Developing and Validating Sets of Algebra Word Problems.
ERIC Educational Resources Information Center
Nasser, Ramzi; Carifio, James
The validation of key contextual features of algebra word problems was studied in two phases. In the first phase, five experts were asked to assess the appropriateness of the concepts in the problems and the adequacy of the assignment of the contextual features to the problems. In the second phase, construct validity was established by having 6…
Student Difficulties in Mathematizing Word Problems in Algebra
ERIC Educational Resources Information Center
Jupri, Al; Drijvers, Paul
2016-01-01
To investigate student difficulties in solving word problems in algebra, we carried out a teaching experiment involving 51 Indonesian students (12/13 year-old) who used a digital mathematics environment. The findings were backed up by an interview study, in which eighteen students (13/14 year-old) were involved. The perspective of mathematization,…
Paving a Way to Algebraic Word Problems Using a Nonalgebraic Route
ERIC Educational Resources Information Center
Amit, Miriam; Klass-Tsirulnikov, Bella
2005-01-01
A three-stage model for algebraic word problem solving is developed in which students' understanding of the intrinsic logical structure of word problems is strengthened by connecting real-life problems and formal mathematics. (Contains 3 figure.)
Working Memory and Literacy as Predictors of Performance on Algebraic Word Problems
ERIC Educational Resources Information Center
Lee, Kerry; Ng, Swee-Fong; Ng, Ee-Lynn; Lim, Zee-Ying
2004-01-01
Previous studies on individual differences in mathematical abilities have shown that working memory contributes to early arithmetic performance. In this study, we extended the investigation to algebraic word problem solving. A total of 151 10-year-olds were administered algebraic word problems and measures of working memory, intelligence quotient…
Powell, Sarah R; Fuchs, Lynn S
2014-08-01
According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 2(nd)- grade students, we administered (a) measures of calculations and word problems in the fall and (b) an assessment of pre-algebraic reasoning, with items that assessed solving equations and functions, in the spring. Based on the calculation and word-problem measures, we placed 148 students into 1 of 4 difficulty status categories: typically performing, calculation difficulty, word-problem difficulty, or difficulty with calculations and word problems. Analyses of variance were conducted on the 148 students; path analytic mediation analyses were conducted on the larger sample of 789 students. Across analyses, results corroborated the finding that word-problem difficulty is more strongly associated with difficulty with pre-algebraic reasoning. As an indicator of later algebra difficulty, word-problem difficulty may be a more useful predictor than calculation difficulty, and students with word-problem difficulty may require a different level of algebraic reasoning intervention than students with calculation difficulty.
Powell, Sarah R.; Fuchs, Lynn S.
2014-01-01
According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 2nd- grade students, we administered (a) measures of calculations and word problems in the fall and (b) an assessment of pre-algebraic reasoning, with items that assessed solving equations and functions, in the spring. Based on the calculation and word-problem measures, we placed 148 students into 1 of 4 difficulty status categories: typically performing, calculation difficulty, word-problem difficulty, or difficulty with calculations and word problems. Analyses of variance were conducted on the 148 students; path analytic mediation analyses were conducted on the larger sample of 789 students. Across analyses, results corroborated the finding that word-problem difficulty is more strongly associated with difficulty with pre-algebraic reasoning. As an indicator of later algebra difficulty, word-problem difficulty may be a more useful predictor than calculation difficulty, and students with word-problem difficulty may require a different level of algebraic reasoning intervention than students with calculation difficulty. PMID:25309044
ERIC Educational Resources Information Center
Fuchs, Lynn S.; Zumeta, Rebecca O.; Schumacher, Robin Finelli; Powell, Sarah R.; Seethaler, Pamela M.; Hamlett, Carol L.; Fuchs, Douglas
2010-01-01
The purpose of this study was to assess the effects of schema-broadening instruction (SBI) on second graders' word-problem-solving skills and their ability to represent the structure of word problems using algebraic equations. Teachers (n = 18) were randomly assigned to conventional word-problem instruction or SBI word-problem instruction, which…
Fuchs, Lynn S; Zumeta, Rebecca O; Schumacher, Robin Finelli; Powell, Sarah R; Seethaler, Pamela M; Hamlett, Carol L; Fuchs, Douglas
2010-06-01
The purpose of this study was to assess the effects of schema-broadening instruction (SBI) on second graders' word-problem-solving skills and their ability to represent the structure of word problems using algebraic equations. Teachers (n = 18) were randomly assigned to conventional word-problem instruction or SBI word-problem instruction, which taught students to represent the structural, defining features of word problems with overarching equations. Intervention lasted 16 weeks. We pretested and posttested 270 students on measures of word-problem skill; analyses that accounted for the nested structure of the data indicated superior word-problem learning for SBI students. Descriptive analyses of students' word-problem work indicated that SBI helped students represent the structure of word problems with algebraic equations, suggesting that SBI promoted this aspect of students' emerging algebraic reasoning.
Fuchs, Lynn S.; Zumeta, Rebecca O.; Schumacher, Robin Finelli; Powell, Sarah R.; Seethaler, Pamela M.; Hamlett, Carol L.; Fuchs, Douglas
2010-01-01
The purpose of this study was to assess the effects of schema-broadening instruction (SBI) on second graders’ word-problem-solving skills and their ability to represent the structure of word problems using algebraic equations. Teachers (n = 18) were randomly assigned to conventional word-problem instruction or SBI word-problem instruction, which taught students to represent the structural, defining features of word problems with overarching equations. Intervention lasted 16 weeks. We pretested and posttested 270 students on measures of word-problem skill; analyses that accounted for the nested structure of the data indicated superior word-problem learning for SBI students. Descriptive analyses of students’ word-problem work indicated that SBI helped students represent the structure of word problems with algebraic equations, suggesting that SBI promoted this aspect of students’ emerging algebraic reasoning. PMID:20539822
Does Calculation or Word-Problem Instruction Provide A Stronger Route to Pre-Algebraic Knowledge?
Fuchs, Lynn S; Powell, Sarah R; Cirino, Paul T; Schumacher, Robin F; Marrin, Sarah; Hamlett, Carol L; Fuchs, Douglas; Compton, Donald L; Changas, Paul C
2014-11-01
The focus of this study was connections among 3 aspects of mathematical cognition at 2(nd) grade: calculations, word problems, and pre-algebraic knowledge. We extended the literature, which is dominated by correlational work, by examining whether intervention conducted on calculations or word problems contributes to improved performance in the other domain and whether intervention in either or both domains contributes to pre-algebraic knowledge. Participants were 1102 children in 127 2(nd)-grade classrooms in 25 schools. Teachers were randomly assigned to 3 conditions: calculation intervention, word-problem intervention, and business-as-usual control. Intervention, which lasted 17 weeks, was designed to provide research-based linkages between arithmetic calculations or arithmetic word problems (depending on condition) to pre-algebraic knowledge. Multilevel modeling suggested calculation intervention improved calculation but not word-problem outcomes; word-problem intervention enhanced word-problem but not calculation outcomes; and word-problem intervention provided a stronger route than calculation intervention to pre-algebraic knowledge.
ERIC Educational Resources Information Center
Usman, Ahmed Ibrahim
2015-01-01
Knowledge and understanding of mathematical operations serves as a pre-reequisite for the successful translation of algebraic word problems. This study explored pre-service teachers' ability to recognize mathematical operations as well as use of those capabilities in constructing algebraic expressions, equations, and their solutions. The outcome…
Using Algebra Word Problems to Assess Quantitative Ability: Attributes, Strategies, and Errors.
ERIC Educational Resources Information Center
Sebrechts, Marc M.; And Others
1996-01-01
Examined relations between algebraic word-problem attributes and students' strategies, errors, and problem difficulty. Found that constructed responses capture strategy formulation and high-level planning--as do traditional measures of quantitative reasoning--but are more sensitive to individual problem characteristics and procedural errors that…
Key Contextual Features of Algebra Word Problems: A Theoretical Model and Review of the Literature.
ERIC Educational Resources Information Center
Nasser, Ramzi; Carifio, James
One of the four algebra word problem structures found in K-12 textbooks is the propositional relation structure (Mayer, 1982). This type of problem asks students to establish equivalences between the variables or noun referents in the problem. The literature available indicates that students have inordinate difficulties, when trying to solve a…
ERIC Educational Resources Information Center
Ngu, Bing Hiong; Yeung, Alexander Seeshing
2012-01-01
Holyoak and Koh (1987) and Holyoak (1984) propose four critical tasks for analogical transfer to occur in problem solving. A study was conducted to test this hypothesis by comparing a multiple components (MC) approach against worked examples (WE) in helping students to solve algebra word problems in chemistry classes. The MC approach incorporated…
Effects of Graphic Organiser on Students' Achievement in Algebraic Word Problems
ERIC Educational Resources Information Center
Owolabi, Josiah; Adaramati, Tobiloba Faith
2015-01-01
This study investigated the effects of graphic organiser and gender on students' academic achievement in algebraic word problem. Three research questions and three null hypotheses were used in guiding this study. Quasi experimental research was employed and Non-equivalent pre and post test design was used. The study involved the Senior Secondary…
ERIC Educational Resources Information Center
Lee, Kerry; Ng, Ee Lynn; Ng, Swee Fong
2009-01-01
Solving algebraic word problems involves multiple cognitive phases. The authors used a multitask approach to examine the extent to which working memory and executive functioning are associated with generating problem models and producing solutions. They tested 255 11-year-olds on working memory (Counting Recall, Letter Memory, and Keep Track),…
ERIC Educational Resources Information Center
Shoecraft, Paul Joseph
Three instructional approaches on translating selected types of algebra word problems were investigated: direct translations, high imagery with materials, and high imagery with drawings. Participating were 366 seventh grade and 336 ninth grade students. Treatment effects by grade used multivariate analysis of covariance for student scores and…
ERIC Educational Resources Information Center
Ngu, Bing Hiong; Yeung, Alexander Seeshing
2013-01-01
Text editing directs students' attention to the problem structure as they classify whether the texts of word problems contain sufficient, missing or irrelevant information for working out a solution. Equation worked examples emphasize the formation of a coherent problem structure to generate a solution. Its focus is on the construction of three…
Thinking and Writing Mathematically: "Achilles and the Tortoise" as an Algebraic Word Problem.
ERIC Educational Resources Information Center
Martinez, Joseph G. R.
2001-01-01
Introduces Hogben's adaptation of Zeno's paradox, "Achilles and the Tortoise", as a thinking and writing exercise. Emphasizes engaging students' imagination with creative, thought-provoking problems and involving students in evaluating their word problem-solving strategies. Describes the paradox, logical solutions, and students' mathematical…
ERIC Educational Resources Information Center
Chazan, Daniel; Sela, Hagit; Herbst, Patricio
2012-01-01
We illustrate a method, which is modeled on "breaching experiments," for studying tacit norms that govern classroom interaction around particular mathematical content. Specifically, this study explores norms that govern teachers' expectations for the doing of word problems in school algebra. Teacher study groups discussed representations of…
ERIC Educational Resources Information Center
Powell, Sarah R.; Fuchs, Lynn S.
2014-01-01
According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 second-grade students, we administered: (1) measures of calculations and…
Fuchs, Lynn S.; Gilbert, Jennifer K.; Powell, Sarah R.; Cirino, Paul T.; Fuchs, Douglas; Hamlett, Carol L.; Seethaler, Pamela M.; Tolar, Tammy D.
2016-01-01
The purpose of this study was to examine child-level pathways in development of pre-algebraic knowledge versus word-problem solving, while evaluating the contribution of calculation accuracy and fluency as mediators of foundational skills/processes. Children (n = 962; mean 7.60 years) were assessed on general cognitive processes and early calculation, word-problem, and number knowledge at start of grade 2; calculation accuracy and calculation fluency at end of grade 2; and pre-algebraic knowledge and word-problem solving at end of grade 4. Important similarities in pathways were identified, but path analysis also indicated that language comprehension is more critical for later word-problem solving than pre-algebraic knowledge. We conclude that pathways in development of these forms of 4th-grade mathematics performance are more alike than different, but demonstrate the need to fine-tune instruction for strands of the mathematics curriculum in ways that address individual students’ foundational mathematics skills or cognitive processes. PMID:27786534
ERIC Educational Resources Information Center
Green, Jan
2009-01-01
In recent years, the learning of algebra by all students has become a significant national priority (Moses & Cobb, 2001; National Council of Teachers of Mathematics, 2000). Algebra is considered to be a foundational topic in mathematics (Usiskin, 1988) and some have argued that an understanding of algebra is fundamental to success in today's…
ERIC Educational Resources Information Center
Noddings, Nel
1980-01-01
Computer assisted instruction is presented as a tool for helping students learn to successfully solve word problems. Four stages of developing a curriculum for elementary school mathematics, grades three through six, are covered. (MP)
Constructing a Coherent Problem Model to Facilitate Algebra Problem Solving in a Chemistry Context
ERIC Educational Resources Information Center
Ngu, Bing Hiong; Yeung, Alexander Seeshing; Phan, Huy P.
2015-01-01
An experiment using a sample of 11th graders compared text editing and worked examples approaches in learning to solve dilution and molarity algebra word problems in a chemistry context. Text editing requires students to assess the structure of a word problem by specifying whether the problem text contains sufficient, missing, or irrelevant…
ERIC Educational Resources Information Center
Arnau, David; Arevalillo-Herraez, Miguel; Puig, Luis; Gonzalez-Calero, Jose Antonio
2013-01-01
Designers of interactive learning environments with a focus on word problem solving usually have to compromise between the amount of resolution paths that a user is allowed to follow and the quality of the feedback provided. We have built an intelligent tutoring system (ITS) that is able to both track the user's actions and provide adequate…
ERIC Educational Resources Information Center
Fuchs, Lynn S.; Compton, Donald L.; Fuchs, Douglas; Hollenbeck, Kurstin N.; Hamlett, Carol L.; Seethaler, Pamela M.
2011-01-01
The purpose of this study was to explore the utility of a dynamic assessment (DA) of algebraic learning in predicting third graders' development of mathematics word-problem difficulty. In the fall, 122 third-grade students were assessed on a test of math word-problem skill and DA of algebraic learning. In the spring, they were assessed on…
Using Cognitive Tutor Software in Learning Linear Algebra Word Concept
ERIC Educational Resources Information Center
Yang, Kai-Ju
2015-01-01
This paper reports on a study of twelve 10th grade students using Cognitive Tutor, a math software program, to learn linear algebra word concept. The study's purpose was to examine whether students' mathematics performance as it is related to using Cognitive Tutor provided evidence to support Koedlinger's (2002) four instructional principles used…
Strategic differences in algebraic problem solving: neuroanatomical correlates.
Lee, Kerry; Lim, Zee Ying; Yeong, Stephanie H M; Ng, Swee Fong; Venkatraman, Vinod; Chee, Michael W L
2007-06-25
In this study, we built on previous neuroimaging studies of mathematical cognition and examined whether the same cognitive processes are engaged by two strategies used in algebraic problem solving. We focused on symbolic algebra, which uses alphanumeric equations to represent problems, and the model method, which uses pictorial representation. Eighteen adults, matched on academic proficiency and competency in the two methods, transformed algebraic word problems into equations or models, and validated presented solutions. Both strategies were associated with activation of areas linked to working memory and quantitative processing. These included the left frontal gyri, and bilateral activation of the intraparietal sulci. Contrasting the two strategies, the symbolic method activated the posterior superior parietal lobules and the precuneus. These findings suggest that the two strategies are effected using similar processes but impose different attentional demands.
Identification of Strategies Used by Fifth Graders To Solve Mathematics Word Problems.
ERIC Educational Resources Information Center
Palomares, Julio Cesar Arteaga; Hernandez, Jose Guzman
When students confront arithmetic or algebraic word problems, they develop ideas and notations during the processes of solving them by using various arithmetic strategies. Those ideas and notations are the basis for solving that type of problems. Is it possible to aid the development of students' algebraic thinking during their transition from…
Word Problems: A "Meme" for Our Times.
ERIC Educational Resources Information Center
Leamnson, Robert N.
1996-01-01
Discusses a novel approach to word problems that involves linear relationships between variables. Argues that working stepwise through intermediates is the way our minds actually work and therefore this should be used in solving word problems. (JRH)
Mathematical Tasks without Words and Word Problems: Perceptions of Reluctant Problem Solvers
ERIC Educational Resources Information Center
Holbert, Sydney Margaret
2013-01-01
This qualitative research study used a multiple, holistic case study approach (Yin, 2009) to explore the perceptions of reluctant problem solvers related to mathematical tasks without words and word problems. Participants were given a choice of working a mathematical task without words or a word problem during four problem-solving sessions. Data…
Teaching Conceptual Model-Based Word Problem Story Grammar to Enhance Mathematics Problem Solving
ERIC Educational Resources Information Center
Xin, Yan Ping; Wiles, Ben; Lin, Yu-Ying
2008-01-01
Borrowing the concept of story grammar from reading comprehension literature, the purpose of this study was to examine the effect of teaching "word problem (WP) story grammar" on arithmetic WP solving that emphasizes the algebraic expression of mathematical relations in conceptual models. Participants were five students in Grades 4 and 5 with or…
ERIC Educational Resources Information Center
Hernandez, Andrea C.
2013-01-01
This dissertation analyzes differences found in Spanish-speaking middle school and high school students in algebra-based problem solving. It identifies the accuracy differences between word problems presented in English, Spanish and numerically based problems. The study also explores accuracy differences between each subgroup of Spanish-speaking…
Strategies for Solving Word Problems in Science.
ERIC Educational Resources Information Center
Garrigan, George A.
1997-01-01
Reviews the approaches presented in the Self-Paced Study of Strategies Useful for Solving Word Problems in the Physical and Biological Sciences that can be used by students to successfully solve word problems encountered in any entry-level science course. Describes the topics covered in five "study sessions" that allow the students to practice the…
Word Frequency, Function Words and the Second Gavagai Problem
ERIC Educational Resources Information Center
Hochmann, Jean-Remy
2013-01-01
The classic gavagai problem exemplifies the difficulty to identify the referent of a novel word uttered in a foreign language. Here, we consider the reverse problem: identifying the referential part of a label. Assuming "gavagai" indicates a rabbit in a foreign language, it may very well mean ""a" rabbit" or ""that" rabbit". How can a learner know…
Rees algebras, Monomial Subrings and Linear Optimization Problems
NASA Astrophysics Data System (ADS)
Dupont, Luis A.
2010-06-01
In this thesis we are interested in studying algebraic properties of monomial algebras, that can be linked to combinatorial structures, such as graphs and clutters, and to optimization problems. A goal here is to establish bridges between commutative algebra, combinatorics and optimization. We study the normality and the Gorenstein property-as well as the canonical module and the a-invariant-of Rees algebras and subrings arising from linear optimization problems. In particular, we study algebraic properties of edge ideals and algebras associated to uniform clutters with the max-flow min-cut property or the packing property. We also study algebraic properties of symbolic Rees algebras of edge ideals of graphs, edge ideals of clique clutters of comparability graphs, and Stanley-Reisner rings.
Numerical stability in problems of linear algebra.
NASA Technical Reports Server (NTRS)
Babuska, I.
1972-01-01
Mathematical problems are introduced as mappings from the space of input data to that of the desired output information. Then a numerical process is defined as a prescribed recurrence of elementary operations creating the mapping of the underlying mathematical problem. The ratio of the error committed by executing the operations of the numerical process (the roundoff errors) to the error introduced by perturbations of the input data (initial error) gives rise to the concept of lambda-stability. As examples, several processes are analyzed from this point of view, including, especially, old and new processes for solving systems of linear algebraic equations with tridiagonal matrices. In particular, it is shown how such a priori information can be utilized as, for instance, a knowledge of the row sums of the matrix. Information of this type is frequently available where the system arises in connection with the numerical solution of differential equations.
Automatic Item Generation of Probability Word Problems
ERIC Educational Resources Information Center
Holling, Heinz; Bertling, Jonas P.; Zeuch, Nina
2009-01-01
Mathematical word problems represent a common item format for assessing student competencies. Automatic item generation (AIG) is an effective way of constructing many items with predictable difficulties, based on a set of predefined task parameters. The current study presents a framework for the automatic generation of probability word problems…
Maximum/Minimum Problems Solved Using an Algebraic Way
ERIC Educational Resources Information Center
Modica, Erasmo
2010-01-01
This article describes some problems of the maximum/minimum type, which are generally solved using calculus at secondary school, but which here are solved algebraically. We prove six algebraic properties and then apply them to this kind of problem. This didactic approach allows pupils to solve these problems even at the beginning of secondary…
ERIC Educational Resources Information Center
Lee, Kerry; Khng, Kiat Hui; Ng, Swee Fong; Ng Lan Kong, Jeremy
2013-01-01
In Singapore, primary school students are taught to use bar diagrams to represent known and unknown values in algebraic word problems. However, little is known about students' understanding of these graphical representations. We investigated whether students use and think of the bar diagrams in a concrete or a more abstract fashion. We also…
Recognizing Similarities between Fraction Word Problems.
ERIC Educational Resources Information Center
Hardiman, Pamela Thibodeau
Deciding how to approach a word problem for solution is a critical stage of problem solving, and is the stage which frequently presents considerable difficulty for novices. Do novices use the same information that experts do in deciding that two problems would be solved similarly? This set of four studies indicates that novices rely more on…
Powell, Sarah R; Fuchs, Lynn S; Cirino, Paul T; Fuchs, Douglas; Compton, Donald L; Changas, Paul C
2015-07-01
The focus of the present study was enhancing word-problem and calculation achievement in ways that support pre-algebraic thinking among 2(nd)-grade students at risk for mathematics difficulty. Intervention relied on a multi-tier support system (i.e., responsiveness-to-intervention or RTI) in which at-risk students participate in general classroom instruction and receive supplementary small-group tutoring. Participants were 265 students in 110 classrooms in 25 schools. Teachers were randomly assigned to 3 conditions: calculation RTI, word-problem RTI, and business-as-usual control. Intervention lasted 17 weeks. Multilevel modeling indicated that calculation RTI improved calculation but not word-problem outcomes; word-problem RTI enhanced proximal word-problem outcomes as well as performance on some calculation outcomes; and word-problem RTI provided a stronger route than calculation RTI to pre-algebraic knowledge.
Algebraic Thinking: A Problem Solving Approach
ERIC Educational Resources Information Center
Windsor, Will
2010-01-01
Algebraic thinking is a crucial and fundamental element of mathematical thinking and reasoning. It initially involves recognising patterns and general mathematical relationships among numbers, objects and geometric shapes. This paper will highlight how the ability to think algebraically might support a deeper and more useful knowledge, not only of…
Clifford algebra approach to the coincidence problem for planar lattices.
Rodríguez, M A; Aragón, J L; Verde-Star, L
2005-03-01
The problem of coincidences of planar lattices is analyzed using Clifford algebra. It is shown that an arbitrary coincidence isometry can be decomposed as a product of coincidence reflections and this allows planar coincidence lattices to be characterized algebraically. The cases of square, rectangular and rhombic lattices are worked out in detail. One of the aims of this work is to show the potential usefulness of Clifford algebra in crystallography. The power of Clifford algebra for expressing geometric ideas is exploited here and the procedure presented can be generalized to higher dimensions.
Fuchs, Lynn S; Compton, Donald L; Fuchs, Douglas; Hollenbeck, Kurstin N; Craddock, Caitlin F; Hamlett, Carol L
2008-11-01
Dynamic assessment (DA) involves helping students learn a task and indexing responsiveness to that instruction as a measure of learning potential. The purpose of this study was to explore the utility of a DA of algebraic learning in predicting 3(rd) graders' development of mathematics problem solving. In the fall, 122 3(rd)-grade students were assessed on language, nonverbal reasoning, attentive behavior, calculations, word-problem skill, and DA. On the basis of random assignment, students received 16 weeks of validated instruction on word problems or received 16 weeks of conventional instruction on word problems. Then, students were assessed on word-problem measures proximal and distal to instruction. Structural equation measurement models showed that DA measured a distinct dimension of pretreatment ability and that proximal and distal word-problem measures were needed to account for outcome. Structural equation modeling showed that instruction (conventional vs. validated) was sufficient to account for math word-problem outcome proximal to instruction; by contrast, language, pretreatment math skill, and DA were needed to forecast learning on word-problem outcomes more distal to instruction. Findings are discussed in terms of responsiveness-to-intervention models for preventing and identifying learning disabilities.
Fuchs, Lynn S.; Compton, Donald L.; Fuchs, Douglas; Hollenbeck, Kurstin N.; Craddock, Caitlin F.; Hamlett, Carol L.
2008-01-01
Dynamic assessment (DA) involves helping students learn a task and indexing responsiveness to that instruction as a measure of learning potential. The purpose of this study was to explore the utility of a DA of algebraic learning in predicting 3rd graders’ development of mathematics problem solving. In the fall, 122 3rd-grade students were assessed on language, nonverbal reasoning, attentive behavior, calculations, word-problem skill, and DA. On the basis of random assignment, students received 16 weeks of validated instruction on word problems or received 16 weeks of conventional instruction on word problems. Then, students were assessed on word-problem measures proximal and distal to instruction. Structural equation measurement models showed that DA measured a distinct dimension of pretreatment ability and that proximal and distal word-problem measures were needed to account for outcome. Structural equation modeling showed that instruction (conventional vs. validated) was sufficient to account for math word-problem outcome proximal to instruction; by contrast, language, pretreatment math skill, and DA were needed to forecast learning on word-problem outcomes more distal to instruction. Findings are discussed in terms of responsiveness-to-intervention models for preventing and identifying learning disabilities. PMID:19884957
ERIC Educational Resources Information Center
Xin, Yan Ping; Si, Luo; Hord, Casey; Zhang, Dake; Cetinas, Suleyman; Park, Joo Young
2012-01-01
The study explored the effects of a computer-assisted COnceptual Model-based Problem-Solving (COMPS) program on multiplicative word-problem-solving performance of students with learning disabilities or difficulties. The COMPS program emphasizes mathematical modeling with algebraic expressions of relations. Participants were eight fourth and fifth…
Hoover, Jerome D; Healy, Alice F
2017-02-14
The classic bat-and-ball problem is used widely to measure biased and correct reasoning in decision-making. University students overwhelmingly tend to provide the biased answer to this problem. To what extent might reasoners be led to modify their judgement, and, more specifically, is it possible to facilitate problem solution by prompting participants to consider the problem from an algebraic perspective? One hundred ninety-seven participants were recruited to investigate the effect of algebraic cueing as a debiasing strategy on variants of the bat-and-ball problem. Participants who were cued to consider the problem algebraically were significantly more likely to answer correctly relative to control participants. Most of this cueing effect was confined to a condition that required participants to solve isomorphic algebra equations corresponding to the structure of bat-and-ball question types. On a subsequent critical question with differing item and dollar amounts presented without a cue, participants were able to generalize the learned information to significantly reduce overall bias. Math anxiety was also found to be significantly related to bat-and-ball problem accuracy. These results suggest that, under specific conditions, algebraic reasoning is an effective debiasing strategy on bat-and-ball problem variants, and provide the first documented evidence for the influence of math anxiety on Cognitive Reflection Test performance.
Inverse Modelling Problems in Linear Algebra Undergraduate Courses
ERIC Educational Resources Information Center
Martinez-Luaces, Victor E.
2013-01-01
This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…
ERIC Educational Resources Information Center
Xin, Yan Ping
2008-01-01
The purpose of this study was to examine the effects of a schema-based instructional strategy that emphasizes prealgebraic conceptualization of multiplicative relations on solving arithmetic word problems with elementary students with learning disabilities or problems (LP). Introducing symbolic representation and algebraic thinking in earlier…
How Problem Solving Can Develop an Algebraic Perspective of Mathematics
ERIC Educational Resources Information Center
Windsor, Will
2011-01-01
SProblem solving has a long and successful history in mathematics education and is valued by many teachers as a way to engage and facilitate learning within their classrooms. The potential benefit for using problem solving in the development of algebraic thinking is that "it may broaden and develop students' mathematical thinking beyond the…
Problem Solving Concretely with the Word "Like"
ERIC Educational Resources Information Center
Yee, Sean
2013-01-01
While the average teenager's conversation may seem inundated with the word "like", in the mathematics classroom, teenagers use it with purpose. Linguists study the word "like" to understand and categorize comparative statements. By overlapping linguistics and mathematics education within the frame of cognitive science, this study found that high…
Algebraic Methods Applied to Network Reliability Problems. Revision.
1986-09-01
RD-RIBs 38? ALGEBRAIC METHODS APPLIED TO NETHORK RELIABILITY 1/1 PROBLEMS REVISIOU(U) CLEMSON UNIV SC DEPT OF MATEMATICAL SCIENCES D R SHIER ET AL...class of directed networks, Oper. Res., 32 (1984), pp. 493-515. -2 " 16 [3] A. AGRAWAL AND A. SATYANARAYANA, Network reliability analysis using 2...Networks, 13 (1983), pp. 107-120. [20] A. SATYANARAYANA AND A. PRABHAKAR, A new topological formula and rapid algorithm for reliability analysis of complex
Language and modeling word problems in mathematics among bilinguals.
Bernardo, Allan B I
2005-09-01
The study was conducted to determine whether the language of math word problems would affect how Filipino-English bilingual problem solvers would model the structure of these word problems. Modeling the problem structure was studied using the problem-completion paradigm, which involves presenting problems without the question. The paradigm assumes that problem solvers can infer the appropriate question of a word problem if they correctly grasp its problem structure. Arithmetic word problems in Filipino and English were given to bilingual students, some of whom had Filipino as a first language and others who had English as a first language. The problem-completion data and solution data showed similar results. The language of the problem had no effect on problem-structure modeling. The results were discussed in relation to a more circumscribed view about the role of language in word problem solving among bilinguals. In particular, the results of the present study showed that linguistic factors do not affect the more mathematically abstract components of word problem solving, although they may affect the other components such as those related to reading comprehension and understanding.
Bilingual College Writers' Collaborative Writing of Word Problems
ERIC Educational Resources Information Center
Esquinca, Alberto
2011-01-01
Numerous researchers have studied bilingual students' performance on word problems given that reading and writing these requires that they draw on linguistic and mathematical knowledge (Barwell, 2009a, 2009b). Some researchers have studied how bilinguals write word problems in the second language, but few have considered how bilinguals use their…
Modelling Reality in Mathematics Classrooms: The Case of Word Problems.
ERIC Educational Resources Information Center
Greer, Brian
1997-01-01
Word problems as used within the culture of mathematics education often promote a suspension of sense making by the students. In the papers in this issue, an alternative conceptualization of word problems is proposed that calls for mathematical modelling that takes real world knowledge into account. (SLD)
Cognitive load and modelling of an algebra problem
NASA Astrophysics Data System (ADS)
Chinnappan, Mohan
2010-09-01
In the present study, I examine a modelling strategy as employed by a teacher in the context of an algebra lesson. The actions of this teacher suggest that a modelling approach will have a greater impact on enriching student learning if we do not lose sight of the need to manage associated cognitive loads that could either aid or hinder the integration of core concepts with processes that are at play. Results here also show that modelling a problem that is set within an authentic context helps learners develop a better appreciation of variables and relations that constitute the model. The teacher's scaffolding actions revealed the use of strategies that foster the development of connected, meaningful and more useable algebraic knowledge.
Reading Coaching for Math Word Problems
ERIC Educational Resources Information Center
Edwards, Sharon A.; Maloy, Robert W.; Anderson, Gordon
2009-01-01
"Math is language, too," Phyllis and David Whitin (2000) remind everyone in their informative book about reading and writing in the mathematics classroom. This means that students in elementary school math classes are learning two distinct, yet related languages--one of numbers, the other of words. These languages of numbers and words…
Algebraic and Computational Aspects of Network Reliability and Problems.
1986-07-15
7 -A175 075 ALGEBRAIC AND COMPUTATIONAL ASPECTS OF KETUORK / IRELIABILITY AND PROBLEMS(U) CLEMSON UNIV SC D SHIER 15 JUL 86 AFOSR-TR-86-2115 AFOSR...MONITORING ORGANIZATION I, afpplhcable) Clemson University AFOSR/NM 6C. ADDRESS (City. State and ZIP Codej 7b. ADDRESS (City. State and ZIP Code) Mlartin...Hall Bldg 410 Clemson , SC 29634-1907 Bolling AFB OC 20332-6448 S& NAME OF FUNOING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION
The Intricacies of Assessing Numeracy: Investigating Alternatives to Word Problems
ERIC Educational Resources Information Center
Hoogland, Kees; Pepin, Birgit
2016-01-01
Word problems are often used to assess numeracy, despite the growing number of reports on difficulties students encounter with this genre of mathematical problems. These reports contend that a large number of difficulties are influenced by the way the problems are presented, that is, with verbal representations of the problem situations. These…
Effects of Numerical Surface Form in Arithmetic Word Problems
ERIC Educational Resources Information Center
Orrantia, Josetxu; Múñez, David; San Romualdo, Sara; Verschaffel, Lieven
2015-01-01
Adults' simple arithmetic performance is more efficient when operands are presented in Arabic digit (3 + 5) than in number word (three + five) formats. An explanation provided is that visual familiarity with digits is higher respect to number words. However, most studies have been limited to single-digit addition and multiplication problems. In…
Making Sense Out of Word Problems.
ERIC Educational Resources Information Center
Burns, Marilyn; Richardson, Kathy
1981-01-01
Providing students with realistic problems will facilitate a better understanding of and reason for computation. Specific suggestions for introducing and for increasing problem-solving skills are described. (CJ)
Kindergarten Students Solving Mathematical Word Problems
ERIC Educational Resources Information Center
Johnson, Nickey Owen
2013-01-01
The purpose of this study was to explore problem solving with kindergarten students. This line of inquiry is highly significant given that Common Core State Standards emphasize deep, conceptual understanding in mathematics as well as problem solving in kindergarten. However, there is little research on problem solving with kindergarten students.…
A Problem-Solving Alternative to Using Key Words
ERIC Educational Resources Information Center
Clement, Lisa L.; Bernhard, Jamal Z.
2005-01-01
This article describes the pitfalls of using key words to support students when problem solving, and provides an alternative way (quantitative analysis) to support students' sense-making. (Contains 1 table and 2 figures.)
Arithmetic Word Problem Solving: A Situation Strategy First Framework
ERIC Educational Resources Information Center
Brissiaud, Remi; Sander, Emmanuel
2010-01-01
Before instruction, children solve many arithmetic word problems with informal strategies based on the situation described in the problem. A Situation Strategy First framework is introduced that posits that initial representation of the problem activates a situation-based strategy even after instruction: only when it is not efficient for providing…
Comprehension of Arithmetic Word Problems: Evidence from Students' Eye Fixations.
ERIC Educational Resources Information Center
Hegarty, Mary; And Others
1992-01-01
Eye-fixation analysis of 38 undergraduates allowed identification of phases in solution of arithmetic word problems and location of students' difficulties with inconsistent problems within the phases. Results indicate that the locus of the inconsistency effect lies outside the execution phase of problem solving. (SLD)
Arithmetic Word-Problem-Solving in Huntington's Disease
ERIC Educational Resources Information Center
Allain, P.; Verny, C.; Aubin, G.; Pinon, K.; Bonneau, D.; Dubas, F.; Gall, D.L.
2005-01-01
The purpose of this study was to examine executive functioning in patients with Huntington's disease using an arithmetic word-problem-solving task including eight solvable problems of increasing complexity and four aberrant problems. Ten patients with Huntington's disease and 12 normal control subjects matched by age and education were tested.…
Language Repair Strategies in Bilingual Tutoring of Mathematics Word Problems
ERIC Educational Resources Information Center
Oliveira, Alandeom W.; Meskill, Carla; Judson, Darlene; Gregory, Karen; Rogers, Patterson; Imperial, Christopher J.; Casler-Failing, Shelli
2015-01-01
This study explores the "language repair strategies" (aimed at repairing communication problems) of two bilingual speakers during mathematics word problem tutoring sessions. Bilingual repair was shown to gradually shift from a linguistic to an epistemic focus during problem solving (i.e., communication became more conceptually focused…
A new algebra core for the minimal form' problem
Purtill, M.R. . Center for Communications Research); Oliveira, J.S.; Cook, G.O. Jr. )
1991-12-20
The demands of large-scale algebraic computation have led to the development of many new algorithms for manipulating algebraic objects in computer algebra systems. For instance, parallel versions of many important algorithms have been discovered. Simultaneously, more effective symbolic representations of algebraic objects have been sought. Also, while some clever techniques have been found for improving the speed of the algebraic simplification process, little attention has been given to the issue of restructuring expressions, or transforming them into minimal forms.'' By minimal form,'' we mean that form of an expression that involves a minimum number of operations. In a companion paper, we introduce some new algorithms that are very effective at finding minimal forms of expressions. These algorithms require algebraic and combinatorial machinery that is not readily available in most algebra systems. In this paper we describe a new algebra core that begins to provide the necessary capabilities.
Solving Math Word Problems: A Software Roundup.
ERIC Educational Resources Information Center
Eiser, Leslie
1988-01-01
Reviewed are 11 software packages for the Apple II computer designed to help teach elementary and secondary school children how to solve mathword problems. Included in the review are hardware requirements, price, grade level, use of graphics, kinds of problems, tools provided, strengths, and weaknesses of each program. (CW)
Primary School Students' Strategies in Early Algebra Problem Solving Supported by an Online Game
ERIC Educational Resources Information Center
van den Heuvel-Panhuizen, Marja; Kolovou, Angeliki; Robitzsch, Alexander
2013-01-01
In this study we investigated the role of a dynamic online game on students' early algebra problem solving. In total 253 students from grades 4, 5, and 6 (10-12 years old) used the game at home to solve a sequence of early algebra problems consisting of contextual problems addressing covarying quantities. Special software monitored the…
Overcoming the "Walls" Surrounding Word Problems
ERIC Educational Resources Information Center
Ponce, Gregorio A.; Garrison, Leslie
2004-01-01
Efforts are made to help students do better on mathematics problems without taking time from other class activities. An illustration of Mrs. Segura, a third-grade teacher at Sunflower Elementary School, is presented whose seventy percent students did not pass the fourth chapter test in mathematics.
Building Word Problems: What Does It Take?
ERIC Educational Resources Information Center
Barlow, Angela T.
2010-01-01
"The World Is Flat" (Friedman 2005) describes the globalization that advances in technology have imposed on the world economy in recent decades. For the U.S. to maintain its stature in the world, future citizens must be prepared to problem solve and apply their skills to new situations. These future citizens are sitting in elementary school…
ERIC Educational Resources Information Center
Panchyshyn, Robert; Enright, Brian
This research project was initiated to examine the vocabulary load contained in word problems appearing in basal mathematics textbooks through a study of word frequency. Five leading basal mathematics series were used. Every word, phrase or sentence that resulted in computation was included. A total of 476,674 words were identified. Information…
The role of fantasy contexts in word problems
NASA Astrophysics Data System (ADS)
Wiest, Lynda
2001-09-01
This paper reports on the efficacy of different contexts for word problems given to Grade Four and Grade Six students. In particular, the use of fantasy contexts were examined and compared with both adult and children/s real-world contexts. The study found that students expressed an interest in the fantasy contexts, and solved problems using these contexts as well as or better than real-world problems.
Practical algorithms for algebraic and logical correction in precedent-based recognition problems
NASA Astrophysics Data System (ADS)
Ablameyko, S. V.; Biryukov, A. S.; Dokukin, A. A.; D'yakonov, A. G.; Zhuravlev, Yu. I.; Krasnoproshin, V. V.; Obraztsov, V. A.; Romanov, M. Yu.; Ryazanov, V. V.
2014-12-01
Practical precedent-based recognition algorithms relying on logical or algebraic correction of various heuristic recognition algorithms are described. The recognition problem is solved in two stages. First, an arbitrary object is recognized independently by algorithms from a group. Then a final collective solution is produced by a suitable corrector. The general concepts of the algebraic approach are presented, practical algorithms for logical and algebraic correction are described, and results of their comparison are given.
Persistent and Pernicious Errors in Algebraic Problem Solving
ERIC Educational Resources Information Center
Booth, Julie L.; Barbieri, Christina; Eyer, Francie; Paré-Blagoev, E. Juliana
2014-01-01
Students hold many misconceptions as they transition from arithmetic to algebraic thinking, and these misconceptions can hinder their performance and learning in the subject. To identify the errors in Algebra I which are most persistent and pernicious in terms of predicting student difficulty on standardized test items, the present study assessed…
Contextual Analysis of Problems in Algebra I Textbooks.
ERIC Educational Resources Information Center
Rivers, Janelle
This qualitative study is a two-part analysis of first year algebra textbooks adopted for use in South Carolina. Part 1 examines the five books selected in the 1984 adoption. This comparison of first year algebra textbooks examined: (1) whether the textbook authors had adjusted the traditional context of math texts at this level to reflect…
Solving Our Algebra Problem: Getting All Students through Algebra I to Improve Graduation Rates
ERIC Educational Resources Information Center
Schachter, Ron
2013-01-01
graduation as well as admission to most colleges. But taking algebra also can turn into a pathway for failure, from which some students never recover. In 2010, a national U.S. Department of Education study…
Impact of Authenticity on Sense Making in Word Problem Solving
ERIC Educational Resources Information Center
Palm, Torulf
2008-01-01
The study presented in this paper seeks to investigate the impact of authenticity on the students' disposition to make necessary real world considerations in their word problem solving. The aim is also to gather information about the extent to which different reasons for the students' behaviors are responsible for not providing solutions that are…
Classroom Practices for Context of Mathematics Word Problems
ERIC Educational Resources Information Center
Chapman, Olive
2006-01-01
How do teachers conceptualize and deal with context of mathematics word problems in their teaching? This question is discussed based on a study of 14 experienced teachers at the elementary, junior high and senior high school levels. Bruner's notions of paradigmatic and narrative modes of knowing formed the basis of analysis of data from sources…
A Sense-Making Approach to Word Problems
ERIC Educational Resources Information Center
Nosegbe-Okoka, Clara
2004-01-01
This study describes a conceptual teaching approach that helps students make connections between their everyday activities and mathematical word problems. It includes a brief review of the importance of teaching for understanding and describes four principles of conceptual teaching: (1) use cooperative groups; (2) allow students enough time to act…
How to Do Math with Words: Learning Algebra through Peer Discussions
ERIC Educational Resources Information Center
Zahner, William C.
2011-01-01
This study investigates how two groups of bilingual algebra students reasoned about rate, slope, and linear functions during peer discussions. This investigation brings together and advances research that investigates issues at the intersection of collaborative learning, algebraic reasoning, and the use of mathematical discourse practices. A…
Martin, Shirley A; Bassok, Miriam
2005-04-01
Mathematical solutions to textbook word problems are correlated with semantic relations between the objects described in the problem texts. In particular, division problems usually involve functionally related objects (e.g., tulips-vases) and rarely involve categorically related objects (e.g., tulips-daisies). We examined whether middle school, high school, and college students use object relations when they solve division word problems (WP) or perform the less familiar task of representing verbal statements with algebraic equations (EQ). Both tasks involved multiplicative comparison statements with either categorically or functionally related objects (e.g., "four times as many cupcakes [commuters] as brownies [automobiles]"). Object relations affected the frequency of correct solutions in the WP task but not in the EQ task. In the latter task, object relations did affect the structure of nonalgebraic equation errors. We argue that students use object relations as "semantic cues" when they engage in the sense-making activity of mathematical modeling.
SYMBOLIC ALGEBRAIC MANIPULATION BY DIGITAL COMPUTER IN PROBLEMS OF CONTROL THEORY.
shown, using a FORMAC program. The advantages over the conventional root locus method are discussed. Areas of possible future use of FORMAC in algebraic problems of control theory are discussed. (Author)
Boonen, Anton J H; de Koning, Björn B; Jolles, Jelle; van der Schoot, Menno
2016-01-01
Successfully solving mathematical word problems requires both mental representation skills and reading comprehension skills. In Realistic Math Education (RME), however, students primarily learn to apply the first of these skills (i.e., representational skills) in the context of word problem solving. Given this, it seems legitimate to assume that students from a RME curriculum experience difficulties when asked to solve semantically complex word problems. We investigated this assumption under 80 sixth grade students who were classified as successful and less successful word problem solvers based on a standardized mathematics test. To this end, students completed word problems that ask for both mental representation skills and reading comprehension skills. The results showed that even successful word problem solvers had a low performance on semantically complex word problems, despite adequate performance on semantically less complex word problems. Based on this study, we concluded that reading comprehension skills should be given a (more) prominent role during word problem solving instruction in RME.
The Role of Conceptual Understanding in Solving Word Problems: Two-Step Problems.
ERIC Educational Resources Information Center
Quintero, Ana Helvia
This work studies the difficulties children have solving two-step word problems of a given structure (e.g., 7 lollypops/2 chocolate bars X 6 chocolate bars). Thirty-six children between the ages of 9 and 14 years were individually observed solving problems of the above type. Other tasks, repetition of the problem and model recognition, were used…
Excel Spreadsheets for Algebra: Improving Mental Modeling for Problem Solving
ERIC Educational Resources Information Center
Engerman, Jason; Rusek, Matthew; Clariana, Roy
2014-01-01
This experiment investigates the effectiveness of Excel spreadsheets in a high school algebra class. Students in the experiment group convincingly outperformed the control group on a post lesson assessment. The student responses, teacher observations involving Excel spreadsheet revealed that it operated as a mindtool, which formed the users'…
Application of symbolic and algebraic manipulation software in solving applied mechanics problems
NASA Technical Reports Server (NTRS)
Tsai, Wen-Lang; Kikuchi, Noboru
1993-01-01
As its name implies, symbolic and algebraic manipulation is an operational tool which not only can retain symbols throughout computations but also can express results in terms of symbols. This report starts with a history of symbolic and algebraic manipulators and a review of the literatures. With the help of selected examples, the capabilities of symbolic and algebraic manipulators are demonstrated. These applications to problems of applied mechanics are then presented. They are the application of automatic formulation to applied mechanics problems, application to a materially nonlinear problem (rigid-plastic ring compression) by finite element method (FEM) and application to plate problems by FEM. The advantages and difficulties, contributions, education, and perspectives of symbolic and algebraic manipulation are discussed. It is well known that there exist some fundamental difficulties in symbolic and algebraic manipulation, such as internal swelling and mathematical limitation. A remedy for these difficulties is proposed, and the three applications mentioned are solved successfully. For example, the closed from solution of stiffness matrix of four-node isoparametrical quadrilateral element for 2-D elasticity problem was not available before. Due to the work presented, the automatic construction of it becomes feasible. In addition, a new advantage of the application of symbolic and algebraic manipulation found is believed to be crucial in improving the efficiency of program execution in the future. This will substantially shorten the response time of a system. It is very significant for certain systems, such as missile and high speed aircraft systems, in which time plays an important role.
Projected implicit Runge-Kutta methods for differential-algebraic boundary value problems
Ascher, U. ); Petzoid, L. )
1990-09-01
Differential-algebraic boundary value problems arise in the modelling of singular optimal control problems and in parameter estimation for singular systems. A new class of numerical methods for these problems is introduced, and shown to overcome difficulties with previously defined numerical methods. 4 refs., 1 tab.
The Poincaré problem, algebraic integrability and dicritical divisors
NASA Astrophysics Data System (ADS)
Galindo, C.; Monserrat, F.
We solve the Poincaré problem for plane foliations with only one dicritical divisor. Moreover, in this case, we give a simple algorithm that decides whether a foliation has a rational first integral and computes it in the affirmative case. We also provide an algorithm to compute a rational first integral of prefixed genus g≠1 of any type of plane foliation F. When the number of dicritical divisors dic(F) is larger than 2, this algorithm depends on suitable families of invariant curves. When dic(F)=2, it proves that the degree of the rational first integral can be bounded only in terms of g, the degree of F and the local analytic type of the dicritical singularities of F. The degree d of a general integral invariant curve is less than or equal to 4. Therefore, the Poincaré problem is solved in this case. There exists a valueλ∈Z>0such thatPF:=|λΔF|is a pencil and the rational mapP2⋯→P1that it defines is a rational first integral ofF. Moreover λ is the minimum of the set{α∈Z>0|dim|αΔF|⩾1}. The above clause (b) supports a very simple algorithm, our forthcoming Algorithm 2, which decides about the existence of a rational first integral of F (and computes it in the positive case) whenever dic(F)=1. Other alternative algorithms are treated in Section 4. Our remaining main results are: Assume thatFhas a rational first integral of genus g. Then, there exists a bound on the degree of the first integral depending only on the degree ofF, the genus g and the local analytic type of the dicritical singularities ofF. There exists an algorithm to decide whetherFhas a rational first integral of genus g (and to compute it, in the affirmative case) whose inputs are: g, a homogeneous 1-form definingFand the minimal resolution of the dicritical singularities ofF. Assume thatFhas a rational first integral of genus g. Then there exists a bound on the degree of the first integral which depends on the degree ofF, the genus g, the local analytic type of the
Kalchev, D.; Ketelsen, C.; Vassilevski, P. S.
2013-11-07
Our paper proposes an adaptive strategy for reusing a previously constructed coarse space by algebraic multigrid to construct a two-level solver for a problem with nearby characteristics. Furthermore, a main target application is the solution of the linear problems that appear throughout a sequence of Markov chain Monte Carlo simulations of subsurface flow with uncertain permeability field. We demonstrate the efficacy of the method with extensive set of numerical experiments.
Fuchs, Lynn S.; Fuchs, Douglas
2016-01-01
The purpose of this study was to identify cognitive and linguistic predictors of word problems with versus without irrelevant information. The sample was 701 2nd-grade students who received no specialized intervention on word problems. In the fall, they were assessed on initial arithmetic and word-problem skill as well as language ability, working memory capacity, and processing speed; in the spring, they were tested on a word-problem measure that included items with versus without irrelevant information. Significant predictors common to both forms of word problems were initial arithmetic and word problem-solving skill as well as language and working memory. Nonverbal reasoning predicted word problems with irrelevant information, but not word problems without irrelevant information. Findings are discussed in terms of implications for intervention and future research. PMID:28190942
How Can One Learn Mathematical Word Problems in a Second Language? A Cognitive Load Perspective
ERIC Educational Resources Information Center
Moussa-Inaty, Jase; Causapin, Mark; Groombridge, Timothy
2015-01-01
Language may ordinarily account for difficulties in solving word problems and this is particularly true if mathematical word problems are taught in a language other than one's native language. Research into cognitive load may offer a clear theoretical framework when investigating word problems because memory, specifically working memory, plays a…
Teaching Algebra without Algebra
ERIC Educational Resources Information Center
Kalman, Richard S.
2008-01-01
Algebra is, among other things, a shorthand way to express quantitative reasoning. This article illustrates ways for the classroom teacher to convert algebraic solutions to verbal problems into conversational solutions that can be understood by students in the lower grades. Three reasonably typical verbal problems that either appeared as or…
On Development of a Problem Based Learning System for Linear Algebra with Simple Input Method
NASA Astrophysics Data System (ADS)
Yokota, Hisashi
2011-08-01
Learning how to express a matrix using a keyboard inputs requires a lot of time for most of college students. Therefore, for a problem based learning system for linear algebra to be accessible for college students, it is inevitable to develop a simple method for expressing matrices. Studying the two most widely used input methods for expressing matrices, a simpler input method for expressing matrices is obtained. Furthermore, using this input method and educator's knowledge structure as a concept map, a problem based learning system for linear algebra which is capable of assessing students' knowledge structure and skill is developed.
NASA Astrophysics Data System (ADS)
Ismagilov, R. S.
1988-02-01
Two problems in measure theory are considered: that of the tail C*-algebra of a random walk on a group, and that of ergodicity of a skew-product action. These problems are solved in a uniform way by using Banach algebras and harmonic analysis on a group. Bibliography: 22 titles.
The Impossibility of "Real-Life" Word Problems (According to Bakhtin, Lacan, Zizek and Baudrillard)
ERIC Educational Resources Information Center
Gerofsky, Susan
2010-01-01
In recent years a great deal of work on mathematical word problems has focused on efforts to bring more of "real life" into the problems themselves and students' uptake of these problems. Following on from earlier studies of the word problem as a pedagogical and literary genre, the author argues that we cannot unproblematically assume an ability…
Alternative Representations for Algebraic Problem Solving: When Are Graphs Better than Equations?
ERIC Educational Resources Information Center
Mielicki, Marta K.; Wiley, Jennifer
2016-01-01
Successful algebraic problem solving entails adaptability of solution methods using different representations. Prior research has suggested that students are more likely to prefer symbolic solution methods (equations) over graphical ones, even when graphical methods should be more efficient. However, this research has not tested how representation…
Visual, Algebraic and Mixed Strategies in Visually Presented Linear Programming Problems.
ERIC Educational Resources Information Center
Shama, Gilli; Dreyfus, Tommy
1994-01-01
Identified and classified solution strategies of (n=49) 10th-grade students who were presented with linear programming problems in a predominantly visual setting in the form of a computerized game. Visual strategies were developed more frequently than either algebraic or mixed strategies. Appendix includes questionnaires. (Contains 11 references.)…
Muehlhoff, Rainer
2011-02-15
Existence and uniqueness of advanced and retarded fundamental solutions (Green's functions) and of global solutions to the Cauchy problem is proved for a general class of first order linear differential operators on vector bundles over globally hyperbolic Lorentzian manifolds. This is a core ingredient to CAR-/CCR-algebraic constructions of quantum field theories on curved spacetimes, particularly for higher spin field equations.
ERIC Educational Resources Information Center
Fuchs, Lynn S.; Compton, Donald L.; Fuchs, Douglas; Hollenbeck, Kurstin N.; Craddock, Caitlin F.; Hamlett, Carol L.
2008-01-01
Dynamic assessment (DA) involves helping students learn a task and indexing responsiveness to that instruction as a measure of learning potential. The purpose of this study was to explore the utility of a DA of algebraic learning in predicting third graders' development of mathematics problem solving. In the fall, 122 third-grade students were…
ERIC Educational Resources Information Center
Schumann, Heinz; Green, David
2000-01-01
Discusses software for geometric construction, measurement, and calculation, and software for numerical calculation and symbolic analysis that allows for new approaches to the solution of geometric problems. Illustrates these computer-aided graphical, numerical, and algebraic methods of solution and discusses examples using the appropriate choice…
The algebraic multigrid projection for eigenvalue problems; backrotations and multigrid fixed points
NASA Technical Reports Server (NTRS)
Costiner, Sorin; Taasan, Shlomo
1994-01-01
The periods of the theorem for the algebraic multigrid projection (MGP) for eigenvalue problems, and of the multigrid fixed point theorem for multigrid cycles combining MGP with backrotations, are presented. The MGP and the backrotations are central eigenvector separation techniques for multigrid eigenvalue algorithms. They allow computation on coarse levels of eigenvalues of a given eigenvalue problem, and are efficient tools in the computation of eigenvectors.
Student-Controlled Metacognitive Training for Solving Word Problems in Primary School Mathematics
ERIC Educational Resources Information Center
Jacobse, Annemieke E.; Harskamp, Egbert G.
2009-01-01
Solving word problems plays an important role in primary school mathematics education. However, many students have difficulty solving such tasks. In order to improve students' metacognitive and problem-solving skills, a computer program was developed consisting of word problems and metacognitive hints. The experimental group of Grade 5 (n = 23)…
ERIC Educational Resources Information Center
Cetintas, Suleyman; Si, Luo; Xin, Yan Ping; Zhang, Dake; Park, Joo Young; Tzur, Ron
2010-01-01
Estimating the difficulty level of math word problems is an important task for many educational applications. Identification of relevant and irrelevant sentences in math word problems is an important step for calculating the difficulty levels of such problems. This paper addresses a novel application of text categorization to identify two types of…
The Performance of Chinese Primary School Students on Realistic Arithmetic Word Problems
ERIC Educational Resources Information Center
Xin, Ziqiang; Lin, Chongde; Zhang, Li; Yan, Rong
2007-01-01
Compared with standard arithmetic word problems demanding only the direct use of number operations and computations, realistic problems are harder to solve because children need to incorporate "real-world" knowledge into their solutions. Using the realistic word problem testing materials developed by Verschaffel, De Corte, and Lasure…
A Comparison of Two Mathematics Problem-Solving Strategies: Facilitate Algebra-Readiness
ERIC Educational Resources Information Center
Xin, Yan Ping; Zhang, Dake; Park, Joo Young; Tom, Kinsey; Whipple, Amanda; Si, Luo
2011-01-01
The authors compared a conceptual model-based problem-solving (COMPS) approach with a general heuristic instructional approach for teaching multiplication-division word-problem solving to elementary students with learning problems (LP). The results indicate that only the COMPS group significantly improved, from pretests to posttests, their…
Does Understanding Relational Terminology Mediate Effects of Intervention on Compare Word Problems?
ERIC Educational Resources Information Center
Schumacher, Robin F.; Fuchs, Lynn S.
2012-01-01
The purpose of this study was to assess whether understanding relational terminology (i.e., "more, less," and "fewer") mediates the effects of intervention on compare word problems. Second-grade classrooms (N = 31) were randomly assigned to one of three conditions: researcher-designed word-problem intervention, researcher-designed calculation…
Cognitive Strategy Instruction for Teaching Word Problems to Primary-Level Struggling Students
ERIC Educational Resources Information Center
Pfannenstiel, Kathleen Hughes; Bryant, Diane Pedrotty; Bryant, Brian R.; Porterfield, Jennifer A.
2015-01-01
Students with mathematics difficulties and learning disabilities (LD) typically struggle with solving word problems. These students often lack knowledge about efficient, cognitive strategies to utilize when solving word problems. Cognitive strategy instruction has been shown to be effective in teaching struggling students how to solve word…
ERIC Educational Resources Information Center
Bae, Young Seh
2013-01-01
Mathematical Word Problem Solving of Students with Autistic Spectrum Disorders and Students with Typical Development Young Seh Bae This study investigated mathematical word problem solving and the factors associated with the solution paths adopted by two groups of participants (N=40), students with autism spectrum disorders (ASDs) and typically…
Duality of Mathematical Thinking When Making Sense of Simple Word Problems: Theoretical Essay
ERIC Educational Resources Information Center
Polotskaia, Elena; Savard, Annie; Freiman, Viktor
2015-01-01
This essay proposes a reflection on the learning difficulties and teaching approaches associated with arithmetic word problem solving. We question the development of word problem solving skills in the early grades of elementary school. We are trying to revive the discussion because first, the knowledge in question--reversibility of arithmetic…
Assessing the Effect of Language Demand in Bundles of Math Word Problems
ERIC Educational Resources Information Center
Banks, Kathleen; Jeddeeni, Ahmad; Walker, Cindy M.
2016-01-01
Differential bundle functioning (DBF) analyses were conducted to determine whether seventh and eighth grade second language learners (SLLs) had lower probabilities of answering bundles of math word problems correctly that had heavy language demands, when compared to non-SLLs of equal math proficiency. Math word problems on each of four test forms…
ERIC Educational Resources Information Center
Beitzel, Brian D.; Staley, Richard K.; DuBois, Nelson F.
2011-01-01
Previous research has cast doubt on the efficacy of utilizing external representations as an aid to solving word problems. The present study replicates previous findings that concrete representations hinder college students' ability to solve probability word problems, and extends those findings to apply to a multimedia instructional context. Our…
ERIC Educational Resources Information Center
Poch, Apryl L.; van Garderen, Delinda; Scheuermann, Amy M.
2015-01-01
A visual representation, such as a diagram, can be a powerful strategy for solving mathematical word problems. However, using a representation to solve mathematical word problems is not as simple as it seems! Many students with learning disabilities struggle to use a diagram effectively and efficiently. This article provides a framework for…
ERIC Educational Resources Information Center
Akinsola, Mojeed K.; Awofala, Adeneye O. A.
2009-01-01
This study investigated the effect of personalized print-based instruction on the achievement and self-efficacy regarding mathematics word problems of 320 senior secondary students in Nigeria. The moderator effect of gender was also examined on independent variable (personalization) and dependent variables (mathematics word problem achievement and…
Word Problem Strategy for Latino English Language Learners at Risk for Math Disabilities
ERIC Educational Resources Information Center
Orosco, Michael J.
2014-01-01
"English Language Learners" (ELLs) at risk for "math disabilities" (MD) are challenged in solving word problems for numerous reasons such as (a) learning English as a second language, (b) limited experience using math vocabulary, and (c) lack of strategies to improve word-problem-solving skills. As a result of these…
ERIC Educational Resources Information Center
Bae, Young Seh; Chiang, Hsu-Min; Hickson, Linda
2015-01-01
This study examined the difference between children with autism spectrum disorders (ASD) and children with typical development (TD) in mathematical word problem solving ability and the factors associated with these children's word problem-solving ability. A total of 20 children with ASD and 20 children with TD participated in this study.…
Does Calculation or Word-Problem Instruction Provide a Stronger Route to Prealgebraic Knowledge?
ERIC Educational Resources Information Center
Fuchs, Lynn S.; Powell, Sarah R.; Cirino, Paul T.; Schumacher, Robin F.; Marrin, Sarah; Hamlett, Carol L.; Fuchs, Douglas; Compton, Donald L.; Changas, Paul C.
2014-01-01
The focus of this study was connections among 3 aspects of mathematical cognition at 2nd grade: calculations, word problems, and prealgebraic knowledge. We extended the literature, which is dominated by correlational work, by examining whether intervention conducted on calculations or word problems contributes to improved performance in the other…
Tense and Aspect in Word Problems about Motion: Diagram, Gesture, and the Felt Experience of Time
ERIC Educational Resources Information Center
de Freitas, Elizabeth; Zolkower, Betina
2015-01-01
Word problems about motion contain various conjugated verb forms. As students and teachers grapple with such word problems, they jointly operationalize diagrams, gestures, and language. Drawing on findings from a 3-year research project examining the social semiotics of classroom interaction, we show how teachers and students use gesture and…
Young Filipino Students Making Sense of Arithmetic Word Problems in English
ERIC Educational Resources Information Center
Bautista, Debbie; Mulligan, Joanne; Mitchelmore, Michael
2009-01-01
Young Filipino children are expected to solve mathematical word problems in English, a task which they typically encounter only in schools. In this exploratory study, task-based interviews were conducted with seven Filipino children from a public school. The children were asked to read and solve addition and subtraction word problems in English or…
Helping Students with Emotional and Behavioral Disorders Solve Mathematics Word Problems
ERIC Educational Resources Information Center
Alter, Peter
2012-01-01
The author presents a strategy for helping students with emotional and behavioral disorders become more proficient at solving math word problems. Math word problems require students to go beyond simple computation in mathematics (e.g., adding, subtracting, multiplying, and dividing) and use higher level reasoning that includes recognizing relevant…
A Comparative Analysis of Word Problems in Selected United States and Russian First Grade Textbooks
ERIC Educational Resources Information Center
Grishchenko, Svetlana
2009-01-01
The purpose of this study was to explore word problems as a subject matter in mathematics textbook curricula. The motivation for the study derived from the following evidence: (a) American students find some word problems are more difficult than others (Garcia, Jimenez, & Hess, 2006; Riley & Green, 1988; Stern, 2001), and (b) one of the…
Conditions of Reading Comprehension Which Facilitate Word Problems for Second Language Learners.
ERIC Educational Resources Information Center
Basurto, Imelda
1999-01-01
Reviews the conditions for reading comprehension applicable to solving math word problems. Describes the approaches used by three bilingual teachers to enhance the problem-solving skills of second language learners. (NH)
A Strategy for Assessing Problems in Word Recognition among Dyslexics.
ERIC Educational Resources Information Center
Hoien, Torleiv; Lundberg, Ingvar
1989-01-01
This article argues for the importance of studying word-recognition strategies in the assessment of dyslexia. The dual-route model is defended despite attacks from supporters of computational models of modern connectionism. A computer-based diagnostic test battery is described and illustrated via 2 case studies of 15-year-old dyslexic boys in…
Discontinuous initial value problems for functional differential-algebraic equations of mixed type
NASA Astrophysics Data System (ADS)
d'Albis, H.; Augeraud-Véron, E.; Hupkes, H. J.
We study the well-posedness of initial value problems for nonlinear functional differential-algebraic equations of mixed type. We are interested in solutions to such problems that admit a single jump discontinuity at time zero. We focus specially on the question whether unstable equilibria can be stabilized by appropriately choosing the size of the jump discontinuity. We illustrate our techniques by analytically studying an economic model for the interplay between inflation and interest rates. In particular, we investigate under which circumstances the central bank can prevent runaway inflation by appropriately hiking the interest rate.
The Gender Differential Effects of a Procedural Plan for Solving Mathematical Word Problems.
ERIC Educational Resources Information Center
Zambo, Ron; Hess, Robert
The majority of research investigating gender-related differences in problem-solving ability has focused on the product of word problem solving--the problem solution. This paper reports an investigation of potential gender-related effects on sixth-graders of an explicitly stated problem-solving plan. Two versions of the test were given: the…
ERIC Educational Resources Information Center
Lubin, Amélie; Vidal, Julie; Lanoë, Céline; Houdé, Olivier; Borst, Grégoire
2013-01-01
Solving simple arithmetic word problems is a major ability that children must acquire throughout the primary-grade mathematics curriculum. However, this skill is often challenging for them. For instance, "unknown referent problems" are more difficult to solve than "unknown compare problems." In unknown compare problems, the…
Some Problems of English Word-Stress for the Iraqi Learner.
ERIC Educational Resources Information Center
Aziz, Yowell Y.
1980-01-01
Deals with English stress problems for Iraqis under three main headings: single-stressed words, double-stressed words, and unstressed syllables. While stress in Arabic is predictable, stress in English is not. The Iraqi will transfer native-language stress patterns to English. Errors cause miscommunication and are difficult to pinpoint. (PJM)
ERIC Educational Resources Information Center
Huntley, Mary Ann; Davis, Jon D.
2008-01-01
A cross-curricular structured-probe task-based clinical interview study with 44 pairs of third year high-school mathematics students, most of whom were high achieving, was conducted to investigate their approaches to a variety of algebra problems. This paper presents results from three problems that were posed in symbolic form. Two problems are…
ERIC Educational Resources Information Center
Cheng, Lu Pien
2015-01-01
In this study, ways in which 9-year old students from one Singapore school solved 1-step and 2-step word problems based on the three semantic structures were examined. The students' work and diagrams provided insights into the range of errors in word problem solving for 1- step and 2-step word problems. In particular, the errors provided some…
ERIC Educational Resources Information Center
Driver, Melissa K.; Powell, Sarah R.
2017-01-01
Word problems are prevalent on high-stakes assessments, and success on word problems has implications for grade promotion and graduation. Unfortunately, English Language Learners (ELLs) continue to perform significantly below their native English-speaking peers on mathematics assessments featuring word problems. Little is known about the…
Voila: A visual object-oriented iterative linear algebra problem solving environment
Edwards, H.C.; Hayes, L.J.
1994-12-31
Application of iterative methods to solve a large linear system of equations currently involves writing a program which calls iterative method subprograms from a large software package. These subprograms have complex interfaces which are difficult to use and even more difficult to program. A problem solving environment specifically tailored to the development and application of iterative methods is needed. This need will be fulfilled by Voila, a problem solving environment which provides a visual programming interface to object-oriented iterative linear algebra kernels. Voila will provide several quantum improvements over current iterative method problem solving environments. First, programming and applying iterative methods is considerably simplified through Voila`s visual programming interface. Second, iterative method algorithm implementations are independent of any particular sparse matrix data structure through Voila`s object-oriented kernels. Third, the compile-link-debug process is eliminated as Voila operates as an interpreter.
ERIC Educational Resources Information Center
van Garderen, Delinda
2008-01-01
A random sample of middle school special education teachers from various classroom settings completed a survey asking them about what instructional practices and materials they used to teach students with disabilities how to solve word problems, how much time they allocated to problem solving instruction, and what type of problems they gave their…
The Efficacy of Using Diagrams When Solving Probability Word Problems in College
ERIC Educational Resources Information Center
Beitzel, Brian D.; Staley, Richard K.
2015-01-01
Previous experiments have shown a deleterious effect of visual representations on college students' ability to solve total- and joint-probability word problems. The present experiments used conditional-probability problems, known to be more difficult than total- and joint-probability problems. The diagram group was instructed in how to use tree…
ERIC Educational Resources Information Center
Jaspers, Monique W. M.; van Lieshout, Ernest C. D. M.
A training procedure was developed to improve (or to encourage) the construction of a meaningful problem representation by mentally retarded and learning disabled children. Children are taught to use an external visual representation for arithmetic word problems, in which the meaning of the problem is reflected. The construction of this visual…
A note on the "word-order problem" in agrammatism.
Caplan, D
1983-09-01
This brief note has two parts. First, it presents an analysis of the ability of English agrammatic patients to assign the thematic roles of agent, instrument, theme, and locative to noun phrases in active and passive sentences and prepositional phrases. Data regarding this ability have been presented by Schwartz, Saffran, and Marin (Brain and Language, 10, 149-262 (1980) regarding comprehension, and by Saffran, Schwartz, and Marin (Brain and Language, 10, 263-280 (1980) regarding production. These authors claim their data show that English agrammatic aphasics do not map "word order" onto thematic information. However, a very simple set of principles accounts for all their results, including results which are discrepant in their treatment, but requires that English agrammatics assign thematic roles to NPs in part by virtue of the position of an NP in a sentence or a phrase. In the second part of this note, several issues raised by this re-analysis are briefly discussed.
Reading-Enhanced Word Problem Solving: A Theoretical Model
ERIC Educational Resources Information Center
Capraro, Robert M.; Capraro, Mary Margaret; Rupley, William H.
2012-01-01
There is a reciprocal relationship between mathematics and reading cognition. Metacognitive training within reading-enhanced problem solving should facilitate students developing an awareness of what good readers do when reading for meaning in solving mathematical problems enabling them to apply these strategies. The constructs for each cognitive…
Does understanding relational terminology mediate effects of intervention on compare word problems?
Schumacher, Robin F; Fuchs, Lynn S
2012-04-01
The purpose of this study was to assess whether understanding relational terminology (i.e., more, less, and fewer) mediates the effects of intervention on compare word problems. Second-grade classrooms (N=31) were randomly assigned to one of three conditions: researcher-designed word-problem intervention, researcher-designed calculation intervention, or business-as-usual (teacher-designed) control. Students in word-problem intervention classrooms received instruction on the compare problem type, which included a focus on understanding relational terminology within compare word problems. Analyses, which accounted for variance associated with classroom clustering, indicated that (a) compared with the calculation intervention and business-as-usual conditions, word-problem intervention significantly increased performance on all three subtypes of compare problems and on understanding relational terminology, and (b) the intervention effect was fully mediated by students' understanding of relational terminology for one subtype of compare problems and partially mediated by students' understanding of relational terminology for the other two subtypes.
ERIC Educational Resources Information Center
Fede, Jessica L.
2010-01-01
This research investigation examined the effects of "GO Solve Word Problems" math intervention on problem-solving skills of struggling 5th grade students. In a randomized controlled study, 16 5th grade students were given a 12-week intervention of "GO Solve", a computer-based program designed to teach schema-based instruction…
Profiles of Algebraic Competence
ERIC Educational Resources Information Center
Humberstone, J.; Reeve, R.A.
2008-01-01
The algebraic competence of 72 12-year-old female students was examined to identify profiles of understanding reflecting different algebraic knowledge states. Beginning algebraic competence (mapping abilities: word-to-symbol and vice versa, classifying, and solving equations) was assessed. One week later, the nature of assistance required to map…
ERIC Educational Resources Information Center
Chiu, Ming Ming
2008-01-01
The micro-time context of group processes (such as argumentation) can affect a group's micro-creativity (new ideas). Eighty high school students worked in groups of four on an algebra problem. Groups with higher mathematics grades showed greater micro-creativity, and both were linked to better problem solving outcomes. Dynamic multilevel analyses…
Algebraic Multigrid by Smoothed Aggregation for Second and Fourth Order Elliptic Problems
NASA Technical Reports Server (NTRS)
Vanek, Petr; Mandel, Jan; Brezina, Marian
1996-01-01
Multigrid methods are very efficient iterative solvers for system of algebraic equations arising from finite element and finite difference discretization of elliptic boundary value problems. The main principle of multigrid methods is to complement the local exchange of information in point-wise iterative methods by a global one utilizing several related systems, called coarse levels, with a smaller number of variables. The coarse levels are often obtained as a hierarchy of discretizations with different characteristic meshsizes, but this requires that the discretization is controlled by the iterative method. To solve linear systems produced by existing finite element software, one needs to create an artificial hierarchy of coarse problems. The principal issue is then to obtain computational complexity and approximation properties similar to those for nested meshes, using only information in the matrix of the system and as little extra information as possible. Such algebraic multigrid method that uses the system matrix only was developed by Ruge. The prolongations were based on the matrix of the system by partial solution from given values at selected coarse points. The coarse grid points were selected so that each point would be interpolated to via so-called strong connections. Our approach is based on smoothed aggregation introduced recently by Vanek. First the set of nodes is decomposed into small mutually disjoint subsets. A tentative piecewise constant interpolation (in the discrete sense) is then defined on those subsets as piecewise constant for second order problems, and piecewise linear for fourth order problems. The prolongation operator is then obtained by smoothing the output of the tentative prolongation and coarse level operators are defined variationally.
A Kind Word for Bullshit: The Problem of Academic Writing
ERIC Educational Resources Information Center
Eubanks, Philip; Schaeffer, John D.
2008-01-01
The phrase "academic bullshit" presents compositionists with a special dilemma. Because compositionists study, teach, and produce academic writing, they are open to the accusation that they both tolerate and perpetuate academic bullshit. We argue that confronting this problem must begin with a careful definition of "bullshit" and "academic…
A Working Memory Model Applied to Mathematical Word Problem Solving
ERIC Educational Resources Information Center
Alamolhodaei, Hassan
2009-01-01
The main objective of this study is (a) to explore the relationship among cognitive style (field dependence/independence), working memory, and mathematics anxiety and (b) to examine their effects on students' mathematics problem solving. A sample of 161 school girls (13-14 years old) were tested on (1) the Witkin's cognitive style (Group Embedded…
Understanding Coreference in a System for Solving Physics Word Problems.
NASA Astrophysics Data System (ADS)
Bulko, William Charles
In this thesis, a computer program (BEATRIX) is presented which takes as input an English statement of a physics problem and a figure associated with it, understands the two kinds of input in combination, and produces a data structure containing a model of the physical objects described and the relationships between them. BEATRIX provides a mouse-based graphic interface with which the user sketches a picture and enters English sentences; meanwhile, BEATRIX creates a neutral internal representation of the picture similar to the which might be produced as the output of a vision system. It then parses the text and the picture representation, resolves the references between objects common to the two data sources, and produces a unified model of the problem world. The correctness and completeness of this model has been validated by applying it as input to a physics problem-solving program currently under development. Two descriptions of a world are said to be coreferent when they contain references to overlapping sets of objects. Resolving coreferences to produce a correct world model is a common task in scientific and industrial problem-solving: because English is typically not a good language for expressing spatial relationships, people in these fields frequently use diagrams to supplement textual descriptions. Elementary physics problems from college-level textbooks provide a useful and convenient domain for exploring the mechanisms of coreference. Because flexible, opportunistic control is necessary in order to recognize coreference and to act upon it, the understanding module of BEATRIX uses a blackboard control structure. The blackboard knowledge sources serve to identify physical objects in the picture, parse the English text, and resolve coreferences between the two. We believed that BEATRIX demonstrates a control structure and collection of knowledge that successfully implements understanding of text and picture by computer. We also believe that this
Arithmetic word problem solving: evidence for a magnitude-based mental representation.
Orrantia, Josetxu; Múñez, David
2013-01-01
Previous findings have suggested that number processing involves a mental representation of numerical magnitude. Other research has shown that sensory experiences are part and parcel of the mental representation (or "simulation") that individuals construct during reading. We aimed at exploring whether arithmetic word-problem solving entails the construction of a mental simulation based on a representation of numerical magnitude. Participants were required to solve word problems and to perform an intermediate figure discrimination task that matched or mismatched, in terms of magnitude comparison, the mental representations that individuals constructed during problem solving. Our results showed that participants were faster in the discrimination task and performed better in the solving task when the figures matched the mental representations. These findings provide evidence that an analog magnitude-based mental representation is routinely activated during word-problem solving, and they add to a growing body of literature that emphasizes the experiential view of language comprehension.
A Strategy for Improving US Middle School Student Mathematics Word Problem Solving Performance
NASA Technical Reports Server (NTRS)
Thomas, Valerie L.
2004-01-01
U.S. middle school students have difficulty understanding and solving mathematics word problems. Their mathematics performance on the Third International Mathematics and Science Study (TIMMS) is far below their international peers, and minority students are less likely than high socioeconomic status (SES) White/Asian students to be exposed to higher-level mathematics concepts. Research literature also indicates that when students use both In-School and Out-of-School knowledge and experiences to create authentic mathematics word problems, student achievement improves. This researcher developed a Strategy for improving mathematics problem solving performance and a Professional Development Model (PDM) to effectively implement the Strategy.
From Bar Diagrams to Letter-Symbolic Algebra: A Technology-Enabled Bridging
ERIC Educational Resources Information Center
Looi, C. -K.; Lim, K. -S.
2009-01-01
In the Singapore primary school Mathematics curriculum, students are taught the model method that uses bar diagrams to visualize the problem structure in a given word problem. When these students progress to secondary school, they learn the algebraic way of solving word problems. Studies (e.g. Ng et al.) have shown that poor bridging of students…
ERIC Educational Resources Information Center
Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.; Powell, Sarah R.; Seethaler, Pamela M.; Capizzi, Andrea M.; Schatschneider, Christopher; Fletcher, Jack M.
2006-01-01
The purpose of this study was to examine the cognitive correlates of RD-grade skill in arithmetic, algorithmic computation, and arithmetic word problems. Third graders (N = 312) were measured on language, nonverbal problem solving, concept formation, processing speed, long-term memory, working memory, phonological decoding, and sight word…
The Impact of Illustrations and Warnings on Solving Mathematical Word Problems Realistically
ERIC Educational Resources Information Center
Dewolf, Tinne; Van Dooren, Wim; Ev Cimen, Emre; Verschaffel, Lieven
2014-01-01
The present research investigated whether an illustration and/or a warning could help students to (a) build a situational model of the problem situation and (b) solve problematic word problems (P-items) that require realistic thinking more realistically. In 2 similar studies conducted in Turkey and Belgium, the authors presented 10- to 11-year-old…
ERIC Educational Resources Information Center
Kingsdorf, Sheri; Krawec, Jennifer
2014-01-01
Solving word problems is a common area of struggle for students with learning disabilities (LD). In order for instruction to be effective, we first need to have a clear understanding of the specific errors exhibited by students with LD during problem solving. Error analysis has proven to be an effective tool in other areas of math but has had…
ERIC Educational Resources Information Center
Taber, Mary R.
2013-01-01
Mathematics can be a difficult topic both to teach and to learn. Word problems specifically can be difficult for students with disabilities because they have to conceptualize what the problem is asking for, and they must perform the correct operation accurately. Current trends in mathematics instruction stem from the National Council of Teachers…
Solving Word Problems about Time: The Effects of Speed and Space Information.
ERIC Educational Resources Information Center
Senechal, Monique
This study investigated how preadolescents and adolescents solve problems involving three temporal dimensions. Specifically examined was the question of whether speed and space information would influence the time judgments of 90 subjects 9, 12, and 15 years of age who solved 16 word problems describing the displacements of two cars. The problems…
Application of Graph Theory in an Intelligent Tutoring System for Solving Mathematical Word Problems
ERIC Educational Resources Information Center
Nabiyev, Vasif V.; Çakiroglu, Ünal; Karal, Hasan; Erümit, Ali K.; Çebi, Ayça
2016-01-01
This study is aimed to construct a model to transform word "motion problems" in to an algorithmic form in order to be processed by an intelligent tutoring system (ITS). First; categorizing the characteristics of motion problems, second; suggesting a model for the categories were carried out. In order to solve all categories of the…
The Role of the Updating Function in Solving Arithmetic Word Problems
ERIC Educational Resources Information Center
Mori, Kanetaka; Okamoto, Masahiko
2017-01-01
We investigated how the updating function supports the integration process in solving arithmetic word problems. In Experiment 1, we measured reading time, that is, translation and integration times, when undergraduate and graduate students (n = 78) were asked to solve 2 types of problems: those containing only necessary information and those…
Students' Mathematics Word Problem-Solving Achievement in a Computer-Based Story
ERIC Educational Resources Information Center
Gunbas, N.
2015-01-01
The purpose of this study was to investigate the effect of a computer-based story, which was designed in anchored instruction framework, on sixth-grade students' mathematics word problem-solving achievement. Problems were embedded in a story presented on a computer as computer story, and then compared with the paper-based version of the same story…
NASA Astrophysics Data System (ADS)
Leukhin, Anatolii N.
2005-08-01
The algebraic solution of a 'complex' problem of synthesis of phase-coded (PC) sequences with the zero level of side lobes of the cyclic autocorrelation function (ACF) is proposed. It is shown that the solution of the synthesis problem is connected with the existence of difference sets for a given code dimension. The problem of estimating the number of possible code combinations for a given code dimension is solved. It is pointed out that the problem of synthesis of PC sequences is related to the fundamental problems of discrete mathematics and, first of all, to a number of combinatorial problems, which can be solved, as the number factorisation problem, by algebraic methods by using the theory of Galois fields and groups.
A review of vector convergence acceleration methods, with applications to linear algebra problems
NASA Astrophysics Data System (ADS)
Brezinski, C.; Redivo-Zaglia, M.
In this article, in a few pages, we will try to give an idea of convergence acceleration methods and extrapolation procedures for vector sequences, and to present some applications to linear algebra problems and to the treatment of the Gibbs phenomenon for Fourier series in order to show their effectiveness. The interested reader is referred to the literature for more details. In the bibliography, due to space limitation, we will only give the more recent items, and, for older ones, we refer to Brezinski and Redivo-Zaglia, Extrapolation methods. (Extrapolation Methods. Theory and Practice, North-Holland, 1991). This book also contains, on a magnetic support, a library (in Fortran 77 language) for convergence acceleration algorithms and extrapolation methods.
Numerical methods for boundary value problems in differential-algebraic equations
Ascher, U.M. . Dept. of Computer Science); Petzold, L.R. )
1990-09-24
Differential-algebraic equation (DAE) boundary value problems arise in a variety of applications, including optimal control and parameter estimation for constrained systems. In this paper we survey these applications and explore some of the difficulties associated with solving the resulting DAE systems. For finite difference methods, the need to maintain stability in the differential part of the system often necessitates the use of methods based on symmetric discretizations. However, these methods can suffer from instability and loss of accuracy when applied to certain DAE systems. We describe a new class of methods, Projected Implicit Runge-Kutta Methods, which overcomes these difficulties. We give convergence and stability results, and present numerical experiments which illustrate the effectiveness of the new methods. 20 refs., 1 tab.
Dix, Annika; van der Meer, Elke
2015-04-01
This study investigates cognitive resource allocation dependent on fluid and numerical intelligence in arithmetic/algebraic tasks varying in difficulty. Sixty-six 11th grade students participated in a mathematical verification paradigm, while pupil dilation as a measure of resource allocation was collected. Students with high fluid intelligence solved the tasks faster and more accurately than those with average fluid intelligence, as did students with high compared to average numerical intelligence. However, fluid intelligence sped up response times only in students with average but not high numerical intelligence. Further, high fluid but not numerical intelligence led to greater task-related pupil dilation. We assume that fluid intelligence serves as a domain-general resource that helps to tackle problems for which domain-specific knowledge (numerical intelligence) is missing. The allocation of this resource can be measured by pupil dilation.
A new mathematical evaluation of smoking problem based of algebraic statistical method.
Mohammed, Maysaa J; Rakhimov, Isamiddin S; Shitan, Mahendran; Ibrahim, Rabha W; Mohammed, Nadia F
2016-01-01
Smoking problem is considered as one of the hot topics for many years. In spite of overpowering facts about the dangers, smoking is still a bad habit widely spread and socially accepted. Many people start smoking during their gymnasium period. The discovery of the dangers of smoking gave a warning sign of danger for individuals. There are different statistical methods used to analyze the dangers of smoking. In this study, we apply an algebraic statistical method to analyze and classify real data using Markov basis for the independent model on the contingency table. Results show that the Markov basis based classification is able to distinguish different date elements. Moreover, we check our proposed method via information theory by utilizing the Shannon formula to illustrate which one of these alternative tables is the best in term of independent.
Tense and aspect in word problems about motion: diagram, gesture, and the felt experience of time
NASA Astrophysics Data System (ADS)
de Freitas, Elizabeth; Zolkower, Betina
2015-09-01
Word problems about motion contain various conjugated verb forms. As students and teachers grapple with such word problems, they jointly operationalize diagrams, gestures, and language. Drawing on findings from a 3-year research project examining the social semiotics of classroom interaction, we show how teachers and students use gesture and diagram to make sense of complex verb forms in such word problems. We focus on the grammatical category of "aspect" for how it broadens the concept of verb tense. Aspect conveys duration and completion or frequency of an event. The aspect of a verb defines its temporal flow (or lack thereof) and the location of a vantage point for making sense of this durational process.
ERIC Educational Resources Information Center
Swanson, H. Lee; Lussier, Cathy; Orosco, Michael
2013-01-01
This study investigated the role of strategy instruction and cognitive abilities on word problem solving accuracy in children with math difficulties (MD). Elementary school children (N = 120) with and without MD were randomly assigned to 1 of 4 conditions: general-heuristic (e.g., underline question sentence), visual-schematic presentation…
On alphabetic presentations of Clifford algebras and their possible applications
NASA Astrophysics Data System (ADS)
Toppan, Francesco; Verbeek, Piet W.
2009-12-01
In this paper, we address the problem of constructing a class of representations of Clifford algebras that can be named "alphabetic (re)presentations." The Clifford algebra generators are expressed as m-letter words written with a three-character or a four-character alphabet. We formulate the problem of the alphabetic presentations, deriving the main properties and some general results. At the end, we briefly discuss the motivations of this work and outline some possible applications.
ERIC Educational Resources Information Center
Kaput, James J.
This document reports on a project that is examining some of the difficulties encountered in teaching word problems involving multiplication, division, and intensive quantities. Some of the various uses of these operations and their structures are considered. Described are discoveries and assumptions regarding students' cognitive models of these…
ERIC Educational Resources Information Center
Seethaler, Pamela M.; Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.
2012-01-01
The purpose of this study was to assess the value of dynamic assessment (DA; degree of scaffolding required to learn unfamiliar mathematics content) for predicting 1st-grade calculations (CAs) and word problems (WPs) development, while controlling for the role of traditional assessments. Among 184 1st graders, predictors (DA, Quantity…
Do Curriculum-Based Measures Predict Performance on Word-Problem-Solving Measures?
ERIC Educational Resources Information Center
Sisco-Taylor, Dennis; Fung, Wenson; Swanson, H. Lee
2015-01-01
This study examined whether curriculum-based measures (CBMs) of math word-problem contributed unique variance in predictions of performance on high-stakes tests, beyond the contribution of calculation and reading skills. CBMs were administered to a representative sample of 142 third-grade students at three time points. Results indicate that…
The Effects of Dynamic Strategic Math on English Language Learners' Word Problem Solving
ERIC Educational Resources Information Center
Orosco, Michael J.; Swanson, H. Lee; O'Connor, Rollanda; Lussier, Cathy
2013-01-01
English language learners (ELLs) struggle with solving word problems for a number of reasons beyond math procedures or calculation challenges. As a result, ELLs may not only need math support but also reading and linguistic support. The purpose of this study was to assess the effectiveness of a math comprehension strategy called Dynamic Strategic…
ERIC Educational Resources Information Center
Lawrence, Virginia
No longer just a user of commercial software, the 21st century teacher is a designer of interactive software based on theories of learning. This software, a comprehensive study of straightline equations, enhances conceptual understanding, sketching, graphic interpretive and word problem solving skills as well as making connections to real-life and…
Semantic Similarity Graphs of Mathematics Word Problems: Can Terminology Detection Help?
ERIC Educational Resources Information Center
John, Rogers Jeffrey Leo; Passonneau, Rebecca J.; McTavish, Thomas S.
2015-01-01
Curricula often lack metadata to characterize the relatedness of concepts. To investigate automatic methods for generating relatedness metadata for a mathematics curriculum, we first address the task of identifying which terms in the vocabulary from mathematics word problems are associated with the curriculum. High chance-adjusted interannotator…
ERIC Educational Resources Information Center
Björn, Piia Maria; Aunola, Kaisa; Nurmi, Jari-Erik
2016-01-01
This longitudinal study aimed to investigate the extent to which primary school text comprehension predicts mathematical word problem-solving skills in secondary school among Finnish students. The participants were 224 fourth graders (9-10 years old at the baseline). The children's text-reading fluency, text comprehension and basic calculation…
Learning to Solve Addition and Subtraction Word Problems in English as an Imported Language
ERIC Educational Resources Information Center
Verzosa, Debbie Bautista; Mulligan, Joanne
2013-01-01
This paper reports an intervention phase of a design study aimed to assist second-grade Filipino children in solving addition word problems in English, a language they primarily encounter only in school. With Filipino as the medium of instruction, an out-of-school pedagogical intervention providing linguistic and representational scaffolds was…
Predicting Development of Mathematical Word Problem Solving across the Intermediate Grades
ERIC Educational Resources Information Center
Tolar, Tammy D.; Fuchs, Lynn; Cirino, Paul T.; Fuchs, Douglas; Hamlett, Carol L.; Fletcher, Jack M.
2012-01-01
This study addressed predictors of the development of word problem solving (WPS) across the intermediate grades. At beginning of 3rd grade, 4 cohorts of students (N = 261) were measured on computation, language, nonverbal reasoning skills, and attentive behavior and were assessed 4 times from beginning of 3rd through end of 5th grade on 2 measures…
Automatic Item Generation via Frame Semantics: Natural Language Generation of Math Word Problems.
ERIC Educational Resources Information Center
Deane, Paul; Sheehan, Kathleen
This paper is an exploration of the conceptual issues that have arisen in the course of building a natural language generation (NLG) system for automatic test item generation. While natural language processing techniques are applicable to general verbal items, mathematics word problems are particularly tractable targets for natural language…
Secondary School Students' Construction and Use of Mathematical Models in Solving Word Problems
ERIC Educational Resources Information Center
Llinares, Salvador; Roig, Ana Isabel
2008-01-01
This study focussed on how secondary school students construct and use mathematical models as conceptual tools when solving word problems. The participants were 511 secondary-school students who were in the final year of compulsory education (15-16 years old). Four levels of the development of constructing and using mathematical models were…
ERIC Educational Resources Information Center
Zheng, Xinhua; Flynn, Lindsay J.; Swanson, H. Lee
2013-01-01
This article provides a quantitative synthesis of the published literature on word problem solving intervention studies for children with math disabilities (MD). Seven group and eight single-subject design studies met inclusion criteria. Mean effect sizes ("ES"s) for solution accuracy for group design studies were 0.95 (SE = 0.19) for…
ERIC Educational Resources Information Center
Swanson, H. Lee; Lussier, Catherine M.; Orosco, Michael J.
2015-01-01
This study investigated the role of strategy instruction and working memory capacity (WMC) on word problem solving accuracy in children with (n = 100) and without (n = 92) math difficulties (MD). Within classrooms, children in Grades 2 and 3 were randomly assigned to one of four treatment conditions: verbal-only strategies (e.g., underlining…
Word-Problem-Solving Strategy for Minority Students at Risk for Math Difficulties
ERIC Educational Resources Information Center
Kong, Jennifer E.; Orosco, Michael J.
2016-01-01
Minority students at risk for math difficulties (MD) struggle with word problems for various reasons beyond procedural or calculation challenges. As a result, these students require support in reading and language development in addition to math. The purpose of this study was to assess the effectiveness of a math comprehension strategy based on a…
ERIC Educational Resources Information Center
Swanson, H. Lee; Moran, Amber S.; Bocian, Kathleen; Lussier, Cathy; Zheng, Xinhua
2013-01-01
This study investigated the role of generative strategies and working memory capacity on word problem solving accuracy in children with math difficulties (MD). Within classrooms, children in Grade 3 with MD ("n" = 69) were randomly assigned to one of three treatment conditions: paraphrase question propositions (Restate), paraphrase…
ERIC Educational Resources Information Center
Peake, Christian; Jiménez, Juan E.; Rodríguez, Cristina; Bisschop, Elaine; Villarroel, Rebeca
2015-01-01
Arithmetic word problem (AWP) solving is a highly demanding task for children with learning disabilities (LD) since verbal and mathematical information have to be integrated. This study examines specifically how syntactic awareness (SA), the ability to manage the grammatical structures of language, affects AWP solving. Three groups of children in…
The Role of Number Words in Preschoolers' Addition Concepts and Problem-Solving Procedures
ERIC Educational Resources Information Center
Patel, Pooja; Canobi, Katherine Helen
2010-01-01
Preschoolers' conceptual understanding and procedural skills were examined so as to explore the role of number-words and concept-procedure interactions in their additional knowledge. Eighteen three- to four-year-olds and 24 four- to five-year-olds judged commutativity and associativity principles and solved two-term problems involving number words…
Kindergartners' Understanding of Additive Commutativity within the Context of Word Problems.
ERIC Educational Resources Information Center
Wilkins, Jesse L. M.; Baroody, Arthur J.; Tiilikainen, Sirpa
2001-01-01
Investigated kindergartners' unary and binary understanding of additive commutativity using performance on tasks involving change-add-to and part-part-whole word problems, respectively. Found that data were inconsistent with models put forth by Baroody and Gannon and by Resnick and suggest three alternate theoretical explanations. Success on tasks…
ERIC Educational Resources Information Center
Booth, Julie L.; Lange, Karin E.; Koedinger, Kenneth R.; Newton, Kristie J.
2013-01-01
In a series of two "in vivo" experiments, we examine whether correct and incorrect examples with prompts for self-explanation can be effective for improving students' conceptual understanding and procedural skill in Algebra when combined with guided practice. In Experiment 1, students working with the Algebra I Cognitive Tutor were randomly…
Inverse reference in subtraction performance: an analysis from arithmetic word problems.
Orrantia, Josetxu; Rodríguez, Laura; Múñez, David; Vicente, Santiago
2012-01-01
Studies of elementary calculation have shown that adults solve basic subtraction problems faster with problems presented in addition format (e.g., 6 ± = 13) than in standard subtraction format (e.g., 13 - 6 = ). Therefore, it is considered that adults solve subtraction problems by reference to the inverse operation (e.g., for 13 - 6 = 7, "I know that 13 is 6 + 7") because presenting the subtraction problem in addition format does not require the mental rearrangement of the problem elements into the addition format. In two experiments, we examine whether adults' use of addition to solve subtractions is modulated by the arrangement of minuend and subtrahend, regardless of format. To this end, we used arithmetic word problems since single-digit problems in subtraction format would not allow the subtrahend to appear before the minuend. In Experiment 1, subtractions were presented by arranging minuend and subtrahend according to previous research. In Experiment 2, operands were reversed. The overall results showed that participants benefited from word problems where the subtrahend appears before the minuend, including subtractions in standard subtraction format. These findings add to a growing body of literature that emphasizes the role of inverse reference in adults' performance on subtractions.
Acceleration of multiple solution of a boundary value problem involving a linear algebraic system
NASA Astrophysics Data System (ADS)
Gazizov, Talgat R.; Kuksenko, Sergey P.; Surovtsev, Roman S.
2016-06-01
Multiple solution of a boundary value problem that involves a linear algebraic system is considered. New approach to acceleration of the solution is proposed. The approach uses the structure of the linear system matrix. Particularly, location of entries in the right columns and low rows of the matrix, which undergo variation due to the computing in the range of parameters, is used to apply block LU decomposition. Application of the approach is considered on the example of multiple computing of the capacitance matrix by method of moments used in numerical electromagnetics. Expressions for analytic estimation of the acceleration are presented. Results of the numerical experiments for solution of 100 linear systems with matrix orders of 1000, 2000, 3000 and different relations of variated and constant entries of the matrix show that block LU decomposition can be effective for multiple solution of linear systems. The speed up compared to pointwise LU factorization increases (up to 15) for larger number and order of considered systems with lower number of variated entries.
ERIC Educational Resources Information Center
Dixon, Juli K.; Andreasen, Janet B.; Avila, Cheryl L.; Bawatneh, Zyad; Deichert, Deana L.; Howse, Tashana D.; Turner, Mercedes Sotillo
2014-01-01
A goal of this study was to examine elementary preservice teachers' (PSTs) ability to contextualize and decontextualize fraction subtraction by asking them to write word problems to represent fraction subtraction expressions and to choose prewritten word problems to support given fraction subtraction expressions. Three themes emerged from the…
ERIC Educational Resources Information Center
Banerjee, Banmali
2010-01-01
Methods and procedures for successfully solving math word problems have been, and continue to be a mystery to many U.S. high school students. Previous studies suggest that the contextual and mathematical understanding of a word problem, along with the development of schemas and their related external representations, positively contribute to…
ERIC Educational Resources Information Center
Wheeler, J. L.; Regian, J. W.
1999-01-01
Describes a study of ninth-grade students that evaluated the ability of the Word Problem Solving Tutor, a cognitive tutoring system, to improve the abstract-reasoning component of word-problem solving. Compares combinations of traditional instruction, computer-assisted instruction, and the tutoring program and discusses implications for math…
ERIC Educational Resources Information Center
Cooper, Barry; Harries, Tony
2005-01-01
Children of 10-11 years of age were interviewed while undertaking a range of mathematic problems, most of which embedded mathematical operations in textually represented realistic settings. One problem, concerning a lift moving people in the morning rush, comprised a division-with-remainder problem in which children are required, conventionally,…
Screening the Personal Need for the Structure and solving word problems with fractions.
Svecova, Valeria; Pavlovicova, Gabriela
2016-01-01
This paper presents the results of a pilot study of the impact of Personal Need for Structure of the selected mathematical competence. We were interested whether there is a relationship between cognitive-personal variable (Personal Need for Structure) and the mathematical knowledge about fractions of freshmen. We realized the experiment with 113 students of the Constantine the Philosopher University in Nitra, Slovakia. We examined statistically significant dependencies between the cognitive-personality variable of the Personal Need for Structure and its subfactors F1 (the wish of the structure) and F2 (the reaction to the lack of the structure) and the success rate of solving tasks and word problems with fractions. We used statistical Cochrane Q test to detect dependencies between factors of the Personal Need for Structure scale and the Mathematical knowledge. We proved that the success rate of solving word problems with fractions is inversely proportional to the need for the structure. This means that the higher the overall score on the Personal Need for Structure scale and its subfactors is, the lower is the success rate of solving the word problems.
Word problems: a review of linguistic and numerical factors contributing to their difficulty
Daroczy, Gabriella; Wolska, Magdalena; Meurers, Walt Detmar; Nuerk, Hans-Christoph
2015-01-01
Word problems (WPs) belong to the most difficult and complex problem types that pupils encounter during their elementary-level mathematical development. In the classroom setting, they are often viewed as merely arithmetic tasks; however, recent research shows that a number of linguistic verbal components not directly related to arithmetic contribute greatly to their difficulty. In this review, we will distinguish three components of WP difficulty: (i) the linguistic complexity of the problem text itself, (ii) the numerical complexity of the arithmetic problem, and (iii) the relation between the linguistic and numerical complexity of a problem. We will discuss the impact of each of these factors on WP difficulty and motivate the need for a high degree of control in stimuli design for experiments that manipulate WP difficulty for a given age group. PMID:25883575
Word problems: a review of linguistic and numerical factors contributing to their difficulty.
Daroczy, Gabriella; Wolska, Magdalena; Meurers, Walt Detmar; Nuerk, Hans-Christoph
2015-01-01
Word problems (WPs) belong to the most difficult and complex problem types that pupils encounter during their elementary-level mathematical development. In the classroom setting, they are often viewed as merely arithmetic tasks; however, recent research shows that a number of linguistic verbal components not directly related to arithmetic contribute greatly to their difficulty. In this review, we will distinguish three components of WP difficulty: (i) the linguistic complexity of the problem text itself, (ii) the numerical complexity of the arithmetic problem, and (iii) the relation between the linguistic and numerical complexity of a problem. We will discuss the impact of each of these factors on WP difficulty and motivate the need for a high degree of control in stimuli design for experiments that manipulate WP difficulty for a given age group.
Process Inquiry: Analysis of Oral Problem-Solving Skills in Mathematics of Engineering Students
ERIC Educational Resources Information Center
Trance, Naci John C.
2013-01-01
This paper presents another effort in determining the difficulty of engineering students in terms of solving word problems. Students were presented with word problems in algebra. Then, they were asked to solve the word problems orally; that is, before they presented their written solutions, they were required to explain how they understood the…
ERIC Educational Resources Information Center
Powell, Sarah R.; Fuchs, Lynn S.; Fuchs, Douglas; Cirino, Paul T.; Fletcher, Jack M.
2009-01-01
This study examined whether and, if so, how word-problem features differentially affect problem difficulty as a function of mathematics difficulty (MD) status: no MD (n = 109), MD only (n = 109), or MD in combination with reading difficulties (MDRD; n = 109). The problem features were problem type (total, difference, or change) and position of…
NASA Technical Reports Server (NTRS)
Iachello, Franco
1995-01-01
An algebraic formulation of quantum mechanics is presented. In this formulation, operators of interest are expanded onto elements of an algebra, G. For bound state problems in nu dimensions the algebra G is taken to be U(nu + 1). Applications to the structure of molecules are presented.
Algebra and Problem-Solving in Down Syndrome: A Study with 15 Teenagers
ERIC Educational Resources Information Center
Martinez, Elisabetta Monari; Pellegrini, Katia
2010-01-01
There is a common opinion that mathematics is difficult for persons with Down syndrome, because of a weakness in numeracy and in abstract thinking. Since 1996, some single case studies have suggested that new opportunities in mathematics are possible for these students: some of them learned algebra and also learned to use equations in…
Peake, Christian; Jiménez, Juan E; Rodríguez, Cristina; Bisschop, Elaine; Villarroel, Rebeca
2015-01-01
Arithmetic word problem (AWP) solving is a highly demanding task for children with learning disabilities (LD) since verbal and mathematical information have to be integrated. This study examines specifically how syntactic awareness (SA), the ability to manage the grammatical structures of language, affects AWP solving. Three groups of children in elementary education were formed: children with arithmetic learning disabilities (ALD), children with reading learning disabilities (RLD), and children with comorbid arithmetic and reading learning disabilities (ARLD). Mediation analysis confirmed that SA was a mediator variable for both groups of children with reading disabilities when solving AWPs, but not for children in the ALD group. All groups performed below the control group in the problem solving task. When SA was controlled for, semantic structure and position of the unknown set were variables that affected both groups with ALD. Specifically, children with ALD only were more affected by the place of the unknown set.
NASA Astrophysics Data System (ADS)
Banerjee, Banmali
Methods and procedures for successfully solving math word problems have been, and continue to be a mystery to many U.S. high school students. Previous studies suggest that the contextual and mathematical understanding of a word problem, along with the development of schemas and their related external representations, positively contribute to students' accomplishments when solving word problems. Some studies have examined the effects of diagramming on students' abilities to solve word problems that only involved basic arithmetic operations. Other studies have investigated how instructional models that used technology influenced students' problem solving achievements. Still other studies have used schema-based instruction involving students with learning disabilities. No study has evaluated regular high school students' achievements in solving standard math word problems using a diagramming technique without technological aid. This study evaluated students' achievement in solving math word problems using a diagramming technique. Using a quasi-experimental experimental pretest-posttest research design, quantitative data were collected from 172 grade 11 Hispanic English language learners (ELLS) and African American learners whose first language is English (EFLLs) in 18 classes at an inner city high school in Northern New Jersey. There were 88 control and 84 experimental students. The pretest and posttest of each participating student and samples of the experimental students' class assignments provided the qualitative data for the study. The data from this study exhibited that the diagramming method of solving math word problems significantly improved student achievement in the experimental group (p<.01) compared to the control group. The study demonstrated that urban, high school, ELLs benefited from instruction that placed emphasis on the mathematical vocabulary and symbols used in word problems and that both ELLs and EFLLs improved their problem solving success
The Algebra of Lexical Semantics
NASA Astrophysics Data System (ADS)
Kornai, András
The current generative theory of the lexicon relies primarily on tools from formal language theory and mathematical logic. Here we describe how a different formal apparatus, taken from algebra and automata theory, resolves many of the known problems with the generative lexicon. We develop a finite state theory of word meaning based on machines in the sense of Eilenberg [11], a formalism capable of describing discrepancies between syntactic type (lexical category) and semantic type (number of arguments). This mechanism is compared both to the standard linguistic approaches and to the formalisms developed in AI/KR.
Quantum cluster algebras and quantum nilpotent algebras
Goodearl, Kenneth R.; Yakimov, Milen T.
2014-01-01
A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197
ERIC Educational Resources Information Center
de Kock, Willem D.; Harskamp, Egbert G.
2014-01-01
Teachers in primary education experience difficulties in teaching word problem solving in their mathematics classes. However, during controlled experiments with a metacognitive computer programme, students' problem-solving skills improved. Also without the supervision of researchers, metacognitive computer programmes can be beneficial in a natural…
ERIC Educational Resources Information Center
Despina, Desli; Harikleia, Loukidou
2014-01-01
Mathematics textbooks are a predominant resource in primary school in Greece, as well as in many other countries. The present study reports on both a content analysis of Greek mathematics textbooks with regard to the types of word problems represented in them and a quantitative analysis of children's achievement in these problems. For the purpose…
ERIC Educational Resources Information Center
Kribbs, Elizabeth E.; Rogowsky, Beth A.
2016-01-01
Mathematics word-problems continue to be an insurmountable challenge for many middle school students. Educators have used pictorial and schematic illustrations within the classroom to help students visualize these problems. However, the data shows that pictorial representations can be more harmful than helpful in that they only display objects or…
ERIC Educational Resources Information Center
Swanson, H. Lee; Lussier, Catherine; Orosco, Michael
2011-01-01
Although current categories of learning disabilities include as specific disabilities calculation and mathematical problem solving [see IDEA reauthorization, 2004, Sec. 300.8(c)(10)], the majority of research focuses on calculation disabilities. Previous studies have shown, however, that deficits in word problem solving difficulties are persistent…
ERIC Educational Resources Information Center
Zhang, Dake; Xin, Yan Ping
2012-01-01
Following a meta-analysis study conducted by Y. P. Xin and A. Jitendra (1999), the authors carried out a follow-up meta-analysis of word problem-solving interventions published from 1996 to 2009 for students with learning problems in mathematics. The authors examined the influence of education reforms as moderator variables on intervention…
ERIC Educational Resources Information Center
Abdullah, Nasarudin; Halim, Lilia; Zakaria, Effandi
2014-01-01
This study aimed to determine the impact of strategic thinking and visual representation approaches (VStops) on the achievement, conceptual knowledge, metacognitive awareness, awareness of problem-solving strategies, and student attitudes toward mathematical word problem solving among primary school students. The experimental group (N = 96)…
ERIC Educational Resources Information Center
Dennis, Minyi Shih; Knight, Jacqueline; Jerman, Olga
2016-01-01
This article describes how to teach fraction and percentage word problems using a model-drawing strategy. This cognitive strategy places emphasis on explicitly teaching students how to draw a schematic diagram to represent the qualitative relations described in the problem, and how to formulate the solution based on the schematic diagram. The…
ERIC Educational Resources Information Center
Pacheco, Mark B.; Goodwin, Amanda P.
2013-01-01
Adolescents often use root word and affix knowledge to figure out unknown words. Anglin (1993) found that younger readers favor the Part-to-Whole strategy, and Tyler and Nagy (1989) confirmed the importance of root-word knowledge for middle school students. This study seeks to understand the different strategies middle school readers use so that…
ERIC Educational Resources Information Center
Reusser, Kurt; And Others
The main concern of this paper is on the psychological processes of how students understand and solve mathematical word problems, and on how this knowledge can be applied to computer-based tutoring. It is argued that only a better understanding of the psychological requirements for understanding and solving those problems will lead to…
Fuchs, Lynn S.; Compton, Donald L.; Fuchs, Douglas; Powell, Sarah R.; Schumacher, Robin F.; Hamlett, Carol L.; Vernier, Emily; Namkung, Jessica M.; Vukovic, Rose K.
2012-01-01
The purpose of this study was to investigate the contributions of domain-general cognitive resources and different forms of arithmetic development to individual differences in pre-algebraic knowledge. Children (n=279; mean age=7.59 yrs) were assessed on 7 domain-general cognitive resources as well as arithmetic calculations and word problems at start of 2nd grade and on calculations, word problems, and pre-algebraic knowledge at end of 3rd grade. Multilevel path analysis, controlling for instructional effects associated with the sequence of classrooms in which students were nested across grades 2–3, indicated arithmetic calculations and word problems are foundational to pre-algebraic knowledge. Also, results revealed direct contributions of nonverbal reasoning and oral language to pre-algebraic knowledge, beyond indirect effects that are mediated via arithmetic calculations and word problems. By contrast, attentive behavior, phonological processing, and processing speed contributed to pre-algebraic knowledge only indirectly via arithmetic calculations and word problems. PMID:22409764
ERIC Educational Resources Information Center
Reikeras, Elin K. L.
2009-01-01
Performance in consistent arithmetical word problems was assessed in 941 pupils aged eight (N = 415), ten (N = 274), and thirteen (N = 252) classified in four achievement groups by standardised achievement tests: low achievement in both mathematics and reading (MLRL), in mathematics only (ML-only), in reading only (RL-only), and normal achievement…
ERIC Educational Resources Information Center
Dewolf, Tinne; Van Dooren, Wim; Hermens, Frouke; Verschaffel, Lieven
2015-01-01
During the last two decades various researchers confronted upper elementary and lower secondary school pupils with word problems that were problematic from a realistic modelling point of view (so-called P-items), and found that pupils in general did not use their everyday knowledge to solve such P-items. Several attempts were undertaken to…
ERIC Educational Resources Information Center
Kim, Sun A.; Wang, Peishi; Michaels, Craig A.
2015-01-01
This article investigates the effects of fraction word problem-solving instruction involving explicit teaching of the concrete-representational-abstract sequence with culturally relevant teaching examples for 3 low-performing Asian immigrant English learners who spoke a language other than English at home. We used a multiple probe design across…
ERIC Educational Resources Information Center
Chan, Simon
2015-01-01
In learning mathematics through English, one of the major challenges facing English as a Foreign Language (EFL) learners is understanding the language used to present word problems in mathematics texts. Without comprehending such language, learners are not able to carry out the targeted calculations no matter how familiar they are with the…
ERIC Educational Resources Information Center
Fuchs, Lynn S.; Schumacher, Robin F.; Long, Jessica; Namkung, Jessica; Malone, Amelia S.; Wang, Amber; Hamlett, Carol L.; Jordan, Nancy C.; Siegler, Robert S.; Changas, Paul
2016-01-01
The purposes of this study were to (a) investigate the efficacy of a core fraction intervention program on understanding and calculation skill and (b) isolate the effects of different forms of fraction word-problem (WP) intervention delivered as part of the larger program. At-risk 4th graders (n = 213) were randomly assigned at the individual…
ERIC Educational Resources Information Center
Rispens, Judith; Parigger, Esther
2010-01-01
Recently, English studies have shown a relationship between non-word repetition (NWR) and the presence of reading problems (RP). Children with specific language impairment (SLI) but without RP performed similarly to their typically developing (TD) peers, whereas children with SLI and RP performed significantly worse on an NWR task. The current…
ERIC Educational Resources Information Center
Swanson, H. Lee
2014-01-01
Cognitive strategies are important tools for children with math difficulties (MD) in learning to solve word problems. The effectiveness of strategy training, however, depends on working memory capacity (WMC). Thus, children with MD but with relatively higher WMC are more likely to benefit from strategy training, whereas children with lower WMC may…
ERIC Educational Resources Information Center
Powell, Sarah R.; Fuchs, Lynn S.
2010-01-01
Elementary school students often misinterpret the equal sign (=) as an operational rather than a relational symbol. Such misunderstanding is problematic because solving equations with missing numbers may be important for the development of higher order mathematics skills, including solving word problems. Research indicates equal-sign instruction…
ERIC Educational Resources Information Center
Powell, Sarah R.; Fuchs, Lynn S.; Cirino, Paul T.; Fuchs, Douglas; Compton, Donald L.; Changas, Paul C.
2015-01-01
The focus of the present study was enhancing word problem and calculation achievement in ways that support prealgebraic thinking among second-grade students at risk for mathematics difficulty. Intervention relied on a multitier support system (i.e., responsiveness to intervention, or RTI) in which at-risk students participate in general classroom…
ERIC Educational Resources Information Center
Fuchs, Lynn S.; Schumacher, Robin F.; Long, Jessica; Namkung, Jessica; Malone, Amelia S.; Wang, Amber; Hamlett, Carol L.; Jordan, Nancy C.; Siegler, Robert S.; Changas, Paul
2016-01-01
The purposes of this study were to (a) investigate the efficacy of a core fraction intervention program on understanding and calculation skill and (b) isolate the effects of different forms of fraction word-problem (WP) intervention. At-risk fourth graders (n = 213) were randomly assigned to the school's business-as-usual program, or one of two…
ERIC Educational Resources Information Center
Awofala, Adeneye O. A.
2014-01-01
This study investigated the effect of a personalised print-based instruction versus a non-personalised print-based instruction on the attitudes toward mathematics word problems of 350 senior secondary school year one Nigerian students within the blueprint of a quantitative research of pre-treatment-intervention-post-treatment non-equivalent…
Seethaler, Pamela M.; Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.
2012-01-01
The purpose of this study was to assess the value of dynamic assessment (DA; degree of scaffolding required to learn unfamiliar mathematics content) for predicting 1st-grade calculations (CA) and word problems (WP) development, while controlling for the role of traditional assessments. Among 184 1st graders, predictors (DA, Quantity Discrimination, Test of Mathematics Ability, language, and reasoning) were assessed near the start of 1st grade. CA and WP were assessed near the end of 1st grade. Planned regression and commonality analyses indicated that for forecasting CA development, Quantity Discrimination, which accounted for 8.84% of explained variance, was the single most powerful predictor, followed by Test of Mathematics Ability and DA; language and reasoning were not uniquely predictive. By contrast, for predicting WP development, DA was the single most powerful predictor, which accounted for 12.01% of explained variance, with Test of Mathematics Ability, Quantity Discrimination, and language also uniquely predictive. Results suggest that different constellations of cognitive resources are required for CA versus WP development and that DA may be useful in predicting 1st-grade mathematics development, especially WP. PMID:22347725
One language, two number-word systems and many problems: numerical cognition in the Czech language.
Pixner, S; Zuber, J; Heřmanová, V; Kaufmann, L; Nuerk, H-C; Moeller, K
2011-01-01
Comparing numerical performance between different languages does not only mean comparing different number-word systems, but also implies a comparison of differences regarding culture or educational systems. The Czech language provides the remarkable opportunity to disentangle this confound as there exist two different number-word systems within the same language: for instance, "25" can be either coded in non-inverted order "dvadsetpät" [twenty-five] or in inverted order "pätadvadset" [five-and-twenty]. To investigate the influence of the number-word system on basic numerical processing within one culture, 7-year-old Czech-speaking children had to perform a transcoding task (i.e., writing Arabic numbers to dictation) in both number-word systems. The observed error pattern clearly indicated that the structure of the number-word system determined transcoding performance reliably: In the inverted number-word system about half of all errors were inversion-related. In contrast, hardly any inversion-related errors occurred in the non-inverted number-word system. We conclude that the development of numerical cognition does not only depend on cultural or educational differences, but is indeed related to the structure and transparency of a given number-word system.
Modeling the Contribution of Phonotactic Cues to the Problem of Word Segmentation
ERIC Educational Resources Information Center
Blanchard, Daniel; Heinz, Jeffrey; Golinkoff, Roberta
2010-01-01
How do infants find the words in the speech stream? Computational models help us understand this feat by revealing the advantages and disadvantages of different strategies that infants might use. Here, we outline a computational model of word segmentation that aims both to incorporate cues proposed by language acquisition researchers and to…
Investigation of a New Intervention for Children with Word-Finding Problems
ERIC Educational Resources Information Center
Best, Wendy
2005-01-01
Background: Around one-quarter of children attending language support services have difficulty in retrieving words. Therapy studies with such children have shown that both semantic and phonological techniques can improve word finding. A new approach to intervention is described using a computerized aid that converts letters into sound cues. Aims:…
One Language, Two Number-Word Systems and Many Problems: Numerical Cognition in the Czech Language
ERIC Educational Resources Information Center
Pixner, S.; Zuber, J.; Hermanova, V.; Kaufmann, L.; Nuerk, H.-C.; Moeller, K.
2011-01-01
Comparing numerical performance between different languages does not only mean comparing different number-word systems, but also implies a comparison of differences regarding culture or educational systems. The Czech language provides the remarkable opportunity to disentangle this confound as there exist two different number-word systems within…
ERIC Educational Resources Information Center
Cavanagh, Sean
2008-01-01
A popular humorist and avowed mathphobe once declared that in real life, there's no such thing as algebra. Kathie Wilson knows better. Most of the students in her 8th grade class will be thrust into algebra, the definitive course that heralds the beginning of high school mathematics, next school year. The problem: Many of them are about three…
Graphic and algebraic solutions of the discordant lead-uranium age problem
Stieff, L.R.; Stern, T.W.
1961-01-01
for the contaminating common Pb206 and Pb207. The linear relationships noted in this graphical procedure have been extended to plots of the mole ratios of total Pb206 U238 ( tN206 N238) vs. total Pb207 U235 ( tN207 N235). This modification permits the calculation of concordant ages for unaltered samples using only the Pb207 Pb206 ratio of the contaminating common lead. If isotopic data are available for two samples of the same age, x and y, from the same or related deposits or outcrops, graphs of the normalized difference ratios [ ( N206 N204)x - ( N206 N204)y ( N238 N204)x -( N238 N204)y] vs. [ ( N207 N204)x - ( N207 N204)y ( N235 N204)x -( N235 N204)y] can give concordant ages corrected for unknown amounts of a common lead with an unknown Pb207/ Pb206 ratio. (If thorium is absent the difference ratios may be normalized with the more abundant index isotope, Pb208.) Similar plots of tho normalized, difference ratios for three genetically related samples (x - y) and(x - z), will give concordant ages corrected, in addition, for either one unknown period of past alteration or initial contamination by an older generation of radiogenic lead of unknown Pb207/Pb206 ratio. Practical numerical solutions for many of tho concordant age calculations are not currently available. However, the algebraic equivalents of these new graphical methods give equations which may be programmed for computing machines. For geologically probable parameters the equations of higher order have two positive real roots that rapidly converge on the exact concordant ages corrected for original radiogenic lead and for loss or gain of lead or uranium. Modifications of these general age equations expanded only to the second degree have been derived for use with desk calculators. These graphical and algebraic methods clearly suggest both the type and minimum number of samples necessary for adequate mathematical analysis of discordant lead isotope age data. This mathematical treatment also makes it clear t
ERIC Educational Resources Information Center
Suwito, Abi; Yuwono, Ipung; Parta, I. Nengah; Irawati, Santi; Oktavianingtyas, Ervin
2016-01-01
This study aims to determine the ability of algebra students who have 3 levels van Hiele levels. Follow its framework Dindyal framework (2007). Students are required to do 10 algebra shaped multiple choice, then students work 15 about the geometry of the van Hiele level in the form of multiple choice questions. The question has been tested levels…
Using Dynamic Geometry and Computer Algebra Systems in Problem Based Courses for Future Engineers
ERIC Educational Resources Information Center
Tomiczková, Svetlana; Lávicka, Miroslav
2015-01-01
It is a modern trend today when formulating the curriculum of a geometric course at the technical universities to start from a real-life problem originated in technical praxis and subsequently to define which geometric theories and which skills are necessary for its solving. Nowadays, interactive and dynamic geometry software plays a more and more…
ERIC Educational Resources Information Center
Csikos, Csaba; Szitanyi, Judit; Kelemen, Rita
2012-01-01
The present study aims to investigate the effects of a design experiment developed for third-grade students in the field of mathematics word problems. The main focus of the program was developing students' knowledge about word problem solving strategies with an emphasis on the role of visual representations in mathematical modeling. The experiment…
ERIC Educational Resources Information Center
Nortvedt, Guri A.
2011-01-01
This article discusses how 13-year-old students with above-average numeracy skills and below-average reading skills cope with comprehending word problems. Compared to other students who are proficient in numeracy and are skilled readers, these students are more disadvantaged when solving single-step and multistep arithmetic word problems. The…
ERIC Educational Resources Information Center
Jitendra, Asha K.; Corroy, Kelly Cozine; Dupuis, Danielle N.
2013-01-01
The purposes of this study were (a) to evaluate differences in arithmetic word problem solving between high and low at-risk students for mathematics difficulties (MD) and (b) to assess the influence of attention, behavior, reading, and socio-economic status (SES) in predicting the word problem solving performance of third-grade students with MD.…
ERIC Educational Resources Information Center
Zernovoj, Alexander
2005-01-01
One of the major goals in deaf education is to teach deaf and hard of hearing students the tools and strategies to solve mathematical word problems. A mathematical word problem curriculum was designed and implemented based on telling, reading and writing number tales in American Sign Language (ASL) and English. The learning experiences helped…
Danker, Jared F; Anderson, John R
2007-04-15
In naturalistic algebra problem solving, the cognitive processes of representation and retrieval are typically confounded, in that transformations of the equations typically require retrieval of mathematical facts. Previous work using cognitive modeling has associated activity in the prefrontal cortex with the retrieval demands of algebra problems and activity in the posterior parietal cortex with the transformational demands of algebra problems, but these regions tend to behave similarly in response to task manipulations (Anderson, J.R., Qin, Y., Sohn, M.-H., Stenger, V.A., Carter, C.S., 2003. An information-processing model of the BOLD response in symbol manipulation tasks. Psychon. Bull. Rev. 10, 241-261; Qin, Y., Carter, C.S., Silk, E.M., Stenger, A., Fissell, K., Goode, A., Anderson, J.R., 2004. The change of brain activation patterns as children learn algebra equation solving. Proc. Natl. Acad. Sci. 101, 5686-5691). With this study we attempt to isolate activity in these two regions by using a multi-step algebra task in which transformation (parietal) is manipulated in the first step and retrieval (prefrontal) is manipulated in the second step. Counter to our initial predictions, both brain regions were differentially active during both steps. We designed two cognitive models, one encompassing our initial assumptions and one in which both processes were engaged during both steps. The first model provided a poor fit to the behavioral and neural data, while the second model fit both well. This simultaneously emphasizes the strong relationship between retrieval and representation in mathematical reasoning and demonstrates that cognitive modeling can serve as a useful tool for understanding task manipulations in neuroimaging experiments.
NASA Astrophysics Data System (ADS)
Koldan, Jelena; Puzyrev, Vladimir; de la Puente, Josep; Houzeaux, Guillaume; Cela, José María
2014-06-01
We present an elaborate preconditioning scheme for Krylov subspace methods which has been developed to improve the performance and reduce the execution time of parallel node-based finite-element (FE) solvers for 3-D electromagnetic (EM) numerical modelling in exploration geophysics. This new preconditioner is based on algebraic multigrid (AMG) that uses different basic relaxation methods, such as Jacobi, symmetric successive over-relaxation (SSOR) and Gauss-Seidel, as smoothers and the wave front algorithm to create groups, which are used for a coarse-level generation. We have implemented and tested this new preconditioner within our parallel nodal FE solver for 3-D forward problems in EM induction geophysics. We have performed series of experiments for several models with different conductivity structures and characteristics to test the performance of our AMG preconditioning technique when combined with biconjugate gradient stabilized method. The results have shown that, the more challenging the problem is in terms of conductivity contrasts, ratio between the sizes of grid elements and/or frequency, the more benefit is obtained by using this preconditioner. Compared to other preconditioning schemes, such as diagonal, SSOR and truncated approximate inverse, the AMG preconditioner greatly improves the convergence of the iterative solver for all tested models. Also, when it comes to cases in which other preconditioners succeed to converge to a desired precision, AMG is able to considerably reduce the total execution time of the forward-problem code-up to an order of magnitude. Furthermore, the tests have confirmed that our AMG scheme ensures grid-independent rate of convergence, as well as improvement in convergence regardless of how big local mesh refinements are. In addition, AMG is designed to be a black-box preconditioner, which makes it easy to use and combine with different iterative methods. Finally, it has proved to be very practical and efficient in the
ERIC Educational Resources Information Center
Zahner, William
2012-01-01
This study examines how a group of bilingual ninth grade algebra students discussed two word problems stated in terms of "real life" contexts. Using a lens of mediated action (Wertsch, 1998), the analysis reveals two distinct ways that the problem contexts influenced the group's mathematical reasoning. In one problem, the problem context…
SO(4) algebraic approach to the three-body bound state problem in two dimensions
NASA Astrophysics Data System (ADS)
Dmitrašinović, V.; Salom, Igor
2014-08-01
We use the permutation symmetric hyperspherical three-body variables to cast the non-relativistic three-body Schrödinger equation in two dimensions into a set of (possibly decoupled) differential equations that define an eigenvalue problem for the hyper-radial wave function depending on an SO(4) hyper-angular matrix element. We express this hyper-angular matrix element in terms of SO(3) group Clebsch-Gordan coefficients and use the latter's properties to derive selection rules for potentials with different dynamical/permutation symmetries. Three-body potentials acting on three identical particles may have different dynamical symmetries, in order of increasing symmetry, as follows: (1) S3 ⊗ OL(2), the permutation times rotational symmetry, that holds in sums of pairwise potentials, (2) O(2) ⊗ OL(2), the so-called "kinematic rotations" or "democracy symmetry" times rotational symmetry, that holds in area-dependent potentials, and (3) O(4) dynamical hyper-angular symmetry, that holds in hyper-radial three-body potentials. We show how the different residual dynamical symmetries of the non-relativistic three-body Hamiltonian lead to different degeneracies of certain states within O(4) multiplets.
NASA Astrophysics Data System (ADS)
Connes, Alain; Kreimer, Dirk
This paper gives a complete selfcontained proof of our result announced in [6] showing that renormalization in quantum field theory is a special instance of a general mathematical procedure of extraction of finite values based on the Riemann-Hilbert problem. We shall first show that for any quantum field theory, the combinatorics of Feynman graphs gives rise to a Hopf algebra which is commutative as an algebra. It is the dual Hopf algebra of the enveloping algebra of a Lie algebra whose basis is labelled by the one particle irreducible Feynman graphs. The Lie bracket of two such graphs is computed from insertions of one graph in the other and vice versa. The corresponding Lie group G is the group of characters of . We shall then show that, using dimensional regularization, the bare (unrenormalized) theory gives rise to a loop
NASA Astrophysics Data System (ADS)
Mathai, Pramod P.
the uncertainty in the parameters of the differential equations. There is a clear need to design better experiments for IEF without the current overhead of expensive chemicals and labor. We show how with a simpler modeling of the underlying chemistry, we can still achieve the accuracy that has been achieved in existing literature for modeling small ranges of pH (hydrogen ion concentration) in IEF, but with far less computational time. We investigate a further reduction of time by modeling the IEF problem using the Proper Orthogonal Decomposition (POD) technique and show why POD may not be sufficient due to the underlying constraints. The final problem that we address in this thesis addresses a certain class of dynamics with high stiffness - in particular, differential algebraic equations. With the help of simple examples, we show how the traditional POD procedure will fail to model certain high stiffness problems due to a particular behavior of the vector field which we will denote as twist. We further show how a novel augmentation to the traditional POD algorithm can model-reduce problems with twist in a computationally cheap manner without any additional data requirements.
Learning Algebra from Worked Examples
ERIC Educational Resources Information Center
Lange, Karin E.; Booth, Julie L.; Newton, Kristie J.
2014-01-01
For students to be successful in algebra, they must have a truly conceptual understanding of key algebraic features as well as the procedural skills to complete a problem. One strategy to correct students' misconceptions combines the use of worked example problems in the classroom with student self-explanation. "Self-explanation" is the…
ERIC Educational Resources Information Center
Na, Kyong-Eun
2009-01-01
A schema-based instruction allows students to approach a mathematics problem by focusing on the underlying semantic or problem structure, thus facilitating conceptual understanding and adequate skills. The purpose of this study was to examine the effectiveness of schema-based intervention on the mathematical word problem solving skills of middle…
Using PROC GLIMMIX to Analyze the Animal Watch, a Web-Based Tutoring System for Algebra Readiness
ERIC Educational Resources Information Center
Barbu, Otilia C.
2012-01-01
In this study, I investigated how proficiently seventh-grade students enrolled in two Southwestern schools solve algebra word problems. I analyzed various factors that could affect this proficiency and explored the differences between English Learners (ELs) and native English Primary students (EPs). I collected the data as part of the Animal Watch…
ERIC Educational Resources Information Center
Gallardo, Aurora
2002-01-01
Analyzes from an historical perspective the extension of the natural-number domain to integers in students' transition from arithmetic to algebra in the context of word problems. Extracts four levels of acceptance of these numbers--subtrahend, relative number, isolated number and formal negative number--from historical texts. The first three…
NASA Astrophysics Data System (ADS)
Nara, T.; Koiwa, K.; Takagi, S.; Oyama, D.; Uehara, G.
2014-05-01
This paper presents an algebraic reconstruction method for dipole-quadrupole sources using magnetoencephalography data. Compared to the conventional methods with the equivalent current dipoles source model, our method can more accurately reconstruct two close, oppositely directed sources. Numerical simulations show that two sources on both sides of the longitudinal fissure of cerebrum are stably estimated. The method is verified using a quadrupolar source phantom, which is composed of two isosceles-triangle-coils with parallel bases.
2013-05-06
AMG2013 is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids. It has been derived directly from the Boomer AMG solver in the hypre library, a large linear solvers library that is being developed in the Center for Applied Scientific Computing (CASC) at LLNL. The driver provided in the benchmark can build various test problems. The default problem is a Laplace type problem on an unstructured domain with various jumps and an anisotropy in one part.
MONTO: A Machine-Readable Ontology for Teaching Word Problems in Mathematics
ERIC Educational Resources Information Center
Lalingkar, Aparna; Ramnathan, Chandrashekar; Ramani, Srinivasan
2015-01-01
The Indian National Curriculum Framework has as one of its objectives the development of mathematical thinking and problem solving ability. However, recent studies conducted in Indian metros have expressed concern about students' mathematics learning. Except in some private coaching academies, regular classroom teaching does not include problem…
Analyzing the Solution of Word Problems in Mathematics: An Exploratory Study.
ERIC Educational Resources Information Center
Kilpatrick, Jeremy
This study attempted to develop a system for analyzing the processes students use in solving work problems and to investigate the relationships of these processes to other behavioral measures. The subjects in this study were 56 students of both sexes who had above average mental ability and who had just completed the eighth grade from two junior…
ERIC Educational Resources Information Center
Goodwin, Amanda P.
2016-01-01
This study explores the effectiveness of integrating morphological instruction within comprehension strategy instruction. Participants were 203 students (N = 117 fifth-grade; 86 sixth-grade) from four urban schools who were randomly assigned to the intervention (N = 110; morphological problem-solving within comprehension strategy instruction) or…
ERIC Educational Resources Information Center
Demirezen, Mehmet
2016-01-01
The aim of this research is to diagnose and help students overcome their problems through practice activities in English Language Education Departments in Turkey. This paper measures the perception of co-articulatory information in terms of consonant-to-consonant relations in the structure of vocabulary items and affixes of English. Thirty eight…
ERIC Educational Resources Information Center
Cavanagh, Sean
2009-01-01
As educators and policymakers search for ways to prepare students for the rigors of algebra, teachers in the Helena, Montana, school system are starting early by attempting to nurture students' algebraic-reasoning ability, as well as their basic number skills, in early elementary school, rather than waiting until middle or early high school.…
Swanson, H. Lee
2015-01-01
This study investigated the role of strategy instruction and working memory capacity (WMC) on problem solving solution accuracy in children with and without math disabilities (MD). Children in grade 3 (N = 204) with and without MD subdivided into high and low WMC were randomly assigned to 1 of 4 conditions: verbal strategies (e.g., underlining question sentence), visual strategies (e.g., correctly placing numbers in diagrams), verbal + visual strategies, and an untreated control. The dependent measures for training were problem solving accuracy and two working memory transfer measures (operation span and visual-spatial span). Three major findings emerged: (1) strategy instruction facilitated solution accuracy but the effects of strategy instruction were moderated by WMC, (2) some strategies yielded higher post-test scores than others, but these findings were qualified as to whether children were at risk for MD, and (3) strategy training on problem solving measures facilitated transfer to working memory measures. The main findings were that children with MD, but high WM spans, were more likely to benefit from strategy conditions on target and transfer measures than children with lower WMC. The results suggest that WMC moderates the influence of cognitive strategies on both the targeted and non-targeted measures. PMID:26300803
The Effect of Strategy on Problem Solving: An FMRI Study
ERIC Educational Resources Information Center
Newman, Sharlene D.; Pruce, Benjamin; Rusia, Akash; Burns, Thomas, Jr.
2010-01-01
fMRI was used to examine the differential effect of two problem-solving strategies. Participants were trained to use both a pictorial/spatial and a symbolic/algebraic strategy to solve word problems. While these two strategies activated similar cortical regions, a number of differences were noted in the level of activation. These differences…
Gross, Alden L.; Rebok, George W.; Unverzagt, Frederick W.; Willis, Sherry L.; Brandt, Jason
2011-01-01
Data from the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) trial (N=2,802) were analyzed to examine whether word list learning predicts future everyday functioning. Using stepwise random effects modeling, measures from the modified administrations of the Hopkins Verbal Learning Test (HVLT) and the Auditory Verbal Learning Test (AVLT) were independently predictive of everyday IADL functioning, problem-solving, and psychomotor speed. Associations between memory scores and everyday functioning outcomes remained significant across follow-up intervals spanning five years. HVLT total recall score was consistently the strongest predictor of each functional outcome. Results suggest that verbal memory measures are uniquely associated with both current and future functioning and that specific verbal memory tests like the HVLT and AVLT have important clinical utility in predicting future functional ability among older adults. PMID:21069610
Sheriff, Kelli A; Boon, Richard T
2014-08-01
The purpose of this study was to examine the effects of computer-based graphic organizers, using Kidspiration 3© software, to solve one-step word problems. Participants included three students with mild intellectual disability enrolled in a functional academic skills curriculum in a self-contained classroom. A multiple probe single-subject research design (Horner & Baer, 1978) was used to evaluate the effectiveness of computer-based graphic organizers to solving mathematical one-step word problems. During the baseline phase, the students completed a teacher-generated worksheet that consisted of nine functional word problems in a traditional format using a pencil, paper, and a calculator. In the intervention and maintenance phases, the students were instructed to complete the word problems using a computer-based graphic organizer. Results indicated that all three of the students improved in their ability to solve the one-step word problems using computer-based graphic organizers compared to traditional instructional practices. Limitations of the study and recommendations for future research directions are discussed.
Patterns to Develop Algebraic Reasoning
ERIC Educational Resources Information Center
Stump, Sheryl L.
2011-01-01
What is the role of patterns in developing algebraic reasoning? This important question deserves thoughtful attention. In response, this article examines some differing views of algebraic reasoning, discusses a controversy regarding patterns, and describes how three types of patterns--in contextual problems, in growing geometric figures, and in…
The Algebra of Complex Numbers.
ERIC Educational Resources Information Center
LePage, Wilbur R.
This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…
Classification of filiform Lie algebras of order 3
NASA Astrophysics Data System (ADS)
Navarro, Rosa María
2016-12-01
Lie algebras of order 3 constitute a generalization of Lie algebras and superalgebras. Throughout this paper the classification problem of filiform Lie algebras of order 3 is considered and therefore this work is a continuation papers seen in the literature. We approach this classification by extending Vergne's result for filiform Lie algebras and by considering algebras of order 3 of high nilindex. We find the expression of the law to which any elementary filiform Lie algebra of order 3 is isomorphic.
Johnson, Eric D; Tubau, Elisabet
2016-09-27
Presenting natural frequencies facilitates Bayesian inferences relative to using percentages. Nevertheless, many people, including highly educated and skilled reasoners, still fail to provide Bayesian responses to these computationally simple problems. We show that the complexity of relational reasoning (e.g., the structural mapping between the presented and requested relations) can help explain the remaining difficulties. With a non-Bayesian inference that required identical arithmetic but afforded a more direct structural mapping, performance was universally high. Furthermore, reducing the relational demands of the task through questions that directed reasoners to use the presented statistics, as compared with questions that prompted the representation of a second, similar sample, also significantly improved reasoning. Distinct error patterns were also observed between these presented- and similar-sample scenarios, which suggested differences in relational-reasoning strategies. On the other hand, while higher numeracy was associated with better Bayesian reasoning, higher-numerate reasoners were not immune to the relational complexity of the task. Together, these findings validate the relational-reasoning view of Bayesian problem solving and highlight the importance of considering not only the presented task structure, but also the complexity of the structural alignment between the presented and requested relations.
Embedding Algebraic Thinking throughout the Mathematics Curriculum
ERIC Educational Resources Information Center
Vennebush, G. Patrick; Marquez, Elizabeth; Larsen, Joseph
2005-01-01
This article explores the algebra that can be uncovered in many middle-grades mathematics tasks that, on first inspection, do not appear to be algebraic. It shows connections to the other four Standards that occur in traditional algebra problems, and it offers strategies for modifying activities so that they can be used to foster algebraic…
Twining characters and orbit Lie algebras
Fuchs, Jurgen; Ray, Urmie; Schellekens, Bert; Schweigert, Christoph
1996-12-05
We associate to outer automorphisms of generalized Kac-Moody algebras generalized character-valued indices, the twining characters. A character formula for twining characters is derived which shows that they coincide with the ordinary characters of some other generalized Kac-Moody algebra, the so-called orbit Lie algebra. Some applications to problems in conformal field theory, algebraic geometry and the theory of sporadic simple groups are sketched.
Lai, Yinghui; Zhu, Xiaoshuang; Chen, Yinghe; Li, Yanjun
2015-01-01
Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA) and mathematical metacognition on word problem solving (WPS). We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56) with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil's Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA), typical achieving (TA), low achieving (LA), and mathematical learning difficulty (MLD). Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA) than the TA and HA children, but not in mathematical evaluation anxiety (MEA). MLD children's LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions.
ERIC Educational Resources Information Center
Ketterlin-Geller, Leanne R.; Jungjohann, Kathleen; Chard, David J.; Baker, Scott
2007-01-01
Much of the difficulty that students encounter in the transition from arithmetic to algebra stems from their early learning and understanding of arithmetic. Too often, students learn about the whole number system and the operations that govern that system as a set of procedures to solve addition, subtraction, multiplication, and division problems.…
Computer Algebra versus Manipulation
ERIC Educational Resources Information Center
Zand, Hossein; Crowe, David
2004-01-01
In the UK there is increasing concern about the lack of skill in algebraic manipulation that is evident in students entering mathematics courses at university level. In this note we discuss how the computer can be used to ameliorate some of the problems. We take as an example the calculations needed in three dimensional vector analysis in polar…
ERIC Educational Resources Information Center
Ormond, Christine
2012-01-01
Primary teachers play a key role in their students' future mathematical success in the early secondary years. While the word "algebra" may make some primary teachers feel uncomfortable or worried, the basic arithmetic ideas underlying algebra are vitally important for older primary students as they are increasingly required to use "algebraic…
ERIC Educational Resources Information Center
Leh, Jayne M.; Jitendra, Asha K.; Caskie, Grace I. L.; Griffin, Cynthia C.
2007-01-01
The purpose of this study was to examine the tenability of a curriculum-based mathematical word problem-solving (WPS) measure as a progress-monitoring tool to index students' rate of growth or slope of achievement over time. Participants consisted of 58 third-grade students, who were assessed repeatedly over 16 school weeks. Students were measured…
ERIC Educational Resources Information Center
Fuchs, Lynn S.; Gilbert, Jennifer K.; Powell, Sarah R.; Cirino, Paul T.; Fuchs, Douglas; Hamlett, Carol L.; Seethaler, Pamela M.; Tolar, Tammy D.
2016-01-01
The purpose of this study was to examine child-level pathways in development of prealgebraic knowledge versus word-problem solving, while evaluating the contribution of calculation accuracy and fluency as mediators of foundational skills/processes. Children (n = 962; mean 7.60 years) were assessed on general cognitive processes and early…
ERIC Educational Resources Information Center
Kyttälä, Minna; Aunio, Pirjo; Lepola, Janne; Hautamäki, Jarkko
2014-01-01
The aim of this study was to analyse the role of verbal and visuo-spatial working memory (WM) and language skills (vocabulary, listening comprehension) in predicting preschool and kindergarten-aged children's ability to solve mathematical word problems presented orally. The participants were 116 Finnish-speaking children aged 4-7?years. The…
ERIC Educational Resources Information Center
Gonzalez, Juan E. Jimenez; Espinel, Ana Isabel Garcia
2002-01-01
A study was designed to test whether there are differences between Spanish children (ages 7-9) with arithmetic learning disabilities (n=60), garden-variety (G-V) poor performance (n=44), and typical children (n=44) in strategy choice when solving arithmetic word problems. No significant differences were found between children with dyscalculia and…
ERIC Educational Resources Information Center
Bjork, Isabel Maria; Bowyer-Crane, Claudine
2013-01-01
This study investigates the relationship between skills that underpin mathematical word problems and those that underpin numerical operations, such as addition, subtraction, division and multiplication. Sixty children aged 6-7 years were tested on measures of mathematical ability, reading accuracy, reading comprehension, verbal intelligence and…
Fuchs, Lynn S; Gilbert, Jennifer K; Powell, Sarah R; Cirino, Paul T; Fuchs, Douglas; Hamlett, Carol L; Seethaler, Pamela M; Tolar, Tammy D
2016-12-01
The purpose of this study was to examine child-level pathways in development of prealgebraic knowledge versus word-problem solving, while evaluating the contribution of calculation accuracy and fluency as mediators of foundational skills/processes. Children (n = 962; mean 7.60 years) were assessed on general cognitive processes and early calculation, word-problem, and number knowledge at start of Grade 2; calculation accuracy and calculation fluency at end of Grade 2; and prealgebraic knowledge and word-problem solving at end of Grade 4. Important similarities in pathways were identified, but path analysis also indicated that language comprehension is more critical for later word-problem solving than prealgebraic knowledge. We conclude that pathways in development of these forms of 4th-grade mathematics performance are more alike than different, but demonstrate the need to fine-tune instruction for strands of the mathematics curriculum in ways that address individual students' foundational mathematics skills or cognitive processes. (PsycINFO Database Record
ERIC Educational Resources Information Center
Jitendra, Asha K.
2011-01-01
This article presents the author's response to Yan Ping Xin and Dake Zhang's recent critical evaluation of her and colleagues' work in "Exploring a Conceptual Model-Based Approach to Teaching Situated Word Problems," published in "The Journal of Educational Research" in 2009 (Vol. 102, No. 6). Most critiques of prior research are written in a fair…
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.
2017-01-01
A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. We would like it to match the well-defined algebra of spectral functions describing lights and surface reflectances, but an exact correspondence is impossible after the spectra have been projected to a three-dimensional color space, because of metamerism physically different spectra can produce the same color sensation. Metameric spectra are interchangeable for the purposes of addition, but not multiplication, so any color algebra is necessarily an approximation to physical reality. Nevertheless, because the majority of naturally-occurring spectra are well-behaved (e.g., continuous and slowly-varying), color algebras can be formulated that are largely accurate and agree well with human intuition. Here we explore the family of algebras that result from associating each color with a member of a three-dimensional manifold of spectra. This association can be used to construct a color product, defined as the color of the spectrum of the wavelength-wise product of the spectra associated with the two input colors. The choice of the spectral manifold determines the behavior of the resulting system, and certain special subspaces allow computational efficiencies. The resulting systems can be used to improve computer graphic rendering techniques, and to model various perceptual phenomena such as color constancy.
ERIC Educational Resources Information Center
Kinsella, John J.
1970-01-01
Discussed are the nature of a mathematical problem, problem solving in the traditional and modern mathematics programs, problem solving and psychology, research related to problem solving, and teaching problem solving in algebra and geometry. (CT)
Generalization of n-ary Nambu algebras and beyond
Ataguema, H.; Makhlouf, A.; Silvestrov, S.
2009-08-15
The aim of this paper is to introduce n-ary Hom-algebra structures generalizing the n-ary algebras of Lie type including n-ary Nambu algebras, n-ary Nambu-Lie algebras and n-ary Lie algebras, and n-ary algebras of associative type including n-ary totally associative and n-ary partially associative algebras. We provide examples of the new structures and present some properties and construction theorems. We describe the general method allowing one to obtain an n-ary Hom-algebra structure starting from an n-ary algebra and an n-ary algebra endomorphism. Several examples are derived using this process. Also we initiate investigation of classification problems for algebraic structures introduced in the article and describe all ternary three-dimensional Hom-Nambu-Lie structures with diagonal homomorphism.
NASA Astrophysics Data System (ADS)
Mikhalev, A. V.; Pinchuk, I. A.
2005-06-01
The structure of Steinberg conformal algebras is studied; these are analogues of Steinberg groups (algebras, superalgebras).A Steinberg conformal algebra is defined as an abstract algebra by a system of generators and relations between the generators. It is proved that a Steinberg conformal algebra is the universal central extension of the corresponding conformal Lie algebra; the kernel of this extension is calculated.
On special classes of n-algebras
NASA Astrophysics Data System (ADS)
Vainerman, L.; Kerner, R.
1996-05-01
We define n-algebras as linear spaces on which the internal composition law involves n elements: m:V⊗n■V. It is known that such algebraic structures are interesting for their applications to problems of modern mathematical physics. Using the notion of a commutant of two subalgebras of an n-algebra, we distinguish certain classes of n-algebras with reasonable properties: semisimple, Abelian, nilpotent, solvable. We also consider a few examples of n-algebras of different types, and show their properties.
ERIC Educational Resources Information Center
Capani, Antonio; De Dominicis, Gabriel
This paper proposes a model for a general interface between people and Computer Algebra Systems (CAS). The main features in the CAS interface are data navigation and the possibility of accessing powerful remote machines. This model is based on the idea of session management, in which the main engine of the tool enables interactions with the…
Inequalities, Assessment and Computer Algebra
ERIC Educational Resources Information Center
Sangwin, Christopher J.
2015-01-01
The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in contemporary…
Upper bound for the length of commutative algebras
NASA Astrophysics Data System (ADS)
Markova, Ol'ga V.
2009-12-01
By the length of a finite system of generators for a finite-dimensional associative algebra over an arbitrary field one means the least positive integer k such that the words of length not exceeding k span this algebra (as a vector space). The maximum length for the systems of generators of an algebra is referred to as the length of the algebra. In the present paper, an upper bound for the length of a commutative algebra in terms of a function of two invariants of the algebra, the dimension and the maximal degree of the minimal polynomial for the elements of the algebra, is obtained. As a corollary, a formula for the length of the algebra of diagonal matrices over an arbitrary field is obtained. Bibliography: 8 titles.
Lee, Jaehoon; Wilczek, Frank
2013-11-27
Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.
Processes Used by College Students in Understanding Basic Algebra.
ERIC Educational Resources Information Center
Rachlin, Sidney Lee
The purpose of this study was to uncover information about and gain a greater insight into the extent to which students who are successful in a basic algebra course: l) demonstrate a reversibility of reasoning processes when solving algebraic problems; 2) demonstrate a flexibility of reasoning processes when solving algebraic problems; 3)…
Sound Off! A Dialogue between Calculator and Algebra
ERIC Educational Resources Information Center
Wade, William R.
2006-01-01
This article illustrates the fact that unless tempered by algebraic reasoning, a graphing calculator can lead one to erroneous conclusions. It also demonstrates that some problems can be solved by combining technology with algebra.
NASA Astrophysics Data System (ADS)
Vaninsky, Alexander
2011-04-01
This article introduces a trigonometric field (TF) that extends the field of real numbers by adding two new elements: sin and cos - satisfying an axiom sin2 + cos2 = 1. It is shown that by assigning meaningful names to particular elements of the field, all known trigonometric identities may be introduced and proved. Two different interpretations of the TF are discussed with many others potentially possible. The main objective of this article is to introduce a broader view of trigonometry that can serve as motivation for mathematics students and teachers to study and teach abstract algebraic structures.
Derive Workshop Matrix Algebra and Linear Algebra.
ERIC Educational Resources Information Center
Townsley Kulich, Lisa; Victor, Barbara
This document presents the course content for a workshop that integrates the use of the computer algebra system Derive with topics in matrix and linear algebra. The first section is a guide to using Derive that provides information on how to write algebraic expressions, make graphs, save files, edit, define functions, differentiate expressions,…
Using the Internet To Investigate Algebra.
ERIC Educational Resources Information Center
Sherwood, Walter
The lesson plans in this book engage students by using a tool they enjoy--the Internet--to explore key concepts in algebra. Working either individually or in groups, students learn to approach algebra from a problem solving perspective. Each lesson shows learners how to use the Internet as a resource for gathering facts, data, and other…
The Accuracy of Expert-System Diagnoses of Mathematical Problem Solutions.
ERIC Educational Resources Information Center
Bennett, Randy Elliot; Sebrechts, Marc M.
1996-01-01
Four human judges agreed highly among themselves about the presence of errors committed by 60 adults solving algebra word problems, but were in less agreement about categorizing faults. An expert system agreed with judges about correctness of answers, but was in even less agreement about categorizing the faults. (SLD)
Classical versus Computer Algebra Methods in Elementary Geometry
ERIC Educational Resources Information Center
Pech, Pavel
2005-01-01
Computer algebra methods based on results of commutative algebra like Groebner bases of ideals and elimination of variables make it possible to solve complex, elementary and non elementary problems of geometry, which are difficult to solve using a classical approach. Computer algebra methods permit the proof of geometric theorems, automatic…
Working memory, worry, and algebraic ability.
Trezise, Kelly; Reeve, Robert A
2014-05-01
Math anxiety (MA)-working memory (WM) relationships have typically been examined in the context of arithmetic problem solving, and little research has examined the relationship in other math domains (e.g., algebra). Moreover, researchers have tended to examine MA/worry separate from math problem solving activities and have used general WM tasks rather than domain-relevant WM measures. Furthermore, it seems to have been assumed that MA affects all areas of math. It is possible, however, that MA is restricted to particular math domains. To examine these issues, the current research assessed claims about the impact on algebraic problem solving of differences in WM and algebraic worry. A sample of 80 14-year-old female students completed algebraic worry, algebraic WM, algebraic problem solving, nonverbal IQ, and general math ability tasks. Latent profile analysis of worry and WM measures identified four performance profiles (subgroups) that differed in worry level and WM capacity. Consistent with expectations, subgroup membership was associated with algebraic problem solving performance: high WM/low worry>moderate WM/low worry=moderate WM/high worry>low WM/high worry. Findings are discussed in terms of the conceptual relationship between emotion and cognition in mathematics and implications for the MA-WM-performance relationship.
TBGG- INTERACTIVE ALGEBRAIC GRID GENERATION
NASA Technical Reports Server (NTRS)
Smith, R. E.
1994-01-01
TBGG, Two-Boundary Grid Generation, applies an interactive algebraic grid generation technique in two dimensions. The program incorporates mathematical equations that relate the computational domain to the physical domain. TBGG has application to a variety of problems using finite difference techniques, such as computational fluid dynamics. Examples include the creation of a C-type grid about an airfoil and a nozzle configuration in which no left or right boundaries are specified. The underlying two-boundary technique of grid generation is based on Hermite cubic interpolation between two fixed, nonintersecting boundaries. The boundaries are defined by two ordered sets of points, referred to as the top and bottom. Left and right side boundaries may also be specified, and call upon linear blending functions to conform interior interpolation to the side boundaries. Spacing between physical grid coordinates is determined as a function of boundary data and uniformly spaced computational coordinates. Control functions relating computational coordinates to parametric intermediate variables that affect the distance between grid points are embedded in the interpolation formulas. A versatile control function technique with smooth cubic spline functions is also presented. The TBGG program is written in FORTRAN 77. It works best in an interactive graphics environment where computational displays and user responses are quickly exchanged. The program has been implemented on a CDC Cyber 170 series computer using NOS 2.4 operating system, with a central memory requirement of 151,700 (octal) 60 bit words. TBGG requires a Tektronix 4015 terminal and the DI-3000 Graphics Library of Precision Visuals, Inc. TBGG was developed in 1986.
Relation of deformed nonlinear algebras with linear ones
NASA Astrophysics Data System (ADS)
Nowicki, A.; Tkachuk, V. M.
2014-01-01
The relation between nonlinear algebras and linear ones is established. For a one-dimensional nonlinear deformed Heisenberg algebra with two operators we find the function of deformation for which this nonlinear algebra can be transformed to a linear one with three operators. We also establish the relation between the Lie algebra of total angular momentum and corresponding nonlinear one. This relation gives a possibility to simplify and to solve the eigenvalue problem for the Hamiltonian in a nonlinear case using the reduction of this problem to the case of linear algebra. It is demonstrated in an example of a harmonic oscillator.
Algebraic methods in system theory
NASA Technical Reports Server (NTRS)
Brockett, R. W.; Willems, J. C.; Willsky, A. S.
1975-01-01
Investigations on problems of the type which arise in the control of switched electrical networks are reported. The main results concern the algebraic structure and stochastic aspects of these systems. Future reports will contain more detailed applications of these results to engineering studies.
Difficulties in initial algebra learning in Indonesia
NASA Astrophysics Data System (ADS)
Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja
2014-12-01
Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was significantly below the average student performance in other Southeast Asian countries such as Thailand, Malaysia, and Singapore. This fact gave rise to this study which aims to investigate Indonesian students' difficulties in algebra. In order to do so, a literature study was carried out on students' difficulties in initial algebra. Next, an individual written test on algebra tasks was administered, followed by interviews. A sample of 51 grade VII Indonesian students worked the written test, and 37 of them were interviewed afterwards. Data analysis revealed that mathematization, i.e., the ability to translate back and forth between the world of the problem situation and the world of mathematics and to reorganize the mathematical system itself, constituted the most frequently observed difficulty in both the written test and the interview data. Other observed difficulties concerned understanding algebraic expressions, applying arithmetic operations in numerical and algebraic expressions, understanding the different meanings of the equal sign, and understanding variables. The consequences of these findings on both task design and further research in algebra education are discussed.
Scalable Parallel Algebraic Multigrid Solvers
Bank, R; Lu, S; Tong, C; Vassilevski, P
2005-03-23
The authors propose a parallel algebraic multilevel algorithm (AMG), which has the novel feature that the subproblem residing in each processor is defined over the entire partition domain, although the vast majority of unknowns for each subproblem are associated with the partition owned by the corresponding processor. This feature ensures that a global coarse description of the problem is contained within each of the subproblems. The advantages of this approach are that interprocessor communication is minimized in the solution process while an optimal order of convergence rate is preserved; and the speed of local subproblem solvers can be maximized using the best existing sequential algebraic solvers.
Using Schemas to Develop Algebraic Thinking
ERIC Educational Resources Information Center
Steele, Diana F.
2005-01-01
This article describes ways in which students develop schemas as they generalize and formalize patterns when solving related algebraic problems that involve size, shape, growth, and change. (Contains 7 figures and 3 tables.)
Abstract numeric relations and the visual structure of algebra.
Landy, David; Brookes, David; Smout, Ryan
2014-09-01
Formal algebras are among the most powerful and general mechanisms for expressing quantitative relational statements; yet, even university engineering students, who are relatively proficient with algebraic manipulation, struggle with and often fail to correctly deploy basic aspects of algebraic notation (Clement, 1982). In the cognitive tradition, it has often been assumed that skilled users of these formalisms treat situations in terms of semantic properties encoded in an abstract syntax that governs the use of notation without particular regard to the details of the physical structure of the equation itself (Anderson, 2005; Hegarty, Mayer, & Monk, 1995). We explore how the notational structure of verbal descriptions or algebraic equations (e.g., the spatial proximity of certain words or the visual alignment of numbers and symbols in an equation) plays a role in the process of interpreting or constructing symbolic equations. We propose in particular that construction processes involve an alignment of notational structures across representation systems, biasing reasoners toward the selection of formal notations that maintain the visuospatial structure of source representations. For example, in the statement "There are 5 elephants for every 3 rhinoceroses," the spatial proximity of 5 and elephants and 3 and rhinoceroses will bias reasoners to write the incorrect expression 5E = 3R, because that expression maintains the spatial relationships encoded in the source representation. In 3 experiments, participants constructed equations with given structure, based on story problems with a variety of phrasings. We demonstrate how the notational alignment approach accounts naturally for a variety of previously reported phenomena in equation construction and successfully predicts error patterns that are not accounted for by prior explanations, such as the left to right transcription heuristic.
On computational complexity of Clifford algebra
NASA Astrophysics Data System (ADS)
Budinich, Marco
2009-05-01
After a brief discussion of the computational complexity of Clifford algebras, we present a new basis for even Clifford algebra Cl(2m) that simplifies greatly the actual calculations and, without resorting to the conventional matrix isomorphism formulation, obtains the same complexity. In the last part we apply these results to the Clifford algebra formulation of the NP-complete problem of the maximum clique of a graph introduced by Budinich and Budinich ["A spinorial formulation of the maximum clique problem of a graph," J. Math. Phys. 47, 043502 (2006)].
Edge covers and independence: Algebraic approach
NASA Astrophysics Data System (ADS)
Kalinina, E. A.; Khitrov, G. M.; Pogozhev, S. V.
2016-06-01
In this paper, linear algebra methods are applied to solve some problems of graph theory. For ordinary connected graphs, edge coverings and independent sets are considered. Some results concerning minimum edge covers and maximum matchings are proved with the help of linear algebraic approach. The problem of finding a maximum matching of a graph is fundamental both practically and theoretically, and has numerous applications, e.g., in computational chemistry and mathematical chemistry.
Algebraic Sub-Structuring for Electromagnetic Applications
Yang, C.; Gao, W.G.; Bai, Z.J.; Li, X.Y.S.; Lee, L.Q.; Husbands, P.; Ng, E.G.; /LBL, Berkeley /UC, Davis /SLAC
2006-06-30
Algebraic sub-structuring refers to the process of applying matrix reordering and partitioning algorithms to divide a large sparse matrix into smaller submatrices from which a subset of spectral components are extracted and combined to form approximate solutions to the original problem. In this paper, they show that algebraic sub-structuring can be effectively used to solve generalized eigenvalue problems arising from the finite element analysis of an accelerator structure.
Algebraic sub-structuring for electromagnetic applications
Yang, Chao; Gao, Weiguo; Bai, Zhaojun; Li, Xiaoye; Lee, Lie-Quan; Husbands, Parry; Ng, Esmond G.
2004-09-14
Algebraic sub-structuring refers to the process of applying matrix reordering and partitioning algorithms to divide a large sparse matrix into smaller submatrices from which a subset of spectral components are extracted and combined to form approximate solutions to the original problem. In this paper, we show that algebraic sub-structuring can be effectively used to solve generalized eigenvalue problems arising from the finite element analysis of an accelerator structure.
Boolean Algebra. Geometry Module for Use in a Mathematics Laboratory Setting.
ERIC Educational Resources Information Center
Brotherton, Sheila; And Others
This module is recommended as an honors unit to follow a unit on logic. There are four basic parts: (1) What is a Boolean Algebra; (2) Using Boolean Algebra to Prove Theorems; (3) Using Boolean Algebra to Simplify Logical Statements; and (4) Circuit Problems with Logic and Boolean Algebra. Of these, sections 1, 2, and 3 are primarily written…
I CAN Learn[R] Pre-Algebra and Algebra. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2007
2007-01-01
The "I CAN Learn[R] Pre-Algebra" and "Algebra" computerized curricula are designed to cover mathematics and problem-solving skills for ethnically diverse, inner-city students in grades 6-12. The curricula are designed to equip students with the skills they need to meet district, state, and national math objectives through an…
The Application of a Computer Algebra System as a Tool in College Algebra.
ERIC Educational Resources Information Center
Mayes, Robert L.
1995-01-01
Students (n=61) in an experimental course stressing active student involvement and the use of a computer algebra system scored higher than students (n=76) in a traditional college algebra course on final measures of inductive reasoning, visualization, and problem solving while maintaining equivalent manipulation and computation skills. (Author/MLB)
ERIC Educational Resources Information Center
Swanson, H. Lee; Orosco, Michael J.; Lussier, Cathy
2013-01-01
Recent intervention studies directed to improve problem solving accuracy in children with math difficulties (MD) have found support for teaching cognitive strategies. This study addresses the question: What role does working memory capacity (WMC) play in strategy outcomes for children with MD? Four prediction models can be applied to strategy…
ERIC Educational Resources Information Center
De Corte, Erik; Verschaffel, Lieven
1996-01-01
Results of a study involving 107 sixth graders, 107 secondary school students, and 99 college education majors support the basic hypothesis of the intuitive model of solving multiplicative problems proposed by E. Fischbein and others (1985) but show that the theory does not account for all the empirical data. (SLD)
ERIC Educational Resources Information Center
De Corte, Erik; And Others
There is substantial empirical evidence showing the impact of the type of numbers in the solution of problems with a multiplicative structure. The theory of the intuitive models of arithmetic operations is today the most plausible theoretical account for these findings. In an attempt to contribute to a better understanding of the effects of number…
Superintegrability in Two Dimensions and the Racah-Wilson Algebra
NASA Astrophysics Data System (ADS)
Genest, Vincent X.; Vinet, Luc; Zhedanov, Alexei
2014-08-01
The analysis of the most general second-order superintegrable system in two dimensions: the generic 3-parameter model on the 2-sphere is cast in the framework of the Racah problem for the algebra. The Hamiltonian of the 3-parameter system and the generators of its quadratic symmetry algebra are seen to correspond to the total and intermediate Casimir operators of the combination of three algebras, respectively. The construction makes explicit the isomorphism between the Racah-Wilson algebra, which is the fundamental algebraic structure behind the Racah problem for , and the invariance algebra of the generic 3-parameter system. It also provides an explanation for the occurrence of the Racah polynomials as overlap coefficients in this context. The irreducible representations of the Racah-Wilson algebra are reviewed as well as their connection with the Askey scheme of classical orthogonal polynomials.
ERIC Educational Resources Information Center
Miller, L. Diane; England, David A.
1989-01-01
Describes a study in a large metropolitan high school to ascertain what influence the use of regular writing in algebra classes would have on students' attitudes towards algebra and their skills in algebra. Reports the simpler and more direct the writing topics the better. (MVL)
Applied Algebra Curriculum Modules.
ERIC Educational Resources Information Center
Texas State Technical Coll., Marshall.
This collection of 11 applied algebra curriculum modules can be used independently as supplemental modules for an existing algebra curriculum. They represent diverse curriculum styles that should stimulate the teacher's creativity to adapt them to other algebra concepts. The selected topics have been determined to be those most needed by students…
Connecting Arithmetic to Algebra
ERIC Educational Resources Information Center
Darley, Joy W.; Leapard, Barbara B.
2010-01-01
Algebraic thinking is a top priority in mathematics classrooms today. Because elementary school teachers lay the groundwork to develop students' capacity to think algebraically, it is crucial for teachers to have a conceptual understanding of the connections between arithmetic and algebra and be confident in communicating these connections. Many…
Ternary Virasoro - Witt algebra.
Zachos, C.; Curtright, T.; Fairlie, D.; High Energy Physics; Univ. of Miami; Univ. of Durham
2008-01-01
A 3-bracket variant of the Virasoro-Witt algebra is constructed through the use of su(1,1) enveloping algebra techniques. The Leibniz rules for 3-brackets acting on other 3-brackets in the algebra are discussed and verified in various situations.
Word form Encoding in Chinese Word Naming and Word Typing
ERIC Educational Resources Information Center
Chen, Jenn-Yeu; Li, Cheng-Yi
2011-01-01
The process of word form encoding was investigated in primed word naming and word typing with Chinese monosyllabic words. The target words shared or did not share the onset consonants with the prime words. The stimulus onset asynchrony (SOA) was 100 ms or 300 ms. Typing required the participants to enter the phonetic letters of the target word,…
... product. The signal word can be ei- ther: DANGER,WARNING or CAUTION. Products with the DANGER signal word are the most toxic. Products with ... causes moderate eye or skin irritation. 2,4 DANGER means that the pesticide product is highly toxic ...
Computer algebra and operators
NASA Technical Reports Server (NTRS)
Fateman, Richard; Grossman, Robert
1989-01-01
The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.
Discrete Minimal Surface Algebras
NASA Astrophysics Data System (ADS)
Arnlind, Joakim; Hoppe, Jens
2010-05-01
We consider discrete minimal surface algebras (DMSA) as generalized noncommutative analogues of minimal surfaces in higher dimensional spheres. These algebras appear naturally in membrane theory, where sequences of their representations are used as a regularization. After showing that the defining relations of the algebra are consistent, and that one can compute a basis of the enveloping algebra, we give several explicit examples of DMSAs in terms of subsets of sln (any semi-simple Lie algebra providing a trivial example by itself). A special class of DMSAs are Yang-Mills algebras. The representation graph is introduced to study representations of DMSAs of dimension d ≤ 4, and properties of representations are related to properties of graphs. The representation graph of a tensor product is (generically) the Cartesian product of the corresponding graphs. We provide explicit examples of irreducible representations and, for coinciding eigenvalues, classify all the unitary representations of the corresponding algebras.
Algebraic complexities and algebraic curves over finite fields
Chudnovsky, D. V.; Chudnovsky, G. V.
1987-01-01
We consider the problem of minimal (multiplicative) complexity of polynomial multiplication and multiplication in finite extensions of fields. For infinite fields minimal complexities are known [Winograd, S. (1977) Math. Syst. Theory 10, 169-180]. We prove lower and upper bounds on minimal complexities over finite fields, both linear in the number of inputs, using the relationship with linear coding theory and algebraic curves over finite fields. PMID:16593816
Chen, J.; Safro, I.
2011-01-01
Measuring the connection strength between a pair of vertices in a graph is one of the most important concerns in many graph applications. Simple measures such as edge weights may not be sufficient for capturing the effects associated with short paths of lengths greater than one. In this paper, we consider an iterative process that smooths an associated value for nearby vertices, and we present a measure of the local connection strength (called the algebraic distance; see [D. Ron, I. Safro, and A. Brandt, Multiscale Model. Simul., 9 (2011), pp. 407-423]) based on this process. The proposed measure is attractive in that the process is simple, linear, and easily parallelized. An analysis of the convergence property of the process reveals that the local neighborhoods play an important role in determining the connectivity between vertices. We demonstrate the practical effectiveness of the proposed measure through several combinatorial optimization problems on graphs and hypergraphs.
ERIC Educational Resources Information Center
McWilliams, Peter
1982-01-01
Describes the kinds of computer equipment needed for a personal word processing system. The characteristics and capabilities of specific devices, including keyboards, printers, and disk drives, are discussed. (JL)
What Is the Place of Algebra in the K-12 Mathematics Program?
ERIC Educational Resources Information Center
Fendel, Dan; And Others
1997-01-01
As times change, so has the role of algebra in the educational program. The Interactive Mathematics Program (IMP) offers secondary students an opportunity to learn algebra in a college preparatory sequence that combines basic skills, problem solving, and conceptual understanding while integrating algebra into a problem-based program. Designed for…
Lefrancois, Daniel; Wormit, Michael; Dreuw, Andreas
2015-09-28
For the investigation of molecular systems with electronic ground states exhibiting multi-reference character, a spin-flip (SF) version of the algebraic diagrammatic construction (ADC) scheme for the polarization propagator up to third order perturbation theory (SF-ADC(3)) is derived via the intermediate state representation and implemented into our existing ADC computer program adcman. The accuracy of these new SF-ADC(n) approaches is tested on typical situations, in which the ground state acquires multi-reference character, like bond breaking of H2 and HF, the torsional motion of ethylene, and the excited states of rectangular and square-planar cyclobutadiene. Overall, the results of SF-ADC(n) reveal an accurate description of these systems in comparison with standard multi-reference methods. Thus, the spin-flip versions of ADC are easy-to-use methods for the calculation of "few-reference" systems, which possess a stable single-reference triplet ground state.
NASA Astrophysics Data System (ADS)
Lefrancois, Daniel; Wormit, Michael; Dreuw, Andreas
2015-09-01
For the investigation of molecular systems with electronic ground states exhibiting multi-reference character, a spin-flip (SF) version of the algebraic diagrammatic construction (ADC) scheme for the polarization propagator up to third order perturbation theory (SF-ADC(3)) is derived via the intermediate state representation and implemented into our existing ADC computer program adcman. The accuracy of these new SF-ADC(n) approaches is tested on typical situations, in which the ground state acquires multi-reference character, like bond breaking of H2 and HF, the torsional motion of ethylene, and the excited states of rectangular and square-planar cyclobutadiene. Overall, the results of SF-ADC(n) reveal an accurate description of these systems in comparison with standard multi-reference methods. Thus, the spin-flip versions of ADC are easy-to-use methods for the calculation of "few-reference" systems, which possess a stable single-reference triplet ground state.
Prediction of Algebraic Instabilities
NASA Astrophysics Data System (ADS)
Zaretzky, Paula; King, Kristina; Hill, Nicole; Keithley, Kimberlee; Barlow, Nathaniel; Weinstein, Steven; Cromer, Michael
2016-11-01
A widely unexplored type of hydrodynamic instability is examined - large-time algebraic growth. Such growth occurs on the threshold of (exponentially) neutral stability. A new methodology is provided for predicting the algebraic growth rate of an initial disturbance, when applied to the governing differential equation (or dispersion relation) describing wave propagation in dispersive media. Several types of algebraic instabilities are explored in the context of both linear and nonlinear waves.
Connecting Algebra and Chemistry.
ERIC Educational Resources Information Center
O'Connor, Sean
2003-01-01
Correlates high school chemistry curriculum with high school algebra curriculum and makes the case for an integrated approach to mathematics and science instruction. Focuses on process integration. (DDR)
NASA Astrophysics Data System (ADS)
Clemmons, Karina
Vocabulary in a second language is an indispensable building block of all comprehension (Folse, 2006; Nation, 2006). Teachers in content area classes such as science, math, and social studies frequently teach content specific vocabulary, but are not aware of the obstacles that can occur when students do not know the basic words. Word lists such as the General Service List (GSL) were created to assist students and teachers (West, 1953). The GSL does not adequately take into account the high level of polysemy of many common English words, nor has it been updated by genre to reflect specific content domains encountered by secondary science students in today's high stakes classes such as chemistry. This study examines how many words of the first 1000 words of the GSL occurred in the secondary chemistry textbooks sampled, how often the first 1000 words of the GSL were polysemous, and specifically which multiple meanings occurred. A discussion of results includes word tables that list multiple meanings present, example phrases that illustrate the context surrounding the target words, suggestions for a GSL that is genre specific to secondary chemistry textbooks and that is ranked by meaning as well as type, and implications for both vocabulary materials and classroom instruction for ELLs in secondary chemistry classes. Findings are essential to second language (L2) researchers, materials developers, publishers, and teachers.
ERIC Educational Resources Information Center
Hilte, Maartje; Reitsma, Pieter
2008-01-01
Dutch bisyllabic words containing open and closed syllables are particularly difficult to spell for children. What kind of support in spelling exercises improves the spelling of these words the most? Two extensions of a commonly used dictation exercise were tested: less skilled spellers in grade 2 (n = 50; 7 years and 10 months) either received…
A Linear Algebraic Approach to Teaching Interpolation
ERIC Educational Resources Information Center
Tassa, Tamir
2007-01-01
A novel approach for teaching interpolation in the introductory course in numerical analysis is presented. The interpolation problem is viewed as a problem in linear algebra, whence the various forms of interpolating polynomial are seen as different choices of a basis to the subspace of polynomials of the corresponding degree. This approach…
Digital Maps, Matrices and Computer Algebra
ERIC Educational Resources Information Center
Knight, D. G.
2005-01-01
The way in which computer algebra systems, such as Maple, have made the study of complex problems accessible to undergraduate mathematicians with modest computational skills is illustrated by some large matrix calculations, which arise from representing the Earth's surface by digital elevation models. Such problems are often considered to lie in…
ERIC Educational Resources Information Center
Education Commission of the States, Denver, CO.
This paper provides an overview of Fast ForWord, a CD-ROM and Internet-based training program for children (pre-K to grade 8) with language and reading problems that helps children rapidly build oral language comprehension and other critical skills necessary for learning to read or becoming a better reader. With the help of computers, speech…
Rumelhart, D.E.; Skokowski, P.G.; Martin, B.O.
1995-05-01
In this project we have developed a language model based on Artificial Neural Networks (ANNs) for use in conjunction with automatic textual search or speech recognition systems. The model can be trained on large corpora of text to produce probability estimates that would improve the ability of systems to identify words in a sentence given partial contextual information. The model uses a gradient-descent learning procedure to develop a metric of similarity among terms in a corpus, based on context. Using lexical categories based on this metric, a network can then be trained to do serial word probability estimation. Such a metric can also be used to improve the performance of topic-based search by allowing retrieval of information that is related to desired topics even if no obvious set of key words unites all the retrieved items.
Bicovariant quantum algebras and quantum Lie algebras
NASA Astrophysics Data System (ADS)
Schupp, Peter; Watts, Paul; Zumino, Bruno
1993-10-01
A bicovariant calculus of differential operators on a quantum group is constructed in a natural way, using invariant maps from Fun(mathfrak{G}_q ) to U q g, given by elements of the pure braid group. These operators—the “reflection matrix” Y≡L + SL - being a special case—generate algebras that linearly close under adjoint actions, i.e. they form generalized Lie algebras. We establish the connection between the Hopf algebra formulation of the calculus and a formulation in compact matrix form which is quite powerful for actual computations and as applications we find the quantum determinant and an orthogonality relation for Y in SO q (N).
Never Trust Your Word Processor
ERIC Educational Resources Information Center
Linke, Dirk
2009-01-01
In this article, the author talks about the auto correction mode of word processors that leads to a number of problems and describes an example in biochemistry exams that shows how word processors can lead to mistakes in databases and in papers. The author contends that, where this system is applied, spell checking should not be left to a word…
Parastatistics Algebras and Combinatorics
NASA Astrophysics Data System (ADS)
Popov, T.
2005-03-01
We consider the algebras spanned by the creation parafermionic and parabosonic operators which give rise to generalized parastatistics Fock spaces. The basis of such a generalized Fock space can be labelled by Young tableaux which are combinatorial objects. By means of quantum deformations a nice combinatorial structure of the algebra of the plactic monoid that lies behind the parastatistics is revealed.
Algebraic Reasoning through Patterns
ERIC Educational Resources Information Center
Rivera, F. D.; Becker, Joanne Rossi
2009-01-01
This article presents the results of a three-year study that explores students' performance on patterning tasks involving prealgebra and algebra. The findings, insights, and issues drawn from the study are intended to help teach prealgebra and algebra. In the remainder of the article, the authors take a more global view of the three-year study on…
Learning Activity Package, Algebra.
ERIC Educational Resources Information Center
Evans, Diane
A set of ten teacher-prepared Learning Activity Packages (LAPs) in beginning algebra and nine in intermediate algebra, these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radicals,…
NASA Technical Reports Server (NTRS)
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
ERIC Educational Resources Information Center
Levy, Alissa Beth
2012-01-01
The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this dissertation,…
ERIC Educational Resources Information Center
Merlin, Ethan M.
2013-01-01
This article describes how the author has developed tasks for students that address the missed "essence of the matter" of algebraic transformations. Specifically, he has found that having students practice "perceiving" algebraic structure--by naming the "glue" in the expressions, drawing expressions using…
Lefrancois, Daniel; Wormit, Michael; Dreuw, Andreas
2015-09-28
For the investigation of molecular systems with electronic ground states exhibiting multi-reference character, a spin-flip (SF) version of the algebraic diagrammatic construction (ADC) scheme for the polarization propagator up to third order perturbation theory (SF-ADC(3)) is derived via the intermediate state representation and implemented into our existing ADC computer program adcman. The accuracy of these new SF-ADC(n) approaches is tested on typical situations, in which the ground state acquires multi-reference character, like bond breaking of H{sub 2} and HF, the torsional motion of ethylene, and the excited states of rectangular and square-planar cyclobutadiene. Overall, the results of SF-ADC(n) reveal an accurate description of these systems in comparison with standard multi-reference methods. Thus, the spin-flip versions of ADC are easy-to-use methods for the calculation of “few-reference” systems, which possess a stable single-reference triplet ground state.
ERIC Educational Resources Information Center
Strauch-Nelson, Wendy
2007-01-01
Prompted by a parent's comment that indicated a desire for her elementary-age children to learn the elements and principles of design in their art class, the author set out to enrich her own understanding and appreciation of the language used in the art room. Looking at word origins helps students appreciate the significance of art and craft in…
ERIC Educational Resources Information Center
Cantu, Virginia, Comp.; And Others
Prepared by bilingual teacher aide students, this glossary provides the Spanish translation of about 1,300 English words used in the bilingual classroom. Intended to serve as a handy reference for teachers, teacher aides, and students, the glossary can also be used in teacher training programs as a vocabulary builder for future bilingual teachers…
What Homophones Say about Words
Dautriche, Isabelle; Chemla, Emmanuel
2016-01-01
The number of potential meanings for a new word is astronomic. To make the word-learning problem tractable, one must restrict the hypothesis space. To do so, current word learning accounts often incorporate constraints about cognition or about the mature lexicon directly in the learning device. We are concerned with the convexity constraint, which holds that concepts (privileged sets of entities that we think of as “coherent”) do not have gaps (if A and B belong to a concept, so does any entity “between” A and B). To leverage from it a linguistic constraint, learning algorithms have percolated this constraint from concepts, to word forms: some algorithms rely on the possibility that word forms are associated with convex sets of objects. Yet this does have to be the case: homophones are word forms associated with two separate words and meanings. Two sets of experiments show that when evidence suggests that a novel label is associated with a disjoint (non-convex) set of objects, either a) because there is a gap in conceptual space between the learning exemplars for a given word or b) because of the intervention of other lexical items in that gap, adults prefer to postulate homophony, where a single word form is associated with two separate words and meanings, rather than inferring that the word could have a disjunctive, discontinuous meaning. These results about homophony must be integrated to current word learning algorithms. We conclude by arguing for a weaker specialization of word learning algorithms, which too often could miss important constraints by focusing on a restricted empirical basis (e.g., non-homophonous content words). PMID:27583384
Clifford Algebras, Random Graphs, and Quantum Random Variables
NASA Astrophysics Data System (ADS)
Schott, René; Staples, G. Stacey
2008-08-01
For fixed n > 0, the space of finite graphs on n vertices is canonically associated with an abelian, nilpotent-generated subalgebra of the Clifford algebra {C}l2n,2n which is canonically isomorphic to the 2n-particle fermion algebra. Using the generators of the subalgebra, an algebraic probability space of "Clifford adjacency matrices" associated with finite graphs is defined. Each Clifford adjacency matrix is a quantum random variable whose mth moment corresponds to the number of m-cycles in the graph G. Each matrix admits a canonical "quantum decomposition" into a sum of three algebraic random variables: a = aΔ + aΥ + aΛ, where aΔ is classical while aΥ and aΛ are quantum. Moreover, within the Clifford algebra context the NP problem of cycle enumeration is reduced to matrix multiplication, requiring no more than n4 Clifford (geo-metric) multiplications within the algebra.
Promoting Quantitative Literacy in an Online College Algebra Course
ERIC Educational Resources Information Center
Tunstall, Luke; Bossé, Michael J.
2016-01-01
College algebra (a university freshman level algebra course) fulfills the quantitative literacy requirement of many college's general education programs and is a terminal course for most who take it. An online problem-based learning environment provides a unique means of engaging students in quantitative discussions and research. This article…
James, Lori E.; Abrams, Lise; Tyler, Lorraine K.
2017-01-01
Objective: We tested the claim that age-related increases in knowledge interfere with word retrieval, leading to word finding failures. We did this by relating a measure of crystallized intelligence to tip-of-the-tongue (TOT) states and picture naming accuracy. Method: Participants were from a large (N = 708), cross-sectional (aged 18–88 years), population-based sample from the Cambridge Centre for Ageing and Neuroscience cohort (Cam-CAN; www.cam-can.com). They completed (a) the Spot-the-Word Test (STW), a measure of crystallized intelligence in which participants circled the real word in word/nonword pairs, (b) a TOT-inducing task, and (c) a picture naming task. Results: Age and STW independently predicted TOTs, with higher TOTs for older adults and for participants with lower STW scores. Tests of a moderator model examining interactions between STW and age indicated that STW was a significant negative predictor of TOTs in younger adults, but with increasing age, the effect size gradually approached zero. Results using picture naming accuracy replicated these findings. Discussion: These results do not support the hypothesis that lifelong knowledge acquisition leads to interference that causes an age-related increase in TOTs. Instead, crystallized intelligence supports successful word retrieval, although this relationship weakens across adulthood. PMID:27371482
Computer algebra and transport theory.
Warsa, J. S.
2004-01-01
Modern symbolic algebra computer software augments and complements more traditional approaches to transport theory applications in several ways. The first area is in the development and enhancement of numerical solution methods for solving the Boltzmann transport equation. Typically, special purpose computer codes are designed and written to solve specific transport problems in particular ways. Different aspects of the code are often written from scratch and the pitfalls of developing complex computer codes are numerous and well known. Software such as MAPLE and MATLAB can be used to prototype, analyze, verify and determine the suitability of numerical solution methods before a full-scale transport application is written. Once it is written, the relevant pieces of the full-scale code can be verified using the same tools I that were developed for prototyping. Another area is in the analysis of numerical solution methods or the calculation of theoretical results that might otherwise be difficult or intractable. Algebraic manipulations are done easily and without error and the software also provides a framework for any additional numerical calculations that might be needed to complete the analysis. We will discuss several applications in which we have extensively used MAPLE and MATLAB in our work. All of them involve numerical solutions of the S{sub N} transport equation. These applications encompass both of the two main areas in which we have found computer algebra software essential.
Does "Word Coach" Coach Words?
ERIC Educational Resources Information Center
Cobb, Tom; Horst, Marlise
2011-01-01
This study reports on the design and testing of an integrated suite of vocabulary training games for Nintendo[TM] collectively designated "My Word Coach" (Ubisoft, 2008). The games' design is based on a wide range of learning research, from classic studies on recycling patterns to frequency studies of modern corpora. Its general usage…
Algebraic Nonlinear Collective Motion
NASA Astrophysics Data System (ADS)
Troupe, J.; Rosensteel, G.
1998-11-01
Finite-dimensional Lie algebras of vector fields determine geometrical collective models in quantum and classical physics. Every set of vector fields on Euclidean space that generates the Lie algebra sl(3, R) and contains the angular momentum algebra so(3) is determined. The subset of divergence-free sl(3, R) vector fields is proven to be indexed by a real numberΛ. TheΛ=0 solution is the linear representation that corresponds to the Riemann ellipsoidal model. The nonlinear group action on Euclidean space transforms a certain family of deformed droplets among themselves. For positiveΛ, the droplets have a neck that becomes more pronounced asΛincreases; for negativeΛ, the droplets contain a spherical bubble of radius |Λ|1/3. The nonlinear vector field algebra is extended to the nonlinear general collective motion algebra gcm(3) which includes the inertia tensor. The quantum algebraic models of nonlinear nuclear collective motion are given by irreducible unitary representations of the nonlinear gcm(3) Lie algebra. These representations model fissioning isotopes (Λ>0) and bubble and two-fluid nuclei (Λ<0).
Chinese Whispers - Algebra Style: Grammatical, Notational, Mathematical and Activity Tensions
ERIC Educational Resources Information Center
Hewitt, Dave
2005-01-01
This paper analyses students' written work from an activity based on two well known games in the UK: Chinese Whispers and Consequences. Within this activity students were asked to translate formal algebraic equations into word statements and vice versa. Using the framework of affordances and constraints to offer an account for what the students'…
Phonological Words and Stuttering on Function Words.
ERIC Educational Resources Information Center
Au-Yeung, James; Howell, Peter; Pilgrim, Lesley
1998-01-01
Stuttering on function words was examined in 51 children and adults who stutter. Stuttering rate was a function of age (children stuttered more on function words), position (function words in early positions in utterances were more likely to be stuttered), and on whether the function word occurred before or after the single content word.…
Algebraic invariants for homotopy types
NASA Astrophysics Data System (ADS)
Blanc, David
1999-11-01
We define a sequence of purely algebraic invariants - namely, classes in the Quillen cohomology of the [Pi]-algebra [pi][low asterisk]X - for distinguishing between different homotopy types of spaces. Another sequence of such cohomology classes allows one to decide whether a given abstract [Pi]-algebra can be realized as the homotopy [Pi]-algebra of a space.
A Richer Understanding of Algebra
ERIC Educational Resources Information Center
Foy, Michelle
2008-01-01
Algebra is one of those hard-to-teach topics where pupils seem to struggle to see it as more than a set of rules to learn, but this author recently used the software "Grid Algebra" from ATM, which engaged her Year 7 pupils in exploring algebraic concepts for themselves. "Grid Algebra" allows pupils to experience number,…
Holstein-Primakoff realization of Higgs algebra and its q-extension
NASA Astrophysics Data System (ADS)
Chung, Won Sang
2014-03-01
In this paper, Holstein-Primakoff realization of Higgs algebra is obtained by using the linear (or quadratic) deformation of Heisenberg algebra and q-deformed Higgs algebra is proposed. Some applications such as Kepler problem in a two-dimensional curved space and SUSY quantum mechanics are also discussed.
The Taylor spectrum and transversality for a Heisenberg algebra of operators
Dosi, Anar A
2010-05-11
A problem on noncommutative holomorphic functional calculus is considered for a Banach module over a finite-dimensional nilpotent Lie algebra. As the main result, the transversality property of algebras of noncommutative holomorphic functions with respect to the Taylor spectrum is established for a family of bounded linear operators generating a Heisenberg algebra. Bibliography: 25 titles.
Pseudo-Riemannian Novikov algebras
NASA Astrophysics Data System (ADS)
Chen, Zhiqi; Zhu, Fuhai
2008-08-01
Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-type and Hamiltonian operators in formal variational calculus. Pseudo-Riemannian Novikov algebras denote Novikov algebras with non-degenerate invariant symmetric bilinear forms. In this paper, we find that there is a remarkable geometry on pseudo-Riemannian Novikov algebras, and give a special class of pseudo-Riemannian Novikov algebras.
NASA Astrophysics Data System (ADS)
Markarian, Nikita
2017-03-01
We introduce Weyl n-algebras and show how their factorization complex may be used to define invariants of manifolds. In the appendix, we heuristically explain why these invariants must be perturbative Chern-Simons invariants.
Developing Algebraic Thinking.
ERIC Educational Resources Information Center
Alejandre, Suzanne
2002-01-01
Presents a teaching experience that resulted in students getting to a point of full understanding of the kinesthetic activity and the algebra behind it. Includes a lesson plan for a traffic jam activity. (KHR)
Jordan Algebraic Quantum Categories
NASA Astrophysics Data System (ADS)
Graydon, Matthew; Barnum, Howard; Ududec, Cozmin; Wilce, Alexander
2015-03-01
State cones in orthodox quantum theory over finite dimensional complex Hilbert spaces enjoy two particularly essential features: homogeneity and self-duality. Orthodox quantum theory is not, however, unique in that regard. Indeed, all finite dimensional formally real Jordan algebras -- arenas for generalized quantum theories with close algebraic kinship to the orthodox theory -- admit homogeneous self-dual positive cones. We construct categories wherein these theories are unified. The structure of composite systems is cast from universal tensor products of the universal C*-algebras enveloping ambient spaces for the constituent state cones. We develop, in particular, a notion of composition that preserves the local distinction of constituent systems in quaternionic quantum theory. More generally, we explicitly derive the structure of hybrid quantum composites with subsystems of arbitrary Jordan algebraic type.
Accounting Equals Applied Algebra.
ERIC Educational Resources Information Center
Roberts, Sondra
1997-01-01
Argues that students should be given mathematics credits for completing accounting classes. Demonstrates that, although the terminology is different, the mathematical concepts are the same as those used in an introductory algebra class. (JOW)
Constraints on the Meanings of Words.
ERIC Educational Resources Information Center
Soja, N.; And Others
Between their second and fifth years, young children learn approximately 15 new words a day. For every word the child hears, he or she must choose the correct referent out of an infinite set of candidates. An important problem for developmental psychologists is to understand the principles that limit the child's hypotheses about word meanings. A…
Covariant deformed oscillator algebras
NASA Technical Reports Server (NTRS)
Quesne, Christiane
1995-01-01
The general form and associativity conditions of deformed oscillator algebras are reviewed. It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami condition. As an example, an SU(sub q)(n) x SU(sub q)(m)-covariant q-bosonic algebra is discussed in some detail.
Aprepro - Algebraic Preprocessor
2005-08-01
Aprepro is an algebraic preprocessor that reads a file containing both general text and algebraic, string, or conditional expressions. It interprets the expressions and outputs them to the output file along witht the general text. Aprepro contains several mathematical functions, string functions, and flow control constructs. In addition, functions are included that, with some additional files, implement a units conversion system and a material database lookup system.
Word Domain Disambiguation via Word Sense Disambiguation
Sanfilippo, Antonio P.; Tratz, Stephen C.; Gregory, Michelle L.
2006-06-04
Word subject domains have been widely used to improve the perform-ance of word sense disambiguation al-gorithms. However, comparatively little effort has been devoted so far to the disambiguation of word subject do-mains. The few existing approaches have focused on the development of al-gorithms specific to word domain dis-ambiguation. In this paper we explore an alternative approach where word domain disambiguation is achieved via word sense disambiguation. Our study shows that this approach yields very strong results, suggesting that word domain disambiguation can be ad-dressed in terms of word sense disam-biguation with no need for special purpose algorithms.
Parallel Algebraic Multigrids for Structural mechanics
Brezina, M; Tong, C; Becker, R
2004-05-11
This paper presents the results of a comparison of three parallel algebraic multigrid (AMG) preconditioners for structural mechanics applications. In particular, they are interested in investigating both the scalability and robustness of the preconditioners. Numerical results are given for a range of structural mechanics problems with various degrees of difficulty.
Stability of Linear Equations--Algebraic Approach
ERIC Educational Resources Information Center
Cherif, Chokri; Goldstein, Avraham; Prado, Lucio M. G.
2012-01-01
This article could be of interest to teachers of applied mathematics as well as to people who are interested in applications of linear algebra. We give a comprehensive study of linear systems from an application point of view. Specifically, we give an overview of linear systems and problems that can occur with the computed solution when the…
ERIC Educational Resources Information Center
Parmer, Lavada Jacumin; Thames, Dana G.; Kazelskis, Richard
A study examined the effectiveness of an integrated language arts instructional format for teaching reading compared with the effectiveness of the typical traditional reading program. The study investigated the effectiveness of approaches that are representative of both viewpoints of the reading process (i.e., word recognition and the construction…
Applied Algebra: The Modeling Technique of Least Squares
ERIC Educational Resources Information Center
Zelkowski, Jeremy; Mayes, Robert
2008-01-01
The article focuses on engaging students in algebra through modeling real-world problems. The technique of least squares is explored, encouraging students to develop a deeper understanding of the method. (Contains 2 figures and a bibliography.)
Words and possible words in early language acquisition.
Marchetto, Erika; Bonatti, Luca L
2013-11-01
In order to acquire language, infants must extract its building blocks-words-and master the rules governing their legal combinations from speech. These two problems are not independent, however: words also have internal structure. Thus, infants must extract two kinds of information from the same speech input. They must find the actual words of their language. Furthermore, they must identify its possible words, that is, the sequences of sounds that, being morphologically well formed, could be words. Here, we show that infants' sensitivity to possible words appears to be more primitive and fundamental than their ability to find actual words. We expose 12- and 18-month-old infants to an artificial language containing a conflict between statistically coherent and structurally coherent items. We show that 18-month-olds can extract possible words when the familiarization stream contains marks of segmentation, but cannot do so when the stream is continuous. Yet, they can find actual words from a continuous stream by computing statistical relationships among syllables. By contrast, 12-month-olds can find possible words when familiarized with a segmented stream, but seem unable to extract statistically coherent items from a continuous stream that contains minimal conflicts between statistical and structural information. These results suggest that sensitivity to word structure is in place earlier than the ability to analyze distributional information. The ability to compute nontrivial statistical relationships becomes fully effective relatively late in development, when infants have already acquired a considerable amount of linguistic knowledge. Thus, mechanisms for structure extraction that do not rely on extensive sampling of the input are likely to have a much larger role in language acquisition than general-purpose statistical abilities.
Algebraic quantum gravity (AQG): II. Semiclassical analysis
NASA Astrophysics Data System (ADS)
Giesel, K.; Thiemann, T.
2007-05-01
In the previous paper (Giesel and Thiemann 2006 Conceptual setup Preprint gr-qc/0607099) a new combinatorial and thus purely algebraical approach to quantum gravity, called algebraic quantum gravity (AQG), was introduced. In the framework of AQG, existing semiclassical tools can be applied to operators that encode the dynamics of AQG such as the master constraint operator. In this paper, we will analyse the semiclassical limit of the (extended) algebraic master constraint operator and show that it reproduces the correct infinitesimal generators of general relativity. Therefore, the question of whether general relativity is included in the semiclassical sector of the theory, which is still an open problem in LQG, can be significantly improved in the framework of AQG. For the calculations, we will substitute SU(2) with U(1)3. That this substitution is justified will be demonstrated in the third paper (Giesel and Thiemann 2006 Semiclassical perturbation theory Preprint gr-qc/0607101) of this series.
The Dixmier Map for Nilpotent Super Lie Algebras
NASA Astrophysics Data System (ADS)
Herscovich, Estanislao
2012-07-01
In this article we prove that there exists a Dixmier map for nilpotent super Lie algebras. In other words, if we denote by {Prim({U}({g}))} the set of (graded) primitive ideals of the enveloping algebra {{U}({g})} of a nilpotent Lie superalgebra {{g}} and {{A}d0} the adjoint group of {{g}0}, we prove that the usual Dixmier map for nilpotent Lie algebras can be naturally extended to the context of nilpotent super Lie algebras, i.e. there exists a bijective map I : {g}0^{*}/{A}d0 rightarrow Prim({U}({g})) defined by sending the equivalence class [ λ] of a functional λ to a primitive ideal I( λ) of {{U}({g})}, and which coincides with the Dixmier map in the case of nilpotent Lie algebras. Moreover, the construction of the previous map is explicit, and more or less parallel to the one for Lie algebras, a major difference with a previous approach ( cf. [18]). One key fact in the construction is the existence of polarizations for super Lie algebras, generalizing the concept defined for Lie algebras. As a corollary of the previous description, we obtain the isomorphism {{U}({g})/I(λ) ˜eq Cliffq(k) ⊗ Ap(k)}, where {(p,q) = (dim({g}0/{g}0^{λ})/2,dim({g}1/{g}1^{λ}))}, we get a direct construction of the maximal ideals of the underlying algebra of {{U}({g})} and also some properties of the stabilizers of the primitive ideals of {{U}({g})}.
ADA interpretative system for image algebra
NASA Astrophysics Data System (ADS)
Murillo, Juan J.; Wilson, Joseph N.
1992-06-01
An important research problem in image processing is to find appropriate tools to support algorithm development. There have been efforts to build algorithm development support systems for image algebra in several languages, but these systems still have the disadvantage of the time consuming algorithm development style associated with compilation-oriented programming. This paper starts with a description of the Run-Time Support Library (RTSL), which serves as the base for executing programs on both the Image Algebra Ada Translator (IAAT) and Image Algebra Ada Interpreter (IAAI). A presentation on the current status of IAAT and its capabilities is followed by a brief introduction to the utilization of the Image Display Manager (IDM) for image manipulation and analysis. We then discuss in detail the current development stage of IAAI and its relation with RTSL and IDM. The last section describes the design of a syntax-directed graphical user interface for IAAI. We close with an analysis of the current performance of IAAI, and future trends are discussed. Appendix A gives a brief introduction to Image Algebra (IA), and in Appendix B the reader is presented to the Image Algebra Ada (IAA) grammar.
ERIC Educational Resources Information Center
Hitt, Fernando; Saboya, Mireille; Zavala, Carlos Cortés
2017-01-01
Part of the research community that has followed the Early Algebra paradigm is currently delimiting the differences between arithmetic thinking and algebraic thinking. This trend could prevent new research approaches to the problem of learning algebra, hiding the importance of considering an arithmetico-algebraic thinking, a new approach which…
Unified algebraic method to non-Hermitian systems with Lie algebraic linear structure
NASA Astrophysics Data System (ADS)
Zhang, Hong-Biao; Jiang, Guang-Yuan; Wang, Gang-Cheng
2015-07-01
We suggest a generic algebraic method to solve non-Hermitian Hamiltonian systems with Lie algebraic linear structure. Such method can not only unify the non-Hermitian Hamiltonian and the Hermitian Hamiltonian with the same structure but also keep self-consistent between similarity transformation and unitary transformation. To clearly reveal the correctness and physical meaning of such algebraic method, we illustrate our method with two different types of non-Hermitian Hamiltonians: the non-Hermitian Hamiltonian with Heisenberg algebraic linear structure and the non-Hermitian Hamiltonian with su(1, 1) algebraic linear structure. We obtain energy eigenvalues and the corresponding eigenstates of non-Hermitian forced harmonic oscillator with Heisenberg algebra structure via a proper similarity transformation. We also calculate the eigen-problems of general non-Hermitian Hamiltonian with su(1, 1) structure in terms of the similarity transformation. As an application, we focus on studying the non-Hermitian single-mode squeezed and coherent harmonic oscillator system and find that such similarity transformation associated with this model is in fact gauge-like transformation for simple harmonic oscillator.
Algebraic mesh quality metrics
KNUPP,PATRICK
2000-04-24
Quality metrics for structured and unstructured mesh generation are placed within an algebraic framework to form a mathematical theory of mesh quality metrics. The theory, based on the Jacobian and related matrices, provides a means of constructing, classifying, and evaluating mesh quality metrics. The Jacobian matrix is factored into geometrically meaningful parts. A nodally-invariant Jacobian matrix can be defined for simplicial elements using a weight matrix derived from the Jacobian matrix of an ideal reference element. Scale and orientation-invariant algebraic mesh quality metrics are defined. the singular value decomposition is used to study relationships between metrics. Equivalence of the element condition number and mean ratio metrics is proved. Condition number is shown to measure the distance of an element to the set of degenerate elements. Algebraic measures for skew, length ratio, shape, volume, and orientation are defined abstractly, with specific examples given. Combined metrics for shape and volume, shape-volume-orientation are algebraically defined and examples of such metrics are given. Algebraic mesh quality metrics are extended to non-simplical elements. A series of numerical tests verify the theoretical properties of the metrics defined.
NASA Astrophysics Data System (ADS)
Johnson, Sarah J.; Lance, Andrew M.; Ong, Lawrence; Shirvanimoghaddam, Mahyar; Ralph, T. C.; Symul, Thomas
2017-02-01
The maximum operational range of continuous variable quantum key distribution protocols has shown to be improved by employing high-efficiency forward error correction codes. Typically, the secret key rate model for such protocols is modified to account for the non-zero word error rate of such codes. In this paper, we demonstrate that this model is incorrect: firstly, we show by example that fixed-rate error correction codes, as currently defined, can exhibit efficiencies greater than unity. Secondly, we show that using this secret key model combined with greater than unity efficiency codes, implies that it is possible to achieve a positive secret key over an entanglement breaking channel—an impossible scenario. We then consider the secret key model from a post-selection perspective, and examine the implications for key rate if we constrain the forward error correction codes to operate at low word error rates.
People Considerations in Word Processing.
ERIC Educational Resources Information Center
Diamond, Marion L.
1984-01-01
Business educators preparing students for jobs in business and industry should become aware of the problems faced by workers in a typical large office environment. Word processor operators face many of the same problems as factory assembly line workers--lack of personalization, lack of incentive, and removal from the mainstream. (JOW)
Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction
ERIC Educational Resources Information Center
Wasserman, Nicholas H.
2016-01-01
This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…
Adaptive Algebraic Multigrid Methods
Brezina, M; Falgout, R; MacLachlan, S; Manteuffel, T; McCormick, S; Ruge, J
2004-04-09
Our ability to simulate physical processes numerically is constrained by our ability to solve the resulting linear systems, prompting substantial research into the development of multiscale iterative methods capable of solving these linear systems with an optimal amount of effort. Overcoming the limitations of geometric multigrid methods to simple geometries and differential equations, algebraic multigrid methods construct the multigrid hierarchy based only on the given matrix. While this allows for efficient black-box solution of the linear systems associated with discretizations of many elliptic differential equations, it also results in a lack of robustness due to assumptions made on the near-null spaces of these matrices. This paper introduces an extension to algebraic multigrid methods that removes the need to make such assumptions by utilizing an adaptive process. The principles which guide the adaptivity are highlighted, as well as their application to algebraic multigrid solution of certain symmetric positive-definite linear systems.
NASA Astrophysics Data System (ADS)
Durka, R.
2017-04-01
The S-expansion framework is analyzed in the context of a freedom in closing the multiplication tables for the abelian semigroups. Including the possibility of the zero element in the resonant decomposition, and associating the Lorentz generator with the semigroup identity element, leads to a wide class of the expanded Lie algebras introducing interesting modifications to the gauge gravity theories. Among the results, we find all the Maxwell algebras of type {{B}m} , {{C}m} , and the recently introduced {{D}m} . The additional new examples complete the resulting generalization of the bosonic enlargements for an arbitrary number of the Lorentz-like and translational-like generators. Some further prospects concerning enlarging the algebras are discussed, along with providing all the necessary constituents for constructing the gravity actions based on the obtained results.
NASA Astrophysics Data System (ADS)
Roytenberg, Dmitry
2007-11-01
A Lie 2-algebra is a linear category equipped with a functorial bilinear operation satisfying skew-symmetry and Jacobi identity up to natural transformations which themselves obey coherence laws of their own. Functors and natural transformations between Lie 2-algebras can also be defined, yielding a 2-category. Passing to the normalized chain complex gives an equivalence of 2-categories between Lie 2-algebras and certain "up to homotopy" structures on the complex; for strictly skew-symmetric Lie 2-algebras these are L∞-algebras, by a result of Baez and Crans. Lie 2-algebras appear naturally as infinitesimal symmetries of solutions of the Maurer-Cartan equation in some differential graded Lie algebras and L∞-algebras. In particular, (quasi-) Poisson manifolds, (quasi-) Lie bialgebroids and Courant algebroids provide large classes of examples.
Algebra for Gifted Third Graders.
ERIC Educational Resources Information Center
Borenson, Henry
1987-01-01
Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)
A Holistic Approach to Algebra.
ERIC Educational Resources Information Center
Barbeau, Edward J.
1991-01-01
Described are two examples involving recursive mathematical sequences designed to integrate a holistic approach to learning algebra. These examples promote pattern recognition with algebraic justification, full class participation, and mathematical values that can be transferred to other situations. (MDH)
Computer Program For Linear Algebra
NASA Technical Reports Server (NTRS)
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
Word, Words, Words: Ellul and the Mediocritization of Language
ERIC Educational Resources Information Center
Foltz, Franz; Foltz, Frederick
2012-01-01
The authors explore how technique via propaganda has replaced the word with images creating a mass society and limiting the ability of people to act as individuals. They begin by looking at how words affect human society and how they have changed over time. They explore how technology has altered the meaning of words in order to create a more…
Fibonacci's Triangle: A Vehicle for Problem Solving.
ERIC Educational Resources Information Center
Ouellette, Hugh
1979-01-01
A method for solving certain types of problems is illustrated by problems related to Fibonacci's triangle. The method involves pattern recognition, generalizing, algebraic manipulation, and mathematical induction. (MP)
Situating the Debate on "Geometrical Algebra" within the Framework of Premodern Algebra.
Sialaros, Michalis; Christianidis, Jean
2016-06-01
Argument The aim of this paper is to employ the newly contextualized historiographical category of "premodern algebra" in order to revisit the arguably most controversial topic of the last decades in the field of Greek mathematics, namely the debate on "geometrical algebra." Within this framework, we shift focus from the discrepancy among the views expressed in the debate to some of the historiographical assumptions and methodological approaches that the opposing sides shared. Moreover, by using a series of propositions related to Elem. II.5 as a case study, we discuss Euclid's geometrical proofs, the so-called "semi-algebraic" alternative demonstrations attributed to Heron of Alexandria, as well as the solutions given by Diophantus, al-Sulamī, and al-Khwārizmī to the corresponding numerical problem. This comparative analysis offers a new reading of Heron's practice, highlights the significance of contextualizing "premodern algebra," and indicates that the origins of algebraic reasoning should be sought in the problem-solving practice, rather than in the theorem-proving tradition.
An algebra of reversible computation.
Wang, Yong
2016-01-01
We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.
LINPACK. Simultaneous Linear Algebraic Equations
Miller, M.A.
1990-05-01
LINPACK is a collection of FORTRAN subroutines which analyze and solve various classes of systems of simultaneous linear algebraic equations. The collection deals with general, banded, symmetric indefinite, symmetric positive definite, triangular, and tridiagonal square matrices, as well as with least squares problems and the QR and singular value decompositions of rectangular matrices. A subroutine-naming convention is employed in which each subroutine name consists of five letters which represent a coded specification (TXXYY) of the computation done by that subroutine. The first letter, T, indicates the matrix data type. Standard FORTRAN allows the use of three such types: S REAL, D DOUBLE PRECISION, and C COMPLEX. In addition, some FORTRAN systems allow a double-precision complex type: Z COMPLEX*16. The second and third letters of the subroutine name, XX, indicate the form of the matrix or its decomposition: GE General, GB General band, PO Positive definite, PP Positive definite packed, PB Positive definite band, SI Symmetric indefinite, SP Symmetric indefinite packed, HI Hermitian indefinite, HP Hermitian indefinite packed, TR Triangular, GT General tridiagonal, PT Positive definite tridiagonal, CH Cholesky decomposition, QR Orthogonal-triangular decomposition, SV Singular value decomposition. The final two letters, YY, indicate the computation done by the particular subroutine: FA Factor, CO Factor and estimate condition, SL Solve, DI Determinant and/or inverse and/or inertia, DC Decompose, UD Update, DD Downdate, EX Exchange. The LINPACK package also includes a set of routines to perform basic vector operations called the Basic Linear Algebra Subprograms (BLAS).
LINPACK. Simultaneous Linear Algebraic Equations
Dongarra, J.J.
1982-05-02
LINPACK is a collection of FORTRAN subroutines which analyze and solve various classes of systems of simultaneous linear algebraic equations. The collection deals with general, banded, symmetric indefinite, symmetric positive definite, triangular, and tridiagonal square matrices, as well as with least squares problems and the QR and singular value decompositions of rectangular matrices. A subroutine-naming convention is employed in which each subroutine name consists of five letters which represent a coded specification (TXXYY) of the computation done by that subroutine. The first letter, T, indicates the matrix data type. Standard FORTRAN allows the use of three such types: S REAL, D DOUBLE PRECISION, and C COMPLEX. In addition, some FORTRAN systems allow a double-precision complex type: Z COMPLEX*16. The second and third letters of the subroutine name, XX, indicate the form of the matrix or its decomposition: GE General, GB General band, PO Positive definite, PP Positive definite packed, PB Positive definite band, SI Symmetric indefinite, SP Symmetric indefinite packed, HI Hermitian indefinite, HP Hermitian indefinite packed, TR Triangular, GT General tridiagonal, PT Positive definite tridiagonal, CH Cholesky decomposition, QR Orthogonal-triangular decomposition, SV Singular value decomposition. The final two letters, YY, indicate the computation done by the particular subroutine: FA Factor, CO Factor and estimate condition, SL Solve, DI Determinant and/or inverse and/or inertia, DC Decompose, UD Update, DD Downdate, EX Exchange. The LINPACK package also includes a set of routines to perform basic vector operations called the Basic Linear Algebra Subprograms (BLAS).
Mitter conjecture and structure theorem for six-dimensional estimation algebras
NASA Astrophysics Data System (ADS)
Jiao, Yang; Yau, Stephen; Chiou, Wen-Lin
2013-01-01
The problem of classification of finite-dimensional estimation algebras was formally proposed by Brockett in his lecture at International Congress of Mathematicians in 1983. Due to the difficulty of the problem, in the early 1990s Brockett suggested that one should understand the low-dimensional estimation algebras first. In this article, we extend Yau and his coauthors' work of the Mitter conjecture for low-dimensional estimation algebras in nonlinear filtering problem. And, we apply the results to give classification of estimation algebras of dimension six.
ERIC Educational Resources Information Center
Marchetto, Erika; Bonatti, Luca L.
2015-01-01
To achieve language proficiency, infants must find the building blocks of speech and master the rules governing their legal combinations. However, these problems are linked: words are also built according to rules. Here, we explored early morphosyntactic sensitivity by testing when and how infants could find either words or within-word structure…
ERIC Educational Resources Information Center
Sakiey, Elizabeth; Fry, Edward
This book presents the 3,000 most frequently used words in rank and alphabetical orders. The words were derived from the American Heritage word list of the approximately 87,000 most frequent words in a count of 5 million running words sampled from a variety of elementary and secondary level curriculum materials, magazines, and books. The book…
ERIC Educational Resources Information Center
Nwabueze, Kenneth K.
2004-01-01
The current emphasis on flexible modes of mathematics delivery involving new information and communication technology (ICT) at the university level is perhaps a reaction to the recent change in the objectives of education. Abstract algebra seems to be one area of mathematics virtually crying out for computer instructional support because of the…
Algebraic Thinking through Origami.
ERIC Educational Resources Information Center
Higginson, William; Colgan, Lynda
2001-01-01
Describes the use of paper folding to create a rich environment for discussing algebraic concepts. Explores the effect that changing the dimensions of two-dimensional objects has on the volume of related three-dimensional objects. (Contains 13 references.) (YDS)
f-Deformed Boson Algebra Related to Gentile Statistics
NASA Astrophysics Data System (ADS)
Chung, Won Sang; Hassanabadi, Hassan
2017-02-01
In this paper the deformed boson algebra giving the Gentile distribution function is constructed by using the model of ideal gas of deformed bosons and some properties of a root of unity. As an example we discuss the quantum optical problem related to the Gentile (or f-deformed) boson algebra with large but finite M. For this algebra we construct the Gentile (or f-deformed) coherent state and discuss its nonclassical properties such as sub-Poissonian statistics and anti-bunching effect.
Maximizing algebraic connectivity in air transportation networks
NASA Astrophysics Data System (ADS)
Wei, Peng
In air transportation networks the robustness of a network regarding node and link failures is a key factor for its design. An experiment based on the real air transportation network is performed to show that the algebraic connectivity is a good measure for network robustness. Three optimization problems of algebraic connectivity maximization are then formulated in order to find the most robust network design under different constraints. The algebraic connectivity maximization problem with flight routes addition or deletion is first formulated. Three methods to optimize and analyze the network algebraic connectivity are proposed. The Modified Greedy Perturbation Algorithm (MGP) provides a sub-optimal solution in a fast iterative manner. The Weighted Tabu Search (WTS) is designed to offer a near optimal solution with longer running time. The relaxed semi-definite programming (SDP) is used to set a performance upper bound and three rounding techniques are discussed to find the feasible solution. The simulation results present the trade-off among the three methods. The case study on two air transportation networks of Virgin America and Southwest Airlines show that the developed methods can be applied in real world large scale networks. The algebraic connectivity maximization problem is extended by adding the leg number constraint, which considers the traveler's tolerance for the total connecting stops. The Binary Semi-Definite Programming (BSDP) with cutting plane method provides the optimal solution. The tabu search and 2-opt search heuristics can find the optimal solution in small scale networks and the near optimal solution in large scale networks. The third algebraic connectivity maximization problem with operating cost constraint is formulated. When the total operating cost budget is given, the number of the edges to be added is not fixed. Each edge weight needs to be calculated instead of being pre-determined. It is illustrated that the edge addition and the
Algebraic connectivity and graph robustness.
Feddema, John Todd; Byrne, Raymond Harry; Abdallah, Chaouki T.
2009-07-01
Recent papers have used Fiedler's definition of algebraic connectivity to show that network robustness, as measured by node-connectivity and edge-connectivity, can be increased by increasing the algebraic connectivity of the network. By the definition of algebraic connectivity, the second smallest eigenvalue of the graph Laplacian is a lower bound on the node-connectivity. In this paper we show that for circular random lattice graphs and mesh graphs algebraic connectivity is a conservative lower bound, and that increases in algebraic connectivity actually correspond to a decrease in node-connectivity. This means that the networks are actually less robust with respect to node-connectivity as the algebraic connectivity increases. However, an increase in algebraic connectivity seems to correlate well with a decrease in the characteristic path length of these networks - which would result in quicker communication through the network. Applications of these results are then discussed for perimeter security.
On Dunkl angular momenta algebra
NASA Astrophysics Data System (ADS)
Feigin, Misha; Hakobyan, Tigran
2015-11-01
We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl( N ) version of the subalge-bra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.
ERIC Educational Resources Information Center
Forbes, Jack E.
1972-01-01
Brief comments on the following four problems: (1) Is it really much harder to teach mathematics to disadvantaged kids? (2) Has modern mathematics" had a positive or negative effect on students other than those college-capable? (3) Effect of the mathematics laboratory movement in regard to teaching children (4) Characteristics evidenced by…
Algebraic and geometric structures of analytic partial differential equations
NASA Astrophysics Data System (ADS)
Kaptsov, O. V.
2016-11-01
We study the problem of the compatibility of nonlinear partial differential equations. We introduce the algebra of convergent power series, the module of derivations of this algebra, and the module of Pfaffian forms. Systems of differential equations are given by power series in the space of infinite jets. We develop a technique for studying the compatibility of differential systems analogous to the Gröbner bases. Using certain assumptions, we prove that compatible systems generate infinite manifolds.
Linear Algebraic Method for Non-Linear Map Analysis
Yu,L.; Nash, B.
2009-05-04
We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.
Selecting reusable components using algebraic specifications
NASA Technical Reports Server (NTRS)
Eichmann, David A.
1992-01-01
A significant hurdle confronts the software reuser attempting to select candidate components from a software repository - discriminating between those components without resorting to inspection of the implementation(s). We outline a mixed classification/axiomatic approach to this problem based upon our lattice-based faceted classification technique and Guttag and Horning's algebraic specification techniques. This approach selects candidates by natural language-derived classification, by their interfaces, using signatures, and by their behavior, using axioms. We briefly outline our problem domain and related work. Lattice-based faceted classifications are described; the reader is referred to surveys of the extensive literature for algebraic specification techniques. Behavioral support for reuse queries is presented, followed by the conclusions.
Marquette, Ian
2013-07-15
We introduce the most general quartic Poisson algebra generated by a second and a fourth order integral of motion of a 2D superintegrable classical system. We obtain the corresponding quartic (associative) algebra for the quantum analog, extend Daskaloyannis construction obtained in context of quadratic algebras, and also obtain the realizations as deformed oscillator algebras for this quartic algebra. We obtain the Casimir operator and discuss how these realizations allow to obtain the finite-dimensional unitary irreducible representations of quartic algebras and obtain algebraically the degenerate energy spectrum of superintegrable systems. We apply the construction and the formula obtained for the structure function on a superintegrable system related to type I Laguerre exceptional orthogonal polynomials introduced recently.
ERIC Educational Resources Information Center
Beigie, Darin
2014-01-01
Most people who are attracted to STEM-related fields are drawn not by a desire to take mathematics tests but to create things. The opportunity to create an algebra drawing gives students a sense of ownership and adventure that taps into the same sort of energy that leads a young person to get lost in reading a good book, building with Legos®,…
Graphs and matroids weighted in a bounded incline algebra.
Lu, Ling-Xia; Zhang, Bei
2014-01-01
Firstly, for a graph weighted in a bounded incline algebra (or called a dioid), a longest path problem (LPP, for short) is presented, which can be considered the uniform approach to the famous shortest path problem, the widest path problem, and the most reliable path problem. The solutions for LPP and related algorithms are given. Secondly, for a matroid weighted in a linear matroid, the maximum independent set problem is studied.
NASA Technical Reports Server (NTRS)
Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.
1999-01-01
This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.
Calculus and design of discrete velocity models using computer algebra
NASA Astrophysics Data System (ADS)
Babovsky, Hans; Grabmeier, Johannes
2016-11-01
In [2, 3], a framework for a calculus with Discrete Velocity Models (DVM) has been derived. The rotatonal symmetry of the discrete velocities can be modelled algebraically by the action of the cyclic group C4 - or including reflections of the dihedral group D4. Taking this point of view, the linearized collision operator can be represented in a compact form as a matrix of elements in the group algebra. Or in other words, by choosing a special numbering it exhibits a certain block structure which lets it appear as a matrix with entries in a certain polynomial ring. A convenient way for approaching such a structure is the use of a computer algebra system able to treat these (predefined) algebraic structures. We used the computer algebra system FriCAS/AXIOM [4, 5] for the generation of the velocity and the collision sets and for the analysis of the structure of the collision operator. Concerning the fluid dynamic limit, the system provides the characterization of sets of collisions and their contribution to the flow parameters. It allows the design of rotationally invariant symmetric models for prescribed Prandtl numbers. The implementation in FriCAS/AXIOM is explained and its results for a 25-velocity model are presented.
Clifford Algebras and Their Decomposition into Conjugate Fermionic Heisenberg Algebras
NASA Astrophysics Data System (ADS)
Catto, Sultan; Gürcan, Yasemin; Khalfan, Amish; Kurt, Levent; Kato La, V.
2016-10-01
We discuss a construction scheme for Clifford numbers of arbitrary dimension. The scheme is based upon performing direct products of the Pauli spin and identity matrices. Conjugate fermionic algebras can then be formed by considering linear combinations of the Clifford numbers and the Hermitian conjugates of such combinations. Fermionic algebras are important in investigating systems that follow Fermi-Dirac statistics. We will further comment on the applications of Clifford algebras to Fueter analyticity, twistors, color algebras, M-theory and Leech lattice as well as unification of ancient and modern geometries through them.
ERIC Educational Resources Information Center
Levinger, Esther
1989-01-01
States that the painted words in Jasper Johns' art act in two different capacities: concealed words partake in the artist's interrogation of visual perception; and visible painted words question classical representation. Argues that words are Johns' means of critiquing modernism. (RS)
The Complexity of Finding Reset Words in Finite Automata
NASA Astrophysics Data System (ADS)
Olschewski, Jörg; Ummels, Michael
We study several problems related to finding reset words in deterministic finite automata. In particular, we establish that the problem of deciding whether a shortest reset word has length k is complete for the complexity class DP. This result answers a question posed by Volkov. For the search problems of finding a shortest reset word and the length of a shortest reset word, we establish membership in the complexity classes FPNP and FPNP[log], respectively. Moreover, we show that both these problems are hard for FPNP[log]. Finally, we observe that computing a reset word of a given length is FNP-complete.
Verburgt, Lukas M
2016-01-01
This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.
Quantum computation using geometric algebra
NASA Astrophysics Data System (ADS)
Matzke, Douglas James
This dissertation reports that arbitrary Boolean logic equations and operators can be represented in geometric algebra as linear equations composed entirely of orthonormal vectors using only addition and multiplication Geometric algebra is a topologically based algebraic system that naturally incorporates the inner and anticommutative outer products into a real valued geometric product, yet does not rely on complex numbers or matrices. A series of custom tools was designed and built to simplify geometric algebra expressions into a standard sum of products form, and automate the anticommutative geometric product and operations. Using this infrastructure, quantum bits (qubits), quantum registers and EPR-bits (ebits) are expressed symmetrically as geometric algebra expressions. Many known quantum computing gates, measurement operators, and especially the Bell/magic operators are also expressed as geometric products. These results demonstrate that geometric algebra can naturally and faithfully represent the central concepts, objects, and operators necessary for quantum computing, and can facilitate the design and construction of quantum computing tools.
ERIC Educational Resources Information Center
Novotna, Jarmila; Hoch, Maureen
2008-01-01
Many students have difficulties with basic algebraic concepts at high school and at university. In this paper two levels of algebraic structure sense are defined: for high school algebra and for university algebra. We suggest that high school algebra structure sense components are sub-components of some university algebra structure sense…
Applications of algebraic grid generation
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.; Smith, Robert E.
1990-01-01
Techniques and applications of algebraic grid generation are described. The techniques are univariate interpolations and transfinite assemblies of univariate interpolations. Because algebraic grid generation is computationally efficient, the use of interactive graphics in conjunction with the techniques is advocated. A flexible approach, which works extremely well in an interactive environment, called the control point form of algebraic grid generation is described. The applications discussed are three-dimensional grids constructed about airplane and submarine configurations.
ERIC Educational Resources Information Center
González-Castro, Paloma; Cueli, Marisol; Areces, Débora; Rodríguez, Celestino; Sideridis, Georgios
2016-01-01
Problem solving represents a salient deficit in students with mathematical learning difficulties (MLD) primarily caused by difficulties with informal and formal mathematical competencies. This study proposes a computerized intervention tool, the integrated dynamic representation (IDR), for enhancing the early learning of basic mathematical…
ERIC Educational Resources Information Center
Schaefer Whitby, Peggy J.
2009-01-01
Children with HFA/AS are outperformed by their neuro-typical peers on mathematical problem solving skills even though they have average-to-above-average intelligence (Dickerson Mayes & Calhoun, 2003b); have average-to-above-average computation skills (Chiang & Lin, 2007); and, are educated in the general education setting (Twenty Eighth…
ERIC Educational Resources Information Center
Lund, Ingrid
2016-01-01
The purpose of this article is to present narratives from 15 adolescents experiencing shy behaviour as an emotional and behavioural problem in the school context in light of narrative understanding. The investigation is intended to generate knowledge about this largely under-researched phenomenon based on the personal accounts of those who are…
ERIC Educational Resources Information Center
Jõgi, Anna-Liisa; Kikas, Eve
2016-01-01
Background: Primary school math skills form a basis for academic success down the road. Different math skills have different antecedents and there is a reason to believe that more complex math tasks require better self-regulation. Aims: The study aimed to investigate longitudinal interrelations of calculation and problem-solving skills, and…
A Few Words about Words | Poster
By Ken Michaels, Guest Writer In Shakepeare’s play “Hamlet,” Polonius inquires of the prince, “What do you read, my lord?” Not at all pleased with what he’s reading, Hamlet replies, “Words, words, words.”1 I have previously described the communication model in which a sender encodes a message and then sends it via some channel (or medium) to a receiver, who decodes the message and, ideally, understands what was sent. Surely the most common way of encoding a message is in choosing the most appropriate words for the listener or reader.
A new application of algebraic geometry to systems theory
NASA Technical Reports Server (NTRS)
Martin, C. F.; Hermann, R.
1976-01-01
Following an introduction to algebraic geometry, the dominant morphism theorem is stated, and the application of this theorem to systems-theoretic problems, such as the feedback problem, is discussed. The Gaussian elimination method used for solving linear equations is shown to be an example of a dominant morphism.
Clearing the Fog from the Undergraduate Course in Linear Algebra
ERIC Educational Resources Information Center
Scott, Damon
2007-01-01
For over a decade it has been a common observation that a "fog" passes over the course in linear algebra once abstract vector spaces are presented. See [2, 3]. We show how this fog may be cleared by having the students translate "abstract" vector-space problems to isomorphic "concrete" settings, solve the "concrete" problem either by hand or with…
Hidden algebra method (quasi-exact-solvability in quantum mechanics)
Turbiner, Alexander
1996-02-20
A general introduction to quasi-exactly-solvable problems of quantum mechanics is presented. Main attention is given to multidimensional quasi-exactly-solvable and exactly-solvable Schroedinger operators. Exact-solvability of the Calogero and Sutherland N-body problems ass ociated with an existence of the hidden algebra slN is discussed extensively.
A Method for the Microanalysis of Pre-Algebra Transfer
ERIC Educational Resources Information Center
Pavlik, Philip I., Jr.; Yudelson, Michael; Koedinger, Kenneth R.
2011-01-01
The objective of this research was to better understand the transfer of learning between different variations of pre-algebra problems. While the authors could have addressed a specific variation that might address transfer, they were interested in developing a general model of transfer, so we gathered data from multiple problem types and their…
Algebra and Algebraic Thinking in School Math: 70th YB
ERIC Educational Resources Information Center
National Council of Teachers of Mathematics, 2008
2008-01-01
Algebra is no longer just for college-bound students. After a widespread push by the National Council of Teachers of Mathematics (NCTM) and teachers across the country, algebra is now a required part of most curricula. However, students' standardized test scores are not at the level they should be. NCTM's seventieth yearbook takes a look at the…
Abstract Algebra to Secondary School Algebra: Building Bridges
ERIC Educational Resources Information Center
Christy, Donna; Sparks, Rebecca
2015-01-01
The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…
Field Theoretic Investigations in Current Algebra
NASA Astrophysics Data System (ADS)
Jackiw, Roman
The following sections are included: * Introduction * Canonical and Space-Time Constraints in Current Algebra * Canonical Theory of Currents * Space-Time Constraints on Commutators * Space-Time Constraints on Green's Functions * Space-Time Constraints on Ward Identities * Schwinger Terms * Discussion * The Bjorken-Johnson-Low Limit * The π 0 → 2γ Problem * Preliminaries * Sutherland-Veltman Theorem * Model Calculation * Anomalous Ward Identity * Anomalous Commutators * Anomalous Divergence of Axial Current * Discussion * Electroproduction Sum Rules * Preliminaries * Derivation of Sum Rules, Naive Method * Derivation of Sum Rules, Dispersive Method * Model Calculation * Anomalous Commutators * Discussion * Discussion of Anomalies in Current Algebra * Miscellaneous Anomalies * Non-Perturbative Arguments for Anomalies * Models without Anomalies * Discussion * Approximate Scale Symmetry * Introduction * Canonical Theory of Scale and Conformal Transformations * Ward Identities and Trace Identities * False Theorems * True Theorems * EXERCISES * SOLUTIONS
Statecharts Via Process Algebra
NASA Technical Reports Server (NTRS)
Luttgen, Gerald; vonderBeeck, Michael; Cleaveland, Rance
1999-01-01
Statecharts is a visual language for specifying the behavior of reactive systems. The Language extends finite-state machines with concepts of hierarchy, concurrency, and priority. Despite its popularity as a design notation for embedded system, precisely defining its semantics has proved extremely challenging. In this paper, a simple process algebra, called Statecharts Process Language (SPL), is presented, which is expressive enough for encoding Statecharts in a structure-preserving and semantic preserving manner. It is establish that the behavioral relation bisimulation, when applied to SPL, preserves Statecharts semantics
Viterbi/algebraic hybrid decoder
NASA Technical Reports Server (NTRS)
Boyd, R. W.; Ingels, F. M.; Mo, C.
1980-01-01
Decoder computer program is hybrid between optimal Viterbi and optimal algebraic decoders. Tests have shown that hybrid decoder outperforms any strictly Viterbi or strictly algebraic decoder and effectively handles compound channels. Algorithm developed uses syndrome-detecting logic to direct two decoders to assume decoding load alternately, depending on real-time channel characteristics.
Online Algebraic Tools for Teaching
ERIC Educational Resources Information Center
Kurz, Terri L.
2011-01-01
Many free online tools exist to complement algebraic instruction at the middle school level. This article presents findings that analyzed the features of algebraic tools to support learning. The findings can help teachers select appropriate tools to facilitate specific topics. (Contains 1 table and 4 figures.)
ERIC Educational Resources Information Center
1997
Astro Algebra is one of six titles in the Mighty Math Series from Edmark, a comprehensive line of math software for students from kindergarten through ninth grade. Many of the activities in Astro Algebra contain a unique technology that uses the computer to help students make the connection between concrete and abstract mathematics. This software…
Elementary maps on nest algebras
NASA Astrophysics Data System (ADS)
Li, Pengtong
2006-08-01
Let , be algebras and let , be maps. An elementary map of is an ordered pair (M,M*) such that for all , . In this paper, the general form of surjective elementary maps on standard subalgebras of nest algebras is described. In particular, such maps are automatically additive.
Linear algebra and image processing
NASA Astrophysics Data System (ADS)
Allali, Mohamed
2010-09-01
We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty.
Linear Algebra and Image Processing
ERIC Educational Resources Information Center
Allali, Mohamed
2010-01-01
We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)
ERIC Educational Resources Information Center
Buerman, Margaret
2007-01-01
Finding real-world examples for middle school algebra classes can be difficult but not impossible. As we strive to accomplish teaching our students how to solve and graph equations, we neglect to teach the big ideas of algebra. One of those big ideas is functions. This article gives three examples of functions that are found in Arches National…
Thermodynamics. [algebraic structure
NASA Technical Reports Server (NTRS)
Zeleznik, F. J.
1976-01-01
The fundamental structure of thermodynamics is purely algebraic, in the sense of atopological, and it is also independent of partitions, composite systems, the zeroth law, and entropy. The algebraic structure requires the notion of heat, but not the first law. It contains a precise definition of entropy and identifies it as a purely mathematical concept. It also permits the construction of an entropy function from heat measurements alone when appropriate conditions are satisfied. Topology is required only for a discussion of the continuity of thermodynamic properties, and then the weak topology is the relevant topology. The integrability of the differential form of the first law can be examined independently of Caratheodory's theorem and his inaccessibility axiom. Criteria are established by which one can determine when an integrating factor can be made intensive and the pseudopotential extensive and also an entropy. Finally, a realization of the first law is constructed which is suitable for all systems whether they are solids or fluids, whether they do or do not exhibit chemical reactions, and whether electromagnetic fields are or are not present.
Word Vectorization Using Relations among Words for Neural Network
NASA Astrophysics Data System (ADS)
Hotta, Hajime; Kittaka, Masanobu; Hagiwara, Masafumi
In this paper, we propose a new vectorization method for a new generation of computational intelligence including neural networks and natural language processing. In recent years, various techniques of word vectorization have been proposed, many of which rely on the preparation of dictionaries. However, these techniques don't consider the symbol grounding problem for unknown types of data, which is one of the most fundamental issues on artificial intelligence. In order to avoid the symbol-grounding problem, pattern processing based methods, such as neural networks, are often used in various studies on self-directive systems and algorithms, and the merit of neural network is not exception in the natural language processing. The proposed method is a converter from one word input to one real-valued vector, whose algorithm is inspired by neural network architecture. The merits of the method are as follows: (1) the method requires no specific knowledge of linguistics e.g. word classes or grammatical one; (2) the method is a sequence learning technique and it can learn additional knowledge. The experiment showed the efficiency of word vectorization in terms of similarity measurement.
The coquaternion algebra and complex partial differential equations
NASA Astrophysics Data System (ADS)
Dimiev, Stancho; Konstantinov, Mihail; Todorov, Vladimir
2009-11-01
In this paper we consider the problem of differentiation of coquaternionic functions. Let us recall that coquaternions are elements of an associative non-commutative real algebra with zero divisor, introduced by James Cockle (1849) under the name of split-quaternions or coquaternions. Developing two type complex representations for Cockle algebra (complex and paracomplex ones) we present the problem in a non-commutative form of the δ¯-type holomorphy. We prove that corresponding differentiable coquaternionic functions, smooth and analytic, satisfy PDE of complex, and respectively of real variables. Applications for coquaternionic polynomials are sketched.
Symplectic Clifford Algebraic Field Theory.
NASA Astrophysics Data System (ADS)
Dixon, Geoffrey Moore
We develop a mathematical framework on which is built a theory of fermion, scalar, and gauge vector fields. This field theory is shown to be equivalent to the original Weinberg-Salam model of weak and electromagnetic interactions, but since the new framework is more rigid than that on which the original Weinberg-Salam model was built, a concomitant reduction in the number of assumptions lying outside of the framework has resulted. In particular, parity violation is actually hiding within our framework, and with little difficulty we are able to manifest it. The mathematical framework upon which we build our field theory is arrived at along two separate paths. The first is by the marriage of a Clifford algebra and a Lie superalgebra, the result being called a super Clifford algebra. The second is by providing a new characterization for a Clifford algebra employing its generators and a symmetric array of metric coefficients. Subsequently we generalize this characterization to the case of an antisymmetric array of metric coefficients, and we call the algebra which results a symplectic Clifford algebra. It is upon one of these that we build our field theory, and it is shown that this symplectic Clifford algebra is a particular subalgebra of a super Clifford algebra. The final ingredient is the operation of bracketing which involves treating the elements of our algebra as endomorphisms of a particular inner product space, and employing this space and its inner product to provide us with maps from our algebra to the reals. It is this operation which enables us to manifest the parity violation hiding in our algebra.
Relation of the nonlinear Heisenberg algebras in two dimensions with linear ones
NASA Astrophysics Data System (ADS)
Chung, Won Sang
2015-07-01
In this paper, we discuss the relation of the nonlinear Heisenberg algebras in two dimensions with linear ones following the Nowicki and Tkachuk's approach for one-dimensional case. For one-dimensional harmonic oscillator, we obtain the solution explicitly. For the nonlinear Heisenberg algebras in two dimensions, we introduce two generators to transform this algebra into the linear one. For the linear version of the nonlinear Heisenberg algebras in two dimensions, we obtain the eigenfunction for the position and angular momentum operator and solve the harmonic oscillator problem in two dimensions.
Coherent states for a polynomial su(1, 1) algebra and a conditionally solvable system
NASA Astrophysics Data System (ADS)
Sadiq, Muhammad; Inomata, Akira; Junker, Georg
2009-09-01
In a previous paper (2007 J. Phys. A: Math. Theor. 40 11105), we constructed a class of coherent states for a polynomially deformed su(2) algebra. In this paper, we first prepare the discrete representations of the nonlinearly deformed su(1, 1) algebra. Then we extend the previous procedure to construct a discrete class of coherent states for a polynomial su(1, 1) algebra which contains the Barut-Girardello set and the Perelomov set of the SU(1, 1) coherent states as special cases. We also construct coherent states for the cubic algebra related to the conditionally solvable radial oscillator problem.
The noncommutative Poisson bracket and the deformation of the family algebras
Wei, Zhaoting
2015-07-15
The family algebras are introduced by Kirillov in 2000. In this paper, we study the noncommutative Poisson bracket P on the classical family algebra C{sub τ}(g). We show that P controls the first-order 1-parameter formal deformation from C{sub τ}(g) to Q{sub τ}(g) where the latter is the quantum family algebra. Moreover, we will prove that the noncommutative Poisson bracket is in fact a Hochschild 2-coboundary, and therefore, the deformation is infinitesimally trivial. In the last part of this paper, we discuss the relation between Mackey’s analogue and the quantization problem of the family algebras.
Sixth SIAM conference on applied linear algebra: Final program and abstracts. Final technical report
1997-12-31
Linear algebra plays a central role in mathematics and applications. The analysis and solution of problems from an amazingly wide variety of disciplines depend on the theory and computational techniques of linear algebra. In turn, the diversity of disciplines depending on linear algebra also serves to focus and shape its development. Some problems have special properties (numerical, structural) that can be exploited. Some are simply so large that conventional approaches are impractical. New computer architectures motivate new algorithms, and fresh ways to look at old ones. The pervasive nature of linear algebra in analyzing and solving problems means that people from a wide spectrum--universities, industrial and government laboratories, financial institutions, and many others--share an interest in current developments in linear algebra. This conference aims to bring them together for their mutual benefit. Abstracts of papers presented are included.
ERIC Educational Resources Information Center
Bolinger, Dwight
1970-01-01
Suggests that grammar is not something into which words are plugged but is rather a mechanism by which words are served and that linguistics scientists must begin to devote a major part of their attention to lexicology. (TO)
SD-CAS: Spin Dynamics by Computer Algebra System.
Filip, Xenia; Filip, Claudiu
2010-11-01
A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples.
An Example of Competence-Based Learning: Use of Maxima in Linear Algebra for Engineers
ERIC Educational Resources Information Center
Diaz, Ana; Garcia, Alfonsa; de la Villa, Agustin
2011-01-01
This paper analyses the role of Computer Algebra Systems (CAS) in a model of learning based on competences. The proposal is an e-learning model Linear Algebra course for Engineering, which includes the use of a CAS (Maxima) and focuses on problem solving. A reference model has been taken from the Spanish Open University. The proper use of CAS is…
Student Learning in Linear Algebra: The Gateways To Advance Mathematical Thinking Project.
ERIC Educational Resources Information Center
Manes, Michelle
This document provides a preliminary report of the study Gateways To Advance Mathematical Thinking (GAMT) run by Educational Development Center, Inc. (EDC). The study was designed to see what types of reasoning students who have recently completed a linear algebra course apply to problems in algebraic thinking. Student interviews were used as the…
Activities for Students: Biology as a Source for Algebra Equations--The Heart
ERIC Educational Resources Information Center
Horak, Virginia M.
2005-01-01
The high school course that integrated first year algebra with an introductory environmental biology/anatomy and physiology course, in order to solve algebra problems is discussed. Lessons and activities for the course were taken by identifying the areas where mathematics and biology content intervenes may help students understand biology concepts…
A Computer Algebra Approach to Solving Chemical Equilibria in General Chemistry
ERIC Educational Resources Information Center
Kalainoff, Melinda; Lachance, Russ; Riegner, Dawn; Biaglow, Andrew
2012-01-01
In this article, we report on a semester-long study of the incorporation into our general chemistry course, of advanced algebraic and computer algebra techniques for solving chemical equilibrium problems. The method presented here is an alternative to the commonly used concentration table method for describing chemical equilibria in general…
ERIC Educational Resources Information Center
Bal, Ayten Pinar
2016-01-01
Problem Statement: Algebra, which is one of the basic principles of mathematical learning, still maintains its importance in mathematics programmes. However, especially starting from the primary school years, algebra represents a complex mathematical factor in the operational stage for many students. In this scope, a differentiated teaching…
Mechanisms of Word Identification
ERIC Educational Resources Information Center
Mewhort, D. J. K.; Beal, A. Lynne
1977-01-01
Three word-identification experiments suggest that a model derived from experiments with pseudowords can be applied successfully to word identification. The data derived from the experiments confirm the role of higher order verbal units in word identification and suggest the structural components of a verbal-mediation theory of reading. (Editor/RK)
ERIC Educational Resources Information Center
Santa, Carol M.; And Others
Both psychologists and reading specialists have been interested in whether words are processed letter by letter or in larger units. A reaction time paradigm was used to evaluate these options with interest focused on potential units of word recognition which might be functional within single syllable words. The basic paradigm involved presenting…
ERIC Educational Resources Information Center
Dohan, Mary Helen
1977-01-01
Understanding words like "bionics" will open the mind to the horizons of another time when words like "railroad" evoked wonder and "to fly to the moon" was a metaphor for the impossible dream. Suggests that history teachers and English teachers should join together in using words to teach both subjects. (Editor/RK)
ERIC Educational Resources Information Center
Gardner, Paul L.
This is a report of a project designed to identify important non-technical words used in the teaching of science at Form 3 and 4 level in the Territory of Papua and New Guinea (T.P.N.G.). After the words were identified, multiple choice items testing the comprehension of these words were written, tried out and revised. Fifteen final tests, each…
ERIC Educational Resources Information Center
Jackson, Julie; Narvaez, Rose
2013-01-01
It is common to see word walls displaying the vocabulary that students have learned in class. Word walls serve as visual scaffolds and are a classroom strategy used to reinforce reading and language arts instruction. Research shows a strong relationship between student word knowledge and academic achievement (Stahl and Fairbanks 1986). As a…
ERIC Educational Resources Information Center
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
Algebraic and geometric spread in finite frames
NASA Astrophysics Data System (ADS)
King, Emily J.
2015-08-01
When searching for finite unit norm tight frames (FUNTFs) of M vectors in FN which yield robust representations, one is concerned with finding frames consisting of frame vectors which are in some sense as spread apart as possible. Algebraic spread and geometric spread are the two most commonly used measures of spread. A frame with optimal algebraic spread is called full spark and is such that any subcollection of N frame vectors is a basis for FN. A Grassmannian frame is a FUNTF which satisfies the Grassmannian packing problem; that is, the frame vectors are optimally geometrically spread given fixed M and N. A particular example of a Grassmannian frame is an equiangular frame, which is such that the absolute value of all inner products of distinct vectors is equal. The relationship between these two types of optimal spread is complicated. The folk knowledge for many years was that equiangular frames were full spark; however, this is now known not to hold for an infinite class of equiangular frames. The exact relationship between these types of spread will be further explored in this talk, as well as Plücker coordinates and coherence, which are measures of how much a frame misses being optimally algebraically or geometrically spread.
Charge transfer in algebraic quantum field theory
NASA Astrophysics Data System (ADS)
Wright, Jill Dianne
We discuss aspects of the algebraic structure of quantum field theory. We take the view that the superselection structure of a theory should be determinable from the vacuum representation of the observable algebra, and physical properties of the charge. Hence one determines the nature of the charge transfer operations: the automorphisms of the observable algebra corresponding to the movement of charge along space-time paths. New superselection sectors are obtained from the vacuum sector by an automorphism which is a limit of charge transfer operations along paths with an endpoint tending to spacelike infinity. Roberts has shown that for a gauge theory of the first kind, the charge transfer operations for a given charge form a certain kind of 1-cocycle over Minkowski space. The local 1-cohomology group of their equivalence classes corresponds to the superselection structure. The exact definition of the cohomology group depends on the properties of the charge. Using displaced Fock representations of free fields, we develop model field theories which illustrate this structure. The cohomological classification of displaced Fock representations has been elucidated by Araki. For more general representations, explicit determination of the cohomology group is a hard problem. Using our models, we can illustrate ways in which fields with reasonable physical properties depart fromthe abovementioned structure. In 1+1 dimensions, we use the Streater-Wilde model to illustrate explicitly the representation-dependence of the cohomology structure, and the direction-dependence of the limiting charge transfer operation. The cohomology structure may also be representation-dependent in higher-dimensional theories without strict localization of charge, for example the electromagnetic field. The algebraic structure of the electromagnetic field has many other special features, which we discuss in relation to the concept of charge transfer. We also give some indication of the modifications
NASA Astrophysics Data System (ADS)
Phillips, Martin P., ,, Prof.; Napier, Hazel J.; Dickie, Jennifer A., ,, Dr.
2016-04-01
associated environmental conditions is frequently interpreted as a far from disinterested, apolitical activity. The paper ends by exploring the potential of a Living Lab approach to address some of the problems associated with deficit focused interpretations of public understanding.
Quantum algebra of N superspace
Hatcher, Nicolas; Restuccia, A.; Stephany, J.
2007-08-15
We identify the quantum algebra of position and momentum operators for a quantum system bearing an irreducible representation of the super Poincare algebra in the N>1 and D=4 superspace, both in the case where there are no central charges in the algebra, and when they are present. This algebra is noncommutative for the position operators. We use the properties of superprojectors acting on the superfields to construct explicit position and momentum operators satisfying the algebra. They act on the projected wave functions associated to the various supermultiplets with defined superspin present in the representation. We show that the quantum algebra associated to the massive superparticle appears in our construction and is described by a supermultiplet of superspin 0. This result generalizes the construction for D=4, N=1 reported recently. For the case N=2 with central charges, we present the equivalent results when the central charge and the mass are different. For the {kappa}-symmetric case when these quantities are equal, we discuss the reduction to the physical degrees of freedom of the corresponding superparticle and the construction of the associated quantum algebra.
The Z_2 -Orbifold of the W_3-Algebra
NASA Astrophysics Data System (ADS)
Al-Ali, Masoumah; Linshaw, Andrew R.
2016-12-01
The Zamolodchikov W_3-algebra W^c_3 with central charge c has full automorphism group Z_2. It was conjectured in the physics literature over 20 years ago that the orbifold (W^c_3)^{Z_2} is of type W(2,6,8,10,12) for generic values of c. We prove this conjecture for all c ≠ 559 ± 7 √{76657}/95, and we show that for these two values, the orbifold is of type W(2,6,8,10,12,14). This paper is part of a larger program of studying orbifolds and cosets of vertex algebras that depend continuously on a parameter. Minimal strong generating sets for orbifolds and cosets are often easy to find for generic values of the parameter, but determining which values are generic is a difficult problem. In the example of (W^c_3)^{Z_2} , we solve this problem using tools from algebraic geometry.
Algebraic approximations for transcendental equations with applications in nanophysics
NASA Astrophysics Data System (ADS)
Barsan, Victor
2015-09-01
Using algebraic approximations of trigonometric or hyperbolic functions, a class of transcendental equations can be transformed in tractable, algebraic equations. Studying transcendental equations this way gives the eigenvalues of Sturm-Liouville problems associated to wave equation, mainly to Schroedinger equation; these algebraic approximations provide approximate analytical expressions for the energy of electrons and phonons in quantum wells, quantum dots (QDs) and quantum wires, in the frame of one-particle models of such systems. The advantage of this approach, compared to the numerical calculations, is that the final result preserves the functional dependence on the physical parameters of the problem. The errors of this method, situated between some few percentages and ?, are carefully analysed. Several applications, for quantum wells, QDs and quantum wires, are presented.
Slow Mapping: Color Word Learning as a Gradual Inductive Process
ERIC Educational Resources Information Center
Wagner, Katie; Dobkins, Karen; Barner, David
2013-01-01
Most current accounts of color word acquisition propose that the delay between children's first production of color words and adult-like understanding is due to problems abstracting color as a domain of meaning. Here we present evidence against this hypothesis, and show that, from the time children produce color words in a labeling task they use…
Arabic word recognizer for mobile applications
NASA Astrophysics Data System (ADS)
Khanna, Nitin; Abdollahian, Golnaz; Brame, Ben; Boutin, Mireille; Delp, Edward J.
2011-03-01
When traveling in a region where the local language is not written using a "Roman alphabet," translating written text (e.g., documents, road signs, or placards) is a particularly difficult problem since the text cannot be easily entered into a translation device or searched using a dictionary. To address this problem, we are developing the "Rosetta Phone," a handheld device (e.g., PDA or mobile telephone) capable of acquiring an image of the text, locating the region (word) of interest within the image, and producing both an audio and a visual English interpretation of the text. This paper presents a system targeted for interpreting words written in Arabic script. The goal of this work is to develop an autonomous, segmentation-free Arabic phrase recognizer, with computational complexity low enough to deploy on a mobile device. A prototype of the proposed system has been deployed on an iPhone with a suitable user interface. The system was tested on a number of noisy images, in addition to the images acquired from the iPhone's camera. It identifies Arabic words or phrases by extracting appropriate features and assigning "codewords" to each word or phrase. On a dictionary of 5,000 words, the system uniquely mapped (word-image to codeword) 99.9% of the words. The system has a 82% recognition accuracy on images of words captured using the iPhone's built-in camera.
Investigating Teacher Noticing of Student Algebraic Thinking
ERIC Educational Resources Information Center
Walkoe, Janet Dawn Kim
2013-01-01
Learning algebra is critical for students in the U.S. today. Algebra concepts provide the foundation for much advanced mathematical content. In addition, algebra serves as a gatekeeper to opportunities such as admission to college. Yet many students in the U.S. struggle in algebra classes. Researchers claim that one reason for these difficulties…
ERIC Educational Resources Information Center
Egodawatte, Gunawardena; Stoilescu, Dorian
2015-01-01
The purpose of this mixed-method study was to investigate grade 11 university/college stream mathematics students' difficulties in applying conceptual knowledge, procedural skills, strategic competence, and algebraic thinking in solving routine (instructional) algebraic problems. A standardized algebra test was administered to thirty randomly…
ERIC Educational Resources Information Center
Sullivan, Patrick
2013-01-01
The purpose of this study is to examine the nature of what students notice about symbols and use as they solve unfamiliar algebra problems based on familiar algebra concepts and involving symbolic inscriptions. The researcher conducted a study of students at three levels of algebra exposure: (a) students enrolled in a high school pre-calculus…
ERIC Educational Resources Information Center
Khajarian, Seta
2011-01-01
Algebra is a branch in mathematics and taking Algebra in middle school is often a gateway to advanced courses in high school. The problem is that the United States and Lebanon had low scores in Algebra in the 2007 Trends in Mathematics and Sciences Study (TIMSS), an international assessment administered to 4th and 8th graders every 4 years. On the…
Ontological Annotation with WordNet
Sanfilippo, Antonio P.; Tratz, Stephen C.; Gregory, Michelle L.; Chappell, Alan R.; Whitney, Paul D.; Posse, Christian; Paulson, Patrick R.; Baddeley, Bob; Hohimer, Ryan E.; White, Amanda M.
2006-06-06
Semantic Web applications require robust and accurate annotation tools that are capable of automating the assignment of ontological classes to words in naturally occurring text (ontological annotation). Most current ontologies do not include rich lexical databases and are therefore not easily integrated with word sense disambiguation algorithms that are needed to automate ontological annotation. WordNet provides a potentially ideal solution to this problem as it offers a highly structured lexical conceptual representation that has been extensively used to develop word sense disambiguation algorithms. However, WordNet has not been designed as an ontology, and while it can be easily turned into one, the result of doing this would present users with serious practical limitations due to the great number of concepts (synonym sets) it contains. Moreover, mapping WordNet to an existing ontology may be difficult and requires substantial labor. We propose to overcome these limitations by developing an analytical platform that (1) provides a WordNet-based ontology offering a manageable and yet comprehensive set of concept classes, (2) leverages the lexical richness of WordNet to give an extensive characterization of concept class in terms of lexical instances, and (3) integrates a class recognition algorithm that automates the assignment of concept classes to words in naturally occurring text. The ensuing framework makes available an ontological annotation platform that can be effectively integrated with intelligence analysis systems to facilitate evidence marshaling and sustain the creation and validation of inference models.
Automating Ontological Annotation with WordNet
Sanfilippo, Antonio P.; Tratz, Stephen C.; Gregory, Michelle L.; Chappell, Alan R.; Whitney, Paul D.; Posse, Christian; Paulson, Patrick R.; Baddeley, Bob L.; Hohimer, Ryan E.; White, Amanda M.
2006-01-22
Semantic Web applications require robust and accurate annotation tools that are capable of automating the assignment of ontological classes to words in naturally occurring text (ontological annotation). Most current ontologies do not include rich lexical databases and are therefore not easily integrated with word sense disambiguation algorithms that are needed to automate ontological annotation. WordNet provides a potentially ideal solution to this problem as it offers a highly structured lexical conceptual representation that has been extensively used to develop word sense disambiguation algorithms. However, WordNet has not been designed as an ontology, and while it can be easily turned into one, the result of doing this would present users with serious practical limitations due to the great number of concepts (synonym sets) it contains. Moreover, mapping WordNet to an existing ontology may be difficult and requires substantial labor. We propose to overcome these limitations by developing an analytical platform that (1) provides a WordNet-based ontology offering a manageable and yet comprehensive set of concept classes, (2) leverages the lexical richness of WordNet to give an extensive characterization of concept class in terms of lexical instances, and (3) integrates a class recognition algorithm that automates the assignment of concept classes to words in naturally occurring text. The ensuing framework makes available an ontological annotation platform that can be effectively integrated with intelligence analysis systems to facilitate evidence marshaling and sustain the creation and validation of inference models.
Central extensions of Lax operator algebras
NASA Astrophysics Data System (ADS)
Schlichenmaier, M.; Sheinman, O. K.
2008-08-01
Lax operator algebras were introduced by Krichever and Sheinman as a further development of Krichever's theory of Lax operators on algebraic curves. These are almost-graded Lie algebras of current type. In this paper local cocycles and associated almost-graded central extensions of Lax operator algebras are classified. It is shown that in the case when the corresponding finite-dimensional Lie algebra is simple the two-cohomology space is one-dimensional. An important role is played by the action of the Lie algebra of meromorphic vector fields on the Lax operator algebra via suitable covariant derivatives.
Reassessing Word Frequency as a Determinant of Word Recognition for Skilled and Unskilled Readers
ERIC Educational Resources Information Center
Kuperman, Victor; Van Dyke, Julie A.
2013-01-01
The importance of vocabulary in reading comprehension emphasizes the need to accurately assess an individual's familiarity with words. The present article highlights problems with using occurrence counts in corpora as an index of word familiarity, especially when studying individuals varying in reading experience. We demonstrate via computational…
Spurious Roots in the Algebraic Dirac Equation
NASA Astrophysics Data System (ADS)
Pestka, Grzegorz
The nature of spurious roots discovered by Drake and Goldman [G. W. F. Drake and S. P. Goldman, Phys. Rev. A 23, 2093 (1981)] among solutions of the algebraic Dirac Hamiltonian eigenvalue problem is discussed. It is shown that the spurious roots represent the positive spectrum states of the Dirac Hamiltonian and that each of them has its variational non-relativistic counterpart. Sufficient conditions to avoid the appearance of the spuriouses in the forbidden gap of Dirac energies are formulated. Numerical examples for κ = 1 ( P1/2) states of an electron in a spherical Coulomb potential (in Slater-type bases) are presented.
Asymptotic aspect of derivations in Banach algebras.
Roh, Jaiok; Chang, Ick-Soon
2017-01-01
We prove that every approximate linear left derivation on a semisimple Banach algebra is continuous. Also, we consider linear derivations on Banach algebras and we first study the conditions for a linear derivation on a Banach algebra. Then we examine the functional inequalities related to a linear derivation and their stability. We finally take central linear derivations with radical ranges on semiprime Banach algebras and a continuous linear generalized left derivation on a semisimple Banach algebra.
Computing Matrix Representations of Filiform Lie Algebras
NASA Astrophysics Data System (ADS)
Ceballos, Manuel; Núñez, Juan; Tenorio, Ángel F.
In this paper, we compute minimal faithful unitriangular matrix representations of filiform Lie algebras. To do it, we use the nilpotent Lie algebra, g_n, formed of n ×n strictly upper-triangular matrices. More concretely, we search the lowest natural number n such that the Lie algebra g_n contains a given filiform Lie algebra, also computing a representative of this algebra. All the computations in this paper have been done using MAPLE 9.5.
Leikin, Mark; Waisman, Ilana; Shaul, Shelley; Leikin, Roza
2014-03-01
This paper presents a small part of a larger interdisciplinary study that investigates brain activity (using event related potential methodology) of male adolescents when solving mathematical problems of different types. The study design links mathematics education research with neurocognitive studies. In this paper we performed a comparative analysis of brain activity associated with the translation from visual to symbolic representations of mathematical objects in algebra and geometry. Algebraic tasks require translation from graphical to symbolic representation of a function, whereas tasks in geometry require translation from a drawing of a geometric figure to a symbolic representation of its property. The findings demonstrate that electrical activity associated with the performance of geometrical tasks is stronger than that associated with solving algebraic tasks. Additionally, we found different scalp topography of the brain activity associated with algebraic and geometric tasks. Based on these results, we argue that problem solving in algebra and geometry is associated with different patterns of brain activity.
Cartooning in Algebra and Calculus
ERIC Educational Resources Information Center
Moseley, L. Jeneva
2014-01-01
This article discusses how teachers can create cartoons for undergraduate math classes, such as college algebra and basic calculus. The practice of cartooning for teaching can be helpful for communication with students and for students' conceptual understanding.
GCD, LCM, and Boolean Algebra?
ERIC Educational Resources Information Center
Cohen, Martin P.; Juraschek, William A.
1976-01-01
This article investigates the algebraic structure formed when the process of finding the greatest common divisor and the least common multiple are considered as binary operations on selected subsets of positive integers. (DT)
NASA Technical Reports Server (NTRS)
Klumpp, A. R.; Lawson, C. L.
1988-01-01
Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.
Coherent States for Hopf Algebras
NASA Astrophysics Data System (ADS)
Škoda, Zoran
2007-07-01
Families of Perelomov coherent states are defined axiomatically in the context of unitary representations of Hopf algebras. A global geometric picture involving locally trivial noncommutative fibre bundles is involved in the construction. If, in addition, the Hopf algebra has a left Haar integral, then a formula for noncommutative resolution of identity in terms of the family of coherent states holds. Examples come from quantum groups.
Multiplier operator algebras and applications
Blecher, David P.; Zarikian, Vrej
2004-01-01
The one-sided multipliers of an operator space X are a key to “latent operator algebraic structure” in X. We begin with a survey of these multipliers, together with several of the applications that they have had to operator algebras. We then describe several new results on one-sided multipliers, and new applications, mostly to one-sided M-ideals. PMID:14711990
Hopf algebras and topological recursion
NASA Astrophysics Data System (ADS)
Esteves, João N.
2015-11-01
We consider a model for topological recursion based on the Hopf algebra of planar binary trees defined by Loday and Ronco (1998 Adv. Math. 139 293-309 We show that extending this Hopf algebra by identifying pairs of nearest neighbor leaves, and thus producing graphs with loops, we obtain the full recursion formula discovered by Eynard and Orantin (2007 Commun. Number Theory Phys. 1 347-452).
Using Comparison to Develop Flexibility for Teaching Algebra
ERIC Educational Resources Information Center
Yakes, Christopher; Star, Jon R.
2011-01-01
In this paper, we describe a one-day professional development activity for mathematics teachers that promoted the use of comparison as an instructional tool to develop students' flexibility in algebra. Effective use of comparison in mathematics instruction involves using side-by-side presentation of problems and solution methods and subsequent…
Computer Algebra Systems in Education Newsletter[s].
ERIC Educational Resources Information Center
Computer Algebra Systems in Education Newsletter, 1990
1990-01-01
Computer Algebra Systems (CAS) are computer systems for the exact solution of problems in symbolic form. The newspaper is designed to serve as a conduit for information and ideas on the use of CAS in education, especially in lower division college and university courses. Articles included are about CAS programs in several colleges, experiences…
Fixing Ganache: Another Real-Life Use for Algebra
ERIC Educational Resources Information Center
Kalman, Adam M.
2011-01-01
This article presents a real-world application of proportional reasoning and equation solving. The author describes how students adjust ingredient amounts in a recipe for chocolate ganache. Using this real-world scenario provided students an opportunity to solve a difficult and nonstandard algebra problem, a lot of practice with fractions, a…
Thinking Mathematically: Integrating Arithmetic and Algebra in Elementary School.
ERIC Educational Resources Information Center
Carpenter, Thomas P.; Franke, Megan Loef; Levi, Linda
This book is designed to help teachers understand children's intuitive problem solving and computational processes and to figure out how to use that knowledge to enhance students' understanding of arithmetic. This book provides numerous examples of classroom dialogues that indicate how algebraic ideas emerge in children's thinking and what…
Geometric and Algebraic Approaches in the Concept of Complex Numbers
ERIC Educational Resources Information Center
Panaoura, A.; Elia, I.; Gagatsis, A.; Giatilis, G.-P.
2006-01-01
This study explores pupils' performance and processes in tasks involving equations and inequalities of complex numbers requiring conversions from a geometric representation to an algebraic representation and conversions in the reverse direction, and also in complex numbers problem solving. Data were collected from 95 pupils of the final grade from…
Undergraduate Mathematics Students' Emotional Experiences in Linear Algebra Courses
ERIC Educational Resources Information Center
Martínez-Sierra, Gustavo; García-González, María del Socorro
2016-01-01
Little is known about students' emotions in the field of Mathematics Education that go beyond students' emotions in problem solving. To start filling this gap this qualitative research has the aim to identify emotional experiences of undergraduate mathematics students in Linear Algebra courses. In order to obtain data, retrospective focus group…
Algebraic formulation of quantum theory, particle identity and entanglement
NASA Astrophysics Data System (ADS)
Govindarajan, T. R.
2016-08-01
Quantum theory as formulated in conventional framework using statevectors in Hilbert spaces misses the statistical nature of the underlying quantum physics. Formulation using operators 𝒞∗ algebra and density matrices appropriately captures this feature in addition leading to the correct formulation of particle identity. In this framework, Hilbert space is an emergent concept. Problems related to anomalies and quantum epistemology are discussed.
Layout optimization with algebraic multigrid methods
NASA Technical Reports Server (NTRS)
Regler, Hans; Ruede, Ulrich
1993-01-01
Finding the optimal position for the individual cells (also called functional modules) on the chip surface is an important and difficult step in the design of integrated circuits. This paper deals with the problem of relative placement, that is the minimization of a quadratic functional with a large, sparse, positive definite system matrix. The basic optimization problem must be augmented by constraints to inhibit solutions where cells overlap. Besides classical iterative methods, based on conjugate gradients (CG), we show that algebraic multigrid methods (AMG) provide an interesting alternative. For moderately sized examples with about 10000 cells, AMG is already competitive with CG and is expected to be superior for larger problems. Besides the classical 'multiplicative' AMG algorithm where the levels are visited sequentially, we propose an 'additive' variant of AMG where levels may be treated in parallel and that is suitable as a preconditioner in the CG algorithm.
Marchetto, Erika; Bonatti, Luca L
2015-07-01
To achieve language proficiency, infants must find the building blocks of speech and master the rules governing their legal combinations. However, these problems are linked: words are also built according to rules. Here, we explored early morphosyntactic sensitivity by testing when and how infants could find either words or within-word structure in artificial speech snippets embodying properties of morphological constructions. We show that 12-month-olds use statistical relationships between syllables to extract words from continuous streams, but find word-internal regularities only if the streams are segmented. Seven-month-olds fail both tasks. Thus, 12-month-olds infants possess the resources to analyze the internal composition of words if the speech contains segmentation information. However, 7-month-old infants may not possess them, although they can track several statistical relations. This developmental difference suggests that morphosyntactic sensitivity may require computational resources extending beyond the detection of simple statistics.
Description of DASSL: a differential/algebraic system solver
Petzold, L.R.
1982-09-01
This paper describes a new code DASSL, for the numerical solution of implicit systems of differential/algebraic equations. These equations are written in the form F(t,y,y') = 0, and they can include systems which are substantially more complex than standard form ODE systems y' = f(t,y). Differential/algebraic equations occur in several diverse applications in the physical world. We outline the algorithms and strategies used in DASSL, and explain some of the features of the code. In addition, we outline briefly what needs to be done to solve a problem using DASSL.
Exact solution of some linear matrix equations using algebraic methods
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1979-01-01
Algebraic methods are used to construct the exact solution P of the linear matrix equation PA + BP = - C, where A, B, and C are matrices with real entries. The emphasis of this equation is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The paper is divided into six sections which include the proof of the basic lemma, the Liapunov equation, and the computer implementation for the rational, integer and modular algorithms. Two numerical examples are given and the entire calculation process is depicted.
Exact solution of some linear matrix equations using algebraic methods
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1977-01-01
A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.
Word Problems - This Time with Interleaving
1991-06-19
San Jose , CA 95120-6099 SE 81991 Abstract. We consider regular expressions extended with the interleaving ope -tor, and investigate the complexity of...1976), 222-268. [IPC85] O.H. IBARRA , M.A. PALIS, AND J.H. CHANG, On efficient recognition of transductions and relations, Theoretical Computer Science
Novikov algebras with associative bilinear forms
NASA Astrophysics Data System (ADS)
Zhu, Fuhai; Chen, Zhiqi
2007-11-01
Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-type and Hamiltonian operators in formal variational calculus. The goal of this paper is to study Novikov algebras with non-degenerate associative symmetric bilinear forms, which we call quadratic Novikov algebras. Based on the classification of solvable quadratic Lie algebras of dimension not greater than 4 and Novikov algebras in dimension 3, we show that quadratic Novikov algebras up to dimension 4 are commutative. Furthermore, we obtain the classification of transitive quadratic Novikov algebras in dimension 4. But we find that not every quadratic Novikov algebra is commutative and give a non-commutative quadratic Novikov algebra in dimension 6.
NASA Technical Reports Server (NTRS)
Byrnes, C. I.
1980-01-01
It is noted that recent work by Kamen (1979) on the stability of half-plane digital filters shows that the problem of the existence of a feedback law also arises for other Banach algebras in applications. This situation calls for a realization theory and stabilizability criteria for systems defined over Banach for Frechet algebra A. Such a theory is developed here, with special emphasis placed on the construction of finitely generated realizations, the existence of coprime factorizations for T(s) defined over A, and the solvability of the quadratic optimal control problem and the associated algebraic Riccati equation over A.
Quantum Q systems: from cluster algebras to quantum current algebras
NASA Astrophysics Data System (ADS)
Di Francesco, Philippe; Kedem, Rinat
2017-02-01
This paper gives a new algebraic interpretation for the algebra generated by the quantum cluster variables of the A_r quantum Q-system (Di Francesco and Kedem in Int Math Res Not IMRN 10:2593-2642, 2014). We show that the algebra can be described as a quotient of the localization of the quantum algebra U_{√{q}}({n}[u,u^{-1}])subset U_{√{q}}(widehat{{sl}}_2), in the Drinfeld presentation. The generating current is made up of a subset of the cluster variables which satisfy the Q-system, which we call fundamental. The other cluster variables are given by a quantum determinant-type formula, and are polynomials in the fundamental generators. The conserved quantities of the discrete evolution (Di Francesco and Kedem in Adv Math 228(1):97-152, 2011) described by quantum Q-system generate the Cartan currents at level 0, in a non-standard polarization. The rest of the quantum affine algebra is also described in terms of cluster variables.
A Geometric Treatment of Implicit Differential-Algebraic Equations
NASA Astrophysics Data System (ADS)
Rabier, P. J.; Rheinboldt, W. C.
A differential-geometric approach for proving the existence and uniqueness of implicit differential-algebraic equations is presented. It provides for a significant improvement of an earlier theory developed by the authors as well as for a completely intrinsic definition of the index of such problems. The differential-algebraic equation is transformed into an explicit ordinary differential equation by a reduction process that can be abstractly defined for specific submanifolds of tangent bundles here called reducible π-submanifolds. Local existence and uniqueness results for differential-algebraic equations then follow directly from the final stage of this reduction by means of an application of the standard theory of ordinary differential equations.
Development of abstract mathematical reasoning: the case of algebra.
Susac, Ana; Bubic, Andreja; Vrbanc, Andrija; Planinic, Maja
2014-01-01
Algebra typically represents the students' first encounter with abstract mathematical reasoning and it therefore causes significant difficulties for students who still reason concretely. The aim of the present study was to investigate the developmental trajectory of the students' ability to solve simple algebraic equations. 311 participants between the ages of 13 and 17 were given a computerized test of equation rearrangement. Equations consisted of an unknown and two other elements (numbers or letters), and the operations of multiplication/division. The obtained results showed that younger participants are less accurate and slower in solving equations with letters (symbols) than those with numbers. This difference disappeared for older participants (16-17 years), suggesting that they had reached an abstract reasoning level, at least for this simple task. A corresponding conclusion arises from the analysis of their strategies which suggests that younger participants mostly used concrete strategies such as inserting numbers, while older participants typically used more abstract, rule-based strategies. These results indicate that the development of algebraic thinking is a process which unfolds over a long period of time. In agreement with previous research, we can conclude that, on average, children at the age of 15-16 transition from using concrete to abstract strategies while solving the algebra problems addressed within the present study. A better understanding of the timing and speed of students' transition from concrete arithmetic reasoning to abstract algebraic reasoning might help in designing better curricula and teaching materials that would ease that transition.