigrid can then be employed in a standard manner to create further coarse levels, as the anisotropic phenomena is no longer present in the single layer problem. The overall approach remains fully algebraic, with the minor exception that some additional information is needed to determine the extruded direction. Furthermore, this facilitates integration of the solver with a variety of different extruded mesh applications.« less
Coarse-grid selection for parallel algebraic multigrid
Cleary, A. J., LLNL
1998-06-01
The need to solve linear systems arising from problems posed on extremely large, unstructured grids has sparked great interest in parallelizing algebraic multigrid (AMG) To date, however, no parallel AMG algorithms exist We introduce a parallel algorithm for the selection of coarse-grid points, a crucial component of AMG, based on modifications of certain paallel independent set algorithms and the application of heuristics designed to insure the quality of the coarse grids A prototype serial version of the algorithm is implemented, and tests are conducted to determine its effect on multigrid convergence, and AMG complexity
AMG (Algebraic Multigrid): Basic Development, Applications and Theory.
1987-01-07
NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c OFFICE SYMBOL I n iude .4 re4 Code Captain Thomas (202) 767-5025 NM DO FORM 1473.83 APR...31 (1977), 333-390, ICASE Report 76-27. (B2) A. Brandt; "Algebraic multigrid: theory", Proc. Int’l M3onf., Copper 1.buntain., C), Aprol, 1983. (B3) A... Copper Mtn., OD, April 1983. (Dl) J.E. Dendy, Jr.; "Black box multigrid," LA-UR-Sl-2337 Los Alamos National Laboratory, Los Alamos, New Mexico, J. Ccn
Algebraic multigrid domain and range decomposition (AMG-DD / AMG-RD)*
Bank, R.; Falgout, R. D.; Jones, T.; Manteuffel, T. A.; McCormick, S. F.; Ruge, J. W.
2015-10-29
In modern large-scale supercomputing applications, algebraic multigrid (AMG) is a leading choice for solving matrix equations. However, the high cost of communication relative to that of computation is a concern for the scalability of traditional implementations of AMG on emerging architectures. This paper introduces two new algebraic multilevel algorithms, algebraic multigrid domain decomposition (AMG-DD) and algebraic multigrid range decomposition (AMG-RD), that replace traditional AMG V-cycles with a fully overlapping domain decomposition approach. While the methods introduced here are similar in spirit to the geometric methods developed by Brandt and Diskin [Multigrid solvers on decomposed domains, in Domain Decomposition Methods in Science and Engineering, Contemp. Math. 157, AMS, Providence, RI, 1994, pp. 135--155], Mitchell [Electron. Trans. Numer. Anal., 6 (1997), pp. 224--233], and Bank and Holst [SIAM J. Sci. Comput., 22 (2000), pp. 1411--1443], they differ primarily in that they are purely algebraic: AMG-RD and AMG-DD trade communication for computation by forming global composite “grids” based only on the matrix, not the geometry. (As is the usual AMG convention, “grids” here should be taken only in the algebraic sense, regardless of whether or not it corresponds to any geometry.) Another important distinguishing feature of AMG-RD and AMG-DD is their novel residual communication process that enables effective parallel computation on composite grids, avoiding the all-to-all communication costs of the geometric methods. The main purpose of this paper is to study the potential of these two algebraic methods as possible alternatives to existing AMG approaches for future parallel machines. As a result, this paper develops some theoretical properties of these methods and reports on serial numerical tests of their convergence properties over a spectrum of problem parameters.
Algebraic multigrid domain and range decomposition (AMG-DD / AMG-RD)*
Bank, R.; Falgout, R. D.; Jones, T.; ...
2015-10-29
In modern large-scale supercomputing applications, algebraic multigrid (AMG) is a leading choice for solving matrix equations. However, the high cost of communication relative to that of computation is a concern for the scalability of traditional implementations of AMG on emerging architectures. This paper introduces two new algebraic multilevel algorithms, algebraic multigrid domain decomposition (AMG-DD) and algebraic multigrid range decomposition (AMG-RD), that replace traditional AMG V-cycles with a fully overlapping domain decomposition approach. While the methods introduced here are similar in spirit to the geometric methods developed by Brandt and Diskin [Multigrid solvers on decomposed domains, in Domain Decomposition Methods inmore » Science and Engineering, Contemp. Math. 157, AMS, Providence, RI, 1994, pp. 135--155], Mitchell [Electron. Trans. Numer. Anal., 6 (1997), pp. 224--233], and Bank and Holst [SIAM J. Sci. Comput., 22 (2000), pp. 1411--1443], they differ primarily in that they are purely algebraic: AMG-RD and AMG-DD trade communication for computation by forming global composite “grids” based only on the matrix, not the geometry. (As is the usual AMG convention, “grids” here should be taken only in the algebraic sense, regardless of whether or not it corresponds to any geometry.) Another important distinguishing feature of AMG-RD and AMG-DD is their novel residual communication process that enables effective parallel computation on composite grids, avoiding the all-to-all communication costs of the geometric methods. The main purpose of this paper is to study the potential of these two algebraic methods as possible alternatives to existing AMG approaches for future parallel machines. As a result, this paper develops some theoretical properties of these methods and reports on serial numerical tests of their convergence properties over a spectrum of problem parameters.« less
Kalchev, D.; Ketelsen, C.; Vassilevski, P. S.
2013-11-07
Our paper proposes an adaptive strategy for reusing a previously constructed coarse space by algebraic multigrid to construct a two-level solver for a problem with nearby characteristics. Furthermore, a main target application is the solution of the linear problems that appear throughout a sequence of Markov chain Monte Carlo simulations of subsurface flow with uncertain permeability field. We demonstrate the efficacy of the method with extensive set of numerical experiments.
Non-Galerkin Coarse Grids for Algebraic Multigrid
Falgout, Robert D.; Schroder, Jacob B.
2014-06-26
Algebraic multigrid (AMG) is a popular and effective solver for systems of linear equations that arise from discretized partial differential equations. And while AMG has been effectively implemented on large scale parallel machines, challenges remain, especially when moving to exascale. Particularly, stencil sizes (the number of nonzeros in a row) tend to increase further down in the coarse grid hierarchy, and this growth leads to more communication. Therefore, as problem size increases and the number of levels in the hierarchy grows, the overall efficiency of the parallel AMG method decreases, sometimes dramatically. This growth in stencil size is due to the standard Galerkin coarse grid operator, $P^T A P$, where $P$ is the prolongation (i.e., interpolation) operator. For example, the coarse grid stencil size for a simple three-dimensional (3D) seven-point finite differencing approximation to diffusion can increase into the thousands on present day machines, causing an associated increase in communication costs. We therefore consider algebraically truncating coarse grid stencils to obtain a non-Galerkin coarse grid. First, the sparsity pattern of the non-Galerkin coarse grid is determined by employing a heuristic minimal “safe” pattern together with strength-of-connection ideas. Second, the nonzero entries are determined by collapsing the stencils in the Galerkin operator using traditional AMG techniques. The result is a reduction in coarse grid stencil size, overall operator complexity, and parallel AMG solve phase times.
Scaling Algebraic Multigrid Solvers: On the Road to Exascale
Baker, A H; Falgout, R D; Gamblin, T; Kolev, T; Schulz, M; Yang, U M
2010-12-12
Algebraic Multigrid (AMG) solvers are an essential component of many large-scale scientific simulation codes. Their continued numerical scalability and efficient implementation is critical for preparing these codes for exascale. Our experiences on modern multi-core machines show that significant challenges must be addressed for AMG to perform well on such machines. We discuss our experiences and describe the techniques we have used to overcome scalability challenges for AMG on hybrid architectures in preparation for exascale.
Distance-Two Interpolation for Parallel Algebraic Multigrid
De Sterck, H; Falgout, R; Nolting, J; Yang, U M
2007-05-08
Algebraic multigrid (AMG) is one of the most efficient and scalable parallel algorithms for solving sparse linear systems on unstructured grids. However, for large three-dimensional problems, the coarse grids that are normally used in AMG often lead to growing complexity in terms of memory use and execution time per AMG V-cycle. Sparser coarse grids, such as those obtained by the Parallel Modified Independent Set coarsening algorithm (PMIS) [7], remedy this complexity growth, but lead to non-scalable AMG convergence factors when traditional distance-one interpolation methods are used. In this paper we study the scalability of AMG methods that combine PMIS coarse grids with long distance interpolation methods. AMG performance and scalability is compared for previously introduced interpolation methods as well as new variants of them for a variety of relevant test problems on parallel computers. It is shown that the increased interpolation accuracy largely restores the scalability of AMG convergence factors for PMIS-coarsened grids, and in combination with complexity reducing methods, such as interpolation truncation, one obtains a class of parallel AMG methods that enjoy excellent scalability properties on large parallel computers.
Final report on the Copper Mountain conference on multigrid methods
1997-10-01
The Copper Mountain Conference on Multigrid Methods was held on April 6-11, 1997. It took the same format used in the previous Copper Mountain Conferences on Multigrid Method conferences. Over 87 mathematicians from all over the world attended the meeting. 56 half-hour talks on current research topics were presented. Talks with similar content were organized into sessions. Session topics included: fluids; domain decomposition; iterative methods; basics; adaptive methods; non-linear filtering; CFD; applications; transport; algebraic solvers; supercomputing; and student paper winners.
The mixed finite element multigrid method for stokes equations.
Muzhinji, K; Shateyi, S; Motsa, S S
2015-01-01
The stable finite element discretization of the Stokes problem produces a symmetric indefinite system of linear algebraic equations. A variety of iterative solvers have been proposed for such systems in an attempt to construct efficient, fast, and robust solution techniques. This paper investigates one of such iterative solvers, the geometric multigrid solver, to find the approximate solution of the indefinite systems. The main ingredient of the multigrid method is the choice of an appropriate smoothing strategy. This study considers the application of different smoothers and compares their effects in the overall performance of the multigrid solver. We study the multigrid method with the following smoothers: distributed Gauss Seidel, inexact Uzawa, preconditioned MINRES, and Braess-Sarazin type smoothers. A comparative study of the smoothers shows that the Braess-Sarazin smoothers enhance good performance of the multigrid method. We study the problem in a two-dimensional domain using stable Hood-Taylor Q2-Q1 pair of finite rectangular elements. We also give the main theoretical convergence results. We present the numerical results to demonstrate the efficiency and robustness of the multigrid method and confirm the theoretical results.
The Mixed Finite Element Multigrid Method for Stokes Equations
Muzhinji, K.; Shateyi, S.; Motsa, S. S.
2015-01-01
The stable finite element discretization of the Stokes problem produces a symmetric indefinite system of linear algebraic equations. A variety of iterative solvers have been proposed for such systems in an attempt to construct efficient, fast, and robust solution techniques. This paper investigates one of such iterative solvers, the geometric multigrid solver, to find the approximate solution of the indefinite systems. The main ingredient of the multigrid method is the choice of an appropriate smoothing strategy. This study considers the application of different smoothers and compares their effects in the overall performance of the multigrid solver. We study the multigrid method with the following smoothers: distributed Gauss Seidel, inexact Uzawa, preconditioned MINRES, and Braess-Sarazin type smoothers. A comparative study of the smoothers shows that the Braess-Sarazin smoothers enhance good performance of the multigrid method. We study the problem in a two-dimensional domain using stable Hood-Taylor Q2-Q1 pair of finite rectangular elements. We also give the main theoretical convergence results. We present the numerical results to demonstrate the efficiency and robustness of the multigrid method and confirm the theoretical results. PMID:25945361
The multigrid preconditioned conjugate gradient method
NASA Technical Reports Server (NTRS)
Tatebe, Osamu
1993-01-01
A multigrid preconditioned conjugate gradient method (MGCG method), which uses the multigrid method as a preconditioner of the PCG method, is proposed. The multigrid method has inherent high parallelism and improves convergence of long wavelength components, which is important in iterative methods. By using this method as a preconditioner of the PCG method, an efficient method with high parallelism and fast convergence is obtained. First, it is considered a necessary condition of the multigrid preconditioner in order to satisfy requirements of a preconditioner of the PCG method. Next numerical experiments show a behavior of the MGCG method and that the MGCG method is superior to both the ICCG method and the multigrid method in point of fast convergence and high parallelism. This fast convergence is understood in terms of the eigenvalue analysis of the preconditioned matrix. From this observation of the multigrid preconditioner, it is realized that the MGCG method converges in very few iterations and the multigrid preconditioner is a desirable preconditioner of the conjugate gradient method.
NASA Astrophysics Data System (ADS)
Gravemeier, Volker; Kronbichler, Martin; Gee, Michael W.; Wall, Wolfgang A.
2011-02-01
This article studies three aspects of the recently proposed algebraic variational multiscale-multigrid method for large-eddy simulation of turbulent flow. First, the method is integrated into a second-order-accurate generalized-α time-stepping scheme. Second, a Fourier analysis of a simplified model problem is performed to assess the impact of scale separation on the overall performance of the method. The analysis reveals that scale separation implemented by projective operators provides modeling effects very close to an ideal small-scale subgrid viscosity, that is, it preserves low frequencies, in contrast to non-projective scale separations. Third, the algebraic variational multiscale-multigrid method is applied to turbulent flow past a square-section cylinder. The computational results obtained with the method reveal, on the one hand, the good accuracy achievable for this challenging test case already at a rather coarse discretization and, on the other hand, the superior computing efficiency, e.g., compared to a traditional dynamic Smagorinsky modeling approach.
Multigrid Methods for Fully Implicit Oil Reservoir Simulation
NASA Technical Reports Server (NTRS)
Molenaar, J.
1996-01-01
In this paper we consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations: the material balance or continuity equations and the equation of motion (Darcy's law). For the numerical solution of this system of nonlinear partial differential equations there are two approaches: the fully implicit or simultaneous solution method and the sequential solution method. In the sequential solution method the system of partial differential equations is manipulated to give an elliptic pressure equation and a hyperbolic (or parabolic) saturation equation. In the IMPES approach the pressure equation is first solved, using values for the saturation from the previous time level. Next the saturations are updated by some explicit time stepping method; this implies that the method is only conditionally stable. For the numerical solution of the linear, elliptic pressure equation multigrid methods have become an accepted technique. On the other hand, the fully implicit method is unconditionally stable, but it has the disadvantage that in every time step a large system of nonlinear algebraic equations has to be solved. The most time-consuming part of any fully implicit reservoir simulator is the solution of this large system of equations. Usually this is done by Newton's method. The resulting systems of linear equations are then either solved by a direct method or by some conjugate gradient type method. In this paper we consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations. There are two ways of using multigrid for this job: either we use a nonlinear multigrid method or we use a linear multigrid method to deal with the linear systems that arise in Newton's method. So far only a few authors have reported on the use of multigrid methods for fully implicit simulations. Two-level FAS algorithm is presented for the black-oil equations, and linear multigrid for
Some Aspects of Multigrid Methods on Non-Structured Meshes
NASA Technical Reports Server (NTRS)
Guillard, H.; Marco, N.
1996-01-01
To solve a given fine mesh problem, the design of a multigrid method requires the definition of coarse levels, associated coarse grid operators and inter-grid transfer operators. For non-structured simplified meshes, these definitions can rely on the use of non-nested triangulations. These definitions can also be founded on agglomeration/aggregation techniques in a purely algebraic manner. This paper analyzes these two options, shows the connections of the volume-agglomeration method with algebraic methods and proposes a new definition of prolongation operator suitable for the application of the volume-agglomeration method to elliptic problems.
Extending the applicability of multigrid methods
Brannick, J; Brezina, M; Falgout, R; Manteuffel, T; McCormick, S; Ruge, J; Sheehan, B; Xu, J; Zikatanov, L
2006-09-25
Multigrid methods are ideal for solving the increasingly large-scale problems that arise in numerical simulations of physical phenomena because of their potential for computational costs and memory requirements that scale linearly with the degrees of freedom. Unfortunately, they have been historically limited by their applicability to elliptic-type problems and the need for special handling in their implementation. In this paper, we present an overview of several recent theoretical and algorithmic advances made by the TOPS multigrid partners and their collaborators in extending applicability of multigrid methods. Specific examples that are presented include quantum chromodynamics, radiation transport, and electromagnetics.
Multigrid Methods for EHL Problems
NASA Technical Reports Server (NTRS)
Nurgat, Elyas; Berzins, Martin
1996-01-01
In many bearings and contacts, forces are transmitted through thin continuous fluid films which separate two contacting elements. Objects in contact are normally subjected to friction and wear which can be reduced effectively by using lubricants. If the lubricant film is sufficiently thin to prevent the opposing solids from coming into contact and carries the entire load, then we have hydrodynamic lubrication, where the lubricant film is determined by the motion and geometry of the solids. However, for loaded contacts of low geometrical conformity, such as gears, rolling contact bearings and cams, this is not the case due to high pressures and this is referred to as Elasto-Hydrodynamic Lubrication (EHL) In EHL, elastic deformation of the contacting elements and the increase in fluid viscosity with pressure are very significant and cannot be ignored. Since the deformation results in changing the geometry of the lubricating film, which in turn determines the pressure distribution, an EHL mathematical model must simultaneously satisfy the complex elasticity (integral) and the Reynolds lubrication (differential) equations. The nonlinear and coupled nature of the two equations makes numerical calculations computationally intensive. This is especially true for highly loaded problems found in practice. One novel feature of these problems is that the solution may exhibit sharp pressure spikes in the outlet region. To this date both finite element and finite difference methods have been used to solve EHL problems with perhaps greater emphasis on the use of the finite difference approach. In both cases, a major computational difficulty is ensuring convergence of the nonlinear equations solver to a steady state solution. Two successful methods for achieving this are direct iteration and multigrid methods. Direct iteration methods (e.g Gauss Seidel) have long been used in conjunction with finite difference discretizations on regular meshes. Perhaps one of the best examples of
The development of an algebraic multigrid algorithm for symmetric positive definite linear systems
Vanek, P.; Mandel, J.; Brezina, M.
1996-12-31
An algebraic multigrid algorithm for symmetric, positive definite linear systems is developed based on the concept of prolongation by smoothed aggregation. Coarse levels are generated automatically. We present a set of requirements motivated heuristically by a convergence theory. The algorithm then attempts to satisfy the requirements. Input to the method are the coefficient matrix and zero energy modes, which are determined from nodal coordinates and knowledge of the differential equation. Efficiency of the resulting algorithm is demonstrated by computational results on real world problems from solid elasticity, plate blending, and shells.
A multigrid method for variational inequalities
Oliveira, S.; Stewart, D.E.; Wu, W.
1996-12-31
Multigrid methods have been used with great success for solving elliptic partial differential equations. Penalty methods have been successful in solving finite-dimensional quadratic programs. In this paper these two techniques are combined to give a fast method for solving obstacle problems. A nonlinear penalized problem is solved using Newton`s method for large values of a penalty parameter. Multigrid methods are used to solve the linear systems in Newton`s method. The overall numerical method developed is based on an exterior penalty function, and numerical results showing the performance of the method have been obtained.
An improved convergence analysis of smoothed aggregation algebraic multigrid
Brezina, Marian; Vaněk, Petr; Vassilevski, Panayot S.
2011-03-02
We present an improved analysis of the smoothed aggregation (SA) alge- braic multigrid method (AMG) extending the original proof in [SA] and its modification in [Va08]. The new result imposes fewer restrictions on the aggregates that makes it eas- ier to verify in practice. Also, we extend a result in [Van] that allows us to use aggressive coarsening at all levels due to the special properties of the polynomial smoother, that we use and analyze, and thus provide a multilevel convergence estimate with bounds independent of the coarsening ratio.
Multigrid methods with applications to reservoir simulation
Xiao, Shengyou
1994-05-01
Multigrid methods are studied for solving elliptic partial differential equations. Focus is on parallel multigrid methods and their use for reservoir simulation. Multicolor Fourier analysis is used to analyze the behavior of standard multigrid methods for problems in one and two dimensions. Relation between multicolor and standard Fourier analysis is established. Multiple coarse grid methods for solving model problems in 1 and 2 dimensions are considered; at each coarse grid level we use more than one coarse grid to improve convergence. For a given Dirichlet problem, a related extended problem is first constructed; a purification procedure can be used to obtain Moore-Penrose solutions of the singular systems encountered. For solving anisotropic equations, semicoarsening and line smoothing techniques are used with multiple coarse grid methods to improve convergence. Two-level convergence factors are estimated using multicolor. In the case where each operator has the same stencil on each grid point on one level, exact multilevel convergence factors can be obtained. For solving partial differential equations with discontinuous coefficients, interpolation and restriction operators should include information about the equation coefficients. Matrix-dependent interpolation and restriction operators based on the Schur complement can be used in nonsymmetric cases. A semicoarsening multigrid solver with these operators is used in UTCOMP, a 3-D, multiphase, multicomponent, compositional reservoir simulator. The numerical experiments are carried out on different computing systems. Results indicate that the multigrid methods are promising.
NASA Technical Reports Server (NTRS)
Golik, W. L.
1996-01-01
A robust solver for the elliptic grid generation equations is sought via a numerical study. The system of PDEs is discretized with finite differences, and multigrid methods are applied to the resulting nonlinear algebraic equations. Multigrid iterations are compared with respect to the robustness and efficiency. Different smoothers are tried to improve the convergence of iterations. The methods are applied to four 2D grid generation problems over a wide range of grid distortions. The results of the study help to select smoothing schemes and the overall multigrid procedures for elliptic grid generation.
Algebraic Multigrid by Smoothed Aggregation for Second and Fourth Order Elliptic Problems
NASA Technical Reports Server (NTRS)
Vanek, Petr; Mandel, Jan; Brezina, Marian
1996-01-01
Multigrid methods are very efficient iterative solvers for system of algebraic equations arising from finite element and finite difference discretization of elliptic boundary value problems. The main principle of multigrid methods is to complement the local exchange of information in point-wise iterative methods by a global one utilizing several related systems, called coarse levels, with a smaller number of variables. The coarse levels are often obtained as a hierarchy of discretizations with different characteristic meshsizes, but this requires that the discretization is controlled by the iterative method. To solve linear systems produced by existing finite element software, one needs to create an artificial hierarchy of coarse problems. The principal issue is then to obtain computational complexity and approximation properties similar to those for nested meshes, using only information in the matrix of the system and as little extra information as possible. Such algebraic multigrid method that uses the system matrix only was developed by Ruge. The prolongations were based on the matrix of the system by partial solution from given values at selected coarse points. The coarse grid points were selected so that each point would be interpolated to via so-called strong connections. Our approach is based on smoothed aggregation introduced recently by Vanek. First the set of nodes is decomposed into small mutually disjoint subsets. A tentative piecewise constant interpolation (in the discrete sense) is then defined on those subsets as piecewise constant for second order problems, and piecewise linear for fourth order problems. The prolongation operator is then obtained by smoothing the output of the tentative prolongation and coarse level operators are defined variationally.
Relaxation schemes for Chebyshev spectral multigrid methods
NASA Technical Reports Server (NTRS)
Kang, Yimin; Fulton, Scott R.
1993-01-01
Two relaxation schemes for Chebyshev spectral multigrid methods are presented for elliptic equations with Dirichlet boundary conditions. The first scheme is a pointwise-preconditioned Richardson relaxation scheme and the second is a line relaxation scheme. The line relaxation scheme provides an efficient and relatively simple approach for solving two-dimensional spectral equations. Numerical examples and comparisons with other methods are given.
Lecture Notes on Multigrid Methods
Vassilevski, P S
2010-06-28
The Lecture Notes are primarily based on a sequence of lectures given by the author while been a Fulbright scholar at 'St. Kliment Ohridski' University of Sofia, Sofia, Bulgaria during the winter semester of 2009-2010 academic year. The notes are somewhat expanded version of the actual one semester class he taught there. The material covered is slightly modified and adapted version of similar topics covered in the author's monograph 'Multilevel Block-Factorization Preconditioners' published in 2008 by Springer. The author tried to keep the notes as self-contained as possible. That is why the lecture notes begin with some basic introductory matrix-vector linear algebra, numerical PDEs (finite element) facts emphasizing the relations between functions in finite dimensional spaces and their coefficient vectors and respective norms. Then, some additional facts on the implementation of finite elements based on relation tables using the popular compressed sparse row (CSR) format are given. Also, typical condition number estimates of stiffness and mass matrices, the global matrix assembly from local element matrices are given as well. Finally, some basic introductory facts about stationary iterative methods, such as Gauss-Seidel and its symmetrized version are presented. The introductory material ends up with the smoothing property of the classical iterative methods and the main definition of two-grid iterative methods. From here on, the second part of the notes begins which deals with the various aspects of the principal TG and the numerous versions of the MG cycles. At the end, in part III, we briefly introduce algebraic versions of MG referred to as AMG, focusing on classes of AMG specialized for finite element matrices.
A nonconforming multigrid method using conforming subspaces
NASA Technical Reports Server (NTRS)
Lee, Chang Ock
1993-01-01
For second-order elliptic boundary value problems, we develop a nonconforming multigrid method using the coarser-grid correction on the conforming finite element subspaces. The convergence proof with an arbitrary number of smoothing steps for nu-cycle is presented.
Parallel Multigrid Equation Solver
Adams, Mark
2001-09-07
Prometheus is a fully parallel multigrid equation solver for matrices that arise in unstructured grid finite element applications. It includes a geometric and an algebraic multigrid method and has solved problems of up to 76 mullion degrees of feedom, problems in linear elasticity on the ASCI blue pacific and ASCI red machines.
Multigrid Methods in Electronic Structure Calculations
NASA Astrophysics Data System (ADS)
Briggs, Emil
1996-03-01
Multigrid techniques have become the method of choice for a broad range of computational problems. Their use in electronic structure calculations introduces a new set of issues when compared to traditional plane wave approaches. We have developed a set of techniques that address these issues and permit multigrid algorithms to be applied to the electronic structure problem in an efficient manner. In our approach the Kohn-Sham equations are discretized on a real-space mesh using a compact representation of the Hamiltonian. The resulting equations are solved directly on the mesh using multigrid iterations. This produces rapid convergence rates even for ill-conditioned systems with large length and/or energy scales. The method has been applied to both periodic and non-periodic systems containing over 400 atoms and the results are in very good agreement with both theory and experiment. Example applications include a vacancy in diamond, an isolated C60 molecule, and a 64-atom cell of GaN with the Ga d-electrons in valence which required a 250 Ry cutoff. A particular strength of a real-space multigrid approach is its ready adaptability to massively parallel computer architectures. The compact representation of the Hamiltonian is especially well suited to such machines. Tests on the Cray-T3D have shown nearly linear scaling of the execution time up to the maximum number of processors (512). The MPP implementation has been used for studies of a large Amyloid Beta Peptide (C_146O_45N_42H_210) found in the brains of Alzheimers disease patients. Further applications of the multigrid method will also be described. (in collaboration D. J. Sullivan and J. Bernholc)
Lazarov, R; Pasciak, J; Jones, J
2002-02-01
Construction, analysis and numerical testing of efficient solution techniques for solving elliptic PDEs that allow for parallel implementation have been the focus of the research. A number of discretization and solution methods for solving second order elliptic problems that include mortar and penalty approximations and domain decomposition methods for finite elements and finite volumes have been investigated and analyzed. Techniques for parallel domain decomposition algorithms in the framework of PETC and HYPRE have been studied and tested. Hierarchical parallel grid refinement and adaptive solution methods have been implemented and tested on various model problems. A parallel code implementing the mortar method with algebraically constructed multiplier spaces was developed.
Grandchild of the frequency: Decomposition multigrid method
Dendy, J.E. Jr.; Tazartes, C.C.
1994-12-31
Previously the authors considered the frequency decomposition multigrid method and rejected it because it was not robust for problems with discontinuous coefficients. In this paper they show how to modify the method so as to obtain such robustness while retaining robustness for problems with anisotropic coefficients. They also discuss application of this method to a problem arising in global ocean modeling on the CM-5.
Multigrid techniques for unstructured meshes
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1995-01-01
An overview of current multigrid techniques for unstructured meshes is given. The basic principles of the multigrid approach are first outlined. Application of these principles to unstructured mesh problems is then described, illustrating various different approaches, and giving examples of practical applications. Advanced multigrid topics, such as the use of algebraic multigrid methods, and the combination of multigrid techniques with adaptive meshing strategies are dealt with in subsequent sections. These represent current areas of research, and the unresolved issues are discussed. The presentation is organized in an educational manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.
The multigrid method for semi-implicit hydrodynamics codes
Brandt, A.; Dendy, J.E. Jr.; Ruppel, H.
1980-03-01
The multigrid method is applied to the pressure iteration in both Eulerian and Lagrangian codes, and computational examples of its efficiency are presented. In addition a general technique for speeding up the calculation of very low Mach number flows is presented. The latter feature is independent of the multigrid algorithm.
Multigrid method for semi-implicit hydrodynamics codes
Brandt, A.; Dendy, J.E. Jr.; Ruppel, H.
1980-03-01
The multigrid method is applied to the pressure iteration in both Eulerian and Lagrangian codes, and computational examples of its efficiency are presented. In addition a general technique for speeding up the calculation of very low Mach number flows is presented. The latter feature is independent of the multigrid algorithm.
Implementing abstract multigrid or multilevel methods
NASA Technical Reports Server (NTRS)
Douglas, Craig C.
1993-01-01
Multigrid methods can be formulated as an algorithm for an abstract problem that is independent of the partial differential equation, domain, and discretization method. In such an abstract setting, problems not arising from partial differential equations can be treated. A general theory exists for linear problems. The general theory was motivated by a series of abstract solvers (Madpack). The latest version was motivated by the theory. Madpack now allows for a wide variety of iterative and direct solvers, preconditioners, and interpolation and projection schemes, including user callback ones. It allows for sparse, dense, and stencil matrices. Mildly nonlinear problems can be handled. Also, there is a fast, multigrid Poisson solver (two and three dimensions). The type of solvers and design decisions (including language, data structures, external library support, and callbacks) are discussed. Based on the author's experiences with two versions of Madpack, a better approach is proposed. This is based on a mixed language formulation (C and FORTRAN + preprocessor). Reasons for not using FORTRAN, C, or C++ (individually) are given. Implementing the proposed strategy is not difficult.
Semi-coarsening multigrid methods for parallel computing
Jones, J.E.
1996-12-31
Standard multigrid methods are not well suited for problems with anisotropic coefficients which can occur, for example, on grids that are stretched to resolve a boundary layer. There are several different modifications of the standard multigrid algorithm that yield efficient methods for anisotropic problems. In the paper, we investigate the parallel performance of these multigrid algorithms. Multigrid algorithms which work well for anisotropic problems are based on line relaxation and/or semi-coarsening. In semi-coarsening multigrid algorithms a grid is coarsened in only one of the coordinate directions unlike standard or full-coarsening multigrid algorithms where a grid is coarsened in each of the coordinate directions. When both semi-coarsening and line relaxation are used, the resulting multigrid algorithm is robust and automatic in that it requires no knowledge of the nature of the anisotropy. This is the basic multigrid algorithm whose parallel performance we investigate in the paper. The algorithm is currently being implemented on an IBM SP2 and its performance is being analyzed. In addition to looking at the parallel performance of the basic semi-coarsening algorithm, we present algorithmic modifications with potentially better parallel efficiency. One modification reduces the amount of computational work done in relaxation at the expense of using multiple coarse grids. This modification is also being implemented with the aim of comparing its performance to that of the basic semi-coarsening algorithm.
Vandewalle, S.
1994-12-31
Time-stepping methods for parabolic partial differential equations are essentially sequential. This prohibits the use of massively parallel computers unless the problem on each time-level is very large. This observation has led to the development of algorithms that operate on more than one time-level simultaneously; that is to say, on grids extending in space and in time. The so-called parabolic multigrid methods solve the time-dependent parabolic PDE as if it were a stationary PDE discretized on a space-time grid. The author has investigated the use of multigrid waveform relaxation, an algorithm developed by Lubich and Ostermann. The algorithm is based on a multigrid acceleration of waveform relaxation, a highly concurrent technique for solving large systems of ordinary differential equations. Another method of this class is the time-parallel multigrid method. This method was developed by Hackbusch and was recently subject of further study by Horton. It extends the elliptic multigrid idea to the set of equations that is derived by discretizing a parabolic problem in space and in time.
Convergence acceleration of the Proteus computer code with multigrid methods
NASA Technical Reports Server (NTRS)
Demuren, A. O.; Ibraheem, S. O.
1995-01-01
This report presents the results of a study to implement convergence acceleration techniques based on the multigrid concept in the two-dimensional and three-dimensional versions of the Proteus computer code. The first section presents a review of the relevant literature on the implementation of the multigrid methods in computer codes for compressible flow analysis. The next two sections present detailed stability analysis of numerical schemes for solving the Euler and Navier-Stokes equations, based on conventional von Neumann analysis and the bi-grid analysis, respectively. The next section presents details of the computational method used in the Proteus computer code. Finally, the multigrid implementation and applications to several two-dimensional and three-dimensional test problems are presented. The results of the present study show that the multigrid method always leads to a reduction in the number of iterations (or time steps) required for convergence. However, there is an overhead associated with the use of multigrid acceleration. The overhead is higher in 2-D problems than in 3-D problems, thus overall multigrid savings in CPU time are in general better in the latter. Savings of about 40-50 percent are typical in 3-D problems, but they are about 20-30 percent in large 2-D problems. The present multigrid method is applicable to steady-state problems and is therefore ineffective in problems with inherently unstable solutions.
Convergence acceleration of the Proteus computer code with multigrid methods
NASA Technical Reports Server (NTRS)
Demuren, A. O.; Ibraheem, S. O.
1992-01-01
Presented here is the first part of a study to implement convergence acceleration techniques based on the multigrid concept in the Proteus computer code. A review is given of previous studies on the implementation of multigrid methods in computer codes for compressible flow analysis. Also presented is a detailed stability analysis of upwind and central-difference based numerical schemes for solving the Euler and Navier-Stokes equations. Results are given of a convergence study of the Proteus code on computational grids of different sizes. The results presented here form the foundation for the implementation of multigrid methods in the Proteus code.
On the Performance of an Algebraic MultigridSolver on Multicore Clusters
Baker, A H; Schulz, M; Yang, U M
2010-04-29
Algebraic multigrid (AMG) solvers have proven to be extremely efficient on distributed-memory architectures. However, when executed on modern multicore cluster architectures, we face new challenges that can significantly harm AMG's performance. We discuss our experiences on such an architecture and present a set of techniques that help users to overcome the associated problems, including thread and process pinning and correct memory associations. We have implemented most of the techniques in a MultiCore SUPport library (MCSup), which helps to map OpenMP applications to multicore machines. We present results using both an MPI-only and a hybrid MPI/OpenMP model.
Performance of algebraic multi-grid solvers based on unsmoothed and smoothed aggregation schemes
NASA Astrophysics Data System (ADS)
Webster, R.
2001-08-01
A comparison is made of the performance of two algebraic multi-grid (AMG0 and AMG1) solvers for the solution of discrete, coupled, elliptic field problems. In AMG0, the basis functions for each coarse grid/level approximation (CGA) are obtained directly by unsmoothed aggregation, an appropriate scaling being applied to each CGA to improve consistency. In AMG1 they are assembled using a smoothed aggregation with a constrained energy optimization method providing the smoothing. Although more costly, smoothed basis functions provide a better (more consistent) CGA. Thus, AMG1 might be viewed as a benchmark for the assessment of the simpler AMG0. Selected test problems for D'Arcy flow in pipe networks, Fick diffusion, plane strain elasticity and Navier-Stokes flow (in a Stokes approximation) are used in making the comparison. They are discretized on the basis of both structured and unstructured finite element meshes. The range of discrete equation sets covers both symmetric positive definite systems and systems that may be non-symmetric and/or indefinite. Both global and local mesh refinements to at least one order of resolving power are examined. Some of these include anisotropic refinements involving elements of large aspect ratio; in some hydrodynamics cases, the anisotropy is extreme, with aspect ratios exceeding two orders. As expected, AMG1 delivers typical multi-grid convergence rates, which for all practical purposes are independent of mesh bandwidth. AMG0 rates are slower. They may also be more discernibly mesh-dependent. However, for the range of mesh bandwidths examined, the overall cost effectiveness of the two solvers is remarkably similar when a full convergence to machine accuracy is demanded. Thus, the shorter solution times for AMG1 do not necessarily compensate for the extra time required for its costly grid generation. This depends on the severity of the problem and the demanded level of convergence. For problems requiring few iterations, where grid
Multigrid methods for parabolic distributed optimal control problems
NASA Astrophysics Data System (ADS)
Borzì, Alfio
2003-08-01
Multigrid schemes that solve parabolic distributed optimality systems discretized by finite differences are investigated. Accuracy properties of finite difference approximation are discussed and validated. Two multigrid methods are considered which are based on a robust relaxation technique and use two different coarsening strategies: semicoarsening and standard coarsening. The resulting multigrid algorithms show robustness with respect to changes of the value of [nu], the weight of the cost of the control, is sufficiently small. Fourier mode analysis is used to investigate the dependence of the linear twogrid convergence factor on [nu] and on the discretization parameters. Results of numerical experiments are reported that demonstrate sharpness of Fourier analysis estimates. A multigrid algorithm that solves optimal control problems with box constraints on the control is considered.
A Critical Study of Agglomerated Multigrid Methods for Diffusion
NASA Technical Reports Server (NTRS)
Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.
2011-01-01
Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Convergence rates of multigrid cycles are verified with quantitative analysis methods in which parts of the two-grid cycle are replaced by their idealized counterparts.
An automatic multigrid method for the solution of sparse linear systems
NASA Technical Reports Server (NTRS)
Shapira, Yair; Israeli, Moshe; Sidi, Avram
1993-01-01
An automatic version of the multigrid method for the solution of linear systems arising from the discretization of elliptic PDE's is presented. This version is based on the structure of the algebraic system solely, and does not use the original partial differential operator. Numerical experiments show that for the Poisson equation the rate of convergence of our method is equal to that of classical multigrid methods. Moreover, the method is robust in the sense that its high rate of convergence is conserved for other classes of problems: non-symmetric, hyperbolic (even with closed characteristics) and problems on non-uniform grids. No double discretization or special treatment of sub-domains (e.g. boundaries) is needed. When supplemented with a vector extrapolation method, high rates of convergence are achieved also for anisotropic and discontinuous problems and also for indefinite Helmholtz equations. A new double discretization strategy is proposed for finite and spectral element schemes and is found better than known strategies.
Multigrid Methods for Aerodynamic Problems in Complex Geometries
NASA Technical Reports Server (NTRS)
Caughey, David A.
1995-01-01
Work has been directed at the development of efficient multigrid methods for the solution of aerodynamic problems involving complex geometries, including the development of computational methods for the solution of both inviscid and viscous transonic flow problems. The emphasis is on problems of complex, three-dimensional geometry. The methods developed are based upon finite-volume approximations to both the Euler and the Reynolds-Averaged Navier-Stokes equations. The methods are developed for use on multi-block grids using diagonalized implicit multigrid methods to achieve computational efficiency. The work is focused upon aerodynamic problems involving complex geometries, including advanced engine inlets.
A Critical Study of Agglomerated Multigrid Methods for Diffusion
NASA Technical Reports Server (NTRS)
Thomas, James L.; Nishikawa, Hiroaki; Diskin, Boris
2009-01-01
Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and highly stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Actual cycle results are verified using quantitative analysis methods in which parts of the cycle are replaced by their idealized counterparts.
Monolithic multigrid methods for two-dimensional resistive magnetohydrodynamics
Adler, James H.; Benson, Thomas R.; Cyr, Eric C.; MacLachlan, Scott P.; Tuminaro, Raymond S.
2016-01-06
Magnetohydrodynamic (MHD) representations are used to model a wide range of plasma physics applications and are characterized by a nonlinear system of partial differential equations that strongly couples a charged fluid with the evolution of electromagnetic fields. The resulting linear systems that arise from discretization and linearization of the nonlinear problem are generally difficult to solve. In this paper, we investigate multigrid preconditioners for this system. We consider two well-known multigrid relaxation methods for incompressible fluid dynamics: Braess--Sarazin relaxation and Vanka relaxation. We first extend these to the context of steady-state one-fluid viscoresistive MHD. Then we compare the two relaxation procedures within a multigrid-preconditioned GMRES method employed within Newton's method. To isolate the effects of the different relaxation methods, we use structured grids, inf-sup stable finite elements, and geometric interpolation. Furthermore, we present convergence and timing results for a two-dimensional, steady-state test problem.
Smoothed aggregation adaptive spectral element-based algebraic multigrid
2015-01-20
SAAMGE provides parallel methods for building multilevel hierarchies and solvers that can be used for elliptic equations with highly heterogeneous coefficients. Additionally, hierarchy adaptation is implemented allowing solving multiple problems with close coefficients without rebuilding the hierarchy.
A multigrid solution method for mixed hybrid finite elements
Schmid, W.
1996-12-31
We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.
Seventh Copper Mountain Conference on Multigrid Methods. Part 2
NASA Technical Reports Server (NTRS)
Melson, N. Duane (Editor); Manteuffel, Tom A. (Editor); McCormick, Steve F. (Editor); Douglas, Craig C. (Editor)
1996-01-01
The Seventh Copper Mountain Conference on Multigrid Methods was held on April 2-7, 1995 at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The vibrancy and diversity in this field are amply expressed in these important papers, and the collection clearly shows the continuing rapid growth of the use of multigrid acceleration techniques.
NASA Technical Reports Server (NTRS)
Dinar, N.
1978-01-01
Several aspects of multigrid methods are briefly described. The main subjects include the development of very efficient multigrid algorithms for systems of elliptic equations (Cauchy-Riemann, Stokes, Navier-Stokes), as well as the development of control and prediction tools (based on local mode Fourier analysis), used to analyze, check and improve these algorithms. Preliminary research on multigrid algorithms for time dependent parabolic equations is also described. Improvements in existing multigrid processes and algorithms for elliptic equations were studied.
Adaptive Algebraic Multigrid for Finite Element Elliptic Equations with Random Coefficients
Kalchev, D
2012-04-02
This thesis presents a two-grid algorithm based on Smoothed Aggregation Spectral Element Agglomeration Algebraic Multigrid (SA-{rho}AMGe) combined with adaptation. The aim is to build an efficient solver for the linear systems arising from discretization of second-order elliptic partial differential equations (PDEs) with stochastic coefficients. Examples include PDEs that model subsurface flow with random permeability field. During a Markov Chain Monte Carlo (MCMC) simulation process, that draws PDE coefficient samples from a certain distribution, the PDE coefficients change, hence the resulting linear systems to be solved change. At every such step the system (discretized PDE) needs to be solved and the computed solution used to evaluate some functional(s) of interest that then determine if the coefficient sample is acceptable or not. The MCMC process is hence computationally intensive and requires the solvers used to be efficient and fast. This fact that at every step of MCMC the resulting linear system changes, makes an already existing solver built for the old problem perhaps not as efficient for the problem corresponding to the new sampled coefficient. This motivates the main goal of our study, namely, to adapt an already existing solver to handle the problem (with changed coefficient) with the objective to achieve this goal to be faster and more efficient than building a completely new solver from scratch. Our approach utilizes the local element matrices (for the problem with changed coefficients) to build local problems associated with constructed by the method agglomerated elements (a set of subdomains that cover the given computational domain). We solve a generalized eigenproblem for each set in a subspace spanned by the previous local coarse space (used for the old solver) and a vector, component of the error, that the old solver cannot handle. A portion of the spectrum of these local eigen-problems (corresponding to eigenvalues close to zero) form the
Geometric multigrid for an implicit-time immersed boundary method
Guy, Robert D.; Philip, Bobby; Griffith, Boyce E.
2014-10-12
The immersed boundary (IB) method is an approach to fluid-structure interaction that uses Lagrangian variables to describe the deformations and resulting forces of the structure and Eulerian variables to describe the motion and forces of the fluid. Explicit time stepping schemes for the IB method require solvers only for Eulerian equations, for which fast Cartesian grid solution methods are available. Such methods are relatively straightforward to develop and are widely used in practice but often require very small time steps to maintain stability. Implicit-time IB methods permit the stable use of large time steps, but efficient implementations of such methods require significantly more complex solvers that effectively treat both Lagrangian and Eulerian variables simultaneously. Moreover, several different approaches to solving the coupled Lagrangian-Eulerian equations have been proposed, but a complete understanding of this problem is still emerging. This paper presents a geometric multigrid method for an implicit-time discretization of the IB equations. This multigrid scheme uses a generalization of box relaxation that is shown to handle problems in which the physical stiffness of the structure is very large. Numerical examples are provided to illustrate the effectiveness and efficiency of the algorithms described herein. Finally, these tests show that using multigrid as a preconditioner for a Krylov method yields improvements in both robustness and efficiency as compared to using multigrid as a solver. They also demonstrate that with a time step 100–1000 times larger than that permitted by an explicit IB method, the multigrid-preconditioned implicit IB method is approximately 50–200 times more efficient than the explicit method.
Multigrid methods for bifurcation problems: The self adjoint case
NASA Technical Reports Server (NTRS)
Taasan, Shlomo
1987-01-01
This paper deals with multigrid methods for computational problems that arise in the theory of bifurcation and is restricted to the self adjoint case. The basic problem is to solve for arcs of solutions, a task that is done successfully with an arc length continuation method. Other important issues are, for example, detecting and locating singular points as part of the continuation process, switching branches at bifurcation points, etc. Multigrid methods have been applied to continuation problems. These methods work well at regular points and at limit points, while they may encounter difficulties in the vicinity of bifurcation points. A new continuation method that is very efficient also near bifurcation points is presented here. The other issues mentioned above are also treated very efficiently with appropriate multigrid algorithms. For example, it is shown that limit points and bifurcation points can be solved for directly by a multigrid algorithm. Moreover, the algorithms presented here solve the corresponding problems in just a few work units (about 10 or less), where a work unit is the work involved in one local relaxation on the finest grid.
Geometric multigrid for an implicit-time immersed boundary method
Guy, Robert D.; Philip, Bobby; Griffith, Boyce E.
2014-10-12
The immersed boundary (IB) method is an approach to fluid-structure interaction that uses Lagrangian variables to describe the deformations and resulting forces of the structure and Eulerian variables to describe the motion and forces of the fluid. Explicit time stepping schemes for the IB method require solvers only for Eulerian equations, for which fast Cartesian grid solution methods are available. Such methods are relatively straightforward to develop and are widely used in practice but often require very small time steps to maintain stability. Implicit-time IB methods permit the stable use of large time steps, but efficient implementations of such methodsmore » require significantly more complex solvers that effectively treat both Lagrangian and Eulerian variables simultaneously. Moreover, several different approaches to solving the coupled Lagrangian-Eulerian equations have been proposed, but a complete understanding of this problem is still emerging. This paper presents a geometric multigrid method for an implicit-time discretization of the IB equations. This multigrid scheme uses a generalization of box relaxation that is shown to handle problems in which the physical stiffness of the structure is very large. Numerical examples are provided to illustrate the effectiveness and efficiency of the algorithms described herein. Finally, these tests show that using multigrid as a preconditioner for a Krylov method yields improvements in both robustness and efficiency as compared to using multigrid as a solver. They also demonstrate that with a time step 100–1000 times larger than that permitted by an explicit IB method, the multigrid-preconditioned implicit IB method is approximately 50–200 times more efficient than the explicit method.« less
A multigrid nonoscillatory method for computing high speed flows
NASA Technical Reports Server (NTRS)
Li, C. P.; Shieh, T. H.
1993-01-01
A multigrid method using different smoothers has been developed to solve the Euler equations discretized by a nonoscillatory scheme up to fourth order accuracy. The best smoothing property is provided by a five-stage Runge-Kutta technique with optimized coefficients, yet the most efficient smoother is a backward Euler technique in factored and diagonalized form. The singlegrid solution for a hypersonic, viscous conic flow is in excellent agreement with the solution obtained by the third order MUSCL and Roe's method. Mach 8 inviscid flow computations for a complete entry probe have shown that the accuracy is at least as good as the symmetric TVD scheme of Yee and Harten. The implicit multigrid method is four times more efficient than the explicit multigrid technique and 3.5 times faster than the single-grid implicit technique. For a Mach 8.7 inviscid flow over a blunt delta wing at 30 deg incidence, the CPU reduction factor from the three-level multigrid computation is 2.2 on a grid of 37 x 41 x 73 nodes.
Multigrid Methods for the Computation of Propagators in Gauge Fields
NASA Astrophysics Data System (ADS)
Kalkreuter, Thomas
Multigrid methods were invented for the solution of discretized partial differential equations in order to overcome the slowness of traditional algorithms by updates on various length scales. In the present work generalizations of multigrid methods for propagators in gauge fields are investigated. Gauge fields are incorporated in algorithms in a covariant way. The kernel C of the restriction operator which averages from one grid to the next coarser grid is defined by projection on the ground-state of a local Hamiltonian. The idea behind this definition is that the appropriate notion of smoothness depends on the dynamics. The ground-state projection choice of C can be used in arbitrary dimension and for arbitrary gauge group. We discuss proper averaging operations for bosons and for staggered fermions. The kernels C can also be used in multigrid Monte Carlo simulations, and for the definition of block spins and blocked gauge fields in Monte Carlo renormalization group studies. Actual numerical computations are performed in four-dimensional SU(2) gauge fields. We prove that our proposals for block spins are “good”, using renormalization group arguments. A central result is that the multigrid method works in arbitrarily disordered gauge fields, in principle. It is proved that computations of propagators in gauge fields without critical slowing down are possible when one uses an ideal interpolation kernel. Unfortunately, the idealized algorithm is not practical, but it was important to answer questions of principle. Practical methods are able to outperform the conjugate gradient algorithm in case of bosons. The case of staggered fermions is harder. Multigrid methods give considerable speed-ups compared to conventional relaxation algorithms, but on lattices up to 184 conjugate gradient is superior.
Detwiler, R.L.; Mehl, S.; Rajaram, H.; Cheung, W.W.
2002-01-01
Numerical solution of large-scale ground water flow and transport problems is often constrained by the convergence behavior of the iterative solvers used to solve the resulting systems of equations. We demonstrate the ability of an algebraic multigrid algorithm (AMG) to efficiently solve the large, sparse systems of equations that result from computational models of ground water flow and transport in large and complex domains. Unlike geometric multigrid methods, this algorithm is applicable to problems in complex flow geometries, such as those encountered in pore-scale modeling of two-phase flow and transport. We integrated AMG into MODFLOW 2000 to compare two- and three-dimensional flow simulations using AMG to simulations using PCG2, a preconditioned conjugate gradient solver that uses the modified incomplete Cholesky preconditioner and is included with MODFLOW 2000. CPU times required for convergence with AMG were up to 140 times faster than those for PCG2. The cost of this increased speed was up to a nine-fold increase in required random access memory (RAM) for the three-dimensional problems and up to a four-fold increase in required RAM for the two-dimensional problems. We also compared two-dimensional numerical simulations of steady-state transport using AMG and the generalized minimum residual method with an incomplete LU-decomposition preconditioner. For these transport simulations, AMG yielded increased speeds of up to 17 times with only a 20% increase in required RAM. The ability of AMG to solve flow and transport problems in large, complex flow systems and its ready availability make it an ideal solver for use in both field-scale and pore-scale modeling.
A Full Multi-Grid Method for the Solution of the Cell Vertex Finite Volume Cauchy-Riemann Equations
NASA Technical Reports Server (NTRS)
Borzi, A.; Morton, K. W.; Sueli, E.; Vanmaele, M.
1996-01-01
The system of inhomogeneous Cauchy-Riemann equations defined on a square domain and subject to Dirichlet boundary conditions is considered. This problem is discretised by using the cell vertex finite volume method on quadrilateral meshes. The resulting algebraic problem is overdetermined and the solution is defined in a least squares sense. By this approach a consistent algebraic problem is obtained which differs from the original one by O(h(exp 2)) perturbations of the right-hand side. A suitable cell-based convergent smoothing iteration is presented which is naturally linked to the least squares formulation. Hence, a standard multi-grid algorithm is reported which combines the given smoother and cell-based transfer operators. Some remarkable reduction properties of these operators are shown. A full multi-grid method is discussed which solves the discrete problem to the level of truncation error by employing one multi-grid cycle at each current level of discretisation. Experiments and applications of the full multi-grid scheme are presented.
Monolithic multigrid methods for two-dimensional resistive magnetohydrodynamics
Adler, James H.; Benson, Thomas R.; Cyr, Eric C.; ...
2016-01-06
Magnetohydrodynamic (MHD) representations are used to model a wide range of plasma physics applications and are characterized by a nonlinear system of partial differential equations that strongly couples a charged fluid with the evolution of electromagnetic fields. The resulting linear systems that arise from discretization and linearization of the nonlinear problem are generally difficult to solve. In this paper, we investigate multigrid preconditioners for this system. We consider two well-known multigrid relaxation methods for incompressible fluid dynamics: Braess--Sarazin relaxation and Vanka relaxation. We first extend these to the context of steady-state one-fluid viscoresistive MHD. Then we compare the two relaxationmore » procedures within a multigrid-preconditioned GMRES method employed within Newton's method. To isolate the effects of the different relaxation methods, we use structured grids, inf-sup stable finite elements, and geometric interpolation. Furthermore, we present convergence and timing results for a two-dimensional, steady-state test problem.« less
The Sixth Copper Mountain Conference on Multigrid Methods, part 2
NASA Technical Reports Server (NTRS)
Melson, N. Duane (Editor); Mccormick, Steve F. (Editor); Manteuffel, Thomas A. (Editor)
1993-01-01
The Sixth Copper Mountain Conference on Multigrid Methods was held on April 4-9, 1993, at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection clearly shows its rapid trend to further diversity and depth.
The Sixth Copper Mountain Conference on Multigrid Methods, part 1
NASA Technical Reports Server (NTRS)
Melson, N. Duane (Editor); Manteuffel, T. A. (Editor); Mccormick, S. F. (Editor)
1993-01-01
The Sixth Copper Mountain Conference on Multigrid Methods was held on 4-9 Apr. 1993, at Copper Mountain, CO. This book is a collection of many of the papers presented at the conference and as such represents the conference proceedings. NASA LaRC graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection clearly shows its rapid trend to further diversity and depth.
Seventh Copper Mountain Conference on Multigrid Methods. Part 1
NASA Technical Reports Server (NTRS)
Melson, N. Duane; Manteuffel, Tom A.; McCormick, Steve F.; Douglas, Craig C.
1996-01-01
The Seventh Copper Mountain Conference on Multigrid Methods was held on 2-7 Apr. 1995 at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection shows its rapid trend to further diversity and depth.
Multigrid methods and the surface consistent equations of Geophysics
NASA Astrophysics Data System (ADS)
Millar, John
The surface consistent equations are a large linear system that is frequently used in signal enhancement for land seismic surveys. Different signatures may be consistent with a particular dynamite (or other) source. Each receiver and the conditions around the receiver will have different impact on the signal. Seismic deconvolution operators, amplitude corrections and static shifts of traces are calculated using the surface consistent equations, both in commercial and scientific seismic processing software. The system of equations is singular, making direct methods such as Gaussian elimination impossible to implement. Iterative methods such as Gauss-Seidel and conjugate gradient are frequently used. A limitation in the nature of the methods leave the long wavelengths of the solution poorly resolved. To reduce the limitations of traditional iterative methods, we employ a multigrid method. Multigrid methods re-sample the entire system of equations on a more coarse grid. An iterative method is employed on the coarse grid. The long wavelengths of the solutions that traditional iterative methods were unable to resolve are calculated on the reduced system of equations. The coarse estimate can be interpolated back up to the original sample rate, and refined using a standard iterative procedure. Multigrid methods provide more accurate solutions to the surface consistent equations, with the largest improvement concentrated in the long wavelengths. Synthetic models and tests on field data show that multigrid solutions to the system of equations can significantly increase the resolution of the seismic data, when used to correct both static time shifts and in calculating deconvolution operators. The first chapter of this thesis is a description of the physical model we are addressing. It reviews some of the literature concerning the surface consistent equations, and provides background on the nature of the problem. Chapter 2 contains a review of iterative and multigrid methods
High order multi-grid methods to solve the Poisson equation
NASA Technical Reports Server (NTRS)
Schaffer, S.
1981-01-01
High order multigrid methods based on finite difference discretization of the model problem are examined. The following methods are described: (1) a fixed high order FMG-FAS multigrid algorithm; (2) the high order methods; and (3) results are presented on four problems using each method with the same underlying fixed FMG-FAS algorithm.
Is the Multigrid Method Fault Tolerant? The Two-Grid Case
Ainsworth, Mark; Glusa, Christian
2016-06-30
The predicted reduced resiliency of next-generation high performance computers means that it will become necessary to take into account the effects of randomly occurring faults on numerical methods. Further, in the event of a hard fault occurring, a decision has to be made as to what remedial action should be taken in order to resume the execution of the algorithm. The action that is chosen can have a dramatic effect on the performance and characteristics of the scheme. Ideally, the resulting algorithm should be subjected to the same kind of mathematical analysis that was applied to the original, deterministic variant. The purpose of this work is to provide an analysis of the behaviour of the multigrid algorithm in the presence of faults. Multigrid is arguably the method of choice for the solution of large-scale linear algebra problems arising from discretization of partial differential equations and it is of considerable importance to anticipate its behaviour on an exascale machine. The analysis of resilience of algorithms is in its infancy and the current work is perhaps the first to provide a mathematical model for faults and analyse the behaviour of a state-of-the-art algorithm under the model. It is shown that the Two Grid Method fails to be resilient to faults. Attention is then turned to identifying the minimal necessary remedial action required to restore the rate of convergence to that enjoyed by the ideal fault-free method.
Multigrid method for the equilibrium equations of elasticity using a compact scheme
NASA Technical Reports Server (NTRS)
Taasan, S.
1986-01-01
A compact difference scheme is derived for treating the equilibrium equations of elasticity. The scheme is inconsistent and unstable. A multigrid method which takes into account these properties is described. The solution of the discrete equations, up to the level of discretization errors, is obtained by this method in just two multigrid cycles.
NASA Astrophysics Data System (ADS)
Koldan, Jelena; Puzyrev, Vladimir; de la Puente, Josep; Houzeaux, Guillaume; Cela, José María
2014-06-01
We present an elaborate preconditioning scheme for Krylov subspace methods which has been developed to improve the performance and reduce the execution time of parallel node-based finite-element (FE) solvers for 3-D electromagnetic (EM) numerical modelling in exploration geophysics. This new preconditioner is based on algebraic multigrid (AMG) that uses different basic relaxation methods, such as Jacobi, symmetric successive over-relaxation (SSOR) and Gauss-Seidel, as smoothers and the wave front algorithm to create groups, which are used for a coarse-level generation. We have implemented and tested this new preconditioner within our parallel nodal FE solver for 3-D forward problems in EM induction geophysics. We have performed series of experiments for several models with different conductivity structures and characteristics to test the performance of our AMG preconditioning technique when combined with biconjugate gradient stabilized method. The results have shown that, the more challenging the problem is in terms of conductivity contrasts, ratio between the sizes of grid elements and/or frequency, the more benefit is obtained by using this preconditioner. Compared to other preconditioning schemes, such as diagonal, SSOR and truncated approximate inverse, the AMG preconditioner greatly improves the convergence of the iterative solver for all tested models. Also, when it comes to cases in which other preconditioners succeed to converge to a desired precision, AMG is able to considerably reduce the total execution time of the forward-problem code-up to an order of magnitude. Furthermore, the tests have confirmed that our AMG scheme ensures grid-independent rate of convergence, as well as improvement in convergence regardless of how big local mesh refinements are. In addition, AMG is designed to be a black-box preconditioner, which makes it easy to use and combine with different iterative methods. Finally, it has proved to be very practical and efficient in the
Application of multi-grid methods for solving the Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Demuren, A. O.
This paper presents the application of a class of multi-grid methods to the solution of the Navier-Stokes equations for two-dimensional laminar flow problems. The methods consists of combining the full approximation scheme-full multi-grid technique (FAS-FMG) with point-, line- or plane-relaxation routines for solving the Navier-Stokes equations in primitive variables. The performance of the multi-grid methods is compared to those of several single-grid methods. The results show that much faster convergence can be procured through the use of the multi-grid approach than through the various suggestions for improving single-grid methods. The importance of the choice of relaxation scheme for the multi-grid method is illustrated.
Application of multi-grid methods for solving the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Demuren, A. O.
1989-01-01
The application of a class of multi-grid methods to the solution of the Navier-Stokes equations for two-dimensional laminar flow problems is discussed. The methods consist of combining the full approximation scheme-full multi-grid technique (FAS-FMG) with point-, line-, or plane-relaxation routines for solving the Navier-Stokes equations in primitive variables. The performance of the multi-grid methods is compared to that of several single-grid methods. The results show that much faster convergence can be procured through the use of the multi-grid approach than through the various suggestions for improving single-grid methods. The importance of the choice of relaxation scheme for the multi-grid method is illustrated.
Application of multi-grid methods for solving the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Demuren, A. O.
1989-01-01
This paper presents the application of a class of multi-grid methods to the solution of the Navier-Stokes equations for two-dimensional laminar flow problems. The methods consists of combining the full approximation scheme-full multi-grid technique (FAS-FMG) with point-, line- or plane-relaxation routines for solving the Navier-Stokes equations in primitive variables. The performance of the multi-grid methods is compared to those of several single-grid methods. The results show that much faster convergence can be procured through the use of the multi-grid approach than through the various suggestions for improving single-grid methods. The importance of the choice of relaxation scheme for the multi-grid method is illustrated.
A generalized BPX multigrid framework covering nonnested V-cycle methods
NASA Astrophysics Data System (ADS)
Duan, Huo-Yuan; Gao, Shao-Qin; Tan, Roger C. E.; Zhang, Shangyou
2007-03-01
More than a decade ago, Bramble, Pasciak and Xu developed a framework in analyzing the multigrid methods with nonnested spaces or noninherited quadratic forms. It was subsequently known as the BPX multigrid framework, which was widely used in the analysis of multigrid and domain decomposition methods. However, the framework has an apparent limit in the analysis of nonnested V-cycle methods, and it produces a variable V-cycle, or nonuniform convergence rate V-cycle methods, or other nonoptimal results in analysis thus far. This paper completes a long-time effort in extending the BPX multigrid framework so that it truly covers the nonnested V-cycle. We will apply the extended BPX framework to the analysis of many V-cycle nonnested multigrid methods. Some of them were proven previously only for two-level and W-cycle iterations. Some numerical results are presented to support the theoretical analysis of this paper.
Final Report on Subcontract B591217: Multigrid Methods for Systems of PDEs
Xu, J; Brannick, J J; Zikatanov, L
2011-10-25
Progress is summarized in the following areas of study: (1) Compatible relaxation; (2) Improving aggregation-based MG solver performance - variable cycle; (3) First Order System Least Squares (FOSLS) for LQCD; (4) Auxiliary space preconditioners; (5) Bootstrap algebraic multigrid; and (6) Practical applications of AMG and fast auxiliary space preconditioners.
A multigrid method for variable coefficient Maxwell's equations
Jones, J E; Lee, B
2004-05-13
This paper presents a multigrid method for solving variable coefficient Maxwell's equations. The novelty in this method is the use of interpolation operators that do not produce multilevel commutativity complexes that lead to multilevel exactness. Rather, the effects of multilevel exactness are built into the level equations themselves--on the finest level using a discrete T-V formulation, and on the coarser grids through the Galerkin coarsening procedure of a T-V formulation. These built-in structures permit the levelwise use of an effective hybrid smoother on the curl-free near-nullspace components, and these structures permit the development of interpolation operators for handling the curl-free and divergence-free error components separately, with the resulting block diagonal interpolation operator not satisfying multilevel commutativity but having good approximation properties for both of these error components. Applying operator-dependent interpolation for each of these error components leads to an effective multigrid scheme for variable coefficient Maxwell's equations, where multilevel commutativity-based methods can degrade. Numerical results are presented to verify the effectiveness of this new scheme.
Constructive interference II: Semi-chaotic multigrid methods
Douglas, C.C.
1994-12-31
Parallel computer vendors have mostly decided to move towards multi-user, multi-tasking per node machines. A number of these machines already exist today. Self load balancing on these machines is not an option to the users except when the user can convince someone to boot the entire machine in single user mode, which may have to be done node by node. Chaotic relaxation schemes were considered for situations like this as far back as the middle 1960`s. However, very little convergence theory exists. Further, what exists indicates that this is not really a good method. Besides chaotic relaxation, chaotic conjugate direction and minimum residual methods are explored as smoothers for symmetric and nonsymmetric problems. While having each processor potentially going off in a different direction from the rest is not what one would strive for in a unigrid situation, the change of grid procedures in multigrid provide a natural way of aiming all of the processors in the right direction. The author presents some new results for multigrid methods in which synchronization of the calculations on one or more levels is not assumed. However, he assumes that he knows how far out of synch neighboring subdomains are with respect to each other. Thus the author can show that the combination of a limited chaotic smoother and coarse level corrections produces a better algorithm than would be expected.
Large-Eddy Simulation and Multigrid Methods
Falgout,R D; Naegle,S; Wittum,G
2001-06-18
A method to simulate turbulent flows with Large-Eddy Simulation on unstructured grids is presented. Two kinds of dynamic models are used to model the unresolved scales of motion and are compared with each other on different grids. Thereby the behavior of the models is shown and additionally the feature of adaptive grid refinement is investigated. Furthermore the parallelization aspect is addressed.
A Multi-Grid Iterative Method for Photoacoustic Tomography.
Javaherian, Ashkan; Holman, Sean
2016-11-04
Inspired by the recent advances on minimizing nonsmooth or bound-constrained convex functions on models using varying degrees of fidelity, we propose a line search multigrid (MG) method for full-wave iterative image reconstruction in photoacoustic tomography (PAT) in heterogeneous media. To compute the search direction at each iteration, we decide between the gradient at the target level, or alternatively an approximate error correction at a coarser level, relying on some predefined criteria. To incorporate absorption and dispersion, we derive the analytical adjoint directly from the first-order acoustic wave system. The effectiveness of the proposed method is tested on a total-variation penalized Iterative Shrinkage Thresholding algorithm (ISTA) and its accelerated variant (FISTA), which have been used in many studies of image reconstruction in PAT. The results show the great potential of the proposed method in improving speed of iterative image reconstruction.
Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado
McCormick, Stephen F.
2016-03-25
This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/.
Sixth Copper Mountain Conference on Multigrid Methods. Final report
Not Available
1994-07-01
During the 5-day meeting, 112 half-hour talks on current research topics were presented. Session topics included: fluids, domain decomposition, iterative methods, Basics I and II, adaptive methods, nonlinear filtering, CFD I, II, and III, applications, transport, algebraic solvers, supercomputing, and student paper winners.
A Conforming Multigrid Method for the Pure Traction Problem of Linear Elasticity: Mixed Formulation
NASA Technical Reports Server (NTRS)
Lee, Chang-Ock
1996-01-01
A multigrid method using conforming P-1 finite element is developed for the two-dimensional pure traction boundary value problem of linear elasticity. The convergence is uniform even as the material becomes nearly incompressible. A heuristic argument for acceleration of the multigrid method is discussed as well. Numerical results with and without this acceleration as well as performance estimates on a parallel computer are included.
Copper Mountain conference on multigrid methods. Preliminary proceedings -- List of abstracts
1995-12-31
This report contains abstracts of the papers presented at the conference. Papers cover multigrid algorithms and applications of multigrid methods. Applications include the following: solution of elliptical problems; electric power grids; fluid mechanics; atmospheric data assimilation; thermocapillary effects on weld pool shape; boundary-value problems; prediction of hurricane tracks; modeling multi-dimensional combustion and detailed chemistry; black-oil reservoir simulation; image processing; and others.
Numerical non-LTE 3D radiative transfer using a multigrid method
NASA Astrophysics Data System (ADS)
Bjørgen, Johan P.; Leenaarts, Jorrit
2017-03-01
Context. 3D non-LTE radiative transfer problems are computationally demanding, and this sets limits on the size of the problems that can be solved. So far, multilevel accelerated lambda iteration (MALI) has been the method of choice to perform high-resolution computations in multidimensional problems. The disadvantage of MALI is that its computing time scales as O(n2), with n the number of grid points. When the grid becomes finer, the computational cost increases quadratically. Aims: We aim to develop a 3D non-LTE radiative transfer code that is more efficient than MALI. Methods: We implement a non-linear multigrid, fast approximation storage scheme, into the existing Multi3D radiative transfer code. We verify our multigrid implementation by comparing with MALI computations. We show that multigrid can be employed in realistic problems with snapshots from 3D radiative magnetohydrodynamics (MHD) simulations as input atmospheres. Results: With multigrid, we obtain a factor 3.3-4.5 speed-up compared to MALI. With full-multigrid, the speed-up increases to a factor 6. The speed-up is expected to increase for input atmospheres with more grid points and finer grid spacing. Conclusions: Solving 3D non-LTE radiative transfer problems using non-linear multigrid methods can be applied to realistic atmospheres with a substantial increase in speed.
An application of multigrid methods for a discrete elastic model for epitaxial systems
Caflisch, R.E. . E-mail: caflisch@math.ucla.edu; Lee, Y.-J. . E-mail: yjlee@math.ucla.edu; Shu, S. . E-mail: shushi@xtu.edu.cn; Xiao, Y.-X. . E-mail: xyx610xyx@yahoo.com.cn; Xu, J. . E-mail: xu@math.psu.edu
2006-12-10
We apply an efficient and fast algorithm to simulate the atomistic strain model for epitaxial systems, recently introduced by Schindler et al. [Phys. Rev. B 67, 075316 (2003)]. The discrete effects in this lattice statics model are crucial for proper simulation of the influence of strain for thin film epitaxial growth, but the size of the atomistic systems of interest is in general quite large and hence the solution of the discrete elastic equations is a considerable numerical challenge. In this paper, we construct an algebraic multigrid method suitable for efficient solution of the large scale discrete strain model. Using this method, simulations are performed for several representative physical problems, including an infinite periodic step train, a layered nanocrystal, and a system of quantum dots. The results demonstrate the effectiveness and robustness of the method and show that the method attains optimal convergence properties, regardless of the problem size, the geometry and the physical parameters. The effects of substrate depth and of invariance due to traction-free boundary conditions are assessed. For a system of quantum dots, the simulated strain energy density supports the observations that trench formation near the dots provides strain relief.
Development and Application of Agglomerated Multigrid Methods for Complex Geometries
NASA Technical Reports Server (NTRS)
Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.
2010-01-01
We report progress in the development of agglomerated multigrid techniques for fully un- structured grids in three dimensions, building upon two previous studies focused on efficiently solving a model diffusion equation. We demonstrate a robust fully-coarsened agglomerated multigrid technique for 3D complex geometries, incorporating the following key developments: consistent and stable coarse-grid discretizations, a hierarchical agglomeration scheme, and line-agglomeration/relaxation using prismatic-cell discretizations in the highly-stretched grid regions. A signi cant speed-up in computer time is demonstrated for a model diffusion problem, the Euler equations, and the Reynolds-averaged Navier-Stokes equations for 3D realistic complex geometries.
Inverse airfoil design procedure using a multigrid Navier-Stokes method
NASA Technical Reports Server (NTRS)
Malone, J. B.; Swanson, R. C.
1991-01-01
The Modified Garabedian McFadden (MGM) design procedure was incorporated into an existing 2-D multigrid Navier-Stokes airfoil analysis method. The resulting design method is an iterative procedure based on a residual correction algorithm and permits the automated design of airfoil sections with prescribed surface pressure distributions. The new design method, Multigrid Modified Garabedian McFadden (MG-MGM), is demonstrated for several different transonic pressure distributions obtained from both symmetric and cambered airfoil shapes. The airfoil profiles generated with the MG-MGM code are compared to the original configurations to assess the capabilities of the inverse design method.
Multigrid for the Galerkin least squares method in linear elasticity: The pure displacement problem
Yoo, Jaechil
1996-12-31
Franca and Stenberg developed several Galerkin least squares methods for the solution of the problem of linear elasticity. That work concerned itself only with the error estimates of the method. It did not address the related problem of finding effective methods for the solution of the associated linear systems. In this work, we prove the convergence of a multigrid (W-cycle) method. This multigrid is robust in that the convergence is uniform as the parameter, v, goes to 1/2 Computational experiments are included.
Advanced discretizations and multigrid methods for liquid crystal configurations
NASA Astrophysics Data System (ADS)
Emerson, David B.
addition, we present two novel, optimally scaling, multigrid approaches for these systems based on Vanka- and Braess-Sarazin-type relaxation. Both approaches outperform direct methods and represent highly efficient and scalable iterative solvers. Finally, a three-dimensional problem considering the effects of geometrically patterned surfaces is presented, which gives rise to a nonlinear anisotropic reaction-diffusion equation. Well-posedness is shown for the intermediate linearization systems of the proposed Newton linearization. The configurations under consideration are part of ongoing physics research seeking new bistable configurations induced by geometric nano-patterning.
Numerical solution of the Navier-Stokes equations by a multigrid method
NASA Astrophysics Data System (ADS)
Cambier, L.; Couaillier, V.; Veuillot, J. P.
This article describes the use of a multigrid method to compute compressible two-dimensional turbulent flows by solving the averaged Navier-Stokes equations, complemented by a turbulence model. The numerical method is described in detail. It is based on an explicit, centered scheme of the Lax-Wendroff type, the convergence of which is accelerated by a multigrid phase similar to the one proposed by Ni. The effect of the parameters introduced in the multigrid acceleration phase is studied in numerical simulations to increase their effectiveness. The applications covered relate to high-Reynolds flows around a wing profile and in a two-dimensional cascade. Comparisons with experimental data are given for these two types of application.
The block adaptive multigrid method applied to the solution of the Euler equations
NASA Technical Reports Server (NTRS)
Pantelelis, Nikos
1993-01-01
In the present study, a scheme capable of solving very fast and robust complex nonlinear systems of equations is presented. The Block Adaptive Multigrid (BAM) solution method offers multigrid acceleration and adaptive grid refinement based on the prediction of the solution error. The proposed solution method was used with an implicit upwind Euler solver for the solution of complex transonic flows around airfoils. Very fast results were obtained (18-fold acceleration of the solution) using one fourth of the volumes of a global grid with the same solution accuracy for two test cases.
Simulation of viscous flows using a multigrid-control volume finite element method
Hookey, N.A.
1994-12-31
This paper discusses a multigrid control volume finite element method (MG CVFEM) for the simulation of viscous fluid flows. The CVFEM is an equal-order primitive variables formulation that avoids spurious solution fields by incorporating an appropriate pressure gradient in the velocity interpolation functions. The resulting set of discretized equations is solved using a coupled equation line solver (CELS) that solves the discretized momentum and continuity equations simultaneously along lines in the calculation domain. The CVFEM has been implemented in the context of both FMV- and V-cycle multigrid algorithms, and preliminary results indicate a five to ten fold reduction in execution times.
Spectral multigrid methods for the solution of homogeneous turbulence problems
NASA Technical Reports Server (NTRS)
Erlebacher, G.; Zang, T. A.; Hussaini, M. Y.
1987-01-01
New three-dimensional spectral multigrid algorithms are analyzed and implemented to solve the variable coefficient Helmholtz equation. Periodicity is assumed in all three directions which leads to a Fourier collocation representation. Convergence rates are theoretically predicted and confirmed through numerical tests. Residual averaging results in a spectral radius of 0.2 for the variable coefficient Poisson equation. In general, non-stationary Richardson must be used for the Helmholtz equation. The algorithms developed are applied to the large-eddy simulation of incompressible isotropic turbulence.
A multigrid Newton-Krylov method for flux-limited radiation diffusion
Rider, W.J.; Knoll, D.A.; Olson, G.L.
1998-09-01
The authors focus on the integration of radiation diffusion including flux-limited diffusion coefficients. The nonlinear integration is accomplished with a Newton-Krylov method preconditioned with a multigrid Picard linearization of the governing equations. They investigate the efficiency of the linear and nonlinear iterative techniques.
A multigrid method for steady Euler equations on unstructured adaptive grids
NASA Technical Reports Server (NTRS)
Riemslagh, Kris; Dick, Erik
1993-01-01
A flux-difference splitting type algorithm is formulated for the steady Euler equations on unstructured grids. The polynomial flux-difference splitting technique is used. A vertex-centered finite volume method is employed on a triangular mesh. The multigrid method is in defect-correction form. A relaxation procedure with a first order accurate inner iteration and a second-order correction performed only on the finest grid, is used. A multi-stage Jacobi relaxation method is employed as a smoother. Since the grid is unstructured a Jacobi type is chosen. The multi-staging is necessary to provide sufficient smoothing properties. The domain is discretized using a Delaunay triangular mesh generator. Three grids with more or less uniform distribution of nodes but with different resolution are generated by successive refinement of the coarsest grid. Nodes of coarser grids appear in the finer grids. The multigrid method is started on these grids. As soon as the residual drops below a threshold value, an adaptive refinement is started. The solution on the adaptively refined grid is accelerated by a multigrid procedure. The coarser multigrid grids are generated by successive coarsening through point removement. The adaption cycle is repeated a few times. Results are given for the transonic flow over a NACA-0012 airfoil.
An Assessment of Linear Versus Non-linear Multigrid Methods for Unstructured Mesh Solvers
2001-05-01
problems is investigated. The first case consists of a transient radiation-diffusion problem for which an exact linearization is available, while the...to the Jacobian of a second-order accurate discretization. When an exact linearization is employed, the linear and non-linear multigrid methods
On spectral multigrid methods for the time-dependent Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Zang, T. A.; Hussaini, M. Y.
1985-01-01
A splitting scheme is proposed for the numerical solution of the time-dependent, incompressible Navier-Stokes equations by spectral methods. A staggered grid is used for the pressure, improved intermediate boundary conditions are employed in the split step for the velocity, and spectral multigrid techniques are used for the solution of the implicit equations.
New Nonlinear Multigrid Analysis
NASA Technical Reports Server (NTRS)
Xie, Dexuan
1996-01-01
The nonlinear multigrid is an efficient algorithm for solving the system of nonlinear equations arising from the numerical discretization of nonlinear elliptic boundary problems. In this paper, we present a new nonlinear multigrid analysis as an extension of the linear multigrid theory presented by Bramble. In particular, we prove the convergence of the nonlinear V-cycle method for a class of mildly nonlinear second order elliptic boundary value problems which do not have full elliptic regularity.
Multigrid methods for differential equations with highly oscillatory coefficients
NASA Technical Reports Server (NTRS)
Engquist, Bjorn; Luo, Erding
1993-01-01
New coarse grid multigrid operators for problems with highly oscillatory coefficients are developed. These types of operators are necessary when the characters of the differential equations on coarser grids or longer wavelengths are different from that on the fine grid. Elliptic problems for composite materials and different classes of hyperbolic problems are practical examples. The new coarse grid operators can be constructed directly based on the homogenized differential operators or hierarchically computed from the finest grid. Convergence analysis based on the homogenization theory is given for elliptic problems with periodic coefficients and some hyperbolic problems. These are classes of equations for which there exists a fairly complete theory for the interaction between shorter and longer wavelengths in the problems. Numerical examples are presented.
A multiblock multigrid method for the solution of the three-dimensional Euler equations
NASA Technical Reports Server (NTRS)
Cannizzaro, Frank E.; Elmiligui, Alaa; Melson, N. Duane; Von Lavante, E.
1990-01-01
A general multiblock, multigrid method for the solution of the Euler equations has been developed. Two types of numerical methods were investigated, van Leer's flux-vector-splitting and Roe's flux-difference-splitting, with MUSCL type differencing used in both methods. An explicit two-step method and a multi-stage Runge-Kutta method have been tested. Results are presented for test cases of a channel flow, nozzle exhaust flow, and a transonic wing.
Algebraic Methods to Design Signals
2015-08-27
group theory are employed to investigate the theory of their construction methods leading to new families of these arrays and some generalizations...sequences and arrays with desirable correlation properties. The methods used are very algebraic and number theoretic. Many new families of sequences...context of optical quantum computing, we prove that infinite families of anticirculant block weighing matrices can be obtained from generic weighing
Application of multi-grid method on the simulation of incremental forging processes
NASA Astrophysics Data System (ADS)
Ramadan, Mohamad; Khaled, Mahmoud; Fourment, Lionel
2016-10-01
Numerical simulation becomes essential in manufacturing large part by incremental forging processes. It is a splendid tool allowing to show physical phenomena however behind the scenes, an expensive bill should be paid, that is the computational time. That is why many techniques are developed to decrease the computational time of numerical simulation. Multi-Grid method is a numerical procedure that permits to reduce computational time of numerical calculation by performing the resolution of the system of equations on several mesh of decreasing size which allows to smooth faster the low frequency of the solution as well as its high frequency. In this paper a Multi-Grid method is applied to cogging process in the software Forge 3. The study is carried out using increasing number of degrees of freedom. The results shows that calculation time is divide by two for a mesh of 39,000 nodes. The method is promising especially if coupled with Multi-Mesh method.
Multilevel local refinement and multigrid methods for 3-D turbulent flow
Liao, C.; Liu, C.; Sung, C.H.; Huang, T.T.
1996-12-31
A numerical approach based on multigrid, multilevel local refinement, and preconditioning methods for solving incompressible Reynolds-averaged Navier-Stokes equations is presented. 3-D turbulent flow around an underwater vehicle is computed. 3 multigrid levels and 2 local refinement grid levels are used. The global grid is 24 x 8 x 12. The first patch is 40 x 16 x 20 and the second patch is 72 x 32 x 36. 4th order artificial dissipation are used for numerical stability. The conservative artificial compressibility method are used for further improvement of convergence. To improve the accuracy of coarse/fine grid interface of local refinement, flux interpolation method for refined grid boundary is used. The numerical results are in good agreement with experimental data. The local refinement can improve the prediction accuracy significantly. The flux interpolation method for local refinement can keep conservation for a composite grid, therefore further modify the prediction accuracy.
General relaxation schemes in multigrid algorithms for higher order singularity methods
NASA Technical Reports Server (NTRS)
Oskam, B.; Fray, J. M. J.
1981-01-01
Relaxation schemes based on approximate and incomplete factorization technique (AF) are described. The AF schemes allow construction of a fast multigrid method for solving integral equations of the second and first kind. The smoothing factors for integral equations of the first kind, and comparison with similar results from the second kind of equations are a novel item. Application of the MD algorithm shows convergence to the level of truncation error of a second order accurate panel method.
On Efficient Multigrid Methods for Materials Processing Flows with Small Particles
NASA Technical Reports Server (NTRS)
Thomas, James (Technical Monitor); Diskin, Boris; Harik, VasylMichael
2004-01-01
Multiscale modeling of materials requires simulations of multiple levels of structural hierarchy. The computational efficiency of numerical methods becomes a critical factor for simulating large physical systems with highly desperate length scales. Multigrid methods are known for their superior efficiency in representing/resolving different levels of physical details. The efficiency is achieved by employing interactively different discretizations on different scales (grids). To assist optimization of manufacturing conditions for materials processing with numerous particles (e.g., dispersion of particles, controlling flow viscosity and clusters), a new multigrid algorithm has been developed for a case of multiscale modeling of flows with small particles that have various length scales. The optimal efficiency of the algorithm is crucial for accurate predictions of the effect of processing conditions (e.g., pressure and velocity gradients) on the local flow fields that control the formation of various microstructures or clusters.
Numerical solution of flame sheet problems with and without multigrid methods
NASA Technical Reports Server (NTRS)
Douglas, Craig C.; Ern, Alexandre
1993-01-01
Flame sheet problems are on the natural route to the numerical solution of multidimensional flames, which, in turn, are important in many engineering applications. In order to model the structure of flames more accurately, we use the vorticity-velocity formulation of the fluid flow equations, as opposed to the streamfunction-vorticity approach. The numerical solution of the resulting nonlinear coupled elliptic partial differential equations involves a pseudo transient process and a steady state Newton iteration. Rather than working with dimensionless variables, we introduce scale factors that can yield significant savings in the execution time. In this context, we also investigate the applicability and performance of several multigrid methods, focusing on nonlinear damped Newton multigrid, using either one way or correction schemes.
A Parallel Multigrid Method for the Finite Element Analysis of Mechanical Contact
Hales, J D; Parsons, I D
2002-03-21
A geometrical multigrid method for solving the linearized matrix equations arising from node-on-face three-dimensional finite element contact is described. The development of an efficient implementation of this combination that minimizes both the memory requirements and the computational cost requires careful construction and storage of the portion of the coarse mesh stiffness matrices that are associated with the contact stiffness on the fine mesh. The multigrid contact algorithm is parallelized in a manner suitable for distributed memory architectures: results are presented that demonstrates the scheme's scalability. The solution of a large contact problem derived from an analysis of the factory joints present in the Space Shuttle reusable solid rocket motor demonstrates the usefulness of the general approach.
An evaluation of parallel multigrid as a solver and a preconditioner for singular perturbed problems
Oosterlee, C.W.; Washio, T.
1996-12-31
In this paper we try to achieve h-independent convergence with preconditioned GMRES and BiCGSTAB for 2D singular perturbed equations. Three recently developed multigrid methods are adopted as a preconditioner. They are also used as solution methods in order to compare the performance of the methods as solvers and as preconditioners. Two of the multigrid methods differ only in the transfer operators. One uses standard matrix- dependent prolongation operators from. The second uses {open_quotes}upwind{close_quotes} prolongation operators, developed. Both employ the Galerkin coarse grid approximation and an alternating zebra line Gauss-Seidel smoother. The third method is based on the block LU decomposition of a matrix and on an approximate Schur complement. This multigrid variant is presented in. All three multigrid algorithms are algebraic methods.
Conduct of the International Multigrid Conference
NASA Technical Reports Server (NTRS)
Mccormick, S.
1984-01-01
The 1983 International Multigrid Conference was held at Colorado's Copper Mountain Ski Resort, April 5-8. It was organized jointly by the Institute for Computational Studies at Colorado State University, U.S.A., and the Gasellschaft fur Mathematik und Datenverarbeitung Bonn, F.R. Germany, and was sponsored by the Air Force Office of Sponsored Research and National Aeronautics and Space Administration Headquarters. The conference was attended by 80 scientists, divided by institution almost equally into private industry, research laboratories, and academia. Fifteen attendees came from countries other than the U.S.A. In addition to the fruitful discussions, the most significant factor of the conference was of course the lectures. The lecturers include most of the leaders in the field of multigrid research. The program offered a nice integrated blend of theory, numerical studies, basic research, and applications. Some of the new areas of research that have surfaced since the Koln-Porz conference include: the algebraic multigrid approach; multigrid treatment of Euler equations for inviscid fluid flow problems; 3-D problems; and the application of MG methods on vector and parallel computers.
A comparison of locally adaptive multigrid methods: LDC, FAC and FIC
NASA Technical Reports Server (NTRS)
Khadra, Khodor; Angot, Philippe; Caltagirone, Jean-Paul
1993-01-01
This study is devoted to a comparative analysis of three 'Adaptive ZOOM' (ZOom Overlapping Multi-level) methods based on similar concepts of hierarchical multigrid local refinement: LDC (Local Defect Correction), FAC (Fast Adaptive Composite), and FIC (Flux Interface Correction)--which we proposed recently. These methods are tested on two examples of a bidimensional elliptic problem. We compare, for V-cycle procedures, the asymptotic evolution of the global error evaluated by discrete norms, the corresponding local errors, and the convergence rates of these algorithms.
Final Report on Subcontract B605152. Multigrid Methods for Systems of PDEs
Brannick, James; Xu, Jinchao
2015-07-07
The project team has continued with work on developing aggressive coarsening techniques for AMG methods. Of particular interest is the idea to use aggressive coarsening with polynomial smoothing. Using local Fourier analysis the optimal values for the parameters involved in defining the polynomial smoothers are determined automatically in a way to achieve fast convergence of cycles with aggressive coarsening. Numerical tests have the sharpness of the theoretical results. The methods are highly parallelizable and efficient multigrid algorithms on structured and semistructured grids in two and three spatial dimensions.
Multigrid methods for a semilinear PDE in the theory of pseudoplastic fluids
NASA Technical Reports Server (NTRS)
Henson, Van Emden; Shaker, A. W.
1993-01-01
We show that by certain transformations the boundary layer equations for the class of non-Newtonian fluids named pseudoplastic can be generalized in the form the vector differential operator(u) + p(x)u(exp -lambda) = 0, where x is a member of the set Omega and Omega is a subset of R(exp n), n is greater than or equal to 1 under the classical conditions for steady flow over a semi-infinite flat plate. We provide a survey of the existence, uniqueness, and analyticity of the solutions for this problem. We also establish numerical solutions in one- and two-dimensional regions using multigrid methods.
NASA Astrophysics Data System (ADS)
Lin, Xue-lei; Lu, Xin; Ng, Micheal K.; Sun, Hai-Wei
2016-10-01
A fast accurate approximation method with multigrid solver is proposed to solve a two-dimensional fractional sub-diffusion equation. Using the finite difference discretization of fractional time derivative, a block lower triangular Toeplitz matrix is obtained where each main diagonal block contains a two-dimensional matrix for the Laplacian operator. Our idea is to make use of the block ɛ-circulant approximation via fast Fourier transforms, so that the resulting task is to solve a block diagonal system, where each diagonal block matrix is the sum of a complex scalar times the identity matrix and a Laplacian matrix. We show that the accuracy of the approximation scheme is of O (ɛ). Because of the special diagonal block structure, we employ the multigrid method to solve the resulting linear systems. The convergence of the multigrid method is studied. Numerical examples are presented to illustrate the accuracy of the proposed approximation scheme and the efficiency of the proposed solver.
The Multigrid-Mask Numerical Method for Solution of Incompressible Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Ku, Hwar-Ching; Popel, Aleksander S.
1996-01-01
A multigrid-mask method for solution of incompressible Navier-Stokes equations in primitive variable form has been developed. The main objective is to apply this method in conjunction with the pseudospectral element method solving flow past multiple objects. There are two key steps involved in calculating flow past multiple objects. The first step utilizes only Cartesian grid points. This homogeneous or mask method step permits flow into the interior rectangular elements contained in objects, but with the restriction that the velocity for those Cartesian elements within and on the surface of an object should be small or zero. This step easily produces an approximate flow field on Cartesian grid points covering the entire flow field. The second or heterogeneous step corrects the approximate flow field to account for the actual shape of the objects by solving the flow field based on the local coordinates surrounding each object and adapted to it. The noise occurring in data communication between the global (low frequency) coordinates and the local (high frequency) coordinates is eliminated by the multigrid method when the Schwarz Alternating Procedure (SAP) is implemented. Two dimensional flow past circular and elliptic cylinders will be presented to demonstrate the versatility of the proposed method. An interesting phenomenon is found that when the second elliptic cylinder is placed in the wake of the first elliptic cylinder a traction force results in a negative drag coefficient.
Multigrid on massively parallel architectures
Falgout, R D; Jones, J E
1999-09-17
The scalable implementation of multigrid methods for machines with several thousands of processors is investigated. Parallel performance models are presented for three different structured-grid multigrid algorithms, and a description is given of how these models can be used to guide implementation. Potential pitfalls are illustrated when moving from moderate-sized parallelism to large-scale parallelism, and results are given from existing multigrid codes to support the discussion. Finally, the use of mixed programming models is investigated for multigrid codes on clusters of SMPs.
On multigrid methods for image reconstruction from projections
Henson, V.E.; Robinson, B.T.; Limber, M.
1994-12-31
The sampled Radon transform of a 2D function can be represented as a continuous linear map R : L{sup 1} {yields} R{sup N}. The image reconstruction problem is: given a vector b {element_of} R{sup N}, find an image (or density function) u(x, y) such that Ru = b. Since in general there are infinitely many solutions, the authors pick the solution with minimal 2-norm. Numerous proposals have been made regarding how best to discretize this problem. One can, for example, select a set of functions {phi}{sub j} that span a particular subspace {Omega} {contained_in} L{sup 1}, and model R : {Omega} {yields} R{sup N}. The subspace {Omega} may be chosen as a member of a sequence of subspaces whose limit is dense in L{sup 1}. One approach to the choice of {Omega} gives rise to a natural pixel discretization of the image space. Two possible choices of the set {phi}{sub j} are the set of characteristic functions of finite-width `strips` representing energy transmission paths and the set of intersections of such strips. The authors have studied the eigenstructure of the matrices B resulting from these choices and the effect of applying a Gauss-Seidel iteration to the problem Bw = b. There exists a near null space into which the error vectors migrate with iteration, after which Gauss-Seidel iteration stalls. The authors attempt to accelerate convergence via a multilevel scheme, based on the principles of McCormick`s Multilevel Projection Method (PML). Coarsening is achieved by thickening the rays which results in a much smaller discretization of an optimal grid, and a halving of the number of variables. This approach satisfies all the requirements of the PML scheme. They have observed that a multilevel approach based on this idea accelerates convergence at least to the point where noise in the data dominates.
Algebraic methods in system theory
NASA Technical Reports Server (NTRS)
Brockett, R. W.; Willems, J. C.; Willsky, A. S.
1975-01-01
Investigations on problems of the type which arise in the control of switched electrical networks are reported. The main results concern the algebraic structure and stochastic aspects of these systems. Future reports will contain more detailed applications of these results to engineering studies.
NASA Technical Reports Server (NTRS)
1981-01-01
Developments in numerical solution of certain types of partial differential equations by rapidly converging sequences of operations on supporting grids that range from very fine to very coarse are presented.
Multigrid one shot methods for optimal control problems: Infinite dimensional control
NASA Technical Reports Server (NTRS)
Arian, Eyal; Taasan, Shlomo
1994-01-01
The multigrid one shot method for optimal control problems, governed by elliptic systems, is introduced for the infinite dimensional control space. ln this case, the control variable is a function whose discrete representation involves_an increasing number of variables with grid refinement. The minimization algorithm uses Lagrange multipliers to calculate sensitivity gradients. A preconditioned gradient descent algorithm is accelerated by a set of coarse grids. It optimizes for different scales in the representation of the control variable on different discretization levels. An analysis which reduces the problem to the boundary is introduced. It is used to approximate the two level asymptotic convergence rate, to determine the amplitude of the minimization steps, and the choice of a high pass filter to be used when necessary. The effectiveness of the method is demonstrated on a series of test problems. The new method enables the solutions of optimal control problems at the same cost of solving the corresponding analysis problems just a few times.
NASA Technical Reports Server (NTRS)
Atkins, H. L.; Helenbrook, B. T.
2005-01-01
This paper describes numerical experiments with P-multigrid to corroborate analysis, validate the present implementation, and to examine issues that arise in the implementations of the various combinations of relaxation schemes, discretizations and P-multigrid methods. The two approaches to implement P-multigrid presented here are equivalent for most high-order discretization methods such as spectral element, SUPG, and discontinuous Galerkin applied to advection; however it is discovered that the approach that mimics the common geometric multigrid implementation is less robust, and frequently unstable when applied to discontinuous Galerkin discretizations of di usion. Gauss-Seidel relaxation converges 40% faster than block Jacobi, as predicted by analysis; however, the implementation of Gauss-Seidel is considerably more expensive that one would expect because gradients in most neighboring elements must be updated. A compromise quasi Gauss-Seidel relaxation method that evaluates the gradient in each element twice per iteration converges at rates similar to those predicted for true Gauss-Seidel.
Implementation of multigrid methods for solving Navier-Stokes equations on a multiprocessor system
NASA Technical Reports Server (NTRS)
Naik, Vijay K.; Taasan, Shlomo
1987-01-01
Presented are schemes for implementing multigrid algorithms on message based MIMD multiprocessor systems. To address the various issues involved, a nontrivial problem of solving the 2-D incompressible Navier-Stokes equations is considered as the model problem. Three different multigrid algorithms are considered. Results from implementing these algorithms on an Intel iPSC are presented.
Viscous analysis of three-dimensional rotor flows using a multigrid method
NASA Technical Reports Server (NTRS)
Arnone, A.
1993-01-01
A three-dimensional code for rotating blade-row flow analysis was developed. The space discretization uses a cell-centered scheme with eigenvalues scaling for the artificial dissipation. The computational efficiency of a four-stage Runge-Kutta scheme is enhanced by using variable coefficients, implicit residual smoothing, and a full-multigrid method. An application is presented for the NASA rotor 67 transonic fan. Due to the blade stagger and twist, a zonal, non-periodic H-type grid is used to minimize the mesh skewness. The calculation is validated by comparing it with experiments in the range from the maximum flow rate to a near-stall condition. A detailed study of the flow structure near peak efficiency and near stall is presented by means of pressure distribution and particle traces inside boundary layers.
A cell-vertex multigrid method for the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Radespiel, R.
1989-01-01
A cell-vertex scheme for the Navier-Stokes equations, which is based on central difference approximations and Runge-Kutta time stepping, is described. Using local time stepping, implicit residual smoothing, a multigrid method, and carefully controlled artificial dissipative terms, very good convergence rates are obtained for a wide range of two- and three-dimensional flows over airfoils and wings. The accuracy of the code is examined by grid refinement studies and comparison with experimental data. For an accurate prediction of turbulent flows with strong separations, a modified version of the nonequilibrium turbulence model of Johnson and King is introduced, which is well suited for an implementation into three-dimensional Navier-Stokes codes. It is shown that the solutions for three-dimensional flows with strong separations can be dramatically improved, when a nonequilibrium model of turbulence is used.
NASA Astrophysics Data System (ADS)
Matveev, A. D.
2016-11-01
To calculate the three-dimensional elastic body of heterogeneous structure under static loading, a method of multigrid finite element is provided, when implemented on the basis of algorithms of finite element method (FEM), using homogeneous and composite threedimensional multigrid finite elements (MFE). Peculiarities and differences of MFE from the currently available finite elements (FE) are to develop composite MFE (without increasing their dimensions), arbitrarily small basic partition of composite solids consisting of single-grid homogeneous FE of the first order can be used, i.e. in fact, to use micro approach in finite element form. These small partitions allow one to take into account in MFE, i.e. in the basic discrete models of composite solids, complex heterogeneous and microscopically inhomogeneous structure, shape, the complex nature of the loading and fixation and describe arbitrarily closely the stress and stain state by the equations of three-dimensional elastic theory without any additional simplifying hypotheses. When building the m grid FE, m of nested grids is used. The fine grid is generated by a basic partition of MFE, the other m —1 large grids are applied to reduce MFE dimensionality, when m is increased, MFE dimensionality becomes smaller. The procedures of developing MFE of rectangular parallelepiped, irregular shape, plate and beam types are given. MFE generate the small dimensional discrete models and numerical solutions with a high accuracy. An example of calculating the laminated plate, using three-dimensional 3-grid FE and the reference discrete model is given, with that having 2.2 milliards of FEM nodal unknowns.
NASA Technical Reports Server (NTRS)
Zeng, S.; Wesseling, P.
1993-01-01
The performance of a linear multigrid method using four smoothing methods, called SCGS (Symmetrical Coupled GauBeta-Seidel), CLGS (Collective Line GauBeta-Seidel), SILU (Scalar ILU), and CILU (Collective ILU), is investigated for the incompressible Navier-Stokes equations in general coordinates, in association with Galerkin coarse grid approximation. Robustness and efficiency are measured and compared by application to test problems. The numerical results show that CILU is the most robust, SILU the least, with CLGS and SCGS in between. CLGS is the best in efficiency, SCGS and CILU follow, and SILU is the worst.
NASA Astrophysics Data System (ADS)
Langer, Stefan
2014-11-01
For unstructured finite volume methods an agglomeration multigrid with an implicit multistage Runge-Kutta method as a smoother is developed for solving the compressible Reynolds averaged Navier-Stokes (RANS) equations. The implicit Runge-Kutta method is interpreted as a preconditioned explicit Runge-Kutta method. The construction of the preconditioner is based on an approximate derivative. The linear systems are solved approximately with a symmetric Gauss-Seidel method. To significantly improve this solution method grid anisotropy is treated within the Gauss-Seidel iteration in such a way that the strong couplings in the linear system are resolved by tridiagonal systems constructed along these directions of strong coupling. The agglomeration strategy is adapted to this procedure by taking into account exactly these anisotropies in such a way that a directional coarsening is applied along these directions of strong coupling. Turbulence effects are included by a Spalart-Allmaras model, and the additional transport-type equation is approximately solved in a loosely coupled manner with the same method. For two-dimensional and three-dimensional numerical examples and a variety of differently generated meshes we show the wide range of applicability of the solution method. Finally, we exploit the GMRES method to determine approximate spectral information of the linearized RANS equations. This approximate spectral information is used to discuss and compare characteristics of multistage Runge-Kutta methods.
NASA Technical Reports Server (NTRS)
Atkins, Harold
1991-01-01
A multiple block multigrid method for the solution of the three dimensional Euler and Navier-Stokes equations is presented. The basic flow solver is a cell vertex method which employs central difference spatial approximations and Runge-Kutta time stepping. The use of local time stepping, implicit residual smoothing, multigrid techniques and variable coefficient numerical dissipation results in an efficient and robust scheme is discussed. The multiblock strategy places the block loop within the Runge-Kutta Loop such that accuracy and convergence are not affected by block boundaries. This has been verified by comparing the results of one and two block calculations in which the two block grid is generated by splitting the one block grid. Results are presented for both Euler and Navier-Stokes computations of wing/fuselage combinations.
Peláez, Daniel; Meyer, Hans-Dieter
2013-01-07
In this article, a new method, multigrid POTFIT (MGPF), is presented. MGPF is a grid-based algorithm which transforms a general potential energy surface into product form, that is, a sum of products of one-dimensional functions. This form is necessary to profit from the computationally advantageous multiconfiguration time-dependent Hartree method for quantum dynamics. MGPF circumvents the dimensionality related issues present in POTFIT [A. Jäckle and H.-D. Meyer, J. Chem. Phys. 104, 7974 (1996)], allowing quantum dynamical studies of systems up to about 12 dimensions. MGPF requires the definition of a fine grid and a coarse grid, the latter being a subset of the former. The MGPF approximation relies on a series of underlying POTFIT calculations on grids which are smaller than the fine one and larger than or equal to the coarse one. This aspect makes MGPF a bit less accurate than POTFIT but orders of magnitude faster and orders of magnitude less memory demanding than POTFIT. Moreover, like POTFIT, MGPF is variational and provides an efficient error control.
Efficient relaxed-Jacobi smoothers for multigrid on parallel computers
NASA Astrophysics Data System (ADS)
Yang, Xiang; Mittal, Rajat
2017-03-01
In this Technical Note, we present a family of Jacobi-based multigrid smoothers suitable for the solution of discretized elliptic equations. These smoothers are based on the idea of scheduled-relaxation Jacobi proposed recently by Yang & Mittal (2014) [18] and employ two or three successive relaxed Jacobi iterations with relaxation factors derived so as to maximize the smoothing property of these iterations. The performance of these new smoothers measured in terms of convergence acceleration and computational workload, is assessed for multi-domain implementations typical of parallelized solvers, and compared to the lexicographic point Gauss-Seidel smoother. The tests include the geometric multigrid method on structured grids as well as the algebraic grid method on unstructured grids. The tests demonstrate that unlike Gauss-Seidel, the convergence of these Jacobi-based smoothers is unaffected by domain decomposition, and furthermore, they outperform the lexicographic Gauss-Seidel by factors that increase with domain partition count.
Classical versus Computer Algebra Methods in Elementary Geometry
ERIC Educational Resources Information Center
Pech, Pavel
2005-01-01
Computer algebra methods based on results of commutative algebra like Groebner bases of ideals and elimination of variables make it possible to solve complex, elementary and non elementary problems of geometry, which are difficult to solve using a classical approach. Computer algebra methods permit the proof of geometric theorems, automatic…
Summary Report: Multigrid for Systems of Elliptic PDEs
Lee, Barry
2016-11-17
We are interested in determining if multigrid can be effectively applied to the system. The conclusion that I seem to be drawn to is that it is impossible to develop a blackbox multigrid solver for these general systems. Analysis of the system of PDEs must be conducted first to determine pre-processing procedures on the continuous problem before applying a multigrid method. Determining this pre-processing is currently not incorporated in black-box multigrid strategies. Nevertheless, we characterize some system features that will make the system more amenable to multigrid approaches, techniques that may lead to more amenable systems, and multigrid procedures that are generally more appropriate for these systems.
Another look at neural multigrid
Baeker, M.
1997-04-01
We present a new multigrid method called neural multigrid which is based on joining multigrid ideas with concepts from neural nets. The main idea is to use the Greenbaum criterion as a cost functional for the neural net. The algorithm is able to learn efficient interpolation operators in the case of the ordered Laplace equation with only a very small critical slowing down and with a surprisingly small amount of work comparable to that of a Conjugate Gradient solver. In the case of the two-dimensional Laplace equation with SU(2) gauge fields at {beta}=0 the learning exhibits critical slowing down with an exponent of about z {approx} 0.4. The algorithm is able to find quite good interpolation operators in this case as well. Thereby it is proven that a practical true multigrid algorithm exists even for a gauge theory. An improved algorithm using dynamical blocks that will hopefully overcome the critical slowing down completely is sketched.
Structured adaptive grid generation using algebraic methods
NASA Technical Reports Server (NTRS)
Yang, Jiann-Cherng; Soni, Bharat K.; Roger, R. P.; Chan, Stephen C.
1993-01-01
The accuracy of the numerical algorithm depends not only on the formal order of approximation but also on the distribution of grid points in the computational domain. Grid adaptation is a procedure which allows optimal grid redistribution as the solution progresses. It offers the prospect of accurate flow field simulations without the use of an excessively timely, computationally expensive, grid. Grid adaptive schemes are divided into two basic categories: differential and algebraic. The differential method is based on a variational approach where a function which contains a measure of grid smoothness, orthogonality and volume variation is minimized by using a variational principle. This approach provided a solid mathematical basis for the adaptive method, but the Euler-Lagrange equations must be solved in addition to the original governing equations. On the other hand, the algebraic method requires much less computational effort, but the grid may not be smooth. The algebraic techniques are based on devising an algorithm where the grid movement is governed by estimates of the local error in the numerical solution. This is achieved by requiring the points in the large error regions to attract other points and points in the low error region to repel other points. The development of a fast, efficient, and robust algebraic adaptive algorithm for structured flow simulation applications is presented. This development is accomplished in a three step process. The first step is to define an adaptive weighting mesh (distribution mesh) on the basis of the equidistribution law applied to the flow field solution. The second, and probably the most crucial step, is to redistribute grid points in the computational domain according to the aforementioned weighting mesh. The third and the last step is to reevaluate the flow property by an appropriate search/interpolate scheme at the new grid locations. The adaptive weighting mesh provides the information on the desired concentration
NASA Technical Reports Server (NTRS)
Cannizzaro, Frank E.; Ash, Robert L.
1992-01-01
A state-of-the-art computer code has been developed that incorporates a modified Runge-Kutta time integration scheme, upwind numerical techniques, multigrid acceleration, and multi-block capabilities (RUMM). A three-dimensional thin-layer formulation of the Navier-Stokes equations is employed. For turbulent flow cases, the Baldwin-Lomax algebraic turbulence model is used. Two different upwind techniques are available: van Leer's flux-vector splitting and Roe's flux-difference splitting. Full approximation multi-grid plus implicit residual and corrector smoothing were implemented to enhance the rate of convergence. Multi-block capabilities were developed to provide geometric flexibility. This feature allows the developed computer code to accommodate any grid topology or grid configuration with multiple topologies. The results shown in this dissertation were chosen to validate the computer code and display its geometric flexibility, which is provided by the multi-block structure.
New convergence estimates for multigrid algorithms
Bramble, J.H.; Pasciak, J.E.
1987-10-01
In this paper, new convergence estimates are proved for both symmetric and nonsymmetric multigrid algorithms applied to symmetric positive definite problems. Our theory relates the convergence of multigrid algorithms to a ''regularity and approximation'' parameter ..cap alpha.. epsilon (0, 1) and the number of relaxations m. We show that for the symmetric and nonsymmetric ..nu.. cycles, the multigrid iteration converges for any positive m at a rate which deteriorates no worse than 1-cj/sup -(1-//sup ..cap alpha..//sup )///sup ..cap alpha../, where j is the number of grid levels. We then define a generalized ..nu.. cycle algorithm which involves exponentially increasing (for example, doubling) the number of smoothings on successively coarser grids. We show that the resulting symmetric and nonsymmetric multigrid iterations converge for any ..cap alpha.. with rates that are independent of the mesh size. The theory is presented in an abstract setting which can be applied to finite element multigrid and finite difference multigrid methods.
Comparative Convergence Analysis of Nonlinear AMLI-Cycle Multigrid
Hu, Xiaozhe; Vassilevski, Panayot S.; Xu, Jinchao
2013-04-30
The purpose of our paper is to provide a comprehensive convergence analysis of the nonlinear algebraic multilevel iteration (AMLI)-cycle multigrid (MG) method for symmetric positive definite problems. We show that the nonlinear AMLI-cycle MG method is uniformly convergent, based on classical assumptions for approximation and smoothing properties. Furthermore, under only the assumption that the smoother is convergent, we show that the nonlinear AMLI-cycle method is always better (or not worse) than the respective V-cycle MG method. Finally, numerical experiments are presented to illustrate the theoretical results.
NASA Technical Reports Server (NTRS)
Demuren, A. O.
1990-01-01
A multigrid method is presented for calculating turbulent jets in crossflow. Fairly rapid convergence is obtained with the k-epsilon turbulence model, but computations with a full Reynolds stress turbulence model (RSM) are not yet very efficient. Grid dependency tests show that there are slight differences between results obtained on the two finest grid levels. Computations using the RSM are significantly different from those with k-epsilon model and compare better to experimental data. Some work is still required to improve the efficiency of the computations with the RSM.
An upwind multigrid method for solving viscous flows on unstructured triangular meshes. M.S. Thesis
NASA Technical Reports Server (NTRS)
Bonhaus, Daryl Lawrence
1993-01-01
A multigrid algorithm is combined with an upwind scheme for solving the two dimensional Reynolds averaged Navier-Stokes equations on triangular meshes resulting in an efficient, accurate code for solving complex flows around multiple bodies. The relaxation scheme uses a backward-Euler time difference and relaxes the resulting linear system using a red-black procedure. Roe's flux-splitting scheme is used to discretize convective and pressure terms, while a central difference is used for the diffusive terms. The multigrid scheme is demonstrated for several flows around single and multi-element airfoils, including inviscid, laminar, and turbulent flows. The results show an appreciable speed up of the scheme for inviscid and laminar flows, and dramatic increases in efficiency for turbulent cases, especially those on increasingly refined grids.
Lee, Barry
2010-05-01
This paper presents a new multigrid method applied to the most common Sn discretizations (Petrov-Galerkin, diamond-differenced, corner-balanced, and discontinuous Galerkin) of the mono-energetic Boltzmann transport equation in the optically thick and thin regimes, and with strong anisotropic scattering. Unlike methods that use scalar DSA diffusion preconditioners for the source iteration, this multigrid method is applied directly to an integral equation for the scalar flux. Thus, unlike the former methods that apply a multigrid strategy to the scalar DSA diffusion operator, this method applies a multigrid strategy to the integral source iteration operator, which is an operator for 5 independent variables in spatial 3-d (3 in space and 2 in angle) and 4 independent variables in spatial 2-d (2 in space and 2 in angle). The core smoother of this multigrid method involves applications of the integral operator. Since the kernel of this integral operator involves the transport sweeps, applying this integral operator requires a transport sweep (an inversion of an upper triagular matrix) for each of the angles used. As the equation is in 5-space or 4-space, the multigrid approach in this paper coarsens in both angle and space, effecting efficient applications of the coarse integral operators. Although each V-cycle of this method is more expensive than a V-cycle for the DSA preconditioner, since the DSA equation does not have angular dependence, the overall computational efficiency is about the same for problems where DSA preconditioning {\\it is} effective. This new method also appears to be more robust over all parameter regimes than DSA approaches. Moreover, this new method is applicable to a variety of Sn spatial discretizations, to problems involving a combination of optically thick and thin regimes, and more importantly, to problems with anisotropic scattering cross-sections, all of which DSA approaches perform poorly or not applicable at all. This multigrid approach
Algebraic coarsening methods for linear and nonlinear PDE and systems
McWilliams, J C
2000-11-06
In [l] Brandt describes a general approach for algebraic coarsening. Given fine-grid equations and a prescribed relaxation method, an approach is presented for defining both the coarse-grid variables and the coarse-grid equations corresponding to these variables. Although, these two tasks are not necessarily related (and, indeed, are often performed independently and with distinct techniques) in the approaches of [1] both revolve around the same underlying observation. To determine whether a given set of coarse-grid variables is appropriate it is suggested that one should employ compatible relaxation. This is a generalization of so-called F-relaxation (e.g., [2]). Suppose that the coarse-grid variables are defined as a subset of the fine-grid variables. Then, F-relaxation simply means relaxing only the F-variables (i.e., fine-grid variables that do not correspond to coarse-grid variables), while leaving the remaining fine-grid variables (C-variables) unchanged. The generalization of compatible relaxation is in allowing the coarse-grid variables to be defined differently, say as linear combinations of fine-grid variables, or even nondeterministically (see examples in [1]). For the present summary it suffices to consider the simple case. The central observation regarding the set of coarse-grid variables is the following [1]: Observation 1--A general measure for the quality of the set of coarse-grid variables is the convergence rate of compatible relaxation. The conclusion is that a necessary condition for efficient multigrid solution (e.g., with convergence rates independent of problem size) is that the compatible-relaxation convergence be bounded away from 1, independently of the number of variables. This is often a sufficient condition, provided that the coarse-grid equations are sufficiently accurate. Therefore, it is suggested in [1] that the convergence rate of compatible relaxation should be used as a criterion for choosing and evaluating the set of coarse
Analysis of a multigrid method for the Euler equations of gas dynamics in two dimensions
NASA Astrophysics Data System (ADS)
Mulder, Wim A.
1987-04-01
The multigrid convergence rates of several relaxation schemes for the linearized upwind differenced Euler equations are estimated by two-level Fourier analysis. Strong alignment, the flow being aligned with the grid, causes the failure of schemes that use only local data, such as Point-Jacobi, Red-Black, and Block-Jacobi relaxation. Collective Symmetric Gauss-Seidel relaxation, which is global in nature, can overcome this problem. However, it still fails at or near singularities. This is confirmed by a numerical experiment for the nonlinear Euler equations, using flux-vector splitting.
Algebraic method for calculating a neutron albedo
NASA Astrophysics Data System (ADS)
Ignatovich, V. K.; Shabalin, E. P.
2007-02-01
A neutron albedo from arbitrary homogeneous and finely grained substances is examined on the basis of a new, algebraic, method. In the approximation of an isotropic distribution of incident and reflected neutrons, it is shown that, in the case of thermal neutrons, coherent scattering on individual particles of finely grained media increases only slightly the transport cross section, but, at a given wall thickness, it reduces the albedo because of a decrease in the density of the substance. A significant increase in the albedo is possible only for neutrons of wavelength on the order of dimensions of a powder grain. The angular distribution of reflected neutrons is discussed, and it is proven that a deviation of this distribution from an isotropic one does not lead to a change in the magnitude of the albedo.
Comparative study of homotopy continuation methods for nonlinear algebraic equations
NASA Astrophysics Data System (ADS)
Nor, Hafizudin Mohamad; Ismail, Ahmad Izani Md.; Majid, Ahmad Abd.
2014-07-01
We compare some recent homotopy continuation methods to see which method has greater applicability and greater accuracy. We test the methods on systems of nonlinear algebraic equations. The results obtained indicate the superior accuracy of Newton Homotopy Continuation Method (NHCM).
NASA Astrophysics Data System (ADS)
Ţene, Matei; Al Kobaisi, Mohammed Saad; Hajibeygi, Hadi
2016-09-01
This paper introduces an Algebraic MultiScale method for simulation of flow in heterogeneous porous media with embedded discrete Fractures (F-AMS). First, multiscale coarse grids are independently constructed for both porous matrix and fracture networks. Then, a map between coarse- and fine-scale is obtained by algebraically computing basis functions with local support. In order to extend the localization assumption to the fractured media, four types of basis functions are investigated: (1) Decoupled-AMS, in which the two media are completely decoupled, (2) Frac-AMS and (3) Rock-AMS, which take into account only one-way transmissibilities, and (4) Coupled-AMS, in which the matrix and fracture interpolators are fully coupled. In order to ensure scalability, the F-AMS framework permits full flexibility in terms of the resolution of the fracture coarse grids. Numerical results are presented for two- and three-dimensional heterogeneous test cases. During these experiments, the performance of F-AMS, paired with ILU(0) as second-stage smoother in a convergent iterative procedure, is studied by monitoring CPU times and convergence rates. Finally, in order to investigate the scalability of the method, an extensive benchmark study is conducted, where a commercial algebraic multigrid solver is used as reference. The results show that, given an appropriate coarsening strategy, F-AMS is insensitive to severe fracture and matrix conductivity contrasts, as well as the length of the fracture networks. Its unique feature is that a fine-scale mass conservative flux field can be reconstructed after any iteration, providing efficient approximate solutions in time-dependent simulations.
The Fast Adaptive Composite Grid Method and Algebraic Multigrid in Large Scale Computation
1991-01-03
in the context of oil reservoir simulation [5], the basic ideas are useful in many areas of interest. Finally, Lagrangian and semi-Lagrangian... reservoir simulation ," Proceeding of the SPE Svmposium on Reservoir imuation, February, 1989, Houston, Texas. 6. S. McCormick and J. Thomas, "The fast
Unified algebraic method to non-Hermitian systems with Lie algebraic linear structure
NASA Astrophysics Data System (ADS)
Zhang, Hong-Biao; Jiang, Guang-Yuan; Wang, Gang-Cheng
2015-07-01
We suggest a generic algebraic method to solve non-Hermitian Hamiltonian systems with Lie algebraic linear structure. Such method can not only unify the non-Hermitian Hamiltonian and the Hermitian Hamiltonian with the same structure but also keep self-consistent between similarity transformation and unitary transformation. To clearly reveal the correctness and physical meaning of such algebraic method, we illustrate our method with two different types of non-Hermitian Hamiltonians: the non-Hermitian Hamiltonian with Heisenberg algebraic linear structure and the non-Hermitian Hamiltonian with su(1, 1) algebraic linear structure. We obtain energy eigenvalues and the corresponding eigenstates of non-Hermitian forced harmonic oscillator with Heisenberg algebra structure via a proper similarity transformation. We also calculate the eigen-problems of general non-Hermitian Hamiltonian with su(1, 1) structure in terms of the similarity transformation. As an application, we focus on studying the non-Hermitian single-mode squeezed and coherent harmonic oscillator system and find that such similarity transformation associated with this model is in fact gauge-like transformation for simple harmonic oscillator.
Canonical-variables multigrid method for steady-state Euler equations
NASA Technical Reports Server (NTRS)
Taasan, Shlomo
1994-01-01
A novel approach for the solution of inviscid flow problems for subsonic compressible flows is described. The approach is based on canonical forms of the equations, in which subsystems governed by hyperbolic operators are separated from those governed by elliptic ones. The discretizations used as well as the iterative techniques for the different subsystems are inherently different. Hyperbolic parts, which describe, in general, propagation phenomena, are discretized using upwind schemes and are solved by marching techniques. Elliptic parts, which are directionally unbiased, are discretized using h-elliptic central discretizations, and are solved by pointwise relaxations together with coarse grid acceleration. The resulting discretization schemes introduce artificial viscosity only for the hyperbolic parts of the system; thus a smaller total artificial viscosity is used, while the multigrid solvers used are much more efficient. Solutions of the subsonic compressible Euler equations are achieved at the same efficiency as the full potential equation.
NASA Astrophysics Data System (ADS)
Wolkov, A. V.
2010-03-01
The Galerkin method with discontinuous basis functions is adapted for solving the Euler and Navier-Stokes equations on unstructured hexahedral grids. A hybrid multigrid algorithm involving the finite element and grid stages is used as an iterative solution method. Numerical results of calculating the sphere inviscid flow, viscous flow in a bent pipe, and turbulent flow past a wing are presented. The numerical results and the computational cost are compared with those obtained using the finite volume method.
NASA Astrophysics Data System (ADS)
Kaus, Boris; Popov, Anton; Püsök, Adina
2014-05-01
In order to solve high-resolution 3D problems in computational geodynamics it is crucial to use multigrid solvers in combination with parallel computers. A number of approaches are currently in use in the community, which can broadly be divided into coupled and decoupled approaches. In the decoupled approach, an algebraic or geometric multigrid method is used as a preconditioner for the velocity equations only while an iterative approach such as Schur complement reduction used to solve the outer velocity-pressure equations. In the coupled approach, on the other hand, a multigrid approach is applied to both the velocity and pressure equations. The coupled multigrid approaches are typically employed in combination with staggered finite difference discretizations, whereas the decoupled approach is the method of choice in many of the existing finite element codes. Yet, it is unclear whether there are differences in speed between the two approaches, and if so, how this depends on the initial guess. Here, we implemented both approaches in combination with a staggered finite difference discretization and test the robustness of the two approaches with respect to large jumps in viscosity contrast, as well as their computational efficiency as a function of the initial guess. Acknowledgements. Funding was provided by the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013) / ERC Grant agreement #258830. Numerical computations have been performed on JUQUEEN of the Jülich high-performance computing center.
Linear Algebraic Method for Non-Linear Map Analysis
Yu,L.; Nash, B.
2009-05-04
We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.
NASA Astrophysics Data System (ADS)
Rossow, C.-C.
1992-10-01
The applicability of a multigrid technique to block-structured, body-fitted meshes is examined focusing on three different strategies. In the first strategy data are exchanged between blocks in each stage of a five-stage Runge-Kutta time-stepping scheme which keeps a possible time lag between blocks to a minimum, but requires a large amount of I/O operations and storage. The second strategy is based on performing a complete Runge-Kutta cycle within a block before switching to the next. In the third strategy both a complete Runge-Kutta cycle and the residual evaluation for the restriction operator are done within a block, allowing a minimum of I/O and storage. The inviscid flow around a wing-body/engine-pylon configuration was computed on a mesh consisting of 11 computational blocks. It was found that both the first and the second strategies delivered converged results, but the third failed due to larger time lag between blocks.
Multigrid solutions to quasi-elliptic schemes
NASA Technical Reports Server (NTRS)
Brandt, A.; Taasan, S.
1985-01-01
Quasi-elliptic schemes arise from central differencing or finite element discretization of elliptic systems with odd order derivatives on non-staggered grids. They are somewhat unstable and less accurate then corresponding staggered-grid schemes. When usual multigrid solvers are applied to them, the asymptotic algebraic convergence is necessarily slow. Nevertheless, it is shown by mode analyses and numerical experiments that the usual FMG algorithm is very efficient in solving quasi-elliptic equations to the level of truncation errors. Also, a new type of multigrid algorithm is presented, mode analyzed and tested, for which even the asymptotic algebraic convergence is fast. The essence of that algorithm is applicable to other kinds of problems, including highly indefinite ones.
Progress with Multigrid Schemes for Hypersonic Flow Problems
1991-12-01
paper, we first briefly describe the multigrid method and different execution strategies that will be considered. The multigrid approach is based on...determine their damping properties. The capabilities of the multi’grid methods are assessed by solving three different hypersonic flow problems. Some new...multigrid schemes based on semicoarsening strategies are shown to be quite effective in relieving the stiffness caused by the high-aspect-ratio cells
NASA Technical Reports Server (NTRS)
Yang, Cheng I.; Guo, Yan-Hu; Liu, C.- H.
1996-01-01
The analysis and design of a submarine propulsor requires the ability to predict the characteristics of both laminar and turbulent flows to a higher degree of accuracy. This report presents results of certain benchmark computations based on an upwind, high-resolution, finite-differencing Navier-Stokes solver. The purpose of the computations is to evaluate the ability, the accuracy and the performance of the solver in the simulation of detailed features of viscous flows. Features of interest include flow separation and reattachment, surface pressure and skin friction distributions. Those features are particularly relevant to the propulsor analysis. Test cases with a wide range of Reynolds numbers are selected; therefore, the effects of the convective and the diffusive terms of the solver can be evaluated separately. Test cases include flows over bluff bodies, such as circular cylinders and spheres, at various low Reynolds numbers, flows over a flat plate with and without turbulence effects, and turbulent flows over axisymmetric bodies with and without propulsor effects. Finally, to enhance the iterative solution procedure, a full approximation scheme V-cycle multigrid method is implemented. Preliminary results indicate that the method significantly reduces the computational effort.
Lie algebraic methods for particle tracking calculations
Douglas, D.R.; Dragt, A.J.
1983-08-01
A study of the nonlinear stability of an accelerator or storage ring lattice typically includes particle tracking simulations. Such simulations trace rays through linear and nonlinear lattice elements by numerically evaluating linear matrix or impulsive nonlinear transformations. Using the mathematical tools of Lie groups and algebras, one may construct a formalism which makes explicit use of Hamilton's equations and which allows the description of groups of linear and nonlinear lattice elements by a single transformation. Such a transformation will be exactly canonical and will describe finite length linear and nonlinear elements through third (octupole) order. It is presently possible to include effects such as fringing fields and potentially possible to extend the formalism to include nonlinearities of higher order, multipole errors, and magnet misalignments. We outline this Lie algebraic formalism and its use in particle tracking calculations. A computer code, MARYLIE, has been constructed on the basis of this formalism. We describe the use of this program for tracking and provide examples of its application. 6 references, 3 figures.
NASA Astrophysics Data System (ADS)
Stiller, Jörg
2016-12-01
We present a polynomial multigrid method for nodal interior penalty and local discontinuous Galerkin formulations of the Poisson equation on Cartesian grids. For smoothing we propose two classes of overlapping Schwarz methods. The first class comprises element-centered and the second face-centered methods. Within both classes we identify methods that achieve superior convergence rates, prove robust with respect to the mesh spacing and the polynomial order, at least up to P = 32. Consequent structure exploitation yields a computational complexity of O (PN), where N is the number of unknowns. Further we demonstrate the suitability of the face-centered method for element aspect ratios up to 32.
Textbook Multigrid Efficiency for Leading Edge Stagnation
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Mineck, Raymond E.
2004-01-01
A multigrid solver is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in evaluating the discrete residuals. TME in solving the incompressible inviscid fluid equations is demonstrated for leading- edge stagnation flows. The contributions of this paper include (1) a special formulation of the boundary conditions near stagnation allowing convergence of the Newton iterations on coarse grids, (2) the boundary relaxation technique to facilitate relaxation and residual restriction near the boundaries, (3) a modified relaxation scheme to prevent initial error amplification, and (4) new general analysis techniques for multigrid solvers. Convergence of algebraic errors below the level of discretization errors is attained by a full multigrid (FMG) solver with one full approximation scheme (F.4S) cycle per grid. Asymptotic convergence rates of the F.4S cycles for the full system of flow equations are very fast, approaching those for scalar elliptic equations.
Textbook Multigrid Efficiency for Leading Edge Stagnation
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Mineck, Raymond E.
2004-01-01
A multigrid solver is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in evaluating the discrete residuals. TME in solving the incompressible inviscid fluid equations is demonstrated for leading-edge stagnation flows. The contributions of this paper include (1) a special formulation of the boundary conditions near stagnation allowing convergence of the Newton iterations on coarse grids, (2) the boundary relaxation technique to facilitate relaxation and residual restriction near the boundaries, (3) a modified relaxation scheme to prevent initial error amplification, and (4) new general analysis techniques for multigrid solvers. Convergence of algebraic errors below the level of discretization errors is attained by a full multigrid (FMG) solver with one full approximation scheme (FAS) cycle per grid. Asymptotic convergence rates of the FAS cycles for the full system of flow equations are very fast, approaching those for scalar elliptic equations.
NONLINEAR MULTIGRID SOLVER EXPLOITING AMGe COARSE SPACES WITH APPROXIMATION PROPERTIES
Christensen, Max La Cour; Villa, Umberto E.; Engsig-Karup, Allan P.; Vassilevski, Panayot S.
2016-01-22
The paper introduces a nonlinear multigrid solver for mixed nite element discretizations based on the Full Approximation Scheme (FAS) and element-based Algebraic Multigrid (AMGe). The main motivation to use FAS for unstruc- tured problems is the guaranteed approximation property of the AMGe coarse spaces that were developed recently at Lawrence Livermore National Laboratory. These give the ability to derive stable and accurate coarse nonlinear discretization problems. The previous attempts (including ones with the original AMGe method, [5, 11]), were less successful due to lack of such good approximation properties of the coarse spaces. With coarse spaces with approximation properties, our FAS approach on un- structured meshes should be as powerful/successful as FAS on geometrically re ned meshes. For comparison, Newton's method and Picard iterations with an inner state-of-the-art linear solver is compared to FAS on a nonlinear saddle point problem with applications to porous media ow. It is demonstrated that FAS is faster than Newton's method and Picard iterations for the experiments considered here. Due to the guaranteed approximation properties of our AMGe, the coarse spaces are very accurate, providing a solver with the potential for mesh-independent convergence on general unstructured meshes.
Exact solution of some linear matrix equations using algebraic methods
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1977-01-01
A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.
Vectorized multigrid Poisson solver for the CDC CYBER 205
NASA Technical Reports Server (NTRS)
Barkai, D.; Brandt, M. A.
1984-01-01
The full multigrid (FMG) method is applied to the two dimensional Poisson equation with Dirichlet boundary conditions. This has been chosen as a relatively simple test case for examining the efficiency of fully vectorizing of the multigrid method. Data structure and programming considerations and techniques are discussed, accompanied by performance details.
Application of p-Multigrid to Discontinuous Galerkin Formulations of the Poisson Equation
NASA Technical Reports Server (NTRS)
Helenbrook, B. T.; Atkins, H. L.
2006-01-01
We investigate p-multigrid as a solution method for several different discontinuous Galerkin (DG) formulations of the Poisson equation. Different combinations of relaxation schemes and basis sets have been combined with the DG formulations to find the best performing combination. The damping factors of the schemes have been determined using Fourier analysis for both one and two-dimensional problems. One important finding is that when using DG formulations, the standard approach of forming the coarse p matrices separately for each level of multigrid is often unstable. To ensure stability the coarse p matrices must be constructed from the fine grid matrices using algebraic multigrid techniques. Of the relaxation schemes, we find that the combination of Jacobi relaxation with the spectral element basis is fairly effective. The results using this combination are p sensitive in both one and two dimensions, but reasonable convergence rates can still be achieved for moderate values of p and isotropic meshes. A competitive alternative is a block Gauss-Seidel relaxation. This actually out performs a more expensive line relaxation when the mesh is isotropic. When the mesh becomes highly anisotropic, the implicit line method and the Gauss-Seidel implicit line method are the only effective schemes. Adding the Gauss-Seidel terms to the implicit line method gives a significant improvement over the line relaxation method.
Exact solution of some linear matrix equations using algebraic methods
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1979-01-01
Algebraic methods are used to construct the exact solution P of the linear matrix equation PA + BP = - C, where A, B, and C are matrices with real entries. The emphasis of this equation is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The paper is divided into six sections which include the proof of the basic lemma, the Liapunov equation, and the computer implementation for the rational, integer and modular algorithms. Two numerical examples are given and the entire calculation process is depicted.
Algebraic methods for the solution of some linear matrix equations
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1979-01-01
The characterization of polynomials whose zeros lie in certain algebraic domains (and the unification of the ideas of Hermite and Lyapunov) is the basis for developing finite algorithms for the solution of linear matrix equations. Particular attention is given to equations PA + A'P = Q (the Lyapunov equation) and P - A'PA = Q the (discrete Lyapunov equation). The Lyapunov equation appears in several areas of control theory such as stability theory, optimal control (evaluation of quadratic integrals), stochastic control (evaluation of covariance matrices) and in the solution of the algebraic Riccati equation using Newton's method.
Linear algebraic methods applied to intensity modulated radiation therapy.
Crooks, S M; Xing, L
2001-10-01
Methods of linear algebra are applied to the choice of beam weights for intensity modulated radiation therapy (IMRT). It is shown that the physical interpretation of the beam weights, target homogeneity and ratios of deposited energy can be given in terms of matrix equations and quadratic forms. The methodology of fitting using linear algebra as applied to IMRT is examined. Results are compared with IMRT plans that had been prepared using a commercially available IMRT treatment planning system and previously delivered to cancer patients.
An Analysis of the Algebraic Method for Balancing Chemical Reactions.
ERIC Educational Resources Information Center
Olson, John A.
1997-01-01
Analyzes the algebraic method for balancing chemical reactions. Introduces a third general condition that involves a balance between the total amount of oxidation and reduction. Requires the specification of oxidation states for all elements throughout the reaction. Describes the general conditions, the mathematical treatment, redox reactions, and…
Divergence of Scientific Heuristic Method and Direct Algebraic Instruction
ERIC Educational Resources Information Center
Calucag, Lina S.
2016-01-01
This is an experimental study, made used of the non-randomized experimental and control groups, pretest-posttest designs. The experimental and control groups were two separate intact classes in Algebra. For a period of twelve sessions, the experimental group was subjected to the scientific heuristic method, but the control group instead was given…
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F.; Samtaney, Ravi; Brandt, Achi
2010-09-01
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called ‘‘textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss–Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field,more » which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.« less
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F.; Samtaney, Ravi; Brandt, Achi
2013-12-14
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called “textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F.; Samtaney, Ravi; Brandt, Achi
2010-09-01
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations - so-called 'textbook' multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F.; Samtaney, Ravi; Brandt, Achi
2010-09-01
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called ‘‘textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss–Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.
NASA Technical Reports Server (NTRS)
1982-01-01
Papers presented in this volume provide an overview of recent work on numerical boundary condition procedures and multigrid methods. The topics discussed include implicit boundary conditions for the solution of the parabolized Navier-Stokes equations for supersonic flows; far field boundary conditions for compressible flows; and influence of boundary approximations and conditions on finite-difference solutions. Papers are also presented on fully implicit shock tracking and on the stability of two-dimensional hyperbolic initial boundary value problems for explicit and implicit schemes.
Some multigrid algorithms for SIMD machines
Dendy, J.E. Jr.
1996-12-31
Previously a semicoarsening multigrid algorithm suitable for use on SIMD architectures was investigated. Through the use of new software tools, the performance of this algorithm has been considerably improved. The method has also been extended to three space dimensions. The method performs well for strongly anisotropic problems and for problems with coefficients jumping by orders of magnitude across internal interfaces. The parallel efficiency of this method is analyzed, and its actual performance on the CM-5 is compared with its performance on the CRAY-YMP. A standard coarsening multigrid algorithm is also considered, and we compare its performance on these two platforms as well.
Multigrid method applied to the solution of an elliptic, generalized eigenvalue problem
Alchalabi, R.M.; Turinsky, P.J.
1996-12-31
The work presented in this paper is concerned with the development of an efficient MG algorithm for the solution of an elliptic, generalized eigenvalue problem. The application is specifically applied to the multigroup neutron diffusion equation which is discretized by utilizing the Nodal Expansion Method (NEM). The underlying relaxation method is the Power Method, also known as the (Outer-Inner Method). The inner iterations are completed using Multi-color Line SOR, and the outer iterations are accelerated using Chebyshev Semi-iterative Method. Furthermore, the MG algorithm utilizes the consistent homogenization concept to construct the restriction operator, and a form function as a prolongation operator. The MG algorithm was integrated into the reactor neutronic analysis code NESTLE, and numerical results were obtained from solving production type benchmark problems.
3D magnetospheric parallel hybrid multi-grid method applied to planet–plasma interactions
Leclercq, L.; Mancini, M.
2016-03-15
We present a new method to exploit multiple refinement levels within a 3D parallel hybrid model, developed to study planet–plasma interactions. This model is based on the hybrid formalism: ions are kinetically treated whereas electrons are considered as a inertia-less fluid. Generally, ions are represented by numerical particles whose size equals the volume of the cells. Particles that leave a coarse grid subsequently entering a refined region are split into particles whose volume corresponds to the volume of the refined cells. The number of refined particles created from a coarse particle depends on the grid refinement rate. In order to conserve velocity distribution functions and to avoid calculations of average velocities, particles are not coalesced. Moreover, to ensure the constancy of particles' shape function sizes, the hybrid method is adapted to allow refined particles to move within a coarse region. Another innovation of this approach is the method developed to compute grid moments at interfaces between two refinement levels. Indeed, the hybrid method is adapted to accurately account for the special grid structure at the interfaces, avoiding any overlapping grid considerations. Some fundamental test runs were performed to validate our approach (e.g. quiet plasma flow, Alfven wave propagation). Lastly, we also show a planetary application of the model, simulating the interaction between Jupiter's moon Ganymede and the Jovian plasma.
Algebraic Methods Applied to Network Reliability Problems. Revision.
1986-09-01
RD-RIBs 38? ALGEBRAIC METHODS APPLIED TO NETHORK RELIABILITY 1/1 PROBLEMS REVISIOU(U) CLEMSON UNIV SC DEPT OF MATEMATICAL SCIENCES D R SHIER ET AL...class of directed networks, Oper. Res., 32 (1984), pp. 493-515. -2 " 16 [3] A. AGRAWAL AND A. SATYANARAYANA, Network reliability analysis using 2...Networks, 13 (1983), pp. 107-120. [20] A. SATYANARAYANA AND A. PRABHAKAR, A new topological formula and rapid algorithm for reliability analysis of complex
A Line Search Multigrid Method for Large-Scale Convex Optimization
2007-07-03
symmetric matrix G, there exists an orthogonal matrix Q such that Q⊤g is parallel to the first coordinate direction and Q⊤GQ is a tridiagonal matrix ...Methods for PDEs. Consider solving the system of linear equa- tions (2.1) Ahxh = bh, where Ah is a symmetric positive definite matrix and h is the...Assumption 2.2. The coarser level matrix Ah−1 relates to the finer level matrix Ah through Ah−1 = RhAhPh. Given an approximate solution xh,k, a
Numerical Methods for Forward and Inverse Problems in Discontinuous Media
Chartier, Timothy P.
2011-03-08
The research emphasis under this grant's funding is in the area of algebraic multigrid methods. The research has two main branches: 1) exploring interdisciplinary applications in which algebraic multigrid can make an impact and 2) extending the scope of algebraic multigrid methods with algorithmic improvements that are based in strong analysis.The work in interdisciplinary applications falls primarily in the field of biomedical imaging. Work under this grant demonstrated the effectiveness and robustness of multigrid for solving linear systems that result from highly heterogeneous finite element method models of the human head. The results in this work also give promise to medical advances possible with software that may be developed. Research to extend the scope of algebraic multigrid has been focused in several areas. In collaboration with researchers at the University of Colorado, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory, the PI developed an adaptive multigrid with subcycling via complementary grids. This method has very cheap computing costs per iterate and is showing promise as a preconditioner for conjugate gradient. Recent work with Los Alamos National Laboratory concentrates on developing algorithms that take advantage of the recent advances in adaptive multigrid research. The results of the various efforts in this research could ultimately have direct use and impact to researchers for a wide variety of applications, including, astrophysics, neuroscience, contaminant transport in porous media, bi-domain heart modeling, modeling of tumor growth, and flow in heterogeneous porous media. This work has already led to basic advances in computational mathematics and numerical linear algebra and will continue to do so into the future.
Application of multigrid methods to the solution of liquid crystal equations on a SIMD computer
NASA Technical Reports Server (NTRS)
Farrell, Paul A.; Ruttan, Arden; Zeller, Reinhardt R.
1993-01-01
We will describe a finite difference code for computing the equilibrium configurations of the order-parameter tensor field for nematic liquid crystals in rectangular regions by minimization of the Landau-de Gennes Free Energy functional. The implementation of the free energy functional described here includes magnetic fields, quadratic gradient terms, and scalar bulk terms through the fourth order. Boundary conditions include the effects of strong surface anchoring. The target architectures for our implementation are SIMD machines, with interconnection networks which can be configured as 2 or 3 dimensional grids, such as the Wavetracer DTC. We also discuss the relative efficiency of a number of iterative methods for the solution of the linear systems arising from this discretization on such architectures.
Advanced Multigrid Solvers for Fluid Dynamics
NASA Technical Reports Server (NTRS)
Brandt, Achi
1999-01-01
The main objective of this project has been to support the development of multigrid techniques in computational fluid dynamics that can achieve "textbook multigrid efficiency" (TME), which is several orders of magnitude faster than current industrial CFD solvers. Toward that goal we have assembled a detailed table which lists every foreseen kind of computational difficulty for achieving it, together with the possible ways for resolving the difficulty, their current state of development, and references. We have developed several codes to test and demonstrate, in the framework of simple model problems, several approaches for overcoming the most important of the listed difficulties that had not been resolved before. In particular, TME has been demonstrated for incompressible flows on one hand, and for near-sonic flows on the other hand. General approaches were advanced for the relaxation of stagnation points and boundary conditions under various situations. Also, new algebraic multigrid techniques were formed for treating unstructured grid formulations. More details on all these are given below.
Multigrid for hypersonic inviscid flows
NASA Technical Reports Server (NTRS)
Decker, Naomi H.; Turkel, Eli
1990-01-01
The use of multigrid methods to solve the Euler equations for hypersonic flow is discussed. The steady state equations are considered with a Runge-Kutta smoother based on the time accurate equations together with local time stepping and residual smoothing. The effect of the Runge-Kutta coefficients on the convergence rate was examined considering both damping characteristics and convection properties. The importance of boundary conditions on the convergence rate for hypersonic flow is discussed. Also of importance are the switch between the second and fourth difference viscosity. Solutions are given for flow around the bump in a channel and flow around a biconic section.
Multigrid calculation of three-dimensional turbomachinery flows
NASA Technical Reports Server (NTRS)
Caughey, David A.
1989-01-01
Research was performed in the general area of computational aerodynamics, with particular emphasis on the development of efficient techniques for the solution of the Euler and Navier-Stokes equations for transonic flows through the complex blade passages associated with turbomachines. In particular, multigrid methods were developed, using both explicit and implicit time-stepping schemes as smoothing algorithms. The specific accomplishments of the research have included: (1) the development of an explicit multigrid method to solve the Euler equations for three-dimensional turbomachinery flows based upon the multigrid implementation of Jameson's explicit Runge-Kutta scheme (Jameson 1983); (2) the development of an implicit multigrid scheme for the three-dimensional Euler equations based upon lower-upper factorization; (3) the development of a multigrid scheme using a diagonalized alternating direction implicit (ADI) algorithm; (4) the extension of the diagonalized ADI multigrid method to solve the Euler equations of inviscid flow for three-dimensional turbomachinery flows; and also (5) the extension of the diagonalized ADI multigrid scheme to solve the Reynolds-averaged Navier-Stokes equations for two-dimensional turbomachinery flows.
Multigrid semi-implicit hydrodynamics revisited
Dendy, J.E.
1983-01-01
The multigrid method has for several years been very successful for simple equations like Laplace's equation on a rectangle. For more complicated situations, however, success has been more elusive. Indeeed, there are only a few applications in which the multigrid method is now being successfully used in complicated production codes. The one with which we are most familiar is the application by Alcouffe to TTDAMG. We are more familiar with this second application in which, for a set of test problems, TTDAMG ran seven to twenty times less expensively (on a CRAY-1 computer) than its best competitor. This impressive performance, in a field where a factor of two improvement is considered significant, encourages one to attempt the application of the multigrid method in other complicated situations. The application discussed in this paper was actually attempted several years ago. In that paper the multigrid method was applied to the pressure iteration in three Eulerian and Lagrangian codes. The application to the Eulerian codes, both incompressible and compressible, was successful, but the application to the Lagrangian code was less so. The reason given for this lack of success was that the differencing for the pressure equation in the Lagrangian code, SALE, was bad. In this paper, we examine again the application of multigrad to the pressure equation in SALE with the goal of succeeding this time without cheating.
Large-Scale Parallel Viscous Flow Computations using an Unstructured Multigrid Algorithm
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1999-01-01
The development and testing of a parallel unstructured agglomeration multigrid algorithm for steady-state aerodynamic flows is discussed. The agglomeration multigrid strategy uses a graph algorithm to construct the coarse multigrid levels from the given fine grid, similar to an algebraic multigrid approach, but operates directly on the non-linear system using the FAS (Full Approximation Scheme) approach. The scalability and convergence rate of the multigrid algorithm are examined on the SGI Origin 2000 and the Cray T3E. An argument is given which indicates that the asymptotic scalability of the multigrid algorithm should be similar to that of its underlying single grid smoothing scheme. For medium size problems involving several million grid points, near perfect scalability is obtained for the single grid algorithm, while only a slight drop-off in parallel efficiency is observed for the multigrid V- and W-cycles, using up to 128 processors on the SGI Origin 2000, and up to 512 processors on the Cray T3E. For a large problem using 25 million grid points, good scalability is observed for the multigrid algorithm using up to 1450 processors on a Cray T3E, even when the coarsest grid level contains fewer points than the total number of processors.
An algebraic method for constructing stable and consistent autoregressive filters
NASA Astrophysics Data System (ADS)
Harlim, John; Hong, Hoon; Robbins, Jacob L.
2015-02-01
In this paper, we introduce an algebraic method to construct stable and consistent univariate autoregressive (AR) models of low order for filtering and predicting nonlinear turbulent signals with memory depth. By stable, we refer to the classical stability condition for the AR model. By consistent, we refer to the classical consistency constraints of Adams-Bashforth methods of order-two. One attractive feature of this algebraic method is that the model parameters can be obtained without directly knowing any training data set as opposed to many standard, regression-based parameterization methods. It takes only long-time average statistics as inputs. The proposed method provides a discretization time step interval which guarantees the existence of stable and consistent AR model and simultaneously produces the parameters for the AR models. In our numerical examples with two chaotic time series with different characteristics of decaying time scales, we find that the proposed AR models produce significantly more accurate short-term predictive skill and comparable filtering skill relative to the linear regression-based AR models. These encouraging results are robust across wide ranges of discretization times, observation times, and observation noise variances. Finally, we also find that the proposed model produces an improved short-time prediction relative to the linear regression-based AR-models in forecasting a data set that characterizes the variability of the Madden-Julian Oscillation, a dominant tropical atmospheric wave pattern.
An algebraic method for constructing stable and consistent autoregressive filters
Harlim, John; Hong, Hoon; Robbins, Jacob L.
2015-02-15
In this paper, we introduce an algebraic method to construct stable and consistent univariate autoregressive (AR) models of low order for filtering and predicting nonlinear turbulent signals with memory depth. By stable, we refer to the classical stability condition for the AR model. By consistent, we refer to the classical consistency constraints of Adams–Bashforth methods of order-two. One attractive feature of this algebraic method is that the model parameters can be obtained without directly knowing any training data set as opposed to many standard, regression-based parameterization methods. It takes only long-time average statistics as inputs. The proposed method provides a discretization time step interval which guarantees the existence of stable and consistent AR model and simultaneously produces the parameters for the AR models. In our numerical examples with two chaotic time series with different characteristics of decaying time scales, we find that the proposed AR models produce significantly more accurate short-term predictive skill and comparable filtering skill relative to the linear regression-based AR models. These encouraging results are robust across wide ranges of discretization times, observation times, and observation noise variances. Finally, we also find that the proposed model produces an improved short-time prediction relative to the linear regression-based AR-models in forecasting a data set that characterizes the variability of the Madden–Julian Oscillation, a dominant tropical atmospheric wave pattern.
Recent Advances in Agglomerated Multigrid
NASA Technical Reports Server (NTRS)
Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.; Hammond, Dana P.
2013-01-01
We report recent advancements of the agglomerated multigrid methodology for complex flow simulations on fully unstructured grids. An agglomerated multigrid solver is applied to a wide range of test problems from simple two-dimensional geometries to realistic three- dimensional configurations. The solver is evaluated against a single-grid solver and, in some cases, against a structured-grid multigrid solver. Grid and solver issues are identified and overcome, leading to significant improvements over single-grid solvers.
Segmental Refinement: A Multigrid Technique for Data Locality
Adams, Mark
2014-10-27
We investigate a technique - segmental refinement (SR) - proposed by Brandt in the 1970s as a low memory multigrid method. The technique is attractive for modern computer architectures because it provides high data locality, minimizes network communication, is amenable to loop fusion, and is naturally highly parallel and asynchronous. The network communication minimization property was recognized by Brandt and Diskin in 1994; we continue this work by developing a segmental refinement method for a finite volume discretization of the 3D Laplacian on massively parallel computers. An understanding of the asymptotic complexities, required to maintain textbook multigrid efficiency, are explored experimentally with a simple SR method. A two-level memory model is developed to compare the asymptotic communication complexity of a proposed SR method with traditional parallel multigrid. Performance and scalability are evaluated with a Cray XC30 with up to 64K cores. We achieve modest improvement in scalability from traditional parallel multigrid with a simple SR implementation.
On the connection between multigrid and cyclic reduction
NASA Technical Reports Server (NTRS)
Merriam, M. L.
1984-01-01
A technique is shown whereby it is possible to relate a particular multigrid process to cyclic reduction using purely mathematical arguments. This technique suggest methods for solving Poisson's equation in 1-, 2-, or 3-dimensions with Dirichlet or Neumann boundary conditions. In one dimension the method is exact and, in fact, reduces to cyclic reduction. This provides a valuable reference point for understanding multigrid techniques. The particular multigrid process analyzed is referred to here as Approximate Cyclic Reduction (ACR) and is one of a class known as Multigrid Reduction methods in the literature. It involves one approximation with a known error term. It is possible to relate the error term in this approximation with certain eigenvector components of the error. These are sharply reduced in amplitude by classical relaxation techniques. The approximation can thus be made a very good one.
Matrix-dependent multigrid-homogenization for diffusion problems
Knapek, S.
1996-12-31
We present a method to approximately determine the effective diffusion coefficient on the coarse scale level of problems with strongly varying or discontinuous diffusion coefficients. It is based on techniques used also in multigrid, like Dendy`s matrix-dependent prolongations and the construction of coarse grid operators by means of the Galerkin approximation. In numerical experiments, we compare our multigrid-homogenization method with homogenization, renormalization and averaging approaches.
Soft Error Vulnerability of Iterative Linear Algebra Methods
Bronevetsky, G; de Supinski, B
2008-01-19
Devices are increasingly vulnerable to soft errors as their feature sizes shrink. Previously, soft error rates were significant primarily in space and high-atmospheric computing. Modern architectures now use features so small at sufficiently low voltages that soft errors are becoming important even at terrestrial altitudes. Due to their large number of components, supercomputers are particularly susceptible to soft errors. Since many large scale parallel scientific applications use iterative linear algebra methods, the soft error vulnerability of these methods constitutes a large fraction of the applications overall vulnerability. Many users consider these methods invulnerable to most soft errors since they converge from an imprecise solution to a precise one. However, we show in this paper that iterative methods are vulnerable to soft errors, exhibiting both silent data corruptions and poor ability to detect errors. Further, we evaluate a variety of soft error detection and tolerance techniques, including checkpointing, linear matrix encodings, and residual tracking techniques.
Phased-mission system analysis using Boolean algebraic methods
NASA Technical Reports Server (NTRS)
Somani, Arun K.; Trivedi, Kishor S.
1993-01-01
Most reliability analysis techniques and tools assume that a system is used for a mission consisting of a single phase. However, multiple phases are natural in many missions. The failure rates of components, system configuration, and success criteria may vary from phase to phase. In addition, the duration of a phase may be deterministic or random. Recently, several researchers have addressed the problem of reliability analysis of such systems using a variety of methods. A new technique for phased-mission system reliability analysis based on Boolean algebraic methods is described. Our technique is computationally efficient and is applicable to a large class of systems for which the failure criterion in each phase can be expressed as a fault tree (or an equivalent representation). Our technique avoids state space explosion that commonly plague Markov chain-based analysis. A phase algebra to account for the effects of variable configurations and success criteria from phase to phase was developed. Our technique yields exact (as opposed to approximate) results. The use of our technique was demonstrated by means of an example and present numerical results to show the effects of mission phases on the system reliability.
Applications of multigrid software in the atmospheric sciences
NASA Technical Reports Server (NTRS)
Adams, J.; Garcia, R.; Gross, B.; Hack, J.; Haidvogel, D.; Pizzo, V.
1992-01-01
Elliptic partial differential equations from different areas in the atmospheric sciences are efficiently and easily solved utilizing the multigrid software package named MUDPACK. It is demonstrated that the multigrid method is more efficient than other commonly employed techniques, such as Gaussian elimination and fixed-grid relaxation. The efficiency relative to other techniques, both in terms of storage requirement and computational time, increases quickly with grid size.
Updated users' guide for TAWFIVE with multigrid
NASA Technical Reports Server (NTRS)
Melson, N. Duane; Streett, Craig L.
1989-01-01
A program for the Transonic Analysis of a Wing and Fuselage with Interacted Viscous Effects (TAWFIVE) was improved by the incorporation of multigrid and a method to specify lift coefficient rather than angle-of-attack. A finite volume full potential multigrid method is used to model the outer inviscid flow field. First order viscous effects are modeled by a 3-D integral boundary layer method. Both turbulent and laminar boundary layers are treated. Wake thickness effects are modeled using a 2-D strip method. A brief discussion of the engineering aspects of the program is given. The input, output, and use of the program are covered in detail. Sample results are given showing the effects of boundary layer corrections and the capability of the lift specification method.
Algebraic direct methods for few-atoms structure models.
Hauptman, Herbert A; Guo, D Y; Xu, Hongliang; Blessing, Robert H
2002-07-01
As a basis for direct-methods phasing at very low resolution for macromolecular crystal structures, normalized structure-factor algebra is presented for few-atoms structure models with N = 1, 2, 3, em leader equal atoms or polyatomic globs per unit cell. Main results include: [see text]. Triplet discriminant Delta(hk) and triplet weight W(hk) parameters, a approximately 4.0 and b approximately 3.0, respectively, were determined empirically in numerical error analyses. Tests with phases calculated for few-atoms 'super-glob' models of the protein apo-D-glyceraldehyde-3-phosphate dehydrogenase (approximately 10000 non-H atoms) showed that low-resolution phases from the new few-atoms tangent formula were much better than conventional tangent formula phases for N = 2 and 3; phases from the two formulae were essentially the same for N > or = 4.
Finite Difference Methods for Time-Dependent, Linear Differential Algebraic Equations
1993-10-27
Time-Dependent, Linear Differential Algebraic Equations ’ BY PATRICK J. RABIER AND WERNER C. RHEINBOLDT 2 T r e n - sa le; its tot puba"- c. 2 ed...1993 Finite Difference Methods for Time-Dependent, I Linear Differential Algebraic Equations ’ BY PATRICK J. RABIER AND WERNER C. RHEINBOLDT2...LINEAR DIFFERENTIAL ALGEBRAIC EQUATIONS 1 BY PATRICK J. RABIER AND WERNER C. RHEINBOLDT 2 ABSTRACT. Recently the authors developed a global reduction
Intertextuality and Sense Production in the Learning of Algebraic Methods
ERIC Educational Resources Information Center
Rojano, Teresa; Filloy, Eugenio; Puig, Luis
2014-01-01
In studies carried out in the 1980s the algebraic symbols and expressions are revealed through prealgebraic readers as non-independent texts, as texts that relate to other texts that in some cases belong to the reader's native language or to the arithmetic sign system. Such outcomes suggest that the act of reading algebraic texts submerges…
NASA Technical Reports Server (NTRS)
Jentink, Thomas Neil; Usab, William J., Jr.
1990-01-01
An explicit, Multigrid algorithm was written to solve the Euler and Navier-Stokes equations with special consideration given to the coarse mesh boundary conditions. These are formulated in a manner consistent with the interior solution, utilizing forcing terms to prevent coarse-mesh truncation error from affecting the fine-mesh solution. A 4-Stage Hybrid Runge-Kutta Scheme is used to advance the solution in time, and Multigrid convergence is further enhanced by using local time-stepping and implicit residual smoothing. Details of the algorithm are presented along with a description of Jameson's standard Multigrid method and a new approach to formulating the Multigrid equations.
Soft Error Vulnerability of Iterative Linear Algebra Methods
Bronevetsky, G; de Supinski, B
2007-12-15
Devices become increasingly vulnerable to soft errors as their feature sizes shrink. Previously, soft errors primarily caused problems for space and high-atmospheric computing applications. Modern architectures now use features so small at sufficiently low voltages that soft errors are becoming significant even at terrestrial altitudes. The soft error vulnerability of iterative linear algebra methods, which many scientific applications use, is a critical aspect of the overall application vulnerability. These methods are often considered invulnerable to many soft errors because they converge from an imprecise solution to a precise one. However, we show that iterative methods can be vulnerable to soft errors, with a high rate of silent data corruptions. We quantify this vulnerability, with algorithms generating up to 8.5% erroneous results when subjected to a single bit-flip. Further, we show that detecting soft errors in an iterative method depends on its detailed convergence properties and requires more complex mechanisms than simply checking the residual. Finally, we explore inexpensive techniques to tolerate soft errors in these methods.
An algebra-based method for inferring gene regulatory networks
2014-01-01
Background The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used. Results This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also
A multigrid solver for the semiconductor equations
NASA Technical Reports Server (NTRS)
Bachmann, Bernhard
1993-01-01
We present a multigrid solver for the exponential fitting method. The solver is applied to the current continuity equations of semiconductor device simulation in two dimensions. The exponential fitting method is based on a mixed finite element discretization using the lowest-order Raviart-Thomas triangular element. This discretization method yields a good approximation of front layers and guarantees current conservation. The corresponding stiffness matrix is an M-matrix. 'Standard' multigrid solvers, however, cannot be applied to the resulting system, as this is dominated by an unsymmetric part, which is due to the presence of strong convection in part of the domain. To overcome this difficulty, we explore the connection between Raviart-Thomas mixed methods and the nonconforming Crouzeix-Raviart finite element discretization. In this way we can construct nonstandard prolongation and restriction operators using easily computable weighted L(exp 2)-projections based on suitable quadrature rules and the upwind effects of the discretization. The resulting multigrid algorithm shows very good results, even for real-world problems and for locally refined grids.
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Thomas, James L.; Biedron, Robert T.; Diskin, Boris
2005-01-01
FMG3D (full multigrid 3 dimensions) is a pilot computer program that solves equations of fluid flow using a finite difference representation on a structured grid. Infrastructure exists for three dimensions but the current implementation treats only two dimensions. Written in Fortran 90, FMG3D takes advantage of the recursive subroutine feature, dynamic memory allocation, and structured-programming constructs of that language. FMG3D supports multi-block grids with three types of block-to-block interfaces: periodic, C-zero, and C-infinity. For all three types, grid points must match at interfaces. For periodic and C-infinity types, derivatives of grid metrics must be continuous at interfaces. The available equation sets are as follows: scalar elliptic equations, scalar convection equations, and the pressure-Poisson formulation of the Navier-Stokes equations for an incompressible fluid. All the equation sets are implemented with nonzero forcing functions to enable the use of user-specified solutions to assist in verification and validation. The equations are solved with a full multigrid scheme using a full approximation scheme to converge the solution on each succeeding grid level. Restriction to the next coarser mesh uses direct injection for variables and full weighting for residual quantities; prolongation of the coarse grid correction from the coarse mesh to the fine mesh uses bilinear interpolation; and prolongation of the coarse grid solution uses bicubic interpolation.
D'Ambra, P.; Vassilevski, P. S.
2014-05-30
Adaptive Algebraic Multigrid (or Multilevel) Methods (αAMG) are introduced to improve robustness and efficiency of classical algebraic multigrid methods in dealing with problems where no a-priori knowledge or assumptions on the near-null kernel of the underlined matrix are available. Recently we proposed an adaptive (bootstrap) AMG method, αAMG, aimed to obtain a composite solver with a desired convergence rate. Each new multigrid component relies on a current (general) smooth vector and exploits pairwise aggregation based on weighted matching in a matrix graph to define a new automatic, general-purpose coarsening process, which we refer to as “the compatible weighted matching”. In this work, we present results that broaden the applicability of our method to different finite element discretizations of elliptic PDEs. In particular, we consider systems arising from displacement methods in linear elasticity problems and saddle-point systems that appear in the application of the mixed method to Darcy problems.
Multigrid approaches to non-linear diffusion problems on unstructured meshes
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
The efficiency of three multigrid methods for solving highly non-linear diffusion problems on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the manner in which the nonlinearities of the governing equations are handled. These comprise a non-linear full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly, a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu time due to the lower cost of linear versus non-linear grid sweeps.
Multigrid solution of the convection-diffusion equation with high-Reynolds number
Zhang, Jun
1996-12-31
A fourth-order compact finite difference scheme is employed with the multigrid technique to solve the variable coefficient convection-diffusion equation with high-Reynolds number. Scaled inter-grid transfer operators and potential on vectorization and parallelization are discussed. The high-order multigrid method is unconditionally stable and produces solution of 4th-order accuracy. Numerical experiments are included.
New multigrid approach for three-dimensional unstructured, adaptive grids
NASA Technical Reports Server (NTRS)
Parthasarathy, Vijayan; Kallinderis, Y.
1994-01-01
A new multigrid method with adaptive unstructured grids is presented. The three-dimensional Euler equations are solved on tetrahedral grids that are adaptively refined or coarsened locally. The multigrid method is employed to propagate the fine grid corrections more rapidly by redistributing the changes-in-time of the solution from the fine grid to the coarser grids to accelerate convergence. A new approach is employed that uses the parent cells of the fine grid cells in an adapted mesh to generate successively coaser levels of multigrid. This obviates the need for the generation of a sequence of independent, nonoverlapping grids as well as the relatively complicated operations that need to be performed to interpolate the solution and the residuals between the independent grids. The solver is an explicit, vertex-based, finite volume scheme that employs edge-based data structures and operations. Spatial discretization is of central-differencing type combined with a special upwind-like smoothing operators. Application cases include adaptive solutions obtained with multigrid acceleration for supersonic and subsonic flow over a bump in a channel, as well as transonic flow around the ONERA M6 wing. Two levels of multigrid resulted in reduction in the number of iterations by a factor of 5.
New multigrid approach for three-dimensional unstructured, adaptive grids
NASA Astrophysics Data System (ADS)
Parthasarathy, Vijayan; Kallinderis, Y.
1994-05-01
A new multigrid method with adaptive unstructured grids is presented. The three-dimensional Euler equations are solved on tetrahedral grids that are adaptively refined or coarsened locally. The multigrid method is employed to propagate the fine grid corrections more rapidly by redistributing the changes-in-time of the solution from the fine grid to the coarser grids to accelerate convergence. A new approach is employed that uses the parent cells of the fine grid cells in an adapted mesh to generate successively coarser levels of multigrid. This obviates the need for the generation of a sequence of independent, nonoverlapping grids as well as the relatively complicated operations that need to be performed to interpolate the solution and the residuals between the independent grids. The solver is an explicit, vertex-based, finite volume scheme that employs edge-based data structures and operations. Spatial discretization is of central-differencing type combined with special upwind-like smoothing operators. Application cases include adaptive solutions obtained with multigrid acceleration for supersonic and subsonic flow over a bump in a channel, as well as transonic flow around the ONERA M6 wing. Two levels of multigrid resulted in reduction in the number of iterations by a factor of 5.
New multigrid approach for three-dimensional unstructured, adaptive grids
NASA Astrophysics Data System (ADS)
Parthasarathy, Vijayan; Kallinderis, Y.
1994-05-01
A new multigrid method with adaptive unstructured grids is presented. The three-dimensional Euler equations are solved on tetrahedral grids that are adaptively refined or coarsened locally. The multigrid method is employed to propagate the fine grid corrections more rapidly by redistributing the changes-in-time of the solution from the fine grid to the coarser grids to accelerate convergence. A new approach is employed that uses the parent cells of the fine grid cells in an adapted mesh to generate successively coaser levels of multigrid. This obviates the need for the generation of a sequence of independent, nonoverlapping grids as well as the relatively complicated operations that need to be performed to interpolate the solution and the residuals between the independent grids. The solver is an explicit, vertex-based, finite volume scheme that employs edge-based data structures and operations. Spatial discretization is of central-differencing type combined with a special upwind-like smoothing operators. Application cases include adaptive solutions obtained with multigrid acceleration for supersonic and subsonic flow over a bump in a channel, as well as transonic flow around the ONERA M6 wing. Two levels of multigrid resulted in reduction in the number of iterations by a factor of 5.
Evaluation of a Multigrid Scheme for the Incompressible Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Swanson, R. C.
2004-01-01
A fast multigrid solver for the steady, incompressible Navier-Stokes equations is presented. The multigrid solver is based upon a factorizable discrete scheme for the velocity-pressure form of the Navier-Stokes equations. This scheme correctly distinguishes between the advection-diffusion and elliptic parts of the operator, allowing efficient smoothers to be constructed. To evaluate the multigrid algorithm, solutions are computed for flow over a flat plate, parabola, and a Karman-Trefftz airfoil. Both nonlifting and lifting airfoil flows are considered, with a Reynolds number range of 200 to 800. Convergence and accuracy of the algorithm are discussed. Using Gauss-Seidel line relaxation in alternating directions, multigrid convergence behavior approaching that of O(N) methods is achieved. The computational efficiency of the numerical scheme is compared with that of Runge-Kutta and implicit upwind based multigrid methods.
Towards Optimal Multigrid Efficiency for the Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Swanson, R. C.
2001-01-01
A fast multigrid solver for the steady incompressible Navier-Stokes equations is presented. Unlike time-marching schemes, this approach uses relaxation of the steady equations. Application of this method results in a discretization that correctly distinguishes between the advection and elliptic parts of the operator, allowing efficient smoothers to be constructed. Numerical solutions are shown for flow over a flat plate and a Karman-Trefftz airfoil. Using collective Gauss-Seidel line relaxation in both the vertical and horizontal directions, multigrid convergence behavior approaching that of O(N) methods is achieved. The computational efficiency of the numerical scheme is compared with that of a Runge-Kutta based multigrid method.
NASA Astrophysics Data System (ADS)
Mascarenhas, Brendan S.; Helenbrook, Brian T.; Atkins, Harold L.
2010-05-01
An improved p-multigrid algorithm for discontinuous Galerkin (DG) discretizations of convection-diffusion problems is presented. The general p-multigrid algorithm for DG discretizations involves a restriction from the p=1 to p=0 discontinuous polynomial solution spaces. This restriction is problematic and has limited the efficiency of the p-multigrid method. For purely diffusive problems, Helenbrook and Atkins have demonstrated rapid convergence using a method that restricts from a discontinuous to continuous polynomial solution space at p=1. It is shown that this method is not directly applicable to the convection-diffusion (CD) equation because it results in a central-difference discretization for the convective term. To remedy this, ideas from the streamwise upwind Petrov-Galerkin (SUPG) formulation are used to devise a transition from the discontinuous to continuous space at p=1 that yields an upwind discretization. The results show that the new method converges rapidly for all Peclet numbers.
Hidden algebra method (quasi-exact-solvability in quantum mechanics)
Turbiner, Alexander
1996-02-20
A general introduction to quasi-exactly-solvable problems of quantum mechanics is presented. Main attention is given to multidimensional quasi-exactly-solvable and exactly-solvable Schroedinger operators. Exact-solvability of the Calogero and Sutherland N-body problems ass ociated with an existence of the hidden algebra slN is discussed extensively.
Non-Traditional Methods of Teaching Abstract Algebra
ERIC Educational Resources Information Center
Capaldi, Mindy
2014-01-01
This article reports on techniques of teaching abstract algebra which were developed to achieve multiple student objectives: reasoning and communication skills, deep content knowledge, student engagement, independence, and pride. The approach developed included a complementary combination of inquiry-based learning, individual (not group) homework…
A Method for the Microanalysis of Pre-Algebra Transfer
ERIC Educational Resources Information Center
Pavlik, Philip I., Jr.; Yudelson, Michael; Koedinger, Kenneth R.
2011-01-01
The objective of this research was to better understand the transfer of learning between different variations of pre-algebra problems. While the authors could have addressed a specific variation that might address transfer, they were interested in developing a general model of transfer, so we gathered data from multiple problem types and their…
Fast Multigrid Techniques in Total Variation-Based Image Reconstruction
NASA Technical Reports Server (NTRS)
Oman, Mary Ellen
1996-01-01
Existing multigrid techniques are used to effect an efficient method for reconstructing an image from noisy, blurred data. Total Variation minimization yields a nonlinear integro-differential equation which, when discretized using cell-centered finite differences, yields a full matrix equation. A fixed point iteration is applied with the intermediate matrix equations solved via a preconditioned conjugate gradient method which utilizes multi-level quadrature (due to Brandt and Lubrecht) to apply the integral operator and a multigrid scheme (due to Ewing and Shen) to invert the differential operator. With effective preconditioning, the method presented seems to require Omicron(n) operations. Numerical results are given for a two-dimensional example.
Black box multigrid solver for definite and indefinite problems
Shapira, Yair
1997-02-01
A two-level analysis method for certain separable problems is introduced. It motivates the definition of improved versions of Black Box Multigrid for diffusion problems with discontinuous coefficients and indefinite Helmholtz equations. For anisotropic problems, it helps in choosing suitable implementations for frequency decomposition multigrid methods. For highly indefinite problems, it provides a way to choose in advance a suitable mesh size for the coarsest grid used. Numerical experiments confirm the analysis and show the advantage of the present methods for several examples.
A diagonally inverted LU implicit multigrid scheme
NASA Technical Reports Server (NTRS)
Yokota, Jeffrey W.; Caughey, David A.; Chima, Rodrick V.
1988-01-01
A new Diagonally Inverted LU Implicit scheme is developed within the framework of the multigrid method for the 3-D unsteady Euler equations. The matrix systems that are to be inverted in the LU scheme are treated by local diagonalizing transformations that decouple them into systems of scalar equations. Unlike the Diagonalized ADI method, the time accuracy of the LU scheme is not reduced since the diagonalization procedure does not destroy time conservation. Even more importantly, this diagonalization significantly reduces the computational effort required to solve the LU approximation and therefore transforms it into a more efficient method of numerically solving the 3-D Euler equations.
Multigrid and cyclic reduction applied to the Helmholtz equation
NASA Technical Reports Server (NTRS)
Brackenridge, Kenneth
1993-01-01
We consider the Helmholtz equation with a discontinuous complex parameter and inhomogeneous Dirichlet boundary conditions in a rectangular domain. A variant of the direct method of cyclic reduction (CR) is employed to facilitate the design of improved multigrid (MG) components, resulting in the method of CR-MG. We demonstrate the improved convergence properties of this method.
Multigrid and multilevel domain decomposition for unstructured grids
Chan, T.; Smith, B.
1994-12-31
Multigrid has proven itself to be a very versatile method for the iterative solution of linear and nonlinear systems of equations arising from the discretization of PDES. In some applications, however, no natural multilevel structure of grids is available, and these must be generated as part of the solution procedure. In this presentation the authors will consider the problem of generating a multigrid algorithm when only a fine, unstructured grid is given. Their techniques generate a sequence of coarser grids by first forming an approximate maximal independent set of the vertices and then applying a Cavendish type algorithm to form the coarser triangulation. Numerical tests indicate that convergence using this approach can be as fast as standard multigrid on a structured mesh, at least in two dimensions.
Textbook Multigrid Efficiency for the Steady Euler Equations
NASA Technical Reports Server (NTRS)
Roberts, Thomas W.; Sidilkover, David; Swanson, R. C.
2004-01-01
A fast multigrid solver for the steady incompressible Euler equations is presented. Unlike time-marching schemes, this approach uses relaxation of the steady equations. Application of this method results in a discretization that correctly distinguishes between the advection and elliptic parts of the operator, allowing efficient smoothers to be constructed. Solvers for both unstructured triangular grids and structured quadrilateral grids have been written. Computations for channel flow and flow over a nonlifting airfoil have computed. Using Gauss-Seidel relaxation ordered in the flow direction, textbook multigrid convergence rates of nearly one order-of-magnitude residual reduction per multigrid cycle are achieved, independent of the grid spacing. This approach also may be applied to the compressible Euler equations and the incompressible Navier-Stokes equations.
Algebraic filter approach for fast approximation of nonlinear tomographic reconstruction methods
NASA Astrophysics Data System (ADS)
Plantagie, Linda; Batenburg, Kees Joost
2015-01-01
We present a computational approach for fast approximation of nonlinear tomographic reconstruction methods by filtered backprojection (FBP) methods. Algebraic reconstruction algorithms are the methods of choice in a wide range of tomographic applications, yet they require significant computation time, restricting their usefulness. We build upon recent work on the approximation of linear algebraic reconstruction methods and extend the approach to the approximation of nonlinear reconstruction methods which are common in practice. We demonstrate that if a blueprint image is available that is sufficiently similar to the scanned object, our approach can compute reconstructions that approximate iterative nonlinear methods, yet have the same speed as FBP.
NASA Technical Reports Server (NTRS)
Marvriplis, D. J.; Venkatakrishnan, V.
1995-01-01
An agglomeration multigrid strategy is developed and implemented for the solution of three-dimensional steady viscous flows. The method enables convergence acceleration with minimal additional memory overheads, and is completely automated, in that it can deal with grids of arbitrary construction. The multigrid technique is validated by comparing the delivered convergence rates with those obtained by a previously developed overset-mesh multigrid approach, and by demonstrating grid independent convergence rates for aerodynamic problems on very large grids. Prospects for further increases in multigrid efficiency for high-Reynolds number viscous flows on highly stretched meshes are discussed.
Solving Upwind-Biased Discretizations. 2; Multigrid Solver Using Semicoarsening
NASA Technical Reports Server (NTRS)
Diskin, Boris
1999-01-01
This paper studies a novel multigrid approach to the solution for a second order upwind biased discretization of the convection equation in two dimensions. This approach is based on semi-coarsening and well balanced explicit correction terms added to coarse-grid operators to maintain on coarse-grid the same cross-characteristic interaction as on the target (fine) grid. Colored relaxation schemes are used on all the levels allowing a very efficient parallel implementation. The results of the numerical tests can be summarized as follows: 1) The residual asymptotic convergence rate of the proposed V(0, 2) multigrid cycle is about 3 per cycle. This convergence rate far surpasses the theoretical limit (4/3) predicted for standard multigrid algorithms using full coarsening. The reported efficiency does not deteriorate with increasing the cycle, depth (number of levels) and/or refining the target-grid mesh spacing. 2) The full multi-grid algorithm (FMG) with two V(0, 2) cycles on the target grid and just one V(0, 2) cycle on all the coarse grids always provides an approximate solution with the algebraic error less than the discretization error. Estimates of the total work in the FMG algorithm are ranged between 18 and 30 minimal work units (depending on the target (discretizatioin). Thus, the overall efficiency of the FMG solver closely approaches (if does not achieve) the goal of the textbook multigrid efficiency. 3) A novel approach to deriving a discrete solution approximating the true continuous solution with a relative accuracy given in advance is developed. An adaptive multigrid algorithm (AMA) using comparison of the solutions on two successive target grids to estimate the accuracy of the current target-grid solution is defined. A desired relative accuracy is accepted as an input parameter. The final target grid on which this accuracy can be achieved is chosen automatically in the solution process. the actual relative accuracy of the discrete solution approximation
Multigrid solution strategies for adaptive meshing problems
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1995-01-01
This paper discusses the issues which arise when combining multigrid strategies with adaptive meshing techniques for solving steady-state problems on unstructured meshes. A basic strategy is described, and demonstrated by solving several inviscid and viscous flow cases. Potential inefficiencies in this basic strategy are exposed, and various alternate approaches are discussed, some of which are demonstrated with an example. Although each particular approach exhibits certain advantages, all methods have particular drawbacks, and the formulation of a completely optimal strategy is considered to be an open problem.
On the applications of algebraic grid generation methods based on transfinite interpolation
NASA Technical Reports Server (NTRS)
Nguyen, Hung Lee
1989-01-01
Algebraic grid generation methods based on transfinite interpolation called the two-boundary and four-boundary methods are applied for generating grids with highly complex boundaries. These methods yield grid point distributions that allow for accurate application to regions of sharp gradients in the physical domain or time-dependent problems with small length scale phenomena. Algebraic grids are derived using the two-boundary and four-boundary methods for applications in both two- and three-dimensional domains. Grids are developed for distinctly different geometrical problems and the two-boundary and four-boundary methods are demonstrated to be applicable to a wide class of geometries.
Multistage Schemes with Multigrid for Euler and Navier-Strokes Equations: Components and Analysis
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Turkel, Eli
1997-01-01
A class of explicit multistage time-stepping schemes with centered spatial differencing and multigrids are considered for the compressible Euler and Navier-Stokes equations. These schemes are the basis for a family of computer programs (flow codes with multigrid (FLOMG) series) currently used to solve a wide range of fluid dynamics problems, including internal and external flows. In this paper, the components of these multistage time-stepping schemes are defined, discussed, and in many cases analyzed to provide additional insight into their behavior. Special emphasis is given to numerical dissipation, stability of Runge-Kutta schemes, and the convergence acceleration techniques of multigrid and implicit residual smoothing. Both the Baldwin and Lomax algebraic equilibrium model and the Johnson and King one-half equation nonequilibrium model are used to establish turbulence closure. Implementation of these models is described.
A multigrid preconditioner for the semiconductor equations
Meza, J.C.; Tuminaro, R.S.
1994-12-31
Currently, integrated circuits are primarily designed in a {open_quote}trial and error{close_quote} fashion. That is, prototypes are built and improved via experimentation and testing. In the near future, however, it may be possible to significantly reduce the time and cost of designing new devices by using computer simulations. To accurately perform these complex simulations in three dimensions, however, new algorithms and high performance computers are necessary. In this paper the authors discuss the use of multigrid preconditioning inside a semiconductor device modeling code, DANCIR. The DANCIR code is a full three-dimensional simulator capable of computing steady-state solutions of the drift-diffusion equations for a single semiconductor device and has been used to simulate a wide variety of different devices. At the inner core of DANCIR is a solver for the nonlinear equations that arise from the spatial discretization of the drift-diffusion equations on a rectangular grid. These nonlinear equations are resolved using Gummel`s method which requires three symmetric linear systems to be solved within each Gummel iteration. It is the resolution of these linear systems which comprises the dominant computational cost of this code. The original version of DANCIR uses a Cholesky preconditioned conjugate gradient algorithm to solve these linear systems. Unfortunately, this algorithm has a number of disadvantages: (1) it takes many iterations to converge (if it converges), (2) it can require a significant amount of computing time, and (3) it is not very parallelizable. To improve the situation, the authors consider a multigrid preconditioner. The multigrid method uses iterations on a hierarchy of grids to accelerate the convergence on the finest grid.
A grid spacing control technique for algebraic grid generation methods
NASA Technical Reports Server (NTRS)
Smith, R. E.; Kudlinski, R. A.; Everton, E. L.
1982-01-01
A technique which controls the spacing of grid points in algebraically defined coordinate transformations is described. The technique is based on the generation of control functions which map a uniformly distributed computational grid onto parametric variables defining the physical grid. The control functions are smoothed cubic splines. Sets of control points are input for each coordinate directions to outline the control functions. Smoothed cubic spline functions are then generated to approximate the input data. The technique works best in an interactive graphics environment where control inputs and grid displays are nearly instantaneous. The technique is illustrated with the two-boundary grid generation algorithm.
Runge-Kutta collocation methods for differential-algebraic equations of indices 2 and 3
NASA Astrophysics Data System (ADS)
Skvortsov, L. M.
2012-10-01
Stiffly accurate Runge-Kutta collocation methods with explicit first stage are examined. The parameters of these methods are chosen so as to minimize the errors in the solutions to differential-algebraic equations of indices 2 and 3. This construction results in methods for solving such equations that are superior to the available Runge-Kutta methods.
The Effect of the Math Emporium Instructional Method on Students' Performance in College Algebra
ERIC Educational Resources Information Center
Cousins-Cooper, Kathy; Staley, Katrina N.; Kim, Seongtae; Luke, Nicholas S.
2017-01-01
This study aims to investigate the effectiveness of the Emporium instructional method in a course of college algebra and trigonometry by comparing to the traditional lecture method. The math emporium method is a nontraditional instructional method of learning math that has been implemented at several universities with much success and has been…
On Development of a Problem Based Learning System for Linear Algebra with Simple Input Method
NASA Astrophysics Data System (ADS)
Yokota, Hisashi
2011-08-01
Learning how to express a matrix using a keyboard inputs requires a lot of time for most of college students. Therefore, for a problem based learning system for linear algebra to be accessible for college students, it is inevitable to develop a simple method for expressing matrices. Studying the two most widely used input methods for expressing matrices, a simpler input method for expressing matrices is obtained. Furthermore, using this input method and educator's knowledge structure as a concept map, a problem based learning system for linear algebra which is capable of assessing students' knowledge structure and skill is developed.
Diagonally Implicit Symplectic Runge-Kutta Methods with High Algebraic and Dispersion Order
Cong, Y. H.; Jiang, C. X.
2014-01-01
The numerical integration of Hamiltonian systems with oscillating solutions is considered in this paper. A diagonally implicit symplectic nine-stages Runge-Kutta method with algebraic order 6 and dispersion order 8 is presented. Numerical experiments with some Hamiltonian oscillatory problems are presented to show the proposed method is as competitive as the existing same type Runge-Kutta methods. PMID:24977178
Multi-grid for structures analysis
NASA Technical Reports Server (NTRS)
Kascak, Albert F.
1989-01-01
In structural analysis the amount of computational time necessary for a solution is proportional to the number of degrees of freedom times the bandwidth squared. In implicit time analysis, this must be done at each discrete point in time. If, in addition, the problem is nonlinear, then this solution must be iterated at each point in time. If the bandwidth is large, the size of the problem that can be analyzed is severely limited. The multi-grid method is a possible algorithm which can make this solution much more computationally efficient. This method has been used for years in computational fluid mechanics. It works on the fact that relaxation is very efficient on the high frequency components of the solution (nearest neighbor interactions) and not very good on low frequency components of the solution (far interactions). The multi-grid method is then to relax the solution on a particular model until the residual stops changing. This indicates that the solution contains the higher frequency components. A coarse model is then generated for the lower frequency components to the solution. The model is then relaxed for the lower frequency components of the solution. These lower frequency components are then interpolated to the fine model. In computational fluid mechanics the equations are usually expressed as finite differences.
NASA Technical Reports Server (NTRS)
Thomas, J. L.; Diskin, B.; Brandt, A.
1999-01-01
The distributed-relaxation multigrid and defect- correction methods are applied to the two- dimensional compressible Navier-Stokes equations. The formulation is intended for high Reynolds number applications and several applications are made at a laminar Reynolds number of 10,000. A staggered- grid arrangement of variables is used; the coupled pressure and internal energy equations are solved together with multigrid, requiring a block 2x2 matrix solution. Textbook multigrid efficiencies are attained for incompressible and slightly compressible simulations of the boundary layer on a flat plate. Textbook efficiencies are obtained for compressible simulations up to Mach numbers of 0.7 for a viscous wake simulation.
On the parallel efficiency of the Frederickson-McBryan multigrid
NASA Technical Reports Server (NTRS)
Decker, Naomi H.
1990-01-01
To take full advantage of the parallelism in a standard multigrid algorithm requires as many processors as points. However, since coarse grids contain fewer points, most processors are idle during the coarse grid iterations. Frederickson and McBryan claim that retaining all points on all grid levels (using all processors) can lead to a superconvergent algorithm. The purpose of this work is to show that the parellel superconvergent multigrid (PSMG) algorithm of Frederickson and McBryan, though it achieves perfect processor utilization, is no more efficient than a parallel implementation of standard multigrid methods. PSMG is simply a new and perhaps simpler way of achieving the same results.
On a modification of minimal iteration methods for solving systems of linear algebraic equations
NASA Astrophysics Data System (ADS)
Yukhno, L. F.
2010-04-01
Modifications of certain minimal iteration methods for solving systems of linear algebraic equations are proposed and examined. The modified methods are shown to be superior to the original versions with respect to the round-off error accumulation, which makes them applicable to solving ill-conditioned problems. Numerical results demonstrating the efficiency of the proposed modifications are given.
Projected implicit Runge-Kutta methods for differential-algebraic boundary value problems
Ascher, U. ); Petzoid, L. )
1990-09-01
Differential-algebraic boundary value problems arise in the modelling of singular optimal control problems and in parameter estimation for singular systems. A new class of numerical methods for these problems is introduced, and shown to overcome difficulties with previously defined numerical methods. 4 refs., 1 tab.
Using The Algebra Project Method To Regiment Discourse In An Energy Course for Teachers
NASA Astrophysics Data System (ADS)
Close, Hunter G.; De Water, Lezlie S.; Close, Eleanor W.; Scherr, Rachel E.; McKagan, Sarah B.
2010-10-01
The Algebra Project, led by R. Moses, provides access to understanding of algebra for middle school students and their teachers by guiding them to participate actively and communally in the construction of regimented symbolic systems. We have extended this work by applying it to the professional development of science teachers (K-12) in energy. As we apply the Algebra Project method, the focus of instruction shifts from the learning of specific concepts within the broad theme of energy to the gradual regimentation of the interplay between learners' observation, thinking, graphic representation, and communication. This approach is suitable for teaching energy, which by its transcendence can seem to defy a linear instructional sequence. The learning of specific energy content thus becomes more learner-directed and unpredictable, though at no apparent cost to its extent. Meanwhile, teachers seem empowered by this method to see beginners as legitimate participants in the scientific process.
NASA Astrophysics Data System (ADS)
Puthen Veettil, Binesh; König, Dirk; Huang, Shujuan; Patterson, Robert; Conibeer, Gavin
2017-02-01
Silicon nanocrystals embedded in a dielectric matrix have been considered a potential candidate for many optoelectronic and photovoltaic applications and have been under vigorous study in recent years. One of the main properties of interest in this application is the absorption bandgap, which is determined by the quantum confinement of silicon nanocrystals. The ability to predict the absorption bandgap is a key step in designing an optimum solar cell using this material. Although several higher level algorithms are available to predict the electronic confinement in these nanocrystals, most of them make regular-shape assumptions for the ease of computation. In this work, we present a model for the accurate prediction of the quantum confinement in silicon nanocrystals of non-regular shape by employing an efficient, self-consistent Full-Multi-Grid method. Confined energies in spherical, elongated, and arbitrarily shaped nanocrystals are calculated. The excited level calculations quantify the wavefunction coupling and energy level splitting arising due to the proximity of dots. The splitting magnitude was found to be as high as 0.1 eV for the 2 nm size silicon quantum dots. The decrease in confinement energy due to the elongation of dots was found to be more than 0.2 eV, and the trend was similar for different dielectric materials. Theoretical predictions were compared to the results from optical and structural characterisation and found to be in agreement. The loss of degeneracy in highly asymmetric quantum dots, such as a "horse-shoe" shaped quantum dot, significantly affects the excited state energies.
Analysis Tools for CFD Multigrid Solvers
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Thomas, James L.; Diskin, Boris
2004-01-01
Analysis tools are needed to guide the development and evaluate the performance of multigrid solvers for the fluid flow equations. Classical analysis tools, such as local mode analysis, often fail to accurately predict performance. Two-grid analysis tools, herein referred to as Idealized Coarse Grid and Idealized Relaxation iterations, have been developed and evaluated within a pilot multigrid solver. These new tools are applicable to general systems of equations and/or discretizations and point to problem areas within an existing multigrid solver. Idealized Relaxation and Idealized Coarse Grid are applied in developing textbook-efficient multigrid solvers for incompressible stagnation flow problems.
Operator induced multigrid algorithms using semirefinement
NASA Technical Reports Server (NTRS)
Decker, Naomi; Vanrosendale, John
1989-01-01
A variant of multigrid, based on zebra relaxation, and a new family of restriction/prolongation operators is described. Using zebra relaxation in combination with an operator-induced prolongation leads to fast convergence, since the coarse grid can correct all error components. The resulting algorithms are not only fast, but are also robust, in the sense that the convergence rate is insensitive to the mesh aspect ratio. This is true even though line relaxation is performed in only one direction. Multigrid becomes a direct method if an operator-induced prolongation is used, together with the induced coarse grid operators. Unfortunately, this approach leads to stencils which double in size on each coarser grid. The use of an implicit three point restriction can be used to factor these large stencils, in order to retain the usual five or nine point stencils, while still achieving fast convergence. This algorithm achieves a V-cycle convergence rate of 0.03 on Poisson's equation, using 1.5 zebra sweeps per level, while the convergence rate improves to 0.003 if optimal nine point stencils are used. Numerical results for two and three dimensional model problems are presented, together with a two level analysis explaining these results.
Uniform convergence of multigrid V-cycle iterations for indefinite and nonsymmetric problems
NASA Technical Reports Server (NTRS)
Bramble, James H.; Kwak, Do Y.; Pasciak, Joseph E.
1993-01-01
In this paper, we present an analysis of a multigrid method for nonsymmetric and/or indefinite elliptic problems. In this multigrid method various types of smoothers may be used. One type of smoother which we consider is defined in terms of an associated symmetric problem and includes point and line, Jacobi, and Gauss-Seidel iterations. We also study smoothers based entirely on the original operator. One is based on the normal form, that is, the product of the operator and its transpose. Other smoothers studied include point and line, Jacobi, and Gauss-Seidel. We show that the uniform estimates for symmetric positive definite problems carry over to these algorithms. More precisely, the multigrid iteration for the nonsymmetric and/or indefinite problem is shown to converge at a uniform rate provided that the coarsest grid in the multilevel iteration is sufficiently fine (but not depending on the number of multigrid levels).
Uniform convergence of multigrid v-cycle iterations for indefinite and nonsymmetric problems
Bramble, J.H. . Dept. of Mathematics); Kwak, D.Y. . Dept. of Mathematics); Pasciak, J.E. . Dept. of Applied Science)
1994-12-01
In this paper, an analysis of a multigrid method for nonsymmetric and/or indefinite elliptic problems is presented. In this multigrid method various types of smothers may be used. One type of smoother considered is defined in terms of an associated symmetric problem and includes point and line, Jacobi, and Gauss-Seidel iterations. Smothers based entirely on the original operator are also considered. One smoother is based on the normal form, that is, the product of the operator and its transpose. Other smothers studied include point and line, Jacobi, and Gauss-Seidel. It is shown that the uniform estimates for symmetric positive definite problems carry over to these algorithms. More precisely, the multigrid iteration for the nonsymmetric and/or indefinite problem is shown to converge at a uniform rate provided that the coarsest grid in the multilevel iteration is sufficiently fine (but not dependent on the number of multigrid levels).
Adaptive Multigrid Solution of Stokes' Equation on CELL Processor
NASA Astrophysics Data System (ADS)
Elgersma, M. R.; Yuen, D. A.; Pratt, S. G.
2006-12-01
We are developing an adaptive multigrid solver for treating nonlinear elliptic partial-differential equations, needed for mantle convection problems. Since multigrid is being used for the complete solution, not just as a preconditioner, spatial difference operators are kept nearly diagonally dominant by increasing density of the coarsest grid in regions where coefficients have rapid spatial variation. At each time step, the unstructured coarse grid is refined in regions where coefficients associated with the differential operators or boundary conditions have rapid spatial variation, and coarsened in regions where there is more gradual spatial variation. For three-dimensional problems, the boundary is two-dimensional, and regions where coefficients change rapidly are often near two-dimensional surfaces, so the coarsest grid is only fine near two-dimensional subsets of the three-dimensional space. Coarse grid density drops off exponentially with distance from boundary surfaces and rapid-coefficient-change surfaces. This unstructured coarse grid results in the number of coarse grid voxels growing proportional to surface area, rather than proportional to volume. This results in significant computational savings for the coarse-grid solution. This coarse-grid solution is then refined for the fine-grid solution, and multigrid methods have memory usage and runtime proportional to the number of fine-grid voxels. This adaptive multigrid algorithm is being implemented on the CELL processor, where each chip has eight floating point processors and each processor operates on four floating point numbers each clock cycle. Both the adaptive grid algorithm and the multigrid solver have very efficient parallel implementations, in order to take advantage of the CELL processor architecture.
Leapfrog variants of iterative methods for linear algebra equations
NASA Technical Reports Server (NTRS)
Saylor, Paul E.
1988-01-01
Two iterative methods are considered, Richardson's method and a general second order method. For both methods, a variant of the method is derived for which only even numbered iterates are computed. The variant is called a leapfrog method. Comparisons between the conventional form of the methods and the leapfrog form are made under the assumption that the number of unknowns is large. In the case of Richardson's method, it is possible to express the final iterate in terms of only the initial approximation, a variant of the iteration called the grand-leap method. In the case of the grand-leap variant, a set of parameters is required. An algorithm is presented to compute these parameters that is related to algorithms to compute the weights and abscissas for Gaussian quadrature. General algorithms to implement the leapfrog and grand-leap methods are presented. Algorithms for the important special case of the Chebyshev method are also given.
Algebraic Singularity Method for Mass Measurements with Missing Energy
Kim, Ian-Woo
2010-02-26
We propose a novel generalized method for mass measurements based on phase space singularity structures that can be applied to any event topology with missing energy. Our method subsumes the well-known end point and transverse mass methods and yields new techniques for studying 'missing particle' events, such as the double chain production of stable neutral particles at the LHC.
Comparison of Two Algebraic Methods for Curve/curve Intersection
NASA Technical Reports Server (NTRS)
Demontaudouin, Y.; Tiller, W.
1985-01-01
Most geometric modeling systems use either polynomial or rational functions to represent geometry. In such systems most computational problems can be formulated as systems of polynomials in one or more variables. Classical elimination theory can be used to solve such systems. Here Cayley's method of elimination is summarized and it is shown how it can best be used to solve the curve/curve intersection problem. Cayley's method was found to be a more straightforward approach. Furthermore, it is computationally simpler, since the elements of the Cayley matrix are one variable instead of two variable polynomials. Researchers implemented and tested both methods and found Cayley's to be more efficient. Six pairs of curves, representing mixtures of lines, circles, and cubic arcs were used. Several examples had multiple intersection points. For all six cases Cayley's required less CPU time than the other method. The average time ratio of method 1 to method 2 was 3.13:1, the least difference was 2.33:1, and the most dramatic was 6.25:1. Both of the above methods can be extended to solve the surface/surface intersection problem.
A fifth order implicit method for the numerical solution of differential-algebraic equations
NASA Astrophysics Data System (ADS)
Skvortsov, L. M.
2015-06-01
An implicit two-step Runge-Kutta method of fifth order is proposed for the numerical solution of differential and differential-algebraic equations. The location of nodes in this method makes it possible to estimate the values of higher derivatives at the initial and terminal points of an integration step. Consequently, the proposed method can be regarded as a finite-difference analog of the Obrechkoff method. Numerical results, some of which are presented in this paper, show that our method preserves its order while solving stiff equations and equations of indices two and three. This is the main advantage of the proposed method as compared with the available ones.
Preconditioning projection methods for solving algebraic linear systems
NASA Astrophysics Data System (ADS)
García-Palomares, Ubaldo
1999-09-01
Numerical experiments have shown that projection methods are robust for solving the problem of finding a point satisfying a linear system of n variables and m equations; however, their qualities of convergence depend on certain parameters: an n n symmetric positive definite matrix M, and a vector u with m components. We are concerned here with the choice of M. Through a link with Conjugate Gradient methods we determine an expedient M. Preliminary numerical results on a hard 3D partial differential equation are highly promising. We solve a discretized system that could not be solved by conventional methods. We also give hints on how to adapt our findings to the solution of a linear system of inequalities. This is the first stage of a forthcoming research.
An adaptive multigrid model for hurricane track prediction
NASA Technical Reports Server (NTRS)
Fulton, Scott R.
1993-01-01
This paper describes a simple numerical model for hurricane track prediction which uses a multigrid method to adapt the model resolution as the vortex moves. The model is based on the modified barotropic vorticity equation, discretized in space by conservative finite differences and in time by a Runge-Kutta scheme. A multigrid method is used to solve an elliptic problem for the streamfunction at each time step. Nonuniform resolution is obtained by superimposing uniform grids of different spatial extent; these grids move with the vortex as it moves. Preliminary numerical results indicate that the local mesh refinement allows accurate prediction of the hurricane track with substantially less computer time than required on a single uniform grid.
High order aberrations calculation of a hexapole corrector using a differential algebra method
NASA Astrophysics Data System (ADS)
Kang, Yongfeng; Liu, Xing; Zhao, Jingyi; Tang, Tiantong
2017-02-01
A differential algebraic (DA) method is proved as an unusual and effective tool in numerical analysis. It implements conveniently differentiation up to arbitrary high order, based on the nonstandard analysis. In this paper, the differential algebra (DA) method has been employed to compute the high order aberrations up to the fifth order of a practical hexapole corrector including round lenses and hexapole lenses. The program has been developed and tested as well. The electro-magnetic fields of arbitrary point are obtained by local analytic expressions, then field potentials are transformed into new forms which can be operated in the DA calculation. In this paper, the geometric and chromatic aberrations up to fifth order of a practical hexapole corrector system are calculated by the developed program.
Emergy Algebra: Improving Matrix Methods for Calculating Tranformities
Transformity is one of the core concepts in Energy Systems Theory and it is fundamental to the calculation of emergy. Accurate evaluation of transformities and other emergy per unit values is essential for the broad acceptance, application and further development of emergy method...
FINAL REPORT: Multigrid for Systems and Time-Dependent PDEs
Jones, J. E.
2016-08-02
This report has two sections. The first section is the motivation for looking at differing discretizations on coarse grids for solving a parabolic equation using multigrid in time. The second section contains selected numerical results from the many experiments conducted. The most interesting result is that for explicit fine grid discretizations, the best coarse discretization (i.e. smallest convergence rates) is a weighting between implicit and explicit methods.
Segmented Domain Decomposition Multigrid For 3-D Turbomachinery Flows
NASA Technical Reports Server (NTRS)
Celestina, M. L.; Adamczyk, J. J.; Rubin, S. G.
2001-01-01
A Segmented Domain Decomposition Multigrid (SDDMG) procedure was developed for three-dimensional viscous flow problems as they apply to turbomachinery flows. The procedure divides the computational domain into a coarse mesh comprised of uniformly spaced cells. To resolve smaller length scales such as the viscous layer near a surface, segments of the coarse mesh are subdivided into a finer mesh. This is repeated until adequate resolution of the smallest relevant length scale is obtained. Multigrid is used to communicate information between the different grid levels. To test the procedure, simulation results will be presented for a compressor and turbine cascade. These simulations are intended to show the ability of the present method to generate grid independent solutions. Comparisons with data will also be presented. These comparisons will further demonstrate the usefulness of the present work for they allow an estimate of the accuracy of the flow modeling equations independent of error attributed to numerical discretization.
Anisotropic seismic inversion using a multigrid Monte Carlo approach
NASA Astrophysics Data System (ADS)
Mewes, Armin; Kulessa, Bernd; McKinley, John D.; Binley, Andrew M.
2010-10-01
We propose a new approach for the inversion of anisotropic P-wave data based on Monte Carlo methods combined with a multigrid approach. Simulated annealing facilitates objective minimization of the functional characterizing the misfit between observed and predicted traveltimes, as controlled by the Thomsen anisotropy parameters (ɛ, δ). Cycling between finer and coarser grids enhances the computational efficiency of the inversion process, thus accelerating the convergence of the solution while acting as a regularization technique of the inverse problem. Multigrid perturbation samples the probability density function without the requirements for the user to adjust tuning parameters. This increases the probability that the preferred global, rather than a poor local, minimum is attained. Undertaking multigrid refinement and Monte Carlo search in parallel produces more robust convergence than does the initially more intuitive approach of completing them sequentially. We demonstrate the usefulness of the new multigrid Monte Carlo (MGMC) scheme by applying it to (a) synthetic, noise-contaminated data reflecting an isotropic subsurface of constant slowness, horizontally layered geologic media and discrete subsurface anomalies; and (b) a crosshole seismic data set acquired by previous authors at the Reskajeage test site in Cornwall, UK. Inverted distributions of slowness (s) and the Thomson anisotropy parameters (ɛ, δ) compare favourably with those obtained previously using a popular matrix-based method. Reconstruction of the Thomsen ɛ parameter is particularly robust compared to that of slowness and the Thomsen δ parameter, even in the face of complex subsurface anomalies. The Thomsen ɛ and δ parameters have enhanced sensitivities to bulk-fabric and fracture-based anisotropies in the TI medium at Reskajeage. Because reconstruction of slowness (s) is intimately linked to that ɛ and δ in the MGMC scheme, inverted images of phase velocity reflect the integrated
NASA Astrophysics Data System (ADS)
Kurnyavko, O. L.; Shirokov, I. V.
2016-07-01
We offer a method for constructing invariants of the coadjoint representation of Lie groups that reduces this problem to known problems of linear algebra. This method is based on passing to symplectic coordinates on the coadjoint representation orbits, which play the role of local coordinates on those orbits. The corresponding transition functions are their parametric equations. Eliminating the symplectic coordinates from the transition functions, we can obtain the complete set of invariants. The proposed method allows solving the problem of constructing invariants of the coadjoint representation for Lie groups with an arbitrary dimension and structure.
Improved Linear Algebra Methods for Redshift Computation from Limited Spectrum Data - II
NASA Technical Reports Server (NTRS)
Foster, Leslie; Waagen, Alex; Aijaz, Nabella; Hurley, Michael; Luis, Apolo; Rinsky, Joel; Satyavolu, Chandrika; Gazis, Paul; Srivastava, Ashok; Way, Michael
2008-01-01
Given photometric broadband measurements of a galaxy, Gaussian processes may be used with a training set to solve the regression problem of approximating the redshift of this galaxy. However, in practice solving the traditional Gaussian processes equation is too slow and requires too much memory. We employed several methods to avoid this difficulty using algebraic manipulation and low-rank approximation, and were able to quickly approximate the redshifts in our testing data within 17 percent of the known true values using limited computational resources. The accuracy of one method, the V Formulation, is comparable to the accuracy of the best methods currently used for this problem.
ERIC Educational Resources Information Center
Egodawatte, Gunawardena; Stoilescu, Dorian
2015-01-01
The purpose of this mixed-method study was to investigate grade 11 university/college stream mathematics students' difficulties in applying conceptual knowledge, procedural skills, strategic competence, and algebraic thinking in solving routine (instructional) algebraic problems. A standardized algebra test was administered to thirty randomly…
An algebraic sub-structuring method for large-scale eigenvaluecalculation
Yang, C.; Gao, W.; Bai, Z.; Li, X.; Lee, L.; Husbands, P.; Ng, E.
2004-05-26
We examine sub-structuring methods for solving large-scalegeneralized eigenvalue problems from a purely algebraic point of view. Weuse the term "algebraic sub-structuring" to refer to the process ofapplying matrix reordering and partitioning algorithms to divide a largesparse matrix into smaller submatrices from which a subset of spectralcomponents are extracted and combined to provide approximate solutions tothe original problem. We are interested in the question of which spectralcomponentsone should extract from each sub-structure in order to producean approximate solution to the original problem with a desired level ofaccuracy. Error estimate for the approximation to the small esteigen pairis developed. The estimate leads to a simple heuristic for choosingspectral components (modes) from each sub-structure. The effectiveness ofsuch a heuristic is demonstrated with numerical examples. We show thatalgebraic sub-structuring can be effectively used to solve a generalizedeigenvalue problem arising from the simulation of an acceleratorstructure. One interesting characteristic of this application is that thestiffness matrix produced by a hierarchical vector finite elements schemecontains a null space of large dimension. We present an efficient schemeto deflate this null space in the algebraic sub-structuringprocess.
Multigrid convergence of inviscid fixed- and rotary-wing flows
NASA Astrophysics Data System (ADS)
Allen, C. B.
2002-05-01
The affect of multigrid acceleration implemented within an upwind-biased Euler method is presented, and applied to fixed-wing and rotary-wing flows. The convergence of fixed- and rotary-wing computations is shown to be vastly different, and multigrid is shown to be less effective for rotary-wing flows. The flow about a hovering rotor suffers from very slow convergence of the inner blade region, where the flow is effectively incompressible. Furthermore, the vortical wake must develop over several turns before convergence is achieved, whereas for fixed-wing computations the far-field grid and solution have little significance. Results are presented for single mesh and two, three, four, and five level multigrid, and using five levels a reduction in required CPU time of over 80 per cent is demonstrated for rotary-wing computations, but 94 per cent for fixed-wing computations. It is found that a simple V-cycle is the most effective, smoothing in the decreasing mesh density direction only, with a relaxed trilinear prolongation operator. Copyright
Multigrid solution of incompressible turbulent flows by using two-equation turbulence models
Zheng, X.; Liu, C.; Sung, C.H.
1996-12-31
Most of practical flows are turbulent. From the interest of engineering applications, simulation of realistic flows is usually done through solution of Reynolds-averaged Navier-Stokes equations and turbulence model equations. It has been widely accepted that turbulence modeling plays a very important role in numerical simulation of practical flow problem, particularly when the accuracy is of great concern. Among the most used turbulence models today, two-equation models appear to be favored for the reason that they are more general than algebraic models and affordable with current available computer resources. However, investigators using two-equation models seem to have been more concerned with the solution of N-S equations. Less attention is paid to the solution method for the turbulence model equations. In most cases, the turbulence model equations are loosely coupled with N-S equations, multigrid acceleration is only applied to the solution of N-S equations due to perhaps the fact the turbulence model equations are source-term dominant and very stiff in sublayer region.
NASA Technical Reports Server (NTRS)
Taylor, C. (Editor); Chin, J. H. (Editor); Homsy, G. M. (Editor)
1991-01-01
Consideration is given to the impulse response of a laminar boundary layer and receptivity; numerical transition to turbulence in plane Poiseuille flow; large eddy simulation of turbulent wake flow; a viscous model and loss calculation of a multisplitter cascade; vortex initiation during dynamic stall of an airfoil; a numerical analysis of isothermal flow in a combustion chamber; and compressible flow calculations with a two-equation turbulence model and unstructured grids. Attention is also given to a 2D calculation of a buoyant flow around a burning sphere, a fast multigrid method for 3D turbulent incompressible flows, a streaming flow induced by an oscillating cascade of circular cylinders, an algebraic multigrid scheme for solving the Navier-Stokes equations on unstructured meshes; and nonlinear coupled multigrid solutions to thermal problems employing different nodal grid arrangements and convective transport approximations.
Parallel Element Agglomeration Algebraic Multigrid and Upscaling Library
2015-02-19
ParFELAG is a parallel distributed memory C++ library for numerical upscaling of finite element discretizations. It provides optimal complesity algorithms ro build multilevel hierarchies and solvers that can be used for solving a wide class of partial differential equations (elliptic, hyperbolic, saddle point problems) on general unstructured mesh (under the assumption that the topology of the agglomerated entities is correct). Additionally, a novel multilevel solver for saddle point problems with divergence constraint is implemented.
A multigrid based computational procedure to predict internal flows with heat transfer
Kiris, I.; Parameswaran, S.; Carroll, G.
1995-12-31
In this study, a formally third-order, finite volume, unstaggered (co-located), modified SIMPLE algorithm-based 2D code was created utilizing multigrid for fast convergence. Stone`s Strongly Implicit Procedure (SIP) is employed as a relaxation (smoother, matrix eq. solver) method, due to its high performance. The quadratic formulations QUICK, mixed and UTOPIA were used to discretize the convective terms in momentum equations. Velocity and pressure coupling was addressed via modified SIMPLE algorithm. Due to the co-located nature of method, the cell fact velocities are obtained via the so called momentum balancing technique introduced before. The Multigrid idea is implemented to the solution of pressure correction equation. Various ways of implementing Multigrid algorithms are discussed. An ASME benchmark case (backward facing step with heat transfer) is chosen as the problem. The so called accommodative FAS-FMG was used. Predictions show that high order convective term discretization improves the predictions, while multigrid enables about an order of magnitude CPU time savings. Results point out that the promises of both high order discretization and multigrid can be harvested for recirculating flows.
Numerical methods for boundary value problems in differential-algebraic equations
Ascher, U.M. . Dept. of Computer Science); Petzold, L.R. )
1990-09-24
Differential-algebraic equation (DAE) boundary value problems arise in a variety of applications, including optimal control and parameter estimation for constrained systems. In this paper we survey these applications and explore some of the difficulties associated with solving the resulting DAE systems. For finite difference methods, the need to maintain stability in the differential part of the system often necessitates the use of methods based on symmetric discretizations. However, these methods can suffer from instability and loss of accuracy when applied to certain DAE systems. We describe a new class of methods, Projected Implicit Runge-Kutta Methods, which overcomes these difficulties. We give convergence and stability results, and present numerical experiments which illustrate the effectiveness of the new methods. 20 refs., 1 tab.
NASA Technical Reports Server (NTRS)
Moitra, Anutosh
1989-01-01
A fast and versatile procedure for algebraically generating boundary conforming computational grids for use with finite-volume Euler flow solvers is presented. A semi-analytic homotopic procedure is used to generate the grids. Grids generated in two-dimensional planes are stacked to produce quasi-three-dimensional grid systems. The body surface and outer boundary are described in terms of surface parameters. An interpolation scheme is used to blend between the body surface and the outer boundary in order to determine the field points. The method, albeit developed for analytically generated body geometries is equally applicable to other classes of geometries. The method can be used for both internal and external flow configurations, the only constraint being that the body geometries be specified in two-dimensional cross-sections stationed along the longitudinal axis of the configuration. Techniques for controlling various grid parameters, e.g., clustering and orthogonality are described. Techniques for treating problems arising in algebraic grid generation for geometries with sharp corners are addressed. A set of representative grid systems generated by this method is included. Results of flow computations using these grids are presented for validation of the effectiveness of the method.
Algebraic method for constructing singular steady solitary waves: a case study
NASA Astrophysics Data System (ADS)
Clamond, Didier; Dutykh, Denys; Galligo, André
2016-07-01
This article describes the use of algebraic methods in a phase plane analysis of ordinary differential equations. The method is illustrated by the study of capillary-gravity steady surface waves propagating in shallow water. We consider the (fully nonlinear, weakly dispersive) Serre-Green-Naghdi equation with surface tension, because it provides a tractable model that, at the same time, is not too simple, so interest in the method can be emphasized. In particular, we analyse a special class of solutions, the solitary waves, which play an important role in many fields of physics. In capillary-gravity regime, there are two kinds of localized infinitely smooth travelling wave solutions-solitary waves of elevation and of depression. However, if we allow the solitary waves to have an angular point, then the `zoology' of solutions becomes much richer, and the main goal of this study is to provide a complete classification of such singular localized solutions using the methods of the effective algebraic geometry.
Teaching Algebra without Algebra
ERIC Educational Resources Information Center
Kalman, Richard S.
2008-01-01
Algebra is, among other things, a shorthand way to express quantitative reasoning. This article illustrates ways for the classroom teacher to convert algebraic solutions to verbal problems into conversational solutions that can be understood by students in the lower grades. Three reasonably typical verbal problems that either appeared as or…
Multigrid solution of the Navier-Stokes equations on highly stretched grids with defect correction
NASA Technical Reports Server (NTRS)
Sockol, Peter M.
1993-01-01
Relaxation-based multigrid solvers for the steady incompressible Navier-Stokes equations are examined to determine their computational speed and robustness. Four relaxation methods with a common discretization have been used as smoothers in a single tailored multigrid procedure. The equations are discretized on a staggered grid with first order upwind used for convection in the relaxation process on all grids and defect correction to second order central on the fine grid introduced once per multigrid cycle. A fixed W(1,1) cycle with full weighting of residuals is used in the FAS multigrid process. The resulting solvers have been applied to three 2D flow problems, over a range of Reynolds numbers, on both uniform and highly stretched grids. In all cases the L(sub 2) norm of the velocity changes is reduced to 10(exp -6) in a few 10's of fine grid sweeps. The results from this study are used to draw conclusions on the strengths and weaknesses of the individual relaxation schemes as well as those of the overall multigrid procedure when used as a solver on highly stretched grids.
A Multigrid Algorithm for Steady Transonic Potential Flows Around Aerofoils Using Newton Iteration
NASA Astrophysics Data System (ADS)
Boerstoel, J. W.
1982-12-01
The application of multigrid relaxation to transonic potential-flow calculation was investigated. Fully conservative potential flows around aerofoils were taken as test problems. The solution algorithm was based on Newton iteration. In each Newton iteration step, multigrid relaxation was used to calculate correction potentials. It was found that the iteration to the circulation has to be kept outside the multigrid algorithm. In order to obtain meaningful norms of residuals (to be used in termination tests of loops), difference formulas with asymptotic scaling were introduced. Nonlinear instability problems were solved by upwind differencing using mass-flux-vector splitting instead of artificial viscosity or artificial density. It was also found that the multigrid method cannot efficiently update shock positions due to the (mainly) linear character of individual multigrid relaxation cycles. For subsonic flows, the algorithm is quite efficient. For transonic flows, the algorithm was found robust; it efficiency should be increased by improving the iteration on the shock positions; this is a highly nonlinear process.
Analysis of p-multigrid solution schemes for discontinuous Galerkin discretizations of flow problems
NASA Astrophysics Data System (ADS)
Mascarenhas, Brendan S.
p-multigrid is a 'multigrid-like' algorithm used to obtain solutions to high-order hp-finite element discretizations. In this method convergence is accelerated by using coarse levels constructed by reducing the order, p, of the approximating polynomial. We have investigated p-multigrid coupled with preconditioned block relaxation schemes to obtain the steady-state solution to discontinuous Galerkin (DG) discretizations of the Euler equations. Block-diagonal, -line, and sweeping preconditioners, and also the alternate direction implicit (ADI), and the incomplete lower-upper (ILU(0)) preconditioners are considered. Relaxation schemes that approximately-invert (AI) the steady-state stiffness matrix and implicit psuedo time-advancing (ITA) schemes are Fourier analyzed and compared. In general, for orders of approximating polynomial p ≥ 2, the AI schemes perform better than the similarly preconditioned ITA schemes. The results show that p-multigrid iterations of the AI-ILU(0) scheme with under-relaxation o = 1/2 converge fastest and are the most robust of the schemes studied. Similar to prior observations by Helenbrook and Atkins p-multigrid was observed to behave anomalously when p transitions from 1 to 0. Using ideas from Helenbrook and Atkins correction for diffusion, and the streamwise upwind Petrov-Galerkin (SUPG) formulation, this anomalous behavior is corrected for the 1D convection equation. The correction is then extended to the 1D convection-diffusion equation.
Implementation and Optimization of miniGMG - a Compact Geometric Multigrid Benchmark
Williams, Samuel; Kalamkar, Dhiraj; Singh, Amik; Deshpande, Anand M.; Straalen, Brian Van; Smelyanskiy, Mikhail; Almgren, Ann; Dubey, Pradeep; Shalf, John; Oliker, Leonid
2012-12-01
Multigrid methods are widely used to accelerate the convergence of iterative solvers for linear systems used in a number of different application areas. In this report, we describe miniGMG, our compact geometric multigrid benchmark designed to proxy the multigrid solves found in AMR applications. We explore optimization techniques for geometric multigrid on existing and emerging multicore systems including the Opteron-based Cray XE6, Intel Sandy Bridge and Nehalem-based Infiniband clusters, as well as manycore-based architectures including NVIDIA's Fermi and Kepler GPUs and Intel's Knights Corner (KNC) co-processor. This report examines a variety of novel techniques including communication-aggregation, threaded wavefront-based DRAM communication-avoiding, dynamic threading decisions, SIMDization, and fusion of operators. We quantify performance through each phase of the V-cycle for both single-node and distributed-memory experiments and provide detailed analysis for each class of optimization. Results show our optimizations yield significant speedups across a variety of subdomain sizes while simultaneously demonstrating the potential of multi- and manycore processors to dramatically accelerate single-node performance. However, our analysis also indicates that improvements in networks and communication will be essential to reap the potential of manycore processors in large-scale multigrid calculations.
A review of vector convergence acceleration methods, with applications to linear algebra problems
NASA Astrophysics Data System (ADS)
Brezinski, C.; Redivo-Zaglia, M.
In this article, in a few pages, we will try to give an idea of convergence acceleration methods and extrapolation procedures for vector sequences, and to present some applications to linear algebra problems and to the treatment of the Gibbs phenomenon for Fourier series in order to show their effectiveness. The interested reader is referred to the literature for more details. In the bibliography, due to space limitation, we will only give the more recent items, and, for older ones, we refer to Brezinski and Redivo-Zaglia, Extrapolation methods. (Extrapolation Methods. Theory and Practice, North-Holland, 1991). This book also contains, on a magnetic support, a library (in Fortran 77 language) for convergence acceleration algorithms and extrapolation methods.
Multigrid techniques for the solution of the passive scalar advection-diffusion equation
NASA Technical Reports Server (NTRS)
Phillips, R. E.; Schmidt, F. W.
1985-01-01
The solution of elliptic passive scalar advection-diffusion equations is required in the analysis of many turbulent flow and convective heat transfer problems. The accuracy of the solution may be affected by the presence of regions containing large gradients of the dependent variables. The multigrid concept of local grid refinement is a method for improving the accuracy of the calculations in these problems. In combination with the multilevel acceleration techniques, an accurate and efficient computational procedure is developed. In addition, a robust implementation of the QUICK finite-difference scheme is described. Calculations of a test problem are presented to quantitatively demonstrate the advantages of the multilevel-multigrid method.
Eigensystem analysis of classical relaxation techniques with applications to multigrid analysis
NASA Technical Reports Server (NTRS)
Lomax, Harvard; Maksymiuk, Catherine
1987-01-01
Classical relaxation techniques are related to numerical methods for solution of ordinary differential equations. Eigensystems for Point-Jacobi, Gauss-Seidel, and SOR methods are presented. Solution techniques such as eigenvector annihilation, eigensystem mixing, and multigrid methods are examined with regard to the eigenstructure.
Algebraic method of determining bond length of perovskite compounds doped with Mn 2+
NASA Astrophysics Data System (ADS)
Shuen, Wei-Li; Li, Zhao-Min
1999-10-01
An algebraic method is proposed for calculating the exponent n and constant K in the power law 10Dq= KR- n. By using this method, the values of n and K for the cubic perovskites KMnF 3 and RbMnF 3 are derived and then used to determine the true Mn 2+-F - bond length R in crystals of KMgF 3, KZnF 3, RbCdF 3, and CsCaF 3 doped with Mn 2+ from the reported optical spectra. The results obtained are in good agreement with those derived from the electron paramagnetic resonance data and the extended X-ray absorption fine structure techniques. Thus, as a new theoretical method, it is valuable and convenient for the determination of the bond lengths.
A new mathematical evaluation of smoking problem based of algebraic statistical method.
Mohammed, Maysaa J; Rakhimov, Isamiddin S; Shitan, Mahendran; Ibrahim, Rabha W; Mohammed, Nadia F
2016-01-01
Smoking problem is considered as one of the hot topics for many years. In spite of overpowering facts about the dangers, smoking is still a bad habit widely spread and socially accepted. Many people start smoking during their gymnasium period. The discovery of the dangers of smoking gave a warning sign of danger for individuals. There are different statistical methods used to analyze the dangers of smoking. In this study, we apply an algebraic statistical method to analyze and classify real data using Markov basis for the independent model on the contingency table. Results show that the Markov basis based classification is able to distinguish different date elements. Moreover, we check our proposed method via information theory by utilizing the Shannon formula to illustrate which one of these alternative tables is the best in term of independent.
Multigrid on unstructured grids using an auxiliary set of structured grids
Douglas, C.C.; Malhotra, S.; Schultz, M.H.
1996-12-31
Unstructured grids do not have a convenient and natural multigrid framework for actually computing and maintaining a high floating point rate on standard computers. In fact, just the coarsening process is expensive for many applications. Since unstructured grids play a vital role in many scientific computing applications, many modifications have been proposed to solve this problem. One suggested solution is to map the original unstructured grid onto a structured grid. This can be used as a fine grid in a standard multigrid algorithm to precondition the original problem on the unstructured grid. We show that unless extreme care is taken, this mapping can lead to a system with a high condition number which eliminates the usefulness of the multigrid method. Theorems with lower and upper bounds are provided. Simple examples show that the upper bounds are sharp.
Gao, Hao; Phan, Lan; Lin, Yuting
2012-09-01
A graphics processing unit-based parallel multigrid solver for a radiative transfer equation with vacuum boundary condition or reflection boundary condition is presented for heterogeneous media with complex geometry based on two-dimensional triangular meshes or three-dimensional tetrahedral meshes. The computational complexity of this parallel solver is linearly proportional to the degrees of freedom in both angular and spatial variables, while the full multigrid method is utilized to minimize the number of iterations. The overall gain of speed is roughly 30 to 300 fold with respect to our prior multigrid solver, which depends on the underlying regime and the parallelization. The numerical validations are presented with the MATLAB codes at https://sites.google.com/site/rtefastsolver/.
Fast and High Accuracy Multigrid Solution of the Three Dimensional Poisson Equation
NASA Astrophysics Data System (ADS)
Zhang, Jun
1998-07-01
We employ a fourth-order compact finite difference scheme (FOS) with the multigrid algorithm to solve the three dimensional Poisson equation. We test the influence of different orderings of the grid space and different grid-transfer operators on the convergence and efficiency of our high accuracy algorithm. Fourier smoothing analysis is conducted to show that FOS has a smaller smoothing factor than the traditional second-order central difference scheme (CDS). A new method of Fourier smoothing analysis is proposed for the partially decoupled red-black Gauss-Seidel relaxation with FOS. Numerical results are given to compare the computed accuracy and the computational efficiency of FOS with multigrid against CDS with multigrid.
Phan, Lan; Lin, Yuting
2012-01-01
Abstract. A graphics processing unit–based parallel multigrid solver for a radiative transfer equation with vacuum boundary condition or reflection boundary condition is presented for heterogeneous media with complex geometry based on two-dimensional triangular meshes or three-dimensional tetrahedral meshes. The computational complexity of this parallel solver is linearly proportional to the degrees of freedom in both angular and spatial variables, while the full multigrid method is utilized to minimize the number of iterations. The overall gain of speed is roughly 30 to 300 fold with respect to our prior multigrid solver, which depends on the underlying regime and the parallelization. The numerical validations are presented with the MATLAB codes at https://sites.google.com/site/rtefastsolver/. PMID:23085905
Conjugate gradient coupled with multigrid for an indefinite problem
NASA Technical Reports Server (NTRS)
Gozani, J.; Nachshon, A.; Turkel, E.
1984-01-01
An iterative algorithm for the Helmholtz equation is presented. This scheme was based on the preconditioned conjugate gradient method for the normal equations. The preconditioning is one cycle of a multigrid method for the discrete Laplacian. The smoothing algorithm is red-black Gauss-Seidel and is constructed so it is a symmetric operator. The total number of iterations needed by the algorithm is independent of h. By varying the number of grids, the number of iterations depends only weakly on k when k(3)h(2) is constant. Comparisons with a SSOR preconditioner are presented.
An interface-fitted mesh generator and virtual element methods for elliptic interface problems
NASA Astrophysics Data System (ADS)
Chen, Long; Wei, Huayi; Wen, Min
2017-04-01
A simple and efficient interface-fitted mesh generation algorithm which can produce a semi-structured interface-fitted mesh in two and three dimensions quickly is developed in this paper. Elements in such interface-fitted meshes are not restricted to simplices but can be polygons or polyhedra. Especially in 3D, the polyhedra instead of tetrahedra can avoid slivers. Virtual element methods are applied to solve elliptic interface problems with solutions and flux jump conditions. Algebraic multigrid solvers are used to solve the resulting linear algebraic system. Numerical results are presented to illustrate the effectiveness of our method.
Topological spatial relation calculation in constrained Delaunay triangulation: an algebraic method
NASA Astrophysics Data System (ADS)
Li, Jiatian; Wang, Chunxiao; Ma, Li; Chen, Hao; Yang, Dehong; Wu, Xuequn
2009-10-01
Topological spatial relation between spatial objects is a very important topic for spatial analysis, query and reasoning in Geographic Information Science (GIS). In this paper, an algebraic method using constrained Delaunay triangulation (CDT) for topological spatial relation is presented. In the part of foundational theory, (i) prove CDT is simplicial complex in R2. (ii) import chain structure in CDT and prove including & approximating theorem and reduced including & approximating theorem, and are used for estimating left, middle and right side properties of triangle. (iii) define the region in CDT and establish region algebra (RA), which use the set of region as computational space and use the intersection operator as a binary operation. (iv) describe basic forms of node and chain which are contained in a set of triangles. In the part of spatial relation calculation, (i) describe spatial object as three entries, i.e. exterior, boundary and interior, with left, middle and right of triangle and their combination. (ii) establish the topological spatial relation calculation model-region nine intersection model (R9IM), which is used the intersection operation and the form operation as basic operations. (iii) calculate thirty-three spatial relations of simple objects with R9IM in the practice application of topological examination.
Multigrid Approach to Incompressible Viscous Cavity Flows
NASA Technical Reports Server (NTRS)
Wood, William A.
1996-01-01
Two-dimensional incompressible viscous driven-cavity flows are computed for Reynolds numbers on the range 100-20,000 using a loosely coupled, implicit, second-order centrally-different scheme. Mesh sequencing and three-level V-cycle multigrid error smoothing are incorporated into the symmetric Gauss-Seidel time-integration algorithm. Parametrics on the numerical parameters are performed, achieving reductions in solution times by more than 60 percent with the full multigrid approach. Details of the circulation patterns are investigated in cavities of 2-to-1, 1-to-1, and 1-to-2 depth to width ratios.
Highly indefinite multigrid for eigenvalue problems
Borges, L.; Oliveira, S.
1996-12-31
Eigenvalue problems are extremely important in understanding dynamic processes such as vibrations and control systems. Large scale eigenvalue problems can be very difficult to solve, especially if a large number of eigenvalues and the corresponding eigenvectors need to be computed. For solving this problem a multigrid preconditioned algorithm is presented in {open_quotes}The Davidson Algorithm, preconditioning and misconvergence{close_quotes}. Another approach for solving eigenvalue problems is by developing efficient solutions for highly indefinite problems. In this paper we concentrate on the use of new highly indefinite multigrid algorithms for the eigenvalue problem.
Jordanian quantum algebra Uh(sl(N)) via contraction method and mapping
NASA Astrophysics Data System (ADS)
Abdesselam, B.; Chakrabarti, A.; Chakrabarti, R.
2002-04-01
Using a contraction procedure developed earlier, we construct, in the first part of the present paper, the Jordanian quantum Hopf algebra Uh(sl(3)) which has a remarkably simple coalgebraic structure and contains the Jordanian algebra Uh(sl(2)), obtained by Ohn, as a Hopf subalgebra. A nonlinear map between the quantum Uh(sl(3)) and the classical U(sl(3)) algebras is then established; and the universal Rh-matrix of the Uh(sl(3)) algebra is given. In the second part, we give the higher dimensional Jordanian algebras Uh(sl(N)) for all N. The universal Rh-matrix of the Uh(sl(N)) algebra is also given.
General algebraic method applied to control analysis of complex engine types
NASA Technical Reports Server (NTRS)
Boksenbom, Aaron S; Hood, Richard
1950-01-01
A general algebraic method of attack on the problem of controlling gas-turbine engines having any number of independent variables was utilized employing operational functions to describe the assumed linear characteristics for the engine, the control, and the other units in the system. Matrices were used to describe the various units of the system, to form a combined system showing all effects, and to form a single condensed matrix showing the principal effects. This method directly led to the conditions on the control system for noninteraction so that any setting disturbance would affect only its corresponding controlled variable. The response-action characteristics were expressed in terms of the control system and the engine characteristics. The ideal control-system characteristics were explicitly determined in terms of any desired response action.
ERIC Educational Resources Information Center
Gierl, Mark J.; Wang, Changjiang; Zhou, Jiawen
2008-01-01
The purpose of this study is to apply the attribute hierarchy method (AHM) to a sample of SAT algebra items administered in March 2005. The AHM is a psychometric method for classifying examinees' test item responses into a set of structured attribute patterns associated with different components from a cognitive model of task performance. An…
NASA Astrophysics Data System (ADS)
Cusini, Matteo; van Kruijsdijk, Cor; Hajibeygi, Hadi
2016-06-01
This paper presents the development of an algebraic dynamic multilevel method (ADM) for fully implicit simulations of multiphase flow in homogeneous and heterogeneous porous media. Built on the fine-scale fully implicit (FIM) discrete system, ADM constructs a multilevel FIM system describing the coupled process on a dynamically defined grid of hierarchical nested topology. The multilevel adaptive resolution is determined at each time step on the basis of an error criterion. Once the grid resolution is established, ADM employs sequences of restriction and prolongation operators in order to map the FIM system across the considered resolutions. Several choices can be considered for prolongation (interpolation) operators, e.g., constant, bilinear and multiscale basis functions, all of which form partition of unity. The adaptive multilevel restriction operators, on the other hand, are constructed using a finite-volume scheme. This ensures mass conservation of the ADM solutions, and as such, the stability and accuracy of the simulations with multiphase transport. For several homogeneous and heterogeneous test cases, it is shown that ADM applies only a small fraction of the full FIM fine-scale grid cells in order to provide accurate solutions. The sensitivity of the solutions with respect to the employed fraction of grid cells (determined automatically based on the threshold value of the error criterion) is investigated for all test cases. ADM is a significant step forward in the application of dynamic local grid refinement methods, in the sense that it is algebraic, allows for systematic mapping across different scales, and applicable to heterogeneous test cases without any upscaling of fine-scale high resolution quantities. It also develops a novel multilevel multiscale method for FIM multiphase flow simulations in natural subsurface formations.
Tweed Relaxation: a new multigrid smoother for stretched structured grids
NASA Astrophysics Data System (ADS)
Bewley, Thomas; Mashayekhi, Alireza
2012-11-01
In DNS/LES of the NSE using a fractional step method, one must accurately solve a Poisson equation for the pressure update at each timestep. This step often represents a significant fraction of the overall computational burden and, when Fourier methods are unavailable, geometric multigrid methods are a preferred choice. When working on an unstretched Cartesian grid, the red-black Gauss-Seidel method is the most efficient multigrid smoother available. When working on a Cartesian grid that is stretched in 1 coordinate direction to provide grid clustering near a wall, zebra relaxation, on sets of lines perpendicular to the wall, is most efficient. When working on a structured grid that is stretched in 2 or 3 coordinate directions, however, one is forced to alternate the directions that the zebra relaxation is applied in order to pass information quickly across all regions of grid clustering. A new relaxation method is introduced which is shown to significantly outperform such alternating direction line smoothers. This new method is implicit along sets of lines that branch and form 90° corners, like the stripes at the shoulder of a tweed shirt, to stay everywhere perpendicular to the nearest wall, thus passing information quickly across all regions of grid clustering.
Multigrid properties of upwind-biased data reconstructions
NASA Astrophysics Data System (ADS)
Warren, Gary P.; Roberts, Thomas W.
1993-11-01
The multigrid properties of two data reconstruction methods used for achieving second-order spatial accuracy when solving the two-dimensional Euler equations are examined. The data reconstruction methods are used with an implicit upwind algorithm which uses linearized backward-Euler time-differencing. The solution of the resulting linear system is performed by an iterative procedure. In the present study only regular quadrilateral grids are considered, so a red-black Gauss-Seidel iteration is used. Although the Jacobian is approximated by first-order upwind extrapolation, two alternative data reconstruction techniques for the flux integral that yield higher-order spatial accuracy at steady state are examined. The first method, probably most popular for structured quadrilateral grids, is based on estimating the cell gradients using one-dimensional reconstruction along curvilinear coordinates. The second method is based on Green's theorem. Analysis and numerical results for the two dimensional Euler equations show that data reconstruction based on Green's theorem has superior multigrid properties as compared to the one-dimensional data reconstruction method.
Multigrid properties of upwind-biased data reconstructions
NASA Technical Reports Server (NTRS)
Warren, Gary P.; Roberts, Thomas W.
1993-01-01
The multigrid properties of two data reconstruction methods used for achieving second-order spatial accuracy when solving the two-dimensional Euler equations are examined. The data reconstruction methods are used with an implicit upwind algorithm which uses linearized backward-Euler time-differencing. The solution of the resulting linear system is performed by an iterative procedure. In the present study only regular quadrilateral grids are considered, so a red-black Gauss-Seidel iteration is used. Although the Jacobian is approximated by first-order upwind extrapolation, two alternative data reconstruction techniques for the flux integral that yield higher-order spatial accuracy at steady state are examined. The first method, probably most popular for structured quadrilateral grids, is based on estimating the cell gradients using one-dimensional reconstruction along curvilinear coordinates. The second method is based on Green's theorem. Analysis and numerical results for the two dimensional Euler equations show that data reconstruction based on Green's theorem has superior multigrid properties as compared to the one-dimensional data reconstruction method.
Robust Multigrid Smoothers for Three Dimensional Elliptic Equations with Strong Anisotropies
NASA Technical Reports Server (NTRS)
Llorente, Ignacio M.; Melson, N. Duane
1998-01-01
We discuss the behavior of several plane relaxation methods as multigrid smoothers for the solution of a discrete anisotropic elliptic model problem on cell-centered grids. The methods compared are plane Jacobi with damping, plane Jacobi with partial damping, plane Gauss-Seidel, plane zebra Gauss-Seidel, and line Gauss-Seidel. Based on numerical experiments and local mode analysis, we compare the smoothing factor of the different methods in the presence of strong anisotropies. A four-color Gauss-Seidel method is found to have the best numerical and architectural properties of the methods considered in the present work. Although alternating direction plane relaxation schemes are simpler and more robust than other approaches, they are not currently used in industrial and production codes because they require the solution of a two-dimensional problem for each plane in each direction. We verify the theoretical predictions of Thole and Trottenberg that an exact solution of each plane is not necessary and that a single two-dimensional multigrid cycle gives the same result as an exact solution, in much less execution time. Parallelization of the two-dimensional multigrid cycles, the kernel of the three-dimensional implicit solver, is also discussed. Alternating-plane smoothers are found to be highly efficient multigrid smoothers for anisotropic elliptic problems.
Multigrid Reduction in Time for Nonlinear Parabolic Problems
Falgout, R. D.; Manteuffel, T. A.; O'Neill, B.; Schroder, J. B.
2016-01-04
The need for parallel-in-time is being driven by changes in computer architectures, where future speed-ups will be available through greater concurrency, but not faster clock speeds, which are stagnant.This leads to a bottleneck for sequential time marching schemes, because they lack parallelism in the time dimension. Multigrid Reduction in Time (MGRIT) is an iterative procedure that allows for temporal parallelism by utilizing multigrid reduction techniques and a multilevel hierarchy of coarse time grids. MGRIT has been shown to be effective for linear problems, with speedups of up to 50 times. The goal of this work is the efficient solution of nonlinear problems with MGRIT, where efficient is defined as achieving similar performance when compared to a corresponding linear problem. As our benchmark, we use the p-Laplacian, where p = 4 corresponds to a well-known nonlinear diffusion equation and p = 2 corresponds to our benchmark linear diffusion problem. When considering linear problems and implicit methods, the use of optimal spatial solvers such as spatial multigrid imply that the cost of one time step evaluation is fixed across temporal levels, which have a large variation in time step sizes. This is not the case for nonlinear problems, where the work required increases dramatically on coarser time grids, where relatively large time steps lead to worse conditioned nonlinear solves and increased nonlinear iteration counts per time step evaluation. This is the key difficulty explored by this paper. We show that by using a variety of strategies, most importantly, spatial coarsening and an alternate initial guess to the nonlinear time-step solver, we can reduce the work per time step evaluation over all temporal levels to a range similar with the corresponding linear problem. This allows for parallel scaling behavior comparable to the corresponding linear problem.
A fast multigrid algorithm for energy minimization under planar density constraints.
Ron, D.; Safro, I.; Brandt, A.; Mathematics and Computer Science; Weizmann Inst. of Science
2010-09-07
The two-dimensional layout optimization problem reinforced by the efficient space utilization demand has a wide spectrum of practical applications. Formulating the problem as a nonlinear minimization problem under planar equality and/or inequality density constraints, we present a linear time multigrid algorithm for solving a correction to this problem. The method is demonstrated in various graph drawing (visualization) instances.
NASA Astrophysics Data System (ADS)
Nara, T.; Koiwa, K.; Takagi, S.; Oyama, D.; Uehara, G.
2014-05-01
This paper presents an algebraic reconstruction method for dipole-quadrupole sources using magnetoencephalography data. Compared to the conventional methods with the equivalent current dipoles source model, our method can more accurately reconstruct two close, oppositely directed sources. Numerical simulations show that two sources on both sides of the longitudinal fissure of cerebrum are stably estimated. The method is verified using a quadrupolar source phantom, which is composed of two isosceles-triangle-coils with parallel bases.
A Cell-Centered Multigrid Algorithm for All Grid Sizes
NASA Technical Reports Server (NTRS)
Gjesdal, Thor
1996-01-01
Multigrid methods are optimal; that is, their rate of convergence is independent of the number of grid points, because they use a nested sequence of coarse grids to represent different scales of the solution. This nesting does, however, usually lead to certain restrictions of the permissible size of the discretised problem. In cases where the modeler is free to specify the whole problem, such constraints are of little importance because they can be taken into consideration from the outset. We consider the situation in which there are other competing constraints on the resolution. These restrictions may stem from the physical problem (e.g., if the discretised operator contains experimental data measured on a fixed grid) or from the need to avoid limitations set by the hardware. In this paper we discuss a modification to the cell-centered multigrid algorithm, so that it can be used br problems with any resolution. We discuss in particular a coarsening strategy and choice of intergrid transfer operators that can handle grids with both an even or odd number of cells. The method is described and applied to linear equations obtained by discretization of two- and three-dimensional second-order elliptic PDEs.
NASA Astrophysics Data System (ADS)
Yukhno, L. F.
2007-12-01
The use of modifications of certain well-known methods of the conjugate direction type for solving systems of linear algebraic equations with rectangular matrices is examined. The modified methods are shown to be superior to the original versions with respect to the round-off accumulation; the advantage is especially large for ill-conditioned matrices. Examples are given of the efficient use of the modified methods for solving certain fairly large ill-conditioned problems.
Development of multigrid algorithms for problems from fluid dynamics
NASA Astrophysics Data System (ADS)
Becker, K.; Trottenberg, U.
Multigrid algorithms are developed to demonstrate multigrid technique efficiency for complicated fluid dynamics problems regarding error reduction and discretization accuracy. Subsonic potential 2-D flow around a profile is studied as well as rotation-symmetric flow in a slot between two rotating spheres and the flow in the combustion chamber of Otto engines. The study of the 2-D subsonic potential flow around a profile with the multigrid algorithm is discussed.
Multigrid calculations of 3-D turbulent viscous flows
NASA Technical Reports Server (NTRS)
Yokota, Jeffrey W.
1989-01-01
Convergence properties of a multigrid algorithm, developed to calculate compressible viscous flows, are analyzed by a vector sequence eigenvalue estimate. The full 3-D Reynolds-averaged Navier-Stokes equations are integrated by an implicit multigrid scheme while a k-epsilon turbulence model is solved, uncoupled from the flow equations. Estimates of the eigenvalue structure for both single and multigrid calculations are compared in an attempt to analyze the process as well as the results of the multigrid technique. The flow through an annular turbine is used to illustrate the scheme's ability to calculate complex 3-D flows.
Least-squares finite element methods for quantum chromodynamics
Ketelsen, Christian; Brannick, J; Manteuffel, T; Mccormick, S
2008-01-01
A significant amount of the computational time in large Monte Carlo simulations of lattice quantum chromodynamics (QCD) is spent inverting the discrete Dirac operator. Unfortunately, traditional covariant finite difference discretizations of the Dirac operator present serious challenges for standard iterative methods. For interesting physical parameters, the discretized operator is large and ill-conditioned, and has random coefficients. More recently, adaptive algebraic multigrid (AMG) methods have been shown to be effective preconditioners for Wilson's discretization of the Dirac equation. This paper presents an alternate discretization of the Dirac operator based on least-squares finite elements. The discretization is systematically developed and physical properties of the resulting matrix system are discussed. Finally, numerical experiments are presented that demonstrate the effectiveness of adaptive smoothed aggregation ({alpha}SA ) multigrid as a preconditioner for the discrete field equations resulting from applying the proposed least-squares FE formulation to a simplified test problem, the 2d Schwinger model of quantum electrodynamics.
Agglomeration multigrid for viscous turbulent flows
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.; Venkatakrishnan, V.
1994-01-01
Agglomeration multigrid, which has been demonstrated as an efficient and automatic technique for the solution of the Euler equations on unstructured meshes, is extended to viscous turbulent flows. For diffusion terms, coarse grid discretizations are not possible, and more accurate grid transfer operators are required as well. A Galerkin coarse grid operator construction and an implicit prolongation operator are proposed. Their suitability is evaluated by examining their effect on the solution of Laplace's equation. The resulting strategy is employed to solve the Reynolds-averaged Navier-Stokes equations for aerodynamic flows. Convergence rates comparable to those obtained by a previously developed non-nested mesh multigrid approach are demonstrated, and suggestions for further improvements are given.
Multigrid shallow water equations on an FPGA
NASA Astrophysics Data System (ADS)
Jeffress, Stephen; Duben, Peter; Palmer, Tim
2015-04-01
A novel computing technology for multigrid shallow water equations is investigated. As power consumption begins to constrain traditional supercomputing advances, weather and climate simulators are exploring alternative technologies that achieve efficiency gains through massively parallel and low power architectures. In recent years FPGA implementations of reduced complexity atmospheric models have shown accelerated speeds and reduced power consumption compared to multi-core CPU integrations. We continue this line of research by designing an FPGA dataflow engine for a mulitgrid version of the 2D shallow water equations. The multigrid algorithm couples grids of variable resolution to improve accuracy. We show that a significant reduction of precision in the floating point representation of the fine grid variables allows greater parallelism and thus improved overall peformance while maintaining accurate integrations. Preliminary designs have been constructed by software emulation. Results of the hardware implementation will be presented at the conference.
Multigrid with red black SOR revisited
Yavneh, I.
1994-12-31
Optimal relaxation parameters are obtained for red-black point Gauss-Seidel relaxation in multigrid solvers of a family of elliptic equations. The resulting relaxation schemes are found to retain high efficiency over an appreciable range of coefficients of the elliptic operator, yielding simple, inexpensive and fully parallelizable smoothers in many situations where more complicated and less cost-effective block-relaxation and/or partial coarsening are commonly used.
Grid optimization and multigrid techniques for fluid flow and transport problems
NASA Astrophysics Data System (ADS)
Pardhanani, Anand L.
1992-01-01
Special numerical techniques for the efficient and accurate solution of fluid flow and certain other transport processes are investigated. These include adaptive redistribution and optimization of computational grids, multigrid techniques for convection-diffusion problems, and multigrid time-marching methods for non-stationary and nonlinear problems. The grid optimization strategy is based on constructing and minimizing a mathematical objective function which defines the desired grid properties. For convection-diffusion problems, it is demonstrated that standard multigrid techniques fail when the coarse grids violate mesh-size restrictions. A variety of alternate multigrid strategies are explored, including artificial dissipation, fine grid pre-elimination, self-adjoint formulation, defect correction, and combination with grid redistribution. Multilevel techniques are also developed for time-dependent problems, including evolution problems with non-steady or transient solutions, and steady-state problems solved with artificial time-marching. Both explicit and implicit integration schemes are investigated, and it is shown that significant performance improvements can be gained with the use of multigrid. These techniques are implemented and tested on representative model problems as well as practical applications of current research interest. The grid investigations involve optimization in model problems, and in large-scale 3-D aircraft wing-body configurations. The multigrid applications range from model convection-diffusion problems, to time-dependent problems, to coupled nonlinear problems in two major application areas. The first application involves simulating spatio-temporal patterns in a coupled, nonlinear, reaction-diffusion problem that models the behavior of the Belousov-Zhabotinskii reaction. This multi-species reaction, which exhibits intricate patterns in laboratory experiments, has attracted considerable interest in the field of nonlinear dynamics. The
NASA Astrophysics Data System (ADS)
Ruberti, M.; Yun, R.; Gokhberg, K.; Kopelke, S.; Cederbaum, L. S.; Tarantelli, F.; Averbukh, V.
2013-10-01
In [K. Gokhberg, V. Vysotskiy, L. S. Cederbaum, L. Storchi, F. Tarantelli, and V. Averbukh, J. Chem. Phys. 130, 064104 (2009)] we introduced a new {L}2ab initio method for the calculation of total molecular photoionization cross-sections. The method is based on the ab initio description of discretized photoionized molecular states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. Here we establish the accuracy of the new technique by comparing the ADC-Lanczos-Stieltjes cross-sections in the valence ionization region to the experimental ones for a series of eight molecules of first row elements: HF, NH3, H2O, CO2, H2CO, CH4, C2H2, and C2H4. We find that the use of the second-order ADC technique [ADC(2)] that includes double electronic excitations leads to a substantial systematic improvement over the first-order method [ADC(1)] and to a good agreement with experiment for photon energies below 80 eV. The use of extended second-order ADC theory [ADC(2)x] leads to a smaller further improvement. Above 80 eV photon energy all three methods lead to significant deviations from the experimental values which we attribute to the use of Gaussian single-electron bases. Our calculations show that the ADC(2)-Lanczos-Stieltjes technique is a reliable and efficient ab initio tool for theoretical prediction of total molecular photo-ionization cross-sections in the valence region.
Ruberti, M; Yun, R; Gokhberg, K; Kopelke, S; Cederbaum, L S; Tarantelli, F; Averbukh, V
2013-10-14
In [K. Gokhberg, V. Vysotskiy, L. S. Cederbaum, L. Storchi, F. Tarantelli, and V. Averbukh, J. Chem. Phys. 130, 064104 (2009)] we introduced a new L(2) ab initio method for the calculation of total molecular photoionization cross-sections. The method is based on the ab initio description of discretized photoionized molecular states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. Here we establish the accuracy of the new technique by comparing the ADC-Lanczos-Stieltjes cross-sections in the valence ionization region to the experimental ones for a series of eight molecules of first row elements: HF, NH3, H2O, CO2, H2CO, CH4, C2H2, and C2H4. We find that the use of the second-order ADC technique [ADC(2)] that includes double electronic excitations leads to a substantial systematic improvement over the first-order method [ADC(1)] and to a good agreement with experiment for photon energies below 80 eV. The use of extended second-order ADC theory [ADC(2)x] leads to a smaller further improvement. Above 80 eV photon energy all three methods lead to significant deviations from the experimental values which we attribute to the use of Gaussian single-electron bases. Our calculations show that the ADC(2)-Lanczos-Stieltjes technique is a reliable and efficient ab initio tool for theoretical prediction of total molecular photo-ionization cross-sections in the valence region.
A new approach to tolerance analysis method based onthe screw and the Lie Algebra of Lie Group
NASA Astrophysics Data System (ADS)
Zhai, X. C.; Du, Q. G.; Wang, W. X.; Wen, Q.; Liu, B. S.; Sun, Z. Q.
2016-11-01
Tolerance analysis refers to the process of establishing mapping relations between tolerance features and the target feature along the dimension chain. Traditional models for tolerance analysis are all based on rigid body kinematics, and they adopt the Homogeneous Transformation Matrix to describe feature variation and accumulation. However, those models can hardly reveal the nature of feature variations. This paper proposes a new tolerance analysis method based on the screw and the Lie Algebra of Lie Group, which describes feature variation as the screw motion, and completely maps the twist, an element of the Lie Algebra, to the Lie Group that represents the feature configuration space. Thus, the analysis can be conducted in a more succinct and direct way. In the end, the method is applied in an example and proven to be robust and effective.
Brezina, M; Manteuffel, T; McCormick, S; Ruge, J; Sanders, G; Vassilevski, P S
2007-05-31
Consider the linear system Ax = b, where A is a large, sparse, real, symmetric, and positive definite matrix and b is a known vector. Solving this system for unknown vector x using a smoothed aggregation multigrid (SA) algorithm requires a characterization of the algebraically smooth error, meaning error that is poorly attenuated by the algorithm's relaxation process. For relaxation processes that are typically used in practice, algebraically smooth error corresponds to the near-nullspace of A. Therefore, having a good approximation to a minimal eigenvector is useful to characterize the algebraically smooth error when forming a linear SA solver. This paper discusses the details of a generalized eigensolver based on smoothed aggregation (GES-SA) that is designed to produce an approximation to a minimal eigenvector of A. GES-SA might be very useful as a standalone eigensolver for applications that desire an approximate minimal eigenvector, but the primary aim here is for GES-SA to produce an initial algebraically smooth component that may be used to either create a black-box SA solver or initiate the adaptive SA ({alpha}SA) process.
Buchele, S.F.; Ellingson, W.A.
1997-06-01
Recent advances in reverse engineering have focused on recovering a boundary representation (b-rep) of an object, often for integration with rapid prototyping. This boundary representation may be a 3-D point cloud, a triangulation of points, or piecewise algebraic or parametric surfaces. This paper presents work in progress to develop an algorithm to extend the current state of the art in reverse engineering of mechanical parts. This algorithm will take algebraic surface representations as input and will produce a constructive solid geometry (CSG) description that uses solid primitives such as rectangular block, pyramid, sphere, cylinder, and cone. The proposed algorithm will automatically generate a CSG solid model of a part given its algebraic b-rep, thus allowing direct input into a CAD system and subsequent CSG model generation.
A geometric multigrid Poisson solver for domains containing solid inclusions
NASA Astrophysics Data System (ADS)
Botto, Lorenzo
2013-03-01
A Cartesian grid method for the fast solution of the Poisson equation in three-dimensional domains with embedded solid inclusions is presented and its performance analyzed. The efficiency of the method, which assume Neumann conditions at the immersed boundaries, is comparable to that of a multigrid method for regular domains. The method is light in terms of memory usage, and easily adaptable to parallel architectures. Tests with random and ordered arrays of solid inclusions, including spheres and ellipsoids, demonstrate smooth convergence of the residual for small separation between the inclusion surfaces. This feature is important, for instance, in simulations of nearly-touching finite-size particles. The implementation of the method, “MG-Inc”, is available online. Catalogue identifier: AEOE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 19068 No. of bytes in distributed program, including test data, etc.: 215118 Distribution format: tar.gz Programming language: C++ (fully tested with GNU GCC compiler). Computer: Any machine supporting standard C++ compiler. Operating system: Any OS supporting standard C++ compiler. RAM: About 150MB for 1283 resolution Classification: 4.3. Nature of problem: Poisson equation in domains containing inclusions; Neumann boundary conditions at immersed boundaries. Solution method: Geometric multigrid with finite-volume discretization. Restrictions: Stair-case representation of the immersed boundaries. Running time: Typically a fraction of a minute for 1283 resolution.
Local block refinement with a multigrid flow solver
NASA Astrophysics Data System (ADS)
Lange, C. F.; Schäfer, M.; Durst, F.
2002-01-01
A local block refinement procedure for the efficient computation of transient incompressible flows with heat transfer is presented. The procedure uses patched structured grids for the blockwise refinement and a parallel multigrid finite volume method with colocated primitive variables to solve the Navier-Stokes equations. No restriction is imposed on the value of the refinement rate and non-integer rates may also be used. The procedure is analysed with respect to its sensitivity to the refinement rate and to the corresponding accuracy. Several applications exemplify the advantages of the method in comparison with a common block structured grid approach. The results show that it is possible to achieve an improvement in accuracy with simultaneous significant savings in computing time and memory requirements. Copyright
A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
White, J. A.; Morrison, J. H.
1999-01-01
A multi-grid, flux-difference-split, finite-volume code, VULCAN, is presented for solving the elliptic and parabolized form of the equations governing three-dimensional, turbulent, calorically perfect and non-equilibrium chemically reacting flows. The space marching algorithms developed to improve convergence rate and or reduce computational cost are emphasized. The algorithms presented are extensions to the class of implicit pseudo-time iterative, upwind space-marching schemes. A full approximate storage, full multi-grid scheme is also described which is used to accelerate the convergence of a Gauss-Seidel relaxation method. The multi-grid algorithm is shown to significantly improve convergence on high aspect ratio grids.
A Pseubo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Morrison, J. H.; White, J. A.
1999-01-01
A multi-grid, flux-difference-split, finite-volume code, VULCAN, is presented for solving the elliptic and parabolized form of the equations governing three-dimensional, turbulent, calorically perfect and non-equilibrium chemically reacting flows. The space marching algorithms developed to improve convergence rate and or reduce computational cost are emphasized. The algorithms presented are extensions to the class of implicit pseudo-time iterative, upwind space-marching schemes. A full approximate storage, full multi-grid scheme is also described which is used to accelerate the convergence of a Gauss-Seidel relaxation method. The multi-grid algorithm is shown to significantly improve convergence on high aspect ratio grids.
Algebraic grid adaptation method using non-uniform rational B-spline surface modeling
NASA Technical Reports Server (NTRS)
Yang, Jiann-Cherng; Soni, B. K.
1992-01-01
An algebraic adaptive grid system based on equidistribution law and utilized by the Non-Uniform Rational B-Spline (NURBS) surface for redistribution is presented. A weight function, utilizing a properly weighted boolean sum of various flow field characteristics is developed. Computational examples are presented to demonstrate the success of this technique.
ERIC Educational Resources Information Center
Hernandez, Andrea C.
2013-01-01
This dissertation analyzes differences found in Spanish-speaking middle school and high school students in algebra-based problem solving. It identifies the accuracy differences between word problems presented in English, Spanish and numerically based problems. The study also explores accuracy differences between each subgroup of Spanish-speaking…
Multigrid Solution of the Navier-Stokes Equations at Low Speeds with Large Temperature Variations
NASA Technical Reports Server (NTRS)
Sockol, Peter M.
2002-01-01
Multigrid methods for the Navier-Stokes equations at low speeds and large temperature variations are investigated. The compressible equations with time-derivative preconditioning and preconditioned flux-difference splitting of the inviscid terms are used. Three implicit smoothers have been incorporated into a common multigrid procedure. Both full coarsening and semi-coarsening with directional fine-grid defect correction have been studied. The resulting methods have been tested on four 2D laminar problems over a range of Reynolds numbers on both uniform and highly stretched grids. Two of the three methods show efficient and robust performance over the entire range of conditions. In addition none of the methods have any difficulty with the large temperature variations.
NASA Astrophysics Data System (ADS)
Gerzen, T.; Minkwitz, D.
2016-01-01
The accuracy and availability of satellite-based applications like GNSS positioning and remote sensing crucially depends on the knowledge of the ionospheric electron density distribution. The tomography of the ionosphere is one of the major tools to provide link specific ionospheric corrections as well as to study and monitor physical processes in the ionosphere. In this paper, we introduce a simultaneous multiplicative column-normalized method (SMART) for electron density reconstruction. Further, SMART+ is developed by combining SMART with a successive correction method. In this way, a balancing between the measurements of intersected and not intersected voxels is realised. The methods are compared with the well-known algebraic reconstruction techniques ART and SART. All the four methods are applied to reconstruct the 3-D electron density distribution by ingestion of ground-based GNSS TEC data into the NeQuick model. The comparative case study is implemented over Europe during two periods of the year 2011 covering quiet to disturbed ionospheric conditions. In particular, the performance of the methods is compared in terms of the convergence behaviour and the capability to reproduce sTEC and electron density profiles. For this purpose, independent sTEC data of four IGS stations and electron density profiles of four ionosonde stations are taken as reference. The results indicate that SMART significantly reduces the number of iterations necessary to achieve a predefined accuracy level. Further, SMART+ decreases the median of the absolute sTEC error up to 15, 22, 46 and 67 % compared to SMART, SART, ART and NeQuick respectively.
Interpolation between Sobolev spaces in Lipschitz domains with an application to multigrid theory
Bramble, J.H. |
1995-10-01
In this paper the author describes an interpolation result for the Sobolev spaces H{sub 0}{sup S}({Omega}) where {Omega} is a bounded domain with a Lipschitz boundary. This result is applied to derive discrete norm estimates related to multilevel preconditioners and multigrid methods in the finite element method. The estimates are valid for operators of order 2m with Dirichlet boundary conditions. 11 refs.
Multigrid calculation of three-dimensional viscous cascade flows
NASA Technical Reports Server (NTRS)
Arnone, A.; Liou, M.-S.; Povinelli, L. A.
1991-01-01
A 3-D code for viscous cascade flow prediction was developed. The space discretization uses a cell-centered scheme with eigenvalue scaling to weigh the artificial dissipation terms. Computational efficiency of a four stage Runge-Kutta scheme is enhanced by using variable coefficients, implicit residual smoothing, and a full multigrid method. The Baldwin-Lomax eddy viscosity model is used for turbulence closure. A zonal, nonperiodic grid is used to minimize mesh distortion in and downstream of the throat region. Applications are presented for an annular vane with and without end wall contouring, and for a large scale linear cascade. The calculation is validated by comparing with experiments and by studying grid dependency.
Multigrid calculation of three-dimensional viscous cascade flows
NASA Technical Reports Server (NTRS)
Arnone, A.; Liou, M.-S.; Povinelli, L. A.
1991-01-01
A three-dimensional code for viscous cascade flow prediction has been developed. The space discretization uses a cell-centered scheme with eigenvalue scaling to weigh the artificial dissipation terms. Computational efficiency of a four-stage Runge-Kutta scheme is enhanced by using variable coefficients, implicit residual smoothing, and a full-multigrid method. The Baldwin-Lomax eddy-viscosity model is used for turbulence closure. A zonal, nonperiodic grid is used to minimize mesh distortion in and downstream of the throat region. Applications are presented for an annular vane with and without end wall contouring, and for a large-scale linear cascade. The calculation is validated by comparing with experiments and by studying grid dependency.
Multigrid Acceleration of Time-Accurate DNS of Compressible Turbulent Flow
NASA Technical Reports Server (NTRS)
Broeze, Jan; Geurts, Bernard; Kuerten, Hans; Streng, Martin
1996-01-01
An efficient scheme for the direct numerical simulation of 3D transitional and developed turbulent flow is presented. Explicit and implicit time integration schemes for the compressible Navier-Stokes equations are compared. The nonlinear system resulting from the implicit time discretization is solved with an iterative method and accelerated by the application of a multigrid technique. Since we use central spatial discretizations and no artificial dissipation is added to the equations, the smoothing method is less effective than in the more traditional use of multigrid in steady-state calculations. Therefore, a special prolongation method is needed in order to obtain an effective multigrid method. This simulation scheme was studied in detail for compressible flow over a flat plate. In the laminar regime and in the first stages of turbulent flow the implicit method provides a speed-up of a factor 2 relative to the explicit method on a relatively coarse grid. At increased resolution this speed-up is enhanced correspondingly.
Agglomeration Multigrid for an Unstructured-Grid Flow Solver
NASA Technical Reports Server (NTRS)
Frink, Neal; Pandya, Mohagna J.
2004-01-01
An agglomeration multigrid scheme has been implemented into the sequential version of the NASA code USM3Dns, tetrahedral cell-centered finite volume Euler/Navier-Stokes flow solver. Efficiency and robustness of the multigrid-enhanced flow solver have been assessed for three configurations assuming an inviscid flow and one configuration assuming a viscous fully turbulent flow. The inviscid studies include a transonic flow over the ONERA M6 wing and a generic business jet with flow-through nacelles and a low subsonic flow over a high-lift trapezoidal wing. The viscous case includes a fully turbulent flow over the RAE 2822 rectangular wing. The multigrid solutions converged with 12%-33% of the Central Processing Unit (CPU) time required by the solutions obtained without multigrid. For all of the inviscid cases, multigrid in conjunction with an explicit time-stepping scheme performed the best with regard to the run time memory and CPU time requirements. However, for the viscous case multigrid had to be used with an implicit backward Euler time-stepping scheme that increased the run time memory requirement by 22% as compared to the run made without multigrid.
Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow
NASA Technical Reports Server (NTRS)
Demuren, A. O.
1991-01-01
A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds Stress Model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid method. With the k-epsilon model the rate approaches that for laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equations in the latter may be responsible. Computed results with both turbulence models are compared with experimental data for a pair of opposed jets in crossflow. Both models yield reasonable agreement with mean flow velocity but RSM yields better prediction of the Reynolds stresses.
MGGHAT: Elliptic PDE software with adaptive refinement, multigrid and high order finite elements
NASA Technical Reports Server (NTRS)
Mitchell, William F.
1993-01-01
MGGHAT (MultiGrid Galerkin Hierarchical Adaptive Triangles) is a program for the solution of linear second order elliptic partial differential equations in two dimensional polygonal domains. This program is now available for public use. It is a finite element method with linear, quadratic or cubic elements over triangles. The adaptive refinement via newest vertex bisection and the multigrid iteration are both based on a hierarchical basis formulation. Visualization is available at run time through an X Window display, and a posteriori through output files that can be used as GNUPLOT input. In this paper, we describe the methods used by MGGHAT, define the problem domain for which it is appropriate, illustrate use of the program, show numerical and graphical examples, and explain how to obtain the software.
Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow
NASA Technical Reports Server (NTRS)
Demuren, A. O.
1992-01-01
A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds stress model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid method to be obtained with both turbulence models. With the k-epsilon model the rate approaches that for laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equation in the latter may be responsible. Computed results with both turbulence models are compared to experimental data for a pair of opposed jets in crossflow. Both models yield reasonable agreement for the mean flow velocity, but RSM yields better predictions of the Reynolds stresses.
Application of the multigrid solution technique to hypersonic entry vehicles
NASA Astrophysics Data System (ADS)
Greene, Francis A.
1994-09-01
Multigrid techniques have been incorporated into an existing hypersonic flow analysis code, the Langley aerothermodynamic upwind relaxation algorithm. The multigrid scheme is based on the full approximation storage approach and uses full multigrid to obtain a well-defined fine-mesh starting solution. Predictions were obtained using standard transfer operators, and a V cycle was used to control grid sequencing. Computed hypersonic flow solutions, compared with experimental data for a 15-deg blunted sphere-cone and a blended-wing body, are presented. It is shown that the algorithm predicts heating rates accurately, and computes solutions in one-third the computational time of the nonmultigrid algorithm.
ERIC Educational Resources Information Center
Zumoff, Nancy; Schaufele, Christopher
This final report and appended conference proceedings describe activities of the Earth Math project, a 3-year effort at Kennesaw State University (Georgia) to broaden and disseminate the concept of Earth Algebra to precalculus and mathematics education courses. Major outcomes of the project were the draft of a precalculus textbook now being…
The Development of a Factorizable Multigrid Algorithm for Subsonic and Transonic Flow
NASA Technical Reports Server (NTRS)
Roberts, Thomas W.
2001-01-01
The factorizable discretization of Sidilkover for the compressible Euler equations previously demonstrated for channel flows has been extended to external flows.The dissipation of the original scheme has been modified to maintain stability for moderately stretched grids. The discrete equations are solved by symmetric collective Gauss-Seidel relaxation and FAS multigrid. Unlike the earlier work ordering the grid vertices in the flow direction has been found to be unnecessary. Solutions for essential incompressible flow (Mach 0.01) and supercritical flows have obtained for a Karman-Trefftz airfoil with it conformally mapped grid,as well as a NACA 0012 on an algebraically generated grid. The current work demonstrates nearly 0(n) convergence for subsonic and slightly transonic flows.
Chen, Yunjie; Zhan, Tianming; Zhang, Ji; Wang, Hongyuan
2016-01-01
We propose a novel segmentation method based on regional and nonlocal information to overcome the impact of image intensity inhomogeneities and noise in human brain magnetic resonance images. With the consideration of the spatial distribution of different tissues in brain images, our method does not need preestimation or precorrection procedures for intensity inhomogeneities and noise. A nonlocal information based Gaussian mixture model (NGMM) is proposed to reduce the effect of noise. To reduce the effect of intensity inhomogeneity, the multigrid nonlocal Gaussian mixture model (MNGMM) is proposed to segment brain MR images in each nonoverlapping multigrid generated by using a new multigrid generation method. Therefore the proposed model can simultaneously overcome the impact of noise and intensity inhomogeneity and automatically classify 2D and 3D MR data into tissues of white matter, gray matter, and cerebral spinal fluid. To maintain the statistical reliability and spatial continuity of the segmentation, a fusion strategy is adopted to integrate the clustering results from different grid. The experiments on synthetic and clinical brain MR images demonstrate the superior performance of the proposed model comparing with several state-of-the-art algorithms.
ERIC Educational Resources Information Center
Cavanagh, Sean
2009-01-01
As educators and policymakers search for ways to prepare students for the rigors of algebra, teachers in the Helena, Montana, school system are starting early by attempting to nurture students' algebraic-reasoning ability, as well as their basic number skills, in early elementary school, rather than waiting until middle or early high school.…
Multigrid iteration solution procedure for solving two-dimensional sets of coupled equations. [HTGR
Vondy, D.R.
1984-07-01
A procedure of iterative solution was coded in Fortran to apply the multigrid scheme of iteration to a set of coupled equations for solving two-dimensional sets of coupled equations. The incentive for this effort was to make available an implemented procedure that may be readily used as an alternative to overrelaxation, of special interest in applications where the latter is ineffective. The multigrid process was found to be effective, although not always competitive with simple overrelaxation. Implementing an effective and flexible procedure is a time-consuming task. Absolute error level evaluation was found to be essential to support methods assessment. A code source listing is presented to allow simple application when the computer memory size is adequate, avoiding data transfer from auxiliary storage. Included are the capabilities for one-dimensional rebalance and a driver program illustrating use requirements. Feedback of additional experience from application is anticipated.
NASA Astrophysics Data System (ADS)
Liu, Yin-Ping; Li, Zhi-Bin
2003-03-01
Based on a type of elliptic equation, a new algebraic method to construct a series of exact solutions for nonlinear evolution equations is proposed, meanwhile, its complete implementation TRWS in Maple is presented. The TRWS can output a series of travelling wave solutions entirely automatically, which include polynomial solutions, exponential function solutions, triangular function solutions, hyperbolic function solutions, rational function solutions, Jacobi elliptic function solutions, and Weierstrass elliptic function solutions. The effectiveness of the package is illustrated by applying it to a variety of equations. Not only are previously known solutions recovered but also new solutions and more general form of solutions are obtained.
Multigrid for refined triangle meshes
Shapira, Yair
1997-02-01
A two-level preconditioning method for the solution of (locally) refined finite element schemes using triangle meshes is introduced. In the isotropic SPD case, it is shown that the condition number of the preconditioned stiffness matrix is bounded uniformly for all sufficiently regular triangulations. This is also verified numerically for an isotropic diffusion problem with highly discontinuous coefficients.
Zonal multigrid solution of compressible flow problems on unstructured and adaptive meshes
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1989-01-01
The simultaneous use of adaptive meshing techniques with a multigrid strategy for solving the 2-D Euler equations in the context of unstructured meshes is studied. To obtain optimal efficiency, methods capable of computing locally improved solutions without recourse to global recalculations are pursued. A method for locally refining an existing unstructured mesh, without regenerating a new global mesh is employed, and the domain is automatically partitioned into refined and unrefined regions. Two multigrid strategies are developed. In the first, time-stepping is performed on a global fine mesh covering the entire domain, and convergence acceleration is achieved through the use of zonal coarse grid accelerator meshes, which lie under the adaptively refined regions of the global fine mesh. Both schemes are shown to produce similar convergence rates to each other, and also with respect to a previously developed global multigrid algorithm, which performs time-stepping throughout the entire domain, on each mesh level. However, the present schemes exhibit higher computational efficiency due to the smaller number of operations on each level.
Acceleration of k-Eigenvalue / Criticality Calculations using the Jacobian-Free Newton-Krylov Method
Dana Knoll; HyeongKae Park; Chris Newman
2011-02-01
We present a new approach for the $k$--eigenvalue problem using a combination of classical power iteration and the Jacobian--free Newton--Krylov method (JFNK). The method poses the $k$--eigenvalue problem as a fully coupled nonlinear system, which is solved by JFNK with an effective block preconditioning consisting of the power iteration and algebraic multigrid. We demonstrate effectiveness and algorithmic scalability of the method on a 1-D, one group problem and two 2-D two group problems and provide comparison to other efforts using silmilar algorithmic approaches.
NASA Astrophysics Data System (ADS)
Akbari, M. R.; Ganji, D. D.; Ahmadi, A. R.; Kachapi, Sayyid H. Hashemi
2014-03-01
In the current paper, a simplified model of Tower Cranes has been presented in order to investigate and analyze the nonlinear differential equation governing on the presented system in three different cases by Algebraic Method (AGM). Comparisons have been made between AGM and Numerical Solution, and these results have been indicated that this approach is very efficient and easy so it can be applied for other nonlinear equations. It is citable that there are some valuable advantages in this way of solving differential equations and also the answer of various sets of complicated differential equations can be achieved in this manner which in the other methods, so far, they have not had acceptable solutions. The simplification of the solution procedure in Algebraic Method and its application for solving a wide variety of differential equations not only in Vibrations but also in different fields of study such as fluid mechanics, chemical engineering, etc. make AGM be a powerful and useful role model for researchers in order to solve complicated nonlinear differential equations.
NASA Astrophysics Data System (ADS)
Kifonidis, K.; Müller, E.
2012-08-01
Aims: We describe and study a family of new multigrid iterative solvers for the multidimensional, implicitly discretized equations of hydrodynamics. Schemes of this class are free of the Courant-Friedrichs-Lewy condition. They are intended for simulations in which widely differing wave propagation timescales are present. A preferred solver in this class is identified. Applications to some simple stiff test problems that are governed by the compressible Euler equations, are presented to evaluate the convergence behavior, and the stability properties of this solver. Algorithmic areas are determined where further work is required to make the method sufficiently efficient and robust for future application to difficult astrophysical flow problems. Methods: The basic equations are formulated and discretized on non-orthogonal, structured curvilinear meshes. Roe's approximate Riemann solver and a second-order accurate reconstruction scheme are used for spatial discretization. Implicit Runge-Kutta (ESDIRK) schemes are employed for temporal discretization. The resulting discrete equations are solved with a full-coarsening, non-linear multigrid method. Smoothing is performed with multistage-implicit smoothers. These are applied here to the time-dependent equations by means of dual time stepping. Results: For steady-state problems, our results show that the efficiency of the present approach is comparable to the best implicit solvers for conservative discretizations of the compressible Euler equations that can be found in the literature. The use of red-black as opposed to symmetric Gauss-Seidel iteration in the multistage-smoother is found to have only a minor impact on multigrid convergence. This should enable scalable parallelization without having to seriously compromise the method's algorithmic efficiency. For time-dependent test problems, our results reveal that the multigrid convergence rate degrades with increasing Courant numbers (i.e. time step sizes). Beyond a
Multigrid-based reconstruction algorithm for quantitative photoacoustic tomography
Li, Shengfu; Montcel, Bruno; Yuan, Zhen; Liu, Wanyu; Vray, Didier
2015-01-01
This paper proposes a multigrid inversion framework for quantitative photoacoustic tomography reconstruction. The forward model of optical fluence distribution and the inverse problem are solved at multiple resolutions. A fixed-point iteration scheme is formulated for each resolution and used as a cost function. The simulated and experimental results for quantitative photoacoustic tomography reconstruction show that the proposed multigrid inversion can dramatically reduce the required number of iterations for the optimization process without loss of reliability in the results. PMID:26203371
Kim, Joshua; Guan, Huaiqun; Gersten, David; Zhang, Tiezhi
2013-01-01
Tetrahedron beam computed tomography (TBCT) performs volumetric imaging using a stack of fan beams generated by a multiple pixel X-ray source. While the TBCT system was designed to overcome the scatter and detector issues faced by cone beam computed tomography (CBCT), it still suffers the same large cone angle artifacts as CBCT due to the use of approximate reconstruction algorithms. It has been shown that iterative reconstruction algorithms are better able to model irregular system geometries and that algebraic iterative algorithms in particular have been able to reduce cone artifacts appearing at large cone angles. In this paper, the SART algorithm is modified for the use with the different TBCT geometries and is tested using both simulated projection data and data acquired using the TBCT benchtop system. The modified SART reconstruction algorithms were able to mitigate the effects of using data generated at large cone angles and were also able to reconstruct CT images without the introduction of artifacts due to either the longitudinal or transverse truncation in the data sets. Algebraic iterative reconstruction can be especially useful for dual-source dual-detector TBCT, wherein the cone angle is the largest in the center of the field of view.
NASA Astrophysics Data System (ADS)
Borzykh, A. N.
2017-01-01
The Seidel method for solving a system of linear algebraic equations and an estimate of its convergence rate are considered. It is proposed to change the order of equations. It is shown that the method described in Faddeevs' book Computational Methods of Linear Algebra can deteriorate the convergence rate estimate rather than improve it. An algorithm for establishing the optimal order of equations is proposed, and its validity is proved. It is shown that the computational complexity of the reordering is 2 n 2 additions and (12) n 2 divisions. Numerical results for random matrices of order 100 are presented that confirm the proposed improvement.
NASA Astrophysics Data System (ADS)
Lin, Paul T.; Shadid, John N.; Sala, Marzio; Tuminaro, Raymond S.; Hennigan, Gary L.; Hoekstra, Robert J.
2009-09-01
In this study results are presented for the large-scale parallel performance of an algebraic multilevel preconditioner for solution of the drift-diffusion model for semiconductor devices. The preconditioner is the key numerical procedure determining the robustness, efficiency and scalability of the fully-coupled Newton-Krylov based, nonlinear solution method that is employed for this system of equations. The coupled system is comprised of a source term dominated Poisson equation for the electric potential, and two convection-diffusion-reaction type equations for the electron and hole concentration. The governing PDEs are discretized in space by a stabilized finite element method. Solution of the discrete system is obtained through a fully-implicit time integrator, a fully-coupled Newton-based nonlinear solver, and a restarted GMRES Krylov linear system solver. The algebraic multilevel preconditioner is based on an aggressive coarsening graph partitioning of the nonzero block structure of the Jacobian matrix. Representative performance results are presented for various choices of multigrid V-cycles and W-cycles and parameter variations for smoothers based on incomplete factorizations. Parallel scalability results are presented for solution of up to 108 unknowns on 4096 processors of a Cray XT3/4 and an IBM POWER eServer system.
Ewing, R.E.; Saevareid, O.; Shen, J.
1994-12-31
A multigrid algorithm for the cell-centered finite difference on equilateral triangular grids for solving second-order elliptic problems is proposed. This finite difference is a four-point star stencil in a two-dimensional domain and a five-point star stencil in a three dimensional domain. According to the authors analysis, the advantages of this finite difference are that it is an O(h{sup 2})-order accurate numerical scheme for both the solution and derivatives on equilateral triangular grids, the structure of the scheme is perhaps the simplest, and its corresponding multigrid algorithm is easily constructed with an optimal convergence rate. They are interested in relaxation of the equilateral triangular grid condition to certain general triangular grids and the application of this multigrid algorithm as a numerically reasonable preconditioner for the lowest-order Raviart-Thomas mixed triangular finite element method. Numerical test results are presented to demonstrate their analytical results and to investigate the applications of this multigrid algorithm on general triangular grids.
NASA Astrophysics Data System (ADS)
Pariona, Moisés Meza; de Oliveira, Fabiane; Teleginski, Viviane; Machado, Siliane; Pinto, Marcio Augusto Villela
2016-05-01
Al-1.5 wt% Fe alloy was irradiate by Yb-fiber laser beam using the laser surface remelting (LSR) technique, generating weld fillets that covered the whole surface of the sample. The laser-treatment showed to be an efficient technology for corrosion resistance improvements. In this study, the finite element method was used to simulate the solidification processes by LSR technique. The method Multigrid was employed in order to reduce the CPU time, which is important to the viability for industrial applications. Multigrid method is a technique very promising of optimization that reduced drastically the CPU time. The result was highly satisfactory, because the CPU time has fallen dramatically in comparison when it was not used Multigrid method. To validate the result of numerical simulation with the experimental result was done the microstructural characterization of laser-treated layer by the optical microscopy and SEM techniques and however, that both results showing be consistent.
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.
2017-01-01
A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. We would like it to match the well-defined algebra of spectral functions describing lights and surface reflectances, but an exact correspondence is impossible after the spectra have been projected to a three-dimensional color space, because of metamerism physically different spectra can produce the same color sensation. Metameric spectra are interchangeable for the purposes of addition, but not multiplication, so any color algebra is necessarily an approximation to physical reality. Nevertheless, because the majority of naturally-occurring spectra are well-behaved (e.g., continuous and slowly-varying), color algebras can be formulated that are largely accurate and agree well with human intuition. Here we explore the family of algebras that result from associating each color with a member of a three-dimensional manifold of spectra. This association can be used to construct a color product, defined as the color of the spectrum of the wavelength-wise product of the spectra associated with the two input colors. The choice of the spectral manifold determines the behavior of the resulting system, and certain special subspaces allow computational efficiencies. The resulting systems can be used to improve computer graphic rendering techniques, and to model various perceptual phenomena such as color constancy.
Textbook Multigrid Efficiency for Computational Fluid Dynamics Simulations
NASA Technical Reports Server (NTRS)
Brandt, Achi; Thomas, James L.; Diskin, Boris
2001-01-01
Considerable progress over the past thirty years has been made in the development of large-scale computational fluid dynamics (CFD) solvers for the Euler and Navier-Stokes equations. Computations are used routinely to design the cruise shapes of transport aircraft through complex-geometry simulations involving the solution of 25-100 million equations; in this arena the number of wind-tunnel tests for a new design has been substantially reduced. However, simulations of the entire flight envelope of the vehicle, including maximum lift, buffet onset, flutter, and control effectiveness have not been as successful in eliminating the reliance on wind-tunnel testing. These simulations involve unsteady flows with more separation and stronger shock waves than at cruise. The main reasons limiting further inroads of CFD into the design process are: (1) the reliability of turbulence models; and (2) the time and expense of the numerical simulation. Because of the prohibitive resolution requirements of direct simulations at high Reynolds numbers, transition and turbulence modeling is expected to remain an issue for the near term. The focus of this paper addresses the latter problem by attempting to attain optimal efficiencies in solving the governing equations. Typically current CFD codes based on the use of multigrid acceleration techniques and multistage Runge-Kutta time-stepping schemes are able to converge lift and drag values for cruise configurations within approximately 1000 residual evaluations. An optimally convergent method is defined as having textbook multigrid efficiency (TME), meaning the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in the discretized system of equations (residual equations). In this paper, a distributed relaxation approach to achieving TME for Reynolds-averaged Navier-Stokes (RNAS) equations are discussed along with the foundations that form the
NASA Astrophysics Data System (ADS)
Mikhalev, A. V.; Pinchuk, I. A.
2005-06-01
The structure of Steinberg conformal algebras is studied; these are analogues of Steinberg groups (algebras, superalgebras).A Steinberg conformal algebra is defined as an abstract algebra by a system of generators and relations between the generators. It is proved that a Steinberg conformal algebra is the universal central extension of the corresponding conformal Lie algebra; the kernel of this extension is calculated.
ERIC Educational Resources Information Center
Selinski, Natalie E.; Rasmussen, Chris; Wawro, Megan; Zandieh, Michelle
2014-01-01
The central goals of most introductory linear algebra courses are to develop students' proficiency with matrix techniques, to promote their understanding of key concepts, and to increase their ability to make connections between concepts. In this article, we present an innovative method using adjacency matrices to analyze students' interpretation…
Analysis of multigrid algorithms for nonsymmetric and indefinite elliptic problems
Bramble, J.H.; Pasciak, J.E.; Xu, J.
1988-10-01
We prove some new estimates for the convergence of multigrid algorithms applied to nonsymmetric and indefinite elliptic boundary value problems. We provide results for the so-called 'symmetric' multigrid schemes. We show that for the variable V-script-cycle and the W-script-cycle schemes, multigrid algorithms with any amount of smoothing on the finest grid converge at a rate that is independent of the number of levels or unknowns, provided that the initial grid is sufficiently fine. We show that the V-script-cycle algorithm also converges (under appropriate assumptions on the coarsest grid) but at a rate which may deteriorate as the number of levels increases. This deterioration for the V-script-cycle may occur even in the case of full elliptic regularity. Finally, the results of numerical experiments are given which illustrate the convergence behavior suggested by the theory.
Transonic Drag Prediction Using an Unstructured Multigrid Solver
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.; Levy, David W.
2001-01-01
This paper summarizes the results obtained with the NSU-3D unstructured multigrid solver for the AIAA Drag Prediction Workshop held in Anaheim, CA, June 2001. The test case for the workshop consists of a wing-body configuration at transonic flow conditions. Flow analyses for a complete test matrix of lift coefficient values and Mach numbers at a constant Reynolds number are performed, thus producing a set of drag polars and drag rise curves which are compared with experimental data. Results were obtained independently by both authors using an identical baseline grid and different refined grids. Most cases were run in parallel on commodity cluster-type machines while the largest cases were run on an SGI Origin machine using 128 processors. The objective of this paper is to study the accuracy of the subject unstructured grid solver for predicting drag in the transonic cruise regime, to assess the efficiency of the method in terms of convergence, cpu time, and memory, and to determine the effects of grid resolution on this predictive ability and its computational efficiency. A good predictive ability is demonstrated over a wide range of conditions, although accuracy was found to degrade for cases at higher Mach numbers and lift values where increasing amounts of flow separation occur. The ability to rapidly compute large numbers of cases at varying flow conditions using an unstructured solver on inexpensive clusters of commodity computers is also demonstrated.
A multiblock multigrid three-dimensional Euler equation solver
NASA Technical Reports Server (NTRS)
Cannizzaro, Frank E.; Elmiligui, Alaa; Melson, N. Duane; Vonlavante, E.
1990-01-01
Current aerodynamic designs are often quite complex (geometrically). Flexible computational tools are needed for the analysis of a wide range of configurations with both internal and external flows. In the past, geometrically dissimilar configurations required different analysis codes with different grid topologies in each. The duplicity of codes can be avoided with the use of a general multiblock formulation which can handle any grid topology. Rather than hard wiring the grid topology into the program, it is instead dictated by input to the program. In this work, the compressible Euler equations, written in a body-fitted finite-volume formulation, are solved using a pseudo-time-marching approach. Two upwind methods (van Leer's flux-vector-splitting and Roe's flux-differencing) were investigated. Two types of explicit solvers (a two-step predictor-corrector and a modified multistage Runge-Kutta) were used with multigrid acceleration to enhance convergence. A multiblock strategy is used to allow greater geometric flexibility. A report on simple explicit upwind schemes for solving compressible flows is included.
A simplified analysis of the multigrid V-cycle as a fast elliptic solver
NASA Technical Reports Server (NTRS)
Decker, Naomi H.; Taasan, Shlomo
1988-01-01
For special model problems, Fourier analysis gives exact convergence rates for the two-grid multigrid cycle and, for more general problems, provides estimates of the two-grid convergence rates via local mode analysis. A method is presented for obtaining mutigrid convergence rate estimates for cycles involving more than two grids (using essentially the same analysis as for the two-grid cycle). For the simple cast of the V-cycle used as a fast Laplace solver on the unit square, the k-grid convergence rate bounds obtained by this method are sharper than the bounds predicted by the variational theory. Both theoretical justification and experimental evidence are presented.
A robust multi-grid pressure-based algorithm for multi-fluid flow at all speeds
NASA Astrophysics Data System (ADS)
Darwish, M.; Moukalled, F.; Sekar, B.
2003-04-01
This paper reports on the implementation and testing, within a full non-linear multi-grid environment, of a new pressure-based algorithm for the prediction of multi-fluid flow at all speeds. The algorithm is part of the mass conservation-based algorithms (MCBA) group in which the pressure correction equation is derived from overall mass conservation. The performance of the new method is assessed by solving a series of two-dimensional two-fluid flow test problems varying from turbulent low Mach number to supersonic flows, and from very low to high fluid density ratios. Solutions are generated for several grid sizes using the single grid (SG), the prolongation grid (PG), and the full non-linear multi-grid (FMG) methods. The main outcomes of this study are: (i) a clear demonstration of the ability of the FMG method to tackle the added non-linearity of multi-fluid flows, which is manifested through the performance jump observed when using the non-linear multi-grid approach as compared to the SG and PG methods; (ii) the extension of the FMG method to predict turbulent multi-fluid flows at all speeds. The convergence history plots and CPU-times presented indicate that the FMG method is far more efficient than the PG method and accelerates the convergence rate over the SG method, for the problems solved and the grids used, by a factor reaching a value as high as 15.
ERIC Educational Resources Information Center
Capani, Antonio; De Dominicis, Gabriel
This paper proposes a model for a general interface between people and Computer Algebra Systems (CAS). The main features in the CAS interface are data navigation and the possibility of accessing powerful remote machines. This model is based on the idea of session management, in which the main engine of the tool enables interactions with the…
Multigrid solution of internal flows using unstructured solution adaptive meshes
NASA Technical Reports Server (NTRS)
Smith, Wayne A.; Blake, Kenneth R.
1992-01-01
This is the final report of the NASA Lewis SBIR Phase 2 Contract Number NAS3-25785, Multigrid Solution of Internal Flows Using Unstructured Solution Adaptive Meshes. The objective of this project, as described in the Statement of Work, is to develop and deliver to NASA a general three-dimensional Navier-Stokes code using unstructured solution-adaptive meshes for accuracy and multigrid techniques for convergence acceleration. The code will primarily be applied, but not necessarily limited, to high speed internal flows in turbomachinery.
An Upwind Multigrid Algorithm for Calculating Flows on Unstructured Grids
NASA Technical Reports Server (NTRS)
Bonhaus, Daryl L.
1993-01-01
An algorithm is described that calculates inviscid, laminar, and turbulent flows on triangular meshes with an upwind discretization. A brief description of the base solver and the multigrid implementation is given, followed by results that consist mainly of convergence rates for inviscid and viscous flows over a NACA four-digit airfoil section. The results show that multigrid does accelerate convergence when the same relaxation parameters that yield good single-grid performance are used; however, larger gains in performance can be realized by doing less work in the relaxation scheme.
Multigrid Particle-in-cell Simulations of Plasma Microturbulence
J.L.V. Lewandowski
2003-06-17
A new scheme to accurately retain kinetic electron effects in particle-in-cell (PIC) simulations for the case of electrostatic drift waves is presented. The splitting scheme, which is based on exact separation between adiabatic and on adiabatic electron responses, is shown to yield more accurate linear growth rates than the standard df scheme. The linear and nonlinear elliptic problems that arise in the splitting scheme are solved using a multi-grid solver. The multi-grid particle-in-cell approach offers an attractive path, both from the physics and numerical points of view, to simulate kinetic electron dynamics in global toroidal plasmas.
Ruge, J.; Li, Y.; McCormick, S.F.
1994-12-31
The formulation and time discretization of problems in meteorology are often tailored to the type of efficient solvers available for use on the discrete problems obtained. A common procedure is to formulate the problem so that a constant (or latitude-dependent) coefficient Poisson-like equation results at each time step, which is then solved using spectral methods. This both limits the scope of problems that can be handled and requires linearization by forward extrapolation of nonlinear terms, which, in turn, requires filtering to control noise. Multigrid methods do not suffer these limitations, and can be applied directly to systems of nonlinear equations with variable coefficients. Here, a global barotropic semi-Lagrangian model, developed by the authors, is presented which results in a system of three coupled nonlinear equations to be solved at each time step. A multigrid method for the solution of these equations is described, and results are presented.
NASA Astrophysics Data System (ADS)
Smith, Leigh
2015-03-01
I will describe methods used at the University of Cincinnati to enhance student success in an algebra-based physics course. The first method is to use ALEKS, an adaptive online mathematics tutorial engine, before the term begins. Approximately three to four weeks before the beginning of the term, the professor in the course emails all of the students in the course informing them of the possibility of improving their math proficiency by using ALEKS. Using only a minimal reward on homework, we have achieved a 70% response rate with students spending an average of 8 hours working on their math skills before classes start. The second method is to use a flipped classroom approach. The class of 135 meets in a tiered classroom twice per week for two hours. Over the previous weekend students spend approximately 2 hours reading the book, taking short multiple choice conceptual quizzes, and viewing videos covering the material. In class, students use Learning Catalytics to work through homework problems in groups, guided by the instructor and one learning assistant. Using these interventions, we have reduced the student DWF rate (the fraction of students receiving a D or lower in the class) from an historical average of 35 to 40% to less than 20%.
Zhang, Yi; Sun, Weiguo; Fu, Jia; Fan, Qunchao; Ma, Jie; Xiao, Liantuan; Jia, Suotang; Feng, Hao; Li, Huidong
2014-01-03
The algebraic method (AM) proposed by Sun et al. is improved to be a variational AM (VAM) to offset the possible experimental errors and to adapt to the individual energy expansion nature of different molecular systems. The VAM is used to study the full vibrational spectra {Eυ} and the dissociation energies De of (4)HeH(+)-X(1)Σ(+), (7)Li2-1(3)Δg,Na2-C(1)Πu,NaK-7(1)Π, Cs2-B(1)Πu and (79)Br2-β1g((3)P2) diatomic electronic states. The results not only precisely reproduce all known experimental vibrational energies, but also predict correct dissociation energies and all unknown high-lying levels that may not be given by the original AM or other numerical methods or experimental methods. The analyses and the skill suggested here might be useful for other numerical simulations and theoretical fittings using known data that may carry inevitable errors.
Multigrid Computations of 3-D Incompressible Internal and External Viscous Rotating Flows
NASA Technical Reports Server (NTRS)
Sheng, Chunhua; Taylor, Lafayette K.; Chen, Jen-Ping; Jiang, Min-Yee; Whitfield, David L.
1996-01-01
This report presents multigrid methods for solving the 3-D incompressible viscous rotating flows in a NASA low-speed centrifugal compressor and a marine propeller 4119. Numerical formulations are given in both the rotating reference frame and the absolute frame. Comparisons are made for the accuracy, efficiency, and robustness between the steady-state scheme and the time-accurate scheme for simulating viscous rotating flows for complex internal and external flow applications. Prospects for further increase in efficiency and accuracy of unsteady time-accurate computations are discussed.
Adaptive parallel multigrid for Euler and incompressible Navier-Stokes equations
Trottenberg, U.; Oosterlee, K.; Ritzdorf, H.
1996-12-31
The combination of (1) very efficient solution methods (Multigrid), (2) adaptivity, and (3) parallelism (distributed memory) clearly is absolutely necessary for future oriented numerics but still regarded as extremely difficult or even unsolved. We show that very nice results can be obtained for real life problems. Our approach is straightforward (based on {open_quotes}MLAT{close_quotes}). But, of course, reasonable refinement and load-balancing strategies have to be used. Our examples are 2D, but 3D is on the way.
Multigrid solution of the nonlinear Poisson-Boltzmann equation and calculation of titration curves.
Oberoi, H; Allewell, N M
1993-01-01
Although knowledge of the pKa values and charge states of individual residues is critical to understanding the role of electrostatic effects in protein structure and function, calculating these quantities is challenging because of the sensitivity of these parameters to the position and distribution of charges. Values for many different proteins which agree well with experimental results have been obtained with modified Tanford-Kirkwood theory in which the protein is modeled as a sphere (reviewed in Ref. 1); however, convergence is more difficult to achieve with finite difference methods, in which the protein is mapped onto a grid and derivatives of the potential function are calculated as differences between the values of the function at grid points (reviewed in Ref. 6). Multigrid methods, in which the size of the grid is varied from fine to coarse in several cycles, decrease computational time, increase rates of convergence, and improve agreement with experiment. Both the accuracy and computational advantage of the multigrid approach increase with grid size, because the time required to achieve a solution increases slowly with grid size. We have implemented a multigrid procedure for solving the nonlinear Poisson-Boltzmann equation, and, using lysozyme as a test case, compared calculations for several crystal forms, different refinement procedures, and different charge assignment schemes. The root mean square difference between calculated and experimental pKa values for the crystal structure which yields best agreement with experiment (1LZT) is 1.1 pH units, with the differences in calculated and experimental pK values being less than 0.6 pH units for 16 out of 21 residues. The calculated titration curves of several residues are biphasic. Images FIGURE 8 PMID:8369451
De Sterck, H
2011-10-18
The following work has been performed by PI Hans De Sterck and graduate student Manda Winlaw for the required tasks 1-5 (as listed in the Statement of Work). Graduate student Manda Winlaw has visited LLNL January 31-March 11, 2011 and May 23-August 19, 2010, working with Van Henson and Mike O'Hara on non-negative matrix factorizations (NMF). She has investigated the dense subgraph clustering algorithm from 'Finding Dense Subgraphs for Sparse Undirected, Directed, and Bipartite Graphs' by Chen and Saad, testing this method on several term-document matrices and adapting it to cluster based on the rank of the subgraphs instead of the density. Manda Winlaw was awarded a first prize in the annual LLNL summer student poster competition for a poster on her NMF research. PI Hans De Sterck has developed a new adaptive algebraic multigrid algorithm for computing a few dominant or minimal singular triplets of sparse rectangular matrices. This work builds on adaptive algebraic multigrid methods that were further developed by the PI and collaborators (including Sanders and Henson) for Markov chains. The method also combines and extends existing multigrid algorithms for the symmetric eigenproblem. The PI has visited LLNL February 22-25, 2011, and has given a CASC seminar 'Algebraic Multigrid for the Singular Value Problem' on this work on February 23, 2011. During his visit, he has discussed this work and related topics with Van Henson, Geoffrey Sanders, Panayot Vassilevski, and others. He has tested the algorithm on PDE matrices and on a term-document matrix, with promising initial results. Manda Winlaw has also started to work, with O'Hara, on estimating probability distributions over undirected graph edges. The goal is to estimate probabilistic models from sets of undirected graph edges for the purpose of prediction, anomaly detection and support to supervised learning. Graduate student Manda Winlaw is writing a paper on the results obtained with O'Hara which will be
Methods of Power Geometry in Asymptotic Analysis of Solutions to Algebraic or Differential Equations
NASA Astrophysics Data System (ADS)
Goryuchkina, Irina
2010-06-01
Here we present some basic ideas of the plane Power Geometry to study asymptotic behavior of solutions to differential equations. We consider two examples for demonstration of these methods and two applications the methods.
Generalization of n-ary Nambu algebras and beyond
Ataguema, H.; Makhlouf, A.; Silvestrov, S.
2009-08-15
The aim of this paper is to introduce n-ary Hom-algebra structures generalizing the n-ary algebras of Lie type including n-ary Nambu algebras, n-ary Nambu-Lie algebras and n-ary Lie algebras, and n-ary algebras of associative type including n-ary totally associative and n-ary partially associative algebras. We provide examples of the new structures and present some properties and construction theorems. We describe the general method allowing one to obtain an n-ary Hom-algebra structure starting from an n-ary algebra and an n-ary algebra endomorphism. Several examples are derived using this process. Also we initiate investigation of classification problems for algebraic structures introduced in the article and describe all ternary three-dimensional Hom-Nambu-Lie structures with diagonal homomorphism.
Multigrid Strategies for Viscous Flow Solvers on Anisotropic Unstructured Meshes
NASA Technical Reports Server (NTRS)
Movriplis, Dimitri J.
1998-01-01
Unstructured multigrid techniques for relieving the stiffness associated with high-Reynolds number viscous flow simulations on extremely stretched grids are investigated. One approach consists of employing a semi-coarsening or directional-coarsening technique, based on the directions of strong coupling within the mesh, in order to construct more optimal coarse grid levels. An alternate approach is developed which employs directional implicit smoothing with regular fully coarsened multigrid levels. The directional implicit smoothing is obtained by constructing implicit lines in the unstructured mesh based on the directions of strong coupling. Both approaches yield large increases in convergence rates over the traditional explicit full-coarsening multigrid algorithm. However, maximum benefits are achieved by combining the two approaches in a coupled manner into a single algorithm. An order of magnitude increase in convergence rate over the traditional explicit full-coarsening algorithm is demonstrated, and convergence rates for high-Reynolds number viscous flows which are independent of the grid aspect ratio are obtained. Further acceleration is provided by incorporating low-Mach-number preconditioning techniques, and a Newton-GMRES strategy which employs the multigrid scheme as a preconditioner. The compounding effects of these various techniques on speed of convergence is documented through several example test cases.
NASA Astrophysics Data System (ADS)
Mitchell, Lawrence; Müller, Eike Hermann
2016-12-01
The implementation of efficient multigrid preconditioners for elliptic partial differential equations (PDEs) is a challenge due to the complexity of the resulting algorithms and corresponding computer code. For sophisticated (mixed) finite element discretisations on unstructured grids an efficient implementation can be very time consuming and requires the programmer to have in-depth knowledge of the mathematical theory, parallel computing and optimisation techniques on manycore CPUs. In this paper we show how the development of bespoke multigrid preconditioners can be simplified significantly by using a framework which allows the expression of the each component of the algorithm at the correct abstraction level. Our approach (1) allows the expression of the finite element problem in a language which is close to the mathematical formulation of the problem, (2) guarantees the automatic generation and efficient execution of parallel optimised low-level computer code and (3) is flexible enough to support different abstraction levels and give the programmer control over details of the preconditioner. We use the composable abstractions of the Firedrake/PyOP2 package to demonstrate the efficiency of this approach for the solution of strongly anisotropic PDEs in atmospheric modelling. The weak formulation of the PDE is expressed in Unified Form Language (UFL) and the lower PyOP2 abstraction layer allows the manual design of computational kernels for a bespoke geometric multigrid preconditioner. We compare the performance of this preconditioner to a single-level method and hypre's BoomerAMG algorithm. The Firedrake/PyOP2 code is inherently parallel and we present a detailed performance analysis for a single node (24 cores) on the ARCHER supercomputer. Our implementation utilises a significant fraction of the available memory bandwidth and shows very good weak scaling on up to 6,144 compute cores.
NASA Astrophysics Data System (ADS)
Ruberti, M.; Yun, R.; Gokhberg, K.; Kopelke, S.; Cederbaum, L. S.; Tarantelli, F.; Averbukh, V.
2014-05-01
Here, we extend the L2 ab initio method for molecular photoionization cross-sections introduced in Gokhberg et al. [J. Chem. Phys. 130, 064104 (2009)] and benchmarked in Ruberti et al. [J. Chem. Phys. 139, 144107 (2013)] to the calculation of total photoionization cross-sections of molecules in electronically excited states. The method is based on the ab initio description of molecular electronic states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. The intermediate state representation of the dipole operator in the ADC basis is used to compute the transition moments between the excited states of the molecule. We compare the results obtained using different levels of the many-body theory, i.e., ADC(1), ADC(2), and ADC(2)x for the first two excited states of CO, N2, and H2O both at the ground state and the excited state equilibrium or saddle point geometries. We find that the single excitation ADC(1) method is not adequate even at the qualitative level and that the inclusion of double electronic excitations for description of excited state photoionization is essential. Moreover, we show that the use of the extended ADC(2)x method leads to a substantial systematic difference from the strictly second-order ADC(2). Our calculations demonstrate that a theoretical modelling of photoionization of excited states requires an intrinsically double excitation theory with respect to the ground state and cannot be achieved by the standard single excitation methods with the ground state as a reference.
Ruberti, M; Yun, R; Gokhberg, K; Kopelke, S; Cederbaum, L S; Tarantelli, F; Averbukh, V
2014-05-14
Here, we extend the L2 ab initio method for molecular photoionization cross-sections introduced in Gokhberg et al. [J. Chem. Phys. 130, 064104 (2009)] and benchmarked in Ruberti et al. [J. Chem. Phys. 139, 144107 (2013)] to the calculation of total photoionization cross-sections of molecules in electronically excited states. The method is based on the ab initio description of molecular electronic states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. The intermediate state representation of the dipole operator in the ADC basis is used to compute the transition moments between the excited states of the molecule. We compare the results obtained using different levels of the many-body theory, i.e., ADC(1), ADC(2), and ADC(2)x for the first two excited states of CO, N2, and H2O both at the ground state and the excited state equilibrium or saddle point geometries. We find that the single excitation ADC(1) method is not adequate even at the qualitative level and that the inclusion of double electronic excitations for description of excited state photoionization is essential. Moreover, we show that the use of the extended ADC(2)x method leads to a substantial systematic difference from the strictly second-order ADC(2). Our calculations demonstrate that a theoretical modelling of photoionization of excited states requires an intrinsically double excitation theory with respect to the ground state and cannot be achieved by the standard single excitation methods with the ground state as a reference.
Comparisons and Limitations of Gradient Augmented Level Set and Algebraic Volume of Fluid Methods
NASA Astrophysics Data System (ADS)
Anumolu, Lakshman; Ryddner, Douglas; Trujillo, Mario
2014-11-01
Recent numerical methods for implicit interface transport are generally presented as enjoying higher order of spatial-temporal convergence when compared to classical methods or less sophisticated approaches. However, when applied to test cases, which are designed to simulate practical industrial conditions, significant reduction in convergence is observed in higher-order methods, whereas for the less sophisticated approaches same convergence is achieved but a growth in the error norms occurs. This provides an opportunity to understand the underlying issues which causes this decrease in accuracy in both types of methods. As an example we consider the Gradient Augmented Level Set method (GALS) and a variant of the Volume of Fluid (VoF) method in our study. Results show that while both methods do suffer from a loss of accuracy, it is the higher order method that suffers more. The implication is a significant reduction in the performance advantage of the GALS method over the VoF scheme. Reasons for this lie in the behavior of the higher order derivatives, particular in situations where the level set field is highly distorted. For the VoF approach, serious spurious deformations of the interface are observed, albeit with a deceptive zero loss of mass.
Performance investigation of multigrid optimization for DNS-based optimal control problems
NASA Astrophysics Data System (ADS)
Nita, Cornelia; Vandewalle, Stefan; Meyers, Johan
2016-11-01
Optimal control theory in Direct Numerical Simulation (DNS) or Large-Eddy Simulation (LES) of turbulent flow involves large computational cost and memory overhead for the optimization of the controls. In this context, the minimization of the cost functional is typically achieved by employing gradient-based iterative methods such as quasi-Newton, truncated Newton or non-linear conjugate gradient. In the current work, we investigate the multigrid optimization strategy (MGOpt) in order to speed up the convergence of the damped L-BFGS algorithm for DNS-based optimal control problems. The method consists in a hierarchy of optimization problems defined on different representation levels aiming to reduce the computational resources associated with the cost functional improvement on the finest level. We examine the MGOpt efficiency for the optimization of an internal volume force distribution with the goal of reducing the turbulent kinetic energy or increasing the energy extraction in a turbulent wall-bounded flow; problems that are respectively related to drag reduction in boundary layers, or energy extraction in large wind farms. Results indicate that in some cases the multigrid optimization method requires up to a factor two less DNS and adjoint DNS than single-grid damped L-BFGS. The authors acknowledge support from OPTEC (OPTimization in Engineering Center of Excellence, KU Leuven, Grant No PFV/10/002).
Quantum mechanical algebraic variational methods for inelastic and reactive molecular collisions
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Haug, Kenneth; Zhao, Meishan; Truhlar, Donald G.; Sun, Yan
1988-01-01
The quantum mechanical problem of reactive or nonreactive scattering of atoms and molecules is formulated in terms of square-integrable basis sets with variational expressions for the reactance matrix. Several formulations involving expansions of the wave function (the Schwinger variational principle) or amplitude density (a generalization of the Newton variational principle), single-channel or multichannel distortion potentials, and primitive or contracted basis functions are presented and tested. The test results, for inelastic and reactive atom-diatom collisions, suggest that the methods may be useful for a variety of collision calculations and may allow the accurate quantal treatment of systems for which other available methods would be prohibitively expensive.
ERIC Educational Resources Information Center
Chiado, Wendy S.
2012-01-01
Too many of our nation's youth have failed to complete high school. Determining why so many of our nation's students fail to graduate is a complex, multi-faceted problem and beyond the scope of any one study. The study presented herein utilized a thirteen-step mixed methods model developed by Leech and Onwuegbuzie (2007) to demonstrate within a…
NASA Astrophysics Data System (ADS)
Vaninsky, Alexander
2011-04-01
This article introduces a trigonometric field (TF) that extends the field of real numbers by adding two new elements: sin and cos - satisfying an axiom sin2 + cos2 = 1. It is shown that by assigning meaningful names to particular elements of the field, all known trigonometric identities may be introduced and proved. Two different interpretations of the TF are discussed with many others potentially possible. The main objective of this article is to introduce a broader view of trigonometry that can serve as motivation for mathematics students and teachers to study and teach abstract algebraic structures.
Deformed Kac Moody and Virasoro algebras
NASA Astrophysics Data System (ADS)
Balachandran, A. P.; Queiroz, A. R.; Marques, A. M.; Teotonio-Sobrinho, P.
2007-07-01
Whenever the group {\\bb R}^n acts on an algebra {\\cal A} , there is a method to twist \\cal A to a new algebra {\\cal A}_\\theta which depends on an antisymmetric matrix θ (θμν = -θνμ = constant). The Groenewold-Moyal plane {\\cal A}_\\theta({\\bb R}^{d+1}) is an example of such a twisted algebra. We give a general construction to realize this twist in terms of {\\cal A} itself and certain 'charge' operators Qμ. For {\\cal A}_\\theta({\\bb R}^{d+1}), Q_\\mu are translation generators. This construction is then applied to twist the oscillators realizing the Kac-Moody (KM) algebra as well as the KM currents. They give different deformations of the KM algebra. From one of the deformations of the KM algebra, we construct, via the Sugawara construction, the Virasoro algebra. These deformations have an implication for statistics as well.
Adaptive Wavelet Galerkin Methods on Distorted Domains: Setup of the Algebraic System
2000-01-01
let T, and T• be the largest integers such that O E W7!,’°(!2) andj E wTf’,-(Q), respectively. Then, we set R:= min{Ro, Tý - II & II , Th - 11[111. We...the first time. Moreover, for computing the right-hand side, two Adaptive Wavelet Galerkin Methods 71 AI = Ij = jo, AI= jo, = jo + 1 AI= ii = Jo + 1 4J...during the preparation of this paper. The first author is extremely grateful to the Dipartimento di Matematica of the Politecnico di Torino for using its
NASA Astrophysics Data System (ADS)
Provencher, Stephen W.
1982-09-01
CONTIN is a portable Fortran IV package for inverting noisy linear operator equations. These problems occur in the analysis of data from a wide variety experiments. They are generally ill-posed problems, which means that errors in an unregularized inversion are unbounded. Instead, CONTIN seeks the optimal solution by incorporating parsimony and any statistical prior knowledge into the regularizor and absolute prior knowledge into equallity and inequality constraints. This can be greatly increase the resolution and accuracyh of the solution. CONTIN is very flexible, consisting of a core of about 50 subprograms plus 13 small "USER" subprograms, which the user can easily modify to specify special-purpose constraints, regularizors, operator equations, simulations, statistical weighting, etc. Specjial collections of USER subprograms are available for photon correlation spectroscopy, multicomponent spectra, and Fourier-Bessel, Fourier and Laplace transforms. Numerically stable algorithms are used throughout CONTIN. A fairly precise definition of information content in terms of degrees of freedom is given. The regularization parameter can be automatically chosen on the basis of an F-test and confidence region. The interpretation of the latter and of error estimates based on the covariance matrix of the constrained regularized solution are discussed. The strategies, methods and options in CONTIN are outlined. The program itself is described in the following paper.
Derive Workshop Matrix Algebra and Linear Algebra.
ERIC Educational Resources Information Center
Townsley Kulich, Lisa; Victor, Barbara
This document presents the course content for a workshop that integrates the use of the computer algebra system Derive with topics in matrix and linear algebra. The first section is a guide to using Derive that provides information on how to write algebraic expressions, make graphs, save files, edit, define functions, differentiate expressions,…
Mueller, K; Yagel, R; Wheller, J J
1999-06-01
This paper examines the use of the algebraic reconstruction technique (ART) and related techniques to reconstruct 3-D objects from a relatively sparse set of cone-beam projections. Although ART has been widely used for cone-beam reconstruction of high-contrast objects, e.g., in computed angiography, the work presented here explores the more challenging low-contrast case which represents a little-investigated scenario for ART. Preliminary experiments indicate that for cone angles greater than 20 degrees, traditional ART produces reconstructions with strong aliasing artifacts. These artifacts are in addition to the usual off-midplane inaccuracies of cone-beam tomography with planar orbits. We find that the source of these artifacts is the nonuniform reconstruction grid sampling and correction by the cone-beam rays during the ART projection-backprojection procedure. A new method to compute the weights of the reconstruction matrix is devised, which replaces the usual constant-size interpolation filter by one whose size and amplitude is dependent on the source-voxel distance. This enables the generation of reconstructions free of cone-beam aliasing artifacts, at only little extra cost. An alternative analysis reveals that simultaneous ART (SART) also produces reconstructions without aliasing artifacts, however, at greater computational cost. Finally, we thoroughly investigate the influence of various ART parameters, such as volume initialization, relaxation coefficient lambda, correction scheme, number of iterations, and noise in the projection data on reconstruction quality. We find that ART typically requires only three iterations to render satisfactory reconstruction results.
Higher-order ice-sheet modelling accelerated by multigrid on graphics cards
NASA Astrophysics Data System (ADS)
Brædstrup, Christian; Egholm, David
2013-04-01
Higher-order ice flow modelling is a very computer intensive process owing primarily to the nonlinear influence of the horizontal stress coupling. When applied for simulating long-term glacial landscape evolution, the ice-sheet models must consider very long time series, while both high temporal and spatial resolution is needed to resolve small effects. The use of higher-order and full stokes models have therefore seen very limited usage in this field. However, recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large-scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists working on ice flow models. Our current research focuses on utilising the GPU as a tool in ice-sheet and glacier modelling. To this extent we have implemented the Integrated Second-Order Shallow Ice Approximation (iSOSIA) equations on the device using the finite difference method. To accelerate the computations, the GPU solver uses a non-linear Red-Black Gauss-Seidel iterator coupled with a Full Approximation Scheme (FAS) multigrid setup to further aid convergence. The GPU finite difference implementation provides the inherent parallelization that scales from hundreds to several thousands of cores on newer cards. We demonstrate the efficiency of the GPU multigrid solver using benchmark experiments.
Alternative algebraic approaches in quantum chemistry
Mezey, Paul G.
2015-01-22
Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed.
Multigrid time-accurate integration of Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Arnone, Andrea; Liou, Meng-Sing; Povinelli, Louis A.
1993-01-01
Efficient acceleration techniques typical of explicit steady-state solvers are extended to time-accurate calculations. Stability restrictions are greatly reduced by means of a fully implicit time discretization. A four-stage Runge-Kutta scheme with local time stepping, residual smoothing, and multigridding is used instead of traditional time-expensive factorizations. Some applications to natural and forced unsteady viscous flows show the capability of the procedure.
Lie algebras of classical and stochastic electrodynamics
NASA Astrophysics Data System (ADS)
Neto, J. J. Soares; Vianna, J. D. M.
1994-03-01
The Lie algebras associated with infinitesimal symmetry transformations of third-order differential equations of interest to classical electrodynamics and stochastic electrodynamics have been obtained. The structure constants for a general case are presented and the Lie algebra for each particular application is easily achieved. By the method used here it is not necessary to know the explicit expressions of the infinitesimal generators in order to determine the structure constants of the Lie algebra.
Quantum cluster algebras and quantum nilpotent algebras
Goodearl, Kenneth R.; Yakimov, Milen T.
2014-01-01
A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197
An algebraic approach to the scattering equations
NASA Astrophysics Data System (ADS)
Huang, Rijun; Rao, Junjie; Feng, Bo; He, Yang-Hui
2015-12-01
We employ the so-called companion matrix method from computational algebraic geometry, tailored for zero-dimensional ideals, to study the scattering equations. The method renders the CHY-integrand of scattering amplitudes computable using simple linear algebra and is amenable to an algorithmic approach. Certain identities in the amplitudes as well as rationality of the final integrand become immediate in this formalism.
The analysis of multigrid algorithms for pseudodifferential operators of order minus one
Bramble, J.H.; Leyk, Z.; Pasciak, J.E. ||
1994-10-01
Multigrid algorithms are developed to solve the discrete systems approximating the solutions of operator equations involving pseudodifferential operators of order minus one. Classical multigrid theory deals with the case of differential operators of positive order. The pseudodifferential operator gives rise to a coercive form on H{sup {minus}1/2}({Omega}). Effective multigrid algorithms are developed for this problem. These algorithms are novel in that they use the inner product on H{sup {minus}1}({Omega}) as a base inner product for the multigrid development. The authors show that the resulting rate of iterative convergence can, at worst, depend linearly on the number of levels in these novel multigrid algorithms. In addition, it is shown that the convergence rate is independent of the number of levels (and unknowns) in the case of a pseudodifferential operator defined by a single-layer potential. Finally, the results of numerical experiments illustrating the theory are presented. 19 refs., 1 fig., 2 tabs.
Laakso, Ilkka; Hirata, Akimasa
2012-12-07
In transcranial magnetic stimulation (TMS), the distribution of the induced electric field, and the affected brain areas, depends on the position of the stimulation coil and the individual geometry of the head and brain. The distribution of the induced electric field in realistic anatomies can be modelled using computational methods. However, existing computational methods for accurately determining the induced electric field in realistic anatomical models have suffered from long computation times, typically in the range of tens of minutes or longer. This paper presents a matrix-free implementation of the finite-element method with a geometric multigrid method that can potentially reduce the computation time to several seconds or less even when using an ordinary computer. The performance of the method is studied by computing the induced electric field in two anatomically realistic models. An idealized two-loop coil is used as the stimulating coil. Multiple computational grid resolutions ranging from 2 to 0.25 mm are used. The results show that, for macroscopic modelling of the electric field in an anatomically realistic model, computational grid resolutions of 1 mm or 2 mm appear to provide good numerical accuracy compared to higher resolutions. The multigrid iteration typically converges in less than ten iterations independent of the grid resolution. Even without parallelization, each iteration takes about 1.0 s or 0.1 s for the 1 and 2 mm resolutions, respectively. This suggests that calculating the electric field with sufficient accuracy in real time is feasible.
NASA Technical Reports Server (NTRS)
Woods, Claudia M.; Brewe, David E.
1988-01-01
A numerical solution to a theoretical model of vapor cavitation in a dynamically loaded journal bearing is developed utilizing a multigrid iteration technique. The method is compared with a noniterative approach in terms of computational time and accuracy. The computational model is based on the Elrod algorithm, a control volume approach to the Reynolds equation which mimics the Jakobsson-Floberg and Olsson cavitation theory. Besides accounting for a moving cavitation boundary and conservation of mass at the boundary, it also conserves mass within the cavitated region via a smeared mass or striated flow extending to both surfaces in the film gap. The mixed nature of the equations (parabolic in the full film zone and hyperbolic in the cavitated zone) coupled with the dynamic aspects of the problem create interesting difficulties for the present solution approach. Emphasis is placed on the methods found to eliminate solution instabilities. Excellent results are obtained for both accuracy and reduction of computational time.
Unsteady Analysis of Separated Aerodynamic Flows Using an Unstructured Multigrid Algorithm
NASA Technical Reports Server (NTRS)
Pelaez, Juan; Mavriplis, Dimitri J.; Kandil, Osama
2001-01-01
An implicit method for the computation of unsteady flows on unstructured grids is presented. The resulting nonlinear system of equations is solved at each time step using an agglomeration multigrid procedure. The method allows for arbitrarily large time steps and is efficient in terms of computational effort and storage. Validation of the code using a one-equation turbulence model is performed for the well-known case of flow over a cylinder. A Detached Eddy Simulation model is also implemented and its performance compared to the one equation Spalart-Allmaras Reynolds Averaged Navier-Stokes (RANS) turbulence model. Validation cases using DES and RANS include flow over a sphere and flow over a NACA 0012 wing including massive stall regimes. The project was driven by the ultimate goal of computing separated flows of aerodynamic interest, such as massive stall or flows over complex non-streamlined geometries.
Architecting the Finite Element Method Pipeline for the GPU
Fu, Zhisong; Lewis, T. James; Kirby, Robert M.
2014-01-01
The finite element method (FEM) is a widely employed numerical technique for approximating the solution of partial differential equations (PDEs) in various science and engineering applications. Many of these applications benefit from fast execution of the FEM pipeline. One way to accelerate the FEM pipeline is by exploiting advances in modern computational hardware, such as the many-core streaming processors like the graphical processing unit (GPU). In this paper, we present the algorithms and data-structures necessary to move the entire FEM pipeline to the GPU. First we propose an efficient GPU-based algorithm to generate local element information and to assemble the global linear system associated with the FEM discretization of an elliptic PDE. To solve the corresponding linear system efficiently on the GPU, we implement a conjugate gradient method preconditioned with a geometry-informed algebraic multi-grid (AMG) method preconditioner. We propose a new fine-grained parallelism strategy, a corresponding multigrid cycling stage and efficient data mapping to the many-core architecture of GPU. Comparison of our on-GPU assembly versus a traditional serial implementation on the CPU achieves up to an 87 × speedup. Focusing on the linear system solver alone, we achieve a speedup of up to 51 × versus use of a comparable state-of-the-art serial CPU linear system solver. Furthermore, the method compares favorably with other GPU-based, sparse, linear solvers. PMID:25202164
Architecting the Finite Element Method Pipeline for the GPU.
Fu, Zhisong; Lewis, T James; Kirby, Robert M; Whitaker, Ross T
2014-02-01
The finite element method (FEM) is a widely employed numerical technique for approximating the solution of partial differential equations (PDEs) in various science and engineering applications. Many of these applications benefit from fast execution of the FEM pipeline. One way to accelerate the FEM pipeline is by exploiting advances in modern computational hardware, such as the many-core streaming processors like the graphical processing unit (GPU). In this paper, we present the algorithms and data-structures necessary to move the entire FEM pipeline to the GPU. First we propose an efficient GPU-based algorithm to generate local element information and to assemble the global linear system associated with the FEM discretization of an elliptic PDE. To solve the corresponding linear system efficiently on the GPU, we implement a conjugate gradient method preconditioned with a geometry-informed algebraic multi-grid (AMG) method preconditioner. We propose a new fine-grained parallelism strategy, a corresponding multigrid cycling stage and efficient data mapping to the many-core architecture of GPU. Comparison of our on-GPU assembly versus a traditional serial implementation on the CPU achieves up to an 87 × speedup. Focusing on the linear system solver alone, we achieve a speedup of up to 51 × versus use of a comparable state-of-the-art serial CPU linear system solver. Furthermore, the method compares favorably with other GPU-based, sparse, linear solvers.
Luanjing Guo; Hai Huang; Derek Gaston; Cody Permann; David Andrs; George Redden; Chuan Lu; Don Fox; Yoshiko Fujita
2013-03-01
Modeling large multicomponent reactive transport systems in porous media is particularly challenging when the governing partial differential algebraic equations (PDAEs) are highly nonlinear and tightly coupled due to complex nonlinear reactions and strong solution-media interactions. Here we present a preconditioned Jacobian-Free Newton-Krylov (JFNK) solution approach to solve the governing PDAEs in a fully coupled and fully implicit manner. A well-known advantage of the JFNK method is that it does not require explicitly computing and storing the Jacobian matrix during Newton nonlinear iterations. Our approach further enhances the JFNK method by utilizing physics-based, block preconditioning and a multigrid algorithm for efficient inversion of the preconditioner. This preconditioning strategy accounts for self- and optionally, cross-coupling between primary variables using diagonal and off-diagonal blocks of an approximate Jacobian, respectively. Numerical results are presented demonstrating the efficiency and massive scalability of the solution strategy for reactive transport problems involving strong solution-mineral interactions and fast kinetics. We found that the physics-based, block preconditioner significantly decreases the number of linear iterations, directly reducing computational cost; and the strongly scalable algebraic multigrid algorithm for approximate inversion of the preconditioner leads to excellent parallel scaling performance.
NASA Astrophysics Data System (ADS)
Akhunov, R. R.; Gazizov, T. R.; Kuksenko, S. P.
2016-08-01
The mean time needed to solve a series of systems of linear algebraic equations (SLAEs) as a function of the number of SLAEs is investigated. It is proved that this function has an extremum point. An algorithm for adaptively determining the time when the preconditioner matrix should be recalculated when a series of SLAEs is solved is developed. A numerical experiment with multiply solving a series of SLAEs using the proposed algorithm for computing 100 capacitance matrices with two different structures—microstrip when its thickness varies and a modal filter as the gap between the conductors varies—is carried out. The speedups turned out to be close to the optimal ones.
Implicit/Multigrid Algorithms for Incompressible Turbulent Flows on Unstructured Grids
NASA Technical Reports Server (NTRS)
Anderson, W. Kyle; Rausch, Russ D.; Bonhaus, Daryl L.
1997-01-01
An implicit code for computing inviscid and viscous incompressible flows on unstructured grids is described. The foundation of the code is a backward Euler time discretization for which the linear system is approximately solved at each time step with either a point implicit method or a preconditioned Generalized Minimal Residual (GMRES) technique. For the GMRES calculations, several techniques are investigated for forming the matrix-vector product. Convergence acceleration is achieved through a multigrid scheme that uses non-nested coarse grids that are generated using a technique described in the present paper. Convergence characteristics are investigated and results are compared with an exact solution for the inviscid flow over a four-element airfoil. Viscous results, which are compared with experimental data, include the turbulent flow over a NACA 4412 airfoil, a three-element airfoil for which Mach number effects are investigated, and three-dimensional flow over a wing with a partial-span flap.
Rapidly converging multigrid reconstruction of cone-beam tomographic data
NASA Astrophysics Data System (ADS)
Myers, Glenn R.; Kingston, Andrew M.; Latham, Shane J.; Recur, Benoit; Li, Thomas; Turner, Michael L.; Beeching, Levi; Sheppard, Adrian P.
2016-10-01
In the context of large-angle cone-beam tomography (CBCT), we present a practical iterative reconstruction (IR) scheme designed for rapid convergence as required for large datasets. The robustness of the reconstruction is provided by the "space-filling" source trajectory along which the experimental data is collected. The speed of convergence is achieved by leveraging the highly isotropic nature of this trajectory to design an approximate deconvolution filter that serves as a pre-conditioner in a multi-grid scheme. We demonstrate this IR scheme for CBCT and compare convergence to that of more traditional techniques.
Fast multigrid solution of the advection problem with closed characteristics
Yavneh, I.; Venner, C.H.; Brandt, A.
1996-12-31
The numerical solution of the advection-diffusion problem in the inviscid limit with closed characteristics is studied as a prelude to an efficient high Reynolds-number flow solver. It is demonstrated by a heuristic analysis and numerical calculations that using upstream discretization with downstream relaxation-ordering and appropriate residual weighting in a simple multigrid V cycle produces an efficient solution process. We also derive upstream finite-difference approximations to the advection operator, whose truncation terms approximate {open_quotes}physical{close_quotes} (Laplacian) viscosity, thus avoiding spurious solutions to the homogeneous problem when the artificial diffusivity dominates the physical viscosity.
Profiles of Algebraic Competence
ERIC Educational Resources Information Center
Humberstone, J.; Reeve, R.A.
2008-01-01
The algebraic competence of 72 12-year-old female students was examined to identify profiles of understanding reflecting different algebraic knowledge states. Beginning algebraic competence (mapping abilities: word-to-symbol and vice versa, classifying, and solving equations) was assessed. One week later, the nature of assistance required to map…
ERIC Educational Resources Information Center
Miller, L. Diane; England, David A.
1989-01-01
Describes a study in a large metropolitan high school to ascertain what influence the use of regular writing in algebra classes would have on students' attitudes towards algebra and their skills in algebra. Reports the simpler and more direct the writing topics the better. (MVL)
NASA Technical Reports Server (NTRS)
Iachello, Franco
1995-01-01
An algebraic formulation of quantum mechanics is presented. In this formulation, operators of interest are expanded onto elements of an algebra, G. For bound state problems in nu dimensions the algebra G is taken to be U(nu + 1). Applications to the structure of molecules are presented.
Applied Algebra Curriculum Modules.
ERIC Educational Resources Information Center
Texas State Technical Coll., Marshall.
This collection of 11 applied algebra curriculum modules can be used independently as supplemental modules for an existing algebra curriculum. They represent diverse curriculum styles that should stimulate the teacher's creativity to adapt them to other algebra concepts. The selected topics have been determined to be those most needed by students…
Connecting Arithmetic to Algebra
ERIC Educational Resources Information Center
Darley, Joy W.; Leapard, Barbara B.
2010-01-01
Algebraic thinking is a top priority in mathematics classrooms today. Because elementary school teachers lay the groundwork to develop students' capacity to think algebraically, it is crucial for teachers to have a conceptual understanding of the connections between arithmetic and algebra and be confident in communicating these connections. Many…
Ternary Virasoro - Witt algebra.
Zachos, C.; Curtright, T.; Fairlie, D.; High Energy Physics; Univ. of Miami; Univ. of Durham
2008-01-01
A 3-bracket variant of the Virasoro-Witt algebra is constructed through the use of su(1,1) enveloping algebra techniques. The Leibniz rules for 3-brackets acting on other 3-brackets in the algebra are discussed and verified in various situations.
NASA Astrophysics Data System (ADS)
Bauer, Petr; Klement, Vladimír; Oberhuber, Tomáš; Žabka, Vítězslav
2016-03-01
We present a complete GPU implementation of a geometric multigrid solver for the numerical solution of the Navier-Stokes equations for incompressible flow. The approximate solution is constructed on a two-dimensional unstructured triangular mesh. The problem is discretized by means of the mixed finite element method with semi-implicit timestepping. The linear saddle-point problem arising from the scheme is solved by the geometric multigrid method with a Vanka-type smoother. The parallel solver is based on the red-black coloring of the mesh triangles. We achieved a speed-up of 11 compared to a parallel (4 threads) code based on OpenMP and 19 compared to a sequential code.
Static friction, differential algebraic systems and numerical stability
NASA Astrophysics Data System (ADS)
Chen, Jian; Schinner, Alexander; Matuttis, Hans-Georg
We show how Differential Algebraic Systems (Ordinary Differential Equations with algebraic constraints) in mechanics are affected by stability issues and we implement Lubich's projection method to reduce the error to practically zero. Then, we explain how the "numerically exact" implementation for static friction by Differential Algebraic Systems can be stabilized. We conclude by comparing the corresponding steps in the "Contact mechanics" introduced by Moreau.
Fast GPU-based computation of spatial multigrid multiframe LMEM for PET.
Nassiri, Moulay Ali; Carrier, Jean-François; Després, Philippe
2015-09-01
Significant efforts were invested during the last decade to accelerate PET list-mode reconstructions, notably with GPU devices. However, the computation time per event is still relatively long, and the list-mode efficiency on the GPU is well below the histogram-mode efficiency. Since list-mode data are not arranged in any regular pattern, costly accesses to the GPU global memory can hardly be optimized and geometrical symmetries cannot be used. To overcome obstacles that limit the acceleration of reconstruction from list-mode on the GPU, a multigrid and multiframe approach of an expectation-maximization algorithm was developed. The reconstruction process is started during data acquisition, and calculations are executed concurrently on the GPU and the CPU, while the system matrix is computed on-the-fly. A new convergence criterion also was introduced, which is computationally more efficient on the GPU. The implementation was tested on a Tesla C2050 GPU device for a Gemini GXL PET system geometry. The results show that the proposed algorithm (multigrid and multiframe list-mode expectation-maximization, MGMF-LMEM) converges to the same solution as the LMEM algorithm more than three times faster. The execution time of the MGMF-LMEM algorithm was 1.1 s per million of events on the Tesla C2050 hardware used, for a reconstructed space of 188 x 188 x 57 voxels of 2 x 2 x 3.15 mm3. For 17- and 22-mm simulated hot lesions, the MGMF-LMEM algorithm led on the first iteration to contrast recovery coefficients (CRC) of more than 75 % of the maximum CRC while achieving a minimum in the relative mean square error. Therefore, the MGMF-LMEM algorithm can be used as a one-pass method to perform real-time reconstructions for low-count acquisitions, as in list-mode gated studies. The computation time for one iteration and 60 millions of events was approximately 66 s.
NASA Astrophysics Data System (ADS)
Moraes Rêgo, Patrícia Helena; Viana da Fonseca Neto, João; Ferreira, Ernesto M.
2015-08-01
The main focus of this article is to present a proposal to solve, via UDUT factorisation, the convergence and numerical stability problems that are related to the covariance matrix ill-conditioning of the recursive least squares (RLS) approach for online approximations of the algebraic Riccati equation (ARE) solution associated with the discrete linear quadratic regulator (DLQR) problem formulated in the actor-critic reinforcement learning and approximate dynamic programming context. The parameterisations of the Bellman equation, utility function and dynamic system as well as the algebra of Kronecker product assemble a framework for the solution of the DLQR problem. The condition number and the positivity parameter of the covariance matrix are associated with statistical metrics for evaluating the approximation performance of the ARE solution via RLS-based estimators. The performance of RLS approximators is also evaluated in terms of consistence and polarisation when associated with reinforcement learning methods. The used methodology contemplates realisations of online designs for DLQR controllers that is evaluated in a multivariable dynamic system model.
Multigrid calculation of internal flows in complex geometries
NASA Technical Reports Server (NTRS)
Smith, K. M.; Vanka, S. P.
1992-01-01
The development, validation, and application of a general purpose multigrid solution algorithm and computer program for the computation of elliptic flows in complex geometries is presented. This computer program combines several desirable features including a curvilinear coordinate system, collocated arrangement of the variables, and Full Multi-Grid/Full Approximation Scheme (FMG/FAS). Provisions are made for the inclusion of embedded obstacles and baffles inside the flow domain. The momentum and continuity equations are solved in a decoupled manner and a pressure corrective equation is used to update the pressures such that the fluxes at the cell faces satisfy local mass continuity. Despite the computational overhead required in the restriction and prolongation phases of the multigrid cycling, the superior convergence results in reduced overall CPU time. The numerical scheme and selected results of several validation flows are presented. Finally, the procedure is applied to study the flowfield in a side-inlet dump combustor and twin jet impingement from a simulated aircraft fuselage.
Computer algebra and operators
NASA Technical Reports Server (NTRS)
Fateman, Richard; Grossman, Robert
1989-01-01
The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.
Discrete Minimal Surface Algebras
NASA Astrophysics Data System (ADS)
Arnlind, Joakim; Hoppe, Jens
2010-05-01
We consider discrete minimal surface algebras (DMSA) as generalized noncommutative analogues of minimal surfaces in higher dimensional spheres. These algebras appear naturally in membrane theory, where sequences of their representations are used as a regularization. After showing that the defining relations of the algebra are consistent, and that one can compute a basis of the enveloping algebra, we give several explicit examples of DMSAs in terms of subsets of sln (any semi-simple Lie algebra providing a trivial example by itself). A special class of DMSAs are Yang-Mills algebras. The representation graph is introduced to study representations of DMSAs of dimension d ≤ 4, and properties of representations are related to properties of graphs. The representation graph of a tensor product is (generically) the Cartesian product of the corresponding graphs. We provide explicit examples of irreducible representations and, for coinciding eigenvalues, classify all the unitary representations of the corresponding algebras.
Celestial mechanics with geometric algebra
NASA Technical Reports Server (NTRS)
Hestenes, D.
1983-01-01
Geometric algebra is introduced as a general tool for Celestial Mechanics. A general method for handling finite rotations and rotational kinematics is presented. The constants of Kepler motion are derived and manipulated in a new way. A new spinor formulation of perturbation theory is developed.
Domain decomposition multigrid for unstructured grids
Shapira, Yair
1997-01-01
A two-level preconditioning method for the solution of elliptic boundary value problems using finite element schemes on possibly unstructured meshes is introduced. It is based on a domain decomposition and a Galerkin scheme for the coarse level vertex unknowns. For both the implementation and the analysis, it is not required that the curves of discontinuity in the coefficients of the PDE match the interfaces between subdomains. Generalizations to nonmatching or overlapping grids are made.
NASA Astrophysics Data System (ADS)
Ma, Junyan; Simos, T. E.
2016-11-01
A hybrid tenth algebraic order two-step method with vanished phase-lag and its first, second, third, fourth and fifth derivatives are obtained in this paper. We will investigate •the construction of the method •the local truncation error (LTE) of the newly obtained method. We will also compare the lte of the newly developed method with other methods in the literature (this is called the comparative LTE analysis) •the stability (interval of periodicity) of the produced method using frequency for the scalar test equation different from the frequency used in the scalar test equation for phase-lag analysis (this is called stability analysis) •the application of the newly obtained method to the resonance problem of the Schrödinger equation. We will compare its effectiveness with the efficiency of other known methods in the literature. It will be proved that the developed method is effective for the approximate solution of the Schrödinger equation and related periodical or oscillatory initial value or boundary value problems.
Implementation of algebraic stress models in a general 3-D Navier-Stokes method (PAB3D)
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.
1995-01-01
A three-dimensional multiblock Navier-Stokes code, PAB3D, which was developed for propulsion integration and general aerodynamic analysis, has been used extensively by NASA Langley and other organizations to perform both internal (exhaust) and external flow analysis of complex aircraft configurations. This code was designed to solve the simplified Reynolds Averaged Navier-Stokes equations. A two-equation k-epsilon turbulence model has been used with considerable success, especially for attached flows. Accurate predicting of transonic shock wave location and pressure recovery in separated flow regions has been more difficult. Two algebraic Reynolds stress models (ASM) have been recently implemented in the code that greatly improved the code's ability to predict these difficult flow conditions. Good agreement with Direct Numerical Simulation (DNS) for a subsonic flat plate was achieved with ASM's developed by Shih, Zhu, and Lumley and Gatski and Speziale. Good predictions were also achieved at subsonic and transonic Mach numbers for shock location and trailing edge boattail pressure recovery on a single-engine afterbody/nozzle model.
NASA Technical Reports Server (NTRS)
Ghosh, Bijoy K.
1988-01-01
This paper studies structured uncertainty problems in feedback system design, considers a compact parameterization of the space of linear dynamical systems and introduces 'base points' and 'critical points' as two algebraic-geometric objects that have significance in sensitivity and robustness studies, respectively. Using the Nevanlinna-Pick interpolation theory, the author obtains a necessary and sufficient condition for simultaneous stabilization of a structured one-parameter family of plants. A recent result due to Kharitonov, on the simultaneous stability of a parameterized family of polynomials, leads to a sufficiency condition for simultaneous stabilization of a structured multiparameter family of plants. Furthermore, the author considers 'simultaneous pole placement' of an r-tuple of plants as a means to arbitrarily tune the natural frequencies of a multimode linear dynamical system. The concept of 'nondegenerate' and 'twisted' r-tuples of plants is introduced as the pole placement problem is studied via Schubert enumerative geometry as an intersection problem on the associated Grassmannian. Various other design problems, viz., the strong stabilization problem and the dead beat control problem, are also considered.
Solving the Fluid Pressure Poisson Equation Using Multigrid - Evaluation and Improvements.
Dick, Christian; Rogowsky, Marcus; Westermann, Ruediger
2015-12-23
In many numerical simulations of fluids governed by the incompressible Navier-Stokes equations, the pressure Poisson equation needs to be solved to enforce mass conservation. Multigrid solvers show excellent convergence in simple scenarios, yet they can converge slowly in domains where physically separated regions are combined at coarser scales. Moreover, existing multigrid solvers are tailored to specific discretizations of the pressure Poisson equation, and they cannot easily be adapted to other discretizations. In this paper we analyze the convergence properties of existing multigrid solvers for the pressure Poisson equation in different simulation domains, and we show how to further improve the multigrid convergence rate by using a graph-based extension to determine the coarse grid hierarchy. The proposed multigrid solver is generic in that it can be applied to different kinds of discretizations of the pressure Poisson equation, by using solely the specification of the simulation domain and pre-assembled computational stencils. We analyze the proposed solver in combination with finite difference and finite volume discretizations of the pressure Poisson equation. Our evaluations show that, despite the common assumption, multigrid schemes can exploit their potential even in the most complicated simulation scenarios, yet this behavior is obtained at the price of higher memory consumption.
Solving the Fluid Pressure Poisson Equation Using Multigrid-Evaluation and Improvements.
Dick, Christian; Rogowsky, Marcus; Westermann, Rudiger
2016-11-01
In many numerical simulations of fluids governed by the incompressible Navier-Stokes equations, the pressure Poisson equation needs to be solved to enforce mass conservation. Multigrid solvers show excellent convergence in simple scenarios, yet they can converge slowly in domains where physically separated regions are combined at coarser scales. Moreover, existing multigrid solvers are tailored to specific discretizations of the pressure Poisson equation, and they cannot easily be adapted to other discretizations. In this paper we analyze the convergence properties of existing multigrid solvers for the pressure Poisson equation in different simulation domains, and we show how to further improve the multigrid convergence rate by using a graph-based extension to determine the coarse grid hierarchy. The proposed multigrid solver is generic in that it can be applied to different kinds of discretizations of the pressure Poisson equation, by using solely the specification of the simulation domain and pre-assembled computational stencils. We analyze the proposed solver in combination with finite difference and finite volume discretizations of the pressure Poisson equation. Our evaluations show that, despite the common assumption, multigrid schemes can exploit their potential even in the most complicated simulation scenarios, yet this behavior is obtained at the price of higher memory consumption.
Multigrid Methods on Parallel Computers: A Survey on Recent Developments
1990-12-01
multi- color (red-black, four color etc.) order- ing of the grid points. Clearly, computation of defects, interpolation and restriction can be also...73716 72555 .984 85750 82919 95800 85206 .889 113086 97406 16406 16383 .999 22042 21845 23024 21853 .949 31668 29143 Table 6: Evaluated time
MULTIGRID FOR THE MORTAR FINITE ELEMENT METHOD. (R825207)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Multigrid Methods in Network Optimization: Overview and Appraisal
1994-03-01
Tucker ( KKT ) optimality conditions . These are necessary and sufficient for linear programming problems. The case of equality constraints is specifically...8 C. KARUSH-KUHN-TUCKER ( KKT ) OPTIMALITY CONDITIONS ....... 8 D. OPTIMALITY CONDITIONS IN NETWORKS...considered. A key result in establishing the KKT conditions is the lemma presented in section B. Finally, in section D we specialize the optimality
Prediction of Algebraic Instabilities
NASA Astrophysics Data System (ADS)
Zaretzky, Paula; King, Kristina; Hill, Nicole; Keithley, Kimberlee; Barlow, Nathaniel; Weinstein, Steven; Cromer, Michael
2016-11-01
A widely unexplored type of hydrodynamic instability is examined - large-time algebraic growth. Such growth occurs on the threshold of (exponentially) neutral stability. A new methodology is provided for predicting the algebraic growth rate of an initial disturbance, when applied to the governing differential equation (or dispersion relation) describing wave propagation in dispersive media. Several types of algebraic instabilities are explored in the context of both linear and nonlinear waves.
Applications: Using Algebra in an Accounting Practice.
ERIC Educational Resources Information Center
Eisner, Gail A.
1994-01-01
Presents examples of algebra from the field of accounting including proportional ownership of stock, separation of a loan payment into principal and interest portions, depreciation methods, and salary withholdings computations. (MKR)
Connecting Algebra and Chemistry.
ERIC Educational Resources Information Center
O'Connor, Sean
2003-01-01
Correlates high school chemistry curriculum with high school algebra curriculum and makes the case for an integrated approach to mathematics and science instruction. Focuses on process integration. (DDR)
NASA Astrophysics Data System (ADS)
Rosam, J.; Jimack, P. K.; Mullis, A.
2007-08-01
A fully implicit numerical method based upon adaptively refined meshes for the simulation of binary alloy solidification in 2D is presented. In addition we combine a second-order fully implicit time discretisation scheme with variable step size control to obtain an adaptive time and space discretisation method. The superiority of this method, compared to widely used fully explicit methods, with respect to CPU time and accuracy, is shown. Due to the high nonlinearity of the governing equations a robust and fast solver for systems of nonlinear algebraic equations is needed to solve the intermediate approximations per time step. We use a nonlinear multigrid solver which shows almost h-independent convergence behaviour.
Kojima, A. Hanada, M.; Tobari, H.; Nishikiori, R.; Hiratsuka, J.; Kashiwagi, M.; Umeda, N.; Yoshida, M.; Ichikawa, M.; Watanabe, K.; Yamano, Y.; Grisham, L. R.
2016-02-15
Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.
Kojima, A; Hanada, M; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R
2016-02-01
Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.
NASA Astrophysics Data System (ADS)
Vie, Aymeric; Masi, Enrica; Simonin, Olivier; Massot, Marc; EM2C/Ecole Centrale Paris Team; IMFT Team
2012-11-01
To simulate particulate flows, a convenient formalism for HPC is to use Eulerian moment methods, which describe the evolution of velocity moments instead of tracking directly the number density function (NDF) of the droplets. By using a conditional PDF approach, the Mesoscopic Eulerian Formalism (MEF) of Février et al. 2005 offers a solution for the direct numerical simulation of turbulent particulate flows, even at relatively high Stokes number. Here, we propose to compare to existing approaches used to solved for this formalism: the Algebraic-Closure-Based Moment method (Kaufmann et al. 2008, Masi et al. 2011), and the Kinetic-Based Moment Method (Yuan et al. 2010, Chalons et al. 2010, Vié et al. 2012). Therefore, the goal of the current work is to evaluate both strategies in turbulent test cases. For the ACBMM, viscosity-type and non-linear closures are envisaged, whereas for the KBMM, isotropic and anisotropic closures are investigated. A main aspect of the current methodology for the comparison is that the same numerical methods are used for both approaches. Results show that the new non-linear closure and the Anisotropic Gaussian closures are both accurate in shear flows, whereas viscosity-type and isotropic closures lead to wrong results.
Bicovariant quantum algebras and quantum Lie algebras
NASA Astrophysics Data System (ADS)
Schupp, Peter; Watts, Paul; Zumino, Bruno
1993-10-01
A bicovariant calculus of differential operators on a quantum group is constructed in a natural way, using invariant maps from Fun(mathfrak{G}_q ) to U q g, given by elements of the pure braid group. These operators—the “reflection matrix” Y≡L + SL - being a special case—generate algebras that linearly close under adjoint actions, i.e. they form generalized Lie algebras. We establish the connection between the Hopf algebra formulation of the calculus and a formulation in compact matrix form which is quite powerful for actual computations and as applications we find the quantum determinant and an orthogonality relation for Y in SO q (N).
Conformal current algebra in two dimensions
NASA Astrophysics Data System (ADS)
Ashok, Sujay K.; Benichou, Raphael; Troost, Jan
2009-06-01
We construct a non-chiral current algebra in two dimensions consistent with conformal invariance. We show that the conformal current algebra is realized in non-linear sigma-models on supergroup manifolds with vanishing Killing form, with or without a Wess-Zumino term. The current algebra is computed using two distinct methods. First we exploit special algebraic properties of supergroups to compute the exact two- and three-point functions of the currents and from them we infer the current algebra. The algebra is also calculated by using conformal perturbation theory about the Wess-Zumino-Witten point and resumming the perturbation series. We also prove that these models realize a non-chiral Kac-Moody algebra and construct an infinite set of commuting operators that is closed under the action of the Kac-Moody generators. The supergroup models that we consider include models with applications to statistical mechanics, condensed matter and string theory. In particular, our results may help to systematically solve and clarify the quantum integrability of PSU(n|n) models and their cosets, which appear prominently in string worldsheet models on anti-deSitter spaces.
ERIC Educational Resources Information Center
Cavanagh, Sean
2008-01-01
A popular humorist and avowed mathphobe once declared that in real life, there's no such thing as algebra. Kathie Wilson knows better. Most of the students in her 8th grade class will be thrust into algebra, the definitive course that heralds the beginning of high school mathematics, next school year. The problem: Many of them are about three…
Parastatistics Algebras and Combinatorics
NASA Astrophysics Data System (ADS)
Popov, T.
2005-03-01
We consider the algebras spanned by the creation parafermionic and parabosonic operators which give rise to generalized parastatistics Fock spaces. The basis of such a generalized Fock space can be labelled by Young tableaux which are combinatorial objects. By means of quantum deformations a nice combinatorial structure of the algebra of the plactic monoid that lies behind the parastatistics is revealed.
Algebraic Reasoning through Patterns
ERIC Educational Resources Information Center
Rivera, F. D.; Becker, Joanne Rossi
2009-01-01
This article presents the results of a three-year study that explores students' performance on patterning tasks involving prealgebra and algebra. The findings, insights, and issues drawn from the study are intended to help teach prealgebra and algebra. In the remainder of the article, the authors take a more global view of the three-year study on…
Learning Activity Package, Algebra.
ERIC Educational Resources Information Center
Evans, Diane
A set of ten teacher-prepared Learning Activity Packages (LAPs) in beginning algebra and nine in intermediate algebra, these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radicals,…
NASA Technical Reports Server (NTRS)
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
ERIC Educational Resources Information Center
Levy, Alissa Beth
2012-01-01
The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this dissertation,…
ERIC Educational Resources Information Center
Merlin, Ethan M.
2013-01-01
This article describes how the author has developed tasks for students that address the missed "essence of the matter" of algebraic transformations. Specifically, he has found that having students practice "perceiving" algebraic structure--by naming the "glue" in the expressions, drawing expressions using…
Algebraic operator approach to gas kinetic models
NASA Astrophysics Data System (ADS)
Il'ichov, L. V.
1997-02-01
Some general properties of the linear Boltzmann kinetic equation are used to present it in the form ∂ tϕ = - Â†Âϕ with the operators ÂandÂ† possessing some nontrivial algebraic properties. When applied to the Keilson-Storer kinetic model, this method gives an example of quantum ( q-deformed) Lie algebra. This approach provides also a natural generalization of the “kangaroo model”.
Edge covers and independence: Algebraic approach
NASA Astrophysics Data System (ADS)
Kalinina, E. A.; Khitrov, G. M.; Pogozhev, S. V.
2016-06-01
In this paper, linear algebra methods are applied to solve some problems of graph theory. For ordinary connected graphs, edge coverings and independent sets are considered. Some results concerning minimum edge covers and maximum matchings are proved with the help of linear algebraic approach. The problem of finding a maximum matching of a graph is fundamental both practically and theoretically, and has numerous applications, e.g., in computational chemistry and mathematical chemistry.
Invariance of Conjunctions of Polynomial Equalities for Algebraic Differential Equations
2014-07-01
non- linear hybrid systems by linear algebraic methods. In Radhia Cousot and Matthieu Martel, editors, SAS, volume 6337 of LNCS, pages 373–389. Springer...Tarski. A decision method for elementary algebra and geometry. Bulletin of the American Mathematical Society, 59, 1951. [36] Wolfgang Walter. Ordinary...Invariance of Conjunctions of Polynomial Equalities for Algebraic Differential Equations Khalil Ghorbal1 Andrew Sogokon2 André Platzer1 July 2014
Algebraic Nonlinear Collective Motion
NASA Astrophysics Data System (ADS)
Troupe, J.; Rosensteel, G.
1998-11-01
Finite-dimensional Lie algebras of vector fields determine geometrical collective models in quantum and classical physics. Every set of vector fields on Euclidean space that generates the Lie algebra sl(3, R) and contains the angular momentum algebra so(3) is determined. The subset of divergence-free sl(3, R) vector fields is proven to be indexed by a real numberΛ. TheΛ=0 solution is the linear representation that corresponds to the Riemann ellipsoidal model. The nonlinear group action on Euclidean space transforms a certain family of deformed droplets among themselves. For positiveΛ, the droplets have a neck that becomes more pronounced asΛincreases; for negativeΛ, the droplets contain a spherical bubble of radius |Λ|1/3. The nonlinear vector field algebra is extended to the nonlinear general collective motion algebra gcm(3) which includes the inertia tensor. The quantum algebraic models of nonlinear nuclear collective motion are given by irreducible unitary representations of the nonlinear gcm(3) Lie algebra. These representations model fissioning isotopes (Λ>0) and bubble and two-fluid nuclei (Λ<0).
NASA Technical Reports Server (NTRS)
Nishida, Brian A.; Langhi, Ronald G.; Bencze, Daniel P.
1991-01-01
A multiblock/multigrid computation of the inviscid flow over a wing-mounted propfan transport with propwash is presented. An explicit multistage scheme drives the integral Euler equations to a steady state solution, while an actuator disk approximates the slipstream effects of the propfan blades. Practical applications of detailed surface gridding, multiple block field grids and multigrid convergence acceleration are demonstrated.
A Wavelet Technique For Multi-grid Solver For Large Linear Systems
NASA Astrophysics Data System (ADS)
Keller, W.
In general, large systems of linear equations cannot be solved directly. An iterative solver has to be applied instead. Unfortunately, iterative solvers have a notouriously slow convergence rate, which in the worst case can prevent convergence at all, due to the inavoidable rounding errors. Multi-grid iteration schemes are meant to guarantee a sufficiently high convergence rate, independent from the dimension of the linear system. The idea behind the multi-grid solvers is that the traditional iterative solvers eliminate only the short-wavelength error constituents in the initial guess for the solution. For the elimination of the remaining long-wavelength error constituents a much coarser grid is sufficient. On the coarse grid the dimension of the problem is much smaller so that the elimination can be done by a direct solver. The paper shows that wavelet techniques successfully can be applied for following steps of a multi-grid procedure: · Generation of an approximation of the proplem on a coarse grid from a given approximation on the fine grid. · Restriction of a signal on a fine grid to its approximation on a co grid. · Uplift of a signal from the coarse to the fine grid. The paper starts with a theoretical explanation of the links between wavelets and multi-grid solvers. Based on this investigation the class o operators, which are suitable for a multi-grid solution strategy can be characterized. The numerical efficiency of the approach will be tested for the Planar Stokes problem.
The improved robustness of multigrid elliptic solvers based on multiple semicoarsened grids
NASA Technical Reports Server (NTRS)
Naik, Naomi H.; Vanrosendale, John
1991-01-01
Multigrid convergence rates degenerate on problems with stretched grids or anisotropic operators, unless one uses line or plane relaxation. For 3-D problems, only plane relaxation suffices, in general. While line and plane relaxation algorithms are efficient on sequential machines, they are quite awkward and inefficient on parallel machines. A new multigrid algorithm is presented based on the use of multiple coarse grids, that eliminates the need for line or plane relaxation in anisotropic problems. This algorithm was developed and the standard multigrid theory was extended to establish rapid convergence for this class of algorithms. The new algorithm uses only point relaxation, allowing easy and efficient parallel implementation, yet achieves robustness and convergence rates comparable to line and plane relaxation multigrid algorithms. The algorithm described is a variant of Mulder's multigrid algorithm for hyperbolic problems. The latter uses multiple coarse grids to achieve robustness, but is unsuitable for elliptic problems, since its V-cycle convergence rate goes to one as the number of levels increases. The new algorithm combines the contributions from the multiple coarse grid via a local switch, based on the strength of the discrete operator in each coordinate direction.
Fully anisotropic 3-D EM modelling on a Lebedev grid with a multigrid pre-conditioner
NASA Astrophysics Data System (ADS)
Jaysaval, Piyoosh; Shantsev, Daniil V.; de la Kethulle de Ryhove, Sébastien; Bratteland, Tarjei
2016-12-01
We present a numerical algorithm for 3-D electromagnetic (EM) simulations in conducting media with general electric anisotropy. The algorithm is based on the finite-difference discretization of frequency-domain Maxwell's equations on a Lebedev grid, in which all components of the electric field are collocated but half a spatial step staggered with respect to the magnetic field components, which also are collocated. This leads to a system of linear equations that is solved using a stabilized biconjugate gradient method with a multigrid preconditioner. We validate the accuracy of the numerical results for layered and 3-D tilted transverse isotropic (TTI) earth models representing typical scenarios used in the marine controlled-source EM method. It is then demonstrated that not taking into account the full anisotropy of the conductivity tensor can lead to misleading inversion results. For synthetic data corresponding to a 3-D model with a TTI anticlinal structure, a standard vertical transverse isotropic (VTI) inversion is not able to image a resistor, while for a 3-D model with a TTI synclinal structure it produces a false resistive anomaly. However, if the VTI forward solver used in the inversion is replaced by the proposed TTI solver with perfect knowledge of the strike and dip of the dipping structures, the resulting resistivity images become consistent with the true models.
Computer algebra and transport theory.
Warsa, J. S.
2004-01-01
Modern symbolic algebra computer software augments and complements more traditional approaches to transport theory applications in several ways. The first area is in the development and enhancement of numerical solution methods for solving the Boltzmann transport equation. Typically, special purpose computer codes are designed and written to solve specific transport problems in particular ways. Different aspects of the code are often written from scratch and the pitfalls of developing complex computer codes are numerous and well known. Software such as MAPLE and MATLAB can be used to prototype, analyze, verify and determine the suitability of numerical solution methods before a full-scale transport application is written. Once it is written, the relevant pieces of the full-scale code can be verified using the same tools I that were developed for prototyping. Another area is in the analysis of numerical solution methods or the calculation of theoretical results that might otherwise be difficult or intractable. Algebraic manipulations are done easily and without error and the software also provides a framework for any additional numerical calculations that might be needed to complete the analysis. We will discuss several applications in which we have extensively used MAPLE and MATLAB in our work. All of them involve numerical solutions of the S{sub N} transport equation. These applications encompass both of the two main areas in which we have found computer algebra software essential.
Algebraic invariants for homotopy types
NASA Astrophysics Data System (ADS)
Blanc, David
1999-11-01
We define a sequence of purely algebraic invariants - namely, classes in the Quillen cohomology of the [Pi]-algebra [pi][low asterisk]X - for distinguishing between different homotopy types of spaces. Another sequence of such cohomology classes allows one to decide whether a given abstract [Pi]-algebra can be realized as the homotopy [Pi]-algebra of a space.
A Richer Understanding of Algebra
ERIC Educational Resources Information Center
Foy, Michelle
2008-01-01
Algebra is one of those hard-to-teach topics where pupils seem to struggle to see it as more than a set of rules to learn, but this author recently used the software "Grid Algebra" from ATM, which engaged her Year 7 pupils in exploring algebraic concepts for themselves. "Grid Algebra" allows pupils to experience number,…
Knippenberg, Stefan; Gieseking, Rebecca L; Rehn, Dirk R; Mukhopadhyay, Sukrit; Dreuw, Andreas; Brédas, Jean-Luc
2016-11-08
Third-order nonlinear optical (NLO) properties of polymethine dyes have been widely studied for applications such as all-optical switching. However, the limited accuracy of the current computational methodologies has prevented a comprehensive understanding of the nature of the lowest excited states and their influence on the molecular optical and NLO properties. Here, attention is paid to the lowest excited-state energies and their energetic ratio, as these characteristics impact the figure-of-merit for all-optical switching. For a series of model polymethines, we compare several algebraic diagrammatic construction (ADC) schemes for the polarization propagator with approximate second-order coupled cluster (CC2) theory, the widely used INDO/MRDCI approach and the symmetry-adapted cluster configuration interaction (SAC-CI) algorithm incorporating singles and doubles linked excitation operators (SAC-CI SD-R). We focus in particular on the ground-to-excited state transition dipole moments and the corresponding state dipole moments, since these quantities are found to be of utmost importance for an effective description of the third-order polarizability γ and two-photon absorption spectra. A sum-overstates expression has been used, which is found to quickly converge. While ADC(3/2) has been found to be the most appropriate method to calculate these properties, CC2 performs poorly.
NASA Astrophysics Data System (ADS)
Dalal, Amaresh; Kulkarni, Amol C.; Manik, Jai; Natarajan, Ganesh
2016-11-01
The effect of droplet diameter and viscosity ratio on the coalescence of two bubbles rising in a quiescent liquid has been studied numerically using algebraic volume of fluid (VOF) method. If the upper bubble diameter is 75% of the lower bubble, the time taken for their coalescence increases in comparison with the case of equal bubble diameter. For the case, when the diameter of the upper bubble is reduced, this delay may be attributed to comparatively weaker jet formed behind the leading bubble, ultimately resulting in lesser acceleration of the trailing bubble. While for the other case, when the diameter of the lower bubble is reduced, it is because of a totally different scenario of liquid entrapment observed during coalescence. The effect of viscosity of the surrounding fluid is also noticed separately for the situation when the diameters of the bubbles are equal. It has been observed that, the increase in viscosity of the surrounding fluid will increase the form drag over the bubbles, eventually leading to the delay in their coalescence. This study is funded by a Grant from BRNS, DAE, Government of India.
Pseudo-Riemannian Novikov algebras
NASA Astrophysics Data System (ADS)
Chen, Zhiqi; Zhu, Fuhai
2008-08-01
Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-type and Hamiltonian operators in formal variational calculus. Pseudo-Riemannian Novikov algebras denote Novikov algebras with non-degenerate invariant symmetric bilinear forms. In this paper, we find that there is a remarkable geometry on pseudo-Riemannian Novikov algebras, and give a special class of pseudo-Riemannian Novikov algebras.
Directional Agglomeration Multigrid Techniques for High-Reynolds Number Viscous Flows
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1998-01-01
A preconditioned directional-implicit agglomeration algorithm is developed for solving two- and three-dimensional viscous flows on highly anisotropic unstructured meshes of mixed-element types. The multigrid smoother consists of a pre-conditioned point- or line-implicit solver which operates on lines constructed in the unstructured mesh using a weighted graph algorithm. Directional coarsening or agglomeration is achieved using a similar weighted graph algorithm. A tight coupling of the line construction and directional agglomeration algorithms enables the use of aggressive coarsening ratios in the multigrid algorithm, which in turn reduces the cost of a multigrid cycle. Convergence rates which are independent of the degree of grid stretching are demonstrated in both two and three dimensions. Further improvement of the three-dimensional convergence rates through a GMRES technique is also demonstrated.
NASA Astrophysics Data System (ADS)
Markarian, Nikita
2017-03-01
We introduce Weyl n-algebras and show how their factorization complex may be used to define invariants of manifolds. In the appendix, we heuristically explain why these invariants must be perturbative Chern-Simons invariants.
Developing Algebraic Thinking.
ERIC Educational Resources Information Center
Alejandre, Suzanne
2002-01-01
Presents a teaching experience that resulted in students getting to a point of full understanding of the kinesthetic activity and the algebra behind it. Includes a lesson plan for a traffic jam activity. (KHR)
Jordan Algebraic Quantum Categories
NASA Astrophysics Data System (ADS)
Graydon, Matthew; Barnum, Howard; Ududec, Cozmin; Wilce, Alexander
2015-03-01
State cones in orthodox quantum theory over finite dimensional complex Hilbert spaces enjoy two particularly essential features: homogeneity and self-duality. Orthodox quantum theory is not, however, unique in that regard. Indeed, all finite dimensional formally real Jordan algebras -- arenas for generalized quantum theories with close algebraic kinship to the orthodox theory -- admit homogeneous self-dual positive cones. We construct categories wherein these theories are unified. The structure of composite systems is cast from universal tensor products of the universal C*-algebras enveloping ambient spaces for the constituent state cones. We develop, in particular, a notion of composition that preserves the local distinction of constituent systems in quaternionic quantum theory. More generally, we explicitly derive the structure of hybrid quantum composites with subsystems of arbitrary Jordan algebraic type.
Accounting Equals Applied Algebra.
ERIC Educational Resources Information Center
Roberts, Sondra
1997-01-01
Argues that students should be given mathematics credits for completing accounting classes. Demonstrates that, although the terminology is different, the mathematical concepts are the same as those used in an introductory algebra class. (JOW)
Development of an explicit multiblock/multigrid flow solver for viscous flows in complex geometries
NASA Technical Reports Server (NTRS)
Steinthorsson, E.; Liou, M. S.; Povinelli, L. A.
1993-01-01
A new computer program is being developed for doing accurate simulations of compressible viscous flows in complex geometries. The code employs the full compressible Navier-Stokes equations. The eddy viscosity model of Baldwin and Lomax is used to model the effects of turbulence on the flow. A cell centered finite volume discretization is used for all terms in the governing equations. The Advection Upwind Splitting Method (AUSM) is used to compute the inviscid fluxes, while central differencing is used for the diffusive fluxes. A four-stage Runge-Kutta time integration scheme is used to march solutions to steady state, while convergence is enhanced by a multigrid scheme, local time-stepping, and implicit residual smoothing. To enable simulations of flows in complex geometries, the code uses composite structured grid systems where all grid lines are continuous at block boundaries (multiblock grids). Example results shown are a flow in a linear cascade, a flow around a circular pin extending between the main walls in a high aspect-ratio channel, and a flow of air in a radial turbine coolant passage.
Multigrid solution of the Navier-Stokes equations on triangular meshes
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.; Jameson, Antony; Martinelli, Luigi
1989-01-01
A Navier-Stokes algorithm for use on unstructured triangular meshes is presented. Spatial discretization of the governing equations is achieved using a finite element Galerkin approximation, which can be shown to be equivalent to a finite volume approximation for regular equilateral triangular meshes. Integration steady-state is performed using a multistage time-stepping scheme, and convergence is accelerated by means of implicit residual smoothing and an unstructured multigrid algorithm. Directional scaling of the artificial dissipation and the implicit residual smoothing operator is achieved for unstructured meshes by considering local mesh stretching vectors at each point. The accuracy of the scheme for highly stretched triangular meshes is validated by comparing computed flat-plate laminar boundary layer results with the well known similarity solution, and by comparing laminar airfoil results with those obtained from various well-established structured quadrilateral-mesh codes. The convergence efficiency of the present method is also shown to be competitive with those demonstrated by structured quadrilateral-mesh algorithms.
An Adaptive Multigrid Algorithm for Simulating Solid Tumor Growth Using Mixture Models
Wise, S.M.; Lowengrub, J.S.; Cristini, V.
2010-01-01
In this paper we give the details of the numerical solution of a three-dimensional multispecies diffuse interface model of tumor growth, which was derived in (Wise et al., J. Theor. Biol. 253 (2008)) and used to study the development of glioma in (Frieboes et al., NeuroImage 37 (2007) and tumor invasion in (Bearer et al., Cancer Research, 69 (2009)) and (Frieboes et al., J. Theor. Biol. 264 (2010)). The model has a thermodynamic basis, is related to recently developed mixture models, and is capable of providing a detailed description of tumor progression. It utilizes a diffuse interface approach, whereby sharp tumor boundaries are replaced by narrow transition layers that arise due to differential adhesive forces among the cell-species. The model consists of fourth-order nonlinear advection-reaction-diffusion equations (of Cahn-Hilliard-type) for the cell-species coupled with reaction-diffusion equations for the substrate components. Numerical solution of the model is challenging because the equations are coupled, highly nonlinear, and numerically stiff. In this paper we describe a fully adaptive, nonlinear multigrid/finite difference method for efficiently solving the equations. We demonstrate the convergence of the algorithm and we present simulations of tumor growth in 2D and 3D that demonstrate the capabilities of the algorithm in accurately and efficiently simulating the progression of tumors with complex morphologies. PMID:21076663
A fast multigrid-based electromagnetic eigensolver for curved metal boundaries on the Yee mesh
Bauer, Carl A.; Werner, Gregory R.; Cary, John R.
2013-10-15
For embedded boundary electromagnetics using the Dey–Mittra (Dey and Mittra, 1997) [1] algorithm, a special grad–div matrix constructed in this work allows use of multigrid methods for efficient inversion of Maxwell’s curl–curl matrix. Efficient curl–curl inversions are demonstrated within a shift-and-invert Krylov-subspace eigensolver (open-sourced at ([ofortt]https://github.com/bauerca/maxwell[cfortt])) on the spherical cavity and the 9-cell TESLA superconducting accelerator cavity. The accuracy of the Dey–Mittra algorithm is also examined: frequencies converge with second-order error, and surface fields are found to converge with nearly second-order error. In agreement with previous work (Nieter et al., 2009) [2], neglecting some boundary-cut cell faces (as is required in the time domain for numerical stability) reduces frequency convergence to first-order and surface-field convergence to zeroth-order (i.e. surface fields do not converge). Additionally and importantly, neglecting faces can reduce accuracy by an order of magnitude at low resolutions.
Optimization of refractive liquid crystal lenses using an efficient multigrid simulation.
Milton, Harry; Brimicombe, Paul; Morgan, Philip; Gleeson, Helen; Clamp, John
2012-05-07
A multigrid computational model has been developed to assess the performance of refractive liquid crystal lenses, which is up to 40 times faster than previous techniques. Using this model, the optimum geometries producing an ideal parabolic voltage distribution were deduced for refractive liquid crystal lenses with diameters from 1 to 9 mm. The ratio of insulation thickness to lens diameter was determined to be 1:2 for small diameter lenses, tending to 1:3 for larger lenses. The model is used to propose a new method of lens operation with lower operating voltages needed to induce specific optical powers. The operating voltages are calculated for the induction of optical powers between + 1.00 D and + 3.00 D in a 3 mm diameter lens, with the speed of the simulation facilitating the optimization of the refractive index profile. We demonstrate that the relationship between additional applied voltage and optical power is approximately linear for optical powers under + 3.00 D. The versatility of the computational simulation has also been demonstrated by modeling of in-plane electrode liquid crystal devices.
Covariant deformed oscillator algebras
NASA Technical Reports Server (NTRS)
Quesne, Christiane
1995-01-01
The general form and associativity conditions of deformed oscillator algebras are reviewed. It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami condition. As an example, an SU(sub q)(n) x SU(sub q)(m)-covariant q-bosonic algebra is discussed in some detail.
Aprepro - Algebraic Preprocessor
2005-08-01
Aprepro is an algebraic preprocessor that reads a file containing both general text and algebraic, string, or conditional expressions. It interprets the expressions and outputs them to the output file along witht the general text. Aprepro contains several mathematical functions, string functions, and flow control constructs. In addition, functions are included that, with some additional files, implement a units conversion system and a material database lookup system.
NASA Astrophysics Data System (ADS)
Mukhin, Evgeny; Tarasov, Vitaly; Varchenko, Alexander
2011-10-01
Consider a tensor product of finite-dimensional irreducible ??;N+1-modules and its decomposition into irreducible modules. The ??;N+1 Gaudin model assigns to each multiplicity space of that decomposition a commutative (Bethe) algebra of linear operators acting on the multiplicity space. The Bethe ansatz method is a method to find eigenvectors and eigenvalues of the Bethe algebra. One starts with a critical point of a suitable (master) function and constructs an eigenvector of the Bethe algebra. In this paper we consider the algebra of functions on the critical set of the associated master function and show that the action of this algebra on itself is isomorphic to the action of the Bethe algebra on a suitable subspace of the multiplicity space. As a byproduct we prove that the Bethe vectors corresponding to different critical points of the master function are linearly independent and, in particular, nonzero.
A multigrid algorithm for the cell-centered finite difference scheme
NASA Technical Reports Server (NTRS)
Ewing, Richard E.; Shen, Jian
1993-01-01
In this article, we discuss a non-variational V-cycle multigrid algorithm based on the cell-centered finite difference scheme for solving a second-order elliptic problem with discontinuous coefficients. Due to the poor approximation property of piecewise constant spaces and the non-variational nature of our scheme, one step of symmetric linear smoothing in our V-cycle multigrid scheme may fail to be a contraction. Again, because of the simple structure of the piecewise constant spaces, prolongation and restriction are trivial; we save significant computation time with very promising computational results.
Vectorizable multigrid algorithms for transonic flow calculations. M.S. Thesis
NASA Technical Reports Server (NTRS)
Melson, N. D.
1985-01-01
The analysis and incorporation into a multigrid scheme of several vectorizable algorithms are discussed. Von Neumann analyses of vertical line, horizontal line, and alternating direction ZEBRA algorithms were performed; and the results were used to predict their multigrid damping rates. The algorithms were then successfully implemented in a transonic conservative full-potential computer program. The convergence acceleration effect of multiple grids is shown and the convergence rates of the vectorizable algorithms are compared to the convergence rates of standard successive line overrelaxation (SLOR) algorithms.
NASA Technical Reports Server (NTRS)
Bates, J. R.; Semazzi, F. H. M.; Higgins, R. W.; Barros, Saulo R. M.
1990-01-01
A vector semi-Lagrangian semi-implicit two-time-level finite-difference integration scheme for the shallow water equations on the sphere is presented. A C-grid is used for the spatial differencing. The trajectory-centered discretization of the momentum equation in vector form eliminates pole problems and, at comparable cost, gives greater accuracy than a previous semi-Lagrangian finite-difference scheme which used a rotated spherical coordinate system. In terms of the insensitivity of the results to increasing timestep, the new scheme is as successful as recent spectral semi-Lagrangian schemes. In addition, the use of a multigrid method for solving the elliptic equation for the geopotential allows efficient integration with an operation count which, at high resolution, is of lower order than in the case of the spectral models. The properties of the new scheme should allow finite-difference models to compete with spectral models more effectively than has previously been possible.
Ivaska, A; Nagypál, I
1980-09-01
A general expression for transforming potentiometric titration curves of mixtures of weak acids into a system of linear equations is derived. The solution of the linear equations gives directly the concentrations of the components. This linear transformation method is illustrated by the analysis of mixtures of weak acids with overlapping dissociation equilibria. The possible presence of a strong acid or strong base in the mixture can also be detected and its concentration simultaneously determined. The method can also be used for analysis of an ampholyte and solutions containing a weak acid and its conjugate base. For example a mixture of hydroxyacetic acid (pK approximately 3.6), acetic acid (pK approximately 4.6) and hydroxylamine hydrochloride (pK approximately 6) was analysed in the presence of strong acid with an average relative error of approximately 2%.
NASA Astrophysics Data System (ADS)
Fabijonas, Bruce R.
2002-09-01
We examine a Maple implementation of two distinct approaches to Laplace's method used to obtain asymptotic expansions of Laplace-type integrals. One algorithm uses power series reversion, whereas the other expands all quantities in Taylor or Puiseux series. These algorithms are used to derive asymptotic expansions for the real valued modified Bessel functions of pure imaginary order and real argument that mimic the well-known corresponding expansions for the unmodified Bessel functions.
Minimax Techniques For Optimizing Non-Linear Image Algebra Transforms
NASA Astrophysics Data System (ADS)
Davidson, Jennifer L.
1989-08-01
It has been well established that the Air Force Armament Technical Laboratory (AFATL) image algebra is capable of expressing all linear transformations [7]. The embedding of the linear algebra in the image algebra makes this possible. In this paper we show a relation of the image algebra to another algebraic system called the minimax algebra. This system is used extensively in economics and operations research, but until now has not been investigated for applications to image processing. The relationship is exploited to develop new optimization methods for a class of non-linear image processing transforms. In particular, a general decomposition technique for templates in this non-linear domain is presented. Template decomposition techniques are an important tool in mapping algorithms efficiently to both sequential and massively parallel architectures.
Spatial-Operator Algebra For Flexible-Link Manipulators
NASA Technical Reports Server (NTRS)
Jain, Abhinandan; Rodriguez, Guillermo
1994-01-01
Method of computing dynamics of multiple-flexible-link robotic manipulators based on spatial-operator algebra, which originally applied to rigid-link manipulators. Aspects of spatial-operator-algebra approach described in several previous articles in NASA Tech Briefs-most recently "Robot Control Based on Spatial-Operator Algebra" (NPO-17918). In extension of spatial-operator algebra to manipulators with flexible links, each link represented by finite-element model: mass of flexible link apportioned among smaller, lumped-mass rigid bodies, coupling of motions expressed in terms of vibrational modes. This leads to operator expression for modal-mass matrix of link.
Harbach, Philipp H P; Wormit, Michael; Dreuw, Andreas
2014-08-14
The implementation of an efficient program of the algebraic diagrammatic construction method for the polarisation propagator in third-order perturbation theory (ADC(3)) for the computation of excited states is reported. The accuracies of ADC(2) and ADC(3) schemes have been investigated with respect to Thiel's recently established benchmark set for excitation energies and oscillator strengths. The calculation of 141 vertical excited singlet and 71 triplet states of 28 small to medium-sized organic molecules has revealed that ADC(3) exhibits mean error and standard deviation of 0.12 ± 0.28 eV for singlet states and -0.18 ± 0.16 eV for triplet states when the provided theoretical best estimates are used as benchmark. Accordingly, the ADC(2)-s and ADC(2)-x calculations revealed accuracies of 0.22 ± 0.38 eV and -0.70 ± 0.37 eV for singlets and 0.12 ± 0.16 eV and -0.55 ± 0.20 eV for triplets, respectively. For a comparison of CC3 and ADC(3), only non-CC3 benchmark values were considered, which comprise 84 singlet states and 19 triplet states. For these singlet states CC3 exhibits an accuracy of 0.23 ± 0.21 eV and ADC(3) an accuracy of 0.08 ± 0.27 eV, and accordingly for the triplet states of 0.12 ± 0.10 eV and -0.10 ± 0.13 eV, respectively. Hence, based on the quality of the existing benchmark set it is practically not possible to judge whether ADC(3) or CC3 is more accurate, however, ADC(3) has a much larger range of applicability due to its more favourable scaling of O(N(6)) with system size.
Algebraic mesh quality metrics
KNUPP,PATRICK
2000-04-24
Quality metrics for structured and unstructured mesh generation are placed within an algebraic framework to form a mathematical theory of mesh quality metrics. The theory, based on the Jacobian and related matrices, provides a means of constructing, classifying, and evaluating mesh quality metrics. The Jacobian matrix is factored into geometrically meaningful parts. A nodally-invariant Jacobian matrix can be defined for simplicial elements using a weight matrix derived from the Jacobian matrix of an ideal reference element. Scale and orientation-invariant algebraic mesh quality metrics are defined. the singular value decomposition is used to study relationships between metrics. Equivalence of the element condition number and mean ratio metrics is proved. Condition number is shown to measure the distance of an element to the set of degenerate elements. Algebraic measures for skew, length ratio, shape, volume, and orientation are defined abstractly, with specific examples given. Combined metrics for shape and volume, shape-volume-orientation are algebraically defined and examples of such metrics are given. Algebraic mesh quality metrics are extended to non-simplical elements. A series of numerical tests verify the theoretical properties of the metrics defined.
NASA Technical Reports Server (NTRS)
Liu, Chao-Qun; Shan, H.; Jiang, L.
1999-01-01
Numerical investigation of flow separation over a NACA 0012 airfoil at large angles of attack has been carried out. The numerical calculation is performed by solving the full Navier-Stokes equations in generalized curvilinear coordinates. The second-order LU-SGS implicit scheme is applied for time integration. This scheme requires no tridiagonal inversion and is capable of being completely vectorized, provided the corresponding Jacobian matrices are properly selected. A fourth-order centered compact scheme is used for spatial derivatives. In order to reduce numerical oscillation, a sixth-order implicit filter is employed. Non-reflecting boundary conditions are imposed at the far-field and outlet boundaries to avoid possible non-physical wave reflection. Complex flow separation and vortex shedding phenomenon have been observed and discussed.
1995-05-01
Over the years, multigrid has been demonstrated as an efficient technique for solving inviscid flow problems. However, for viscous flows, convergence...capture the boundary layer near the body. Usual techniques for generating a sequence of grids that produce proper convergence rates on isotropic...formulation on unstructured stretched triangular meshes. A coarsening strategy is proposed and results are discussed. (AN)
Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction
ERIC Educational Resources Information Center
Wasserman, Nicholas H.
2016-01-01
This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…
NASA Astrophysics Data System (ADS)
Durka, R.
2017-04-01
The S-expansion framework is analyzed in the context of a freedom in closing the multiplication tables for the abelian semigroups. Including the possibility of the zero element in the resonant decomposition, and associating the Lorentz generator with the semigroup identity element, leads to a wide class of the expanded Lie algebras introducing interesting modifications to the gauge gravity theories. Among the results, we find all the Maxwell algebras of type {{B}m} , {{C}m} , and the recently introduced {{D}m} . The additional new examples complete the resulting generalization of the bosonic enlargements for an arbitrary number of the Lorentz-like and translational-like generators. Some further prospects concerning enlarging the algebras are discussed, along with providing all the necessary constituents for constructing the gravity actions based on the obtained results.
NASA Astrophysics Data System (ADS)
Roytenberg, Dmitry
2007-11-01
A Lie 2-algebra is a linear category equipped with a functorial bilinear operation satisfying skew-symmetry and Jacobi identity up to natural transformations which themselves obey coherence laws of their own. Functors and natural transformations between Lie 2-algebras can also be defined, yielding a 2-category. Passing to the normalized chain complex gives an equivalence of 2-categories between Lie 2-algebras and certain "up to homotopy" structures on the complex; for strictly skew-symmetric Lie 2-algebras these are L∞-algebras, by a result of Baez and Crans. Lie 2-algebras appear naturally as infinitesimal symmetries of solutions of the Maurer-Cartan equation in some differential graded Lie algebras and L∞-algebras. In particular, (quasi-) Poisson manifolds, (quasi-) Lie bialgebroids and Courant algebroids provide large classes of examples.
Algebra for Gifted Third Graders.
ERIC Educational Resources Information Center
Borenson, Henry
1987-01-01
Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)
A Holistic Approach to Algebra.
ERIC Educational Resources Information Center
Barbeau, Edward J.
1991-01-01
Described are two examples involving recursive mathematical sequences designed to integrate a holistic approach to learning algebra. These examples promote pattern recognition with algebraic justification, full class participation, and mathematical values that can be transferred to other situations. (MDH)
Computer Program For Linear Algebra
NASA Technical Reports Server (NTRS)
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
Programed Instruction in Elementary Algebra: An Experiment
ERIC Educational Resources Information Center
Lial, Margaret L.
1970-01-01
Report of an experiment which investigated the use of a programed elementary algebra text as a teaching method. The method was evaluated on the basis of student evaluation of the course and the percentage of students achieving a grade of C or better. Results indicated that the use of programed texts was superior to the traditional approach using…