Science.gov

Sample records for algebraic multigrid method

  1. Adaptive Algebraic Multigrid Methods

    SciTech Connect

    Brezina, M; Falgout, R; MacLachlan, S; Manteuffel, T; McCormick, S; Ruge, J

    2004-04-09

    Our ability to simulate physical processes numerically is constrained by our ability to solve the resulting linear systems, prompting substantial research into the development of multiscale iterative methods capable of solving these linear systems with an optimal amount of effort. Overcoming the limitations of geometric multigrid methods to simple geometries and differential equations, algebraic multigrid methods construct the multigrid hierarchy based only on the given matrix. While this allows for efficient black-box solution of the linear systems associated with discretizations of many elliptic differential equations, it also results in a lack of robustness due to assumptions made on the near-null spaces of these matrices. This paper introduces an extension to algebraic multigrid methods that removes the need to make such assumptions by utilizing an adaptive process. The principles which guide the adaptivity are highlighted, as well as their application to algebraic multigrid solution of certain symmetric positive-definite linear systems.

  2. Layout optimization with algebraic multigrid methods

    NASA Technical Reports Server (NTRS)

    Regler, Hans; Ruede, Ulrich

    1993-01-01

    Finding the optimal position for the individual cells (also called functional modules) on the chip surface is an important and difficult step in the design of integrated circuits. This paper deals with the problem of relative placement, that is the minimization of a quadratic functional with a large, sparse, positive definite system matrix. The basic optimization problem must be augmented by constraints to inhibit solutions where cells overlap. Besides classical iterative methods, based on conjugate gradients (CG), we show that algebraic multigrid methods (AMG) provide an interesting alternative. For moderately sized examples with about 10000 cells, AMG is already competitive with CG and is expected to be superior for larger problems. Besides the classical 'multiplicative' AMG algorithm where the levels are visited sequentially, we propose an 'additive' variant of AMG where levels may be treated in parallel and that is suitable as a preconditioner in the CG algorithm.

  3. Parallel Algebraic Multigrid Methods - High Performance Preconditioners

    SciTech Connect

    Yang, U M

    2004-11-11

    The development of high performance, massively parallel computers and the increasing demands of computationally challenging applications have necessitated the development of scalable solvers and preconditioners. One of the most effective ways to achieve scalability is the use of multigrid or multilevel techniques. Algebraic multigrid (AMG) is a very efficient algorithm for solving large problems on unstructured grids. While much of it can be parallelized in a straightforward way, some components of the classical algorithm, particularly the coarsening process and some of the most efficient smoothers, are highly sequential, and require new parallel approaches. This chapter presents the basic principles of AMG and gives an overview of various parallel implementations of AMG, including descriptions of parallel coarsening schemes and smoothers, some numerical results as well as references to existing software packages.

  4. Algebraic multigrid

    NASA Technical Reports Server (NTRS)

    Ruge, J. W.; Stueben, K.

    1987-01-01

    The state of the art in algebraic multgrid (AMG) methods is discussed. The interaction between the relaxation process and the coarse grid correction necessary for proper behavior of the solution probes is discussed in detail. Sufficient conditions on relaxation and interpolation for the convergence of the V-cycle are given. The relaxation used in AMG, what smoothing means in an algebraic setting, and how it relates to the existing theory are considered. Some properties of the coarse grid operator are discussed, and results on the convergence of two-level and multilevel convergence are given. Details of an algorithm particularly studied for problems obtained by discretizing a single elliptic, second order partial differential equation are given. Results of experiments with such problems using both finite difference and finite element discretizations are presented.

  5. Algebraic multigrid methods applied to problems in computational structural mechanics

    NASA Technical Reports Server (NTRS)

    Mccormick, Steve; Ruge, John

    1989-01-01

    The development of algebraic multigrid (AMG) methods and their application to certain problems in structural mechanics are described with emphasis on two- and three-dimensional linear elasticity equations and the 'jacket problems' (three-dimensional beam structures). Various possible extensions of AMG are also described. The basic idea of AMG is to develop the discretization sequence based on the target matrix and not the differential equation. Therefore, the matrix is analyzed for certain dependencies that permit the proper construction of coarser matrices and attendant transfer operators. In this manner, AMG appears to be adaptable to structural analysis applications.

  6. Algebraic Multigrid Benchmark

    SciTech Connect

    2013-05-06

    AMG2013 is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids. It has been derived directly from the Boomer AMG solver in the hypre library, a large linear solvers library that is being developed in the Center for Applied Scientific Computing (CASC) at LLNL. The driver provided in the benchmark can build various test problems. The default problem is a Laplace type problem on an unstructured domain with various jumps and an anisotropy in one part.

  7. Algebraic Multigrid Benchmark

    2013-05-06

    AMG2013 is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids. It has been derived directly from the Boomer AMG solver in the hypre library, a large linear solvers library that is being developed in the Center for Applied Scientific Computing (CASC) at LLNL. The driver provided in the benchmark can build various test problems. The default problem is a Laplace type problem on an unstructured domain with various jumpsmore » and an anisotropy in one part.« less

  8. Report on the Copper Mountain Conference on Multigrid Methods

    SciTech Connect

    2001-04-06

    OAK B188 Report on the Copper Mountain Conference on Multigrid Methods. The Copper Mountain Conference on Multigrid Methods was held on April 11-16, 1999. Over 100 mathematicians from all over the world attended the meeting. The conference had two major themes: algebraic multigrid and parallel multigrid. During the five day meeting 69 talks on current research topics were presented as well as 3 tutorials. Talks with similar content were organized into sessions. Session topics included: Fluids; Multigrid and Multilevel Methods; Applications; PDE Reformulation; Inverse Problems; Special Methods; Decomposition Methods; Student Paper Winners; Parallel Multigrid; Parallel Algebraic Multigrid; and FOSLS.

  9. An algebraic variational multiscale-multigrid method for large-eddy simulation of turbulent variable-density flow at low Mach number

    NASA Astrophysics Data System (ADS)

    Gravemeier, Volker; Wall, Wolfgang A.

    2010-08-01

    An algebraic variational multiscale-multigrid method is proposed for large-eddy simulation of turbulent variable-density flow at low Mach number. Scale-separating operators generated by level-transfer operators from plain aggregation algebraic multigrid methods enable the application of modeling terms to selected scale groups (here, the smaller of the resolved scales) in a purely algebraic way. Thus, for scale separation, no additional discretization besides the basic one is required, in contrast to earlier approaches based on geometric multigrid methods. The proposed method is thoroughly validated via three numerical test cases of increasing complexity: a Rayleigh-Taylor instability, turbulent channel flow with a heated and a cooled wall, and turbulent flow past a backward-facing step with heating. Results obtained with the algebraic variational multiscale-multigrid method are compared to results obtained with residual-based variational multiscale methods as well as reference results from direct numerical simulation, experiments and LES published elsewhere. Particularly, mean and various second-order velocity and temperature results obtained for turbulent channel flow with a heated and a cooled wall indicate the higher prediction quality achievable when adding a small-scale subgrid-viscosity term within the algebraic multigrid framework instead of residual-based terms accounting for the subgrid-scale part of the non-linear convective term.

  10. Compatible Relaxation and Coarsening in Algebraic Multigrid

    SciTech Connect

    Brannick, J J; Falgout, R D

    2009-09-22

    We introduce a coarsening algorithm for algebraic multigrid (AMG) based on the concept of compatible relaxation (CR). The algorithm is significantly different from standard methods, most notably because it does not rely on any notion of strength of connection. We study its behavior on a number of model problems, and evaluate the performance of an AMG algorithm that incorporates the coarsening approach. Lastly, we introduce a variant of CR that provides a sharper metric of coarse-grid quality and demonstrate its potential with two simple examples.

  11. Introduction to multigrid methods

    NASA Technical Reports Server (NTRS)

    Wesseling, P.

    1995-01-01

    These notes were written for an introductory course on the application of multigrid methods to elliptic and hyperbolic partial differential equations for engineers, physicists and applied mathematicians. The use of more advanced mathematical tools, such as functional analysis, is avoided. The course is intended to be accessible to a wide audience of users of computational methods. We restrict ourselves to finite volume and finite difference discretization. The basic principles are given. Smoothing methods and Fourier smoothing analysis are reviewed. The fundamental multigrid algorithm is studied. The smoothing and coarse grid approximation properties are discussed. Multigrid schedules and structured programming of multigrid algorithms are treated. Robustness and efficiency are considered.

  12. Reducing Communication in Algebraic Multigrid Using Additive Variants

    SciTech Connect

    Vassilevski, Panayot S.; Yang, Ulrike Meier

    2014-02-12

    Algebraic multigrid (AMG) has proven to be an effective scalable solver on many high performance computers. However, its increasing communication complexity on coarser levels has shown to seriously impact its performance on computers with high communication cost. Moreover, additive AMG variants provide not only increased parallelism as well as decreased numbers of messages per cycle but also generally exhibit slower convergence. Here we present various new additive variants with convergence rates that are significantly improved compared to the classical additive algebraic multigrid method and investigate their potential for decreased communication, and improved communication-computation overlap, features that are essential for good performance on future exascale architectures.

  13. Parallel Algebraic Multigrids for Structural mechanics

    SciTech Connect

    Brezina, M; Tong, C; Becker, R

    2004-05-11

    This paper presents the results of a comparison of three parallel algebraic multigrid (AMG) preconditioners for structural mechanics applications. In particular, they are interested in investigating both the scalability and robustness of the preconditioners. Numerical results are given for a range of structural mechanics problems with various degrees of difficulty.

  14. Scalable Parallel Algebraic Multigrid Solvers

    SciTech Connect

    Bank, R; Lu, S; Tong, C; Vassilevski, P

    2005-03-23

    The authors propose a parallel algebraic multilevel algorithm (AMG), which has the novel feature that the subproblem residing in each processor is defined over the entire partition domain, although the vast majority of unknowns for each subproblem are associated with the partition owned by the corresponding processor. This feature ensures that a global coarse description of the problem is contained within each of the subproblems. The advantages of this approach are that interprocessor communication is minimized in the solution process while an optimal order of convergence rate is preserved; and the speed of local subproblem solvers can be maximized using the best existing sequential algebraic solvers.

  15. Multigrid-sinc methods

    NASA Technical Reports Server (NTRS)

    Schaffer, Steve; Stenger, Frank

    1986-01-01

    A Galerkin method using Whittaker cardinal or 'sinc' functions as basis functions is described for the solution of boundary-value problems. When the solution is analytic in the interior of the domain, the error of approximation using 2N + 1 points is O(e exp /-gamma sq rt N/) even if derivatives of the solution are singular at the boundaries. A multigrid method with overall complexity O(N log N) is used to solve the discrete equations. This paper contains a description of the multigrid-sinc algorithm along with some preliminary numerical results for two-point boundary-value problems.

  16. Reducing Communication in Algebraic Multigrid Using Additive Variants

    DOE PAGES

    Vassilevski, Panayot S.; Yang, Ulrike Meier

    2014-02-12

    Algebraic multigrid (AMG) has proven to be an effective scalable solver on many high performance computers. However, its increasing communication complexity on coarser levels has shown to seriously impact its performance on computers with high communication cost. Moreover, additive AMG variants provide not only increased parallelism as well as decreased numbers of messages per cycle but also generally exhibit slower convergence. Here we present various new additive variants with convergence rates that are significantly improved compared to the classical additive algebraic multigrid method and investigate their potential for decreased communication, and improved communication-computation overlap, features that are essential for goodmore » performance on future exascale architectures.« less

  17. Challenges of Algebraic Multigrid across Multicore Architectures

    SciTech Connect

    Baker, A H; Gamblin, T; Schulz, M; Yang, U M

    2010-04-12

    Algebraic multigrid (AMG) is a popular solver for large-scale scientific computing and an essential component of many simulation codes. AMG has shown to be extremely efficient on distributed-memory architectures. However, when executed on modern multicore architectures, we face new challenges that can significantly deteriorate AMG's performance. We examine its performance and scalability on three disparate multicore architectures: a cluster with four AMD Opteron Quad-core processors per node (Hera), a Cray XT5 with two AMD Opteron Hex-core processors per node (Jaguar), and an IBM BlueGene/P system with a single Quad-core processor (Intrepid). We discuss our experiences on these platforms and present results using both an MPI-only and a hybrid MPI/OpenMP model. We also discuss a set of techniques that helped to overcome the associated problems, including thread and process pinning and correct memory associations.

  18. Coarse Spaces by Algebraic Multigrid: Multigrid Convergence and Upscaled Error Estimates

    SciTech Connect

    Vassilevski, P S

    2010-04-30

    We give an overview of a number of algebraic multigrid methods targeting finite element discretization problems. The focus is on the properties of the constructed hierarchy of coarse spaces that guarantee (two-grid) convergence. In particular, a necessary condition known as 'weak approximation property', and a sufficient one, referred to as 'strong approximation property' are discussed. Their role in proving convergence of the TG method (as iterative method) and also on the approximation properties of the AMG coarse spaces if used as discretization tool is pointed out. Some preliminary numerical results illustrating the latter aspect are also reported.

  19. Multigrid contact detection method

    NASA Astrophysics Data System (ADS)

    He, Kejing; Dong, Shoubin; Zhou, Zhaoyao

    2007-03-01

    Contact detection is a general problem of many physical simulations. This work presents a O(N) multigrid method for general contact detection problems (MGCD). The multigrid idea is integrated with contact detection problems. Both the time complexity and memory consumption of the MGCD are O(N) . Unlike other methods, whose efficiencies are influenced strongly by the object size distribution, the performance of MGCD is insensitive to the object size distribution. We compare the MGCD with the no binary search (NBS) method and the multilevel boxing method in three dimensions for both time complexity and memory consumption. For objects with similar size, the MGCD is as good as the NBS method, both of which outperform the multilevel boxing method regarding memory consumption. For objects with diverse size, the MGCD outperform both the NBS method and the multilevel boxing method. We use the MGCD to solve the contact detection problem for a granular simulation system based on the discrete element method. From this granular simulation, we get the density property of monosize packing and binary packing with size ratio equal to 10. The packing density for monosize particles is 0.636. For binary packing with size ratio equal to 10, when the number of small particles is 300 times as the number of big particles, the maximal packing density 0.824 is achieved.

  20. Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation

    PubMed Central

    Augustin, Christoph M.; Neic, Aurel; Liebmann, Manfred; Prassl, Anton J.; Niederer, Steven A.; Haase, Gundolf; Plank, Gernot

    2016-01-01

    Electromechanical (EM) models of the heart have been used successfully to study fundamental mechanisms underlying a heart beat in health and disease. However, in all modeling studies reported so far numerous simplifications were made in terms of representing biophysical details of cellular function and its heterogeneity, gross anatomy and tissue microstructure, as well as the bidirectional coupling between electrophysiology (EP) and tissue distension. One limiting factor is the employed spatial discretization methods which are not sufficiently flexible to accommodate complex geometries or resolve heterogeneities, but, even more importantly, the limited efficiency of the prevailing solver techniques which are not sufficiently scalable to deal with the incurring increase in degrees of freedom (DOF) when modeling cardiac electromechanics at high spatio-temporal resolution. This study reports on the development of a novel methodology for solving the nonlinear equation of finite elasticity using human whole organ models of cardiac electromechanics, discretized at a high para-cellular resolution. Three patient-specific, anatomically accurate, whole heart EM models were reconstructed from magnetic resonance (MR) scans at resolutions of 220 μm, 440 μm and 880 μm, yielding meshes of approximately 184.6, 24.4 and 3.7 million tetrahedral elements and 95.9, 13.2 and 2.1 million displacement DOF, respectively. The same mesh was used for discretizing the governing equations of both electrophysiology (EP) and nonlinear elasticity. A novel algebraic multigrid (AMG) preconditioner for an iterative Krylov solver was developed to deal with the resulting computational load. The AMG preconditioner was designed under the primary objective of achieving favorable strong scaling characteristics for both setup and solution runtimes, as this is key for exploiting current high performance computing hardware. Benchmark results using the 220 μm, 440 μm and 880 μm meshes demonstrate

  1. Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation

    NASA Astrophysics Data System (ADS)

    Augustin, Christoph M.; Neic, Aurel; Liebmann, Manfred; Prassl, Anton J.; Niederer, Steven A.; Haase, Gundolf; Plank, Gernot

    2016-01-01

    Electromechanical (EM) models of the heart have been used successfully to study fundamental mechanisms underlying a heart beat in health and disease. However, in all modeling studies reported so far numerous simplifications were made in terms of representing biophysical details of cellular function and its heterogeneity, gross anatomy and tissue microstructure, as well as the bidirectional coupling between electrophysiology (EP) and tissue distension. One limiting factor is the employed spatial discretization methods which are not sufficiently flexible to accommodate complex geometries or resolve heterogeneities, but, even more importantly, the limited efficiency of the prevailing solver techniques which is not sufficiently scalable to deal with the incurring increase in degrees of freedom (DOF) when modeling cardiac electromechanics at high spatio-temporal resolution. This study reports on the development of a novel methodology for solving the nonlinear equation of finite elasticity using human whole organ models of cardiac electromechanics, discretized at a high para-cellular resolution. Three patient-specific, anatomically accurate, whole heart EM models were reconstructed from magnetic resonance (MR) scans at resolutions of 220 μm, 440 μm and 880 μm, yielding meshes of approximately 184.6, 24.4 and 3.7 million tetrahedral elements and 95.9, 13.2 and 2.1 million displacement DOF, respectively. The same mesh was used for discretizing the governing equations of both electrophysiology (EP) and nonlinear elasticity. A novel algebraic multigrid (AMG) preconditioner for an iterative Krylov solver was developed to deal with the resulting computational load. The AMG preconditioner was designed under the primary objective of achieving favorable strong scaling characteristics for both setup and solution runtimes, as this is key for exploiting current high performance computing hardware. Benchmark results using the 220 μm, 440 μm and 880 μm meshes demonstrate

  2. Unstructured multigrid methods

    NASA Technical Reports Server (NTRS)

    Loehner, R.; Morgan, K.

    1987-01-01

    The use of the multigrid procedure with a sequence of unnested coarser grids is discussed. Validity of the procedure is assessed by considering the solution of a single linear elliptic equation. It is demonstrated how a scheme with the optimum order of operations can be constructed. Application to the solution of the Euler equations is considered.

  3. Coarse-grid selection for parallel algebraic multigrid

    SciTech Connect

    Cleary, A. J., LLNL

    1998-06-01

    The need to solve linear systems arising from problems posed on extremely large, unstructured grids has sparked great interest in parallelizing algebraic multigrid (AMG) To date, however, no parallel AMG algorithms exist We introduce a parallel algorithm for the selection of coarse-grid points, a crucial component of AMG, based on modifications of certain paallel independent set algorithms and the application of heuristics designed to insure the quality of the coarse grids A prototype serial version of the algorithm is implemented, and tests are conducted to determine its effect on multigrid convergence, and AMG complexity

  4. Algebraic multigrid domain and range decomposition (AMG-DD / AMG-RD)*

    DOE PAGES

    Bank, R.; Falgout, R. D.; Jones, T.; Manteuffel, T. A.; McCormick, S. F.; Ruge, J. W.

    2015-10-29

    In modern large-scale supercomputing applications, algebraic multigrid (AMG) is a leading choice for solving matrix equations. However, the high cost of communication relative to that of computation is a concern for the scalability of traditional implementations of AMG on emerging architectures. This paper introduces two new algebraic multilevel algorithms, algebraic multigrid domain decomposition (AMG-DD) and algebraic multigrid range decomposition (AMG-RD), that replace traditional AMG V-cycles with a fully overlapping domain decomposition approach. While the methods introduced here are similar in spirit to the geometric methods developed by Brandt and Diskin [Multigrid solvers on decomposed domains, in Domain Decomposition Methods inmore » Science and Engineering, Contemp. Math. 157, AMS, Providence, RI, 1994, pp. 135--155], Mitchell [Electron. Trans. Numer. Anal., 6 (1997), pp. 224--233], and Bank and Holst [SIAM J. Sci. Comput., 22 (2000), pp. 1411--1443], they differ primarily in that they are purely algebraic: AMG-RD and AMG-DD trade communication for computation by forming global composite “grids” based only on the matrix, not the geometry. (As is the usual AMG convention, “grids” here should be taken only in the algebraic sense, regardless of whether or not it corresponds to any geometry.) Another important distinguishing feature of AMG-RD and AMG-DD is their novel residual communication process that enables effective parallel computation on composite grids, avoiding the all-to-all communication costs of the geometric methods. The main purpose of this paper is to study the potential of these two algebraic methods as possible alternatives to existing AMG approaches for future parallel machines. As a result, this paper develops some theoretical properties of these methods and reports on serial numerical tests of their convergence properties over a spectrum of problem parameters.« less

  5. Algebraic multigrid domain and range decomposition (AMG-DD / AMG-RD)*

    SciTech Connect

    Bank, R.; Falgout, R. D.; Jones, T.; Manteuffel, T. A.; McCormick, S. F.; Ruge, J. W.

    2015-10-29

    In modern large-scale supercomputing applications, algebraic multigrid (AMG) is a leading choice for solving matrix equations. However, the high cost of communication relative to that of computation is a concern for the scalability of traditional implementations of AMG on emerging architectures. This paper introduces two new algebraic multilevel algorithms, algebraic multigrid domain decomposition (AMG-DD) and algebraic multigrid range decomposition (AMG-RD), that replace traditional AMG V-cycles with a fully overlapping domain decomposition approach. While the methods introduced here are similar in spirit to the geometric methods developed by Brandt and Diskin [Multigrid solvers on decomposed domains, in Domain Decomposition Methods in Science and Engineering, Contemp. Math. 157, AMS, Providence, RI, 1994, pp. 135--155], Mitchell [Electron. Trans. Numer. Anal., 6 (1997), pp. 224--233], and Bank and Holst [SIAM J. Sci. Comput., 22 (2000), pp. 1411--1443], they differ primarily in that they are purely algebraic: AMG-RD and AMG-DD trade communication for computation by forming global composite “grids” based only on the matrix, not the geometry. (As is the usual AMG convention, “grids” here should be taken only in the algebraic sense, regardless of whether or not it corresponds to any geometry.) Another important distinguishing feature of AMG-RD and AMG-DD is their novel residual communication process that enables effective parallel computation on composite grids, avoiding the all-to-all communication costs of the geometric methods. The main purpose of this paper is to study the potential of these two algebraic methods as possible alternatives to existing AMG approaches for future parallel machines. As a result, this paper develops some theoretical properties of these methods and reports on serial numerical tests of their convergence properties over a spectrum of problem parameters.

  6. Two-Level Adaptive Algebraic Multigrid for a Sequence of Problems with Slowly Varying Random Coefficients [Adaptive Algebraic Multigrid for Sequence of Problems with Slowly Varying Random Coefficients

    SciTech Connect

    Kalchev, D.; Ketelsen, C.; Vassilevski, P. S.

    2013-11-07

    Our paper proposes an adaptive strategy for reusing a previously constructed coarse space by algebraic multigrid to construct a two-level solver for a problem with nearby characteristics. Furthermore, a main target application is the solution of the linear problems that appear throughout a sequence of Markov chain Monte Carlo simulations of subsurface flow with uncertain permeability field. We demonstrate the efficacy of the method with extensive set of numerical experiments.

  7. Non-Galerkin Coarse Grids for Algebraic Multigrid

    SciTech Connect

    Falgout, Robert D.; Schroder, Jacob B.

    2014-06-26

    Algebraic multigrid (AMG) is a popular and effective solver for systems of linear equations that arise from discretized partial differential equations. And while AMG has been effectively implemented on large scale parallel machines, challenges remain, especially when moving to exascale. Particularly, stencil sizes (the number of nonzeros in a row) tend to increase further down in the coarse grid hierarchy, and this growth leads to more communication. Therefore, as problem size increases and the number of levels in the hierarchy grows, the overall efficiency of the parallel AMG method decreases, sometimes dramatically. This growth in stencil size is due to the standard Galerkin coarse grid operator, $P^T A P$, where $P$ is the prolongation (i.e., interpolation) operator. For example, the coarse grid stencil size for a simple three-dimensional (3D) seven-point finite differencing approximation to diffusion can increase into the thousands on present day machines, causing an associated increase in communication costs. We therefore consider algebraically truncating coarse grid stencils to obtain a non-Galerkin coarse grid. First, the sparsity pattern of the non-Galerkin coarse grid is determined by employing a heuristic minimal “safe” pattern together with strength-of-connection ideas. Second, the nonzero entries are determined by collapsing the stencils in the Galerkin operator using traditional AMG techniques. The result is a reduction in coarse grid stencil size, overall operator complexity, and parallel AMG solve phase times.

  8. Scaling Algebraic Multigrid Solvers: On the Road to Exascale

    SciTech Connect

    Baker, A H; Falgout, R D; Gamblin, T; Kolev, T; Schulz, M; Yang, U M

    2010-12-12

    Algebraic Multigrid (AMG) solvers are an essential component of many large-scale scientific simulation codes. Their continued numerical scalability and efficient implementation is critical for preparing these codes for exascale. Our experiences on modern multi-core machines show that significant challenges must be addressed for AMG to perform well on such machines. We discuss our experiences and describe the techniques we have used to overcome scalability challenges for AMG on hybrid architectures in preparation for exascale.

  9. Distance-Two Interpolation for Parallel Algebraic Multigrid

    SciTech Connect

    De Sterck, H; Falgout, R; Nolting, J; Yang, U M

    2007-05-08

    Algebraic multigrid (AMG) is one of the most efficient and scalable parallel algorithms for solving sparse linear systems on unstructured grids. However, for large three-dimensional problems, the coarse grids that are normally used in AMG often lead to growing complexity in terms of memory use and execution time per AMG V-cycle. Sparser coarse grids, such as those obtained by the Parallel Modified Independent Set coarsening algorithm (PMIS) [7], remedy this complexity growth, but lead to non-scalable AMG convergence factors when traditional distance-one interpolation methods are used. In this paper we study the scalability of AMG methods that combine PMIS coarse grids with long distance interpolation methods. AMG performance and scalability is compared for previously introduced interpolation methods as well as new variants of them for a variety of relevant test problems on parallel computers. It is shown that the increased interpolation accuracy largely restores the scalability of AMG convergence factors for PMIS-coarsened grids, and in combination with complexity reducing methods, such as interpolation truncation, one obtains a class of parallel AMG methods that enjoy excellent scalability properties on large parallel computers.

  10. Final report on the Copper Mountain conference on multigrid methods

    SciTech Connect

    1997-10-01

    The Copper Mountain Conference on Multigrid Methods was held on April 6-11, 1997. It took the same format used in the previous Copper Mountain Conferences on Multigrid Method conferences. Over 87 mathematicians from all over the world attended the meeting. 56 half-hour talks on current research topics were presented. Talks with similar content were organized into sessions. Session topics included: fluids; domain decomposition; iterative methods; basics; adaptive methods; non-linear filtering; CFD; applications; transport; algebraic solvers; supercomputing; and student paper winners.

  11. Preconditioners for the spectral multigrid method

    NASA Technical Reports Server (NTRS)

    Phillips, T. N.; Zang, T. A.; Hussaini, M. Y.

    1983-01-01

    The systems of algebraic equations which arise from spectral discretizations of elliptic equations are full and direct solutions of them are rarely feasible. Iterative methods are an attractive alternative because Fourier transform techniques enable the discrete matrix-vector products to be computed with nearly the same efficiency as is possible for corresponding but sparse finite difference discretizations. For realistic Dirichlet problems preconditioning is essential for acceptable convergence rates. A brief description of Chebyshev spectral approximations and spectral multigrid methods for elliptic problems is given. A survey of preconditioners for Dirichlet problems based on second-order finite difference methods is made. New preconditioning techniques based on higher order finite differences and on the spectral matrix itself are presented. The preconditioners are analyzed in terms of their spectra and numerical examples are presented.

  12. Preconditioners for the spectral multigrid method

    NASA Technical Reports Server (NTRS)

    Phillips, T. N.; Hussaini, M. Y.; Zang, T. A.

    1986-01-01

    The systems of algebraic equations which arise from spectral discretizations of elliptic equations are full and direct solutions of them are rarely feasible. Iterative methods are an attractive alternative because Fourier transform techniques enable the discrete matrix-vector products to be computed with nearly the same efficiency as is possible for corresponding but sparse finite difference discretizations. For realistic Dirichlet problem preconditioning is essential for acceptable convergence rates. A brief description of Chebyshev spectral approximations and spectral multigrid methods for elliptic problems is given. A survey of preconditioners for Dirichlet problems based on second-order finite difference methods is made. New preconditioning techniques based on higher order finite differences and on the spectral matrix itself are presented. The preconditioners are analyzed in terms of their spectra and numerical examples are presented.

  13. Multigrid Methods for Fully Implicit Oil Reservoir Simulation

    NASA Technical Reports Server (NTRS)

    Molenaar, J.

    1996-01-01

    In this paper we consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations: the material balance or continuity equations and the equation of motion (Darcy's law). For the numerical solution of this system of nonlinear partial differential equations there are two approaches: the fully implicit or simultaneous solution method and the sequential solution method. In the sequential solution method the system of partial differential equations is manipulated to give an elliptic pressure equation and a hyperbolic (or parabolic) saturation equation. In the IMPES approach the pressure equation is first solved, using values for the saturation from the previous time level. Next the saturations are updated by some explicit time stepping method; this implies that the method is only conditionally stable. For the numerical solution of the linear, elliptic pressure equation multigrid methods have become an accepted technique. On the other hand, the fully implicit method is unconditionally stable, but it has the disadvantage that in every time step a large system of nonlinear algebraic equations has to be solved. The most time-consuming part of any fully implicit reservoir simulator is the solution of this large system of equations. Usually this is done by Newton's method. The resulting systems of linear equations are then either solved by a direct method or by some conjugate gradient type method. In this paper we consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations. There are two ways of using multigrid for this job: either we use a nonlinear multigrid method or we use a linear multigrid method to deal with the linear systems that arise in Newton's method. So far only a few authors have reported on the use of multigrid methods for fully implicit simulations. Two-level FAS algorithm is presented for the black-oil equations, and linear multigrid for

  14. Some Aspects of Multigrid Methods on Non-Structured Meshes

    NASA Technical Reports Server (NTRS)

    Guillard, H.; Marco, N.

    1996-01-01

    To solve a given fine mesh problem, the design of a multigrid method requires the definition of coarse levels, associated coarse grid operators and inter-grid transfer operators. For non-structured simplified meshes, these definitions can rely on the use of non-nested triangulations. These definitions can also be founded on agglomeration/aggregation techniques in a purely algebraic manner. This paper analyzes these two options, shows the connections of the volume-agglomeration method with algebraic methods and proposes a new definition of prolongation operator suitable for the application of the volume-agglomeration method to elliptic problems.

  15. Extending the applicability of multigrid methods

    SciTech Connect

    Brannick, J; Brezina, M; Falgout, R; Manteuffel, T; McCormick, S; Ruge, J; Sheehan, B; Xu, J; Zikatanov, L

    2006-09-25

    Multigrid methods are ideal for solving the increasingly large-scale problems that arise in numerical simulations of physical phenomena because of their potential for computational costs and memory requirements that scale linearly with the degrees of freedom. Unfortunately, they have been historically limited by their applicability to elliptic-type problems and the need for special handling in their implementation. In this paper, we present an overview of several recent theoretical and algorithmic advances made by the TOPS multigrid partners and their collaborators in extending applicability of multigrid methods. Specific examples that are presented include quantum chromodynamics, radiation transport, and electromagnetics.

  16. A multigrid method for the Euler equations

    NASA Technical Reports Server (NTRS)

    Jespersen, D. C.

    1983-01-01

    A multigrid algorithm has been developed for the numerical solution of the steady two-dimensional Euler equations. Flux vector splitting and one-sided differencing are employed to define the spatial discretization. Newton's method is used to solve the nonlinear equations, and a multigrid solver is used on each linear problem. The relaxation scheme for the linear problems is symmetric Gauss-Seidel. Standard restriction and interpolation operators are employed. Local mode analysis is used to predict the convergence rate of the multigrid process on the linear problems. Computed results for transonic flows over airfoils are presented.

  17. Multigrid Methods for EHL Problems

    NASA Technical Reports Server (NTRS)

    Nurgat, Elyas; Berzins, Martin

    1996-01-01

    In many bearings and contacts, forces are transmitted through thin continuous fluid films which separate two contacting elements. Objects in contact are normally subjected to friction and wear which can be reduced effectively by using lubricants. If the lubricant film is sufficiently thin to prevent the opposing solids from coming into contact and carries the entire load, then we have hydrodynamic lubrication, where the lubricant film is determined by the motion and geometry of the solids. However, for loaded contacts of low geometrical conformity, such as gears, rolling contact bearings and cams, this is not the case due to high pressures and this is referred to as Elasto-Hydrodynamic Lubrication (EHL) In EHL, elastic deformation of the contacting elements and the increase in fluid viscosity with pressure are very significant and cannot be ignored. Since the deformation results in changing the geometry of the lubricating film, which in turn determines the pressure distribution, an EHL mathematical model must simultaneously satisfy the complex elasticity (integral) and the Reynolds lubrication (differential) equations. The nonlinear and coupled nature of the two equations makes numerical calculations computationally intensive. This is especially true for highly loaded problems found in practice. One novel feature of these problems is that the solution may exhibit sharp pressure spikes in the outlet region. To this date both finite element and finite difference methods have been used to solve EHL problems with perhaps greater emphasis on the use of the finite difference approach. In both cases, a major computational difficulty is ensuring convergence of the nonlinear equations solver to a steady state solution. Two successful methods for achieving this are direct iteration and multigrid methods. Direct iteration methods (e.g Gauss Seidel) have long been used in conjunction with finite difference discretizations on regular meshes. Perhaps one of the best examples of

  18. A full multigrid method for eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Chen, Hongtao; Xie, Hehu; Xu, Fei

    2016-10-01

    In this paper, a full (nested) multigrid scheme is proposed to solve eigenvalue problems. The idea here is to use a correction method to transform the eigenvalue problem solving to a series of corresponding boundary value problem solving and eigenvalue problems defined on a very low-dimensional finite element space. The boundary value problems which are defined on a sequence of multilevel finite element spaces can be solved by some multigrid iteration steps. The computational work of this new scheme can reach the same optimal order as solving the corresponding boundary value problem by the full multigrid method. Therefore, this type of full multigrid method improves the overfull efficiency of the eigenvalue problem solving.

  19. The development of an algebraic multigrid algorithm for symmetric positive definite linear systems

    SciTech Connect

    Vanek, P.; Mandel, J.; Brezina, M.

    1996-12-31

    An algebraic multigrid algorithm for symmetric, positive definite linear systems is developed based on the concept of prolongation by smoothed aggregation. Coarse levels are generated automatically. We present a set of requirements motivated heuristically by a convergence theory. The algorithm then attempts to satisfy the requirements. Input to the method are the coefficient matrix and zero energy modes, which are determined from nodal coordinates and knowledge of the differential equation. Efficiency of the resulting algorithm is demonstrated by computational results on real world problems from solid elasticity, plate blending, and shells.

  20. An improved convergence analysis of smoothed aggregation algebraic multigrid

    SciTech Connect

    Brezina, Marian; Vaněk, Petr; Vassilevski, Panayot S.

    2011-03-02

    We present an improved analysis of the smoothed aggregation (SA) alge- braic multigrid method (AMG) extending the original proof in [SA] and its modification in [Va08]. The new result imposes fewer restrictions on the aggregates that makes it eas- ier to verify in practice. Also, we extend a result in [Van] that allows us to use aggressive coarsening at all levels due to the special properties of the polynomial smoother, that we use and analyze, and thus provide a multilevel convergence estimate with bounds independent of the coarsening ratio.

  1. A multigrid method for variational inequalities

    SciTech Connect

    Oliveira, S.; Stewart, D.E.; Wu, W.

    1996-12-31

    Multigrid methods have been used with great success for solving elliptic partial differential equations. Penalty methods have been successful in solving finite-dimensional quadratic programs. In this paper these two techniques are combined to give a fast method for solving obstacle problems. A nonlinear penalized problem is solved using Newton`s method for large values of a penalty parameter. Multigrid methods are used to solve the linear systems in Newton`s method. The overall numerical method developed is based on an exterior penalty function, and numerical results showing the performance of the method have been obtained.

  2. Multigrid methods with applications to reservoir simulation

    SciTech Connect

    Xiao, Shengyou

    1994-05-01

    Multigrid methods are studied for solving elliptic partial differential equations. Focus is on parallel multigrid methods and their use for reservoir simulation. Multicolor Fourier analysis is used to analyze the behavior of standard multigrid methods for problems in one and two dimensions. Relation between multicolor and standard Fourier analysis is established. Multiple coarse grid methods for solving model problems in 1 and 2 dimensions are considered; at each coarse grid level we use more than one coarse grid to improve convergence. For a given Dirichlet problem, a related extended problem is first constructed; a purification procedure can be used to obtain Moore-Penrose solutions of the singular systems encountered. For solving anisotropic equations, semicoarsening and line smoothing techniques are used with multiple coarse grid methods to improve convergence. Two-level convergence factors are estimated using multicolor. In the case where each operator has the same stencil on each grid point on one level, exact multilevel convergence factors can be obtained. For solving partial differential equations with discontinuous coefficients, interpolation and restriction operators should include information about the equation coefficients. Matrix-dependent interpolation and restriction operators based on the Schur complement can be used in nonsymmetric cases. A semicoarsening multigrid solver with these operators is used in UTCOMP, a 3-D, multiphase, multicomponent, compositional reservoir simulator. The numerical experiments are carried out on different computing systems. Results indicate that the multigrid methods are promising.

  3. Multigrid methods for numerical simulation of laminar diffusion flames

    NASA Technical Reports Server (NTRS)

    Liu, C.; Liu, Z.; Mccormick, S.

    1993-01-01

    This paper documents the result of a computational study of multigrid methods for numerical simulation of 2D diffusion flames. The focus is on a simplified combustion model, which is assumed to be a single step, infinitely fast and irreversible chemical reaction with five species (C3H8, O2, N2, CO2 and H2O). A fully-implicit second-order hybrid scheme is developed on a staggered grid, which is stretched in the streamwise coordinate direction. A full approximation multigrid scheme (FAS) based on line distributive relaxation is developed as a fast solver for the algebraic equations arising at each time step. Convergence of the process for the simplified model problem is more than two-orders of magnitude faster than other iterative methods, and the computational results show good grid convergence, with second-order accuracy, as well as qualitatively agreement with the results of other researchers.

  4. Spectral multigrid methods for elliptic equations

    NASA Technical Reports Server (NTRS)

    Zang, T. A.; Wong, Y. S.; Hussaini, M. Y.

    1981-01-01

    An alternative approach which employs multigrid concepts in the iterative solution of spectral equations was examined. Spectral multigrid methods are described for self adjoint elliptic equations with either periodic or Dirichlet boundary conditions. For realistic fluid calculations the relevant boundary conditions are periodic in at least one (angular) coordinate and Dirichlet (or Neumann) in the remaining coordinates. Spectral methods are always effective for flows in strictly rectangular geometries since corners generally introduce singularities into the solution. If the boundary is smooth, then mapping techniques are used to transform the problem into one with a combination of periodic and Dirichlet boundary conditions. It is suggested that spectral multigrid methods in these geometries can be devised by combining the techniques.

  5. Relaxation schemes for Chebyshev spectral multigrid methods

    NASA Technical Reports Server (NTRS)

    Kang, Yimin; Fulton, Scott R.

    1993-01-01

    Two relaxation schemes for Chebyshev spectral multigrid methods are presented for elliptic equations with Dirichlet boundary conditions. The first scheme is a pointwise-preconditioned Richardson relaxation scheme and the second is a line relaxation scheme. The line relaxation scheme provides an efficient and relatively simple approach for solving two-dimensional spectral equations. Numerical examples and comparisons with other methods are given.

  6. Spectral multigrid methods for elliptic equations II

    NASA Technical Reports Server (NTRS)

    Zang, T. A.; Wong, Y. S.; Hussaini, M. Y.

    1984-01-01

    A detailed description of spectral multigrid methods is provided. This includes the interpolation and coarse-grid operators for both periodic and Dirichlet problems. The spectral methods for periodic problems use Fourier series and those for Dirichlet problems are based upon Chebyshev polynomials. An improved preconditioning for Dirichlet problems is given. Numerical examples and practical advice are included.

  7. Spectral multigrid methods for elliptic equations 2

    NASA Technical Reports Server (NTRS)

    Zang, T. A.; Wong, Y. S.; Hussaini, M. Y.

    1983-01-01

    A detailed description of spectral multigrid methods is provided. This includes the interpolation and coarse-grid operators for both periodic and Dirichlet problems. The spectral methods for periodic problems use Fourier series and those for Dirichlet problems are based upon Chebyshev polynomials. An improved preconditioning for Dirichlet problems is given. Numerical examples and practical advice are included.

  8. Lecture Notes on Multigrid Methods

    SciTech Connect

    Vassilevski, P S

    2010-06-28

    The Lecture Notes are primarily based on a sequence of lectures given by the author while been a Fulbright scholar at 'St. Kliment Ohridski' University of Sofia, Sofia, Bulgaria during the winter semester of 2009-2010 academic year. The notes are somewhat expanded version of the actual one semester class he taught there. The material covered is slightly modified and adapted version of similar topics covered in the author's monograph 'Multilevel Block-Factorization Preconditioners' published in 2008 by Springer. The author tried to keep the notes as self-contained as possible. That is why the lecture notes begin with some basic introductory matrix-vector linear algebra, numerical PDEs (finite element) facts emphasizing the relations between functions in finite dimensional spaces and their coefficient vectors and respective norms. Then, some additional facts on the implementation of finite elements based on relation tables using the popular compressed sparse row (CSR) format are given. Also, typical condition number estimates of stiffness and mass matrices, the global matrix assembly from local element matrices are given as well. Finally, some basic introductory facts about stationary iterative methods, such as Gauss-Seidel and its symmetrized version are presented. The introductory material ends up with the smoothing property of the classical iterative methods and the main definition of two-grid iterative methods. From here on, the second part of the notes begins which deals with the various aspects of the principal TG and the numerous versions of the MG cycles. At the end, in part III, we briefly introduce algebraic versions of MG referred to as AMG, focusing on classes of AMG specialized for finite element matrices.

  9. Parallel Multigrid Equation Solver

    2001-09-07

    Prometheus is a fully parallel multigrid equation solver for matrices that arise in unstructured grid finite element applications. It includes a geometric and an algebraic multigrid method and has solved problems of up to 76 mullion degrees of feedom, problems in linear elasticity on the ASCI blue pacific and ASCI red machines.

  10. NON-CONFORMING FINITE ELEMENTS; MESH GENERATION, ADAPTIVITY AND RELATED ALGEBRAIC MULTIGRID AND DOMAIN DECOMPOSITION METHODS IN MASSIVELY PARALLEL COMPUTING ENVIRONMENT

    SciTech Connect

    Lazarov, R; Pasciak, J; Jones, J

    2002-02-01

    Construction, analysis and numerical testing of efficient solution techniques for solving elliptic PDEs that allow for parallel implementation have been the focus of the research. A number of discretization and solution methods for solving second order elliptic problems that include mortar and penalty approximations and domain decomposition methods for finite elements and finite volumes have been investigated and analyzed. Techniques for parallel domain decomposition algorithms in the framework of PETC and HYPRE have been studied and tested. Hierarchical parallel grid refinement and adaptive solution methods have been implemented and tested on various model problems. A parallel code implementing the mortar method with algebraically constructed multiplier spaces was developed.

  11. Multigrid Methods in Electronic Structure Calculations

    NASA Astrophysics Data System (ADS)

    Briggs, Emil

    1996-03-01

    Multigrid techniques have become the method of choice for a broad range of computational problems. Their use in electronic structure calculations introduces a new set of issues when compared to traditional plane wave approaches. We have developed a set of techniques that address these issues and permit multigrid algorithms to be applied to the electronic structure problem in an efficient manner. In our approach the Kohn-Sham equations are discretized on a real-space mesh using a compact representation of the Hamiltonian. The resulting equations are solved directly on the mesh using multigrid iterations. This produces rapid convergence rates even for ill-conditioned systems with large length and/or energy scales. The method has been applied to both periodic and non-periodic systems containing over 400 atoms and the results are in very good agreement with both theory and experiment. Example applications include a vacancy in diamond, an isolated C60 molecule, and a 64-atom cell of GaN with the Ga d-electrons in valence which required a 250 Ry cutoff. A particular strength of a real-space multigrid approach is its ready adaptability to massively parallel computer architectures. The compact representation of the Hamiltonian is especially well suited to such machines. Tests on the Cray-T3D have shown nearly linear scaling of the execution time up to the maximum number of processors (512). The MPP implementation has been used for studies of a large Amyloid Beta Peptide (C_146O_45N_42H_210) found in the brains of Alzheimers disease patients. Further applications of the multigrid method will also be described. (in collaboration D. J. Sullivan and J. Bernholc)

  12. Grandchild of the frequency: Decomposition multigrid method

    SciTech Connect

    Dendy, J.E. Jr.; Tazartes, C.C.

    1994-12-31

    Previously the authors considered the frequency decomposition multigrid method and rejected it because it was not robust for problems with discontinuous coefficients. In this paper they show how to modify the method so as to obtain such robustness while retaining robustness for problems with anisotropic coefficients. They also discuss application of this method to a problem arising in global ocean modeling on the CM-5.

  13. Multigrid techniques for unstructured meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1995-01-01

    An overview of current multigrid techniques for unstructured meshes is given. The basic principles of the multigrid approach are first outlined. Application of these principles to unstructured mesh problems is then described, illustrating various different approaches, and giving examples of practical applications. Advanced multigrid topics, such as the use of algebraic multigrid methods, and the combination of multigrid techniques with adaptive meshing strategies are dealt with in subsequent sections. These represent current areas of research, and the unresolved issues are discussed. The presentation is organized in an educational manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.

  14. Implementing abstract multigrid or multilevel methods

    NASA Technical Reports Server (NTRS)

    Douglas, Craig C.

    1993-01-01

    Multigrid methods can be formulated as an algorithm for an abstract problem that is independent of the partial differential equation, domain, and discretization method. In such an abstract setting, problems not arising from partial differential equations can be treated. A general theory exists for linear problems. The general theory was motivated by a series of abstract solvers (Madpack). The latest version was motivated by the theory. Madpack now allows for a wide variety of iterative and direct solvers, preconditioners, and interpolation and projection schemes, including user callback ones. It allows for sparse, dense, and stencil matrices. Mildly nonlinear problems can be handled. Also, there is a fast, multigrid Poisson solver (two and three dimensions). The type of solvers and design decisions (including language, data structures, external library support, and callbacks) are discussed. Based on the author's experiences with two versions of Madpack, a better approach is proposed. This is based on a mixed language formulation (C and FORTRAN + preprocessor). Reasons for not using FORTRAN, C, or C++ (individually) are given. Implementing the proposed strategy is not difficult.

  15. Time-parallel iterative methods for parabolic PDES: Multigrid waveform relaxation and time-parallel multigrid

    SciTech Connect

    Vandewalle, S.

    1994-12-31

    Time-stepping methods for parabolic partial differential equations are essentially sequential. This prohibits the use of massively parallel computers unless the problem on each time-level is very large. This observation has led to the development of algorithms that operate on more than one time-level simultaneously; that is to say, on grids extending in space and in time. The so-called parabolic multigrid methods solve the time-dependent parabolic PDE as if it were a stationary PDE discretized on a space-time grid. The author has investigated the use of multigrid waveform relaxation, an algorithm developed by Lubich and Ostermann. The algorithm is based on a multigrid acceleration of waveform relaxation, a highly concurrent technique for solving large systems of ordinary differential equations. Another method of this class is the time-parallel multigrid method. This method was developed by Hackbusch and was recently subject of further study by Horton. It extends the elliptic multigrid idea to the set of equations that is derived by discretizing a parabolic problem in space and in time.

  16. Semi-coarsening multigrid methods for parallel computing

    SciTech Connect

    Jones, J.E.

    1996-12-31

    Standard multigrid methods are not well suited for problems with anisotropic coefficients which can occur, for example, on grids that are stretched to resolve a boundary layer. There are several different modifications of the standard multigrid algorithm that yield efficient methods for anisotropic problems. In the paper, we investigate the parallel performance of these multigrid algorithms. Multigrid algorithms which work well for anisotropic problems are based on line relaxation and/or semi-coarsening. In semi-coarsening multigrid algorithms a grid is coarsened in only one of the coordinate directions unlike standard or full-coarsening multigrid algorithms where a grid is coarsened in each of the coordinate directions. When both semi-coarsening and line relaxation are used, the resulting multigrid algorithm is robust and automatic in that it requires no knowledge of the nature of the anisotropy. This is the basic multigrid algorithm whose parallel performance we investigate in the paper. The algorithm is currently being implemented on an IBM SP2 and its performance is being analyzed. In addition to looking at the parallel performance of the basic semi-coarsening algorithm, we present algorithmic modifications with potentially better parallel efficiency. One modification reduces the amount of computational work done in relaxation at the expense of using multiple coarse grids. This modification is also being implemented with the aim of comparing its performance to that of the basic semi-coarsening algorithm.

  17. Convergence acceleration of the Proteus computer code with multigrid methods

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.; Ibraheem, S. O.

    1995-01-01

    This report presents the results of a study to implement convergence acceleration techniques based on the multigrid concept in the two-dimensional and three-dimensional versions of the Proteus computer code. The first section presents a review of the relevant literature on the implementation of the multigrid methods in computer codes for compressible flow analysis. The next two sections present detailed stability analysis of numerical schemes for solving the Euler and Navier-Stokes equations, based on conventional von Neumann analysis and the bi-grid analysis, respectively. The next section presents details of the computational method used in the Proteus computer code. Finally, the multigrid implementation and applications to several two-dimensional and three-dimensional test problems are presented. The results of the present study show that the multigrid method always leads to a reduction in the number of iterations (or time steps) required for convergence. However, there is an overhead associated with the use of multigrid acceleration. The overhead is higher in 2-D problems than in 3-D problems, thus overall multigrid savings in CPU time are in general better in the latter. Savings of about 40-50 percent are typical in 3-D problems, but they are about 20-30 percent in large 2-D problems. The present multigrid method is applicable to steady-state problems and is therefore ineffective in problems with inherently unstable solutions.

  18. Convergence acceleration of the Proteus computer code with multigrid methods

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.; Ibraheem, S. O.

    1992-01-01

    Presented here is the first part of a study to implement convergence acceleration techniques based on the multigrid concept in the Proteus computer code. A review is given of previous studies on the implementation of multigrid methods in computer codes for compressible flow analysis. Also presented is a detailed stability analysis of upwind and central-difference based numerical schemes for solving the Euler and Navier-Stokes equations. Results are given of a convergence study of the Proteus code on computational grids of different sizes. The results presented here form the foundation for the implementation of multigrid methods in the Proteus code.

  19. LDRD Final Report-New Directions for Algebraic Multigrid: Solutions for Large Scale Multiphysics Problems

    SciTech Connect

    Henson, V E

    2003-02-06

    The purpose of this research project was to investigate, design, and implement new algebraic multigrid (AMG) algorithms to enable the effective use of AMG in large-scale multiphysics simulation codes. These problems are extremely large; storage requirements and excessive run-time make direct solvers infeasible. The problems are highly ill-conditioned, so that existing iterative solvers either fail or converge very slowly. While existing AMG algorithms have been shown to be robust and stable for a large class of problems, there are certain problems of great interest to the Laboratory for which no effective algorithm existed prior to this research.

  20. On the Performance of an Algebraic Multigrid Solver on Multicore Clusters

    SciTech Connect

    Baker, A; Schulz, M; Yang, U M

    2009-11-24

    Algebraic multigrid (AMG) solvers have proven to be extremely efficient on distributed-memory architectures. However, when executed on modern multicore cluster architectures, we face new challenges that can significantly harm AMG's performance. We discuss our experiences on such an architecture and present a set of techniques that help users to overcome the associated problems, including thread and process pinning and correct memory associations. We have implemented most of the techniques in a MultiCore SUPport library (MCSup), which helps to map OpenMP applications to multicore machines. We present results using both an MPI-only and a hybrid MPI/OpenMP model.

  1. On the Performance of an Algebraic MultigridSolver on Multicore Clusters

    SciTech Connect

    Baker, A H; Schulz, M; Yang, U M

    2010-04-29

    Algebraic multigrid (AMG) solvers have proven to be extremely efficient on distributed-memory architectures. However, when executed on modern multicore cluster architectures, we face new challenges that can significantly harm AMG's performance. We discuss our experiences on such an architecture and present a set of techniques that help users to overcome the associated problems, including thread and process pinning and correct memory associations. We have implemented most of the techniques in a MultiCore SUPport library (MCSup), which helps to map OpenMP applications to multicore machines. We present results using both an MPI-only and a hybrid MPI/OpenMP model.

  2. Multiple Coarse Grid Multigrid Methods for Solving Elliptic Problems

    NASA Technical Reports Server (NTRS)

    Xiao, Shengyou; Young, David

    1996-01-01

    In this paper we describe some classes of multigrid methods for solving large linear systems arising in the solution by finite difference methods of certain boundary value problems involving Poisson's equation on rectangular regions. If parallel computing systems are used, then with standard multigrid methods many of the processors will be idle when one is working at the coarsest grid levels. We describe the use of Multiple Coarse Grid MultiGrid (MCGMG) methods. Here one first constructs a periodic set of equations corresponding to the given system. One then constructs a set of coarse grids such that for each grid corresponding to the grid size h there are four grids corresponding to the grid size 2*h. Multigrid operations such as restriction of residuals and interpolation of corrections are done in parallel at each grid level. For suitable choices of the multigrid operators the MCGMG method is equivalent to the Parallel Superconvergent MultiGrid (PSMG) method of Frederickson and McBryan. The convergence properties of MCGMG methods can be accurately analyzed using spectral methods.

  3. Relaxation schemes for spectral multigrid methods

    NASA Technical Reports Server (NTRS)

    Phillips, Timothy N.

    1987-01-01

    The effectiveness of relaxation schemes for solving the systems of algebraic equations which arise from spectral discretizations of elliptic equations is examined. Iterative methods are an attractive alternative to direct methods because Fourier transform techniques enable the discrete matrix-vector products to be computed almost as efficiently as for corresponding but sparse finite difference discretizations. Preconditioning is found to be essential for acceptable rates of convergence. Preconditioners based on second-order finite difference methods are used. A comparison is made of the performance of different relaxation methods on model problems with a variety of conditions specified around the boundary. The investigations show that iterations based on incomplete LU decompositions provide the most efficient methods for solving these algebraic systems.

  4. A Critical Study of Agglomerated Multigrid Methods for Diffusion

    NASA Technical Reports Server (NTRS)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.

    2011-01-01

    Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Convergence rates of multigrid cycles are verified with quantitative analysis methods in which parts of the two-grid cycle are replaced by their idealized counterparts.

  5. An automatic multigrid method for the solution of sparse linear systems

    NASA Technical Reports Server (NTRS)

    Shapira, Yair; Israeli, Moshe; Sidi, Avram

    1993-01-01

    An automatic version of the multigrid method for the solution of linear systems arising from the discretization of elliptic PDE's is presented. This version is based on the structure of the algebraic system solely, and does not use the original partial differential operator. Numerical experiments show that for the Poisson equation the rate of convergence of our method is equal to that of classical multigrid methods. Moreover, the method is robust in the sense that its high rate of convergence is conserved for other classes of problems: non-symmetric, hyperbolic (even with closed characteristics) and problems on non-uniform grids. No double discretization or special treatment of sub-domains (e.g. boundaries) is needed. When supplemented with a vector extrapolation method, high rates of convergence are achieved also for anisotropic and discontinuous problems and also for indefinite Helmholtz equations. A new double discretization strategy is proposed for finite and spectral element schemes and is found better than known strategies.

  6. Smoothed aggregation adaptive spectral element-based algebraic multigrid

    SciTech Connect

    2015-01-20

    SAAMGE provides parallel methods for building multilevel hierarchies and solvers that can be used for elliptic equations with highly heterogeneous coefficients. Additionally, hierarchy adaptation is implemented allowing solving multiple problems with close coefficients without rebuilding the hierarchy.

  7. Multigrid Methods for Aerodynamic Problems in Complex Geometries

    NASA Technical Reports Server (NTRS)

    Caughey, David A.

    1995-01-01

    Work has been directed at the development of efficient multigrid methods for the solution of aerodynamic problems involving complex geometries, including the development of computational methods for the solution of both inviscid and viscous transonic flow problems. The emphasis is on problems of complex, three-dimensional geometry. The methods developed are based upon finite-volume approximations to both the Euler and the Reynolds-Averaged Navier-Stokes equations. The methods are developed for use on multi-block grids using diagonalized implicit multigrid methods to achieve computational efficiency. The work is focused upon aerodynamic problems involving complex geometries, including advanced engine inlets.

  8. A Critical Study of Agglomerated Multigrid Methods for Diffusion

    NASA Technical Reports Server (NTRS)

    Thomas, James L.; Nishikawa, Hiroaki; Diskin, Boris

    2009-01-01

    Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and highly stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Actual cycle results are verified using quantitative analysis methods in which parts of the cycle are replaced by their idealized counterparts.

  9. Multigrid iterative method with adaptive spatial support for computed tomography reconstruction from few-view data

    NASA Astrophysics Data System (ADS)

    Lee, Ping-Chang

    2014-03-01

    Computed tomography (CT) plays a key role in modern medical system, whether it be for diagnosis or therapy. As an increased risk of cancer development is associated with exposure to radiation, reducing radiation exposure in CT becomes an essential issue. Based on the compressive sensing (CS) theory, iterative based method with total variation (TV) minimization is proven to be a powerful framework for few-view tomographic image reconstruction. Multigrid method is an iterative method for solving both linear and nonlinear systems, especially when the system contains a huge number of components. In medical imaging, image background is often defined by zero intensity, thus attaining spatial support of the image, which is helpful for iterative reconstruction. In the proposed method, the image support is not considered as a priori knowledge. Rather, it evolves during the reconstruction process. Based on the CS framework, we proposed a multigrid method with adaptive spatial support constraint. The simultaneous algebraic reconstruction (SART) with TV minimization is implemented for comparison purpose. The numerical result shows: 1. Multigrid method has better performance while less than 60 views of projection data were used, 2. Spatial support highly improves the CS reconstruction, and 3. When few views of projection data were measured, our method performs better than the SART+TV method with spatial support constraint.

  10. A multigrid solution method for mixed hybrid finite elements

    SciTech Connect

    Schmid, W.

    1996-12-31

    We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.

  11. Adaptive Algebraic Multigrid for Finite Element Elliptic Equations with Random Coefficients

    SciTech Connect

    Kalchev, D

    2012-04-02

    This thesis presents a two-grid algorithm based on Smoothed Aggregation Spectral Element Agglomeration Algebraic Multigrid (SA-{rho}AMGe) combined with adaptation. The aim is to build an efficient solver for the linear systems arising from discretization of second-order elliptic partial differential equations (PDEs) with stochastic coefficients. Examples include PDEs that model subsurface flow with random permeability field. During a Markov Chain Monte Carlo (MCMC) simulation process, that draws PDE coefficient samples from a certain distribution, the PDE coefficients change, hence the resulting linear systems to be solved change. At every such step the system (discretized PDE) needs to be solved and the computed solution used to evaluate some functional(s) of interest that then determine if the coefficient sample is acceptable or not. The MCMC process is hence computationally intensive and requires the solvers used to be efficient and fast. This fact that at every step of MCMC the resulting linear system changes, makes an already existing solver built for the old problem perhaps not as efficient for the problem corresponding to the new sampled coefficient. This motivates the main goal of our study, namely, to adapt an already existing solver to handle the problem (with changed coefficient) with the objective to achieve this goal to be faster and more efficient than building a completely new solver from scratch. Our approach utilizes the local element matrices (for the problem with changed coefficients) to build local problems associated with constructed by the method agglomerated elements (a set of subdomains that cover the given computational domain). We solve a generalized eigenproblem for each set in a subspace spanned by the previous local coarse space (used for the old solver) and a vector, component of the error, that the old solver cannot handle. A portion of the spectrum of these local eigen-problems (corresponding to eigenvalues close to zero) form the

  12. Seventh Copper Mountain Conference on Multigrid Methods. Part 2

    NASA Technical Reports Server (NTRS)

    Melson, N. Duane (Editor); Manteuffel, Tom A. (Editor); McCormick, Steve F. (Editor); Douglas, Craig C. (Editor)

    1996-01-01

    The Seventh Copper Mountain Conference on Multigrid Methods was held on April 2-7, 1995 at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The vibrancy and diversity in this field are amply expressed in these important papers, and the collection clearly shows the continuing rapid growth of the use of multigrid acceleration techniques.

  13. Geometric multigrid for an implicit-time immersed boundary method

    SciTech Connect

    Guy, Robert D.; Philip, Bobby; Griffith, Boyce E.

    2014-10-12

    The immersed boundary (IB) method is an approach to fluid-structure interaction that uses Lagrangian variables to describe the deformations and resulting forces of the structure and Eulerian variables to describe the motion and forces of the fluid. Explicit time stepping schemes for the IB method require solvers only for Eulerian equations, for which fast Cartesian grid solution methods are available. Such methods are relatively straightforward to develop and are widely used in practice but often require very small time steps to maintain stability. Implicit-time IB methods permit the stable use of large time steps, but efficient implementations of such methods require significantly more complex solvers that effectively treat both Lagrangian and Eulerian variables simultaneously. Moreover, several different approaches to solving the coupled Lagrangian-Eulerian equations have been proposed, but a complete understanding of this problem is still emerging. This paper presents a geometric multigrid method for an implicit-time discretization of the IB equations. This multigrid scheme uses a generalization of box relaxation that is shown to handle problems in which the physical stiffness of the structure is very large. Numerical examples are provided to illustrate the effectiveness and efficiency of the algorithms described herein. Finally, these tests show that using multigrid as a preconditioner for a Krylov method yields improvements in both robustness and efficiency as compared to using multigrid as a solver. They also demonstrate that with a time step 100–1000 times larger than that permitted by an explicit IB method, the multigrid-preconditioned implicit IB method is approximately 50–200 times more efficient than the explicit method.

  14. On several aspects and applications of the multigrid method for solving partial differential equations

    NASA Technical Reports Server (NTRS)

    Dinar, N.

    1978-01-01

    Several aspects of multigrid methods are briefly described. The main subjects include the development of very efficient multigrid algorithms for systems of elliptic equations (Cauchy-Riemann, Stokes, Navier-Stokes), as well as the development of control and prediction tools (based on local mode Fourier analysis), used to analyze, check and improve these algorithms. Preliminary research on multigrid algorithms for time dependent parabolic equations is also described. Improvements in existing multigrid processes and algorithms for elliptic equations were studied.

  15. Multigrid methods for bifurcation problems: The self adjoint case

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo

    1987-01-01

    This paper deals with multigrid methods for computational problems that arise in the theory of bifurcation and is restricted to the self adjoint case. The basic problem is to solve for arcs of solutions, a task that is done successfully with an arc length continuation method. Other important issues are, for example, detecting and locating singular points as part of the continuation process, switching branches at bifurcation points, etc. Multigrid methods have been applied to continuation problems. These methods work well at regular points and at limit points, while they may encounter difficulties in the vicinity of bifurcation points. A new continuation method that is very efficient also near bifurcation points is presented here. The other issues mentioned above are also treated very efficiently with appropriate multigrid algorithms. For example, it is shown that limit points and bifurcation points can be solved for directly by a multigrid algorithm. Moreover, the algorithms presented here solve the corresponding problems in just a few work units (about 10 or less), where a work unit is the work involved in one local relaxation on the finest grid.

  16. Geometric multigrid for an implicit-time immersed boundary method

    DOE PAGES

    Guy, Robert D.; Philip, Bobby; Griffith, Boyce E.

    2014-10-12

    The immersed boundary (IB) method is an approach to fluid-structure interaction that uses Lagrangian variables to describe the deformations and resulting forces of the structure and Eulerian variables to describe the motion and forces of the fluid. Explicit time stepping schemes for the IB method require solvers only for Eulerian equations, for which fast Cartesian grid solution methods are available. Such methods are relatively straightforward to develop and are widely used in practice but often require very small time steps to maintain stability. Implicit-time IB methods permit the stable use of large time steps, but efficient implementations of such methodsmore » require significantly more complex solvers that effectively treat both Lagrangian and Eulerian variables simultaneously. Moreover, several different approaches to solving the coupled Lagrangian-Eulerian equations have been proposed, but a complete understanding of this problem is still emerging. This paper presents a geometric multigrid method for an implicit-time discretization of the IB equations. This multigrid scheme uses a generalization of box relaxation that is shown to handle problems in which the physical stiffness of the structure is very large. Numerical examples are provided to illustrate the effectiveness and efficiency of the algorithms described herein. Finally, these tests show that using multigrid as a preconditioner for a Krylov method yields improvements in both robustness and efficiency as compared to using multigrid as a solver. They also demonstrate that with a time step 100–1000 times larger than that permitted by an explicit IB method, the multigrid-preconditioned implicit IB method is approximately 50–200 times more efficient than the explicit method.« less

  17. Comparison of an algebraic multigrid algorithm to two iterative solvers used for modeling ground water flow and transport

    USGS Publications Warehouse

    Detwiler, R.L.; Mehl, S.; Rajaram, H.; Cheung, W.W.

    2002-01-01

    Numerical solution of large-scale ground water flow and transport problems is often constrained by the convergence behavior of the iterative solvers used to solve the resulting systems of equations. We demonstrate the ability of an algebraic multigrid algorithm (AMG) to efficiently solve the large, sparse systems of equations that result from computational models of ground water flow and transport in large and complex domains. Unlike geometric multigrid methods, this algorithm is applicable to problems in complex flow geometries, such as those encountered in pore-scale modeling of two-phase flow and transport. We integrated AMG into MODFLOW 2000 to compare two- and three-dimensional flow simulations using AMG to simulations using PCG2, a preconditioned conjugate gradient solver that uses the modified incomplete Cholesky preconditioner and is included with MODFLOW 2000. CPU times required for convergence with AMG were up to 140 times faster than those for PCG2. The cost of this increased speed was up to a nine-fold increase in required random access memory (RAM) for the three-dimensional problems and up to a four-fold increase in required RAM for the two-dimensional problems. We also compared two-dimensional numerical simulations of steady-state transport using AMG and the generalized minimum residual method with an incomplete LU-decomposition preconditioner. For these transport simulations, AMG yielded increased speeds of up to 17 times with only a 20% increase in required RAM. The ability of AMG to solve flow and transport problems in large, complex flow systems and its ready availability make it an ideal solver for use in both field-scale and pore-scale modeling.

  18. A Full Multi-Grid Method for the Solution of the Cell Vertex Finite Volume Cauchy-Riemann Equations

    NASA Technical Reports Server (NTRS)

    Borzi, A.; Morton, K. W.; Sueli, E.; Vanmaele, M.

    1996-01-01

    The system of inhomogeneous Cauchy-Riemann equations defined on a square domain and subject to Dirichlet boundary conditions is considered. This problem is discretised by using the cell vertex finite volume method on quadrilateral meshes. The resulting algebraic problem is overdetermined and the solution is defined in a least squares sense. By this approach a consistent algebraic problem is obtained which differs from the original one by O(h(exp 2)) perturbations of the right-hand side. A suitable cell-based convergent smoothing iteration is presented which is naturally linked to the least squares formulation. Hence, a standard multi-grid algorithm is reported which combines the given smoother and cell-based transfer operators. Some remarkable reduction properties of these operators are shown. A full multi-grid method is discussed which solves the discrete problem to the level of truncation error by employing one multi-grid cycle at each current level of discretisation. Experiments and applications of the full multi-grid scheme are presented.

  19. Monolithic multigrid methods for two-dimensional resistive magnetohydrodynamics

    DOE PAGES

    Adler, James H.; Benson, Thomas R.; Cyr, Eric C.; MacLachlan, Scott P.; Tuminaro, Raymond S.

    2016-01-06

    Magnetohydrodynamic (MHD) representations are used to model a wide range of plasma physics applications and are characterized by a nonlinear system of partial differential equations that strongly couples a charged fluid with the evolution of electromagnetic fields. The resulting linear systems that arise from discretization and linearization of the nonlinear problem are generally difficult to solve. In this paper, we investigate multigrid preconditioners for this system. We consider two well-known multigrid relaxation methods for incompressible fluid dynamics: Braess--Sarazin relaxation and Vanka relaxation. We first extend these to the context of steady-state one-fluid viscoresistive MHD. Then we compare the two relaxationmore » procedures within a multigrid-preconditioned GMRES method employed within Newton's method. To isolate the effects of the different relaxation methods, we use structured grids, inf-sup stable finite elements, and geometric interpolation. Furthermore, we present convergence and timing results for a two-dimensional, steady-state test problem.« less

  20. The Sixth Copper Mountain Conference on Multigrid Methods, part 2

    NASA Technical Reports Server (NTRS)

    Melson, N. Duane (Editor); Mccormick, Steve F. (Editor); Manteuffel, Thomas A. (Editor)

    1993-01-01

    The Sixth Copper Mountain Conference on Multigrid Methods was held on April 4-9, 1993, at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection clearly shows its rapid trend to further diversity and depth.

  1. Seventh Copper Mountain Conference on Multigrid Methods. Part 1

    NASA Technical Reports Server (NTRS)

    Melson, N. Duane; Manteuffel, Tom A.; McCormick, Steve F.; Douglas, Craig C.

    1996-01-01

    The Seventh Copper Mountain Conference on Multigrid Methods was held on 2-7 Apr. 1995 at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection shows its rapid trend to further diversity and depth.

  2. The Sixth Copper Mountain Conference on Multigrid Methods, part 1

    NASA Technical Reports Server (NTRS)

    Melson, N. Duane (Editor); Manteuffel, T. A. (Editor); Mccormick, S. F. (Editor)

    1993-01-01

    The Sixth Copper Mountain Conference on Multigrid Methods was held on 4-9 Apr. 1993, at Copper Mountain, CO. This book is a collection of many of the papers presented at the conference and as such represents the conference proceedings. NASA LaRC graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection clearly shows its rapid trend to further diversity and depth.

  3. Multigrid methods and the surface consistent equations of Geophysics

    NASA Astrophysics Data System (ADS)

    Millar, John

    The surface consistent equations are a large linear system that is frequently used in signal enhancement for land seismic surveys. Different signatures may be consistent with a particular dynamite (or other) source. Each receiver and the conditions around the receiver will have different impact on the signal. Seismic deconvolution operators, amplitude corrections and static shifts of traces are calculated using the surface consistent equations, both in commercial and scientific seismic processing software. The system of equations is singular, making direct methods such as Gaussian elimination impossible to implement. Iterative methods such as Gauss-Seidel and conjugate gradient are frequently used. A limitation in the nature of the methods leave the long wavelengths of the solution poorly resolved. To reduce the limitations of traditional iterative methods, we employ a multigrid method. Multigrid methods re-sample the entire system of equations on a more coarse grid. An iterative method is employed on the coarse grid. The long wavelengths of the solutions that traditional iterative methods were unable to resolve are calculated on the reduced system of equations. The coarse estimate can be interpolated back up to the original sample rate, and refined using a standard iterative procedure. Multigrid methods provide more accurate solutions to the surface consistent equations, with the largest improvement concentrated in the long wavelengths. Synthetic models and tests on field data show that multigrid solutions to the system of equations can significantly increase the resolution of the seismic data, when used to correct both static time shifts and in calculating deconvolution operators. The first chapter of this thesis is a description of the physical model we are addressing. It reviews some of the literature concerning the surface consistent equations, and provides background on the nature of the problem. Chapter 2 contains a review of iterative and multigrid methods

  4. Algebraic multigrid preconditioning within parallel finite-element solvers for 3-D electromagnetic modelling problems in geophysics

    NASA Astrophysics Data System (ADS)

    Koldan, Jelena; Puzyrev, Vladimir; de la Puente, Josep; Houzeaux, Guillaume; Cela, José María

    2014-06-01

    We present an elaborate preconditioning scheme for Krylov subspace methods which has been developed to improve the performance and reduce the execution time of parallel node-based finite-element (FE) solvers for 3-D electromagnetic (EM) numerical modelling in exploration geophysics. This new preconditioner is based on algebraic multigrid (AMG) that uses different basic relaxation methods, such as Jacobi, symmetric successive over-relaxation (SSOR) and Gauss-Seidel, as smoothers and the wave front algorithm to create groups, which are used for a coarse-level generation. We have implemented and tested this new preconditioner within our parallel nodal FE solver for 3-D forward problems in EM induction geophysics. We have performed series of experiments for several models with different conductivity structures and characteristics to test the performance of our AMG preconditioning technique when combined with biconjugate gradient stabilized method. The results have shown that, the more challenging the problem is in terms of conductivity contrasts, ratio between the sizes of grid elements and/or frequency, the more benefit is obtained by using this preconditioner. Compared to other preconditioning schemes, such as diagonal, SSOR and truncated approximate inverse, the AMG preconditioner greatly improves the convergence of the iterative solver for all tested models. Also, when it comes to cases in which other preconditioners succeed to converge to a desired precision, AMG is able to considerably reduce the total execution time of the forward-problem code-up to an order of magnitude. Furthermore, the tests have confirmed that our AMG scheme ensures grid-independent rate of convergence, as well as improvement in convergence regardless of how big local mesh refinements are. In addition, AMG is designed to be a black-box preconditioner, which makes it easy to use and combine with different iterative methods. Finally, it has proved to be very practical and efficient in the

  5. Multigrid method for the equilibrium equations of elasticity using a compact scheme

    NASA Technical Reports Server (NTRS)

    Taasan, S.

    1986-01-01

    A compact difference scheme is derived for treating the equilibrium equations of elasticity. The scheme is inconsistent and unstable. A multigrid method which takes into account these properties is described. The solution of the discrete equations, up to the level of discretization errors, is obtained by this method in just two multigrid cycles.

  6. Application of multi-grid methods for solving the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1989-01-01

    The application of a class of multi-grid methods to the solution of the Navier-Stokes equations for two-dimensional laminar flow problems is discussed. The methods consist of combining the full approximation scheme-full multi-grid technique (FAS-FMG) with point-, line-, or plane-relaxation routines for solving the Navier-Stokes equations in primitive variables. The performance of the multi-grid methods is compared to that of several single-grid methods. The results show that much faster convergence can be procured through the use of the multi-grid approach than through the various suggestions for improving single-grid methods. The importance of the choice of relaxation scheme for the multi-grid method is illustrated.

  7. Application of multi-grid methods for solving the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1989-01-01

    This paper presents the application of a class of multi-grid methods to the solution of the Navier-Stokes equations for two-dimensional laminar flow problems. The methods consists of combining the full approximation scheme-full multi-grid technique (FAS-FMG) with point-, line- or plane-relaxation routines for solving the Navier-Stokes equations in primitive variables. The performance of the multi-grid methods is compared to those of several single-grid methods. The results show that much faster convergence can be procured through the use of the multi-grid approach than through the various suggestions for improving single-grid methods. The importance of the choice of relaxation scheme for the multi-grid method is illustrated.

  8. Final Report on Subcontract B591217: Multigrid Methods for Systems of PDEs

    SciTech Connect

    Xu, J; Brannick, J J; Zikatanov, L

    2011-10-25

    Progress is summarized in the following areas of study: (1) Compatible relaxation; (2) Improving aggregation-based MG solver performance - variable cycle; (3) First Order System Least Squares (FOSLS) for LQCD; (4) Auxiliary space preconditioners; (5) Bootstrap algebraic multigrid; and (6) Practical applications of AMG and fast auxiliary space preconditioners.

  9. A generalized BPX multigrid framework covering nonnested V-cycle methods

    NASA Astrophysics Data System (ADS)

    Duan, Huo-Yuan; Gao, Shao-Qin; Tan, Roger C. E.; Zhang, Shangyou

    2007-03-01

    More than a decade ago, Bramble, Pasciak and Xu developed a framework in analyzing the multigrid methods with nonnested spaces or noninherited quadratic forms. It was subsequently known as the BPX multigrid framework, which was widely used in the analysis of multigrid and domain decomposition methods. However, the framework has an apparent limit in the analysis of nonnested V-cycle methods, and it produces a variable V-cycle, or nonuniform convergence rate V-cycle methods, or other nonoptimal results in analysis thus far. This paper completes a long-time effort in extending the BPX multigrid framework so that it truly covers the nonnested V-cycle. We will apply the extended BPX framework to the analysis of many V-cycle nonnested multigrid methods. Some of them were proven previously only for two-level and W-cycle iterations. Some numerical results are presented to support the theoretical analysis of this paper.

  10. Constructive interference II: Semi-chaotic multigrid methods

    SciTech Connect

    Douglas, C.C.

    1994-12-31

    Parallel computer vendors have mostly decided to move towards multi-user, multi-tasking per node machines. A number of these machines already exist today. Self load balancing on these machines is not an option to the users except when the user can convince someone to boot the entire machine in single user mode, which may have to be done node by node. Chaotic relaxation schemes were considered for situations like this as far back as the middle 1960`s. However, very little convergence theory exists. Further, what exists indicates that this is not really a good method. Besides chaotic relaxation, chaotic conjugate direction and minimum residual methods are explored as smoothers for symmetric and nonsymmetric problems. While having each processor potentially going off in a different direction from the rest is not what one would strive for in a unigrid situation, the change of grid procedures in multigrid provide a natural way of aiming all of the processors in the right direction. The author presents some new results for multigrid methods in which synchronization of the calculations on one or more levels is not assumed. However, he assumes that he knows how far out of synch neighboring subdomains are with respect to each other. Thus the author can show that the combination of a limited chaotic smoother and coarse level corrections produces a better algorithm than would be expected.

  11. A multigrid method for variable coefficient Maxwell's equations

    SciTech Connect

    Jones, J E; Lee, B

    2004-05-13

    This paper presents a multigrid method for solving variable coefficient Maxwell's equations. The novelty in this method is the use of interpolation operators that do not produce multilevel commutativity complexes that lead to multilevel exactness. Rather, the effects of multilevel exactness are built into the level equations themselves--on the finest level using a discrete T-V formulation, and on the coarser grids through the Galerkin coarsening procedure of a T-V formulation. These built-in structures permit the levelwise use of an effective hybrid smoother on the curl-free near-nullspace components, and these structures permit the development of interpolation operators for handling the curl-free and divergence-free error components separately, with the resulting block diagonal interpolation operator not satisfying multilevel commutativity but having good approximation properties for both of these error components. Applying operator-dependent interpolation for each of these error components leads to an effective multigrid scheme for variable coefficient Maxwell's equations, where multilevel commutativity-based methods can degrade. Numerical results are presented to verify the effectiveness of this new scheme.

  12. Large-Eddy Simulation and Multigrid Methods

    SciTech Connect

    Falgout,R D; Naegle,S; Wittum,G

    2001-06-18

    A method to simulate turbulent flows with Large-Eddy Simulation on unstructured grids is presented. Two kinds of dynamic models are used to model the unresolved scales of motion and are compared with each other on different grids. Thereby the behavior of the models is shown and additionally the feature of adaptive grid refinement is investigated. Furthermore the parallelization aspect is addressed.

  13. Multigrid hierarchical simulated annealing method for reconstructing heterogeneous media

    NASA Astrophysics Data System (ADS)

    Pant, Lalit M.; Mitra, Sushanta K.; Secanell, Marc

    2015-12-01

    A reconstruction methodology based on different-phase-neighbor (DPN) pixel swapping and multigrid hierarchical annealing is presented. The method performs reconstructions by starting at a coarse image and successively refining it. The DPN information is used at each refinement stage to freeze interior pixels of preformed structures. This preserves the large-scale structures in refined images and also reduces the number of pixels to be swapped, thereby resulting in a decrease in the necessary computational time to reach a solution. Compared to conventional single-grid simulated annealing, this method was found to reduce the required computation time to achieve a reconstruction by around a factor of 70-90, with the potential of even higher speedups for larger reconstructions. The method is able to perform medium sized (up to 3003 voxels) three-dimensional reconstructions with multiple correlation functions in 36-47 h.

  14. Revenge of the Semicoarsening Frequency Decomposition Multigrid Method

    NASA Technical Reports Server (NTRS)

    Dendy, J. E., Jr.

    1996-01-01

    The frequency decomposition multigrid method was previously considered and modified so as to obtain robustness for problems with discontinuous coefficients while retaining robustness for problems with anisotropic coefficients. The application of this modified method to a problem arising in global ocean modeling was also considered. For this problem it was shown that the discretization employed gives rise to an operator for which point relaxation is not robust. In fact, alternating line relaxation is required for robustness, negating the main advantage of the frequency decomposition method: robustness for anisotropic operators using only point relaxation. In this paper a semicoarsening variant, which requires line relaxation in one direction only is considered, and it is shown that this variant works well for the global ocean modeling problem.

  15. Sixth Copper Mountain Conference on Multigrid Methods. Final report

    SciTech Connect

    Not Available

    1994-07-01

    During the 5-day meeting, 112 half-hour talks on current research topics were presented. Session topics included: fluids, domain decomposition, iterative methods, Basics I and II, adaptive methods, nonlinear filtering, CFD I, II, and III, applications, transport, algebraic solvers, supercomputing, and student paper winners.

  16. Stability analysis of multigrid acceleration methods for the solution of partial differential equations

    NASA Technical Reports Server (NTRS)

    Fay, John F.

    1990-01-01

    A calculation is made of the stability of various relaxation schemes for the numerical solution of partial differential equations. A multigrid acceleration method is introduced, and its effects on stability are explored. A detailed stability analysis of a simple case is carried out and verified by numerical experiment. It is shown that the use of multigrids can speed convergence by several orders of magnitude without adversely affecting stability.

  17. Copper Mountain conference on multigrid methods. Preliminary proceedings -- List of abstracts

    SciTech Connect

    1995-12-31

    This report contains abstracts of the papers presented at the conference. Papers cover multigrid algorithms and applications of multigrid methods. Applications include the following: solution of elliptical problems; electric power grids; fluid mechanics; atmospheric data assimilation; thermocapillary effects on weld pool shape; boundary-value problems; prediction of hurricane tracks; modeling multi-dimensional combustion and detailed chemistry; black-oil reservoir simulation; image processing; and others.

  18. Development and Application of Agglomerated Multigrid Methods for Complex Geometries

    NASA Technical Reports Server (NTRS)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.

    2010-01-01

    We report progress in the development of agglomerated multigrid techniques for fully un- structured grids in three dimensions, building upon two previous studies focused on efficiently solving a model diffusion equation. We demonstrate a robust fully-coarsened agglomerated multigrid technique for 3D complex geometries, incorporating the following key developments: consistent and stable coarse-grid discretizations, a hierarchical agglomeration scheme, and line-agglomeration/relaxation using prismatic-cell discretizations in the highly-stretched grid regions. A signi cant speed-up in computer time is demonstrated for a model diffusion problem, the Euler equations, and the Reynolds-averaged Navier-Stokes equations for 3D realistic complex geometries.

  19. Recent developments in multigrid methods for the steady Euler equations

    NASA Technical Reports Server (NTRS)

    Jespersen, D. C.

    1984-01-01

    The solution by multigrid techniques of the steady inviscid compressible equations of gas dynamics, the Euler equations is investigated. Steady two dimensional transonic flow over an airfoil section is studied intensively. Most of the material is applicable to three dimensional flow problems of aerodynamic interest.

  20. Multigrid lattice Boltzmann method for accelerated solution of elliptic equations

    NASA Astrophysics Data System (ADS)

    Patil, Dhiraj V.; Premnath, Kannan N.; Banerjee, Sanjoy

    2014-05-01

    A new solver for second-order elliptic partial differential equations (PDEs) based on the lattice Boltzmann method (LBM) and the multigrid (MG) technique is presented. Several benchmark elliptic equations are solved numerically with the inclusion of multiple grid-levels in two-dimensional domains at an optimal computational cost within the LB framework. The results are compared with the corresponding analytical solutions and numerical solutions obtained using the Stone's strongly implicit procedure. The classical PDEs considered in this article include the Laplace and Poisson equations with Dirichlet boundary conditions, with the latter involving both constant and variable coefficients. A detailed analysis of solution accuracy, convergence and computational efficiency of the proposed solver is given. It is observed that the use of a high-order stencil (for smoothing) improves convergence and accuracy for an equivalent number of smoothing sweeps. The effect of the type of scheduling cycle (V- or W-cycle) on the performance of the MG-LBM is analyzed. Next, a parallel algorithm for the MG-LBM solver is presented and then its parallel performance on a multi-core cluster is analyzed. Lastly, a practical example is provided wherein the proposed elliptic PDE solver is used to compute the electro-static potential encountered in an electro-chemical cell, which demonstrates the effectiveness of this new solver in complex coupled systems. Several orders of magnitude gains in convergence and parallel scaling for the canonical problems, and a factor of 5 reduction for the multiphysics problem are achieved using the MG-LBM.

  1. A highly parallel multigrid-like method for the solution of the Euler equations

    NASA Technical Reports Server (NTRS)

    Tuminaro, Ray S.

    1989-01-01

    We consider a highly parallel multigrid-like method for the solution of the two dimensional steady Euler equations. The new method, introduced as filtering multigrid, is similar to a standard multigrid scheme in that convergence on the finest grid is accelerated by iterations on coarser grids. In the filtering method, however, additional fine grid subproblems are processed concurrently with coarse grid computations to further accelerate convergence. These additional problems are obtained by splitting the residual into a smooth and an oscillatory component. The smooth component is then used to form a coarse grid problem (similar to standard multigrid) while the oscillatory component is used for a fine grid subproblem. The primary advantage in the filtering approach is that fewer iterations are required and that most of the additional work per iteration can be performed in parallel with the standard coarse grid computations. We generalize the filtering algorithm to a version suitable for nonlinear problems. We emphasize that this generalization is conceptually straight-forward and relatively easy to implement. In particular, no explicit linearization (e.g., formation of Jacobians) needs to be performed (similar to the FAS multigrid approach). We illustrate the nonlinear version by applying it to the Euler equations, and presenting numerical results. Finally, a performance evaluation is made based on execution time models and convergence information obtained from numerical experiments.

  2. Multigrid for the Galerkin least squares method in linear elasticity: The pure displacement problem

    SciTech Connect

    Yoo, Jaechil

    1996-12-31

    Franca and Stenberg developed several Galerkin least squares methods for the solution of the problem of linear elasticity. That work concerned itself only with the error estimates of the method. It did not address the related problem of finding effective methods for the solution of the associated linear systems. In this work, we prove the convergence of a multigrid (W-cycle) method. This multigrid is robust in that the convergence is uniform as the parameter, v, goes to 1/2 Computational experiments are included.

  3. On multigrid methods for the Navier-Stokes Computer

    NASA Technical Reports Server (NTRS)

    Nosenchuck, D. M.; Krist, S. E.; Zang, T. A.

    1988-01-01

    The overall architecture of the multipurpose parallel-processing Navier-Stokes Computer (NSC) being developed by Princeton and NASA Langley (Nosenchuck et al., 1986) is described and illustrated with extensive diagrams, and the NSC implementation of an elementary multigrid algorithm for simulating isotropic turbulence (based on solution of the incompressible time-dependent Navier-Stokes equations with constant viscosity) is characterized in detail. The present NSC design concept calls for 64 nodes, each with the performance of a class VI supercomputer, linked together by a fiber-optic hypercube network and joined to a front-end computer by a global bus. In this configuration, the NSC would have a storage capacity of over 32 Gword and a peak speed of over 40 Gflops. The multigrid Navier-Stokes code discussed would give sustained operation rates of about 25 Gflops.

  4. A positivity-preserving, implicit defect-correction multigrid method for turbulent combustion

    NASA Astrophysics Data System (ADS)

    Wasserman, M.; Mor-Yossef, Y.; Greenberg, J. B.

    2016-07-01

    A novel, robust multigrid method for the simulation of turbulent and chemically reacting flows is developed. A survey of previous attempts at implementing multigrid for the problems at hand indicated extensive use of artificial stabilization to overcome numerical instability arising from non-linearity of turbulence and chemistry model source-terms, small-scale physics of combustion, and loss of positivity. These issues are addressed in the current work. The highly stiff Reynolds-averaged Navier-Stokes (RANS) equations, coupled with turbulence and finite-rate chemical kinetics models, are integrated in time using the unconditionally positive-convergent (UPC) implicit method. The scheme is successfully extended in this work for use with chemical kinetics models, in a fully-coupled multigrid (FC-MG) framework. To tackle the degraded performance of multigrid methods for chemically reacting flows, two major modifications are introduced with respect to the basic, Full Approximation Storage (FAS) approach. First, a novel prolongation operator that is based on logarithmic variables is proposed to prevent loss of positivity due to coarse-grid corrections. Together with the extended UPC implicit scheme, the positivity-preserving prolongation operator guarantees unconditional positivity of turbulence quantities and species mass fractions throughout the multigrid cycle. Second, to improve the coarse-grid-correction obtained in localized regions of high chemical activity, a modified defect correction procedure is devised, and successfully applied for the first time to simulate turbulent, combusting flows. The proposed modifications to the standard multigrid algorithm create a well-rounded and robust numerical method that provides accelerated convergence, while unconditionally preserving the positivity of model equation variables. Numerical simulations of various flows involving premixed combustion demonstrate that the proposed MG method increases the efficiency by a factor of

  5. MueLu Multigrid Preconditioning Package

    2012-09-11

    MueLu is intended for the research and development of multigrid algorithms used in the solution of sparse linear systems arising from systems of partial differential equations. The software provides multigrid source code, test programs, and short example programs to demonstrate the various interfaces for creating, accessing, and applying the solvers. MueLu currently provides an implementation of smoothed aggregation algebraic multigrid method and interfaces to many commonly used smoothers. However, the software is intended to bemore » extensible, and new methods can be incorporated easily. MueLu also allows for advanced usage, such as combining multiple methods and segregated solves. The library supports point and block access to matrix data. All algorithms and methods in MueLu have been or will be published in the open scientific literature.« less

  6. The block adaptive multigrid method applied to the solution of the Euler equations

    NASA Technical Reports Server (NTRS)

    Pantelelis, Nikos

    1993-01-01

    In the present study, a scheme capable of solving very fast and robust complex nonlinear systems of equations is presented. The Block Adaptive Multigrid (BAM) solution method offers multigrid acceleration and adaptive grid refinement based on the prediction of the solution error. The proposed solution method was used with an implicit upwind Euler solver for the solution of complex transonic flows around airfoils. Very fast results were obtained (18-fold acceleration of the solution) using one fourth of the volumes of a global grid with the same solution accuracy for two test cases.

  7. Simulation of viscous flows using a multigrid-control volume finite element method

    SciTech Connect

    Hookey, N.A.

    1994-12-31

    This paper discusses a multigrid control volume finite element method (MG CVFEM) for the simulation of viscous fluid flows. The CVFEM is an equal-order primitive variables formulation that avoids spurious solution fields by incorporating an appropriate pressure gradient in the velocity interpolation functions. The resulting set of discretized equations is solved using a coupled equation line solver (CELS) that solves the discretized momentum and continuity equations simultaneously along lines in the calculation domain. The CVFEM has been implemented in the context of both FMV- and V-cycle multigrid algorithms, and preliminary results indicate a five to ten fold reduction in execution times.

  8. Spectral multigrid methods for the solution of homogeneous turbulence problems

    NASA Technical Reports Server (NTRS)

    Erlebacher, G.; Zang, T. A.; Hussaini, M. Y.

    1987-01-01

    New three-dimensional spectral multigrid algorithms are analyzed and implemented to solve the variable coefficient Helmholtz equation. Periodicity is assumed in all three directions which leads to a Fourier collocation representation. Convergence rates are theoretically predicted and confirmed through numerical tests. Residual averaging results in a spectral radius of 0.2 for the variable coefficient Poisson equation. In general, non-stationary Richardson must be used for the Helmholtz equation. The algorithms developed are applied to the large-eddy simulation of incompressible isotropic turbulence.

  9. Black box multigrid

    NASA Technical Reports Server (NTRS)

    Dendy, J. E., Jr.

    1981-01-01

    The black box multigrid (BOXMG) code, which only needs specification of the matrix problem for application in the multigrid method was investigated. It is contended that a major problem with the multigrid method is that each new grid configuration requires a major programming effort to develop a code that specifically handles that grid configuration. The SOR and ICCG methods only specify the matrix problem, no matter what the grid configuration. It is concluded that the BOXMG does everything else necessary to set up the auxiliary coarser problems to achieve a multigrid solution.

  10. A multigrid Newton-Krylov method for flux-limited radiation diffusion

    SciTech Connect

    Rider, W.J.; Knoll, D.A.; Olson, G.L.

    1998-09-01

    The authors focus on the integration of radiation diffusion including flux-limited diffusion coefficients. The nonlinear integration is accomplished with a Newton-Krylov method preconditioned with a multigrid Picard linearization of the governing equations. They investigate the efficiency of the linear and nonlinear iterative techniques.

  11. New Nonlinear Multigrid Analysis

    NASA Technical Reports Server (NTRS)

    Xie, Dexuan

    1996-01-01

    The nonlinear multigrid is an efficient algorithm for solving the system of nonlinear equations arising from the numerical discretization of nonlinear elliptic boundary problems. In this paper, we present a new nonlinear multigrid analysis as an extension of the linear multigrid theory presented by Bramble. In particular, we prove the convergence of the nonlinear V-cycle method for a class of mildly nonlinear second order elliptic boundary value problems which do not have full elliptic regularity.

  12. An overlapped grid method for multigrid, finite volume/difference flow solvers: MaGGiE

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Lessard, Victor R.

    1990-01-01

    The objective is to develop a domain decomposition method via overlapping/embedding the component grids, which is to be used by upwind, multi-grid, finite volume solution algorithms. A computer code, given the name MaGGiE (Multi-Geometry Grid Embedder) is developed to meet this objective. MaGGiE takes independently generated component grids as input, and automatically constructs the composite mesh and interpolation data, which can be used by the finite volume solution methods with or without multigrid convergence acceleration. Six demonstrative examples showing various aspects of the overlap technique are presented and discussed. These cases are used for developing the procedure for overlapping grids of different topologies, and to evaluate the grid connection and interpolation data for finite volume calculations on a composite mesh. Time fluxes are transferred between mesh interfaces using a trilinear interpolation procedure. Conservation losses are minimal at the interfaces using this method. The multi-grid solution algorithm, using the coaser grid connections, improves the convergence time history as compared to the solution on composite mesh without multi-gridding.

  13. Multigrid methods for differential equations with highly oscillatory coefficients

    NASA Technical Reports Server (NTRS)

    Engquist, Bjorn; Luo, Erding

    1993-01-01

    New coarse grid multigrid operators for problems with highly oscillatory coefficients are developed. These types of operators are necessary when the characters of the differential equations on coarser grids or longer wavelengths are different from that on the fine grid. Elliptic problems for composite materials and different classes of hyperbolic problems are practical examples. The new coarse grid operators can be constructed directly based on the homogenized differential operators or hierarchically computed from the finest grid. Convergence analysis based on the homogenization theory is given for elliptic problems with periodic coefficients and some hyperbolic problems. These are classes of equations for which there exists a fairly complete theory for the interaction between shorter and longer wavelengths in the problems. Numerical examples are presented.

  14. Iterative and multigrid methods in the finite element solution of incompressible and turbulent fluid flow

    NASA Astrophysics Data System (ADS)

    Lavery, N.; Taylor, C.

    1999-07-01

    Multigrid and iterative methods are used to reduce the solution time of the matrix equations which arise from the finite element (FE) discretisation of the time-independent equations of motion of the incompressible fluid in turbulent motion. Incompressible flow is solved by using the method of reduce interpolation for the pressure to satisfy the Brezzi-Babuska condition. The k-l model is used to complete the turbulence closure problem. The non-symmetric iterative matrix methods examined are the methods of least squares conjugate gradient (LSCG), biconjugate gradient (BCG), conjugate gradient squared (CGS), and the biconjugate gradient squared stabilised (BCGSTAB). The multigrid algorithm applied is based on the FAS algorithm of Brandt, and uses two and three levels of grids with a V-cycling schedule. These methods are all compared to the non-symmetric frontal solver. Copyright

  15. Multilevel local refinement and multigrid methods for 3-D turbulent flow

    SciTech Connect

    Liao, C.; Liu, C.; Sung, C.H.; Huang, T.T.

    1996-12-31

    A numerical approach based on multigrid, multilevel local refinement, and preconditioning methods for solving incompressible Reynolds-averaged Navier-Stokes equations is presented. 3-D turbulent flow around an underwater vehicle is computed. 3 multigrid levels and 2 local refinement grid levels are used. The global grid is 24 x 8 x 12. The first patch is 40 x 16 x 20 and the second patch is 72 x 32 x 36. 4th order artificial dissipation are used for numerical stability. The conservative artificial compressibility method are used for further improvement of convergence. To improve the accuracy of coarse/fine grid interface of local refinement, flux interpolation method for refined grid boundary is used. The numerical results are in good agreement with experimental data. The local refinement can improve the prediction accuracy significantly. The flux interpolation method for local refinement can keep conservation for a composite grid, therefore further modify the prediction accuracy.

  16. Analysis of multigrid methods on massively parallel computers: Architectural implications

    NASA Technical Reports Server (NTRS)

    Matheson, Lesley R.; Tarjan, Robert E.

    1993-01-01

    We study the potential performance of multigrid algorithms running on massively parallel computers with the intent of discovering whether presently envisioned machines will provide an efficient platform for such algorithms. We consider the domain parallel version of the standard V cycle algorithm on model problems, discretized using finite difference techniques in two and three dimensions on block structured grids of size 10(exp 6) and 10(exp 9), respectively. Our models of parallel computation were developed to reflect the computing characteristics of the current generation of massively parallel multicomputers. These models are based on an interconnection network of 256 to 16,384 message passing, 'workstation size' processors executing in an SPMD mode. The first model accomplishes interprocessor communications through a multistage permutation network. The communication cost is a logarithmic function which is similar to the costs in a variety of different topologies. The second model allows single stage communication costs only. Both models were designed with information provided by machine developers and utilize implementation derived parameters. With the medium grain parallelism of the current generation and the high fixed cost of an interprocessor communication, our analysis suggests an efficient implementation requires the machine to support the efficient transmission of long messages, (up to 1000 words) or the high initiation cost of a communication must be significantly reduced through an alternative optimization technique. Furthermore, with variable length message capability, our analysis suggests the low diameter multistage networks provide little or no advantage over a simple single stage communications network.

  17. On Efficient Multigrid Methods for Materials Processing Flows with Small Particles

    NASA Technical Reports Server (NTRS)

    Thomas, James (Technical Monitor); Diskin, Boris; Harik, VasylMichael

    2004-01-01

    Multiscale modeling of materials requires simulations of multiple levels of structural hierarchy. The computational efficiency of numerical methods becomes a critical factor for simulating large physical systems with highly desperate length scales. Multigrid methods are known for their superior efficiency in representing/resolving different levels of physical details. The efficiency is achieved by employing interactively different discretizations on different scales (grids). To assist optimization of manufacturing conditions for materials processing with numerous particles (e.g., dispersion of particles, controlling flow viscosity and clusters), a new multigrid algorithm has been developed for a case of multiscale modeling of flows with small particles that have various length scales. The optimal efficiency of the algorithm is crucial for accurate predictions of the effect of processing conditions (e.g., pressure and velocity gradients) on the local flow fields that control the formation of various microstructures or clusters.

  18. Rotor-stator interaction analysis using the Navier-Stokes equations and a multigrid method

    SciTech Connect

    Arnone, A.; Pacciani, R.

    1996-10-01

    A recently developed, time-accurate multigrid viscous solver has been extended to the analysis of unsteady rotor-stator interaction. In the proposed method, a fully implicit discretization is used to remove stability limitations. By means of a dual time-stepping approach, a four-stage Runge-Kutta scheme is used in conjunction with several accelerating techniques typical of steady-state solvers, instead of traditional time-expensive factorizations. The accelerating strategies include local time stepping, residual smoothing, and multigrid. Two-dimensional viscous calculations of unsteady rotor-stator interaction in the first stage of a modern gas turbine are presented. The stage analysis is based on the introduction of several blade passages to approximate the stator:rotor count ratio. Particular attention is dedicated to grid dependency in space and time as well as to the influence of the number of blades included in the calculations.

  19. Numerical solution of flame sheet problems with and without multigrid methods

    NASA Technical Reports Server (NTRS)

    Douglas, Craig C.; Ern, Alexandre

    1993-01-01

    Flame sheet problems are on the natural route to the numerical solution of multidimensional flames, which, in turn, are important in many engineering applications. In order to model the structure of flames more accurately, we use the vorticity-velocity formulation of the fluid flow equations, as opposed to the streamfunction-vorticity approach. The numerical solution of the resulting nonlinear coupled elliptic partial differential equations involves a pseudo transient process and a steady state Newton iteration. Rather than working with dimensionless variables, we introduce scale factors that can yield significant savings in the execution time. In this context, we also investigate the applicability and performance of several multigrid methods, focusing on nonlinear damped Newton multigrid, using either one way or correction schemes.

  20. A Parallel Multigrid Method for the Finite Element Analysis of Mechanical Contact

    SciTech Connect

    Hales, J D; Parsons, I D

    2002-03-21

    A geometrical multigrid method for solving the linearized matrix equations arising from node-on-face three-dimensional finite element contact is described. The development of an efficient implementation of this combination that minimizes both the memory requirements and the computational cost requires careful construction and storage of the portion of the coarse mesh stiffness matrices that are associated with the contact stiffness on the fine mesh. The multigrid contact algorithm is parallelized in a manner suitable for distributed memory architectures: results are presented that demonstrates the scheme's scalability. The solution of a large contact problem derived from an analysis of the factory joints present in the Space Shuttle reusable solid rocket motor demonstrates the usefulness of the general approach.

  1. An evaluation of parallel multigrid as a solver and a preconditioner for singular perturbed problems

    SciTech Connect

    Oosterlee, C.W.; Washio, T.

    1996-12-31

    In this paper we try to achieve h-independent convergence with preconditioned GMRES and BiCGSTAB for 2D singular perturbed equations. Three recently developed multigrid methods are adopted as a preconditioner. They are also used as solution methods in order to compare the performance of the methods as solvers and as preconditioners. Two of the multigrid methods differ only in the transfer operators. One uses standard matrix- dependent prolongation operators from. The second uses {open_quotes}upwind{close_quotes} prolongation operators, developed. Both employ the Galerkin coarse grid approximation and an alternating zebra line Gauss-Seidel smoother. The third method is based on the block LU decomposition of a matrix and on an approximate Schur complement. This multigrid variant is presented in. All three multigrid algorithms are algebraic methods.

  2. Conduct of the International Multigrid Conference

    NASA Technical Reports Server (NTRS)

    Mccormick, S.

    1984-01-01

    The 1983 International Multigrid Conference was held at Colorado's Copper Mountain Ski Resort, April 5-8. It was organized jointly by the Institute for Computational Studies at Colorado State University, U.S.A., and the Gasellschaft fur Mathematik und Datenverarbeitung Bonn, F.R. Germany, and was sponsored by the Air Force Office of Sponsored Research and National Aeronautics and Space Administration Headquarters. The conference was attended by 80 scientists, divided by institution almost equally into private industry, research laboratories, and academia. Fifteen attendees came from countries other than the U.S.A. In addition to the fruitful discussions, the most significant factor of the conference was of course the lectures. The lecturers include most of the leaders in the field of multigrid research. The program offered a nice integrated blend of theory, numerical studies, basic research, and applications. Some of the new areas of research that have surfaced since the Koln-Porz conference include: the algebraic multigrid approach; multigrid treatment of Euler equations for inviscid fluid flow problems; 3-D problems; and the application of MG methods on vector and parallel computers.

  3. A comparison of locally adaptive multigrid methods: LDC, FAC and FIC

    NASA Technical Reports Server (NTRS)

    Khadra, Khodor; Angot, Philippe; Caltagirone, Jean-Paul

    1993-01-01

    This study is devoted to a comparative analysis of three 'Adaptive ZOOM' (ZOom Overlapping Multi-level) methods based on similar concepts of hierarchical multigrid local refinement: LDC (Local Defect Correction), FAC (Fast Adaptive Composite), and FIC (Flux Interface Correction)--which we proposed recently. These methods are tested on two examples of a bidimensional elliptic problem. We compare, for V-cycle procedures, the asymptotic evolution of the global error evaluated by discrete norms, the corresponding local errors, and the convergence rates of these algorithms.

  4. Final Report on Subcontract B605152. Multigrid Methods for Systems of PDEs

    SciTech Connect

    Brannick, James; Xu, Jinchao

    2015-07-07

    The project team has continued with work on developing aggressive coarsening techniques for AMG methods. Of particular interest is the idea to use aggressive coarsening with polynomial smoothing. Using local Fourier analysis the optimal values for the parameters involved in defining the polynomial smoothers are determined automatically in a way to achieve fast convergence of cycles with aggressive coarsening. Numerical tests have the sharpness of the theoretical results. The methods are highly parallelizable and efficient multigrid algorithms on structured and semistructured grids in two and three spatial dimensions.

  5. Multigrid methods for a semilinear PDE in the theory of pseudoplastic fluids

    NASA Technical Reports Server (NTRS)

    Henson, Van Emden; Shaker, A. W.

    1993-01-01

    We show that by certain transformations the boundary layer equations for the class of non-Newtonian fluids named pseudoplastic can be generalized in the form the vector differential operator(u) + p(x)u(exp -lambda) = 0, where x is a member of the set Omega and Omega is a subset of R(exp n), n is greater than or equal to 1 under the classical conditions for steady flow over a semi-infinite flat plate. We provide a survey of the existence, uniqueness, and analyticity of the solutions for this problem. We also establish numerical solutions in one- and two-dimensional regions using multigrid methods.

  6. A fast accurate approximation method with multigrid solver for two-dimensional fractional sub-diffusion equation

    NASA Astrophysics Data System (ADS)

    Lin, Xue-lei; Lu, Xin; Ng, Micheal K.; Sun, Hai-Wei

    2016-10-01

    A fast accurate approximation method with multigrid solver is proposed to solve a two-dimensional fractional sub-diffusion equation. Using the finite difference discretization of fractional time derivative, a block lower triangular Toeplitz matrix is obtained where each main diagonal block contains a two-dimensional matrix for the Laplacian operator. Our idea is to make use of the block ɛ-circulant approximation via fast Fourier transforms, so that the resulting task is to solve a block diagonal system, where each diagonal block matrix is the sum of a complex scalar times the identity matrix and a Laplacian matrix. We show that the accuracy of the approximation scheme is of O (ɛ). Because of the special diagonal block structure, we employ the multigrid method to solve the resulting linear systems. The convergence of the multigrid method is studied. Numerical examples are presented to illustrate the accuracy of the proposed approximation scheme and the efficiency of the proposed solver.

  7. Algebraic methods in system theory

    NASA Technical Reports Server (NTRS)

    Brockett, R. W.; Willems, J. C.; Willsky, A. S.

    1975-01-01

    Investigations on problems of the type which arise in the control of switched electrical networks are reported. The main results concern the algebraic structure and stochastic aspects of these systems. Future reports will contain more detailed applications of these results to engineering studies.

  8. Multigrid methods for flow transition in three-dimensional boundary layers with surface roughness

    NASA Technical Reports Server (NTRS)

    Liu, Chaoqun; Liu, Zhining; Mccormick, Steve

    1993-01-01

    The efficient multilevel adaptive method has been successfully applied to perform direct numerical simulations (DNS) of flow transition in 3-D channels and 3-D boundary layers with 2-D and 3-D isolated and distributed roughness in a curvilinear coordinate system. A fourth-order finite difference technique on stretched and staggered grids, a fully-implicit time marching scheme, a semi-coarsening multigrid method associated with line distributive relaxation scheme, and an improved outflow boundary-condition treatment, which needs only a very short buffer domain to damp all order-one wave reflections, are developed. These approaches make the multigrid DNS code very accurate and efficient. This allows us not only to be able to do spatial DNS for the 3-D channel and flat plate at low computational costs, but also to do spatial DNS for transition in the 3-D boundary layer with 3-D single and multiple roughness elements, which would have extremely high computational costs with conventional methods. Numerical results show good agreement with the linear stability theory, the secondary instability theory, and a number of laboratory experiments. The contribution of isolated and distributed roughness to transition is analyzed.

  9. On multigrid methods for image reconstruction from projections

    SciTech Connect

    Henson, V.E.; Robinson, B.T.; Limber, M.

    1994-12-31

    The sampled Radon transform of a 2D function can be represented as a continuous linear map R : L{sup 1} {yields} R{sup N}. The image reconstruction problem is: given a vector b {element_of} R{sup N}, find an image (or density function) u(x, y) such that Ru = b. Since in general there are infinitely many solutions, the authors pick the solution with minimal 2-norm. Numerous proposals have been made regarding how best to discretize this problem. One can, for example, select a set of functions {phi}{sub j} that span a particular subspace {Omega} {contained_in} L{sup 1}, and model R : {Omega} {yields} R{sup N}. The subspace {Omega} may be chosen as a member of a sequence of subspaces whose limit is dense in L{sup 1}. One approach to the choice of {Omega} gives rise to a natural pixel discretization of the image space. Two possible choices of the set {phi}{sub j} are the set of characteristic functions of finite-width `strips` representing energy transmission paths and the set of intersections of such strips. The authors have studied the eigenstructure of the matrices B resulting from these choices and the effect of applying a Gauss-Seidel iteration to the problem Bw = b. There exists a near null space into which the error vectors migrate with iteration, after which Gauss-Seidel iteration stalls. The authors attempt to accelerate convergence via a multilevel scheme, based on the principles of McCormick`s Multilevel Projection Method (PML). Coarsening is achieved by thickening the rays which results in a much smaller discretization of an optimal grid, and a halving of the number of variables. This approach satisfies all the requirements of the PML scheme. They have observed that a multilevel approach based on this idea accelerates convergence at least to the point where noise in the data dominates.

  10. Multigrid Methods

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Developments in numerical solution of certain types of partial differential equations by rapidly converging sequences of operations on supporting grids that range from very fine to very coarse are presented.

  11. Multigrid one shot methods for optimal control problems: Infinite dimensional control

    NASA Technical Reports Server (NTRS)

    Arian, Eyal; Taasan, Shlomo

    1994-01-01

    The multigrid one shot method for optimal control problems, governed by elliptic systems, is introduced for the infinite dimensional control space. ln this case, the control variable is a function whose discrete representation involves_an increasing number of variables with grid refinement. The minimization algorithm uses Lagrange multipliers to calculate sensitivity gradients. A preconditioned gradient descent algorithm is accelerated by a set of coarse grids. It optimizes for different scales in the representation of the control variable on different discretization levels. An analysis which reduces the problem to the boundary is introduced. It is used to approximate the two level asymptotic convergence rate, to determine the amplitude of the minimization steps, and the choice of a high pass filter to be used when necessary. The effectiveness of the method is demonstrated on a series of test problems. The new method enables the solutions of optimal control problems at the same cost of solving the corresponding analysis problems just a few times.

  12. Numerical Evaluation of P-Multigrid Method for the Solution of Discontinuous Galerkin Discretizations of Diffusive Equations

    NASA Technical Reports Server (NTRS)

    Atkins, H. L.; Helenbrook, B. T.

    2005-01-01

    This paper describes numerical experiments with P-multigrid to corroborate analysis, validate the present implementation, and to examine issues that arise in the implementations of the various combinations of relaxation schemes, discretizations and P-multigrid methods. The two approaches to implement P-multigrid presented here are equivalent for most high-order discretization methods such as spectral element, SUPG, and discontinuous Galerkin applied to advection; however it is discovered that the approach that mimics the common geometric multigrid implementation is less robust, and frequently unstable when applied to discontinuous Galerkin discretizations of di usion. Gauss-Seidel relaxation converges 40% faster than block Jacobi, as predicted by analysis; however, the implementation of Gauss-Seidel is considerably more expensive that one would expect because gradients in most neighboring elements must be updated. A compromise quasi Gauss-Seidel relaxation method that evaluates the gradient in each element twice per iteration converges at rates similar to those predicted for true Gauss-Seidel.

  13. Implementation of multigrid methods for solving Navier-Stokes equations on a multiprocessor system

    NASA Technical Reports Server (NTRS)

    Naik, Vijay K.; Taasan, Shlomo

    1987-01-01

    Presented are schemes for implementing multigrid algorithms on message based MIMD multiprocessor systems. To address the various issues involved, a nontrivial problem of solving the 2-D incompressible Navier-Stokes equations is considered as the model problem. Three different multigrid algorithms are considered. Results from implementing these algorithms on an Intel iPSC are presented.

  14. Multigrid Method for Modeling Multi-Dimensional Combustion with Detailed Chemistry

    NASA Technical Reports Server (NTRS)

    Zheng, Xiaoqing; Liu, Chaoqun; Liao, Changming; Liu, Zhining; McCormick, Steve

    1996-01-01

    A highly accurate and efficient numerical method is developed for modeling 3-D reacting flows with detailed chemistry. A contravariant velocity-based governing system is developed for general curvilinear coordinates to maintain simplicity of the continuity equation and compactness of the discretization stencil. A fully-implicit backward Euler technique and a third-order monotone upwind-biased scheme on a staggered grid are used for the respective temporal and spatial terms. An efficient semi-coarsening multigrid method based on line-distributive relaxation is used as the flow solver. The species equations are solved in a fully coupled way and the chemical reaction source terms are treated implicitly. Example results are shown for a 3-D gas turbine combustor with strong swirling inflows.

  15. Practical improvements of multi-grid iteration for adaptive mesh refinement method

    NASA Astrophysics Data System (ADS)

    Miyashita, Hisashi; Yamada, Yoshiyuki

    2005-03-01

    Adaptive mesh refinement(AMR) is a powerful tool to efficiently solve multi-scaled problems. However, the vanilla AMR method has a well-known critical demerit, i.e., it cannot be applied to non-local problems. Although multi-grid iteration (MGI) can be regarded as a good remedy for a non-local problem such as the Poisson equation, we observed fundamental difficulties in applying the MGI technique in AMR to realistic problems under complicated mesh layouts because it does not converge or it requires too many iterations even if it does converge. To cope with the problem, when updating the next approximation in the MGI process, we calculate the precise total corrections that are relatively accurate to the current residual by introducing a new iteration for such a total correction. This procedure greatly accelerates the MGI convergence speed especially under complicated mesh layouts.

  16. Numerical study of a multigrid method with four smoothing methods for the incompressible Navier-Stokes equations in general coordinates

    NASA Technical Reports Server (NTRS)

    Zeng, S.; Wesseling, P.

    1993-01-01

    The performance of a linear multigrid method using four smoothing methods, called SCGS (Symmetrical Coupled GauBeta-Seidel), CLGS (Collective Line GauBeta-Seidel), SILU (Scalar ILU), and CILU (Collective ILU), is investigated for the incompressible Navier-Stokes equations in general coordinates, in association with Galerkin coarse grid approximation. Robustness and efficiency are measured and compared by application to test problems. The numerical results show that CILU is the most robust, SILU the least, with CLGS and SCGS in between. CLGS is the best in efficiency, SCGS and CILU follow, and SILU is the worst.

  17. Development of an efficient multigrid method for the NEM form of the multigroup neutron diffusion equation

    NASA Astrophysics Data System (ADS)

    Al-Chalabi, Rifat M. Khalil

    1997-09-01

    Development of an improvement to the computational efficiency of the existing nested iterative solution strategy of the Nodal Exapansion Method (NEM) nodal based neutron diffusion code NESTLE is presented. The improvement in the solution strategy is the result of developing a multilevel acceleration scheme that does not suffer from the numerical stalling associated with a number of iterative solution methods. The acceleration scheme is based on the multigrid method, which is specifically adapted for incorporation into the NEM nonlinear iterative strategy. This scheme optimizes the computational interplay between the spatial discretization and the NEM nonlinear iterative solution process through the use of the multigrid method. The combination of the NEM nodal method, calculation of the homogenized, neutron nodal balance coefficients (i.e. restriction operator), efficient underlying smoothing algorithm (power method of NESTLE), and the finer mesh reconstruction algorithm (i.e. prolongation operator), all operating on a sequence of coarser spatial nodes, constitutes the multilevel acceleration scheme employed in this research. Two implementations of the multigrid method into the NESTLE code were examined; the Imbedded NEM Strategy and the Imbedded CMFD Strategy. The main difference in implementation between the two methods is that in the Imbedded NEM Strategy, the NEM solution is required at every MG level. Numerical tests have shown that the Imbedded NEM Strategy suffers from divergence at coarse- grid levels, hence all the results for the different benchmarks presented here were obtained using the Imbedded CMFD Strategy. The novelties in the developed MG method are as follows: the formulation of the restriction and prolongation operators, and the selection of the relaxation method. The restriction operator utilizes a variation of the reactor physics, consistent homogenization technique. The prolongation operator is based upon a variant of the pin power

  18. Agglomeration multigrid methods with implicit Runge-Kutta smoothers applied to aerodynamic simulations on unstructured grids

    NASA Astrophysics Data System (ADS)

    Langer, Stefan

    2014-11-01

    For unstructured finite volume methods an agglomeration multigrid with an implicit multistage Runge-Kutta method as a smoother is developed for solving the compressible Reynolds averaged Navier-Stokes (RANS) equations. The implicit Runge-Kutta method is interpreted as a preconditioned explicit Runge-Kutta method. The construction of the preconditioner is based on an approximate derivative. The linear systems are solved approximately with a symmetric Gauss-Seidel method. To significantly improve this solution method grid anisotropy is treated within the Gauss-Seidel iteration in such a way that the strong couplings in the linear system are resolved by tridiagonal systems constructed along these directions of strong coupling. The agglomeration strategy is adapted to this procedure by taking into account exactly these anisotropies in such a way that a directional coarsening is applied along these directions of strong coupling. Turbulence effects are included by a Spalart-Allmaras model, and the additional transport-type equation is approximately solved in a loosely coupled manner with the same method. For two-dimensional and three-dimensional numerical examples and a variety of differently generated meshes we show the wide range of applicability of the solution method. Finally, we exploit the GMRES method to determine approximate spectral information of the linearized RANS equations. This approximate spectral information is used to discuss and compare characteristics of multistage Runge-Kutta methods.

  19. A multiple-block multigrid method for the solution of the three-dimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Atkins, Harold

    1991-01-01

    A multiple block multigrid method for the solution of the three dimensional Euler and Navier-Stokes equations is presented. The basic flow solver is a cell vertex method which employs central difference spatial approximations and Runge-Kutta time stepping. The use of local time stepping, implicit residual smoothing, multigrid techniques and variable coefficient numerical dissipation results in an efficient and robust scheme is discussed. The multiblock strategy places the block loop within the Runge-Kutta Loop such that accuracy and convergence are not affected by block boundaries. This has been verified by comparing the results of one and two block calculations in which the two block grid is generated by splitting the one block grid. Results are presented for both Euler and Navier-Stokes computations of wing/fuselage combinations.

  20. Development of a pressure based multigrid solution method for complex fluid flows

    NASA Technical Reports Server (NTRS)

    Shyy, Wei

    1991-01-01

    In order to reduce the computational difficulty associated with a single grid (SG) solution procedure, the multigrid (MG) technique was identified as a useful means for improving the convergence rate of iterative methods. A full MG full approximation storage (FMG/FAS) algorithm is used to solve the incompressible recirculating flow problems in complex geometries. The algorithm is implemented in conjunction with a pressure correction staggered grid type of technique using the curvilinear coordinates. In order to show the performance of the method, two flow configurations, one a square cavity and the other a channel, are used as test problems. Comparisons are made between the iterations, equivalent work units, and CPU time. Besides showing that the MG method can yield substantial speed-up with wide variations in Reynolds number, grid distributions, and geometry, issues such as the convergence characteristics of different grid levels, the choice of convection schemes, and the effectiveness of the basic iteration smoothers are studied. An adaptive grid scheme is also combined with the MG procedure to explore the effects of grid resolution on the MG convergence rate as well as the numerical accuracy.

  1. Structured adaptive grid generation using algebraic methods

    NASA Technical Reports Server (NTRS)

    Yang, Jiann-Cherng; Soni, Bharat K.; Roger, R. P.; Chan, Stephen C.

    1993-01-01

    The accuracy of the numerical algorithm depends not only on the formal order of approximation but also on the distribution of grid points in the computational domain. Grid adaptation is a procedure which allows optimal grid redistribution as the solution progresses. It offers the prospect of accurate flow field simulations without the use of an excessively timely, computationally expensive, grid. Grid adaptive schemes are divided into two basic categories: differential and algebraic. The differential method is based on a variational approach where a function which contains a measure of grid smoothness, orthogonality and volume variation is minimized by using a variational principle. This approach provided a solid mathematical basis for the adaptive method, but the Euler-Lagrange equations must be solved in addition to the original governing equations. On the other hand, the algebraic method requires much less computational effort, but the grid may not be smooth. The algebraic techniques are based on devising an algorithm where the grid movement is governed by estimates of the local error in the numerical solution. This is achieved by requiring the points in the large error regions to attract other points and points in the low error region to repel other points. The development of a fast, efficient, and robust algebraic adaptive algorithm for structured flow simulation applications is presented. This development is accomplished in a three step process. The first step is to define an adaptive weighting mesh (distribution mesh) on the basis of the equidistribution law applied to the flow field solution. The second, and probably the most crucial step, is to redistribute grid points in the computational domain according to the aforementioned weighting mesh. The third and the last step is to reevaluate the flow property by an appropriate search/interpolate scheme at the new grid locations. The adaptive weighting mesh provides the information on the desired concentration

  2. Another look at neural multigrid

    SciTech Connect

    Baeker, M.

    1997-04-01

    We present a new multigrid method called neural multigrid which is based on joining multigrid ideas with concepts from neural nets. The main idea is to use the Greenbaum criterion as a cost functional for the neural net. The algorithm is able to learn efficient interpolation operators in the case of the ordered Laplace equation with only a very small critical slowing down and with a surprisingly small amount of work comparable to that of a Conjugate Gradient solver. In the case of the two-dimensional Laplace equation with SU(2) gauge fields at {beta}=0 the learning exhibits critical slowing down with an exponent of about z {approx} 0.4. The algorithm is able to find quite good interpolation operators in this case as well. Thereby it is proven that a practical true multigrid algorithm exists even for a gauge theory. An improved algorithm using dynamical blocks that will hopefully overcome the critical slowing down completely is sketched.

  3. Iterative methods for elliptic finite element equations on general meshes

    NASA Technical Reports Server (NTRS)

    Nicolaides, R. A.; Choudhury, Shenaz

    1986-01-01

    Iterative methods for arbitrary mesh discretizations of elliptic partial differential equations are surveyed. The methods discussed are preconditioned conjugate gradients, algebraic multigrid, deflated conjugate gradients, an element-by-element techniques, and domain decomposition. Computational results are included.

  4. Comparative Convergence Analysis of Nonlinear AMLI-Cycle Multigrid

    SciTech Connect

    Hu, Xiaozhe; Vassilevski, Panayot S.; Xu, Jinchao

    2013-04-30

    The purpose of our paper is to provide a comprehensive convergence analysis of the nonlinear algebraic multilevel iteration (AMLI)-cycle multigrid (MG) method for symmetric positive definite problems. We show that the nonlinear AMLI-cycle MG method is uniformly convergent, based on classical assumptions for approximation and smoothing properties. Furthermore, under only the assumption that the smoother is convergent, we show that the nonlinear AMLI-cycle method is always better (or not worse) than the respective V-cycle MG method. Finally, numerical experiments are presented to illustrate the theoretical results.

  5. Analysis of a parallel multigrid algorithm

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.; Tuminaro, Ray S.

    1989-01-01

    The parallel multigrid algorithm of Frederickson and McBryan (1987) is considered. This algorithm uses multiple coarse-grid problems (instead of one problem) in the hope of accelerating convergence and is found to have a close relationship to traditional multigrid methods. Specifically, the parallel coarse-grid correction operator is identical to a traditional multigrid coarse-grid correction operator, except that the mixing of high and low frequencies caused by aliasing error is removed. Appropriate relaxation operators can be chosen to take advantage of this property. Comparisons between the standard multigrid and the new method are made.

  6. New convergence estimates for multigrid algorithms

    SciTech Connect

    Bramble, J.H.; Pasciak, J.E.

    1987-10-01

    In this paper, new convergence estimates are proved for both symmetric and nonsymmetric multigrid algorithms applied to symmetric positive definite problems. Our theory relates the convergence of multigrid algorithms to a ''regularity and approximation'' parameter ..cap alpha.. epsilon (0, 1) and the number of relaxations m. We show that for the symmetric and nonsymmetric ..nu.. cycles, the multigrid iteration converges for any positive m at a rate which deteriorates no worse than 1-cj/sup -(1-//sup ..cap alpha..//sup )///sup ..cap alpha../, where j is the number of grid levels. We then define a generalized ..nu.. cycle algorithm which involves exponentially increasing (for example, doubling) the number of smoothings on successively coarser grids. We show that the resulting symmetric and nonsymmetric multigrid iterations converge for any ..cap alpha.. with rates that are independent of the mesh size. The theory is presented in an abstract setting which can be applied to finite element multigrid and finite difference multigrid methods.

  7. Calculation of 3D turbulent jets in crossflow with a multigrid method and a second-moment closure model

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1990-01-01

    A multigrid method is presented for calculating turbulent jets in crossflow. Fairly rapid convergence is obtained with the k-epsilon turbulence model, but computations with a full Reynolds stress turbulence model (RSM) are not yet very efficient. Grid dependency tests show that there are slight differences between results obtained on the two finest grid levels. Computations using the RSM are significantly different from those with k-epsilon model and compare better to experimental data. Some work is still required to improve the efficiency of the computations with the RSM.

  8. Application of the multigrid method in a deterministic solution scheme for the three-dimensional radiative transfer equation

    NASA Astrophysics Data System (ADS)

    Ishida, Haruma

    2014-01-01

    An improved solution scheme is developed for the three-dimensional radiative transfer equation (RTE) in inhomogeneous cloudy atmospheres. This solution scheme is deterministic (explicit) and utilizes spherical harmonics series expansion and the finite-volume method for discretization of the RTE. The first-order upwind finite difference is modified to take into account bidirectional flow of radiance in spherical harmonics space, and an iterative solution method is applied. The multigrid method, which is generally employed to achieve rapid convergence in iterative calculation, is incorporated into the solution scheme. The present study suggests that the restriction and prolongation procedure for the multigrid method must be also modified to account for bidirectional flow, and proposes an efficient bidirectional restriction/prolongation procedure that does not increase the computational effort for coarser grids, resulting in a type of wavelet low-pass filter. Several calculation examples for various atmosphere models indicate that the proposed solution scheme is effective for rapid convergence and suitable for obtaining adequate radiation fields in inhomogeneous cloudy atmospheres, although a comparison with the Monte Carlo method suggests that the radiances obtained by this solution scheme at certain angles tends to be smoother.

  9. Algebraic coarsening methods for linear and nonlinear PDE and systems

    SciTech Connect

    McWilliams, J C

    2000-11-06

    In [l] Brandt describes a general approach for algebraic coarsening. Given fine-grid equations and a prescribed relaxation method, an approach is presented for defining both the coarse-grid variables and the coarse-grid equations corresponding to these variables. Although, these two tasks are not necessarily related (and, indeed, are often performed independently and with distinct techniques) in the approaches of [1] both revolve around the same underlying observation. To determine whether a given set of coarse-grid variables is appropriate it is suggested that one should employ compatible relaxation. This is a generalization of so-called F-relaxation (e.g., [2]). Suppose that the coarse-grid variables are defined as a subset of the fine-grid variables. Then, F-relaxation simply means relaxing only the F-variables (i.e., fine-grid variables that do not correspond to coarse-grid variables), while leaving the remaining fine-grid variables (C-variables) unchanged. The generalization of compatible relaxation is in allowing the coarse-grid variables to be defined differently, say as linear combinations of fine-grid variables, or even nondeterministically (see examples in [1]). For the present summary it suffices to consider the simple case. The central observation regarding the set of coarse-grid variables is the following [1]: Observation 1--A general measure for the quality of the set of coarse-grid variables is the convergence rate of compatible relaxation. The conclusion is that a necessary condition for efficient multigrid solution (e.g., with convergence rates independent of problem size) is that the compatible-relaxation convergence be bounded away from 1, independently of the number of variables. This is often a sufficient condition, provided that the coarse-grid equations are sufficiently accurate. Therefore, it is suggested in [1] that the convergence rate of compatible relaxation should be used as a criterion for choosing and evaluating the set of coarse

  10. Fourier mode analysis of multigrid methods for partial differential equations with random coefficients

    SciTech Connect

    Seynaeve, Bert; Rosseel, Eveline; Nicolai, Bart; Vandewalle, Stefan . E-mail: Stefan.Vandewalle@cs.kuleuven.be

    2007-05-20

    Partial differential equations with random coefficients appear for example in reliability problems and uncertainty propagation models. Various approaches exist for computing the stochastic characteristics of the solution of such a differential equation. In this paper, we consider the spectral expansion approach. This method transforms the continuous model into a large discrete algebraic system. We study the convergence properties of iterative methods for solving this discretized system. We consider one-level and multi-level methods. The classical Fourier mode analysis technique is extended towards the stochastic case. This is done by taking the eigenstructure into account of a certain matrix that depends on the random structure of the problem. We show how the convergence properties depend on the particulars of the algorithm, on the discretization parameters and on the stochastic characteristics of the model. Numerical results are added to illustrate some of our theoretical findings.

  11. Comparative study of homotopy continuation methods for nonlinear algebraic equations

    NASA Astrophysics Data System (ADS)

    Nor, Hafizudin Mohamad; Ismail, Ahmad Izani Md.; Majid, Ahmad Abd.

    2014-07-01

    We compare some recent homotopy continuation methods to see which method has greater applicability and greater accuracy. We test the methods on systems of nonlinear algebraic equations. The results obtained indicate the superior accuracy of Newton Homotopy Continuation Method (NHCM).

  12. Algebraic multiscale method for flow in heterogeneous porous media with embedded discrete fractures (F-AMS)

    NASA Astrophysics Data System (ADS)

    Ţene, Matei; Al Kobaisi, Mohammed Saad; Hajibeygi, Hadi

    2016-09-01

    This paper introduces an Algebraic MultiScale method for simulation of flow in heterogeneous porous media with embedded discrete Fractures (F-AMS). First, multiscale coarse grids are independently constructed for both porous matrix and fracture networks. Then, a map between coarse- and fine-scale is obtained by algebraically computing basis functions with local support. In order to extend the localization assumption to the fractured media, four types of basis functions are investigated: (1) Decoupled-AMS, in which the two media are completely decoupled, (2) Frac-AMS and (3) Rock-AMS, which take into account only one-way transmissibilities, and (4) Coupled-AMS, in which the matrix and fracture interpolators are fully coupled. In order to ensure scalability, the F-AMS framework permits full flexibility in terms of the resolution of the fracture coarse grids. Numerical results are presented for two- and three-dimensional heterogeneous test cases. During these experiments, the performance of F-AMS, paired with ILU(0) as second-stage smoother in a convergent iterative procedure, is studied by monitoring CPU times and convergence rates. Finally, in order to investigate the scalability of the method, an extensive benchmark study is conducted, where a commercial algebraic multigrid solver is used as reference. The results show that, given an appropriate coarsening strategy, F-AMS is insensitive to severe fracture and matrix conductivity contrasts, as well as the length of the fracture networks. Its unique feature is that a fine-scale mass conservative flux field can be reconstructed after any iteration, providing efficient approximate solutions in time-dependent simulations.

  13. Deformable target tracking method based on Lie algebra

    NASA Astrophysics Data System (ADS)

    Liu, Yunpeng; Shi, Zelin; Li, Guangwei

    2007-11-01

    Conventional approaches to object tracking use area correlation, but they are difficult to solve the problem of deformation of object region during tracking. A novel target tracking method based on Lie algebra is presented. We use Gabor feature as target token, model deformation using affine Lie group, and optimize parameters directly on manifold, which can be solved by exponential mapping between Lie Group and its Lie algebra. We analyze the essence of our method and test the algorithm using real image sequences. The experimental results demonstrate that Lie algebra method outperforms other traditional algorithms in efficiency, stabilization and accuracy.

  14. MGLab: An Interactive Multigrid Environment

    NASA Technical Reports Server (NTRS)

    Bordner, James; Saied, Faisal

    1996-01-01

    MGLab is a set of Matlab functions that defines an interactive environment for experimenting with multigrid algorithms. The package solves two-dimensional elliptic partial differential equations discretized using either finite differences or finite volumes, depending on the problem. Built-in problems include the Poisson equation, the Helmholtz equation, a convection-diffusion problem, and a discontinuous coefficient problem. A number of parameters controlling the multigrid V-cycle can be set using a point-and-click mechanism. The menu-based user interface also allows a choice of several Krylov subspace methods, including CG, GMRES(k), and Bi-CGSTAB, which can be used either as stand-alone solvers or as multigrid acceleration schemes. The package exploits Matlab's visualization and sparse matrix features and has been structured to be easily extensible.

  15. Canonical-variables multigrid method for steady-state Euler equations

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo

    1994-01-01

    A novel approach for the solution of inviscid flow problems for subsonic compressible flows is described. The approach is based on canonical forms of the equations, in which subsystems governed by hyperbolic operators are separated from those governed by elliptic ones. The discretizations used as well as the iterative techniques for the different subsystems are inherently different. Hyperbolic parts, which describe, in general, propagation phenomena, are discretized using upwind schemes and are solved by marching techniques. Elliptic parts, which are directionally unbiased, are discretized using h-elliptic central discretizations, and are solved by pointwise relaxations together with coarse grid acceleration. The resulting discretization schemes introduce artificial viscosity only for the hyperbolic parts of the system; thus a smaller total artificial viscosity is used, while the multigrid solvers used are much more efficient. Solutions of the subsonic compressible Euler equations are achieved at the same efficiency as the full potential equation.

  16. Linear Algebraic Method for Non-Linear Map Analysis

    SciTech Connect

    Yu,L.; Nash, B.

    2009-05-04

    We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.

  17. Numerical solution of integral-algebraic equations for multistep methods

    NASA Astrophysics Data System (ADS)

    Budnikova, O. S.; Bulatov, M. V.

    2012-05-01

    Systems of Volterra linear integral equations with identically singular matrices in the principal part (called integral-algebraic equations) are examined. Multistep methods for the numerical solution of a selected class of such systems are proposed and justified.

  18. Lie algebraic methods for particle tracking calculations

    SciTech Connect

    Douglas, D.R.; Dragt, A.J.

    1983-08-01

    A study of the nonlinear stability of an accelerator or storage ring lattice typically includes particle tracking simulations. Such simulations trace rays through linear and nonlinear lattice elements by numerically evaluating linear matrix or impulsive nonlinear transformations. Using the mathematical tools of Lie groups and algebras, one may construct a formalism which makes explicit use of Hamilton's equations and which allows the description of groups of linear and nonlinear lattice elements by a single transformation. Such a transformation will be exactly canonical and will describe finite length linear and nonlinear elements through third (octupole) order. It is presently possible to include effects such as fringing fields and potentially possible to extend the formalism to include nonlinearities of higher order, multipole errors, and magnet misalignments. We outline this Lie algebraic formalism and its use in particle tracking calculations. A computer code, MARYLIE, has been constructed on the basis of this formalism. We describe the use of this program for tracking and provide examples of its application. 6 references, 3 figures.

  19. Application of an Upwind High Resolution Finite-Differencing Scheme and Multigrid Method in Steady-State Incompressible Flow Simulations

    NASA Technical Reports Server (NTRS)

    Yang, Cheng I.; Guo, Yan-Hu; Liu, C.- H.

    1996-01-01

    The analysis and design of a submarine propulsor requires the ability to predict the characteristics of both laminar and turbulent flows to a higher degree of accuracy. This report presents results of certain benchmark computations based on an upwind, high-resolution, finite-differencing Navier-Stokes solver. The purpose of the computations is to evaluate the ability, the accuracy and the performance of the solver in the simulation of detailed features of viscous flows. Features of interest include flow separation and reattachment, surface pressure and skin friction distributions. Those features are particularly relevant to the propulsor analysis. Test cases with a wide range of Reynolds numbers are selected; therefore, the effects of the convective and the diffusive terms of the solver can be evaluated separately. Test cases include flows over bluff bodies, such as circular cylinders and spheres, at various low Reynolds numbers, flows over a flat plate with and without turbulence effects, and turbulent flows over axisymmetric bodies with and without propulsor effects. Finally, to enhance the iterative solution procedure, a full approximation scheme V-cycle multigrid method is implemented. Preliminary results indicate that the method significantly reduces the computational effort.

  20. Multigrid solvers and multigrid preconditioners for the solution of variational data assimilation problems

    NASA Astrophysics Data System (ADS)

    Debreu, Laurent; Neveu, Emilie; Simon, Ehouarn; Le Dimet, Francois Xavier; Vidard, Arthur

    2014-05-01

    In order to lower the computational cost of the variational data assimilation process, we investigate the use of multigrid methods to solve the associated optimal control system. On a linear advection equation, we study the impact of the regularization term on the optimal control and the impact of discretization errors on the efficiency of the coarse grid correction step. We show that even if the optimal control problem leads to the solution of an elliptic system, numerical errors introduced by the discretization can alter the success of the multigrid methods. The view of the multigrid iteration as a preconditioner for a Krylov optimization method leads to a more robust algorithm. A scale dependent weighting of the multigrid preconditioner and the usual background error covariance matrix based preconditioner is proposed and brings significant improvements. [1] Laurent Debreu, Emilie Neveu, Ehouarn Simon, François-Xavier Le Dimet and Arthur Vidard, 2014: Multigrid solvers and multigrid preconditioners for the solution of variational data assimilation problems, submitted to QJRMS, http://hal.inria.fr/hal-00874643 [2] Emilie Neveu, Laurent Debreu and François-Xavier Le Dimet, 2011: Multigrid methods and data assimilation - Convergence study and first experiments on non-linear equations, ARIMA, 14, 63-80, http://intranet.inria.fr/international/arima/014/014005.html

  1. Exact solution of some linear matrix equations using algebraic methods

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1977-01-01

    A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.

  2. Computer algebra methods in the study of nonlinear differential systems

    NASA Astrophysics Data System (ADS)

    Irtegov, V. D.; Titorenko, T. N.

    2013-06-01

    Some issues concerning computer algebra methods as applied to the qualitative analysis of differential equations with first integrals are discussed. The problems of finding stationary sets and analyzing their stability and bifurcations are considered. Special attention is given to algorithms for finding and analyzing peculiar stationary sets. It is shown that computer algebra tools, combined with qualitative analysis methods for differential equations, make it possible not only to enhance the computational efficiency of classical algorithms, but also to implement new approaches to the solution of well-known problems and, in this way, to obtain new results.

  3. Exact solution of some linear matrix equations using algebraic methods

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1979-01-01

    Algebraic methods are used to construct the exact solution P of the linear matrix equation PA + BP = - C, where A, B, and C are matrices with real entries. The emphasis of this equation is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The paper is divided into six sections which include the proof of the basic lemma, the Liapunov equation, and the computer implementation for the rational, integer and modular algorithms. Two numerical examples are given and the entire calculation process is depicted.

  4. Algebraic methods for the solution of some linear matrix equations

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1979-01-01

    The characterization of polynomials whose zeros lie in certain algebraic domains (and the unification of the ideas of Hermite and Lyapunov) is the basis for developing finite algorithms for the solution of linear matrix equations. Particular attention is given to equations PA + A'P = Q (the Lyapunov equation) and P - A'PA = Q the (discrete Lyapunov equation). The Lyapunov equation appears in several areas of control theory such as stability theory, optimal control (evaluation of quadratic integrals), stochastic control (evaluation of covariance matrices) and in the solution of the algebraic Riccati equation using Newton's method.

  5. Textbook Multigrid Efficiency for Leading Edge Stagnation

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Mineck, Raymond E.

    2004-01-01

    A multigrid solver is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in evaluating the discrete residuals. TME in solving the incompressible inviscid fluid equations is demonstrated for leading- edge stagnation flows. The contributions of this paper include (1) a special formulation of the boundary conditions near stagnation allowing convergence of the Newton iterations on coarse grids, (2) the boundary relaxation technique to facilitate relaxation and residual restriction near the boundaries, (3) a modified relaxation scheme to prevent initial error amplification, and (4) new general analysis techniques for multigrid solvers. Convergence of algebraic errors below the level of discretization errors is attained by a full multigrid (FMG) solver with one full approximation scheme (F.4S) cycle per grid. Asymptotic convergence rates of the F.4S cycles for the full system of flow equations are very fast, approaching those for scalar elliptic equations.

  6. Textbook Multigrid Efficiency for Leading Edge Stagnation

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Mineck, Raymond E.

    2004-01-01

    A multigrid solver is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in evaluating the discrete residuals. TME in solving the incompressible inviscid fluid equations is demonstrated for leading-edge stagnation flows. The contributions of this paper include (1) a special formulation of the boundary conditions near stagnation allowing convergence of the Newton iterations on coarse grids, (2) the boundary relaxation technique to facilitate relaxation and residual restriction near the boundaries, (3) a modified relaxation scheme to prevent initial error amplification, and (4) new general analysis techniques for multigrid solvers. Convergence of algebraic errors below the level of discretization errors is attained by a full multigrid (FMG) solver with one full approximation scheme (FAS) cycle per grid. Asymptotic convergence rates of the FAS cycles for the full system of flow equations are very fast, approaching those for scalar elliptic equations.

  7. A Cognitive Model of Experts' Algebraic Solving Methods

    ERIC Educational Resources Information Center

    Cortes, Anibal

    2003-01-01

    We studied experts' solving methods and analyzed the nature of mathematical knowledge as well as their efficiency in algebraic calculations. We constructed a model of the experts cognitive functioning (notably teachers) in which the observed automatisms were modeled in terms of schemes and instruments. Mathematical justification of transformation…

  8. Divergence of Scientific Heuristic Method and Direct Algebraic Instruction

    ERIC Educational Resources Information Center

    Calucag, Lina S.

    2016-01-01

    This is an experimental study, made used of the non-randomized experimental and control groups, pretest-posttest designs. The experimental and control groups were two separate intact classes in Algebra. For a period of twelve sessions, the experimental group was subjected to the scientific heuristic method, but the control group instead was given…

  9. An Analysis of the Algebraic Method for Balancing Chemical Reactions.

    ERIC Educational Resources Information Center

    Olson, John A.

    1997-01-01

    Analyzes the algebraic method for balancing chemical reactions. Introduces a third general condition that involves a balance between the total amount of oxidation and reduction. Requires the specification of oxidation states for all elements throughout the reaction. Describes the general conditions, the mathematical treatment, redox reactions, and…

  10. Vectorized multigrid Poisson solver for the CDC CYBER 205

    NASA Technical Reports Server (NTRS)

    Barkai, D.; Brandt, M. A.

    1984-01-01

    The full multigrid (FMG) method is applied to the two dimensional Poisson equation with Dirichlet boundary conditions. This has been chosen as a relatively simple test case for examining the efficiency of fully vectorizing of the multigrid method. Data structure and programming considerations and techniques are discussed, accompanied by performance details.

  11. Application of p-Multigrid to Discontinuous Galerkin Formulations of the Poisson Equation

    NASA Technical Reports Server (NTRS)

    Helenbrook, B. T.; Atkins, H. L.

    2006-01-01

    We investigate p-multigrid as a solution method for several different discontinuous Galerkin (DG) formulations of the Poisson equation. Different combinations of relaxation schemes and basis sets have been combined with the DG formulations to find the best performing combination. The damping factors of the schemes have been determined using Fourier analysis for both one and two-dimensional problems. One important finding is that when using DG formulations, the standard approach of forming the coarse p matrices separately for each level of multigrid is often unstable. To ensure stability the coarse p matrices must be constructed from the fine grid matrices using algebraic multigrid techniques. Of the relaxation schemes, we find that the combination of Jacobi relaxation with the spectral element basis is fairly effective. The results using this combination are p sensitive in both one and two dimensions, but reasonable convergence rates can still be achieved for moderate values of p and isotropic meshes. A competitive alternative is a block Gauss-Seidel relaxation. This actually out performs a more expensive line relaxation when the mesh is isotropic. When the mesh becomes highly anisotropic, the implicit line method and the Gauss-Seidel implicit line method are the only effective schemes. Adding the Gauss-Seidel terms to the implicit line method gives a significant improvement over the line relaxation method.

  12. Numerical methods on some structured matrix algebra problems

    SciTech Connect

    Jessup, E.R.

    1996-06-01

    This proposal concerned the design, analysis, and implementation of serial and parallel algorithms for certain structured matrix algebra problems. It emphasized large order problems and so focused on methods that can be implemented efficiently on distributed-memory MIMD multiprocessors. Such machines supply the computing power and extensive memory demanded by the large order problems. We proposed to examine three classes of matrix algebra problems: the symmetric and nonsymmetric eigenvalue problems (especially the tridiagonal cases) and the solution of linear systems with specially structured coefficient matrices. As all of these are of practical interest, a major goal of this work was to translate our research in linear algebra into useful tools for use by the computational scientists interested in these and related applications. Thus, in addition to software specific to the linear algebra problems, we proposed to produce a programming paradigm and library to aid in the design and implementation of programs for distributed-memory MIMD computers. We now report on our progress on each of the problems and on the programming tools.

  13. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    DOE PAGES

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2010-09-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called ‘‘textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss–Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field,more » which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.« less

  14. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    SciTech Connect

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2010-09-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called ‘‘textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss–Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.

  15. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    SciTech Connect

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2013-12-14

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called “textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.

  16. Numerical boundary condition procedures and multigrid methods; Proceedings of the Symposium, NASA Ames Research Center, Moffett Field, CA, October 19-22, 1981

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Papers presented in this volume provide an overview of recent work on numerical boundary condition procedures and multigrid methods. The topics discussed include implicit boundary conditions for the solution of the parabolized Navier-Stokes equations for supersonic flows; far field boundary conditions for compressible flows; and influence of boundary approximations and conditions on finite-difference solutions. Papers are also presented on fully implicit shock tracking and on the stability of two-dimensional hyperbolic initial boundary value problems for explicit and implicit schemes.

  17. Application of the multigrid amplitude function method for time-dependent transport equation using MOC

    SciTech Connect

    Tsujita, K.; Endo, T.; Yamamoto, A.

    2013-07-01

    An efficient numerical method for time-dependent transport equation, the mutigrid amplitude function (MAF) method, is proposed. The method of characteristics (MOC) is being widely used for reactor analysis thanks to the advances of numerical algorithms and computer hardware. However, efficient kinetic calculation method for MOC is still desirable since it requires significant computation time. Various efficient numerical methods for solving the space-dependent kinetic equation, e.g., the improved quasi-static (IQS) and the frequency transform methods, have been developed so far mainly for diffusion calculation. These calculation methods are known as effective numerical methods and they offer a way for faster computation. However, they have not been applied to the kinetic calculation method using MOC as the authors' knowledge. Thus, the MAF method is applied to the kinetic calculation using MOC aiming to reduce computation time. The MAF method is a unified numerical framework of conventional kinetic calculation methods, e.g., the IQS, the frequency transform, and the theta methods. Although the MAF method is originally developed for the space-dependent kinetic calculation based on the diffusion theory, it is extended to transport theory in the present study. The accuracy and computational time are evaluated though the TWIGL benchmark problem. The calculation results show the effectiveness of the MAF method. (authors)

  18. A fast and robust computational method for the ionization cross sections of the driven Schrödinger equation using an O (N) multigrid-based scheme

    NASA Astrophysics Data System (ADS)

    Cools, S.; Vanroose, W.

    2016-03-01

    This paper improves the convergence and robustness of a multigrid-based solver for the cross sections of the driven Schrödinger equation. Adding a Coupled Channel Correction Step (CCCS) after each multigrid (MG) V-cycle efficiently removes the errors that remain after the V-cycle sweep. The combined iterative solution scheme (MG-CCCS) is shown to feature significantly improved convergence rates over the classical MG method at energies where bound states dominate the solution, resulting in a fast and scalable solution method for the complex-valued Schrödinger break-up problem for any energy regime. The proposed solver displays optimal scaling; a solution is found in a time that is linear in the number of unknowns. The method is validated on a 2D Temkin-Poet model problem, and convergence results both as a solver and preconditioner are provided to support the O (N) scalability of the method. This paper extends the applicability of the complex contour approach for far field map computation (Cools et al. (2014) [10]).

  19. Some multigrid algorithms for SIMD machines

    SciTech Connect

    Dendy, J.E. Jr.

    1996-12-31

    Previously a semicoarsening multigrid algorithm suitable for use on SIMD architectures was investigated. Through the use of new software tools, the performance of this algorithm has been considerably improved. The method has also been extended to three space dimensions. The method performs well for strongly anisotropic problems and for problems with coefficients jumping by orders of magnitude across internal interfaces. The parallel efficiency of this method is analyzed, and its actual performance on the CM-5 is compared with its performance on the CRAY-YMP. A standard coarsening multigrid algorithm is also considered, and we compare its performance on these two platforms as well.

  20. Multigrid method applied to the solution of an elliptic, generalized eigenvalue problem

    SciTech Connect

    Alchalabi, R.M.; Turinsky, P.J.

    1996-12-31

    The work presented in this paper is concerned with the development of an efficient MG algorithm for the solution of an elliptic, generalized eigenvalue problem. The application is specifically applied to the multigroup neutron diffusion equation which is discretized by utilizing the Nodal Expansion Method (NEM). The underlying relaxation method is the Power Method, also known as the (Outer-Inner Method). The inner iterations are completed using Multi-color Line SOR, and the outer iterations are accelerated using Chebyshev Semi-iterative Method. Furthermore, the MG algorithm utilizes the consistent homogenization concept to construct the restriction operator, and a form function as a prolongation operator. The MG algorithm was integrated into the reactor neutronic analysis code NESTLE, and numerical results were obtained from solving production type benchmark problems.

  1. 3D magnetospheric parallel hybrid multi-grid method applied to planet-plasma interactions

    NASA Astrophysics Data System (ADS)

    Leclercq, L.; Modolo, R.; Leblanc, F.; Hess, S.; Mancini, M.

    2016-03-01

    We present a new method to exploit multiple refinement levels within a 3D parallel hybrid model, developed to study planet-plasma interactions. This model is based on the hybrid formalism: ions are kinetically treated whereas electrons are considered as a inertia-less fluid. Generally, ions are represented by numerical particles whose size equals the volume of the cells. Particles that leave a coarse grid subsequently entering a refined region are split into particles whose volume corresponds to the volume of the refined cells. The number of refined particles created from a coarse particle depends on the grid refinement rate. In order to conserve velocity distribution functions and to avoid calculations of average velocities, particles are not coalesced. Moreover, to ensure the constancy of particles' shape function sizes, the hybrid method is adapted to allow refined particles to move within a coarse region. Another innovation of this approach is the method developed to compute grid moments at interfaces between two refinement levels. Indeed, the hybrid method is adapted to accurately account for the special grid structure at the interfaces, avoiding any overlapping grid considerations. Some fundamental test runs were performed to validate our approach (e.g. quiet plasma flow, Alfven wave propagation). Lastly, we also show a planetary application of the model, simulating the interaction between Jupiter's moon Ganymede and the Jovian plasma.

  2. Numerical Methods for Forward and Inverse Problems in Discontinuous Media

    SciTech Connect

    Chartier, Timothy P.

    2011-03-08

    The research emphasis under this grant's funding is in the area of algebraic multigrid methods. The research has two main branches: 1) exploring interdisciplinary applications in which algebraic multigrid can make an impact and 2) extending the scope of algebraic multigrid methods with algorithmic improvements that are based in strong analysis.The work in interdisciplinary applications falls primarily in the field of biomedical imaging. Work under this grant demonstrated the effectiveness and robustness of multigrid for solving linear systems that result from highly heterogeneous finite element method models of the human head. The results in this work also give promise to medical advances possible with software that may be developed. Research to extend the scope of algebraic multigrid has been focused in several areas. In collaboration with researchers at the University of Colorado, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory, the PI developed an adaptive multigrid with subcycling via complementary grids. This method has very cheap computing costs per iterate and is showing promise as a preconditioner for conjugate gradient. Recent work with Los Alamos National Laboratory concentrates on developing algorithms that take advantage of the recent advances in adaptive multigrid research. The results of the various efforts in this research could ultimately have direct use and impact to researchers for a wide variety of applications, including, astrophysics, neuroscience, contaminant transport in porous media, bi-domain heart modeling, modeling of tumor growth, and flow in heterogeneous porous media. This work has already led to basic advances in computational mathematics and numerical linear algebra and will continue to do so into the future.

  3. Application of multigrid methods to the solution of liquid crystal equations on a SIMD computer

    NASA Technical Reports Server (NTRS)

    Farrell, Paul A.; Ruttan, Arden; Zeller, Reinhardt R.

    1993-01-01

    We will describe a finite difference code for computing the equilibrium configurations of the order-parameter tensor field for nematic liquid crystals in rectangular regions by minimization of the Landau-de Gennes Free Energy functional. The implementation of the free energy functional described here includes magnetic fields, quadratic gradient terms, and scalar bulk terms through the fourth order. Boundary conditions include the effects of strong surface anchoring. The target architectures for our implementation are SIMD machines, with interconnection networks which can be configured as 2 or 3 dimensional grids, such as the Wavetracer DTC. We also discuss the relative efficiency of a number of iterative methods for the solution of the linear systems arising from this discretization on such architectures.

  4. An algebraic method for constructing stable and consistent autoregressive filters

    NASA Astrophysics Data System (ADS)

    Harlim, John; Hong, Hoon; Robbins, Jacob L.

    2015-02-01

    In this paper, we introduce an algebraic method to construct stable and consistent univariate autoregressive (AR) models of low order for filtering and predicting nonlinear turbulent signals with memory depth. By stable, we refer to the classical stability condition for the AR model. By consistent, we refer to the classical consistency constraints of Adams-Bashforth methods of order-two. One attractive feature of this algebraic method is that the model parameters can be obtained without directly knowing any training data set as opposed to many standard, regression-based parameterization methods. It takes only long-time average statistics as inputs. The proposed method provides a discretization time step interval which guarantees the existence of stable and consistent AR model and simultaneously produces the parameters for the AR models. In our numerical examples with two chaotic time series with different characteristics of decaying time scales, we find that the proposed AR models produce significantly more accurate short-term predictive skill and comparable filtering skill relative to the linear regression-based AR models. These encouraging results are robust across wide ranges of discretization times, observation times, and observation noise variances. Finally, we also find that the proposed model produces an improved short-time prediction relative to the linear regression-based AR-models in forecasting a data set that characterizes the variability of the Madden-Julian Oscillation, a dominant tropical atmospheric wave pattern.

  5. An algebraic method for constructing stable and consistent autoregressive filters

    SciTech Connect

    Harlim, John; Hong, Hoon; Robbins, Jacob L.

    2015-02-15

    In this paper, we introduce an algebraic method to construct stable and consistent univariate autoregressive (AR) models of low order for filtering and predicting nonlinear turbulent signals with memory depth. By stable, we refer to the classical stability condition for the AR model. By consistent, we refer to the classical consistency constraints of Adams–Bashforth methods of order-two. One attractive feature of this algebraic method is that the model parameters can be obtained without directly knowing any training data set as opposed to many standard, regression-based parameterization methods. It takes only long-time average statistics as inputs. The proposed method provides a discretization time step interval which guarantees the existence of stable and consistent AR model and simultaneously produces the parameters for the AR models. In our numerical examples with two chaotic time series with different characteristics of decaying time scales, we find that the proposed AR models produce significantly more accurate short-term predictive skill and comparable filtering skill relative to the linear regression-based AR models. These encouraging results are robust across wide ranges of discretization times, observation times, and observation noise variances. Finally, we also find that the proposed model produces an improved short-time prediction relative to the linear regression-based AR-models in forecasting a data set that characterizes the variability of the Madden–Julian Oscillation, a dominant tropical atmospheric wave pattern.

  6. Unstructured multigrid through agglomeration

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, V.; Mavriplis, D. J.; Berger, M. J.

    1993-01-01

    In this work the compressible Euler equations are solved using finite volume techniques on unstructured grids. The spatial discretization employs a central difference approximation augmented by dissipative terms. Temporal discretization is done using a multistage Runge-Kutta scheme. A multigrid technique is used to accelerate convergence to steady state. The coarse grids are derived directly from the given fine grid through agglomeration of the control volumes. This agglomeration is accomplished by using a greedy-type algorithm and is done in such a way that the load, which is proportional to the number of edges, goes down by nearly a factor of 4 when moving from a fine to a coarse grid. The agglomeration algorithm has been implemented and the grids have been tested in a multigrid code. An area-weighted restriction is applied when moving from fine to coarse grids while a trivial injection is used for prolongation. Across a range of geometries and flows, it is shown that the agglomeration multigrid scheme compares very favorably with an unstructured multigrid algorithm that makes use of independent coarse meshes, both in terms of convergence and elapsed times.

  7. Element Agglomeration Algebraic Multigrid and Upscaling Library

    SciTech Connect

    2015-02-11

    ELAG is a serial C++ library for numerical upscaling of finite element discretizations. It provides optimal complexity algorithms to build multilevel hierarchies and solvers that can be used for solving a wide class of partial differential equation (elliptic, hyperbolic, saddle point problems) on general unstructured mesh. Additionally, a novel multilevel solver for saddle point problems with divergence constraint is implemented.

  8. Multigrid semi-implicit hydrodynamics revisited

    SciTech Connect

    Dendy, J.E.

    1983-01-01

    The multigrid method has for several years been very successful for simple equations like Laplace's equation on a rectangle. For more complicated situations, however, success has been more elusive. Indeeed, there are only a few applications in which the multigrid method is now being successfully used in complicated production codes. The one with which we are most familiar is the application by Alcouffe to TTDAMG. We are more familiar with this second application in which, for a set of test problems, TTDAMG ran seven to twenty times less expensively (on a CRAY-1 computer) than its best competitor. This impressive performance, in a field where a factor of two improvement is considered significant, encourages one to attempt the application of the multigrid method in other complicated situations. The application discussed in this paper was actually attempted several years ago. In that paper the multigrid method was applied to the pressure iteration in three Eulerian and Lagrangian codes. The application to the Eulerian codes, both incompressible and compressible, was successful, but the application to the Lagrangian code was less so. The reason given for this lack of success was that the differencing for the pressure equation in the Lagrangian code, SALE, was bad. In this paper, we examine again the application of multigrad to the pressure equation in SALE with the goal of succeeding this time without cheating.

  9. Soft Error Vulnerability of Iterative Linear Algebra Methods

    SciTech Connect

    Bronevetsky, G; de Supinski, B

    2008-01-19

    Devices are increasingly vulnerable to soft errors as their feature sizes shrink. Previously, soft error rates were significant primarily in space and high-atmospheric computing. Modern architectures now use features so small at sufficiently low voltages that soft errors are becoming important even at terrestrial altitudes. Due to their large number of components, supercomputers are particularly susceptible to soft errors. Since many large scale parallel scientific applications use iterative linear algebra methods, the soft error vulnerability of these methods constitutes a large fraction of the applications overall vulnerability. Many users consider these methods invulnerable to most soft errors since they converge from an imprecise solution to a precise one. However, we show in this paper that iterative methods are vulnerable to soft errors, exhibiting both silent data corruptions and poor ability to detect errors. Further, we evaluate a variety of soft error detection and tolerance techniques, including checkpointing, linear matrix encodings, and residual tracking techniques.

  10. Phased-mission system analysis using Boolean algebraic methods

    NASA Technical Reports Server (NTRS)

    Somani, Arun K.; Trivedi, Kishor S.

    1993-01-01

    Most reliability analysis techniques and tools assume that a system is used for a mission consisting of a single phase. However, multiple phases are natural in many missions. The failure rates of components, system configuration, and success criteria may vary from phase to phase. In addition, the duration of a phase may be deterministic or random. Recently, several researchers have addressed the problem of reliability analysis of such systems using a variety of methods. A new technique for phased-mission system reliability analysis based on Boolean algebraic methods is described. Our technique is computationally efficient and is applicable to a large class of systems for which the failure criterion in each phase can be expressed as a fault tree (or an equivalent representation). Our technique avoids state space explosion that commonly plague Markov chain-based analysis. A phase algebra to account for the effects of variable configurations and success criteria from phase to phase was developed. Our technique yields exact (as opposed to approximate) results. The use of our technique was demonstrated by means of an example and present numerical results to show the effects of mission phases on the system reliability.

  11. Large-Scale Parallel Viscous Flow Computations using an Unstructured Multigrid Algorithm

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1999-01-01

    The development and testing of a parallel unstructured agglomeration multigrid algorithm for steady-state aerodynamic flows is discussed. The agglomeration multigrid strategy uses a graph algorithm to construct the coarse multigrid levels from the given fine grid, similar to an algebraic multigrid approach, but operates directly on the non-linear system using the FAS (Full Approximation Scheme) approach. The scalability and convergence rate of the multigrid algorithm are examined on the SGI Origin 2000 and the Cray T3E. An argument is given which indicates that the asymptotic scalability of the multigrid algorithm should be similar to that of its underlying single grid smoothing scheme. For medium size problems involving several million grid points, near perfect scalability is obtained for the single grid algorithm, while only a slight drop-off in parallel efficiency is observed for the multigrid V- and W-cycles, using up to 128 processors on the SGI Origin 2000, and up to 512 processors on the Cray T3E. For a large problem using 25 million grid points, good scalability is observed for the multigrid algorithm using up to 1450 processors on a Cray T3E, even when the coarsest grid level contains fewer points than the total number of processors.

  12. Recent Advances in Agglomerated Multigrid

    NASA Technical Reports Server (NTRS)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.; Hammond, Dana P.

    2013-01-01

    We report recent advancements of the agglomerated multigrid methodology for complex flow simulations on fully unstructured grids. An agglomerated multigrid solver is applied to a wide range of test problems from simple two-dimensional geometries to realistic three- dimensional configurations. The solver is evaluated against a single-grid solver and, in some cases, against a structured-grid multigrid solver. Grid and solver issues are identified and overcome, leading to significant improvements over single-grid solvers.

  13. Segmental Refinement: A Multigrid Technique for Data Locality

    SciTech Connect

    Adams, Mark

    2014-10-27

    We investigate a technique - segmental refinement (SR) - proposed by Brandt in the 1970s as a low memory multigrid method. The technique is attractive for modern computer architectures because it provides high data locality, minimizes network communication, is amenable to loop fusion, and is naturally highly parallel and asynchronous. The network communication minimization property was recognized by Brandt and Diskin in 1994; we continue this work by developing a segmental refinement method for a finite volume discretization of the 3D Laplacian on massively parallel computers. An understanding of the asymptotic complexities, required to maintain textbook multigrid efficiency, are explored experimentally with a simple SR method. A two-level memory model is developed to compare the asymptotic communication complexity of a proposed SR method with traditional parallel multigrid. Performance and scalability are evaluated with a Cray XC30 with up to 64K cores. We achieve modest improvement in scalability from traditional parallel multigrid with a simple SR implementation.

  14. Matrix-dependent multigrid-homogenization for diffusion problems

    SciTech Connect

    Knapek, S.

    1996-12-31

    We present a method to approximately determine the effective diffusion coefficient on the coarse scale level of problems with strongly varying or discontinuous diffusion coefficients. It is based on techniques used also in multigrid, like Dendy`s matrix-dependent prolongations and the construction of coarse grid operators by means of the Galerkin approximation. In numerical experiments, we compare our multigrid-homogenization method with homogenization, renormalization and averaging approaches.

  15. On the connection between multigrid and cyclic reduction

    NASA Technical Reports Server (NTRS)

    Merriam, M. L.

    1984-01-01

    A technique is shown whereby it is possible to relate a particular multigrid process to cyclic reduction using purely mathematical arguments. This technique suggest methods for solving Poisson's equation in 1-, 2-, or 3-dimensions with Dirichlet or Neumann boundary conditions. In one dimension the method is exact and, in fact, reduces to cyclic reduction. This provides a valuable reference point for understanding multigrid techniques. The particular multigrid process analyzed is referred to here as Approximate Cyclic Reduction (ACR) and is one of a class known as Multigrid Reduction methods in the literature. It involves one approximation with a known error term. It is possible to relate the error term in this approximation with certain eigenvector components of the error. These are sharply reduced in amplitude by classical relaxation techniques. The approximation can thus be made a very good one.

  16. Intertextuality and Sense Production in the Learning of Algebraic Methods

    ERIC Educational Resources Information Center

    Rojano, Teresa; Filloy, Eugenio; Puig, Luis

    2014-01-01

    In studies carried out in the 1980s the algebraic symbols and expressions are revealed through prealgebraic readers as non-independent texts, as texts that relate to other texts that in some cases belong to the reader's native language or to the arithmetic sign system. Such outcomes suggest that the act of reading algebraic texts submerges…

  17. Applications of multigrid software in the atmospheric sciences

    NASA Technical Reports Server (NTRS)

    Adams, J.; Garcia, R.; Gross, B.; Hack, J.; Haidvogel, D.; Pizzo, V.

    1992-01-01

    Elliptic partial differential equations from different areas in the atmospheric sciences are efficiently and easily solved utilizing the multigrid software package named MUDPACK. It is demonstrated that the multigrid method is more efficient than other commonly employed techniques, such as Gaussian elimination and fixed-grid relaxation. The efficiency relative to other techniques, both in terms of storage requirement and computational time, increases quickly with grid size.

  18. Soft Error Vulnerability of Iterative Linear Algebra Methods

    SciTech Connect

    Bronevetsky, G; de Supinski, B

    2007-12-15

    Devices become increasingly vulnerable to soft errors as their feature sizes shrink. Previously, soft errors primarily caused problems for space and high-atmospheric computing applications. Modern architectures now use features so small at sufficiently low voltages that soft errors are becoming significant even at terrestrial altitudes. The soft error vulnerability of iterative linear algebra methods, which many scientific applications use, is a critical aspect of the overall application vulnerability. These methods are often considered invulnerable to many soft errors because they converge from an imprecise solution to a precise one. However, we show that iterative methods can be vulnerable to soft errors, with a high rate of silent data corruptions. We quantify this vulnerability, with algorithms generating up to 8.5% erroneous results when subjected to a single bit-flip. Further, we show that detecting soft errors in an iterative method depends on its detailed convergence properties and requires more complex mechanisms than simply checking the residual. Finally, we explore inexpensive techniques to tolerate soft errors in these methods.

  19. Progress with multigrid schemes for hypersonic flow problems

    NASA Technical Reports Server (NTRS)

    Radespiel, R.; Swanson, R. C.

    1991-01-01

    Several multigrid schemes are considered for the numerical computation of viscous hypersonic flows. For each scheme, the basic solution algorithm uses upwind spatial discretization with explicit multistage time stepping. Two level versions of the various multigrid algorithms are applied to the two dimensional advection equation, and Fourier analysis is used to determine their damping properties. The capabilities of the multigrid methods are assessed by solving three different hypersonic flow problems. Some new multigrid schemes based on semicoarsening strategies are shown to be quite effective in relieving the stiffness caused by the high aspect ratio cells required to resolve high Reynolds number flows. These schemes exhibit good convergence rates for Reynolds numbers up to 200 x 10(exp 6) and Mach numbers up to 25.

  20. Progress with multigrid schemes for hypersonic flow problems

    SciTech Connect

    Radespiel, R.; Swanson, R.C.

    1995-01-01

    Several multigrid schemes are considered for the numerical computation of viscous hypersonic flows. For each scheme, the basic solution algorithm employs upwind spatial discretization with explicit multistage time stepping. Two-level versions of the various multigrid algorithms are applied to the two-dimensional advection equation, and Fourier analysis is used to determine their damping properties. The capabilities of the multigrid methods are assessed by solving three different hypersonic flow problems. Some new multigrid schemes based on semicoarsening strategies are shown to be quite effective in relieving the stiffness caused by the high-aspect-ratio cells required to resolve high Reynolds number flows. These schemes exhibit good convergence rates for Reynolds numbers up to 200 X 10{sup 6} and Mach numbers up to 25. 32 refs., 31 figs., 1 tab.

  1. An algebra-based method for inferring gene regulatory networks

    PubMed Central

    2014-01-01

    Background The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used. Results This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also

  2. Updated users' guide for TAWFIVE with multigrid

    NASA Technical Reports Server (NTRS)

    Melson, N. Duane; Streett, Craig L.

    1989-01-01

    A program for the Transonic Analysis of a Wing and Fuselage with Interacted Viscous Effects (TAWFIVE) was improved by the incorporation of multigrid and a method to specify lift coefficient rather than angle-of-attack. A finite volume full potential multigrid method is used to model the outer inviscid flow field. First order viscous effects are modeled by a 3-D integral boundary layer method. Both turbulent and laminar boundary layers are treated. Wake thickness effects are modeled using a 2-D strip method. A brief discussion of the engineering aspects of the program is given. The input, output, and use of the program are covered in detail. Sample results are given showing the effects of boundary layer corrections and the capability of the lift specification method.

  3. Formulation of boundary conditions for the multigrid acceleration of the Euler and Navier Stokes equations

    NASA Technical Reports Server (NTRS)

    Jentink, Thomas Neil; Usab, William J., Jr.

    1990-01-01

    An explicit, Multigrid algorithm was written to solve the Euler and Navier-Stokes equations with special consideration given to the coarse mesh boundary conditions. These are formulated in a manner consistent with the interior solution, utilizing forcing terms to prevent coarse-mesh truncation error from affecting the fine-mesh solution. A 4-Stage Hybrid Runge-Kutta Scheme is used to advance the solution in time, and Multigrid convergence is further enhanced by using local time-stepping and implicit residual smoothing. Details of the algorithm are presented along with a description of Jameson's standard Multigrid method and a new approach to formulating the Multigrid equations.

  4. Analysis of incomplete matrix factorizations as multigrid smoothers for vector and parallel computers

    SciTech Connect

    Axelsson, O.

    1986-07-01

    The cost of smoothing is usually a major expense in multigrid codes. Efficient vectorizable and parallelizable versions of incomplete block-matrix factorization methods used as smoothers for multigrid methods are discussed in this paper. The methods are particularly interesting for computers with parallel processors with pipelines, because both multitasking with little overhead and vectorization can be achieved. 21 references.

  5. Full Multigrid Flow Solver

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Thomas, James L.; Biedron, Robert T.; Diskin, Boris

    2005-01-01

    FMG3D (full multigrid 3 dimensions) is a pilot computer program that solves equations of fluid flow using a finite difference representation on a structured grid. Infrastructure exists for three dimensions but the current implementation treats only two dimensions. Written in Fortran 90, FMG3D takes advantage of the recursive subroutine feature, dynamic memory allocation, and structured-programming constructs of that language. FMG3D supports multi-block grids with three types of block-to-block interfaces: periodic, C-zero, and C-infinity. For all three types, grid points must match at interfaces. For periodic and C-infinity types, derivatives of grid metrics must be continuous at interfaces. The available equation sets are as follows: scalar elliptic equations, scalar convection equations, and the pressure-Poisson formulation of the Navier-Stokes equations for an incompressible fluid. All the equation sets are implemented with nonzero forcing functions to enable the use of user-specified solutions to assist in verification and validation. The equations are solved with a full multigrid scheme using a full approximation scheme to converge the solution on each succeeding grid level. Restriction to the next coarser mesh uses direct injection for variables and full weighting for residual quantities; prolongation of the coarse grid correction from the coarse mesh to the fine mesh uses bilinear interpolation; and prolongation of the coarse grid solution uses bicubic interpolation.

  6. A multigrid solver for the semiconductor equations

    NASA Technical Reports Server (NTRS)

    Bachmann, Bernhard

    1993-01-01

    We present a multigrid solver for the exponential fitting method. The solver is applied to the current continuity equations of semiconductor device simulation in two dimensions. The exponential fitting method is based on a mixed finite element discretization using the lowest-order Raviart-Thomas triangular element. This discretization method yields a good approximation of front layers and guarantees current conservation. The corresponding stiffness matrix is an M-matrix. 'Standard' multigrid solvers, however, cannot be applied to the resulting system, as this is dominated by an unsymmetric part, which is due to the presence of strong convection in part of the domain. To overcome this difficulty, we explore the connection between Raviart-Thomas mixed methods and the nonconforming Crouzeix-Raviart finite element discretization. In this way we can construct nonstandard prolongation and restriction operators using easily computable weighted L(exp 2)-projections based on suitable quadrature rules and the upwind effects of the discretization. The resulting multigrid algorithm shows very good results, even for real-world problems and for locally refined grids.

  7. αAMG based on Weighted Matching for Systems of Elliptic PDEs Arising From Displacement and Mixed Methods

    SciTech Connect

    D'Ambra, P.; Vassilevski, P. S.

    2014-05-30

    Adaptive Algebraic Multigrid (or Multilevel) Methods (αAMG) are introduced to improve robustness and efficiency of classical algebraic multigrid methods in dealing with problems where no a-priori knowledge or assumptions on the near-null kernel of the underlined matrix are available. Recently we proposed an adaptive (bootstrap) AMG method, αAMG, aimed to obtain a composite solver with a desired convergence rate. Each new multigrid component relies on a current (general) smooth vector and exploits pairwise aggregation based on weighted matching in a matrix graph to define a new automatic, general-purpose coarsening process, which we refer to as “the compatible weighted matching”. In this work, we present results that broaden the applicability of our method to different finite element discretizations of elliptic PDEs. In particular, we consider systems arising from displacement methods in linear elasticity problems and saddle-point systems that appear in the application of the mixed method to Darcy problems.

  8. Multigrid approaches to non-linear diffusion problems on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The efficiency of three multigrid methods for solving highly non-linear diffusion problems on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the manner in which the nonlinearities of the governing equations are handled. These comprise a non-linear full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly, a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu time due to the lower cost of linear versus non-linear grid sweeps.

  9. Non-Traditional Methods of Teaching Abstract Algebra

    ERIC Educational Resources Information Center

    Capaldi, Mindy

    2014-01-01

    This article reports on techniques of teaching abstract algebra which were developed to achieve multiple student objectives: reasoning and communication skills, deep content knowledge, student engagement, independence, and pride. The approach developed included a complementary combination of inquiry-based learning, individual (not group) homework…

  10. Hidden algebra method (quasi-exact-solvability in quantum mechanics)

    SciTech Connect

    Turbiner, Alexander

    1996-02-20

    A general introduction to quasi-exactly-solvable problems of quantum mechanics is presented. Main attention is given to multidimensional quasi-exactly-solvable and exactly-solvable Schroedinger operators. Exact-solvability of the Calogero and Sutherland N-body problems ass ociated with an existence of the hidden algebra slN is discussed extensively.

  11. Multigrid solution of the convection-diffusion equation with high-Reynolds number

    SciTech Connect

    Zhang, Jun

    1996-12-31

    A fourth-order compact finite difference scheme is employed with the multigrid technique to solve the variable coefficient convection-diffusion equation with high-Reynolds number. Scaled inter-grid transfer operators and potential on vectorization and parallelization are discussed. The high-order multigrid method is unconditionally stable and produces solution of 4th-order accuracy. Numerical experiments are included.

  12. Hidden algebra method (quasi-exact-solvability in quantum mechanics)

    SciTech Connect

    Turbiner, A. |

    1996-02-01

    A general introduction to quasi-exactly-solvable problems of quantum mechanics is presented. Main attention is given to multidimensional quasi-exactly-solvable and exactly-solvable Schroedinger operators. Exact-solvability of the Calogero and Sutherland {ital N}-body problems ass ociated with an existence of the hidden algebra {ital sl}{sub {ital N}} is discussed extensively. {copyright} {ital 1996 American Institute of Physics.}

  13. Evaluation of a Multigrid Scheme for the Incompressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.

    2004-01-01

    A fast multigrid solver for the steady, incompressible Navier-Stokes equations is presented. The multigrid solver is based upon a factorizable discrete scheme for the velocity-pressure form of the Navier-Stokes equations. This scheme correctly distinguishes between the advection-diffusion and elliptic parts of the operator, allowing efficient smoothers to be constructed. To evaluate the multigrid algorithm, solutions are computed for flow over a flat plate, parabola, and a Karman-Trefftz airfoil. Both nonlifting and lifting airfoil flows are considered, with a Reynolds number range of 200 to 800. Convergence and accuracy of the algorithm are discussed. Using Gauss-Seidel line relaxation in alternating directions, multigrid convergence behavior approaching that of O(N) methods is achieved. The computational efficiency of the numerical scheme is compared with that of Runge-Kutta and implicit upwind based multigrid methods.

  14. Towards Optimal Multigrid Efficiency for the Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.

    2001-01-01

    A fast multigrid solver for the steady incompressible Navier-Stokes equations is presented. Unlike time-marching schemes, this approach uses relaxation of the steady equations. Application of this method results in a discretization that correctly distinguishes between the advection and elliptic parts of the operator, allowing efficient smoothers to be constructed. Numerical solutions are shown for flow over a flat plate and a Karman-Trefftz airfoil. Using collective Gauss-Seidel line relaxation in both the vertical and horizontal directions, multigrid convergence behavior approaching that of O(N) methods is achieved. The computational efficiency of the numerical scheme is compared with that of a Runge-Kutta based multigrid method.

  15. Black box multigrid solver for definite and indefinite problems

    SciTech Connect

    Shapira, Yair

    1997-02-01

    A two-level analysis method for certain separable problems is introduced. It motivates the definition of improved versions of Black Box Multigrid for diffusion problems with discontinuous coefficients and indefinite Helmholtz equations. For anisotropic problems, it helps in choosing suitable implementations for frequency decomposition multigrid methods. For highly indefinite problems, it provides a way to choose in advance a suitable mesh size for the coarsest grid used. Numerical experiments confirm the analysis and show the advantage of the present methods for several examples.

  16. Fast Multigrid Techniques in Total Variation-Based Image Reconstruction

    NASA Technical Reports Server (NTRS)

    Oman, Mary Ellen

    1996-01-01

    Existing multigrid techniques are used to effect an efficient method for reconstructing an image from noisy, blurred data. Total Variation minimization yields a nonlinear integro-differential equation which, when discretized using cell-centered finite differences, yields a full matrix equation. A fixed point iteration is applied with the intermediate matrix equations solved via a preconditioned conjugate gradient method which utilizes multi-level quadrature (due to Brandt and Lubrecht) to apply the integral operator and a multigrid scheme (due to Ewing and Shen) to invert the differential operator. With effective preconditioning, the method presented seems to require Omicron(n) operations. Numerical results are given for a two-dimensional example.

  17. A diagonally inverted LU implicit multigrid scheme

    NASA Technical Reports Server (NTRS)

    Yokota, Jeffrey W.; Caughey, David A.; Chima, Rodrick V.

    1988-01-01

    A new Diagonally Inverted LU Implicit scheme is developed within the framework of the multigrid method for the 3-D unsteady Euler equations. The matrix systems that are to be inverted in the LU scheme are treated by local diagonalizing transformations that decouple them into systems of scalar equations. Unlike the Diagonalized ADI method, the time accuracy of the LU scheme is not reduced since the diagonalization procedure does not destroy time conservation. Even more importantly, this diagonalization significantly reduces the computational effort required to solve the LU approximation and therefore transforms it into a more efficient method of numerically solving the 3-D Euler equations.

  18. Multigrid and cyclic reduction applied to the Helmholtz equation

    NASA Technical Reports Server (NTRS)

    Brackenridge, Kenneth

    1993-01-01

    We consider the Helmholtz equation with a discontinuous complex parameter and inhomogeneous Dirichlet boundary conditions in a rectangular domain. A variant of the direct method of cyclic reduction (CR) is employed to facilitate the design of improved multigrid (MG) components, resulting in the method of CR-MG. We demonstrate the improved convergence properties of this method.

  19. On Multigrid for Overlapping Grids

    SciTech Connect

    Henshaw, W

    2004-01-13

    The solution of elliptic partial differential equations on composite overlapping grids using multigrid is discussed. An approach is described that provides a fast and memory efficient scheme for the solution of boundary value problems in complex geometries. The key aspects of the new scheme are an automatic coarse grid generation algorithm, an adaptive smoothing technique for adjusting residuals on different component grids, and the use of local smoothing near interpolation boundaries. Other important features include optimizations for Cartesian component grids, the use of over-relaxed Red-Black smoothers and the generation of coarse grid operators through Galerkin averaging. Numerical results in two and three dimensions show that very good multigrid convergence rates can be obtained for both Dirichlet and Neumann/mixed boundary conditions. A comparison to Krylov based solvers shows that the multigrid solver can be much faster and require significantly less memory.

  20. On Development of a Problem Based Learning System for Linear Algebra with Simple Input Method

    NASA Astrophysics Data System (ADS)

    Yokota, Hisashi

    2011-08-01

    Learning how to express a matrix using a keyboard inputs requires a lot of time for most of college students. Therefore, for a problem based learning system for linear algebra to be accessible for college students, it is inevitable to develop a simple method for expressing matrices. Studying the two most widely used input methods for expressing matrices, a simpler input method for expressing matrices is obtained. Furthermore, using this input method and educator's knowledge structure as a concept map, a problem based learning system for linear algebra which is capable of assessing students' knowledge structure and skill is developed.

  1. Multigrid and multilevel domain decomposition for unstructured grids

    SciTech Connect

    Chan, T.; Smith, B.

    1994-12-31

    Multigrid has proven itself to be a very versatile method for the iterative solution of linear and nonlinear systems of equations arising from the discretization of PDES. In some applications, however, no natural multilevel structure of grids is available, and these must be generated as part of the solution procedure. In this presentation the authors will consider the problem of generating a multigrid algorithm when only a fine, unstructured grid is given. Their techniques generate a sequence of coarser grids by first forming an approximate maximal independent set of the vertices and then applying a Cavendish type algorithm to form the coarser triangulation. Numerical tests indicate that convergence using this approach can be as fast as standard multigrid on a structured mesh, at least in two dimensions.

  2. Diagonally Implicit Symplectic Runge-Kutta Methods with High Algebraic and Dispersion Order

    PubMed Central

    Cong, Y. H.; Jiang, C. X.

    2014-01-01

    The numerical integration of Hamiltonian systems with oscillating solutions is considered in this paper. A diagonally implicit symplectic nine-stages Runge-Kutta method with algebraic order 6 and dispersion order 8 is presented. Numerical experiments with some Hamiltonian oscillatory problems are presented to show the proposed method is as competitive as the existing same type Runge-Kutta methods. PMID:24977178

  3. Block method of Runge Kutta type for solving differential algebraic equation

    NASA Astrophysics Data System (ADS)

    Wen, Khoo Kai; Majid, Zanariah Abdul; Senu, Norazak

    2015-10-01

    In this paper, a self-starting block method of Runge Kutta type is proposed to solve semi-explicit index-1 differential algebraic equation (DAE). Semi-explicit DAE consists of a system of ordinary differential equations with algebraic constraints. This method will compute the solutions of DAE at two points simultaneously in a block by block steps using constant step size. The DAE is a stiff equation, therefore the Newton iteration is needed during the implementation. Numerical examples are given in order to illustrate the efficiency of the block method when solving the DAE.

  4. A 3D agglomeration multigrid solver for the Reynolds-averaged Navier-Stokes equations on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Marvriplis, D. J.; Venkatakrishnan, V.

    1995-01-01

    An agglomeration multigrid strategy is developed and implemented for the solution of three-dimensional steady viscous flows. The method enables convergence acceleration with minimal additional memory overheads, and is completely automated, in that it can deal with grids of arbitrary construction. The multigrid technique is validated by comparing the delivered convergence rates with those obtained by a previously developed overset-mesh multigrid approach, and by demonstrating grid independent convergence rates for aerodynamic problems on very large grids. Prospects for further increases in multigrid efficiency for high-Reynolds number viscous flows on highly stretched meshes are discussed.

  5. Solving Upwind-Biased Discretizations. 2; Multigrid Solver Using Semicoarsening

    NASA Technical Reports Server (NTRS)

    Diskin, Boris

    1999-01-01

    This paper studies a novel multigrid approach to the solution for a second order upwind biased discretization of the convection equation in two dimensions. This approach is based on semi-coarsening and well balanced explicit correction terms added to coarse-grid operators to maintain on coarse-grid the same cross-characteristic interaction as on the target (fine) grid. Colored relaxation schemes are used on all the levels allowing a very efficient parallel implementation. The results of the numerical tests can be summarized as follows: 1) The residual asymptotic convergence rate of the proposed V(0, 2) multigrid cycle is about 3 per cycle. This convergence rate far surpasses the theoretical limit (4/3) predicted for standard multigrid algorithms using full coarsening. The reported efficiency does not deteriorate with increasing the cycle, depth (number of levels) and/or refining the target-grid mesh spacing. 2) The full multi-grid algorithm (FMG) with two V(0, 2) cycles on the target grid and just one V(0, 2) cycle on all the coarse grids always provides an approximate solution with the algebraic error less than the discretization error. Estimates of the total work in the FMG algorithm are ranged between 18 and 30 minimal work units (depending on the target (discretizatioin). Thus, the overall efficiency of the FMG solver closely approaches (if does not achieve) the goal of the textbook multigrid efficiency. 3) A novel approach to deriving a discrete solution approximating the true continuous solution with a relative accuracy given in advance is developed. An adaptive multigrid algorithm (AMA) using comparison of the solutions on two successive target grids to estimate the accuracy of the current target-grid solution is defined. A desired relative accuracy is accepted as an input parameter. The final target grid on which this accuracy can be achieved is chosen automatically in the solution process. the actual relative accuracy of the discrete solution approximation

  6. Multigrid solution strategies for adaptive meshing problems

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1995-01-01

    This paper discusses the issues which arise when combining multigrid strategies with adaptive meshing techniques for solving steady-state problems on unstructured meshes. A basic strategy is described, and demonstrated by solving several inviscid and viscous flow cases. Potential inefficiencies in this basic strategy are exposed, and various alternate approaches are discussed, some of which are demonstrated with an example. Although each particular approach exhibits certain advantages, all methods have particular drawbacks, and the formulation of a completely optimal strategy is considered to be an open problem.

  7. Multistage Schemes with Multigrid for Euler and Navier-Strokes Equations: Components and Analysis

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Turkel, Eli

    1997-01-01

    A class of explicit multistage time-stepping schemes with centered spatial differencing and multigrids are considered for the compressible Euler and Navier-Stokes equations. These schemes are the basis for a family of computer programs (flow codes with multigrid (FLOMG) series) currently used to solve a wide range of fluid dynamics problems, including internal and external flows. In this paper, the components of these multistage time-stepping schemes are defined, discussed, and in many cases analyzed to provide additional insight into their behavior. Special emphasis is given to numerical dissipation, stability of Runge-Kutta schemes, and the convergence acceleration techniques of multigrid and implicit residual smoothing. Both the Baldwin and Lomax algebraic equilibrium model and the Johnson and King one-half equation nonequilibrium model are used to establish turbulence closure. Implementation of these models is described.

  8. A multigrid preconditioner for the semiconductor equations

    SciTech Connect

    Meza, J.C.; Tuminaro, R.S.

    1994-12-31

    Currently, integrated circuits are primarily designed in a {open_quote}trial and error{close_quote} fashion. That is, prototypes are built and improved via experimentation and testing. In the near future, however, it may be possible to significantly reduce the time and cost of designing new devices by using computer simulations. To accurately perform these complex simulations in three dimensions, however, new algorithms and high performance computers are necessary. In this paper the authors discuss the use of multigrid preconditioning inside a semiconductor device modeling code, DANCIR. The DANCIR code is a full three-dimensional simulator capable of computing steady-state solutions of the drift-diffusion equations for a single semiconductor device and has been used to simulate a wide variety of different devices. At the inner core of DANCIR is a solver for the nonlinear equations that arise from the spatial discretization of the drift-diffusion equations on a rectangular grid. These nonlinear equations are resolved using Gummel`s method which requires three symmetric linear systems to be solved within each Gummel iteration. It is the resolution of these linear systems which comprises the dominant computational cost of this code. The original version of DANCIR uses a Cholesky preconditioned conjugate gradient algorithm to solve these linear systems. Unfortunately, this algorithm has a number of disadvantages: (1) it takes many iterations to converge (if it converges), (2) it can require a significant amount of computing time, and (3) it is not very parallelizable. To improve the situation, the authors consider a multigrid preconditioner. The multigrid method uses iterations on a hierarchy of grids to accelerate the convergence on the finest grid.

  9. On a modification of minimal iteration methods for solving systems of linear algebraic equations

    NASA Astrophysics Data System (ADS)

    Yukhno, L. F.

    2010-04-01

    Modifications of certain minimal iteration methods for solving systems of linear algebraic equations are proposed and examined. The modified methods are shown to be superior to the original versions with respect to the round-off error accumulation, which makes them applicable to solving ill-conditioned problems. Numerical results demonstrating the efficiency of the proposed modifications are given.

  10. Examinations in the Final Year of Transition to Mathematical Methods Computer Algebra System (CAS)

    ERIC Educational Resources Information Center

    Leigh-Lancaster, David; Les, Magdalena; Evans, Michael

    2010-01-01

    2009 was the final year of parallel implementation for Mathematical Methods Units 3 and 4 and Mathematical Methods (CAS) Units 3 and 4. From 2006-2009 there was a common technology-free short answer examination that covered the same function, algebra, calculus and probability content for both studies with corresponding expectations for key…

  11. Using The Algebra Project Method To Regiment Discourse In An Energy Course for Teachers

    NASA Astrophysics Data System (ADS)

    Close, Hunter G.; De Water, Lezlie S.; Close, Eleanor W.; Scherr, Rachel E.; McKagan, Sarah B.

    2010-10-01

    The Algebra Project, led by R. Moses, provides access to understanding of algebra for middle school students and their teachers by guiding them to participate actively and communally in the construction of regimented symbolic systems. We have extended this work by applying it to the professional development of science teachers (K-12) in energy. As we apply the Algebra Project method, the focus of instruction shifts from the learning of specific concepts within the broad theme of energy to the gradual regimentation of the interplay between learners' observation, thinking, graphic representation, and communication. This approach is suitable for teaching energy, which by its transcendence can seem to defy a linear instructional sequence. The learning of specific energy content thus becomes more learner-directed and unpredictable, though at no apparent cost to its extent. Meanwhile, teachers seem empowered by this method to see beginners as legitimate participants in the scientific process.

  12. Parallelization of an Adaptive Multigrid Algorithm for Fast Solution of Finite Element Structural Problems

    SciTech Connect

    Crane, N K; Parsons, I D; Hjelmstad, K D

    2002-03-21

    Adaptive mesh refinement selectively subdivides the elements of a coarse user supplied mesh to produce a fine mesh with reduced discretization error. Effective use of adaptive mesh refinement coupled with an a posteriori error estimator can produce a mesh that solves a problem to a given discretization error using far fewer elements than uniform refinement. A geometric multigrid solver uses increasingly finer discretizations of the same geometry to produce a very fast and numerically scalable solution to a set of linear equations. Adaptive mesh refinement is a natural method for creating the different meshes required by the multigrid solver. This paper describes the implementation of a scalable adaptive multigrid method on a distributed memory parallel computer. Results are presented that demonstrate the parallel performance of the methodology by solving a linear elastic rocket fuel deformation problem on an SGI Origin 3000. Two challenges must be met when implementing adaptive multigrid algorithms on massively parallel computing platforms. First, although the fine mesh for which the solution is desired may be large and scaled to the number of processors, the multigrid algorithm must also operate on much smaller fixed-size data sets on the coarse levels. Second, the mesh must be repartitioned as it is adapted to maintain good load balancing. In an adaptive multigrid algorithm, separate mesh levels may require separate partitioning, further complicating the load balance problem. This paper shows that, when the proper optimizations are made, parallel adaptive multigrid algorithms perform well on machines with several hundreds of processors.

  13. Online signal filtering based on the algebraic method and its experimental validation

    NASA Astrophysics Data System (ADS)

    Morales, R.; Segura, E.; Somolinos, J. A.; Núñez, L. R.; Sira-Ramírez, H.

    2016-01-01

    An on-line algebraic filtering scheme, based on the recently introduced algebraic approach to parameter and state estimation, is presented along with successful experimental results. The proposed filtering algorithm is based on the connections between a time derivative estimator and an algebraically based signal filtering option. The main advantages of the proposed approach are: (i) there are no appreciable delays in the filtered signal; (ii) the method does not require any statistical assessment of the noises corrupting the signal; (iii) high attenuation of the noise effects is achieved; (iv) the on-line computations are carried out in real time; and (v) high versatility and ease of implementation. Several experiments related to real depth measurements were conducted to show the effectiveness of the proposed algorithm. Comparisons are performed with different filtering alternatives.

  14. Distributed Relaxation Multigrid and Defect Correction Applied to the Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Thomas, J. L.; Diskin, B.; Brandt, A.

    1999-01-01

    The distributed-relaxation multigrid and defect- correction methods are applied to the two- dimensional compressible Navier-Stokes equations. The formulation is intended for high Reynolds number applications and several applications are made at a laminar Reynolds number of 10,000. A staggered- grid arrangement of variables is used; the coupled pressure and internal energy equations are solved together with multigrid, requiring a block 2x2 matrix solution. Textbook multigrid efficiencies are attained for incompressible and slightly compressible simulations of the boundary layer on a flat plate. Textbook efficiencies are obtained for compressible simulations up to Mach numbers of 0.7 for a viscous wake simulation.

  15. Implicit Multigrid Solutions for Compressible Flows in Complex Geometries.

    NASA Astrophysics Data System (ADS)

    Wang, Lixia

    Two implicit multigrid algorithms for the two and three dimensional compressible Euler equations have been developed in this dissertation. First, a diagonal implicit multigrid method is developed for solving a finite-volume approximation to the Euler equations in which the dependent variables are stored at the cell vertices. The spatial derivatives in the two dimensional Euler equations are approximated using a conservative cell-vertex finite volume formulation. Artificial dissipation is provided by adding an adaptive blend of second and fourth differences of the solution to maintain stability and accuracy. A Diagonal Alternating Directional Implicit method is used to advance the solution in time. Rapid convergence to a steady-state solution is achieved with local time stepping and the multigrid algorithm. Results for the transonic flow past the NACA 0012 airfoil are presented to verify the accuracy and efficiency of the scheme. Second, the development of an efficient and flexible multiblock/multigrid Euler solver and its application to realistic engineering problems are presented. A cell-centered finite volume method with a multigrid implementation of the Diagonal Alternating Direction Implicit algorithm is used to solve the Euler equations. A fully conservative inter-block boundary condition, which permits the passage of discontinuities across block boundaries with minimum distortion of the solution, is developed for cases in which the grid lines at the inter-block boundaries can be completely continuous or discontinuous. Information is exchanged between blocks by using surface arrays, which contain all the data needed to update the inter-block boundary conditions. Results demonstrate the feasibility of using the present multi -block/multigrid approach to solve flow problems involving complex geometries. Two dimensional results for several types of grids and various free stream conditions have been presented to verify the accuracy and computational efficiency of

  16. Implicit multigrid solutions for compressible flows in complex geometries

    NASA Astrophysics Data System (ADS)

    Wang, Lixia

    Two implicit multigrid algorithms for the two and three dimensional compressible Euler equations are developed. First, a diagonal implicit multigrid method is developed for solving a finite-volume approximation to the Euler equations in which the dependent variables are stored at the cell vertices. The spatial derivatives in the two dimensional Euler equations are approximated using a conservative cell-vertex finite volume formulation. Artificial dissipation is provided by adding an adaptive blend of second and fourth differences of the solution to maintain stability and accuracy. A diagonal alternating directional implicit method is used to advance the solution in time. Rapid convergence to a steady-state solution is achieved with local time stepping and the multigrid algorithm. Results for the transonic flow past the NACA 0012 airfoil are presented to verify the accuracy and efficiency of the scheme. Second, the development of an efficient and flexible multiblock/multigrid Euler solver and its application to realistic engineering problems are presented. A cell-centered finite volume method with a multigrid implementation of the diagonal alternating direction implicit algorithm is used to solve the Euler equations. A fully conservative interblock boundary condition, which permits the passage of discontinuities across block boundaries with minimum distortion of the solution, is developed for cases in which the grid lines at the interblock boundaries can be completely continuous or discontinuous. Information is exchanged between blocks by using surface arrays, which contain all the data needed to update the interblock boundary conditions. Results demonstrate the feasibility of using the present multiblock/multigrid approach to solve flow problems involving complex geometries. Two dimensional results for several types of grids and various free stream conditions have been presented to verify the accuracy and computational efficiency of the method. The application of

  17. Analysis Tools for CFD Multigrid Solvers

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Thomas, James L.; Diskin, Boris

    2004-01-01

    Analysis tools are needed to guide the development and evaluate the performance of multigrid solvers for the fluid flow equations. Classical analysis tools, such as local mode analysis, often fail to accurately predict performance. Two-grid analysis tools, herein referred to as Idealized Coarse Grid and Idealized Relaxation iterations, have been developed and evaluated within a pilot multigrid solver. These new tools are applicable to general systems of equations and/or discretizations and point to problem areas within an existing multigrid solver. Idealized Relaxation and Idealized Coarse Grid are applied in developing textbook-efficient multigrid solvers for incompressible stagnation flow problems.

  18. Operator induced multigrid algorithms using semirefinement

    NASA Technical Reports Server (NTRS)

    Decker, Naomi; Vanrosendale, John

    1989-01-01

    A variant of multigrid, based on zebra relaxation, and a new family of restriction/prolongation operators is described. Using zebra relaxation in combination with an operator-induced prolongation leads to fast convergence, since the coarse grid can correct all error components. The resulting algorithms are not only fast, but are also robust, in the sense that the convergence rate is insensitive to the mesh aspect ratio. This is true even though line relaxation is performed in only one direction. Multigrid becomes a direct method if an operator-induced prolongation is used, together with the induced coarse grid operators. Unfortunately, this approach leads to stencils which double in size on each coarser grid. The use of an implicit three point restriction can be used to factor these large stencils, in order to retain the usual five or nine point stencils, while still achieving fast convergence. This algorithm achieves a V-cycle convergence rate of 0.03 on Poisson's equation, using 1.5 zebra sweeps per level, while the convergence rate improves to 0.003 if optimal nine point stencils are used. Numerical results for two and three dimensional model problems are presented, together with a two level analysis explaining these results.

  19. Operator induced multigrid algorithms using semirefinement

    NASA Technical Reports Server (NTRS)

    Decker, Naomi Henderson; Van Rosendale, John

    1989-01-01

    A variant of multigrid, based on zebra relaxation, and a new family of restriction/prolongation operators is described. Using zebra relaxation in combination with an operator-induced prolongation leads to fast convergence, since the coarse grid can correct all error components. The resulting algorithms are not only fast, but are also robust, in the sense that the convergence rate is insensitive to the mesh aspect ratio. This is true even though line relaxation is performed in only one direction. Multigrid becomes a direct method if an operator-induced prolongation is used, together with the induced coarse grid operators. Unfortunately, this approach leads to stencils which double in size on each coarser grid. The use of an implicit three point restriction can be used to factor these large stencils, in order to retain the usual five or nine point stencils, while still achieving fast convergence. This algorithm achieves a V-cycle convergence rate of 0.03 on Poisson's equation, using 1.5 zebra sweeps per level, while the convergence rate improves to 0.003 if optimal nine point stencils are used. Numerical results for two- and three-dimensional model problems are presented, together with a two level analysis explaining these results.

  20. Multigrid solutions of elliptic fluid flow problems

    NASA Astrophysics Data System (ADS)

    Wright, Nigel George

    1988-06-01

    An efficient FAS multigrid solution strategy is presented for the accurate and economic simulation of convection dominated flows. The use of a high-order approximation to the convective transport terms found in the governing equations of motion was investigated in conjunction with an unsegregated smoothing technique. Results are presented for a sequence of problems of increasing complexity requiring that careful attention be directed toward the proper treatment of different types of boundary condition. The classical two-dimensional problem of flow in a lid-driven cavity is investigated in depth for flows at Reynolds number of 100, 400 and 1000. This gives an extremely good indication of the power of a multigrid approach. Next, the solution methodology is applied to flow in a three-dimensional lid-driven cavity at different Reynolds numbers, with cross-reference being made to predictions obtained in the corresponding two-dimensional simulations, and to the flow over a step discontinuity in the case of an abruptly expanding channel. Although, at first sight, these problems appear to require only minor extensions to the existing approach, it is found that they are rather more idiosyncratic. Finally, the governing equations and numerical algorithm are extended to encompass the treatment of thermally driven flows. The solution to two such problems is presented and compared with corresponding results obtained by traditional methods.

  1. Leapfrog variants of iterative methods for linear algebra equations

    NASA Technical Reports Server (NTRS)

    Saylor, Paul E.

    1988-01-01

    Two iterative methods are considered, Richardson's method and a general second order method. For both methods, a variant of the method is derived for which only even numbered iterates are computed. The variant is called a leapfrog method. Comparisons between the conventional form of the methods and the leapfrog form are made under the assumption that the number of unknowns is large. In the case of Richardson's method, it is possible to express the final iterate in terms of only the initial approximation, a variant of the iteration called the grand-leap method. In the case of the grand-leap variant, a set of parameters is required. An algorithm is presented to compute these parameters that is related to algorithms to compute the weights and abscissas for Gaussian quadrature. General algorithms to implement the leapfrog and grand-leap methods are presented. Algorithms for the important special case of the Chebyshev method are also given.

  2. Uniform convergence of multigrid v-cycle iterations for indefinite and nonsymmetric problems

    SciTech Connect

    Bramble, J.H. . Dept. of Mathematics); Kwak, D.Y. . Dept. of Mathematics); Pasciak, J.E. . Dept. of Applied Science)

    1994-12-01

    In this paper, an analysis of a multigrid method for nonsymmetric and/or indefinite elliptic problems is presented. In this multigrid method various types of smothers may be used. One type of smoother considered is defined in terms of an associated symmetric problem and includes point and line, Jacobi, and Gauss-Seidel iterations. Smothers based entirely on the original operator are also considered. One smoother is based on the normal form, that is, the product of the operator and its transpose. Other smothers studied include point and line, Jacobi, and Gauss-Seidel. It is shown that the uniform estimates for symmetric positive definite problems carry over to these algorithms. More precisely, the multigrid iteration for the nonsymmetric and/or indefinite problem is shown to converge at a uniform rate provided that the coarsest grid in the multilevel iteration is sufficiently fine (but not dependent on the number of multigrid levels).

  3. Uniform convergence of multigrid V-cycle iterations for indefinite and nonsymmetric problems

    NASA Technical Reports Server (NTRS)

    Bramble, James H.; Kwak, Do Y.; Pasciak, Joseph E.

    1993-01-01

    In this paper, we present an analysis of a multigrid method for nonsymmetric and/or indefinite elliptic problems. In this multigrid method various types of smoothers may be used. One type of smoother which we consider is defined in terms of an associated symmetric problem and includes point and line, Jacobi, and Gauss-Seidel iterations. We also study smoothers based entirely on the original operator. One is based on the normal form, that is, the product of the operator and its transpose. Other smoothers studied include point and line, Jacobi, and Gauss-Seidel. We show that the uniform estimates for symmetric positive definite problems carry over to these algorithms. More precisely, the multigrid iteration for the nonsymmetric and/or indefinite problem is shown to converge at a uniform rate provided that the coarsest grid in the multilevel iteration is sufficiently fine (but not depending on the number of multigrid levels).

  4. Adaptive Multigrid Solution of Stokes' Equation on CELL Processor

    NASA Astrophysics Data System (ADS)

    Elgersma, M. R.; Yuen, D. A.; Pratt, S. G.

    2006-12-01

    We are developing an adaptive multigrid solver for treating nonlinear elliptic partial-differential equations, needed for mantle convection problems. Since multigrid is being used for the complete solution, not just as a preconditioner, spatial difference operators are kept nearly diagonally dominant by increasing density of the coarsest grid in regions where coefficients have rapid spatial variation. At each time step, the unstructured coarse grid is refined in regions where coefficients associated with the differential operators or boundary conditions have rapid spatial variation, and coarsened in regions where there is more gradual spatial variation. For three-dimensional problems, the boundary is two-dimensional, and regions where coefficients change rapidly are often near two-dimensional surfaces, so the coarsest grid is only fine near two-dimensional subsets of the three-dimensional space. Coarse grid density drops off exponentially with distance from boundary surfaces and rapid-coefficient-change surfaces. This unstructured coarse grid results in the number of coarse grid voxels growing proportional to surface area, rather than proportional to volume. This results in significant computational savings for the coarse-grid solution. This coarse-grid solution is then refined for the fine-grid solution, and multigrid methods have memory usage and runtime proportional to the number of fine-grid voxels. This adaptive multigrid algorithm is being implemented on the CELL processor, where each chip has eight floating point processors and each processor operates on four floating point numbers each clock cycle. Both the adaptive grid algorithm and the multigrid solver have very efficient parallel implementations, in order to take advantage of the CELL processor architecture.

  5. Generating Invariants for Non-linear Hybrid Systems by Linear Algebraic Methods

    NASA Astrophysics Data System (ADS)

    Matringe, Nadir; Moura, Arnaldo Vieira; Rebiha, Rachid

    We describe powerful computational methods, relying on linear algebraic methods, for generating ideals for non-linear invariants of algebraic hybrid systems. We show that the preconditions for discrete transitions and the Lie-derivatives for continuous evolution can be viewed as morphisms and so can be suitably represented by matrices. We reduce the non-trivial invariant generation problem to the computation of the associated eigenspaces by encoding the new consecution requirements as specific morphisms represented by matrices. More specifically, we establish very general sufficient conditions that show the existence and allow the computation of invariant ideals. Our methods also embody a strategy to estimate degree bounds, leading to the discovery of rich classes of inductive, i.e. provable, invariants. Our approach avoids first-order quantifier elimination, Grobner basis computation or direct system resolution, thereby circumventing difficulties met by other recent techniques.

  6. A fifth order implicit method for the numerical solution of differential-algebraic equations

    NASA Astrophysics Data System (ADS)

    Skvortsov, L. M.

    2015-06-01

    An implicit two-step Runge-Kutta method of fifth order is proposed for the numerical solution of differential and differential-algebraic equations. The location of nodes in this method makes it possible to estimate the values of higher derivatives at the initial and terminal points of an integration step. Consequently, the proposed method can be regarded as a finite-difference analog of the Obrechkoff method. Numerical results, some of which are presented in this paper, show that our method preserves its order while solving stiff equations and equations of indices two and three. This is the main advantage of the proposed method as compared with the available ones.

  7. Emergy Algebra: Improving Matrix Methods for Calculating Tranformities

    EPA Science Inventory

    Transformity is one of the core concepts in Energy Systems Theory and it is fundamental to the calculation of emergy. Accurate evaluation of transformities and other emergy per unit values is essential for the broad acceptance, application and further development of emergy method...

  8. Numerical solution of differential-algebraic equations using the spline collocation-variation method

    NASA Astrophysics Data System (ADS)

    Bulatov, M. V.; Rakhvalov, N. P.; Solovarova, L. S.

    2013-03-01

    Numerical methods for solving initial value problems for differential-algebraic equations are proposed. The approximate solution is represented as a continuous vector spline whose coefficients are found using the collocation conditions stated for a subgrid with the number of collocation points less than the degree of the spline and the minimality condition for the norm of this spline in the corresponding spaces. Numerical results for some model problems are presented.

  9. Improved Linear Algebra Methods for Redshift Computation from Limited Spectrum Data - II

    NASA Technical Reports Server (NTRS)

    Foster, Leslie; Waagen, Alex; Aijaz, Nabella; Hurley, Michael; Luis, Apolo; Rinsky, Joel; Satyavolu, Chandrika; Gazis, Paul; Srivastava, Ashok; Way, Michael

    2008-01-01

    Given photometric broadband measurements of a galaxy, Gaussian processes may be used with a training set to solve the regression problem of approximating the redshift of this galaxy. However, in practice solving the traditional Gaussian processes equation is too slow and requires too much memory. We employed several methods to avoid this difficulty using algebraic manipulation and low-rank approximation, and were able to quickly approximate the redshifts in our testing data within 17 percent of the known true values using limited computational resources. The accuracy of one method, the V Formulation, is comparable to the accuracy of the best methods currently used for this problem.

  10. Construction of invariants of the coadjoint representation of Lie groups using linear algebra methods

    NASA Astrophysics Data System (ADS)

    Kurnyavko, O. L.; Shirokov, I. V.

    2016-07-01

    We offer a method for constructing invariants of the coadjoint representation of Lie groups that reduces this problem to known problems of linear algebra. This method is based on passing to symplectic coordinates on the coadjoint representation orbits, which play the role of local coordinates on those orbits. The corresponding transition functions are their parametric equations. Eliminating the symplectic coordinates from the transition functions, we can obtain the complete set of invariants. The proposed method allows solving the problem of constructing invariants of the coadjoint representation for Lie groups with an arbitrary dimension and structure.

  11. Grade 11 Students' Interconnected Use of Conceptual Knowledge, Procedural Skills, and Strategic Competence in Algebra: A Mixed Method Study of Error Analysis

    ERIC Educational Resources Information Center

    Egodawatte, Gunawardena; Stoilescu, Dorian

    2015-01-01

    The purpose of this mixed-method study was to investigate grade 11 university/college stream mathematics students' difficulties in applying conceptual knowledge, procedural skills, strategic competence, and algebraic thinking in solving routine (instructional) algebraic problems. A standardized algebra test was administered to thirty randomly…

  12. Scale-adaptive tensor algebra for local many-body methods of electronic structure theory

    SciTech Connect

    Liakh, Dmitry I

    2014-01-01

    While the formalism of multiresolution analysis (MRA), based on wavelets and adaptive integral representations of operators, is actively progressing in electronic structure theory (mostly on the independent-particle level and, recently, second-order perturbation theory), the concepts of multiresolution and adaptivity can also be utilized within the traditional formulation of correlated (many-particle) theory which is based on second quantization and the corresponding (generally nonorthogonal) tensor algebra. In this paper, we present a formalism called scale-adaptive tensor algebra (SATA) which exploits an adaptive representation of tensors of many-body operators via the local adjustment of the basis set quality. Given a series of locally supported fragment bases of a progressively lower quality, we formulate the explicit rules for tensor algebra operations dealing with adaptively resolved tensor operands. The formalism suggested is expected to enhance the applicability and reliability of local correlated many-body methods of electronic structure theory, especially those directly based on atomic orbitals (or any other localized basis functions).

  13. An algebraic sub-structuring method for large-scale eigenvaluecalculation

    SciTech Connect

    Yang, C.; Gao, W.; Bai, Z.; Li, X.; Lee, L.; Husbands, P.; Ng, E.

    2004-05-26

    We examine sub-structuring methods for solving large-scalegeneralized eigenvalue problems from a purely algebraic point of view. Weuse the term "algebraic sub-structuring" to refer to the process ofapplying matrix reordering and partitioning algorithms to divide a largesparse matrix into smaller submatrices from which a subset of spectralcomponents are extracted and combined to provide approximate solutions tothe original problem. We are interested in the question of which spectralcomponentsone should extract from each sub-structure in order to producean approximate solution to the original problem with a desired level ofaccuracy. Error estimate for the approximation to the small esteigen pairis developed. The estimate leads to a simple heuristic for choosingspectral components (modes) from each sub-structure. The effectiveness ofsuch a heuristic is demonstrated with numerical examples. We show thatalgebraic sub-structuring can be effectively used to solve a generalizedeigenvalue problem arising from the simulation of an acceleratorstructure. One interesting characteristic of this application is that thestiffness matrix produced by a hierarchical vector finite elements schemecontains a null space of large dimension. We present an efficient schemeto deflate this null space in the algebraic sub-structuringprocess.

  14. Differential algebraic methods for space charge modeling and applications to the University of Maryland Electron Ring

    NASA Astrophysics Data System (ADS)

    Nissen, Edward W.

    2011-12-01

    The future of particle accelerators is moving towards the intensity frontier; the need to place more particles into a smaller space is a common requirement of nearly all applications of particle accelerators. Putting large numbers of particles in a small space means that the mutual repulsion of these charged particles becomes a significant factor, this effect is called space charge. In this work we develop a series of differential algebra based methods to simulate the effects of space charge in particle accelerators. These methods were used to model the University of Maryland Electron Ring, a small 3.8 meter diameter 10 KeV electron storage ring designed to observe the effects of space charge in a safe, cost effective manner. The methods developed here are designed to not only simulate the effects of space charge on the motions of the test particles in the system but to add their effects to the transfer map of the system. Once they have been added useful information about the beam, such as tune shifts and chromaticities, can be extracted directly from the map. In order to make the simulation self consistent, the statistical moments of the distribution are used to create a self consistent Taylor series representing the distribution function, which is combined with pre-stored integrals solved using a Duffy transformation to find the potential. This method can not only find the map of the system, but also advance the particles under most conditions. For conditions where it cannot be used to accurately advance the particles a differential algebra based fast multipole method is implemented. By using differential algebras to create local expansions, noticeable time savings are found.

  15. Segmented Domain Decomposition Multigrid For 3-D Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Celestina, M. L.; Adamczyk, J. J.; Rubin, S. G.

    2001-01-01

    A Segmented Domain Decomposition Multigrid (SDDMG) procedure was developed for three-dimensional viscous flow problems as they apply to turbomachinery flows. The procedure divides the computational domain into a coarse mesh comprised of uniformly spaced cells. To resolve smaller length scales such as the viscous layer near a surface, segments of the coarse mesh are subdivided into a finer mesh. This is repeated until adequate resolution of the smallest relevant length scale is obtained. Multigrid is used to communicate information between the different grid levels. To test the procedure, simulation results will be presented for a compressor and turbine cascade. These simulations are intended to show the ability of the present method to generate grid independent solutions. Comparisons with data will also be presented. These comparisons will further demonstrate the usefulness of the present work for they allow an estimate of the accuracy of the flow modeling equations independent of error attributed to numerical discretization.

  16. Multigrid applied to implicit well problems

    SciTech Connect

    Dendy, J.E. Jr.; Tchelepi, Hamdi

    1996-10-01

    This paper discusses the application of multigrid techniques to the solution of implicit well equations, which arise in the numerical simulation of oil reservoirs. The emphasis is on techniques which can exploit parallel computation.

  17. Teaching Algebra without Algebra

    ERIC Educational Resources Information Center

    Kalman, Richard S.

    2008-01-01

    Algebra is, among other things, a shorthand way to express quantitative reasoning. This article illustrates ways for the classroom teacher to convert algebraic solutions to verbal problems into conversational solutions that can be understood by students in the lower grades. Three reasonably typical verbal problems that either appeared as or…

  18. Reconstruction of the number and positions of dipoles and quadrupoles using an algebraic method

    NASA Astrophysics Data System (ADS)

    Nara, Takaaki

    2008-11-01

    Localization of dipoles and quadrupoles is important in inverse potential analysis, since they can effectively express spatially extended sources with a small number of parmeters. This paper proposes an algebraic method for reconstruction of pole positions as well as the number of dipole-quadrupoles without providing an initial parameter guess or iterative computing forward solutions. It is also shown that a magnetoencephalography inverse problem with a source model of dipole-quadrupoles in 3D space is reduced into the same problem as in 2D space.

  19. Algebraic method for constructing singular steady solitary waves: a case study

    NASA Astrophysics Data System (ADS)

    Clamond, Didier; Dutykh, Denys; Galligo, André

    2016-07-01

    This article describes the use of algebraic methods in a phase plane analysis of ordinary differential equations. The method is illustrated by the study of capillary-gravity steady surface waves propagating in shallow water. We consider the (fully nonlinear, weakly dispersive) Serre-Green-Naghdi equation with surface tension, because it provides a tractable model that, at the same time, is not too simple, so interest in the method can be emphasized. In particular, we analyse a special class of solutions, the solitary waves, which play an important role in many fields of physics. In capillary-gravity regime, there are two kinds of localized infinitely smooth travelling wave solutions-solitary waves of elevation and of depression. However, if we allow the solitary waves to have an angular point, then the `zoology' of solutions becomes much richer, and the main goal of this study is to provide a complete classification of such singular localized solutions using the methods of the effective algebraic geometry.

  20. Multigrid-based grid-adaptive solution of the Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Michelsen, Jess

    A finite volume scheme for solution of the incompressible Navier-Stokes equations in two dimensions and axisymmetry is described. Solutions are obtained on nonorthogonal, solution adaptive BFC grids, based on the Brackbill-Saltzman generator. Adaptivity is achieved by the use of a single control function based on the local kinetic energy production. Nonstaggered allocation of pressure and Cartesian velocity components avoids the introduction of curvature terms associated with the use of a grid-direction vector-base. A special interpolation of the pressure correction equation in the SIMPLE algorithm ensures firm coupling between velocity and pressure field. Steady-state solutions are accelerated by a full approximation multigrid scheme working on the decoupled grid-flow problem, while an algebraic multigrid scheme is employed for the pressure correction equation.

  1. Parallel Element Agglomeration Algebraic Multigrid and Upscaling Library

    SciTech Connect

    2015-02-19

    ParFELAG is a parallel distributed memory C++ library for numerical upscaling of finite element discretizations. It provides optimal complesity algorithms ro build multilevel hierarchies and solvers that can be used for solving a wide class of partial differential equations (elliptic, hyperbolic, saddle point problems) on general unstructured mesh (under the assumption that the topology of the agglomerated entities is correct). Additionally, a novel multilevel solver for saddle point problems with divergence constraint is implemented.

  2. Multigrid solution of incompressible turbulent flows by using two-equation turbulence models

    SciTech Connect

    Zheng, X.; Liu, C.; Sung, C.H.

    1996-12-31

    Most of practical flows are turbulent. From the interest of engineering applications, simulation of realistic flows is usually done through solution of Reynolds-averaged Navier-Stokes equations and turbulence model equations. It has been widely accepted that turbulence modeling plays a very important role in numerical simulation of practical flow problem, particularly when the accuracy is of great concern. Among the most used turbulence models today, two-equation models appear to be favored for the reason that they are more general than algebraic models and affordable with current available computer resources. However, investigators using two-equation models seem to have been more concerned with the solution of N-S equations. Less attention is paid to the solution method for the turbulence model equations. In most cases, the turbulence model equations are loosely coupled with N-S equations, multigrid acceleration is only applied to the solution of N-S equations due to perhaps the fact the turbulence model equations are source-term dominant and very stiff in sublayer region.

  3. A novel technique to solve nonlinear higher-index Hessenberg differential-algebraic equations by Adomian decomposition method.

    PubMed

    Benhammouda, Brahim

    2016-01-01

    Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems. PMID:27330880

  4. A review of vector convergence acceleration methods, with applications to linear algebra problems

    NASA Astrophysics Data System (ADS)

    Brezinski, C.; Redivo-Zaglia, M.

    In this article, in a few pages, we will try to give an idea of convergence acceleration methods and extrapolation procedures for vector sequences, and to present some applications to linear algebra problems and to the treatment of the Gibbs phenomenon for Fourier series in order to show their effectiveness. The interested reader is referred to the literature for more details. In the bibliography, due to space limitation, we will only give the more recent items, and, for older ones, we refer to Brezinski and Redivo-Zaglia, Extrapolation methods. (Extrapolation Methods. Theory and Practice, North-Holland, 1991). This book also contains, on a magnetic support, a library (in Fortran 77 language) for convergence acceleration algorithms and extrapolation methods.

  5. Numerical solution of differential algebraic equations (DAEs) by mix-multistep method

    NASA Astrophysics Data System (ADS)

    Rahim, Yong Faezah; Suleiman, Mohamed; Ibrahim, Zarina Bibi

    2014-06-01

    Differential Algebraic Equations (DAEs) are regarded as stiff Ordinary Differential Equations (ODEs). Therefore they are solved using implicit method such as Backward Differentiation Formula (BDF) type of methods which require the use of Newton iteration which need much computational effort. However, not all of the ODEs in DAE system are stiff. In this paper, we describe a new technique for solving DAE, where the ODEs are treated as non-stiff at the start of the integration and putting the non-stiff ODEs into stiff subsystem should instability occurs. Adams type of method is used to solve the non-stiff part and BDF method for solving the stiff part. This strategy is shown to be competitive in terms of computational effort and accuracy. Numerical experiments are presented to validate its efficiency.

  6. Numerical methods in laminar and turbulent flow; Proceedings of the 7th International Conference, Stanford Univ., CA, July 15-19, 1991. Vol. 7, pts. 1 & 2

    NASA Technical Reports Server (NTRS)

    Taylor, C. (Editor); Chin, J. H. (Editor); Homsy, G. M. (Editor)

    1991-01-01

    Consideration is given to the impulse response of a laminar boundary layer and receptivity; numerical transition to turbulence in plane Poiseuille flow; large eddy simulation of turbulent wake flow; a viscous model and loss calculation of a multisplitter cascade; vortex initiation during dynamic stall of an airfoil; a numerical analysis of isothermal flow in a combustion chamber; and compressible flow calculations with a two-equation turbulence model and unstructured grids. Attention is also given to a 2D calculation of a buoyant flow around a burning sphere, a fast multigrid method for 3D turbulent incompressible flows, a streaming flow induced by an oscillating cascade of circular cylinders, an algebraic multigrid scheme for solving the Navier-Stokes equations on unstructured meshes; and nonlinear coupled multigrid solutions to thermal problems employing different nodal grid arrangements and convective transport approximations.

  7. Numerical algebraic geometry and algebraic kinematics

    NASA Astrophysics Data System (ADS)

    Wampler, Charles W.; Sommese, Andrew J.

    In this article, the basic constructs of algebraic kinematics (links, joints, and mechanism spaces) are introduced. This provides a common schema for many kinds of problems that are of interest in kinematic studies. Once the problems are cast in this algebraic framework, they can be attacked by tools from algebraic geometry. In particular, we review the techniques of numerical algebraic geometry, which are primarily based on homotopy methods. We include a review of the main developments of recent years and outline some of the frontiers where further research is occurring. While numerical algebraic geometry applies broadly to any system of polynomial equations, algebraic kinematics provides a body of interesting examples for testing algorithms and for inspiring new avenues of work.

  8. A multigrid based computational procedure to predict internal flows with heat transfer

    SciTech Connect

    Kiris, I.; Parameswaran, S.; Carroll, G.

    1995-12-31

    In this study, a formally third-order, finite volume, unstaggered (co-located), modified SIMPLE algorithm-based 2D code was created utilizing multigrid for fast convergence. Stone`s Strongly Implicit Procedure (SIP) is employed as a relaxation (smoother, matrix eq. solver) method, due to its high performance. The quadratic formulations QUICK, mixed and UTOPIA were used to discretize the convective terms in momentum equations. Velocity and pressure coupling was addressed via modified SIMPLE algorithm. Due to the co-located nature of method, the cell fact velocities are obtained via the so called momentum balancing technique introduced before. The Multigrid idea is implemented to the solution of pressure correction equation. Various ways of implementing Multigrid algorithms are discussed. An ASME benchmark case (backward facing step with heat transfer) is chosen as the problem. The so called accommodative FAS-FMG was used. Predictions show that high order convective term discretization improves the predictions, while multigrid enables about an order of magnitude CPU time savings. Results point out that the promises of both high order discretization and multigrid can be harvested for recirculating flows.

  9. A new mathematical evaluation of smoking problem based of algebraic statistical method.

    PubMed

    Mohammed, Maysaa J; Rakhimov, Isamiddin S; Shitan, Mahendran; Ibrahim, Rabha W; Mohammed, Nadia F

    2016-01-01

    Smoking problem is considered as one of the hot topics for many years. In spite of overpowering facts about the dangers, smoking is still a bad habit widely spread and socially accepted. Many people start smoking during their gymnasium period. The discovery of the dangers of smoking gave a warning sign of danger for individuals. There are different statistical methods used to analyze the dangers of smoking. In this study, we apply an algebraic statistical method to analyze and classify real data using Markov basis for the independent model on the contingency table. Results show that the Markov basis based classification is able to distinguish different date elements. Moreover, we check our proposed method via information theory by utilizing the Shannon formula to illustrate which one of these alternative tables is the best in term of independent.

  10. An Algebraic Method for Exploring Quantum Monodromy and Quantum Phase Transitions in Non-Rigid Molecules

    NASA Astrophysics Data System (ADS)

    Larese, D.; Iachello, F.

    2011-06-01

    A simple algebraic Hamiltonian has been used to explore the vibrational and rotational spectra of the skeletal bending modes of HCNO, BrCNO, NCNCS, and other ``floppy`` (quasi-linear or quasi-bent) molecules. These molecules have large-amplitude, low-energy bending modes and champagne-bottle potential surfaces, making them good candidates for observing quantum phase transitions (QPT). We describe the geometric phase transitions from bent to linear in these and other non-rigid molecules, quantitatively analysing the spectroscopy signatures of ground state QPT, excited state QPT, and quantum monodromy.The algebraic framework is ideal for this work because of its small calculational effort yet robust results. Although these methods have historically found success with tri- and four-atomic molecules, we now address five-atomic and simple branched molecules such as CH_3NCO and GeH_3NCO. Extraction of potential functions is completed for several molecules, resulting in predictions of barriers to linearity and equilibrium bond angles.

  11. Multigrid solution of the Navier-Stokes equations on highly stretched grids with defect correction

    NASA Technical Reports Server (NTRS)

    Sockol, Peter M.

    1993-01-01

    Relaxation-based multigrid solvers for the steady incompressible Navier-Stokes equations are examined to determine their computational speed and robustness. Four relaxation methods with a common discretization have been used as smoothers in a single tailored multigrid procedure. The equations are discretized on a staggered grid with first order upwind used for convection in the relaxation process on all grids and defect correction to second order central on the fine grid introduced once per multigrid cycle. A fixed W(1,1) cycle with full weighting of residuals is used in the FAS multigrid process. The resulting solvers have been applied to three 2D flow problems, over a range of Reynolds numbers, on both uniform and highly stretched grids. In all cases the L(sub 2) norm of the velocity changes is reduced to 10(exp -6) in a few 10's of fine grid sweeps. The results from this study are used to draw conclusions on the strengths and weaknesses of the individual relaxation schemes as well as those of the overall multigrid procedure when used as a solver on highly stretched grids.

  12. Implementation and Optimization of miniGMG - a Compact Geometric Multigrid Benchmark

    SciTech Connect

    Williams, Samuel; Kalamkar, Dhiraj; Singh, Amik; Deshpande, Anand M.; Straalen, Brian Van; Smelyanskiy, Mikhail; Almgren, Ann; Dubey, Pradeep; Shalf, John; Oliker, Leonid

    2012-12-01

    Multigrid methods are widely used to accelerate the convergence of iterative solvers for linear systems used in a number of different application areas. In this report, we describe miniGMG, our compact geometric multigrid benchmark designed to proxy the multigrid solves found in AMR applications. We explore optimization techniques for geometric multigrid on existing and emerging multicore systems including the Opteron-based Cray XE6, Intel Sandy Bridge and Nehalem-based Infiniband clusters, as well as manycore-based architectures including NVIDIA's Fermi and Kepler GPUs and Intel's Knights Corner (KNC) co-processor. This report examines a variety of novel techniques including communication-aggregation, threaded wavefront-based DRAM communication-avoiding, dynamic threading decisions, SIMDization, and fusion of operators. We quantify performance through each phase of the V-cycle for both single-node and distributed-memory experiments and provide detailed analysis for each class of optimization. Results show our optimizations yield significant speedups across a variety of subdomain sizes while simultaneously demonstrating the potential of multi- and manycore processors to dramatically accelerate single-node performance. However, our analysis also indicates that improvements in networks and communication will be essential to reap the potential of manycore processors in large-scale multigrid calculations.

  13. General algebraic method applied to control analysis of complex engine types

    NASA Technical Reports Server (NTRS)

    Boksenbom, Aaron S; Hood, Richard

    1950-01-01

    A general algebraic method of attack on the problem of controlling gas-turbine engines having any number of independent variables was utilized employing operational functions to describe the assumed linear characteristics for the engine, the control, and the other units in the system. Matrices were used to describe the various units of the system, to form a combined system showing all effects, and to form a single condensed matrix showing the principal effects. This method directly led to the conditions on the control system for noninteraction so that any setting disturbance would affect only its corresponding controlled variable. The response-action characteristics were expressed in terms of the control system and the engine characteristics. The ideal control-system characteristics were explicitly determined in terms of any desired response action.

  14. Multigrid-based 'shifted-Laplacian' preconditioning for the time-harmonic elastic wave equation

    NASA Astrophysics Data System (ADS)

    Rizzuti, G.; Mulder, W. A.

    2016-07-01

    We investigate the numerical performance of an iterative solver for a frequency-domain finite-difference discretization of the isotropic elastic wave equation. The solver is based on the 'shifted-Laplacian' preconditioner, originally designed for the acoustic wave equation. This preconditioner represents a discretization of a heavily damped wave equation and can be efficiently inverted by a multigrid iteration. However, the application of multigrid to the elastic case is not straightforward because standard methods, such as point-Jacobi, fail to smooth the S-wave wavenumber components of the error when high P-to-S velocity ratios are present. We consider line smoothers as an alternative and apply local-mode analysis to evaluate the performance of the various components of the multigrid preconditioner. Numerical examples in 2-D demonstrate the efficacy of our method.

  15. Using the Attribute Hierarchy Method to Make Diagnostic Inferences about Examinees' Cognitive Skills in Algebra on the SAT

    ERIC Educational Resources Information Center

    Gierl, Mark J.; Wang, Changjiang; Zhou, Jiawen

    2008-01-01

    The purpose of this study is to apply the attribute hierarchy method (AHM) to a sample of SAT algebra items administered in March 2005. The AHM is a psychometric method for classifying examinees' test item responses into a set of structured attribute patterns associated with different components from a cognitive model of task performance. An…

  16. Algebraic dynamic multilevel (ADM) method for fully implicit simulations of multiphase flow in porous media

    NASA Astrophysics Data System (ADS)

    Cusini, Matteo; van Kruijsdijk, Cor; Hajibeygi, Hadi

    2016-06-01

    This paper presents the development of an algebraic dynamic multilevel method (ADM) for fully implicit simulations of multiphase flow in homogeneous and heterogeneous porous media. Built on the fine-scale fully implicit (FIM) discrete system, ADM constructs a multilevel FIM system describing the coupled process on a dynamically defined grid of hierarchical nested topology. The multilevel adaptive resolution is determined at each time step on the basis of an error criterion. Once the grid resolution is established, ADM employs sequences of restriction and prolongation operators in order to map the FIM system across the considered resolutions. Several choices can be considered for prolongation (interpolation) operators, e.g., constant, bilinear and multiscale basis functions, all of which form partition of unity. The adaptive multilevel restriction operators, on the other hand, are constructed using a finite-volume scheme. This ensures mass conservation of the ADM solutions, and as such, the stability and accuracy of the simulations with multiphase transport. For several homogeneous and heterogeneous test cases, it is shown that ADM applies only a small fraction of the full FIM fine-scale grid cells in order to provide accurate solutions. The sensitivity of the solutions with respect to the employed fraction of grid cells (determined automatically based on the threshold value of the error criterion) is investigated for all test cases. ADM is a significant step forward in the application of dynamic local grid refinement methods, in the sense that it is algebraic, allows for systematic mapping across different scales, and applicable to heterogeneous test cases without any upscaling of fine-scale high resolution quantities. It also develops a novel multilevel multiscale method for FIM multiphase flow simulations in natural subsurface formations.

  17. Eigensystem analysis of classical relaxation techniques with applications to multigrid analysis

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard; Maksymiuk, Catherine

    1987-01-01

    Classical relaxation techniques are related to numerical methods for solution of ordinary differential equations. Eigensystems for Point-Jacobi, Gauss-Seidel, and SOR methods are presented. Solution techniques such as eigenvector annihilation, eigensystem mixing, and multigrid methods are examined with regard to the eigenstructure.

  18. Multigrid on unstructured grids using an auxiliary set of structured grids

    SciTech Connect

    Douglas, C.C.; Malhotra, S.; Schultz, M.H.

    1996-12-31

    Unstructured grids do not have a convenient and natural multigrid framework for actually computing and maintaining a high floating point rate on standard computers. In fact, just the coarsening process is expensive for many applications. Since unstructured grids play a vital role in many scientific computing applications, many modifications have been proposed to solve this problem. One suggested solution is to map the original unstructured grid onto a structured grid. This can be used as a fine grid in a standard multigrid algorithm to precondition the original problem on the unstructured grid. We show that unless extreme care is taken, this mapping can lead to a system with a high condition number which eliminates the usefulness of the multigrid method. Theorems with lower and upper bounds are provided. Simple examples show that the upper bounds are sharp.

  19. Multigrid Approach to Incompressible Viscous Cavity Flows

    NASA Technical Reports Server (NTRS)

    Wood, William A.

    1996-01-01

    Two-dimensional incompressible viscous driven-cavity flows are computed for Reynolds numbers on the range 100-20,000 using a loosely coupled, implicit, second-order centrally-different scheme. Mesh sequencing and three-level V-cycle multigrid error smoothing are incorporated into the symmetric Gauss-Seidel time-integration algorithm. Parametrics on the numerical parameters are performed, achieving reductions in solution times by more than 60 percent with the full multigrid approach. Details of the circulation patterns are investigated in cavities of 2-to-1, 1-to-1, and 1-to-2 depth to width ratios.

  20. Highly indefinite multigrid for eigenvalue problems

    SciTech Connect

    Borges, L.; Oliveira, S.

    1996-12-31

    Eigenvalue problems are extremely important in understanding dynamic processes such as vibrations and control systems. Large scale eigenvalue problems can be very difficult to solve, especially if a large number of eigenvalues and the corresponding eigenvectors need to be computed. For solving this problem a multigrid preconditioned algorithm is presented in {open_quotes}The Davidson Algorithm, preconditioning and misconvergence{close_quotes}. Another approach for solving eigenvalue problems is by developing efficient solutions for highly indefinite problems. In this paper we concentrate on the use of new highly indefinite multigrid algorithms for the eigenvalue problem.

  1. Algebra Rules Object Boxes as an Authentic Assessment Task of Preservice Elementary Teacher Learning in a Mathematics Methods Course

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Hallagan, Jean E.

    2007-01-01

    The purpose of this study was to describe elementary preservice teachers' difficulties with understanding algebraic generalizations that were set in an authentic context. Fifty-eight preservice teachers enrolled in an elementary mathematics methods course participated in the study. These students explored and practiced with authentic, hands-on…

  2. A multigrid LU-SSOR scheme for approximate Newton iteration applied to the Euler equations

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Jameson, Antony

    1986-01-01

    A new efficient relaxation scheme in conjunction with a multigrid method is developed for the Euler equations. The LU SSOR scheme is based on a central difference scheme and does not need flux splitting for Newton iteration. Application to transonic flow shows that the new method surpasses the performance of the LU implicit scheme.

  3. Algebraic reconstruction combined with the signal space separation method for the inverse magnetoencephalography problem with a dipole-quadrupole source

    NASA Astrophysics Data System (ADS)

    Nara, T.; Koiwa, K.; Takagi, S.; Oyama, D.; Uehara, G.

    2014-05-01

    This paper presents an algebraic reconstruction method for dipole-quadrupole sources using magnetoencephalography data. Compared to the conventional methods with the equivalent current dipoles source model, our method can more accurately reconstruct two close, oppositely directed sources. Numerical simulations show that two sources on both sides of the longitudinal fissure of cerebrum are stably estimated. The method is verified using a quadrupolar source phantom, which is composed of two isosceles-triangle-coils with parallel bases.

  4. On modification of certain methods of the conjugate direction type for solving rectangular systems of linear algebraic equations

    NASA Astrophysics Data System (ADS)

    Yukhno, L. F.

    2007-12-01

    The use of modifications of certain well-known methods of the conjugate direction type for solving systems of linear algebraic equations with rectangular matrices is examined. The modified methods are shown to be superior to the original versions with respect to the round-off accumulation; the advantage is especially large for ill-conditioned matrices. Examples are given of the efficient use of the modified methods for solving certain fairly large ill-conditioned problems.

  5. On modification of certain methods of the conjugate direction type for solving systems of linear algebraic equations

    NASA Astrophysics Data System (ADS)

    Yukhno, L. F.

    2007-11-01

    A modification of certain well-known methods of the conjugate direction type is proposed and examined. The modified methods are more stable with respect to the accumulation of round-off errors. Moreover, these methods are applicable for solving ill-conditioned systems of linear algebraic equations that, in particular, arise as approximations of ill-posed problems. Numerical results illustrating the advantages of the proposed modification are presented.

  6. Numerical performance of AOR methods in solving first order composite closed Newton-Cotes quadrature algebraic equations

    NASA Astrophysics Data System (ADS)

    Muthuvalu, Mohana Sundaram; Aruchunan, Elayaraja; Koh, Wei Sin; Akhir, Mohd Kamalrulzaman Md; Sulaiman, Jumat; Karim, Samsul Ariffin Abdul

    2014-07-01

    In this paper, the application of the Accelerated Over-Relaxation (AOR) iterative method is extended to solve first order composite closed Newton-Cotes quadrature (1-CCNC) algebraic equations arising from second kind linear Fredholm integral equations. The formulation and implementation of the method are also discussed. In addition, numerical results by solving several test problems are included and compared with the conventional iterative methods.

  7. Robust Multigrid Smoothers for Three Dimensional Elliptic Equations with Strong Anisotropies

    NASA Technical Reports Server (NTRS)

    Llorente, Ignacio M.; Melson, N. Duane

    1998-01-01

    We discuss the behavior of several plane relaxation methods as multigrid smoothers for the solution of a discrete anisotropic elliptic model problem on cell-centered grids. The methods compared are plane Jacobi with damping, plane Jacobi with partial damping, plane Gauss-Seidel, plane zebra Gauss-Seidel, and line Gauss-Seidel. Based on numerical experiments and local mode analysis, we compare the smoothing factor of the different methods in the presence of strong anisotropies. A four-color Gauss-Seidel method is found to have the best numerical and architectural properties of the methods considered in the present work. Although alternating direction plane relaxation schemes are simpler and more robust than other approaches, they are not currently used in industrial and production codes because they require the solution of a two-dimensional problem for each plane in each direction. We verify the theoretical predictions of Thole and Trottenberg that an exact solution of each plane is not necessary and that a single two-dimensional multigrid cycle gives the same result as an exact solution, in much less execution time. Parallelization of the two-dimensional multigrid cycles, the kernel of the three-dimensional implicit solver, is also discussed. Alternating-plane smoothers are found to be highly efficient multigrid smoothers for anisotropic elliptic problems.

  8. An efficient non-linear multigrid procedure for the incompressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Sivaloganathan, S.; Shaw, G. J.

    An efficient Full Approximation multigrid scheme for finite volume discretizations of the Navier-Stokes equations is presented. The algorithm is applied to the driven cavity test problem. Numerical results are presented and a comparison made with PACE, a Rolls-Royce industrial code, which uses the SIMPLE pressure correction method as an iterative solver.

  9. A fast multigrid algorithm for energy minimization under planar density constraints.

    SciTech Connect

    Ron, D.; Safro, I.; Brandt, A.; Mathematics and Computer Science; Weizmann Inst. of Science

    2010-09-07

    The two-dimensional layout optimization problem reinforced by the efficient space utilization demand has a wide spectrum of practical applications. Formulating the problem as a nonlinear minimization problem under planar equality and/or inequality density constraints, we present a linear time multigrid algorithm for solving a correction to this problem. The method is demonstrated in various graph drawing (visualization) instances.

  10. Finite difference method and algebraic polynomial interpolation for numerically solving Poisson's equation over arbitrary domains

    NASA Astrophysics Data System (ADS)

    Fukuchi, Tsugio

    2014-06-01

    The finite difference method (FDM) based on Cartesian coordinate systems can be applied to numerical analyses over any complex domain. A complex domain is usually taken to mean that the geometry of an immersed body in a fluid is complex; here, it means simply an analytical domain of arbitrary configuration. In such an approach, we do not need to treat the outer and inner boundaries differently in numerical calculations; both are treated in the same way. Using a method that adopts algebraic polynomial interpolations in the calculation around near-wall elements, all the calculations over irregular domains reduce to those over regular domains. Discretization of the space differential in the FDM is usually derived using the Taylor series expansion; however, if we use the polynomial interpolation systematically, exceptional advantages are gained in deriving high-order differences. In using the polynomial interpolations, we can numerically solve the Poisson equation freely over any complex domain. Only a particular type of partial differential equation, Poisson's equations, is treated; however, the arguments put forward have wider generality in numerical calculations using the FDM.

  11. Algebraic Nonoverlapping Domain Decomposition Methods for Stabilized FEM and FV Discretizations

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Bailey, David (Technical Monitor)

    1998-01-01

    We consider preconditioning methods for convection dominated fluid flow problems based on a nonoverlapping Schur complement domain decomposition procedure for arbitrary triangulated domains. The triangulation is first partitioned into a number of subdomains and interfaces which induce a natural 2 x 2 partitioning of the p.d.e. discretization matrix. We view the Schur complement induced by this partitioning as an algebraically derived coarse space approximation. This avoids the known difficulties associated with the direct formation of an effective coarse discretization for advection dominated equations. By considering various approximations of the block factorization of the 2 x 2 system, we have developed a family of robust preconditioning techniques. A computer code based on these ideas has been developed and tested on the IBM SP2 using MPI message passing protocol. A number of 2-D CFD calculations will be presented for both scalar advection-diffusion equations and the Euler equations discretized using stabilized finite element and finite volume methods. These results show very good scalability of the preconditioner for various discretizations as the number of processors is increased while the number of degrees of freedom per processor is fixed.

  12. Algebraic formulation of Kumaresan-Tufts superresolution method, showing relation to ME and MUSIC methods

    NASA Astrophysics Data System (ADS)

    Nickel, U.

    1988-02-01

    The paper gives a new formulation for the Kumaresan-Tufts (KT) method for enhanced resolution with an antenna array. This formulation shows the relation of this method to the maximum-entropy (ME) method and the eigenvector projection method (MUSIC algorithm). It is shown that the eigenvector projection is a smoothed version of the KT method, and that the KT method is equivalent to the ME method if the signal/noise ratio goes to infinity. This explains the observed increased resolution of the KT method at the expense of a strongly fluctuating pattern. The relation is very similar to the one between Capon's method and the ME method.

  13. Symmetric Gauss-Seidel multigrid solution of the Euler equations on structured and unstructured grids

    NASA Astrophysics Data System (ADS)

    Caughey, David A.

    2005-11-01

    The efficient symmetric Gauss-Seidel (SGS) algorithm for solving the Euler equations of inviscid, compressible flow on structured grids, developed in collaboration with Jameson of Stanford University, is extended to unstructured grids. The algorithm uses a nonlinear formulation of an SGS solver, implemented within the framework of multigrid. The earlier form of the algorithm used the natural (lexicographic) ordering of the mesh cells available on structured grids for the SGS sweeps, but a number of features of the method that are believed to contribute to its success can also be implemented for computations on unstructured grids. The present paper reviews, the features of the SGS multigrid solver for structured gr0ids, including its nonlinear implementation, its use of “absolute” Jacobian matrix preconditioning, and its incorporation of multigrid, and then describes the incorporation of these features into an algorithm suitable for computations on unstructured grids. The implementation on unstructured grids is based on the agglomerated multigrid method developed by Sørensen, which uses an explicit Runge-Kutta smoothing algorithm. Results of computations for steady, transonic flows past two-dimensional airfoils are presented, and the efficiency of the method is evaluated for computations on both structured and unstructured meshes.

  14. Computer Algebra.

    ERIC Educational Resources Information Center

    Pavelle, Richard; And Others

    1981-01-01

    Describes the nature and use of computer algebra and its applications to various physical sciences. Includes diagrams illustrating, among others, a computer algebra system and flow chart of operation of the Euclidean algorithm. (SK)

  15. A Cell-Centered Multigrid Algorithm for All Grid Sizes

    NASA Technical Reports Server (NTRS)

    Gjesdal, Thor

    1996-01-01

    Multigrid methods are optimal; that is, their rate of convergence is independent of the number of grid points, because they use a nested sequence of coarse grids to represent different scales of the solution. This nesting does, however, usually lead to certain restrictions of the permissible size of the discretised problem. In cases where the modeler is free to specify the whole problem, such constraints are of little importance because they can be taken into consideration from the outset. We consider the situation in which there are other competing constraints on the resolution. These restrictions may stem from the physical problem (e.g., if the discretised operator contains experimental data measured on a fixed grid) or from the need to avoid limitations set by the hardware. In this paper we discuss a modification to the cell-centered multigrid algorithm, so that it can be used br problems with any resolution. We discuss in particular a coarsening strategy and choice of intergrid transfer operators that can handle grids with both an even or odd number of cells. The method is described and applied to linear equations obtained by discretization of two- and three-dimensional second-order elliptic PDEs.

  16. Multigrid calculations of 3-D turbulent viscous flows

    NASA Technical Reports Server (NTRS)

    Yokota, Jeffrey W.

    1989-01-01

    Convergence properties of a multigrid algorithm, developed to calculate compressible viscous flows, are analyzed by a vector sequence eigenvalue estimate. The full 3-D Reynolds-averaged Navier-Stokes equations are integrated by an implicit multigrid scheme while a k-epsilon turbulence model is solved, uncoupled from the flow equations. Estimates of the eigenvalue structure for both single and multigrid calculations are compared in an attempt to analyze the process as well as the results of the multigrid technique. The flow through an annular turbine is used to illustrate the scheme's ability to calculate complex 3-D flows.

  17. Least-squares finite element methods for quantum chromodynamics

    SciTech Connect

    Ketelsen, Christian; Brannick, J; Manteuffel, T; Mccormick, S

    2008-01-01

    A significant amount of the computational time in large Monte Carlo simulations of lattice quantum chromodynamics (QCD) is spent inverting the discrete Dirac operator. Unfortunately, traditional covariant finite difference discretizations of the Dirac operator present serious challenges for standard iterative methods. For interesting physical parameters, the discretized operator is large and ill-conditioned, and has random coefficients. More recently, adaptive algebraic multigrid (AMG) methods have been shown to be effective preconditioners for Wilson's discretization of the Dirac equation. This paper presents an alternate discretization of the Dirac operator based on least-squares finite elements. The discretization is systematically developed and physical properties of the resulting matrix system are discussed. Finally, numerical experiments are presented that demonstrate the effectiveness of adaptive smoothed aggregation ({alpha}SA ) multigrid as a preconditioner for the discrete field equations resulting from applying the proposed least-squares FE formulation to a simplified test problem, the 2d Schwinger model of quantum electrodynamics.

  18. Multigrid MALDI mass spectrometry imaging (mMALDI MSI).

    PubMed

    Urbanek, Annett; Hölzer, Stefan; Knop, Katrin; Schubert, Ulrich S; von Eggeling, Ferdinand

    2016-05-01

    Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is an important technique for the spatially resolved molecular analysis of tissue sections. The selection of matrices influences the resulting mass spectra to a high degree. For extensive and simultaneous analysis, the application of different matrices to one tissue sample is desirable. To date, only a single matrix could be applied to a tissue section per experiment. However, repetitive removal of the matrix makes this approach time-consuming and damaging to tissue samples. To overcome these drawbacks, we developed a multigrid MALDI MSI technique (mMALDI MSI) that relies on automated inkjet printing to place differing matrices onto predefined dot grids. We used a cooled printhead to prevent cavitation of low viscosity solvents in the printhead nozzle. Improved spatial resolution of the dot grids was achieved by using a triple-pulse procedure that reduced droplet volume. The matrices can either be applied directly to the thaw-mounted tissue sample or by precoating the slide followed by mounting of the tissue sample. During the MALDI imaging process, we were able to precisely target different matrix point grids with the laser to simultaneously produce distinct mass spectra. Unlike the standard method, the prespotting approach optimizes the spectra quality, avoids analyte delocalization, and enables subsequent hematoxylin and eosin (H&E) staining. Graphical Abstract Scheme of the pre-spotted multigrid MALDI MSI workflow. PMID:27039200

  19. A method to convert algebraic boundary representations to CSG representations for three-dimensional solids

    SciTech Connect

    Buchele, S.F.; Ellingson, W.A.

    1997-06-01

    Recent advances in reverse engineering have focused on recovering a boundary representation (b-rep) of an object, often for integration with rapid prototyping. This boundary representation may be a 3-D point cloud, a triangulation of points, or piecewise algebraic or parametric surfaces. This paper presents work in progress to develop an algorithm to extend the current state of the art in reverse engineering of mechanical parts. This algorithm will take algebraic surface representations as input and will produce a constructive solid geometry (CSG) description that uses solid primitives such as rectangular block, pyramid, sphere, cylinder, and cone. The proposed algorithm will automatically generate a CSG solid model of a part given its algebraic b-rep, thus allowing direct input into a CAD system and subsequent CSG model generation.

  20. Agglomeration multigrid for viscous turbulent flows

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Venkatakrishnan, V.

    1994-01-01

    Agglomeration multigrid, which has been demonstrated as an efficient and automatic technique for the solution of the Euler equations on unstructured meshes, is extended to viscous turbulent flows. For diffusion terms, coarse grid discretizations are not possible, and more accurate grid transfer operators are required as well. A Galerkin coarse grid operator construction and an implicit prolongation operator are proposed. Their suitability is evaluated by examining their effect on the solution of Laplace's equation. The resulting strategy is employed to solve the Reynolds-averaged Navier-Stokes equations for aerodynamic flows. Convergence rates comparable to those obtained by a previously developed non-nested mesh multigrid approach are demonstrated, and suggestions for further improvements are given.

  1. Multigrid with red black SOR revisited

    SciTech Connect

    Yavneh, I.

    1994-12-31

    Optimal relaxation parameters are obtained for red-black point Gauss-Seidel relaxation in multigrid solvers of a family of elliptic equations. The resulting relaxation schemes are found to retain high efficiency over an appreciable range of coefficients of the elliptic operator, yielding simple, inexpensive and fully parallelizable smoothers in many situations where more complicated and less cost-effective block-relaxation and/or partial coarsening are commonly used.

  2. Development of a multigrid transonic potential flow code for cascades

    NASA Technical Reports Server (NTRS)

    Steinhoff, John

    1992-01-01

    Finite-volume methods for discretizing transonic potential flow equations have proven to be very flexible and accurate for both two and three dimensional problems. Since they only use local properties of the mapping, they allow decoupling of the grid generation from the rest of the problem. A very effective method for solving the discretized equations and converging to a solution is the multigrid-ADI technique. It has been successfully applied to airfoil problems where O type, C type and slit mappings have been used. Convergence rates for these cases are more than an order of magnitude faster than with relaxation techniques. In this report, we describe a method to extend the above methods, with the C type mappings, to airfoil cascade problems.

  3. Exploring Algebra Based Problem Solving Methods and Strategies of Spanish-Speaking High School Students

    ERIC Educational Resources Information Center

    Hernandez, Andrea C.

    2013-01-01

    This dissertation analyzes differences found in Spanish-speaking middle school and high school students in algebra-based problem solving. It identifies the accuracy differences between word problems presented in English, Spanish and numerically based problems. The study also explores accuracy differences between each subgroup of Spanish-speaking…

  4. Algebraic grid adaptation method using non-uniform rational B-spline surface modeling

    NASA Technical Reports Server (NTRS)

    Yang, Jiann-Cherng; Soni, B. K.

    1992-01-01

    An algebraic adaptive grid system based on equidistribution law and utilized by the Non-Uniform Rational B-Spline (NURBS) surface for redistribution is presented. A weight function, utilizing a properly weighted boolean sum of various flow field characteristics is developed. Computational examples are presented to demonstrate the success of this technique.

  5. A Generalized Eigensolver based on Smoothed Aggregation (GES-SA) for Initializing Smoothed Aggregation Multigrid (SA)

    SciTech Connect

    Brezina, M; Manteuffel, T; McCormick, S; Ruge, J; Sanders, G; Vassilevski, P S

    2007-05-31

    Consider the linear system Ax = b, where A is a large, sparse, real, symmetric, and positive definite matrix and b is a known vector. Solving this system for unknown vector x using a smoothed aggregation multigrid (SA) algorithm requires a characterization of the algebraically smooth error, meaning error that is poorly attenuated by the algorithm's relaxation process. For relaxation processes that are typically used in practice, algebraically smooth error corresponds to the near-nullspace of A. Therefore, having a good approximation to a minimal eigenvector is useful to characterize the algebraically smooth error when forming a linear SA solver. This paper discusses the details of a generalized eigensolver based on smoothed aggregation (GES-SA) that is designed to produce an approximation to a minimal eigenvector of A. GES-SA might be very useful as a standalone eigensolver for applications that desire an approximate minimal eigenvector, but the primary aim here is for GES-SA to produce an initial algebraically smooth component that may be used to either create a black-box SA solver or initiate the adaptive SA ({alpha}SA) process.

  6. Element Agglomeration Algebraic Multilevel Monte-Carlo Library

    SciTech Connect

    2015-02-19

    ElagMC is a parallel C++ library for Multilevel Monte Carlo simulations with algebraically constructed coarse spaces. ElagMC enables Multilevel variance reduction techniques in the context of general unstructured meshes by using the specialized element-based agglomeration techniques implemented in ELAG (the Element-Agglomeration Algebraic Multigrid and Upscaling Library developed by U. Villa and P. Vassilevski and currently under review for public release). The ElabMC library can support different type of deterministic problems, including mixed finite element discretizations of subsurface flow problems.

  7. Element Agglomeration Algebraic Multilevel Monte-Carlo Library

    2015-02-19

    ElagMC is a parallel C++ library for Multilevel Monte Carlo simulations with algebraically constructed coarse spaces. ElagMC enables Multilevel variance reduction techniques in the context of general unstructured meshes by using the specialized element-based agglomeration techniques implemented in ELAG (the Element-Agglomeration Algebraic Multigrid and Upscaling Library developed by U. Villa and P. Vassilevski and currently under review for public release). The ElabMC library can support different type of deterministic problems, including mixed finite element discretizationsmore » of subsurface flow problems.« less

  8. Two-parameter twisted quantum affine algebras

    NASA Astrophysics Data System (ADS)

    Jing, Naihuan; Zhang, Honglian

    2016-09-01

    We establish Drinfeld realization for the two-parameter twisted quantum affine algebras using a new method. The Hopf algebra structure for Drinfeld generators is given for both untwisted and twisted two-parameter quantum affine algebras, which include the quantum affine algebras as special cases.

  9. A geometric multigrid Poisson solver for domains containing solid inclusions

    NASA Astrophysics Data System (ADS)

    Botto, Lorenzo

    2013-03-01

    A Cartesian grid method for the fast solution of the Poisson equation in three-dimensional domains with embedded solid inclusions is presented and its performance analyzed. The efficiency of the method, which assume Neumann conditions at the immersed boundaries, is comparable to that of a multigrid method for regular domains. The method is light in terms of memory usage, and easily adaptable to parallel architectures. Tests with random and ordered arrays of solid inclusions, including spheres and ellipsoids, demonstrate smooth convergence of the residual for small separation between the inclusion surfaces. This feature is important, for instance, in simulations of nearly-touching finite-size particles. The implementation of the method, “MG-Inc”, is available online. Catalogue identifier: AEOE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 19068 No. of bytes in distributed program, including test data, etc.: 215118 Distribution format: tar.gz Programming language: C++ (fully tested with GNU GCC compiler). Computer: Any machine supporting standard C++ compiler. Operating system: Any OS supporting standard C++ compiler. RAM: About 150MB for 1283 resolution Classification: 4.3. Nature of problem: Poisson equation in domains containing inclusions; Neumann boundary conditions at immersed boundaries. Solution method: Geometric multigrid with finite-volume discretization. Restrictions: Stair-case representation of the immersed boundaries. Running time: Typically a fraction of a minute for 1283 resolution.

  10. Agglomeration multigrid for the three-dimensional Euler equations

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, V.; Mavriplis, D. J.

    1994-01-01

    A multigrid procedure that makes use of coarse grids generated by the agglomeration of control volumes is advocated as a practical approach for solving the three dimensional Euler equations on unstructured grids about complex configurations. It is shown that the agglomeration procedure can be tailored to achieve certain coarse grid properties such as the sizes of the coarse grids and aspect ratios of the coarse grid cells. The agglomeration is done as a preprocessing step and runs in linear time. The implications for multigrid of using arbitrary polyhedral coarse grids are discussed. The agglomeration multigrid technique compares very favorably with existing multigrid procedures both in terms of convergence rates and elapsed times. The main advantage of the present approach is the ease with which coarse grids of any desired degree of coarseness may be generated in three dimensions, without being constrained by considerations of geometry. Inviscid flows over a variety of complex configurations are computed using the agglomeration multigrid strategy.

  11. Multiple solution of linear algebraic systems by an iterative method with recomputed preconditioner in the analysis of microstrip structures

    NASA Astrophysics Data System (ADS)

    Ahunov, Roman R.; Kuksenko, Sergey P.; Gazizov, Talgat R.

    2016-06-01

    A multiple solution of linear algebraic systems with dense matrix by iterative methods is considered. To accelerate the process, the recomputing of the preconditioning matrix is used. A priory condition of the recomputing based on change of the arithmetic mean of the current solution time during the multiple solution is proposed. To confirm the effectiveness of the proposed approach, the numerical experiments using iterative methods BiCGStab and CGS for four different sets of matrices on two examples of microstrip structures are carried out. For solution of 100 linear systems the acceleration up to 1.6 times, compared to the approach without recomputing, is obtained.

  12. Multigrid Solution of the Navier-Stokes Equations at Low Speeds with Large Temperature Variations

    NASA Technical Reports Server (NTRS)

    Sockol, Peter M.

    2002-01-01

    Multigrid methods for the Navier-Stokes equations at low speeds and large temperature variations are investigated. The compressible equations with time-derivative preconditioning and preconditioned flux-difference splitting of the inviscid terms are used. Three implicit smoothers have been incorporated into a common multigrid procedure. Both full coarsening and semi-coarsening with directional fine-grid defect correction have been studied. The resulting methods have been tested on four 2D laminar problems over a range of Reynolds numbers on both uniform and highly stretched grids. Two of the three methods show efficient and robust performance over the entire range of conditions. In addition none of the methods have any difficulty with the large temperature variations.

  13. A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    White, J. A.; Morrison, J. H.

    1999-01-01

    A multi-grid, flux-difference-split, finite-volume code, VULCAN, is presented for solving the elliptic and parabolized form of the equations governing three-dimensional, turbulent, calorically perfect and non-equilibrium chemically reacting flows. The space marching algorithms developed to improve convergence rate and or reduce computational cost are emphasized. The algorithms presented are extensions to the class of implicit pseudo-time iterative, upwind space-marching schemes. A full approximate storage, full multi-grid scheme is also described which is used to accelerate the convergence of a Gauss-Seidel relaxation method. The multi-grid algorithm is shown to significantly improve convergence on high aspect ratio grids.

  14. A Pseubo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Morrison, J. H.; White, J. A.

    1999-01-01

    A multi-grid, flux-difference-split, finite-volume code, VULCAN, is presented for solving the elliptic and parabolized form of the equations governing three-dimensional, turbulent, calorically perfect and non-equilibrium chemically reacting flows. The space marching algorithms developed to improve convergence rate and or reduce computational cost are emphasized. The algorithms presented are extensions to the class of implicit pseudo-time iterative, upwind space-marching schemes. A full approximate storage, full multi-grid scheme is also described which is used to accelerate the convergence of a Gauss-Seidel relaxation method. The multi-grid algorithm is shown to significantly improve convergence on high aspect ratio grids.

  15. From Earth Algebra to Earth Math: An Expansion and Dissemination of the Methods of Earth Algebra [and] Proceedings, Earth Math Conference (Kennesaw, Georgia, April 19-20, 1996).

    ERIC Educational Resources Information Center

    Zumoff, Nancy; Schaufele, Christopher

    This final report and appended conference proceedings describe activities of the Earth Math project, a 3-year effort at Kennesaw State University (Georgia) to broaden and disseminate the concept of Earth Algebra to precalculus and mathematics education courses. Major outcomes of the project were the draft of a precalculus textbook now being…

  16. Earth Algebra.

    ERIC Educational Resources Information Center

    Schaufele, Christopher; Zumoff, Nancy

    Earth Algebra is an entry level college algebra course that incorporates the spirit of the National Council of Teachers of Mathematics (NCTM) Curriculum and Evaluation Standards for School Mathematics at the college level. The context of the course places mathematics at the center of one of the major current concerns of the world. Through…

  17. Kiddie Algebra

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2009-01-01

    As educators and policymakers search for ways to prepare students for the rigors of algebra, teachers in the Helena, Montana, school system are starting early by attempting to nurture students' algebraic-reasoning ability, as well as their basic number skills, in early elementary school, rather than waiting until middle or early high school.…

  18. Interpolation between Sobolev spaces in Lipschitz domains with an application to multigrid theory

    SciTech Connect

    Bramble, J.H. |

    1995-10-01

    In this paper the author describes an interpolation result for the Sobolev spaces H{sub 0}{sup S}({Omega}) where {Omega} is a bounded domain with a Lipschitz boundary. This result is applied to derive discrete norm estimates related to multilevel preconditioners and multigrid methods in the finite element method. The estimates are valid for operators of order 2m with Dirichlet boundary conditions. 11 refs.

  19. Multigrid calculation of three-dimensional viscous cascade flows

    NASA Technical Reports Server (NTRS)

    Arnone, A.; Liou, M.-S.; Povinelli, L. A.

    1991-01-01

    A three-dimensional code for viscous cascade flow prediction has been developed. The space discretization uses a cell-centered scheme with eigenvalue scaling to weigh the artificial dissipation terms. Computational efficiency of a four-stage Runge-Kutta scheme is enhanced by using variable coefficients, implicit residual smoothing, and a full-multigrid method. The Baldwin-Lomax eddy-viscosity model is used for turbulence closure. A zonal, nonperiodic grid is used to minimize mesh distortion in and downstream of the throat region. Applications are presented for an annular vane with and without end wall contouring, and for a large-scale linear cascade. The calculation is validated by comparing with experiments and by studying grid dependency.

  20. Multigrid calculation of three-dimensional viscous cascade flows

    NASA Technical Reports Server (NTRS)

    Arnone, A.; Liou, M.-S.; Povinelli, L. A.

    1991-01-01

    A 3-D code for viscous cascade flow prediction was developed. The space discretization uses a cell-centered scheme with eigenvalue scaling to weigh the artificial dissipation terms. Computational efficiency of a four stage Runge-Kutta scheme is enhanced by using variable coefficients, implicit residual smoothing, and a full multigrid method. The Baldwin-Lomax eddy viscosity model is used for turbulence closure. A zonal, nonperiodic grid is used to minimize mesh distortion in and downstream of the throat region. Applications are presented for an annular vane with and without end wall contouring, and for a large scale linear cascade. The calculation is validated by comparing with experiments and by studying grid dependency.

  1. Design and implementation of parallel multigrid algorithms

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.; Tuminaro, Ray S.

    1988-01-01

    Techniques for mapping multigrid algorithms to solve elliptic PDEs on hypercube parallel computers are described and demonstrated. The need for proper data mapping to minimize communication distances is stressed, and an execution-time model is developed to show how algorithm efficiency is affected by changes in the machine and algorithm parameters. Particular attention is then given to the case of coarse computational grids, which can lead to idle processors, load imbalances, and inefficient performance. It is shown that convergence can be improved by using idle processors to solve a new problem concurrently on the fine grid defined by a splitting.

  2. Multigrid applied to singular perturbation problems

    NASA Technical Reports Server (NTRS)

    Kamowitz, David

    1987-01-01

    The solution of the singular perturbation problem by a multigrid algorithm is considered. Theoretical and experimental results for a number of different discretizations are presented. The theoretical and observed rates agree with the results developed in an earlier work of Kamowitz and Parter. In addition, the rate of convergence of the algorithm when the coarse grid operator is the natural finite difference analog of the fine grid operator is presented. This is in contrast to the case in the previous work where the Galerkin choice (I sup H sub h L sub h,I sup h sub H) was used for the coarse grid operators.

  3. Multigrid Acceleration of Time-Accurate DNS of Compressible Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Broeze, Jan; Geurts, Bernard; Kuerten, Hans; Streng, Martin

    1996-01-01

    An efficient scheme for the direct numerical simulation of 3D transitional and developed turbulent flow is presented. Explicit and implicit time integration schemes for the compressible Navier-Stokes equations are compared. The nonlinear system resulting from the implicit time discretization is solved with an iterative method and accelerated by the application of a multigrid technique. Since we use central spatial discretizations and no artificial dissipation is added to the equations, the smoothing method is less effective than in the more traditional use of multigrid in steady-state calculations. Therefore, a special prolongation method is needed in order to obtain an effective multigrid method. This simulation scheme was studied in detail for compressible flow over a flat plate. In the laminar regime and in the first stages of turbulent flow the implicit method provides a speed-up of a factor 2 relative to the explicit method on a relatively coarse grid. At increased resolution this speed-up is enhanced correspondingly.

  4. Agglomeration Multigrid for an Unstructured-Grid Flow Solver

    NASA Technical Reports Server (NTRS)

    Frink, Neal; Pandya, Mohagna J.

    2004-01-01

    An agglomeration multigrid scheme has been implemented into the sequential version of the NASA code USM3Dns, tetrahedral cell-centered finite volume Euler/Navier-Stokes flow solver. Efficiency and robustness of the multigrid-enhanced flow solver have been assessed for three configurations assuming an inviscid flow and one configuration assuming a viscous fully turbulent flow. The inviscid studies include a transonic flow over the ONERA M6 wing and a generic business jet with flow-through nacelles and a low subsonic flow over a high-lift trapezoidal wing. The viscous case includes a fully turbulent flow over the RAE 2822 rectangular wing. The multigrid solutions converged with 12%-33% of the Central Processing Unit (CPU) time required by the solutions obtained without multigrid. For all of the inviscid cases, multigrid in conjunction with an explicit time-stepping scheme performed the best with regard to the run time memory and CPU time requirements. However, for the viscous case multigrid had to be used with an implicit backward Euler time-stepping scheme that increased the run time memory requirement by 22% as compared to the run made without multigrid.

  5. Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1991-01-01

    A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds Stress Model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid method. With the k-epsilon model the rate approaches that for laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equations in the latter may be responsible. Computed results with both turbulence models are compared with experimental data for a pair of opposed jets in crossflow. Both models yield reasonable agreement with mean flow velocity but RSM yields better prediction of the Reynolds stresses.

  6. Analyzing the nonlinear vibrational wave differential equation for the simplified model of Tower Cranes by Algebraic Method

    NASA Astrophysics Data System (ADS)

    Akbari, M. R.; Ganji, D. D.; Ahmadi, A. R.; Kachapi, Sayyid H. Hashemi

    2014-03-01

    In the current paper, a simplified model of Tower Cranes has been presented in order to investigate and analyze the nonlinear differential equation governing on the presented system in three different cases by Algebraic Method (AGM). Comparisons have been made between AGM and Numerical Solution, and these results have been indicated that this approach is very efficient and easy so it can be applied for other nonlinear equations. It is citable that there are some valuable advantages in this way of solving differential equations and also the answer of various sets of complicated differential equations can be achieved in this manner which in the other methods, so far, they have not had acceptable solutions. The simplification of the solution procedure in Algebraic Method and its application for solving a wide variety of differential equations not only in Vibrations but also in different fields of study such as fluid mechanics, chemical engineering, etc. make AGM be a powerful and useful role model for researchers in order to solve complicated nonlinear differential equations.

  7. The Development of a Factorizable Multigrid Algorithm for Subsonic and Transonic Flow

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas W.

    2001-01-01

    The factorizable discretization of Sidilkover for the compressible Euler equations previously demonstrated for channel flows has been extended to external flows.The dissipation of the original scheme has been modified to maintain stability for moderately stretched grids. The discrete equations are solved by symmetric collective Gauss-Seidel relaxation and FAS multigrid. Unlike the earlier work ordering the grid vertices in the flow direction has been found to be unnecessary. Solutions for essential incompressible flow (Mach 0.01) and supercritical flows have obtained for a Karman-Trefftz airfoil with it conformally mapped grid,as well as a NACA 0012 on an algebraically generated grid. The current work demonstrates nearly 0(n) convergence for subsonic and slightly transonic flows.

  8. Application of the multigrid solution technique to hypersonic entry vehicles

    NASA Technical Reports Server (NTRS)

    Greene, Francis A.

    1993-01-01

    A multigrid solution procedure has been incorporated in a version of the Langley Aerothermodynamic Upwind Relaxation Algorithm. The multigrid scheme is based on the Full Approximation Storage approach and uses Full Multigrid to obtain a well defined fine mesh starting solution. Predictions were obtained using standard transfer operators and a 'V-cycle' was used to control grid sequencing. Computed hypersonic flow solutions compared with experimental data for a 15 degree sphere cone, blended-wing body, and shuttle-like geometries are presented. It is shown that the algorithm accurately predicts heating rates, and when compared with the single grid algorithm computes solutions in one-third the computational time.

  9. Evaluation of algebraic iterative image reconstruction methods for tetrahedron beam computed tomography systems.

    PubMed

    Kim, Joshua; Guan, Huaiqun; Gersten, David; Zhang, Tiezhi

    2013-01-01

    Tetrahedron beam computed tomography (TBCT) performs volumetric imaging using a stack of fan beams generated by a multiple pixel X-ray source. While the TBCT system was designed to overcome the scatter and detector issues faced by cone beam computed tomography (CBCT), it still suffers the same large cone angle artifacts as CBCT due to the use of approximate reconstruction algorithms. It has been shown that iterative reconstruction algorithms are better able to model irregular system geometries and that algebraic iterative algorithms in particular have been able to reduce cone artifacts appearing at large cone angles. In this paper, the SART algorithm is modified for the use with the different TBCT geometries and is tested using both simulated projection data and data acquired using the TBCT benchtop system. The modified SART reconstruction algorithms were able to mitigate the effects of using data generated at large cone angles and were also able to reconstruct CT images without the introduction of artifacts due to either the longitudinal or transverse truncation in the data sets. Algebraic iterative reconstruction can be especially useful for dual-source dual-detector TBCT, wherein the cone angle is the largest in the center of the field of view.

  10. Theoretical studies of vibrational energies and force constants of diatomic electronic states using algebraic approach and variational method

    NASA Astrophysics Data System (ADS)

    Sun, Weiguo; Hou, Shilin

    2002-05-01

    An algebraic method (AM) is proposed to study the accurate vibrational constants and energies based on an accurate limited experimental/theoretical input data set, and a potential variational method (PVM) is suggested to generate reliable force constants, rotational spectrum constants and rovibrational energies for a diatomic molecular electronic state based on the second order perturbation theory. The vibrational force constants fn's used to evaluate the rotational spectrum constants are determined variationally. The AM generates accurate vibrational constants and energies using standard algebraic approach without any mathematical and/or physical approximations. The accuracy of the AM vibrational constants and energies is uniquely dependent on the quality of the input experimental/theoretical data. Both the AM and the PVM have been applied to study 10 diatomic electronic states of H2, N2, O2, and Br2 molecules. These example studies show that: 1.) the AM not only reproduce the input energies, but also generate the Ev's of high vibrational excited states which may be difficult to obtain experimentally or theoretically; 2.) the PVM vibrational force constants fn's may be used to measure the relative chemical bond strengths of different diatomic electronic states for a molecule quantitatively.

  11. Multigrid Nonlocal Gaussian Mixture Model for Segmentation of Brain Tissues in Magnetic Resonance Images

    PubMed Central

    Chen, Yunjie; Zhan, Tianming; Zhang, Ji

    2016-01-01

    We propose a novel segmentation method based on regional and nonlocal information to overcome the impact of image intensity inhomogeneities and noise in human brain magnetic resonance images. With the consideration of the spatial distribution of different tissues in brain images, our method does not need preestimation or precorrection procedures for intensity inhomogeneities and noise. A nonlocal information based Gaussian mixture model (NGMM) is proposed to reduce the effect of noise. To reduce the effect of intensity inhomogeneity, the multigrid nonlocal Gaussian mixture model (MNGMM) is proposed to segment brain MR images in each nonoverlapping multigrid generated by using a new multigrid generation method. Therefore the proposed model can simultaneously overcome the impact of noise and intensity inhomogeneity and automatically classify 2D and 3D MR data into tissues of white matter, gray matter, and cerebral spinal fluid. To maintain the statistical reliability and spatial continuity of the segmentation, a fusion strategy is adopted to integrate the clustering results from different grid. The experiments on synthetic and clinical brain MR images demonstrate the superior performance of the proposed model comparing with several state-of-the-art algorithms. PMID:27648448

  12. Multigrid Nonlocal Gaussian Mixture Model for Segmentation of Brain Tissues in Magnetic Resonance Images.

    PubMed

    Chen, Yunjie; Zhan, Tianming; Zhang, Ji; Wang, Hongyuan

    2016-01-01

    We propose a novel segmentation method based on regional and nonlocal information to overcome the impact of image intensity inhomogeneities and noise in human brain magnetic resonance images. With the consideration of the spatial distribution of different tissues in brain images, our method does not need preestimation or precorrection procedures for intensity inhomogeneities and noise. A nonlocal information based Gaussian mixture model (NGMM) is proposed to reduce the effect of noise. To reduce the effect of intensity inhomogeneity, the multigrid nonlocal Gaussian mixture model (MNGMM) is proposed to segment brain MR images in each nonoverlapping multigrid generated by using a new multigrid generation method. Therefore the proposed model can simultaneously overcome the impact of noise and intensity inhomogeneity and automatically classify 2D and 3D MR data into tissues of white matter, gray matter, and cerebral spinal fluid. To maintain the statistical reliability and spatial continuity of the segmentation, a fusion strategy is adopted to integrate the clustering results from different grid. The experiments on synthetic and clinical brain MR images demonstrate the superior performance of the proposed model comparing with several state-of-the-art algorithms. PMID:27648448

  13. Multigrid for refined triangle meshes

    SciTech Connect

    Shapira, Yair

    1997-02-01

    A two-level preconditioning method for the solution of (locally) refined finite element schemes using triangle meshes is introduced. In the isotropic SPD case, it is shown that the condition number of the preconditioned stiffness matrix is bounded uniformly for all sufficiently regular triangulations. This is also verified numerically for an isotropic diffusion problem with highly discontinuous coefficients.

  14. Three-dimensional multigrid algorithms for the flux-split Euler equations

    NASA Technical Reports Server (NTRS)

    Anderson, W. Kyle; Thomas, James L.; Whitfield, David L.

    1988-01-01

    The Full Approximation Scheme (FAS) multigrid method is applied to several implicit flux-split algorithms for solving the three-dimensional Euler equations in a body fitted coordinate system. Each of the splitting algorithms uses a variation of approximate factorization and is implemented in a finite volume formulation. The algorithms are all vectorizable with little or no scalar computation required. The flux vectors are split into upwind components using both the splittings of Steger-Warming and Van Leer. The stability and smoothing rate of each of the schemes are examined using a Fourier analysis of the complete system of equations. Results are presented for three-dimensional subsonic, transonic, and supersonic flows which demonstrate substantially improved convergence rates with the multigrid algorithm. The influence of using both a V-cycle and a W-cycle on the convergence is examined.

  15. Analysis of Angular V-Cycle Multigrid Formulation for Three-Dimensional Discrete Ordinates Shielding Problems

    SciTech Connect

    Kucukboyaci, Vefa; Haghighat, Alireza

    2001-06-17

    New angular multigrid formulations have been developed, including the Simplified Angular Multigrid (SAM), Nested Iteration (NI), and V-Cycle schemes, which are compatible with the parallel environment and the adaptive differencing strategy of the PENTRAN three-dimensional parallel S{sub N} code. Through use of the Fourier analysis method for an infinite, homogeneous medium, the effectiveness of the V-Cycle scheme was investigated for different problem parameters including scattering ratio, spatial differencing weights, quadrature order, and mesh size. The theoretical analysis revealed that the V-Cycle scheme is effective for a large range of scattering ratios and is insensitive to mesh size. The effectiveness of the new schemes was also investigated for practical shielding applications such as the Kobayashi benchmark problem and the boiling water reactor core shroud problem.

  16. Design and implementation of a multigrid code for the Euler equations

    NASA Technical Reports Server (NTRS)

    Jespersen, D. C.

    1983-01-01

    The steady-state equations of inviscid fluid flow, the Euler equations, are a nonlinear nonelliptic system of equations admitting solutions with discontinuities (for example, shocks). The efficient numerical solution of these equations poses a strenuous challenge to multigrid methods. A multigrid code has been developed for the numerical solution of the Euler equations. In this paper some of the factors that had to be taken into account in the design and development of the code are reviewed. These factors include the importance of choosing an appropriate difference scheme, the usefulness of local mode analysis as a design tool, and the crucial question of how to treat the nonlinearity. Sample calculations of transonic flow about airfoils will be presented. No claim is made that the particular algorithm presented is optimal.

  17. Multigrid iteration solution procedure for solving three-dimensional sets of coupled equations

    SciTech Connect

    Vondy, D.R.

    1984-08-01

    A procedure of iterative solution was coded in Fortran to apply the multigrid scheme of iteration to a set of coupled equations for three-dimensional problems. The incentive for this effort was to make available an implemented procedure that may be readily used as an alternative to overrelaxation, of special interest in applications where the latter is ineffective. The multigrid process was found to be effective, although noncompetitive with simple overrelaxation for simple, small problems. Absolute error level evaluation was used to support methods assessment. A code source listing is presented to allow ready application when the computer memory size is adequate, avoiding data transfer from auxiliary storage. Included are the capabilities for one-dimensional rebalance and a driver program illustrating use requirements. Feedback of additional experience from application is anticipated.

  18. Acceleration of k-Eigenvalue / Criticality Calculations using the Jacobian-Free Newton-Krylov Method

    SciTech Connect

    Dana Knoll; HyeongKae Park; Chris Newman

    2011-02-01

    We present a new approach for the $k$--eigenvalue problem using a combination of classical power iteration and the Jacobian--free Newton--Krylov method (JFNK). The method poses the $k$--eigenvalue problem as a fully coupled nonlinear system, which is solved by JFNK with an effective block preconditioning consisting of the power iteration and algebraic multigrid. We demonstrate effectiveness and algorithmic scalability of the method on a 1-D, one group problem and two 2-D two group problems and provide comparison to other efforts using silmilar algorithmic approaches.

  19. Algebraic geometry methods associated to the one-dimensional Hubbard model

    NASA Astrophysics Data System (ADS)

    Martins, M. J.

    2016-06-01

    In this paper we study the covering vertex model of the one-dimensional Hubbard Hamiltonian constructed by Shastry in the realm of algebraic geometry. We show that the Lax operator sits in a genus one curve which is not isomorphic but only isogenous to the curve suitable for the AdS/CFT context. We provide an uniformization of the Lax operator in terms of ratios of theta functions allowing us to establish relativistic like properties such as crossing and unitarity. We show that the respective R-matrix weights lie on an Abelian surface being birational to the product of two elliptic curves with distinct J-invariants. One of the curves is isomorphic to that of the Lax operator but the other is solely fourfold isogenous. These results clarify the reason the R-matrix can not be written using only difference of spectral parameters of the Lax operator.

  20. Implicit multigrid algorithms for the three-dimensional flux split Euler equations. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Anderson, W. K.

    1986-01-01

    The full approximation scheme multigrid method is applied to several implicit flux-split algorithms for solving the three-dimensional Euler equations in a body fitted coordinate system. Each uses a variation of approximate factorization and is implemented in a finite volume formulation. The algorithms are all vectorizable with little or no scalar computations required. The flux vectors are split into upwind components using both the splittings of Steger-Warming and Van Leer. Results comparing pressure distributions with experimental data using both splitting types are shown. The stability and smoothing rate of each of the schemes are examined using a Fourier analysis of the complete system of equations. Results are presented for three-dimensional subsonic, transonic, and supersonic flows which demonstrate substantially improved convergence rates with the multigrid algorithm. The influence of using both a V-cycle and a W-cycle on the convergence is examined. Using the multigrid method on both subsonic and transonic wing calculations, the final lift coefficient is obtained to within 0.1 percent of its final value in a few as 15 cycles for a mesh with over 210,000 points. A spectral radius of 0.89 is achieved for both subsonic and transonic flow over the ONERA M6 wing while a spectral radius of 0.83 is obtained for supersonic flow over an analytically defined forebody. Results compared with experiment for all cases show good agreement.

  1. Efficient and accurate linear algebraic methods for large-scale electronic structure calculations with nonorthogonal atomic orbitals

    NASA Astrophysics Data System (ADS)

    Teng, H.; Fujiwara, T.; Hoshi, T.; Sogabe, T.; Zhang, S.-L.; Yamamoto, S.

    2011-04-01

    The need for large-scale electronic structure calculations arises recently in the field of material physics, and efficient and accurate algebraic methods for large simultaneous linear equations become greatly important. We investigate the generalized shifted conjugate orthogonal conjugate gradient method, the generalized Lanczos method, and the generalized Arnoldi method. They are the solver methods of large simultaneous linear equations of the one-electron Schrödinger equation and map the whole Hilbert space to a small subspace called the Krylov subspace. These methods are applied to systems of fcc Au with the NRL tight-binding Hamiltonian [F. Kirchhoff , Phys. Rev. BJCOMEL1098-012110.1103/PhysRevB.63.195101 63, 195101 (2001)]. We compare results by these methods and the exact calculation and show them to be equally accurate. The system size dependence of the CPU time is also discussed. The generalized Lanczos method and the generalized Arnoldi method are the most suitable for the large-scale molecular dynamics simulations from the viewpoint of CPU time and memory size.

  2. Handheld Computer Algebra Systems in the Pre-Algebra Classroom

    ERIC Educational Resources Information Center

    Gantz, Linda Ann Galofaro

    2010-01-01

    This mixed method analysis sought to investigate several aspects of student learning in pre-algebra through the use of computer algebra systems (CAS) as opposed to non-CAS learning. This research was broken into two main parts, one which compared results from both the experimental group (instruction using CAS, N = 18) and the control group…

  3. Implementations of the optimal multigrid algorithm for the cell-centered finite difference on equilateral triangular grids

    SciTech Connect

    Ewing, R.E.; Saevareid, O.; Shen, J.

    1994-12-31

    A multigrid algorithm for the cell-centered finite difference on equilateral triangular grids for solving second-order elliptic problems is proposed. This finite difference is a four-point star stencil in a two-dimensional domain and a five-point star stencil in a three dimensional domain. According to the authors analysis, the advantages of this finite difference are that it is an O(h{sup 2})-order accurate numerical scheme for both the solution and derivatives on equilateral triangular grids, the structure of the scheme is perhaps the simplest, and its corresponding multigrid algorithm is easily constructed with an optimal convergence rate. They are interested in relaxation of the equilateral triangular grid condition to certain general triangular grids and the application of this multigrid algorithm as a numerically reasonable preconditioner for the lowest-order Raviart-Thomas mixed triangular finite element method. Numerical test results are presented to demonstrate their analytical results and to investigate the applications of this multigrid algorithm on general triangular grids.

  4. Simulation and optimization of Al-Fe aerospace alloy processed by laser surface remelting using geometric Multigrid solver and experimental validation

    NASA Astrophysics Data System (ADS)

    Pariona, Moisés Meza; de Oliveira, Fabiane; Teleginski, Viviane; Machado, Siliane; Pinto, Marcio Augusto Villela

    2016-05-01

    Al-1.5 wt% Fe alloy was irradiate by Yb-fiber laser beam using the laser surface remelting (LSR) technique, generating weld fillets that covered the whole surface of the sample. The laser-treatment showed to be an efficient technology for corrosion resistance improvements. In this study, the finite element method was used to simulate the solidification processes by LSR technique. The method Multigrid was employed in order to reduce the CPU time, which is important to the viability for industrial applications. Multigrid method is a technique very promising of optimization that reduced drastically the CPU time. The result was highly satisfactory, because the CPU time has fallen dramatically in comparison when it was not used Multigrid method. To validate the result of numerical simulation with the experimental result was done the microstructural characterization of laser-treated layer by the optical microscopy and SEM techniques and however, that both results showing be consistent.

  5. Multigrid optimal mass transport for image registration and morphing

    NASA Astrophysics Data System (ADS)

    Rehman, Tauseef ur; Tannenbaum, Allen

    2007-02-01

    In this paper we present a computationally efficient Optimal Mass Transport algorithm. This method is based on the Monge-Kantorovich theory and is used for computing elastic registration and warping maps in image registration and morphing applications. This is a parameter free method which utilizes all of the grayscale data in an image pair in a symmetric fashion. No landmarks need to be specified for correspondence. In our work, we demonstrate significant improvement in computation time when our algorithm is applied as compared to the originally proposed method by Haker et al [1]. The original algorithm was based on a gradient descent method for removing the curl from an initial mass preserving map regarded as 2D vector field. This involves inverting the Laplacian in each iteration which is now computed using full multigrid technique resulting in an improvement in computational time by a factor of two. Greater improvement is achieved by decimating the curl in a multi-resolutional framework. The algorithm was applied to 2D short axis cardiac MRI images and brain MRI images for testing and comparison.

  6. A Method for Using Adjacency Matrices to Analyze the Connections Students Make within and between Concepts: The Case of Linear Algebra

    ERIC Educational Resources Information Center

    Selinski, Natalie E.; Rasmussen, Chris; Wawro, Megan; Zandieh, Michelle

    2014-01-01

    The central goals of most introductory linear algebra courses are to develop students' proficiency with matrix techniques, to promote their understanding of key concepts, and to increase their ability to make connections between concepts. In this article, we present an innovative method using adjacency matrices to analyze students'…

  7. New family of Maxwell like algebras

    NASA Astrophysics Data System (ADS)

    Concha, P. K.; Durka, R.; Merino, N.; Rodríguez, E. K.

    2016-08-01

    We introduce an alternative way of closing Maxwell like algebras. We show, through a suitable change of basis, that resulting algebras are given by the direct sums of the AdS and the Maxwell algebras already known in the literature. Casting the result into the S-expansion method framework ensures the straightaway construction of the gravity theories based on a found enlargement.

  8. Discrimination in a General Algebraic Setting.

    PubMed

    Fine, Benjamin; Gaglione, Anthony; Lipschutz, Seymour; Spellman, Dennis

    2015-01-01

    Discriminating groups were introduced by G. Baumslag, A. Myasnikov, and V. Remeslennikov as an outgrowth of their theory of algebraic geometry over groups. Algebraic geometry over groups became the main method of attack on the solution of the celebrated Tarski conjectures. In this paper we explore the notion of discrimination in a general universal algebra context. As an application we provide a different proof of a theorem of Malcev on axiomatic classes of Ω-algebras.

  9. Discrimination in a General Algebraic Setting

    PubMed Central

    Fine, Benjamin; Gaglione, Anthony; Lipschutz, Seymour; Spellman, Dennis

    2015-01-01

    Discriminating groups were introduced by G. Baumslag, A. Myasnikov, and V. Remeslennikov as an outgrowth of their theory of algebraic geometry over groups. Algebraic geometry over groups became the main method of attack on the solution of the celebrated Tarski conjectures. In this paper we explore the notion of discrimination in a general universal algebra context. As an application we provide a different proof of a theorem of Malcev on axiomatic classes of Ω-algebras. PMID:26171421

  10. Textbook Multigrid Efficiency for Computational Fluid Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Brandt, Achi; Thomas, James L.; Diskin, Boris

    2001-01-01

    Considerable progress over the past thirty years has been made in the development of large-scale computational fluid dynamics (CFD) solvers for the Euler and Navier-Stokes equations. Computations are used routinely to design the cruise shapes of transport aircraft through complex-geometry simulations involving the solution of 25-100 million equations; in this arena the number of wind-tunnel tests for a new design has been substantially reduced. However, simulations of the entire flight envelope of the vehicle, including maximum lift, buffet onset, flutter, and control effectiveness have not been as successful in eliminating the reliance on wind-tunnel testing. These simulations involve unsteady flows with more separation and stronger shock waves than at cruise. The main reasons limiting further inroads of CFD into the design process are: (1) the reliability of turbulence models; and (2) the time and expense of the numerical simulation. Because of the prohibitive resolution requirements of direct simulations at high Reynolds numbers, transition and turbulence modeling is expected to remain an issue for the near term. The focus of this paper addresses the latter problem by attempting to attain optimal efficiencies in solving the governing equations. Typically current CFD codes based on the use of multigrid acceleration techniques and multistage Runge-Kutta time-stepping schemes are able to converge lift and drag values for cruise configurations within approximately 1000 residual evaluations. An optimally convergent method is defined as having textbook multigrid efficiency (TME), meaning the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in the discretized system of equations (residual equations). In this paper, a distributed relaxation approach to achieving TME for Reynolds-averaged Navier-Stokes (RNAS) equations are discussed along with the foundations that form the

  11. Mapping robust parallel multigrid algorithms to scalable memory architectures

    NASA Technical Reports Server (NTRS)

    Overman, Andrea; Vanrosendale, John

    1993-01-01

    The convergence rate of standard multigrid algorithms degenerates on problems with stretched grids or anisotropic operators. The usual cure for this is the use of line or plane relaxation. However, multigrid algorithms based on line and plane relaxation have limited and awkward parallelism and are quite difficult to map effectively to highly parallel architectures. Newer multigrid algorithms that overcome anisotropy through the use of multiple coarse grids rather than relaxation are better suited to massively parallel architectures because they require only simple point-relaxation smoothers. In this paper, we look at the parallel implementation of a V-cycle multiple semicoarsened grid (MSG) algorithm on distributed-memory architectures such as the Intel iPSC/860 and Paragon computers. The MSG algorithms provide two levels of parallelism: parallelism within the relaxation or interpolation on each grid and across the grids on each multigrid level. Both levels of parallelism must be exploited to map these algorithms effectively to parallel architectures. This paper describes a mapping of an MSG algorithm to distributed-memory architectures that demonstrates how both levels of parallelism can be exploited. The result is a robust and effective multigrid algorithm for distributed-memory machines.

  12. Mapping robust parallel multigrid algorithms to scalable memory architectures

    NASA Technical Reports Server (NTRS)

    Overman, Andrea; Vanrosendale, John

    1993-01-01

    The convergence rate of standard multigrid algorithms degenerates on problems with stretched grids or anisotropic operators. The usual cure for this is the use of line or plane relaxation. However, multigrid algorithms based on line and plane relaxation have limited and awkward parallelism and are quite difficult to map effectively to highly parallel architectures. Newer multigrid algorithms that overcome anisotropy through the use of multiple coarse grids rather than line relaxation are better suited to massively parallel architectures because they require only simple point-relaxation smoothers. The parallel implementation of a V-cycle multiple semi-coarsened grid (MSG) algorithm or distributed-memory architectures such as the Intel iPSC/860 and Paragon computers is addressed. The MSG algorithms provide two levels of parallelism: parallelism within the relaxation or interpolation on each grid and across the grids on each multigrid level. Both levels of parallelism must be exploited to map these algorithms effectively to parallel architectures. A mapping of an MSG algorithm to distributed-memory architectures that demonstrate how both levels of parallelism can be exploited is described. The results is a robust and effective multigrid algorithm for distributed-memory machines.

  13. A diagonally inverted LU implicit multigrid scheme for the 3-D Navier-Stokes equations and a two equation model of turbulence

    NASA Technical Reports Server (NTRS)

    Yokota, Jeffrey W.

    1988-01-01

    An LU implicit multigrid algorithm is developed to calculate 3-D compressible viscous flows. This scheme solves the full 3-D Reynolds-Averaged Navier-Stokes equation with a two-equation kappa-epsilon model of turbulence. The flow equations are integrated by an efficient, diagonally inverted, LU implicit multigrid scheme while the kappa-epsilon equations are solved, uncoupled from the flow equations, by a block LU implicit algorithm. The flow equations are solved within the framework of the multigrid method using a four-grid level W-cycle, while the kappa-epsilon equations are iterated only on the finest grid. This treatment of the Reynolds-Averaged Navier-Stokes equations proves to be an efficient method for calculating 3-D compressible viscous flows.

  14. Algebraic connectivity analysis in molecular electronic structure theory II: total exponential formulation of second-quantised correlated methods

    NASA Astrophysics Data System (ADS)

    Lyakh, Dmitry I.; Bartlett, Rodney J.

    2014-01-01

    The fundamentality of the exponential representation of a second-quantised correlated wave function is emphasised with an accent on the physical sense of cluster amplitudes as cumulants of the correlated ansatz. Three main wave function formalisms, namely, the configuration-interaction theory, the coupled-cluster approach, and the many-body perturbation theory (as well as their extensions, e.g. the equation-of-motion coupled-cluster method, multireference schemes, etc.), are represented in an exponential form, leading to a formulation of the working equations in terms of cluster amplitudes. By expressing the corresponding many-body tensor equations in terms of cluster amplitudes, we could unambiguously check connectivity types and the asymptotic behaviour of all tensors/scalars involved (in the formal limit of an infinite number of correlated particles). In particular, the appearance of disconnected cluster amplitudes corresponds to unphysical correlations. Besides, we demonstrate that the equation-of-motion coupled-cluster approach, as well as certain excited-state configuration-interaction methods, can be recast in a fully connected (exponential) form, thus breaking the common belief that all truncated configuration-interaction methods violate connectivity. Our work is based on the recently developed algebraic framework which can be viewed as a complement to the classical diagrammatic analysis.

  15. Methods to Improve Performance of Students with Weaker Math Skills in an Algebra-based Physics Course

    NASA Astrophysics Data System (ADS)

    Smith, Leigh

    2015-03-01

    I will describe methods used at the University of Cincinnati to enhance student success in an algebra-based physics course. The first method is to use ALEKS, an adaptive online mathematics tutorial engine, before the term begins. Approximately three to four weeks before the beginning of the term, the professor in the course emails all of the students in the course informing them of the possibility of improving their math proficiency by using ALEKS. Using only a minimal reward on homework, we have achieved a 70% response rate with students spending an average of 8 hours working on their math skills before classes start. The second method is to use a flipped classroom approach. The class of 135 meets in a tiered classroom twice per week for two hours. Over the previous weekend students spend approximately 2 hours reading the book, taking short multiple choice conceptual quizzes, and viewing videos covering the material. In class, students use Learning Catalytics to work through homework problems in groups, guided by the instructor and one learning assistant. Using these interventions, we have reduced the student DWF rate (the fraction of students receiving a D or lower in the class) from an historical average of 35 to 40% to less than 20%.

  16. Analysis of multigrid algorithms for nonsymmetric and indefinite elliptic problems

    SciTech Connect

    Bramble, J.H.; Pasciak, J.E.; Xu, J.

    1988-10-01

    We prove some new estimates for the convergence of multigrid algorithms applied to nonsymmetric and indefinite elliptic boundary value problems. We provide results for the so-called 'symmetric' multigrid schemes. We show that for the variable V-script-cycle and the W-script-cycle schemes, multigrid algorithms with any amount of smoothing on the finest grid converge at a rate that is independent of the number of levels or unknowns, provided that the initial grid is sufficiently fine. We show that the V-script-cycle algorithm also converges (under appropriate assumptions on the coarsest grid) but at a rate which may deteriorate as the number of levels increases. This deterioration for the V-script-cycle may occur even in the case of full elliptic regularity. Finally, the results of numerical experiments are given which illustrate the convergence behavior suggested by the theory.

  17. Transonic Drag Prediction Using an Unstructured Multigrid Solver

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Levy, David W.

    2001-01-01

    This paper summarizes the results obtained with the NSU-3D unstructured multigrid solver for the AIAA Drag Prediction Workshop held in Anaheim, CA, June 2001. The test case for the workshop consists of a wing-body configuration at transonic flow conditions. Flow analyses for a complete test matrix of lift coefficient values and Mach numbers at a constant Reynolds number are performed, thus producing a set of drag polars and drag rise curves which are compared with experimental data. Results were obtained independently by both authors using an identical baseline grid and different refined grids. Most cases were run in parallel on commodity cluster-type machines while the largest cases were run on an SGI Origin machine using 128 processors. The objective of this paper is to study the accuracy of the subject unstructured grid solver for predicting drag in the transonic cruise regime, to assess the efficiency of the method in terms of convergence, cpu time, and memory, and to determine the effects of grid resolution on this predictive ability and its computational efficiency. A good predictive ability is demonstrated over a wide range of conditions, although accuracy was found to degrade for cases at higher Mach numbers and lift values where increasing amounts of flow separation occur. The ability to rapidly compute large numbers of cases at varying flow conditions using an unstructured solver on inexpensive clusters of commodity computers is also demonstrated.

  18. A three dimensional multigrid multiblock multistage time stepping scheme for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa; Cannizzaro, Frank; Melson, N. D.

    1991-01-01

    A general multiblock method for the solution of the three-dimensional, unsteady, compressible, thin-layer Navier-Stokes equations has been developed. The convective and pressure terms are spatially discretized using Roe's flux differencing technique while the viscous terms are centrally differenced. An explicit Runge-Kutta method is used to advance the solution in time. Local time stepping, adaptive implicit residual smoothing, and the Full Approximation Storage (FAS) multigrid scheme are added to the explicit time stepping scheme to accelerate convergence to steady state. Results for three-dimensional test cases are presented and discussed.

  19. Generalization of n-ary Nambu algebras and beyond

    SciTech Connect

    Ataguema, H.; Makhlouf, A.; Silvestrov, S.

    2009-08-15

    The aim of this paper is to introduce n-ary Hom-algebra structures generalizing the n-ary algebras of Lie type including n-ary Nambu algebras, n-ary Nambu-Lie algebras and n-ary Lie algebras, and n-ary algebras of associative type including n-ary totally associative and n-ary partially associative algebras. We provide examples of the new structures and present some properties and construction theorems. We describe the general method allowing one to obtain an n-ary Hom-algebra structure starting from an n-ary algebra and an n-ary algebra endomorphism. Several examples are derived using this process. Also we initiate investigation of classification problems for algebraic structures introduced in the article and describe all ternary three-dimensional Hom-Nambu-Lie structures with diagonal homomorphism.

  20. Studies on the Vibrational and Rovibrational Energies and Vibrational Force Constants of Diatomic Molecular States Using Algebraic and Variational Methods

    NASA Astrophysics Data System (ADS)

    Sun, Weiguo; Hou, Shilin; Feng, Hao; Ren, Weiyi

    2002-09-01

    Alternative expressions for vibrational and rotational spectrum constants and energies of diatomic molecular electronic states based on perturbation theory are suggested. An algebraic method (AM) is proposed to generate a converged full vibrational spectrum from limited energy data, and a potential variational method (PVM) is suggested to produce the vibrational force constants fn and rotational spectrum constants using the perturbation formulae and the AM vibrational constants. The AM and PVM have been applied to study 10 diatomic electronic states: the X1Σ g+ and C1Π u- states of H 2; the X1Σ g+, A3Σ u+, B' 3Σ u-, and B3Π g states of N 2; the X3Σ g-, A3Σ u+, and c1Σ u- states of O 2; and the X1Σ g+ state of Br 2. Calculations show that (1) the AM Eυ max converges to the correct molecular dissociation energy; (2) the AM not only reproduce the input energies, but also generate the Eυ's of high vibrational excited states which may be difficult to obtain experimentally or theoretically; (3) the PVM vibrational force constants fn may be used to measure the relative chemical bondstrengths of different diatomic electronic states for a molecule quantitatively.

  1. Total photoionization cross-sections of excited electronic states by the algebraic diagrammatic construction-Stieltjes-Lanczos method

    SciTech Connect

    Ruberti, M.; Yun, R.; Averbukh, V.; Gokhberg, K.; Kopelke, S.; Cederbaum, L. S.; Tarantelli, F.

    2014-05-14

    Here, we extend the L{sup 2} ab initio method for molecular photoionization cross-sections introduced in Gokhberg et al. [J. Chem. Phys. 130, 064104 (2009)] and benchmarked in Ruberti et al. [J. Chem. Phys. 139, 144107 (2013)] to the calculation of total photoionization cross-sections of molecules in electronically excited states. The method is based on the ab initio description of molecular electronic states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. The intermediate state representation of the dipole operator in the ADC basis is used to compute the transition moments between the excited states of the molecule. We compare the results obtained using different levels of the many-body theory, i.e., ADC(1), ADC(2), and ADC(2)x for the first two excited states of CO, N{sub 2}, and H{sub 2}O both at the ground state and the excited state equilibrium or saddle point geometries. We find that the single excitation ADC(1) method is not adequate even at the qualitative level and that the inclusion of double electronic excitations for description of excited state photoionization is essential. Moreover, we show that the use of the extended ADC(2)x method leads to a substantial systematic difference from the strictly second-order ADC(2). Our calculations demonstrate that a theoretical modelling of photoionization of excited states requires an intrinsically double excitation theory with respect to the ground state and cannot be achieved by the standard single excitation methods with the ground state as a reference.

  2. Comparisons and Limitations of Gradient Augmented Level Set and Algebraic Volume of Fluid Methods

    NASA Astrophysics Data System (ADS)

    Anumolu, Lakshman; Ryddner, Douglas; Trujillo, Mario

    2014-11-01

    Recent numerical methods for implicit interface transport are generally presented as enjoying higher order of spatial-temporal convergence when compared to classical methods or less sophisticated approaches. However, when applied to test cases, which are designed to simulate practical industrial conditions, significant reduction in convergence is observed in higher-order methods, whereas for the less sophisticated approaches same convergence is achieved but a growth in the error norms occurs. This provides an opportunity to understand the underlying issues which causes this decrease in accuracy in both types of methods. As an example we consider the Gradient Augmented Level Set method (GALS) and a variant of the Volume of Fluid (VoF) method in our study. Results show that while both methods do suffer from a loss of accuracy, it is the higher order method that suffers more. The implication is a significant reduction in the performance advantage of the GALS method over the VoF scheme. Reasons for this lie in the behavior of the higher order derivatives, particular in situations where the level set field is highly distorted. For the VoF approach, serious spurious deformations of the interface are observed, albeit with a deceptive zero loss of mass.

  3. A nonlinear multigrid solver for a semi-Lagrangian potential vorticity-based barotropic model on the sphere

    SciTech Connect

    Ruge, J.; Li, Y.; McCormick, S.F.

    1994-12-31

    The formulation and time discretization of problems in meteorology are often tailored to the type of efficient solvers available for use on the discrete problems obtained. A common procedure is to formulate the problem so that a constant (or latitude-dependent) coefficient Poisson-like equation results at each time step, which is then solved using spectral methods. This both limits the scope of problems that can be handled and requires linearization by forward extrapolation of nonlinear terms, which, in turn, requires filtering to control noise. Multigrid methods do not suffer these limitations, and can be applied directly to systems of nonlinear equations with variable coefficients. Here, a global barotropic semi-Lagrangian model, developed by the authors, is presented which results in a system of three coupled nonlinear equations to be solved at each time step. A multigrid method for the solution of these equations is described, and results are presented.

  4. Formal scattering theory by an algebraic approach

    NASA Astrophysics Data System (ADS)

    Alhassid, Y.; Levine, R. D.

    1985-02-01

    Formal scattering theory is recast in a Lie-algebraic form. The central result is an algebraic Lippmann-Schwinger equation for the wave operator from which an algebraic form of the Born series (containing only linked terms) is obtained. When a finite Lie algebra is sufficient, The Mo/ller wave operator, on the energy shell, can be solved for explicitly as an element of the corresponding group. The method is illustrated for the separable potential whose relevant algebra is found to be U(1,1).

  5. Multigrid TVD-type scheme for computing inviscid and viscous flows

    NASA Astrophysics Data System (ADS)

    Wiedermann, Alexander; Iwamoto, Junjiro

    1994-06-01

    A numerical scheme for the computation of steady-state transonic flow fields is presented, which is based on a total variation diminishing (TVD) approach. Various kinds of the anti-diffusive flux terms have been considered, and their effect on the computed results investigated. The time-dependent governing equations are given in a conservative formulation and solved by a hybrid multistage Runge-Kutta scheme. To obtain an improved convergence rate a multigrid procedure has been added to the scheme. The time-marching method presented has been verified by inviscid and viscous two-dimensional flow-field computations.

  6. Adaptive parallel multigrid for Euler and incompressible Navier-Stokes equations

    SciTech Connect

    Trottenberg, U.; Oosterlee, K.; Ritzdorf, H.

    1996-12-31

    The combination of (1) very efficient solution methods (Multigrid), (2) adaptivity, and (3) parallelism (distributed memory) clearly is absolutely necessary for future oriented numerics but still regarded as extremely difficult or even unsolved. We show that very nice results can be obtained for real life problems. Our approach is straightforward (based on {open_quotes}MLAT{close_quotes}). But, of course, reasonable refinement and load-balancing strategies have to be used. Our examples are 2D, but 3D is on the way.

  7. Multigrid Computations of 3-D Incompressible Internal and External Viscous Rotating Flows

    NASA Technical Reports Server (NTRS)

    Sheng, Chunhua; Taylor, Lafayette K.; Chen, Jen-Ping; Jiang, Min-Yee; Whitfield, David L.

    1996-01-01

    This report presents multigrid methods for solving the 3-D incompressible viscous rotating flows in a NASA low-speed centrifugal compressor and a marine propeller 4119. Numerical formulations are given in both the rotating reference frame and the absolute frame. Comparisons are made for the accuracy, efficiency, and robustness between the steady-state scheme and the time-accurate scheme for simulating viscous rotating flows for complex internal and external flow applications. Prospects for further increase in efficiency and accuracy of unsteady time-accurate computations are discussed.

  8. FINAL REPORT (MILESTONE DATE 9/30/11) FOR SUBCONTRACT NO. B594099 NUMERICAL METHODS FOR LARGE-SCALE DATA FACTORIZATION

    SciTech Connect

    De Sterck, H

    2011-10-18

    The following work has been performed by PI Hans De Sterck and graduate student Manda Winlaw for the required tasks 1-5 (as listed in the Statement of Work). Graduate student Manda Winlaw has visited LLNL January 31-March 11, 2011 and May 23-August 19, 2010, working with Van Henson and Mike O'Hara on non-negative matrix factorizations (NMF). She has investigated the dense subgraph clustering algorithm from 'Finding Dense Subgraphs for Sparse Undirected, Directed, and Bipartite Graphs' by Chen and Saad, testing this method on several term-document matrices and adapting it to cluster based on the rank of the subgraphs instead of the density. Manda Winlaw was awarded a first prize in the annual LLNL summer student poster competition for a poster on her NMF research. PI Hans De Sterck has developed a new adaptive algebraic multigrid algorithm for computing a few dominant or minimal singular triplets of sparse rectangular matrices. This work builds on adaptive algebraic multigrid methods that were further developed by the PI and collaborators (including Sanders and Henson) for Markov chains. The method also combines and extends existing multigrid algorithms for the symmetric eigenproblem. The PI has visited LLNL February 22-25, 2011, and has given a CASC seminar 'Algebraic Multigrid for the Singular Value Problem' on this work on February 23, 2011. During his visit, he has discussed this work and related topics with Van Henson, Geoffrey Sanders, Panayot Vassilevski, and others. He has tested the algorithm on PDE matrices and on a term-document matrix, with promising initial results. Manda Winlaw has also started to work, with O'Hara, on estimating probability distributions over undirected graph edges. The goal is to estimate probabilistic models from sets of undirected graph edges for the purpose of prediction, anomaly detection and support to supervised learning. Graduate student Manda Winlaw is writing a paper on the results obtained with O'Hara which will be

  9. Algebraic trigonometry

    NASA Astrophysics Data System (ADS)

    Vaninsky, Alexander

    2011-04-01

    This article introduces a trigonometric field (TF) that extends the field of real numbers by adding two new elements: sin and cos - satisfying an axiom sin2 + cos2 = 1. It is shown that by assigning meaningful names to particular elements of the field, all known trigonometric identities may be introduced and proved. Two different interpretations of the TF are discussed with many others potentially possible. The main objective of this article is to introduce a broader view of trigonometry that can serve as motivation for mathematics students and teachers to study and teach abstract algebraic structures.

  10. Quantum mechanical algebraic variational methods for inelastic and reactive molecular collisions

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Haug, Kenneth; Zhao, Meishan; Truhlar, Donald G.; Sun, Yan

    1988-01-01

    The quantum mechanical problem of reactive or nonreactive scattering of atoms and molecules is formulated in terms of square-integrable basis sets with variational expressions for the reactance matrix. Several formulations involving expansions of the wave function (the Schwinger variational principle) or amplitude density (a generalization of the Newton variational principle), single-channel or multichannel distortion potentials, and primitive or contracted basis functions are presented and tested. The test results, for inelastic and reactive atom-diatom collisions, suggest that the methods may be useful for a variety of collision calculations and may allow the accurate quantal treatment of systems for which other available methods would be prohibitively expensive.

  11. Predicting High School Completion Using Student Performance in High School Algebra: A Mixed Methods Research Study

    ERIC Educational Resources Information Center

    Chiado, Wendy S.

    2012-01-01

    Too many of our nation's youth have failed to complete high school. Determining why so many of our nation's students fail to graduate is a complex, multi-faceted problem and beyond the scope of any one study. The study presented herein utilized a thirteen-step mixed methods model developed by Leech and Onwuegbuzie (2007) to demonstrate…

  12. Filiform Lie algebras of order 3

    SciTech Connect

    Navarro, R. M.

    2014-04-15

    The aim of this work is to generalize a very important type of Lie algebras and superalgebras, i.e., filiform Lie (super)algebras, into the theory of Lie algebras of order F. Thus, the concept of filiform Lie algebras of order F is obtained. In particular, for F = 3 it has been proved that by using infinitesimal deformations of the associated model elementary Lie algebra it can be obtained families of filiform elementary lie algebras of order 3, analogously as that occurs into the theory of Lie algebras [M. Vergne, “Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes,” Bull. Soc. Math. France 98, 81–116 (1970)]. Also we give the dimension, using an adaptation of the sl(2,C)-module Method, and a basis of such infinitesimal deformations in some generic cases.

  13. Fast multigrid-based computation of the induced electric field for transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Hirata, Akimasa

    2012-12-01

    In transcranial magnetic stimulation (TMS), the distribution of the induced electric field, and the affected brain areas, depends on the position of the stimulation coil and the individual geometry of the head and brain. The distribution of the induced electric field in realistic anatomies can be modelled using computational methods. However, existing computational methods for accurately determining the induced electric field in realistic anatomical models have suffered from long computation times, typically in the range of tens of minutes or longer. This paper presents a matrix-free implementation of the finite-element method with a geometric multigrid method that can potentially reduce the computation time to several seconds or less even when using an ordinary computer. The performance of the method is studied by computing the induced electric field in two anatomically realistic models. An idealized two-loop coil is used as the stimulating coil. Multiple computational grid resolutions ranging from 2 to 0.25 mm are used. The results show that, for macroscopic modelling of the electric field in an anatomically realistic model, computational grid resolutions of 1 mm or 2 mm appear to provide good numerical accuracy compared to higher resolutions. The multigrid iteration typically converges in less than ten iterations independent of the grid resolution. Even without parallelization, each iteration takes about 1.0 s or 0.1 s for the 1 and 2 mm resolutions, respectively. This suggests that calculating the electric field with sufficient accuracy in real time is feasible.

  14. ADvanced IMage Algebra (ADIMA): a novel method for depicting multiple sclerosis lesion heterogeneity, as demonstrated by quantitative MRI

    PubMed Central

    Tozer, Daniel J; Schmierer, Klaus; Chard, Declan T; Anderson, Valerie M; Altmann, Daniel R; Miller, David H; Wheeler-Kingshott, Claudia AM

    2013-01-01

    Background: There are modest correlations between multiple sclerosis (MS) disability and white matter lesion (WML) volumes, as measured by T2-weighted (T2w) magnetic resonance imaging (MRI) scans (T2-WML). This may partly reflect pathological heterogeneity in WMLs, which is not apparent on T2w scans. Objective: To determine if ADvanced IMage Algebra (ADIMA), a novel MRI post-processing method, can reveal WML heterogeneity from proton-density weighted (PDw) and T2w images. Methods: We obtained conventional PDw and T2w images from 10 patients with relapsing–remitting MS (RRMS) and ADIMA images were calculated from these. We classified all WML into bright (ADIMA-b) and dark (ADIMA-d) sub-regions, which were segmented. We obtained conventional T2-WML and T1-WML volumes for comparison, as well as the following quantitative magnetic resonance parameters: magnetisation transfer ratio (MTR), T1 and T2. Also, we assessed the reproducibility of the segmentation for ADIMA-b, ADIMA-d and T2-WML. Results: Our study’s ADIMA-derived volumes correlated with conventional lesion volumes (p < 0.05). ADIMA-b exhibited higher T1 and T2, and lower MTR than the T2-WML (p < 0.001). Despite the similarity in T1 values between ADIMA-b and T1-WML, these regions were only partly overlapping with each other. ADIMA-d exhibited quantitative characteristics similar to T2-WML; however, they were only partly overlapping. Mean intra- and inter-observer coefficients of variation for ADIMA-b, ADIMA-d and T2-WML volumes were all < 6 % and < 10 %, respectively. Conclusion: ADIMA enabled the simple classification of WML into two groups having different quantitative magnetic resonance properties, which can be reproducibly distinguished. PMID:23037551

  15. Alternative algebraic approaches in quantum chemistry

    SciTech Connect

    Mezey, Paul G.

    2015-01-22

    Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed.

  16. FAS multigrid calculations of three dimensional flow using non-staggered grids

    NASA Technical Reports Server (NTRS)

    Matovic, D.; Pollard, A.; Becker, H. A.; Grandmaison, E. W.

    1993-01-01

    Grid staggering is a well known remedy for the problem of velocity/pressure coupling in incompressible flow calculations. Numerous inconveniences occur, however, when staggered grids are implemented, particularly when a general-purpose code, capable of handling irregular three-dimensional domains, is sought. In several non-staggered grid numerical procedures proposed in the literature, the velocity/pressure coupling is achieved by either pressure or velocity (momentum) averaging. This approach is not convenient for simultaneous (block) solvers that are preferred when using multigrid methods. A new method is introduced in this paper that is based upon non-staggered grid formulation with a set of virtual cell face velocities used for pressure/velocity coupling. Instead of pressure or velocity averaging, a momentum balance at the cell face is used as a link between the momentum and mass balance constraints. The numerical stencil is limited to 9 nodes (in 2D) or 27 nodes (in 3D), both during the smoothing and inter-grid transfer, which is a convenient feature when a block point solver is applied. The results for a lid-driven cavity and a cube in a lid-driven cavity are presented and compared to staggered grid calculations using the same multigrid algorithm. The method is shown to be stable and produce a smooth (wiggle-free) pressure field.

  17. Higher-order ice-sheet modelling accelerated by multigrid on graphics cards

    NASA Astrophysics Data System (ADS)

    Brædstrup, Christian; Egholm, David

    2013-04-01

    Higher-order ice flow modelling is a very computer intensive process owing primarily to the nonlinear influence of the horizontal stress coupling. When applied for simulating long-term glacial landscape evolution, the ice-sheet models must consider very long time series, while both high temporal and spatial resolution is needed to resolve small effects. The use of higher-order and full stokes models have therefore seen very limited usage in this field. However, recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large-scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists working on ice flow models. Our current research focuses on utilising the GPU as a tool in ice-sheet and glacier modelling. To this extent we have implemented the Integrated Second-Order Shallow Ice Approximation (iSOSIA) equations on the device using the finite difference method. To accelerate the computations, the GPU solver uses a non-linear Red-Black Gauss-Seidel iterator coupled with a Full Approximation Scheme (FAS) multigrid setup to further aid convergence. The GPU finite difference implementation provides the inherent parallelization that scales from hundreds to several thousands of cores on newer cards. We demonstrate the efficiency of the GPU multigrid solver using benchmark experiments.

  18. Multitasked embedded multigrid for three-dimensional flow simulation. Final report

    SciTech Connect

    Johnson, G.M.; Swisshelm, J.M.; Pryor, D.V.; Ziebarth, J.P.

    1986-06-01

    This project explored fast algorithms for Euler and Navier-Stokes simulations. A particular issue pursued under the grant was the integration of an explicit three dimensional flow solver, embedded mesh refinements, a model equation hierarchy, multiple grid acceleration and extensive rectorization and multi tasking. Several papers were produced during this effort including such titles as Multitasked embedded multigrid for three-dimensional flow simulation and Multigrid approaches to the Euler equations. An efficient algorithm designed to be used for Navier-Stokes simulations of complex flows over complete configurations is described. The algorithm incorporates a number of elements, including an explicit three-dimensional flow solver, embedded mesh refinements, a model equation hierarchy ranging from the Euler equations through the full Navier-Stokes equations, multiple-grid convergence acceleration and extensive vectorization and multitasking for efficient execution on parallel-processing supercomputers. Results are presented for a preliminary trial of the method on a problem representative of turbomachinery applications. Based on this performance data, it is estimated that a mature implementation of the algorithm will yield overall speedups ranging as high as 100.

  19. The fast multipole method in the differential algebra framework for the calculation of 3D space charge fields

    NASA Astrophysics Data System (ADS)

    Zhang, He

    2013-01-01

    The space charge effect is one of the most important collective effects in beam dynamic studies. In many cases, numerical simulations are inevitable in order to get a clear understanding of this effect. The particle-particle interaction algorithms and the article-in-cell algorithms are widely used in space charge effect simulations. But they both have difficulties in dealing with highly correlated beams with abnormal distributions or complicated geometries. We developed a new algorithm to calculate the three dimensional self-field between charged particles by combining the differential algebra (DA) techniques with the fast multi-pole method (FMM). The FMM hierarchically decomposes the whole charged domain into many small regions. For each region it uses multipole expansions to represent the potential/field contributions from the particles far away from the region and then converts the multipole expansions into a local expansion inside the region. The potential/field due to the far away particles is calculated from the expansions and the potential/field due to the nearby particles is calculated from the Coulomb force law. The DA techniques are used in the calculation, translation and converting of the expansions. The new algorithm scales linearly with the total number of particles and it is suitable for any arbitrary charge distribution. Using the DA techniques, we can calculate both the potential/field and its high order derivatives, which will be useful for the purpose of including the space charge effect into transfer maps in the future. We first present the single level FMM, which decomposes the whole domain into boxes of the same size. It works best for charge distributions that are not overly non-uniform. Then we present the multilevel fast multipole algorithm (MLFMA), which decomposes the whole domain into different sized boxes according to the charge density. Finer boxes are generated where the higher charge density exists; thus the algorithm works for any

  20. Linear Multigrid Techniques in Self-consistent Electronic Structure Calculations

    SciTech Connect

    Fattebert, J-L

    2000-05-23

    Ab initio DFT electronic structure calculations involve an iterative process to solve the Kohn-Sham equations for an Hamiltonian depending on the electronic density. We discretize these equations on a grid by finite differences. Trial eigenfunctions are improved at each step of the algorithm using multigrid techniques to efficiently reduce the error at all length scale, until self-consistency is achieved. In this paper we focus on an iterative eigensolver based on the idea of inexact inverse iteration, using multigrid as a preconditioner. We also discuss how this technique can be used for electrons described by general non-orthogonal wave functions, and how that leads to a linear scaling with the system size for the computational cost of the most expensive parts of the algorithm.

  1. Multilevel methods for elliptic problems on unstructured grids

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.; Go, Susie; Zikatanov, Ludmil

    1997-01-01

    Multilevel methods on unstructured grids for elliptic problems are reviewed. The advantages of these techniques are the flexible approximation of the boundaries of complicated physical domains and the ability to adapt the grid to the resolution of fine scaled structures. Multilevel methods, which include multigrid methods and domain decomposition methods, depend on the correct splitting of appropriate finite element spaces. The standard splittings used in the structured grid case cannot be directly extended to unstructured grids due to their requirement for a hierarchical grid structure. Issues related to the application of multilevel methods to unstructured grids are discussed, including how the coarse spaces and transfer operators are defined and how different types of boundary conditions are treated. An obvious way to generate a coarse mesh is to regrid the physical domain several times. Several alternatives are proposed and discussed: node nested coarse spaces, agglomerated coarse spaces and algebraically generated coarse spaces.

  2. Multiple solution of systems of linear algebraic equations by an iterative method with the adaptive recalculation of the preconditioner

    NASA Astrophysics Data System (ADS)

    Akhunov, R. R.; Gazizov, T. R.; Kuksenko, S. P.

    2016-08-01

    The mean time needed to solve a series of systems of linear algebraic equations (SLAEs) as a function of the number of SLAEs is investigated. It is proved that this function has an extremum point. An algorithm for adaptively determining the time when the preconditioner matrix should be recalculated when a series of SLAEs is solved is developed. A numerical experiment with multiply solving a series of SLAEs using the proposed algorithm for computing 100 capacitance matrices with two different structures—microstrip when its thickness varies and a modal filter as the gap between the conductors varies—is carried out. The speedups turned out to be close to the optimal ones.

  3. Quantization of Algebraic Reduction

    SciTech Connect

    Sniatycki, Jeodrzej

    2007-11-14

    For a Poisson algebra obtained by algebraic reduction of symmetries of a quantizable system we develop an analogue of geometric quantization based on the quantization structure of the original system.

  4. Algebraic Geodesics on Three-Dimensional Quadrics

    NASA Astrophysics Data System (ADS)

    Kai, Yue

    2015-12-01

    By Hamilton-Jacobi method, we study the problem of algebraic geodesics on the third-order surface. By the implicit function theorem, we proved the existences of the real geodesics which are the intersections of two algebraic surfaces, and we also give some numerical examples.

  5. Learning Algebra in a Computer Algebra Environment

    ERIC Educational Resources Information Center

    Drijvers, Paul

    2004-01-01

    This article summarises a doctoral thesis entitled "Learning algebra in a computer algebra environment, design research on the understanding of the concept of parameter" (Drijvers, 2003). It describes the research questions, the theoretical framework, the methodology and the results of the study. The focus of the study is on the understanding of…

  6. Algebraic theory of molecules

    NASA Technical Reports Server (NTRS)

    Iachello, Franco

    1995-01-01

    An algebraic formulation of quantum mechanics is presented. In this formulation, operators of interest are expanded onto elements of an algebra, G. For bound state problems in nu dimensions the algebra G is taken to be U(nu + 1). Applications to the structure of molecules are presented.

  7. Profiles of Algebraic Competence

    ERIC Educational Resources Information Center

    Humberstone, J.; Reeve, R.A.

    2008-01-01

    The algebraic competence of 72 12-year-old female students was examined to identify profiles of understanding reflecting different algebraic knowledge states. Beginning algebraic competence (mapping abilities: word-to-symbol and vice versa, classifying, and solving equations) was assessed. One week later, the nature of assistance required to map…

  8. Orientation in operator algebras

    PubMed Central

    Alfsen, Erik M.; Shultz, Frederic W.

    1998-01-01

    A concept of orientation is relevant for the passage from Jordan structure to associative structure in operator algebras. The research reported in this paper bridges the approach of Connes for von Neumann algebras and ourselves for C*-algebras in a general theory of orientation that is of geometric nature and is related to dynamics. PMID:9618457

  9. Developing Thinking in Algebra

    ERIC Educational Resources Information Center

    Mason, John; Graham, Alan; Johnson-Wilder, Sue

    2005-01-01

    This book is for people with an interest in algebra whether as a learner, or as a teacher, or perhaps as both. It is concerned with the "big ideas" of algebra and what it is to understand the process of thinking algebraically. The book has been structured according to a number of pedagogic principles that are exposed and discussed along the way,…

  10. Connecting Arithmetic to Algebra

    ERIC Educational Resources Information Center

    Darley, Joy W.; Leapard, Barbara B.

    2010-01-01

    Algebraic thinking is a top priority in mathematics classrooms today. Because elementary school teachers lay the groundwork to develop students' capacity to think algebraically, it is crucial for teachers to have a conceptual understanding of the connections between arithmetic and algebra and be confident in communicating these connections. Many…

  11. The analysis of multigrid algorithms for pseudodifferential operators of order minus one

    SciTech Connect

    Bramble, J.H.; Leyk, Z.; Pasciak, J.E. ||

    1994-10-01

    Multigrid algorithms are developed to solve the discrete systems approximating the solutions of operator equations involving pseudodifferential operators of order minus one. Classical multigrid theory deals with the case of differential operators of positive order. The pseudodifferential operator gives rise to a coercive form on H{sup {minus}1/2}({Omega}). Effective multigrid algorithms are developed for this problem. These algorithms are novel in that they use the inner product on H{sup {minus}1}({Omega}) as a base inner product for the multigrid development. The authors show that the resulting rate of iterative convergence can, at worst, depend linearly on the number of levels in these novel multigrid algorithms. In addition, it is shown that the convergence rate is independent of the number of levels (and unknowns) in the case of a pseudodifferential operator defined by a single-layer potential. Finally, the results of numerical experiments illustrating the theory are presented. 19 refs., 1 fig., 2 tabs.

  12. Architecting the Finite Element Method Pipeline for the GPU

    PubMed Central

    Fu, Zhisong; Lewis, T. James; Kirby, Robert M.

    2014-01-01

    The finite element method (FEM) is a widely employed numerical technique for approximating the solution of partial differential equations (PDEs) in various science and engineering applications. Many of these applications benefit from fast execution of the FEM pipeline. One way to accelerate the FEM pipeline is by exploiting advances in modern computational hardware, such as the many-core streaming processors like the graphical processing unit (GPU). In this paper, we present the algorithms and data-structures necessary to move the entire FEM pipeline to the GPU. First we propose an efficient GPU-based algorithm to generate local element information and to assemble the global linear system associated with the FEM discretization of an elliptic PDE. To solve the corresponding linear system efficiently on the GPU, we implement a conjugate gradient method preconditioned with a geometry-informed algebraic multi-grid (AMG) method preconditioner. We propose a new fine-grained parallelism strategy, a corresponding multigrid cycling stage and efficient data mapping to the many-core architecture of GPU. Comparison of our on-GPU assembly versus a traditional serial implementation on the CPU achieves up to an 87 × speedup. Focusing on the linear system solver alone, we achieve a speedup of up to 51 × versus use of a comparable state-of-the-art serial CPU linear system solver. Furthermore, the method compares favorably with other GPU-based, sparse, linear solvers. PMID:25202164

  13. Fast multigrid-based computation of the induced electric field for transcranial magnetic stimulation.

    PubMed

    Laakso, Ilkka; Hirata, Akimasa

    2012-12-01

    In transcranial magnetic stimulation (TMS), the distribution of the induced electric field, and the affected brain areas, depends on the position of the stimulation coil and the individual geometry of the head and brain. The distribution of the induced electric field in realistic anatomies can be modelled using computational methods. However, existing computational methods for accurately determining the induced electric field in realistic anatomical models have suffered from long computation times, typically in the range of tens of minutes or longer. This paper presents a matrix-free implementation of the finite-element method with a geometric multigrid method that can potentially reduce the computation time to several seconds or less even when using an ordinary computer. The performance of the method is studied by computing the induced electric field in two anatomically realistic models. An idealized two-loop coil is used as the stimulating coil. Multiple computational grid resolutions ranging from 2 to 0.25 mm are used. The results show that, for macroscopic modelling of the electric field in an anatomically realistic model, computational grid resolutions of 1 mm or 2 mm appear to provide good numerical accuracy compared to higher resolutions. The multigrid iteration typically converges in less than ten iterations independent of the grid resolution. Even without parallelization, each iteration takes about 1.0 s or 0.1 s for the 1 and 2 mm resolutions, respectively. This suggests that calculating the electric field with sufficient accuracy in real time is feasible.

  14. The solution of the Elrod algorithm for a dynamically loaded journal bearing using multigrid techniques

    NASA Technical Reports Server (NTRS)

    Woods, Claudia M.; Brewe, David E.

    1988-01-01

    A numerical solution to a theoretical model of vapor cavitation in a dynamically loaded journal bearing is developed utilizing a multigrid iteration technique. The method is compared with a noniterative approach in terms of computational time and accuracy. The computational model is based on the Elrod algorithm, a control volume approach to the Reynolds equation which mimics the Jakobsson-Floberg and Olsson cavitation theory. Besides accounting for a moving cavitation boundary and conservation of mass at the boundary, it also conserves mass within the cavitated region via a smeared mass or striated flow extending to both surfaces in the film gap. The mixed nature of the equations (parabolic in the full film zone and hyperbolic in the cavitated zone) coupled with the dynamic aspects of the problem create interesting difficulties for the present solution approach. Emphasis is placed on the methods found to eliminate solution instabilities. Excellent results are obtained for both accuracy and reduction of computational time.

  15. The solution of the Elrod algorithm for a dynamically loaded journal bearing using multigrid techniques

    NASA Technical Reports Server (NTRS)

    Woods, C. M.; Brewe, D. E.

    1989-01-01

    A numerical solution to a theoretical model of vapor cavitation in a dynamically loaded journal bearing is developed utilizing a multigrid iteration technique. The method is compared with a noniterative approach in terms of computational time and accuracy. The computational model is based on the Elrod algorithm, a control volume approach to the Reynolds equation which mimics the Jakobsson-Floberg and Olsson cavitation theory. Besides accounting for a moving cavitation boundary and conservation of mass at the boundary, it also conserves mass within the cavitated region via a smeared mass or striated flow extending to both surfaces in the film gap. The mixed nature of the equations (parabolic in the full film zone and hyperbolic in the cavitated zone) coupled with the dynamic aspects of the problem create interesting difficulties for the present solution approach. Emphasis is placed on the methods found to eliminate solution instabilities. Excellent results are obtained for both accuracy and reduction of computational time.

  16. Unsteady Analysis of Separated Aerodynamic Flows Using an Unstructured Multigrid Algorithm

    NASA Technical Reports Server (NTRS)

    Pelaez, Juan; Mavriplis, Dimitri J.; Kandil, Osama

    2001-01-01

    An implicit method for the computation of unsteady flows on unstructured grids is presented. The resulting nonlinear system of equations is solved at each time step using an agglomeration multigrid procedure. The method allows for arbitrarily large time steps and is efficient in terms of computational effort and storage. Validation of the code using a one-equation turbulence model is performed for the well-known case of flow over a cylinder. A Detached Eddy Simulation model is also implemented and its performance compared to the one equation Spalart-Allmaras Reynolds Averaged Navier-Stokes (RANS) turbulence model. Validation cases using DES and RANS include flow over a sphere and flow over a NACA 0012 wing including massive stall regimes. The project was driven by the ultimate goal of computing separated flows of aerodynamic interest, such as massive stall or flows over complex non-streamlined geometries.

  17. A Parallel, Fully Coupled, Fully Implicit Solution to Reactive Transport in Porous Media Using the Preconditioned Jacobian-Free Newton-Krylov Method

    SciTech Connect

    Luanjing Guo; Hai Huang; Derek Gaston; Cody Permann; David Andrs; George Redden; Chuan Lu; Don Fox; Yoshiko Fujita

    2013-03-01

    Modeling large multicomponent reactive transport systems in porous media is particularly challenging when the governing partial differential algebraic equations (PDAEs) are highly nonlinear and tightly coupled due to complex nonlinear reactions and strong solution-media interactions. Here we present a preconditioned Jacobian-Free Newton-Krylov (JFNK) solution approach to solve the governing PDAEs in a fully coupled and fully implicit manner. A well-known advantage of the JFNK method is that it does not require explicitly computing and storing the Jacobian matrix during Newton nonlinear iterations. Our approach further enhances the JFNK method by utilizing physics-based, block preconditioning and a multigrid algorithm for efficient inversion of the preconditioner. This preconditioning strategy accounts for self- and optionally, cross-coupling between primary variables using diagonal and off-diagonal blocks of an approximate Jacobian, respectively. Numerical results are presented demonstrating the efficiency and massive scalability of the solution strategy for reactive transport problems involving strong solution-mineral interactions and fast kinetics. We found that the physics-based, block preconditioner significantly decreases the number of linear iterations, directly reducing computational cost; and the strongly scalable algebraic multigrid algorithm for approximate inversion of the preconditioner leads to excellent parallel scaling performance.

  18. Static friction, differential algebraic systems and numerical stability

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Schinner, Alexander; Matuttis, Hans-Georg

    We show how Differential Algebraic Systems (Ordinary Differential Equations with algebraic constraints) in mechanics are affected by stability issues and we implement Lubich's projection method to reduce the error to practically zero. Then, we explain how the "numerically exact" implementation for static friction by Differential Algebraic Systems can be stabilized. We conclude by comparing the corresponding steps in the "Contact mechanics" introduced by Moreau.

  19. Supersymmetry algebra cohomology. I. Definition and general structure

    SciTech Connect

    Brandt, Friedemann

    2010-12-15

    This paper concerns standard supersymmetry algebras in diverse dimensions, involving bosonic translational generators and fermionic supersymmetry generators. A cohomology related to these supersymmetry algebras, termed supersymmetry algebra cohomology, and corresponding 'primitive elements' are defined by means of a BRST (Becchi-Rouet-Stora-Tyutin)-type coboundary operator. A method to systematically compute this cohomology is outlined and illustrated by simple examples.

  20. Supersymmetry algebra cohomology. I. Definition and general structure

    NASA Astrophysics Data System (ADS)

    Brandt, Friedemann

    2010-12-01

    This paper concerns standard supersymmetry algebras in diverse dimensions, involving bosonic translational generators and fermionic supersymmetry generators. A cohomology related to these supersymmetry algebras, termed supersymmetry algebra cohomology, and corresponding "primitive elements" are defined by means of a BRST (Becchi-Rouet-Stora-Tyutin)-type coboundary operator. A method to systematically compute this cohomology is outlined and illustrated by simple examples.

  1. Color image segmentation by the vector-valued Allen-Cahn phase-field model: a multigrid solution.

    PubMed

    Kay, David A; Tomasi, Alessandro

    2009-10-01

    We present an efficient numerical solution of a PDE-driven model for color image segmentation and give numerical examples of the results. The method combines the vector-valued Allen-Cahn phase field equation with initial data fitting terms with prescribed interface width and fidelity constants. Efficient numerical solution is achieved using a multigrid splitting of a finite element space, thereby producing an efficient and robust method for the segmentation of large images. We also present the use of adaptive mesh refinement to further speed up the segmentation process.

  2. Computer algebra and operators

    NASA Technical Reports Server (NTRS)

    Fateman, Richard; Grossman, Robert

    1989-01-01

    The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.

  3. Convergence of the standard RLS method and UDUT factorisation of covariance matrix for solving the algebraic Riccati equation of the DLQR via heuristic approximate dynamic programming

    NASA Astrophysics Data System (ADS)

    Moraes Rêgo, Patrícia Helena; Viana da Fonseca Neto, João; Ferreira, Ernesto M.

    2015-08-01

    The main focus of this article is to present a proposal to solve, via UDUT factorisation, the convergence and numerical stability problems that are related to the covariance matrix ill-conditioning of the recursive least squares (RLS) approach for online approximations of the algebraic Riccati equation (ARE) solution associated with the discrete linear quadratic regulator (DLQR) problem formulated in the actor-critic reinforcement learning and approximate dynamic programming context. The parameterisations of the Bellman equation, utility function and dynamic system as well as the algebra of Kronecker product assemble a framework for the solution of the DLQR problem. The condition number and the positivity parameter of the covariance matrix are associated with statistical metrics for evaluating the approximation performance of the ARE solution via RLS-based estimators. The performance of RLS approximators is also evaluated in terms of consistence and polarisation when associated with reinforcement learning methods. The used methodology contemplates realisations of online designs for DLQR controllers that is evaluated in a multivariable dynamic system model.

  4. Discrete Minimal Surface Algebras

    NASA Astrophysics Data System (ADS)

    Arnlind, Joakim; Hoppe, Jens

    2010-05-01

    We consider discrete minimal surface algebras (DMSA) as generalized noncommutative analogues of minimal surfaces in higher dimensional spheres. These algebras appear naturally in membrane theory, where sequences of their representations are used as a regularization. After showing that the defining relations of the algebra are consistent, and that one can compute a basis of the enveloping algebra, we give several explicit examples of DMSAs in terms of subsets of sln (any semi-simple Lie algebra providing a trivial example by itself). A special class of DMSAs are Yang-Mills algebras. The representation graph is introduced to study representations of DMSAs of dimension d ≤ 4, and properties of representations are related to properties of graphs. The representation graph of a tensor product is (generically) the Cartesian product of the corresponding graphs. We provide explicit examples of irreducible representations and, for coinciding eigenvalues, classify all the unitary representations of the corresponding algebras.

  5. Data driven linear algebraic methods for analysis of molecular pathways: application to disease progression in shock/trauma

    PubMed Central

    McGuire, Mary F.; Iyengar, M. Sriram; Mercer, David W.

    2012-01-01

    Motivation Although trauma is the leading cause of death for those below 45 years of age, there is a dearth of information about the temporal behavior of the underlying biological mechanisms in those who survive the initial trauma only to later suffer from syndromes such as multiple organ failure. Levels of serum cytokines potentially affect the clinical outcomes of trauma; understanding how cytokine levels modulate intra-cellular signaling pathways can yield insights into molecular mechanisms of disease progression and help to identify targeted therapies. However, developing such analyses is challenging since it necessitates the integration and interpretation of large amounts of heterogeneous, quantitative and qualitative data. Here we present the Pathway Semantics Algorithm (PSA), an algebraic process of node and edge analyses of evoked biological pathways over time for in silico discovery of biomedical hypotheses, using data from a prospective controlled clinical study of the role of cytokines in multiple organ failure (MOF) at a major US trauma center. A matrix algebra approach was used in both the PSA node and PSA edge analyses with different matrix configurations and computations based on the biomedical questions to be examined. In the edge analysis, a percentage measure of crosstalk called XTALK was also developed to assess cross-pathway interference. Results In the node/molecular analysis of the first 24 hours from trauma, PSA uncovered 7 molecules evoked computationally that differentiated outcomes of MOF or non-MOF (NMOF), of which 3 molecules had not been previously associated with any shock / trauma syndrome. In the edge/molecular interaction analysis, PSA examined four categories of functional molecular interaction relationships – activation, expression, inhibition, and transcription – and found that the interaction patterns and crosstalk changed over time and outcome. The PSA edge analysis suggests that a diagnosis, prognosis or therapy based on

  6. Multigrid computations of unsteady rotor-stator interaction using the Navier-Stokes equations

    SciTech Connect

    Arnone, A.; Sestini, A.; Pacciani, R.

    1995-12-01

    A Navier-Stokes time-accurate solver has been extended to the analysis of unsteady rotor-stator interaction. In the proposed method, a fully-implicit time discretization is used to remove stability limitations. A four-stage Runge-Kutta scheme is used in conjunction with several accelerating techniques typical of steady-state solvers, instead of traditional time-expensive factorizations. Those accelerating strategies include local time stepping, residual smoothing, and multigrid. Direct interpolation of the conservative variables is used to handle the interfaces between blade rows. Two-dimensional viscous calculations of unsteady rotor-stator interaction in a modern gas turbine stage are presented to check for the capability of the procedure.

  7. A quadtree-adaptive multigrid solver for the Serre-Green-Naghdi equations

    NASA Astrophysics Data System (ADS)

    Popinet, Stéphane

    2015-12-01

    The Serre-Green-Naghdi (SGN) equations, also known as the fully-nonlinear Boussinesq wave equations, accurately describe the behaviour of dispersive shoaling water waves. This article presents and validates a novel combination of methods for the numerical approximation of solutions to the SGN equations. The approach preserves the robustness of the original finite-volume Saint-Venant solver, in particular for the treatment of wetting/drying and equilibrium states. The linear system of coupled vector equations governing the dispersive SGN momentum sources is solved simply and efficiently using a generic multigrid solver. This approach generalises automatically to adaptive quadtree meshes. Adaptive mesh refinement is shown to provide orders-of-magnitude gains in speed and memory when applied to the dispersive propagation of waves during the Tohoku tsunami. The source code, test cases and examples are freely available.

  8. Implicit/Multigrid Algorithms for Incompressible Turbulent Flows on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Anderson, W. Kyle; Rausch, Russ D.; Bonhaus, Daryl L.

    1997-01-01

    An implicit code for computing inviscid and viscous incompressible flows on unstructured grids is described. The foundation of the code is a backward Euler time discretization for which the linear system is approximately solved at each time step with either a point implicit method or a preconditioned Generalized Minimal Residual (GMRES) technique. For the GMRES calculations, several techniques are investigated for forming the matrix-vector product. Convergence acceleration is achieved through a multigrid scheme that uses non-nested coarse grids that are generated using a technique described in the present paper. Convergence characteristics are investigated and results are compared with an exact solution for the inviscid flow over a four-element airfoil. Viscous results, which are compared with experimental data, include the turbulent flow over a NACA 4412 airfoil, a three-element airfoil for which Mach number effects are investigated, and three-dimensional flow over a wing with a partial-span flap.

  9. Fast multigrid solution of the advection problem with closed characteristics

    SciTech Connect

    Yavneh, I.; Venner, C.H.; Brandt, A.

    1996-12-31

    The numerical solution of the advection-diffusion problem in the inviscid limit with closed characteristics is studied as a prelude to an efficient high Reynolds-number flow solver. It is demonstrated by a heuristic analysis and numerical calculations that using upstream discretization with downstream relaxation-ordering and appropriate residual weighting in a simple multigrid V cycle produces an efficient solution process. We also derive upstream finite-difference approximations to the advection operator, whose truncation terms approximate {open_quotes}physical{close_quotes} (Laplacian) viscosity, thus avoiding spurious solutions to the homogeneous problem when the artificial diffusivity dominates the physical viscosity.

  10. Celestial mechanics with geometric algebra

    NASA Technical Reports Server (NTRS)

    Hestenes, D.

    1983-01-01

    Geometric algebra is introduced as a general tool for Celestial Mechanics. A general method for handling finite rotations and rotational kinematics is presented. The constants of Kepler motion are derived and manipulated in a new way. A new spinor formulation of perturbation theory is developed.

  11. An Algebraic Route to Pi

    ERIC Educational Resources Information Center

    Deakin, Michael A. B.

    1974-01-01

    Euler's famous formula, e to the (i, pi) power equals -1, is developed by a purely algebraic method that avoids the use of both trigonometry and calculus. A heuristic outline is given followed by the rigorous theory. Pedagogical considerations for classroom presentation are suggested. (LS)

  12. Implementation of the Vanka-type multigrid solver for the finite element approximation of the Navier-Stokes equations on GPU

    NASA Astrophysics Data System (ADS)

    Bauer, Petr; Klement, Vladimír; Oberhuber, Tomáš; Žabka, Vítězslav

    2016-03-01

    We present a complete GPU implementation of a geometric multigrid solver for the numerical solution of the Navier-Stokes equations for incompressible flow. The approximate solution is constructed on a two-dimensional unstructured triangular mesh. The problem is discretized by means of the mixed finite element method with semi-implicit timestepping. The linear saddle-point problem arising from the scheme is solved by the geometric multigrid method with a Vanka-type smoother. The parallel solver is based on the red-black coloring of the mesh triangles. We achieved a speed-up of 11 compared to a parallel (4 threads) code based on OpenMP and 19 compared to a sequential code.

  13. Hybrid high algebraic order two-step method with vanished phase-lag and its first, second, third, fourth and fifth derivatives

    NASA Astrophysics Data System (ADS)

    Ma, Junyan; Simos, T. E.

    2016-11-01

    A hybrid tenth algebraic order two-step method with vanished phase-lag and its first, second, third, fourth and fifth derivatives are obtained in this paper. We will investigate •the construction of the method •the local truncation error (LTE) of the newly obtained method. We will also compare the lte of the newly developed method with other methods in the literature (this is called the comparative LTE analysis) •the stability (interval of periodicity) of the produced method using frequency for the scalar test equation different from the frequency used in the scalar test equation for phase-lag analysis (this is called stability analysis) •the application of the newly obtained method to the resonance problem of the Schrödinger equation. We will compare its effectiveness with the efficiency of other known methods in the literature. It will be proved that the developed method is effective for the approximate solution of the Schrödinger equation and related periodical or oscillatory initial value or boundary value problems.

  14. Numerical linear algebra in data mining

    NASA Astrophysics Data System (ADS)

    Eldén, Lars

    Ideas and algorithms from numerical linear algebra are important in several areas of data mining. We give an overview of linear algebra methods in text mining (information retrieval), pattern recognition (classification of handwritten digits), and PageRank computations for web search engines. The emphasis is on rank reduction as a method of extracting information from a data matrix, low-rank approximation of matrices using the singular value decomposition and clustering, and on eigenvalue methods for network analysis.

  15. A Richer Understanding of Algebra

    ERIC Educational Resources Information Center

    Foy, Michelle

    2008-01-01

    Algebra is one of those hard-to-teach topics where pupils seem to struggle to see it as more than a set of rules to learn, but this author recently used the software "Grid Algebra" from ATM, which engaged her Year 7 pupils in exploring algebraic concepts for themselves. "Grid Algebra" allows pupils to experience number, pre-algebra, and algebra…

  16. Implementation of algebraic stress models in a general 3-D Navier-Stokes method (PAB3D)

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.

    1995-01-01

    A three-dimensional multiblock Navier-Stokes code, PAB3D, which was developed for propulsion integration and general aerodynamic analysis, has been used extensively by NASA Langley and other organizations to perform both internal (exhaust) and external flow analysis of complex aircraft configurations. This code was designed to solve the simplified Reynolds Averaged Navier-Stokes equations. A two-equation k-epsilon turbulence model has been used with considerable success, especially for attached flows. Accurate predicting of transonic shock wave location and pressure recovery in separated flow regions has been more difficult. Two algebraic Reynolds stress models (ASM) have been recently implemented in the code that greatly improved the code's ability to predict these difficult flow conditions. Good agreement with Direct Numerical Simulation (DNS) for a subsonic flat plate was achieved with ASM's developed by Shih, Zhu, and Lumley and Gatski and Speziale. Good predictions were also achieved at subsonic and transonic Mach numbers for shock location and trailing edge boattail pressure recovery on a single-engine afterbody/nozzle model.

  17. College Student Competency and Attitudes in Algebra Classes: A Comparison of Traditional and Online Delivery Methods in Exponents and Polynomials Concepts

    ERIC Educational Resources Information Center

    Huang, Kai-Yi Clark

    2012-01-01

    The purpose of this study was to measure the difference in achievement between those students enrolled in a beginning-level, university Algebra course in southeastern Idaho university the spring semester of 2012 who received an Algebra Exponents and Polynomials instructional unit in a traditional face-to-face setting and those students who…

  18. Applications: Using Algebra in an Accounting Practice.

    ERIC Educational Resources Information Center

    Eisner, Gail A.

    1994-01-01

    Presents examples of algebra from the field of accounting including proportional ownership of stock, separation of a loan payment into principal and interest portions, depreciation methods, and salary withholdings computations. (MKR)

  19. Connecting Algebra and Chemistry.

    ERIC Educational Resources Information Center

    O'Connor, Sean

    2003-01-01

    Correlates high school chemistry curriculum with high school algebra curriculum and makes the case for an integrated approach to mathematics and science instruction. Focuses on process integration. (DDR)

  20. Domain decomposition multigrid for unstructured grids

    SciTech Connect

    Shapira, Yair

    1997-01-01

    A two-level preconditioning method for the solution of elliptic boundary value problems using finite element schemes on possibly unstructured meshes is introduced. It is based on a domain decomposition and a Galerkin scheme for the coarse level vertex unknowns. For both the implementation and the analysis, it is not required that the curves of discontinuity in the coefficients of the PDE match the interfaces between subdomains. Generalizations to nonmatching or overlapping grids are made.

  1. Constraint algebra in bigravity

    SciTech Connect

    Soloviev, V. O.

    2015-07-15

    The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.

  2. Constraint algebra in bigravity

    NASA Astrophysics Data System (ADS)

    Soloviev, V. O.

    2015-07-01

    The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.

  3. Efficient Implementation of Multigrid Solvers on Message-Passing Parrallel Systems

    NASA Technical Reports Server (NTRS)

    Lou, John

    1994-01-01

    We discuss our implementation strategies for finite difference multigrid partial differential equation (PDE) solvers on message-passing systems. Our target parallel architecture is Intel parallel computers: the Delta and Paragon system.

  4. MULTIGRID FOR THE MORTAR FINITE ELEMENT METHOD. (R825207)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  5. MULTIGRID HOMOGENIZATION OF HETEROGENEOUS POROUS MEDIA

    SciTech Connect

    Dendy, J.E.; Moulton, J.D.

    2000-10-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL); this report, however, reports on only two years research, since this project was terminated at the end of two years in response to the reduction in funding for the LDRD Program at LANL. The numerical simulation of flow through heterogeneous porous media has become a vital tool in forecasting reservoir performance, analyzing groundwater supply and predicting the subsurface flow of contaminants. Consequently, the computational efficiency and accuracy of these simulations is paramount. However, the parameters of the underlying mathematical models (e.g., permeability, conductivity) typically exhibit severe variations over a range of significantly different length scales. Thus the numerical treatment of these problems relies on a homogenization or upscaling procedure to define an approximate coarse-scale problem that adequately captures the influence of the fine-scale structure, with a resultant compromise between the competing objectives of computational efficiency and numerical accuracy. For homogenization in models of flow through heterogeneous porous media, We have developed new, efficient, numerical, multilevel methods, that offer a significant improvement in the compromise between accuracy and efficiency. We recently combined this approach with the work of Dvorak to compute bounded estimates of the homogenized permeability for such flows and demonstrated the effectiveness of this new algorithm with numerical examples.

  6. Linear-Algebra Programs

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  7. Ready, Set, Algebra?

    ERIC Educational Resources Information Center

    Levy, Alissa Beth

    2012-01-01

    The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this…

  8. Algebraic Reasoning through Patterns

    ERIC Educational Resources Information Center

    Rivera, F. D.; Becker, Joanne Rossi

    2009-01-01

    This article presents the results of a three-year study that explores students' performance on patterning tasks involving prealgebra and algebra. The findings, insights, and issues drawn from the study are intended to help teach prealgebra and algebra. In the remainder of the article, the authors take a more global view of the three-year study on…

  9. Teaching Structure in Algebra

    ERIC Educational Resources Information Center

    Merlin, Ethan M.

    2013-01-01

    This article describes how the author has developed tasks for students that address the missed "essence of the matter" of algebraic transformations. Specifically, he has found that having students practice "perceiving" algebraic structure--by naming the "glue" in the expressions, drawing expressions using…

  10. On the direct numerical simulation of moderate-Stokes-number turbulent particulate flows using algebraic-closure-based and kinetic-based moments methods

    NASA Astrophysics Data System (ADS)

    Vie, Aymeric; Masi, Enrica; Simonin, Olivier; Massot, Marc; EM2C/Ecole Centrale Paris Team; IMFT Team

    2012-11-01

    To simulate particulate flows, a convenient formalism for HPC is to use Eulerian moment methods, which describe the evolution of velocity moments instead of tracking directly the number density function (NDF) of the droplets. By using a conditional PDF approach, the Mesoscopic Eulerian Formalism (MEF) of Février et al. 2005 offers a solution for the direct numerical simulation of turbulent particulate flows, even at relatively high Stokes number. Here, we propose to compare to existing approaches used to solved for this formalism: the Algebraic-Closure-Based Moment method (Kaufmann et al. 2008, Masi et al. 2011), and the Kinetic-Based Moment Method (Yuan et al. 2010, Chalons et al. 2010, Vié et al. 2012). Therefore, the goal of the current work is to evaluate both strategies in turbulent test cases. For the ACBMM, viscosity-type and non-linear closures are envisaged, whereas for the KBMM, isotropic and anisotropic closures are investigated. A main aspect of the current methodology for the comparison is that the same numerical methods are used for both approaches. Results show that the new non-linear closure and the Anisotropic Gaussian closures are both accurate in shear flows, whereas viscosity-type and isotropic closures lead to wrong results.

  11. Adaptive multigrid domain decomposition solutions for viscous interacting flows

    NASA Technical Reports Server (NTRS)

    Rubin, Stanley G.; Srinivasan, Kumar

    1992-01-01

    Several viscous incompressible flows with strong pressure interaction and/or axial flow reversal are considered with an adaptive multigrid domain decomposition procedure. Specific examples include the triple deck structure surrounding the trailing edge of a flat plate, the flow recirculation in a trough geometry, and the flow in a rearward facing step channel. For the latter case, there are multiple recirculation zones, of different character, for laminar and turbulent flow conditions. A pressure-based form of flux-vector splitting is applied to the Navier-Stokes equations, which are represented by an implicit lowest-order reduced Navier-Stokes (RNS) system and a purely diffusive, higher-order, deferred-corrector. A trapezoidal or box-like form of discretization insures that all mass conservation properties are satisfied at interfacial and outflow boundaries, even for this primitive-variable, non-staggered grid computation.

  12. Algebraic operator approach to gas kinetic models

    NASA Astrophysics Data System (ADS)

    Il'ichov, L. V.

    1997-02-01

    Some general properties of the linear Boltzmann kinetic equation are used to present it in the form ∂ tϕ = - †Âϕ with the operators Âand† possessing some nontrivial algebraic properties. When applied to the Keilson-Storer kinetic model, this method gives an example of quantum ( q-deformed) Lie algebra. This approach provides also a natural generalization of the “kangaroo model”.

  13. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion

    NASA Astrophysics Data System (ADS)

    Kojima, A.; Hanada, M.; Tobari, H.; Nishikiori, R.; Hiratsuka, J.; Kashiwagi, M.; Umeda, N.; Yoshida, M.; Ichikawa, M.; Watanabe, K.; Yamano, Y.; Grisham, L. R.

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  14. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion.

    PubMed

    Kojima, A; Hanada, M; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  15. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion.

    PubMed

    Kojima, A; Hanada, M; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings. PMID:26932032

  16. Lie algebra extensions of current algebras on S3

    NASA Astrophysics Data System (ADS)

    Kori, Tosiaki; Imai, Yuto

    2015-06-01

    An affine Kac-Moody algebra is a central extension of the Lie algebra of smooth mappings from S1 to the complexification of a Lie algebra. In this paper, we shall introduce a central extension of the Lie algebra of smooth mappings from S3 to the quaternization of a Lie algebra and investigate its root space decomposition. We think this extension of current algebra might give a mathematical tool for four-dimensional conformal field theory as Kac-Moody algebras give it for two-dimensional conformal field theory.

  17. Leibniz algebras associated with representations of filiform Lie algebras

    NASA Astrophysics Data System (ADS)

    Ayupov, Sh. A.; Camacho, L. M.; Khudoyberdiyev, A. Kh.; Omirov, B. A.

    2015-12-01

    In this paper we investigate Leibniz algebras whose quotient Lie algebra is a naturally graded filiform Lie algebra nn,1. We introduce a Fock module for the algebra nn,1 and provide classification of Leibniz algebras L whose corresponding Lie algebra L / I is the algebra nn,1 with condition that the ideal I is a Fock nn,1-module, where I is the ideal generated by squares of elements from L. We also consider Leibniz algebras with corresponding Lie algebra nn,1 and such that the action I ×nn,1 → I gives rise to a minimal faithful representation of nn,1. The classification up to isomorphism of such Leibniz algebras is given for the case of n = 4.

  18. Computer algebra and transport theory.

    SciTech Connect

    Warsa, J. S.

    2004-01-01

    Modern symbolic algebra computer software augments and complements more traditional approaches to transport theory applications in several ways. The first area is in the development and enhancement of numerical solution methods for solving the Boltzmann transport equation. Typically, special purpose computer codes are designed and written to solve specific transport problems in particular ways. Different aspects of the code are often written from scratch and the pitfalls of developing complex computer codes are numerous and well known. Software such as MAPLE and MATLAB can be used to prototype, analyze, verify and determine the suitability of numerical solution methods before a full-scale transport application is written. Once it is written, the relevant pieces of the full-scale code can be verified using the same tools I that were developed for prototyping. Another area is in the analysis of numerical solution methods or the calculation of theoretical results that might otherwise be difficult or intractable. Algebraic manipulations are done easily and without error and the software also provides a framework for any additional numerical calculations that might be needed to complete the analysis. We will discuss several applications in which we have extensively used MAPLE and MATLAB in our work. All of them involve numerical solutions of the S{sub N} transport equation. These applications encompass both of the two main areas in which we have found computer algebra software essential.

  19. Families of third and fourth algebraic order trigonometrically fitted symplectic methods for the numerical integration of Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Monovasilis, Th.; Kalogiratou, Z.; Simos, T. E.

    2007-11-01

    The numerical integration of Hamiltonian systems by symplectic and trigonometrically fitted (TF) symplectic method is considered in this work. We construct new trigonometrically fitted symplectic methods of third and fourth order. We apply our new methods as well as other existing methods to the numerical integration of the harmonic oscillator, the 2D harmonic oscillator with an integer frequency ratio and an orbit problem studied by Stiefel and Bettis.

  20. Degenerate Sklyanin algebras

    NASA Astrophysics Data System (ADS)

    Smirnov, Andrey

    2010-08-01

    New trigonometric and rational solutions of the quantum Yang-Baxter equation (QYBE) are obtained by applying some singular gauge transformations to the known Belavin-Drinfeld elliptic R-matrix for sl(2;?). These solutions are shown to be related to the standard ones by the quasi-Hopf twist. We demonstrate that the quantum algebras arising from these new R-matrices can be obtained as special limits of the Sklyanin algebra. A representation for these algebras by the difference operators is found. The sl( N;?)-case is discussed.

  1. Degenerate Sklyanin algebras

    NASA Astrophysics Data System (ADS)

    Smirnov, Andrey

    2010-08-01

    New trigonometric and rational solutions of the quantum Yang-Baxter equation (QYBE) are obtained by applying some singular gauge transformations to the known Belavin-Drinfeld elliptic R-matrix for sl(2;?). These solutions are shown to be related to the standard ones by the quasi-Hopf twist. We demonstrate that the quantum algebras arising from these new R-matrices can be obtained as special limits of the Sklyanin algebra. A representation for these algebras by the difference operators is found. The sl(N;?)-case is discussed.

  2. Algebraic integrability: a survey.

    PubMed

    Vanhaecke, Pol

    2008-03-28

    We give a concise introduction to the notion of algebraic integrability. Our exposition is based on examples and phenomena, rather than on detailed proofs of abstract theorems. We mainly focus on algebraic integrability in the sense of Adler-van Moerbeke, where the fibres of the momentum map are affine parts of Abelian varieties; as it turns out, most examples from classical mechanics are of this form. Two criteria are given for such systems (Kowalevski-Painlevé and Lyapunov) and each is illustrated in one example. We show in the case of a relatively simple example how one proves algebraic integrability, starting from the differential equations for the integrable vector field. For Hamiltonian systems that are algebraically integrable in the generalized sense, two examples are given, which illustrate the non-compact analogues of Abelian varieties which typically appear in such systems. PMID:17588863

  3. Algebraic Semantics for Narrative

    ERIC Educational Resources Information Center

    Kahn, E.

    1974-01-01

    This paper uses discussion of Edmund Spenser's "The Faerie Queene" to present a theoretical framework for explaining the semantics of narrative discourse. The algebraic theory of finite automata is used. (CK)

  4. Covariant deformed oscillator algebras

    NASA Technical Reports Server (NTRS)

    Quesne, Christiane

    1995-01-01

    The general form and associativity conditions of deformed oscillator algebras are reviewed. It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami condition. As an example, an SU(sub q)(n) x SU(sub q)(m)-covariant q-bosonic algebra is discussed in some detail.

  5. Aprepro - Algebraic Preprocessor

    2005-08-01

    Aprepro is an algebraic preprocessor that reads a file containing both general text and algebraic, string, or conditional expressions. It interprets the expressions and outputs them to the output file along witht the general text. Aprepro contains several mathematical functions, string functions, and flow control constructs. In addition, functions are included that, with some additional files, implement a units conversion system and a material database lookup system.

  6. Geometric Algebra for Physicists

    NASA Astrophysics Data System (ADS)

    Doran, Chris; Lasenby, Anthony

    2007-11-01

    Preface; Notation; 1. Introduction; 2. Geometric algebra in two and three dimensions; 3. Classical mechanics; 4. Foundations of geometric algebra; 5. Relativity and spacetime; 6. Geometric calculus; 7. Classical electrodynamics; 8. Quantum theory and spinors; 9. Multiparticle states and quantum entanglement; 10. Geometry; 11. Further topics in calculus and group theory; 12. Lagrangian and Hamiltonian techniques; 13. Symmetry and gauge theory; 14. Gravitation; Bibliography; Index.

  7. Algebraic methods for deriving steady-state rate equations. Practical difficulties with mechanisms that contain repeated rate constants.

    PubMed Central

    Cornish-Bowden, A

    1976-01-01

    Methods of deriving rate equations that rely on repetition of terms for identification of redundant or invalid terms give incorrect results if used with mechanisms in which some rate constants appear more than once. PMID:999635

  8. The Algebraic Way

    NASA Astrophysics Data System (ADS)

    Hiley, B. J.

    In this chapter, we examine in detail the non-commutative symplectic algebra underlying quantum dynamics. By using this algebra, we show that it contains both the Weyl-von Neumann and the Moyal quantum algebras. The latter contains the Wigner distribution as the kernel of the density matrix. The underlying non-commutative geometry can be projected into either of two Abelian spaces, so-called `shadow phase spaces'. One of these is the phase space of Bohmian mechanics, showing that it is a fragment of the basic underlying algebra. The algebraic approach is much richer, giving rise to two fundamental dynamical time development equations which reduce to the Liouville equation and the Hamilton-Jacobi equation in the classical limit. They also include the Schrödinger equation and its wave-function, showing that these features are a partial aspect of the more general non-commutative structure. We discuss briefly the properties of this more general mathematical background from which the non-commutative symplectic algebra emerges.

  9. Algebraic independence properties related to certain infinite products

    NASA Astrophysics Data System (ADS)

    Tanaka, Taka-aki

    2011-09-01

    In this paper we establish algebraic independence of the values of a certain infinite product as well as its all successive derivatives at algebraic points other than its zeroes, using the fact that the logarithmic derivative of an infinite product gives a partial fraction expansion. Such an infinite product is generated by a linear recurrence. The method used for proving the algebraic independence is based on the theory of Mahler functions of several variables.

  10. Linear Algebra Aspects in the Equilibrium-Based Implementation of Finite/Boundary Element Methods for FGMs

    NASA Astrophysics Data System (ADS)

    Dumont, Ney Augusto

    2008-02-01

    The paper briefly outlines the conventional and three variational implementations of the boundary element method, pointing out the conceptual imbrications of their constituent matrices. The nature of fundamental solutions is investigated in terms of the resulting matrix spectral properties, as applied to multiply-connected domains, reentering corners and FGMs.

  11. A Simple Iterative Solution of Nonlinear Algebraic Systems

    NASA Astrophysics Data System (ADS)

    Gousidou, Maria; Koutitas, Christopher

    2009-09-01

    A simple, robust, easily programmable and efficient method for the iterative solution of nonlinear algebraic systems, commonly appearing in nonlinear mechanics, based on Newton-Raphson method (without repeatedly solving linear algebraic systems), is proposed, synoptically described and experimentally investigated. Fast convergence and easy programming are its main qualifications.

  12. Spatial-Operator Algebra For Flexible-Link Manipulators

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan; Rodriguez, Guillermo

    1994-01-01

    Method of computing dynamics of multiple-flexible-link robotic manipulators based on spatial-operator algebra, which originally applied to rigid-link manipulators. Aspects of spatial-operator-algebra approach described in several previous articles in NASA Tech Briefs-most recently "Robot Control Based on Spatial-Operator Algebra" (NPO-17918). In extension of spatial-operator algebra to manipulators with flexible links, each link represented by finite-element model: mass of flexible link apportioned among smaller, lumped-mass rigid bodies, coupling of motions expressed in terms of vibrational modes. This leads to operator expression for modal-mass matrix of link.

  13. Directional Agglomeration Multigrid Techniques for High Reynolds Number Viscous Flow Solvers

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A preconditioned directional-implicit agglomeration algorithm is developed for solving two- and three-dimensional viscous flows on highly anisotropic unstructured meshes of mixed-element types. The multigrid smoother consists of a pre-conditioned point- or line-implicit solver which operates on lines constructed in the unstructured mesh using a weighted graph algorithm. Directional coarsening or agglomeration is achieved using a similar weighted graph algorithm. A tight coupling of the line construction and directional agglomeration algorithms enables the use of aggressive coarsening ratios in the multigrid algorithm, which in turn reduces the cost of a multigrid cycle. Convergence rates which are independent of the degree of grid stretching are demonstrated in both two and three dimensions. Further improvement of the three-dimensional convergence rates through a GMRES technique is also demonstrated.

  14. Optimization of refractive liquid crystal lenses using an efficient multigrid simulation.

    PubMed

    Milton, Harry; Brimicombe, Paul; Morgan, Philip; Gleeson, Helen; Clamp, John

    2012-05-01

    A multigrid computational model has been developed to assess the performance of refractive liquid crystal lenses, which is up to 40 times faster than previous techniques. Using this model, the optimum geometries producing an ideal parabolic voltage distribution were deduced for refractive liquid crystal lenses with diameters from 1 to 9 mm. The ratio of insulation thickness to lens diameter was determined to be 1:2 for small diameter lenses, tending to 1:3 for larger lenses. The model is used to propose a new method of lens operation with lower operating voltages needed to induce specific optical powers. The operating voltages are calculated for the induction of optical powers between + 1.00 D and + 3.00 D in a 3 mm diameter lens, with the speed of the simulation facilitating the optimization of the refractive index profile. We demonstrate that the relationship between additional applied voltage and optical power is approximately linear for optical powers under + 3.00 D. The versatility of the computational simulation has also been demonstrated by modeling of in-plane electrode liquid crystal devices.

  15. A fast multigrid-based electromagnetic eigensolver for curved metal boundaries on the Yee mesh

    SciTech Connect

    Bauer, Carl A.; Werner, Gregory R.; Cary, John R.

    2013-10-15

    For embedded boundary electromagnetics using the Dey–Mittra (Dey and Mittra, 1997) [1] algorithm, a special grad–div matrix constructed in this work allows use of multigrid methods for efficient inversion of Maxwell’s curl–curl matrix. Efficient curl–curl inversions are demonstrated within a shift-and-invert Krylov-subspace eigensolver (open-sourced at ([ofortt]https://github.com/bauerca/maxwell[cfortt])) on the spherical cavity and the 9-cell TESLA superconducting accelerator cavity. The accuracy of the Dey–Mittra algorithm is also examined: frequencies converge with second-order error, and surface fields are found to converge with nearly second-order error. In agreement with previous work (Nieter et al., 2009) [2], neglecting some boundary-cut cell faces (as is required in the time domain for numerical stability) reduces frequency convergence to first-order and surface-field convergence to zeroth-order (i.e. surface fields do not converge). Additionally and importantly, neglecting faces can reduce accuracy by an order of magnitude at low resolutions.

  16. An Adaptive Multigrid Algorithm for Simulating Solid Tumor Growth Using Mixture Models

    PubMed Central

    Wise, S.M.; Lowengrub, J.S.; Cristini, V.

    2010-01-01

    In this paper we give the details of the numerical solution of a three-dimensional multispecies diffuse interface model of tumor growth, which was derived in (Wise et al., J. Theor. Biol. 253 (2008)) and used to study the development of glioma in (Frieboes et al., NeuroImage 37 (2007) and tumor invasion in (Bearer et al., Cancer Research, 69 (2009)) and (Frieboes et al., J. Theor. Biol. 264 (2010)). The model has a thermodynamic basis, is related to recently developed mixture models, and is capable of providing a detailed description of tumor progression. It utilizes a diffuse interface approach, whereby sharp tumor boundaries are replaced by narrow transition layers that arise due to differential adhesive forces among the cell-species. The model consists of fourth-order nonlinear advection-reaction-diffusion equations (of Cahn-Hilliard-type) for the cell-species coupled with reaction-diffusion equations for the substrate components. Numerical solution of the model is challenging because the equations are coupled, highly nonlinear, and numerically stiff. In this paper we describe a fully adaptive, nonlinear multigrid/finite difference method for efficiently solving the equations. We demonstrate the convergence of the algorithm and we present simulations of tumor growth in 2D and 3D that demonstrate the capabilities of the algorithm in accurately and efficiently simulating the progression of tumors with complex morphologies. PMID:21076663

  17. An Adaptive Multigrid Algorithm for Simulating Solid Tumor Growth Using Mixture Models.

    PubMed

    Wise, S M; Lowengrub, J S; Cristini, V

    2011-01-01

    In this paper we give the details of the numerical solution of a three-dimensional multispecies diffuse interface model of tumor growth, which was derived in (Wise et al., J. Theor. Biol. 253 (2008)) and used to study the development of glioma in (Frieboes et al., NeuroImage 37 (2007) and tumor invasion in (Bearer et al., Cancer Research, 69 (2009)) and (Frieboes et al., J. Theor. Biol. 264 (2010)). The model has a thermodynamic basis, is related to recently developed mixture models, and is capable of providing a detailed description of tumor progression. It utilizes a diffuse interface approach, whereby sharp tumor boundaries are replaced by narrow transition layers that arise due to differential adhesive forces among the cell-species. The model consists of fourth-order nonlinear advection-reaction-diffusion equations (of Cahn-Hilliard-type) for the cell-species coupled with reaction-diffusion equations for the substrate components. Numerical solution of the model is challenging because the equations are coupled, highly nonlinear, and numerically stiff. In this paper we describe a fully adaptive, nonlinear multigrid/finite difference method for efficiently solving the equations. We demonstrate the convergence of the algorithm and we present simulations of tumor growth in 2D and 3D that demonstrate the capabilities of the algorithm in accurately and efficiently simulating the progression of tumors with complex morphologies. PMID:21076663

  18. Development of an explicit multiblock/multigrid flow solver for viscous flows in complex geometries

    NASA Technical Reports Server (NTRS)

    Steinthorsson, E.; Liou, M. S.; Povinelli, L. A.

    1993-01-01

    A new computer program is being developed for doing accurate simulations of compressible viscous flows in complex geometries. The code employs the full compressible Navier-Stokes equations. The eddy viscosity model of Baldwin and Lomax is used to model the effects of turbulence on the flow. A cell centered finite volume discretization is used for all terms in the governing equations. The Advection Upwind Splitting Method (AUSM) is used to compute the inviscid fluxes, while central differencing is used for the diffusive fluxes. A four-stage Runge-Kutta time integration scheme is used to march solutions to steady state, while convergence is enhanced by a multigrid scheme, local time-stepping, and implicit residual smoothing. To enable simulations of flows in complex geometries, the code uses composite structured grid systems where all grid lines are continuous at block boundaries (multiblock grids). Example results shown are a flow in a linear cascade, a flow around a circular pin extending between the main walls in a high aspect-ratio channel, and a flow of air in a radial turbine coolant passage.

  19. A fast multigrid-based electromagnetic eigensolver for curved metal boundaries on the Yee mesh

    NASA Astrophysics Data System (ADS)

    Bauer, Carl A.; Werner, Gregory R.; Cary, John R.

    2013-10-01

    For embedded boundary electromagnetics using the Dey-Mittra (Dey and Mittra, 1997) [1] algorithm, a special grad-div matrix constructed in this work allows use of multigrid methods for efficient inversion of Maxwell's curl-curl matrix. Efficient curl-curl inversions are demonstrated within a shift-and-invert Krylov-subspace eigensolver (open-sourced at [ofortt]https://github.com/bauerca/maxwell[cfortt]) on the spherical cavity and the 9-cell TESLA superconducting accelerator cavity. The accuracy of the Dey-Mittra algorithm is also examined: frequencies converge with second-order error, and surface fields are found to converge with nearly second-order error. In agreement with previous work (Nieter et al., 2009) [2], neglecting some boundary-cut cell faces (as is required in the time domain for numerical stability) reduces frequency convergence to first-order and surface-field convergence to zeroth-order (i.e. surface fields do not converge). Additionally and importantly, neglecting faces can reduce accuracy by an order of magnitude at low resolutions.

  20. Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction

    ERIC Educational Resources Information Center

    Wasserman, Nicholas H.

    2016-01-01

    This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…

  1. Vectorizable multigrid algorithms for transonic flow calculations. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Melson, N. D.

    1985-01-01

    The analysis and incorporation into a multigrid scheme of several vectorizable algorithms are discussed. Von Neumann analyses of vertical line, horizontal line, and alternating direction ZEBRA algorithms were performed; and the results were used to predict their multigrid damping rates. The algorithms were then successfully implemented in a transonic conservative full-potential computer program. The convergence acceleration effect of multiple grids is shown and the convergence rates of the vectorizable algorithms are compared to the convergence rates of standard successive line overrelaxation (SLOR) algorithms.

  2. A multigrid solver for semi-implicit global shallow-water models

    NASA Technical Reports Server (NTRS)

    Barros, Saulo R. M.; Dee, Dick P.; Dickstein, Flavio

    1990-01-01

    A multigrid solver is developed for the discretized two-dimensional elliptic equation on the sphere that arises from a semiimplicit time discretization of the global shallow-water equations. Different formulations of the semiimplicit scheme result in variable-coefficient Helmholtz-type equations for which no fast direct solvers are available. The efficiency of the multigrid solver is optimal, in the sense that the total operation count is proportional to the number of unknowns. Numerical experiments using initial data derived from actual 300-mb height and wind velocity fields indicate that the present model has very good accuracy and stability properties.

  3. A dynamically adaptive multigrid algorithm for the incompressible Navier-Stokes equations: Validation and model problems

    NASA Technical Reports Server (NTRS)

    Thompson, C. P.; Leaf, G. K.; Vanrosendale, J.

    1991-01-01

    An algorithm is described for the solution of the laminar, incompressible Navier-Stokes equations. The basic algorithm is a multigrid based on a robust, box-based smoothing step. Its most important feature is the incorporation of automatic, dynamic mesh refinement. This algorithm supports generalized simple domains. The program is based on a standard staggered-grid formulation of the Navier-Stokes equations for robustness and efficiency. Special grid transfer operators were introduced at grid interfaces in the multigrid algorithm to ensure discrete mass conservation. Results are presented for three models: the driven-cavity, a backward-facing step, and a sudden expansion/contraction.

  4. A multigrid algorithm for the cell-centered finite difference scheme

    NASA Technical Reports Server (NTRS)

    Ewing, Richard E.; Shen, Jian

    1993-01-01

    In this article, we discuss a non-variational V-cycle multigrid algorithm based on the cell-centered finite difference scheme for solving a second-order elliptic problem with discontinuous coefficients. Due to the poor approximation property of piecewise constant spaces and the non-variational nature of our scheme, one step of symmetric linear smoothing in our V-cycle multigrid scheme may fail to be a contraction. Again, because of the simple structure of the piecewise constant spaces, prolongation and restriction are trivial; we save significant computation time with very promising computational results.

  5. Computer Program For Linear Algebra

    NASA Technical Reports Server (NTRS)

    Krogh, F. T.; Hanson, R. J.

    1987-01-01

    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  6. Algebra for Gifted Third Graders.

    ERIC Educational Resources Information Center

    Borenson, Henry

    1987-01-01

    Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)

  7. Integration of the shallow water equations on the sphere using a vector semi-Lagrangian scheme with a multigrid solver

    NASA Technical Reports Server (NTRS)

    Bates, J. R.; Semazzi, F. H. M.; Higgins, R. W.; Barros, Saulo R. M.

    1990-01-01

    A vector semi-Lagrangian semi-implicit two-time-level finite-difference integration scheme for the shallow water equations on the sphere is presented. A C-grid is used for the spatial differencing. The trajectory-centered discretization of the momentum equation in vector form eliminates pole problems and, at comparable cost, gives greater accuracy than a previous semi-Lagrangian finite-difference scheme which used a rotated spherical coordinate system. In terms of the insensitivity of the results to increasing timestep, the new scheme is as successful as recent spectral semi-Lagrangian schemes. In addition, the use of a multigrid method for solving the elliptic equation for the geopotential allows efficient integration with an operation count which, at high resolution, is of lower order than in the case of the spectral models. The properties of the new scheme should allow finite-difference models to compete with spectral models more effectively than has previously been possible.

  8. Pseudo Algebraically Closed Extensions

    NASA Astrophysics Data System (ADS)

    Bary-Soroker, Lior

    2009-07-01

    This PhD deals with the notion of pseudo algebraically closed (PAC) extensions of fields. It develops a group-theoretic machinery, based on a generalization of embedding problems, to study these extensions. Perhaps the main result is that although there are many PAC extensions, the Galois closure of a proper PAC extension is separably closed. The dissertation also contains the following subjects. The group theoretical counterpart of pseudo algebraically closed extensions, the so-called projective pairs. Applications to seemingly unrelated subjects, e.g., an analog of Dirichlet's theorem about primes in arithmetic progression for polynomial rings in one variable over infinite fields.

  9. Algebraic Concepts: What's Really New in New Curricula?

    ERIC Educational Resources Information Center

    Star, Jon R.; Herbel-Eisenmann, Beth A.; Smith, John P., III

    2000-01-01

    Examines 8th grade units from the Connected Mathematics Project (CMP). Identifies differences in older and newer conceptions, fundamental objects of study, typical problems, and typical solution methods in algebra. Also discusses where the issue of what is new in algebra is relevant to many other innovative middle school curricula. (KHR)

  10. Automated Angular Momentum Recoupling Algebra

    NASA Astrophysics Data System (ADS)

    Williams, H. T.; Silbar, Richard R.

    1992-04-01

    We present a set of heuristic rules for algebraic solution of angular momentum recoupling problems. The general problem reduces to that of finding an optimal path from one binary tree (representing the angular momentum coupling scheme for the reduced matrix element) to another (representing the sub-integrals and spin sums to be done). The method lends itself to implementation on a microcomputer, and we have developed such an implementation using a dialect of LISP. We describe both how our code, called RACAH, works and how it appears to the user. We illustrate the use of RACAH for several transition and scattering amplitude matrix elements occurring in atomic, nuclear, and particle physics.

  11. Assessing Elementary Algebra with STACK

    ERIC Educational Resources Information Center

    Sangwin, Christopher J.

    2007-01-01

    This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…

  12. Operator product expansion algebra

    SciTech Connect

    Holland, Jan; Hollands, Stefan

    2013-07-15

    We establish conceptually important properties of the operator product expansion (OPE) in the context of perturbative, Euclidean φ{sup 4}-quantum field theory. First, we demonstrate, generalizing earlier results and techniques of hep-th/1105.3375, that the 3-point OPE, =Σ{sub C}C{sub A{sub 1A{sub 2A{sub 3}{sup C}}}}, usually interpreted only as an asymptotic short distance expansion, actually converges at finite, and even large, distances. We further show that the factorization identity C{sub A{sub 1A{sub 2A{sub 3}{sup B}}}}=Σ{sub C}C{sub A{sub 1A{sub 2}{sup C}}}C{sub CA{sub 3}{sup B}} is satisfied for suitable configurations of the spacetime arguments. Again, the infinite sum is shown to be convergent. Our proofs rely on explicit bounds on the remainders of these expansions, obtained using refined versions, mostly due to Kopper et al., of the renormalization group flow equation method. These bounds also establish that each OPE coefficient is a real analytic function in the spacetime arguments for non-coinciding points. Our results hold for arbitrary but finite loop orders. They lend support to proposals for a general axiomatic framework of quantum field theory, based on such “consistency conditions” and akin to vertex operator algebras, wherein the OPE is promoted to the defining structure of the theory.

  13. College Algebra II.

    ERIC Educational Resources Information Center

    Benjamin, Carl; And Others

    Presented are student performance objectives, a student progress chart, and assignment sheets with objective and diagnostic measures for the stated performance objectives in College Algebra II. Topics covered include: differencing and complements; real numbers; factoring; fractions; linear equations; exponents and radicals; complex numbers,…

  14. Thinking Visually about Algebra

    ERIC Educational Resources Information Center

    Baroudi, Ziad

    2015-01-01

    Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…

  15. Computer Algebra versus Manipulation

    ERIC Educational Resources Information Center

    Zand, Hossein; Crowe, David

    2004-01-01

    In the UK there is increasing concern about the lack of skill in algebraic manipulation that is evident in students entering mathematics courses at university level. In this note we discuss how the computer can be used to ameliorate some of the problems. We take as an example the calculations needed in three dimensional vector analysis in polar…

  16. Algebraic Artful Aids.

    ERIC Educational Resources Information Center

    Glick, David

    1995-01-01

    Presents a technique that helps students concentrate more on the science and less on the mechanics of algebra while dealing with introductory physics formulas. Allows the teacher to do complex problems at a lower level and not be too concerned about the mathematical abilities of the students. (JRH)

  17. Computers in Abstract Algebra

    ERIC Educational Resources Information Center

    Nwabueze, Kenneth K.

    2004-01-01

    The current emphasis on flexible modes of mathematics delivery involving new information and communication technology (ICT) at the university level is perhaps a reaction to the recent change in the objectives of education. Abstract algebra seems to be one area of mathematics virtually crying out for computer instructional support because of the…

  18. The spatial isomorphism problem for close separable nuclear C*-algebras

    PubMed Central

    Christensen, Erik; Sinclair, Allan M.; Smith, Roger R.; White, Stuart A.; Winter, Wilhelm

    2010-01-01

    The Kadison–Kastler problem asks whether close C*-algebras on a Hilbert space must be spatially isomorphic. We establish this when one of the algebras is separable and nuclear. We also apply our methods to the study of near inclusions of C*-algebras. PMID:20080723

  19. Implicit and Multigrid Method for Ideal Multigrid Convergence: Direct Numerical Simulation of Separated Flow Around NACA 0012 Airfoil

    NASA Technical Reports Server (NTRS)

    Liu, Chao-Qun; Shan, H.; Jiang, L.

    1999-01-01

    Numerical investigation of flow separation over a NACA 0012 airfoil at large angles of attack has been carried out. The numerical calculation is performed by solving the full Navier-Stokes equations in generalized curvilinear coordinates. The second-order LU-SGS implicit scheme is applied for time integration. This scheme requires no tridiagonal inversion and is capable of being completely vectorized, provided the corresponding Jacobian matrices are properly selected. A fourth-order centered compact scheme is used for spatial derivatives. In order to reduce numerical oscillation, a sixth-order implicit filter is employed. Non-reflecting boundary conditions are imposed at the far-field and outlet boundaries to avoid possible non-physical wave reflection. Complex flow separation and vortex shedding phenomenon have been observed and discussed.

  20. Optical systolic solutions of linear algebraic equations

    NASA Technical Reports Server (NTRS)

    Neuman, C. P.; Casasent, D.

    1984-01-01

    The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.

  1. Algebraic connectivity and graph robustness.

    SciTech Connect

    Feddema, John Todd; Byrne, Raymond Harry; Abdallah, Chaouki T.

    2009-07-01

    Recent papers have used Fiedler's definition of algebraic connectivity to show that network robustness, as measured by node-connectivity and edge-connectivity, can be increased by increasing the algebraic connectivity of the network. By the definition of algebraic connectivity, the second smallest eigenvalue of the graph Laplacian is a lower bound on the node-connectivity. In this paper we show that for circular random lattice graphs and mesh graphs algebraic connectivity is a conservative lower bound, and that increases in algebraic connectivity actually correspond to a decrease in node-connectivity. This means that the networks are actually less robust with respect to node-connectivity as the algebraic connectivity increases. However, an increase in algebraic connectivity seems to correlate well with a decrease in the characteristic path length of these networks - which would result in quicker communication through the network. Applications of these results are then discussed for perimeter security.

  2. Invariant algebraic surfaces for a virus dynamics

    NASA Astrophysics Data System (ADS)

    Valls, Claudia

    2015-08-01

    In this paper, we provide a complete classification of the invariant algebraic surfaces and of the rational first integrals for a well-known virus system. In the proofs, we use the weight-homogeneous polynomials and the method of characteristic curves for solving linear partial differential equations.

  3. Lie algebras and linear differential equations.

    NASA Technical Reports Server (NTRS)

    Brockett, R. W.; Rahimi, A.

    1972-01-01

    Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.

  4. Algebraic Mean Field Theory

    NASA Astrophysics Data System (ADS)

    Dankova, T. S.; Rosensteel, G.

    1998-10-01

    Mean field theory has an unexpected group theoretic mathematical foundation. Instead of representation theory which applies to most group theoretic quantum models, Hartree-Fock and Hartree-Fock-Bogoliubov have been formulated in terms of coadjoint orbits for the groups U(n) and O(2n). The general theory of mean fields is formulated for an arbitrary Lie algebra L of fermion operators. The moment map provides the correspondence between the Hilbert space of microscopic wave functions and the dual space L^* of densities. The coadjoint orbits of the group in the dual space are phase spaces on which time-dependent mean field theory is equivalent to a classical Hamiltonian dynamical system. Indeed it forms a finite-dimensional Lax system. The mean field theories for the Elliott SU(3) and symplectic Sp(3,R) algebras are constructed explicitly in the coadjoint orbit framework.

  5. MODEL IDENTIFICATION AND COMPUTER ALGEBRA

    PubMed Central

    Bollen, Kenneth A.; Bauldry, Shawn

    2011-01-01

    Multiequation models that contain observed or latent variables are common in the social sciences. To determine whether unique parameter values exist for such models, one needs to assess model identification. In practice analysts rely on empirical checks that evaluate the singularity of the information matrix evaluated at sample estimates of parameters. The discrepancy between estimates and population values, the limitations of numerical assessments of ranks, and the difference between local and global identification make this practice less than perfect. In this paper we outline how to use computer algebra systems (CAS) to determine the local and global identification of multiequation models with or without latent variables. We demonstrate a symbolic CAS approach to local identification and develop a CAS approach to obtain explicit algebraic solutions for each of the model parameters. We illustrate the procedures with several examples, including a new proof of the identification of a model for handling missing data using auxiliary variables. We present an identification procedure for Structural Equation Models that makes use of CAS and that is a useful complement to current methods. PMID:21769158

  6. MODEL IDENTIFICATION AND COMPUTER ALGEBRA.

    PubMed

    Bollen, Kenneth A; Bauldry, Shawn

    2010-10-01

    Multiequation models that contain observed or latent variables are common in the social sciences. To determine whether unique parameter values exist for such models, one needs to assess model identification. In practice analysts rely on empirical checks that evaluate the singularity of the information matrix evaluated at sample estimates of parameters. The discrepancy between estimates and population values, the limitations of numerical assessments of ranks, and the difference between local and global identification make this practice less than perfect. In this paper we outline how to use computer algebra systems (CAS) to determine the local and global identification of multiequation models with or without latent variables. We demonstrate a symbolic CAS approach to local identification and develop a CAS approach to obtain explicit algebraic solutions for each of the model parameters. We illustrate the procedures with several examples, including a new proof of the identification of a model for handling missing data using auxiliary variables. We present an identification procedure for Structural Equation Models that makes use of CAS and that is a useful complement to current methods.

  7. The Algebra Artist

    ERIC Educational Resources Information Center

    Beigie, Darin

    2014-01-01

    Most people who are attracted to STEM-related fields are drawn not by a desire to take mathematics tests but to create things. The opportunity to create an algebra drawing gives students a sense of ownership and adventure that taps into the same sort of energy that leads a young person to get lost in reading a good book, building with Legos®,…

  8. Algebra of Majorana doubling.

    PubMed

    Lee, Jaehoon; Wilczek, Frank

    2013-11-27

    Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.

  9. Priority in Process Algebras

    NASA Technical Reports Server (NTRS)

    Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.

    1999-01-01

    This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.

  10. On the cohomology of Leibniz conformal algebras

    NASA Astrophysics Data System (ADS)

    Zhang, Jiao

    2015-04-01

    We construct a new cohomology complex of Leibniz conformal algebras with coefficients in a representation instead of a module. The low-dimensional cohomology groups of this complex are computed. Meanwhile, we construct a Leibniz algebra from a Leibniz conformal algebra and prove that the category of Leibniz conformal algebras is equivalent to the category of equivalence classes of formal distribution Leibniz algebras.

  11. Assessing Algebraic Solving Ability: A Theoretical Framework

    ERIC Educational Resources Information Center

    Lian, Lim Hooi; Yew, Wun Thiam

    2012-01-01

    Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…

  12. Duncan F. Gregory, William Walton and the development of British algebra: 'algebraical geometry', 'geometrical algebra', abstraction.

    PubMed

    Verburgt, Lukas M

    2016-01-01

    This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s. PMID:26806075

  13. Duncan F. Gregory, William Walton and the development of British algebra: 'algebraical geometry', 'geometrical algebra', abstraction.

    PubMed

    Verburgt, Lukas M

    2016-01-01

    This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.

  14. Second-Order Algebraic Theories

    NASA Astrophysics Data System (ADS)

    Fiore, Marcelo; Mahmoud, Ola

    Fiore and Hur [10] recently introduced a conservative extension of universal algebra and equational logic from first to second order. Second-order universal algebra and second-order equational logic respectively provide a model theory and a formal deductive system for languages with variable binding and parameterised metavariables. This work completes the foundations of the subject from the viewpoint of categorical algebra. Specifically, the paper introduces the notion of second-order algebraic theory and develops its basic theory. Two categorical equivalences are established: at the syntactic level, that of second-order equational presentations and second-order algebraic theories; at the semantic level, that of second-order algebras and second-order functorial models. Our development includes a mathematical definition of syntactic translation between second-order equational presentations. This gives the first formalisation of notions such as encodings and transforms in the context of languages with variable binding.

  15. Numerical linear algebra for reconstruction inverse problems

    NASA Astrophysics Data System (ADS)

    Nachaoui, Abdeljalil

    2004-01-01

    Our goal in this paper is to discuss various issues we have encountered in trying to find and implement efficient solvers for a boundary integral equation (BIE) formulation of an iterative method for solving a reconstruction problem. We survey some methods from numerical linear algebra, which are relevant for the solution of this class of inverse problems. We motivate the use of our constructing algorithm, discuss its implementation and mention the use of preconditioned Krylov methods.

  16. Zeta functional equation on Jordan algebras of type II

    NASA Astrophysics Data System (ADS)

    Kayoya, J. B.

    2005-02-01

    Using the Jordan algebras methods, specially the properties of Peirce decomposition and the Frobenius transformation, we compute the coefficients of the zeta functional equation, in the case of Jordan algebras of type II. As particular cases of our result, we can cite the case of studied by Gelbart [Mem. Amer. Math. Soc. 108 (1971)] and Godement and Jacquet [Zeta functions of simple algebras, Lecture Notes in Math., vol. 260, Springer-Verlag, Berlin, 1972], and the case of studied by Muro [Adv. Stud. Pure Math. 15 (1989) 429]. Let us also mention, that recently, Bopp and Rubenthaler have obtained a more general result on the zeta functional equation by using methods based on the algebraic properties of regular graded algebras which are in one-to-one correspondence with simple Jordan algebras [Local Zeta Functions Attached to the Minimal Spherical Series for a Class of Symmetric Spaces, IRMA, Strasbourg, 2003]. The method used in this paper is a direct application of specific properties of Jordan algebras of type II.

  17. How Structure Sense for Algebraic Expressions or Equations Is Related to Structure Sense for Abstract Algebra

    ERIC Educational Resources Information Center

    Novotna, Jarmila; Hoch, Maureen

    2008-01-01

    Many students have difficulties with basic algebraic concepts at high school and at university. In this paper two levels of algebraic structure sense are defined: for high school algebra and for university algebra. We suggest that high school algebra structure sense components are sub-components of some university algebra structure sense…

  18. Barriers to Achieving Textbook Multigrid Efficiency (TME) in CFD

    NASA Technical Reports Server (NTRS)

    Brandt, Achi

    1998-01-01

    As a guide to attaining this optimal performance for general CFD problems, the table below lists every foreseen kind of computational difficulty for achieving that goal, together with the possible ways for resolving that difficulty, their current state of development, and references. Included in the table are staggered and nonstaggered, conservative and nonconservative discretizations of viscous and inviscid, incompressible and compressible flows at various Mach numbers, as well as a simple (algebraic) turbulence model and comments on chemically reacting flows. The listing of associated computational barriers involves: non-alignment of streamlines or sonic characteristics with the grids; recirculating flows; stagnation points; discretization and relaxation on and near shocks and boundaries; far-field artificial boundary conditions; small-scale singularities (meaning important features, such as the complete airplane, which are not visible on some of the coarse grids); large grid aspect ratios; boundary layer resolution; and grid adaption.

  19. Applied Algebra: The Modeling Technique of Least Squares

    ERIC Educational Resources Information Center

    Zelkowski, Jeremy; Mayes, Robert

    2008-01-01

    The article focuses on engaging students in algebra through modeling real-world problems. The technique of least squares is explored, encouraging students to develop a deeper understanding of the method. (Contains 2 figures and a bibliography.)

  20. Teaching Basic Algebra Courses at the College Level

    ERIC Educational Resources Information Center

    Mallenby, Michel L.; Mallenby, Douglas W.

    2004-01-01

    Three dysfunctional behaviors of basic algebra students are described: Silence as Camouflage, Wing and a Prayer, and Ignorance is OK. These behavior patterns are explained, and beneficial teaching methods that address the weaknesses are presented.