Maximum/Minimum Problems Solved Using an Algebraic Way
ERIC Educational Resources Information Center
Modica, Erasmo
2010-01-01
This article describes some problems of the maximum/minimum type, which are generally solved using calculus at secondary school, but which here are solved algebraically. We prove six algebraic properties and then apply them to this kind of problem. This didactic approach allows pupils to solve these problems even at the beginning of secondary…
How Problem Solving Can Develop an Algebraic Perspective of Mathematics
ERIC Educational Resources Information Center
Windsor, Will
2011-01-01
SProblem solving has a long and successful history in mathematics education and is valued by many teachers as a way to engage and facilitate learning within their classrooms. The potential benefit for using problem solving in the development of algebraic thinking is that "it may broaden and develop students' mathematical thinking beyond the…
Inhibiting Interference from Prior Knowledge: Arithmetic Intrusions in Algebra Word Problem Solving
ERIC Educational Resources Information Center
Khng, Kiat Hui; Lee, Kerry
2009-01-01
In Singapore, 6-12 year-old students are taught to solve algebra word problems with a mix of arithmetic and pre-algebraic strategies; 13-17 year-olds are typically encouraged to replace these strategies with letter-symbolic algebra. We examined whether algebra problem-solving proficiency amongst beginning learners of letter-symbolic algebra is…
Slower Algebra Students Meet Faster Tools: Solving Algebra Word Problems with Graphing Software
ERIC Educational Resources Information Center
Yerushalmy, Michal
2006-01-01
The article discusses the ways that less successful mathematics students used graphing software with capabilities similar to a basic graphing calculator to solve algebra problems in context. The study is based on interviewing students who learned algebra for 3 years in an environment where software tools were always present. We found differences…
ERIC Educational Resources Information Center
McNeil, Nicole M.; Rittle-Johnson, Bethany; Hattikudur, Shanta; Petersen, Lori A.
2010-01-01
This study examined if solving arithmetic problems hinders undergraduates' accuracy on algebra problems. The hypothesis was that solving arithmetic problems would hinder accuracy because it activates an operational view of equations, even in educated adults who have years of experience with algebra. In three experiments, undergraduates (N = 184)…
Primary School Students' Strategies in Early Algebra Problem Solving Supported by an Online Game
ERIC Educational Resources Information Center
van den Heuvel-Panhuizen, Marja; Kolovou, Angeliki; Robitzsch, Alexander
2013-01-01
In this study we investigated the role of a dynamic online game on students' early algebra problem solving. In total 253 students from grades 4, 5, and 6 (10-12 years old) used the game at home to solve a sequence of early algebra problems consisting of contextual problems addressing covarying quantities. Special software monitored the…
Constructing a Coherent Problem Model to Facilitate Algebra Problem Solving in a Chemistry Context
ERIC Educational Resources Information Center
Ngu, Bing Hiong; Yeung, Alexander Seeshing; Phan, Huy P.
2015-01-01
An experiment using a sample of 11th graders compared text editing and worked examples approaches in learning to solve dilution and molarity algebra word problems in a chemistry context. Text editing requires students to assess the structure of a word problem by specifying whether the problem text contains sufficient, missing, or irrelevant…
Constructing a coherent problem model to facilitate algebra problem solving in a chemistry context
NASA Astrophysics Data System (ADS)
Hiong Ngu, Bing; Seeshing Yeung, Alexander; Phan, Huy P.
2015-04-01
An experiment using a sample of 11th graders compared text editing and worked examples approaches in learning to solve dilution and molarity algebra word problems in a chemistry context. Text editing requires students to assess the structure of a word problem by specifying whether the problem text contains sufficient, missing, or irrelevant information for reaching a solution. Worked examples direct students to follow steps toward the solution, and its emphasis is on computation instead of the formation of a coherent problem model. Text editing yielded higher scores in a transfer test (which shared the same solution procedure as in the acquisition problems but differed in contexts), but not a similar test (which resembled acquisition problems in terms of both solution procedure and context). Results provide some theoretical support and practical implications for using text editing to develop a coherent problem model to facilitate problem-solving skills in chemistry.
ERIC Educational Resources Information Center
Ngu, Bing Hiong; Yeung, Alexander Seeshing
2012-01-01
Holyoak and Koh (1987) and Holyoak (1984) propose four critical tasks for analogical transfer to occur in problem solving. A study was conducted to test this hypothesis by comparing a multiple components (MC) approach against worked examples (WE) in helping students to solve algebra word problems in chemistry classes. The MC approach incorporated…
Assessing Algebraic Solving Ability: A Theoretical Framework
ERIC Educational Resources Information Center
Lian, Lim Hooi; Yew, Wun Thiam
2012-01-01
Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…
ERIC Educational Resources Information Center
Hernandez, Andrea C.
2013-01-01
This dissertation analyzes differences found in Spanish-speaking middle school and high school students in algebra-based problem solving. It identifies the accuracy differences between word problems presented in English, Spanish and numerically based problems. The study also explores accuracy differences between each subgroup of Spanish-speaking…
An Evaluation of Interventions to Facilitate Algebra Problem Solving
ERIC Educational Resources Information Center
Mayfield, Kristin H.; Glenn, Irene M.
2008-01-01
Three participants were trained on 6 target algebra skills and subsequently received a series of 5 instructional interventions (cumulative practice, tiered feedback, feedback plus solution sequence instruction, review practice, and transfer training) in a multiple baseline across skills design. The effects of the interventions on the performance…
Excel Spreadsheets for Algebra: Improving Mental Modeling for Problem Solving
ERIC Educational Resources Information Center
Engerman, Jason; Rusek, Matthew; Clariana, Roy
2014-01-01
This experiment investigates the effectiveness of Excel spreadsheets in a high school algebra class. Students in the experiment group convincingly outperformed the control group on a post lesson assessment. The student responses, teacher observations involving Excel spreadsheet revealed that it operated as a mindtool, which formed the users'…
The Effect of using two variables when there are two unknowns in solving algebraic word problems
NASA Astrophysics Data System (ADS)
Mathews, Susann M.
1997-09-01
This article reports an experiment in which Algebra I students learned to translate word problems with two unknowns from the prose representation to symbolic representation using two variables (one to represent each unknown) when they first started solving word problems with two unknowns. Their performance on a test of word problems with two unknowns was compared with the results on the same test taken by students who had learned to solve word problems with two unknowns the traditional way, using only one variable to translate from prose to an algebraic equation. Four algebra teachers and 181 of their students participated in the study. A block-randomised factorial design was used. An analysis of covariance showed a statistically significant difference in the mean scores of the experimental group and the control group on this word problem test with the experimental group scoring substantially higher.
Alternative Representations for Algebraic Problem Solving: When Are Graphs Better than Equations?
ERIC Educational Resources Information Center
Mielicki, Marta K.; Wiley, Jennifer
2016-01-01
Successful algebraic problem solving entails adaptability of solution methods using different representations. Prior research has suggested that students are more likely to prefer symbolic solution methods (equations) over graphical ones, even when graphical methods should be more efficient. However, this research has not tested how representation…
Application of symbolic and algebraic manipulation software in solving applied mechanics problems
NASA Technical Reports Server (NTRS)
Tsai, Wen-Lang; Kikuchi, Noboru
1993-01-01
As its name implies, symbolic and algebraic manipulation is an operational tool which not only can retain symbols throughout computations but also can express results in terms of symbols. This report starts with a history of symbolic and algebraic manipulators and a review of the literatures. With the help of selected examples, the capabilities of symbolic and algebraic manipulators are demonstrated. These applications to problems of applied mechanics are then presented. They are the application of automatic formulation to applied mechanics problems, application to a materially nonlinear problem (rigid-plastic ring compression) by finite element method (FEM) and application to plate problems by FEM. The advantages and difficulties, contributions, education, and perspectives of symbolic and algebraic manipulation are discussed. It is well known that there exist some fundamental difficulties in symbolic and algebraic manipulation, such as internal swelling and mathematical limitation. A remedy for these difficulties is proposed, and the three applications mentioned are solved successfully. For example, the closed from solution of stiffness matrix of four-node isoparametrical quadrilateral element for 2-D elasticity problem was not available before. Due to the work presented, the automatic construction of it becomes feasible. In addition, a new advantage of the application of symbolic and algebraic manipulation found is believed to be crucial in improving the efficiency of program execution in the future. This will substantially shorten the response time of a system. It is very significant for certain systems, such as missile and high speed aircraft systems, in which time plays an important role.
Trade-offs between grounded and abstract representations: evidence from algebra problem solving.
Koedinger, Kenneth R; Alibali, Martha W; Nathan, Mitchell J
2008-03-01
This article explores the complementary strengths and weaknesses of grounded and abstract representations in the domain of early algebra. Abstract representations, such as algebraic symbols, are concise and easy to manipulate but are distanced from any physical referents. Grounded representations, such as verbal descriptions of situations, are more concrete and familiar, and they are more similar to physical objects and everyday experience. The complementary computational characteristics of grounded and abstract representations lead to trade-offs in problem-solving performance. In prior research with high school students solving relatively simple problems, Koedinger and Nathan (2004) demonstrated performance benefits of grounded representations over abstract representations-students were better at solving simple story problems than the analogous equations. This article extends this prior work to examine both simple and more complex problems in two samples of college students. On complex problems with two references to the unknown, a "symbolic advantage" emerged, such that students were better at solving equations than analogous story problems. Furthermore, the previously observed "verbal advantage" on simple problems was replicated. We thus provide empirical support for a trade-off between grounded, verbal representations, which show advantages on simpler problems, and abstract, symbolic representations, which show advantages on more complex problems.
Voila: A visual object-oriented iterative linear algebra problem solving environment
Edwards, H.C.; Hayes, L.J.
1994-12-31
Application of iterative methods to solve a large linear system of equations currently involves writing a program which calls iterative method subprograms from a large software package. These subprograms have complex interfaces which are difficult to use and even more difficult to program. A problem solving environment specifically tailored to the development and application of iterative methods is needed. This need will be fulfilled by Voila, a problem solving environment which provides a visual programming interface to object-oriented iterative linear algebra kernels. Voila will provide several quantum improvements over current iterative method problem solving environments. First, programming and applying iterative methods is considerably simplified through Voila`s visual programming interface. Second, iterative method algorithm implementations are independent of any particular sparse matrix data structure through Voila`s object-oriented kernels. Third, the compile-link-debug process is eliminated as Voila operates as an interpreter.
Solving Our Algebra Problem: Getting All Students through Algebra I to Improve Graduation Rates
ERIC Educational Resources Information Center
Schachter, Ron
2013-01-01
graduation as well as admission to most colleges. But taking algebra also can turn into a pathway for failure, from which some students never recover. In 2010, a national U.S. Department of Education study…
The Effect of Using the TI-92 on Basic College Algebra Students' Ability To Solve Word Problems.
ERIC Educational Resources Information Center
Runde, Dennis C.
As part of an effort to improve community college algebra students' ability to solve word problems, a study was undertaken at Florida's Manatee Community College to determine the effects of using heuristic instruction (i.e., providing general rules for solving different types of math problems) in combination with the TI-92 calculator. The TI-92…
ERIC Educational Resources Information Center
Fuchs, Lynn S.; Compton, Donald L.; Fuchs, Douglas; Hollenbeck, Kurstin N.; Hamlett, Carol L.; Seethaler, Pamela M.
2011-01-01
The purpose of this study was to explore the utility of a dynamic assessment (DA) of algebraic learning in predicting third graders' development of mathematics word-problem difficulty. In the fall, 122 third-grade students were assessed on a test of math word-problem skill and DA of algebraic learning. In the spring, they were assessed on…
Fuchs, Lynn S.; Compton, Donald L.; Fuchs, Douglas; Hollenbeck, Kurstin N.; Craddock, Caitlin F.; Hamlett, Carol L.
2008-01-01
Dynamic assessment (DA) involves helping students learn a task and indexing responsiveness to that instruction as a measure of learning potential. The purpose of this study was to explore the utility of a DA of algebraic learning in predicting 3rd graders’ development of mathematics problem solving. In the fall, 122 3rd-grade students were assessed on language, nonverbal reasoning, attentive behavior, calculations, word-problem skill, and DA. On the basis of random assignment, students received 16 weeks of validated instruction on word problems or received 16 weeks of conventional instruction on word problems. Then, students were assessed on word-problem measures proximal and distal to instruction. Structural equation measurement models showed that DA measured a distinct dimension of pretreatment ability and that proximal and distal word-problem measures were needed to account for outcome. Structural equation modeling showed that instruction (conventional vs. validated) was sufficient to account for math word-problem outcome proximal to instruction; by contrast, language, pretreatment math skill, and DA were needed to forecast learning on word-problem outcomes more distal to instruction. Findings are discussed in terms of responsiveness-to-intervention models for preventing and identifying learning disabilities. PMID:19884957
Endogenous control and task representation: an fMRI study in algebraic problem-solving.
Stocco, Andrea; Anderson, John R
2008-07-01
The roles of prefrontal and anterior cingulate cortices have been widely studied, yet little is known on how they interact to enable complex cognitive abilities. We investigated this issue in a complex yet well-defined symbolic paradigm: algebraic problem solving. In our experimental problems, the demands for retrieving arithmetic facts and maintaining intermediate problem representations were manipulated separately. An analysis of functional brain images acquired while participants were solving the problems confirmed that prefrontal regions were affected by the retrieval of arithmetic facts, but only scarcely by the need to manipulate intermediate forms of the equations, hinting at a specific role in memory retrieval. Hemodynamic activity in the dorsal cingulate, on the contrary, increased monotonically as more information processing steps had to be taken, independent of their nature. This pattern was essentially mimicked in the caudate nucleus, suggesting a related functional role in the control of cognitive actions. We also implemented a computational model within the Adaptive Control of Thought-Rational (ACT-R) cognitive architecture, which was able to reproduce both the behavioral data and the time course of the hemodynamic activity in a number of relevant regions of interest. Therefore, imaging results and computer simulation provide evidence that symbolic cognition can be explained by the functional interaction of medial structures supporting control and serial execution, and prefrontal cortices engaged in the on-line retrieval of specific relevant information. PMID:18284348
Dix, Annika; van der Meer, Elke
2015-04-01
This study investigates cognitive resource allocation dependent on fluid and numerical intelligence in arithmetic/algebraic tasks varying in difficulty. Sixty-six 11th grade students participated in a mathematical verification paradigm, while pupil dilation as a measure of resource allocation was collected. Students with high fluid intelligence solved the tasks faster and more accurately than those with average fluid intelligence, as did students with high compared to average numerical intelligence. However, fluid intelligence sped up response times only in students with average but not high numerical intelligence. Further, high fluid but not numerical intelligence led to greater task-related pupil dilation. We assume that fluid intelligence serves as a domain-general resource that helps to tackle problems for which domain-specific knowledge (numerical intelligence) is missing. The allocation of this resource can be measured by pupil dilation.
ERIC Educational Resources Information Center
Chiu, Ming Ming
2008-01-01
The micro-time context of group processes (such as argumentation) can affect a group's micro-creativity (new ideas). Eighty high school students worked in groups of four on an algebra problem. Groups with higher mathematics grades showed greater micro-creativity, and both were linked to better problem solving outcomes. Dynamic multilevel analyses…
Facilitating Case Reuse during Problem Solving in Algebra-Based Physics
ERIC Educational Resources Information Center
Mateycik, Frances Ann
2010-01-01
This research project investigates students' development of problem solving schemata while using strategies that facilitate the process of using solved examples to assist with a new problem (case reuse). Focus group learning interviews were used to explore students' perceptions and understanding of several problem solving strategies. Individual…
Arithmetic/Algebraic Problem-Solving and the Representation of Two Unknown Quantities
ERIC Educational Resources Information Center
Filloy, Eugenio; Rojano, Teresa; Solares, Armando
2004-01-01
We deal with the study of the senses and the meanings generated in the representation of the unknowns in the resolution of word problems involving two unknown quantities. The discussed cases show the difficulties that the students beginning the algebra learning have to deal with when using the equality between "unknown things". For them, applying…
A Comparison of Two Mathematics Problem-Solving Strategies: Facilitate Algebra-Readiness
ERIC Educational Resources Information Center
Xin, Yan Ping; Zhang, Dake; Park, Joo Young; Tom, Kinsey; Whipple, Amanda; Si, Luo
2011-01-01
The authors compared a conceptual model-based problem-solving (COMPS) approach with a general heuristic instructional approach for teaching multiplication-division word-problem solving to elementary students with learning problems (LP). The results indicate that only the COMPS group significantly improved, from pretests to posttests, their…
ERIC Educational Resources Information Center
Hale, Norman; Lindelow, John
Chapter 12 in a volume on school leadership, this chapter cites the work of several authorities concerning problem-solving or decision-making techniques based on the belief that group problem-solving effort is preferable to individual effort. The first technique, force-field analysis, is described as a means of dissecting complex problems into…
Fuchs, Lynn S; Compton, Donald L; Fuchs, Douglas; Hollenbeck, Kurstin N; Hamlett, Carol L; Seethaler, Pamela M
2011-01-01
The purpose of this study was to explore the utility of a dynamic assessment (DA) of algebraic learning in predicting third graders' development of mathematics word-problem difficulty. In the fall, 122 third-grade students were assessed on a test of math word-problem skill and DA of algebraic learning. In the spring, they were assessed on word-problem performance. Logistic regression was conducted to contrast two models. One relied exclusively on the fall test of math word-problem skill to predict word-problem difficulty on the spring outcome (less than the 25th percentile). The second model relied on a combination of the fall test of math word-problem skill and the fall DA to predict the same outcome. Holding sensitivity at 87.5%, the universal screener alone resulted in a high proportion of false positives, which was practically reduced when DA was included in the prediction model. Findings are discussed in terms of a two-stage process for screening students within a responsiveness-to-intervention prevention model.
Fuchs, Lynn S.; Compton, Donald L.; Fuchs, Douglas; Hollenbeck, Kurstin N.; Hamlett, Carol L.; Seethaler, Pamela M.
2011-01-01
The purpose of this study was to explore the utility of a dynamic assessment (DA) of algebraic learning in predicting third graders’ development of mathematics word-problem difficulty. In the fall, 122 third-grade students were assessed on a test of math word-problem skill and DA of algebraic learning. In the spring, they were assessed on word-problem performance. Logistic regression was conducted to contrast two models. One relied exclusively on the fall test of math word-problem skill to predict word-problem difficulty on the spring outcome (less than the 25th percentile). The second model relied on a combination of the fall test of math word-problem skill and the fall DA to predict the same outcome. Holding sensitivity at 87.5%, the universal screener alone resulted in a high proportion of false positives, which was practically reduced when DA was included in the prediction model. Findings are discussed in terms of a two-stage process for screening students within a responsiveness-to-intervention prevention model. PMID:21685352
ERIC Educational Resources Information Center
González-Calero, José Antonio; Arnau, David; Puig, Luis; Arevalillo-Herráez, Miguel
2015-01-01
The term intensive scaffolding refers to any set of conceptual scaffolding strategies that always allow the user to find the solution to a problem. Despite the many benefits of scaffolding, some negative effects have also been reported. These are mainly related to the possibility that a student solves the problems without actually engaging in…
Mathematics as Problem Solving.
ERIC Educational Resources Information Center
Soifer, Alexander
This book contains about 200 problems. It is suggested that it be used by students, teachers or anyone interested in exploring mathematics. In addition to a general discussion on problem solving, there are problems concerned with number theory, algebra, geometry, and combinatorics. (PK)
Facilitating case reuse during problem solving in algebra-based physics
NASA Astrophysics Data System (ADS)
Mateycik, Frances Ann
This research project investigates students' development of problem solving schemata while using strategies that facilitate the process of using solved examples to assist with a new problem (case reuse). Focus group learning interviews were used to explore students' perceptions and understanding of several problem solving strategies. Individual clinical interviews were conducted and quantitative examination data were collected to assess students' conceptual understanding, knowledge organization, and problem solving performance on a variety of problem tasks. The study began with a short one-time treatment of two independent, research-based strategies chosen to facilitate case reuse. Exploration of students' perceptions and use of the strategies lead investigators to select one of the two strategies to be implemented over a full semester of focus group interviews. The strategy chosen was structure mapping. Structure maps are defined as visual representations of quantities and their associations. They were created by experts to model the appropriate mental organization of knowledge elements for a given physical concept. Students were asked to use these maps as they were comfortable while problem solving. Data obtained from this phase of our study (Phase I) offered no evidence of improved problem solving schema. The 11 contact hour study was barely sufficient time for students to become comfortable using the maps. A set of simpler strategies were selected for their more explicit facilitation of analogical reasoning, and were used together during two more semester long focus group treatments (Phase II and Phase III of this study). These strategies included the use of a step-by-step process aimed at reducing cognitive load associated with mathematical procedure, direct reflection of principles involved in a given set of problems, and the direct comparison of problem pairs designed to be void of surface similarities (similar objects or object orientations) and sharing
ERIC Educational Resources Information Center
Matthews, Paul G.; Atkinson, Richard C.
This paper reports an experiment designed to test theoretical relations among fast problem solving, more complex and slower problem solving, and research concerning fundamental memory processes. Using a cathode ray tube, subjects were presented with propositions of the form "Y is in list X" which they memorized. In later testing they were asked to…
Trade-Offs between Grounded and Abstract Representations: Evidence from Algebra Problem Solving
ERIC Educational Resources Information Center
Koedinger, Kenneth R.; Alibali, Martha W.; Nathan, Mitchell J.
2008-01-01
This article explores the complementary strengths and weaknesses of grounded and abstract representations in the domain of early algebra. Abstract representations, such as algebraic symbols, are concise and easy to manipulate but are distanced from any physical referents. Grounded representations, such as verbal descriptions of situations, are…
Algebra and Problem-Solving in Down Syndrome: A Study with 15 Teenagers
ERIC Educational Resources Information Center
Martinez, Elisabetta Monari; Pellegrini, Katia
2010-01-01
There is a common opinion that mathematics is difficult for persons with Down syndrome, because of a weakness in numeracy and in abstract thinking. Since 1996, some single case studies have suggested that new opportunities in mathematics are possible for these students: some of them learned algebra and also learned to use equations in…
Strategies Used by Second-Year Algebra Students to Solve Problems
ERIC Educational Resources Information Center
Senk, Sharon L.; Thompson, Denisse R.
2006-01-01
This Brief Report describes a secondary analysis of the solutions written by 306 second-year algebra students to four constructed-response items representative of content at this level. The type of solution (symbolic, graphical, or numerical) used most frequently varied by item. Curriculum effects were observed. Students studying from the second…
ERIC Educational Resources Information Center
Ngu, Bing Hiong; Yeung, Alexander Seeshing
2013-01-01
Text editing directs students' attention to the problem structure as they classify whether the texts of word problems contain sufficient, missing or irrelevant information for working out a solution. Equation worked examples emphasize the formation of a coherent problem structure to generate a solution. Its focus is on the construction of three…
Fibonacci's Triangle: A Vehicle for Problem Solving.
ERIC Educational Resources Information Center
Ouellette, Hugh
1979-01-01
A method for solving certain types of problems is illustrated by problems related to Fibonacci's triangle. The method involves pattern recognition, generalizing, algebraic manipulation, and mathematical induction. (MP)
ERIC Educational Resources Information Center
Ling, Gan We; Ghazali, Munirah
2007-01-01
This descriptive study was aimed at looking into how Primary 5 pupils solve pre-algebra problems concerning patterns and unknown quantities. Specifically, objectives of this study were to describe Primary 5 pupils' solution strategies, modes of representations and justifications in: (a) discovering, describing and using numerical and geometrical…
Some Applications of Algebraic System Solving
ERIC Educational Resources Information Center
Roanes-Lozano, Eugenio
2011-01-01
Technology and, in particular, computer algebra systems, allows us to change both the way we teach mathematics and the mathematical curriculum. Curiously enough, unlike what happens with linear system solving, algebraic system solving is not widely known. The aim of this paper is to show that, although the theory lying behind the "exact solve"…
Problem Solving through Paper Folding
ERIC Educational Resources Information Center
Wares, Arsalan
2014-01-01
The purpose of this article is to describe a couple of challenging mathematical problems that involve paper folding. These problem-solving tasks can be used to foster geometric and algebraic thinking among students. The context of paper folding makes some of the abstract mathematical ideas involved relatively concrete. When implemented…
Danker, Jared F; Anderson, John R
2007-04-15
In naturalistic algebra problem solving, the cognitive processes of representation and retrieval are typically confounded, in that transformations of the equations typically require retrieval of mathematical facts. Previous work using cognitive modeling has associated activity in the prefrontal cortex with the retrieval demands of algebra problems and activity in the posterior parietal cortex with the transformational demands of algebra problems, but these regions tend to behave similarly in response to task manipulations (Anderson, J.R., Qin, Y., Sohn, M.-H., Stenger, V.A., Carter, C.S., 2003. An information-processing model of the BOLD response in symbol manipulation tasks. Psychon. Bull. Rev. 10, 241-261; Qin, Y., Carter, C.S., Silk, E.M., Stenger, A., Fissell, K., Goode, A., Anderson, J.R., 2004. The change of brain activation patterns as children learn algebra equation solving. Proc. Natl. Acad. Sci. 101, 5686-5691). With this study we attempt to isolate activity in these two regions by using a multi-step algebra task in which transformation (parietal) is manipulated in the first step and retrieval (prefrontal) is manipulated in the second step. Counter to our initial predictions, both brain regions were differentially active during both steps. We designed two cognitive models, one encompassing our initial assumptions and one in which both processes were engaged during both steps. The first model provided a poor fit to the behavioral and neural data, while the second model fit both well. This simultaneously emphasizes the strong relationship between retrieval and representation in mathematical reasoning and demonstrates that cognitive modeling can serve as a useful tool for understanding task manipulations in neuroimaging experiments. PMID:17355908
Danker, Jared F; Anderson, John R
2007-04-15
In naturalistic algebra problem solving, the cognitive processes of representation and retrieval are typically confounded, in that transformations of the equations typically require retrieval of mathematical facts. Previous work using cognitive modeling has associated activity in the prefrontal cortex with the retrieval demands of algebra problems and activity in the posterior parietal cortex with the transformational demands of algebra problems, but these regions tend to behave similarly in response to task manipulations (Anderson, J.R., Qin, Y., Sohn, M.-H., Stenger, V.A., Carter, C.S., 2003. An information-processing model of the BOLD response in symbol manipulation tasks. Psychon. Bull. Rev. 10, 241-261; Qin, Y., Carter, C.S., Silk, E.M., Stenger, A., Fissell, K., Goode, A., Anderson, J.R., 2004. The change of brain activation patterns as children learn algebra equation solving. Proc. Natl. Acad. Sci. 101, 5686-5691). With this study we attempt to isolate activity in these two regions by using a multi-step algebra task in which transformation (parietal) is manipulated in the first step and retrieval (prefrontal) is manipulated in the second step. Counter to our initial predictions, both brain regions were differentially active during both steps. We designed two cognitive models, one encompassing our initial assumptions and one in which both processes were engaged during both steps. The first model provided a poor fit to the behavioral and neural data, while the second model fit both well. This simultaneously emphasizes the strong relationship between retrieval and representation in mathematical reasoning and demonstrates that cognitive modeling can serve as a useful tool for understanding task manipulations in neuroimaging experiments.
Solving Absolute Value Equations Algebraically and Geometrically
ERIC Educational Resources Information Center
Shiyuan, Wei
2005-01-01
The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.
ERIC Educational Resources Information Center
Green, Jan
2009-01-01
In recent years, the learning of algebra by all students has become a significant national priority (Moses & Cobb, 2001; National Council of Teachers of Mathematics, 2000). Algebra is considered to be a foundational topic in mathematics (Usiskin, 1988) and some have argued that an understanding of algebra is fundamental to success in today's…
ERIC Educational Resources Information Center
Schmidt, Sylvine; Bednarz, Nadine
1997-01-01
Discusses the difficulties observed in the transition from teaching arithmetic to teaching algebra. Future teachers (n=164) were questioned regarding to what extent they were able to shift back and forth between teaching methods within the context of problem solving. Interviews were conducted individually and in a dyad format. (AIM)
Using CAS to Solve Classical Mathematics Problems
ERIC Educational Resources Information Center
Burke, Maurice J.; Burroughs, Elizabeth A.
2009-01-01
Historically, calculus has displaced many algebraic methods for solving classical problems. This article illustrates an algebraic method for finding the zeros of polynomial functions that is closely related to Newton's method (devised in 1669, published in 1711), which is encountered in calculus. By exploring this problem, precalculus students…
ERIC Educational Resources Information Center
King, James C.
1988-01-01
This pamphlet discusses group problem solving in schools. Its point of departure is that teachers go at problems from a number of different directions and that principals need to capitalize on those differences and bring a whole range of skills and perceptions to the problem-solving process. Rather than trying to get everyone to think alike,…
Techniques of Problem Solving.
ERIC Educational Resources Information Center
Krantz, Steven G.
The purpose of this book is to teach the basic principles of problem solving in both mathematical and non-mathematical problems. The major components of the book consist of learning to translate verbal discussion into analytical data, learning problem solving methods for attacking collections of analytical questions or data, and building a…
Solving stochastic epidemiological models using computer algebra
NASA Astrophysics Data System (ADS)
Hincapie, Doracelly; Ospina, Juan
2011-06-01
Mathematical modeling in Epidemiology is an important tool to understand the ways under which the diseases are transmitted and controlled. The mathematical modeling can be implemented via deterministic or stochastic models. Deterministic models are based on short systems of non-linear ordinary differential equations and the stochastic models are based on very large systems of linear differential equations. Deterministic models admit complete, rigorous and automatic analysis of stability both local and global from which is possible to derive the algebraic expressions for the basic reproductive number and the corresponding epidemic thresholds using computer algebra software. Stochastic models are more difficult to treat and the analysis of their properties requires complicated considerations in statistical mathematics. In this work we propose to use computer algebra software with the aim to solve epidemic stochastic models such as the SIR model and the carrier-borne model. Specifically we use Maple to solve these stochastic models in the case of small groups and we obtain results that do not appear in standard textbooks or in the books updated on stochastic models in epidemiology. From our results we derive expressions which coincide with those obtained in the classical texts using advanced procedures in mathematical statistics. Our algorithms can be extended for other stochastic models in epidemiology and this shows the power of computer algebra software not only for analysis of deterministic models but also for the analysis of stochastic models. We also perform numerical simulations with our algebraic results and we made estimations for the basic parameters as the basic reproductive rate and the stochastic threshold theorem. We claim that our algorithms and results are important tools to control the diseases in a globalized world.
Teaching through Problem Solving
ERIC Educational Resources Information Center
Fi, Cos D.; Degner, Katherine M.
2012-01-01
Teaching through Problem Solving (TtPS) is an effective way to teach mathematics "for" understanding. It also provides students with a way to learn mathematics "with" understanding. In this article, the authors present a definition of what it means to teach through problem solving. They also describe a professional development vignette that…
NASA Astrophysics Data System (ADS)
Singh, Chandralekha
2009-07-01
One finding of cognitive research is that people do not automatically acquire usable knowledge by spending lots of time on task. Because students' knowledge hierarchy is more fragmented, "knowledge chunks" are smaller than those of experts. The limited capacity of short term memory makes the cognitive load high during problem solving tasks, leaving few cognitive resources available for meta-cognition. The abstract nature of the laws of physics and the chain of reasoning required to draw meaningful inferences makes these issues critical. In order to help students, it is crucial to consider the difficulty of a problem from the perspective of students. We are developing and evaluating interactive problem-solving tutorials to help students in the introductory physics courses learn effective problem-solving strategies while solidifying physics concepts. The self-paced tutorials can provide guidance and support for a variety of problem solving techniques, and opportunity for knowledge and skill acquisition.
ERIC Educational Resources Information Center
Capobianco, Brenda M.; Tyrie, Nancy
2009-01-01
In a unique school-university partnership, methods students collaborated with fifth graders to use the engineering design process to build their problem-solving skills. By placing the problem in the context of a client having particular needs, the problem took on a real-world appeal that students found intriguing and inviting. In this article, the…
Chemical Reaction Problem Solving.
ERIC Educational Resources Information Center
Veal, William
1999-01-01
Discusses the role of chemical-equation problem solving in helping students predict reaction products. Methods for helping students learn this process must be taught to students and future teachers by using pedagogical skills within the content of chemistry. Emphasizes that solving chemical reactions should involve creative cognition where…
ERIC Educational Resources Information Center
Carpenter, Thomas P.; And Others
1980-01-01
Student weaknesses on problem-solving portions of the NAEP mathematics assessment are discussed using Polya's heuristics as a framework. Recommendations for classroom instruction are discussed. (MP) Aspect of National Assessment (NAEP) dealt with in this document: Results (Interpretation).
Numerical linear algebra for reconstruction inverse problems
NASA Astrophysics Data System (ADS)
Nachaoui, Abdeljalil
2004-01-01
Our goal in this paper is to discuss various issues we have encountered in trying to find and implement efficient solvers for a boundary integral equation (BIE) formulation of an iterative method for solving a reconstruction problem. We survey some methods from numerical linear algebra, which are relevant for the solution of this class of inverse problems. We motivate the use of our constructing algorithm, discuss its implementation and mention the use of preconditioned Krylov methods.
ERIC Educational Resources Information Center
Martinez, Michael E.
1998-01-01
Many important human activities involve accomplishing goals without a script. There is no formula for true problem-solving. Heuristic, cognitive "rules of thumb" are the problem-solver's best guide. Learners should understand heuristic tools such as means-end analysis, working backwards, successive approximation, and external representation. Since…
Problem Solving in Electricity.
ERIC Educational Resources Information Center
Caillot, Michel; Chalouhi, Elias
Two studies were conducted to describe how students perform direct current (D-C) circuit problems. It was hypothesized that problem solving in the electricity domain depends largely on good visual processing of the circuit diagram and that this processing depends on the ability to recognize when two or more electrical components are in series or…
ERIC Educational Resources Information Center
Thorson, Annette, Ed.
1999-01-01
This issue of ENC Focus focuses on the topic of inquiry and problem solving. Featured articles include: (1) "Inquiry in the Everyday World of Schools" (Ronald D. Anderson); (2) "In the Cascade Reservoir Restoration Project Students Tackle Real-World Problems" (Clint Kennedy with Advanced Biology Students from Cascade High School); (3) "Project…
NASA Technical Reports Server (NTRS)
1992-01-01
CBR Express software solves problems by adapting sorted solutions to new problems specified by a user. It is applicable to a wide range of situations. The technology was originally developed by Inference Corporation for Johnson Space Center's Advanced Software Development Workstation. The project focused on the reuse of software designs, and Inference used CBR as part of the ACCESS prototype software. The commercial CBR Express is used as a "help desk" for customer support, enabling reuse of existing information when necessary. It has been adopted by several companies, among them American Airlines, which uses it to solve reservation system software problems.
Solving Common Mathematical Problems
NASA Technical Reports Server (NTRS)
Luz, Paul L.
2005-01-01
Mathematical Solutions Toolset is a collection of five software programs that rapidly solve some common mathematical problems. The programs consist of a set of Microsoft Excel worksheets. The programs provide for entry of input data and display of output data in a user-friendly, menu-driven format, and for automatic execution once the input data has been entered.
ERIC Educational Resources Information Center
Aznar, Mercedes Martinez; Orcajo, Teresa Ibanez
2005-01-01
A teaching unit on genetics and human inheritance using problem-solving methodology was undertaken with fourth-level Spanish Secondary Education students (15 year olds). The goal was to study certain aspects of the students' learning process (concepts, procedures and attitude) when using this methodology in the school environment. The change…
Universal Design Problem Solving
ERIC Educational Resources Information Center
Sterling, Mary C.
2004-01-01
Universal design is made up of four elements: accessibility, adaptability, aesthetics, and affordability. This article addresses the concept of universal design problem solving through experiential learning for an interior design studio course in postsecondary education. Students' experiences with clients over age 55 promoted an understanding of…
ERIC Educational Resources Information Center
Moore, Jerilou; Sumrall, William J.
2008-01-01
Exploring our patent system is a great way to engage students in creative problem solving. As a result, the authors designed a teaching unit that uses the study of patents to explore one avenue in which scientists and engineers do science. Specifically, through the development of an idea, students learn how science and technology are connected.…
ERIC Educational Resources Information Center
Holden, Becky
2007-01-01
Seeking more effective mathematics instruction, this author decided to incorporate Cognitively Guided Instruction (CGI) into first-grade classroom lessons. Students in CGI mathematics classrooms are prompted to use their prior knowledge to solve new problems, establish cognitive structures to which new learning can be connected, and be driven by…
Solving Problems through Circles
ERIC Educational Resources Information Center
Grahamslaw, Laura; Henson, Lisa H.
2015-01-01
Several problem-solving interventions that utilise a "circle" approach have been applied within the field of educational psychology, for example, Circle Time, Circle of Friends, Sharing Circles, Circle of Adults and Solution Circles. This research explored two interventions, Solution Circles and Circle of Adults, and used thematic…
Circumference and Problem Solving.
ERIC Educational Resources Information Center
Blackburn, Katie; White, David
The concept of pi is one of great importance to all developed civilization and one that can be explored and mastered by elementary students through an inductive and problem-solving approach. Such an approach is outlined and discussed. The approach involves the following biblical quotation: "And he made a moltin sea ten cubits from one brim to the…
Introspection in Problem Solving
ERIC Educational Resources Information Center
Jäkel, Frank; Schreiber, Cornell
2013-01-01
Problem solving research has encountered an impasse. Since the seminal work of Newell und Simon (1972) researchers do not seem to have made much theoretical progress (Batchelder and Alexander, 2012; Ohlsson, 2012). In this paper we argue that one factor that is holding back the field is the widespread rejection of introspection among cognitive…
ERIC Educational Resources Information Center
Wisconsin Univ. - Stout, Menomonie. Center for Vocational, Technical and Adult Education.
The teacher directed problem solving activities package contains 17 units: Future Community Design, Let's Build an Elevator, Let's Construct a Catapult, Let's Design a Recreational Game, Let's Make a Hand Fishing Reel, Let's Make a Wall Hanging, Let's Make a Yo-Yo, Marooned in the Past, Metrication, Mousetrap Vehicles, The Multi System…
The Problem-Solving Nemesis: Mindless Manipulation.
ERIC Educational Resources Information Center
Hawkins, Vincent J.
1987-01-01
Indicates that only 21% of respondents (secondary school math teachers) used computer-assisted instruction for tutorial work, physical models to interpret abstract concepts, or real-life application of the arithmetic or algebraic manipulation. Recommends that creative teaching methods be applied to problem solving. (NKA)
Neural network architecture for solving the algebraic matrix Riccati equation
NASA Astrophysics Data System (ADS)
Ham, Fredric M.; Collins, Emmanuel G.
1996-03-01
This paper presents a neurocomputing approach for solving the algebraic matrix Riccati equation. This approach is able to utilize a good initial condition to reduce the computation time in comparison to standard methods for solving the Riccati equation. The repeated solutions of closely related Riccati equations appears in homotopy algorithms to solve certain problems in fixed-architecture control. Hence, the new approach has the potential to significantly speed-up these algorithms. It also has potential applications in adaptive control. The structured neural network architecture is trained using error backpropagation based on a steepest-descent learning rule. An example is given which illustrates the advantage of utilizing a good initial condition (i.e., initial setting of the neural network synaptic weight matrix) in the structured neural network.
A Computer Algebra Approach to Solving Chemical Equilibria in General Chemistry
ERIC Educational Resources Information Center
Kalainoff, Melinda; Lachance, Russ; Riegner, Dawn; Biaglow, Andrew
2012-01-01
In this article, we report on a semester-long study of the incorporation into our general chemistry course, of advanced algebraic and computer algebra techniques for solving chemical equilibrium problems. The method presented here is an alternative to the commonly used concentration table method for describing chemical equilibria in general…
An application of computer algebra system Cadabra to scientific problems of physics
NASA Astrophysics Data System (ADS)
Sevastianov, L. A.; Kulyabov, D. S.; Kokotchikova, M. G.
2009-12-01
In this article we present two examples solved in a new problem-oriented computer algebra system Cadabra. Solution of the same examples in widespread universal computer algebra system Maple turn out to be more difficult.
ERIC Educational Resources Information Center
Arnau, David; Arevalillo-Herraez, Miguel; Puig, Luis; Gonzalez-Calero, Jose Antonio
2013-01-01
Designers of interactive learning environments with a focus on word problem solving usually have to compromise between the amount of resolution paths that a user is allowed to follow and the quality of the feedback provided. We have built an intelligent tutoring system (ITS) that is able to both track the user's actions and provide adequate…
Computer Problem-Solving Coaches
NASA Astrophysics Data System (ADS)
Hsu, Leon; Heller, Kenneth
2005-09-01
Computers might be able to play an important role in physics instruction by coaching students to develop good problem-solving skills. Building on previous research on student problem solving and on designing computer programs to teach cognitive skills, we are developing a prototype computer coach to provide students with guided practice in solving problems. In addition to helping students become better problem solvers, such programs can be useful in studying how students learn to solve problems and how and if problem-solving skills can be transferred from a computer to a pencil-and-paper environment.
Problem Solving and Beginning Programming.
ERIC Educational Resources Information Center
McAllister, Alan
Based on current models of problem solving within cognitive psychology, this study focused on the spontaneous problem solving strategies used by children as they first learned LOGO computer programming, and on strategy transformations that took place during the problem solving process. The research consisted of a six weeks programming training…
Problem Solving in the Professions.
ERIC Educational Resources Information Center
Jackling, Noel; And Others
1990-01-01
It is proposed that algorithms and heuristics are useful in improving professional problem-solving abilities when contextualized within the academic discipline. A basic algorithm applied to problem solving in undergraduate engineering education and a similar algorithm applicable to legal problems are used as examples. Problem complexity and…
On a modification of minimal iteration methods for solving systems of linear algebraic equations
NASA Astrophysics Data System (ADS)
Yukhno, L. F.
2010-04-01
Modifications of certain minimal iteration methods for solving systems of linear algebraic equations are proposed and examined. The modified methods are shown to be superior to the original versions with respect to the round-off error accumulation, which makes them applicable to solving ill-conditioned problems. Numerical results demonstrating the efficiency of the proposed modifications are given.
Superitem Test: An Alternative Assessment Tool to Assess Students' Algebraic Solving Ability
ERIC Educational Resources Information Center
Lian, Lim Hooi; Yew, Wun Thiam; Idris, Noraini
2010-01-01
Superitem test based on the SOLO model (Structure of the Observing Learning Outcome) has become a powerful alternative assessment tool for monitoring the growth of students' cognitive ability in solving mathematics problems. This article focused on developing a superitem test to assess students' algebraic solving ability through interview method.…
Numerical stability in problems of linear algebra.
NASA Technical Reports Server (NTRS)
Babuska, I.
1972-01-01
Mathematical problems are introduced as mappings from the space of input data to that of the desired output information. Then a numerical process is defined as a prescribed recurrence of elementary operations creating the mapping of the underlying mathematical problem. The ratio of the error committed by executing the operations of the numerical process (the roundoff errors) to the error introduced by perturbations of the input data (initial error) gives rise to the concept of lambda-stability. As examples, several processes are analyzed from this point of view, including, especially, old and new processes for solving systems of linear algebraic equations with tridiagonal matrices. In particular, it is shown how such a priori information can be utilized as, for instance, a knowledge of the row sums of the matrix. Information of this type is frequently available where the system arises in connection with the numerical solution of differential equations.
The Effect of Strategy on Problem Solving: An FMRI Study
ERIC Educational Resources Information Center
Newman, Sharlene D.; Pruce, Benjamin; Rusia, Akash; Burns, Thomas, Jr.
2010-01-01
fMRI was used to examine the differential effect of two problem-solving strategies. Participants were trained to use both a pictorial/spatial and a symbolic/algebraic strategy to solve word problems. While these two strategies activated similar cortical regions, a number of differences were noted in the level of activation. These differences…
Problem Solving Style, Creative Thinking, and Problem Solving Confidence
ERIC Educational Resources Information Center
Houtz, John C.; Selby, Edwin C.
2009-01-01
Forty-two undergraduate and graduate students completed VIEW: An Assessment of Problem Solving Style, the non-verbal Torrance Test Thinking Creatively with Pictures, and the Problem Solving Inventory (PSI). VIEW assesses individuals' orientation to change, manner of processing, and ways of deciding, while the Torrance test measures several…
Parent Problem Solving: Analysis of Problem Solving in Parenthood Transition.
ERIC Educational Resources Information Center
Alpert, Judith L.; And Others
The general purpose of this study was to explore the possibility of adapting the Means-Ends Problem-Solving procedure (MEPS) to the investigation of the individual's transition to parenthood. Specific purposes were to determine (1) the internal consistency of the Parent Problem-Solving Scale (PPSS), of its subclasses, and of a combined subscale;…
Algebraic approach to solve tt dilepton equations
Sonnenschein, Lars
2005-11-01
The set of nonlinear equations describing the standard model kinematics of the top quark antiquark production system in the dilepton decay channel has at most a fourfold ambiguity due to two not fully reconstructed neutrinos. Its most precise solution is of major importance for measurements of top quark properties like the top quark mass and tt spin correlations. Simple algebraic operations allow one to transform the nonlinear equations into a system of two polynomial equations with two unknowns. These two polynomials of multidegree eight can in turn be analytically reduced to one polynomial with one unknown by means of resultants. The obtained univariate polynomial is of degree 16. The number of its real solutions is determined analytically by means of Sturm's theorem, which is as well used to isolate each real solution into a unique pairwise disjoint interval. The solutions are polished by seeking the sign change of the polynomial in a given interval through binary bracketing.
Contextual Problem Solving Model Origination
ERIC Educational Resources Information Center
Ernst, Jeremy V.
2009-01-01
Problem solving has become a central focus of instructional activity in technology education classrooms at all levels (Boser, 1993). Impact assessment considerations incorporating society, culture, and economics are factors that require high-level deliberation involving critical thinking and the implementation of problem solving strategy. The…
Problem Solving, Scaffolding and Learning
ERIC Educational Resources Information Center
Lin, Shih-Yin
2012-01-01
Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…
Learning Impasses in Problem Solving
NASA Technical Reports Server (NTRS)
Hodgson, J. P. E.
1992-01-01
Problem Solving systems customarily use backtracking to deal with obstacles that they encounter in the course of trying to solve a problem. This paper outlines an approach in which the possible obstacles are investigated prior to the search for a solution. This provides a solution strategy that avoids backtracking.
Difficulties in Genetics Problem Solving.
ERIC Educational Resources Information Center
Tolman, Richard R.
1982-01-01
Examined problem-solving strategies of 30 high school students as they solved genetics problems. Proposes a new sequence of teaching genetics based on results: meiosis, sex chromosomes, sex determination, sex-linked traits, monohybrid and dihybrid crosses (humans), codominance (humans), and Mendel's pea experiments. (JN)
Adolescent Problem-Solving Thinking
ERIC Educational Resources Information Center
Platt, Jerome J.; And Others
1974-01-01
The hypothesis that adolescent psychiatric patients would be deficient with respect to normal controls in their interpersonal problem-solving skills was tested by comparing the patient and control groups on seven tasks ref lecting different aspects of problem solving. (Author)
Creative Thinking and Problem Solving.
ERIC Educational Resources Information Center
Lacy, Grace
The booklet considers the nature of creativity in children and examines classroom implications. Among the topics addressed are the following: theories about creativity; research; developments in brain research; the creative process; creative problem solving; the Structure of Intellect Problem Solving (SIPS) model; a rationale for creativity in the…
The Future Problem Solving Program.
ERIC Educational Resources Information Center
Crabbe, Anne B.
1989-01-01
Describes the Future Problem Solving Program, in which students from the U.S. and around the world are tackling some complex challenges facing society, ranging from acid rain to terrorism. The program uses a creative problem solving process developed for business and industry. A sixth-grade toxic waste cleanup project illustrates the process.…
ERIC Educational Resources Information Center
Callison, Daniel
1998-01-01
Presents a revised working definition of schema, lists four types of knowledge that individuals have (i.e., identification, elaboration, planning, and execution), and outlines issues in schema theory. The usefulness of schema in problem solving and information problem solving is discussed, and implications for teachers of information literacy are…
Problem Solving vis Soap Bubbles
ERIC Educational Resources Information Center
Bader, William A.
1975-01-01
Describes the use of a scientific phenomenon related to the concept of surface tension as an intriguing vehicle to direct attention to useful problem solving techniques. The need for a definite building process in attempts to solve mathematical problems is stressed. (EB)
ERIC Educational Resources Information Center
De Bono, Edward
A group of children were presented with several tasks, including the invention of a sleep machine and a machine to weigh elephants. The tasks were chosen to involve the children in coping with problems of a distinct character. A study of the children's drawings and interpretations shows that children's thinking ability is not very different from…
Algebraic solution of the synthesis problem for coded sequences
Leukhin, Anatolii N
2005-08-31
The algebraic solution of a 'complex' problem of synthesis of phase-coded (PC) sequences with the zero level of side lobes of the cyclic autocorrelation function (ACF) is proposed. It is shown that the solution of the synthesis problem is connected with the existence of difference sets for a given code dimension. The problem of estimating the number of possible code combinations for a given code dimension is solved. It is pointed out that the problem of synthesis of PC sequences is related to the fundamental problems of discrete mathematics and, first of all, to a number of combinatorial problems, which can be solved, as the number factorisation problem, by algebraic methods by using the theory of Galois fields and groups. (fourth seminar to the memory of d.n. klyshko)
NASA Technical Reports Server (NTRS)
1979-01-01
The corrosion problem, it turned out, stemmed from the process called electrolysis. When two different metals are in contact, an electrical potential is set up between them; when the metals are surrounded by an electrolyte, or a conducting medium, the resulting reaction causes corrosion, often very rapid corrosion. In this case the different metals were the copper grounding system and the ferry's aluminum hull; the dockside salt water in which the hull was resting served as the electrolyte. After identifying the source of the trouble, the Ames engineer provided a solution: a new wire-and-rod grounding system made of aluminum like the ferry's hull so there would no longer be dissimilar metals in contact. Ames research on the matter disclosed that the problem was not unique to the Golden Gate ferries. It is being experienced by many pleasure boat operators who are probably as puzzled about it as was the Golden Gate Transit Authority.
Student Difficulties in Mathematizing Word Problems in Algebra
ERIC Educational Resources Information Center
Jupri, Al; Drijvers, Paul
2016-01-01
To investigate student difficulties in solving word problems in algebra, we carried out a teaching experiment involving 51 Indonesian students (12/13 year-old) who used a digital mathematics environment. The findings were backed up by an interview study, in which eighteen students (13/14 year-old) were involved. The perspective of mathematization,…
Irrelevance in Problem Solving
NASA Technical Reports Server (NTRS)
Levy, Alon Y.
1992-01-01
The notion of irrelevance underlies many different works in AI, such as detecting redundant facts, creating abstraction hierarchies and reformulation and modeling physical devices. However, in order to design problem solvers that exploit the notion of irrelevance, either by automatically detecting irrelevance or by being given knowledge about irrelevance, a formal treatment of the notion is required. In this paper we present a general framework for analyzing irrelevance. We discuss several properties of irrelevance and show how they vary in a space of definitions outlined by the framework. We show how irrelevance claims can be used to justify the creation of abstractions thereby suggesting a new view on the work on abstraction.
A Cognitive Model of Experts' Algebraic Solving Methods
ERIC Educational Resources Information Center
Cortes, Anibal
2003-01-01
We studied experts' solving methods and analyzed the nature of mathematical knowledge as well as their efficiency in algebraic calculations. We constructed a model of the experts cognitive functioning (notably teachers) in which the observed automatisms were modeled in terms of schemes and instruments. Mathematical justification of transformation…
He's iteration formulation for solving nonlinear algebraic equations
NASA Astrophysics Data System (ADS)
Qian, W.-X.; Ye, Y.-H.; Chen, J.; Mo, L.-F.
2008-02-01
Newton iteration method is sensitive to initial guess and its slope. To overcome the shortcoming, He's iteration method is used to solve nonlinear algebraic equations where Newton iteration method becomes invalid. Some examples are given, showing that the method is effective.
Supporting Problem Solving in PBL
ERIC Educational Resources Information Center
Jonassen, David
2011-01-01
Although the characteristics of PBL (problem focused, student centered, self-directed, etc.) are well known, the components of a problem-based learning environment (PBLE) and the cognitive scaffolds necessary to support learning to solve different kinds of problems with different learners is less clear. This paper identifies the different…
Problem Solving with General Semantics.
ERIC Educational Resources Information Center
Hewson, David
1996-01-01
Discusses how to use general semantics formulations to improve problem solving at home or at work--methods come from the areas of artificial intelligence/computer science, engineering, operations research, and psychology. (PA)
Students' Problem Solving and Justification
ERIC Educational Resources Information Center
Glass, Barbara; Maher, Carolyn A.
2004-01-01
This paper reports on methods of students' justifications of their solution to a problem in the area of combinatorics. From the analysis of the problem solving of 150 students in a variety of settings from high-school to graduate study, four major forms of reasoning evolved: (1) Justification by Cases, (2) Inductive Argument, (3) Elimination…
Sex Differences in Problem Solving.
ERIC Educational Resources Information Center
Johnson, Edward S.
1984-01-01
Nine experiments were performed to verify and extend studies on sex differences in problem solving conducted in the 1950s by Sweeney, Carey, Milton, Nakamura, and Berry. A 20-item problem set was administered to over 1,000 college students. Results indicated a male advantage, averaging 35 percent, virtually identical with 1950s results. (Author/BS)
Promote Problem-Solving Discourse
ERIC Educational Resources Information Center
Bostic, Jonathan; Jacobbe, Tim
2010-01-01
Fourteen fifth-grade students gather at the front of the classroom as their summer school instructor introduces Jonathan Bostic as the mathematics teacher for the week. Before examining any math problems, Bostic sits at eye level with the students and informs them that they will solve problems over the next four days by working individually as…
Robot, computer problem solving system
NASA Technical Reports Server (NTRS)
Becker, J. D.
1972-01-01
The development of a computer problem solving system is reported that considers physical problems faced by an artificial robot moving around in a complex environment. Fundamental interaction constraints with a real environment are simulated for the robot by visual scan and creation of an internal environmental model. The programming system used in constructing the problem solving system for the simulated robot and its simulated world environment is outlined together with the task that the system is capable of performing. A very general framework for understanding the relationship between an observed behavior and an adequate description of that behavior is included.
Aging and skilled problem solving.
Charness, N
1981-03-01
Information-processing models of problem solving too often are based on restrictive age ranges. On the other hand, gerontologists have investigated few problem-solving tasks and have rarely generated explicit models. As this article demonstrates, both fields can benefit by closer collaboration. One major issue in gerontology is whether aging is associated with irreversible decrement or developmental plasticity. If both processes occur, then an appropriate strategy for investigating aging is to equate age groups for molar problem-solving performance and search for differences in the underlying components. This strategy was adopted to examine the relation of age and skill to problem solving in chess. Chess players were selected to vary widely in age and skill such that these variables were uncorrelated. Problem-solving and memory tasks were administered. Skill level was the only significant predictor for accuracy in both a choose-a-move task and a speeded end-game evaluation task. Age (negatively) and skill (positively) jointly determined performance in an unexpected recall task. Efficient chunking in recall was positively related to skill, though negatively related to age. Recognition confidence, though not accuracy, was negatively related to age. Thus despite age-related declines in encoding and retrieval of information, older players match the problem-solving performance of equivalently skilled younger players. Apparently, they can search the problem space more efficiently, as evidenced by taking less time to select an equally good move. Models of chess skill that stress that role of encoding efficiency, as indexed by chunking in recall, need to be modified to account for performance over the life span.
Problem? "No Problem!" Solving Technical Contradictions
ERIC Educational Resources Information Center
Kutz, K. Scott; Stefan, Victor
2007-01-01
TRIZ (pronounced TREES), the Russian acronym for the theory of inventive problem solving, enables a person to focus his attention on finding genuine, potential solutions in contrast to searching for ideas that "may" work through a happenstance way. It is a patent database-backed methodology that helps to reduce time spent on the problem,…
Identification of Strategies Used by Fifth Graders To Solve Mathematics Word Problems.
ERIC Educational Resources Information Center
Palomares, Julio Cesar Arteaga; Hernandez, Jose Guzman
When students confront arithmetic or algebraic word problems, they develop ideas and notations during the processes of solving them by using various arithmetic strategies. Those ideas and notations are the basis for solving that type of problems. Is it possible to aid the development of students' algebraic thinking during their transition from…
Principles for Teaching Problem Solving. Technical Paper.
ERIC Educational Resources Information Center
Foshay, Rob; Kirkley, Jamie
This Technical Paper focuses on principles for teaching problem solving. Part 1 addresses the need to teach problem solving. Part 2 defines problem solving skills, and describes: general problem solving models of the 1960s and 1970s, current problem solving models, declarative knowledge, mental models, expert versus novice knowledge, procedural…
Working Memory and Literacy as Predictors of Performance on Algebraic Word Problems
ERIC Educational Resources Information Center
Lee, Kerry; Ng, Swee-Fong; Ng, Ee-Lynn; Lim, Zee-Ying
2004-01-01
Previous studies on individual differences in mathematical abilities have shown that working memory contributes to early arithmetic performance. In this study, we extended the investigation to algebraic word problem solving. A total of 151 10-year-olds were administered algebraic word problems and measures of working memory, intelligence quotient…
Quantum Computing: Solving Complex Problems
DiVincenzo, David [IBM Watson Research Center
2016-07-12
One of the motivating ideas of quantum computation was that there could be a new kind of machine that would solve hard problems in quantum mechanics. There has been significant progress towards the experimental realization of these machines (which I will review), but there are still many questions about how such a machine could solve computational problems of interest in quantum physics. New categorizations of the complexity of computational problems have now been invented to describe quantum simulation. The bad news is that some of these problems are believed to be intractable even on a quantum computer, falling into a quantum analog of the NP class. The good news is that there are many other new classifications of tractability that may apply to several situations of physical interest.
Robot computer problem solving system
NASA Technical Reports Server (NTRS)
Becker, J. D.; Merriam, E. W.
1974-01-01
The conceptual, experimental, and practical aspects of the development of a robot computer problem solving system were investigated. The distinctive characteristics were formulated of the approach taken in relation to various studies of cognition and robotics. Vehicle and eye control systems were structured, and the information to be generated by the visual system is defined.
Gender and Mathematical Problem Solving.
ERIC Educational Resources Information Center
Duffy, Jim; Gunther, Georg; Walters, Lloyd
1997-01-01
Studied the relationship between gender and mathematical problem solving in 83 male and 76 female high achieving Canadian 12-year-olds. Gender differences were found on the Canadian Test of Basic Skills but not on the GAUSS assessment. Implications for the discussion of the origin of gender differences in mathematics are discussed. (SLD)
Customer Service & Team Problem Solving.
ERIC Educational Resources Information Center
Martin, Sabrina Budasi
This curriculum guide provides materials for a six-session, site-specific training course in customer service and team problem solving for the Claretian Medical Center. The course outline is followed the six lesson plans. Components of each lesson plan include a list of objectives, an outline of activities and discussion topics for the lesson,…
ERIC Educational Resources Information Center
Pizlo, Zygmunt
2007-01-01
This paper presents a bibliography of a little more than 100 references related to human problem solving, arranged by subject matter. The references were taken from PsycInfo and Compendex databases. Only journal papers, books and dissertations are included. The topics include human development, education, neuroscience, research in applied…
Robot computer problem solving system
NASA Technical Reports Server (NTRS)
Becker, J. D.; Merriam, E. W.
1974-01-01
The conceptual, experimental, and practical phases of developing a robot computer problem solving system are outlined. Robot intelligence, conversion of the programming language SAIL to run under the THNEX monitor, and the use of the network to run several cooperating jobs at different sites are discussed.
Teaching through Collaborative Problem Solving.
ERIC Educational Resources Information Center
Blandford, A. E.
1994-01-01
Discussion of a prototype intelligent education system called WOMBAT (Weighted Objectives Method by Arguing with the Tutor) focuses on dialogue and negotiation in collaborative problem solving. The results of a formative evaluation, in which the system was used by 10 subjects who commented on various aspects of the design, are presented. (Contains…
ERIC Educational Resources Information Center
Champagne, Audrey B.; And Others
Teachers in elementary schools, supervisors of instruction, and other educational practitioners are the primary audience for this publication. The paper presents philosophical, psychological, and practical reasons for including a problem-solving approach in elementary school instruction. It draws on the writings of John Dewey, Jean Piaget, James…
Genetics problem solving and worldview
NASA Astrophysics Data System (ADS)
Dale, Esther
The research goal was to determine whether worldview relates to traditional and real-world genetics problem solving. Traditionally, scientific literacy emphasized content knowledge alone because it was sufficient to solve traditional problems. The contemporary definition of scientific literacy is, "The knowledge and understanding of scientific concepts and processes required for personal decision-making, participation in civic and cultural affairs and economic productivity" (NRC, 1996). An expanded definition of scientific literacy is needed to solve socioscientific issues (SSI), complex social issues with conceptual, procedural, or technological associations with science. Teaching content knowledge alone assumes that students will find the scientific explanation of a phenomenon to be superior to a non-science explanation. Formal science and everyday ways of thinking about science are two different cultures (Palmer, 1999). Students address this rift with cognitive apartheid, the boxing away of science knowledge from other types of knowledge (Jedege & Aikenhead, 1999). By addressing worldview, cognitive apartheid may decrease and scientific literacy may increase. Introductory biology students at the University of Minnesota during fall semester 2005 completed a written questionnaire-including a genetics content-knowledge test, four genetic dilemmas, the Worldview Assessment Instrument (WAI) and some items about demographics and religiosity. Six students responded to the interview protocol. Based on statistical analysis and interview data, this study concluded the following: (1) Worldview, in the form of metaphysics, relates to solving traditional genetic dilemmas. (2) Worldview, in the form of agency, relates to solving traditional genetics problems. (3) Thus, worldview must be addressed in curriculum, instruction, and assessment.
Integrating Study Skills and Problem Solving into Remedial Mathematics
ERIC Educational Resources Information Center
Cornick, Jonathan; Guy, G. Michael; Beckford, Ian
2015-01-01
Students at a large urban community college enrolled in seven classes of an experimental remedial algebra programme, which integrated study skills instruction and collaborative problem solving. A control group of seven classes was taught in a traditional lecture format without study skills instruction. Student performance in the course was…
Problem Solving Abilities and Perceptions in Alternative Certification Mathematics Teachers
ERIC Educational Resources Information Center
Evans, Brian R.
2012-01-01
It is important for teacher educators to understand new alternative certification middle and high school teachers' mathematical problem solving abilities and perceptions. Teachers in an alternative certification program in New York were enrolled in a proof-based algebra course. At the beginning and end of a semester participants were given a…
Reversible Reasoning and the Working Backwards Problem Solving Strategy
ERIC Educational Resources Information Center
Ramful, Ajay
2015-01-01
Making sense of mathematical concepts and solving mathematical problems may demand different forms of reasoning. These could be either domain-based, such as algebraic, geometric or statistical reasoning, while others are more general such as inductive/deductive reasoning. This article aims at giving visibility to a particular form of reasoning…
Anticipating Student Responses to Improve Problem Solving
ERIC Educational Resources Information Center
Wallace, Ann H.
2007-01-01
This article illustrates how problem solving can be enhanced through careful planning and problem presentation. Often, students shut down or are turned off when presented with a problem to solve. The author describes how to motivate students to embrace a problem to be solved and provides helpful prompts to further the problem-solving process.…
Solving the generalized Langevin equation with the algebraically correlated noise
NASA Astrophysics Data System (ADS)
Srokowski, T.; Płoszajczak, M.
1998-04-01
We solve the Langevin equation with the memory kernel. The stochastic force possesses algebraic correlations, proportional to 1/t. The velocity autocorrelation function and related quantities characterizing transport properties are calculated with the assumption that the system is in thermal equilibrium. Stochastic trajectories are simulated numerically, using the kangaroo process as a noise generator. Results of this simulation resemble Lévy walks with divergent moments of the velocity distribution. We consider motion of a Brownian particle, both without any external potential and in the harmonic oscillator field, in particular the escape from a potential well. The results are compared with memory-free calculations for the Brownian particle.
Unified derivation of exact solutions to the relativistic Coulomb problem: Lie algebraic approach
NASA Astrophysics Data System (ADS)
Panahi, H.; Baradaran, M.; Savadi, A.
2015-10-01
Exact algebraic solutions of the D-dimensional Dirac and Klein-Gordon equations for the Coulomb potential are obtained in a unified treatment. It is shown that two cases are reducible to the same basic equation, which can be solved exactly. Using the Lie algebraic approach, the general exact solutions of the problem are obtained within the framework of representation theory of the sl(2) Lie algebra.
Journey toward Teaching Mathematics through Problem Solving
ERIC Educational Resources Information Center
Sakshaug, Lynae E.; Wohlhuter, Kay A.
2010-01-01
Teaching mathematics through problem solving is a challenge for teachers who learned mathematics by doing exercises. How do teachers develop their own problem solving abilities as well as their abilities to teach mathematics through problem solving? A group of teachers began the journey of learning to teach through problem solving while taking a…
Solving the Dark Matter Problem
Baltz, Ted
2016-07-12
Cosmological observations have firmly established that the majority of matter in the universe is of an unknown type, called 'dark matter'. A compelling hypothesis is that the dark matter consists of weakly interacting massive particles (WIMPs) in the mass range around 100 GeV. If the WIMP hypothesis is correct, such particles could be created and studied at accelerators. Furthermore they could be directly detected as the primary component of our galaxy. Solving the dark matter problem requires that the connection be made between the two. We describe some theoretical and experimental avenues that might lead to this connection.
Structured problem solving for materiel managers.
Samelson, Q B
1998-05-01
A structured approach to problem solving and solution documentation is one of the keys to continuous improvement. Without it, it is quite possible to solve the wrong problem, to solve the right problem in the wrong way, or (maybe worst of all) to solve the same problem over and over again. Companies that have figured out how to solve the right problems in the right way, once and for all, will ultimately move forward much faster than their competitors.
Tracking Problem Solving by Multivariate Pattern Analysis and Hidden Markov Model Algorithms
Anderson, John R.
2011-01-01
Multivariate pattern analysis can be combined with hidden Markov model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first “mind reading” application involves using fMRI activity to track what students are doing as they solve a sequence of algebra problems. The methodology achieves considerable accuracy at determining both what problem-solving step the students are taking and whether they are performing that step correctly. The second “model discovery” application involves using statistical model evaluation to determine how many substates are involved in performing a step of algebraic problem solving. This research indicates that different steps involve different numbers of substates and these substates are associated with different fluency in algebra problem solving. PMID:21820455
Tracking problem solving by multivariate pattern analysis and Hidden Markov Model algorithms.
Anderson, John R
2012-03-01
Multivariate pattern analysis can be combined with Hidden Markov Model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first "mind reading" application involves using fMRI activity to track what students are doing as they solve a sequence of algebra problems. The methodology achieves considerable accuracy at determining both what problem-solving step the students are taking and whether they are performing that step correctly. The second "model discovery" application involves using statistical model evaluation to determine how many substates are involved in performing a step of algebraic problem solving. This research indicates that different steps involve different numbers of substates and these substates are associated with different fluency in algebra problem solving.
Theoretical and Philosophical Perspectives to Problem Solving.
ERIC Educational Resources Information Center
Sherman, Thomas M.; And Others
1988-01-01
Five articles explore various theoretical aspects of problems and problem solving skills. Highlights include strategies to learn problem solving skills; knowledge structures; metacognition; behavioral processes and cognitive psychology; erotetic logic; creativity as an aspect of computer problem solving; and programing as a problem-solving…
Disciplinary Foundations for Solving Interdisciplinary Scientific Problems
ERIC Educational Resources Information Center
Zhang, Dongmei; Shen, Ji
2015-01-01
Problem-solving has been one of the major strands in science education research. But much of the problem-solving research has been conducted on discipline-based contexts; little research has been done on how students, especially individuals, solve interdisciplinary problems. To understand how individuals reason about interdisciplinary problems, we…
King Oedipus and the Problem Solving Process.
ERIC Educational Resources Information Center
Borchardt, Donald A.
An analysis of the problem solving process reveals at least three options: (1) finding the cause, (2) solving the problem, and (3) anticipating potential problems. These methods may be illustrated by examining "Oedipus Tyrannus," a play in which a king attempts to deal with a problem that appears to be beyond his ability to solve, and applying…
ERIC Educational Resources Information Center
Wasserman, Nicholas H.
2014-01-01
Algebraic structures are a necessary aspect of algebraic thinking for K-12 students and teachers. An approach for introducing the algebraic structure of groups and fields through the arithmetic properties required for solving simple equations is summarized; the collective (not individual) importance of these axioms as a foundation for algebraic…
Community-powered problem solving.
Gouillart, Francis; Billings, Douglas
2013-04-01
Traditionally, companies have managed their constituencies with specific processes: marketing to customers, procuring from vendors, developing HR policies for employees, and so on. The problem is, such processes focus on repeatability and compliance, so they can lead to stagnation. Inviting your constituencies to collectively help you solve problems and exploit opportunities--"co-creation"--is a better approach. It allows you to continually tap the skills and insights of huge numbers of stakeholders and develop new ways to produce value for all. The idea is to provide stakeholders with platforms (physical and digital forums) on which they can interact, get them to start exploring new experiences and connections, and let the system grow organically. A co-creation initiative by a unit of Becton, Dickinson and Company demonstrates how this works. A global leader in syringes, BD set out to deepen its ties with hospital customers and help them reduce the incidence of infections from unsafe injection and syringe disposal practices. The effort began with a cross-functional internal team, brought in the hospital procurement and supply managers BD had relationships with, and then reached out to hospitals' infection-prevention and occupational health leaders. Eventually product designers, nurses, sustainability staffers, and even hospital CFOs were using the platform, contributing data that generated new best practices and reduced infections.
Community-powered problem solving.
Gouillart, Francis; Billings, Douglas
2013-04-01
Traditionally, companies have managed their constituencies with specific processes: marketing to customers, procuring from vendors, developing HR policies for employees, and so on. The problem is, such processes focus on repeatability and compliance, so they can lead to stagnation. Inviting your constituencies to collectively help you solve problems and exploit opportunities--"co-creation"--is a better approach. It allows you to continually tap the skills and insights of huge numbers of stakeholders and develop new ways to produce value for all. The idea is to provide stakeholders with platforms (physical and digital forums) on which they can interact, get them to start exploring new experiences and connections, and let the system grow organically. A co-creation initiative by a unit of Becton, Dickinson and Company demonstrates how this works. A global leader in syringes, BD set out to deepen its ties with hospital customers and help them reduce the incidence of infections from unsafe injection and syringe disposal practices. The effort began with a cross-functional internal team, brought in the hospital procurement and supply managers BD had relationships with, and then reached out to hospitals' infection-prevention and occupational health leaders. Eventually product designers, nurses, sustainability staffers, and even hospital CFOs were using the platform, contributing data that generated new best practices and reduced infections. PMID:23593769
Problem Solving in the General Mathematics Classroom
ERIC Educational Resources Information Center
Troutman, Andria Price; Lichtenberg, Betty Plunkett
1974-01-01
Five steps common to different problem solving models are listed. Next, seven specific abilities related to solving problems are discussed and examples given. Sample activities, appropriate to help in developing these specific abilities, are suggested. (LS)
NASA Astrophysics Data System (ADS)
DeMul, Frits F. M.; Batlle, Cristina Martin i.; DeBruijn, Imme; Rinzema, Kees
2004-01-01
Teaching physics to first-year university students (in the USA: junior/senior level) is often hampered by their lack of skills in the underlying mathematics, and that in turn may block their understanding of the physics and their ability to solve problems. Examples are vector algebra, differential expressions and multi-dimensional integrations, and the Gauss and Ampère laws learnt in electromagnetism courses. To enhance those skills in a quick and efficient way we have developed 'Integrating Mathematics in University Physics', in which students are provided with a selection of problems (exercises) that explicitly deal with the relation between physics and mathematics. The project is based on computer-assisted instruction (CAI), and available via the Internet (http://tnweb.tn.utwente.nl/onderwijs/; or http://www.utwente.nl/; search or click to: CONECT). Normally, in CAI a predefined student-guiding sequence for problem solving is used (systematic problem solving). For self-learning this approach was found to be far too rigid. Therefore, we developed the 'adventurous problem solving' (APS) method. In this new approach, the student has to find the solution by developing his own problem-solving strategy in an interactive way. The assessment of mathematical answers to physical questions is performed using a background link with an algebraic symbolic language interpreter. This manuscript concentrates on the subject of APS.
The Important Thing about Teaching Problem Solving
ERIC Educational Resources Information Center
Roberts, Sally K.
2010-01-01
The author teaches a content course in problem solving for middle school teachers. During the course, teacher candidates have the opportunity to confront their insecurities as they actively engage in solving math problems using a variety of strategies. As the semester progresses, they add new strategies to their problem-solving arsenal and…
Developing Creativity through Collaborative Problem Solving
ERIC Educational Resources Information Center
Albert, Lillie R.; Kim, Rina
2013-01-01
This paper discusses an alternative approach for developing problem solving experiences for students. The major argument is that students can develop their creativity by engaging in collaborative problem solving activities in which they apply a variety of mathematical methods creatively to solve problems. The argument is supported by: considering…
Problem Solving Appraisal of Delinquent Adolescents.
ERIC Educational Resources Information Center
Perez, Ruperto M.; And Others
The study investigated the following: (1) the relationship of problem solving appraisal to narcissistic vulnerability, locus of control, and depression; (2) the differences in problem solving appraisal, locus of control, and depression in first-time and repeat offenders; and (3) the prediction of problem solving appraisal by narcissistic…
Perspectives on Problem Solving and Instruction
ERIC Educational Resources Information Center
van Merrienboer, Jeroen J. G.
2013-01-01
Most educators claim that problem solving is important, but they take very different perspective on it and there is little agreement on how it should be taught. This article aims to sort out the different perspectives and discusses problem solving as a goal, a method, and a skill. As a goal, problem solving should not be limited to well-structured…
Kindergarten Students Solving Mathematical Word Problems
ERIC Educational Resources Information Center
Johnson, Nickey Owen
2013-01-01
The purpose of this study was to explore problem solving with kindergarten students. This line of inquiry is highly significant given that Common Core State Standards emphasize deep, conceptual understanding in mathematics as well as problem solving in kindergarten. However, there is little research on problem solving with kindergarten students.…
LEGO Robotics: An Authentic Problem Solving Tool?
ERIC Educational Resources Information Center
Castledine, Alanah-Rei; Chalmers, Chris
2011-01-01
With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the…
Collis-Romberg Mathematical Problem Solving Profiles.
ERIC Educational Resources Information Center
Collis, K. F.; Romberg, T. A.
Problem solving has become a focus of mathematics programs in Australia in recent years, necessitating the assessment of students' problem-solving abilities. This manual provides a problem-solving assessment and teaching resource package containing four elements: (1) profiles assessment items; (2) profiles diagnostic forms for recording individual…
Models of Problem Solving Processes and Abilities.
ERIC Educational Resources Information Center
Feldhusen, John F.; Guthrie, Virginia A.
1979-01-01
This paper reviews current models of problem solving to identify results relevant to teachers or instructional developers. Four areas are covered: information processing models, approaches stressing human abilities and factors, creative problem solving models, and other aspects of problem solving. Part of a theme issue on intelligence. (Author/SJL)
Flowing toward Correct Contributions during Group Problem Solving: A Statistical Discourse Analysis
ERIC Educational Resources Information Center
Chiu, Ming Ming
2008-01-01
Groups that created more correct ideas (correct contributions or CCs) might be more likely to solve a problem, and students' recent actions (micro-time context) might aid CC creation. 80 high school students worked in groups of 4 on an algebra problem. Groups with higher mathematics grades or more CCs were more likely to solve the problem. Dynamic…
Process Inquiry: Analysis of Oral Problem-Solving Skills in Mathematics of Engineering Students
ERIC Educational Resources Information Center
Trance, Naci John C.
2013-01-01
This paper presents another effort in determining the difficulty of engineering students in terms of solving word problems. Students were presented with word problems in algebra. Then, they were asked to solve the word problems orally; that is, before they presented their written solutions, they were required to explain how they understood the…
Teaching Conceptual Model-Based Word Problem Story Grammar to Enhance Mathematics Problem Solving
ERIC Educational Resources Information Center
Xin, Yan Ping; Wiles, Ben; Lin, Yu-Ying
2008-01-01
Borrowing the concept of story grammar from reading comprehension literature, the purpose of this study was to examine the effect of teaching "word problem (WP) story grammar" on arithmetic WP solving that emphasizes the algebraic expression of mathematical relations in conceptual models. Participants were five students in Grades 4 and 5 with or…
Toward a Design Theory of Problem Solving.
ERIC Educational Resources Information Center
Jonassen, David H.
2000-01-01
Proposes a metatheory of problem solving. Describes differences among problems in terms of their structured ness, domain specificity (abstractness), and complexity; describes individual differences that affect problem solving; and presents a typology of problems, each of which engages different cognitive, affective, and conative process and…
Benhammouda, Brahim
2016-01-01
Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems. PMID:27330880
Powell, Sarah R; Fuchs, Lynn S
2014-08-01
According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 2(nd)- grade students, we administered (a) measures of calculations and word problems in the fall and (b) an assessment of pre-algebraic reasoning, with items that assessed solving equations and functions, in the spring. Based on the calculation and word-problem measures, we placed 148 students into 1 of 4 difficulty status categories: typically performing, calculation difficulty, word-problem difficulty, or difficulty with calculations and word problems. Analyses of variance were conducted on the 148 students; path analytic mediation analyses were conducted on the larger sample of 789 students. Across analyses, results corroborated the finding that word-problem difficulty is more strongly associated with difficulty with pre-algebraic reasoning. As an indicator of later algebra difficulty, word-problem difficulty may be a more useful predictor than calculation difficulty, and students with word-problem difficulty may require a different level of algebraic reasoning intervention than students with calculation difficulty.
Powell, Sarah R; Fuchs, Lynn S
2014-08-01
According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 2(nd)- grade students, we administered (a) measures of calculations and word problems in the fall and (b) an assessment of pre-algebraic reasoning, with items that assessed solving equations and functions, in the spring. Based on the calculation and word-problem measures, we placed 148 students into 1 of 4 difficulty status categories: typically performing, calculation difficulty, word-problem difficulty, or difficulty with calculations and word problems. Analyses of variance were conducted on the 148 students; path analytic mediation analyses were conducted on the larger sample of 789 students. Across analyses, results corroborated the finding that word-problem difficulty is more strongly associated with difficulty with pre-algebraic reasoning. As an indicator of later algebra difficulty, word-problem difficulty may be a more useful predictor than calculation difficulty, and students with word-problem difficulty may require a different level of algebraic reasoning intervention than students with calculation difficulty. PMID:25309044
Analog Processor To Solve Optimization Problems
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Eberhardt, Silvio P.; Thakoor, Anil P.
1993-01-01
Proposed analog processor solves "traveling-salesman" problem, considered paradigm of global-optimization problems involving routing or allocation of resources. Includes electronic neural network and auxiliary circuitry based partly on concepts described in "Neural-Network Processor Would Allocate Resources" (NPO-17781) and "Neural Network Solves 'Traveling-Salesman' Problem" (NPO-17807). Processor based on highly parallel computing solves problem in significantly less time.
Solving Large-scale Eigenvalue Problems in SciDACApplications
Yang, Chao
2005-06-29
Large-scale eigenvalue problems arise in a number of DOE applications. This paper provides an overview of the recent development of eigenvalue computation in the context of two SciDAC applications. We emphasize the importance of Krylov subspace methods, and point out its limitations. We discuss the value of alternative approaches that are more amenable to the use of preconditioners, and report the progression using the multi-level algebraic sub-structuring techniques to speed up eigenvalue calculation. In addition to methods for linear eigenvalue problems, we also examine new approaches to solving two types of non-linear eigenvalue problems arising from SciDAC applications.
NASA Astrophysics Data System (ADS)
Yukhno, L. F.
2007-12-01
The use of modifications of certain well-known methods of the conjugate direction type for solving systems of linear algebraic equations with rectangular matrices is examined. The modified methods are shown to be superior to the original versions with respect to the round-off accumulation; the advantage is especially large for ill-conditioned matrices. Examples are given of the efficient use of the modified methods for solving certain fairly large ill-conditioned problems.
NASA Astrophysics Data System (ADS)
Muthuvalu, Mohana Sundaram; Aruchunan, Elayaraja; Koh, Wei Sin; Akhir, Mohd Kamalrulzaman Md; Sulaiman, Jumat; Karim, Samsul Ariffin Abdul
2014-07-01
In this paper, the application of the Accelerated Over-Relaxation (AOR) iterative method is extended to solve first order composite closed Newton-Cotes quadrature (1-CCNC) algebraic equations arising from second kind linear Fredholm integral equations. The formulation and implementation of the method are also discussed. In addition, numerical results by solving several test problems are included and compared with the conventional iterative methods.
Strengthening Programs through Problem Solving.
ERIC Educational Resources Information Center
Dyer, Jim
1993-01-01
Describes a secondary agricultural education program that was a dumping ground for academically disadvantaged students. Discusses how such a program can be improved by identifying problems and symptoms, treating problems, and goal setting. (JOW)
Analyzing and Solving Productivity Problems.
ERIC Educational Resources Information Center
Walsh, David S.; Johnson, Thomas J.
1980-01-01
The authors discuss ways to define a company's position on productivity, and explain productivity concepts. They describe a problem cause/solution set matrix with which to identify accurately the most probable cause of productivity problems. (SK)
Distributed problem solving by pilots and dispatchers
NASA Technical Reports Server (NTRS)
Orasanu, Judith; Wich, Mike; Fischer, Ute; Jobe, Kim; Mccoy, Elaine; Beatty, Roger; Smith, Phil
1993-01-01
The study addressed the following question: Are flight planning problems solved differently by PILOTS and DISPATCHERS when they work alone versus when they work together? Aspect of their performance that were of interest include the following: Problem perception and definition; Problem solving strategies and information use; Options considered; Solution and rational; and errors.
New Perspectives on Human Problem Solving
ERIC Educational Resources Information Center
Goldstone, Robert L.; Pizlo, Zygmunt
2009-01-01
In November 2008 at Purdue University, the 2nd Workshop on Human Problem Solving was held. This workshop, which was a natural continuation of the first workshop devoted almost exclusively to optimization problems, addressed a wider range of topics that reflect the scope of the "Journal of Problem Solving." The workshop was attended by 35…
General Description of Human Problem Solving.
ERIC Educational Resources Information Center
Klein, Gary A.; Weitzenfeld, Julian
A theoretical model relating problem identification to problem solving is presented. The main purpose of the study is to increase understanding of decision making among Air Force educators. The problem-solving process is defined as the generation and evaluation of alternatives that will accomplish what is needed and the reidentification of what is…
Teaching Effective Problem Solving Strategies for Interns
ERIC Educational Resources Information Center
Warren, Louis L.
2005-01-01
This qualitative study investigates what problem solving strategies interns learn from their clinical teachers during their internships. Twenty-four interns who completed their internship in the elementary grades shared what problem solving strategies had the greatest impact upon them in learning how to deal with problems during their internship.…
Learning to Solve Problems in Primary Grades
ERIC Educational Resources Information Center
Whitin, Phyllis; Whitin, David J.
2008-01-01
Problem solving lies at the heart of mathematical learning. Children need opportunities to write, discuss, and solve problems on a regular basis. The problems must incorporate grade-appropriate content and be "accessible and engaging to the students, building on what they know and can do." Teachers also play a key role in establishing a classroom…
Common Core: Solve Math Problems
ERIC Educational Resources Information Center
Strom, Erich
2012-01-01
The new common core standards for mathematics demand that students (and teachers!) exhibit deeper conceptual understanding. That's music to the ears of education professor John Tapper, who says teachers have overemphasized teaching procedures--and getting right answers. In his new book, "Solving for Why," he makes a powerful case for moving beyond…
Problem-Solving Test: Pyrosequencing
ERIC Educational Resources Information Center
Szeberenyi, Jozsef
2013-01-01
Terms to be familiar with before you start to solve the test: Maxam-Gilbert sequencing, Sanger sequencing, gel electrophoresis, DNA synthesis reaction, polymerase chain reaction, template, primer, DNA polymerase, deoxyribonucleoside triphosphates, orthophosphate, pyrophosphate, nucleoside monophosphates, luminescence, acid anhydride bond,…
Problem Solving Skills for Children.
ERIC Educational Resources Information Center
Youngs, Bettie B.
This guide was written for children, to help them handle problems they might encounter, learn about other children and how they have handled similar problems, and learn what to do when things go wrong or when they feel misunderstood. In the introduction, children are assured that, even when they have problems, they can be happy again. The body of…
Curricular Reforms That Improve Students' Attitudes and Problem-Solving Performance
ERIC Educational Resources Information Center
Teodorescu, Raluca E.; Bennhold, Cornelius; Feldman, Gerald; Medsker, Larry
2014-01-01
We present the most recent steps undertaken to reform the introductory algebra-based course at The George Washington University. The reform sought to help students improve their problem-solving performance. Our pedagogy relies on didactic constructs such as the" GW-ACCESS problem-solving protocol," "instructional sequences" and…
ERIC Educational Resources Information Center
Lee, Kerry; Ng, Ee Lynn; Ng, Swee Fong
2009-01-01
Solving algebraic word problems involves multiple cognitive phases. The authors used a multitask approach to examine the extent to which working memory and executive functioning are associated with generating problem models and producing solutions. They tested 255 11-year-olds on working memory (Counting Recall, Letter Memory, and Keep Track),…
Mobile serious games for collaborative problem solving.
Sanchez, Jaime; Mendoza, Claudia; Salinas, Alvaro
2009-01-01
This paper presents the results obtained from the implementation of a series of learning activities based on mobile serious games (MSG) for the development of problem-solving and collaborative skills in Chilean 8th grade students. Three MSGs were developed and played by teams of four students, who had to solve the problems posed by the game collaboratively. The data shows that the experimental group had a higher perception of their own skills of collaboration and of the plan execution dimension of problem solving than the control group, providing empirical evidence regarding the contribution of MSGs to the development of collaborative problem-solving skills.
Disciplinary Foundations for Solving Interdisciplinary Scientific Problems
NASA Astrophysics Data System (ADS)
Zhang, Dongmei; Shen, Ji
2015-10-01
Problem-solving has been one of the major strands in science education research. But much of the problem-solving research has been conducted on discipline-based contexts; little research has been done on how students, especially individuals, solve interdisciplinary problems. To understand how individuals reason about interdisciplinary problems, we conducted an interview study with 16 graduate students coming from a variety of disciplinary backgrounds. During the interviews, we asked participants to solve two interdisciplinary science problems on the topic of osmosis. We investigated participants' problem reasoning processes and probed in their attitudes toward general interdisciplinary approach and specific interdisciplinary problems. Through a careful inductive content analysis of their responses, we studied how disciplinary, cognitive, and affective factors influenced their interdisciplinary problems-solving. We found that participants' prior discipline-based science learning experiences had both positive and negative influences on their interdisciplinary problem-solving. These influences were embodied in their conceptualization of the interdisciplinary problems, the strategies they used to integrate different disciplinary knowledge, and the attitudes they had toward interdisciplinary approach in general and specific interdisciplinary problems. This study sheds light on interdisciplinary science education by revealing the complex relationship between disciplinary learning and interdisciplinary problem-solving.
Pen Pals: Practicing Problem Solving
ERIC Educational Resources Information Center
Lampe, Kristen A.; Uselmann, Linda
2008-01-01
This article describes a semester-long pen-pal project in which preservice teachers composed mathematical problems and the middle school students worked for solutions. The college students assessed the solution and the middle school students provided feedback regarding the problem itself. (Contains 6 figures.)
Tangram solved? Prefrontal cortex activation analysis during geometric problem solving.
Ayaz, Hasan; Shewokis, Patricia A; Izzetoğlu, Meltem; Çakır, Murat P; Onaral, Banu
2012-01-01
Recent neuroimaging studies have implicated prefrontal and parietal cortices for mathematical problem solving. Mental arithmetic tasks have been used extensively to study neural correlates of mathematical reasoning. In the present study we used geometric problem sets (tangram tasks) that require executive planning and visuospatial reasoning without any linguistic representation interference. We used portable optical brain imaging (functional near infrared spectroscopy--fNIR) to monitor hemodynamic changes within anterior prefrontal cortex during tangram tasks. Twelve healthy subjects were asked to solve a series of computerized tangram puzzles and control tasks that required same geometric shape manipulation without problem solving. Total hemoglobin (HbT) concentration changes indicated a significant increase during tangram problem solving in the right hemisphere. Moreover, HbT changes during failed trials (when no solution found) were significantly higher compared to successful trials. These preliminary results suggest that fNIR can be used to assess cortical activation changes induced by geometric problem solving. Since fNIR is safe, wearable and can be used in ecologically valid environments such as classrooms, this neuroimaging tool may help to improve and optimize learning in educational settings. PMID:23366983
GaussFit: Solving least squares and robust estimation problems
NASA Astrophysics Data System (ADS)
Jefferys, William; McArthur, Barbara; McCartney, James
2013-05-01
GaussFit solves least squares and robust estimation problems; written originally for reduction of NASA Hubble Space Telescope data, it includes a complete programming language designed especially to formulate estimation problems, a built-in compiler and interpreter to support the programming language, and a built-in algebraic manipulator for calculating the required partial derivatives analytically. The code can handle nonlinear models, exact constraints, correlated observations, and models where the equations of condition contain more than one observed quantity. Written in C, GaussFit includes an experimental robust estimation capability so data sets contaminated by outliers can be handled simply and efficiently.
The 16th Hilbert problem restricted to circular algebraic limit cycles
NASA Astrophysics Data System (ADS)
Llibre, Jaume; Ramírez, Rafael; Ramírez, Valentín; Sadovskaia, Natalia
2016-04-01
We prove the following two results. First every planar polynomial vector field of degree S with S invariant circles is Darboux integrable without limit cycles. Second a planar polynomial vector field of degree S admits at most S - 1 invariant circles which are algebraic limit cycles. In particular we solve the 16th Hilbert problem restricted to algebraic limit cycles given by circles, because a planar polynomial vector field of degree S has at most S - 1 algebraic limit cycles given by circles, and this number is reached.
Neural Network Solves "Traveling-Salesman" Problem
NASA Technical Reports Server (NTRS)
Thakoor, Anilkumar P.; Moopenn, Alexander W.
1990-01-01
Experimental electronic neural network solves "traveling-salesman" problem. Plans round trip of minimum distance among N cities, visiting every city once and only once (without backtracking). This problem is paradigm of many problems of global optimization (e.g., routing or allocation of resources) occuring in industry, business, and government. Applied to large number of cities (or resources), circuits of this kind expected to solve problem faster and more cheaply.
Solving global optimization problems on GPU cluster
NASA Astrophysics Data System (ADS)
Barkalov, Konstantin; Gergel, Victor; Lebedev, Ilya
2016-06-01
The paper contains the results of investigation of a parallel global optimization algorithm combined with a dimension reduction scheme. This allows solving multidimensional problems by means of reducing to data-independent subproblems with smaller dimension solved in parallel. The new element implemented in the research consists in using several graphic accelerators at different computing nodes. The paper also includes results of solving problems of well-known multiextremal test class GKLS on Lobachevsky supercomputer using tens of thousands of GPU cores.
Could HPS Improve Problem-Solving?
ERIC Educational Resources Information Center
Coelho, Ricardo Lopes
2013-01-01
It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem…
Solving Problems in Genetics II: Conceptual Restructuring
ERIC Educational Resources Information Center
Orcajo, Teresa Ibanez; Aznar, Mercedes Martinez
2005-01-01
This paper presents the results of part of an investigation carried out with fourth-level Spanish secondary education students (15 years old), in which we implemented a teaching unit based on problem-solving methodology as an investigation to teach genetics and human inheritance curricular contents. By solving open problems, the students…
Measuring Problem Solving Skills in "Portal 2"
ERIC Educational Resources Information Center
Shute, Valerie J.; Wang, Lubin
2013-01-01
This paper examines possible improvement to problem solving skills as a function of playing the video game "Portal 2." Stealth assessment is used in the game to evaluate students' problem solving abilities--specifically basic and flexible rule application. The stealth assessment measures will be validated against commonly accepted…
Problem Solving and Technology. ACESIA Monograph 2.
ERIC Educational Resources Information Center
Lomon, Earle L.; And Others
1977-01-01
The two articles dealing with problem solving and technology in this publication should be useful to those developing the kinds of materials, experiences, and thinking that elementary school industrial arts offers children. The first article accepts problem solving as an educational goal and reports a timely and universally acceptable approach.…
Mathematical Problem Solving through Sequential Process Analysis
ERIC Educational Resources Information Center
Codina, A.; Cañadas, M. C.; Castro, E.
2015-01-01
Introduction: The macroscopic perspective is one of the frameworks for research on problem solving in mathematics education. Coming from this perspective, our study addresses the stages of thought in mathematical problem solving, offering an innovative approach because we apply sequential relations and global interrelations between the different…
Problem Solving Software for Math Classes.
ERIC Educational Resources Information Center
Troutner, Joanne
1987-01-01
Described are 10 computer software programs for problem solving related to mathematics. Programs described are: (1) Box Solves Story Problems; (2) Safari Search; (3) Puzzle Tanks; (4) The King's Rule; (5) The Factory; (6) The Royal Rules; (7) The Enchanted Forest; (8) Gears; (9) The Super Factory; and (10) Creativity Unlimited. (RH)
Student Modeling Based on Problem Solving Times
ERIC Educational Resources Information Center
Pelánek, Radek; Jarušek, Petr
2015-01-01
Student modeling in intelligent tutoring systems is mostly concerned with modeling correctness of students' answers. As interactive problem solving activities become increasingly common in educational systems, it is useful to focus also on timing information associated with problem solving. We argue that the focus on timing is natural for certain…
Children Solving Problems. The Developing Child Series.
ERIC Educational Resources Information Center
Thornton, Stephanie
The developmental increase in the ability to solve problems is a puzzle. Does it come from basic changes in mental skills, or is it a matter of practice? This book from the Developing Child series synthesizes recent research examining children's problem-solving skills development. Chapter 1 presents the major themes: (1) there is increasing…
Problem Solving Interactions on Electronic Networks.
ERIC Educational Resources Information Center
Waugh, Michael; And Others
Arguing that electronic networking provides a medium which is qualitatively superior to the traditional classroom for conducting certain types of problem solving exercises, this paper details the Water Problem Solving Project, which was conducted on the InterCultural Learning Network in 1985 and 1986 with students from the United States, Mexico,…
Taking "From Scratch" out of Problem Solving
ERIC Educational Resources Information Center
Brown, Wayne
2007-01-01
Solving problems and creating processes and procedures from the ground up has long been part of the IT department's way of operating. IT staffs will continue to encounter new problems to solve and new technologies to be implemented. They also must involve their constituents in the creation of solutions. Nonetheless, for many issues they no longer…
Dynamic Problem Solving: A New Assessment Perspective
ERIC Educational Resources Information Center
Greiff, Samuel; Wustenberg, Sascha; Funke, Joachim
2012-01-01
This article addresses two unsolved measurement issues in dynamic problem solving (DPS) research: (a) unsystematic construction of DPS tests making a comparison of results obtained in different studies difficult and (b) use of time-intensive single tasks leading to severe reliability problems. To solve these issues, the MicroDYN approach is…
The Process of Solving Complex Problems
ERIC Educational Resources Information Center
Fischer, Andreas; Greiff, Samuel; Funke, Joachim
2012-01-01
This article is about Complex Problem Solving (CPS), its history in a variety of research domains (e.g., human problem solving, expertise, decision making, and intelligence), a formal definition and a process theory of CPS applicable to the interdisciplinary field. CPS is portrayed as (a) knowledge acquisition and (b) knowledge application…
A Multivariate Model of Physics Problem Solving
ERIC Educational Resources Information Center
Taasoobshirazi, Gita; Farley, John
2013-01-01
A model of expertise in physics problem solving was tested on undergraduate science, physics, and engineering majors enrolled in an introductory-level physics course. Structural equation modeling was used to test hypothesized relationships among variables linked to expertise in physics problem solving including motivation, metacognitive planning,…
Teaching and Learning through Problem Solving
ERIC Educational Resources Information Center
Ollerton, Mike
2007-01-01
In this article, the author relates some problem solving work with primary schools to Department for Children, Schools, and Families (DfES) support. In four primary schools in the West Midlands, the focus was teaching mathematics through problem solving, based on materials published on the DfES "standards" website. The author noticed the way…
Developing Legal Problem-Solving Skills.
ERIC Educational Resources Information Center
Nathanson, Stephen
1994-01-01
A law professor explains how he came to view legal problem solving as the driving concept in law school curriculum design and draws on personal experience and a survey of students concerning teaching methods in a commercial law course. He outlines six curriculum design principles for teaching legal problem solving. (MSE)
Metacognition: Student Reflections on Problem Solving
ERIC Educational Resources Information Center
Wismath, Shelly; Orr, Doug; Good, Brandon
2014-01-01
Twenty-first century teaching and learning focus on the fundamental skills of critical thinking and problem solving, creativity and innovation, and collaboration and communication. Metacognition is a crucial aspect of both problem solving and critical thinking, but it is often difficult to get students to engage in authentic metacognitive…
Conceptual Problem Solving in High School Physics
ERIC Educational Resources Information Center
Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.
2015-01-01
Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an…
ERIC Educational Resources Information Center
Aljaberi, Nahil M.; Gheith, Eman
2016-01-01
This study aims to investigate the ability of pre-service class teacher at University of Petrain solving mathematical problems using Polya's Techniques, their level of problem solving skills in daily-life issues. The study also investigates the correlation between their ability to solve mathematical problems and their level of problem solving…
Solving the wrong hierarchy problem
NASA Astrophysics Data System (ADS)
Blinov, Nikita; Hook, Anson
2016-06-01
Many theories require augmenting the Standard Model with additional scalar fields with large order one couplings. We present a new solution to the hierarchy problem for these scalar fields. We explore parity- and Z_2 -symmetric theories where the Standard Model Higgs potential has two vacua. The parity or Z_2 copy of the Higgs lives in the minimum far from the origin while our Higgs occupies the minimum near the origin of the potential. This approach results in a theory with multiple light scalar fields but with only a single hierarchy problem, since the bare mass is tied to the Higgs mass by a discrete symmetry. The new scalar does not have a new hierarchy problem associated with it because its expectation value and mass are generated by dimensional transmutation of the scalar quartic coupling. The location of the second Higgs minimum is not a free parameter, but is rather a function of the matter content of the theory. As a result, these theories are extremely predictive. We develop this idea in the context of a solution to the strong CP problem. We show this mechanism postdicts the top Yukawa to be within 1 σ of the currently measured value and predicts scalar color octets with masses in the range 9-200 TeV.
Robot, computer problem solving system
NASA Technical Reports Server (NTRS)
Becker, J. D.; Merriam, E. W.
1973-01-01
The TENEX computer system, the ARPA network, and computer language design technology was applied to support the complex system programs. By combining the pragmatic and theoretical aspects of robot development, an approach is created which is grounded in realism, but which also has at its disposal the power that comes from looking at complex problems from an abstract analytical point of view.
Solving the wrong hierarchy problem
Blinov, Nikita; Hook, Anson
2016-06-29
Many theories require augmenting the Standard Model with additional scalar fields with large order one couplings. We present a new solution to the hierarchy problem for these scalar fields. We explore parity- and Z2-symmetric theories where the Standard Model Higgs potential has two vacua. The parity or Z2 copy of the Higgs lives in the minimum far from the origin while our Higgs occupies the minimum near the origin of the potential. This approach results in a theory with multiple light scalar fields but with only a single hierarchy problem, since the bare mass is tied to the Higgs massmore » by a discrete symmetry. The new scalar does not have a new hierarchy problem associated with it because its expectation value and mass are generated by dimensional transmutation of the scalar quartic coupling. The location of the second Higgs minimum is not a free parameter, but is rather a function of the matter content of the theory. As a result, these theories are extremely predictive. We develop this idea in the context of a solution to the strong CP problem. Lastly, we show this mechanism postdicts the top Yukawa to be within 1σ of the currently measured value and predicts scalar color octets with masses in the range 9-200 TeV.« less
Sour landfill gas problem solved
Nagl, G.; Cantrall, R.
1996-05-01
In Broward County, Fla., near Pompano Beach, Waste Management of North America (WMNA, a subsidiary of WMX Technologies, Oak Brook, IL) operates the Central Sanitary Landfill and Recycling Center, which includes the country`s largest landfill gas-to-energy plant. The landfill consists of three collection sites: one site is closed, one is currently receiving garbage, and one will open in the future. Approximately 9 million standard cubic feet (scf) per day of landfill gas is collected from approximately 300 wells spread over the 250-acre landfill. With a dramatic increase of sulfur-containing waste coming to a South Florida landfill following Hurricane Andrew, odors related to hydrogen sulfide became a serious problem. However, in a matter of weeks, an innovative desulfurization unit helped calm the landfill operator`s fears. These very high H{sub 2}S concentrations caused severe odor problems in the surrounding residential area, corrosion problems in the compressors, and sulfur dioxide (SO{sub 2}) emission problems in the exhaust gas from the turbine generators.
The effects of cumulative practice on mathematics problem solving.
Mayfield, Kristin H; Chase, Philip N
2002-01-01
This study compared three different methods of teaching five basic algebra rules to college students. All methods used the same procedures to teach the rules and included four 50-question review sessions interspersed among the training of the individual rules. The differences among methods involved the kinds of practice provided during the four review sessions. Participants who received cumulative practice answered 50 questions covering a mix of the rules learned prior to each review session. Participants who received a simple review answered 50 questions on one previously trained rule. Participants who received extra practice answered 50 extra questions on the rule they had just learned. Tests administered after each review included new questions for applying each rule (application items) and problems that required novel combinations of the rules (problem-solving items). On the final test, the cumulative group outscored the other groups on application and problem-solving items. In addition, the cumulative group solved the problem-solving items significantly faster than the other groups. These results suggest that cumulative practice of component skills is an effective method of training problem solving. PMID:12102132
ERIC Educational Resources Information Center
Powell, Sarah R.; Fuchs, Lynn S.
2014-01-01
According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 second-grade students, we administered: (1) measures of calculations and…
A multilayer recurrent neural network for solving continuous-time algebraic Riccati equations.
Wang, Jun; Wu, Guang
1998-07-01
A multilayer recurrent neural network is proposed for solving continuous-time algebraic matrix Riccati equations in real time. The proposed recurrent neural network consists of four bidirectionally connected layers. Each layer consists of an array of neurons. The proposed recurrent neural network is shown to be capable of solving algebraic Riccati equations and synthesizing linear-quadratic control systems in real time. Analytical results on stability of the recurrent neural network and solvability of algebraic Riccati equations by use of the recurrent neural network are discussed. The operating characteristics of the recurrent neural network are also demonstrated through three illustrative examples.
Reflection on problem solving in introductory and advanced physics
NASA Astrophysics Data System (ADS)
Mason, Andrew J.
Reflection is essential in order to learn from problem solving. This thesis explores issues related to how reflective students are and how we can improve their capacity for reflection on problem solving. We investigate how students naturally reflect in their physics courses about problem solving and evaluate strategies that may teach them reflection as an integral component of problem-solving. Problem categorization based upon similarity of solution is a strategy to help them reflect about the deep features of the problems related to the physics principles involved. We find that there is a large overlap between the introductory and graduate students in their ability to categorize. Moreover, introductory students in the calculus-based courses performed better categorization than those in the algebra-based courses even though the categorization task is conceptual. Other investigations involved exploring if reflection could be taught as a skill on individual and group levels. Explicit self-diagnosis in recitation investigated how effectively students could diagnose their own errors on difficult problems, how much scaffolding was necessary for this purpose, and how effective transfer was to other problems employing similar principles. Difficulty in applying physical principles and difference between the self-diagnosed and transfer problems affected performance. We concluded that a sustained intervention is required to learn effective problem-solving strategies. Another study involving reflection on problem solving with peers suggests that those who reflected with peers drew more diagrams and had a larger gain from the midterm to final exam. Another study in quantum mechanics involved giving common problems in midterm and final exams and suggested that advanced students do not automatically reflect on their mistakes. Interviews revealed that even advanced students often focus mostly on exams rather than learning and building a robust knowledge structure. A survey was
Clifford algebra approach to the coincidence problem for planar lattices.
Rodríguez, M A; Aragón, J L; Verde-Star, L
2005-03-01
The problem of coincidences of planar lattices is analyzed using Clifford algebra. It is shown that an arbitrary coincidence isometry can be decomposed as a product of coincidence reflections and this allows planar coincidence lattices to be characterized algebraically. The cases of square, rectangular and rhombic lattices are worked out in detail. One of the aims of this work is to show the potential usefulness of Clifford algebra in crystallography. The power of Clifford algebra for expressing geometric ideas is exploited here and the procedure presented can be generalized to higher dimensions.
Modelling to solve odour problems.
Childs, P S; Dunn, A J
2001-01-01
The use of dispersion modelling is a powerful tool to establish levels of treatment required to remove odour complaints. Odour is an extremely sensitive issue and is key to the public perception of wastewater environmental protection. This paper describes a case study of the successful resolution of long-standing odour problems at the East Worthing Wastewater Treatment Works (WTW), on the South Coast of England, utilising modelling and appropriate treatment technologies. A number of odour surveys have been conducted on the site to identify the major sources on the works, which were found to be the sludge press house and the primary settlement tanks, situated only 10 metres from the nearest properties. As a result attempts to resolve the odour problem have been made including the covering of identified sources, treating extract using activated carbon filters and installing perfume sprays. During the site development all sources were contained and ventilated to a 60,000 m3/hr Jones & Attwood ODORGARD unit. Its requirement was to ensure that no receptor was exposed to a concentration in excess of 4 ouEm3 (Odour units), in accordance with the odour planning condition. Dispersal modelling was performed to determine the maximum permissible outlet concentration. The results of the modelling exercise established that emissions from the odour control plant should not exceed 675 ouEm3 to ensure that the receptor standard was attained. An optimisation programme was conducted to ensure that the unit was providing the optimum level of treatment prior to taking the olfactometry samples. Following the plant's optimisation the results of the olfactometry analysis confirmed that the discharge levels were below the required 670 ouEm3. Since completion of the sludge treatment centre scheme there have been no registered odour complaints directed at the East Worthing WTW, and the local air quality has been greatly improved for the residents surrounding the works.
Lesion mapping of social problem solving.
Barbey, Aron K; Colom, Roberto; Paul, Erick J; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H
2014-10-01
Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion-symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease.
Lesion mapping of social problem solving
Colom, Roberto; Paul, Erick J.; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H.
2014-01-01
Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion–symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease. PMID:25070511
Lesion mapping of social problem solving.
Barbey, Aron K; Colom, Roberto; Paul, Erick J; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H
2014-10-01
Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion-symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease. PMID:25070511
Tracking children's mental states while solving algebra equations.
Anderson, John R; Betts, Shawn; Ferris, Jennifer L; Fincham, Jon M
2012-11-01
Behavioral and function magnetic resonance imagery (fMRI) data were combined to infer the mental states of students as they interacted with an intelligent tutoring system. Sixteen children interacted with a computer tutor for solving linear equations over a six-day period (days 0-5), with days 1 and 5 occurring in an fMRI scanner. Hidden Markov model algorithms combined a model of student behavior with multi-voxel imaging pattern data to predict the mental states of students. We separately assessed the algorithms' ability to predict which step in a problem-solving sequence was performed and whether the step was performed correctly. For day 1, the data patterns of other students were used to predict the mental states of a target student. These predictions were improved on day 5 by adding information about the target student's behavioral and imaging data from day 1. Successful tracking of mental states depended on using the combination of a behavioral model and multi-voxel pattern analysis, illustrating the effectiveness of an integrated approach to tracking the cognition of individuals in real time as they perform complex tasks.
ERIC Educational Resources Information Center
Kamis, Arnold; Khan, Beverly K.
2009-01-01
How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental study that tested several hypotheses derived from Kolb's experiential learning cycle and Huber's problem solving model. As subjects solved a network subnetting problem, they mapped their mental processes according to Huber's…
The Cyclic Nature of Problem Solving: An Emergent Multidimensional Problem-Solving Framework
ERIC Educational Resources Information Center
Carlson, Marilyn P.; Bloom, Irene
2005-01-01
This paper describes the problem-solving behaviors of 12 mathematicians as they completed four mathematical tasks. The emergent problem-solving framework draws on the large body of research, as grounded by and modified in response to our close observations of these mathematicians. The resulting "Multidimensional Problem-Solving Framework" has four…
Environmental problem-solving: Psychosocial factors
NASA Astrophysics Data System (ADS)
Miller, Alan
1982-11-01
This is a study of individual differences in environmental problem-solving, the probable roots of these differences, and their implications for the education of resource professionals. A group of student Resource Managers were required to elaborate their conception of a complex resource issue (Spruce Budworm management) and to generate some ideas on management policy. Of particular interest was the way in which subjects dealt with the psychosocial aspects of the problem. A structural and content analysis of responses indicated a predominance of relatively compartmentalized styles, a technological orientation, and a tendency to ignore psychosocial issues. A relationship between problem-solving behavior and personal (psychosocial) style was established which, in the context of other evidence, suggests that problem-solving behavior is influenced by more deep seated personality factors. The educational implication drawn was that problem-solving cannot be viewed simply as an intellectual-technical activity but one that involves, and requires the education of, the whole person.
Styles of problem solving in suicidal individuals.
Orbach, I; Bar-Joseph, H; Dror, N
1990-01-01
This study compared qualitative aspects of problem solving among suicide attempters, suicide ideators, and nonsuicidal patients. The subjects completed a suicidal intent scale and a problem-solving task involving three dilemmas. Problem solving was analyzed along eight qualitative categories: versatility of the various solutions, reliance on self versus others, activity versus passivity, confrontation versus avoidance, relevance of the solution to the problem, positive versus negative affect, reference to the future, and extremity of the solution. The statistical analysis yielded differences among the three groups. In general, the solutions of suicidal patients showed less versatility, more avoidance, less relevance, more negative affect, and less reference to the future than the solutions of the nonsuicidal patients. The suicide attempters and nonsuicidal patients offered more active solutions than did the suicide ideators. Our findings emphasize the importance of general coping styles, as well as energetic/motivational aspects and affective aspects of the problem-solving process. Some applications to therapy are discussed.
Could HPS Improve Problem-Solving?
NASA Astrophysics Data System (ADS)
Coelho, Ricardo Lopes
2013-05-01
It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem solving could be improved by means of HPS. Three typical problems in introductory courses of mechanics—the inclined plane, the simple pendulum and the Atwood machine—are taken as the object of the present study. The solving strategies of these problems in the eighteenth and nineteenth century constitute the historical component of the study. Its philosophical component stems from the foundations of mechanics research literature. The use of HPS leads us to see those problems in a different way. These different ways can be tested, for which experiments are proposed. The traditional solving strategies for the incline and pendulum problems are adequate for some situations but not in general. The recourse to apparent weights in the Atwood machine problem leads us to a new insight and a solving strategy for composed Atwood machines. Educational implications also concern the development of logical thinking by means of the variety of lines of thought provided by HPS.
Problem Solving through an Optimization Problem in Geometry
ERIC Educational Resources Information Center
Poon, Kin Keung; Wong, Hang-Chi
2011-01-01
This article adapts the problem-solving model developed by Polya to investigate and give an innovative approach to discuss and solve an optimization problem in geometry: the Regiomontanus Problem and its application to football. Various mathematical tools, such as calculus, inequality and the properties of circles, are used to explore and reflect…
Problem-Solving Errors of Educational Leaders.
ERIC Educational Resources Information Center
Hart, Ann W.; And Others
Problem solving is one of the most important skills that new and developing professionals must learn. The process is complex, involving information scanning, problem identification, and feedback processes requiring synthesis, interim assessments, problem error recognition and rectification, and timely and appropriate conclusions. This study used…
Solving Problems with the Percentage Bar
ERIC Educational Resources Information Center
van Galen, Frans; van Eerde, Dolly
2013-01-01
At the end of primary school all children more of less know what a percentage is, but yet they often struggle with percentage problems. This article describes a study in which students of 13 and 14 years old were given a written test with percentage problems and a week later were interviewed about the way they solved some of these problems. In a…
Task Variables in Mathematical Problem Solving.
ERIC Educational Resources Information Center
Goldin, Gerald A., Ed.; McClintock, C. Edwin, Ed.
A framework for research in problem solving is provided by categorizing and defining variables describing problem tasks. A model is presented in an article by Kulm for the classification of task variables into broad categories. The model attempts to draw realtionships between these categories of task variables and the stages of problem solving…
Problem Solving: Can Anybody Do It?
ERIC Educational Resources Information Center
Bennett, Stuart W.
2008-01-01
This paper examines the definition of a problem and at the process of problem solving. An analysis of a number of first and third year chemistry examination papers from English universities revealed that over ninety per cent of the "problems" fell into the "algorithm" category. Using Bloom's taxonomy and the same examination papers, we found that…
Problem-Solving with the Computer.
ERIC Educational Resources Information Center
Sage, Edwin R.
Intended to be used in conjunction with a traditional curriculum, this book demonstrates the use of the computer, especially the on-line, interactive type of computer, to solve a variety of problems studied in secondary school mathematics. Each chapter presents several problems, and each problem introduces one or two concepts that must be…
Collaborative Problem Solving in Shared Space
ERIC Educational Resources Information Center
Lin, Lin; Mills, Leila A.; Ifenthaler, Dirk
2015-01-01
The purpose of this study was to examine collaborative problem solving in a shared virtual space. The main question asked was: How will the performance and processes differ between collaborative problem solvers and independent problem solvers over time? A total of 104 university students (63 female and 41 male) participated in an experimental…
Word Problem Solving with the Apple II.
ERIC Educational Resources Information Center
Ignatz, Mila E.
The aim of this project was to develop computer programs that will provide training in the use of a strategy for solving word problems in everyday mathematics. The strategy includes (1) classifying the problem by type, according to problem characteristics such as symbols, diagrams, relevant formulas, and arithmetic operations; (2) identifying the…
Conceptual problem solving in high school physics
NASA Astrophysics Data System (ADS)
Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.
2015-12-01
Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers' implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.
ERIC Educational Resources Information Center
Walkington, Candace; Sherman, Milan; Petrosino, Anthony
2012-01-01
This study critically examines a key justification used by educational stakeholders for placing mathematics in context--the idea that contextualization provides students with access to mathematical ideas. We present interviews of 24 ninth grade students from a low-performing urban school solving algebra story problems, some of which were…
Photoreactors for Solving Problems of Environmental Pollution
NASA Astrophysics Data System (ADS)
Tchaikovskaya, O. N.; Sokolova, I. V.
2015-04-01
Designs and physical aspects of photoreactors, their capabilities for a study of kinetics and mechanisms of processes proceeding under illumination with light, as well as application of photoreactors for solving various applied problem are discussed.
Teaching: The Problem-Solving Approach.
ERIC Educational Resources Information Center
Amonashvili, Shalva
1979-01-01
Describes experiments in the Soviet Union intended to develop scholastic activities which encourage young children to develop their motivation for cognitive learning. All experiments were based on the problem-solving approach. (DB)
Research: A Five Faceted Problem Solving Process.
ERIC Educational Resources Information Center
Gephart, William J.
1980-01-01
Five concepts are discussed in order to explain that research is a multifacted problem-solving process: (1) analysis of a concept, its context, and data analysis; (2) treatment or experience; (3) representativeness; (4) measurement, and (5) logic. (GDC)
An Alternate Path To Stoichiometric Problem Solving.
ERIC Educational Resources Information Center
Schmidt, Hans-Jurgen
1997-01-01
Discusses an alternate path to teaching introductory stoichiometry based on research findings. The recommendation is to use problems that can be solved easily by rapid mental calculation as well as by pure logic. (AIM)
Physics: Quantum problems solved through games
NASA Astrophysics Data System (ADS)
Maniscalco, Sabrina
2016-04-01
Humans are better than computers at performing certain tasks because of their intuition and superior visual processing. Video games are now being used to channel these abilities to solve problems in quantum physics. See Letter p.210
Solving the Langevin equation with stochastic algebraically correlated noise
NASA Astrophysics Data System (ADS)
Płoszajczak, M.; Srokowski, T.
1997-05-01
The long time tail in the velocity and force autocorrelation function has been found recently in molecular dynamics simulations of peripheral collisions of ions. Simulation of those slowly decaying correlations in the stochastic transport theory requires the development of new methods of generating stochastic force of arbitrarily long correlation times. In this paper we propose a Markovian process, the multidimensional kangaroo process, which permits the description of various algebraically correlated stochastic processes.
NASA Astrophysics Data System (ADS)
Yukhno, L. F.
2007-11-01
A modification of certain well-known methods of the conjugate direction type is proposed and examined. The modified methods are more stable with respect to the accumulation of round-off errors. Moreover, these methods are applicable for solving ill-conditioned systems of linear algebraic equations that, in particular, arise as approximations of ill-posed problems. Numerical results illustrating the advantages of the proposed modification are presented.
Innovative problem solving by wild spotted hyenas.
Benson-Amram, Sarah; Holekamp, Kay E
2012-10-01
Innovative animals are those able to solve novel problems or invent novel solutions to existing problems. Despite the important ecological and evolutionary consequences of innovation, we still know very little about the traits that vary among individuals within a species to make them more or less innovative. Here we examine innovative problem solving by spotted hyenas (Crocuta crocuta) in their natural habitat, and demonstrate for the first time in a non-human animal that those individuals exhibiting a greater diversity of initial exploratory behaviours are more successful problem solvers. Additionally, as in earlier work, we found that neophobia was a critical inhibitor of problem-solving success. Interestingly, although juveniles and adults were equally successful in solving the problem, juveniles were significantly more diverse in their initial exploratory behaviours, more persistent and less neophobic than were adults. We found no significant effects of social rank or sex on success, the diversity of initial exploratory behaviours, behavioural persistence or neophobia. Our results suggest that the diversity of initial exploratory behaviours, akin to some measures of human creativity, is an important, but largely overlooked, determinant of problem-solving success in non-human animals. PMID:22874748
Innovative problem solving by wild spotted hyenas.
Benson-Amram, Sarah; Holekamp, Kay E
2012-10-01
Innovative animals are those able to solve novel problems or invent novel solutions to existing problems. Despite the important ecological and evolutionary consequences of innovation, we still know very little about the traits that vary among individuals within a species to make them more or less innovative. Here we examine innovative problem solving by spotted hyenas (Crocuta crocuta) in their natural habitat, and demonstrate for the first time in a non-human animal that those individuals exhibiting a greater diversity of initial exploratory behaviours are more successful problem solvers. Additionally, as in earlier work, we found that neophobia was a critical inhibitor of problem-solving success. Interestingly, although juveniles and adults were equally successful in solving the problem, juveniles were significantly more diverse in their initial exploratory behaviours, more persistent and less neophobic than were adults. We found no significant effects of social rank or sex on success, the diversity of initial exploratory behaviours, behavioural persistence or neophobia. Our results suggest that the diversity of initial exploratory behaviours, akin to some measures of human creativity, is an important, but largely overlooked, determinant of problem-solving success in non-human animals.
Innovative problem solving by wild spotted hyenas
Benson-Amram, Sarah; Holekamp, Kay E.
2012-01-01
Innovative animals are those able to solve novel problems or invent novel solutions to existing problems. Despite the important ecological and evolutionary consequences of innovation, we still know very little about the traits that vary among individuals within a species to make them more or less innovative. Here we examine innovative problem solving by spotted hyenas (Crocuta crocuta) in their natural habitat, and demonstrate for the first time in a non-human animal that those individuals exhibiting a greater diversity of initial exploratory behaviours are more successful problem solvers. Additionally, as in earlier work, we found that neophobia was a critical inhibitor of problem-solving success. Interestingly, although juveniles and adults were equally successful in solving the problem, juveniles were significantly more diverse in their initial exploratory behaviours, more persistent and less neophobic than were adults. We found no significant effects of social rank or sex on success, the diversity of initial exploratory behaviours, behavioural persistence or neophobia. Our results suggest that the diversity of initial exploratory behaviours, akin to some measures of human creativity, is an important, but largely overlooked, determinant of problem-solving success in non-human animals. PMID:22874748
ERIC Educational Resources Information Center
Actuarial Foundation, 2013
2013-01-01
"Solving the Unknown with Algebra" is a new math program aligned with the National Council of Teachers of Mathematics (NCTM) standards and designed to help students practice pre-algebra skills including using formulas, solving for unknowns, and manipulating equations. Developed by The Actuarial Foundation with Scholastic, this program provides…
Assessment of Problem-Solving Ability
ERIC Educational Resources Information Center
Marshall, J.
1977-01-01
Problem-solving ability has been assessed within the Royal Australian College of General Practitioners through the use of patient management problems (PMPs) in both medical and surgical areas. It is shown that the highest marks in PMPs are being achieved by students who arrive at the correct diagnosis without accumulating excessive information and…
Solving Geometry Problems via Mechanical Principles
ERIC Educational Resources Information Center
Man, Yiu Kwong
2004-01-01
The application of physical principles in solving mathematics problems have often been neglected in the teaching of physics or mathematics, especially at the secondary school level. This paper discusses how to apply the mechanical principles to geometry problems via concrete examples, which aims at providing insight and inspirations to physics or…
Pose and Solve Varignon Converse Problems
ERIC Educational Resources Information Center
Contreras, José N.
2014-01-01
The activity of posing and solving problems can enrich learners' mathematical experiences because it fosters a spirit of inquisitiveness, cultivates their mathematical curiosity, and deepens their views of what it means to do mathematics. To achieve these goals, a mathematical problem needs to be at the appropriate level of difficulty,…
Complex Problem Solving in a Workplace Setting.
ERIC Educational Resources Information Center
Middleton, Howard
2002-01-01
Studied complex problem solving in the hospitality industry through interviews with six office staff members and managers. Findings show it is possible to construct a taxonomy of problem types and that the most common approach can be termed "trial and error." (SLD)
Problem-Solving: Scaling the "Brick Wall"
ERIC Educational Resources Information Center
Benson, Dave
2011-01-01
Across the primary and secondary phases, pupils are encouraged to use and apply their knowledge, skills, and understanding of mathematics to solve problems in a variety of forms, ranging from single-stage word problems to the challenge of extended rich tasks. Amongst many others, Cockcroft (1982) emphasised the importance and relevance of…
Reinventing the Wheel: Design and Problem Solving
ERIC Educational Resources Information Center
Blasetti, Sean M.
2010-01-01
This article describes a design problem that not only takes students through the technological design process, but it also provides them with real-world problem-solving experience as it relates to the manufacturing and engineering fields. It begins with a scenario placing the student as a custom wheel designer for an automotive manufacturing…
GIS Live and Web Problem Solving
ERIC Educational Resources Information Center
Hagevik, R.; Hales, D.; Harrell, J.
2007-01-01
GIS Live is a live, interactive, web problem-solving (WPS) program that partners Geographic Information Systems (GIS) professionals with educators to implement geospatial technologies as curriculum-learning tools. It is a collaborative effort of many government agencies, educational institutions, and professional organizations. Problem-based…
Personality, Problem Solving, and Adolescent Substance Use
ERIC Educational Resources Information Center
Jaffee, William B.; D'Zurilla, Thomas J.
2009-01-01
The major aim of this study was to examine the role of social problem solving in the relationship between personality and substance use in adolescents. Although a number of studies have identified a relationship between personality and substance use, the precise mechanism by which this occurs is not clear. We hypothesized that problem-solving…
The Functional Equivalence of Problem Solving Skills
ERIC Educational Resources Information Center
Simon, Herbert A.
1975-01-01
This analysis of solutions to the Tower of Hanoi Problem underscores the importance of subject-by-subject analysis of "What is learned" in understanding human behavior in problem-solving situations, and provides a technique for describing subjects' task performance programs in detail. (Author/BJG)
Problem-Solving Exercises and Evolution Teaching
ERIC Educational Resources Information Center
Angseesing, J. P. A.
1978-01-01
It is suggested that the work of Kammerer provides suitable material, in the form of case studies on which to base discussions of Lamarckism versus Darwinism. A set of structured problems is described as an example of possible problem-solving exercises, and further experiments to extend Kammerer's work are outlined. (Author/MA)
Spatial Visualization in Physics Problem Solving
ERIC Educational Resources Information Center
Kozhevnikov, Maria; Motes, Michael A.; Hegarty, Mary
2007-01-01
Three studies were conducted to examine the relation of spatial visualization to solving kinematics problems that involved either predicting the two-dimensional motion of an object, translating from one frame of reference to another, or interpreting kinematics graphs. In Study 1, 60 physics-naive students were administered kinematics problems and…
Model Formulation for Physics Problem Solving. Draft.
ERIC Educational Resources Information Center
Novak, Gordon S., Jr.
The major task in solving a physics problem is to construct an appropriate model of the problem in terms of physical principles. The functions performed by such a model, the information which needs to be represented, and the knowledge used in selecting and instantiating an appropriate model are discussed. An example of a model for a mechanics…
Problem solving and decisionmaking: An integration
NASA Technical Reports Server (NTRS)
Dieterly, D. L.
1980-01-01
An attempt was made to redress a critical fault of decisionmaking and problem solving research-a lack of a standard method to classify problem or decision states or conditions. A basic model was identified and expanded to indicate a possible taxonomy of conditions which may be used in reviewing previous research or for systematically pursuing new research designs. A generalization of the basic conditions was then made to indicate that the conditions are essentially the same for both concepts, problem solving and decisionmaking.
Cognitive Load in Algebra: Element Interactivity in Solving Equations
ERIC Educational Resources Information Center
Ngu, Bing Hiong; Chung, Siu Fung; Yeung, Alexander Seeshing
2015-01-01
Central to equation solving is the maintenance of equivalence on both sides of the equation. However, when the process involves an interaction of multiple elements, solving an equation can impose a high cognitive load. The balance method requires operations on both sides of the equation, whereas the inverse method involves operations on one side…
ERIC Educational Resources Information Center
Karatas, Ilhan; Baki, Adnan
2013-01-01
Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…
ERIC Educational Resources Information Center
Sukoriyanto; Nusantara, Toto; Subanji; Chandra, Tjang Daniel
2016-01-01
This article was written based on the results of a study evaluating students' errors in problem solving of permutation and combination in terms of problem solving steps according to Polya. Twenty-five students were asked to do four problems related to permutation and combination. The research results showed that the students still did a mistake in…
Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving
ERIC Educational Resources Information Center
Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim
2016-01-01
This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…
Enhancing chemistry problem-solving achievement using problem categorization
NASA Astrophysics Data System (ADS)
Bunce, Diane M.; Gabel, Dorothy L.; Samuel, John V.
The enhancement of chemistry students' skill in problem solving through problem categorization is the focus of this study. Twenty-four students in a freshman chemistry course for health professionals are taught how to solve problems using the explicit method of problem solving (EMPS) (Bunce & Heikkinen, 1986). The EMPS is an organized approach to problem analysis which includes encoding the information given in a problem (Given, Asked For), relating this to what is already in long-term memory (Recall), and planning a solution (Overall Plan) before a mathematical solution is attempted. In addition to the EMPS training, treatment students receive three 40-minute sessions following achievement tests in which they are taught how to categorize problems. Control students use this time to review the EMPS solutions of test questions. Although problem categorization is involved in one section of the EMPS (Recall), treatment students who received specific training in problem categorization demonstrate significantly higher achievement on combination problems (those problems requiring the use of more than one chemical topic for their solution) at (p = 0.01) than their counterparts. Significantly higher achievement for treatment students is also measured on an unannounced test (p = 0.02). Analysis of interview transcripts of both treatment and control students illustrates a Rolodex approach to problem solving employed by all students in this study. The Rolodex approach involves organizing equations used to solve problems on mental index cards and flipping through them, matching units given when a new problem is to be solved. A second phenomenon observed during student interviews is the absence of a link in the conceptual understanding of the chemical concepts involved in a problem and the problem-solving skills employed to correctly solve problems. This study shows that explicit training in categorization skills and the EMPS can lead to higher achievement in complex problem-solving
Why students still can't solve physics problems after solving over 2000 problems
NASA Astrophysics Data System (ADS)
Byun, Taejin; Lee, Gyoungho
2014-09-01
This study investigates the belief that solving a large number of physics problems helps students better learn physics. We investigated the number of problems solved, student confidence in solving these problems, academic achievement, and the level of conceptual understanding of 49 science high school students enrolled in upper-level physics classes from Spring 2010 to Summer 2011. The participants solved an average of 2200 physics problems before entering high school. Despite having solved so many problems, no statistically significant correlation was found between the number of problems solved and academic achievement on either a mid-term or physics competition examination. In addition, no significant correlation was found between the number of physics problems solved and performance on the Force Concept Inventory (FCI). Lastly, four students were selected from the 49 participants with varying levels of experience and FCI scores for a case study. We determined that their problem solving and learning strategies was more influential in their success than the number of problems they had solved.
AI tools in computer based problem solving
NASA Technical Reports Server (NTRS)
Beane, Arthur J.
1988-01-01
The use of computers to solve value oriented, deterministic, algorithmic problems, has evolved a structured life cycle model of the software process. The symbolic processing techniques used, primarily in research, for solving nondeterministic problems, and those for which an algorithmic solution is unknown, have evolved a different model, much less structured. Traditionally, the two approaches have been used completely independently. With the advent of low cost, high performance 32 bit workstations executing identical software with large minicomputers and mainframes, it became possible to begin to merge both models into a single extended model of computer problem solving. The implementation of such an extended model on a VAX family of micro/mini/mainframe systems is described. Examples in both development and deployment of applications involving a blending of AI and traditional techniques are given.
ERIC Educational Resources Information Center
Schauble, Leona; Peel, Tina
Problem solving is a main topic in mathematics education, and considerable headway has been made in identifying the processes involved in solving well-formed problems like algebra word problems, mathematical algorithms, and logical puzzles like the Tower of Hanoi. The "Mathnet" format of the SQUARE ONE TV program, however, requires viewers to…
Analytical derivation: An epistemic game for solving mathematically based physics problems
NASA Astrophysics Data System (ADS)
Bajracharya, Rabindra R.; Thompson, John R.
2016-06-01
Problem solving, which often involves multiple steps, is an integral part of physics learning and teaching. Using the perspective of the epistemic game, we documented a specific game that is commonly pursued by students while solving mathematically based physics problems: the analytical derivation game. This game involves deriving an equation through symbolic manipulations and routine mathematical operations, usually without any physical interpretation of the processes. This game often creates cognitive obstacles in students, preventing them from using alternative resources or better approaches during problem solving. We conducted hour-long, semi-structured, individual interviews with fourteen introductory physics students. Students were asked to solve four "pseudophysics" problems containing algebraic and graphical representations. The problems required the application of the fundamental theorem of calculus (FTC), which is one of the most frequently used mathematical concepts in physics problem solving. We show that the analytical derivation game is necessary, but not sufficient, to solve mathematically based physics problems, specifically those involving graphical representations.
ERIC Educational Resources Information Center
Fuchs, Lynn S.; Zumeta, Rebecca O.; Schumacher, Robin Finelli; Powell, Sarah R.; Seethaler, Pamela M.; Hamlett, Carol L.; Fuchs, Douglas
2010-01-01
The purpose of this study was to assess the effects of schema-broadening instruction (SBI) on second graders' word-problem-solving skills and their ability to represent the structure of word problems using algebraic equations. Teachers (n = 18) were randomly assigned to conventional word-problem instruction or SBI word-problem instruction, which…
The development and nature of problem-solving among first-semester calculus students
NASA Astrophysics Data System (ADS)
Dawkins, Paul Christian; Mendoza Epperson, James A.
2014-08-01
This study investigates interactions between calculus learning and problem-solving in the context of two first-semester undergraduate calculus courses in the USA. We assessed students' problem-solving abilities in a common US calculus course design that included traditional lecture and assessment with problem-solving-oriented labs. We investigate this blended instruction as a local representative of the US calculus reform movements that helped foster it. These reform movements tended to emphasize problem-solving as well as multiple mathematical registers and quantitative modelling. Our statistical analysis reveals the influence of the blended traditional/reform calculus instruction on students' ability to solve calculus-related, non-routine problems through repeated measures over the semester. The calculus instruction in this study significantly improved students' performance on non-routine problems, though performance improved more regarding strategies and accuracy than it did for drawing conclusions and providing justifications. We identified problem-solving behaviours that characterized top performance or attrition in the course. Top-performing students displayed greater algebraic proficiency, calculus skills, and more general heuristics than their peers, but overused algebraic techniques even when they proved cumbersome or inappropriate. Students who subsequently withdrew from calculus often lacked algebraic fluency and understanding of the graphical register. The majority of participants, when given a choice, relied upon less sophisticated trial-and-error approaches in the numerical register and rarely used the graphical register, contrary to the goals of US calculus reform. We provide explanations for these patterns in students' problem-solving performance in view of both their preparation for university calculus and the courses' assessment structure, which preferentially rewarded algebraic reasoning. While instruction improved students' problem-solving
Problem solving in a distributed environment
NASA Technical Reports Server (NTRS)
Rashid, R. F.
1980-01-01
Distributed problem solving is anayzed as a blend of two disciplines: (1) problem solving and ai; and (2) distributed systems (monitoring). It may be necessary to distribute because the application itself is one of managing distributed resources (e.g., distributed sensor net) and communication delays preclude centralized processing, or it may be desirable to distribute because a single computational engine may not satisfy the needs of a given task. In addition, considerations of reliability may dictate distribution. Examples of multi-process language environment are given.
Problem solving with genetic algorithms and Splicer
NASA Technical Reports Server (NTRS)
Bayer, Steven E.; Wang, Lui
1991-01-01
Genetic algorithms are highly parallel, adaptive search procedures (i.e., problem-solving methods) loosely based on the processes of population genetics and Darwinian survival of the fittest. Genetic algorithms have proven useful in domains where other optimization techniques perform poorly. The main purpose of the paper is to discuss a NASA-sponsored software development project to develop a general-purpose tool for using genetic algorithms. The tool, called Splicer, can be used to solve a wide variety of optimization problems and is currently available from NASA and COSMIC. This discussion is preceded by an introduction to basic genetic algorithm concepts and a discussion of genetic algorithm applications.
Block method of Runge Kutta type for solving differential algebraic equation
NASA Astrophysics Data System (ADS)
Wen, Khoo Kai; Majid, Zanariah Abdul; Senu, Norazak
2015-10-01
In this paper, a self-starting block method of Runge Kutta type is proposed to solve semi-explicit index-1 differential algebraic equation (DAE). Semi-explicit DAE consists of a system of ordinary differential equations with algebraic constraints. This method will compute the solutions of DAE at two points simultaneously in a block by block steps using constant step size. The DAE is a stiff equation, therefore the Newton iteration is needed during the implementation. Numerical examples are given in order to illustrate the efficiency of the block method when solving the DAE.
Insightful problem solving in an Asian elephant.
Foerder, Preston; Galloway, Marie; Barthel, Tony; Moore, Donald E; Reiss, Diana
2011-01-01
The "aha" moment or the sudden arrival of the solution to a problem is a common human experience. Spontaneous problem solving without evident trial and error behavior in humans and other animals has been referred to as insight. Surprisingly, elephants, thought to be highly intelligent, have failed to exhibit insightful problem solving in previous cognitive studies. We tested whether three Asian elephants (Elephas maximus) would use sticks or other objects to obtain food items placed out-of-reach and overhead. Without prior trial and error behavior, a 7-year-old male Asian elephant showed spontaneous problem solving by moving a large plastic cube, on which he then stood, to acquire the food. In further testing he showed behavioral flexibility, using this technique to reach other items and retrieving the cube from various locations to use as a tool to acquire food. In the cube's absence, he generalized this tool utilization technique to other objects and, when given smaller objects, stacked them in an attempt to reach the food. The elephant's overall behavior was consistent with the definition of insightful problem solving. Previous failures to demonstrate this ability in elephants may have resulted not from a lack of cognitive ability but from the presentation of tasks requiring trunk-held sticks as potential tools, thereby interfering with the trunk's use as a sensory organ to locate the targeted food. PMID:21876741
Insightful Problem Solving in an Asian Elephant
Foerder, Preston; Galloway, Marie; Barthel, Tony; Moore, Donald E.; Reiss, Diana
2011-01-01
The “aha” moment or the sudden arrival of the solution to a problem is a common human experience. Spontaneous problem solving without evident trial and error behavior in humans and other animals has been referred to as insight. Surprisingly, elephants, thought to be highly intelligent, have failed to exhibit insightful problem solving in previous cognitive studies. We tested whether three Asian elephants (Elephas maximus) would use sticks or other objects to obtain food items placed out-of-reach and overhead. Without prior trial and error behavior, a 7-year-old male Asian elephant showed spontaneous problem solving by moving a large plastic cube, on which he then stood, to acquire the food. In further testing he showed behavioral flexibility, using this technique to reach other items and retrieving the cube from various locations to use as a tool to acquire food. In the cube's absence, he generalized this tool utilization technique to other objects and, when given smaller objects, stacked them in an attempt to reach the food. The elephant's overall behavior was consistent with the definition of insightful problem solving. Previous failures to demonstrate this ability in elephants may have resulted not from a lack of cognitive ability but from the presentation of tasks requiring trunk-held sticks as potential tools, thereby interfering with the trunk's use as a sensory organ to locate the targeted food. PMID:21876741
Solving multiconstraint assignment problems using learning automata.
Horn, Geir; Oommen, B John
2010-02-01
This paper considers the NP-hard problem of object assignment with respect to multiple constraints: assigning a set of elements (or objects) into mutually exclusive classes (or groups), where the elements which are "similar" to each other are hopefully located in the same class. The literature reports solutions in which the similarity constraint consists of a single index that is inappropriate for the type of multiconstraint problems considered here and where the constraints could simultaneously be contradictory. This feature, where we permit possibly contradictory constraints, distinguishes this paper from the state of the art. Indeed, we are aware of no learning automata (or other heuristic) solutions which solve this problem in its most general setting. Such a scenario is illustrated with the static mapping problem, which consists of distributing the processes of a parallel application onto a set of computing nodes. This is a classical and yet very important problem within the areas of parallel computing, grid computing, and cloud computing. We have developed four learning-automata (LA)-based algorithms to solve this problem: First, a fixed-structure stochastic automata algorithm is presented, where the processes try to form pairs to go onto the same node. This algorithm solves the problem, although it requires some centralized coordination. As it is desirable to avoid centralized control, we subsequently present three different variable-structure stochastic automata (VSSA) algorithms, which have superior partitioning properties in certain settings, although they forfeit some of the scalability features of the fixed-structure algorithm. All three VSSA algorithms model the processes as automata having first the hosting nodes as possible actions; second, the processes as possible actions; and, third, attempting to estimate the process communication digraph prior to probabilistically mapping the processes. This paper, which, we believe, comprehensively reports the
Solving the hard problem of Bertrand's paradox
Aerts, Diederik; Sassoli de Bianchi, Massimiliano
2014-08-15
Bertrand's paradox is a famous problem of probability theory, pointing to a possible inconsistency in Laplace's principle of insufficient reason. In this article, we show that Bertrand's paradox contains two different problems: an “easy” problem and a “hard” problem. The easy problem can be solved by formulating Bertrand's question in sufficiently precise terms, so allowing for a non-ambiguous modelization of the entity subjected to the randomization. We then show that once the easy problem is settled, also the hard problem becomes solvable, provided Laplace's principle of insufficient reason is applied not to the outcomes of the experiment, but to the different possible “ways of selecting” an interaction between the entity under investigation and that producing the randomization. This consists in evaluating a huge average over all possible “ways of selecting” an interaction, which we call a universal average. Following a strategy similar to that used in the definition of the Wiener measure, we calculate such universal average and therefore solve the hard problem of Bertrand's paradox. The link between Bertrand's problem of probability theory and the measurement problem of quantum mechanics is also briefly discussed.
Preservice teachers' problem-solving processes
NASA Astrophysics Data System (ADS)
Taplin, Margaret
1998-12-01
The purpose of the study reported in this paper is to explore some of the common difficulties with mathematical word problems experienced by preservice primary teachers. It examines weaknesses in students' content and procedural knowledge, with a particular focus on how they apply these aspects of knowledge to solving closed word problems. The SOLO Taxonomy (Biggs & Collis, 1982, 1991) is used to classify the processes used by students who attempted to solve a group of word problems of varying difficulty. Other characteristics of the students' processes that are analysed include the way they used the cues provided in the problem, the way they brought in additional concepts or processes, and the types of errors they made.
Problem-Solving Strategies for Career Planning.
ERIC Educational Resources Information Center
McBryde, Merry J.; Karr-Kidwell, PJ
The need for new expertise in problem solving in the work setting has emerged as a woman's issue because work outside the home has become a primary means for personal goal attainment for about half the women in the United States and because traditional career patterns and norms are ineffective. Career planning is the process of individual career…
Abortion: A Problem-Solving Approach
ERIC Educational Resources Information Center
Campbell, Lloyd P.
1977-01-01
The purpose of this article is to use the vehicle of a controversial issue--abortion--as a means of illustrating the advantages of teaching such issues through a problem-solving method. Discussion ideas and resources are presented. (Author/JR)
How Instructional Designers Solve Workplace Problems
ERIC Educational Resources Information Center
Fortney, Kathleen S.; Yamagata-Lynch, Lisa C.
2013-01-01
This naturalistic inquiry investigated how instructional designers engage in complex and ambiguous problem solving across organizational boundaries in two corporations. Participants represented a range of instructional design experience, from novices to experts. Research methods included a participant background survey, observations of…
Computer Enhanced Problem Solving Skill Acquisition.
ERIC Educational Resources Information Center
Slotnick, Robert S.
1989-01-01
Discusses the implementation of interactive educational software that was designed to enhance critical thinking, scientific reasoning, and problem solving in a university psychology course. Piagetian and computer learning perspectives are explained; the courseware package, PsychWare, is described; and the use of heuristics and algorithms in…
Mathematics Knowledge for Understanding and Problem Solving.
ERIC Educational Resources Information Center
Putnam, Ralph T.
1987-01-01
Two important aspects of transfer in mathematics learning are the application of mathematical knowledge (MK) to problem solving and the acquisition of more advanced concepts. General assumptions and themes of current cognitive research on mathematics learning in schoolchildren are discussed, focusing on issues facilitating the transfer of MK. (TJH)
Assessing Mathematical Problem Solving Using Comparative Judgement
ERIC Educational Resources Information Center
Jones, Ian; Swan, Malcolm; Pollitt, Alastair
2015-01-01
There is an increasing demand from employers and universities for school leavers to be able to apply their mathematical knowledge to problem solving in varied and unfamiliar contexts. These aspects are however neglected in most examinations of mathematics and, consequentially, in classroom teaching. One barrier to the inclusion of mathematical…
ADHD and Problem-Solving in Play
ERIC Educational Resources Information Center
Borg, Suzanne
2009-01-01
This paper reports a small-scale study to determine whether there is a difference in problem-solving abilities, from a play perspective, between individuals who are diagnosed as ADHD and are on medication and those not on medication. Ten children, five of whom where on medication and five not, diagnosed as ADHD predominantly inattentive type, were…
Design and Problem Solving in Technology Education.
ERIC Educational Resources Information Center
Custer, Rodney L.
1999-01-01
Collectively, technological literacy embraces everything from intelligent consumerism to concerns about environmental degradation, ethics, and elitism. Technological problem solving can have social, ecological, or technological goals and may be categorized by four types: invention, design, trouble shooting, and procedures. Every citizen should be…
Facilitating problem solving in high school chemistry
NASA Astrophysics Data System (ADS)
Gabel, Dorothy L.; Sherwood, Robert D.
The major purpose for conducting this study was to determine whether certain instructional strategies were superior to others in teaching high school chemistry students problem solving. The effectiveness of four instructional strategies for teaching problem solving to students of various proportional reasoning ability, verbal and visual preference, and mathematics anxiety were compared in this aptitude by treatment interaction study. The strategies used were the factor-label method, analogies, diagrams, and proportionality. Six hundred and nine high school students in eight schools were randomly assigned to one of four teaching strategies within each classroom. Students used programmed booklets to study the mole concept, the gas laws, stoichiometry, and molarity. Problem-solving ability was measured by a series of immediate posttests, delayed posttests and the ACS-NSTA Examination in High School Chemistry. Results showed that mathematics anxiety is negatively correlated with science achievement and that problem solving is dependent on students' proportional reasoning ability. The factor-label method was found to be the most desirable method and proportionality the least desirable method for teaching the mole concept. However, the proportionality method was best for teaching the gas laws. Several second-order interactions were found to be significant when mathematics anxiety was one of the aptitudes involved.
Teaching, Learning and Assessing Statistical Problem Solving
ERIC Educational Resources Information Center
Marriott, John; Davies, Neville; Gibson, Liz
2009-01-01
In this paper we report the results from a major UK government-funded project, started in 2005, to review statistics and handling data within the school mathematics curriculum for students up to age 16. As a result of a survey of teachers we developed new teaching materials that explicitly use a problem-solving approach for the teaching and…
Mental Imagery in Creative Problem Solving.
ERIC Educational Resources Information Center
Polland, Mark J.
In order to investigate the relationship between mental imagery and creative problem solving, a study of 44 separate accounts reporting mental imagery experiences associated with creative discoveries were examined. The data included 29 different scientists, among them Albert Einstein and Stephen Hawking, and 9 artists, musicians, and writers,…
ARPACK: Solving large scale eigenvalue problems
NASA Astrophysics Data System (ADS)
Lehoucq, Rich; Maschhoff, Kristi; Sorensen, Danny; Yang, Chao
2013-11-01
ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems. The package is designed to compute a few eigenvalues and corresponding eigenvectors of a general n by n matrix A. It is most appropriate for large sparse or structured matrices A where structured means that a matrix-vector product w
Solving Wicked Problems through Action Learning
ERIC Educational Resources Information Center
Crul, Liselore
2014-01-01
This account of practice outlines the Oxyme Action Learning Program which was conducted as part of the Management Challenge in my final year of the MSc in Coaching and Behavioral Change at Henley Business School. The central research questions were: (1) how action learning can help to solve wicked problems and (2) what the effect of an action…
Effective Practices (Part 4): Problem Solving.
ERIC Educational Resources Information Center
Moursund, Dave
1996-01-01
Discusses the use of computers to help with problem solving. Topics include information science, including effective procedure and procedural thinking; templates; artificially intelligent agents and expert systems; and applications in education, including the goal of computer literacy for all students, and integrated software packages such as…
Collaborative Problem Solving Methods towards Critical Thinking
ERIC Educational Resources Information Center
Yin, Khoo Yin; Abdullah, Abdul Ghani Kanesan; Alazidiyeen, Naser Jamil
2011-01-01
This research attempts to examine the collaborative problem solving methods towards critical thinking based on economy (AE) and non economy (TE) in the SPM level among students in the lower sixth form. The quasi experiment method that uses the modal of 3X2 factorial is applied. 294 lower sixth form students from ten schools are distributed…
Problem Solving in Biology: A Methodology
ERIC Educational Resources Information Center
Wisehart, Gary; Mandell, Mark
2008-01-01
A methodology is described that teaches science process by combining informal logic and a heuristic for rating factual reliability. This system facilitates student hypothesis formation, testing, and evaluation of results. After problem solving with this scheme, students are asked to examine and evaluate arguments for the underlying principles of…
Should Children Learn to Solve Problems?
ERIC Educational Resources Information Center
Watras, Joseph
2011-01-01
In this comparative essay, the author discusses the opposing educational theories of John Dewey and Gregory Bateson. While Dewey believed that the scientific method was the dominant method of solving problems and thereby acquiring knowledge that mattered, Bateson warned that this one-sided approach would lead to actions that could destroy the…
Making Problem-Solving Simulations More Realistic.
ERIC Educational Resources Information Center
Cotton, Samuel E.
2002-01-01
Many problem-solving activities include mathematical principles but students do not use them during the design and experimentation phases before creating a prototype or product. Restricting the amount and/or type of materials available to students will require them to calculate and requisition the materials needed. (JOW)
Raise the Bar on Problem Solving
ERIC Educational Resources Information Center
Englard, Lisa
2010-01-01
In a 1981 diagnostic test, the Ministry of Education in Singapore found its country facing a challenge: Only 46 percent of students in grades 2-4 could solve word problems that were presented without such key words as "altogether" or "left." Yet today, according to results from the Trends in International Mathematics and Science Study (TIMSS…
Problem-Solving Test: Tryptophan Operon Mutants
ERIC Educational Resources Information Center
Szeberenyi, Jozsef
2010-01-01
This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…
Nanomedicine: Problem Solving to Treat Cancer
ERIC Educational Resources Information Center
Hemling, Melissa A.; Sammel, Lauren M.; Zenner, Greta; Payne, Amy C.; Crone, Wendy C.
2006-01-01
Many traditional classroom science and technology activities often ask students to complete prepackaged labs that ensure that everyone arrives at the same "scientifically accurate" solution or theory, which ignores the important problem-solving and creative aspects of scientific research and technological design. Students rarely have the…
Everyday Problem Solving: Dollar Wise, Penny Foolish.
ERIC Educational Resources Information Center
Brenner, Mary E.
Research on everyday learning has begun to illuminate some of the relations between activity and knowledge, and thus can help educators reconceptualize classroom activities. For example, how and what children learn about money epitomize many of the differences between everyday and school-based problem solving. The general goals of this paper are…
Student Problem Solving in High School Genetics.
ERIC Educational Resources Information Center
Stewart, James
1983-01-01
Describes set of specific steps (procedural knowledge) used when solving monohybrid/dihybrid cross problems and extent to which students could justify execution of each step in terms of their conceptual knowledge of genetics and meiosis. Implications for genetics instruction are discussed. (JN)
Appendix M. Research Utilization and Problem Solving
ERIC Educational Resources Information Center
Jung, Charles
The Research Utilization and Problem Solving (RUPS) Model--an instructional system designed to provide the needed competencies for an entire staff to engage in systems analysis and systems synthesis procedures prior to assessing educational needs and developing curriculum to meet the needs identified--is intended to facilitate the development of…
Problem-solving for better health.
Smith, B; Barnett, S; Collado, D; Connor, M; DePasquale, J; Gross, L; McDermott, V; Sykes, A
1994-01-01
An outline is given of an approach to the health-for-all goals which involves optimizing resource use, prioritizing people's well-being, achieving excellence and a measurable impact at all levels of care, and solving health problems in a broad developmental context. PMID:8141991
Instruction Emphasizing Effort Improves Physics Problem Solving
ERIC Educational Resources Information Center
Li, Daoquan
2012-01-01
Effectively using strategies to solve complex problems is an important educational goal and is implicated in successful academic performance. However, people often do not spontaneously use the effective strategies unless they are motivated to do so. The present study was designed to test whether educating students about the importance of effort in…
Complex Problem Solving--More than Reasoning?
ERIC Educational Resources Information Center
Wustenberg, Sascha; Greiff, Samuel; Funke, Joachim
2012-01-01
This study investigates the internal structure and construct validity of Complex Problem Solving (CPS), which is measured by a "Multiple-Item-Approach." It is tested, if (a) three facets of CPS--"rule identification" (adequateness of strategies), "rule knowledge" (generated knowledge) and "rule application" (ability to control a system)--can be…
Problem-Framing: A perspective on environmental problem-solving
NASA Astrophysics Data System (ADS)
Bardwell, Lisa V.
1991-09-01
The specter of environmental calamity calls for the best efforts of an involved public. Ironically, the way people understand the issues all too often serves to discourage and frustrate rather than motivate them to action. This article draws from problem-solving perspectives offered by cognitive psychology and conflict management to examine a framework for thinking about environmental problems that promises to help rather than hinder efforts to address them. Problem-framing emphasizes focusing on the problem definition. Since how one defines a problem determines one's understanding of and approach to that problem, being able to redefine or reframe a problem and to explore the “problem space” can help broaden the range of alternatives and solutions examined. Problem-framing incorporates a cognitive perspective on how people respond to information. It explains why an emphasis on problem definition is not part of people's typical approach to problems. It recognizes the importance of structure and of having ways to organize that information on one's problem-solving effort. Finally, problem-framing draws on both cognitive psychology and conflict management for strategies to manage information and to create a problem-solving environment that not only encourages participation but can yield better approaches to our environmental problems.
Preschoolers' Cooperative Problem Solving: Integrating Play and Problem Solving
ERIC Educational Resources Information Center
Ramani, Geetha B.; Brownell, Celia A.
2014-01-01
Cooperative problem solving with peers plays a central role in promoting children's cognitive and social development. This article reviews research on cooperative problem solving among preschool-age children in experimental settings and social play contexts. Studies suggest that cooperative interactions with peers in experimental settings are…
ERIC Educational Resources Information Center
Treffinger, Donald J.; Selby, Edwin C.; Isaksen, Scott G.
2008-01-01
More than five decades of research and development have focused on making the Creative Problem Solving process and tools accessible across a wide range of ages and contexts. Recent evidence indicates that when individuals, in both school and corporate settings, understand their own style of problem solving, they are able to learn and apply process…
Writing about the Problem-Solving Process To Improve Problem-Solving Performance.
ERIC Educational Resources Information Center
Williams, Kenneth M.
2003-01-01
Concludes that writing about the executive processes of problem solving, difficulties encountered, alternative strategies that might have been used, and the problem solving process in general helped students in the treatment group learn to use executive processes more quickly and more effectively than students in the control group. (Author/NB)
ERIC Educational Resources Information Center
Chamberlin, Scott A.; Powers, Robert A.
2013-01-01
The focus of the article is the validation of an instrument to assess gifted students' affect after mathematical problem solving tasks. Participants were 225 students identified by their district as gifted in grades four to six. The Chamberlin Affective Instrument for Mathematical Problem Solving was used to assess feelings, emotions, and…
Application of Performance Problem-Solving to Educational Problems
ERIC Educational Resources Information Center
Bullock, Donald H.
1973-01-01
The relevance of performance problem-solving for education is discussed in terms of its effect on the marketability of graduates, the cost-effectiveness of educational programs, and the drop/push/failout rate. (Author)
An efficient algorithm for the contig ordering problem under algebraic rearrangement distance.
Lu, Chin Lung
2015-11-01
Assembling a genome from short reads currently obtained by next-generation sequencing techniques often results in a collection of contigs, whose relative position and orientation along the genome being sequenced are unknown. Given two sets of contigs, the contig ordering problem is to order and orient the contigs in each set such that the genome rearrangement distance between the resulting sets of ordered and oriented contigs is minimized. In this article, we utilize the permutation groups in algebra to propose a near-linear time algorithm for solving the contig ordering problem under algebraic rearrangement distance, where the algebraic rearrangement distance between two sets of ordered and oriented contigs is the minimum weight of applicable rearrangement operations required to transform one set into the other. PMID:26247343
Problem solving stages in the five square problem
Fedor, Anna; Szathmáry, Eörs; Öllinger, Michael
2015-01-01
According to the restructuring hypothesis, insight problem solving typically progresses through consecutive stages of search, impasse, insight, and search again for someone, who solves the task. The order of these stages was determined through self-reports of problem solvers and has never been verified behaviorally. We asked whether individual analysis of problem solving attempts of participants revealed the same order of problem solving stages as defined by the theory and whether their subjective feelings corresponded to the problem solving stages they were in. Our participants tried to solve the Five-Square problem in an online task, while we recorded the time and trajectory of their stick movements. After the task they were asked about their feelings related to insight and some of them also had the possibility of reporting impasse while working on the task. We found that the majority of participants did not follow the classic four-stage model of insight, but had more complex sequences of problem solving stages, with search and impasse recurring several times. This means that the classic four-stage model is not sufficient to describe variability on the individual level. We revised the classic model and we provide a new model that can generate all sequences found. Solvers reported insight more often than non-solvers and non-solvers reported impasse more often than solvers, as expected; but participants did not report impasse more often during behaviorally defined impasse stages than during other stages. This shows that impasse reports might be unreliable indicators of impasse. Our study highlights the importance of individual analysis of problem solving behavior to verify insight theory. PMID:26300794
Problem solving stages in the five square problem.
Fedor, Anna; Szathmáry, Eörs; Öllinger, Michael
2015-01-01
According to the restructuring hypothesis, insight problem solving typically progresses through consecutive stages of search, impasse, insight, and search again for someone, who solves the task. The order of these stages was determined through self-reports of problem solvers and has never been verified behaviorally. We asked whether individual analysis of problem solving attempts of participants revealed the same order of problem solving stages as defined by the theory and whether their subjective feelings corresponded to the problem solving stages they were in. Our participants tried to solve the Five-Square problem in an online task, while we recorded the time and trajectory of their stick movements. After the task they were asked about their feelings related to insight and some of them also had the possibility of reporting impasse while working on the task. We found that the majority of participants did not follow the classic four-stage model of insight, but had more complex sequences of problem solving stages, with search and impasse recurring several times. This means that the classic four-stage model is not sufficient to describe variability on the individual level. We revised the classic model and we provide a new model that can generate all sequences found. Solvers reported insight more often than non-solvers and non-solvers reported impasse more often than solvers, as expected; but participants did not report impasse more often during behaviorally defined impasse stages than during other stages. This shows that impasse reports might be unreliable indicators of impasse. Our study highlights the importance of individual analysis of problem solving behavior to verify insight theory.
Inverse Modelling Problems in Linear Algebra Undergraduate Courses
ERIC Educational Resources Information Center
Martinez-Luaces, Victor E.
2013-01-01
This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…
Optimal Planning and Problem-Solving
NASA Technical Reports Server (NTRS)
Clemet, Bradley; Schaffer, Steven; Rabideau, Gregg
2008-01-01
CTAEMS MDP Optimal Planner is a problem-solving software designed to command a single spacecraft/rover, or a team of spacecraft/rovers, to perform the best action possible at all times according to an abstract model of the spacecraft/rover and its environment. It also may be useful in solving logistical problems encountered in commercial applications such as shipping and manufacturing. The planner reasons around uncertainty according to specified probabilities of outcomes using a plan hierarchy to avoid exploring certain kinds of suboptimal actions. Also, planned actions are calculated as the state-action space is expanded, rather than afterward, to reduce by an order of magnitude the processing time and memory used. The software solves planning problems with actions that can execute concurrently, that have uncertain duration and quality, and that have functional dependencies on others that affect quality. These problems are modeled in a hierarchical planning language called C_TAEMS, a derivative of the TAEMS language for specifying domains for the DARPA Coordinators program. In realistic environments, actions often have uncertain outcomes and can have complex relationships with other tasks. The planner approaches problems by considering all possible actions that may be taken from any state reachable from a given, initial state, and from within the constraints of a given task hierarchy that specifies what tasks may be performed by which team member.
Discovering the structure of mathematical problem solving.
Anderson, John R; Lee, Hee Seung; Fincham, Jon M
2014-08-15
The goal of this research is to discover the stages of mathematical problem solving, the factors that influence the duration of these stages, and how these stages are related to the learning of a new mathematical competence. Using a combination of multivariate pattern analysis (MVPA) and hidden Markov models (HMM), we found that participants went through 5 major phases in solving a class of problems: A Define Phase where they identified the problem to be solved, an Encode Phase where they encoded the needed information, a Compute Phase where they performed the necessary arithmetic calculations, a Transform Phase where they performed any mathematical transformations, and a Respond Phase where they entered an answer. The Define Phase is characterized by activity in visual attention and default network regions, the Encode Phase by activity in visual regions, the Compute Phase by activity in regions active in mathematical tasks, the Transform Phase by activity in mathematical and response regions, and the Respond phase by activity in motor regions. The duration of the Compute and Transform Phases were the only ones that varied with condition. Two features distinguished the mastery trials on which participants came to understand a new problem type. First, the duration of late phases of the problem solution increased. Second, there was increased activation in the rostrolateral prefrontal cortex (RLPFC) and angular gyrus (AG), regions associated with metacognition. This indicates the importance of reflection to successful learning. PMID:24746954
Discovering the structure of mathematical problem solving.
Anderson, John R; Lee, Hee Seung; Fincham, Jon M
2014-08-15
The goal of this research is to discover the stages of mathematical problem solving, the factors that influence the duration of these stages, and how these stages are related to the learning of a new mathematical competence. Using a combination of multivariate pattern analysis (MVPA) and hidden Markov models (HMM), we found that participants went through 5 major phases in solving a class of problems: A Define Phase where they identified the problem to be solved, an Encode Phase where they encoded the needed information, a Compute Phase where they performed the necessary arithmetic calculations, a Transform Phase where they performed any mathematical transformations, and a Respond Phase where they entered an answer. The Define Phase is characterized by activity in visual attention and default network regions, the Encode Phase by activity in visual regions, the Compute Phase by activity in regions active in mathematical tasks, the Transform Phase by activity in mathematical and response regions, and the Respond phase by activity in motor regions. The duration of the Compute and Transform Phases were the only ones that varied with condition. Two features distinguished the mastery trials on which participants came to understand a new problem type. First, the duration of late phases of the problem solution increased. Second, there was increased activation in the rostrolateral prefrontal cortex (RLPFC) and angular gyrus (AG), regions associated with metacognition. This indicates the importance of reflection to successful learning.
Predicting Positive Self-Efficacy in Group Problem Solving.
ERIC Educational Resources Information Center
Wolf, Kay N.
1997-01-01
A study of 288 hospital employees engaged in problem-solving groups found that previous group problem-solving experience, educational level, work expertise, and problem-solving confidence were the best predictors of self-efficacy. (SK)
Numerical methods on some structured matrix algebra problems
Jessup, E.R.
1996-06-01
This proposal concerned the design, analysis, and implementation of serial and parallel algorithms for certain structured matrix algebra problems. It emphasized large order problems and so focused on methods that can be implemented efficiently on distributed-memory MIMD multiprocessors. Such machines supply the computing power and extensive memory demanded by the large order problems. We proposed to examine three classes of matrix algebra problems: the symmetric and nonsymmetric eigenvalue problems (especially the tridiagonal cases) and the solution of linear systems with specially structured coefficient matrices. As all of these are of practical interest, a major goal of this work was to translate our research in linear algebra into useful tools for use by the computational scientists interested in these and related applications. Thus, in addition to software specific to the linear algebra problems, we proposed to produce a programming paradigm and library to aid in the design and implementation of programs for distributed-memory MIMD computers. We now report on our progress on each of the problems and on the programming tools.
Geogebra for Solving Problems of Physics
NASA Astrophysics Data System (ADS)
Kllogjeri, Pellumb; Kllogjeri, Adrian
Today is highly speed progressing the computer-based education, which allowes educators and students to use educational programming language and e-tutors to teach and learn, to interact with one another and share together the results of their work. In this paper we will be concentrated on the use of GeoGebra programme for solving problems of physics. We have brought an example from physics of how can be used GeoGebra for finding the center of mass(centroid) of a picture(or system of polygons). After the problem is solved graphically, there is an application of finding the center of a real object(a plate)by firstly, scanning the object and secondly, by inserting its scanned picture into the drawing pad of GeoGebra window and lastly, by finding its centroid. GeoGebra serve as effective tool in problem-solving. There are many other applications of GeoGebra in the problems of physics, and many more in different fields of mathematics.
A connectionist model for diagnostic problem solving
NASA Technical Reports Server (NTRS)
Peng, Yun; Reggia, James A.
1989-01-01
A competition-based connectionist model for solving diagnostic problems is described. The problems considered are computationally difficult in that (1) multiple disorders may occur simultaneously and (2) a global optimum in the space exponential to the total number of possible disorders is sought as a solution. The diagnostic problem is treated as a nonlinear optimization problem, and global optimization criteria are decomposed into local criteria governing node activation updating in the connectionist model. Nodes representing disorders compete with each other to account for each individual manifestation, yet complement each other to account for all manifestations through parallel node interactions. When equilibrium is reached, the network settles into a locally optimal state. Three randomly generated examples of diagnostic problems, each of which has 1024 cases, were tested, and the decomposition plus competition plus resettling approach yielded very high accuracy.
Students' Images of Problem Contexts when Solving Applied Problems
ERIC Educational Resources Information Center
Moore, Kevin C.; Carlson, Marilyn P.
2012-01-01
This article reports findings from an investigation of precalculus students' approaches to solving novel problems. We characterize the images that students constructed during their solution attempts and describe the degree to which they were successful in imagining how the quantities in a problem's context change together. Our analyses revealed…
The Effect of General Versus Specific Heuristics in Mathematical Problem-Solving Tasks.
ERIC Educational Resources Information Center
Smith, James Philip
This study investigated differences in problem-solving performance following instruction varying in the type of heuristic advice given. The subjects, 176 college students with two years of high school mathematics experience, were provided programed instruction over a three-week period in three topic areas: finite geometry, Boolean algebra, and…
Status Effects in Group Problem Solving: Group and Individual Level Analyses.
ERIC Educational Resources Information Center
Chiu, Ming Ming
Eighty ninth graders who solved an algebra problem in groups of four showed status effects at the individual level. The students had filled out preactivity questionnaires about mathematical status and social status and a postactivity leadership questionnaire. Hierarchical regressions and path analyses show that, at the group level, solution score…
Tracking Problem Solving by Multivariate Pattern Analysis and Hidden Markov Model Algorithms
ERIC Educational Resources Information Center
Anderson, John R.
2012-01-01
Multivariate pattern analysis can be combined with Hidden Markov Model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first "mind reading" application…
An efficient algorithm for solving the gravity problem of finding a density in a horizontal layer
NASA Astrophysics Data System (ADS)
Akimova, Elena N.; Martyshko, Peter S.; Misilov, Vladimir E.; Kosivets, Rostislav A.
2016-06-01
An efficient algorithm for solving the inverse gravity problem of finding a variable density in a horizontal layer using gravitational data is constructed. After the discretization and approximation, the problem reduces to solving a system of linear algebraic equations. The idea of this algorithm is based on exploiting the block-Toeplitz structure of coefficients matrix. Utilizing this algorithm drastically reduces the memory usage, as well as the computation time. The algorithm was parallelized and implemented using the Uran supercomputer. A model problem with synthetic gravitational data was solved.
Interactive Problem Solving Tutorials Through Visual Programming
NASA Astrophysics Data System (ADS)
Undreiu, Lucian; Schuster, David; Undreiu, Adriana
2008-10-01
We have used LabVIEW visual programming to build an interactive tutorial to promote conceptual understanding in physics problem solving. This programming environment is able to offer a web-accessible problem solving experience that enables students to work at their own pace and receive feedback. Intuitive graphical symbols, modular structures and the ability to create templates are just a few of the advantages this software has to offer. The architecture of an application can be designed in a way that allows instructors with little knowledge of LabVIEW to easily personalize it. Both the physics solution and the interactive pedagogy can be visually programmed in LabVIEW. Our physics pedagogy approach is that of cognitive apprenticeship, in that the tutorial guides students to develop conceptual understanding and physical insight into phenomena, rather than purely formula-based solutions. We demonstrate how this model is reflected in the design and programming of the interactive tutorials.
A numerical method for solving partial differential algebraic equations
NASA Astrophysics Data System (ADS)
Diep, Nguyen Khac; Chistyakov, V. F.
2013-06-01
Linear systems of partial differential equations with constant coefficient matrices are considered. The matrices multiplying the derivatives of the sought vector function are assumed to be singular. The structure of solutions to such systems is examined. The numerical solution of initialboundary value problems for such equations by applying implicit difference schemes is discussed.
Numerical Problem Solving Using Mathcad in Undergraduate Reaction Engineering
ERIC Educational Resources Information Center
Parulekar, Satish J.
2006-01-01
Experience in using a user-friendly software, Mathcad, in the undergraduate chemical reaction engineering course is discussed. Example problems considered for illustration deal with simultaneous solution of linear algebraic equations (kinetic parameter estimation), nonlinear algebraic equations (equilibrium calculations for multiple reactions and…
Solving radar detection problems using simulation
NASA Astrophysics Data System (ADS)
Curtis Schleher, D.
1995-04-01
Simulation is a well-known but often misunderstood method for predicting the detection range of radars. Recent advances in computer software and hardware have made simulation easier to apply and use. Users are putting increased reliance on computer simulation in lieu of more expensive test and evaluation. In this paper, a simulation example is given of a complex radar detection problem which is not solvable using conventional procedures. It is shown how this problem is easily solved using a MATLAB simulation on a personal computer (PC).
Optimization neural network for solving flow problems.
Perfetti, R
1995-01-01
This paper describes a neural network for solving flow problems, which are of interest in many areas of application as in fuel, hydro, and electric power scheduling. The neural network consist of two layers: a hidden layer and an output layer. The hidden units correspond to the nodes of the flow graph. The output units represent the branch variables. The network has a linear order of complexity, it is easily programmable, and it is suited for analog very large scale integration (VLSI) realization. The functionality of the proposed network is illustrated by a simulation example concerning the maximal flow problem. PMID:18263420
Development of analogical problem-solving skill.
Holyoak, K J; Junn, E N; Billman, D O
1984-12-01
3 experiments were performed to assess children's ability to solve a problem by analogy to a superficially dissimilar situation. Preschoolers and fifth and sixth graders were asked to solve a problem that allowed multiple solutions. Some subjects were first read a story that included an analogous problem and its solution. When the mapping between the relations involved in the corresponding solutions was relatively simple, and the corresponding instruments were perceptually and functionally similar, even preschoolers were able to use the analogy to derive a solution to the transfer problem (Experiment 1). Furthermore, salient similarity of the instruments was neither sufficient (Experiment 2) nor necessary (Experiment 3) for success by preschool subjects. When the story analog mapped well onto the transfer problem, 4-year-olds were often able to generate a solution that required transformation of an object with little perceptual or semantic similarity to the instrument used in the base analog (Experiment 3). The older children used analogies in a manner qualitatively similar to that observed in comparable studies with adults (Experiment 1), whereas the younger children exhibited different limitations.
Comprehension and computation in Bayesian problem solving
Johnson, Eric D.; Tubau, Elisabet
2015-01-01
Humans have long been characterized as poor probabilistic reasoners when presented with explicit numerical information. Bayesian word problems provide a well-known example of this, where even highly educated and cognitively skilled individuals fail to adhere to mathematical norms. It is widely agreed that natural frequencies can facilitate Bayesian inferences relative to normalized formats (e.g., probabilities, percentages), both by clarifying logical set-subset relations and by simplifying numerical calculations. Nevertheless, between-study performance on “transparent” Bayesian problems varies widely, and generally remains rather unimpressive. We suggest there has been an over-focus on this representational facilitator (i.e., transparent problem structures) at the expense of the specific logical and numerical processing requirements and the corresponding individual abilities and skills necessary for providing Bayesian-like output given specific verbal and numerical input. We further suggest that understanding this task-individual pair could benefit from considerations from the literature on mathematical cognition, which emphasizes text comprehension and problem solving, along with contributions of online executive working memory, metacognitive regulation, and relevant stored knowledge and skills. We conclude by offering avenues for future research aimed at identifying the stages in problem solving at which correct vs. incorrect reasoners depart, and how individual differences might influence this time point. PMID:26283976
Comprehension and computation in Bayesian problem solving.
Johnson, Eric D; Tubau, Elisabet
2015-01-01
Humans have long been characterized as poor probabilistic reasoners when presented with explicit numerical information. Bayesian word problems provide a well-known example of this, where even highly educated and cognitively skilled individuals fail to adhere to mathematical norms. It is widely agreed that natural frequencies can facilitate Bayesian inferences relative to normalized formats (e.g., probabilities, percentages), both by clarifying logical set-subset relations and by simplifying numerical calculations. Nevertheless, between-study performance on "transparent" Bayesian problems varies widely, and generally remains rather unimpressive. We suggest there has been an over-focus on this representational facilitator (i.e., transparent problem structures) at the expense of the specific logical and numerical processing requirements and the corresponding individual abilities and skills necessary for providing Bayesian-like output given specific verbal and numerical input. We further suggest that understanding this task-individual pair could benefit from considerations from the literature on mathematical cognition, which emphasizes text comprehension and problem solving, along with contributions of online executive working memory, metacognitive regulation, and relevant stored knowledge and skills. We conclude by offering avenues for future research aimed at identifying the stages in problem solving at which correct vs. incorrect reasoners depart, and how individual differences might influence this time point.
Exploiting Quantum Resonance to Solve Combinatorial Problems
NASA Technical Reports Server (NTRS)
Zak, Michail; Fijany, Amir
2006-01-01
Quantum resonance would be exploited in a proposed quantum-computing approach to the solution of combinatorial optimization problems. In quantum computing in general, one takes advantage of the fact that an algorithm cannot be decoupled from the physical effects available to implement it. Prior approaches to quantum computing have involved exploitation of only a subset of known quantum physical effects, notably including parallelism and entanglement, but not including resonance. In the proposed approach, one would utilize the combinatorial properties of tensor-product decomposability of unitary evolution of many-particle quantum systems for physically simulating solutions to NP-complete problems (a class of problems that are intractable with respect to classical methods of computation). In this approach, reinforcement and selection of a desired solution would be executed by means of quantum resonance. Classes of NP-complete problems that are important in practice and could be solved by the proposed approach include planning, scheduling, search, and optimal design.
Solving the Swath Segment Selection Problem
NASA Technical Reports Server (NTRS)
Knight, Russell; Smith, Benjamin
2006-01-01
Several artificial-intelligence search techniques have been tested as means of solving the swath segment selection problem (SSSP) -- a real-world problem that is not only of interest in its own right, but is also useful as a test bed for search techniques in general. In simplest terms, the SSSP is the problem of scheduling the observation times of an airborne or spaceborne synthetic-aperture radar (SAR) system to effect the maximum coverage of a specified area (denoted the target), given a schedule of downlinks (opportunities for radio transmission of SAR scan data to a ground station), given the limit on the quantity of SAR scan data that can be stored in an onboard memory between downlink opportunities, and given the limit on the achievable downlink data rate. The SSSP is NP complete (short for "nondeterministic polynomial time complete" -- characteristic of a class of intractable problems that can be solved only by use of computers capable of making guesses and then checking the guesses in polynomial time).
A Flipped Pedagogy for Expert Problem Solving
NASA Astrophysics Data System (ADS)
Pritchard, David
The internet provides free learning opportunities for declarative (Wikipedia, YouTube) and procedural (Kahn Academy, MOOCs) knowledge, challenging colleges to provide learning at a higher cognitive level. Our ``Modeling Applied to Problem Solving'' pedagogy for Newtonian Mechanics imparts strategic knowledge - how to systematically determine which concepts to apply and why. Declarative and procedural knowledge is learned online before class via an e-text, checkpoint questions, and homework on edX.org (see http://relate.mit.edu/physicscourse); it is organized into five Core Models. Instructors then coach students on simple ``touchstone problems'', novel exercises, and multi-concept problems - meanwhile exercising three of the four C's: communication, collaboration, critical thinking and problem solving. Students showed 1.2 standard deviations improvement on the MIT final exam after three weeks instruction, a significant positive shift in 7 of the 9 categories in the CLASS, and their grades improved by 0.5 standard deviation in their following physics course (Electricity and Magnetism).
An investigation into problem solving in education: a problem-solving curricular framework.
Arand, J U; Harding, C G
1987-02-01
The purpose of this study was to examine how two aspects of teaching, mastery of content and problem solving, could be linked in a curricular framework. A professional educational program in physical therapy which had been developed to teach both content and problem solving was evaluated. The subjects for the study were 81 students in a baccalaureate program in a Midwestern medical school who participated in this problem-solving curriculum. The primary assessment instrument used was the Watson-Glaser Critical Thinking Appraisal. Findings indicated that performance on a test of critical thinking was affected by the curriculum. Regression analysis indicated that one course designed as an introduction to problem solving was significantly related to changes in problem-solving skill scores. Although significant change in the test scores did occur, these changes were not evident until the completion of the year-long program. Differing effects for lecture and field experience (or patient care) courses were not observed, and traditional measures such as grade point averages had no statistical relationship to problem-solving skill scores.
How do college students solve proportion problems?
NASA Astrophysics Data System (ADS)
Thornton, Melvin C.; Fuller, Robert G.
Problems which could be solved using proportional reasoning were administered nationwide by college faculty to their own science classes during a three year period. The reasoning of more than 8000 students covering three sections of the country was classified as concrete, transitional, or formal using Piagetian categories. Data from the West closely replicated that from the Midwest on similar metric conversion tasks. Student performance changed noticeably with a different problem format. The percentages of students using a ratio formula, ratio attempt, or intuitive methods of solution held approximately constant over time, task, and section of the country. The data shows the use of additive and conversion methods of solution depends upon the problem presentation.
Teaching Problem Solving Skills to Elementary Age Students with Autism
ERIC Educational Resources Information Center
Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.
2014-01-01
Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…
Mathematical Problem Solving: A Review of the Literature.
ERIC Educational Resources Information Center
Funkhouser, Charles
The major perspectives on problem solving of the twentieth century are reviewed--associationism, Gestalt psychology, and cognitive science. The results of the review on teaching problem solving and the uses of computers to teach problem solving are included. Four major issues related to the teaching of problem solving are discussed: (1)…
Harmony Theory: Problem Solving, Parallel Cognitive Models, and Thermal Physics.
ERIC Educational Resources Information Center
Smolensky, Paul; Riley, Mary S.
This document consists of three papers. The first, "A Parallel Model of (Sequential) Problem Solving," describes a parallel model designed to solve a class of relatively simple problems from elementary physics and discusses implications for models of problem-solving in general. It is shown that one of the most salient features of problem solving,…
Young Children's Analogical Problem Solving: Gaining Insights from Video Displays
ERIC Educational Resources Information Center
Chen, Zhe; Siegler, Robert S.
2013-01-01
This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. Two- to 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older but not younger toddlers extracted the problem-solving strategy depicted in the video…
Solving optimization problems on computational grids.
Wright, S. J.; Mathematics and Computer Science
2001-05-01
Multiprocessor computing platforms, which have become more and more widely available since the mid-1980s, are now heavily used by organizations that need to solve very demanding computational problems. Parallel computing is now central to the culture of many research communities. Novel parallel approaches were developed for global optimization, network optimization, and direct-search methods for nonlinear optimization. Activity was particularly widespread in parallel branch-and-bound approaches for various problems in combinatorial and network optimization. As the cost of personal computers and low-end workstations has continued to fall, while the speed and capacity of processors and networks have increased dramatically, 'cluster' platforms have become popular in many settings. A somewhat different type of parallel computing platform know as a computational grid (alternatively, metacomputer) has arisen in comparatively recent times. Broadly speaking, this term refers not to a multiprocessor with identical processing nodes but rather to a heterogeneous collection of devices that are widely distributed, possibly around the globe. The advantage of such platforms is obvious: they have the potential to deliver enormous computing power. Just as obviously, however, the complexity of grids makes them very difficult to use. The Condor team, headed by Miron Livny at the University of Wisconsin, were among the pioneers in providing infrastructure for grid computations. More recently, the Globus project has developed technologies to support computations on geographically distributed platforms consisting of high-end computers, storage and visualization devices, and other scientific instruments. In 1997, we started the metaneos project as a collaborative effort between optimization specialists and the Condor and Globus groups. Our aim was to address complex, difficult optimization problems in several areas, designing and implementing the algorithms and the software
Modal preferences in creative problem solving.
Deininger, Gina; Loudon, Gareth; Norman, Stefanie
2012-08-01
Embodied cognitive science appeals to the idea that cognition depends on the body as well as on the brain. This study looks at whether we are more likely to engage just the brain or enlist the body for complex cognitive functioning such as creative problem solving. Participants were presented with a puzzle based on De Bono's lateral thinking puzzles. The puzzle consisted of rotating and joining two-dimensional shapes to make a three-dimensional one. In one condition, participants were given the choice of either solving the puzzle mentally or through manipulation of the images on a computer screen. In another condition, the subjects had to solve the puzzle first mentally and then report which mode they would have preferred to solve the puzzle. Two more conditions were applied with slight variations. In all conditions, an overwhelming majority of participants chose to solve the puzzle by manipulation, even though there was not a significant increase on performance. It appeared that participants were making a conscious choice for the body to play a feedback-driven role in creative cognitive processing. This strong preference for manual manipulation over just mental representation, regardless of the impact on performance, would seem to suggest that it is our natural tendency to involve the body in complex cognitive functioning. This would support the theory that cognition may be more than just a neural process, and that it is a dynamic interplay between body, brain and world. The experiential feedback of the body moving through space and time may be an inherently important factor in creative cognition.
Can compactifications solve the cosmological constant problem?
NASA Astrophysics Data System (ADS)
Hertzberg, Mark P.; Masoumi, Ali
2016-06-01
Recently, there have been claims in the literature that the cosmological constant problem can be dynamically solved by specific compactifications of gravity from higher-dimensional toy models. These models have the novel feature that in the four-dimensional theory, the cosmological constant Λ is much smaller than the Planck density and in fact accumulates at Λ = 0. Here we show that while these are very interesting models, they do not properly address the real cosmological constant problem. As we explain, the real problem is not simply to obtain Λ that is small in Planck units in a toy model, but to explain why Λ is much smaller than other mass scales (and combinations of scales) in the theory. Instead, in these toy models, all other particle mass scales have been either removed or sent to zero, thus ignoring the real problem. To this end, we provide a general argument that the included moduli masses are generically of order Hubble, so sending them to zero trivially sends the cosmological constant to zero. We also show that the fundamental Planck mass is being sent to zero, and so the central problem is trivially avoided by removing high energy physics altogether. On the other hand, by including various large mass scales from particle physics with a high fundamental Planck mass, one is faced with a real problem, whose only known solution involves accidental cancellations in a landscape.
ERIC Educational Resources Information Center
Hayel Al-Srour, Nadia; Al-Ali, Safa M.; Al-Oweidi, Alia
2016-01-01
The present study aims to detect the impact of teacher training on creative writing and problem-solving using both Futuristic scenarios program to solve problems creatively, and creative problem solving. To achieve the objectives of the study, the sample was divided into two groups, the first consist of 20 teachers, and 23 teachers to second…
Inverse modelling problems in linear algebra undergraduate courses
NASA Astrophysics Data System (ADS)
Martinez-Luaces, Victor E.
2013-10-01
This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different presentations will be discussed. Finally, several results will be presented and some conclusions proposed.
Multitasking-Pascal extensions solve concurrency problems
Mackie, P.H.
1982-09-29
To avoid deadlock (one process waiting for a resource than another process can't release) and indefinite postponement (one process being continually denied a resource request) in a multitasking-system application, it is possible to use a high-level development language with built-in concurrency handlers. Parallel Pascal is one such language; it extends standard Pascal via special task synchronizers: a new data type called signal, new system procedures called wait and send and a Boolean function termed awaited. To understand the language's use the author examines the problems it helps solve.
The Problem of Assessing Problem Solving: Can Comparative Judgement Help?
ERIC Educational Resources Information Center
Jones, Ian; Inglis, Matthew
2015-01-01
School mathematics examination papers are typically dominated by short, structured items that fail to assess sustained reasoning or problem solving. A contributory factor to this situation is the need for student work to be marked reliably by a large number of markers of varied experience and competence. We report a study that tested an…
Solving Optimization Problems with Dynamic Geometry Software: The Airport Problem
ERIC Educational Resources Information Center
Contreras, José
2014-01-01
This paper describes how the author's students (in-service and pre-service secondary mathematics teachers) enrolled in college geometry courses use the Geometers' Sketchpad (GSP) to gain insight to formulate, confirm, test, and refine conjectures to solve the classical airport problem for triangles. The students are then provided with strategic…
A Process Analysis of Engineering Problem Solving and Assessment of Problem Solving Skills
ERIC Educational Resources Information Center
Grigg, Sarah J.
2012-01-01
In the engineering profession, one of the most critical skills to possess is accurate and efficient problem solving. Thus, engineering educators should strive to help students develop skills needed to become competent problem solvers. In order to measure the development of skills, it is necessary to assess student performance, identify any…
"I'm Not Very Good at Solving Problems": An Exploration of Students' Problem Solving Behaviours
ERIC Educational Resources Information Center
Muir, Tracey; Beswick, Kim; Williamson, John
2008-01-01
This paper reports one aspect of a larger study which looked at the strategies used by a selection of grade 6 students to solve six non-routine mathematical problems. The data revealed that the students exhibited many of the behaviours identified in the literature as being associated with novice and expert problem solvers. However, the categories…
Quantum Algorithms for Problems in Number Theory, Algebraic Geometry, and Group Theory
NASA Astrophysics Data System (ADS)
van Dam, Wim; Sasaki, Yoshitaka
2013-09-01
Quantum computers can execute algorithms that sometimes dramatically outperform classical computation. Undoubtedly the best-known example of this is Shor's discovery of an efficient quantum algorithm for factoring integers, whereas the same problem appears to be intractable on classical computers. Understanding what other computational problems can be solved significantly faster using quantum algorithms is one of the major challenges in the theory of quantum computation, and such algorithms motivate the formidable task of building a large-scale quantum computer. This article will review the current state of quantum algorithms, focusing on algorithms for problems with an algebraic flavor that achieve an apparent superpolynomial speedup over classical computation.
ERIC Educational Resources Information Center
Heppner, P. Paul; Witty, Thomas E.; Dixon, Wayne A.
2004-01-01
This article reviews and synthesizes more than 120 studies from 20 years (1982-2002) of research that has examined problem-solving appraisal as measured by the Problem Solving Inventory (PSI). The goals of the article are fourfold: (a) introduce the construct of problem-solving appraisal and the PSI within the applied problem-solving literature,…
Solving large sparse eigenvalue problems on supercomputers
NASA Technical Reports Server (NTRS)
Philippe, Bernard; Saad, Youcef
1988-01-01
An important problem in scientific computing consists in finding a few eigenvalues and corresponding eigenvectors of a very large and sparse matrix. The most popular methods to solve these problems are based on projection techniques on appropriate subspaces. The main attraction of these methods is that they only require the use of the matrix in the form of matrix by vector multiplications. The implementations on supercomputers of two such methods for symmetric matrices, namely Lanczos' method and Davidson's method are compared. Since one of the most important operations in these two methods is the multiplication of vectors by the sparse matrix, methods of performing this operation efficiently are discussed. The advantages and the disadvantages of each method are compared and implementation aspects are discussed. Numerical experiments on a one processor CRAY 2 and CRAY X-MP are reported. Possible parallel implementations are also discussed.
Incubation and Intuition in Creative Problem Solving
Gilhooly, Kenneth J.
2016-01-01
Creative problem solving, in which novel solutions are required, has often been seen as involving a special role for unconscious processes (Unconscious Work) which can lead to sudden intuitive solutions (insights) when a problem is set aside during incubation periods. This notion of Unconscious Work during incubation periods is supported by a review of experimental studies and particularly by studies using the Immediate Incubation paradigm. Other explanations for incubation effects, in terms of Intermittent Work or Beneficial Forgetting are considered. Some recent studies of divergent thinking, using the Alternative Uses task, carried out in my laboratory regarding Immediate vs. Delayed Incubation and the effects of resource competition from interpolated activities are discussed. These studies supported a role for Unconscious Work as against Intermittent Conscious work or Beneficial Forgetting in incubation. PMID:27499745
Incubation and Intuition in Creative Problem Solving.
Gilhooly, Kenneth J
2016-01-01
Creative problem solving, in which novel solutions are required, has often been seen as involving a special role for unconscious processes (Unconscious Work) which can lead to sudden intuitive solutions (insights) when a problem is set aside during incubation periods. This notion of Unconscious Work during incubation periods is supported by a review of experimental studies and particularly by studies using the Immediate Incubation paradigm. Other explanations for incubation effects, in terms of Intermittent Work or Beneficial Forgetting are considered. Some recent studies of divergent thinking, using the Alternative Uses task, carried out in my laboratory regarding Immediate vs. Delayed Incubation and the effects of resource competition from interpolated activities are discussed. These studies supported a role for Unconscious Work as against Intermittent Conscious work or Beneficial Forgetting in incubation. PMID:27499745
Solving Math Problems Approximately: A Developmental Perspective
Ganor-Stern, Dana
2016-01-01
Although solving arithmetic problems approximately is an important skill in everyday life, little is known about the development of this skill. Past research has shown that when children are asked to solve multi-digit multiplication problems approximately, they provide estimates that are often very far from the exact answer. This is unfortunate as computation estimation is needed in many circumstances in daily life. The present study examined 4th graders, 6th graders and adults’ ability to estimate the results of arithmetic problems relative to a reference number. A developmental pattern was observed in accuracy, speed and strategy use. With age there was a general increase in speed, and an increase in accuracy mainly for trials in which the reference number was close to the exact answer. The children tended to use the sense of magnitude strategy, which does not involve any calculation but relies mainly on an intuitive coarse sense of magnitude, while the adults used the approximated calculation strategy which involves rounding and multiplication procedures, and relies to a greater extent on calculation skills and working memory resources. Importantly, the children were less accurate than the adults, but were well above chance level. In all age groups performance was enhanced when the reference number was smaller (vs. larger) than the exact answer and when it was far (vs. close) from it, suggesting the involvement of an approximate number system. The results suggest the existence of an intuitive sense of magnitude for the results of arithmetic problems that might help children and even adults with difficulties in math. The present findings are discussed in the context of past research reporting poor estimation skills among children, and the conditions that might allow using children estimation skills in an effective manner. PMID:27171224
Functional reasoning in diagnostic problem solving
NASA Technical Reports Server (NTRS)
Sticklen, Jon; Bond, W. E.; Stclair, D. C.
1988-01-01
This work is one facet of an integrated approach to diagnostic problem solving for aircraft and space systems currently under development. The authors are applying a method of modeling and reasoning about deep knowledge based on a functional viewpoint. The approach recognizes a level of device understanding which is intermediate between a compiled level of typical Expert Systems, and a deep level at which large-scale device behavior is derived from known properties of device structure and component behavior. At this intermediate functional level, a device is modeled in three steps. First, a component decomposition of the device is defined. Second, the functionality of each device/subdevice is abstractly identified. Third, the state sequences which implement each function are specified. Given a functional representation and a set of initial conditions, the functional reasoner acts as a consequence finder. The output of the consequence finder can be utilized in diagnostic problem solving. The paper also discussed ways in which this functional approach may find application in the aerospace field.
Assessing Cognitive Learning of Analytical Problem Solving
NASA Astrophysics Data System (ADS)
Billionniere, Elodie V.
Introductory programming courses, also known as CS1, have a specific set of expected outcomes related to the learning of the most basic and essential computational concepts in computer science (CS). However, two of the most often heard complaints in such courses are that (1) they are divorced from the reality of application and (2) they make the learning of the basic concepts tedious. The concepts introduced in CS1 courses are highly abstract and not easily comprehensible. In general, the difficulty is intrinsic to the field of computing, often described as "too mathematical or too abstract." This dissertation presents a small-scale mixed method study conducted during the fall 2009 semester of CS1 courses at Arizona State University. This study explored and assessed students' comprehension of three core computational concepts---abstraction, arrays of objects, and inheritance---in both algorithm design and problem solving. Through this investigation students' profiles were categorized based on their scores and based on their mistakes categorized into instances of five computational thinking concepts: abstraction, algorithm, scalability, linguistics, and reasoning. It was shown that even though the notion of computational thinking is not explicit in the curriculum, participants possessed and/or developed this skill through the learning and application of the CS1 core concepts. Furthermore, problem-solving experiences had a direct impact on participants' knowledge skills, explanation skills, and confidence. Implications for teaching CS1 and for future research are also considered.
Problem Solving Interventions: Impact on Young Children with Developmental Disabilities
ERIC Educational Resources Information Center
Diamond, Lindsay Lile
2012-01-01
Problem-solving skills are imperative to a child's growth and success across multiple environments, including general and special education. Problem solving is comprised of: (a) attention to the critical aspects of a problem, (b) generation of solution(s) to solve the problem, (c) application of a solution(s) to the identified problem, and…
De Groote, Friedl; Kinney, Allison L; Rao, Anil V; Fregly, Benjamin J
2016-10-01
Estimation of muscle forces during motion involves solving an indeterminate problem (more unknown muscle forces than joint moment constraints), frequently via optimization methods. When the dynamics of muscle activation and contraction are modeled for consistency with muscle physiology, the resulting optimization problem is dynamic and challenging to solve. This study sought to identify a robust and computationally efficient formulation for solving these dynamic optimization problems using direct collocation optimal control methods. Four problem formulations were investigated for walking based on both a two and three dimensional model. Formulations differed in the use of either an explicit or implicit representation of contraction dynamics with either muscle length or tendon force as a state variable. The implicit representations introduced additional controls defined as the time derivatives of the states, allowing the nonlinear equations describing contraction dynamics to be imposed as algebraic path constraints, simplifying their evaluation. Problem formulation affected computational speed and robustness to the initial guess. The formulation that used explicit contraction dynamics with muscle length as a state failed to converge in most cases. In contrast, the two formulations that used implicit contraction dynamics converged to an optimal solution in all cases for all initial guesses, with tendon force as a state generally being the fastest. Future work should focus on comparing the present approach to other approaches for computing muscle forces. The present approach lacks some of the major limitations of established methods such as static optimization and computed muscle control while remaining computationally efficient.
The change of the brain activation patterns as children learn algebra equation solving
Qin, Yulin; Carter, Cameron S.; Silk, Eli M.; Stenger, V. Andrew; Fissell, Kate; Goode, Adam; Anderson, John R.
2004-01-01
In a brain imaging study of children learning algebra, it is shown that the same regions are active in children solving equations as are active in experienced adults solving equations. As with adults, practice in symbol manipulation produces a reduced activation in prefrontal cortex area. However, unlike adults, practice seems also to produce a decrease in a parietal area that is holding an image of the equation. This finding suggests that adolescents' brain responses are more plastic and change more with practice. These results are integrated in a cognitive model that predicts both the behavioral and brain imaging results. PMID:15064407
Optimized fourth-order Runge-Kutta method for solving oscillatory problems
NASA Astrophysics Data System (ADS)
Hussain, Kasim; Ismail, Fudziah; Senu, Norazak; Rabiei, Faranak
2016-06-01
In this article, we develop a Runge-Kutta method with invalidation of phase lag, phase lag's derivatives and amplification error to solve second-order initial value problem (IVP) with oscillating solutions. The new method depends on the explicit Runge-Kutta method of algebraic order four. Numerical tests from its implementation to well-known oscillatory problems illustrate the robustness and competence of the new method as compared to the well-known Runge-Kutta methods in the scientific literature.
Cognition-emotion interactions: patterns of change and implications for math problem solving.
Trezise, Kelly; Reeve, Robert A
2014-01-01
Surprisingly little is known about whether relationships between cognitive and emotional states remain stable or change over time, or how different patterns of stability and/or change in the relationships affect problem solving abilities. Nevertheless, cross-sectional studies show that anxiety/worry may reduce working memory (WM) resources, and the ability to minimize the effects anxiety/worry is higher in individuals with greater WM capacity. To investigate the patterns of stability and/or change in cognition-emotion relations over time and their implications for problem solving, 126 14-year-olds' algebraic WM and worry levels were assessed twice in a single day before completing an algebraic math problem solving test. We used latent transition analysis to identify stability/change in cognition-emotion relations, which yielded a six subgroup solution. Subgroups varied in WM capacity, worry, and stability/change relationships. Among the subgroups, we identified a high WM/low worry subgroup that remained stable over time and a high WM/high worry, and a moderate WM/low worry subgroup that changed to low WM subgroups over time. Patterns of stability/change in subgroup membership predicted algebraic test results. The stable high WM/low worry subgroup performed best and the low WM capacity-high worry "unstable across time" subgroup performed worst. The findings highlight the importance of assessing variations in cognition-emotion relationships over time (rather than assessing cognition or emotion states alone) to account for differences in problem solving abilities.
Algebraic Approach to the Minimum-Cost Multi-Impulse Orbit-Transfer Problem
NASA Astrophysics Data System (ADS)
Avendaño, M.; Martín-Molina, V.; Martín-Morales, J.; Ortigas-Galindo, J.
2016-08-01
We present a purely algebraic formulation (i.e. polynomial equations only) of the minimum-cost multi-impulse orbit transfer problem without time constraints, while keeping all the variables with a precise physical meaning. We apply general algebraic techniques to solve these equations (resultants, Gr\\"obner bases, etc.) in several situations of practical interest of different degrees of generality. For instance, we provide a proof of the optimality of the Hohmann transfer for the minimum fuel 2-impulse circular to circular orbit transfer problem, and we provide a general formula for the optimal 2-impulse in-plane transfer between two rotated elliptical orbits under a mild symmetry assumption on the two points where the impulses are applied (which we conjecture that can be removed).
Use of EPR to Solve Biochemical Problems
Sahu, Indra D.; McCarrick, Robert M.; Lorigan, Gary A.
2013-01-01
EPR spectroscopy is a very powerful biophysical tool that can provide valuable structural and dynamic information on a wide variety of biological systems. The intent of this review is to provide a general overview for biochemists and biological researchers on the most commonly used EPR methods and how these techniques can be used to answer important biological questions. The topics discussed could easily fill one or more textbooks; thus, we present a brief background on several important biological EPR techniques and an overview of several interesting studies that have successfully used EPR to solve pertinent biological problems. The review consists of the following sections: an introduction to EPR techniques, spin labeling methods, and studies of naturally occurring organic radicals and EPR active transition metal systems which are presented as a series of case studies in which EPR spectroscopy has been used to greatly further our understanding of several important biological systems. PMID:23961941
Autonomy and Mathematical Problem-Solving: The Early Years
ERIC Educational Resources Information Center
Rogers, Jennifer
2004-01-01
Problem solving is seen to lie at the "heart" of mathematics (Cockcroft, 1982). Problem solving is also of great importance to industry that claims many young people leave school and take up jobs without the skills needed to sort out difficulties and problems (Smith Report, 2004). So is problem solving at the heart of mathematics teaching in…
Translation among Symbolic Representations in Problem-Solving. Revised.
ERIC Educational Resources Information Center
Shavelson, Richard J.; And Others
This study investigated the relationships among the symbolic representation of problems given to students to solve, the mental representations they use to solve the problems, and the accuracy of their solutions. Twenty eleventh-grade science students were asked to think aloud as they solved problems on the ideal gas laws. The problems were…
Novice Use of Qualitative versus Quantitative Problem Solving in Electrostatics.
ERIC Educational Resources Information Center
McMillan, Claude, III; Swadener, Marc
1991-01-01
Describes the problem-solving behaviors of six novice subjects attempting to solve an electrostatics problem in calculus-based college physics. The level of qualitative thinking exhibited by these novices was determined. Sound procedural knowledge and problem representation were suggested as an integral part of skilled problem solving in physics.…
NASA Astrophysics Data System (ADS)
Ridenour, J.; Feldman, G.; Teodorescu, R.; Medsker, L.; Benmouna, N.
2013-01-01
Developing competency in problem solving and enhancing conceptual understanding are primary objectives in introductory physics, and many techniques and tools are available to help instructors achieve them. Pedagogically, we use an easy-to-implement intervention, the ACCESS protocol, to develop and assess problem-solving skills in our SCALE-UP classroom environment for algebra-based physics. Based on our research and teaching experience, an important question has emerged: while primarily targeting improvements in problem-solving and cognitive development, is it necessary that conceptual understanding be compromised? To address this question, we gathered and analyzed information about student abilities, backgrounds, and instructional preferences. We report on our progress and give insights into matching the instructional tools to student profiles in order to achieve optimal learning in group-based active learning. The ultimate goal of our work is to integrate individual student learning needs into a pedagogy that moves students closer to expert-like status in problem solving.
NASA Astrophysics Data System (ADS)
Lin, Shih-Yin; Singh, Chandralekha
2015-12-01
It is well known that introductory physics students often have alternative conceptions that are inconsistent with established physical principles and concepts. Invoking alternative conceptions in the quantitative problem-solving process can derail the entire process. In order to help students solve quantitative problems involving strong alternative conceptions correctly, appropriate scaffolding support can be helpful. The goal of this study is to examine how different scaffolding supports involving analogical problem-solving influence introductory physics students' performance on a target quantitative problem in a situation where many students' solution process is derailed due to alternative conceptions. Three different scaffolding supports were designed and implemented in calculus-based and algebra-based introductory physics courses involving 410 students to evaluate the level of scaffolding needed to help students learn from an analogical problem that is similar in the underlying principles involved but for which the problem-solving process is not derailed by alternative conceptions. We found that for the quantitative problem involving strong alternative conceptions, simply guiding students to work through the solution of the analogical problem first was not enough to help most students discern the similarity between the two problems. However, if additional scaffolding supports that directly helped students examine and repair their knowledge elements involving alternative conceptions were provided, e.g., by guiding students to contemplate related issues and asking them to solve the targeted problem on their own first before learning from the analogical problem provided, students were more likely to discern the underlying similarities between the problems and avoid getting derailed by alternative conceptions when solving the targeted problem. We also found that some scaffolding supports were more effective in the calculus-based course than in the algebra
Journey into Problem Solving: A Gift from Polya
ERIC Educational Resources Information Center
Lederman, Eric
2009-01-01
In "How to Solve It", accomplished mathematician and skilled communicator George Polya describes a four-step universal solving technique designed to help students develop mathematical problem-solving skills. By providing a glimpse at the grace with which experts solve problems, Polya provides definable methods that are not exclusive to…
Children use salience to solve coordination problems.
Grueneisen, Sebastian; Wyman, Emily; Tomasello, Michael
2015-05-01
Humans are routinely required to coordinate with others. When communication is not possible, adults often achieve this by using salient cues in the environment (e.g. going to the Eiffel Tower, as an obvious meeting point). To explore the development of this capacity, we presented dyads of 3-, 5-, and 8-year-olds (N = 144) with a coordination problem: Two balls had to be inserted into the same of four boxes to obtain a reward. Identical pictures were attached to three boxes whereas a unique--and thus salient--picture was attached to the fourth. Children either received one ball each, and so had to choose the same box (experimental condition), or they received both balls and could get the reward independently (control condition). In all cases, children could neither communicate nor see each other's choices. Children were significantly more likely to choose the salient option in the experimental condition than in the control condition. However, only the two older age groups chose the salient box above chance levels. This study is the first to show that children from at least age 5 can solve coordination problems by converging on a salient solution.
Unsupervised neural networks for solving Troesch's problem
NASA Astrophysics Data System (ADS)
Muhammad, Asif Zahoor Raja
2014-01-01
In this study, stochastic computational intelligence techniques are presented for the solution of Troesch's boundary value problem. The proposed stochastic solvers use the competency of a feed-forward artificial neural network for mathematical modeling of the problem in an unsupervised manner, whereas the learning of unknown parameters is made with local and global optimization methods as well as their combinations. Genetic algorithm (GA) and pattern search (PS) techniques are used as the global search methods and the interior point method (IPM) is used for an efficient local search. The combination of techniques like GA hybridized with IPM (GA-IPM) and PS hybridized with IPM (PS-IPM) are also applied to solve different forms of the equation. A comparison of the proposed results obtained from GA, PS, IPM, PS-IPM and GA-IPM has been made with the standard solutions including well known analytic techniques of the Adomian decomposition method, the variational iterational method and the homotopy perturbation method. The reliability and effectiveness of the proposed schemes, in term of accuracy and convergence, are evaluated from the results of statistical analysis based on sufficiently large independent runs.
Structured Collaboration versus Individual Learning in Solving Physics Problems
NASA Astrophysics Data System (ADS)
Harskamp, Egbert; Ding, Ning
2006-11-01
The research issue in this study is how to structure collaborative learning so that it improves solving physics problems more than individual learning. Structured collaborative learning has been compared with individual learning environments with Schoenfeld’s problem-solving episodes. Students took a pre-test and a post-test and had the opportunity to solve six physics problems. Ninety-nine students from a secondary school in Shanghai participated in the study. Students who learnt to solve problems in collaboration and students who learnt to solve problems individually with hints improved their problem-solving skills compared with those who learnt to solve the problems individually without hints. However, it was hard to discern an extra effect for students working collaboratively with hints—although we observed these students working in a more structured way than those in the other groups. We discuss ways to further investigate effective collaborative processes for solving physics problems.
Algebraic multigrid methods applied to problems in computational structural mechanics
NASA Technical Reports Server (NTRS)
Mccormick, Steve; Ruge, John
1989-01-01
The development of algebraic multigrid (AMG) methods and their application to certain problems in structural mechanics are described with emphasis on two- and three-dimensional linear elasticity equations and the 'jacket problems' (three-dimensional beam structures). Various possible extensions of AMG are also described. The basic idea of AMG is to develop the discretization sequence based on the target matrix and not the differential equation. Therefore, the matrix is analyzed for certain dependencies that permit the proper construction of coarser matrices and attendant transfer operators. In this manner, AMG appears to be adaptable to structural analysis applications.
OpenMP for 3D potential boundary value problems solved by PIES
NASA Astrophysics Data System (ADS)
KuŻelewski, Andrzej; Zieniuk, Eugeniusz
2016-06-01
The main purpose of this paper is examination of an application of modern parallel computing technique OpenMP to speed up the calculation in the numerical solution of parametric integral equations systems (PIES). The authors noticed, that solving more complex boundary problems by PIES sometimes requires large computing time. This paper presents the use of OpenMP and fast C++ linear algebra library Armadillo for boundary value problems modelled by 3D Laplace's equation and solved using PIES. The testing example shows that the use of mentioned technologies significantly increases speed of calculations in PIES.
Dynamics of students’ epistemological framing in group problem solving
NASA Astrophysics Data System (ADS)
Nguyen, Hai D.; Chari, Deepa N.; Sayre, Eleanor C.
2016-11-01
Many studies have investigated students’ epistemological framing when solving physics problems. Framing supports students’ problem solving as they decide what knowledge to employ and the necessary steps to solve the problem. Students may frame the same problem differently and take alternative paths to a correct solution. When students work in group settings, they share and discuss their framing to decide how to proceed in problem solving as a whole group. In this study, we investigate how groups of students negotiate their framing and frame shifts in group problem solving.
Interpersonal and Emotional Problem Solving among Narcotic Drug Abusers.
ERIC Educational Resources Information Center
Appel, Philip W.; Kaestner, Elisabeth
1979-01-01
Measured problem-solving abilities of narcotics abusers using the modified means-ends problem-solving procedure. Good subjects had more total relevent means (RMs) for solving problems, used more introspective and emotional RMs, and were better at RM recognition, but did not have more sufficient narratives than poor subjects. (Author/BEF)
Teaching Problem Solving in Secondary School Mathematics Classrooms
ERIC Educational Resources Information Center
Lam, Toh Tin; Guan, Tay Eng; Seng, Quek Khiok; Hoong, Leong Yew; Choon, Toh Pee; Him, Ho Foo; Jaguthsing, Dindyal
2014-01-01
This paper reports an innovative approach to teaching problem solving in secondary school mathematics classrooms based on a specifically designed problem-solving module.This approach adopts the science practical paradigm and rides on the works of Polya and Schoenfeld in order to give greater emphasis to the problem solving processes. We report the…
Teaching Young Children Interpersonal Problem-Solving Skills
ERIC Educational Resources Information Center
Joseph, Gail E.; Strain, Phillip S.
2010-01-01
Learning how to problem solve is one of the key developmental milestones in early childhood. Children's problem-solving skills represent a key feature in the development of social competence. Problem solving allows children to stay calm during difficult situations, repair social relations quickly, and get their needs met in ways that are safe and…
Teacher Practices with Toddlers during Social Problem Solving Opportunities
ERIC Educational Resources Information Center
Gloeckler, Lissy; Cassell, Jennifer
2012-01-01
This article explores how teachers can foster an environment that facilitates social problem solving when toddlers experience conflict, emotional dysregulation, and aggression. This article examines differences in child development and self-regulation outcomes when teachers engage in problem solving "for" toddlers and problem solving "with"…
A TAPS Interactive Multimedia Package to Solve Engineering Dynamics Problem
ERIC Educational Resources Information Center
Sidhu, S. Manjit; Selvanathan, N.
2005-01-01
Purpose: To expose engineering students to using modern technologies, such as multimedia packages, to learn, visualize and solve engineering problems, such as in mechanics dynamics. Design/methodology/approach: A multimedia problem-solving prototype package is developed to help students solve an engineering problem in a step-by-step approach. A…
Capturing Problem-Solving Processes Using Critical Rationalism
ERIC Educational Resources Information Center
Chitpin, Stephanie; Simon, Marielle
2012-01-01
The examination of problem-solving processes continues to be a current research topic in education. Knowing how to solve problems is not only a key aspect of learning mathematics but is also at the heart of cognitive theories, linguistics, artificial intelligence, and computers sciences. Problem solving is a multistep, higher-order cognitive task…
Team-Based Complex Problem Solving: A Collective Cognition Perspective
ERIC Educational Resources Information Center
Hung, Woei
2013-01-01
Today, much problem solving is performed by teams, rather than individuals. The complexity of these problems has exceeded the cognitive capacity of any individual and requires a team of members to solve them. The success of solving these complex problems not only relies on individual team members who possess different but complementary expertise,…
Problem Solving and Creativity; In Individuals and Groups.
ERIC Educational Resources Information Center
Maier, Norman R. F.
Studies on individual and group problem solving from the past 15 years are brought together in this volume. Four sections of the book consider individual problem solving and the search for a possible unique factor in creativity. The next four sections concern themselves with the various aspects of group problem solving, and a final part of the…
The Influence of Cognitive Abilities on Mathematical Problem Solving Performance
ERIC Educational Resources Information Center
Bahar, Abdulkadir
2013-01-01
Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of students. The…
Personal Problem-Solving Activities of Black University Students.
ERIC Educational Resources Information Center
Reeder, Bonita Lynne; Heppner, P. Paul
1985-01-01
Examined personal problem solving activities of Black undergraduates (N=84) using three measures: Problem Solving Inventory; Level of Problem Solving Skills Estimate Form; and Ways of Coping Scale. Results indicated no racial (Black versus White) or geographic (urban versus rural) differences in responses. (BL)
The Influence of Cognitive Diversity on Group Problem Solving Strategy
ERIC Educational Resources Information Center
Lamm, Alexa J.; Shoulders, Catherine; Roberts, T. Grady; Irani, Tracy A.; Snyder, Lori J. Unruh; Brendemuhl, Joel
2012-01-01
Collaborative group problem solving allows students to wrestle with different interpretations and solutions brought forth by group members, enhancing both critical thinking and problem solving skills. Since problem solving in groups is a common practice in agricultural education, instructors are often put in the position of organizing student…
Problem Solving in the School Curriculum from a Design Perspective
ERIC Educational Resources Information Center
Toh, Tin Lam; Leong, Yew Hoong; Dindyal, Jaguthsing; Quek, Khiok Seng
2010-01-01
In this symposium, the participants discuss some preliminary data collected from their problem solving project which uses a design experiment approach. Their approach to problem solving in the school curriculum is in tandem with what Schoenfeld (2007) claimed: "Crafting instruction that would make a wide range of problem-solving strategies…
Development of a Content Coding System for Marital Problem Solving.
ERIC Educational Resources Information Center
Winemiller, David R.; Mitchell, M. Ellen
While much research has focused on the processes of marital problem solving, the content of marital problem solving has received considerably less attention. This study examined the initial efforts to develop a method for assessing marital problem solving content. Married individuals (N=36) completed a demographic information sheet, the Dyadic…
Perceived Problem Solving, Stress, and Health among College Students
ERIC Educational Resources Information Center
Largo-Wight, Erin; Peterson, P. Michael; Chen, W. William
2005-01-01
Objective: To study the relationships among perceived problem solving, stress, and physical health. Methods: The Perceived Stress Questionnaire (PSQ), Personal Problem solving Inventory (PSI), and a stress-related physical health symptoms checklist were used to measure perceived stress, problem solving, and health among undergraduate college…
Internet Computer Coaches for Introductory Physics Problem Solving
ERIC Educational Resources Information Center
Xu Ryan, Qing
2013-01-01
The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the…
The Word Problem for Solvable Lie Algebras and Groups
NASA Astrophysics Data System (ADS)
Kharlampovich, O. G.
1990-02-01
The variety of groups Z\\mathfrak{N}_2\\mathfrak{A} is given by the identity \\displaystyle \\lbrack\\lbrack x_1,\\,x_2\\rbrack,\\,\\lbrack x_3,\\,x_4\\rbrack,\\,\\lbrack x_5,\\, x_6\\rbrack,\\, x_7\\rbrack = 1,and the analogous variety of Lie algebras is given by the identity \\displaystyle (x_1x_2)(x_3x_4)(x_5x_6)x_7=0.Previously the author proved the unsolvability of the word problem for any variety of groups (respectively: Lie algebras) containing Z\\mathfrak{N}_2\\mathfrak{A}, and its solvability for any subvariety of \\mathfrak{N}_2\\mathfrak{A}. Here the word problem is investigated in varieties of Lie algebras over a field of characteristic zero and in varieties of groups contained in Z\\mathfrak{N}_2\\mathfrak{A}. It is proved that in the lattice of subvarieties of Z\\mathfrak{N}_2\\mathfrak{A} there exist arbitrary long chains in which the varieties with solvable and unsolvable word problems alternate. In particular, the variety Z\\mathfrak{N}_2\\mathfrak{A}\\cap\\mathfrak{N}_2\\mathfrak{N}_c has a solvable word problem for any c, while the variety \\mathfrak{Y}_2, given within Z\\mathfrak{N}_2\\mathfrak{A} by the identity \\displaystyle \\lbrack\\lbrack x_1,\\,\\dots,\\,x_{2c+2}\\rbrack,\\,\\lbrack y_1,\\,\\dots,\\,y_{2c+2}\\rbrack,\\lbrack z_1,\\,\\dots,\\,z_{2c}\\rbrack\\rbrack = 1,in the case of groups and by the identity \\displaystyle (x_1\\dotsb x_{2c+2})(y_1\\dotsb y_{2c+2})(z_1\\dotsb z_{2c})=0in the case of Lie algebras, has an unsolvable word problem. It is also proved that in Z\\mathfrak{N}_2\\mathfrak{A} there exists an infinite series of minimal varieties with an unsolvable word problem, i.e. varieties whose proper subvarieties all have solvable word problems.Bibliography: 17 titles.
ERIC Educational Resources Information Center
Xin, Yan Ping
2008-01-01
The purpose of this study was to examine the effects of a schema-based instructional strategy that emphasizes prealgebraic conceptualization of multiplicative relations on solving arithmetic word problems with elementary students with learning disabilities or problems (LP). Introducing symbolic representation and algebraic thinking in earlier…
ERIC Educational Resources Information Center
Chiu, Ming Ming
2004-01-01
This study tested a model of teacher interventions (TIs) conducted during cooperative learning to examine how they affected students' subsequent time on-task (TOT) and problem solving. TIs involved groups of ninth-grade students working on an algebra problem; videotaped lessons were transcribed and analyzed. Results showed that teachers initiated…
Young children's analogical problem solving: gaining insights from video displays.
Chen, Zhe; Siegler, Robert S
2013-12-01
This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. The sample of 2- and 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older, but not younger, toddlers extracted the problem-solving strategy depicted in the video and spontaneously transferred the strategy to solve isomorphic problems. Transfer by analogy from the video was evident only when the video illustrated the complete problem goal structure, including the character's intention and the action needed to achieve a goal. The same action isolated from the problem-solving context did not serve as an effective source analogue. These results illuminate the development of early representation and processes involved in analogical problem solving. Theoretical and educational implications are discussed.
NASA Astrophysics Data System (ADS)
Labecca, William; Guimarães, Osvaldo; Piqueira, José Roberto C.
2014-08-01
Approximations of functions in terms of orthogonal polynomials have been used to develop and implement numerical approaches to solve spectrally initial and boundary value problems. The main idea behind these approaches is to express differential and integral operators by using matrices, and this, in turn, makes the numerical implementation easier to be expressed in computational algebraic languages. In this paper, the application of the methodology is enlarged by using Dirac's formalism, combined with complex Fourier series.
The Poincaré problem, algebraic integrability and dicritical divisors
NASA Astrophysics Data System (ADS)
Galindo, C.; Monserrat, F.
We solve the Poincaré problem for plane foliations with only one dicritical divisor. Moreover, in this case, we give a simple algorithm that decides whether a foliation has a rational first integral and computes it in the affirmative case. We also provide an algorithm to compute a rational first integral of prefixed genus g≠1 of any type of plane foliation F. When the number of dicritical divisors dic(F) is larger than 2, this algorithm depends on suitable families of invariant curves. When dic(F)=2, it proves that the degree of the rational first integral can be bounded only in terms of g, the degree of F and the local analytic type of the dicritical singularities of F. The degree d of a general integral invariant curve is less than or equal to 4. Therefore, the Poincaré problem is solved in this case. There exists a valueλ∈Z>0such thatPF:=|λΔF|is a pencil and the rational mapP2⋯→P1that it defines is a rational first integral ofF. Moreover λ is the minimum of the set{α∈Z>0|dim|αΔF|⩾1}. The above clause (b) supports a very simple algorithm, our forthcoming Algorithm 2, which decides about the existence of a rational first integral of F (and computes it in the positive case) whenever dic(F)=1. Other alternative algorithms are treated in Section 4. Our remaining main results are: Assume thatFhas a rational first integral of genus g. Then, there exists a bound on the degree of the first integral depending only on the degree ofF, the genus g and the local analytic type of the dicritical singularities ofF. There exists an algorithm to decide whetherFhas a rational first integral of genus g (and to compute it, in the affirmative case) whose inputs are: g, a homogeneous 1-form definingFand the minimal resolution of the dicritical singularities ofF. Assume thatFhas a rational first integral of genus g. Then there exists a bound on the degree of the first integral which depends on the degree ofF, the genus g, the local analytic type of the
Analyzing the many skills involved in solving complex physics problems
NASA Astrophysics Data System (ADS)
Adams, Wendy K.; Wieman, Carl E.
2015-05-01
We have empirically identified over 40 distinct sub-skills that affect a person's ability to solve complex problems in many different contexts. The identification of so many sub-skills explains why it has been so difficult to teach or assess problem solving as a single skill. The existence of these sub-skills is supported by several studies comparing a wide range of individuals' strengths and weaknesses in these sub-skills, their "problem solving fingerprint," while solving different types of problems including a classical mechanics problem, quantum mechanics problems, and a complex trip-planning problem with no physics. We see clear differences in the problem solving fingerprint of physics and engineering majors compared to the elementary education majors that we tested. The implications of these findings for guiding the teaching and assessing of problem solving in physics instruction are discussed.
ERIC Educational Resources Information Center
Dufner, Hillrey A.; Alexander, Patricia A.
The differential effects of two different types of problem-solving training on the problem-solving abilities of gifted fourth graders were studied. Two successive classes of gifted fourth graders from Weslaco Independent School District (Texas) were pretested with the Coloured Progressive Matrices (CPM) and Thinking Creatively With Pictures…
Contextualizing Arithmetic into Developmental Elementary Algebra Using Guided Problem Solving
ERIC Educational Resources Information Center
Guy, G. Michael; Cornick, Jonathan; Puri, Karan
2016-01-01
Many colleges are finding that the use of acceleration in developmental education is a promising direction for improved student progress toward a degree or certificate. Acceleration has been defined in the literature as the reorganization of curricula and instruction in ways that facilitate the completion of educational requirements in an…
Teaching Problem-Solving Skills to Nuclear Engineering Students
ERIC Educational Resources Information Center
Waller, E.; Kaye, M. H.
2012-01-01
Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and…
Individual differences: A third component in problem-solving instruction
NASA Astrophysics Data System (ADS)
Ronning, Royce R.; McCurdy, Donald; Ballinger, Ruth
Present research in problem solving appears to be primarily concerned with problem-solving methods and with degree of knowledge acquisition. A brief argument is advanced that this conceptualization is incomplete because of failure to consider individual differences among problem solvers (other than in problem-solving methods and extent of knowledge). A viable theory of problem-solving instruction must take into account all three areas. Evidence for the argument is presented in the form of data on problem-solving success in junior high school students with extreme scores on Witkin's field independence-field dependence measure of cognitive style. Problem-solving protocols are examined as a second source of data. Field independent students significantly out-performed field dependent students on the problems. Examination of protocols revealed consistent performance patterns favoring field independent students.
Non-commutative holomorphic functions in elements of a Lie algebra and the absolute basis problem
NASA Astrophysics Data System (ADS)
Dosi, Anar A.
2009-12-01
We study the absolute basis problem in algebras of holomorphic functions in non-commuting variables generating a finite-dimensional nilpotent Lie algebra \\mathfrak{g}. This is motivated by J. L. Taylor's programme of non-commutative holomorphic functional calculus in the Lie algebra framework.
The spatial isomorphism problem for close separable nuclear C*-algebras
Christensen, Erik; Sinclair, Allan M.; Smith, Roger R.; White, Stuart A.; Winter, Wilhelm
2010-01-01
The Kadison–Kastler problem asks whether close C*-algebras on a Hilbert space must be spatially isomorphic. We establish this when one of the algebras is separable and nuclear. We also apply our methods to the study of near inclusions of C*-algebras. PMID:20080723
Using a general problem-solving strategy to promote transfer.
Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John
2014-09-01
Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge.
Problem-solving test: Tryptophan operon mutants.
Szeberényi, József
2010-09-01
Terms to be familiar with before you start to solve the test: tryptophan, operon, operator, repressor, inducer, corepressor, promoter, RNA polymerase, chromosome-polysome complex, regulatory gene, cis-acting element, trans-acting element, plasmid, transformation. PMID:21567855
Problem-Solving Therapy in the Elderly.
Kiosses, Dimitris N; Alexopoulos, George S
2014-03-01
We systematically reviewed randomized clinical trials of problem-solving therapy (PST) in older adults. Our results indicate that PST led to greater reduction in depressive symptoms of late-life major depression than supportive therapy (ST) and reminiscence therapy. PST resulted in reductions in depression comparable with those of paroxetine and placebo in patients with minor depression and dysthymia, although paroxetine led to greater reductions than placebo. In home health care, PST was more effective than usual care in reducing symptoms of depression in undiagnosed patients. PST reduced disability more than ST in patients with major depression and executive dysfunction. Preliminary data suggest that a home-delivered adaptation of PST that includes environmental adaptations and caregiver involvement is efficacious in reducing disability in depressed patients with advanced cognitive impairment or early dementia. In patients with macular degeneration, PST led to improvement in vision-related disability comparable to that of ST, but PST led to greater improvement in measures of vision-related quality of life. Among stroke patients, PST participants were less likely to develop a major or minor depressive episode than those receiving placebo treatment, although the results were not sustained in a more conservative statistical analysis. Among patients with macular degeneration, PST participants had significantly lower 2-month incidence rates of major depression than usual care participants and were less likely to suffer persistent depression at 6 months. Finally, among stroke patients, PST participants were less likely to develop apathy than those receiving placebo treatment. PST also has been delivered via phone, Internet, and videophone, and there is evidence of feasibility and acceptability. Further, preliminary data indicate that PST delivered through the Internet resulted in a reduction in depression comparable with that of in-person PST in home-care patients. PST
A Problem Solving Framework for Managing Poor Readers in Classrooms.
ERIC Educational Resources Information Center
Beck, Judith S.
1988-01-01
Points out that poor readers may exhibit behavioral, cognitive, and emotional problems. Offers a problem-solving framework for intervention in poor readers' nonacademic problems, and describes several possible types of intervention. (ARH)
Problem Solving in Calculus with Symbolic Geometry and CAS
ERIC Educational Resources Information Center
Todd, Philip; Wiechmann, James
2008-01-01
Computer algebra systems (CAS) have been around for a number of years, as has dynamic geometry. Symbolic geometry software is new. It bears a superficial similarity to dynamic geometry software, but differs in that problems may be set up involving symbolic variables and constants, and measurements are given as symbolic expressions. Mathematical…
The relationship between students' problem solving frames and epistemological beliefs
NASA Astrophysics Data System (ADS)
Wampler, Wendi N.
Introductory undergraduate physics courses aim to help students develop the skills and strategies necessary to solve complex, real world problems, but many students not only leave these courses with serious gaps in their conceptual understanding, but also maintain a novice-like approach to solving problems. Matter and Interactions [M&I] is a curriculum that focuses on a restructuring of physics content knowledge and emphasizes a systematic approach to problem solving, called modeling, which involves the application physical principles to carefully defined systems of objects and interactions (Chabay and Sherwood, 2007a). Because the M&I approach to problem solving is different from many students' previous physics experience, efforts need to be made to attend to their epistemological beliefs and expectations about not only learning physics content knowledge, but problem solving as well. If a student frames solving physics problems as a `plug and chug' type activity, then they are going continue practicing this strategy. Thus, it is important to address students' epistemological beliefs and monitor how they frame the activity of problem solving within the M&I course. This study aims to investigate how students frame problem solving within the context of a large scale implementation of the M&I curriculum, and how, if at all, those frames shift through the semester. By investigating how students frame the act of problem solving in the M&I context, I was able to examine the connection between student beliefs and expectations about problem solving in physics and the skills and strategies used while solving problems in class. To accomplish these goals, I recruited student volunteers from Purdue's introductory, calculus-based physics course and assessed their problem solving approach and espoused epistemological beliefs over the course of a semester. I obtained data through video recordings of the students engaged in small group problem solving during recitation activities
Formulating and Solving Problems in Computational Chemistry.
ERIC Educational Resources Information Center
Norris, A. C.
1980-01-01
Considered are the main elements of computational chemistry problems and how these elements can be used to formulate the problems mathematically. Techniques that are useful in devising an appropriate solution are also considered. (Author/TG)
Facilitating Students' Problem Solving across Multiple Representations in Introductory Mechanics
NASA Astrophysics Data System (ADS)
Nguyen, Dong-Hai; Gire, Elizabeth; Rebello, N. Sanjay
2010-10-01
Solving problems presented in multiple representations is an important skill for future physicists and engineers. However, such a task is not easy for most students taking introductory physics courses. We conducted teaching/learning interviews with 20 students in a first-semester calculus-based physics course on several topics in introductory mechanics. These interviews helped identify the common difficulties students encountered when solving physics problems posed in multiple representations as well as the hints that help students overcome those difficulties. We found that most representational difficulties arise due to the lack of students' ability to associate physics knowledge with corresponding mathematical knowledge. Based on those findings, we developed, tested and refined a set of problem-solving exercises to help students learn to solve problems in graphical and equational representations. We present our findings on students' common difficulties with graphical and equational representations, the problem-solving exercises and their impact on students' problem solving abilities.
Mathematical Profiles and Problem Solving Abilities of Mathematically Promising Students
ERIC Educational Resources Information Center
Budak, Ibrahim
2012-01-01
Mathematically promising students are defined as those who have the potential to become the leaders and problem solvers of the future. The purpose of this research is to reveal what problem solving abilities mathematically promising students show in solving non-routine problems and type of profiles they present in the classroom and during problem…
Problem-Solving Support for English Language Learners
ERIC Educational Resources Information Center
Wiest, Lynda R.
2008-01-01
Although word problems pose greater language demands, they also encourage more meaningful problem solving and mathematics understanding. With proper instructional support, a student-centered, investigative approach to contextualized problem solving benefits all students. This article presents a lesson built on an author-adapted version of the…
From Example Study to Problem Solving: Smooth Transitions Help Learning.
ERIC Educational Resources Information Center
Renkl, Alexander; Atkinson, Robert K.; Maier, Uwe H.; Staley, Richard
2002-01-01
Proposed a successive integration of problem-solving elements into example study until learners solved problems on their own and tested the effectiveness of this "fading" method against a traditional method of using example-problem pairs. Results with 20 ninth graders in Germany, 54 U.S. college students, and 45 U.S. college students show that the…
A Computer Based Problem Solving Environment in Chemistry
ERIC Educational Resources Information Center
Bilgin, Ibrahim; Karakirik, Erol
2005-01-01
The purpose of this study was to introduce the Mole Solver, a computer based system that facilitates monitors and improves students' problem solving skills on mole concept. The system has three distinct modes that: (1) find step by step solutions to the word problems on the mole concept; (2) enable students to solve word problems on their own by…
A Computer Based Problem Solving Environment in Chemistry
ERIC Educational Resources Information Center
Bilgin, Ibrahim; Karakirik, Erol
2005-01-01
The purpose of this study was to introduce the Mole Solver, a computer based system that facilitates monitors and improves the students' problems solving skills on mole concept. The system has three distinct modes that: i) finds step by step solutions to the word problems on the mole concept ii) enable students' to solve word problems on their own…
Solving the Sailors and the Coconuts Problem via Diagrammatic Approach
ERIC Educational Resources Information Center
Man, Yiu-Kwong
2010-01-01
In this article, we discuss how to use a diagrammatic approach to solve the classic sailors and the coconuts problem. It provides us an insight on how to tackle this type of problem in a novel and intuitive way. This problem-solving approach will be found useful to mathematics teachers or lecturers involved in teaching elementary number theory,…
Solving Information-Based Problems: Evaluating Sources and Information
ERIC Educational Resources Information Center
Brand-Gruwel, Saskia; Stadtler, Marc
2011-01-01
The focus of this special section is on the processes involved when solving information-based problems. Solving these problems requires from people that they are able to define the information problem, search and select usable and reliable sources and information and synthesise information into a coherent body of knowledge. An important aspect…
Affective Issues in Mathematical Problem Solving: Some Theoretical Considerations.
ERIC Educational Resources Information Center
McLeod, Douglas B.
1988-01-01
Mandler's theory of emotion is suggested as a framework for investigating affective issues in problem solving. Several dimensions of the emotional states of problem solvers are specified. Implications of this framework for research on affective issues in problem solving are also discussed. (PK)
A Rubric for Assessing Students' Experimental Problem-Solving Ability
ERIC Educational Resources Information Center
Shadle, Susan E.; Brown, Eric C.; Towns, Marcy H.; Warner, Don L.
2012-01-01
The ability to couple problem solving both to the understanding of chemical concepts and to laboratory practices is an essential skill for undergraduate chemistry programs to foster in our students. Therefore, chemistry programs must offer opportunities to answer real problems that require use of problem-solving processes used by practicing…
A Descriptive Study of Cooperative Problem Solving Introductory Physics Labs
ERIC Educational Resources Information Center
Knutson, Paul Aanond
2011-01-01
The purpose of this study was to determine the ways in which cooperative problem solving in physics instructional laboratories influenced the students' ability to provide qualitative responses to problems. The literature shows that problem solving involves both qualitative and quantitative skills. Qualitative skills are important because those…
Complex Mathematical Problem Solving by Individuals and Dyads.
ERIC Educational Resources Information Center
Vye, Nancy J.; Goldman, Susan R.; Voss, James F.; Hmelo, Cindy; Williams, Susan; Cognition and Technology Group at Vanderbilt University
1997-01-01
Describes two studies of mathematical problem solving using an episode from "The Adventures of Jasper Woodbury," a set of curriculum materials that afford complex problem-solving opportunities. Discussion focuses on characteristics of problems that make solutions difficult, kinds of reasoning that dyadic interactions support, and considerations of…
A Tool for Helping Veterinary Students Learn Diagnostic Problem Solving.
ERIC Educational Resources Information Center
Danielson, Jared A.; Bender, Holly S.; Mills, Eric M.; Vermeer, Pamela J.; Lockee, Barbara B.
2003-01-01
Describes the result of implementing the Problem List Generator, a computer-based tool designed to help clinical pathology veterinary students learn diagnostic problem solving. Findings suggest that student problem solving ability improved, because students identified all relevant data before providing a solution. (MES)
Gender Differences in Chemical Problem Solving amongst Nigerian Students.
ERIC Educational Resources Information Center
Adigwe, J. C.
1992-01-01
This study investigated sex differences in chemical problem solving among Nigerian secondary school chemistry students (100 males and 100 females). Male students excelled over the female students in the following problem-solving processes: (1) problem understanding; (2) construction and execution of solution plans; (3) exhibition of structural…
Problem-Solving during Shared Reading at Kindergarten
ERIC Educational Resources Information Center
Gosen, Myrte N.; Berenst, Jan; de Glopper, Kees
2015-01-01
This paper reports on a conversation analytic study of problem-solving interactions during shared reading at three kindergartens in the Netherlands. It illustrates how teachers and pupils discuss book characters' problems that arise in the events in the picture books. A close analysis of the data demonstrates that problem-solving interactions do…
Problem-Solving Test: Southwestern Blotting
ERIC Educational Resources Information Center
Szeberényi, József
2014-01-01
Terms to be familiar with before you start to solve the test: Southern blotting, Western blotting, restriction endonucleases, agarose gel electrophoresis, nitrocellulose filter, molecular hybridization, polyacrylamide gel electrophoresis, proto-oncogene, c-abl, Src-homology domains, tyrosine protein kinase, nuclear localization signal, cDNA,…
A new algebra core for the minimal form' problem
Purtill, M.R. . Center for Communications Research); Oliveira, J.S.; Cook, G.O. Jr. )
1991-12-20
The demands of large-scale algebraic computation have led to the development of many new algorithms for manipulating algebraic objects in computer algebra systems. For instance, parallel versions of many important algorithms have been discovered. Simultaneously, more effective symbolic representations of algebraic objects have been sought. Also, while some clever techniques have been found for improving the speed of the algebraic simplification process, little attention has been given to the issue of restructuring expressions, or transforming them into minimal forms.'' By minimal form,'' we mean that form of an expression that involves a minimum number of operations. In a companion paper, we introduce some new algorithms that are very effective at finding minimal forms of expressions. These algorithms require algebraic and combinatorial machinery that is not readily available in most algebra systems. In this paper we describe a new algebra core that begins to provide the necessary capabilities.
Hoppmann, Christiane A; Coats, Abby Heckman; Blanchard-Fields, Fredda
2008-07-01
Qualitative interviews on family and financial problems from 332 adolescents, young, middle-aged, and older adults, demonstrated that developmentally relevant goals predicted problem-solving strategy use over and above problem domain. Four focal goals concerned autonomy, generativity, maintaining good relationships with others, and changing another person. We examined both self- and other-focused problem-solving strategies. Autonomy goals were associated with self-focused instrumental problem solving and generative goals were related to other-focused instrumental problem solving in family and financial problems. Goals of changing another person were related to other-focused instrumental problem solving in the family domain only. The match between goals and strategies, an indicator of problem-solving adaptiveness, showed that young individuals displayed the greatest match between autonomy goals and self-focused problem solving, whereas older adults showed a greater match between generative goals and other-focused problem solving. Findings speak to the importance of considering goals in investigations of age-related differences in everyday problem solving.
Cognitive Science: Problem Solving And Learning For Physics Education
NASA Astrophysics Data System (ADS)
Ross, Brian H.
2007-11-01
Cognitive Science has focused on general principles of problem solving and learning that might be relevant for physics education research. This paper examines three selected issues that have relevance for the difficulty of transfer in problem solving domains: specialized systems of memory and reasoning, the importance of content in thinking, and a characterization of memory retrieval in problem solving. In addition, references to these issues are provided to allow the interested researcher entries to the literatures.
ERIC Educational Resources Information Center
Math Forum @ Drexel, 2009
2009-01-01
Different techniques for understanding a problem can lead to ideas for never-used-before solutions. Good problem-solvers use a problem-solving strategy and may come back to it frequently while they are working on the problem to refine their strategy, see if they can find better solutions, or find other questions. Writing is an integral part of…
Innovation and problem solving: a review of common mechanisms.
Griffin, Andrea S; Guez, David
2014-11-01
Behavioural innovations have become central to our thinking about how animals adjust to changing environments. It is now well established that animals vary in their ability to innovate, but understanding why remains a challenge. This is because innovations are rare, so studying innovation requires alternative experimental assays that create opportunities for animals to express their ability to invent new behaviours, or use pre-existing ones in new contexts. Problem solving of extractive foraging tasks has been put forward as a suitable experimental assay. We review the rapidly expanding literature on problem solving of extractive foraging tasks in order to better understand to what extent the processes underpinning problem solving, and the factors influencing problem solving, are in line with those predicted, and found, to underpin and influence innovation in the wild. Our aim is to determine whether problem solving can be used as an experimental proxy of innovation. We find that in most respects, problem solving is determined by the same underpinning mechanisms, and is influenced by the same factors, as those predicted to underpin, and to influence, innovation. We conclude that problem solving is a valid experimental assay for studying innovation, propose a conceptual model of problem solving in which motor diversity plays a more central role than has been considered to date, and provide recommendations for future research using problem solving to investigate innovation. This article is part of a Special Issue entitled: Cognition in the wild.
The role of conceptual understanding in children's addition problem solving.
Canobi, K H; Reeve, R A; Pattison, P E
1998-09-01
The study examined the relationship between children's conceptual understanding and addition problem-solving procedures. Forty-eight 6- to 8-year-olds solved addition problems and, in a 2nd task, were prompted to judge whether a puppet could use the arithmetic properties of one problem to solve the next problem. Relational properties between consecutive problems were manipulated to reflect aspects of additive composition, commutativity, and associativity principles. Conceptual understanding was assessed by the ability to spontaneously use such relational properties in problem solving (Task 1) and to recognize and explain them when prompted (Task 2). Results revealed that conceptual understanding was related to using order-indifferent, decomposition, and retrieval strategies and speed and accuracy in solving unrelated problems. The importance of conceptual understanding for addition development is discussed.
Identifying, analysing and solving problems in practice.
Hewitt-Taylor, Jaqui
When a problem is identified in practice, it is important to clarify exactly what it is and establish the cause before seeking a solution. This solution-seeking process should include input from those directly involved in the problematic situation, to enable individuals to contribute their perspective, appreciate why any change in practice is necessary and what will be achieved by the change. This article describes some approaches to identifying and analysing problems in practice so that effective solutions can be devised. It includes a case study and examples of how the Five Whys analysis, fishbone diagram, problem tree analysis, and Seven-S Model can be used to analyse a problem.
Cognition-emotion interactions: patterns of change and implications for math problem solving
Trezise, Kelly; Reeve, Robert A.
2014-01-01
Surprisingly little is known about whether relationships between cognitive and emotional states remain stable or change over time, or how different patterns of stability and/or change in the relationships affect problem solving abilities. Nevertheless, cross-sectional studies show that anxiety/worry may reduce working memory (WM) resources, and the ability to minimize the effects anxiety/worry is higher in individuals with greater WM capacity. To investigate the patterns of stability and/or change in cognition-emotion relations over time and their implications for problem solving, 126 14-year-olds’ algebraic WM and worry levels were assessed twice in a single day before completing an algebraic math problem solving test. We used latent transition analysis to identify stability/change in cognition-emotion relations, which yielded a six subgroup solution. Subgroups varied in WM capacity, worry, and stability/change relationships. Among the subgroups, we identified a high WM/low worry subgroup that remained stable over time and a high WM/high worry, and a moderate WM/low worry subgroup that changed to low WM subgroups over time. Patterns of stability/change in subgroup membership predicted algebraic test results. The stable high WM/low worry subgroup performed best and the low WM capacity-high worry “unstable across time” subgroup performed worst. The findings highlight the importance of assessing variations in cognition-emotion relationships over time (rather than assessing cognition or emotion states alone) to account for differences in problem solving abilities. PMID:25132830
ERIC Educational Resources Information Center
Pol, Henk J.; Harskamp, Egbert G.; Suhre, Cor J. M.; Goedhart, Martin J.
2009-01-01
This study investigates the effectiveness of computer-delivered hints in relation to problem-solving abilities in two alternative indirect instruction schemes. In one instruction scheme, hints are available to students immediately after they are given a new problem to solve as well as after they have completed the problem. In the other scheme,…
Problem Solved: How To Coach Cognition.
ERIC Educational Resources Information Center
Krynock, Karoline; Robb, Louise
1999-01-01
When faced with real-world problems, students devise accurate, logical, and creative solutions using skills connecting to different subject areas. Students are intrigued by assignments involving preservation of species and design of environmentally friendly products and transit systems. Problem-based learning depends on coaching, modeling, and…
A Decision Support System for Solving Multiple Criteria Optimization Problems
ERIC Educational Resources Information Center
Filatovas, Ernestas; Kurasova, Olga
2011-01-01
In this paper, multiple criteria optimization has been investigated. A new decision support system (DSS) has been developed for interactive solving of multiple criteria optimization problems (MOPs). The weighted-sum (WS) approach is implemented to solve the MOPs. The MOPs are solved by selecting different weight coefficient values for the criteria…
Influence of visual cueing and outcome feedback on physics problem solving and visual attention
NASA Astrophysics Data System (ADS)
Rouinfar, Amy
Research has demonstrated that attentional cues overlaid on diagrams and animations can help students attend to the relevant areas and facilitate problem solving. In this study we investigate the influence of visual cues and outcome feedback on students' problem solving, performance, reasoning, and visual attention as they solve conceptual physics problems containing a diagram. The participants (N=90) were enrolled in an algebra-based physics course and were individually interviewed. During each interview students solved four problem sets while their eye movements were recorded. The problem diagrams contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Each problem set contained an initial problem, six isomorphic training problems, and a transfer problem. Those in the cued condition saw visual cues overlaid on the training problems. Those in the feedback conditions were told if their responses (answer and explanation) were correct or incorrect. Students' verbal responses were used to determine their accuracy. The study produced two major findings. First, short duration visual cues coupled with correctness feedback can improve problem solving performance on a variety of insight physics problems, including transfer problems not sharing the surface features of the training problems, but instead sharing the underlying solution path. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers' attention necessarily embodying the solution to the problem. Instead, the cueing effects were caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, these short duration visual cues when administered repeatedly over multiple training problems resulted in participants becoming more efficient at extracting the relevant
Same Old Problem, New Name? Alerting Students to the Nature of the Problem-Solving Process
ERIC Educational Resources Information Center
Yerushalmi, Edit; Magen, Esther
2006-01-01
Students frequently misconceive the process of problem-solving, expecting the linear process required for solving an exercise, rather than the convoluted search process required to solve a genuine problem. In this paper we present an activity designed to foster in students realization and appreciation of the nature of the problem-solving process,…
Digit Delight: Problem-solving Activities Using 0 through 9.
ERIC Educational Resources Information Center
Balka, Don S.
1988-01-01
Several problem-solving activities involving only 0-9 to be used with sets of ceramic tiles are presented. Finding specified sums, differences, or products is the object of most of the problems. (MNS)
Identifying, analysing and solving problems in practice.
Hewitt-Taylor, Jaqui
When a problem is identified in practice, it is important to clarify exactly what it is and establish the cause before seeking a solution. This solution-seeking process should include input from those directly involved in the problematic situation, to enable individuals to contribute their perspective, appreciate why any change in practice is necessary and what will be achieved by the change. This article describes some approaches to identifying and analysing problems in practice so that effective solutions can be devised. It includes a case study and examples of how the Five Whys analysis, fishbone diagram, problem tree analysis, and Seven-S Model can be used to analyse a problem. PMID:22848969
Aquarium Problems: How To Solve Them
ERIC Educational Resources Information Center
DeFilippo, Shirley
1975-01-01
Presents some solutions to problems commonly encountered in maintaining a classroom aquarium: pH control, overfeeding, overcrowding of tank populations, incorrect temperature settings, faulty introduction of fish into the tank, and the buildup of too many nitrogenous wastes. (PB)
An emergency medicine clinical problem-solving system.
Papa, F J
1985-07-01
The availability of complete, accurate, and current medical information is an important aspect of clinical problem solving. As the body of medical information grows and increasingly is reformatted into problem-oriented references, information processing by physicians will grow in importance. The most popular clinical problem-solving method, the Weed problem-oriented medical record, primarily records information; it does not provide an explicit information-processing model. An emergency medicine clinical problem-solving system containing information recording and processing methodologies is presented. The information processing methodology of this system is highlighted.
NASA Astrophysics Data System (ADS)
Koichu, Boris
2010-03-01
This article discusses an issue of inserting mathematical knowledge within the problem-solving processes. Relatively advanced mathematical knowledge is defined in terms of three mathematical worlds; relatively advanced problem-solving behaviours are defined in terms of taxonomies of proof schemes and heuristic behaviours. The relationships between mathematical knowledge and problem-solving behaviours are analysed in the contexts of solving an insight geometry problem, posing algebraic problems and calculus exploration. A particularly knowledgeable and skilled university student was involved in all the episodes. The presented examples substantiate the claim that advanced mathematical knowledge and advanced problem-solving behaviours do not always support each other. More advanced behaviours were observed when the student worked within her conceptual-embodied mathematical world, and less advanced ones when she worked within her symbolic and formal-axiomatic worlds. Alternative explanations of the findings are discussed. It seems that the most comprehensive explanation is in terms of the Principle of Intellectual Parsimony. Implications for further research are drawn.
Trends in problem-solving research - Twelve recently described tasks.
NASA Technical Reports Server (NTRS)
Coates, G. D.; Alluisi, E. A.; Morgan, B. B., Jr.
1971-01-01
Review of descriptions of the 12 problem-solving tasks developed since the last review (Ray, 1955) of this topic, indicating that the newer tasks are more sophisticated in design and provide for better experimental control than those used prior to 1953. Validity, reliability, sensitivity, trainability, problem structure, and problem difficulty are discussed as criteria for the selection of tasks to be used in studies of skilled problem-solving performance.
Fourth Order Algorithms for Solving Diverse Many-Body Problems
NASA Astrophysics Data System (ADS)
Chin, Siu A.; Forbert, Harald A.; Chen, Chia-Rong; Kidwell, Donald W.; Ciftja, Orion
2001-03-01
We show that the method of factorizing an evolution operator of the form e^ɛ(A+B) to fourth order with purely positive coefficient yields new classes of symplectic algorithms for solving classical dynamical problems, unitary algorithms for solving the time-dependent Schrödinger equation, norm preserving algorithms for solving the Langevin equation and large time step convergent Diffusion Monte Carlo algorithms. Results for each class of problems will be presented and disucss
The Effects of Service Learning on Student Problem Solving
ERIC Educational Resources Information Center
Guo, Fangfang; Yao, Meilin; Wang, Cong; Yan, Wenfan; Zong, Xiaoli
2016-01-01
Previous research indicated that service learning (SL) is an effective pedagogy to improve students' problem-solving ability and increase their classroom engagement. However, studies on SL are rare in China. This study examined the effects of SL on the problem solving of Chinese undergraduate students as well as the mechanism through which it…
Solving L-L Extraction Problems with Excel Spreadsheet
ERIC Educational Resources Information Center
Teppaitoon, Wittaya
2016-01-01
This work aims to demonstrate the use of Excel spreadsheets for solving L-L extraction problems. The key to solving the problems successfully is to be able to determine a tie line on the ternary diagram where the calculation must be carried out. This enables the reader to analyze the extraction process starting with a simple operation, the…
Emerging Consensus in Novice Physics Problem Solving Research.
ERIC Educational Resources Information Center
Roth, Christopher; Chaiklin, Seth
During the summer of 1986 a conference funded by the National Science Foundation (NSF) was organized to assess the current state of cognitive research on the psychology of physics problem solving, and to examine the needs of physics instructors and instructional designers that must be addressed by a psychological theory of physics problem solving.…
Extricating Justification Scheme Theory in Middle School Mathematical Problem Solving
ERIC Educational Resources Information Center
Matteson, Shirley; Capraro, Mary Margaret; Capraro, Robert M.; Lincoln, Yvonna S.
2012-01-01
Twenty middle grades students were interviewed to gain insights into their reasoning about problem-solving strategies using a Problem Solving Justification Scheme as our theoretical lens and the basis for our analysis. The scheme was modified from the work of Harel and Sowder (1998) making it more broadly applicable and accounting for research…
Selection and Use of Propositional Knowledge in Statistical Problem Solving.
ERIC Educational Resources Information Center
Broers, Nick J.
2002-01-01
Trained 10 undergraduate psychology students to have the knowledge needed to solve 5 multiple choice problems on descriptive regression analysis and asked them to think aloud while attempting to solve the problems. Analysis of responses shows that failure to select relevant information in the text, failure to retrieve relevant propositional…
Measuring Problem Solving Skills in Plants vs. Zombies 2
ERIC Educational Resources Information Center
Shute, Valerie J.; Moore, Gregory R.; Wang, Lubin
2015-01-01
We are using stealth assessment, embedded in "Plants vs. Zombies 2," to measure middle-school students' problem solving skills. This project started by developing a problem solving competency model based on a thorough review of the literature. Next, we identified relevant in-game indicators that would provide evidence about students'…
Problem Solving in Social Studies: Concepts and Critiques.
ERIC Educational Resources Information Center
Van Sickle, Ronald L.; Hoge, John D.
Recent developments in the field of cognitive psychology, particularly in the area of information processing, have shed light on the way people think in order to make decisions and solve problems. In addition, cooperative learning research has provided evidence of the effectiveness of cooperatively structured group work aimed at problem solving.…
A Longitudinal Study of Database-Assisted Problem Solving.
ERIC Educational Resources Information Center
Wildemuth, Barbara M.; Friedman, Charles P.; Keyes, John; Downs, Stephen M.
2000-01-01
Examines the effects of database assistance on clinical problem solving across three cohorts of medical students and two database interfaces. Discusses the relationship between personal domain knowledge and problem solving, personal domain knowledge and database searching, and comparisons of different interface styles in information retrieval…
Toward a Comprehensive Model of Problem-Solving.
ERIC Educational Resources Information Center
Pitt, Ruth B.
Presented is a model of problem solving that incorporates elements of hypothetico-deductive reasoning in the Piagetian sense, and heuristic-algorithmic processing in the information-processing sense. It assumes that people invoke both formal reasoning strategies and learned algorithms whenever they solve problems. The proposed model integrates the…
Peer Instruction Enhanced Meaningful Learning: Ability to Solve Novel Problems
ERIC Educational Resources Information Center
Cortright, Ronald N.; Collins, Heidi L.; DiCarlo, Stephen E.
2005-01-01
Students must be able to interpret, relate, and incorporate new information with existing knowledge and apply the new information to solve novel problems. Peer instruction is a cooperative learning technique that promotes critical thinking, problem solving, and decision-making skills. Therefore, we tested the hypothesis that peer instruction…
Facilitating Flexible Problem Solving: A Cognitive Load Perspective
ERIC Educational Resources Information Center
Kalyuga, Slava; Renkl, Alexander; Paas, Fred
2010-01-01
The development of flexible, transferable problem-solving skills is an important aim of contemporary educational systems. Since processing limitations of our mind represent a major factor influencing any meaningful learning, the acquisition of flexible problem-solving skills needs to be based on known characteristics of our cognitive architecture…
Computer-Based Inquiry into Scientific Problem Solving.
ERIC Educational Resources Information Center
Berkowitz, Melissa S.; Szabo, Michael
1979-01-01
Problem solving performance of individuals was compared with that of dyads at three levels of mental ability using a computer-based inquiry into the riddle of the frozen Wooly Mammoth. Results indicated significant interactions between grouping and mental ability for certain problem solving internal measures. (RAO)
Schema Knowledge for Solving Arithmetic Story Problems: Some Affective Components.
ERIC Educational Resources Information Center
Marshall, Sandra P.
This report discusses the role of affect in cognitive processing. The importance of affect in processing mathematical information is described in the context of solving arithmetic story problems. Some ideas are offered about the way affective responses to mathematical problem solving situations influence the development, maintenance, and retrieval…
Working memory dysfunctions predict social problem solving skills in schizophrenia.
Huang, Jia; Tan, Shu-ping; Walsh, Sarah C; Spriggens, Lauren K; Neumann, David L; Shum, David H K; Chan, Raymond C K
2014-12-15
The current study aimed to examine the contribution of neurocognition and social cognition to components of social problem solving. Sixty-seven inpatients with schizophrenia and 31 healthy controls were administrated batteries of neurocognitive tests, emotion perception tests, and the Chinese Assessment of Interpersonal Problem Solving Skills (CAIPSS). MANOVAs were conducted to investigate the domains in which patients with schizophrenia showed impairments. Correlations were used to determine which impaired domains were associated with social problem solving, and multiple regression analyses were conducted to compare the relative contribution of neurocognitive and social cognitive functioning to components of social problem solving. Compared with healthy controls, patients with schizophrenia performed significantly worse in sustained attention, working memory, negative emotion, intention identification and all components of the CAIPSS. Specifically, sustained attention, working memory and negative emotion identification were found to correlate with social problem solving and 1-back accuracy significantly predicted the poor performance in social problem solving. Among the dysfunctions in schizophrenia, working memory contributed most to deficits in social problem solving in patients with schizophrenia. This finding provides support for targeting working memory in the development of future social problem solving rehabilitation interventions.
Learning from Examples versus Verbal Directions in Mathematical Problem Solving
ERIC Educational Resources Information Center
Lee, Hee Seung; Fincham, Jon M.; Anderson, John R.
2015-01-01
This event-related fMRI study investigated the differences between learning from examples and learning from verbal directions in mathematical problem solving and how these instruction types affect the activity of relevant brain regions during instruction and solution periods within problem-solving trials. We identified distinct neural signatures…
Best Known Problem Solving Strategies in "High-Stakes" Assessments
ERIC Educational Resources Information Center
Hong, Dae S.
2011-01-01
In its mathematics standards, National Council of Teachers of Mathematics (NCTM) states that problem solving is an integral part of all mathematics learning and exposure to problem solving strategies should be embedded across the curriculum. Furthermore, by high school, students should be able to use, decide and invent a wide range of strategies.…
A Markov Model Analysis of Problem-Solving Progress.
ERIC Educational Resources Information Center
Vendlinski, Terry
This study used a computerized simulation and problem-solving tool along with artificial neural networks (ANN) as pattern recognizers to identify the common types of strategies high school and college undergraduate chemistry students would use to solve qualitative chemistry problems. Participants were 134 high school chemistry students who used…
Students THINK: A Framework for Improving Problem Solving
ERIC Educational Resources Information Center
Thomas, Kelli R.
2006-01-01
This article presents the results of research about students' and teachers' use of an interaction framework (THINK) to guide group communication about problem solving. Students who used the THINK framework demonstrated greater gains in problem-solving achievement than students who did not use the framework.
Problem Solving, Reasoning, and Analytical Thinking in a Classroom Environment
ERIC Educational Resources Information Center
Robbins, Joanne K.
2011-01-01
Problem solving, reasoning, and analytical thinking are defined and described as teachable repertoires. This paper describes work performed at a school serving special needs children, Morningside Academy, that has resulted in specific procedures developed over the past 15 years. These procedures include modifying "Think Aloud Pair Problem Solving"…
"Opportunities in Work Clothes": Online Problem-Solving Project Structures.
ERIC Educational Resources Information Center
Harris, Judi
1994-01-01
Provides activity structures for and gives examples of problem-solving projects to be used with educational telecomputing. Highlights include information searches, electronic process writing, sequential creations, parallel problem solving, simulations, social action projects, and instructions for accessing information about these and other…
Engineering students' experiences and perceptions of workplace problem solving
NASA Astrophysics Data System (ADS)
Pan, Rui
In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.
A Case Study of Dynamic Visualization and Problem Solving
ERIC Educational Resources Information Center
Lavy, Ilana
2007-01-01
This paper reports an example of a situation in which university students had to solve geometrical problems presented to them dynamically using the interactive computerized environment of the "MicroWorlds Project Builder". In the process of the problem solving, the students used ten different solution strategies. The unsuccessful strategies were…
Measuring Problem Solving with Technology: A Demonstration Study for NAEP
ERIC Educational Resources Information Center
Bennett, Randy Elliot; Persky, Hilary; Weiss, Andy; Jenkins, Frank
2010-01-01
This paper describes a study intended to demonstrate how an emerging skill, problem solving with technology, might be measured in the National Assessment of Educational Progress (NAEP). Two computer-delivered assessment scenarios were designed, one on solving science-related problems through electronic information search and the other on solving…
Problem Solving and Collaboration Using Mobile Serious Games
ERIC Educational Resources Information Center
Sanchez, Jaime; Olivares, Ruby
2011-01-01
This paper presents the results obtained with the implementation of a series of learning activities based on Mobile Serious Games (MSGs) for the development of problem solving and collaborative skills in Chilean 8th grade students. Three MSGs were developed and played by teams of four students in order to solve problems collaboratively. A…
Logo Programming, Problem Solving, and Knowledge-Based Instruction.
ERIC Educational Resources Information Center
Swan, Karen; Black, John B.
The research reported in this paper was designed to investigate the hypothesis that computer programming may support the teaching and learning of problem solving, but that to do so, problem solving must be explicitly taught. Three studies involved students in several grades: 4th, 6th, 8th, 11th, and 12th. Findings collectively show that five…
A New Approach: Computer-Assisted Problem-Solving Systems
ERIC Educational Resources Information Center
Gok, Tolga
2010-01-01
Computer-assisted problem solving systems are rapidly growing in educational use and with the advent of the Internet. These systems allow students to do their homework and solve problems online with the help of programs like Blackboard, WebAssign and LON-CAPA program etc. There are benefits and drawbacks of these systems. In this study, the…
Problem Solving and the Development of Expertise in Management.
ERIC Educational Resources Information Center
Lash, Fredrick B.
This study investigated novice and expert problem solving behavior in management to examine the role of domain specific knowledge on problem solving processes. Forty-one middle level marketing managers in a large petrochemical organization provided think aloud protocols in response to two hypothetical management scenarios. Protocol analysis…
Students' Use of Technological Features while Solving a Mathematics Problem
ERIC Educational Resources Information Center
Lee, Hollylynne Stohl; Hollebrands, Karen F.
2006-01-01
The design of technology tools has the potential to dramatically influence how students interact with tools, and these interactions, in turn, may influence students' mathematical problem solving. To better understand these interactions, we analyzed eighth grade students' problem solving as they used a java applet designed to specifically accompany…
Improving Students' Ability To Problem Solve through Social Skills Instruction.
ERIC Educational Resources Information Center
Hopp, Mary Ann; Horn, Cheryl L.; McGraw, Kelleen; Meyer, Jenny
When elementary and middle level students lack effective problem-solving skills, they may make poor behavior choices in social conflicts, contributing to a negative learning and instructional environment. This action research project evaluated the impact of using social skills instruction to improve students' ability to solve problems related to…
Connectedness Indicators and the Prediction of Problem Solving Success
ERIC Educational Resources Information Center
Yu-Shattuck, Sharon X.
2009-01-01
In this study, it was hypothesized that problem solving success is dependent upon two related but district types of mathematical knowledge, content indicators and connectedness indicators. Results did indeed display that the problem solving success of 188 undergraduate students was related to these two indicators. The correlations of content…
Problem Solving: Getting to the Heart of Mathematics.
ERIC Educational Resources Information Center
Jarrett, Denise, Ed.
2000-01-01
This publication features articles that illustrate how several Northwest teachers are using problem solving to achieve rigorous and imaginative learning in their classrooms. Articles include: (1) "Open-Ended Problem Solving: Weaving a Web of Ideas" (Denise Jarrett); (2) "Teenager or Tyke, Students Learn Best by Tackling Challenging Math" (Suzie…
Fostering Problem-Solving in a Virtual Environment
ERIC Educational Resources Information Center
Morin, Danielle; Thomas, Jennifer D. E.; Saadé, Raafat George
2015-01-01
This article investigates students' perceptions of the relationship between Problem-Solving and the activities and resources used in a Web-based course on the fundamentals of Information Technology at a university in Montreal, Canada. We assess for the different learning components of the course, the extent of perceived problem-solving skills…
A Descriptive Model of Information Problem Solving while Using Internet
ERIC Educational Resources Information Center
Brand-Gruwel, Saskia; Wopereis, Iwan; Walraven, Amber
2009-01-01
This paper presents the IPS-I-model: a model that describes the process of information problem solving (IPS) in which the Internet (I) is used to search information. The IPS-I-model is based on three studies, in which students in secondary and (post) higher education were asked to solve information problems, while thinking aloud. In-depth analyses…
High School Students' Use of Meiosis When Solving Genetics Problems.
ERIC Educational Resources Information Center
Wynne, Cynthia F.; Stewart, Jim; Passmore, Cindy
2001-01-01
Paints a different picture of students' reasoning with meiosis as they solved complex, computer-generated genetics problems, some of which required them to revise their understanding of meiosis in response to anomalous data. Students were able to develop a rich understanding of meiosis and can utilize that knowledge to solve genetics problems.…
Assessing Creative Problem-Solving with Automated Text Grading
ERIC Educational Resources Information Center
Wang, Hao-Chuan; Chang, Chun-Yen; Li, Tsai-Yen
2008-01-01
The work aims to improve the assessment of creative problem-solving in science education by employing language technologies and computational-statistical machine learning methods to grade students' natural language responses automatically. To evaluate constructs like creative problem-solving with validity, open-ended questions that elicit…
Patterns of Problem-Solving in Children's Literacy and Arithmetic
ERIC Educational Resources Information Center
Farrington-Flint, Lee; Vanuxem-Cotterill, Sophie; Stiller, James
2009-01-01
Patterns of problem-solving among 5-to-7 year-olds' were examined on a range of literacy (reading and spelling) and arithmetic-based (addition and subtraction) problem-solving tasks using verbal self-reports to monitor strategy choice. The results showed higher levels of variability in the children's strategy choice across Years 1 and 2 on the…
Social Problem Solving and Aggression: The Role of Depression
ERIC Educational Resources Information Center
Ozdemir, Yalcin; Kuzucu, Yasar; Koruklu, Nermin
2013-01-01
The purpose of the present study was to examine direct and indirect relations among social problem-solving, depression, and aggression, as well as the mediating role of depression in the link between social problem-solving and aggression among Turkish youth. Data for the present study were collected from 413 adolescents. The participants' age…
Use of External Visual Representations in Probability Problem Solving
ERIC Educational Resources Information Center
Corter, James E.; Zahner, Doris C.
2007-01-01
We investigate the use of external visual representations in probability problem solving. Twenty-six students enrolled in an introductory statistics course for social sciences graduate students (post-baccalaureate) solved eight probability problems in a structured interview format. Results show that students spontaneously use self-generated…
Autobiographical Memory and Social Problem-Solving in Asperger Syndrome
ERIC Educational Resources Information Center
Goddard, Lorna; Howlin, Patricia; Dritschel, Barbara; Patel, Trishna
2007-01-01
Difficulties in social interaction are a central feature of Asperger syndrome. Effective social interaction involves the ability to solve interpersonal problems as and when they occur. Here we examined social problem-solving in a group of adults with Asperger syndrome and control group matched for age, gender and IQ. We also assessed…
Cognitive Restructuring as a First Step in Problem Solving.
ERIC Educational Resources Information Center
Bodner, George M.; McMillen, Theresa L. B.
Chemists have bemoaned for years their students' inability to solve problems in introductory chemistry courses. However, at least part of this inability must be attributed to the fact that chemists have historically tried to teach their students to solve problems by doing nothing more than working examples. In recent years, chemists have begun to…
Teaching Evidence-based Medicine Using Literature for Problem Solving.
ERIC Educational Resources Information Center
Mottonen, Merja; Tapanainen, Paivi; Nuutinen, Matti; Rantala, Heikki; Vainionpaa, Leena; Uhari, Matti
2001-01-01
Evidence-based medicine--the process of using research findings systematically as the basis for clinical decisions--can be taught using problem-solving teaching methods. Evaluates whether it was possible to motivate students to use the original literature by giving them selected patient problems to solve. (Author/ASK)
Computers and Problem Solving for Sixth-Grade.
ERIC Educational Resources Information Center
Oughton, John M.
1995-01-01
Presents a curriculum unit designed for average sixth-grade students intended to engage them in problem-solving experiences and to teach them problem-solving strategies. The curriculum consists of 20 sessions in which students engage in various activities using the following software packages: The Adventures of Jasper Woodbury, Rescue at Boone's…
Administrator Participation in Promoting Effective Problem-Solving Teams
ERIC Educational Resources Information Center
Rafoth, Mary Ann; Foriska, Terry
2006-01-01
Although the participation of administrators in problem-solving consultation teams is frequently mentioned in the literature as an important factor in the effectiveness of those teams, there has been little research into the impact of administrators on such teams. The impact of administrator participation on problem-solving consultation teams…
Toward Group Problem Solving Guidelines for 21st Century Teams
ERIC Educational Resources Information Center
Ranieri, Kathryn L.
2004-01-01
Effective problem-solving skills are critical in dealing with ambiguous and often complex issues in the present-day leaner and globally diverse organizations. Yet respected, well-established problem-solving models may be misaligned within the current work environment, particularly within a team context. Models learned from a more bureaucratic,…
Role of Multiple Representations in Physics Problem Solving
ERIC Educational Resources Information Center
Maries, Alexandru
2013-01-01
This thesis explores the role of multiple representations in introductory physics students' problem solving performance through several investigations. Representations can help students focus on the conceptual aspects of physics and play a major role in effective problem solving. Diagrammatic representations can play a particularly important role…
Prospective Teachers' Problem Solving Skills and Self-Confidence Levels
ERIC Educational Resources Information Center
Gursen Otacioglu, Sena
2008-01-01
The basic objective of the research is to determine whether the education that prospective teachers in different fields receive is related to their levels of problem solving skills and self-confidence. Within the mentioned framework, the prospective teachers' problem solving and self-confidence levels have been examined under several variables.…
Robotics and Children: Science Achievement and Problem Solving.
ERIC Educational Resources Information Center
Wagner, Susan Preston
1999-01-01
Compared the impact of robotics (computer-powered manipulative) to a battery-powered manipulative (novelty control) and traditionally taught science class on science achievement and problem solving of fourth through sixth graders. Found that the robotics group had higher scores on programming logic-problem solving than did the novelty control…
Monitoring Affect States during Effortful Problem Solving Activities
ERIC Educational Resources Information Center
D'Mello, Sidney K.; Lehman, Blair; Person, Natalie
2010-01-01
We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…
Reading-Enhanced Word Problem Solving: A Theoretical Model
ERIC Educational Resources Information Center
Capraro, Robert M.; Capraro, Mary Margaret; Rupley, William H.
2012-01-01
There is a reciprocal relationship between mathematics and reading cognition. Metacognitive training within reading-enhanced problem solving should facilitate students developing an awareness of what good readers do when reading for meaning in solving mathematical problems enabling them to apply these strategies. The constructs for each cognitive…
Phenomenographic Study of Students' Problem Solving Approaches in Physics
ERIC Educational Resources Information Center
Walsh, Laura N.; Howard, Robert G.; Bowe, Brian
2007-01-01
This paper describes ongoing research investigating student approaches to quantitative and qualitative problem solving in physics. This empirical study was conducted using a phenomenographic approach to analyze data from individual semistructured problem solving interviews with 22 introductory college physics students. The main result of the study…
Future Problem Solving: Taking It beyond the Classroom.
ERIC Educational Resources Information Center
Hibel, John
1991-01-01
A former participant in the Future Problem Solving Program reminisces about his experience in local and national competitions, describes the program's unique features (its emphasis on creativity and focus on the future), and notes the usefulness of the problem-solving process in his work with the Corporate Audit Staff of General Electric. (JDD)
Introduction to LogoWriter and Problem Solving for Educators.
ERIC Educational Resources Information Center
Yoder, Sharon Burrowes; Moursund, Dave
This book about Logo programming and problem solving is designed to introduce preservice and inservice teachers to problem solving in a Logo programming environment. Such a unit of study can be an important part of an introductory computers in education course for educators. Although Logowriter--a version of Logo--was developed by Logo Computer…
Improving Mathematical Problem Solving Skills: The Journey to Success
ERIC Educational Resources Information Center
Rousseau, Donna
2009-01-01
The purpose of this study was to determine if problem solving skills can be improved through the use of an interdisciplinary program incorporating reading, music, and mathematics. The study was conducted in seven fifth grade classrooms, and addresses the need to teach problem solving strategies in elementary school and the importance of problem…
NASA Astrophysics Data System (ADS)
Palacio-Cayetano, Joycelin
"Problem-solving through reflective thinking should be both the method and valuable outcome of science instruction in America's schools" proclaimed John Dewey (Gabel, 1995). If the development of problem-solving is a primary goal of science education, more problem-solving opportunities must be an integral part of K-16 education. To examine the effective use of technology in developing and assessing problem-solving skills, a problem-solving authoring, learning, and assessment software, the UCLA IMMEX Program-Interactive Multimedia Exercises-was investigated. This study was a twenty-week quasi-experimental study that was implemented as a control-group time series design among 120 tenth grade students. Both the experimental group (n = 60) and the control group (n = 60) participated in a problem-based learning curriculum; however, the experimental group received regular intensive experiences with IMMEX problem-solving and the control group did not. Problem-solving pretest and posttest were administered to all students. The instruments used were a 35-item Processes of Biological Inquiry Test and an IMMEX problem-solving assessment test, True Roots. Students who participated in the IMMEX Program achieved significant (p <.05) gains in problem-solving skills on both problem-solving assessment instruments. This study provided evidence that IMMEX software is highly efficient in evaluating salient elements of problem-solving. Outputs of students' problem-solving strategies revealed that unsuccessful problem solvers primarily used the following four strategies: (1) no data search strategy, students simply guessed; (2) limited data search strategy leading to insufficient data and premature closing; (3) irrelevant data search strategy, students focus in areas bearing no substantive data; and (4) extensive data search strategy with inadequate integration and analysis. On the contrary, successful problem solvers used the following strategies; (1) focused search strategy coupled
Behavioral flexibility and problem solving in an invasive bird.
Logan, Corina J
2016-01-01
Behavioral flexibility is considered an important trait for adapting to environmental change, but it is unclear what it is, how it works, and whether it is a problem solving ability. I investigated behavioral flexibility and problem solving experimentally in great-tailed grackles, an invasive bird species and thus a likely candidate for possessing behavioral flexibility. Grackles demonstrated behavioral flexibility in two contexts, the Aesop's Fable paradigm and a color association test. Contrary to predictions, behavioral flexibility did not correlate across contexts. Four out of 6 grackles exhibited efficient problem solving abilities, but problem solving efficiency did not appear to be directly linked with behavioral flexibility. Problem solving speed also did not significantly correlate with reversal learning scores, indicating that faster learners were not the most flexible. These results reveal how little we know about behavioral flexibility, and provide an immense opportunity for future research to explore how individuals and species can use behavior to react to changing environments.
Behavioral flexibility and problem solving in an invasive bird
2016-01-01
Behavioral flexibility is considered an important trait for adapting to environmental change, but it is unclear what it is, how it works, and whether it is a problem solving ability. I investigated behavioral flexibility and problem solving experimentally in great-tailed grackles, an invasive bird species and thus a likely candidate for possessing behavioral flexibility. Grackles demonstrated behavioral flexibility in two contexts, the Aesop’s Fable paradigm and a color association test. Contrary to predictions, behavioral flexibility did not correlate across contexts. Four out of 6 grackles exhibited efficient problem solving abilities, but problem solving efficiency did not appear to be directly linked with behavioral flexibility. Problem solving speed also did not significantly correlate with reversal learning scores, indicating that faster learners were not the most flexible. These results reveal how little we know about behavioral flexibility, and provide an immense opportunity for future research to explore how individuals and species can use behavior to react to changing environments. PMID:27168984