#### Sample records for algebraic problem solving

1. Maximum/Minimum Problems Solved Using an Algebraic Way

ERIC Educational Resources Information Center

Modica, Erasmo

2010-01-01

This article describes some problems of the maximum/minimum type, which are generally solved using calculus at secondary school, but which here are solved algebraically. We prove six algebraic properties and then apply them to this kind of problem. This didactic approach allows pupils to solve these problems even at the beginning of secondary…

2. Algebraic Thinking: A Problem Solving Approach

ERIC Educational Resources Information Center

Windsor, Will

2010-01-01

Algebraic thinking is a crucial and fundamental element of mathematical thinking and reasoning. It initially involves recognising patterns and general mathematical relationships among numbers, objects and geometric shapes. This paper will highlight how the ability to think algebraically might support a deeper and more useful knowledge, not only of…

3. How Problem Solving Can Develop an Algebraic Perspective of Mathematics

ERIC Educational Resources Information Center

Windsor, Will

2011-01-01

SProblem solving has a long and successful history in mathematics education and is valued by many teachers as a way to engage and facilitate learning within their classrooms. The potential benefit for using problem solving in the development of algebraic thinking is that "it may broaden and develop students' mathematical thinking beyond the…

4. Strategic differences in algebraic problem solving: neuroanatomical correlates.

PubMed

Lee, Kerry; Lim, Zee Ying; Yeong, Stephanie H M; Ng, Swee Fong; Venkatraman, Vinod; Chee, Michael W L

2007-06-25

In this study, we built on previous neuroimaging studies of mathematical cognition and examined whether the same cognitive processes are engaged by two strategies used in algebraic problem solving. We focused on symbolic algebra, which uses alphanumeric equations to represent problems, and the model method, which uses pictorial representation. Eighteen adults, matched on academic proficiency and competency in the two methods, transformed algebraic word problems into equations or models, and validated presented solutions. Both strategies were associated with activation of areas linked to working memory and quantitative processing. These included the left frontal gyri, and bilateral activation of the intraparietal sulci. Contrasting the two strategies, the symbolic method activated the posterior superior parietal lobules and the precuneus. These findings suggest that the two strategies are effected using similar processes but impose different attentional demands.

5. Algebraic reasoning and bat-and-ball problem variants: Solving isomorphic algebra first facilitates problem solving later.

PubMed

Hoover, Jerome D; Healy, Alice F

2017-02-14

The classic bat-and-ball problem is used widely to measure biased and correct reasoning in decision-making. University students overwhelmingly tend to provide the biased answer to this problem. To what extent might reasoners be led to modify their judgement, and, more specifically, is it possible to facilitate problem solution by prompting participants to consider the problem from an algebraic perspective? One hundred ninety-seven participants were recruited to investigate the effect of algebraic cueing as a debiasing strategy on variants of the bat-and-ball problem. Participants who were cued to consider the problem algebraically were significantly more likely to answer correctly relative to control participants. Most of this cueing effect was confined to a condition that required participants to solve isomorphic algebra equations corresponding to the structure of bat-and-ball question types. On a subsequent critical question with differing item and dollar amounts presented without a cue, participants were able to generalize the learned information to significantly reduce overall bias. Math anxiety was also found to be significantly related to bat-and-ball problem accuracy. These results suggest that, under specific conditions, algebraic reasoning is an effective debiasing strategy on bat-and-ball problem variants, and provide the first documented evidence for the influence of math anxiety on Cognitive Reflection Test performance.

6. Problem Solving

ERIC Educational Resources Information Center

Kinsella, John J.

1970-01-01

Discussed are the nature of a mathematical problem, problem solving in the traditional and modern mathematics programs, problem solving and psychology, research related to problem solving, and teaching problem solving in algebra and geometry. (CT)

7. Primary School Students' Strategies in Early Algebra Problem Solving Supported by an Online Game

ERIC Educational Resources Information Center

van den Heuvel-Panhuizen, Marja; Kolovou, Angeliki; Robitzsch, Alexander

2013-01-01

In this study we investigated the role of a dynamic online game on students' early algebra problem solving. In total 253 students from grades 4, 5, and 6 (10-12 years old) used the game at home to solve a sequence of early algebra problems consisting of contextual problems addressing covarying quantities. Special software monitored the…

8. Constructing a Coherent Problem Model to Facilitate Algebra Problem Solving in a Chemistry Context

ERIC Educational Resources Information Center

Ngu, Bing Hiong; Yeung, Alexander Seeshing; Phan, Huy P.

2015-01-01

An experiment using a sample of 11th graders compared text editing and worked examples approaches in learning to solve dilution and molarity algebra word problems in a chemistry context. Text editing requires students to assess the structure of a word problem by specifying whether the problem text contains sufficient, missing, or irrelevant…

9. Fostering Analogical Transfer: The Multiple Components Approach to Algebra Word Problem Solving in a Chemistry Context

ERIC Educational Resources Information Center

Ngu, Bing Hiong; Yeung, Alexander Seeshing

2012-01-01

Holyoak and Koh (1987) and Holyoak (1984) propose four critical tasks for analogical transfer to occur in problem solving. A study was conducted to test this hypothesis by comparing a multiple components (MC) approach against worked examples (WE) in helping students to solve algebra word problems in chemistry classes. The MC approach incorporated…

10. Persistent and Pernicious Errors in Algebraic Problem Solving

ERIC Educational Resources Information Center

Booth, Julie L.; Barbieri, Christina; Eyer, Francie; Paré-Blagoev, E. Juliana

2014-01-01

Students hold many misconceptions as they transition from arithmetic to algebraic thinking, and these misconceptions can hinder their performance and learning in the subject. To identify the errors in Algebra I which are most persistent and pernicious in terms of predicting student difficulty on standardized test items, the present study assessed…

11. Exploring Algebra Based Problem Solving Methods and Strategies of Spanish-Speaking High School Students

ERIC Educational Resources Information Center

Hernandez, Andrea C.

2013-01-01

This dissertation analyzes differences found in Spanish-speaking middle school and high school students in algebra-based problem solving. It identifies the accuracy differences between word problems presented in English, Spanish and numerically based problems. The study also explores accuracy differences between each subgroup of Spanish-speaking…

12. Excel Spreadsheets for Algebra: Improving Mental Modeling for Problem Solving

ERIC Educational Resources Information Center

Engerman, Jason; Rusek, Matthew; Clariana, Roy

2014-01-01

This experiment investigates the effectiveness of Excel spreadsheets in a high school algebra class. Students in the experiment group convincingly outperformed the control group on a post lesson assessment. The student responses, teacher observations involving Excel spreadsheet revealed that it operated as a mindtool, which formed the users'…

13. Alternative Representations for Algebraic Problem Solving: When Are Graphs Better than Equations?

ERIC Educational Resources Information Center

Mielicki, Marta K.; Wiley, Jennifer

2016-01-01

Successful algebraic problem solving entails adaptability of solution methods using different representations. Prior research has suggested that students are more likely to prefer symbolic solution methods (equations) over graphical ones, even when graphical methods should be more efficient. However, this research has not tested how representation…

14. Dynamic Assessment of Algebraic Learning in Predicting Third Graders' Development of Mathematical Problem Solving

ERIC Educational Resources Information Center

Fuchs, Lynn S.; Compton, Donald L.; Fuchs, Douglas; Hollenbeck, Kurstin N.; Craddock, Caitlin F.; Hamlett, Carol L.

2008-01-01

Dynamic assessment (DA) involves helping students learn a task and indexing responsiveness to that instruction as a measure of learning potential. The purpose of this study was to explore the utility of a DA of algebraic learning in predicting third graders' development of mathematics problem solving. In the fall, 122 third-grade students were…

15. Application of symbolic and algebraic manipulation software in solving applied mechanics problems

NASA Technical Reports Server (NTRS)

Tsai, Wen-Lang; Kikuchi, Noboru

1993-01-01

As its name implies, symbolic and algebraic manipulation is an operational tool which not only can retain symbols throughout computations but also can express results in terms of symbols. This report starts with a history of symbolic and algebraic manipulators and a review of the literatures. With the help of selected examples, the capabilities of symbolic and algebraic manipulators are demonstrated. These applications to problems of applied mechanics are then presented. They are the application of automatic formulation to applied mechanics problems, application to a materially nonlinear problem (rigid-plastic ring compression) by finite element method (FEM) and application to plate problems by FEM. The advantages and difficulties, contributions, education, and perspectives of symbolic and algebraic manipulation are discussed. It is well known that there exist some fundamental difficulties in symbolic and algebraic manipulation, such as internal swelling and mathematical limitation. A remedy for these difficulties is proposed, and the three applications mentioned are solved successfully. For example, the closed from solution of stiffness matrix of four-node isoparametrical quadrilateral element for 2-D elasticity problem was not available before. Due to the work presented, the automatic construction of it becomes feasible. In addition, a new advantage of the application of symbolic and algebraic manipulation found is believed to be crucial in improving the efficiency of program execution in the future. This will substantially shorten the response time of a system. It is very significant for certain systems, such as missile and high speed aircraft systems, in which time plays an important role.

16. Voila: A visual object-oriented iterative linear algebra problem solving environment

SciTech Connect

Edwards, H.C.; Hayes, L.J.

1994-12-31

Application of iterative methods to solve a large linear system of equations currently involves writing a program which calls iterative method subprograms from a large software package. These subprograms have complex interfaces which are difficult to use and even more difficult to program. A problem solving environment specifically tailored to the development and application of iterative methods is needed. This need will be fulfilled by Voila, a problem solving environment which provides a visual programming interface to object-oriented iterative linear algebra kernels. Voila will provide several quantum improvements over current iterative method problem solving environments. First, programming and applying iterative methods is considerably simplified through Voila`s visual programming interface. Second, iterative method algorithm implementations are independent of any particular sparse matrix data structure through Voila`s object-oriented kernels. Third, the compile-link-debug process is eliminated as Voila operates as an interpreter.

17. Solving Our Algebra Problem: Getting All Students through Algebra I to Improve Graduation Rates

ERIC Educational Resources Information Center

Schachter, Ron

2013-01-01

graduation as well as admission to most colleges. But taking algebra also can turn into a pathway for failure, from which some students never recover. In 2010, a national U.S. Department of Education study…

18. Conceptual Model-Based Problem Solving That Facilitates Algebra Readiness: An Exploratory Study with Computer-Assisted Instruction

ERIC Educational Resources Information Center

Xin, Yan Ping; Si, Luo; Hord, Casey; Zhang, Dake; Cetinas, Suleyman; Park, Joo Young

2012-01-01

The study explored the effects of a computer-assisted COnceptual Model-based Problem-Solving (COMPS) program on multiplicative word-problem-solving performance of students with learning disabilities or difficulties. The COMPS program emphasizes mathematical modeling with algebraic expressions of relations. Participants were eight fourth and fifth…

19. Two-Stage Screening for Math Problem-Solving Difficulty Using Dynamic Assessment of Algebraic Learning

ERIC Educational Resources Information Center

Fuchs, Lynn S.; Compton, Donald L.; Fuchs, Douglas; Hollenbeck, Kurstin N.; Hamlett, Carol L.; Seethaler, Pamela M.

2011-01-01

The purpose of this study was to explore the utility of a dynamic assessment (DA) of algebraic learning in predicting third graders' development of mathematics word-problem difficulty. In the fall, 122 third-grade students were assessed on a test of math word-problem skill and DA of algebraic learning. In the spring, they were assessed on…

20. Dynamic Assessment of Algebraic Learning in Predicting Third Graders' Development of Mathematical Problem Solving.

PubMed

Fuchs, Lynn S; Compton, Donald L; Fuchs, Douglas; Hollenbeck, Kurstin N; Craddock, Caitlin F; Hamlett, Carol L

2008-11-01

Dynamic assessment (DA) involves helping students learn a task and indexing responsiveness to that instruction as a measure of learning potential. The purpose of this study was to explore the utility of a DA of algebraic learning in predicting 3(rd) graders' development of mathematics problem solving. In the fall, 122 3(rd)-grade students were assessed on language, nonverbal reasoning, attentive behavior, calculations, word-problem skill, and DA. On the basis of random assignment, students received 16 weeks of validated instruction on word problems or received 16 weeks of conventional instruction on word problems. Then, students were assessed on word-problem measures proximal and distal to instruction. Structural equation measurement models showed that DA measured a distinct dimension of pretreatment ability and that proximal and distal word-problem measures were needed to account for outcome. Structural equation modeling showed that instruction (conventional vs. validated) was sufficient to account for math word-problem outcome proximal to instruction; by contrast, language, pretreatment math skill, and DA were needed to forecast learning on word-problem outcomes more distal to instruction. Findings are discussed in terms of responsiveness-to-intervention models for preventing and identifying learning disabilities.

1. Dynamic Assessment of Algebraic Learning in Predicting Third Graders’ Development of Mathematical Problem Solving

PubMed Central

Fuchs, Lynn S.; Compton, Donald L.; Fuchs, Douglas; Hollenbeck, Kurstin N.; Craddock, Caitlin F.; Hamlett, Carol L.

2008-01-01

Dynamic assessment (DA) involves helping students learn a task and indexing responsiveness to that instruction as a measure of learning potential. The purpose of this study was to explore the utility of a DA of algebraic learning in predicting 3rd graders’ development of mathematics problem solving. In the fall, 122 3rd-grade students were assessed on language, nonverbal reasoning, attentive behavior, calculations, word-problem skill, and DA. On the basis of random assignment, students received 16 weeks of validated instruction on word problems or received 16 weeks of conventional instruction on word problems. Then, students were assessed on word-problem measures proximal and distal to instruction. Structural equation measurement models showed that DA measured a distinct dimension of pretreatment ability and that proximal and distal word-problem measures were needed to account for outcome. Structural equation modeling showed that instruction (conventional vs. validated) was sufficient to account for math word-problem outcome proximal to instruction; by contrast, language, pretreatment math skill, and DA were needed to forecast learning on word-problem outcomes more distal to instruction. Findings are discussed in terms of responsiveness-to-intervention models for preventing and identifying learning disabilities. PMID:19884957

2. Arithmetic and algebraic problem solving and resource allocation: the distinct impact of fluid and numerical intelligence.

PubMed

Dix, Annika; van der Meer, Elke

2015-04-01

This study investigates cognitive resource allocation dependent on fluid and numerical intelligence in arithmetic/algebraic tasks varying in difficulty. Sixty-six 11th grade students participated in a mathematical verification paradigm, while pupil dilation as a measure of resource allocation was collected. Students with high fluid intelligence solved the tasks faster and more accurately than those with average fluid intelligence, as did students with high compared to average numerical intelligence. However, fluid intelligence sped up response times only in students with average but not high numerical intelligence. Further, high fluid but not numerical intelligence led to greater task-related pupil dilation. We assume that fluid intelligence serves as a domain-general resource that helps to tackle problems for which domain-specific knowledge (numerical intelligence) is missing. The allocation of this resource can be measured by pupil dilation.

3. Effects of Argumentation on Group Micro-Creativity: Statistical Discourse Analyses of Algebra Students' Collaborative Problem Solving

ERIC Educational Resources Information Center

Chiu, Ming Ming

2008-01-01

The micro-time context of group processes (such as argumentation) can affect a group's micro-creativity (new ideas). Eighty high school students worked in groups of four on an algebra problem. Groups with higher mathematics grades showed greater micro-creativity, and both were linked to better problem solving outcomes. Dynamic multilevel analyses…

4. New Protocols for Solving Geometric Calculation Problems Incorporating Dynamic Geometry and Computer Algebra Software.

ERIC Educational Resources Information Center

Schumann, Heinz; Green, David

2000-01-01

Discusses software for geometric construction, measurement, and calculation, and software for numerical calculation and symbolic analysis that allows for new approaches to the solution of geometric problems. Illustrates these computer-aided graphical, numerical, and algebraic methods of solution and discusses examples using the appropriate choice…

5. A Comparison of Two Mathematics Problem-Solving Strategies: Facilitate Algebra-Readiness

ERIC Educational Resources Information Center

Xin, Yan Ping; Zhang, Dake; Park, Joo Young; Tom, Kinsey; Whipple, Amanda; Si, Luo

2011-01-01

The authors compared a conceptual model-based problem-solving (COMPS) approach with a general heuristic instructional approach for teaching multiplication-division word-problem solving to elementary students with learning problems (LP). The results indicate that only the COMPS group significantly improved, from pretests to posttests, their…

6. Algebra and Problem-Solving in Down Syndrome: A Study with 15 Teenagers

ERIC Educational Resources Information Center

Martinez, Elisabetta Monari; Pellegrini, Katia

2010-01-01

There is a common opinion that mathematics is difficult for persons with Down syndrome, because of a weakness in numeracy and in abstract thinking. Since 1996, some single case studies have suggested that new opportunities in mathematics are possible for these students: some of them learned algebra and also learned to use equations in…

7. Fibonacci's Triangle: A Vehicle for Problem Solving.

ERIC Educational Resources Information Center

Ouellette, Hugh

1979-01-01

A method for solving certain types of problems is illustrated by problems related to Fibonacci's triangle. The method involves pattern recognition, generalizing, algebraic manipulation, and mathematical induction. (MP)

8. Algebra Word Problem Solving Approaches in a Chemistry Context: Equation Worked Examples versus Text Editing

ERIC Educational Resources Information Center

Ngu, Bing Hiong; Yeung, Alexander Seeshing

2013-01-01

Text editing directs students' attention to the problem structure as they classify whether the texts of word problems contain sufficient, missing or irrelevant information for working out a solution. Equation worked examples emphasize the formation of a coherent problem structure to generate a solution. Its focus is on the construction of three…

9. High-School Students' Approaches to Solving Algebra Problems that Are Posed Symbolically: Results from an Interview Study

ERIC Educational Resources Information Center

Huntley, Mary Ann; Davis, Jon D.

2008-01-01

A cross-curricular structured-probe task-based clinical interview study with 44 pairs of third year high-school mathematics students, most of whom were high achieving, was conducted to investigate their approaches to a variety of algebra problems. This paper presents results from three problems that were posed in symbolic form. Two problems are…

10. The Role of Cognitive Processes, Foundational Math Skill, and Calculation Accuracy and Fluency in Word-Problem Solving versus Pre-Algebraic Knowledge

PubMed Central

Fuchs, Lynn S.; Gilbert, Jennifer K.; Powell, Sarah R.; Cirino, Paul T.; Fuchs, Douglas; Hamlett, Carol L.; Seethaler, Pamela M.; Tolar, Tammy D.

2016-01-01

The purpose of this study was to examine child-level pathways in development of pre-algebraic knowledge versus word-problem solving, while evaluating the contribution of calculation accuracy and fluency as mediators of foundational skills/processes. Children (n = 962; mean 7.60 years) were assessed on general cognitive processes and early calculation, word-problem, and number knowledge at start of grade 2; calculation accuracy and calculation fluency at end of grade 2; and pre-algebraic knowledge and word-problem solving at end of grade 4. Important similarities in pathways were identified, but path analysis also indicated that language comprehension is more critical for later word-problem solving than pre-algebraic knowledge. We conclude that pathways in development of these forms of 4th-grade mathematics performance are more alike than different, but demonstrate the need to fine-tune instruction for strands of the mathematics curriculum in ways that address individual students’ foundational mathematics skills or cognitive processes. PMID:27786534

11. Some Applications of Algebraic System Solving

ERIC Educational Resources Information Center

Roanes-Lozano, Eugenio

2011-01-01

Technology and, in particular, computer algebra systems, allows us to change both the way we teach mathematics and the mathematical curriculum. Curiously enough, unlike what happens with linear system solving, algebraic system solving is not widely known. The aim of this paper is to show that, although the theory lying behind the "exact…

12. Problem Solving through Paper Folding

ERIC Educational Resources Information Center

Wares, Arsalan

2014-01-01

The purpose of this article is to describe a couple of challenging mathematical problems that involve paper folding. These problem-solving tasks can be used to foster geometric and algebraic thinking among students. The context of paper folding makes some of the abstract mathematical ideas involved relatively concrete. When implemented…

13. The roles of prefrontal and posterior parietal cortex in algebra problem solving: a case of using cognitive modeling to inform neuroimaging data.

PubMed

Danker, Jared F; Anderson, John R

2007-04-15

In naturalistic algebra problem solving, the cognitive processes of representation and retrieval are typically confounded, in that transformations of the equations typically require retrieval of mathematical facts. Previous work using cognitive modeling has associated activity in the prefrontal cortex with the retrieval demands of algebra problems and activity in the posterior parietal cortex with the transformational demands of algebra problems, but these regions tend to behave similarly in response to task manipulations (Anderson, J.R., Qin, Y., Sohn, M.-H., Stenger, V.A., Carter, C.S., 2003. An information-processing model of the BOLD response in symbol manipulation tasks. Psychon. Bull. Rev. 10, 241-261; Qin, Y., Carter, C.S., Silk, E.M., Stenger, A., Fissell, K., Goode, A., Anderson, J.R., 2004. The change of brain activation patterns as children learn algebra equation solving. Proc. Natl. Acad. Sci. 101, 5686-5691). With this study we attempt to isolate activity in these two regions by using a multi-step algebra task in which transformation (parietal) is manipulated in the first step and retrieval (prefrontal) is manipulated in the second step. Counter to our initial predictions, both brain regions were differentially active during both steps. We designed two cognitive models, one encompassing our initial assumptions and one in which both processes were engaged during both steps. The first model provided a poor fit to the behavioral and neural data, while the second model fit both well. This simultaneously emphasizes the strong relationship between retrieval and representation in mathematical reasoning and demonstrates that cognitive modeling can serve as a useful tool for understanding task manipulations in neuroimaging experiments.

14. Characterizing the Development of a Schema for Representing and Solving Algebra Word Problems by Pre-Algebraic Students Engaged in a Structured Diagrammatic Environment

ERIC Educational Resources Information Center

Green, Jan

2009-01-01

In recent years, the learning of algebra by all students has become a significant national priority (Moses & Cobb, 2001; National Council of Teachers of Mathematics, 2000). Algebra is considered to be a foundational topic in mathematics (Usiskin, 1988) and some have argued that an understanding of algebra is fundamental to success in today's…

15. Solving Geometric Problems by Using Algebraic Representation for Junior High School Level 3 in Van Hiele at Geometric Thinking Level

ERIC Educational Resources Information Center

Suwito, Abi; Yuwono, Ipung; Parta, I. Nengah; Irawati, Santi; Oktavianingtyas, Ervin

2016-01-01

This study aims to determine the ability of algebra students who have 3 levels van Hiele levels. Follow its framework Dindyal framework (2007). Students are required to do 10 algebra shaped multiple choice, then students work 15 about the geometry of the van Hiele level in the form of multiple choice questions. The question has been tested levels…

16. Using CAS to Solve Classical Mathematics Problems

ERIC Educational Resources Information Center

Burke, Maurice J.; Burroughs, Elizabeth A.

2009-01-01

Historically, calculus has displaced many algebraic methods for solving classical problems. This article illustrates an algebraic method for finding the zeros of polynomial functions that is closely related to Newton's method (devised in 1669, published in 1711), which is encountered in calculus. By exploring this problem, precalculus students…

17. The Problems of Problem Solving

ERIC Educational Resources Information Center

Watson, Charles E.

1976-01-01

Discusses some common pitfalls in problem-solving and outlines three basic approaches to successfully identifying problems and their causes. (Available from Business Horizons, School of Business, Indiana University, Bloomington, Indiana 47401; \$2.50, single copy) (Author/JG)

18. Techniques of Problem Solving.

ERIC Educational Resources Information Center

Krantz, Steven G.

The purpose of this book is to teach the basic principles of problem solving in both mathematical and non-mathematical problems. The major components of the book consist of learning to translate verbal discussion into analytical data, learning problem solving methods for attacking collections of analytical questions or data, and building a…

19. Teaching through Problem Solving

ERIC Educational Resources Information Center

Fi, Cos D.; Degner, Katherine M.

2012-01-01

Teaching through Problem Solving (TtPS) is an effective way to teach mathematics "for" understanding. It also provides students with a way to learn mathematics "with" understanding. In this article, the authors present a definition of what it means to teach through problem solving. They also describe a professional development vignette that…

20. Strategies for Problem Solving.

ERIC Educational Resources Information Center

Karmos, Joseph S.; Karmos, Ann H.

Problem-solving skills are becoming increasingly important in the workplace, and more schools are including them in the curriculum. Knowledge of problem solving will be critical to a work force that is dealing with advanced technology, yet many students have yet to master these skills. Based on this premise, this guide attempts to show how…

1. Problem Solving and Learning

Singh, Chandralekha

2009-07-01

One finding of cognitive research is that people do not automatically acquire usable knowledge by spending lots of time on task. Because students' knowledge hierarchy is more fragmented, "knowledge chunks" are smaller than those of experts. The limited capacity of short term memory makes the cognitive load high during problem solving tasks, leaving few cognitive resources available for meta-cognition. The abstract nature of the laws of physics and the chain of reasoning required to draw meaningful inferences makes these issues critical. In order to help students, it is crucial to consider the difficulty of a problem from the perspective of students. We are developing and evaluating interactive problem-solving tutorials to help students in the introductory physics courses learn effective problem-solving strategies while solidifying physics concepts. The self-paced tutorials can provide guidance and support for a variety of problem solving techniques, and opportunity for knowledge and skill acquisition.

2. Problem Solving by Design

ERIC Educational Resources Information Center

Capobianco, Brenda M.; Tyrie, Nancy

2009-01-01

In a unique school-university partnership, methods students collaborated with fifth graders to use the engineering design process to build their problem-solving skills. By placing the problem in the context of a client having particular needs, the problem took on a real-world appeal that students found intriguing and inviting. In this article, the…

3. Chemical Reaction Problem Solving.

ERIC Educational Resources Information Center

Veal, William

1999-01-01

Discusses the role of chemical-equation problem solving in helping students predict reaction products. Methods for helping students learn this process must be taught to students and future teachers by using pedagogical skills within the content of chemistry. Emphasizes that solving chemical reactions should involve creative cognition where…

4. Problem Solving Techniques Seminar.

ERIC Educational Resources Information Center

Massachusetts Career Development Inst., Springfield.

This booklet is one of six texts from a workplace literacy curriculum designed to assist learners in facing the increased demands of the workplace. Six problem-solving techniques are developed in the booklet to assist individuals and groups in making better decisions: problem identification, data gathering, data analysis, solution analysis,…

5. Inquiry and Problem Solving.

ERIC Educational Resources Information Center

Thorson, Annette, Ed.

1999-01-01

This issue of ENC Focus focuses on the topic of inquiry and problem solving. Featured articles include: (1) "Inquiry in the Everyday World of Schools" (Ronald D. Anderson); (2) "In the Cascade Reservoir Restoration Project Students Tackle Real-World Problems" (Clint Kennedy with Advanced Biology Students from Cascade High…

6. Problem Solving in Electricity.

ERIC Educational Resources Information Center

Caillot, Michel; Chalouhi, Elias

Two studies were conducted to describe how students perform direct current (D-C) circuit problems. It was hypothesized that problem solving in the electricity domain depends largely on good visual processing of the circuit diagram and that this processing depends on the ability to recognize when two or more electrical components are in series or…

7. Problem-Solving Software

NASA Technical Reports Server (NTRS)

1992-01-01

CBR Express software solves problems by adapting sorted solutions to new problems specified by a user. It is applicable to a wide range of situations. The technology was originally developed by Inference Corporation for Johnson Space Center's Advanced Software Development Workstation. The project focused on the reuse of software designs, and Inference used CBR as part of the ACCESS prototype software. The commercial CBR Express is used as a "help desk" for customer support, enabling reuse of existing information when necessary. It has been adopted by several companies, among them American Airlines, which uses it to solve reservation system software problems.

8. Discovering Steiner Triple Systems through Problem Solving

ERIC Educational Resources Information Center

Sriraman, Bharath

2004-01-01

An attempt to implement problem solving as a teacher of ninth grade algebra is described. The problems selected were not general ones, they involved combinations and represented various situations and were more complex which lead to the discovery of Steiner triple systems.

9. Solving Problems through Circles

ERIC Educational Resources Information Center

Grahamslaw, Laura; Henson, Lisa H.

2015-01-01

Several problem-solving interventions that utilise a "circle" approach have been applied within the field of educational psychology, for example, Circle Time, Circle of Friends, Sharing Circles, Circle of Adults and Solution Circles. This research explored two interventions, Solution Circles and Circle of Adults, and used thematic…

10. [Problem Solving Activities.

ERIC Educational Resources Information Center

Wisconsin Univ. - Stout, Menomonie. Center for Vocational, Technical and Adult Education.

The teacher directed problem solving activities package contains 17 units: Future Community Design, Let's Build an Elevator, Let's Construct a Catapult, Let's Design a Recreational Game, Let's Make a Hand Fishing Reel, Let's Make a Wall Hanging, Let's Make a Yo-Yo, Marooned in the Past, Metrication, Mousetrap Vehicles, The Multi System…

11. Solving Problems in Genetics

ERIC Educational Resources Information Center

Aznar, Mercedes Martinez; Orcajo, Teresa Ibanez

2005-01-01

A teaching unit on genetics and human inheritance using problem-solving methodology was undertaken with fourth-level Spanish Secondary Education students (15 year olds). The goal was to study certain aspects of the students' learning process (concepts, procedures and attitude) when using this methodology in the school environment. The change…

12. Circumference and Problem Solving.

ERIC Educational Resources Information Center

Blackburn, Katie; White, David

The concept of pi is one of great importance to all developed civilization and one that can be explored and mastered by elementary students through an inductive and problem-solving approach. Such an approach is outlined and discussed. The approach involves the following biblical quotation: "And he made a moltin sea ten cubits from one brim to…

13. Solving Common Mathematical Problems

NASA Technical Reports Server (NTRS)

Luz, Paul L.

2005-01-01

Mathematical Solutions Toolset is a collection of five software programs that rapidly solve some common mathematical problems. The programs consist of a set of Microsoft Excel worksheets. The programs provide for entry of input data and display of output data in a user-friendly, menu-driven format, and for automatic execution once the input data has been entered.

14. Solving Problems Reductively

ERIC Educational Resources Information Center

Armoni, Michal; Gal-Ezer, Judith; Tirosh, Dina

2005-01-01

Solving problems by reduction is an important issue in mathematics and science education in general (both in high school and in college or university) and particularly in computer science education. Developing reductive thinking patterns is an important goal in any scientific discipline, yet reduction is not an easy subject to cope with. Still,…

15. Achievement in Problem Solving

ERIC Educational Resources Information Center

Friebele, David

2010-01-01

This Action Research Project is meant to investigate the effects of incorporating research-based instructional strategies into instruction and their subsequent effect on student achievement in the area of problem-solving. The two specific strategies utilized are the integration of manipulatives and increased social interaction on a regular basis.…

16. Introspection in Problem Solving

ERIC Educational Resources Information Center

Jäkel, Frank; Schreiber, Cornell

2013-01-01

Problem solving research has encountered an impasse. Since the seminal work of Newell und Simon (1972) researchers do not seem to have made much theoretical progress (Batchelder and Alexander, 2012; Ohlsson, 2012). In this paper we argue that one factor that is holding back the field is the widespread rejection of introspection among cognitive…

17. Universal Design Problem Solving

ERIC Educational Resources Information Center

Sterling, Mary C.

2004-01-01

Universal design is made up of four elements: accessibility, adaptability, aesthetics, and affordability. This article addresses the concept of universal design problem solving through experiential learning for an interior design studio course in postsecondary education. Students' experiences with clients over age 55 promoted an understanding of…

18. Toward Solving the Problem of Problem Solving: An Analysis Framework

ERIC Educational Resources Information Center

Roesler, Rebecca A.

2016-01-01

Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…

19. Environmental problem solving

SciTech Connect

Miller, A.

1999-06-01

Human influences create both environmental problems and barriers to effective policy aimed at addressing those problems. In effect, environmental managers manage people as much as they manage the environment. Therefore, they must gain an understanding of the psychological and sociopolitical dimensions of environmental problems that they are attempting to resolve. The author reappraises conventional analyses of environmental problems using lessons from the psychosocial disciplines. The author combines the disciplines of ecology, political sociology and psychology to produce a more adaptive approach to problem-solving that is specifically geared toward the environmental field. Numerous case studies demonstrate the practical application of theory in a way that is useful to technical and scientific professionals as well as to policymakers and planners.

20. Problem Solving and Reasoning.

DTIC Science & Technology

1984-02-01

Sloan Foundation (HAS). This paper is a draft of a chapter to appear in R. C. Atkinson, R. Herrnstein, G. Lindzey, and R. D. Luce (Eds.), Stevens ...D. Luce (Eds.), Stevens ’ Handbook of Experimental Psychology, (Revised Edition). New York: John Wiley & Sons. PROBLEM SOLVING AND REASONING James G... LaBerge & S. J. Samuels (Eds.), Perception and comprehension. Hillsdale, NJ: Erlbaum. Anderson, J. R. (1982). Acquisition of cognitive skill

1. Planning and Problem Solving

DTIC Science & Technology

1982-10-01

Artificial Intelig ~ence (Vol. III, edited by Paul R. Cohen and’ Edward A.. Feigenbaum)’, The chapter was written B’ Paul Cohen, with contributions... Artificial Intelligence (Vol. III, edited by Paul R. Cohen and EdWard A. Feigenbaum). The chapter was written by Paul R. Cohen, with contributions by Stephen...Wheevoats"EntermdI’ Planning and ProblemSolving by Paul R. Cohen Chaptb-rXV-of Volumec III’of the Handbook of Artificial Intelligence edited by Paul R

2. A Computer Algebra Approach to Solving Chemical Equilibria in General Chemistry

ERIC Educational Resources Information Center

Kalainoff, Melinda; Lachance, Russ; Riegner, Dawn; Biaglow, Andrew

2012-01-01

In this article, we report on a semester-long study of the incorporation into our general chemistry course, of advanced algebraic and computer algebra techniques for solving chemical equilibrium problems. The method presented here is an alternative to the commonly used concentration table method for describing chemical equilibria in general…

3. Computer Problem-Solving Coaches

Hsu, Leon; Heller, Kenneth

2005-09-01

Computers might be able to play an important role in physics instruction by coaching students to develop good problem-solving skills. Building on previous research on student problem solving and on designing computer programs to teach cognitive skills, we are developing a prototype computer coach to provide students with guided practice in solving problems. In addition to helping students become better problem solvers, such programs can be useful in studying how students learn to solve problems and how and if problem-solving skills can be transferred from a computer to a pencil-and-paper environment.

4. The Identity of Problem Solving

ERIC Educational Resources Information Center

Mamona-Downs, Joanna; Downs, Martin

2005-01-01

This paper raises issues motivated by considering the "identity" of problem solving. This means that we are concerned with how other mathematics education topics impinge on problem solving, and with themes that naturally arise within the problem-solving agenda. We claim that some of these issues need more attention by educational research, while…

5. Problem Solving and Beginning Programming.

ERIC Educational Resources Information Center

McAllister, Alan

Based on current models of problem solving within cognitive psychology, this study focused on the spontaneous problem solving strategies used by children as they first learned LOGO computer programming, and on strategy transformations that took place during the problem solving process. The research consisted of a six weeks programming training…

6. Fundamentals of the Design and the Operation of an Intelligent Tutoring System for the Learning of the Arithmetical and Algebraic Way of Solving Word Problems

ERIC Educational Resources Information Center

Arnau, David; Arevalillo-Herraez, Miguel; Puig, Luis; Gonzalez-Calero, Jose Antonio

2013-01-01

Designers of interactive learning environments with a focus on word problem solving usually have to compromise between the amount of resolution paths that a user is allowed to follow and the quality of the feedback provided. We have built an intelligent tutoring system (ITS) that is able to both track the user's actions and provide adequate…

7. Measuring Family Problem Solving: The Family Problem Solving Diary.

ERIC Educational Resources Information Center

Kieren, Dianne K.

The development and use of the family problem-solving diary are described. The diary is one of several indicators and measures of family problem-solving behavior. It provides a record of each person's perception of day-to-day family problems (what the problem concerns, what happened, who got involved, what those involved did, how the problem…

8. Problem Solving: Tips for Teachers.

ERIC Educational Resources Information Center

O'Daffer, Phares G., Ed.; Schaaf, Oscar

1986-01-01

Describes: (1) a computation-oriented problem with procedures and some questions that might be asked of students; (2) four ways to help students develop positive problem-solving attitudes; (3) a strategy game; (4) a multiplication problem; and (5) several questions that will help students develop problem-solving skills. (JN)

9. Resource Scarcity: Problems Technology Cannot Solve; Problems Technology Can Solve.

ERIC Educational Resources Information Center

1979-01-01

Lists resource problems technology can and cannot solve, and emphasizes the need for considering and restructuring the social environments and institutions as well as developing new technologies. (CK)

10. On a modification of minimal iteration methods for solving systems of linear algebraic equations

Yukhno, L. F.

2010-04-01

Modifications of certain minimal iteration methods for solving systems of linear algebraic equations are proposed and examined. The modified methods are shown to be superior to the original versions with respect to the round-off error accumulation, which makes them applicable to solving ill-conditioned problems. Numerical results demonstrating the efficiency of the proposed modifications are given.

11. Technological Problem Solving: A Proposal.

ERIC Educational Resources Information Center

Waetjen, Walter B.

Examination of newer technology education materials reveals two recurring themes: one relates to curriculum content, familiarizing students with technology, and another to a technique of classroom instruction, i.e., problem solving. A problem-solving framework for technical education has the following components: (1) define the problem; (2)…

12. Numerical stability in problems of linear algebra.

NASA Technical Reports Server (NTRS)

Babuska, I.

1972-01-01

Mathematical problems are introduced as mappings from the space of input data to that of the desired output information. Then a numerical process is defined as a prescribed recurrence of elementary operations creating the mapping of the underlying mathematical problem. The ratio of the error committed by executing the operations of the numerical process (the roundoff errors) to the error introduced by perturbations of the input data (initial error) gives rise to the concept of lambda-stability. As examples, several processes are analyzed from this point of view, including, especially, old and new processes for solving systems of linear algebraic equations with tridiagonal matrices. In particular, it is shown how such a priori information can be utilized as, for instance, a knowledge of the row sums of the matrix. Information of this type is frequently available where the system arises in connection with the numerical solution of differential equations.

13. The Effect of Strategy on Problem Solving: An FMRI Study

ERIC Educational Resources Information Center

Newman, Sharlene D.; Pruce, Benjamin; Rusia, Akash; Burns, Thomas, Jr.

2010-01-01

fMRI was used to examine the differential effect of two problem-solving strategies. Participants were trained to use both a pictorial/spatial and a symbolic/algebraic strategy to solve word problems. While these two strategies activated similar cortical regions, a number of differences were noted in the level of activation. These differences…

14. Problem Solving Style, Creative Thinking, and Problem Solving Confidence

ERIC Educational Resources Information Center

Houtz, John C.; Selby, Edwin C.

2009-01-01

Forty-two undergraduate and graduate students completed VIEW: An Assessment of Problem Solving Style, the non-verbal Torrance Test Thinking Creatively with Pictures, and the Problem Solving Inventory (PSI). VIEW assesses individuals' orientation to change, manner of processing, and ways of deciding, while the Torrance test measures several…

15. Problem Solving and Reasoning

DTIC Science & Technology

1988-01-01

behavior theory by investigators such as Thorndike (1923), Tolman Now at Stanford University. (1928); Skinner (1938), and Hull (1943). The h*902tion of...were developed by Gestalt psychologists Coti1ct Number N00014-79-C-0215, Contract Identification such as Khler (IM), Duncker (1935/1%5), Nuat NR 667...are necessary components goals and adopting general plans or methods in of a theory of human thought. working on a problem. Models of general problem

16. The Future Problem Solving Program.

ERIC Educational Resources Information Center

Crabbe, Anne B.

1989-01-01

Describes the Future Problem Solving Program, in which students from the U.S. and around the world are tackling some complex challenges facing society, ranging from acid rain to terrorism. The program uses a creative problem solving process developed for business and industry. A sixth-grade toxic waste cleanup project illustrates the process.…

17. Creative Thinking and Problem Solving.

ERIC Educational Resources Information Center

Lacy, Grace

The booklet considers the nature of creativity in children and examines classroom implications. Among the topics addressed are the following: theories about creativity; research; developments in brain research; the creative process; creative problem solving; the Structure of Intellect Problem Solving (SIPS) model; a rationale for creativity in the…

18. Difficulties in Genetics Problem Solving.

ERIC Educational Resources Information Center

Tolman, Richard R.

1982-01-01

Examined problem-solving strategies of 30 high school students as they solved genetics problems. Proposes a new sequence of teaching genetics based on results: meiosis, sex chromosomes, sex determination, sex-linked traits, monohybrid and dihybrid crosses (humans), codominance (humans), and Mendel's pea experiments. (JN)

19. Problem Solving, Scaffolding and Learning

ERIC Educational Resources Information Center

Lin, Shih-Yin

2012-01-01

Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…

20. Learning Impasses in Problem Solving

NASA Technical Reports Server (NTRS)

Hodgson, J. P. E.

1992-01-01

Problem Solving systems customarily use backtracking to deal with obstacles that they encounter in the course of trying to solve a problem. This paper outlines an approach in which the possible obstacles are investigated prior to the search for a solution. This provides a solution strategy that avoids backtracking.

1. Paving a Way to Algebraic Word Problems Using a Nonalgebraic Route

ERIC Educational Resources Information Center

Amit, Miriam; Klass-Tsirulnikov, Bella

2005-01-01

A three-stage model for algebraic word problem solving is developed in which students' understanding of the intrinsic logical structure of word problems is strengthened by connecting real-life problems and formal mathematics. (Contains 3 figure.)

2. Expertise in Problem Solving.

DTIC Science & Technology

1981-05-18

obstacles that were not encountered previously in puzzle-like problems. Basically, the exact operators to be used are usually not given, the goal state...same height on other side 5. IF something goes down frictionless surface THEN can find acceleration of gravity on the incline using trigonometry 6

3. Children Solve Problems.

ERIC Educational Resources Information Center

De Bono, Edward

A group of children were presented with several tasks, including the invention of a sleep machine and a machine to weigh elephants. The tasks were chosen to involve the children in coping with problems of a distinct character. A study of the children's drawings and interpretations shows that children's thinking ability is not very different from…

4. Solving A Corrosion Problem

NASA Technical Reports Server (NTRS)

1979-01-01

The corrosion problem, it turned out, stemmed from the process called electrolysis. When two different metals are in contact, an electrical potential is set up between them; when the metals are surrounded by an electrolyte, or a conducting medium, the resulting reaction causes corrosion, often very rapid corrosion. In this case the different metals were the copper grounding system and the ferry's aluminum hull; the dockside salt water in which the hull was resting served as the electrolyte. After identifying the source of the trouble, the Ames engineer provided a solution: a new wire-and-rod grounding system made of aluminum like the ferry's hull so there would no longer be dissimilar metals in contact. Ames research on the matter disclosed that the problem was not unique to the Golden Gate ferries. It is being experienced by many pleasure boat operators who are probably as puzzled about it as was the Golden Gate Transit Authority.

5. Solving bearing overheating problems

SciTech Connect

Jendzurski, T.

1995-05-08

Overheating is a major indicator, along with vibration and noise, of an underlying problem affecting a bearing or related components. Because normal operating temperatures vary widely from one application to another, no single temperature is a reliable sign of overheating in every situation. By observing an application when it is running smoothly, a technician can establish a benchmark temperature for a particular bearing arrangement. Wide deviations from this accepted norm generally indicate troublesome overheating. The list of possible causes of over-heating ranges from out-of-round housings and oversize shaft diameters to excessive lubrication and bearing preloading. These causes fall into two major categories: improper or faulty lubrication and mechanical problems, such as incorrect fits and tolerances. These are discussed along with solutions.

6. Modeling Applied to Problem Solving

Pawl, Andrew; Barrantes, Analia; Pritchard, David E.

2009-10-01

Modeling Applied to Problem Solving (MAPS) is a pedagogy that helps students transfer instruction to problem solving in an expert-like manner. Declarative and Procedural syllabus content is organized and learned (not discovered) as a hierarchy of General Models. Students solve problems using an explicit Problem Modeling Rubric that begins with System, Interactions and Model (S.I.M.). System and Interactions are emphasized as the key to a strategic description of the system and the identification of the appropriate General Model to apply to the problem. We have employed the pedagogy in a three-week review course for students who received a D in mechanics. The course was assessed by a final exam retest as well as pre and post C-LASS surveys, yielding a one standard deviation improvement in the students' ability to solve final exam problems and a statistically significant positive shift in 7 of the 9 categories in the C-LASS.

7. Student Difficulties in Mathematizing Word Problems in Algebra

ERIC Educational Resources Information Center

Jupri, Al; Drijvers, Paul

2016-01-01

To investigate student difficulties in solving word problems in algebra, we carried out a teaching experiment involving 51 Indonesian students (12/13 year-old) who used a digital mathematics environment. The findings were backed up by an interview study, in which eighteen students (13/14 year-old) were involved. The perspective of mathematization,…

8. Irrelevance in Problem Solving

NASA Technical Reports Server (NTRS)

Levy, Alon Y.

1992-01-01

The notion of irrelevance underlies many different works in AI, such as detecting redundant facts, creating abstraction hierarchies and reformulation and modeling physical devices. However, in order to design problem solvers that exploit the notion of irrelevance, either by automatically detecting irrelevance or by being given knowledge about irrelevance, a formal treatment of the notion is required. In this paper we present a general framework for analyzing irrelevance. We discuss several properties of irrelevance and show how they vary in a space of definitions outlined by the framework. We show how irrelevance claims can be used to justify the creation of abstractions thereby suggesting a new view on the work on abstraction.

9. Understanding Students' Problem-Solving Knowledge through Their Writing

ERIC Educational Resources Information Center

Steele, Diana F.

2007-01-01

This article describes a teaching experiment conducted in a seventh-grade classroom. It explores ways that students used four types of problem-solving knowledge through writing their responses to algebraic problems. The problems were presented to students in the geometric contexts of growth and change and size and shape. It was found that writing…

10. Supporting Problem Solving in PBL

ERIC Educational Resources Information Center

Jonassen, David

2011-01-01

Although the characteristics of PBL (problem focused, student centered, self-directed, etc.) are well known, the components of a problem-based learning environment (PBLE) and the cognitive scaffolds necessary to support learning to solve different kinds of problems with different learners is less clear. This paper identifies the different…

11. Problem Solving with General Semantics.

ERIC Educational Resources Information Center

Hewson, David

1996-01-01

Discusses how to use general semantics formulations to improve problem solving at home or at work--methods come from the areas of artificial intelligence/computer science, engineering, operations research, and psychology. (PA)

12. Student Problem-Solving Behaviors

Harper, Kathleen A.

2006-04-01

Kathy Harper is director of undergraduate curriculum development in the physics department at The Ohio State University. She has been involved in local and national workshops for in-service teachers and conducts research in student problem solving.

13. Students' Problem Solving and Justification

ERIC Educational Resources Information Center

Glass, Barbara; Maher, Carolyn A.

2004-01-01

This paper reports on methods of students' justifications of their solution to a problem in the area of combinatorics. From the analysis of the problem solving of 150 students in a variety of settings from high-school to graduate study, four major forms of reasoning evolved: (1) Justification by Cases, (2) Inductive Argument, (3) Elimination…

14. Robot, computer problem solving system

NASA Technical Reports Server (NTRS)

Becker, J. D.

1972-01-01

The development of a computer problem solving system is reported that considers physical problems faced by an artificial robot moving around in a complex environment. Fundamental interaction constraints with a real environment are simulated for the robot by visual scan and creation of an internal environmental model. The programming system used in constructing the problem solving system for the simulated robot and its simulated world environment is outlined together with the task that the system is capable of performing. A very general framework for understanding the relationship between an observed behavior and an adequate description of that behavior is included.

15. Customer-centered problem solving.

PubMed

Samelson, Q B

1999-11-01

If there is no single best way to attract new customers and retain current customers, there is surely an easy way to lose them: fail to solve the problems that arise in nearly every buyer-supplier relationship, or solve them in an unsatisfactory manner. Yet, all too frequently, companies do just that. Either we deny that a problem exists, we exert all our efforts to pin the blame elsewhere, or we "Band-Aid" the problem instead of fixing it, almost guaranteeing that we will face it again and again.

16. Mathematical problem solving by analogy.

PubMed

Novick, L R; Holyoak, K J

1991-05-01

We report the results of 2 experiments and a verbal protocol study examining the component processes of solving mathematical word problems by analogy. College students first studied a problem and its solution, which provided a potential source for analogical transfer. Then they attempted to solve several analogous problems. For some problems, subjects received one of a variety of hints designed to reduce or eliminate the difficulty of some of the major processes hypothesized to be involved in analogical transfer. Our studies yielded 4 major findings. First, the process of mapping the features of the source and target problems and the process of adapting the source solution procedure for use in solving the target problem were clearly distinguished: (a) Successful mapping was found to be insufficient for successful transfer and (b) adaptation was found to be a major source of transfer difficulty. Second, we obtained direct evidence that schema induction is a natural consequence of analogical transfer. The schema was found to co-exist with the problems from which it was induced, and both the schema and the individual problems facilitated later transfer. Third, for our multiple-solution problems, the relation between analogical transfer and solution accuracy was mediated by the degree of time pressure exerted for the test problems. Finally, mathematical expertise was a significant predictor of analogical transfer, but general analogical reasoning ability was not. The implications of the results for models of analogical transfer and for instruction were considered.

17. Problem? "No Problem!" Solving Technical Contradictions

ERIC Educational Resources Information Center

Kutz, K. Scott; Stefan, Victor

2007-01-01

TRIZ (pronounced TREES), the Russian acronym for the theory of inventive problem solving, enables a person to focus his attention on finding genuine, potential solutions in contrast to searching for ideas that "may" work through a happenstance way. It is a patent database-backed methodology that helps to reduce time spent on the problem,…

18. Identification of Strategies Used by Fifth Graders To Solve Mathematics Word Problems.

ERIC Educational Resources Information Center

Palomares, Julio Cesar Arteaga; Hernandez, Jose Guzman

When students confront arithmetic or algebraic word problems, they develop ideas and notations during the processes of solving them by using various arithmetic strategies. Those ideas and notations are the basis for solving that type of problems. Is it possible to aid the development of students' algebraic thinking during their transition from…

19. Working Memory and Literacy as Predictors of Performance on Algebraic Word Problems

ERIC Educational Resources Information Center

Lee, Kerry; Ng, Swee-Fong; Ng, Ee-Lynn; Lim, Zee-Ying

2004-01-01

Previous studies on individual differences in mathematical abilities have shown that working memory contributes to early arithmetic performance. In this study, we extended the investigation to algebraic word problem solving. A total of 151 10-year-olds were administered algebraic word problems and measures of working memory, intelligence quotient…

20. Quantum Computing: Solving Complex Problems

ScienceCinema

DiVincenzo, David [IBM Watson Research Center

2016-07-12

One of the motivating ideas of quantum computation was that there could be a new kind of machine that would solve hard problems in quantum mechanics. There has been significant progress towards the experimental realization of these machines (which I will review), but there are still many questions about how such a machine could solve computational problems of interest in quantum physics. New categorizations of the complexity of computational problems have now been invented to describe quantum simulation. The bad news is that some of these problems are believed to be intractable even on a quantum computer, falling into a quantum analog of the NP class. The good news is that there are many other new classifications of tractability that may apply to several situations of physical interest.

1. Teaching through Collaborative Problem Solving.

ERIC Educational Resources Information Center

Blandford, A. E.

1994-01-01

Discussion of a prototype intelligent education system called WOMBAT (Weighted Objectives Method by Arguing with the Tutor) focuses on dialogue and negotiation in collaborative problem solving. The results of a formative evaluation, in which the system was used by 10 subjects who commented on various aspects of the design, are presented. (Contains…

2. Robot computer problem solving system

NASA Technical Reports Server (NTRS)

Becker, J. D.; Merriam, E. W.

1974-01-01

The conceptual, experimental, and practical aspects of the development of a robot computer problem solving system were investigated. The distinctive characteristics were formulated of the approach taken in relation to various studies of cognition and robotics. Vehicle and eye control systems were structured, and the information to be generated by the visual system is defined.

3. Human Problem Solving in 2008

ERIC Educational Resources Information Center

Pizlo, Zygmunt

2008-01-01

This paper presents a bibliography of more than 200 references related to human problem solving, arranged by subject matter. The references were taken from PsycInfo database. Journal papers, book chapters, books and dissertations are included. The topics include human development, education, neuroscience, research in applied settings, as well as…

4. Error Patterns in Problem Solving.

ERIC Educational Resources Information Center

Babbitt, Beatrice C.

Although many common problem-solving errors within the realm of school mathematics have been previously identified, a compilation of such errors is not readily available within learning disabilities textbooks, mathematics education texts, or teacher's manuals for school mathematics texts. Using data on error frequencies drawn from both the Fourth…

5. Gender and Mathematical Problem Solving.

ERIC Educational Resources Information Center

Duffy, Jim; Gunther, Georg; Walters, Lloyd

1997-01-01

Studied the relationship between gender and mathematical problem solving in 83 male and 76 female high achieving Canadian 12-year-olds. Gender differences were found on the Canadian Test of Basic Skills but not on the GAUSS assessment. Implications for the discussion of the origin of gender differences in mathematics are discussed. (SLD)

6. Human Problem Solving in 2006

ERIC Educational Resources Information Center

Pizlo, Zygmunt

2007-01-01

This paper presents a bibliography of a little more than 100 references related to human problem solving, arranged by subject matter. The references were taken from PsycInfo and Compendex databases. Only journal papers, books and dissertations are included. The topics include human development, education, neuroscience, research in applied…

7. Customer Service & Team Problem Solving.

ERIC Educational Resources Information Center

Martin, Sabrina Budasi

This curriculum guide provides materials for a six-session, site-specific training course in customer service and team problem solving for the Claretian Medical Center. The course outline is followed the six lesson plans. Components of each lesson plan include a list of objectives, an outline of activities and discussion topics for the lesson,…

8. Robot computer problem solving system

NASA Technical Reports Server (NTRS)

Becker, J. D.; Merriam, E. W.

1974-01-01

The conceptual, experimental, and practical phases of developing a robot computer problem solving system are outlined. Robot intelligence, conversion of the programming language SAIL to run under the THNEX monitor, and the use of the network to run several cooperating jobs at different sites are discussed.

9. Human Problem Solving in 2012

ERIC Educational Resources Information Center

Funke, Joachim

2013-01-01

This paper presents a bibliography of 263 references related to human problem solving, arranged by subject matter. The references were taken from PsycInfo and Academic Premier data-base. Journal papers, book chapters, and dissertations are included. The topics include human development, education, neuroscience, and research in applied settings. It…

10. Time Out for Problem Solving.

ERIC Educational Resources Information Center

Champagne, Audrey B.; And Others

Teachers in elementary schools, supervisors of instruction, and other educational practitioners are the primary audience for this publication. The paper presents philosophical, psychological, and practical reasons for including a problem-solving approach in elementary school instruction. It draws on the writings of John Dewey, Jean Piaget, James…

11. Reversible Reasoning and the Working Backwards Problem Solving Strategy

ERIC Educational Resources Information Center

Ramful, Ajay

2015-01-01

Making sense of mathematical concepts and solving mathematical problems may demand different forms of reasoning. These could be either domain-based, such as algebraic, geometric or statistical reasoning, while others are more general such as inductive/deductive reasoning. This article aims at giving visibility to a particular form of reasoning…

12. Genetics problem solving and worldview

Dale, Esther

13. Solving the generalized Langevin equation with the algebraically correlated noise

Srokowski, T.; Płoszajczak, M.

1998-04-01

We solve the Langevin equation with the memory kernel. The stochastic force possesses algebraic correlations, proportional to 1/t. The velocity autocorrelation function and related quantities characterizing transport properties are calculated with the assumption that the system is in thermal equilibrium. Stochastic trajectories are simulated numerically, using the kangaroo process as a noise generator. Results of this simulation resemble Lévy walks with divergent moments of the velocity distribution. We consider motion of a Brownian particle, both without any external potential and in the harmonic oscillator field, in particular the escape from a potential well. The results are compared with memory-free calculations for the Brownian particle.

14. Modeling Applied to Problem Solving

Pawl, Andrew; Barrantes, Analia; Pritchard, David E.

2009-11-01

We describe a modeling approach to help students learn expert problem solving. Models are used to present and hierarchically organize the syllabus content and apply it to problem solving, but students do not develop and validate their own Models through guided discovery. Instead, students classify problems under the appropriate instructor-generated Model by selecting a system to consider and describing the interactions that are relevant to that system. We believe that this explicit System, Interactions and Model (S.I.M.) problem modeling strategy represents a key simplification and clarification of the widely disseminated modeling approach originated by Hestenes and collaborators. Our narrower focus allows modeling physics to be integrated into (as opposed to replacing) a typical introductory college mechanics course, while preserving the emphasis on understanding systems and interactions that is the essence of modeling. We have employed the approach in a three-week review course for MIT freshmen who received a D in the fall mechanics course with very encouraging results.

15. Journey toward Teaching Mathematics through Problem Solving

ERIC Educational Resources Information Center

Sakshaug, Lynae E.; Wohlhuter, Kay A.

2010-01-01

Teaching mathematics through problem solving is a challenge for teachers who learned mathematics by doing exercises. How do teachers develop their own problem solving abilities as well as their abilities to teach mathematics through problem solving? A group of teachers began the journey of learning to teach through problem solving while taking a…

16. Teaching Problem Solving through Children's Literature.

ERIC Educational Resources Information Center

Forgan, James W.

This book helps general and special education teachers empower students in grades K-4 to independently solve problems by teaching them how characters in children's literature books solved similar problems. Students are also taught a problem solving strategy that they can apply to solve problems in any situation. The book contains ready-to-use…

17. Practical algorithms for algebraic and logical correction in precedent-based recognition problems

Ablameyko, S. V.; Biryukov, A. S.; Dokukin, A. A.; D'yakonov, A. G.; Zhuravlev, Yu. I.; Krasnoproshin, V. V.; Obraztsov, V. A.; Romanov, M. Yu.; Ryazanov, V. V.

2014-12-01

Practical precedent-based recognition algorithms relying on logical or algebraic correction of various heuristic recognition algorithms are described. The recognition problem is solved in two stages. First, an arbitrary object is recognized independently by algorithms from a group. Then a final collective solution is produced by a suitable corrector. The general concepts of the algebraic approach are presented, practical algorithms for logical and algebraic correction are described, and results of their comparison are given.

18. Solving the Dark Matter Problem

ScienceCinema

Baltz, Ted

2016-07-12

Cosmological observations have firmly established that the majority of matter in the universe is of an unknown type, called 'dark matter'. A compelling hypothesis is that the dark matter consists of weakly interacting massive particles (WIMPs) in the mass range around 100 GeV. If the WIMP hypothesis is correct, such particles could be created and studied at accelerators. Furthermore they could be directly detected as the primary component of our galaxy. Solving the dark matter problem requires that the connection be made between the two. We describe some theoretical and experimental avenues that might lead to this connection.

19. King Oedipus and the Problem Solving Process.

ERIC Educational Resources Information Center

Borchardt, Donald A.

An analysis of the problem solving process reveals at least three options: (1) finding the cause, (2) solving the problem, and (3) anticipating potential problems. These methods may be illustrated by examining "Oedipus Tyrannus," a play in which a king attempts to deal with a problem that appears to be beyond his ability to solve, and…

20. Problem Solving with the Elementary Youngster.

ERIC Educational Resources Information Center

Swartz, Vicki

This paper explores research on problem solving and suggests a problem-solving approach to elementary school social studies, using a culture study of the ancient Egyptians and King Tut as a sample unit. The premise is that problem solving is particularly effective in dealing with problems which do not have one simple and correct answer but rather…

1. Disciplinary Foundations for Solving Interdisciplinary Scientific Problems

ERIC Educational Resources Information Center

Zhang, Dongmei; Shen, Ji

2015-01-01

Problem-solving has been one of the major strands in science education research. But much of the problem-solving research has been conducted on discipline-based contexts; little research has been done on how students, especially individuals, solve interdisciplinary problems. To understand how individuals reason about interdisciplinary problems, we…

2. Research on Computers and Problem Solving.

ERIC Educational Resources Information Center

Burton, John K.; And Others

1988-01-01

Eight articles review and report on research involving computers and problem solving skills. Topics discussed include research design; problem solving skills and programing languages, including BASIC and LOGO; computer anxiety; diagnostic programs for arithmetic problems; and relationships between ability and problem solving scores and between…

3. Graphing as a Problem-Solving Strategy.

ERIC Educational Resources Information Center

Cohen, Donald

1984-01-01

The focus is on how line graphs can be used to approximate solutions to rate problems and to suggest equations that offer exact algebraic solutions to the problem. Four problems requiring progressively greater graphing sophistication are presented plus four exercises. (MNS)

4. Teaching DICOM by problem solving.

PubMed

Noumeir, Rita; Pambrun, Jean-François

2012-10-01

The Digital Imaging and Communications in Medicine (DICOM) is the standard for encoding and communicating medical imaging information. It is used in radiology as well as in many other imaging domains such as ophthalmology, dentistry, and pathology. DICOM information objects are used to encode medical images or information about the images. Their usage outside of the imaging department is increasing, especially with the sharing of medical images within Electronic Health Record systems. However, learning DICOM is long and difficult because it defines and uses many specific abstract concepts that relate to each other. In this paper, we present an approach, based on problem solving, for teaching DICOM as part of a graduate course on healthcare information. The proposed approach allows students with diversified background and no software development experience to grasp a large breadth of knowledge in a very short time.

5. Robot computer problem solving system

NASA Technical Reports Server (NTRS)

Merriam, E. W.; Becker, J. D.

1973-01-01

A robot computer problem solving system which represents a robot exploration vehicle in a simulated Mars environment is described. The model exhibits changes and improvements made on a previously designed robot in a city environment. The Martian environment is modeled in Cartesian coordinates; objects are scattered about a plane; arbitrary restrictions on the robot's vision have been removed; and the robot's path contains arbitrary curves. New environmental features, particularly the visual occlusion of objects by other objects, were added to the model. Two different algorithms were developed for computing occlusion. Movement and vision capabilities of the robot were established in the Mars environment, using LISP/FORTRAN interface for computational efficiency. The graphical display program was redesigned to reflect the change to the Mars-like environment.

6. Creative Problem Solving for Social Studies.

ERIC Educational Resources Information Center

Weiss, Steve; Kinney, Mark; And Others

1980-01-01

This article discusses techniques for integrating real problem solving and decision making into secondary social studies programs. Approaches to creative problem solving are presented, and various systematic decision making programs currently available for classroom use are identified. (Author/RM)

7. Community-powered problem solving.

PubMed

Gouillart, Francis; Billings, Douglas

2013-04-01

Traditionally, companies have managed their constituencies with specific processes: marketing to customers, procuring from vendors, developing HR policies for employees, and so on. The problem is, such processes focus on repeatability and compliance, so they can lead to stagnation. Inviting your constituencies to collectively help you solve problems and exploit opportunities--"co-creation"--is a better approach. It allows you to continually tap the skills and insights of huge numbers of stakeholders and develop new ways to produce value for all. The idea is to provide stakeholders with platforms (physical and digital forums) on which they can interact, get them to start exploring new experiences and connections, and let the system grow organically. A co-creation initiative by a unit of Becton, Dickinson and Company demonstrates how this works. A global leader in syringes, BD set out to deepen its ties with hospital customers and help them reduce the incidence of infections from unsafe injection and syringe disposal practices. The effort began with a cross-functional internal team, brought in the hospital procurement and supply managers BD had relationships with, and then reached out to hospitals' infection-prevention and occupational health leaders. Eventually product designers, nurses, sustainability staffers, and even hospital CFOs were using the platform, contributing data that generated new best practices and reduced infections.

8. How to encourage university students to solve physics problems requiring mathematical skills: the 'adventurous problem solving' approach

DeMul, Frits F. M.; Batlle, Cristina Martin i.; DeBruijn, Imme; Rinzema, Kees

2004-01-01

Teaching physics to first-year university students (in the USA: junior/senior level) is often hampered by their lack of skills in the underlying mathematics, and that in turn may block their understanding of the physics and their ability to solve problems. Examples are vector algebra, differential expressions and multi-dimensional integrations, and the Gauss and Ampère laws learnt in electromagnetism courses. To enhance those skills in a quick and efficient way we have developed 'Integrating Mathematics in University Physics', in which students are provided with a selection of problems (exercises) that explicitly deal with the relation between physics and mathematics. The project is based on computer-assisted instruction (CAI), and available via the Internet (http://tnweb.tn.utwente.nl/onderwijs/; or http://www.utwente.nl/; search or click to: CONECT). Normally, in CAI a predefined student-guiding sequence for problem solving is used (systematic problem solving). For self-learning this approach was found to be far too rigid. Therefore, we developed the 'adventurous problem solving' (APS) method. In this new approach, the student has to find the solution by developing his own problem-solving strategy in an interactive way. The assessment of mathematical answers to physical questions is performed using a background link with an algebraic symbolic language interpreter. This manuscript concentrates on the subject of APS.

9. LEGO Robotics: An Authentic Problem Solving Tool?

ERIC Educational Resources Information Center

Castledine, Alanah-Rei; Chalmers, Chris

2011-01-01

With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the…

10. Collis-Romberg Mathematical Problem Solving Profiles.

ERIC Educational Resources Information Center

Collis, K. F.; Romberg, T. A.

Problem solving has become a focus of mathematics programs in Australia in recent years, necessitating the assessment of students' problem-solving abilities. This manual provides a problem-solving assessment and teaching resource package containing four elements: (1) profiles assessment items; (2) profiles diagnostic forms for recording individual…

11. Kindergarten Students Solving Mathematical Word Problems

ERIC Educational Resources Information Center

Johnson, Nickey Owen

2013-01-01

The purpose of this study was to explore problem solving with kindergarten students. This line of inquiry is highly significant given that Common Core State Standards emphasize deep, conceptual understanding in mathematics as well as problem solving in kindergarten. However, there is little research on problem solving with kindergarten students.…

12. The Important Thing about Teaching Problem Solving

ERIC Educational Resources Information Center

Roberts, Sally K.

2010-01-01

The author teaches a content course in problem solving for middle school teachers. During the course, teacher candidates have the opportunity to confront their insecurities as they actively engage in solving math problems using a variety of strategies. As the semester progresses, they add new strategies to their problem-solving arsenal and…

13. Developing Creativity through Collaborative Problem Solving

ERIC Educational Resources Information Center

Albert, Lillie R.; Kim, Rina

2013-01-01

This paper discusses an alternative approach for developing problem solving experiences for students. The major argument is that students can develop their creativity by engaging in collaborative problem solving activities in which they apply a variety of mathematical methods creatively to solve problems. The argument is supported by: considering…

14. A Component Analysis of Mathematical Problem Solving.

ERIC Educational Resources Information Center

Schwieger, Ruben Don

The purpose of this study was the construction of a theoretical model for analyzing mathematical problem solving. A list of general problem-solving abilities was generated through a literature search. This list was narrowed to eight basic abilities pertinent to mathematics problem solving. Each of these was operationally defined and exemplified in…

15. Strategies for Problem Solving. Revised Edition.

ERIC Educational Resources Information Center

Karmos, Joseph S.; Karmos, Ann H.

This manual provides a comprehensive approach to problem solving; it is written in narrative style with numerous examples. The guide is organized in eight sections that cover the following topics: (1) problem-solving overview (with suggested readings and recommendations for schools); (2) a five-step model for solving problems; (3) strategies for…

16. Perspectives on Problem Solving and Instruction

ERIC Educational Resources Information Center

van Merrienboer, Jeroen J. G.

2013-01-01

Most educators claim that problem solving is important, but they take very different perspective on it and there is little agreement on how it should be taught. This article aims to sort out the different perspectives and discusses problem solving as a goal, a method, and a skill. As a goal, problem solving should not be limited to well-structured…

17. Stabilization: A Descriptive Framework for Problem Solving

Savrda, Sherry L.

2006-12-01

An alternative description of problem solving was tested against the think-aloud protocols of twelve introductory calculus-based physics students. Think-aloud protocols are transcripts of problem-solving sessions during which participants are asked to verbalize their thoughts as they attempt to solve a problem. The stabilization model tested considers perceptions of problem difficulty to be related to four primary factors: categorization, goal interpretation, resource relevance, and complexity. A fifth superordinate factor, stabilization, considers the shifting relationships between the four primary factors over the problem-solving process. Problem solving is then described in terms of a search for a stable relationship among the four primary factors. Results from the study to be presented suggest that with further refinement, the stabilization model could be an effective alternative model of problem solving. Results related to the observed problem-solving processes undertaken by the participants will also be presented.

18. Flowing toward Correct Contributions during Group Problem Solving: A Statistical Discourse Analysis

ERIC Educational Resources Information Center

Chiu, Ming Ming

2008-01-01

Groups that created more correct ideas (correct contributions or CCs) might be more likely to solve a problem, and students' recent actions (micro-time context) might aid CC creation. 80 high school students worked in groups of 4 on an algebra problem. Groups with higher mathematics grades or more CCs were more likely to solve the problem. Dynamic…

19. Process Inquiry: Analysis of Oral Problem-Solving Skills in Mathematics of Engineering Students

ERIC Educational Resources Information Center

Trance, Naci John C.

2013-01-01

This paper presents another effort in determining the difficulty of engineering students in terms of solving word problems. Students were presented with word problems in algebra. Then, they were asked to solve the word problems orally; that is, before they presented their written solutions, they were required to explain how they understood the…

20. Rees algebras, Monomial Subrings and Linear Optimization Problems

Dupont, Luis A.

2010-06-01

In this thesis we are interested in studying algebraic properties of monomial algebras, that can be linked to combinatorial structures, such as graphs and clutters, and to optimization problems. A goal here is to establish bridges between commutative algebra, combinatorics and optimization. We study the normality and the Gorenstein property-as well as the canonical module and the a-invariant-of Rees algebras and subrings arising from linear optimization problems. In particular, we study algebraic properties of edge ideals and algebras associated to uniform clutters with the max-flow min-cut property or the packing property. We also study algebraic properties of symbolic Rees algebras of edge ideals of graphs, edge ideals of clique clutters of comparability graphs, and Stanley-Reisner rings.

1. Teaching Conceptual Model-Based Word Problem Story Grammar to Enhance Mathematics Problem Solving

ERIC Educational Resources Information Center

Xin, Yan Ping; Wiles, Ben; Lin, Yu-Ying

2008-01-01

Borrowing the concept of story grammar from reading comprehension literature, the purpose of this study was to examine the effect of teaching "word problem (WP) story grammar" on arithmetic WP solving that emphasizes the algebraic expression of mathematical relations in conceptual models. Participants were five students in Grades 4 and 5 with or…

2. Key Contextual Features of Algebra Word Problems: A Theoretical Model and Review of the Literature.

ERIC Educational Resources Information Center

Nasser, Ramzi; Carifio, James

One of the four algebra word problem structures found in K-12 textbooks is the propositional relation structure (Mayer, 1982). This type of problem asks students to establish equivalences between the variables or noun referents in the problem. The literature available indicates that students have inordinate difficulties, when trying to solve a…

3. Application of the Group Algebra of the Problem of the Tail σ-ALGEBRA of a Random Walk on a Group and the Problem of Ergodicity of a Skew-Product Action

Ismagilov, R. S.

1988-02-01

Two problems in measure theory are considered: that of the tail C*-algebra of a random walk on a group, and that of ergodicity of a skew-product action. These problems are solved in a uniform way by using Banach algebras and harmonic analysis on a group. Bibliography: 22 titles.

4. Does Early Algebraic Reasoning Differ as a Function of Students' Difficulty with Calculations versus Word Problems?

PubMed

Powell, Sarah R; Fuchs, Lynn S

2014-08-01

According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 2(nd)- grade students, we administered (a) measures of calculations and word problems in the fall and (b) an assessment of pre-algebraic reasoning, with items that assessed solving equations and functions, in the spring. Based on the calculation and word-problem measures, we placed 148 students into 1 of 4 difficulty status categories: typically performing, calculation difficulty, word-problem difficulty, or difficulty with calculations and word problems. Analyses of variance were conducted on the 148 students; path analytic mediation analyses were conducted on the larger sample of 789 students. Across analyses, results corroborated the finding that word-problem difficulty is more strongly associated with difficulty with pre-algebraic reasoning. As an indicator of later algebra difficulty, word-problem difficulty may be a more useful predictor than calculation difficulty, and students with word-problem difficulty may require a different level of algebraic reasoning intervention than students with calculation difficulty.

5. Does Early Algebraic Reasoning Differ as a Function of Students’ Difficulty with Calculations versus Word Problems?

PubMed Central

Powell, Sarah R.; Fuchs, Lynn S.

2014-01-01

According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 2nd- grade students, we administered (a) measures of calculations and word problems in the fall and (b) an assessment of pre-algebraic reasoning, with items that assessed solving equations and functions, in the spring. Based on the calculation and word-problem measures, we placed 148 students into 1 of 4 difficulty status categories: typically performing, calculation difficulty, word-problem difficulty, or difficulty with calculations and word problems. Analyses of variance were conducted on the 148 students; path analytic mediation analyses were conducted on the larger sample of 789 students. Across analyses, results corroborated the finding that word-problem difficulty is more strongly associated with difficulty with pre-algebraic reasoning. As an indicator of later algebra difficulty, word-problem difficulty may be a more useful predictor than calculation difficulty, and students with word-problem difficulty may require a different level of algebraic reasoning intervention than students with calculation difficulty. PMID:25309044

6. Problem solving using soft systems methodology.

PubMed

Land, L

This article outlines a method of problem solving which considers holistic solutions to complex problems. Soft systems methodology allows people involved in the problem situation to have control over the decision-making process.

7. Thinking Process of Naive Problem Solvers to Solve Mathematical Problems

ERIC Educational Resources Information Center

Mairing, Jackson Pasini

2017-01-01

Solving problems is not only a goal of mathematical learning. Students acquire ways of thinking, habits of persistence and curiosity, and confidence in unfamiliar situations by learning to solve problems. In fact, there were students who had difficulty in solving problems. The students were naive problem solvers. This research aimed to describe…

8. Understanding Undergraduates’ Problem-Solving Processes †

PubMed Central

Nehm, Ross H.

2010-01-01

Fostering effective problem-solving skills is one of the most longstanding and widely agreed upon goals of biology education. Nevertheless, undergraduate biology educators have yet to leverage many major findings about problem-solving processes from the educational and cognitive science research literatures. This article highlights key facets of problem-solving processes and introduces methodologies that may be used to reveal how undergraduate students perceive and represent biological problems. Overall, successful problem-solving entails a keen sensitivity to problem contexts, disciplined internal representation or modeling of the problem, and the principled management and deployment of cognitive resources. Context recognition tasks, problem representation practice, and cognitive resource management receive remarkably little emphasis in the biology curriculum, despite their central roles in problem-solving success. PMID:23653710

9. Solving Large-scale Eigenvalue Problems in SciDACApplications

SciTech Connect

Yang, Chao

2005-06-29

Large-scale eigenvalue problems arise in a number of DOE applications. This paper provides an overview of the recent development of eigenvalue computation in the context of two SciDAC applications. We emphasize the importance of Krylov subspace methods, and point out its limitations. We discuss the value of alternative approaches that are more amenable to the use of preconditioners, and report the progression using the multi-level algebraic sub-structuring techniques to speed up eigenvalue calculation. In addition to methods for linear eigenvalue problems, we also examine new approaches to solving two types of non-linear eigenvalue problems arising from SciDAC applications.

10. Preconditioning projection methods for solving algebraic linear systems

García-Palomares, Ubaldo

1999-09-01

Numerical experiments have shown that projection methods are robust for solving the problem of finding a point satisfying a linear system of n variables and m equations; however, their qualities of convergence depend on certain parameters: an n n symmetric positive definite matrix M, and a vector u with m components. We are concerned here with the choice of M. Through a link with Conjugate Gradient methods we determine an expedient M. Preliminary numerical results on a hard 3D partial differential equation are highly promising. We solve a discretized system that could not be solved by conventional methods. We also give hints on how to adapt our findings to the solution of a linear system of inequalities. This is the first stage of a forthcoming research.

11. The Problem Life Solves (Invited)

Shock, E.

2013-12-01

After forming, planets start the long process of dissipating energy into space. Early on, accretionary processes provide sufficient kinetic energy to raise temperatures enough to drive chemical systems rapidly toward equilibrium, maximizing the release of chemical energy. Eventually heat is dissipated, temperatures drop, and outer portions of planets cool enough to slow the rates of chemical reactions. As reaction rates slow to the scale of geologic time, chemical energy becomes trapped in assemblages of planetary materials far from equilibrium. Numerous examples are provided by chondritic meteorites, which show that activation energy barriers allow chemical energy to remain trapped for most of the age of the solar system even if heat dissipation is efficient -- and perhaps as a direct consequence. Activation energies that inhibit favorable reactions can be overcome by catalysis, which permits chemical systems to attain lower energy states. Catalysis in planets serves to continue the release of energy into space begun by heat dissipation. This implies that there is an overall thermodynamic drive for catalysis to appear as planets cool. Reasons why catalysis emerges in some cases and not others may depend on interactions of cooling rates and compositions but the specifics are murky at present. Life is a particularly efficient catalyst, and its emergence on a planet helps solve the problem generated by the catastrophic decrease in reaction rates during cooling. The single example we have of life on Earth got its start catalyzing oxidation-reduction reactions arranged in states far from equilibrium by geologic processes. On the pre-photosynthetic Earth the boldest biosignatures were redox processes occurring at rates that could only be explained by catalysis, and specifically by catalytic processes that have no abiotic mechanism. Biologically enhanced rates of redox reactions persist to the present, and maintain the biogeochemical cycles that permit the photosynthetic

12. New Perspectives on Human Problem Solving

ERIC Educational Resources Information Center

Goldstone, Robert L.; Pizlo, Zygmunt

2009-01-01

In November 2008 at Purdue University, the 2nd Workshop on Human Problem Solving was held. This workshop, which was a natural continuation of the first workshop devoted almost exclusively to optimization problems, addressed a wider range of topics that reflect the scope of the "Journal of Problem Solving." The workshop was attended by 35…

13. Computer Games Teach Problem-Solving.

ERIC Educational Resources Information Center

Clayson, James

1982-01-01

The difficulty many students have in solving complex problems stems not from a lack of mathematical skill but from an inability to visualize the problem. An appropriately-structured computer game may assist students in achieving this visualization and in solving problems better. A heuristic approach in programing one game is provided. (Author/JN)

14. Distributed problem solving by pilots and dispatchers

NASA Technical Reports Server (NTRS)

Orasanu, Judith; Wich, Mike; Fischer, Ute; Jobe, Kim; Mccoy, Elaine; Beatty, Roger; Smith, Phil

1993-01-01

The study addressed the following question: Are flight planning problems solved differently by PILOTS and DISPATCHERS when they work alone versus when they work together? Aspect of their performance that were of interest include the following: Problem perception and definition; Problem solving strategies and information use; Options considered; Solution and rational; and errors.

15. Learning to Solve Problems in Primary Grades

ERIC Educational Resources Information Center

Whitin, Phyllis; Whitin, David J.

2008-01-01

Problem solving lies at the heart of mathematical learning. Children need opportunities to write, discuss, and solve problems on a regular basis. The problems must incorporate grade-appropriate content and be "accessible and engaging to the students, building on what they know and can do." Teachers also play a key role in establishing a classroom…

16. On modification of certain methods of the conjugate direction type for solving rectangular systems of linear algebraic equations

Yukhno, L. F.

2007-12-01

The use of modifications of certain well-known methods of the conjugate direction type for solving systems of linear algebraic equations with rectangular matrices is examined. The modified methods are shown to be superior to the original versions with respect to the round-off accumulation; the advantage is especially large for ill-conditioned matrices. Examples are given of the efficient use of the modified methods for solving certain fairly large ill-conditioned problems.

17. Strengthening Programs through Problem Solving.

ERIC Educational Resources Information Center

Dyer, Jim

1993-01-01

Describes a secondary agricultural education program that was a dumping ground for academically disadvantaged students. Discusses how such a program can be improved by identifying problems and symptoms, treating problems, and goal setting. (JOW)

18. Common Core: Solve Math Problems

ERIC Educational Resources Information Center

Strom, Erich

2012-01-01

The new common core standards for mathematics demand that students (and teachers!) exhibit deeper conceptual understanding. That's music to the ears of education professor John Tapper, who says teachers have overemphasized teaching procedures--and getting right answers. In his new book, "Solving for Why," he makes a powerful case for moving beyond…

19. Problem-Solving Test: Pyrosequencing

ERIC Educational Resources Information Center

Szeberenyi, Jozsef

2013-01-01

Terms to be familiar with before you start to solve the test: Maxam-Gilbert sequencing, Sanger sequencing, gel electrophoresis, DNA synthesis reaction, polymerase chain reaction, template, primer, DNA polymerase, deoxyribonucleoside triphosphates, orthophosphate, pyrophosphate, nucleoside monophosphates, luminescence, acid anhydride bond,…

20. Mobile serious games for collaborative problem solving.

PubMed

Sanchez, Jaime; Mendoza, Claudia; Salinas, Alvaro

2009-01-01

This paper presents the results obtained from the implementation of a series of learning activities based on mobile serious games (MSG) for the development of problem-solving and collaborative skills in Chilean 8th grade students. Three MSGs were developed and played by teams of four students, who had to solve the problems posed by the game collaboratively. The data shows that the experimental group had a higher perception of their own skills of collaboration and of the plan execution dimension of problem solving than the control group, providing empirical evidence regarding the contribution of MSGs to the development of collaborative problem-solving skills.

1. The Contributions of Working Memory and Executive Functioning to Problem Representation and Solution Generation in Algebraic Word Problems

ERIC Educational Resources Information Center

Lee, Kerry; Ng, Ee Lynn; Ng, Swee Fong

2009-01-01

Solving algebraic word problems involves multiple cognitive phases. The authors used a multitask approach to examine the extent to which working memory and executive functioning are associated with generating problem models and producing solutions. They tested 255 11-year-olds on working memory (Counting Recall, Letter Memory, and Keep Track),…

2. Disciplinary Foundations for Solving Interdisciplinary Scientific Problems

Zhang, Dongmei; Shen, Ji

2015-10-01

Problem-solving has been one of the major strands in science education research. But much of the problem-solving research has been conducted on discipline-based contexts; little research has been done on how students, especially individuals, solve interdisciplinary problems. To understand how individuals reason about interdisciplinary problems, we conducted an interview study with 16 graduate students coming from a variety of disciplinary backgrounds. During the interviews, we asked participants to solve two interdisciplinary science problems on the topic of osmosis. We investigated participants' problem reasoning processes and probed in their attitudes toward general interdisciplinary approach and specific interdisciplinary problems. Through a careful inductive content analysis of their responses, we studied how disciplinary, cognitive, and affective factors influenced their interdisciplinary problems-solving. We found that participants' prior discipline-based science learning experiences had both positive and negative influences on their interdisciplinary problem-solving. These influences were embodied in their conceptualization of the interdisciplinary problems, the strategies they used to integrate different disciplinary knowledge, and the attitudes they had toward interdisciplinary approach in general and specific interdisciplinary problems. This study sheds light on interdisciplinary science education by revealing the complex relationship between disciplinary learning and interdisciplinary problem-solving.

3. Applying Cooperative Techniques in Teaching Problem Solving

ERIC Educational Resources Information Center

Barczi, Krisztina

2013-01-01

Teaching how to solve problems--from solving simple equations to solving difficult competition tasks--has been one of the greatest challenges for mathematics education for many years. Trying to find an effective method is an important educational task. Among others, the question arises as to whether a method in which students help each other might…

4. Problem Solving & Comprehension. Fourth Edition.

ERIC Educational Resources Information Center

This book shows how to increase one's power to analyze and comprehend problems. First, it outlines and illustrates the methods that good problem solvers use in attacking complex ideas. Then it gives some practice in applying these methods to a variety of questions in comprehension and reasoning. Chapters include: (1) "Test Your Mind--See How…

5. Pen Pals: Practicing Problem Solving

ERIC Educational Resources Information Center

Lampe, Kristen A.; Uselmann, Linda

2008-01-01

This article describes a semester-long pen-pal project in which preservice teachers composed mathematical problems and the middle school students worked for solutions. The college students assessed the solution and the middle school students provided feedback regarding the problem itself. (Contains 6 figures.)

6. Do TEFL Articles Solve Problems?

ERIC Educational Resources Information Center

Edge, Julian

1985-01-01

Discusses the problem which English-as-a-foreign-language (EFL) teacher trainees who are nonnative English speakers have in reading articles about EFL teaching methods. As a solution to this problem, the author produced a worksheet for the students to fill in while reading the articles which followed Hoey's…

7. Trigonometric problem cases well solved

Schröer, H.

2001-10-01

Content of the book are trigonometric problems that can be found scarely in the technical literature. It begins with using trigonometric functions to horizon and height. Interesting pure mathematical problems about tangent, inscribed tetragon and parallelogram follow. In chapter 6 is a generalization of Euclid's theorem fo the right-angled triangle. The next themes are exterior circle and incircle. In chapter 9 an unusual proof of the cosine law for sides is given. Further treated problems are the distance of two stars and eclipses. The aim group consists of mathematicians, natural scientists and technicians(also teacher) who have to do professionally with trigonometric problems and (or)who are interested in trigonometric problems. There is an english and a german edition.

8. Problem Posing and Solving with Mathematical Modeling

ERIC Educational Resources Information Center

English, Lyn D.; Fox, Jillian L.; Watters, James J.

2005-01-01

Mathematical modeling is explored as both problem posing and problem solving from two perspectives, that of the child and the teacher. Mathematical modeling provides rich learning experiences for elementary school children and their teachers.

9. Indoor Air Quality Problem Solving Tool

EPA Pesticide Factsheets

Use the IAQ Problem Solving Tool to learn about the connection between health complaints and common solutions in schools. This resource provides an easy, step-by-step process to start identifying and resolving IAQ problems found at your school.

10. Problem Solving, Patterns, Probability, Pascal, and Palindromes.

ERIC Educational Resources Information Center

Hylton-Lindsay, Althea Antoinette

2003-01-01

Presents a problem-solving activity, the birth order problem, and several solution-seeking strategies. Includes responses of current and prospective teachers and a comparison of various strategies. (YDS)

11. Pre-Service Class Teacher' Ability in Solving Mathematical Problems and Skills in Solving Daily Problems

ERIC Educational Resources Information Center

Aljaberi, Nahil M.; Gheith, Eman

2016-01-01

This study aims to investigate the ability of pre-service class teacher at University of Petrain solving mathematical problems using Polya's Techniques, their level of problem solving skills in daily-life issues. The study also investigates the correlation between their ability to solve mathematical problems and their level of problem solving…

12. Solving a problem by analogy

Easton, Don

1999-03-01

This note is a description of a student solution to a problem. I found the solution exciting because it exemplifies the kind of solution by analogy that Feynman describes in The Feynman Lectures on Physics.

13. Dynamic Problem Solving: A New Assessment Perspective

ERIC Educational Resources Information Center

Greiff, Samuel; Wustenberg, Sascha; Funke, Joachim

2012-01-01

This article addresses two unsolved measurement issues in dynamic problem solving (DPS) research: (a) unsystematic construction of DPS tests making a comparison of results obtained in different studies difficult and (b) use of time-intensive single tasks leading to severe reliability problems. To solve these issues, the MicroDYN approach is…

14. Metacognition: Student Reflections on Problem Solving

ERIC Educational Resources Information Center

Wismath, Shelly; Orr, Doug; Good, Brandon

2014-01-01

Twenty-first century teaching and learning focus on the fundamental skills of critical thinking and problem solving, creativity and innovation, and collaboration and communication. Metacognition is a crucial aspect of both problem solving and critical thinking, but it is often difficult to get students to engage in authentic metacognitive…

15. Solving Problems in Genetics II: Conceptual Restructuring

ERIC Educational Resources Information Center

Orcajo, Teresa Ibanez; Aznar, Mercedes Martinez

2005-01-01

This paper presents the results of part of an investigation carried out with fourth-level Spanish secondary education students (15 years old), in which we implemented a teaching unit based on problem-solving methodology as an investigation to teach genetics and human inheritance curricular contents. By solving open problems, the students…

16. Problem Solving Software for Math Classes.

ERIC Educational Resources Information Center

Troutner, Joanne

1987-01-01

Described are 10 computer software programs for problem solving related to mathematics. Programs described are: (1) Box Solves Story Problems; (2) Safari Search; (3) Puzzle Tanks; (4) The King's Rule; (5) The Factory; (6) The Royal Rules; (7) The Enchanted Forest; (8) Gears; (9) The Super Factory; and (10) Creativity Unlimited. (RH)

17. The Functions of Pictures in Problem Solving

ERIC Educational Resources Information Center

2004-01-01

In the present study, we assert that pictures serve four functions in problem solving: decorative, representational, organizational and informational. We, therefore, investigate the effects of pictures based on their functions in mathematical problem solving (MPS), by high achievement students of Grade 6 in Cyprus, in a communication setting. A…

18. The Process of Solving Complex Problems

ERIC Educational Resources Information Center

Fischer, Andreas; Greiff, Samuel; Funke, Joachim

2012-01-01

This article is about Complex Problem Solving (CPS), its history in a variety of research domains (e.g., human problem solving, expertise, decision making, and intelligence), a formal definition and a process theory of CPS applicable to the interdisciplinary field. CPS is portrayed as (a) knowledge acquisition and (b) knowledge application…

19. Interpersonal Problem Solving in Preschool Aged Children.

ERIC Educational Resources Information Center

Swanson, Arthur J.; Siegel, Lawrence J.

This study was designed as a partial replication and extension of the research on interpersonal problem solving in preschool children by Shure and Spivack. Fifteen well-adjusted and 14 impulsive children from Head Start Centers were administered the Preschool Interpersonal Problem Solving test (PIPS) under either incentive or no incentive…

20. Can Television Enhance Children's Mathematical Problem Solving?

ERIC Educational Resources Information Center

Fisch, Shalom M.; And Others

1994-01-01

A summative evaluation of "Square One TV," an educational mathematics series produced by the Children's Television Workshop, shows that children who regularly viewed the program showed significant improvement in solving unfamiliar, complex mathematical problems, and viewers showed improvement in their mathematical problem-solving ability…

1. Conceptual Problem Solving in High School Physics

ERIC Educational Resources Information Center

Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

2015-01-01

Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an…

2. Problem-Solving Rules for Genetics.

ERIC Educational Resources Information Center

Collins, Angelo

The categories and applications of strategic knowledge as these relate to problem solving in the area of transmission genetics are examined in this research study. The role of computer simulations in helping students acquire the strategic knowledge necessary to solve realistic transmission genetics problems was emphasized. The Genetics…

3. A Multivariate Model of Physics Problem Solving

ERIC Educational Resources Information Center

Taasoobshirazi, Gita; Farley, John

2013-01-01

A model of expertise in physics problem solving was tested on undergraduate science, physics, and engineering majors enrolled in an introductory-level physics course. Structural equation modeling was used to test hypothesized relationships among variables linked to expertise in physics problem solving including motivation, metacognitive planning,…

4. Problem Solving Interactions on Electronic Networks.

ERIC Educational Resources Information Center

Waugh, Michael; And Others

Arguing that electronic networking provides a medium which is qualitatively superior to the traditional classroom for conducting certain types of problem solving exercises, this paper details the Water Problem Solving Project, which was conducted on the InterCultural Learning Network in 1985 and 1986 with students from the United States, Mexico,…

5. Measuring Problem Solving Skills in "Portal 2"

ERIC Educational Resources Information Center

Shute, Valerie J.; Wang, Lubin

2013-01-01

This paper examines possible improvement to problem solving skills as a function of playing the video game "Portal 2." Stealth assessment is used in the game to evaluate students' problem solving abilities--specifically basic and flexible rule application. The stealth assessment measures will be validated against commonly accepted…

6. Student Modeling Based on Problem Solving Times

ERIC Educational Resources Information Center

2015-01-01

Student modeling in intelligent tutoring systems is mostly concerned with modeling correctness of students' answers. As interactive problem solving activities become increasingly common in educational systems, it is useful to focus also on timing information associated with problem solving. We argue that the focus on timing is natural for certain…

7. Problem Solving in the Middle Grades.

ERIC Educational Resources Information Center

Malloy, Carol E.; Guild, D. Bruce

2000-01-01

Describes the mathematics curriculum proposed by the Principles and Standards for School Mathematics (PSSM)in which students build new mathematical knowledge through problem-solving. Compares the role of PSSM problem solving with that in the 1989 curriculum standards. (YDS)

8. Creativity and Insight in Problem Solving

ERIC Educational Resources Information Center

Golnabi, Laura

2016-01-01

This paper analyzes the thought process involved in problem solving and its categorization as creative thinking as defined by psychologist R. Weisberg (2006). Additionally, the notion of insight, sometimes present in unconscious creative thinking and often leading to creative ideas, is discussed in the context of geometry problem solving. In…

9. Strategies for Solving Word Problems in Science.

ERIC Educational Resources Information Center

Garrigan, George A.

1997-01-01

Reviews the approaches presented in the Self-Paced Study of Strategies Useful for Solving Word Problems in the Physical and Biological Sciences that can be used by students to successfully solve word problems encountered in any entry-level science course. Describes the topics covered in five "study sessions" that allow the students to practice the…

10. Taking "From Scratch" out of Problem Solving

ERIC Educational Resources Information Center

Brown, Wayne

2007-01-01

Solving problems and creating processes and procedures from the ground up has long been part of the IT department's way of operating. IT staffs will continue to encounter new problems to solve and new technologies to be implemented. They also must involve their constituents in the creation of solutions. Nonetheless, for many issues they no longer…

11. Computer-Based Assessment of Problem Solving.

ERIC Educational Resources Information Center

Baker, E. L.; Mayer, R. E.

1999-01-01

Examines the components required to assess student problem solving in technology environments. Discusses the purposes of testing, provides an example demonstrating the difference between retention and transfer, defines and analyzes problem solving, and explores techniques and standards for measuring the quality of student understanding. Contains…

12. Could HPS Improve Problem-Solving?

ERIC Educational Resources Information Center

Coelho, Ricardo Lopes

2013-01-01

It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem…

13. Mathematical Problem Solving through Sequential Process Analysis

ERIC Educational Resources Information Center

Codina, A.; Cañadas, M. C.; Castro, E.

2015-01-01

Introduction: The macroscopic perspective is one of the frameworks for research on problem solving in mathematics education. Coming from this perspective, our study addresses the stages of thought in mathematical problem solving, offering an innovative approach because we apply sequential relations and global interrelations between the different…

14. Teaching Problem-Solving. Informal Series/43.

ERIC Educational Resources Information Center

Ross, John A.; Maynes, Florence J.

This monograph is designed to provide practical classroom suggestions, including sample lesson plans, to show how teachers can improve the problem-solving competence of students at all educational and ability levels. The examples provided show that problem-solving instruction can be integrated with teaching the content of particular topics. While…

15. Teaching Problem Solving: An Instructional Design Strategy.

ERIC Educational Resources Information Center

Ross, John A.; Maynes, Florence J.

1983-01-01

Instructional design strategy for improving problem solving is presented. The strategy entails selecting an appropriate domain of problem-solving tasks, learning hierarchies, teaching methods and assembling of learning materials, and designing teacher training and evaluation. Obstacles to be overcome and directions for future research are…

16. Mathematical Problem Solving. Issues in Research.

ERIC Educational Resources Information Center

Lester, Frank K., Jr., Ed.; Garofalo, Joe, Ed.

This set of papers was originally developed for a conference on Issues and Directions in Mathematics Problem Solving Research held at Indiana University in May 1981. The purpose is to contribute to the clear formulation of the key issues in mathematical problem-solving research by presenting the ideas of actively involved researchers. An…

17. Self-appraised social problem solving abilities, emotional reactions and actual problem solving performance.

PubMed

Shewchuk, R M; Johnson, M O; Elliott, T R

2000-07-01

Self-report measures of social problem solving abilities have yet to be associated with objective problem solving performance in any consistent manner. In the present study, we investigated the relation of social problem solving abilities--as measured by the Social Problem Solving Skills Inventory--Revised (SPSI-R [Maydeu-Olivares, A. & D'Zurilla, T. J. (1996). A factor analytic study of the Social Problem Solving Inventory: an integration of theory and data. Cognitive Therapy and Research, 20, 115-133])--to performance on a structured problem solving task. Unlike previous studies, we examined the relation of problem solving skills to performance curves observed in repeated trials, while controlling for affective reactions to each trial. Using hierarchical modeling techniques, a negative problem orientation was significantly predictive of performance and this effect was not mediated by negative affectivity. Results are discussed as they pertain to contemporary models of social problem solving.

18. Collection of solved problems in physics

Koupilová, ZdeÅka; Mandíková, Dana; Snětinová, Marie

2017-01-01

To solve physics problems is a key ability which students should reach during their physics education. Ten years ago we started to develop a Collection of fully solved problems. The structure of problems' solutions is specially designed to substitute tutor's help during lesson and encourage students to solve at least some parts of a problem independently. Nowadays the database contains about 770 fully solved problems in physics in Czech, more than 100 problems in Polish and more than 140 problems in English. Other problems are still being translated. Except for physics problems, the Collection has also a mathematical part, which contains more than 300 fully solved problems in mathematics. This paper follows the presentation of the Collection of solved problems from previous years and introduces a new interface of the Collection, its enhanced functionality, new topics, newly created interface for teachers, user feedback and plans for future development. The database is placed at the website of the Department of Physics Education, Faculty of Mathematics and Physics, Charles University in Prague, the links are: http://reseneulohy.cz/fyzika (Czech version); http://www.physicstasks.eu/ (English version).

19. The effects of cumulative practice on mathematics problem solving.

PubMed

Mayfield, Kristin H; Chase, Philip N

2002-01-01

20. Robot, computer problem solving system

NASA Technical Reports Server (NTRS)

Becker, J. D.; Merriam, E. W.

1973-01-01

The TENEX computer system, the ARPA network, and computer language design technology was applied to support the complex system programs. By combining the pragmatic and theoretical aspects of robot development, an approach is created which is grounded in realism, but which also has at its disposal the power that comes from looking at complex problems from an abstract analytical point of view.

1. Solving the wrong hierarchy problem

DOE PAGES

Blinov, Nikita; Hook, Anson

2016-06-29

Many theories require augmenting the Standard Model with additional scalar fields with large order one couplings. We present a new solution to the hierarchy problem for these scalar fields. We explore parity- and Z2-symmetric theories where the Standard Model Higgs potential has two vacua. The parity or Z2 copy of the Higgs lives in the minimum far from the origin while our Higgs occupies the minimum near the origin of the potential. This approach results in a theory with multiple light scalar fields but with only a single hierarchy problem, since the bare mass is tied to the Higgs massmore » by a discrete symmetry. The new scalar does not have a new hierarchy problem associated with it because its expectation value and mass are generated by dimensional transmutation of the scalar quartic coupling. The location of the second Higgs minimum is not a free parameter, but is rather a function of the matter content of the theory. As a result, these theories are extremely predictive. We develop this idea in the context of a solution to the strong CP problem. Lastly, we show this mechanism postdicts the top Yukawa to be within 1σ of the currently measured value and predicts scalar color octets with masses in the range 9-200 TeV.« less

2. Solving the wrong hierarchy problem

SciTech Connect

Blinov, Nikita; Hook, Anson

2016-06-29

Many theories require augmenting the Standard Model with additional scalar fields with large order one couplings. We present a new solution to the hierarchy problem for these scalar fields. We explore parity- and Z2-symmetric theories where the Standard Model Higgs potential has two vacua. The parity or Z2 copy of the Higgs lives in the minimum far from the origin while our Higgs occupies the minimum near the origin of the potential. This approach results in a theory with multiple light scalar fields but with only a single hierarchy problem, since the bare mass is tied to the Higgs mass by a discrete symmetry. The new scalar does not have a new hierarchy problem associated with it because its expectation value and mass are generated by dimensional transmutation of the scalar quartic coupling. The location of the second Higgs minimum is not a free parameter, but is rather a function of the matter content of the theory. As a result, these theories are extremely predictive. We develop this idea in the context of a solution to the strong CP problem. Lastly, we show this mechanism postdicts the top Yukawa to be within 1σ of the currently measured value and predicts scalar color octets with masses in the range 9-200 TeV.

3. Causality in Solving Economic Problems

ERIC Educational Resources Information Center

Robinson, A. Emanuel; Sloman, Steven A.; Hagmayer, York; Hertzog, Christopher K.

2010-01-01

The role of causal beliefs in people's decisions when faced with economic problems was investigated. Two experiments are reported that vary the causal structure in prisoner's dilemma-like economic situations. We measured willingness to cooperate or defect and collected justifications and think-aloud protocols to examine the strategies that people…

4. Sour landfill gas problem solved

SciTech Connect

Nagl, G.; Cantrall, R.

1996-05-01

In Broward County, Fla., near Pompano Beach, Waste Management of North America (WMNA, a subsidiary of WMX Technologies, Oak Brook, IL) operates the Central Sanitary Landfill and Recycling Center, which includes the country`s largest landfill gas-to-energy plant. The landfill consists of three collection sites: one site is closed, one is currently receiving garbage, and one will open in the future. Approximately 9 million standard cubic feet (scf) per day of landfill gas is collected from approximately 300 wells spread over the 250-acre landfill. With a dramatic increase of sulfur-containing waste coming to a South Florida landfill following Hurricane Andrew, odors related to hydrogen sulfide became a serious problem. However, in a matter of weeks, an innovative desulfurization unit helped calm the landfill operator`s fears. These very high H{sub 2}S concentrations caused severe odor problems in the surrounding residential area, corrosion problems in the compressors, and sulfur dioxide (SO{sub 2}) emission problems in the exhaust gas from the turbine generators.

5. Solving the wrong hierarchy problem

Blinov, Nikita; Hook, Anson

2016-06-01

Many theories require augmenting the Standard Model with additional scalar fields with large order one couplings. We present a new solution to the hierarchy problem for these scalar fields. We explore parity- and Z_2 -symmetric theories where the Standard Model Higgs potential has two vacua. The parity or Z_2 copy of the Higgs lives in the minimum far from the origin while our Higgs occupies the minimum near the origin of the potential. This approach results in a theory with multiple light scalar fields but with only a single hierarchy problem, since the bare mass is tied to the Higgs mass by a discrete symmetry. The new scalar does not have a new hierarchy problem associated with it because its expectation value and mass are generated by dimensional transmutation of the scalar quartic coupling. The location of the second Higgs minimum is not a free parameter, but is rather a function of the matter content of the theory. As a result, these theories are extremely predictive. We develop this idea in the context of a solution to the strong CP problem. We show this mechanism postdicts the top Yukawa to be within 1 σ of the currently measured value and predicts scalar color octets with masses in the range 9-200 TeV.

6. Problem Solving with Generic Algorithms and Computers.

ERIC Educational Resources Information Center

Larson, Jay

Success in using a computer in education as a problem-solving tool requires a change in the way of thinking or of approaching a problem. An algorithm, i.e., a finite step-by-step solution to a problem, can be designed around the data processing concepts of input, processing, and output to provide a basis for classifying problems. If educators…

7. Problem-Solving Analysis and Business Writing.

ERIC Educational Resources Information Center

Problem solving skills such as patterning facts, locating problems, separating problems and solutions, and presenting effective written products are essential to success in the business community. Facts can be patterned using a grid relating a problem's effect at the individual, group, situational, and organizational level. Such a grid tests each…

8. Does Early Algebraic Reasoning Differ as a Function of Students' Difficulty with Calculations versus Word Problems?

ERIC Educational Resources Information Center

Powell, Sarah R.; Fuchs, Lynn S.

2014-01-01

According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 second-grade students, we administered: (1) measures of calculations and…

9. Reflection on problem solving in introductory and advanced physics

Mason, Andrew J.

Reflection is essential in order to learn from problem solving. This thesis explores issues related to how reflective students are and how we can improve their capacity for reflection on problem solving. We investigate how students naturally reflect in their physics courses about problem solving and evaluate strategies that may teach them reflection as an integral component of problem-solving. Problem categorization based upon similarity of solution is a strategy to help them reflect about the deep features of the problems related to the physics principles involved. We find that there is a large overlap between the introductory and graduate students in their ability to categorize. Moreover, introductory students in the calculus-based courses performed better categorization than those in the algebra-based courses even though the categorization task is conceptual. Other investigations involved exploring if reflection could be taught as a skill on individual and group levels. Explicit self-diagnosis in recitation investigated how effectively students could diagnose their own errors on difficult problems, how much scaffolding was necessary for this purpose, and how effective transfer was to other problems employing similar principles. Difficulty in applying physical principles and difference between the self-diagnosed and transfer problems affected performance. We concluded that a sustained intervention is required to learn effective problem-solving strategies. Another study involving reflection on problem solving with peers suggests that those who reflected with peers drew more diagrams and had a larger gain from the midterm to final exam. Another study in quantum mechanics involved giving common problems in midterm and final exams and suggested that advanced students do not automatically reflect on their mistakes. Interviews revealed that even advanced students often focus mostly on exams rather than learning and building a robust knowledge structure. A survey was

10. Solving the Telomere Replication Problem

PubMed Central

Maestroni, Laetitia; Matmati, Samah; Coulon, Stéphane

2017-01-01

Telomeres are complex nucleoprotein structures that protect the extremities of linear chromosomes. Telomere replication is a major challenge because many obstacles to the progression of the replication fork are concentrated at the ends of the chromosomes. This is known as the telomere replication problem. In this article, different and new aspects of telomere replication, that can threaten the integrity of telomeres, will be reviewed. In particular, we will focus on the functions of shelterin and the replisome for the preservation of telomere integrity. PMID:28146113

11. I Can Problem Solve: An Interpersonal Cognitive Problem-Solving Program. Intermediate Elementary Grades.

ERIC Educational Resources Information Center

Shure, Myrna B.

Designed for teachers of intermediate elementary grades to enable children to learn how to solve the problems they have with others, the underlying goal of the program is to help children develop problem-solving skills so that they learn how to think, not what to think. The interpersonal cognitive problem-solving (ICPS) program includes both…

12. Synthesizing Huber's Problem Solving and Kolb's Learning Cycle: A Balanced Approach to Technical Problem Solving

ERIC Educational Resources Information Center

Kamis, Arnold; Khan, Beverly K.

2009-01-01

How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental study that tested several hypotheses derived from Kolb's experiential learning cycle and Huber's problem solving model. As subjects solved a network subnetting problem, they mapped their mental processes according to Huber's…

13. The Cyclic Nature of Problem Solving: An Emergent Multidimensional Problem-Solving Framework

ERIC Educational Resources Information Center

Carlson, Marilyn P.; Bloom, Irene

2005-01-01

This paper describes the problem-solving behaviors of 12 mathematicians as they completed four mathematical tasks. The emergent problem-solving framework draws on the large body of research, as grounded by and modified in response to our close observations of these mathematicians. The resulting "Multidimensional Problem-Solving Framework" has four…

14. Lesion mapping of social problem solving

PubMed Central

Colom, Roberto; Paul, Erick J.; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H.

2014-01-01

Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion–symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease. PMID:25070511

15. Lesion mapping of social problem solving.

PubMed

Barbey, Aron K; Colom, Roberto; Paul, Erick J; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H

2014-10-01

Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion-symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease.

16. The ideal science student and problem solving

Sullivan, Florence R.

2005-09-01

The purpose of this dissertation was to examine the relationship between students' social mental models of the ideal science student, science epistemological beliefs, problem solving strategies used, and problem solving ability in a robotics environment. Participants were twenty-six academically advanced eleven and twelve year old students attending the Center for Talented Youth summer camp. Survey data was collected from the students including demographic background, views of the ideal science student, and science epistemological beliefs. Students also solved a robotics challenge. This problem solving session was videotaped and students were asked to think aloud as they solved the problem. Two social mental models were identified, a traits-based social mental model and a robust social mental model. A significant association was found between social mental model group and strategy usage. The robust social mental model group is more likely to use domain specific strategies than the traits-based group. Additionally, the robust social mental model group achieved significantly higher scores on their final solution than the traits-based social mental model group. Science epistemological beliefs do not appear to be associated with students' social mental model of the ideal science student. While students with a puzzle-solver view of science were more likely to use domain specific strategies in the planning phase of the problem solving session, there was no significant difference in problem solving ability between this group and students who have a dynamic view of the nature of science knowledge. This difference in strategy usage and problem solving performance may be due to a difference in the students' views of learning and cognition. The robust social mental model group evidenced a situative view of learning and cognition. These students made excellent use of the tools available in the task environment. The traits-based social mental model group displayed an

17. Clifford algebra approach to the coincidence problem for planar lattices.

PubMed

Rodríguez, M A; Aragón, J L; Verde-Star, L

2005-03-01

The problem of coincidences of planar lattices is analyzed using Clifford algebra. It is shown that an arbitrary coincidence isometry can be decomposed as a product of coincidence reflections and this allows planar coincidence lattices to be characterized algebraically. The cases of square, rectangular and rhombic lattices are worked out in detail. One of the aims of this work is to show the potential usefulness of Clifford algebra in crystallography. The power of Clifford algebra for expressing geometric ideas is exploited here and the procedure presented can be generalized to higher dimensions.

18. Could HPS Improve Problem-Solving?

Coelho, Ricardo Lopes

2013-05-01

It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem solving could be improved by means of HPS. Three typical problems in introductory courses of mechanics—the inclined plane, the simple pendulum and the Atwood machine—are taken as the object of the present study. The solving strategies of these problems in the eighteenth and nineteenth century constitute the historical component of the study. Its philosophical component stems from the foundations of mechanics research literature. The use of HPS leads us to see those problems in a different way. These different ways can be tested, for which experiments are proposed. The traditional solving strategies for the incline and pendulum problems are adequate for some situations but not in general. The recourse to apparent weights in the Atwood machine problem leads us to a new insight and a solving strategy for composed Atwood machines. Educational implications also concern the development of logical thinking by means of the variety of lines of thought provided by HPS.

19. Solving inversion problems with neural networks

NASA Technical Reports Server (NTRS)

1990-01-01

A class of inverse problems in remote sensing can be characterized by Q = F(x), where F is a nonlinear and noninvertible (or hard to invert) operator, and the objective is to infer the unknowns, x, from the observed quantities, Q. Since the number of observations is usually greater than the number of unknowns, these problems are formulated as optimization problems, which can be solved by a variety of techniques. The feasibility of neural networks for solving such problems is presently investigated. As an example, the problem of finding the atmospheric ozone profile from measured ultraviolet radiances is studied.

20. Tracking children's mental states while solving algebra equations.

PubMed

Anderson, John R; Betts, Shawn; Ferris, Jennifer L; Fincham, Jon M

2012-11-01

Behavioral and function magnetic resonance imagery (fMRI) data were combined to infer the mental states of students as they interacted with an intelligent tutoring system. Sixteen children interacted with a computer tutor for solving linear equations over a six-day period (days 0-5), with days 1 and 5 occurring in an fMRI scanner. Hidden Markov model algorithms combined a model of student behavior with multi-voxel imaging pattern data to predict the mental states of students. We separately assessed the algorithms' ability to predict which step in a problem-solving sequence was performed and whether the step was performed correctly. For day 1, the data patterns of other students were used to predict the mental states of a target student. These predictions were improved on day 5 by adding information about the target student's behavioral and imaging data from day 1. Successful tracking of mental states depended on using the combination of a behavioral model and multi-voxel pattern analysis, illustrating the effectiveness of an integrated approach to tracking the cognition of individuals in real time as they perform complex tasks.

1. Problem Solving through an Optimization Problem in Geometry

ERIC Educational Resources Information Center

Poon, Kin Keung; Wong, Hang-Chi

2011-01-01

This article adapts the problem-solving model developed by Polya to investigate and give an innovative approach to discuss and solve an optimization problem in geometry: the Regiomontanus Problem and its application to football. Various mathematical tools, such as calculus, inequality and the properties of circles, are used to explore and reflect…

2. Collaborative Problem Solving in Shared Space

ERIC Educational Resources Information Center

Lin, Lin; Mills, Leila A.; Ifenthaler, Dirk

2015-01-01

The purpose of this study was to examine collaborative problem solving in a shared virtual space. The main question asked was: How will the performance and processes differ between collaborative problem solvers and independent problem solvers over time? A total of 104 university students (63 female and 41 male) participated in an experimental…

3. Solving Problems with the Percentage Bar

ERIC Educational Resources Information Center

van Galen, Frans; van Eerde, Dolly

2013-01-01

At the end of primary school all children more of less know what a percentage is, but yet they often struggle with percentage problems. This article describes a study in which students of 13 and 14 years old were given a written test with percentage problems and a week later were interviewed about the way they solved some of these problems. In a…

4. Purdue Elementary Problem-Solving Inventory.

ERIC Educational Resources Information Center

Purdue Univ., Lafayette, IN. Educational Research Center.

This inventory was designed to assess the general problem solving ability of disadvantaged elementary school children from various ethnic backgrounds and grade levels. Twelve tasks are included in the inventory: sensing the problem, identifying the problem, asking questions, guessing causes, clarification of goals, judging if more information is…

5. Towards Automated Training of Legal Problem Solving.

ERIC Educational Resources Information Center

Muntjewerff, Antoinette J.

An examination of Dutch research on legal case solving revealed that few law students get systematic instruction or testing in the technique of legal problem solving. The research being conducted at the Department of Computer Science and Law at the University of Amsterdam focuses on identifying the different functions in legal reasoning tasks in…

6. Conceptual problem solving in high school physics

Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

2015-12-01

Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers' implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

7. Problem Solving under Time-Constraints,

DTIC Science & Technology

2014-09-26

to interruptions. Data from the simulation is compared to data from college students doing the same task. Keywords include: Thinking ; problem solving; dual tasks; computer simulation; production systems; arithmetic.

8. Organizational Structure and Complex Problem Solving

ERIC Educational Resources Information Center

Becker, Selwyn W.; Baloff, Nicholas

1969-01-01

The problem-solving efficiency of different organization structures is discussed in relation to task requirements and the appropriate organizational behavior, to group adaptation to a task over time, and to various group characteristics. (LN)

9. Physics: Quantum problems solved through games

Maniscalco, Sabrina

2016-04-01

Humans are better than computers at performing certain tasks because of their intuition and superior visual processing. Video games are now being used to channel these abilities to solve problems in quantum physics. See Letter p.210

10. Innovative problem solving by wild spotted hyenas.

PubMed

Benson-Amram, Sarah; Holekamp, Kay E

2012-10-07

Innovative animals are those able to solve novel problems or invent novel solutions to existing problems. Despite the important ecological and evolutionary consequences of innovation, we still know very little about the traits that vary among individuals within a species to make them more or less innovative. Here we examine innovative problem solving by spotted hyenas (Crocuta crocuta) in their natural habitat, and demonstrate for the first time in a non-human animal that those individuals exhibiting a greater diversity of initial exploratory behaviours are more successful problem solvers. Additionally, as in earlier work, we found that neophobia was a critical inhibitor of problem-solving success. Interestingly, although juveniles and adults were equally successful in solving the problem, juveniles were significantly more diverse in their initial exploratory behaviours, more persistent and less neophobic than were adults. We found no significant effects of social rank or sex on success, the diversity of initial exploratory behaviours, behavioural persistence or neophobia. Our results suggest that the diversity of initial exploratory behaviours, akin to some measures of human creativity, is an important, but largely overlooked, determinant of problem-solving success in non-human animals.

11. Review on solving the forward problem in EEG source analysis

PubMed Central

Hallez, Hans; Vanrumste, Bart; Grech, Roberta; Muscat, Joseph; De Clercq, Wim; Vergult, Anneleen; D'Asseler, Yves; Camilleri, Kenneth P; Fabri, Simon G; Van Huffel, Sabine; Lemahieu, Ignace

2007-01-01

solve these sparse linear systems. The following iterative methods are discussed: successive over-relaxation, conjugate gradients method and algebraic multigrid method. Conclusion Solving the forward problem has been well documented in the past decades. In the past simplified spherical head models are used, whereas nowadays a combination of imaging modalities are used to accurately describe the geometry of the head model. Efforts have been done on realistically describing the shape of the head model, as well as the heterogenity of the tissue types and realistically determining the conductivity. However, the determination and validation of the in vivo conductivity values is still an important topic in this field. In addition, more studies have to be done on the influence of all the parameters of the head model and of the numerical techniques on the solution of the forward problem. PMID:18053144

12. Solving the Langevin equation with stochastic algebraically correlated noise

Płoszajczak, M.; Srokowski, T.

1997-05-01

The long time tail in the velocity and force autocorrelation function has been found recently in molecular dynamics simulations of peripheral collisions of ions. Simulation of those slowly decaying correlations in the stochastic transport theory requires the development of new methods of generating stochastic force of arbitrarily long correlation times. In this paper we propose a Markovian process, the multidimensional kangaroo process, which permits the description of various algebraically correlated stochastic processes.

13. Development of a problem solving evaluation instrument; untangling of specific problem solving assets

The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.

14. Collaborative Everyday Problem Solving: Interpersonal Relationships and Problem Dimensions

ERIC Educational Resources Information Center

Strough, Jonell; Patrick, Julie Hicks; Swenson, Lisa M.; Cheng, Suling; Barnes, Kristi A.

2003-01-01

Older adults' preferred partners for collaborative everyday problem solving and the types of everyday problems solved alone and with others were examined in a sample of community dwelling older adults (N = 112, M age = 71.86 yrs., SD = 5.92 yrs.). Family members (i.e., spouses, adult children) were the most frequently nominated partners for…

15. Complex Problem Solving in a Workplace Setting.

ERIC Educational Resources Information Center

Middleton, Howard

2002-01-01

Studied complex problem solving in the hospitality industry through interviews with six office staff members and managers. Findings show it is possible to construct a taxonomy of problem types and that the most common approach can be termed "trial and error." (SLD)

16. Using Bibliotherapy To Teach Problem Solving.

ERIC Educational Resources Information Center

Forgan, James W.

2002-01-01

This article discusses how students with high-incidence disabilities can benefit from using bibliotherapy by learning to become proactive problem solvers. A sample lesson plan is presented based on a teaching framework for bibliotherapy and problem solving that contains the elements of prereading, guided reading, post-reading discussion, and a…

17. Metaphor and analogy in everyday problem solving.

PubMed

Keefer, Lucas A; Landau, Mark J

2016-11-01

Early accounts of problem solving focused on the ways people represent information directly related to target problems and possible solutions. Subsequent theory and research point to the role of peripheral influences such as heuristics and bodily states. We discuss how metaphor and analogy similarly influence stages of everyday problem solving: Both processes mentally map features of a target problem onto the structure of a relatively more familiar concept. When individuals apply this structure, they use a well-known concept as a framework for reasoning about real world problems and candidate solutions. Early studies found that analogy use helped people gain insight into novel problems. More recent research on metaphor goes further to show that activating mappings has subtle, sometimes surprising effects on judgment and reasoning in everyday problem solving. These findings highlight situations in which mappings can help or hinder efforts to solve problems. WIREs Cogn Sci 2016, 7:394-405. doi: 10.1002/wcs.1407 For further resources related to this article, please visit the WIREs website.

18. Reasoning by Analogy in Solving Comparison Problems.

ERIC Educational Resources Information Center

English, Lyn D.

1998-01-01

Investigates 10-year-old children's abilities to reason by analogy in solving addition and subtraction comparison problems involving unknown compare sets and unknown reference sets. Children responded in a consistent manner to the tasks involving the basic addition problems, indicating substantial relational knowledge of these but responded in an…

19. Reinventing the Wheel: Design and Problem Solving

ERIC Educational Resources Information Center

Blasetti, Sean M.

2010-01-01

This article describes a design problem that not only takes students through the technological design process, but it also provides them with real-world problem-solving experience as it relates to the manufacturing and engineering fields. It begins with a scenario placing the student as a custom wheel designer for an automotive manufacturing…

20. Teaching Teamwork and Problem Solving Concurrently

ERIC Educational Resources Information Center

Goltz, Sonia M.; Hietapelto, Amy B.; Reinsch, Roger W.; Tyrell, Sharon K.

2008-01-01

Teamwork and problem-solving skills have frequently been identified by business leaders as being key competencies; thus, teaching methods such as problem-based learning and team-based learning have been developed. However, the focus of these methods has been on teaching one skill or the other. A key argument for teaching the skills concurrently is…

1. Solving Math Word Problems: A Software Roundup.

ERIC Educational Resources Information Center

Eiser, Leslie

1988-01-01

Reviewed are 11 software packages for the Apple II computer designed to help teach elementary and secondary school children how to solve mathword problems. Included in the review are hardware requirements, price, grade level, use of graphics, kinds of problems, tools provided, strengths, and weaknesses of each program. (CW)

2. Solving Geometry Problems via Mechanical Principles

ERIC Educational Resources Information Center

Man, Yiu Kwong

2004-01-01

The application of physical principles in solving mathematics problems have often been neglected in the teaching of physics or mathematics, especially at the secondary school level. This paper discusses how to apply the mechanical principles to geometry problems via concrete examples, which aims at providing insight and inspirations to physics or…

3. Teacher Learning on Problem-Solving Teams

ERIC Educational Resources Information Center

Gregory, Anne

2010-01-01

Problem-solving teams address student difficulties. Teams comprised of teachers, specialists, and administrators identify the student problem, develop individualized interventions, and assess student change. Teacher experiences of teams are understudied. In a prospective, mixed-method study conducted in the United States, 34 teachers were followed…

4. Solving Problems of Practice in Education.

ERIC Educational Resources Information Center

Boyd, Robert D.; Menlo, Allen

1984-01-01

Discusses the many complexities involved in the translation of scientific information in the social sciences into forms usable for solving problems of practice in education. Prescribes a series of stages to be followed from the advent of a practitioner's situational problem to the design of a response to it. (Author/JN)

5. Pose and Solve Varignon Converse Problems

ERIC Educational Resources Information Center

Contreras, José N.

2014-01-01

The activity of posing and solving problems can enrich learners' mathematical experiences because it fosters a spirit of inquisitiveness, cultivates their mathematical curiosity, and deepens their views of what it means to do mathematics. To achieve these goals, a mathematical problem needs to be at the appropriate level of difficulty,…

6. Problem-Solving Exercises and Evolution Teaching

ERIC Educational Resources Information Center

Angseesing, J. P. A.

1978-01-01

It is suggested that the work of Kammerer provides suitable material, in the form of case studies on which to base discussions of Lamarckism versus Darwinism. A set of structured problems is described as an example of possible problem-solving exercises, and further experiments to extend Kammerer's work are outlined. (Author/MA)

7. Scientific Problem Solving by Expert Systems.

ERIC Educational Resources Information Center

Good, Ron

1984-01-01

Human expert problem-solving in science is defined and used to account for scientific discovery. These ideas are used to describe BACON.5, a machine expert problem solver that discovers scientific laws using data-driver heuristics and "expectations" such as symmetry. Implications of BACON.5 type research for traditional science education…

8. Using Programmable Calculators to Solve Electrostatics Problems.

ERIC Educational Resources Information Center

Yerian, Stephen C.; Denker, Dennis A.

1985-01-01

Provides a simple routine which allows first-year physics students to use programmable calculators to solve otherwise complex electrostatic problems. These problems involve finding electrostatic potential and electric field on the axis of a uniformly charged ring. Modest programing skills are required of students. (DH)

9. Problem solving and decisionmaking: An integration

NASA Technical Reports Server (NTRS)

Dieterly, D. L.

1980-01-01

An attempt was made to redress a critical fault of decisionmaking and problem solving research-a lack of a standard method to classify problem or decision states or conditions. A basic model was identified and expanded to indicate a possible taxonomy of conditions which may be used in reviewing previous research or for systematically pursuing new research designs. A generalization of the basic conditions was then made to indicate that the conditions are essentially the same for both concepts, problem solving and decisionmaking.

10. Solving the Unknown with Algebra: Poster/Teaching Guide for Pre-Algebra Students. Expect the Unexpected with Math[R

ERIC Educational Resources Information Center

Actuarial Foundation, 2013

2013-01-01

"Solving the Unknown with Algebra" is a new math program aligned with the National Council of Teachers of Mathematics (NCTM) standards and designed to help students practice pre-algebra skills including using formulas, solving for unknowns, and manipulating equations. Developed by The Actuarial Foundation with Scholastic, this program provides…

11. Students' Errors in Solving the Permutation and Combination Problems Based on Problem Solving Steps of Polya

ERIC Educational Resources Information Center

Sukoriyanto; Nusantara, Toto; Subanji; Chandra, Tjang Daniel

2016-01-01

This article was written based on the results of a study evaluating students' errors in problem solving of permutation and combination in terms of problem solving steps according to Polya. Twenty-five students were asked to do four problems related to permutation and combination. The research results showed that the students still did a mistake in…

12. The Effect of Learning Environments Based on Problem Solving on Students' Achievements of Problem Solving

ERIC Educational Resources Information Center

2013-01-01

Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…

13. Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving

ERIC Educational Resources Information Center

Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim

2016-01-01

This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…

14. Enhancing chemistry problem-solving achievement using problem categorization

Bunce, Diane M.; Gabel, Dorothy L.; Samuel, John V.

The enhancement of chemistry students' skill in problem solving through problem categorization is the focus of this study. Twenty-four students in a freshman chemistry course for health professionals are taught how to solve problems using the explicit method of problem solving (EMPS) (Bunce & Heikkinen, 1986). The EMPS is an organized approach to problem analysis which includes encoding the information given in a problem (Given, Asked For), relating this to what is already in long-term memory (Recall), and planning a solution (Overall Plan) before a mathematical solution is attempted. In addition to the EMPS training, treatment students receive three 40-minute sessions following achievement tests in which they are taught how to categorize problems. Control students use this time to review the EMPS solutions of test questions. Although problem categorization is involved in one section of the EMPS (Recall), treatment students who received specific training in problem categorization demonstrate significantly higher achievement on combination problems (those problems requiring the use of more than one chemical topic for their solution) at (p = 0.01) than their counterparts. Significantly higher achievement for treatment students is also measured on an unannounced test (p = 0.02). Analysis of interview transcripts of both treatment and control students illustrates a Rolodex approach to problem solving employed by all students in this study. The Rolodex approach involves organizing equations used to solve problems on mental index cards and flipping through them, matching units given when a new problem is to be solved. A second phenomenon observed during student interviews is the absence of a link in the conceptual understanding of the chemical concepts involved in a problem and the problem-solving skills employed to correctly solve problems. This study shows that explicit training in categorization skills and the EMPS can lead to higher achievement in complex problem-solving

15. Cognitive Load in Algebra: Element Interactivity in Solving Equations

ERIC Educational Resources Information Center

Ngu, Bing Hiong; Chung, Siu Fung; Yeung, Alexander Seeshing

2015-01-01

Central to equation solving is the maintenance of equivalence on both sides of the equation. However, when the process involves an interaction of multiple elements, solving an equation can impose a high cognitive load. The balance method requires operations on both sides of the equation, whereas the inverse method involves operations on one side…

16. Analytical derivation: An epistemic game for solving mathematically based physics problems

Bajracharya, Rabindra R.; Thompson, John R.

2016-06-01

Problem solving, which often involves multiple steps, is an integral part of physics learning and teaching. Using the perspective of the epistemic game, we documented a specific game that is commonly pursued by students while solving mathematically based physics problems: the analytical derivation game. This game involves deriving an equation through symbolic manipulations and routine mathematical operations, usually without any physical interpretation of the processes. This game often creates cognitive obstacles in students, preventing them from using alternative resources or better approaches during problem solving. We conducted hour-long, semi-structured, individual interviews with fourteen introductory physics students. Students were asked to solve four "pseudophysics" problems containing algebraic and graphical representations. The problems required the application of the fundamental theorem of calculus (FTC), which is one of the most frequently used mathematical concepts in physics problem solving. We show that the analytical derivation game is necessary, but not sufficient, to solve mathematically based physics problems, specifically those involving graphical representations.

17. Why students still can't solve physics problems after solving over 2000 problems

Byun, Taejin; Lee, Gyoungho

2014-09-01

This study investigates the belief that solving a large number of physics problems helps students better learn physics. We investigated the number of problems solved, student confidence in solving these problems, academic achievement, and the level of conceptual understanding of 49 science high school students enrolled in upper-level physics classes from Spring 2010 to Summer 2011. The participants solved an average of 2200 physics problems before entering high school. Despite having solved so many problems, no statistically significant correlation was found between the number of problems solved and academic achievement on either a mid-term or physics competition examination. In addition, no significant correlation was found between the number of physics problems solved and performance on the Force Concept Inventory (FCI). Lastly, four students were selected from the 49 participants with varying levels of experience and FCI scores for a case study. We determined that their problem solving and learning strategies was more influential in their success than the number of problems they had solved.

18. The Effects of Schema-Broadening Instruction on Second Graders' Word-Problem Performance and Their Ability to Represent Word Problems with Algebraic Equations: A Randomized Control Study

ERIC Educational Resources Information Center

Fuchs, Lynn S.; Zumeta, Rebecca O.; Schumacher, Robin Finelli; Powell, Sarah R.; Seethaler, Pamela M.; Hamlett, Carol L.; Fuchs, Douglas

2010-01-01

The purpose of this study was to assess the effects of schema-broadening instruction (SBI) on second graders' word-problem-solving skills and their ability to represent the structure of word problems using algebraic equations. Teachers (n = 18) were randomly assigned to conventional word-problem instruction or SBI word-problem instruction, which…

19. AI tools in computer based problem solving

NASA Technical Reports Server (NTRS)

Beane, Arthur J.

1988-01-01

The use of computers to solve value oriented, deterministic, algorithmic problems, has evolved a structured life cycle model of the software process. The symbolic processing techniques used, primarily in research, for solving nondeterministic problems, and those for which an algorithmic solution is unknown, have evolved a different model, much less structured. Traditionally, the two approaches have been used completely independently. With the advent of low cost, high performance 32 bit workstations executing identical software with large minicomputers and mainframes, it became possible to begin to merge both models into a single extended model of computer problem solving. The implementation of such an extended model on a VAX family of micro/mini/mainframe systems is described. Examples in both development and deployment of applications involving a blending of AI and traditional techniques are given.

20. The development and nature of problem-solving among first-semester calculus students

Dawkins, Paul Christian; Mendoza Epperson, James A.

2014-08-01

This study investigates interactions between calculus learning and problem-solving in the context of two first-semester undergraduate calculus courses in the USA. We assessed students' problem-solving abilities in a common US calculus course design that included traditional lecture and assessment with problem-solving-oriented labs. We investigate this blended instruction as a local representative of the US calculus reform movements that helped foster it. These reform movements tended to emphasize problem-solving as well as multiple mathematical registers and quantitative modelling. Our statistical analysis reveals the influence of the blended traditional/reform calculus instruction on students' ability to solve calculus-related, non-routine problems through repeated measures over the semester. The calculus instruction in this study significantly improved students' performance on non-routine problems, though performance improved more regarding strategies and accuracy than it did for drawing conclusions and providing justifications. We identified problem-solving behaviours that characterized top performance or attrition in the course. Top-performing students displayed greater algebraic proficiency, calculus skills, and more general heuristics than their peers, but overused algebraic techniques even when they proved cumbersome or inappropriate. Students who subsequently withdrew from calculus often lacked algebraic fluency and understanding of the graphical register. The majority of participants, when given a choice, relied upon less sophisticated trial-and-error approaches in the numerical register and rarely used the graphical register, contrary to the goals of US calculus reform. We provide explanations for these patterns in students' problem-solving performance in view of both their preparation for university calculus and the courses' assessment structure, which preferentially rewarded algebraic reasoning. While instruction improved students' problem-solving

1. Developing and Validating Sets of Algebra Word Problems.

ERIC Educational Resources Information Center

Nasser, Ramzi; Carifio, James

The validation of key contextual features of algebra word problems was studied in two phases. In the first phase, five experts were asked to assess the appropriateness of the concepts in the problems and the adequacy of the assignment of the contextual features to the problems. In the second phase, construct validity was established by having 6…

2. Problem solving with genetic algorithms and Splicer

NASA Technical Reports Server (NTRS)

Bayer, Steven E.; Wang, Lui

1991-01-01

Genetic algorithms are highly parallel, adaptive search procedures (i.e., problem-solving methods) loosely based on the processes of population genetics and Darwinian survival of the fittest. Genetic algorithms have proven useful in domains where other optimization techniques perform poorly. The main purpose of the paper is to discuss a NASA-sponsored software development project to develop a general-purpose tool for using genetic algorithms. The tool, called Splicer, can be used to solve a wide variety of optimization problems and is currently available from NASA and COSMIC. This discussion is preceded by an introduction to basic genetic algorithm concepts and a discussion of genetic algorithm applications.

3. Problem solving in a distributed environment

NASA Technical Reports Server (NTRS)

Rashid, R. F.

1980-01-01

Distributed problem solving is anayzed as a blend of two disciplines: (1) problem solving and ai; and (2) distributed systems (monitoring). It may be necessary to distribute because the application itself is one of managing distributed resources (e.g., distributed sensor net) and communication delays preclude centralized processing, or it may be desirable to distribute because a single computational engine may not satisfy the needs of a given task. In addition, considerations of reliability may dictate distribution. Examples of multi-process language environment are given.

4. Extending problem-solving procedures through reflection.

PubMed

Anderson, John R; Fincham, Jon M

2014-11-01

A large-sample (n=75) fMRI study guided the development of a theory of how people extend their problem-solving procedures by reflecting on them. Both children and adults were trained on a new mathematical procedure and then were challenged with novel problems that required them to change and extend their procedure to solve these problems. The fMRI data were analyzed using a combination of hidden Markov models (HMMs) and multi-voxel pattern analysis (MVPA). This HMM-MVPA analysis revealed the existence of 4 stages: Encoding, Planning, Solving, and Responding. Using this analysis as a guide, an ACT-R model was developed that improved the performance of the HMM-MVPA and explained the variation in the durations of the stages across 128 different problems. The model assumes that participants can reflect on declarative representations of the steps of their problem-solving procedures. A Metacognitive module can hold these steps, modify them, create new declarative steps, and rehearse them. The Metacognitive module is associated with activity in the rostrolateral prefrontal cortex (RLPFC). The ACT-R model predicts the activity in the RLPFC and other regions associated with its other cognitive modules (e.g., vision, retrieval). Differences between children and adults seemed related to differences in background knowledge and computational fluency, but not to the differences in their capability to modify procedures.

5. Representations in Problem Solving: A Case Study with Optimization Problems

ERIC Educational Resources Information Center

Villegas, Jose L.; Castro, Enrique; Gutierrez, Jose

2009-01-01

Introduction: Representations play an essential role in mathematical thinking. They favor the understanding of mathematical concepts and stimulate the development of flexible and versatile thinking in problem solving. Here our focus is on their use in optimization problems, a type of problem considered important in mathematics teaching and…

6. Problem-Framing: A perspective on environmental problem-solving

Bardwell, Lisa V.

1991-09-01

The specter of environmental calamity calls for the best efforts of an involved public. Ironically, the way people understand the issues all too often serves to discourage and frustrate rather than motivate them to action. This article draws from problem-solving perspectives offered by cognitive psychology and conflict management to examine a framework for thinking about environmental problems that promises to help rather than hinder efforts to address them. Problem-framing emphasizes focusing on the problem definition. Since how one defines a problem determines one's understanding of and approach to that problem, being able to redefine or reframe a problem and to explore the “problem space” can help broaden the range of alternatives and solutions examined. Problem-framing incorporates a cognitive perspective on how people respond to information. It explains why an emphasis on problem definition is not part of people's typical approach to problems. It recognizes the importance of structure and of having ways to organize that information on one's problem-solving effort. Finally, problem-framing draws on both cognitive psychology and conflict management for strategies to manage information and to create a problem-solving environment that not only encourages participation but can yield better approaches to our environmental problems.

7. Understanding Individual Problem-Solving Style: A Key to Learning and Applying Creative Problem Solving

ERIC Educational Resources Information Center

Treffinger, Donald J.; Selby, Edwin C.; Isaksen, Scott G.

2008-01-01

More than five decades of research and development have focused on making the Creative Problem Solving process and tools accessible across a wide range of ages and contexts. Recent evidence indicates that when individuals, in both school and corporate settings, understand their own style of problem solving, they are able to learn and apply process…

8. I Can Problem Solve (ICPS): Interpersonal Cognitive Problem Solving for Young Children.

ERIC Educational Resources Information Center

Shure, Myrna B.

1993-01-01

Teachers of preschool and kindergarten children from low-income families used the I Can Problem Solve (ICPS) program to help the children learn to think through and solve typical interpersonal problems with peers and adults. Compared to nontrained controls, the children exhibited fewer instances of impulsive and inhibited behaviors as observed in…

9. I Can Problem Solve: An Interpersonal Cognitive Problem Solving Program. Kindergarten and Primary Grades.

ERIC Educational Resources Information Center

Shure, Myrna B.

Designed for teachers of kindergarten and the primary grades to enable children to learn how to solve the problems they have with others, the underlying goal of the program is to help children develop problem-solving skills so that they learn how to think, not what to think. The 89 lessons are adaptable for various levels of ability throughout the…

10. I Can Problem Solve: An Interpersonal Cognitive Problem-Solving Program. Preschool.

ERIC Educational Resources Information Center

Shure, Myrna B.

Designed for teachers of preschool to enable children to learn how to solve the problems they have with others, the underlying goal of the program is to help children develop problem-solving skills so that they learn how to think, not what to think. Originally developed for four-year-old children in a preschool setting, most three-year-old…

11. Preschoolers' Cooperative Problem Solving: Integrating Play and Problem Solving

ERIC Educational Resources Information Center

Ramani, Geetha B.; Brownell, Celia A.

2014-01-01

Cooperative problem solving with peers plays a central role in promoting children's cognitive and social development. This article reviews research on cooperative problem solving among preschool-age children in experimental settings and social play contexts. Studies suggest that cooperative interactions with peers in experimental settings are…

12. Assessing Affect after Mathematical Problem Solving Tasks: Validating the Chamberlin Affective Instrument for Mathematical Problem Solving

ERIC Educational Resources Information Center

Chamberlin, Scott A.; Powers, Robert A.

2013-01-01

The focus of the article is the validation of an instrument to assess gifted students' affect after mathematical problem solving tasks. Participants were 225 students identified by their district as gifted in grades four to six. The Chamberlin Affective Instrument for Mathematical Problem Solving was used to assess feelings, emotions, and…

13. Young Children's Drawings in Problem Solving

ERIC Educational Resources Information Center

Bakar, Kamariah Abu; Way, Jennifer; Bobis, Janette

2016-01-01

This paper explores young children's drawings (6 years old) in early number and addition activities in Malaysia. Observation, informal interviews and analysis of drawings revealed two types of drawing, and gave insight into the transitional process required for children to utilise drawings in problem solving. We argue the importance of valuing and…

14. Partial Metacognitive Blindness in Collaborative Problem Solving

ERIC Educational Resources Information Center

Ng, Kit Ee Dawn

2010-01-01

This paper investigates the impact of group dynamics on metacognitive behaviours of students (aged 13-14) during group collaborative problem solving attempts involving a design-based real-world applications project. It was discovered that group dynamics mediated the impact of metacognitive judgments related red flag situations and metacognitive…

15. Nanomedicine: Problem Solving to Treat Cancer

ERIC Educational Resources Information Center

Hemling, Melissa A.; Sammel, Lauren M.; Zenner, Greta; Payne, Amy C.; Crone, Wendy C.

2006-01-01

Many traditional classroom science and technology activities often ask students to complete prepackaged labs that ensure that everyone arrives at the same "scientifically accurate" solution or theory, which ignores the important problem-solving and creative aspects of scientific research and technological design. Students rarely have the…

16. Instruction Emphasizing Effort Improves Physics Problem Solving

ERIC Educational Resources Information Center

Li, Daoquan

2012-01-01

Effectively using strategies to solve complex problems is an important educational goal and is implicated in successful academic performance. However, people often do not spontaneously use the effective strategies unless they are motivated to do so. The present study was designed to test whether educating students about the importance of effort in…

17. How Instructional Designers Solve Workplace Problems

ERIC Educational Resources Information Center

Fortney, Kathleen S.; Yamagata-Lynch, Lisa C.

2013-01-01

This naturalistic inquiry investigated how instructional designers engage in complex and ambiguous problem solving across organizational boundaries in two corporations. Participants represented a range of instructional design experience, from novices to experts. Research methods included a participant background survey, observations of…

18. Complex Problem Solving--More than Reasoning?

ERIC Educational Resources Information Center

Wustenberg, Sascha; Greiff, Samuel; Funke, Joachim

2012-01-01

This study investigates the internal structure and construct validity of Complex Problem Solving (CPS), which is measured by a "Multiple-Item-Approach." It is tested, if (a) three facets of CPS--"rule identification" (adequateness of strategies), "rule knowledge" (generated knowledge) and "rule application"…

19. Conceptual Structures in Mathematical Problem Solving.

ERIC Educational Resources Information Center

Cifarelli, Victor

The processes by which conceptual knowledge is constructed during mathematical problem solving were studied, focusing on the cognitive activity of learners (i.e., the ways they elaborate, reorganize, and reconceptualize their solution activity). Underlying this research is the view that learners' mathematical conceptions evolve from their activity…

20. Implicit Theories about Everyday Problem Solving.

ERIC Educational Resources Information Center

Herbert, Margaret E.; Dionne, Jean-Paul

Mental models or implicit theories held by adults about everyday problem solving were studied. Research questions were posed to 12 male and 12 female adults, aged 25 to 60 years, from a wide range of educational and occupational orientations. Subjects were interviewed in pairs. Verbal Protocol Analysis was used to analyze the data from two…

1. ADHD and Problem-Solving in Play

ERIC Educational Resources Information Center

Borg, Suzanne

2009-01-01

This paper reports a small-scale study to determine whether there is a difference in problem-solving abilities, from a play perspective, between individuals who are diagnosed as ADHD and are on medication and those not on medication. Ten children, five of whom where on medication and five not, diagnosed as ADHD predominantly inattentive type, were…

2. Problem-Solving Interaction in GFL Videoconferencing

ERIC Educational Resources Information Center

Hoshii, Makiko; Schumacher, Nicole

2016-01-01

This paper reports on the interaction between upper intermediate German as a Foreign Language (GFL) learners in Tokyo and prospective GFL teachers in Berlin in an online videoconferencing environment. It focuses on the way problems in comprehension and production are brought up and solved in the subsequent interaction. Our findings illustrate that…

3. Student Problem Solving in High School Genetics.

ERIC Educational Resources Information Center

Stewart, James

1983-01-01

Describes set of specific steps (procedural knowledge) used when solving monohybrid/dihybrid cross problems and extent to which students could justify execution of each step in terms of their conceptual knowledge of genetics and meiosis. Implications for genetics instruction are discussed. (JN)

4. Solving Wicked Problems through Action Learning

ERIC Educational Resources Information Center

Crul, Liselore

2014-01-01

This account of practice outlines the Oxyme Action Learning Program which was conducted as part of the Management Challenge in my final year of the MSc in Coaching and Behavioral Change at Henley Business School. The central research questions were: (1) how action learning can help to solve wicked problems and (2) what the effect of an action…

5. On Teaching Problem Solving in School Mathematics

ERIC Educational Resources Information Center

Pehkonen, Erkki; Näveri, Liisa; Laine, Anu

2013-01-01

The article begins with a brief overview of the situation throughout the world regarding problem solving. The activities of the ProMath group are then described, as the purpose of this international research group is to improve mathematics teaching in school. One mathematics teaching method that seems to be functioning in school is the use of open…

6. Teaching, Learning and Assessing Statistical Problem Solving

ERIC Educational Resources Information Center

Marriott, John; Davies, Neville; Gibson, Liz

2009-01-01

In this paper we report the results from a major UK government-funded project, started in 2005, to review statistics and handling data within the school mathematics curriculum for students up to age 16. As a result of a survey of teachers we developed new teaching materials that explicitly use a problem-solving approach for the teaching and…

7. Why Some Communities Can Solve Their Problems.

ERIC Educational Resources Information Center

Mathews, David

1989-01-01

Effective communities are well-educated about themselves, have a better understanding of public information, talk through public issues to generate shared knowledge, appreciate the difference between public opinion and public judgment, and believe in public leadership as the key to using public power to solve community problems. (SK)

8. Should Children Learn to Solve Problems?

ERIC Educational Resources Information Center

Watras, Joseph

2011-01-01

In this comparative essay, the author discusses the opposing educational theories of John Dewey and Gregory Bateson. While Dewey believed that the scientific method was the dominant method of solving problems and thereby acquiring knowledge that mattered, Bateson warned that this one-sided approach would lead to actions that could destroy the…

9. Mental Imagery in Creative Problem Solving.

ERIC Educational Resources Information Center

Polland, Mark J.

In order to investigate the relationship between mental imagery and creative problem solving, a study of 44 separate accounts reporting mental imagery experiences associated with creative discoveries were examined. The data included 29 different scientists, among them Albert Einstein and Stephen Hawking, and 9 artists, musicians, and writers,…

10. General Problem Solving: Navy Requirements and Solutions.

DTIC Science & Technology

1985-03-01

Karat, 1982; Lukas, et. al., 1971; Pitt, 1983; Post and Brennan, 1976; Reif and Heller, 1982; Schwieger , 1° 4; Speedie, et. al., 1973; Thor- son...bVo°o ,o. 4*** h ° . . .. - - o. . . . o. , ’ Schwieger , Ruben Don, A Component Analysis of Mathematical Problem Solving, Ph.D

11. Assessing Mathematical Problem Solving Using Comparative Judgement

ERIC Educational Resources Information Center

Jones, Ian; Swan, Malcolm; Pollitt, Alastair

2015-01-01

There is an increasing demand from employers and universities for school leavers to be able to apply their mathematical knowledge to problem solving in varied and unfamiliar contexts. These aspects are however neglected in most examinations of mathematics and, consequentially, in classroom teaching. One barrier to the inclusion of mathematical…

12. Problem-Solving Test: Tryptophan Operon Mutants

ERIC Educational Resources Information Center

Szeberenyi, Jozsef

2010-01-01

This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…

13. Raise the Bar on Problem Solving

ERIC Educational Resources Information Center

Englard, Lisa

2010-01-01

In a 1981 diagnostic test, the Ministry of Education in Singapore found its country facing a challenge: Only 46 percent of students in grades 2-4 could solve word problems that were presented without such key words as "altogether" or "left." Yet today, according to results from the Trends in International Mathematics and…

14. Facilitating Problem Solving in High School Chemistry.

ERIC Educational Resources Information Center

Gabel, Dorothy L.

The major purpose of this study was to determine whether certain types of instructional strategies (factor-label method, use of analogies, use of diagrams, and proportionality) were superior to others in teaching problem solving in four topics (mole concept, gas laws, stoichiometry, and molarity). Also of major interest was whether particular…

15. Stoichiometric Problem Solving in High School Chemistry.

ERIC Educational Resources Information Center

Schmidt, Hans-Jurgen

The purpose of this descriptive study was to create and test questions on stoichiometry with number ratios for quick mental calculations and to identify students' problem-solving strategies. The present study was a component of a more comprehensive investigation in which 7,441 German senior high school students were asked to work on 154 test items…

16. Effective Practices (Part 4): Problem Solving.

ERIC Educational Resources Information Center

Moursund, Dave

1996-01-01

Discusses the use of computers to help with problem solving. Topics include information science, including effective procedure and procedural thinking; templates; artificially intelligent agents and expert systems; and applications in education, including the goal of computer literacy for all students, and integrated software packages such as…

17. Facilitating problem solving in high school chemistry

Gabel, Dorothy L.; Sherwood, Robert D.

The major purpose for conducting this study was to determine whether certain instructional strategies were superior to others in teaching high school chemistry students problem solving. The effectiveness of four instructional strategies for teaching problem solving to students of various proportional reasoning ability, verbal and visual preference, and mathematics anxiety were compared in this aptitude by treatment interaction study. The strategies used were the factor-label method, analogies, diagrams, and proportionality. Six hundred and nine high school students in eight schools were randomly assigned to one of four teaching strategies within each classroom. Students used programmed booklets to study the mole concept, the gas laws, stoichiometry, and molarity. Problem-solving ability was measured by a series of immediate posttests, delayed posttests and the ACS-NSTA Examination in High School Chemistry. Results showed that mathematics anxiety is negatively correlated with science achievement and that problem solving is dependent on students' proportional reasoning ability. The factor-label method was found to be the most desirable method and proportionality the least desirable method for teaching the mole concept. However, the proportionality method was best for teaching the gas laws. Several second-order interactions were found to be significant when mathematics anxiety was one of the aptitudes involved.

18. Facilitating Problem Solving in High School Chemistry.

ERIC Educational Resources Information Center

Gabel, Dorothy L.; Sherwood, Robert D.

1983-01-01

Investigated superiority of instructional strategies (factor-label method, proportionality, use of analogies, use of diagrams) in teaching problem-solving related to mole concept, gas laws, stoichiometry, and molarity. Also investigated effectiveness of strategies for students (N=609) with different verbal-visual preferences, proportional…

19. Problem Solving in Chemistry Using Eureka.

ERIC Educational Resources Information Center

Chau, F. T.; Chik, Andy S. W.

1989-01-01

Discusses a software package that allows the user to solve mathematical problems, analyze data, plot graphs, and to examine mathematical models. Presents the attributes of the program and the available mathematical functions. Provides an example of pH calculations. (MVL)

20. Problem solving stages in the five square problem.

PubMed

Fedor, Anna; Szathmáry, Eörs; Öllinger, Michael

2015-01-01

According to the restructuring hypothesis, insight problem solving typically progresses through consecutive stages of search, impasse, insight, and search again for someone, who solves the task. The order of these stages was determined through self-reports of problem solvers and has never been verified behaviorally. We asked whether individual analysis of problem solving attempts of participants revealed the same order of problem solving stages as defined by the theory and whether their subjective feelings corresponded to the problem solving stages they were in. Our participants tried to solve the Five-Square problem in an online task, while we recorded the time and trajectory of their stick movements. After the task they were asked about their feelings related to insight and some of them also had the possibility of reporting impasse while working on the task. We found that the majority of participants did not follow the classic four-stage model of insight, but had more complex sequences of problem solving stages, with search and impasse recurring several times. This means that the classic four-stage model is not sufficient to describe variability on the individual level. We revised the classic model and we provide a new model that can generate all sequences found. Solvers reported insight more often than non-solvers and non-solvers reported impasse more often than solvers, as expected; but participants did not report impasse more often during behaviorally defined impasse stages than during other stages. This shows that impasse reports might be unreliable indicators of impasse. Our study highlights the importance of individual analysis of problem solving behavior to verify insight theory.

1. Problem solving stages in the five square problem

PubMed Central

Fedor, Anna; Szathmáry, Eörs; Öllinger, Michael

2015-01-01

According to the restructuring hypothesis, insight problem solving typically progresses through consecutive stages of search, impasse, insight, and search again for someone, who solves the task. The order of these stages was determined through self-reports of problem solvers and has never been verified behaviorally. We asked whether individual analysis of problem solving attempts of participants revealed the same order of problem solving stages as defined by the theory and whether their subjective feelings corresponded to the problem solving stages they were in. Our participants tried to solve the Five-Square problem in an online task, while we recorded the time and trajectory of their stick movements. After the task they were asked about their feelings related to insight and some of them also had the possibility of reporting impasse while working on the task. We found that the majority of participants did not follow the classic four-stage model of insight, but had more complex sequences of problem solving stages, with search and impasse recurring several times. This means that the classic four-stage model is not sufficient to describe variability on the individual level. We revised the classic model and we provide a new model that can generate all sequences found. Solvers reported insight more often than non-solvers and non-solvers reported impasse more often than solvers, as expected; but participants did not report impasse more often during behaviorally defined impasse stages than during other stages. This shows that impasse reports might be unreliable indicators of impasse. Our study highlights the importance of individual analysis of problem solving behavior to verify insight theory. PMID:26300794

2. Discovering the structure of mathematical problem solving.

PubMed

Anderson, John R; Lee, Hee Seung; Fincham, Jon M

2014-08-15

The goal of this research is to discover the stages of mathematical problem solving, the factors that influence the duration of these stages, and how these stages are related to the learning of a new mathematical competence. Using a combination of multivariate pattern analysis (MVPA) and hidden Markov models (HMM), we found that participants went through 5 major phases in solving a class of problems: A Define Phase where they identified the problem to be solved, an Encode Phase where they encoded the needed information, a Compute Phase where they performed the necessary arithmetic calculations, a Transform Phase where they performed any mathematical transformations, and a Respond Phase where they entered an answer. The Define Phase is characterized by activity in visual attention and default network regions, the Encode Phase by activity in visual regions, the Compute Phase by activity in regions active in mathematical tasks, the Transform Phase by activity in mathematical and response regions, and the Respond phase by activity in motor regions. The duration of the Compute and Transform Phases were the only ones that varied with condition. Two features distinguished the mastery trials on which participants came to understand a new problem type. First, the duration of late phases of the problem solution increased. Second, there was increased activation in the rostrolateral prefrontal cortex (RLPFC) and angular gyrus (AG), regions associated with metacognition. This indicates the importance of reflection to successful learning.

3. Optimal Planning and Problem-Solving

NASA Technical Reports Server (NTRS)

Clemet, Bradley; Schaffer, Steven; Rabideau, Gregg

2008-01-01

CTAEMS MDP Optimal Planner is a problem-solving software designed to command a single spacecraft/rover, or a team of spacecraft/rovers, to perform the best action possible at all times according to an abstract model of the spacecraft/rover and its environment. It also may be useful in solving logistical problems encountered in commercial applications such as shipping and manufacturing. The planner reasons around uncertainty according to specified probabilities of outcomes using a plan hierarchy to avoid exploring certain kinds of suboptimal actions. Also, planned actions are calculated as the state-action space is expanded, rather than afterward, to reduce by an order of magnitude the processing time and memory used. The software solves planning problems with actions that can execute concurrently, that have uncertain duration and quality, and that have functional dependencies on others that affect quality. These problems are modeled in a hierarchical planning language called C_TAEMS, a derivative of the TAEMS language for specifying domains for the DARPA Coordinators program. In realistic environments, actions often have uncertain outcomes and can have complex relationships with other tasks. The planner approaches problems by considering all possible actions that may be taken from any state reachable from a given, initial state, and from within the constraints of a given task hierarchy that specifies what tasks may be performed by which team member.

4. Inverse Modelling Problems in Linear Algebra Undergraduate Courses

ERIC Educational Resources Information Center

Martinez-Luaces, Victor E.

2013-01-01

This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…

5. Geogebra for Solving Problems of Physics

Today is highly speed progressing the computer-based education, which allowes educators and students to use educational programming language and e-tutors to teach and learn, to interact with one another and share together the results of their work. In this paper we will be concentrated on the use of GeoGebra programme for solving problems of physics. We have brought an example from physics of how can be used GeoGebra for finding the center of mass(centroid) of a picture(or system of polygons). After the problem is solved graphically, there is an application of finding the center of a real object(a plate)by firstly, scanning the object and secondly, by inserting its scanned picture into the drawing pad of GeoGebra window and lastly, by finding its centroid. GeoGebra serve as effective tool in problem-solving. There are many other applications of GeoGebra in the problems of physics, and many more in different fields of mathematics.

6. Laplace transform approach for solving integral equations using computer algebra system

Paneva-Konovska, Jordanka; Nikolova, Yanka

2016-12-01

The Laplace transform method, along with Computer Algebra Systems (CAS) "Maple" v. 13, are extremely successfully applied for solving a class of integral equations with an arbitrary order, including fractional order integral equations. The combining of both powerful approaches allows students more quickly, enjoyable and thoroughly to master the material.

7. Secondary Pre-Service Teachers' Algebraic Reasoning about Linear Equation Solving

ERIC Educational Resources Information Center

Alvey, Christina; Hudson, Rick A.; Newton, Jill; Males, Lorraine M.

2016-01-01

This study analyzes the responses of 12 secondary pre-service teachers on two tasks focused on reasoning when solving linear equations. By documenting the choices PSTs made while engaging in these tasks, we gain insight into how new teachers work mathematically, reason algebraically, communicate their thinking, and make pedagogical decisions. We…

8. A connectionist model for diagnostic problem solving

NASA Technical Reports Server (NTRS)

Peng, Yun; Reggia, James A.

1989-01-01

A competition-based connectionist model for solving diagnostic problems is described. The problems considered are computationally difficult in that (1) multiple disorders may occur simultaneously and (2) a global optimum in the space exponential to the total number of possible disorders is sought as a solution. The diagnostic problem is treated as a nonlinear optimization problem, and global optimization criteria are decomposed into local criteria governing node activation updating in the connectionist model. Nodes representing disorders compete with each other to account for each individual manifestation, yet complement each other to account for all manifestations through parallel node interactions. When equilibrium is reached, the network settles into a locally optimal state. Three randomly generated examples of diagnostic problems, each of which has 1024 cases, were tested, and the decomposition plus competition plus resettling approach yielded very high accuracy.

9. Giant Story Problems: Reading Comprehension through Math Problem Solving.

ERIC Educational Resources Information Center

Goularte, Renee

Primary students solve "oversized" story problems using drawings, equations, and written responses, helping them understand the links between the language of story problems and the numerical representations of matching equations. The activity also includes oral language and reflective writing, thus bringing together a variety of language…

10. An efficient algorithm for solving the gravity problem of finding a density in a horizontal layer

Akimova, Elena N.; Martyshko, Peter S.; Misilov, Vladimir E.; Kosivets, Rostislav A.

2016-06-01

An efficient algorithm for solving the inverse gravity problem of finding a variable density in a horizontal layer using gravitational data is constructed. After the discretization and approximation, the problem reduces to solving a system of linear algebraic equations. The idea of this algorithm is based on exploiting the block-Toeplitz structure of coefficients matrix. Utilizing this algorithm drastically reduces the memory usage, as well as the computation time. The algorithm was parallelized and implemented using the Uran supercomputer. A model problem with synthetic gravitational data was solved.

11. Tracking Problem Solving by Multivariate Pattern Analysis and Hidden Markov Model Algorithms

ERIC Educational Resources Information Center

Anderson, John R.

2012-01-01

Multivariate pattern analysis can be combined with Hidden Markov Model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first "mind reading" application…

12. Status Effects in Group Problem Solving: Group and Individual Level Analyses.

ERIC Educational Resources Information Center

Chiu, Ming Ming

Eighty ninth graders who solved an algebra problem in groups of four showed status effects at the individual level. The students had filled out preactivity questionnaires about mathematical status and social status and a postactivity leadership questionnaire. Hierarchical regressions and path analyses show that, at the group level, solution score…

13. Human Problem Solving in Fault Diagnosis Tasks

DTIC Science & Technology

1986-04-01

W - FPFag-kx~~ff~P~xNA F MMIP Research Note 86-33 cc HUMAN PROBLEM SOLVING IN FAULT DIAGNOSIS TASKS J U William B. Rouse and Ruston M. Hunt Center...V -m ... 1 Ira wli W - -. W .: m.4.. . W - r - j ; - R 7T._ W77 m- UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) REPORT...ii SECURITY CLASSIFICATION OF THIS PAGE( W "en Data Entered) ,.-... 2

14. Comprehension and computation in Bayesian problem solving

PubMed Central

Johnson, Eric D.; Tubau, Elisabet

2015-01-01

Humans have long been characterized as poor probabilistic reasoners when presented with explicit numerical information. Bayesian word problems provide a well-known example of this, where even highly educated and cognitively skilled individuals fail to adhere to mathematical norms. It is widely agreed that natural frequencies can facilitate Bayesian inferences relative to normalized formats (e.g., probabilities, percentages), both by clarifying logical set-subset relations and by simplifying numerical calculations. Nevertheless, between-study performance on “transparent” Bayesian problems varies widely, and generally remains rather unimpressive. We suggest there has been an over-focus on this representational facilitator (i.e., transparent problem structures) at the expense of the specific logical and numerical processing requirements and the corresponding individual abilities and skills necessary for providing Bayesian-like output given specific verbal and numerical input. We further suggest that understanding this task-individual pair could benefit from considerations from the literature on mathematical cognition, which emphasizes text comprehension and problem solving, along with contributions of online executive working memory, metacognitive regulation, and relevant stored knowledge and skills. We conclude by offering avenues for future research aimed at identifying the stages in problem solving at which correct vs. incorrect reasoners depart, and how individual differences might influence this time point. PMID:26283976

ERIC Educational Resources Information Center

Parulekar, Satish J.

2006-01-01

Experience in using a user-friendly software, Mathcad, in the undergraduate chemical reaction engineering course is discussed. Example problems considered for illustration deal with simultaneous solution of linear algebraic equations (kinetic parameter estimation), nonlinear algebraic equations (equilibrium calculations for multiple reactions and…

16. Exploiting Quantum Resonance to Solve Combinatorial Problems

NASA Technical Reports Server (NTRS)

Zak, Michail; Fijany, Amir

2006-01-01

Quantum resonance would be exploited in a proposed quantum-computing approach to the solution of combinatorial optimization problems. In quantum computing in general, one takes advantage of the fact that an algorithm cannot be decoupled from the physical effects available to implement it. Prior approaches to quantum computing have involved exploitation of only a subset of known quantum physical effects, notably including parallelism and entanglement, but not including resonance. In the proposed approach, one would utilize the combinatorial properties of tensor-product decomposability of unitary evolution of many-particle quantum systems for physically simulating solutions to NP-complete problems (a class of problems that are intractable with respect to classical methods of computation). In this approach, reinforcement and selection of a desired solution would be executed by means of quantum resonance. Classes of NP-complete problems that are important in practice and could be solved by the proposed approach include planning, scheduling, search, and optimal design.

17. A Flipped Pedagogy for Expert Problem Solving

Pritchard, David

The internet provides free learning opportunities for declarative (Wikipedia, YouTube) and procedural (Kahn Academy, MOOCs) knowledge, challenging colleges to provide learning at a higher cognitive level. Our ``Modeling Applied to Problem Solving'' pedagogy for Newtonian Mechanics imparts strategic knowledge - how to systematically determine which concepts to apply and why. Declarative and procedural knowledge is learned online before class via an e-text, checkpoint questions, and homework on edX.org (see http://relate.mit.edu/physicscourse); it is organized into five Core Models. Instructors then coach students on simple ``touchstone problems'', novel exercises, and multi-concept problems - meanwhile exercising three of the four C's: communication, collaboration, critical thinking and problem solving. Students showed 1.2 standard deviations improvement on the MIT final exam after three weeks instruction, a significant positive shift in 7 of the 9 categories in the CLASS, and their grades improved by 0.5 standard deviation in their following physics course (Electricity and Magnetism).

18. Solving the Swath Segment Selection Problem

NASA Technical Reports Server (NTRS)

Knight, Russell; Smith, Benjamin

2006-01-01

Several artificial-intelligence search techniques have been tested as means of solving the swath segment selection problem (SSSP) -- a real-world problem that is not only of interest in its own right, but is also useful as a test bed for search techniques in general. In simplest terms, the SSSP is the problem of scheduling the observation times of an airborne or spaceborne synthetic-aperture radar (SAR) system to effect the maximum coverage of a specified area (denoted the target), given a schedule of downlinks (opportunities for radio transmission of SAR scan data to a ground station), given the limit on the quantity of SAR scan data that can be stored in an onboard memory between downlink opportunities, and given the limit on the achievable downlink data rate. The SSSP is NP complete (short for "nondeterministic polynomial time complete" -- characteristic of a class of intractable problems that can be solved only by use of computers capable of making guesses and then checking the guesses in polynomial time).

19. Mathematical Problem Solving: A Review of the Literature.

ERIC Educational Resources Information Center

Funkhouser, Charles

The major perspectives on problem solving of the twentieth century are reviewed--associationism, Gestalt psychology, and cognitive science. The results of the review on teaching problem solving and the uses of computers to teach problem solving are included. Four major issues related to the teaching of problem solving are discussed: (1)…

20. Teaching Problem Solving Skills to Elementary Age Students with Autism

ERIC Educational Resources Information Center

Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.

2014-01-01

Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…

1. Young Children's Analogical Problem Solving: Gaining Insights from Video Displays

ERIC Educational Resources Information Center

Chen, Zhe; Siegler, Robert S.

2013-01-01

This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. Two- to 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older but not younger toddlers extracted the problem-solving strategy depicted in the video…

2. Problem-solving analysis: A piagetian study

Hale, James P.

Fifty-nine second-year medical students were asked to solve 12 Piagetian formal operational tasks. The purpose was to describe the formal logical characteristics of this medical student sample (59 of a total 65 possible) in terms of their abilities to solve problems in four formal logical schemata-combinatorial logic, probabilistic reasoning, propositional logic, and proportional reasoning. These tasks were presented as videotape demonstrations or in written form, depending on whether or not equipment manipulation was required, and were scored using conventional, prespecified scoring criteria. The results of this study show approximately 96% of the sample function at the transitional (Piaget's 3A level) stage of formal operations on all tasks and approximately 4% function at the full formal (Piaget's 3B level) stage of formal operations on all tasks. This sample demonstrates formal level thinking to a much greater degree than other samples reported in the literature to date and suggests these students are adequately prepared and developed to meet the challenge of their training (i.e., medical problem solving).

3. The Effects of Schema-Broadening Instruction on Second Graders' Word-Problem Performance and Their Ability to Represent Word Problems with Algebraic Equations: A Randomized Control Study.

PubMed

Fuchs, Lynn S; Zumeta, Rebecca O; Schumacher, Robin Finelli; Powell, Sarah R; Seethaler, Pamela M; Hamlett, Carol L; Fuchs, Douglas

2010-06-01

The purpose of this study was to assess the effects of schema-broadening instruction (SBI) on second graders' word-problem-solving skills and their ability to represent the structure of word problems using algebraic equations. Teachers (n = 18) were randomly assigned to conventional word-problem instruction or SBI word-problem instruction, which taught students to represent the structural, defining features of word problems with overarching equations. Intervention lasted 16 weeks. We pretested and posttested 270 students on measures of word-problem skill; analyses that accounted for the nested structure of the data indicated superior word-problem learning for SBI students. Descriptive analyses of students' word-problem work indicated that SBI helped students represent the structure of word problems with algebraic equations, suggesting that SBI promoted this aspect of students' emerging algebraic reasoning.

4. The Effects of Schema-Broadening Instruction on Second Graders’ Word-Problem Performance and Their Ability to Represent Word Problems with Algebraic Equations: A Randomized Control Study

PubMed Central

Fuchs, Lynn S.; Zumeta, Rebecca O.; Schumacher, Robin Finelli; Powell, Sarah R.; Seethaler, Pamela M.; Hamlett, Carol L.; Fuchs, Douglas

2010-01-01

The purpose of this study was to assess the effects of schema-broadening instruction (SBI) on second graders’ word-problem-solving skills and their ability to represent the structure of word problems using algebraic equations. Teachers (n = 18) were randomly assigned to conventional word-problem instruction or SBI word-problem instruction, which taught students to represent the structural, defining features of word problems with overarching equations. Intervention lasted 16 weeks. We pretested and posttested 270 students on measures of word-problem skill; analyses that accounted for the nested structure of the data indicated superior word-problem learning for SBI students. Descriptive analyses of students’ word-problem work indicated that SBI helped students represent the structure of word problems with algebraic equations, suggesting that SBI promoted this aspect of students’ emerging algebraic reasoning. PMID:20539822

5. Solving optimization problems on computational grids.

SciTech Connect

Wright, S. J.; Mathematics and Computer Science

2001-05-01

Multiprocessor computing platforms, which have become more and more widely available since the mid-1980s, are now heavily used by organizations that need to solve very demanding computational problems. Parallel computing is now central to the culture of many research communities. Novel parallel approaches were developed for global optimization, network optimization, and direct-search methods for nonlinear optimization. Activity was particularly widespread in parallel branch-and-bound approaches for various problems in combinatorial and network optimization. As the cost of personal computers and low-end workstations has continued to fall, while the speed and capacity of processors and networks have increased dramatically, 'cluster' platforms have become popular in many settings. A somewhat different type of parallel computing platform know as a computational grid (alternatively, metacomputer) has arisen in comparatively recent times. Broadly speaking, this term refers not to a multiprocessor with identical processing nodes but rather to a heterogeneous collection of devices that are widely distributed, possibly around the globe. The advantage of such platforms is obvious: they have the potential to deliver enormous computing power. Just as obviously, however, the complexity of grids makes them very difficult to use. The Condor team, headed by Miron Livny at the University of Wisconsin, were among the pioneers in providing infrastructure for grid computations. More recently, the Globus project has developed technologies to support computations on geographically distributed platforms consisting of high-end computers, storage and visualization devices, and other scientific instruments. In 1997, we started the metaneos project as a collaborative effort between optimization specialists and the Condor and Globus groups. Our aim was to address complex, difficult optimization problems in several areas, designing and implementing the algorithms and the software

6. The Impact of Teacher Training on Creative Writing and Problem-Solving Using Futuristic Scenarios for Creative Problem Solving and Creative Problem Solving Programs

ERIC Educational Resources Information Center

Hayel Al-Srour, Nadia; Al-Ali, Safa M.; Al-Oweidi, Alia

2016-01-01

The present study aims to detect the impact of teacher training on creative writing and problem-solving using both Futuristic scenarios program to solve problems creatively, and creative problem solving. To achieve the objectives of the study, the sample was divided into two groups, the first consist of 20 teachers, and 23 teachers to second…

7. Can compactifications solve the cosmological constant problem?

SciTech Connect

Hertzberg, Mark P.; Masoumi, Ali

2016-06-30

Recently, there have been claims in the literature that the cosmological constant problem can be dynamically solved by specific compactifications of gravity from higher-dimensional toy models. These models have the novel feature that in the four-dimensional theory, the cosmological constant Λ is much smaller than the Planck density and in fact accumulates at Λ=0. Here we show that while these are very interesting models, they do not properly address the real cosmological constant problem. As we explain, the real problem is not simply to obtain Λ that is small in Planck units in a toy model, but to explain why Λ is much smaller than other mass scales (and combinations of scales) in the theory. Instead, in these toy models, all other particle mass scales have been either removed or sent to zero, thus ignoring the real problem. To this end, we provide a general argument that the included moduli masses are generically of order Hubble, so sending them to zero trivially sends the cosmological constant to zero. We also show that the fundamental Planck mass is being sent to zero, and so the central problem is trivially avoided by removing high energy physics altogether. On the other hand, by including various large mass scales from particle physics with a high fundamental Planck mass, one is faced with a real problem, whose only known solution involves accidental cancellations in a landscape.

8. The Problem of Assessing Problem Solving: Can Comparative Judgement Help?

ERIC Educational Resources Information Center

Jones, Ian; Inglis, Matthew

2015-01-01

School mathematics examination papers are typically dominated by short, structured items that fail to assess sustained reasoning or problem solving. A contributory factor to this situation is the need for student work to be marked reliably by a large number of markers of varied experience and competence. We report a study that tested an…

9. Solving Optimization Problems with Dynamic Geometry Software: The Airport Problem

ERIC Educational Resources Information Center

Contreras, José

2014-01-01

This paper describes how the author's students (in-service and pre-service secondary mathematics teachers) enrolled in college geometry courses use the Geometers' Sketchpad (GSP) to gain insight to formulate, confirm, test, and refine conjectures to solve the classical airport problem for triangles. The students are then provided with strategic…

10. Aha: A Connectionist Perspective on Problem Solving

DTIC Science & Technology

1988-06-08

DOCUMENTATION PAGE 7, -REPORtT SEC.𔃾l CASPFC.A’C ON R7ESRtC’ vE %MARK.%GS Unclassif led 22 SECRITY C ASSPFCATION Aur~oRifv 3 ; S’R @Bu ON AjALA81L 3 F...Typically, the search perspective has been used to desc ,.,e problem solving behavior occurring on a macro-level time scale of seconds as opposed to the...unit /. The constants S, E and / (all set to .05 for the simulations described below) scale the strength of the external input, the excitatory input from

11. Can galileons solve the muon problem?

Lamm, Henry

2015-09-01

The leptonic bound states positronium and muonium are used to constrain Galileon contributions to the Lamb shift of muonic hydrogen. Through the application of a variety of bounds on lepton compositeness, it is shown that either the assumption of equating the charge radius of a particle with its Galileon scale radius is incompatible with experiments, or the scale of Galileons must be M >1.33 GeV , too large to solve the muon problem. The possibility of stronger constraints in the future from true muonium is discussed.

12. Inference of S-system models of genetic networks by solving one-dimensional function optimization problems.

PubMed

Kimura, S; Araki, D; Matsumura, K; Okada-Hatakeyama, M

2012-02-01

Voit and Almeida have proposed the decoupling approach as a method for inferring the S-system models of genetic networks. The decoupling approach defines the inference of a genetic network as a problem requiring the solutions of sets of algebraic equations. The computation can be accomplished in a very short time, as the approach estimates S-system parameters without solving any of the differential equations. Yet the defined algebraic equations are non-linear, which sometimes prevents us from finding reasonable S-system parameters. In this study, we propose a new technique to overcome this drawback of the decoupling approach. This technique transforms the problem of solving each set of algebraic equations into a one-dimensional function optimization problem. The computation can still be accomplished in a relatively short time, as the problem is transformed by solving a linear programming problem. We confirm the effectiveness of the proposed approach through numerical experiments.

13. Teaching Problem-Solving at Rensselaer

ERIC Educational Resources Information Center

Burr, A. A.; Sandor, G. N.

1974-01-01

Discusses the characteristics of the Rensselaer design educational programs which emphasize the use of computer-oriented laboratories and linear algebraic equations as analytical tools. Effects of the Sloan Foundation grant are studied. (CC)

14. A Process Analysis of Engineering Problem Solving and Assessment of Problem Solving Skills

ERIC Educational Resources Information Center

Grigg, Sarah J.

2012-01-01

In the engineering profession, one of the most critical skills to possess is accurate and efficient problem solving. Thus, engineering educators should strive to help students develop skills needed to become competent problem solvers. In order to measure the development of skills, it is necessary to assess student performance, identify any…

15. Problem Solving Interventions: Impact on Young Children with Developmental Disabilities

ERIC Educational Resources Information Center

Diamond, Lindsay Lile

2012-01-01

Problem-solving skills are imperative to a child's growth and success across multiple environments, including general and special education. Problem solving is comprised of: (a) attention to the critical aspects of a problem, (b) generation of solution(s) to solve the problem, (c) application of a solution(s) to the identified problem, and…

16. Teaching Problem Solving as Viewed Through a Theory of Models

ERIC Educational Resources Information Center

Vest, Floyd

1976-01-01

An analysis of methods of teaching children to solve verbal arithmetic problems is presented together with transcriptions of interviews in which children solve problems by reference to problem types. (SD)

17. Solving large sparse eigenvalue problems on supercomputers

NASA Technical Reports Server (NTRS)

1988-01-01

An important problem in scientific computing consists in finding a few eigenvalues and corresponding eigenvectors of a very large and sparse matrix. The most popular methods to solve these problems are based on projection techniques on appropriate subspaces. The main attraction of these methods is that they only require the use of the matrix in the form of matrix by vector multiplications. The implementations on supercomputers of two such methods for symmetric matrices, namely Lanczos' method and Davidson's method are compared. Since one of the most important operations in these two methods is the multiplication of vectors by the sparse matrix, methods of performing this operation efficiently are discussed. The advantages and the disadvantages of each method are compared and implementation aspects are discussed. Numerical experiments on a one processor CRAY 2 and CRAY X-MP are reported. Possible parallel implementations are also discussed.

18. Incubation and Intuition in Creative Problem Solving

PubMed Central

Gilhooly, Kenneth J.

2016-01-01

Creative problem solving, in which novel solutions are required, has often been seen as involving a special role for unconscious processes (Unconscious Work) which can lead to sudden intuitive solutions (insights) when a problem is set aside during incubation periods. This notion of Unconscious Work during incubation periods is supported by a review of experimental studies and particularly by studies using the Immediate Incubation paradigm. Other explanations for incubation effects, in terms of Intermittent Work or Beneficial Forgetting are considered. Some recent studies of divergent thinking, using the Alternative Uses task, carried out in my laboratory regarding Immediate vs. Delayed Incubation and the effects of resource competition from interpolated activities are discussed. These studies supported a role for Unconscious Work as against Intermittent Conscious work or Beneficial Forgetting in incubation. PMID:27499745

19. Solving Math Problems Approximately: A Developmental Perspective

PubMed Central

Ganor-Stern, Dana

2016-01-01

20. Assessing Cognitive Learning of Analytical Problem Solving

Billionniere, Elodie V.

Introductory programming courses, also known as CS1, have a specific set of expected outcomes related to the learning of the most basic and essential computational concepts in computer science (CS). However, two of the most often heard complaints in such courses are that (1) they are divorced from the reality of application and (2) they make the learning of the basic concepts tedious. The concepts introduced in CS1 courses are highly abstract and not easily comprehensible. In general, the difficulty is intrinsic to the field of computing, often described as "too mathematical or too abstract." This dissertation presents a small-scale mixed method study conducted during the fall 2009 semester of CS1 courses at Arizona State University. This study explored and assessed students' comprehension of three core computational concepts---abstraction, arrays of objects, and inheritance---in both algorithm design and problem solving. Through this investigation students' profiles were categorized based on their scores and based on their mistakes categorized into instances of five computational thinking concepts: abstraction, algorithm, scalability, linguistics, and reasoning. It was shown that even though the notion of computational thinking is not explicit in the curriculum, participants possessed and/or developed this skill through the learning and application of the CS1 core concepts. Furthermore, problem-solving experiences had a direct impact on participants' knowledge skills, explanation skills, and confidence. Implications for teaching CS1 and for future research are also considered.

1. Functional reasoning in diagnostic problem solving

NASA Technical Reports Server (NTRS)

Sticklen, Jon; Bond, W. E.; Stclair, D. C.

1988-01-01

This work is one facet of an integrated approach to diagnostic problem solving for aircraft and space systems currently under development. The authors are applying a method of modeling and reasoning about deep knowledge based on a functional viewpoint. The approach recognizes a level of device understanding which is intermediate between a compiled level of typical Expert Systems, and a deep level at which large-scale device behavior is derived from known properties of device structure and component behavior. At this intermediate functional level, a device is modeled in three steps. First, a component decomposition of the device is defined. Second, the functionality of each device/subdevice is abstractly identified. Third, the state sequences which implement each function are specified. Given a functional representation and a set of initial conditions, the functional reasoner acts as a consequence finder. The output of the consequence finder can be utilized in diagnostic problem solving. The paper also discussed ways in which this functional approach may find application in the aerospace field.

2. Cognitive and Metacognitive Activity in Mathematical Problem Solving: Prefrontal and Parietal Patterns

PubMed Central

Anderson, John R.; Betts, Shawn; Ferris, Jennifer L.; Fincham, Jon M.

2010-01-01

Students were taught an algorithm for solving a new class of mathematical problems. Occasionally in the sequence of problems they encountered exception problems that required that they extend the algorithm. Regular and exception problems were associated with different patterns of brain activation produced. Some regions showed a Cognitive pattern of being active only until the problem was solved and no difference between regular or exception problems. Other regions showed a Metacognitive pattern of greater activity for exception problems and activity that extended into the post-solution period, particularly when an error was made. The Cognitive regions included some of parietal and prefrontal regions associated with the triple-code theory of Dehaene et al (2003) and associated with algebra equation solving in the ACT-R theory (Anderson, 2005). Metacognitive regions included the superior prefrontal gyrus, the angular gyrus of the triple-code theory, and frontopolar regions. PMID:21264650

3. Cognition-emotion interactions: patterns of change and implications for math problem solving.

PubMed

Trezise, Kelly; Reeve, Robert A

2014-01-01

Surprisingly little is known about whether relationships between cognitive and emotional states remain stable or change over time, or how different patterns of stability and/or change in the relationships affect problem solving abilities. Nevertheless, cross-sectional studies show that anxiety/worry may reduce working memory (WM) resources, and the ability to minimize the effects anxiety/worry is higher in individuals with greater WM capacity. To investigate the patterns of stability and/or change in cognition-emotion relations over time and their implications for problem solving, 126 14-year-olds' algebraic WM and worry levels were assessed twice in a single day before completing an algebraic math problem solving test. We used latent transition analysis to identify stability/change in cognition-emotion relations, which yielded a six subgroup solution. Subgroups varied in WM capacity, worry, and stability/change relationships. Among the subgroups, we identified a high WM/low worry subgroup that remained stable over time and a high WM/high worry, and a moderate WM/low worry subgroup that changed to low WM subgroups over time. Patterns of stability/change in subgroup membership predicted algebraic test results. The stable high WM/low worry subgroup performed best and the low WM capacity-high worry "unstable across time" subgroup performed worst. The findings highlight the importance of assessing variations in cognition-emotion relationships over time (rather than assessing cognition or emotion states alone) to account for differences in problem solving abilities.

4. FOURTH SEMINAR TO THE MEMORY OF D.N. KLYSHKO: Algebraic solution of the synthesis problem for coded sequences

Leukhin, Anatolii N.

2005-08-01

The algebraic solution of a 'complex' problem of synthesis of phase-coded (PC) sequences with the zero level of side lobes of the cyclic autocorrelation function (ACF) is proposed. It is shown that the solution of the synthesis problem is connected with the existence of difference sets for a given code dimension. The problem of estimating the number of possible code combinations for a given code dimension is solved. It is pointed out that the problem of synthesis of PC sequences is related to the fundamental problems of discrete mathematics and, first of all, to a number of combinatorial problems, which can be solved, as the number factorisation problem, by algebraic methods by using the theory of Galois fields and groups.

5. Solving Maxwell eigenvalue problems for accelerating cavities

Arbenz, Peter; Geus, Roman; Adam, Stefan

2001-02-01

We investigate algorithms for computing steady state electromagnetic waves in cavities. The Maxwell equations for the strength of the electric field are solved by a mixed method with quadratic finite edge (Nédélec) elements for the field values and corresponding node-based finite elements for the Lagrange multiplier. This approach avoids so-called spurious modes which are introduced if the divergence-free condition for the electric field is not treated properly. To compute a few of the smallest positive eigenvalues and corresponding eigenmodes of the resulting large sparse matrix eigenvalue problems, two algorithms have been used: the implicitly restarted Lanczos algorithm and the Jacobi-Davidson algorithm, both with shift-and-invert spectral transformation. Two-level hierarchical basis preconditioners have been employed for the iterative solution of the resulting systems of equations.

6. Is conceptual understanding compromised by a problem-solving emphasis in an introductory physics course?

Ridenour, J.; Feldman, G.; Teodorescu, R.; Medsker, L.; Benmouna, N.

2013-01-01

Developing competency in problem solving and enhancing conceptual understanding are primary objectives in introductory physics, and many techniques and tools are available to help instructors achieve them. Pedagogically, we use an easy-to-implement intervention, the ACCESS protocol, to develop and assess problem-solving skills in our SCALE-UP classroom environment for algebra-based physics. Based on our research and teaching experience, an important question has emerged: while primarily targeting improvements in problem-solving and cognitive development, is it necessary that conceptual understanding be compromised? To address this question, we gathered and analyzed information about student abilities, backgrounds, and instructional preferences. We report on our progress and give insights into matching the instructional tools to student profiles in order to achieve optimal learning in group-based active learning. The ultimate goal of our work is to integrate individual student learning needs into a pedagogy that moves students closer to expert-like status in problem solving.

7. Algebraic Methods Applied to Network Reliability Problems. Revision.

DTIC Science & Technology

1986-09-01

RD-RIBs 38? ALGEBRAIC METHODS APPLIED TO NETHORK RELIABILITY 1/1 PROBLEMS REVISIOU(U) CLEMSON UNIV SC DEPT OF MATEMATICAL SCIENCES D R SHIER ET AL...class of directed networks, Oper. Res., 32 (1984), pp. 493-515. -2 " 16 [3] A. AGRAWAL AND A. SATYANARAYANA, Network reliability analysis using 2...Networks, 13 (1983), pp. 107-120. [20] A. SATYANARAYANA AND A. PRABHAKAR, A new topological formula and rapid algorithm for reliability analysis of complex

8. Effect of scaffolding on helping introductory physics students solve quantitative problems involving strong alternative conceptions

Lin, Shih-Yin; Singh, Chandralekha

2015-12-01

It is well known that introductory physics students often have alternative conceptions that are inconsistent with established physical principles and concepts. Invoking alternative conceptions in the quantitative problem-solving process can derail the entire process. In order to help students solve quantitative problems involving strong alternative conceptions correctly, appropriate scaffolding support can be helpful. The goal of this study is to examine how different scaffolding supports involving analogical problem-solving influence introductory physics students' performance on a target quantitative problem in a situation where many students' solution process is derailed due to alternative conceptions. Three different scaffolding supports were designed and implemented in calculus-based and algebra-based introductory physics courses involving 410 students to evaluate the level of scaffolding needed to help students learn from an analogical problem that is similar in the underlying principles involved but for which the problem-solving process is not derailed by alternative conceptions. We found that for the quantitative problem involving strong alternative conceptions, simply guiding students to work through the solution of the analogical problem first was not enough to help most students discern the similarity between the two problems. However, if additional scaffolding supports that directly helped students examine and repair their knowledge elements involving alternative conceptions were provided, e.g., by guiding students to contemplate related issues and asking them to solve the targeted problem on their own first before learning from the analogical problem provided, students were more likely to discern the underlying similarities between the problems and avoid getting derailed by alternative conceptions when solving the targeted problem. We also found that some scaffolding supports were more effective in the calculus-based course than in the algebra

9. Journey into Problem Solving: A Gift from Polya

ERIC Educational Resources Information Center

Lederman, Eric

2009-01-01

In "How to Solve It", accomplished mathematician and skilled communicator George Polya describes a four-step universal solving technique designed to help students develop mathematical problem-solving skills. By providing a glimpse at the grace with which experts solve problems, Polya provides definable methods that are not exclusive to…

10. Unsupervised neural networks for solving Troesch's problem

2014-01-01

In this study, stochastic computational intelligence techniques are presented for the solution of Troesch's boundary value problem. The proposed stochastic solvers use the competency of a feed-forward artificial neural network for mathematical modeling of the problem in an unsupervised manner, whereas the learning of unknown parameters is made with local and global optimization methods as well as their combinations. Genetic algorithm (GA) and pattern search (PS) techniques are used as the global search methods and the interior point method (IPM) is used for an efficient local search. The combination of techniques like GA hybridized with IPM (GA-IPM) and PS hybridized with IPM (PS-IPM) are also applied to solve different forms of the equation. A comparison of the proposed results obtained from GA, PS, IPM, PS-IPM and GA-IPM has been made with the standard solutions including well known analytic techniques of the Adomian decomposition method, the variational iterational method and the homotopy perturbation method. The reliability and effectiveness of the proposed schemes, in term of accuracy and convergence, are evaluated from the results of statistical analysis based on sufficiently large independent runs.

11. OpenMP for 3D potential boundary value problems solved by PIES

KuŻelewski, Andrzej; Zieniuk, Eugeniusz

2016-06-01

The main purpose of this paper is examination of an application of modern parallel computing technique OpenMP to speed up the calculation in the numerical solution of parametric integral equations systems (PIES). The authors noticed, that solving more complex boundary problems by PIES sometimes requires large computing time. This paper presents the use of OpenMP and fast C++ linear algebra library Armadillo for boundary value problems modelled by 3D Laplace's equation and solved using PIES. The testing example shows that the use of mentioned technologies significantly increases speed of calculations in PIES.

12. Dynamics of students’ epistemological framing in group problem solving

Nguyen, Hai D.; Chari, Deepa N.; Sayre, Eleanor C.

2016-11-01

Many studies have investigated students’ epistemological framing when solving physics problems. Framing supports students’ problem solving as they decide what knowledge to employ and the necessary steps to solve the problem. Students may frame the same problem differently and take alternative paths to a correct solution. When students work in group settings, they share and discuss their framing to decide how to proceed in problem solving as a whole group. In this study, we investigate how groups of students negotiate their framing and frame shifts in group problem solving.

13. Interpersonal and Emotional Problem Solving among Narcotic Drug Abusers.

ERIC Educational Resources Information Center

Appel, Philip W.; Kaestner, Elisabeth

1979-01-01

Measured problem-solving abilities of narcotics abusers using the modified means-ends problem-solving procedure. Good subjects had more total relevent means (RMs) for solving problems, used more introspective and emotional RMs, and were better at RM recognition, but did not have more sufficient narratives than poor subjects. (Author/BEF)

14. Perceived Problem Solving, Stress, and Health among College Students

ERIC Educational Resources Information Center

Largo-Wight, Erin; Peterson, P. Michael; Chen, W. William

2005-01-01

Objective: To study the relationships among perceived problem solving, stress, and physical health. Methods: The Perceived Stress Questionnaire (PSQ), Personal Problem solving Inventory (PSI), and a stress-related physical health symptoms checklist were used to measure perceived stress, problem solving, and health among undergraduate college…

15. Independence Pending: Teacher Behaviors Preceding Learner Problem Solving

ERIC Educational Resources Information Center

Roesler, Rebecca A.

2017-01-01

The purposes of the present study were to identify the teacher behaviors that preceded learners' active participation in solving musical and technical problems and describe learners' roles in the problem-solving process. I applied an original model of problem solving to describe the behaviors of teachers and students in 161 rehearsal frames…

16. Team-Based Complex Problem Solving: A Collective Cognition Perspective

ERIC Educational Resources Information Center

Hung, Woei

2013-01-01

Today, much problem solving is performed by teams, rather than individuals. The complexity of these problems has exceeded the cognitive capacity of any individual and requires a team of members to solve them. The success of solving these complex problems not only relies on individual team members who possess different but complementary expertise,…

17. The Influence of Cognitive Diversity on Group Problem Solving Strategy

ERIC Educational Resources Information Center

Lamm, Alexa J.; Shoulders, Catherine; Roberts, T. Grady; Irani, Tracy A.; Snyder, Lori J. Unruh; Brendemuhl, Joel

2012-01-01

Collaborative group problem solving allows students to wrestle with different interpretations and solutions brought forth by group members, enhancing both critical thinking and problem solving skills. Since problem solving in groups is a common practice in agricultural education, instructors are often put in the position of organizing student…

18. Teaching Problem Solving in Secondary School Mathematics Classrooms

ERIC Educational Resources Information Center

Lam, Toh Tin; Guan, Tay Eng; Seng, Quek Khiok; Hoong, Leong Yew; Choon, Toh Pee; Him, Ho Foo; Jaguthsing, Dindyal

2014-01-01

This paper reports an innovative approach to teaching problem solving in secondary school mathematics classrooms based on a specifically designed problem-solving module.This approach adopts the science practical paradigm and rides on the works of Polya and Schoenfeld in order to give greater emphasis to the problem solving processes. We report the…

19. Surveying Graduate Students' Attitudes and Approaches to Problem Solving

ERIC Educational Resources Information Center

Mason, Andrew; Singh, Chandralekha

2010-01-01

Students' attitudes and approaches to problem solving in physics can profoundly influence their motivation to learn and development of expertise. We developed and validated an Attitudes and Approaches to Problem Solving survey by expanding the Attitudes toward Problem Solving survey of Marx and Cummings and administered it to physics graduate…

20. Teaching Young Children Interpersonal Problem-Solving Skills

ERIC Educational Resources Information Center

Joseph, Gail E.; Strain, Phillip S.

2010-01-01

Learning how to problem solve is one of the key developmental milestones in early childhood. Children's problem-solving skills represent a key feature in the development of social competence. Problem solving allows children to stay calm during difficult situations, repair social relations quickly, and get their needs met in ways that are safe and…

1. Problem-Solving Processes Used by Students in Organic Synthesis.

ERIC Educational Resources Information Center

Bowen, Craig W.; Bodner, George M.

1991-01-01

A model for problem solving stressing both psychological and cultural influences is presented. This model is based on the analyses of how graduate students (n=10) solve organic synthesis problems, along with two models of problem solving and a constructivist epistemological stance. (KR)

2. Capturing Problem-Solving Processes Using Critical Rationalism

ERIC Educational Resources Information Center

Chitpin, Stephanie; Simon, Marielle

2012-01-01

The examination of problem-solving processes continues to be a current research topic in education. Knowing how to solve problems is not only a key aspect of learning mathematics but is also at the heart of cognitive theories, linguistics, artificial intelligence, and computers sciences. Problem solving is a multistep, higher-order cognitive task…

3. Teacher Practices with Toddlers during Social Problem Solving Opportunities

ERIC Educational Resources Information Center

Gloeckler, Lissy; Cassell, Jennifer

2012-01-01

This article explores how teachers can foster an environment that facilitates social problem solving when toddlers experience conflict, emotional dysregulation, and aggression. This article examines differences in child development and self-regulation outcomes when teachers engage in problem solving "for" toddlers and problem solving "with"…

4. Harmony Theory: Problem Solving, Parallel Cognitive Models, and Thermal Physics.

ERIC Educational Resources Information Center

Smolensky, Paul; Riley, Mary S.

This document consists of three papers. The first, "A Parallel Model of (Sequential) Problem Solving," describes a parallel model designed to solve a class of relatively simple problems from elementary physics and discusses implications for models of problem-solving in general. It is shown that one of the most salient features of problem…

5. Solving Complex Problems: A Convergent Approach to Cognitive Load Measurement

ERIC Educational Resources Information Center

Zheng, Robert; Cook, Anne

2012-01-01

The study challenged the current practices in cognitive load measurement involving complex problem solving by manipulating the presence of pictures in multiple rule-based problem-solving situations and examining the cognitive load resulting from both off-line and online measures associated with complex problem solving. Forty-eight participants…

6. Problem Solving Strategies for Pharmaceutical/Chemical Technology College Students.

ERIC Educational Resources Information Center

Grant, George F.; Alexander, William E.

Teaching problem solving strategies and steps to first year college students enrolled in the pharmaceutical/chemical technology program as a part of their first year chemistry course focused on teaching the students the basic steps in problem solving and encouraging them to plan carefully and focus on the problem solving process rather than to…

7. A TAPS Interactive Multimedia Package to Solve Engineering Dynamics Problem

ERIC Educational Resources Information Center

Sidhu, S. Manjit; Selvanathan, N.

2005-01-01

Purpose: To expose engineering students to using modern technologies, such as multimedia packages, to learn, visualize and solve engineering problems, such as in mechanics dynamics. Design/methodology/approach: A multimedia problem-solving prototype package is developed to help students solve an engineering problem in a step-by-step approach. A…

8. Problem Solving in the School Curriculum from a Design Perspective

ERIC Educational Resources Information Center

Toh, Tin Lam; Leong, Yew Hoong; Dindyal, Jaguthsing; Quek, Khiok Seng

2010-01-01

In this symposium, the participants discuss some preliminary data collected from their problem solving project which uses a design experiment approach. Their approach to problem solving in the school curriculum is in tandem with what Schoenfeld (2007) claimed: "Crafting instruction that would make a wide range of problem-solving strategies…

9. Internet Computer Coaches for Introductory Physics Problem Solving

ERIC Educational Resources Information Center

Xu Ryan, Qing

2013-01-01

The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the…

10. The Effect of Schema-Based Instruction in Solving Mathematics Word Problems: An Emphasis on Prealgebraic Conceptualization of Multiplicative Relations

ERIC Educational Resources Information Center

Xin, Yan Ping

2008-01-01

The purpose of this study was to examine the effects of a schema-based instructional strategy that emphasizes prealgebraic conceptualization of multiplicative relations on solving arithmetic word problems with elementary students with learning disabilities or problems (LP). Introducing symbolic representation and algebraic thinking in earlier…

11. Cognitive load and modelling of an algebra problem

Chinnappan, Mohan

2010-09-01

In the present study, I examine a modelling strategy as employed by a teacher in the context of an algebra lesson. The actions of this teacher suggest that a modelling approach will have a greater impact on enriching student learning if we do not lose sight of the need to manage associated cognitive loads that could either aid or hinder the integration of core concepts with processes that are at play. Results here also show that modelling a problem that is set within an authentic context helps learners develop a better appreciation of variables and relations that constitute the model. The teacher's scaffolding actions revealed the use of strategies that foster the development of connected, meaningful and more useable algebraic knowledge.

12. Leprosy: a problem solved by 2000?

PubMed

Stearns, A T

2002-09-01

It is now the year 2001, and in many endemic regions leprosy remains a public health problem by any definition. It is clear that defining leprosy purely by prevalence side-steps some of the real issues. There is still much to do to solve the problem of leprosy. Control programmes require better tests for early diagnosis if leprosy is to be reduced much further. Treatment of the infection and of reactions is still far from ideal, whilst an effective vaccine would be valuable in high-risk regions. Research into the true incidence in each endemic area is essential, and control programs of the future will need a more detailed understanding of the transmission of M. leprae to permit new logical interventions. Leprosy remains a devastating disease. Much of the damage that it inflicts is irreversible, and leads to disability and stigmatization. This is perhaps the greatest problem posed. It is easy to dwell on the successes of the elimination campaign, so diverting attention from those populations of 'cured' patients who still suffer from the consequences of infection. Leprosy should be regarded as a problem unsolved so long as patients continue to present with disabilities. WHO has carried out a highly successful campaign in reducing the prevalence of leprosy, and this needs to be acknowledged, but what is happening to the incidence in core endemic areas? Maintaining this success, however, may be an even greater struggle if funding is withdrawn and vertical programmes are absorbed into national health structures. We must take heed of the historian George Santayana, 'those who cannot remember the past are condemned to repeat it'. We should take the example of tuberculosis as a warning of the dangers of ignoring a disease before it has been fully controlled, and strive to continue the leprosy elimination programmes until there are no new cases presenting with disability. The World Health Organisation has shown that leprosy is an eminently treatable disease, and has

13. Young children's analogical problem solving: gaining insights from video displays.

PubMed

Chen, Zhe; Siegler, Robert S

2013-12-01

This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. The sample of 2- and 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older, but not younger, toddlers extracted the problem-solving strategy depicted in the video and spontaneously transferred the strategy to solve isomorphic problems. Transfer by analogy from the video was evident only when the video illustrated the complete problem goal structure, including the character's intention and the action needed to achieve a goal. The same action isolated from the problem-solving context did not serve as an effective source analogue. These results illuminate the development of early representation and processes involved in analogical problem solving. Theoretical and educational implications are discussed.

14. Can Architecture Design Solve Social Problem?

Ginting, S. W.; TSB Darjosanjoto, E.; Sulistyarso, H.

2017-03-01

Most of architects and urban designers believe physical design gives impact on our social life. For example, a sign or landmark in the middle of a city makes people find orientation easier. In vice verse, most of social scientists believe it is social dynamic that plays role in shaping our space. How people spend their time moving from real space into cyber space is a proof that life style and IT give impact to space usage. This paper argues that interaction between physical design and social change is a two ways process. Both design aspect and social dynamic influence each other. This paper aims to examine how designing of gated community plays important role in increasing or decreasing segregation, both spatially and socially. The paper explores some architectural design principles applied in a gated community called CitraLand in west Surabaya, Indonesia, and addresses segregation between CitraLanders and outside kampung. We find CitraLand is designed openly and fully accessible for outsiders. It provides public spaces and several accessible gates and streets without walls and fences making all places inside and outside CitraLand spatially integrated. What’s interesting is it still reinforces social segregation due to its policy on prohibiting using the public park. We believe CitraLand’s planning and designing has successfully solved segregation problem spatially not socially.

15. A Framework for Distributed Problem Solving

Leone, Joseph; Shin, Don G.

1989-03-01

This work explores a distributed problem solving (DPS) approach, namely the AM/AG model, to cooperative memory recall. The AM/AG model is a hierarchic social system metaphor for DPS based on the Mintzberg's model of organizations. At the core of the model are information flow mechanisms, named amplification and aggregation. Amplification is a process of expounding a given task, called an agenda, into a set of subtasks with magnified degree of specificity and distributing them to multiple processing units downward in the hierarchy. Aggregation is a process of combining the results reported from multiple processing units into a unified view, called a resolution, and promoting the conclusion upward in the hierarchy. The combination of amplification and aggregation can account for a memory recall process which primarily relies on the ability of making associations between vast amounts of related concepts, sorting out the combined results, and promoting the most plausible ones. The amplification process is discussed in detail. An implementation of the amplification process is presented. The process is illustrated by an example.

16. The Effects of Thinking Aloud Pair Problem Solving on High School Students' Chemistry Problem-Solving Performance and Verbal Interactions

ERIC Educational Resources Information Center

Jeon, Kyungmoon; Huffman, Douglas; Noh, Taehee

2005-01-01

A problem solving strategy, Thinking Aloud Pair Problem Solving (TAPPS), developed by Arthur Whimbey to help students monitor and understand their own thought process is presented. The TAPPS strategy encouraged the students interact verbally with each other to solve chemistry problems and improve the achievements in chemistry.

17. The Poincaré problem, algebraic integrability and dicritical divisors

Galindo, C.; Monserrat, F.

We solve the Poincaré problem for plane foliations with only one dicritical divisor. Moreover, in this case, we give a simple algorithm that decides whether a foliation has a rational first integral and computes it in the affirmative case. We also provide an algorithm to compute a rational first integral of prefixed genus g≠1 of any type of plane foliation F. When the number of dicritical divisors dic(F) is larger than 2, this algorithm depends on suitable families of invariant curves. When dic(F)=2, it proves that the degree of the rational first integral can be bounded only in terms of g, the degree of F and the local analytic type of the dicritical singularities of F. The degree d of a general integral invariant curve is less than or equal to 4. Therefore, the Poincaré problem is solved in this case. There exists a valueλ∈Z>0such thatPF:=|λΔF|is a pencil and the rational mapP2⋯→P1that it defines is a rational first integral ofF. Moreover λ is the minimum of the set{α∈Z>0|dim|αΔF|⩾1}. The above clause (b) supports a very simple algorithm, our forthcoming Algorithm 2, which decides about the existence of a rational first integral of F (and computes it in the positive case) whenever dic(F)=1. Other alternative algorithms are treated in Section 4. Our remaining main results are: Assume thatFhas a rational first integral of genus g. Then, there exists a bound on the degree of the first integral depending only on the degree ofF, the genus g and the local analytic type of the dicritical singularities ofF. There exists an algorithm to decide whetherFhas a rational first integral of genus g (and to compute it, in the affirmative case) whose inputs are: g, a homogeneous 1-form definingFand the minimal resolution of the dicritical singularities ofF. Assume thatFhas a rational first integral of genus g. Then there exists a bound on the degree of the first integral which depends on the degree ofF, the genus g, the local analytic type of the

18. Effects of Training in Problem Solving on the Problem-Solving Abilities of Gifted Fourth Graders: A Comparison of the Future Problem Solving and Instrumental Enrichment Programs.

ERIC Educational Resources Information Center

Dufner, Hillrey A.; Alexander, Patricia A.

The differential effects of two different types of problem-solving training on the problem-solving abilities of gifted fourth graders were studied. Two successive classes of gifted fourth graders from Weslaco Independent School District (Texas) were pretested with the Coloured Progressive Matrices (CPM) and Thinking Creatively With Pictures…

19. Teaching Problem-Solving Skills to Nuclear Engineering Students

ERIC Educational Resources Information Center

Waller, E.; Kaye, M. H.

2012-01-01

Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and…

20. Using a general problem-solving strategy to promote transfer.

PubMed

Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John

2014-09-01

Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge.

1. Algebraic and Computational Aspects of Network Reliability and Problems.

DTIC Science & Technology

1986-07-15

7 -A175 075 ALGEBRAIC AND COMPUTATIONAL ASPECTS OF KETUORK / IRELIABILITY AND PROBLEMS(U) CLEMSON UNIV SC D SHIER 15 JUL 86 AFOSR-TR-86-2115 AFOSR...MONITORING ORGANIZATION I, afpplhcable) Clemson University AFOSR/NM 6C. ADDRESS (City. State and ZIP Codej 7b. ADDRESS (City. State and ZIP Code) Mlartin...Hall Bldg 410 Clemson , SC 29634-1907 Bolling AFB OC 20332-6448 S& NAME OF FUNOING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION

2. Contextualizing Arithmetic into Developmental Elementary Algebra Using Guided Problem Solving

ERIC Educational Resources Information Center

Guy, G. Michael; Cornick, Jonathan; Puri, Karan

2016-01-01

Many colleges are finding that the use of acceleration in developmental education is a promising direction for improved student progress toward a degree or certificate. Acceleration has been defined in the literature as the reorganization of curricula and instruction in ways that facilitate the completion of educational requirements in an…

3. The Effects of GO Solve Word Problems Math Intervention on Applied Problem Solving Skills of Low Performing Fifth Grade Students

ERIC Educational Resources Information Center

Fede, Jessica L.

2010-01-01

This research investigation examined the effects of "GO Solve Word Problems" math intervention on problem-solving skills of struggling 5th grade students. In a randomized controlled study, 16 5th grade students were given a 12-week intervention of "GO Solve", a computer-based program designed to teach schema-based instruction…

4. Problem Solving in Calculus with Symbolic Geometry and CAS

ERIC Educational Resources Information Center

Todd, Philip; Wiechmann, James

2008-01-01

Computer algebra systems (CAS) have been around for a number of years, as has dynamic geometry. Symbolic geometry software is new. It bears a superficial similarity to dynamic geometry software, but differs in that problems may be set up involving symbolic variables and constants, and measurements are given as symbolic expressions. Mathematical…

5. The relationship between students' problem solving frames and epistemological beliefs

Wampler, Wendi N.

Introductory undergraduate physics courses aim to help students develop the skills and strategies necessary to solve complex, real world problems, but many students not only leave these courses with serious gaps in their conceptual understanding, but also maintain a novice-like approach to solving problems. Matter and Interactions [M&I] is a curriculum that focuses on a restructuring of physics content knowledge and emphasizes a systematic approach to problem solving, called modeling, which involves the application physical principles to carefully defined systems of objects and interactions (Chabay and Sherwood, 2007a). Because the M&I approach to problem solving is different from many students' previous physics experience, efforts need to be made to attend to their epistemological beliefs and expectations about not only learning physics content knowledge, but problem solving as well. If a student frames solving physics problems as a `plug and chug' type activity, then they are going continue practicing this strategy. Thus, it is important to address students' epistemological beliefs and monitor how they frame the activity of problem solving within the M&I course. This study aims to investigate how students frame problem solving within the context of a large scale implementation of the M&I curriculum, and how, if at all, those frames shift through the semester. By investigating how students frame the act of problem solving in the M&I context, I was able to examine the connection between student beliefs and expectations about problem solving in physics and the skills and strategies used while solving problems in class. To accomplish these goals, I recruited student volunteers from Purdue's introductory, calculus-based physics course and assessed their problem solving approach and espoused epistemological beliefs over the course of a semester. I obtained data through video recordings of the students engaged in small group problem solving during recitation activities

6. Self-affirmation improves problem-solving under stress.

PubMed

Creswell, J David; Dutcher, Janine M; Klein, William M P; Harris, Peter R; Levine, John M

2013-01-01

High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings.

7. Feasibility of a Web-Based Assessment of Problem Solving.

ERIC Educational Resources Information Center

Schacter, John; And Others

This feasibility study explored the automated data collection, scoring, and reporting of children's complex problem-solving processes and performance in Web-based information-rich environments. Problem solving was studied using realistic problems in realistic contexts demanding multiple cognitive processes in the domain of environmental science.…

8. Solving the Sailors and the Coconuts Problem via Diagrammatic Approach

ERIC Educational Resources Information Center

Man, Yiu-Kwong

2010-01-01

In this article, we discuss how to use a diagrammatic approach to solve the classic sailors and the coconuts problem. It provides us an insight on how to tackle this type of problem in a novel and intuitive way. This problem-solving approach will be found useful to mathematics teachers or lecturers involved in teaching elementary number theory,…

9. A Computer Based Problem Solving Environment in Chemistry

ERIC Educational Resources Information Center

Bilgin, Ibrahim; Karakirik, Erol

2005-01-01

The purpose of this study was to introduce the Mole Solver, a computer based system that facilitates monitors and improves the students' problems solving skills on mole concept. The system has three distinct modes that: i) finds step by step solutions to the word problems on the mole concept ii) enable students' to solve word problems on their own…

10. A Computer Based Problem Solving Environment in Chemistry

ERIC Educational Resources Information Center

Bilgin, Ibrahim; Karakirik, Erol

2005-01-01

The purpose of this study was to introduce the Mole Solver, a computer based system that facilitates monitors and improves students' problem solving skills on mole concept. The system has three distinct modes that: (1) find step by step solutions to the word problems on the mole concept; (2) enable students to solve word problems on their own by…

11. Future Problem Solving--One Program Meeting Many Needs.

ERIC Educational Resources Information Center

Hume, Katherine C.

2002-01-01

This article describes the Future Problem Solving Program, a year-long curriculum project with competitive and non-competitive options. The international program involves 250,000 students and is designed to help students enlarge, enrich, and make more accurate their images of the future. Team problem solving and individual problem solving…

12. Problem-Solving during Shared Reading at Kindergarten

ERIC Educational Resources Information Center

Gosen, Myrte N.; Berenst, Jan; de Glopper, Kees

2015-01-01

This paper reports on a conversation analytic study of problem-solving interactions during shared reading at three kindergartens in the Netherlands. It illustrates how teachers and pupils discuss book characters' problems that arise in the events in the picture books. A close analysis of the data demonstrates that problem-solving interactions do…

13. A Descriptive Study of Cooperative Problem Solving Introductory Physics Labs

ERIC Educational Resources Information Center

Knutson, Paul Aanond

2011-01-01

The purpose of this study was to determine the ways in which cooperative problem solving in physics instructional laboratories influenced the students' ability to provide qualitative responses to problems. The literature shows that problem solving involves both qualitative and quantitative skills. Qualitative skills are important because those…

14. A Tool for Helping Veterinary Students Learn Diagnostic Problem Solving.

ERIC Educational Resources Information Center

Danielson, Jared A.; Bender, Holly S.; Mills, Eric M.; Vermeer, Pamela J.; Lockee, Barbara B.

2003-01-01

Describes the result of implementing the Problem List Generator, a computer-based tool designed to help clinical pathology veterinary students learn diagnostic problem solving. Findings suggest that student problem solving ability improved, because students identified all relevant data before providing a solution. (MES)

15. Theory of Constructions and Set in Problem Solving.

ERIC Educational Resources Information Center

Greeno, James G.; And Others

Hierarchically organized knowledge about actions has been postulated to explain planning in problem solving. Perdix, a simulation of problem solving in geometry with schematic planning knowledge, is described. Perdix' planning knowledge enables it to augment the problem space it is given by constructing auxiliary lines. The planning system also…

16. Complex Mathematical Problem Solving by Individuals and Dyads.

ERIC Educational Resources Information Center

Vye, Nancy J.; Goldman, Susan R.; Voss, James F.; Hmelo, Cindy; Williams, Susan; Cognition and Technology Group at Vanderbilt University

1997-01-01

Describes two studies of mathematical problem solving using an episode from "The Adventures of Jasper Woodbury," a set of curriculum materials that afford complex problem-solving opportunities. Discussion focuses on characteristics of problems that make solutions difficult, kinds of reasoning that dyadic interactions support, and…

17. Problem-Solving Support for English Language Learners

ERIC Educational Resources Information Center

Wiest, Lynda R.

2008-01-01

Although word problems pose greater language demands, they also encourage more meaningful problem solving and mathematics understanding. With proper instructional support, a student-centered, investigative approach to contextualized problem solving benefits all students. This article presents a lesson built on an author-adapted version of the…

18. Glogs as Non-Routine Problem Solving Tools in Mathematics

ERIC Educational Resources Information Center

Devine, Matthew T.

2013-01-01

In mathematical problem solving, American students are falling behind their global peers because of a lack of foundational and reasoning skills. A specific area of difficulty with problem solving is working non-routine, heuristic-based problems. Many students are not provided with effective instruction and often grow frustrated and dislike math.…

19. Solving Information-Based Problems: Evaluating Sources and Information

ERIC Educational Resources Information Center

2011-01-01

The focus of this special section is on the processes involved when solving information-based problems. Solving these problems requires from people that they are able to define the information problem, search and select usable and reliable sources and information and synthesise information into a coherent body of knowledge. An important aspect…

20. Problem Solving Treatment for Intellectually Disabled Sex Offenders

ERIC Educational Resources Information Center

Nezu, Christine Maguth; Fiore, Alicia A.; Nezu, Arthur M.

2006-01-01

Over the past thirty years, Problem Solving Therapy (PST) has been shown to be an effective treatment for many different problems and patient populations (Nezu, 2004). Among its many clinical applications, PST interventions were developed for persons with intellectually disabilities (ID), where improving problem-solving skills led to adaptive…

1. Formulating and Solving Problems in Computational Chemistry.

ERIC Educational Resources Information Center

Norris, A. C.

1980-01-01

Considered are the main elements of computational chemistry problems and how these elements can be used to formulate the problems mathematically. Techniques that are useful in devising an appropriate solution are also considered. (Author/TG)

2. Strategies in Subtraction Problem Solving in Children

ERIC Educational Resources Information Center

Barrouillet, Pierre; Mignon, Mathilde; Thevenot, Catherine

2008-01-01

The aim of this study was to investigate the strategies used by third graders in solving the 81 elementary subtractions that are the inverses of the one-digit additions with addends from 1 to 9 recently studied by Barrouillet and Lepine. Although the pattern of relationship between individual differences in working memory, on the one hand, and…

3. Problem-Solving Test: Southwestern Blotting

ERIC Educational Resources Information Center

Szeberényi, József

2014-01-01

Terms to be familiar with before you start to solve the test: Southern blotting, Western blotting, restriction endonucleases, agarose gel electrophoresis, nitrocellulose filter, molecular hybridization, polyacrylamide gel electrophoresis, proto-oncogene, c-abl, Src-homology domains, tyrosine protein kinase, nuclear localization signal, cDNA,…

4. Understanding the Problem. Problem Solving and Communication Activity Series. The Math Forum: Problems of the Week

ERIC Educational Resources Information Center

Math Forum @ Drexel, 2009

2009-01-01

Different techniques for understanding a problem can lead to ideas for never-used-before solutions. Good problem-solvers use a problem-solving strategy and may come back to it frequently while they are working on the problem to refine their strategy, see if they can find better solutions, or find other questions. Writing is an integral part of…

5. Surveying graduate students' attitudes and approaches to problem solving

Mason, Andrew; Singh, Chandralekha

2010-07-01

6. Applying Lakatos' Theory to the Theory of Mathematical Problem Solving.

ERIC Educational Resources Information Center

Nunokawa, Kazuhiko

1996-01-01

The relation between Lakatos' theory and issues in mathematics education, especially mathematical problem solving, is investigated by examining Lakatos' methodology of a scientific research program. (AIM)

7. Innovation and problem solving: a review of common mechanisms.

PubMed

Griffin, Andrea S; Guez, David

2014-11-01

Behavioural innovations have become central to our thinking about how animals adjust to changing environments. It is now well established that animals vary in their ability to innovate, but understanding why remains a challenge. This is because innovations are rare, so studying innovation requires alternative experimental assays that create opportunities for animals to express their ability to invent new behaviours, or use pre-existing ones in new contexts. Problem solving of extractive foraging tasks has been put forward as a suitable experimental assay. We review the rapidly expanding literature on problem solving of extractive foraging tasks in order to better understand to what extent the processes underpinning problem solving, and the factors influencing problem solving, are in line with those predicted, and found, to underpin and influence innovation in the wild. Our aim is to determine whether problem solving can be used as an experimental proxy of innovation. We find that in most respects, problem solving is determined by the same underpinning mechanisms, and is influenced by the same factors, as those predicted to underpin, and to influence, innovation. We conclude that problem solving is a valid experimental assay for studying innovation, propose a conceptual model of problem solving in which motor diversity plays a more central role than has been considered to date, and provide recommendations for future research using problem solving to investigate innovation. This article is part of a Special Issue entitled: Cognition in the wild.

8. The role of conceptual understanding in children's addition problem solving.

PubMed

Canobi, K H; Reeve, R A; Pattison, P E

1998-09-01

The study examined the relationship between children's conceptual understanding and addition problem-solving procedures. Forty-eight 6- to 8-year-olds solved addition problems and, in a 2nd task, were prompted to judge whether a puppet could use the arithmetic properties of one problem to solve the next problem. Relational properties between consecutive problems were manipulated to reflect aspects of additive composition, commutativity, and associativity principles. Conceptual understanding was assessed by the ability to spontaneously use such relational properties in problem solving (Task 1) and to recognize and explain them when prompted (Task 2). Results revealed that conceptual understanding was related to using order-indifferent, decomposition, and retrieval strategies and speed and accuracy in solving unrelated problems. The importance of conceptual understanding for addition development is discussed.

9. A new algebra core for the minimal form' problem

SciTech Connect

Purtill, M.R. . Center for Communications Research); Oliveira, J.S.; Cook, G.O. Jr. )

1991-12-20

The demands of large-scale algebraic computation have led to the development of many new algorithms for manipulating algebraic objects in computer algebra systems. For instance, parallel versions of many important algorithms have been discovered. Simultaneously, more effective symbolic representations of algebraic objects have been sought. Also, while some clever techniques have been found for improving the speed of the algebraic simplification process, little attention has been given to the issue of restructuring expressions, or transforming them into minimal forms.'' By minimal form,'' we mean that form of an expression that involves a minimum number of operations. In a companion paper, we introduce some new algorithms that are very effective at finding minimal forms of expressions. These algorithms require algebraic and combinatorial machinery that is not readily available in most algebra systems. In this paper we describe a new algebra core that begins to provide the necessary capabilities.

10. Cognition-emotion interactions: patterns of change and implications for math problem solving

PubMed Central

Trezise, Kelly; Reeve, Robert A.

2014-01-01

Surprisingly little is known about whether relationships between cognitive and emotional states remain stable or change over time, or how different patterns of stability and/or change in the relationships affect problem solving abilities. Nevertheless, cross-sectional studies show that anxiety/worry may reduce working memory (WM) resources, and the ability to minimize the effects anxiety/worry is higher in individuals with greater WM capacity. To investigate the patterns of stability and/or change in cognition-emotion relations over time and their implications for problem solving, 126 14-year-olds’ algebraic WM and worry levels were assessed twice in a single day before completing an algebraic math problem solving test. We used latent transition analysis to identify stability/change in cognition-emotion relations, which yielded a six subgroup solution. Subgroups varied in WM capacity, worry, and stability/change relationships. Among the subgroups, we identified a high WM/low worry subgroup that remained stable over time and a high WM/high worry, and a moderate WM/low worry subgroup that changed to low WM subgroups over time. Patterns of stability/change in subgroup membership predicted algebraic test results. The stable high WM/low worry subgroup performed best and the low WM capacity-high worry “unstable across time” subgroup performed worst. The findings highlight the importance of assessing variations in cognition-emotion relationships over time (rather than assessing cognition or emotion states alone) to account for differences in problem solving abilities. PMID:25132830

11. How Indirect Supportive Digital Help during and after Solving Physics Problems Can Improve Problem-Solving Abilities

ERIC Educational Resources Information Center

Pol, Henk J.; Harskamp, Egbert G.; Suhre, Cor J. M.; Goedhart, Martin J.

2009-01-01

This study investigates the effectiveness of computer-delivered hints in relation to problem-solving abilities in two alternative indirect instruction schemes. In one instruction scheme, hints are available to students immediately after they are given a new problem to solve as well as after they have completed the problem. In the other scheme,…

12. Solving multiple scattering problems in planetary atmospheres

NASA Technical Reports Server (NTRS)

Irvine, W. M.; Lenoble, J.

1974-01-01

Multiple scattering problems, radiative transfer problems in planetary atmospheres within extended visible portion of the spectrum, are examined. The direct and inverse problems and the extinction coefficient are defined, along with other scattering characteristics. Albedos in semi-infinite and finite atmospheres are considered, as well as surface illumination, energy deposition, and polarization. The Eddington approximation figures prominently in the calculations. Precise numerical methods and analytical solutions are included.

13. A Decision Support System for Solving Multiple Criteria Optimization Problems

ERIC Educational Resources Information Center

Filatovas, Ernestas; Kurasova, Olga

2011-01-01

In this paper, multiple criteria optimization has been investigated. A new decision support system (DSS) has been developed for interactive solving of multiple criteria optimization problems (MOPs). The weighted-sum (WS) approach is implemented to solve the MOPs. The MOPs are solved by selecting different weight coefficient values for the criteria…

14. Inquiry-based problem solving in introductory physics

Koleci, Carolann

What makes problem solving in physics difficult? How do students solve physics problems, and how does this compare to an expert physicist's strategy? Over the past twenty years, physics education research has revealed several differences between novice and expert problem solving. The work of Chi, Feltovich, and Glaser demonstrates that novices tend to categorize problems based on surface features, while experts categorize according to theory, principles, or concepts1. If there are differences between how problems are categorized, then are there differences between how physics problems are solved? Learning more about the problem solving process, including how students like to learn and what is most effective, requires both qualitative and quantitative analysis. In an effort to learn how novices and experts solve introductory electricity problems, a series of in-depth interviews were conducted, transcribed, and analyzed, using both qualitative and quantitative methods. One-way ANOVA tests were performed in order to learn if there are any significant problem solving differences between: (a) novices and experts, (b) genders, (c) students who like to answer questions in class and those who don't, (d) students who like to ask questions in class and those who don't, (e) students employing an interrogative approach to problem solving and those who don't, and (f) those who like physics and those who dislike it. The results of both the qualitative and quantitative methods reveal that inquiry-based problem solving is prevalent among novices and experts, and frequently leads to the correct physics. These findings serve as impetus for the third dimension of this work: the development of Choose Your Own Adventure Physics(c) (CYOAP), an innovative teaching tool in physics which encourages inquiry-based problem solving. 1Chi, M., P. Feltovich, R. Glaser, "Categorization and Representation of Physics Problems by Experts and Novices", Cognitive Science, 5, 121--152 (1981).

15. Problem Solving and Comprehension. Third Edition.

ERIC Educational Resources Information Center

This book is directed toward increasing students' ability to analyze problems and comprehend what they read and hear. It outlines and illustrates the methods that good problem solvers use in attacking complex ideas, and provides practice in applying these methods to a variety of questions involving comprehension and reasoning. Chapter I includes a…

16. Problem Solved: How To Coach Cognition.

ERIC Educational Resources Information Center

Krynock, Karoline; Robb, Louise

1999-01-01

When faced with real-world problems, students devise accurate, logical, and creative solutions using skills connecting to different subject areas. Students are intrigued by assignments involving preservation of species and design of environmentally friendly products and transit systems. Problem-based learning depends on coaching, modeling, and…

17. Problem Solving--What Is It?

ERIC Educational Resources Information Center

Schrock, Connie S.

2000-01-01

Contends that students must learn to adopt a lateral way of thinking, which generates multiple solutions, to resolve their problems. Offers examples of heuristics (plans of attack) that students can use to better approach their problems, such as: visualizing the situation, exploring ideas, choosing a strategy, finding a solution, and checking to…

18. Thinking can cause forgetting: memory dynamics in creative problem solving.

PubMed

Storm, Benjamin C; Angello, Genna; Bjork, Elizabeth Ligon

2011-09-01

Research on retrieval-induced forgetting has shown that retrieval can cause the forgetting of related or competing items in memory (Anderson, Bjork, & Bjork, 1994). In the present research, we examined whether an analogous phenomenon occurs in the context of creative problem solving. Using the Remote Associates Test (RAT; Mednick, 1962), we found that attempting to generate a novel common associate to 3 cue words caused the forgetting of other strong associates related to those cue words. This problem-solving-induced forgetting effect occurred even when participants failed to generate a viable solution, increased in magnitude when participants spent additional time problem solving, and was positively correlated with problem-solving success on a separate set of RAT problems. These results implicate a role for forgetting in overcoming fixation in creative problem solving.

19. Solving global environmental problems through technological innovation

SciTech Connect

Steinberg, M.

1990-03-01

Much of the environment problems arise from the supply and utilization of energy for industrial, transportation and domestic markets. The use of fossil fuels can result in environmental, atmospheric, and terrestrial problems, including organic, acid rain, and global warming hazards. Here I will address the CO{sub 2} global greenhouse problem and touch upon the nuclear industry and its dilemma as well. We recognize the possibility of global natural feedback phenomena which may limit and mitigate anthropomorphic global greenhouse climate change, however, here I am limiting the discussion to anthropomorphic (man made) technological mitigation process as opposed to adaptation which means adapting to change.

20. Solving multiple scattering problems in planetary atmospheres

NASA Technical Reports Server (NTRS)

Irvine, W. M.; Lenoble, J.

1974-01-01

Definitions are provided of the basic concepts occurring in the solution of multiple scattering problems involving planetary atmospheres and attention is given to aspects of problem characterization. Approaches are considered for finding the answer to a particular problem without the performance of detailed calculations. The characteristics of albedos are investigated, taking into account semiinfinite atmospheres and finite atmospheres. Questions of surface illumination are discussed along with aspects related to energy deposition in the atmosphere, intensity, and polarization. Precise numerical methods are examined and analytical solutions are presented.

1. Solving Infeasibility Problems in Computerized Test Assembly.

ERIC Educational Resources Information Center

Timminga, Ellen

1998-01-01

Discusses problems of diagnosing and repairing infeasible linear-programming models in computerized test assembly. Demonstrates that it is possible to localize the causes of infeasibility, although this is not always easy. (SLD)

2. Problem Solving and Cognitive Skill Acquisition

DTIC Science & Technology

1988-02-22

logically, from constraints on the type of material being 7 understood By definiton , the instuctions for a problem in a knowledge-lean task domain contain all...want to cross a river. They find a boat, but it is a very small boat. It will only hold 200 pounds. The men are named Large, Medium and Small. Large...distance river schema). The second subject is also consider several special cases of the generic river crossing problem. In this case, triggering the

3. Neural bases for basic processes in heuristic problem solving: Take solving Sudoku puzzles as an example.

PubMed

Qin, Yulin; Xiang, Jie; Wang, Rifeng; Zhou, Haiyan; Li, Kuncheng; Zhong, Ning

2012-12-01

Newell and Simon postulated that the basic steps in human problem-solving involve iteratively applying operators to transform the state of the problem to eventually achieve a goal. To check the neural basis of this framework, the present study focused on the basic processes in human heuristic problem-solving that the participants identified the current problem state and then recalled and applied the corresponding heuristic rules to change the problem state. A new paradigm, solving simplified Sudoku puzzles, was developed for an event-related functional magnetic resonance imaging (fMRI) study in problem solving. Regions of interest (ROIs), including the left prefrontal cortex, the bilateral posterior parietal cortex, the anterior cingulated cortex, the bilateral caudate nuclei, the bilateral fusiform, as well as the bilateral frontal eye fields, were found to be involved in the task. To obtain convergent evidence, in addition to traditional statistical analysis, we used the multivariate voxel classification method to check the accuracy of the predictions for the condition of the task from the blood oxygen level dependent (BOLD) response of the ROIs, using a new classifier developed in this study for fMRI data. To reveal the roles that the ROIs play in problem solving, we developed an ACT-R computational model of the information-processing processes in human problem solving, and tried to predict the BOLD response of the ROIs from the task. Advances in human problem-solving research after Newell and Simon are then briefly discussed.

4. Problem Solving 101: Making Most of Your Rehearsal Time

ERIC Educational Resources Information Center

Maynard, Lisa M.

2007-01-01

One issue that all teachers at all proficiency levels deal with in teaching music--whether in individual or group settings--is how to effectively solve problems encountered during lessons or rehearsals. What differentiates novice teachers from master teachers is the skill and efficiency with which they solve these problems. The seemingly…

5. The Future Problem Solving Experience Ten Years After.

ERIC Educational Resources Information Center

Flack, Jerry

1991-01-01

Four young men who had participated in the national competition of the Future Problem Solving (FPS) Program 10 years earlier offer reflections about their FPS experience. Their coach concludes that the program equips young people with the vision and skills needed to anticipate and solve problems and build better tomorrows. (JDD)

6. Autobiographical Memory and Social Problem-Solving in Asperger Syndrome

ERIC Educational Resources Information Center

Goddard, Lorna; Howlin, Patricia; Dritschel, Barbara; Patel, Trishna

2007-01-01

Difficulties in social interaction are a central feature of Asperger syndrome. Effective social interaction involves the ability to solve interpersonal problems as and when they occur. Here we examined social problem-solving in a group of adults with Asperger syndrome and control group matched for age, gender and IQ. We also assessed…

7. Best Known Problem Solving Strategies in "High-Stakes" Assessments

ERIC Educational Resources Information Center

Hong, Dae S.

2011-01-01

In its mathematics standards, National Council of Teachers of Mathematics (NCTM) states that problem solving is an integral part of all mathematics learning and exposure to problem solving strategies should be embedded across the curriculum. Furthermore, by high school, students should be able to use, decide and invent a wide range of strategies.…

8. Interpersonal Problem-Solving Skills of Hyperactive Children.

ERIC Educational Resources Information Center

Almeida, M. Connie

The relationship between interpersonal cognitive problem-solving (ICPS) skills and the behavioral adjustment of 30 hyperactive boys (from 5.5 to 12.5 years of age) was examined. Each S was individually administered two problem solving measures to assess alternative thinking and means-end thinking. The childrens' self-concept was also assessed and…

9. Interpersonal Problem Solving and Prevention in Urban School Children.

ERIC Educational Resources Information Center

Shure, Myrna B.; Healey, Kathryn N.

Recognizing that enhancing the interpersonal problem solving skills of children as young as age four can reduce or prevent high-risk behaviors later on, researchers designed a competence-building model of primary prevention. The two criteria tested were: (1) the theory of interpersonal cognitive problem solving (ICPS) skills as mediators of social…

10. Toward Group Problem Solving Guidelines for 21st Century Teams

ERIC Educational Resources Information Center

Ranieri, Kathryn L.

2004-01-01

Effective problem-solving skills are critical in dealing with ambiguous and often complex issues in the present-day leaner and globally diverse organizations. Yet respected, well-established problem-solving models may be misaligned within the current work environment, particularly within a team context. Models learned from a more bureaucratic,…

11. Does Incubation Enhance Problem Solving? A Meta-Analytic Review

ERIC Educational Resources Information Center

Sio, Ut Na; Ormerod, Thomas C.

2009-01-01

A meta-analytic review of empirical studies that have investigated incubation effects on problem solving is reported. Although some researchers have reported increased solution rates after an incubation period (i.e., a period of time in which a problem is set aside prior to further attempts to solve), others have failed to find effects. The…

12. Three Parent and Adult Problem-Solving Instruments.

ERIC Educational Resources Information Center

Wasik, Barbara H.; Bryant, Donna M.

This document provides information on three adult problem-solving measures developed to assess the effects of participating in a problem-solving training program. Each measure is accompanied by a manual describing the purpose, administrative procedures, psychometric properties, and use in research studies. The first measure is the Parent Means-End…

13. Interpersonal Problem Solving Intervention for Mother and Child.

ERIC Educational Resources Information Center

Shure, Myrna, B.; Spivack, George

This study examined the effects of interpersonal cognitive problem solving (ICPS) training for inner city mothers on the problem-solving skills and behaviors of their children. Twenty black mother-child pairs received training and 20 pairs matched in ICPS ability served as controls. The children were of comparable mean age (4.3 years), school…

14. A Markov Model Analysis of Problem-Solving Progress.

ERIC Educational Resources Information Center

Vendlinski, Terry

This study used a computerized simulation and problem-solving tool along with artificial neural networks (ANN) as pattern recognizers to identify the common types of strategies high school and college undergraduate chemistry students would use to solve qualitative chemistry problems. Participants were 134 high school chemistry students who used…

15. Fostering Problem-Solving in a Virtual Environment

ERIC Educational Resources Information Center

Morin, Danielle; Thomas, Jennifer D. E.; Saadé, Raafat George

2015-01-01

This article investigates students' perceptions of the relationship between Problem-Solving and the activities and resources used in a Web-based course on the fundamentals of Information Technology at a university in Montreal, Canada. We assess for the different learning components of the course, the extent of perceived problem-solving skills…

16. Students' Use of Technological Features while Solving a Mathematics Problem

ERIC Educational Resources Information Center

Lee, Hollylynne Stohl; Hollebrands, Karen F.

2006-01-01

The design of technology tools has the potential to dramatically influence how students interact with tools, and these interactions, in turn, may influence students' mathematical problem solving. To better understand these interactions, we analyzed eighth grade students' problem solving as they used a java applet designed to specifically accompany…

17. Problem Solving in Social Studies: Concepts and Critiques.

ERIC Educational Resources Information Center

Van Sickle, Ronald L.; Hoge, John D.

Recent developments in the field of cognitive psychology, particularly in the area of information processing, have shed light on the way people think in order to make decisions and solve problems. In addition, cooperative learning research has provided evidence of the effectiveness of cooperatively structured group work aimed at problem solving.…

18. Computer-Based Inquiry into Scientific Problem Solving.

ERIC Educational Resources Information Center

Berkowitz, Melissa S.; Szabo, Michael

1979-01-01

Problem solving performance of individuals was compared with that of dyads at three levels of mental ability using a computer-based inquiry into the riddle of the frozen Wooly Mammoth. Results indicated significant interactions between grouping and mental ability for certain problem solving internal measures. (RAO)

19. Phenomenographic Study of Students' Problem Solving Approaches in Physics

ERIC Educational Resources Information Center

Walsh, Laura N.; Howard, Robert G.; Bowe, Brian

2007-01-01

This paper describes ongoing research investigating student approaches to quantitative and qualitative problem solving in physics. This empirical study was conducted using a phenomenographic approach to analyze data from individual semistructured problem solving interviews with 22 introductory college physics students. The main result of the study…

20. Prospective Teachers' Problem Solving Skills and Self-Confidence Levels

ERIC Educational Resources Information Center

Gursen Otacioglu, Sena

2008-01-01

The basic objective of the research is to determine whether the education that prospective teachers in different fields receive is related to their levels of problem solving skills and self-confidence. Within the mentioned framework, the prospective teachers' problem solving and self-confidence levels have been examined under several variables.…

1. Problem Solving and Decision Making: A Review of the Literature.

ERIC Educational Resources Information Center

Steve, Michael

Part of a collection of papers commissioned by Foundations, a project designed to identify the career development needs of students entering the National Technical Institute for the Deaf, this paper examines research on problem solving and decision making. The section on problem solving reviews various models and concepts associated with problem…

2. Measuring Problem Solving Skills in Plants vs. Zombies 2

ERIC Educational Resources Information Center

Shute, Valerie J.; Moore, Gregory R.; Wang, Lubin

2015-01-01

We are using stealth assessment, embedded in "Plants vs. Zombies 2," to measure middle-school students' problem solving skills. This project started by developing a problem solving competency model based on a thorough review of the literature. Next, we identified relevant in-game indicators that would provide evidence about students'…

3. Peer Instruction Enhanced Meaningful Learning: Ability to Solve Novel Problems

ERIC Educational Resources Information Center

Cortright, Ronald N.; Collins, Heidi L.; DiCarlo, Stephen E.

2005-01-01

Students must be able to interpret, relate, and incorporate new information with existing knowledge and apply the new information to solve novel problems. Peer instruction is a cooperative learning technique that promotes critical thinking, problem solving, and decision-making skills. Therefore, we tested the hypothesis that peer instruction…

4. New Testing Methods to Assess Technical Problem-Solving Ability.

ERIC Educational Resources Information Center

Hambleton, Ronald K.; And Others

Tests to assess problem-solving ability being provided for the Air Force are described, and some details on the development and validation of these computer-administered diagnostic achievement tests are discussed. Three measurement approaches were employed: (1) sequential problem solving; (2) context-free assessment of fundamental skills and…

5. Assessing Creative Problem-Solving with Automated Text Grading

ERIC Educational Resources Information Center

Wang, Hao-Chuan; Chang, Chun-Yen; Li, Tsai-Yen

2008-01-01

The work aims to improve the assessment of creative problem-solving in science education by employing language technologies and computational-statistical machine learning methods to grade students' natural language responses automatically. To evaluate constructs like creative problem-solving with validity, open-ended questions that elicit…

6. Problem Solving and Collaboration Using Mobile Serious Games

ERIC Educational Resources Information Center

Sanchez, Jaime; Olivares, Ruby

2011-01-01

This paper presents the results obtained with the implementation of a series of learning activities based on Mobile Serious Games (MSGs) for the development of problem solving and collaborative skills in Chilean 8th grade students. Three MSGs were developed and played by teams of four students in order to solve problems collaboratively. A…

7. Monitoring Affect States during Effortful Problem Solving Activities

ERIC Educational Resources Information Center

D'Mello, Sidney K.; Lehman, Blair; Person, Natalie

2010-01-01

We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…

8. A Semantic-Linguistic Method of Solving Verbal Problems.

ERIC Educational Resources Information Center

Hoggard, Franklin R.

1987-01-01

Suggests a method for solving verbal problems in chemistry using a linguistic algorithm that is partly adapted from two artificial intelligence languages. Provides examples of problems solved using the mental concepts of translation, rotation, mirror image symmetry, superpositioning, disjoininng, and conjoining. (TW)

9. Designing Computer Software for Problem-Solving Instruction.

ERIC Educational Resources Information Center

Duffield, Judith A.

1991-01-01

Discusses factors that might influence the effectiveness of computer software designed to teach problem solving. Topics discussed include the structure of knowledge; transfer of training; computers and problem solving instruction; human-computer interactions; and types of software, including drill and practice programs, tutorials, instructional…

10. High School Students' Use of Meiosis When Solving Genetics Problems.

ERIC Educational Resources Information Center

Wynne, Cynthia F.; Stewart, Jim; Passmore, Cindy

2001-01-01

Paints a different picture of students' reasoning with meiosis as they solved complex, computer-generated genetics problems, some of which required them to revise their understanding of meiosis in response to anomalous data. Students were able to develop a rich understanding of meiosis and can utilize that knowledge to solve genetics problems.…

11. Connectedness Indicators and the Prediction of Problem Solving Success

ERIC Educational Resources Information Center

Yu-Shattuck, Sharon X.

2009-01-01

In this study, it was hypothesized that problem solving success is dependent upon two related but district types of mathematical knowledge, content indicators and connectedness indicators. Results did indeed display that the problem solving success of 188 undergraduate students was related to these two indicators. The correlations of content…

12. Computers and Problem Solving for Sixth-Grade.

ERIC Educational Resources Information Center

Oughton, John M.

1995-01-01

Presents a curriculum unit designed for average sixth-grade students intended to engage them in problem-solving experiences and to teach them problem-solving strategies. The curriculum consists of 20 sessions in which students engage in various activities using the following software packages: The Adventures of Jasper Woodbury, Rescue at Boone's…

13. Learning from Examples versus Verbal Directions in Mathematical Problem Solving

ERIC Educational Resources Information Center

Lee, Hee Seung; Fincham, Jon M.; Anderson, John R.

2015-01-01

This event-related fMRI study investigated the differences between learning from examples and learning from verbal directions in mathematical problem solving and how these instruction types affect the activity of relevant brain regions during instruction and solution periods within problem-solving trials. We identified distinct neural signatures…

14. Conceptual Learning in a Principled Design Problem Solving Environment

ERIC Educational Resources Information Center

Prusak, Naomi; Hershkowitz, Rina; Schwarz, Baruch B.

2013-01-01

To what extent can instructional design be based on principles for instilling a culture of problem solving and conceptual learning? This is the main focus of the study described in this paper, in which third grade students participated in a one-year course designed to foster problem solving and mathematical reasoning. The design relied on five…

15. The Effects of Age on Perceptual Problem-Solving Strategies.

ERIC Educational Resources Information Center

Lee, Jo Ann; Pollack, Robert H.

Witkin's Embedded Figures Test (EFT) was used to measure the changes with age in field dependence and problem-solving ability. Qualitative data concerning problem-solving strategies and quantitative data were collected. EFT was administered to 12 females in each of the following decades: 20s, 30s, 40s, 50s, 60s, 70s. All subjects were moderately…

16. Problem Solving: Getting to the Heart of Mathematics.

ERIC Educational Resources Information Center

Jarrett, Denise, Ed.

2000-01-01

This publication features articles that illustrate how several Northwest teachers are using problem solving to achieve rigorous and imaginative learning in their classrooms. Articles include: (1) "Open-Ended Problem Solving: Weaving a Web of Ideas" (Denise Jarrett); (2) "Teenager or Tyke, Students Learn Best by Tackling Challenging Math" (Suzie…

17. Relationship between Problem-Solving Style and Mathematical Literacy

ERIC Educational Resources Information Center

Tai, Wen-Chun; Lin, Su-Wei

2015-01-01

Currently, mathematics education is focused on ensuring that students can apply the knowledge and skills they learn to everyday life; students are expected to develop their problem-solving abilities to face challenges by adopting various perspectives. When faced with a problem, students may employ different methods or patterns to solve it. If this…

18. The Problem Solving Studio: An Apprenticeship Environment for Aspiring Engineers

ERIC Educational Resources Information Center

Le Doux, Joseph M.; Waller, Alisha A.

2016-01-01

This paper describes the problem-solving studio (PSS) learning environment. PSS was designed to teach students how to solve difficult analytical engineering problems without resorting to rote memorization of algorithms, while at the same time developing their deep conceptual understanding of the course topics. There are several key features of…

19. The Method To Acquire the Strategic Knowledge on Problem Solving.

ERIC Educational Resources Information Center

Takaoka, Ryo; Okamoto, Toshio

As a person learns, his problem solving ability improves and one reason for this is the increased acquisition of "macro-rules" which make problem solving more efficient. An intelligent computer assisted learning (ICAI) system is being developed which automatically acquires the useful knowledge from the domain experts; as experts give the learning…

20. Reading-Enhanced Word Problem Solving: A Theoretical Model

ERIC Educational Resources Information Center

Capraro, Robert M.; Capraro, Mary Margaret; Rupley, William H.

2012-01-01

There is a reciprocal relationship between mathematics and reading cognition. Metacognitive training within reading-enhanced problem solving should facilitate students developing an awareness of what good readers do when reading for meaning in solving mathematical problems enabling them to apply these strategies. The constructs for each cognitive…

1. The Effects of Service Learning on Student Problem Solving

ERIC Educational Resources Information Center

Guo, Fangfang; Yao, Meilin; Wang, Cong; Yan, Wenfan; Zong, Xiaoli

2016-01-01

Previous research indicated that service learning (SL) is an effective pedagogy to improve students' problem-solving ability and increase their classroom engagement. However, studies on SL are rare in China. This study examined the effects of SL on the problem solving of Chinese undergraduate students as well as the mechanism through which it…

2. Social Problem Solving and Aggression: The Role of Depression

ERIC Educational Resources Information Center

Ozdemir, Yalcin; Kuzucu, Yasar; Koruklu, Nermin

2013-01-01

The purpose of the present study was to examine direct and indirect relations among social problem-solving, depression, and aggression, as well as the mediating role of depression in the link between social problem-solving and aggression among Turkish youth. Data for the present study were collected from 413 adolescents. The participants' age…

3. Introduction to LogoWriter and Problem Solving for Educators.

ERIC Educational Resources Information Center

Yoder, Sharon Burrowes; Moursund, Dave

This book about Logo programming and problem solving is designed to introduce preservice and inservice teachers to problem solving in a Logo programming environment. Such a unit of study can be an important part of an introductory computers in education course for educators. Although Logowriter--a version of Logo--was developed by Logo Computer…

4. A Longitudinal Study of Database-Assisted Problem Solving.

ERIC Educational Resources Information Center

Wildemuth, Barbara M.; Friedman, Charles P.; Keyes, John; Downs, Stephen M.

2000-01-01

Examines the effects of database assistance on clinical problem solving across three cohorts of medical students and two database interfaces. Discusses the relationship between personal domain knowledge and problem solving, personal domain knowledge and database searching, and comparisons of different interface styles in information retrieval…

5. Solving L-L Extraction Problems with Excel Spreadsheet

ERIC Educational Resources Information Center

Teppaitoon, Wittaya

2016-01-01

This work aims to demonstrate the use of Excel spreadsheets for solving L-L extraction problems. The key to solving the problems successfully is to be able to determine a tie line on the ternary diagram where the calculation must be carried out. This enables the reader to analyze the extraction process starting with a simple operation, the…

6. Assessing Expertise in Economic Problem Solving: A Model.

ERIC Educational Resources Information Center

Miller, Steven L.; VanFossen, Phillip J.

1994-01-01

Examines research literature and schematic models associated with the expert-novice model in cognitive psychology. Describes a model for rendering expertise in problem solving within economics. Reports that a preliminary study indicates that this model effectively rendered both expert and novice problem solving in economics. (CFR)

7. A New Approach: Computer-Assisted Problem-Solving Systems

ERIC Educational Resources Information Center

Gok, Tolga

2010-01-01

Computer-assisted problem solving systems are rapidly growing in educational use and with the advent of the Internet. These systems allow students to do their homework and solve problems online with the help of programs like Blackboard, WebAssign and LON-CAPA program etc. There are benefits and drawbacks of these systems. In this study, the…

8. Working memory dysfunctions predict social problem solving skills in schizophrenia.

PubMed

Huang, Jia; Tan, Shu-ping; Walsh, Sarah C; Spriggens, Lauren K; Neumann, David L; Shum, David H K; Chan, Raymond C K

2014-12-15

The current study aimed to examine the contribution of neurocognition and social cognition to components of social problem solving. Sixty-seven inpatients with schizophrenia and 31 healthy controls were administrated batteries of neurocognitive tests, emotion perception tests, and the Chinese Assessment of Interpersonal Problem Solving Skills (CAIPSS). MANOVAs were conducted to investigate the domains in which patients with schizophrenia showed impairments. Correlations were used to determine which impaired domains were associated with social problem solving, and multiple regression analyses were conducted to compare the relative contribution of neurocognitive and social cognitive functioning to components of social problem solving. Compared with healthy controls, patients with schizophrenia performed significantly worse in sustained attention, working memory, negative emotion, intention identification and all components of the CAIPSS. Specifically, sustained attention, working memory and negative emotion identification were found to correlate with social problem solving and 1-back accuracy significantly predicted the poor performance in social problem solving. Among the dysfunctions in schizophrenia, working memory contributed most to deficits in social problem solving in patients with schizophrenia. This finding provides support for targeting working memory in the development of future social problem solving rehabilitation interventions.

9. Role of Multiple Representations in Physics Problem Solving

ERIC Educational Resources Information Center

Maries, Alexandru

2013-01-01

This thesis explores the role of multiple representations in introductory physics students' problem solving performance through several investigations. Representations can help students focus on the conceptual aspects of physics and play a major role in effective problem solving. Diagrammatic representations can play a particularly important role…

10. Engineering students' experiences and perceptions of workplace problem solving

Pan, Rui

In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.

11. Fourth Order Algorithms for Solving Diverse Many-Body Problems

Chin, Siu A.; Forbert, Harald A.; Chen, Chia-Rong; Kidwell, Donald W.; Ciftja, Orion

2001-03-01

We show that the method of factorizing an evolution operator of the form e^ɛ(A+B) to fourth order with purely positive coefficient yields new classes of symplectic algorithms for solving classical dynamical problems, unitary algorithms for solving the time-dependent Schrödinger equation, norm preserving algorithms for solving the Langevin equation and large time step convergent Diffusion Monte Carlo algorithms. Results for each class of problems will be presented and disucss

12. Problem-solving skills in high school biology: The effectiveness of the IMMEX problem-solving assessment software

Palacio-Cayetano, Joycelin

"Problem-solving through reflective thinking should be both the method and valuable outcome of science instruction in America's schools" proclaimed John Dewey (Gabel, 1995). If the development of problem-solving is a primary goal of science education, more problem-solving opportunities must be an integral part of K-16 education. To examine the effective use of technology in developing and assessing problem-solving skills, a problem-solving authoring, learning, and assessment software, the UCLA IMMEX Program-Interactive Multimedia Exercises-was investigated. This study was a twenty-week quasi-experimental study that was implemented as a control-group time series design among 120 tenth grade students. Both the experimental group (n = 60) and the control group (n = 60) participated in a problem-based learning curriculum; however, the experimental group received regular intensive experiences with IMMEX problem-solving and the control group did not. Problem-solving pretest and posttest were administered to all students. The instruments used were a 35-item Processes of Biological Inquiry Test and an IMMEX problem-solving assessment test, True Roots. Students who participated in the IMMEX Program achieved significant (p <.05) gains in problem-solving skills on both problem-solving assessment instruments. This study provided evidence that IMMEX software is highly efficient in evaluating salient elements of problem-solving. Outputs of students' problem-solving strategies revealed that unsuccessful problem solvers primarily used the following four strategies: (1) no data search strategy, students simply guessed; (2) limited data search strategy leading to insufficient data and premature closing; (3) irrelevant data search strategy, students focus in areas bearing no substantive data; and (4) extensive data search strategy with inadequate integration and analysis. On the contrary, successful problem solvers used the following strategies; (1) focused search strategy coupled

13. Behavioral flexibility and problem solving in an invasive bird.

PubMed

Logan, Corina J

2016-01-01

Behavioral flexibility is considered an important trait for adapting to environmental change, but it is unclear what it is, how it works, and whether it is a problem solving ability. I investigated behavioral flexibility and problem solving experimentally in great-tailed grackles, an invasive bird species and thus a likely candidate for possessing behavioral flexibility. Grackles demonstrated behavioral flexibility in two contexts, the Aesop's Fable paradigm and a color association test. Contrary to predictions, behavioral flexibility did not correlate across contexts. Four out of 6 grackles exhibited efficient problem solving abilities, but problem solving efficiency did not appear to be directly linked with behavioral flexibility. Problem solving speed also did not significantly correlate with reversal learning scores, indicating that faster learners were not the most flexible. These results reveal how little we know about behavioral flexibility, and provide an immense opportunity for future research to explore how individuals and species can use behavior to react to changing environments.

14. THE ROLE OF PROBLEM SOLVING IN COMPLEX INTRAVERBAL REPERTOIRES

PubMed Central

Sautter, Rachael A; LeBlanc, Linda A; Jay, Allison A; Goldsmith, Tina R; Carr, James E

2011-01-01

We examined whether typically developing preschoolers could learn to use a problem-solving strategy that involved self-prompting with intraverbal chains to provide multiple responses to intraverbal categorization questions. Teaching the children to use the problem-solving strategy did not produce significant increases in target responses until problem solving was modeled and prompted. Following the model and prompts, all participants showed immediate significant increases in intraverbal categorization, and all prompts were quickly eliminated. Use of audible self-prompts was evident initially for all participants, but declined over time for 3 of the 4 children. Within-session response patterns remained consistent with use of the problem-solving strategy even when self-prompts were not audible. These findings suggest that teaching and prompting a problem-solving strategy can be an effective way to produce intraverbal categorization responses. PMID:21709781

15. Behavioral flexibility and problem solving in an invasive bird

PubMed Central

2016-01-01

Behavioral flexibility is considered an important trait for adapting to environmental change, but it is unclear what it is, how it works, and whether it is a problem solving ability. I investigated behavioral flexibility and problem solving experimentally in great-tailed grackles, an invasive bird species and thus a likely candidate for possessing behavioral flexibility. Grackles demonstrated behavioral flexibility in two contexts, the Aesop’s Fable paradigm and a color association test. Contrary to predictions, behavioral flexibility did not correlate across contexts. Four out of 6 grackles exhibited efficient problem solving abilities, but problem solving efficiency did not appear to be directly linked with behavioral flexibility. Problem solving speed also did not significantly correlate with reversal learning scores, indicating that faster learners were not the most flexible. These results reveal how little we know about behavioral flexibility, and provide an immense opportunity for future research to explore how individuals and species can use behavior to react to changing environments. PMID:27168984

16. Logs key to solving water production problems

SciTech Connect

Wyatt, D.F. Jr.; Crook, R.J.

1995-11-20

Water source identification is the first and most important step in controlling unwanted water production that can severely limit the productive life of a well and, thereby, decrease hydrocarbon recovery. Water-control treatments often fail because the source of the water problem is not identified, the wrong treatment is performed, or the correct treatment is performed incorrectly. Table 1 lists typical problems, means of identification and evaluation, and chemical treatments available for correcting the problem. Well logs can help diagnose downhole situations that can lead to unwanted water production, and the effectiveness of water-control treatments can be evaluated with cased and open hole logs. The paper discusses cement bond logs and the pulse echo tool for cement evaluation. Casing evaluation is carried out by mechanical caliper logs and electro magnetic tools. Reservoir monitoring with pulsed neutron logs and pulsed neutron spectrometry are discussed. Also discussed are production logging, radioactive tracer logging, and well tests.

17. Acquisition of Problem-Solving Skill.

DTIC Science & Technology

1980-10-07

of proof problems found in high school geometry texts. Example: The Simulation We will discuss an example problem taken from Chapter 4 of Jurgensen ...record of subject R’s learning and work at geometry through Chapter 4 of Jurgensen , Donnelly, Maier, and Rising. In particular, we have a record of his...Memory and Cognition, 1979, 7, 445-461. Jurgensen , R.C., Donnelly, A.J., Maier, J.E. and Rising, G.R. Geometry. Boston, MA: Houghton Mifflin Co., 1975

18. Professional Development: How Young Children Solve Problems

ERIC Educational Resources Information Center

Shure, Myrna B.

2006-01-01

There are lots of ways to handle behavior problems in the classroom. Some teachers send difficult children to time out, others tell them what and what not to do, and many explain why. But these techniques have one thing in common: they all do the thinking for the child. In this article, the author discusses how to help children handle conflicts…

19. Solving College and University Problems Through Technology.

ERIC Educational Resources Information Center

Mebane, Donna Davis, Ed.

Addressed to individuals in higher education who are concerned about the application of information and data processing technologies to problems in college and university administration, instruction, and research, the 43 papers in the collection are concerned with such topics as the nature of new information technology; the use of information…

20. Teaching Production: A Problem Solving Approach.

ERIC Educational Resources Information Center

Litle, Michael

1982-01-01

Details an approach which involves taking students through the problems of film production while teaching (1) theory; (2) actual tools of production; and (3) practical methods of organizing work. Contends that precise, challenging, technical exercises performed in an interactive social framework maximize skill development. (PD)

1. Relevancy in Problem Solving: A Computational Framework

ERIC Educational Resources Information Center

Kwisthout, Johan

2012-01-01

When computer scientists discuss the computational complexity of, for example, finding the shortest path from building A to building B in some town or city, their starting point typically is a formal description of the problem at hand, e.g., a graph with weights on every edge where buildings correspond to vertices, routes between buildings to…

2. Solving the 10 Most Common Carpet Problems.

ERIC Educational Resources Information Center

Hilton, Michael

1998-01-01

Identifies the 10 most common carpet problems in school facilities and offers solutions. These include: transition areas, moisture, spot removal, recurring spots, cleaning agents, allergens, wicking, biological contamination, equipment selection, and cleaning methods. Ensuring a successful maintenance program results in satisfactory appearance,…

3. Diversity and Evaluation in Creative Problem-Solving

Suzuki, Hiroaki

The dynamic constraint relaxation theory predicts crucial roles of the initial diversity and evaluation in creative problem-solving. We reported the experimental evidence supporting these predictions, using an insight problem. The experiments showed that the degrees of making different types of trials and the appropriate evaluation were closely related to individual differences in insight problem-solving, and that evaluation became more appropriate by making the problem-solving goal explicit. The review of the research in related fields showed that these experimental findings were in congruent with the evidence obtained from different types of creative activities.

4. Metacognitive decision making and social interactions during paired problem solving

Goos, Merrilyn

1994-12-01

The study described in this paper investigated the metacognitive strategies used by a pair of senior secondary school students while working together on mechanics problems. Verbal protocols from think-aloud paired problem-solving sessions were analysed in order to examine the monitoring contributions of each individual student, and the significance of student-student interactions. Although the students were generally successful in coordinating their different, yet complementary, problem-solving roles, their metacognitive decision making was sometimes adversely affected by the social interaction between them. The findings suggest some potential benefits and pitfalls of using small group work for problem solving.

5. Calculus students' ability to solve geometric related-rates problems

Martin, Tami

2000-09-01

This study assessed the ability of university students enrolled in an introductory calculus course to solve related-rates problems set in geometric contexts. Students completed a problem-solving test and a test of performance on the individual steps involved in solving such problems. Each step was characterised as primarily relying on procedural knowledge or conceptual understanding. Results indicated that overall performance on the geometric related-rates problems was poor. The poorest performance was on steps linked to conceptual understanding, specifically steps involving the translation of prose to geometric and symbolic representations. Overall performance was most strongly related to performance on the procedural steps.

6. Cognitive functioning in mathematical problem solving during early adolescence

Collis, Kevin F.; Watson, Jane M.; Campbell, K. Jennifer

1993-12-01

Problem-solving in school mathematics has traditionally been considered as belonging only to the concrete symbolic mode of thinking, the mode which is concerned with making logical, analytical deductions. Little attention has been given to the place of the intuitive processes of the ikonic mode. The present study was designed to explore the interface between logical and intuitive processes in the context of mathematical problem solving. Sixteen Year 9 and 10 students from advanced mathematics classes were individually assessed while they solved five mathematics problems. Each student's problem-solving path, for each problem, was mapped according to the type of strategies used. Strategies were broadly classified into Ikonic (IK) or Concrete Symbolic (CS) categories. Students were given two types of problems to solve: (i) those most likely to attract a concrete symbolic approach; and (ii) problems with a significant imaging or intuitive component. Students were also assessed as to the vividness and controllability of their imaging ability, and their creativity. Results indicated that the nature of the problem is a basic factor in determining the type of strategy used for its solution. Students consistently applied CS strategies to CS problems, and IK strategies to IK problems. In addition, students tended to change modes significantly more often when solving CS-type problems than when solving IK-type problems. A switch to IK functioning appeared to be particularly helpful in breaking an unproductive set when solving a CS-type problem. Individual differences in strategy use were also found, with students high on vividness of imagery using IK strategies more frequently than students who were low on vividness. No relationship was found between IK strategy use and either students' degree of controllability of imagery or their level of creativity. The instructional implications of the results are discussed.

7. Escaping mental fixation: incubation and inhibition in creative problem solving.

PubMed

Koppel, Rebecca H; Storm, Benjamin C

2014-01-01

The inhibition underlying retrieval-induced forgetting has been argued to play a crucial role in the ability to overcome interference in memory and cognition. Supporting this conjecture, recent research has found that participants who exhibit greater levels of retrieval-induced forgetting are better at overcoming fixation on the Remote Associates Test (RAT) than are participants who exhibit reduced levels of retrieval-induced forgetting. If the ability to inhibit inappropriate responses improves the ability to solve fixated RAT problems, then reducing the fixation caused by inappropriate responses should reduce the correlation between retrieval-induced forgetting and problem solving. We tested this hypothesis by inserting an incubation period between two 30-second problem-solving attempts: half of the participants were given an incubation period (distributed condition), half were not (continuous condition). In the continuous condition retrieval-induced forgetting correlated positively with problem-solving performance during both the initial and final 30 seconds of problem solving. In the distributed condition retrieval-induced forgetting only correlated with problem-solving performance during the first 30 seconds of problem solving. This finding suggests that incubation reduces the need for inhibition by reducing the extent to which problem solvers suffer fixation.

8. Internet computer coaches for introductory physics problem solving

Xu Ryan, Qing

The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the educational system, national studies have shown that the majority of students emerge from such courses having made little progress toward developing good problem-solving skills. The Physics Education Research Group at the University of Minnesota has been developing Internet computer coaches to help students become more expert-like problem solvers. During the Fall 2011 and Spring 2013 semesters, the coaches were introduced into large sections (200+ students) of the calculus based introductory mechanics course at the University of Minnesota. This dissertation, will address the research background of the project, including the pedagogical design of the coaches and the assessment of problem solving. The methodological framework of conducting experiments will be explained. The data collected from the large-scale experimental studies will be discussed from the following aspects: the usage and usability of these coaches; the usefulness perceived by students; and the usefulness measured by final exam and problem solving rubric. It will also address the implications drawn from this study, including using this data to direct future coach design and difficulties in conducting authentic assessment of problem-solving.

9. Investigating a Proposed Problem Solving Theory in the Context of Mathematical Problem Solving: A Multi-Case Study

ERIC Educational Resources Information Center

2015-01-01

The ability to succeed in Science, Technology, Engineering, and Mathematics (STEM) careers is contingent on a student's ability to engage in mathematical problem solving. As a result, there has been increased focus on students' ability to think critically by providing them more with problem solving experiences in the classroom. Much research has…

10. Impacts of Learning Inventive Problem-Solving Principles: Students' Transition from Systematic Searching to Heuristic Problem Solving

ERIC Educational Resources Information Center

Barak, Moshe

2013-01-01

This paper presents the outcomes of teaching an inventive problem-solving course in junior high schools in an attempt to deal with the current relative neglect of fostering students' creativity and problem-solving capabilities in traditional schooling. The method involves carrying out systematic manipulation with attributes, functions and…

11. The Effects of Pair Problem Solving Technique Incorporating Polya's Problem Solving Strategy on Undergraduate Students' Performance in Chemistry

ERIC Educational Resources Information Center

Bilgin, Ibrahim

2006-01-01

The purpose of this study was to investigate the effects of pair problem solving technique incorporating Polya's problem solving strategy on undergraduate students' performance in conceptual and algorithmic questions in chemistry. The subjects of this study were 89 students enrolled from two first year chemistry classes. The experimental group was…

12. Effects of the Problem Solving and Subject Matter Approaches on the Problem Solving Ability of Secondary School Agricultural Education

ERIC Educational Resources Information Center

Olowa, O. W.

2009-01-01

The approach used by teachers is very important to the success of the teaching process. This is why this study seeks to determine which teaching approaches--problem solving and subject-matter, would best improve the problem solving ability of selected secondary agricultural education students in Ikorodu Local Government Area. Ten classes and 150…

13. A Study of the Problem Solving Abilities of Seventh Grade Students Who Receive Anchored Problem Solving Instruction.

ERIC Educational Resources Information Center

Griesser, Sara Anne

Current mathematics education emphasizes the importance of a problem solving mindset in the classroom. Students need to know how they are going to use what they are learning in real life. The purpose of this study was to determine the effect of anchored problem solving instruction on middle school students' mathematical abilities. The researcher…

14. The Effects of a Problem Solving Intervention on Problem Solving Skills of Students with Autism during Vocational Tasks

ERIC Educational Resources Information Center

Yakubova, Gulnoza

2013-01-01

Problem solving is an important employability skill and considered valuable both in educational settings (Agran & Alper, 2000) and the workplace (Ju, Zhang, & Pacha, 2012). However, limited research exists instructing students with autism to engage in problem solving skills (e.g., Bernard-Opitz, Sriram, & Nakhoda-Sapuan, 2001). The…

15. Solving subsurface structural problems using a computer

SciTech Connect

Witte, D.M. )

1987-02-01

Until recently, the solution of subsurface structural problems has required a combination of graphical construction, trigonometry, time, and patience. Recent advances in software available for both mainframe and microcomputers now reduce the time and potential error of these calculations by an order of magnitude. Software for analysis of deviated wells, three point problems, apparent dip, apparent thickness, and the intersection of two planes, as well as the plotting and interpretation of these data can be used to allow timely and accurate exploration or operational decisions. The available computer software provides a set of utilities, or tools, rather than a comprehensive, intelligent system. The burden for selection of appropriate techniques, computation methods, and interpretations still lies with the explorationist user.

16. Modeling crowdsourcing as collective problem solving

PubMed Central

Guazzini, Andrea; Vilone, Daniele; Donati, Camillo; Nardi, Annalisa; Levnajić, Zoran

2015-01-01

Crowdsourcing is a process of accumulating the ideas, thoughts or information from many independent participants, with aim to find the best solution for a given challenge. Modern information technologies allow for massive number of subjects to be involved in a more or less spontaneous way. Still, the full potentials of crowdsourcing are yet to be reached. We introduce a modeling framework through which we study the effectiveness of crowdsourcing in relation to the level of collectivism in facing the problem. Our findings reveal an intricate relationship between the number of participants and the difficulty of the problem, indicating the optimal size of the crowdsourced group. We discuss our results in the context of modern utilization of crowdsourcing. PMID:26552943

17. Swinging into thought: directed movement guides insight in problem solving.

PubMed

Thomas, Laura E; Lleras, Alejandro

2009-08-01

Can directed actions unconsciously influence higher order cognitive processing? We investigated how movement interventions affected participants' ability to solve a classic insight problem. The participants attempted to solve Maier's two-string problem while occasionally taking exercise breaks during which they moved their arms either in a manner related to the problem's solution (swing group) or in a manner inconsistent with the solution (stretch group). Although most of the participants were unaware of the relationship between their arm movement exercises and the problem-solving task, the participants who moved their arms in a manner that suggested the problem's solution were more likely to solve the problem than were those who moved their arms in other ways. Consistent with embodied theories of cognition, these findings show that actions influence thought and, furthermore, that we can implicitly guide people toward insight by directing their actions.

18. Problem solving performance and learning strategies of undergraduate students who solved microbiology problems using IMMEX educational software

Ebomoyi, Josephine Itota

The objectives of this study were as follows: (1) Determine the relationship between learning strategies and performance in problem solving, (2) Explore the role of a student's declared major on performance in problem solving, (3) Understand the decision making process of high and low achievers during problem solving. Participants (N = 65) solved problems using the Interactive multimedia exercise (IMMEX) software. All participants not only solved "Microquest," which focuses on cellular processes and mode of action of antibiotics, but also "Creeping Crud," which focuses on the cause, origin and transmission of diseases. Participants also responded to the "Motivated Strategy Learning Questionnaire" (MSLQ). Hierarchical multiple regression was used for analysis with GPA (Gracie point average) as a control. There were 49 (78.6%) that successfully solved "Microquest" while 52 (82.5%) successfully solved "Creeping Crud". Metacognitive self regulation strategy was significantly (p < .10) related to ability to solve "Creeping Crud". Peer learning strategy showed a positive significant (p < .10) relationship with scores obtained from solving "Creeping Crud". Students' declared major made a significant (p < .05) difference on the ability to solve "Microquest". A subset (18) volunteered for a think aloud method to determine decision-making process. High achievers used fewer steps, and had more focused approach than low achievers. Common strategies and attributes included metacognitive skills, writing to keep track, using prior knowledge. Others included elements of frustration/confusion and self-esteem problems. The implications for educational and relevance to real life situations are discussed.

19. Strategies of Cooperation in Distributed Problem Solving

DTIC Science & Technology

1983-10-01

STRATEGIES FOR COOPERATION We have come to believe that there are no general algorithms to dictate optimum cooperation. Methods that yield good distributed...the techniques by which a group can implement the chosen policy in a distributed fashion. Briefly, any distributed method of implementing an...8217)th Year A RAND NOTE Prepared for Rand SANTA MONICA, CA. 90406 STRATEGIES OF COOPERATION IN DISTRIBUTED PROBLEM SQLVING Stephanie

20. Automatic Representation Changes in Problem Solving

DTIC Science & Technology

1999-06-01

of these language features may violate the completeness of the extended algorithm. 1The Russian mystic Grigori Rasputin used the biblical parable of...clobber rules as in the future. 74 CHAPTER 2. PRODIGY SEARCH rasputin -Back-Chainer 1c. Pick a literal l among the current subgoals. Decision point...whether to negate its conditions. Figure 2.32: Backward-chaining procedure of the rasputin problem solver; it includes new deci- sion points (lines 6c