Science.gov

Sample records for alginate beads generated

  1. Reversal of diabetes by βTC3 cells encapsulated in alginate beads generated by emulsion and internal gelation.

    PubMed

    Hoesli, Corinne A; Kiang, Roger L J; Mocinecová, Dušana; Speck, Madeleine; Mošková, Daniela Jochec; Donald-Hague, Christine; Lacík, Igor; Kieffer, Timothy J; Piret, James M

    2012-05-01

    Encapsulation of insulin-producing cells in alginate beads could improve the treatment of type 1 diabetes by reducing or eliminating the need for immunosuppression. We have recently adapted an emulsion and internal gelation process to β-cell encapsulation. This process has the advantages of being well suited for m(3)/h production rates and allowing the use of increased alginate concentrations. Compared with 1.5% alginate beads generated by a standard extrusion process, 5% alginate emulsion-generated beads demonstrated greater in vitro stability and greater volumetric exclusion of antibody-sized pullulan. When βTC3 cells were transplanted into streptozotocin-induced allogeneic diabetic mice, a significant decrease in the blood glucose levels was seen within 2 days with the 5% emulsion-generated beads but not until >16 days with the 1.5% extrusion-generated beads. This was correlated with higher cell survival and lower graft-specific plasma immunoglobulin levels. These results suggest that higher-concentration alginate beads generated by emulsion and internal gelation have improved graft immunoprotection. The emulsion process is a promising and scalable technology for cellular therapies requiring immune isolation.

  2. In situ generation of sodium alginate/hydroxyapatite nanocomposite beads as drug-controlled release matrices.

    PubMed

    Zhang, J; Wang, Q; Wang, A

    2010-02-01

    In order to find a new way to slow down the release of drugs and to solve the burst release problem of drugs from traditionally used hydrogel matrices, a series of novel pH-sensitive sodium alginate/hydroxyapatite (SA/HA) nanocomposite beads was prepared by the in situ generation of HA micro-particles in the beads during the sol-gel transition process of SA. The SA/HA nanocomposites were characterized by Fourier transform IR spectroscopy, X-ray fluorescence spectrometry, scanning electron microscopy and field emission SEM in order to reveal their composition and surface morphology as well as the role that the in situ generated HA micro-particles play. The factors influencing the swelling behavior, drug loading and controlled release behavior of the SA/HA nanocomposite beads were also investigated using diclofenac sodium (DS) as the model drug. The HA micro-particles act as inorganic crosslinkers in the nanocomposites, which could contract and restrict the movability of the SA polymer chains, and then change the surface morphology and decrease the swell ratio. Meanwhile, the entrapment efficiency of DS was improved, and the burst release of DS was overcome. The factors (including concentration of Ca(2+), reaction time and temperature) affecting the growth of HA micro-particles have a clear influence on the entrapment efficiency and release rate of DS. In this work, the nanocomposite beads prepared under optimum condition could prolong the release of DS for 8h more compared with the pristine SA hydrogel beads.

  3. Adsorption of CO2 by alginate immobilized zeolite beads

    NASA Astrophysics Data System (ADS)

    Suratman, A.; Kunarti, E. S.; Aprilita, N. H.; Pamurtya, I. C.

    2017-03-01

    Immobilized zeolit in alginate beads for adsorption of CO2 was developed. Alginate immobilized zeolit beads was generated by dropping the mixture of Na-alginate and zeolite solution into Ca2+ solution. The adsorption efficacy such as the influence of contact time, mass of zeolite, flowrate of CO2, and mass of adsorbent was evaluated. The adsorption of CO2 onto alginate immobilized zeolit beads was investigated by performing both equilibrium and kinetic batch test. Bead was characterized by FTIR and SEM. Alginate immobilized zeolit beads demonstrated significantly higher sorption efficacy compared to plain alginate beads and zeolite with 0.25 mmol CO2 adsorbed /g adsorbent. Optimum condition was achieved with mass composition of alginate:zeolite (3:1), flowrate 50 mL/min for 20 minutes. The alginate immobilized zeolit beads showed that adsorption of CO2 followed Freundlich isotherm and pseudo second order kinetic model. Adsorption of CO2 onto alginate immobilized zeolite beads is a physisorption with adsorption energy of 6.37 kJ/mol. This results indicates that the alginate immobilized zeolit beads can be used as promising adsorbents for CO2.

  4. A Controlled Drug-Delivery Experiment Using Alginate Beads

    ERIC Educational Resources Information Center

    Farrell, Stephanie; Vernengo, Jennifer

    2012-01-01

    This paper describes a simple, cost-effective experiment which introduces students to drug delivery and modeling using alginate beads. Students produce calcium alginate beads loaded with drug and measure the rate of release from the beads for systems having different stir rates, geometries, extents of cross-linking, and drug molecular weight.…

  5. Effect of pH on the formation of lysosome-alginate beads for antimicrobial activity.

    PubMed

    Park, Hyun Jung; Min, Jiho; Ahn, Joo-Myung; Cho, Sung-Jin; Ahn, Ji-Young; Kim, Yang-Hoon

    2015-02-01

    In this study, we developed lysosome-alginate beads for application as an oral drug delivery system (ODDS). The beads harboring lysosomes, which have antimicrobial activity, and various concentrations of alginate were characterized and optimized. For application as an ODDS, pH-dependent lysosome-alginate beads were generated, and the level of lysosome release was investigated by using antimicrobial tests. At low pH, lysosomes were not released from the lysosome-alginate beads; however, at neutral pH, similar to the pH in the intestine, lysosome release was confirmed, as determined by a high antimicrobial activity. This study shows the potential of such an ODDS for the in vivo treatment of infection with pathogens.

  6. Characterization of an encapsulation device for the production of monodisperse alginate beads for cell immobilization.

    PubMed

    Serp, D; Cantana, E; Heinzen, C; Von Stockar, U; Marison, I W

    2000-10-05

    An encapsulation device, designed on the basis of the laminar jet break-up technique, is characterized for cell immobilization with different types of alginate. The principle of operation of the completely sterilizable encapsulator, together with techniques for the continuous production of beads from 250 microm to 1 mm in diameter, with a size distribution below 5%, at a flow rate of 1-15 mL/min, is described. A modification of the device, to incorporate an electrostatic potential between the alginate droplets and an internal electrode, results in enhanced monodispersity with no adverse effects on cell viability. The maximum cell loading capacity of the beads strongly depends on the nozzle diameter as well as the cells used. For the yeast Phaffia rhodozyma, it is possible to generate 700 microm alginate beads with an initial cell concentration of 1 x 10(8) cells/mL of alginate whereas only 1 x 10(6) cells/ml could be entrapped within 400 microm beads. The alginate beads have been characterized with respect to mechanical resistance and size distribution immediately after production and as a function of storage conditions. The beads remain stable in the presence of acetic acid, hydrochloric acid, water, basic water, and sodium ions. The latter stability applies when the ratio of sodium: calcium ions is less than 1/5. Complexing agents such as sodium citrate result in the rapid solubilization of the beads due to calcium removal. The presence of cells does not affect the mechanical resistance of the beads. Finally, the mechanical resistance of alginate beads can be doubled by treatment with 5-10 kDa chitosan, resulting in reduced leaching of cells.

  7. Preparation of alginate beads containing a prodrug of diethylenetriaminepentaacetic acid

    PubMed Central

    Yang, Yu-Tsai; Di Pasqua, Anthony J.; He, Weiling; Tsai, Tsuimin; Sueda, Katsuhiko; Zhang, Yong; Jay, Michael

    2012-01-01

    A penta-ethyl ester prodrug of the radionuclide decorporation agent diethylenetriaminepentaacetic acid (DTPA), which exists as an oily liquid, was encapsulated in alginate beads by the ionotropic gelation method. An optimal formulation was found by varying initial concentrations of DTPA pentaethyl ester, alginate polymer, Tween 80 surfactant and calcium chloride. All prepared alginate beads were ~1.6 mm in diameter, and the optimal formulation had loading and encapsulation efficiencies of 91.0 ± 1.1 and 72.6 ± 2.2%, respectively, and only 3.2 ± 0.8% water absorption after storage at room temperature in ~80% relative humidity. Moreover, Fourier transform infrared spectroscopy showed that DTPA penta-ethyl ester did not react with excipients during formation of the DTPA penta-ethyl ester-containing alginate beads. Release of prodrug from alginate beads was via anomalous transport, and its stability enhanced by encapsulation. Collectively, these data suggest that this solid dosage form may be suitable for oral administration after radionuclide contamination. PMID:23399237

  8. Optimization of polyphenol oxidase immobilization in copper alginate beads.

    PubMed

    Kocaturk, Selin; Yagar, Hulya

    2010-05-01

    Polyphenol oxidase (PPO, EC 1.14.18.1) was isolated from artichoke head (Cynara scolymus L.) by using 0.1 M Tris-HCl buffer (pH 7.0), concentrated by (NH4)2SO4 precipitation, and immobilized in copper-alginate beads. Immobilization yield was determined to be 70%. The cresolase and catecholase activities of enzyme immobilized at optimum immobilization conditions were found to be 13.3 and 670 U g beads min(-1), respectively. Effects of immobilization conditions such as alginate concentration, CaCl2 concentration, amount of loading enzyme, bead size, and amount of beads on enzymatic activity were investigated. Optimum alginate and CuCl2 concentration were found to be 2 % and 3 % (w/v), respectively. Using bead (diameter 3 mm) amount of 0.25 g maximum enzyme activities were observed for both polyphenol activities. The initial concentrations of loading free enzyme were 6.5 U mL(-1) and 5815 U mL(-1) for cresolase activity and catecholase activities, respectively. Beads prepared at optimum immobilization conditions were suitable for up to 8 repeated uses.

  9. Controlled microfluidic production of alginate beads for in situ encapsulation of microbes

    SciTech Connect

    Kalyanaraman, Meenaa; Retterer, Scott T; McKnight, Timothy E; Ericson, Milton Nance; Allman, Steve L; Elkins, James G; Palumbo, Anthony Vito; Keller, Martin; Doktycz, Mitchel John

    2009-01-01

    The development and refinement of a microfluidic-based alginate bead generator system for bacterial encapsulation is presented. The resulting microgels have application for the encapsulation of single cells, and can allow for small scale, clonal expansion of thousands of isolated cells in parallel. PDMS based microfluidic chips were fabricated using conventional lithography techniques to produce both externally gelled and directly gelled alginate microspheres using a controlled, water-in-oil emulsion system. The production of directly gelled beads, formed by the in-chip mixing of aqueous alginate and calcium chloride solutions dispersed within an organic carrier flowstream is qualitatively compared to a system, which produces beads and relies on diffusion of a crosslinking agent from the carrier fluid to cause gelation (external gelation). While the direct gelation scheme allows the use of biocompatible oils as the organic carrier, it also has a detrimental effect on device stability often resulting in clogging and gel-streaming at the microfluidic interface of these solutions. A design for the continuous production of directly gelled beads was evaluated in terms of the threshold flow conditions and reagent concentrations that did not result in clogging or streaming. Monodisperse alginate microgels of 30 mum diameter were produced at frequencies of over 500 beads per second. The beads could be completely dispersed into aqueous media using an off-chip washing protocol to remove the organic phase. The microgels effectively encapsulated individual or small numbers of GFP-expressing Escherichia. coli, which could be subsequently clonally expanded. The described microfluidic platform is a robust front-end sample preparation technology that shows strong potential for use in drug delivery systems, biosensors, and other cell-based microcompartmentalization applications. The co-culturing of microbial colonies in a large population of alginate beads will allow for functional

  10. Controlled antiseptic release by alginate polymer films and beads.

    PubMed

    Liakos, Ioannis; Rizzello, Loris; Bayer, Ilker S; Pompa, Pier Paolo; Cingolani, Roberto; Athanassiou, Athanassia

    2013-01-30

    Biodegradable polymeric materials based on blending aqueous dispersions of natural polymer sodium alginate (NaAlg) and povidone iodine (PVPI) complex, which allow controlled antiseptic release, are presented. The developed materials are either free standing NaAlg films or Ca(2+)-cross-linked alginate beads, which properly combined with PVPI demonstrate antibacterial and antifungal activity, suitable for therapeutic applications, such as wound dressing. Glycerol was used as the plasticizing agent. Film morphology was studied by optical and atomic force microscopy. It was found that PVPI complex forms well dispersed circular micro-domains within the NaAlg matrix. The beads were fabricated by drop-wise immersion of NaAlg/PVPI/glycerol solutions into aqueous calcium chloride solutions to form calcium alginate beads encapsulating PVPI solution (CaAlg/PVPI). Controlled release of PVPI was possible when the composite films and beads were brought into direct contact with water or with moist media. Bactericidal and fungicidal properties of the materials were tested against Escherichia coli bacteria and Candida albicans fungi. The results indicated very efficient antibacterial and antifungal activity within 48 h. Controlled release of PVPI into open wounds is highly desired in clinical applications to avoid toxic doses of iodine absorption by the wound. A wide variety of applications are envisioned such as external and internal wound dressings with controlled antiseptic release, hygienic and protective packaging films for medical devices, and polymer beads as water disinfectants.

  11. Alginate/bacterial cellulose nanocomposite beads prepared using Gluconacetobacter xylinus and their application in lipase immobilization.

    PubMed

    Kim, Ji Hyun; Park, Saerom; Kim, Hyungsup; Kim, Hyung Joo; Yang, Yung-Hun; Kim, Yong Hwan; Jung, Sang-Kyu; Kan, Eunsung; Lee, Sang Hyun

    2017-02-10

    Alginate/bacterial cellulose nanocomposite beads, with well-controlled size and regular spherical shapes, were prepared in a simple manner by entrapping Gluconacetobacter xylinus in barium alginate hydrogel beads, followed by cultivation of the entrapped cells in culture media with a low sodium ion concentration. The entire surface of the alginate hydrogel beads containing the cells was covered with cellulose fibers (∼30nm) after 36h of cultivation. The cellulose crystallinity index of the alginate/bacterial cellulose beads was 0.7, which was slightly lower than that of bacterial cellulose prepared by cultivating dispersed cells. The water vapor sorption capacity of the alginate/bacterial cellulose beads increased significantly from 0.07 to 38.00 (g/g dry bead) as cultivation time increased. These results clearly indicate that alginate/bacterial cellulose beads have a much higher surface area, crystallinity, and water-holding capacity than alginate beads. The immobilization of lipase on the surface of the nanocomposite beads was also investigated as a potential application of this system. The activity and specific activity of lipase immobilized on alginate/bacterial cellulose beads were 2.6- and 3.8-fold higher, respectively, than that of lipase immobilized on cellulose beads. The alginate/bacterial cellulose nanocomposite beads prepared in this study have several potential applications in the biocatalytic, biomedical, and pharmaceutical fields because of their biocompatibility, biodegradability, high crystallinity, and large surface area.

  12. Alginate gel-coated oil-entrapped alginate-tamarind gum-magnesium stearate buoyant beads of risperidone.

    PubMed

    Bera, Hriday; Boddupalli, Shashank; Nandikonda, Sridhar; Kumar, Sanoj; Nayak, Amit Kumar

    2015-01-01

    A novel alginate gel-coated oil-entrapped calcium-alginate-tamarind gum (TG)-magnesium stearate (MS) composite floating beads was developed for intragastric risperidone delivery with a view to improving its oral bioavailability. The TG-blended alginate core beads containing olive oil and MS as low-density materials were accomplished by ionotropic gelation technique. Effects of polymer-blend ratio (sodium alginate:TG) and crosslinker (CaCl2) concentration on drug entrapment efficiency (DEE, %) and cumulative drug release after 8 h (Q8h, %) were studied to optimize the core beads by a 3(2) factorial design. The optimized beads (F-O) exhibited DEE of 75.19±0.75% and Q8h of 78.04±0.38% with minimum errors in prediction. The alginate gel-coated optimized beads displayed superior buoyancy and sustained drug release property. The drug release profiles of the drug-loaded uncoated and coated beads were best fitted in Higuchi kinetic model with Fickian and anomalous diffusion driven mechanisms, respectively. The optimized beads yielded a notable sustained drug release profile as compared to marketed immediate release preparation. The uncoated and coated Ca-alginate-TG-MS beads were also characterized by SEM, FTIR and P-XRD analyses. Thus, the newly developed alginate-gel coated oil-entrapped alginate-TG-MS composite beads are suitable for intragastric delivery of risperidone over a prolonged period of time.

  13. Bile salt-reinforced alginate-chitosan beads.

    PubMed

    Takka, Sevgi; Cali, Aybige Gürel

    2012-01-01

    A polymeric delayed release protein delivery system was investigated with albumin as the model drug. The polysaccharide chitosan was reacted with sodium alginate in the presence of calcium chloride to form beads with a polyelectrolyte. In this study, attempts were made to extend albumin release in the phosphate buffer at pH 6.8 from the alginate-chitosan beads by reinforcing the matrix with bile salts. Sodium taurocholate was able to prevent albumin release at pH 1.2, protecting the protein from the acidic environment and extending the total albumin release at pH 6.8. This effect was explained by an interaction between the permanent negatively charged sulfonic acid of sodium taurocholate with the amino groups of chitosan. Mild formulation conditions, high bovine serum albumin (BSA) entrapment efficiency, and resistance to gastrointestinal release seem to be synergic and promising factors toward the development of an oral protein delivery form.

  14. Formulation and drying of alginate beads for controlled release and stabilization of invertase.

    PubMed

    Santagapita, Patricio R; Mazzobre, M Florencia; Buera, M Pilar

    2011-09-12

    Several alternatives to the conventional alginate beads formulation were studied for encapsulation of invertase. Pectin was added to the alginate/enzyme solution while trehalose and β-cyclodextrin were added to the calcium gelation media. The effect of composition changes, freezing, drying methods (freeze, vacuum, or air drying), and thermal treatment were evaluated on invertase stability and its release kinetics from beads. The enzyme release mechanism from wet beads depended on pH. The addition of trehalose, pectin, and β-cyclodextrin modified the bead structure, leading in some cases to a release mechanism that included the relaxation of the polymer chains, besides Fickian diffusion. Enzyme release from vacuum-dried beads was much faster than from freeze-dried beads, probably due to their higher pore size. The inclusion of β-cyclodextrin and especially of pectin prevented enzyme activity losses during bead generation, and trehalose addition was fundamental for achieving adequate invertase protection during freezing, drying, and thermal treatment. Present results showed that several alternatives such as drying method, composition, as well as pH of the relese medium can be managed to control enzyme release.

  15. Improving the controlled delivery formulations of caffeine in alginate hydrogel beads combined with pectin, carrageenan, chitosan and psyllium.

    PubMed

    Belščak-Cvitanović, Ana; Komes, Draženka; Karlović, Sven; Djaković, Senka; Spoljarić, Igor; Mršić, Gordan; Ježek, Damir

    2015-01-15

    Alginate-based blends consisting of carrageenan, pectin, chitosan or psyllium husk powder were prepared for assessment of the best formulation aimed at encapsulation of caffeine. Alginate-pectin blend exhibited the lowest viscosity and provided the smallest beads. Alginate-psyllium husk blend was characterised with higher viscosity, yielding the largest bead size and the highest caffeine encapsulation efficiency (83.6%). The release kinetics of caffeine indicated that the porosity of alginate hydrogel was not reduced sufficiently to retard the diffusion of caffeine from the beads. Chitosan coated alginate beads provided the most retarded release of caffeine in water. Morphological characteristics of beads encapsulating caffeine were adversely affected by freeze drying. Bitterness intensity of caffeine-containing beads in water was the lowest for alginate-psyllium beads and chitosan coated alginate beads. Higher sodium alginate concentration (3%) for production of hydrogel beads in combination with psyllium or chitosan coating would present the most favourable carrier systems for immobilization of caffeine.

  16. Entrapment of cross-linked cellulase colloids in alginate beads for hydrolysis of cellulose.

    PubMed

    Nguyen, Le Truc; Lau, Yun Song; Yang, Kun-Lin

    2016-09-01

    Entrapment of enzymes in calcium alginate beads is a popular enzyme immobilization method. However, leaching of immobilized enzymes from the alginate beads is a common problem because enzyme molecules are much smaller than the pore size of alginate beads (∼200nm). To address this issue, we employ a millifluidic reactor to prepare cross-linked cellulase aggregate (XCA) colloids with a uniform size (∼300nm). Subsequently, these colloids are immobilized in calcium alginate beads as biocatalysts to hydrolyze cellulose substrates. By using fluorescent microscopy, we conclude that the immobilized XCA colloids distribute uniformly inside the beads and do not leach out from the beads after long-term incubation. Meanwhile, the pore size of the alginate beads is big enough for the cellulose substrates and fibers to diffuse into the beads for hydrolysis. For example, palm oil fiber and microcrystalline cellulose can be hydrolyzed within 48h and release reducing sugar concentrations up to 2.48±0.08g/l and 4.99±0.09g/l, respectively. Moreover, after 10 cycles of hydrolysis, 96.4% of the XCA colloids remain inside the alginate beads and retain 67% of the original activity. In contrast, free cellulase immobilized in the alginate beads loses its activity completely after 10 cycles. The strategy can also be used to prepare other types of cross-linked enzyme aggregates with high uniformity.

  17. Pancreatic cell immobilization in alginate beads produced by emulsion and internal gelation.

    PubMed

    Hoesli, Corinne A; Raghuram, Kamini; Kiang, Roger L J; Mocinecová, Dušana; Hu, Xiaoke; Johnson, James D; Lacík, Igor; Kieffer, Timothy J; Piret, James M

    2011-02-01

    Alginate has been used to protect transplanted pancreatic islets from immune rejection and as a matrix to increase the insulin content of islet progenitor cells. The throughput of alginate bead generation by the standard extrusion and external gelation method is limited by the rate of droplet formation from nozzles. Alginate bead generation by emulsion and internal gelation is a scaleable alternative that has been used with biological molecules and microbial cells, but not mammalian cells. We describe the novel adaptation of this process to mammalian cell immobilization. After optimization, the emulsion process yielded 90 ± 2% mouse insulinoma 6 (MIN6) cell survival, similar to the extrusion process. The MIN6 cells expanded at the same rate in both bead types to form pseudo-islets with increased glucose stimulation index compared to cells in suspension. The emulsion process was suitable for primary pancreatic exocrine cell immobilization, leading to 67 ± 32 fold increased insulin expression after 10 days of immobilized culture. Due to the scaleability and broad availability of stirred mixers, the emulsion process represents an attractive option for laboratories that are not equipped with extrusion-based cell encapsulators, as well as for the production of immobilized or encapsulated cellular therapeutics on a clinical scale.

  18. Preparation of calcium alginate microgel beads in an electrodispersion reactor using an internal source of calcium carbonate nanoparticles.

    PubMed

    Zhao, Yinyan; Carvajal, M Teresa; Won, You-Yeon; Harris, Michael T

    2007-12-04

    An electrodispersion reactor has been used to prepare calcium alginate (Ca-alginate) microgel beads in this study. In the electrodispersion reactor, pulsed electric fields are utilized to atomize aqueous mixtures of sodium alginate and CaCO3 nanoparticles (dispersed phase) from a nozzle into an immiscible, insulating second liquid (continuous phase) containing a soluble organic acid. This technique combines the features of the electrohydrodynamic force driven emulsion processes and externally triggered gelations in microreactors (the droplets) ultimately to yield soft gel beads. The average particle size of the Ca-alginate gels generated by this method changed from 412 +/- 90 to 10 +/- 3 microm as the applied peak voltage was increased. A diagram depicting structural information for the Ca-alginate was constructed as a function of the concentrations of sodium alginate and CaCO3 nanoparticles. From this diagram, a critical concentration of sodium alginate required for sol-gel transformation was observed. The characteristic highly porous structure of Ca-alginate particles made by this technique appears suitable for microencapsulation applications. Finally, time scale analysis was performed for the electrodispersion processes that include reactions in the microreactor droplets to provide guidelines for the future employment of this technique. This electrodispersion reactor can be used potentially in the formation of many reaction-based microencapsulation systems.

  19. Comparison of alginate and pectin based beads for production of poultry probiotic cells.

    PubMed

    Voo, Wan-Ping; Ravindra, Pogaku; Tey, Beng-Ti; Chan, Eng-Seng

    2011-03-01

    A comparative study on the stability and potential of alginate and pectin based beads for production of poultry probiotic cells using MRS medium in repeated batch fermentation was conducted. The bead cores, made of three types of materials, i.e., ca-alginate, ca-pectinate and ca-alginate/pectinate, were compared. The effect of single and double layer coatings using chitosan and core material, respectively, on the bead stability and cell production were also studied. The pectin based beads were found to be more stable than that of the alginate beads and their stability was further improved by coating with chitosan. The cell concentration in pectin based beads was comparable to that in the alginate beads. On the other hand, pectin based beads gave significantly lower cell concentration in the growth medium for the initial fermentation cycles when compared to the alginate beads. In conclusion, pectin was found to be potential encapsulation material for probiotic cell production owing to its stability and favourable microenvironment for cell growth.

  20. Three-dimensional Alginate-bead Culture of Human Pituitary Adenoma Cells.

    PubMed

    Avila-Rodríguez, Dulce; Paisano-Cerón, Karina; Valdovinos-Ramírez, Irene; Solano-Agama, Carmen; Ortiz-Plata, Alma; Mendoza-Garrido, María E

    2016-02-18

    A three-dimensional culture method is described in which primary pituitary adenoma cells are grown in alginate beads. Alginate is a polymer derived from brown sea algae. Briefly, the tumor tissue is cut into small pieces and submitted to an enzymatic digestion with collagenase and trypsin. Next, a cell suspension is obtained. The tumor cell suspension is mixed with 1.2% sodium alginate and dropped into a CaCl2 solution, and the alginate/cell suspension is gelled on contact with the CaCl2 to form spherical beads. The cells embedded in the alginate beads are supplied with nutrients provided by the culture media enriched with 20% FBS. Three-dimensional culture in alginate beads maintains the viability of adenoma cells for long periods of time, up to four months. Moreover, the cells can be liberated from the alginate by washing the beads with sodium citrate and seeded on glass coverslips for further immunocytochemical analyses. The use of a cell culture model allows for the fixation and visualization of the actin cytoskeleton with minimal disorganization. In summary, alginate beads provide a reliable culture system for the maintenance of pituitary adenoma cells.

  1. Robust Optimization of Alginate-Carbopol 940 Bead Formulations

    PubMed Central

    López-Cacho, J. M.; González-R, Pedro L.; Talero, B.; Rabasco, A. M.; González-Rodríguez, M. L.

    2012-01-01

    Formulation process is a very complex activity which sometimes implicates taking decisions about parameters or variables to obtain the best results in a high variability or uncertainty context. Therefore, robust optimization tools can be very useful for obtaining high quality formulations. This paper proposes the optimization of different responses through the robust Taguchi method. Each response was evaluated like a noise variable, allowing the application of Taguchi techniques to obtain a response under the point of view of the signal to noise ratio. A L18 Taguchi orthogonal array design was employed to investigate the effect of eight independent variables involved in the formulation of alginate-Carbopol beads. Responses evaluated were related to drug release profile from beads (t50% and AUC), swelling performance, encapsulation efficiency, shape and size parameters. Confirmation tests to verify the prediction model were carried out and the obtained results were very similar to those predicted in every profile. Results reveal that the robust optimization is a very useful approach that allows greater precision and accuracy to the desired value. PMID:22645438

  2. Simulation of enzyme catalysis in calcium alginate beads.

    PubMed

    Al-Mayah, Ameel M R

    2012-01-01

    A general mathematical model for a fixed bed immobilized enzyme reactor was developed to simulate the process of diffusion and reaction inside the biocatalyst particle. The modeling and simulation of starch hydrolysis using immobilized α-amylase were used as a model for this study. Corn starch hydrolysis was carried out at a constant pH of 5.5 and temperature of 50°C. The substrate flow rate was ranging from 0.2 to 5.0 mL/min, substrate initial concentrations 1 to 100 g/L. α-amylase was immobilized on to calcium alginate hydrogel beads of 2 mm average diameter. In this work Michaelis-Menten kinetics have been considered. The effect of substrate flow rate (i.e., residence time) and initial concentration on intraparticle diffusion have been taken into consideration. The performance of the system is found to be affected by the substrate flow rate and initial concentrations. The reaction is controlled by the reaction rate. The model equation was a nonlinear second order differential equation simulated based on the experimental data for steady state condition. The simulation was achieved numerically using FINITE ELEMENTS in MATLAB software package. The simulated results give satisfactory results for substrate and product concentration profiles within the biocatalyst bead.

  3. Preparation and cytotoxicity of N,N,N-trimethyl chitosan/alginate beads containing gold nanoparticles.

    PubMed

    Martins, Alessandro F; Facchi, Suelen P; Monteiro, Johny P; Nocchi, Samara R; Silva, Cleiser T P; Nakamura, Celso V; Girotto, Emerson M; Rubira, Adley F; Muniz, Edvani C

    2015-01-01

    Polyelectrolyte complex beads based on N,N,N-trimethyl chitosan (TMC) and sodium alginate (ALG) were obtained. This biomaterial was characterised by FTIR, TGA/DTG, DSC and SEM analysis. The good properties of polyelectrolyte complex hydrogel beads were associated, for the first time, with gold nanoparticles (AuNPs). Through a straightforward methodology, AuNPs were encapsulated into the beads. The in vitro cytotoxicity assays on the Caco-2 colon cancer cells and healthy VERO cells showed that the beads presented good biocompatibility on both cell lines, whereas the beads loaded with gold nanoparticles (beads/AuNPs) was slightly cytotoxic on the Caco-2 and VERO cells.

  4. Magnetic Pycnoporus sanguineus-loaded alginate composite beads for removing dye from aqueous solutions.

    PubMed

    Yang, Chih-Hui; Shih, Ming-Cheng; Chiu, Han-Chen; Huang, Keng-Shiang

    2014-06-18

    Dye pollution in wastewater is a severe environmental problem because treating water containing dyes using conventional physical, chemical, and biological treatments is difficult. A conventional process is used to adsorb dyes and filter wastewater. Magnetic filtration is an emerging technology. In this study, magnetic Pycnoporus sanguineus-loaded alginate composite beads were employed to remove a dye solution. A white rot fungus, P. sanguineus, immobilized in alginate beads were used as a biosorbent to remove the dye solution. An alginate polymer could protect P. sanguineus in acidic environments. Superparamagnetic nanomaterials, iron oxide nanoparticles, were combined with alginate gels to form magnetic alginate composites. The magnetic guidability of alginate composites and biocompatibility of iron oxide nanoparticles facilitated the magnetic filtration and separation processes. The fungus cells were immobilized in loaded alginate composites to study the influence of the initial dye concentration and pH on the biosorption capacity. The composite beads could be removed easily post-adsorption by using a magnetic filtration process. When the amount of composite beads was varied, the results of kinetic studies of malachite green adsorption by immobilized cells of P. sanguineus fitted well with the pseudo-second-order model. The results indicated that the magnetic composite beads effectively adsorbed the dye solution from wastewater and were environmentally friendly.

  5. Xanthan-alginate composite gel beads: molecular interaction and in vitro characterization.

    PubMed

    Pongjanyakul, Thaned; Puttipipatkhachorn, Satit

    2007-02-22

    Xanthan gum (XG), a trisaccharide branched polymer, was applied to reinforce calcium alginate beads in this study. Composite beads consisting of XG and sodium alginate (SA) were prepared using ionotropic gelation method. Diclofenac calcium-alginate (DCA) beads incorporated with different amounts of XG were produced as well. Molecular interaction between SA and XG in the composite beads and the XG-DCA beads was investigated using FTIR spectroscopy. Physical properties of the XG-DCA beads such as entrapment efficiency of diclofenac sodium (DS), thermal property, water uptake, swelling and DS release in various media were examined. XG could form intermolecular hydrogen bonding with SA in the composite beads with or without DS. Differential scanning calorimetric study indicated that XG did not affect thermal property of the DCA beads. The DS entrapment efficiency of the DCA beads increased with increasing amount of XG added. The XG-DCA beads showed higher water uptake and swelling in pH 6.8 phosphate buffer and distilled water than the DCA beads. A longer lag time and a higher DS release rate of the XG-DCA beads in pH 6.8 phosphate buffer were found. In contrast, the 0.3%XG-DCA beads could retard the drug release in distilled water because interaction between XG and SA gave higher tortuosity of the bead matrix. However, higher content of XG in the DCA beads increased the release rate of DS. This can be attributed to erosion of small aggregates of XG on the surface of the DCA beads. This finding suggested that XG could modulate physicochemical properties and drug release of the DCA beads, which based on the existence of molecular interaction between XG and SA.

  6. Okra (Hibiscus esculentus) gum-alginate blend mucoadhesive beads for controlled glibenclamide release.

    PubMed

    Sinha, Priyanka; Ubaidulla, U; Nayak, Amit Kumar

    2015-01-01

    The utility of isolated okra (Hibiscus esculentus) gum (OG) was evaluated as a potential sustained drug release polymer-blends with sodium alginate in the development of controlled glibenclamide release ionically-gelled beads for oral use. OG was isolated from okra fruits and its solubility, pH, viscosity and moisture content were studied. Glibenclamide-loaded OG-alginate blend beads were prepared using CaCl2 as cross-linking agent through ionic-gelation technique. These ionically gelled beads showed drug entrapment efficiency of 64.19 ± 2.02 to 91.86 ± 3.24%. The bead sizes were within 1.12 ± 0.11 to 1.28 ± 0.15 mm. These glibenclamide-loaded OG-alginate blend beads exhibited sustained in vitro drug release over a prolonged period of 8 h. The in vitro drug release from these OG-alginate beads were followed controlled-release (zero-order) pattern with super case-II transport mechanism. The beads were also characterized by SEM and FTIR. The swelling and degradation of these beads was influenced by the pH of the test medium. These beads also exhibited good mucoadhesivity with goat intestinal mucosa.

  7. Alginate beads of Captopril using galactomannan containing Senna tora gum, guar gum and locust bean gum.

    PubMed

    Pawar, Harshal A; Lalitha, K G; Ruckmani, K

    2015-05-01

    Gastro-retentive Captopril loaded alginate beads were prepared by an ionotropic gelation method using sodium alginate in combination with natural gums containing galactomannans (Senna tora seed gum, guar gum and locust bean gum) in the presence of calcium chloride. The process variables such as concentration of sodium alginate/natural polymer, concentration of calcium chloride, curing time, stirring speed and drying condition were optimized. Prepared beads were evaluated for various parameters such as flow property, drug content and entrapment efficiency, size and shape, and swelling index. Surface morphology of the beads was studied using scanning electron microscopy. In vitro mucoadhesion and in vitro drug release studies were carried out on the prepared beads. From the entrapment efficiency and dissolution study, it was concluded that galactomannans in combination with sodium alginate show sustained release property. The bead formulation F4 prepared using combination of sodium alginate and guar gums in the ratio 2:1 showed satisfactory sustained release for 12h. The release of Captopril from the prepared beads was found to be controlled by the swelling of the polymer followed by drug diffusion through the swelled polymer and slow erosion of the beads.

  8. Immobilization of a Plant Lipase from Pachira aquatica in Alginate and Alginate/PVA Beads

    PubMed Central

    Bonine, Bárbara M.; Polizelli, Patricia Peres; Bonilla-Rodriguez, Gustavo O.

    2014-01-01

    This study reports the immobilization of a new lipase isolated from oleaginous seeds of Pachira aquatica, using beads of calcium alginate (Alg) and poly(vinyl alcohol) (PVA). We evaluated the morphology, number of cycles of reuse, optimum temperature, and temperature stability of both immobilization methods compared to the free enzyme. The immobilized enzymes were more stable than the free enzyme, keeping 60% of the original activity after 4 h at 50°C. The immobilized lipase was reused several times, with activity decreasing to approximately 50% after 5 cycles. Both the free and immobilized enzymes were found to be optimally active between 30 and 40°C. PMID:24818012

  9. The Influence of Dopants on the Effectiveness of Alginate Beads in Immobilized Cell Reactors.

    PubMed

    Nordmeier, Akira; Chidambaram, Dev

    2016-04-01

    Zymomonas mobilis immobilized in doped calcium alginate (Ca-alginate) was successfully employed for the production of ethanol in an immobilized cell reactor. Polyethylene oxide and F127 dimethacrylate were evaluated as potential dopants for Ca-alginate beads to decrease lag time and increase initial ethanol yield. The influence of the type and concentration of the dopant on the effectiveness of the microbe immobilized in Ca-alginate beads to produce ethanol was studied, and results were compared to the widely used 2 % Ca-alginate with no dopants, which acted as control. Immobilized cell reactors that were operated using beads doped with 0.25 % polyethylene oxide (PEO) reached an ethanol yield of ∼70 % in 24 h, which was significantly higher than an ethanol yield of 25 % obtained for the control reactor operated using undoped Ca-alginate beads. This study shows that the use of water-soluble dopants can potentially reduce the lag phase and thus improve the initial production yield of immobilized cell reactors, likely due to an increase in porosity and diffusion rate of the doped beads.

  10. Adsorption of ochratoxin A from grape juice by yeast cells immobilised in calcium alginate beads.

    PubMed

    Farbo, Maria Grazia; Urgeghe, Pietro Paolo; Fiori, Stefano; Marceddu, Salvatore; Jaoua, Samir; Migheli, Quirico

    2016-01-18

    Grape juice can be easily contaminated with ochratoxin A (OTA), one of the known mycotoxins with the greatest public health significance. Among the different approaches to decontaminate juice from this mycotoxin, microbiological methods proved efficient, inexpensive and safe, particularly the use of yeast or yeast products. To ascertain whether immobilisation of the yeast biomass would lead to successful decontamination, alginate beads encapsulating Candida intermedia yeast cells were used in our experiments to evaluate their OTA-biosorption efficacy. Magnetic calcium alginate beads were also prepared by adding magnetite in the formulation to allow fast removal from the aqueous solution with a magnet. Calcium alginate beads were added to commercial grape juice spiked with 20 μg/kg OTA and after 48 h of incubation a significant reduction (>80%), of the total OTA content was achieved, while in the subsequent phases (72-120 h) OTA was slowly released into the grape juice by alginate beads. Biosorption properties of alginate-yeast beads were tested in a prototype bioreactor consisting in a glass chromatography column packed with beads, where juice amended with OTA was slowly flowed downstream. The adoption of an interconnected scaled-up bioreactor as an efficient and safe tool to remove traces of OTA from liquid matrices is discussed.

  11. Sodium lauryl sulfate impedes drug release from zinc-crosslinked alginate beads: switching from enteric coating release into biphasic profiles.

    PubMed

    Taha, Mutasem O; Nasser, Wissam; Ardakani, Adel; Alkhatib, Hatim S

    2008-02-28

    The aim of this research is to investigate the effects of sodium lauryl sulfate (SLS) on ionotropically cross-linked alginate beads. Different levels of SLS were mixed with sodium alginate and chlorpheniramine maleate (as loaded model drug). The resulting viscous solutions were dropped onto aqueous solutions of zinc or calcium ions for ionotropic curing. The generated beads were assessed by their drug releasing profiles, infrared and differential scanning colorimetery (DSC) traits. SLS was found to exert profound concentration-dependent impacts on the characteristics of zinc-crosslinked alginate beads such that moderate modifications in the levels of SLS switched drug release from enteric coating-like behavior to a biphasic release modifiable to sustained-release by the addition of minute amounts of xanthan gum. Calcium cross-linking failed to reproduce the same behavior, probably due to the mainly ionic nature of calcium-carboxylate bonds compared to the coordinate character of their zinc-carboxylate counterparts. Apparently, moderate levels of SLS repel water penetration into the beads, and therefore minimize chlorpheniramine release. However, higher SLS levels seem to discourage polymeric cross-linking and therefore allow biphasic drug release.

  12. Calcium Alginate and Calcium Alginate-Chitosan Beads Containing Celecoxib Solubilized in a Self-Emulsifying Phase

    PubMed Central

    Segale, Lorena; Giovannelli, Lorella; Mannina, Paolo; Pattarino, Franco

    2016-01-01

    In this work alginate and alginate-chitosan beads containing celecoxib solubilized into a self-emulsifying phase were developed in order to obtain a drug delivery system for oral administration, able to delay the drug release in acidic environment and to promote it in the intestinal compartment. The rationale of this work was linked to the desire to improve celecoxib therapeutic effectiveness reducing its gastric adverse effects and to favor its use in the prophylaxis of colon cancer and as adjuvant in the therapy of familial polyposis. The systems were prepared by ionotropic gelation using needles with different diameters (400 and 600 μm). Morphology, particle size, swelling behavior, and in vitro drug release performance of the beads in aqueous media with different pH were investigated. The experimental results demonstrated that the presence of chitosan in the formulation caused an increase of the mechanical resistance of the bead structure and, as a consequence, a limitation of the bead swelling ability and a decrease of the drug release rate at neutral pH. Alginate-chitosan beads could be a good tool to guarantee a celecoxib colon delivery. PMID:27127680

  13. Synthesis and characterization of guar-alginate hybrid bead templated mercury sorbing titania spheres.

    PubMed

    Singh, Vandana; Preeti; Singh, Angela; Singh, Devendra; Singh, Yadveer; Pandey, Arvind Kumar

    2015-01-01

    Present communication reports on the synthesis and characterization of Hg(II) sorbing millimeter sized porous titania spheres (TSP). The synthesis utilizes guar gum-alginate hybrid beads as sacrificial template to polymerize titanium(IV) isopropoxide. The hybrid beads are crafted by pouring guar-alginate mixed solution to calcium bath. The mechanical strength of the beads depended on guar to alginate ratio in the mixed solution. The equal weight ratio of the two polysaccharides is appropriate for adequate mechanical strength beads. The unique performance of the templating beads is attributed to the synergistic interaction between guar gum and sodium alginate. FTIR, BET, SEM, TEM, XRD, TGA, and DTG analyses have been used for the characterization of the optimum performance TSP (TSPAG2). TSPAG2 is a mesoporous material that has higher surface area and narrower pore size distribution than pure alginate derived titania spheres (TSPA). TEM study demonstrated that TSPAG2 spheres are constituted of aggregated TiO2 nanoparticles of ∼ 10 nm size. TSPAG2 is able to capture >95% Hg(II) from synthetic Hg(II) solution in 10h at pH 5 as opposed to only 68% removal by TSPA.

  14. Effect of immobilized cells in calcium alginate beads in alcoholic fermentation

    PubMed Central

    2013-01-01

    Saccharomyces cerevisiae cells were immobilized in calcium alginate and chitosan-covered calcium alginate beads and studied in the fermentation of glucose and sucrose for ethanol production. The batch fermentations were carried out in an orbital shaker and assessed by monitoring the concentration of substrate and product with HPLC. Cell immobilization in calcium alginate beads and chitosan-covered calcium alginate beads allowed reuse of the beads in eight sequential fermentation cycles of 10 h each. The final concentration of ethanol using free cells was 40 g L-1 and the yields using glucose and sucrose as carbon sources were 78% and 74.3%, respectively. For immobilized cells in calcium alginate beads, the final ethanol concentration from glucose was 32.9 ± 1.7 g L-1 with a 64.5 ± 3.4% yield, while the final ethanol concentration from sucrose was 33.5 ± 4.6 g L-1 with a 64.5 ± 8.6% yield. For immobilized cells in chitosan-covered calcium alginate beads, the ethanol concentration from glucose was 30.7 ± 1.4 g L-1 with a 61.1 ± 2.8% yield, while the final ethanol concentration from sucrose was 31.8 ± 6.9 g L-1 with a 62.1 ± 12.8% yield. The immobilized cells allowed eight 10 h sequential reuse cycles to be carried out with stable final ethanol concentrations. In addition, there was no need to use antibiotics and no contamination was observed. After the eighth cycle, there was a significant rupture of the beads making them inappropriate for reuse. PMID:23721664

  15. Effect of immobilized cells in calcium alginate beads in alcoholic fermentation.

    PubMed

    Duarte, Juliana C; Rodrigues, J Augusto R; Moran, Paulo J S; Valença, Gustavo P; Nunhez, José R

    2013-05-30

    Saccharomyces cerevisiae cells were immobilized in calcium alginate and chitosan-covered calcium alginate beads and studied in the fermentation of glucose and sucrose for ethanol production. The batch fermentations were carried out in an orbital shaker and assessed by monitoring the concentration of substrate and product with HPLC. Cell immobilization in calcium alginate beads and chitosan-covered calcium alginate beads allowed reuse of the beads in eight sequential fermentation cycles of 10 h each. The final concentration of ethanol using free cells was 40 g L-1 and the yields using glucose and sucrose as carbon sources were 78% and 74.3%, respectively. For immobilized cells in calcium alginate beads, the final ethanol concentration from glucose was 32.9 ± 1.7 g L-1 with a 64.5 ± 3.4% yield, while the final ethanol concentration from sucrose was 33.5 ± 4.6 g L-1 with a 64.5 ± 8.6% yield. For immobilized cells in chitosan-covered calcium alginate beads, the ethanol concentration from glucose was 30.7 ± 1.4 g L-1 with a 61.1 ± 2.8% yield, while the final ethanol concentration from sucrose was 31.8 ± 6.9 g L-1 with a 62.1 ± 12.8% yield. The immobilized cells allowed eight 10 h sequential reuse cycles to be carried out with stable final ethanol concentrations. In addition, there was no need to use antibiotics and no contamination was observed. After the eighth cycle, there was a significant rupture of the beads making them inappropriate for reuse.

  16. Adipic acid dihydrazide treated partially oxidized alginate beads for sustained oral delivery of flurbiprofen.

    PubMed

    Maiti, Sabyasachi; Singha, Kamalika; Ray, Somasree; Dey, Paramita; Sa, Biswanath

    2009-01-01

    In this study, periodate oxidation of sodium alginate was controlled such that the oxidized alginate could form isolatable beads with Ca(+2) ions. The beads of oxidized alginate having a degree of oxidation 1 mol%, entrapped 89% flurbiprofen and released almost all of its content within 1.5 h in pH 7.2 phosphate buffer solution. The beads were covalently crosslinked with adipic dihydrazide (ADH) in addition to ionic crosslinks and were characterized. Scanning electron microscopy revealed that the beads were spherical having smooth surfaces. The drug entrapment efficiency decreased (90-86%) with increasing concentration of ADH (2-6% w/v) in the gelation medium. However, the beads prolonged the drug release in alkaline dissolution medium up to 8 h depending upon the concentration of ADH. The beads prepared with 2% ADH swelled more rapidly and led to faster drug release in either pH 1.2 HCl solution or pH 7.2 phosphate buffer solution. The swelling tendencies were reduced and the drug release became slower with higher concentrations in either fluid. The drug diffusion from the beads followed super case II transport mechanism. FTIR spectroscopy indicated stable nature of flurbiprofen in the beads and therefore had potential as sustained oral delivery system for the drug.

  17. Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution.

    PubMed

    Lee, K Y; Heo, T R

    2000-02-01

    Bifidobacterium longum KCTC 3128 and HLC 3742 were independently immobilized (entrapped) in calcium alginate beads containing 2, 3, and 4% sodium alginate. When the bifidobacteria entrapped in calcium alginate beads were exposed to simulated gastric juices and a bile salt solution, the death rate of the cells in the beads decreased proportionally with an increase in both the alginate gel concentration and bead size. The initial cell numbers in the beads affected the numbers of survivors after exposure to these solutions; however, the death rates of the viable cells were not affected. Accordingly, a mathematical model was formulated which expressed the influences of several parameters (gel concentration, bead size, and initial cell numbers) on the survival of entrapped bifidobacteria after sequential exposure to simulated gastric juices followed by a bile salt solution. The model proposed in this paper may be useful for estimating the survival of bifidobacteria in beads and establishing optimal entrapment conditions.

  18. Stabilization of Aspergillus parasiticus cytosine deaminase by immobilization on calcium alginate beads improved enzyme operational stability.

    PubMed

    Zanna, H; Nok, A J; Ibrahim, S; Inuwa, H M

    2013-12-01

    Cytosine deaminase (CD) from Aspergillus parasiticus, which has half-life of 1.10 h at 37°C, was stabilized by immobilization on calcium alginate beads. The immobilized CD had pH and temperature optimum of 5 and 50°C respectively. The immobilized enzyme also stoichiometrically deaminated Cytosine and 5-fluorocytosine (5-FC) with the apparent K(M) values of 0.60 mM and 0.65 mM respectively, displaying activation energy of 10.72 KJ/mol. The immobilization of native CD on calcium alginate beads gave the highest yield of apparent enzymatic activity of 51.60% of the original activity and the enzymatic activity was lost exponentially at 37°C over 12 h with a half-life of 5.80 h. Hence, the operational stability of native CD can be improved by immobilization on calcium alginate beads.

  19. Adsorption of a cationic surfactant by a magsorbent based on magnetic alginate beads.

    PubMed

    Obeid, Layaly; El Kolli, Nadia; Dali, Noëlle; Talbot, Delphine; Abramson, Sébastien; Welschbillig, Mathias; Cabuil, Valérie; Bée, Agnès

    2014-10-15

    Adsorption of cetylpyridinium chloride (CPC), a cationic surfactant, by magnetic alginate beads (MagAlgbeads) was investigated. The magnetic adsorbent (called magsorbent) was prepared by encapsulation of magnetic functionalized nanoparticles in an alginate gel. The influence on CPC adsorption of several parameters such as contact time, pH and initial surfactant concentration was studied. The equilibrium isotherm shows that adsorption occurs through both electrostatic interactions with charge neutralization of the carboxylate groups of the beads and hydrophobic interactions inducing the formation of surfactant aggregates in the beads. The dosage of calcium ions released in the solution turns out to be a useful tool for understanding the adsorption mechanisms. Adsorption is accompanied by a shrinking of the beads that corresponds to a 45% reduction of the volume. Adsorption kinetic experiments show that equilibrium time is strongly dependent on the surfactant concentration, which monitors the nature of the interactions. On the other hand, since the pH affects the ionization state of adsorption sites, adsorption depends on the pH solution, maximum adsorption being obtained in a large pH range (3.2-12) in agreement with the pKa value of alginate (pKa=3.4-4.2). Finally, due to the formation of micelle-like surfactants aggregates in the magnetic alginate beads, they could be used as a new efficient magsorbent for hydrophobic pollutants.

  20. Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin.

    PubMed

    Rocher, Vincent; Bee, Agnès; Siaugue, Jean-Michel; Cabuil, Valérie

    2010-06-15

    Innovative magnetic alginate beads are used to remove organic pollutants from aqueous solution under different experimental conditions. These alginate beads (EpiMAB) are prepared by an extrusion technique and crosslinked with epichlorohydrin. They contain both magnetic nanoparticles and activated carbon (AC). With the addition of magnetic properties, the beads can be easily recovered or manipulated with an external magnetic field. Their capacity to adsorb pollutants is linked to encapsulated AC and to active sites coming from both magnetic nanoparticles and alginate. The efficiency of the beads as biosorbent for the removal of dyes is assessed using methyl orange (MO) and methylene blue (MB) as model molecules. The dye uptake is found to vary with the initial concentration and the charge of the adsorbed molecule. The Langmuir equation fits well the adsorption data with maximum adsorption capacities of 0.02 mmol/g for MO and 0.7 mmol/g for MB. Kinetics experiments are performed to evaluate the equilibrium time; the pseudo-second-order kinetic model adequately describes the experimental data. The influence of the pH of the solution on adsorption is also investigated and a comparison with alginate beads crosslinked by calcium ions is made.

  1. Preparation and characterization of alginate and psyllium beads containing Lactobacillus acidophilus.

    PubMed

    Lotfipour, Farzaneh; Mirzaeei, Shahla; Maghsoodi, Maryam

    2012-01-01

    This paper describes preparation and characterization of beads of alginate and psyllium containing probiotic bacteria of Lactobacillus acidophilus DMSZ20079. Twelve different formulations containing alginate (ALG) and alginate-psyllium (ALG-PSL) were prepared using extrusion technique. The prepared beads were characterized in terms of size, morphology and surface properties, encapsulation efficiency, viabilities in acid (pH 1.8, 2 hours) and bile (0.5% w/v, 2 hours) conditions, and release in simulated colon pH conditions. The results showed that spherical beads with narrow size distribution ranging from 1.59 ± 0.04 to 1.67 ± 0.09 mm for ALG and from 1.61 ± 0.06 to 1.80 ± 0.07 mm for ALG-PSL with encapsulation efficiency higher than 98% were achieved. Furthermore, addition of PSL into ALG enhanced the integrity of prepared beads in comparison with ALG formulations. The results indicated that incorporation of PSL into alginate beads improved viability of the bacteria in acidic conditions as well as bile conditions. Also, stimulating effect of PSL on the probiotic bacteria was observed through 20-hour incubation in simulated colonic pH solution. According to our in vitro studies, PSL can be a suitable polymer candidate for partial substitution with ALG for probiotic coating.

  2. Preparation and Characterization of Alginate and Psyllium Beads Containing Lactobacillus acidophilus

    PubMed Central

    Lotfipour, Farzaneh; Mirzaeei, Shahla; Maghsoodi, Maryam

    2012-01-01

    This paper describes preparation and characterization of beads of alginate and psyllium containing probiotic bacteria of Lactobacillus acidophilus DMSZ20079. Twelve different formulations containing alginate (ALG) and alginate-psyllium (ALG-PSL) were prepared using extrusion technique. The prepared beads were characterized in terms of size, morphology and surface properties, encapsulation efficiency, viabilities in acid (pH 1.8, 2 hours) and bile (0.5% w/v, 2 hours) conditions, and release in simulated colon pH conditions. The results showed that spherical beads with narrow size distribution ranging from 1.59 ± 0.04 to 1.67 ± 0.09 mm for ALG and from 1.61 ± 0.06 to 1.80 ± 0.07 mm for ALG-PSL with encapsulation efficiency higher than 98% were achieved. Furthermore, addition of PSL into ALG enhanced the integrity of prepared beads in comparison with ALG formulations. The results indicated that incorporation of PSL into alginate beads improved viability of the bacteria in acidic conditions as well as bile conditions. Also, stimulating effect of PSL on the probiotic bacteria was observed through 20-hour incubation in simulated colonic pH solution. According to our in vitro studies, PSL can be a suitable polymer candidate for partial substitution with ALG for probiotic coating. PMID:22649306

  3. Silver nanoparticle-alginate composite beads for point-of-use drinking water disinfection.

    PubMed

    Lin, Shihong; Huang, Rixiang; Cheng, Yingwen; Liu, Jie; Lau, Boris L T; Wiesner, Mark R

    2013-08-01

    Silver nanoparticles (AgNPs)-alginate composite beads were synthesized using three different approaches as filler materials of packed columns for simultaneous filtration-disinfection as an alternative portable water treatment process. The prepared composite beads were packed into a column through which Escherichia coli containing water was filtered to evaluate the disinfection efficacy. Excellent disinfection performance (no detectable viable colony) was achieved with a hydraulic retention time (HRT) as short as 1 min (the shortest tested) with the SGR (Simultaneous-Gelation-Reduction) and AR (Adsorption-Reduction) beads that were prepared using in situ reduction of Ag(+). Comparatively, the SGR beads released significantly less Ag(+)/AgNPs than the AR beads did within the same HRT. From the results of this study it was identified that SGR may be the best choice among all three different synthesis approaches in that the SGR beads can achieve satisfactory bactericidal performance with a relatively low material consumption rate.

  4. Evaluation of the Effect of Psyllium on the Viability of Lactobacillus Acidophilus in Alginate-Polyl Lysine Beads

    PubMed Central

    Esmaeilzadeh, Jaleh; Nazemiyeh, Hossein; Maghsoodi, Maryam; Lotfipour, Farzaneh

    2016-01-01

    Purpose: Psylliumseeds are used in traditional herbal medicine to treat various disorders. Moreover, as a soluble fiber, psyllium has potential to stimulate bacterial growth in digestive system. We aimed to substitute alkali-extractable polysaccharides of psyllium for alginate in beads with second coat of poly-l-lysine to coat Lactobacillus acidophilus. Methods: Beads were prepared using extrusion technique. Poly-l-lysine as second coat was incorporated on optimum alginate/psyllium beads using immersion technique. Beads were characterized in terms of size, encapsulation efficiency, integrity and bacterial survival in harsh conditions. Results: Beads with narrow size distribution ranging from 1.85 ± 0.05 to 2.40 ± 0.18 mm with encapsulation efficiency higher than 96% were achieved. Psyllium concentrations in beads did not produce constant trend in bead sizes. Surface topography by SEM showed that substitution of psyllium enhanced integrity of obtained beads. Psyllium successfully protected the bacteria against acidic condition and lyophilization equal to alginate in the beads. Better survivability with beads of alginate/psyllium-poly-l-lysine was achieved with around 2 log rise in bacterial count in acid condition compared to the corresponding single coat beads. Conclusion: Alginate/psyllium (1:2) beads with narrow size distribution and high encapsulation efficiency of the bacteria have been achieved. Presence of psyllium produced a much smoother and integrated surface texture for the beads with sufficient protection of the bacteria against acidic condition as much as alginate. Considering the health benefits of psyllium and its prebiotic activity, psyllium can be beneficially replaced in part for alginate in probiotic coating. PMID:27766217

  5. Molecular interaction in alginate beads reinforced with sodium starch glycolate or magnesium aluminum silicate, and their physical characteristics.

    PubMed

    Puttipipatkhachorn, Satit; Pongjanyakul, Thaned; Priprem, Aroonsri

    2005-04-11

    Diclofenac calcium-alginate (DCA) beads were reinforced with different amounts of sodium starch glycolate (SSG) or magnesium aluminum silicate (MAS) and were prepared using ionotropic gelation method. Complex formation of sodium alginate (SA) and SSG or MAS in calcium-alginate beads was revealed using FTIR spectroscopy. Differential scanning calorimetric study indicated that diclofenac sodium (DS) in amorphous form was dispersed in the matrix of DCA beads. The thermal behavior of SSG-DCA and MAS-DCA beads was similar to the control bead. Both additives can improve the entrapment efficiency of DCA beads. The swelling and water uptake of the beads depended on the properties of incorporated additives. The SSG-DCA beads showed a higher water uptake and swelling than MAS-DCA beads. Moreover, the swelling of the beads showed a good correlation with the square root of time. The release kinetic of the beads in pH 6.8 phosphate buffer was swelling controlled mechanism, while that in distilled water followed Higuchi's model. The slower release rate and the longer lag time in pH 6.8 phosphate buffer was obtained from the SSG-DCA and MAS-DCA beads because of complex formation between SA and SSG or MAS. However, SSG in the beads could increase the release of DS from the beads in distilled water because it acted as a channeling agent. In contrast, MAS retarded the release of DS from the beads in distilled water due to the stronger matrix formation.

  6. Simultaneous removal of phenol, Cu and Cd from water with corn cob silica-alginate beads.

    PubMed

    Shim, Jaehong; Lim, Jeong-Muk; Shea, Patrick J; Oh, Byung-Taek

    2014-05-15

    Phenol and heavy metals in petroleum waste are environmental and human health concerns, but physicochemical removal is often cost-prohibitive and can produce toxic secondary products and treatment residues. An environmentally benign alternative combines corn cob silica with alginate and immobilized bacteria into beads for treating contaminated water. The concentration of phenol was decreased >92% by Pseudomonas putida YNS1 on aliginate-silica beads (2%, w/v) after equilibrating for 96h with water containing 214mg phenol/L. GC-MS analysis indicated formation of benzoquinone and other polar products. Beads containing corn cob silica decreased Cu concentrations by 84-88% and Cd by 83-87% within 24h. In a mixture of 114mg phenol, 43mg Cu and 51mg Cd/L, phenol removal (93% within 96h) only occurred with beads containing the silica and bacterial strain. Beads containing corn cob silica removed >97% of the Cu and >99% of the Cd, critical for reducing toxicity to the bacteria. Beads with the immobilized strain removed phenol when zeolite was used instead of corn cob silica, but beads with silica were more effective for Cu and Cd removal. Results show the potential of corn cob silica combined with alginate and immobilized bacteria for removing phenol and heavy metals from contaminated water.

  7. Calcium alginate/dextran methacrylate IPN beads as protecting carriers for protein delivery.

    PubMed

    D'Arrigo, Giorgia; Di Meo, Chiara; Pescosolido, Laura; Coviello, Tommasina; Alhaique, Franco; Matricardi, Pietro

    2012-07-01

    In the present study, mechanical and protein delivery properties of a system based on the interpenetration of calcium-alginate (Ca-Alg) and dextran-methacrylate (Dex-MA) networks are shown. Interpenetrated hydrogels beads were prepared by means of the alginate chains crosslinking with calcium ions, followed by the exposure to UV light that allows the Dex-MA network formation. Optical microscope analysis showed an average diameter of the IPN beads (Ca-Alg/Dex-MA) of 2 mm. This dimension was smaller than that of Ca-Alg beads because of the Dex-MA presence. Moreover, the strength of the IPN beads, and of their corresponding hydrogels, was influenced by the Dex-MA concentration and the crosslinking time. Model proteins (BSA and HRP) were successfully entrapped into the beads and released at a controlled rate, modulated by changing the Dex-MA concentration. The enzymatic activity of HRP released from the beads was maintained. These novel IPN beads have great potential as protein delivery system.

  8. Fabrication and characterization of macroporous epichlorohydrin cross-linked alginate beads as protein adsorbent.

    PubMed

    Zhang, Weican; Ji, Xiaofei; Sun, Caiyun; Lu, Xuemei

    2013-01-01

    Porous epichlorohydrin cross-linked alginate beads (ECAB) were prepared by the following method. Na-alginate solution containing Na2SO4 was introduced dropwise into CaCl2 solution to simultaneously form CaSO4 precipitate and Ca-alginate gel beads. The resultant beads were cross-linked with epichlorohydrin and then thoroughly washed with ethylenediamine tetraacetic acid (EDTA) solution to remove CaSO4. The structural features of porous ECAB were assessed with scanning electron microscopy (SEM) and experiments on water content and adsorption of bovine serum albumin (BSA). The results showed that macroporous ECAB can be obtained when the mass ratio of sodium sulfate to sodium alginate is 4:1. The adsorption behavior of the macroporous ECAB was well described by the Langmuir isotherm with maximum adsorption capacity equal to 740 mg BSA/g dry weight in 50 mM Na2HPO4-citric acid buffer (pH 4.0). BSA was more effectively adsorbed by macroporous ECAB at around pH 3 and the mechanism of the adsorption of BSA to the ECAB was ion exchange. Finally, experiments of a concentration of 1 mg/mL BSA using macroporous ECAB were performed.

  9. Tapioca starch blended alginate mucoadhesive-floating beads for intragastric delivery of Metoprolol Tartrate.

    PubMed

    Biswas, Nikhil; Sahoo, Ranjan Kumar

    2016-02-01

    The objective of the study was to develop tapioca starch blended alginate mucoadhesive-floating beads for the intragastric delivery of Metoprolol Tartrate (MT). The beads were prepared by ionotropic gelation method using calcium chloride as crosslinker and gas forming calcium carbonate (CaCO3) as floating inducer. The alginate gel beads having 51-58% entrapped MT showed 90% release within 45 min in gastric medium (pH 1.2). Tapioca starch blending markedly improved the entrapment efficiency (88%) and sustained the release for 3-4 h. A 12% w/w HPMC coating on these beads extended the release upto 9-11 h. In vitro wash off and buoyancy test in gastric media revealed that the beads containing CaCO3 has gastric residence of more than 12 h. In vitro optimized multi-unit formulation consisting of immediate and sustained release mucoadhesive-floating beads (40:60) showed good initial release of 42% MT within 1h followed by a sustained release of over 90% for 11 h. Pharmacokinetic study performed in rabbit model showed that the relative oral bioavailability of MT after administration of oral solution, sustain release and optimized formulation was 51%, 67% and 87%, respectively. Optimized formulation showed a higher percent inhibition of isoprenaline induced heart rate in rabbits for almost 12 h.

  10. Formulation optimization and evaluation of jackfruit seed starch-alginate mucoadhesive beads of metformin HCl.

    PubMed

    Nayak, Amit Kumar; Pal, Dilipkumar

    2013-08-01

    The present study deals with the formulation optimization of jackfruit (Artocarpus heterophyllus Lam., family: Moraceae) seed starch (JFSS)-alginate mucoadhesive beads containing metformin HCl through ionotropic gelation using 3(2) factorial design. The effect of sodium alginate to JFSS ratio and CaCl2 concentration on the drug encapsulation efficiency (DEE, %), and cumulative drug release at 10h (R10h, %) was optimized. The optimized beads containing metformin HCl showed DEE of 97.48±3.92%, R10h of 65.70±2.22%, and mean diameter of 1.16±0.11mm. The in vitro drug release from these beads was followed controlled-release (zero-order) pattern with super case-II transport mechanism. The beads were also characterized by SEM and FTIR. The swelling and degradation of these beads were influenced by pH of the test medium. The optimized beads also exhibited good mucoadhesivity and significant hypoglycemic effect in alloxan-induced diabetic rats over prolonged period after oral administration.

  11. Prosopis alba exudate gum as excipient for improving fish oil stability in alginate-chitosan beads.

    PubMed

    Vasile, Franco Emanuel; Romero, Ana María; Judis, María Alicia; Mazzobre, María Florencia

    2016-01-01

    The aim of the present work was to employ an exudate gum obtained from a South American wild tree (Prosopis alba), as wall material component to enhance the oxidative stability of fish oil encapsulated in alginate-chitosan beads. For this purpose, beads were vacuum-dried and stored under controlled conditions. Oxidation products, fatty acid profiles and lipid health indices were measured during storage. Alginate-chitosan interactions and the effect of gum were manifested in the FT-IR spectra. The inclusion of the gum in the gelation media allowed decreasing the oxidative damage during storage in comparison to the free oil and alginate-chitosan beads. The gum also improved wall material properties, providing higher oil retention during the drying step and subsequent storage. Fatty acids quality and lipid health indices were widely preserved in beads containing the gum. Present results showed a positive influence of the gum on oil encapsulation and stability, being the main mechanism attributed to a physical barrier effect.

  12. Mechanical properties of alginate beads hosting hepatocytes in a fluidized bed bioreactor.

    PubMed

    David, B; Barbe, L; Barthès-Biesel, D; Legallais, C

    2006-08-01

    Fluidized bed bioartificial liver has been proposed as a temporary support to bridge patients suffering from acute liver failure to transplantation. In such a bioreactor, alginate beads hosting hepatocytes are in continuous motion during at least six hours. After having shown in vitro the functionality of such a device, the present study aims at analyzing the potential mechanical alterations of the beads in the bioreactor, perfused by different surrounding media. Compression experiments are performed and coupled for analysis with Hertz theory. They provide qualitative and quantitative data. The average value of the shear modulus, calculated for the different cases studied varied from 2.4 to 10.4 kPa, and could therefore be considered as a quantitative measure of the beads mechanical properties. From the compression experiments and the estimated values of the shear modulus, we could now evaluate the effect of different operating conditions (fluidization, presence of cells, surrounding medium) on the mechanical behavior of alginate beads. On the one hand, the motion during six hours in the bioreactor does not alter the beads significantly. On the other hand, the presence of different substances in the fluid phase might change their mechanical strength. These results can be considered as new encouragements to use such a device as a bioartificial organ.

  13. Comparative study of calcium alginate, activated carbon, and their composite beads on methylene blue adsorption.

    PubMed

    Hassan, A F; Abdel-Mohsen, A M; Fouda, Moustafa M G

    2014-02-15

    Three adsorbents, calcium alginate beads (AB), sodium hydroxide activated carbon based coconut shells (C), and calcium alginate/activated carbon composite beads (ACB) were prepared. Their textural properties were characterized by N2-adsorption at -196°C and scanning electron microscopy. The porosity, surface area and total pore volume of C>ACB>AB, but AB adsorbent was more acidic function groups more than the other adsorbents. Adsorption experiments were conducted to examine the effects of adsorbent dosage, pH, time, temperature and initial concentration of methylene blue. Methylene blue adsorption on C, AB and ACB was observed at pH>6 to avoid the competition of H(+). The amount of dye adsorbed increases as the adsorbent dosage increase. Adsorption of dye follows pseudo-second order mechanism. Thermodynamic studies show spontaneous and endothermic nature of the overall adsorption process.

  14. Improving the Stability of Astaxanthin by Microencapsulation in Calcium Alginate Beads

    PubMed Central

    Lin, Shen-Fu; Chen, Ying-Chen; Chen, Ray-Neng; Chen, Ling-Chun; Ho, Hsiu-O; Tsung, Yu-Han; Sheu, Ming-Thau; Liu, Der-Zen

    2016-01-01

    There has been considerable interest in the biological functions of astaxanthin and its potential applications in the nutraceutical, cosmetics, food, and feed industries in recent years. However, the unstable structure of astaxanthin considerably limits its application. Therefore, this study reports the encapsulation of astaxanthin in calcium alginate beads using the extrusion method to improve its stability. This study also evaluates the stability of the encapsulated astaxanthin under different storage conditions. The evaluation of astaxanthin stability under various environmental factors reveals that temperature is the most influential environmental factor in astaxanthin degradation. Stability analysis shows that, regardless of the formulation used, the content of astaxanthin encapsulated in alginate beads remains above 90% of the original amount after 21 days of storage at 25°C. These results suggest that the proposed technique is a promising way to enhance the stability of other sensitive compounds. PMID:27093175

  15. Production optimization of invertase by Lactobacillus brevis Mm-6 and its immobilization on alginate beads.

    PubMed

    Awad, Ghada E A; Amer, Hassan; El-Gammal, Eman W; Helmy, Wafaa A; Esawy, Mona A; Elnashar, Magdy M M

    2013-04-02

    A sequential optimization strategy, based on statistical experimental designs, was employed to enhance the production of invertase by Lactobacillus brevis Mm-6 isolated from breast milk. First, a 2-level Plackett-Burman design was applied to screen the bioprocess parameters that significantly influence the invertase production. The second optimization step was performed using fractional factorial design in order to optimize the amounts of variables have the highest positive significant effect on the invertase production. A maximal enzyme activity of 1399U/ml was more than five folds the activity obtained using the basal medium. Invertase was immobilized onto grafted alginate beads to improve the enzyme's stability. Immobilization process increased the operational temperature from 30 to 60°C compared to the free enzyme. The reusability test proved the durability of the grafted alginate beads for 15 cycles with retention of 100% of the immobilized enzyme activity to be more convenient for industrial uses.

  16. Cetylpyridinium chloride/magnetic alginate beads: an efficient system to remove p-nitrophenol from wastewater

    NASA Astrophysics Data System (ADS)

    Obeid, Layaly; Bee, Agnes; Talbot, Delphine; Abramson, Sebastien; Welschbillig, Mathias

    2014-05-01

    The adsorption process is one of the most efficient methods to remove pollutants from wastewater provided that suitable adsorbents are used. In order to produce environmentally safe adsorbents, natural polymers have received increasing attention in recent years. Thus, alginate, a polysaccharide extracted from brown seaweeds, is extensively used as inexpensive, non-toxic and efficient biosorbent. Furthermore, it has been shown that the encapsulation of magnetic materials in alginate beads facilitates their recovery from wastewater after the adsorption step, by the use of an external magnetic field gradient, obtained with a magnet or an electromagnet [1, 2]. In the present work, we have studied the adsorption affinity of magnetic alginate beads (called magsorbents)for p-nitrophenol (PNP), used as a hydrophobic pollutant, in presence of cetylpyridinium chloride (CPC), a cationic surfactant. First, the effect of different parameters (pH solution, contact time, surfactant initial concentration…) on the adsorption of CPC on the alginate beads was investigated. Adsorption of the surfactant occurs due to electrostatic attractions between its cationic head groups and negative carboxylate functions of the alginate beads. At larger surfactant concentrations, adsorption is also due to the interaction between the hydrocarbon chains of CPC forming aggregated structures capable of solubilizing hydrophobic solutes. In a second step, we showed that PNP can reach up to 95% of adsorption in the beads in presence of CPC, although the pollutant is poorly adsorbed by alginate in absence of the surfactant. At highest CPC concentrations, desorption occurs as micellar solubilization is preferred over coadsorption. Our magsorbents appear to efficiently remove both cationic surfactant and hydrophobic pollutants and we hope that this fundamental research will be helpful for the future development of magnetically assisted processes in water treatment plants. 1. A.Bee, D.Talbot, S.Abramson, V

  17. Magnetite-alginate beads for purification of some starch degrading enzymes.

    PubMed

    Teotia, Sunita; Gupta, M N

    2002-03-01

    Starch degrading enzymes, viz., beta-amylase, glucoamylase, and pullulanase, were purified using magnetite-alginate beads. In each case, the enzyme activity was eluted by using 1.0 M maltose. beta-Amylase (sweet potato), glucoamylase (Aspergillus niger), and pullulanase (Bacillus acidopullulyticus) from their crude preparations were purified 37-, 31-, and 49-fold with 86, 87, and 95% activity recovery, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed single band in each case.

  18. Microencapsulation of lectin anti-cancer agent and controlled release by alginate beads, biosafety approach.

    PubMed

    El-Aassar, M R; Hafez, Elsayed E; El-Deeb, Nehal M; Fouda, Moustafa M G

    2014-08-01

    Hepatocellular carcinoma (HCC) is considered as one of the most aggressive cancer worldwide. In Egypt, the prevalence of HCC is increasing during last years. Recently, drug-loaded microparticles were used to improve the efficiency of various medical treatments. This study is designed to evaluate the anticancer potentialities of lectins against HCC while hinting to its safety usage. The aim is also extended to encapsulate lectins in alginate microbeads for oral drug delivery purposes. The extracted lectins showed anti-proliferative effect against HCC with a percentage of 60.76% by using its nontoxic dose with an up-regulation of P53 gene expression. Concerning the handling of lectin alginate microbeads for oral drug delivery, the prepared lectin alginate beads were ∼100μm in diameter. The efficiency of the microcapsules was checked by scanning electron microscopy, the SEM showed the change on the alginate beads surface revealing the successful lectin encapsulation. The release of lectins from the microbeads depended on a variety of factors as the microbeads forming carriers and the amount-encapsulated lectins. The Pisum sativum extracted lectins may be considered as a promising agent in controlling HCC and this solid dosage form could be suitable for oral administration complemented with/or without the standard HCC drugs.

  19. Boron removal from aqueous solutions using alginate gel beads in fixed-bed systems

    PubMed Central

    Demey-Cedeño, Hary; Ruiz, Montserrat; Barron-Zambrano, Jesús Alberto; Sastre, Ana Maria

    2014-01-01

    Background A column sorption study was carried out using calcium alginate gel beads as adsorbent for the removal of boron from aqueous solutions. The breakthrough curve was obtained as a function of pH, initial concentration of boron, feed flow rate, adsorbent mass and column diameter. The breakthrough capacity values and adsorption percentage of calcium alginate gel for boron were calculated. Column data obtained at different conditions were described using the Adams–Bohart model and bed-depth service time (BDST), derived from the Adams–Bohart equation to predict breakthrough curves and to determine the characteristic column parameters required for process design. Results The maximum adsorption percentage of boron on calcium alginate gel beads using an initial concentration of boron of 50 mg L−1 at pH 11 and room temperature (20±1°C) was calculated to be 55.14%. Conclusion The results indicated that calcium alginate can be used in a continuous packed-bed column for boron adsorption. The optimal conditions for boron adsorption were obtained at high pH, higher initial boron concentration, increased column depth and lower flow velocity. © 2014 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25821332

  20. Enrichment of cancer stem cell-like cells by culture in alginate gel beads.

    PubMed

    Xu, Xiao-xi; Liu, Chang; Liu, Yang; Yang, Li; Li, Nan; Guo, Xin; Sun, Guang-wei; Ma, Xiao-jun

    2014-05-10

    Cancer stem cells (CSCs) are most likely the reason of cancer reoccurrence and metastasis. For further elucidation of the mechanism underlying the characteristics of CSCs, it is necessary to develop efficient culture systems to culture and expand CSCs. In this study, a three-dimensional (3D) culture system based on alginate gel (ALG) beads was reported to enrich CSCs. Two cell lines derived from different histologic origins were encapsulated in ALG beads respectively and the expansion of CSCs was investigated. Compared with two-dimensional (2D) culture, the proportion of cells with CSC-like phenotypes was significantly increased in ALG beads. Expression levels of CSC-related genes were greater in ALG beads than in 2D culture. The increase of CSC proportion after being cultured within ALG beads was further confirmed by enhanced tumorigenicity in vivo. Moreover, increased metastasis ability and higher anti-cancer drug resistance were also observed in 3D-cultured cells. Furthermore, we found that it was hypoxia, through the upregulation of hypoxia-inducible factors (HIFs) that occurred in ALG beads to induce the increasing of CSC proportion. Therefore, ALG bead was an efficient culture system for CSC enrichment, which might provide a useful platform for CSC research and promote the development of new anti-cancer therapies targeting CSCs.

  1. Alginate/magnetite hybrid beads for magnetically stimulated release of dopamine.

    PubMed

    Kondaveeti, Stalin; Cornejo, Daniel R; Petri, Denise Freitas Siqueira

    2016-02-01

    Hybrid beads composed of magnetite nanoparticles (MNP) and alginate (Alg) were synthesized and coded as Alg-MNP. They were incubated in dopamine (DOPA) solution (5 g/L), at pH 7.4 and 8 °C, during 12 h, promoting the DOPA loaded magnetic beads, coded as Alg-MNP/DOPA. The release of DOPA was further evaluated in the absence and the presence of external magnetic field (EMF) of 0.4 T. The products Alg-MNP and Alg-MNP/DOPA were characterized by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), Fourier transform infrared vibrational spectroscopy (FTIR), UV spectrophotometry, thermogravimetric analyses (TGA), inductively coupled plasma atomic emission spectroscopy (ICP-AES) analyses and superconducting quantum interference device (SQUID) magnetometer. The magnetic and chemical properties of Alg-MNP beads were not affected by DOPA loading. The incorporation of DOPA into the beads depended on the pH and on the negative charge density. At pH 7.4 38% of DOPA were loaded into Alg-MNP beads, whereas at pH 2 or using neat Alg beads (lower charge density than Alg-MNP) the loading efficiency decreased to one third or less. In the absence of EMF, 24% of the loaded DOPA was released from Alg-MNP at pH 7.4 over a period of 26 h. The released amount increased to 33% under the stimulus of EMF. A model was proposed to explain the loading efficiency of charged drugs, as DOPA, into hybrid beads and the role played by EMF on delivery systems, where drug and matrix are oppositely charged. The results suggest that the alginate combined with magnetite nanoparticles is a promising system for release of DOPA in the presence of EMF.

  2. NMR microscopy of heavy metal absorption in calcium alginate beads

    SciTech Connect

    Nestle, N.; Kimmich, R.

    1996-01-01

    In recent years, heavy metal uptake by biopolymer gels, such as Cal-Alginate or chitosan, has been studied by various methods. This is of interest because such materials might be an alternative to synthetical ion-exchange resins in the treatment of industrial waste waters. Most of the work done in this field consisted of studies of equilibrium absorption of different heavy metal ions with dependence on various experimental parameters. In some publications, the kinetics of absorption were studied, too. However, no experiments on the spatial distribution of heavy metals during the absorption process are known to us. Using Cu as an example, it is demonstrated in this article that NMR microscopy is an appropriate tool for such studies. By the method presented here, it is possible to monitor the spatial distribution of heavy metal ions with a time resolution of about 5 min and a spatial resolution of 100 {mu}m or even better. 14 refs., 10 figs.

  3. Nitrate removal from drinking water through the use of encapsulated microorganisms in alginate beads.

    PubMed

    Liu, S X; Hermanowicz, S W; Peng, M

    2003-09-01

    Biological treatment for removal of nitrate from drinking water is of great significance, as traditional physical and chemical methods could not effectively remove soluble nitrate. In this report immobilized microorganisms with co-immobilized calcium tartrate were used for reducing nitrate concentration (110 mg l(-1) NO3-N) in a model solution. The carbon source also functions as a stabilizing agent for the immobilization matrix. Experiments of denitrification showed a high nitrate removal rate while nitrite residual was at a concentration higher than expected. The nitrate concentration was reduced to nearly zero (0.2-1.4 mg l(-1)) after 3 days of operation. The calcium tartrate (4%, w/w) co-immobilized alginate beads had better nitrate removal performance than tartrate in solution. The nitrite-N residual concentration was approximately 1.1-2.9 mg l(-1) at the end of the experiments, showing the desirability of further denitrification. The stability of alginate beads was also tested both to evaluate their behaviors and investigate the efficacy of bead recycling. It was found that the beads could be used for 8-13 days consecutively without any structural deterioration and leaking of microbes.

  4. Floating mucoadhesive alginate beads of amoxicillin trihydrate: A facile approach for H. pylori eradication.

    PubMed

    Dey, Sanjoy Kumar; De, Pintu Kumar; De, Arnab; Ojha, Souvik; De, Ronita; Mukhopadhyay, Asish Kumar; Samanta, Amalesh

    2016-08-01

    This study investigates the design of sunflower oil entrapped floating and mucoadhesive beads of amoxicillin trihydrate using sodium alginate and hydroxypropyl methylcellulose as matrix polymers and chitosan as coating polymer to localize the antibiotic at the stomach site against Helicobacter pylori. Beads prepared by ionotropic gellation technique were evaluated for different physicochemical, in-vitro and in-vivo properties. Beads of all batches were floated for >24h with a maximum lag time of 46.3±3.2s. Scanning electron microscopy revealed that the beads were spherical in shape with few oil filled channels distributed throughout the surfaces and small pocket structures inside the matrix confirming oil entrapment. Prepared beads showed good mucoadhesiveness of 75.7±3.0% to 85.0±5.5%. The drug release profile was best fitted to Higuchi model with non fickian driven mechanism. The optimized batch showed 100% Helicobacter pylori growth inhibition in 15h in in-vitro culture. Furthermore, X-ray study in rabbit stomach confirmed the gastric retention of optimized formulation. The results exhibited that formulated beads may be preferred to localize the antibiotic in the gastric region to allow more availability of antibiotic at gastric mucus layer acting on Helicobacter pylori, thereby improving the therapeutic efficacy.

  5. Photocatalytic reduction of Cs(I) ions removed by combined maghemite-titania PVA-alginate beads from aqueous solution.

    PubMed

    Majidnia, Zohreh; Fulazzaky, Mohamad Ali

    2017-04-15

    The presence of Cs(I) ions in nuclear wastewater becomes an important issue for the reason of its high toxicity. The development of adsorbent embedded metal-based catalysts that has sufficient adsorption capacity is expected for the removal of Cs(I) ions from contaminated water. This study tested the use of maghemite, titania and combined maghemite-titania polyvinyl alcohol (PVA)-alginate beads as an adsorbent to remove Cs(I) ions from aqueous solution with the variables of pH and initial concentration using batch experiments under sunlight. The results showed that the use of combined maghemite-titania PVA-alginate beads can have an efficiency of 93.1% better than the use of either maghemite PVA-alginate beads with an efficiency of 91.8% or titania PVA-alginate beads with an efficiency of 90.1%. The experimental data for adsorption of Cs(I) ions from aqueous solution with the initial concentrations of 50, 100 and 200 mg L(-1) on the surface of combined maghemite-titania PVA-alginate beads were well fit by the pseudo-second-order and Langmuir models. The optimal adsorption of Cs(I) ions from aqueous solution by combined maghemite-titania PVA-alginate beads under sunlight occurs at pH 8 with an initial Cs(I) ion concentration of 50 mg L(-1). The combined maghemite-titania PVA-alginate beads can be recycled at least five times with a slight loss of their original properties.

  6. Development and evaluation of alginate-chitosan gastric floating beads loading with oxymatrine solid dispersion.

    PubMed

    Liu, Yanhua; Chen, Lihong; Zhou, Chengming; Yang, Jianhong; Hou, Yanhui; Wang, Wenping

    2016-01-01

    Oxymatrine (OM) can be metabolized to matrine in gastrointestinal ileocecal valve after oral administration, which affects pharmacological activity and reduce bioavailability of OM. A type of multiple-unit alginate-chitosan (Alg-Cs) floating beads was prepared by the ionotropic gelation method for gastroretention delivery of OM. A solid dispersion technique was applied and incorporated into beads to enhance the OM encapsulation efficiency (EE) and sustain the drug release. The surface morphology and internal hollow structure of beads were evaluated using optical microscopy and scanning electron microscopy (SEM). The developed Alg-Cs beads were spherical in shape with hollow internal structure and had particle size of 3.49 ± 0.09 mm and 1.33 ± 0.09 mm for wet and dried beads. Over 84% of the optimized OM solid dispersion-loaded Alg-Cs beads were able to continuously float over the simulated gastric fluid for 12 h in vitro. The OM solid dispersion-loaded Alg-Cs beads showed drug EE of 67.07%, which was much higher than that of beads loading with pure OM. Compared with the immediate release of OM capsules and pure OM-loaded beads, the release of OM from solid dispersion-loaded Alg-Cs beads was in a sustained-release manner for 12 h. Prolonged gastric retention time of over 8.5 h was achieved for OM solid dispersion-loaded Alg-Cs floating beads in healthy rabbit in in vivo floating ability evaluated by X-ray imaging. The developed Alg-Cs beads loading with OM solid dispersion displayed excellent performance features characterized by excellent gastric floating ability, high drug EE and sustained-release pattern. The study illustrated the potential use of Alg-Cs floating beads combined with the solid dispersion technique for prolonging gastric retention and sustaining release of OM, which could provide a promising drug delivery system for gastric-specific delivery of OM for bioavailability enhancement.

  7. Alginate and Algal-Based Beads for the Sorption of Metal Cations: Cu(II) and Pb(II)

    PubMed Central

    Wang, Shengye; Vincent, Thierry; Faur, Catherine; Guibal, Eric

    2016-01-01

    Alginate and algal-biomass (Laminaria digitata) beads were prepared by homogeneous Ca ionotropic gelation. In addition, glutaraldehyde-crosslinked poly (ethyleneimine) (PEI) was incorporated into algal beads. The three sorbents were characterized by scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX): the sorption occurs in the whole mass of the sorbents. Sorption experiments were conducted to evaluate the impact of pH, sorption isotherms, and uptake kinetics. A special attention was paid to the effect of drying (air-drying vs. freeze-drying) on the mass transfer properties. For alginate, freeze drying is required for maintaining the porosity of the hydrogel, while for algal-based sorbents the swelling of the material minimizes the impact of the drying procedure. The maximum sorption capacities observed from experiments were 415, 296 and 218 mg Pb g−1 and 112, 77 and 67 mg Cu g−1 for alginate, algal and algal/PEI beads respectively. Though the sorption capacities of algal-beads decreased slightly (compared to alginate beads), the greener and cheaper one-pot synthesis of algal beads makes this sorbent more competitive for environmental applications. PEI in algal beads decreases the sorption properties in the case of the sorption of metal cations under selected experimental conditions. PMID:27598128

  8. Immobilization of urease from pigeonpea (Cajanus cajan L.) in polyacrylamide gels and calcium alginate beads.

    PubMed

    Das, N; Kayastha, A M; Malhotra, O P

    1998-02-01

    Urease from pigeonpea was entrapped in polyacrylamide gel with 50% immobilization at 10% total monomer (containing 5% cross-linker) with high mechanical stability of the gel. Approximately 0.61 mg of protein could be loaded per 5 ml of gel. The immobilized enzyme had a t1/2 of approx. 200 days when stored in 0.1 M Tris/acetate buffer, pH 6.5, at 4 degrees C. The gel strips were used 4-5 times for urea assay over a period of 6 h with less than 2% loss of activity. Approximately 50% immobilization of urease in calcium alginate was observed at 3% alginate with 0.12 mg protein/ml alginate. The resultant enzyme beads showed a t1/2 of approx. 75 days when stored in 0.1 M Tris/acetate buffer, pH 6.5, at 4 degrees C. The beads were used 4-5 times for urea assay over a period of 6 h with about 40% loss of activity. In both cases, the enzyme activity was directly proportional to the amount of immobilized enzyme. There was practically no leaching of the entrapped enzyme over a period of 48 h from either of the polymers. Both the immobilized enzyme preparations were used to analyse the blood urea of some clinical samples from the University hospital. The results obtained compared favourably with those obtained by the usual method employed in the clinical pathology laboratory.

  9. Biodegradation of crystal violet using Burkholderia vietnamiensis C09V immobilized on PVA-sodium alginate-kaolin gel beads.

    PubMed

    Cheng, Ying; Lin, HongYan; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2012-09-01

    The strain, Burkholderia vietnamiensis C09V was immobilized on PVA-alginate-kaolin gel beads as a biomaterial to improve the degradation of crystal violet from aqueous solution. The results show that 98.6% (30 mg L(-1)) crystal violet was removed from aqueous solution using immobilized cells on PVA-alginate-kaolin gel beads, while 94.0% crystal violet was removed by free cells after degradation at the pH 5 and 30°C for 30 h. Kinetics studies show that the pseudo-second-order kinetics well described the adsorption of crystal violet on the PVA-alginate-kaolin beads. Biodegradation of crystal violet on immobilized cells was fitted well by first-order reaction kinetics, indicating that CV was adsorbed onto kaolin and followed their degradation by immobilized cells onto the the PVA-alginate-kaolin beads. Characterization with SEM shows that cells attached well to the surface of PVA-alginate-kaolin beads, leading to improved crystal violet transfer from aqueous solution to immobilized cells. In addition, UV-vis show that the absorption peak at 588 nm was reduced by the degraded N-bond linkages, as well as the formation of degrading products were observed by Fourier transform infrared (FTIR). These results suggest that crystal violet was biodegraded to N,N-dimethylaminophenol and Michler's Ketone prior to these intermediates being further degraded.

  10. Magnetic alginate beads for Pb(II) ions removal from wastewater.

    PubMed

    Bée, Agnès; Talbot, Delphine; Abramson, Sébastien; Dupuis, Vincent

    2011-10-15

    A magnetic adsorbent (called magsorbent) was developed by encapsulation of magnetic functionalized nanoparticles in calcium-alginate beads. The adsorption of Pb(II) ions by these magnetic beads was studied and the effect of different parameters, such as initial concentration, contact time and solution pH value on the adsorption of Pb(II) ions was investigated. Our magsorbent was found to be efficient to adsorb Pb(II) ions and maximal adsorption capacity occurred at pH 2.3-6. The classical Langmuir model used to fit the experimental adsorption data showed a maximum sorption capacity close to 100 mg g(-1). The experimental kinetic data were well correlated with a pseudo second-order model, 50% of the Pb(II) ions were removed within 20 min and the equilibrium was attained around 100 min. Moreover our magsorbent was easily collected from aqueous media by using an external magnetic field. These results permitted to conclude that magnetic alginate beads could be efficiently used to remove heavy metals in a water treatment process.

  11. Determination of diffusion coefficients and diffusion characteristics for chlorferon and diethylthiophosphate in Ca-alginate gel beads.

    PubMed

    Ha, Jiyeon; Engler, Cady R; Lee, Seung Jae

    2008-07-01

    Diffusion characteristics of chlorferon and diethylthiophosphate (DETP) in Ca-alginate gel beads were studied to assist in designing and operating bioreactor systems. Diffusion coefficients for chlorferon and DETP in Ca-alginate gel beads determined at conditions suitable for biodegradation studies were 2.70 x 10(-11) m(2)/s and 4.28 x 10(-11) m(2)/s, respectively. Diffusivities of chlorferon and DETP were influenced by several factors, including viscosity of the bulk solution, agitation speed, and the concentrations of diffusing substrate and immobilized cells. Diffusion coefficients increased with increasing agitation speed, probably due to poor mixing at low speed and some attrition of beads at high speeds. Diffusion coefficients also increased with decreasing substrate concentration. Increased cell concentration in the gel beads caused lower diffusivity. Theoretical models to predict diffusivities as a function of cell weight fraction overestimated the effective diffusivities for both chlorferon and DETP, but linear relations between effective diffusivity and cell weight fraction were derived from experimental data. Calcium-alginate gel beads with radii of 1.65-1.70 mm used in this study were not subject to diffusional limitations: external mass transfer resistances were negligible based on Biot number calculations and effectiveness factors indicated that internal mass transfer resistance was negligible. Therefore, the degradation rates of chlorferon and DETP inside Ca-alginate gel beads were reaction-limited.

  12. Alginate/cashew gum floating bead as a matrix for larvicide release.

    PubMed

    Paula, Haroldo C B; de Oliveira, Erick F; Abreu, Flávia O M S; de Paula, Regina C M

    2012-08-01

    A polymeric floating system composed of Alginate (ALG) and Cashew gum (CG), loaded with an essential oil (Lippia sidoides-Ls) was prepared by ionotropic gelation, characterized regarding its physical-chemistry properties and evaluated on its potential as a controlled release system. The influence of process parameters on the buoyancy, loading, swelling and in vitro and in vivo release kinetics, was investigated. Results showed that beads produced with carbonate and Ls at high level contents exhibit good floatability (up to 5 days) and loading capacity (15.2-23.8%). In vitro release data showed a Fickian diffusion profile and in vivo experiments showed that ALG-CG floating system presented a superior and prolonged larvicide effect, in comparison with non-floating ones, presenting larvae mortality values of 85% and 33%, respectively, after 48 h. These results indicate that ALG-CG floating beads loaded with Ls presented enhanced oil entrapment efficiency, excellent floating ability, and suitable larvicide release pattern.

  13. Floating capsules containing alginate-based beads of salbutamol sulfate: In vitro-in vivo evaluations.

    PubMed

    Malakar, Jadupati; Datta, Prabir Kumar; Purakayastha, Saikat Das; Dey, Sanjay; Nayak, Amit Kumar

    2014-03-01

    The present study deals with the development and evaluations of stomach-specific floating capsules containing salbutamol sulfate-loaded oil-entrapped alginate-based beads. Salbutamol sulfate-loaded oil-entrapped beads were prepared and capsulated within hard gelatin capsules (size 1). The effects of HPMC K4M and potato starch weight masses on drug encapsulation efficiency (DEE) of beads and cumulative drug release at 10h (R10 h) from capsules was analyzed by 3(2) factorial design. The optimization results indicate increasing of DEE in the oil-entrapped beads and decreasing R10 h from capsules with increment of HPMC K4M and potato starch weight masses. The optimized formulation showed DEE of 70.02 ± 3.16% and R10 h of 56.96 ± 2.92%. These capsules showed floatation over 6h and sustained drug release over 10h in gastric pH (1.2). In vivo X-ray imaging study of optimized floating capsules in rabbits showed stomach-specific gastroretention over a prolonged period.

  14. Controlled ice nucleation using freeze-dried Pseudomonas syringae encapsulated in alginate beads.

    PubMed

    Weng, Lindong; Tessier, Shannon N; Swei, Anisa; Stott, Shannon L; Toner, Mehmet

    2017-03-14

    The control of ice nucleation is of fundamental significance in many process technologies related to food and pharmaceutical science and cryobiology. Mechanical perturbation, electromagnetic fields and ice-nucleating agents (INAs) have been known to induce ice nucleation in a controlled manner. But these ice-nucleating methods may suffer from cumbersome manual operations, safety concerns of external fields, and biocompatibility and recovery issues of INA particles, especially when used in living systems. Given the automatic ice-seeding nature of INAs, a promising solution to overcome some of the above limitations is to engineer a biocomposite that accommodates the INA particles but minimizes their interactions with biologics, as well as enabling the recovery of used particles. In this study, freeze-dried Pseudomonas syringae, a model ice-nucleating agent, was encapsulated into microliter-sized alginate beads. We evaluated the performance of the bacterial hydrogel beads to initiate ice nucleation in water and aqueous glycerol solution by investigating factors including the size and number of the beads and the local concentration of INA particles. In the aqueous sample of a fixed volume, the total mass of the INA particles (m) was found to be the governing parameter that is solely responsible for determining the ice nucleation performance of the bacterial hydrogel beads. The freezing temperature has a strong positive linear correlation with log10m. The findings in this study provide an effective, predictable approach to control ice nucleation, which can improve the outcome and standardization of many ice-assisted process technologies.

  15. Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae.

    PubMed

    Covarrubias, Sergio A; de-Bashan, Luz E; Moreno, Manuel; Bashan, Yoav

    2012-03-01

    When the freshwater microalga Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense were deployed as free suspensions in unsterile, municipal wastewater for tertiary wastewater treatment, their population was significantly lower compared with their populations in sterile wastewater. At the same time, the numbers of natural microfauna and wastewater bacteria increased. Immobilization of C. sorokiniana and A. brasilense in small (2-4 mm in diameter), polymer Ca-alginate beads significantly enhanced their populations when these beads were suspended in normal wastewater. All microbial populations within and on the surface of the beads were evaluated by quantitative fluorescence in situ hybridization combined with scanning electron microscopy and direct measurements. Submerging immobilizing beads in wastewater created the following sequence of events: (a) a biofilm composed of wastewater bacteria and A. brasilense was created on the surface of the beads, (b) the bead inhibited penetration of outside organisms into the beads, (c) the bead inhibited liberation of the immobilized microorganisms into the wastewater, and (d) permitted an uninterrupted reduction of ammonium and phosphorus from the wastewater. This study demonstrated that wastewater microbial populations are responsible for decreasing populations of biological agents used for wastewater treatment and immobilization in alginate beads provided a protective environment for these agents to carry out uninterrupted tertiary wastewater treatment.

  16. Encapsulated human hepatocellular carcinoma cells by alginate gel beads as an in vitro metastasis model

    SciTech Connect

    Xu, Xiao-xi; Liu, Chang; Liu, Yang; Li, Nan; Guo, Xin; Wang, Shu-jun; Sun, Guang-wei; Wang, Wei; Ma, Xiao-jun

    2013-08-15

    Hepatocellular carcinoma (HCC) is the most common primary liver cancer and often forms metastases, which are the most important prognostic factors. For further elucidation of the mechanism underlying the progression and metastasis of HCC, a culture system mimicking the in vivo tumor microenvironment is needed. In this study, we investigated the metastatic ability of HCC cells cultured within alginate gel (ALG) beads. In the culture system, HCC cells formed spheroids by proliferation and maintained in nuclear abnormalities. The gene and protein expression of metastasis-related molecules was increased in ALG beads, compared with the traditional adhesion culture. Furthermore, several gene expression levels in ALG bead culture system were even closer to liver cancer tissues. More importantly, in vitro invasion assay showed that the invasion cells derived from ALG beads was 7.8-fold higher than adhesion cells. Our results indicated that the in vitro three-dimensional (3D) model based on ALG beads increased metastatic ability compared with adhesion culture, even partly mimicked the in vivo tumor tissues. Moreover, due to the controllable preparation conditions, steady characteristics and production at large-scale, the 3D ALG bead model would become an important tool used in the high-throughput screening of anti-metastasis drugs and the metastatic mechanism research. -- Highlights: •We established a 3D metastasis model mimicking the metastatic ability in vivo. •The invasion ability of cells derived from our model was increased significantly. •The model is easy to reproduce, convenient to handle, and amenable for large-scale.

  17. Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads.

    PubMed

    Bai, Jing; Fan, Fangli; Wu, Xiaolei; Tian, Wei; Zhao, Liang; Yin, Xiaojie; Fan, Fuyou; Li, Zhan; Tian, Longlong; Wang, Yang; Qin, Zhi; Guo, Junsheng

    2013-12-01

    Calcium alginate beads are potential biosorbent for radionuclides removal as they contain carboxyl groups. However, until now limited information is available concerning the uptake behavior of uranium by this polymer gel, especially when sorption equilibrium, kinetics and thermodynamics are concerned. In present work, batch experiments were carried out to study the equilibrium, kinetics and thermodynamics of uranium sorption by calcium alginate beads. The effects of initial solution pH, sorbent amount, initial uranium concentration and temperature on uranium sorption were also investigated. The determined optimal conditions were: initial solution pH of 3.0, added sorbent amount of 40 mg, and uranium sorption capacity increased with increasing initial uranium concentration and temperature. Equilibrium data obtained under different temperatures were fitted better with Langmuir model than Freundlich model, uranium sorption was dominated by a monolayer way. The kinetic data can be well depicted by the pseudo-second-order kinetic model. The activation energy derived from Arrhenius equation was 30.0 kJ/mol and the sorption process had a chemical nature. Thermodynamic constants such as ΔH(0), ΔS(0) and ΔG(0) were also evaluated, results of thermodynamic study showed that the sorption process was endothermic and spontaneous.

  18. Adsorption of arsenic by activated carbon, calcium alginate and their composite beads.

    PubMed

    Hassan, A F; Abdel-Mohsen, A M; Elhadidy, H

    2014-07-01

    The present investigation deals with preparation of three different adsorbent materials namely; potassium hydroxide activated carbon based apricot stone (C), calcium alginate beads (G) and calcium alginate/activated carbon composite beads (GC) were used for the removal of arsenic. The prepared adsorbent materials were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), N2-adsorption at -196°C and point of zero charge. From the obtained results, it was found that the porosity, surface area and total pore volume of the adsorbent material C>GC>G respectively, however, the G adsorbent has more acidic function group than the other adsorbents. The influence of pH, time, temperature and initial concentration of arsenic(V) were studied and optimized. GC exhibits the maximum As(V) adsorption (66.7mg/g at 30°C). The adsorption of arsenic ions was observed to follow pseudo-second order mechanism as well as the thermodynamic parameters confirm also the endothermic spontaneous and a physisorption process.

  19. Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media.

    PubMed

    Ng, Choong Hey; Yang, Kun-Lin

    2016-01-01

    Esterification of organic acids and alcohols in aqueous media is very inefficient due to thermodynamic constraints. However, fermentation processes used to produce organic acids and alcohols are often conducted in aqueous media. To produce esters in aqueous media, biphasic alginate beads with immobilized lipase are developed for in situ esterification of butanol and butyric acid. The biphasic beads contain a solid matrix of calcium alginate and hexadecane together with 5 mg/mL of lipase as the biocatalyst. Hexadecane in the biphasic beads serves as an organic phase to facilitate the esterification reaction. Under optimized conditions, the beads are able to catalyze the production of 0.16 mmol of butyl butyrate from 0.5 mmol of butyric acid and 1.5 mmol of butanol. In contrast, when monophasic beads (without hexadecane) are used, only trace amount of butyl butyrate is produced. One main application of biphasic beads is in simultaneous fermentation and esterification (SFE) because the organic phase inside the beads is very stable and does not leach out into the culture medium. SFE is successfully conducted with an esterification yield of 6.32% using biphasic beads containing iso-octane even though the solvent is proven toxic to the butanol-producing Clostridium spp.

  20. Development, optimization and in vitro-in vivo evaluation of pioglitazone- loaded jackfruit seed starch-alginate beads.

    PubMed

    Nayak, Amit Kumar; Pal, Dilipkumar; Hasnain, Saquib Md

    2013-10-01

    The present investigation describes development and optimization of pioglitazone-loaded jackfruit seed starch (JFSS)-alginate beads by ionotropic-gelation using 3(2) factorial design. The effect of polymer-blend ratio and CaCl2 concentration on the drug encapsulation efficiency (DEE, %), and cumulative drug release after 10 hours (R10h, %) was optimized. The DEE (%) of these beads were 64.80 ± 1.92 to 94.07 ± 3.82 % with sustained in vitro drug release of 64.± 1.83 to 92.66 ± 4.54 % over 10 hours. The in vitro drug release from these beads followed controlled-release pattern with super case-II transport. Particle size range of these beads was 0.77 ± 0.04 to 1.24 ± 0.09 mm. The beads were also characterized by SEM and FTIR. The swelling of these beads was influenced by pH of the test medium. The optimized pioglitazone-loaded JFSS-alginate beads showed significant hypoglycemic effect in alloxan-induced diabetic rats over prolonged period after oral administration.

  1. Alginate beads as a carrier for omeprazole/SBA-15 inclusion compound: A step towards the development of personalized paediatric dosage forms.

    PubMed

    Del Gaudio, Pasquale; De Cicco, Felicetta; Sansone, Francesca; Aquino, Rita Patrizia; Adami, Renata; Ricci, Maurizio; Giovagnoli, Stefano

    2015-11-20

    The treatment of gastro-esophageal reflux disease (GERD) shows several issues among paediatric patients. This work aims to the formulation of enteric alginate beads loaded with omeprazole (OME) allowing age- and weight-related personalized dosages in children. OME was entrapped in SBA-15 mesoporous compound, characterized and loaded into alginate beads by prilling at different OME and alginate concentrations. The beads resulted of homogeneous size, spherical morphology and very consistent in drug loading and distribution. Formulations demonstrated limited swelling and release (about 10%) in simulated gastric fluid (SGF) after 2h and a prolonged release in simulated intestinal fluid (SIF), till 6h, due to a mixed diffusion-case II transport mechanism. The beads were superior to the market product, which showed lower release in SGF but immediate dissolution in SIF. The high alginate beads uniformity and release properties make them a potential novel tool for a personalized treatment of GERD in children.

  2. Synthesis of zinc-crosslinked thiolated alginic acid beads and their in vitro evaluation as potential enteric delivery system with folic acid as model drug.

    PubMed

    Taha, M O; Aiedeh, K M; Al-Hiari, Y; Al-Khatib, H

    2005-10-01

    The aim of this study is to explore the potential of synthetic modifications of alginic acid as a method to enhance the stability of its complexes with divalent cations under physiological conditions. A fraction of algin's carboxylic acid moieties was substituted with thiol groups to different substitution degrees through conjugating alginate to cysteine to produce alginate-cysteine (AC) conjugates. Infrared spectrophotometry and iodometry were used to characterize the resulting polymeric conjugates in terms of structure and degree of substitution. Moreover, zinc ions were used to crosslink the resulting AC polymers. Folic acid loaded beads were prepared from Zinc-crosslinked AC polymers (AC-Zn) of different cysteine substitution degrees. The generated beads were then investigated in vitro for their capacity to modify folic acid release. AC-Zn polymeric beads resisted drug release under acidic conditions (pH 1.0). However, upon transfer to a phosphate buffer solution (pH 7.0) they released most of their contents almost immediately. This change in drug release behavior is most probably due to the sequestering of zinc cations by phosphate ions within the buffer solution to form insoluble chelates and, to a lesser extent, the ionization of the carboxylic acid and thiol moieties. Removal of zinc ions from the polymeric matrix seems to promote polymeric disintegration and subsequent drug release. A similar behavior is expected in vivo due to the presence of natural zinc sequestering agents in the intestinal fluids. AC-Zn polymers provided a novel approach for enteric drug delivery as drug release from these matrices complied with the USP specifications for enteric dosage forms.

  3. Adsorption studies of cadmium ions on alginate-calcium carbonate composite beads

    NASA Astrophysics Data System (ADS)

    Mahmood, Zahid; Amin, Athar; Zafar, Uzma; Raza, Muhammad Amir; Hafeez, Irfan; Akram, Adnan

    2015-07-01

    Alginate-calcium carbonate composite material was prepared in the form of beads and characterized using Fourier transform infra red (FT-IR) spectroscopy and scanning electron microscope (SEM) techniques. The adsorption of Cd2+ ions was studied through batch experiments. The adsorption parameters such as contact time (120 min), adsorbent dose (1.5 g), initial metal ion concentration(10 mg/L), pH (6) and agitation speed (150 rpm) were optimized at room temperature. Langmuir and Freundlich isotherms were applied to the data and it was noted that the adsorption of Cd2+ ions is better explained by Freundlich model. The kinetic studies showed that the adsorption of Cd2+ ions followed pseudo-first order kinetics. Thermodynamic parameters like ∆G 0, ∆H 0 and ∆S 0 were calculated and on the basis of these values it was established that the adsorption process is feasible and endothermic in nature. It was concluded from the study that the composite material of alginate and calcium carbonate can effectively be used to recover Cd2+ ions from wastewater.

  4. Vitreous cryopreservation of human preantral follicles encapsulated in alginate beads with mini mesh cups.

    PubMed

    Bian, Jiang; Li, Tao; Ding, Chenhui; Xin, Weijie; Zhu, Bo; Zhou, Canquan

    2013-01-01

    To completely avoid ice crystal formation and thus get a higher survival rate, vitrification methods have been commonly used for cryopreservation of oocytes and embryos. However, currently used vitrification methods for oocytes and embryos are not suitable for the cryopreservation of preantral follicles (PFs). In the present study, stainless steel mesh was fabricated into mini mesh cups to vitrify isolated PFs. Moreover, isolated follicles were encapsulated and then subjected to vitreous cryopreservation to facilitate in vitro culture/maturation of follicles after warming. The results showed that the percentages of viable follicles did not differ significantly between the vitrification group and fresh group soon after warming (81.25% vs. 85.29%, P>0.05) and after a 7-day culture period (77.78% vs. 83.33%, P>0.05). No difference in mean follicular diameter was observed between cryopreserved and fresh follicles when cultured in vitro. Transmission electron microscopic analysis revealed that vitreous cryopreservation could maintain the ultrastructure of follicles in alginate beads. In conclusion, the present vitrification method could efficiently cryopreserve isolated human ovarian follicles encapsulated by calcium alginate, which could be put into immediate use (in vitro culture/ maturation) after warming. However, more follicles and some detailed biochemical analyses are required to further investigate the effects of vitrification on the long-term growth of human encapsulated PFs.

  5. Preparation and evaluation of a novel gastric floating alginate/poloxamer inner-porous beads using foam solution.

    PubMed

    Yao, Huimin; Yao, Huijuan; Zhu, Junyi; Yu, Junlin; Zhang, Lifan

    2012-01-17

    In the present study, a simple and rapid method was developed to prepare a novel kind of inner-porous floating beads. The beads were prepared by dripping the foam solution into CaCl(2) solution using disposable syringe needle, where the foam solution consisting numerous of microbubbles with poloxamer 188 as foaming agents, alginate as foaming stablizer. Foamability and foam stability of different polymer ratios were evaluated. The SEM cross-section pictures of the beads showed that the beads were inner-porous and composed of bubbles with very thin wall bubbles stacked together. The visual observation result and the resultant-weight method confirmed that the floating beads showed good buoyancy, most beads could float in the stomach for more than 6 h. The floating beads release behavior in vitro showed that drug release from the beads in a sustained-release fashion for 10 h. Gamma scintigraphic images and pharmacokinetic studies in vivo showed that the beads can retained in the stomach for over 6 h and can improve the bioavailability of drug with narrow absorption window.

  6. The smaller, the better? The size effect of alginate beads carrying plant growth-promoting bacteria for seed coating.

    PubMed

    Berninger, Teresa; Mitter, Birgit; Preininger, Claudia

    2016-01-01

    A range of lab-scale methods for encapsulation of plant growth-promoting bacteria in alginate beads intended for seed coating was evaluated: contact-spotting, extrusion through syringe with/without vibration, ejection by robotic liquid handler, extrusion by centrifugal force and commercial devices (nanodispenser, aerodynamically assisted jetting, encapsulator). Two methods were selected based on throughput (encapsulator: 1.5-5 mL/min; syringe with subsequent pulverisation: 5 mL/min). Four bead sizes (55 ± 39 μm, 104 ± 23 μm, 188 ± 16 μm and 336 ± 20 μm after lyophilisation) were produced. Bacterial viability, release, bead morphology, seed surface coverage and attrition were investigated. Release from the smallest bead size was approximately 10 times higher than from the largest. Seed surface coverage was highest (69 ± 3%) when alginate beads produced with nozzle size 80 μm were applied. Pulverised macro-beads are an alternative option, if high throughput is top priority.

  7. Carbon-Dot-Coated Alginate Beads as a Smart Stimuli-Responsive Drug Delivery System.

    PubMed

    Majumdar, Sristi; Krishnatreya, Gargee; Gogoi, Neelam; Thakur, Debajit; Chowdhury, Devasish

    2016-12-21

    In this work, we report a smart stimuli-responsive drug delivery system (DDS) that can release drug depending upon the amount of pathogen (MRSA) present in the target. A greater amount of MRSA in the system will lead to more release of drug and vice versa. Carbon-dot-coated novel alginate beads (CA-CD) exhibiting superior stability was successfully used as smart drug delivery vehicle. Garlic extract (GE), which contains allicin, was taken as model drug system to demonstrate the phenomena. It was observed that GE loading was 19 and 78% with CA and CA-CD, respectively. CA-CD-GE shows pH-dependent controlled drug release, which results in increased therapeutic efficiency. CA-CD-GE is not only stimuli responsive but also a controlled drug release system as it releases drug according to the pathogen concentration (MRSA). All the three factors viz. drug release, MRSA concentration and pH of the medium are interdependent as when the cell divides, it produces secondary metabolites that lead to the decrease in pH of the medium. The drop in the pH value triggers drug release from the beads. And the effect of the drug is reflected by the MRSA cell death. Hence, we demonstrate a smart stimuli responsive DDS. However, such DDS will be useful in cases where increased amount of pathogen in the system will lead to reduction in pH.

  8. Removal of ofloxacin antibiotic using heterogeneous Fenton process over modified alginate beads.

    PubMed

    Titouhi, Hana; Belgaied, Jamel-Eddine

    2016-07-01

    The aim of this work is to study the heterogeneous oxidative degradation of ofloxacin antibiotic using a composite material prepared from sodium alginate and cyclohexane dinitrilo tetraacetic acid (CDTA). The characterization tests indicated the successful incorporation of metal chelator and iron. It was also demonstrated that the synthesized beads are mesoporous. The influence of several experimental parameters (i.e.: H2O2 dose, working temperature, beads loading and initial drug concentration) on the process performances was evaluated. The reaction temperature significantly affects the drug conversion efficiency. It was also observed that the synthesized material was efficient toward the target antibiotic degradation in the presence of small quantities of hydrogen peroxide. Under optimum conditions (0.05 g of granules, initial drug concentration=10mg/L, 25μL of 10mmol/L H2O2), conducted in a batch reaction, 94% degradation of ofloxacin was reached. The results also indicate that the composite material showed a reasonable stability; a relatively low decrease of activity after four successive runs (only 9%) and a negligible iron leaching (0.8%) have been observed. The synthesized composite material offered interesting advantages in terms of simplicity, good stability, ease of recovery from the liquid medium after use and its efficiency in the presence of low quantities of oxidant. It constitutes a good candidate in the water treatment area.

  9. Characterization of zinc oxide nanoparticle (nZnO) alginate beads in reducing gaseous emission from swine manure.

    PubMed

    Gautam, Dhan Prasad; Rahman, Shafiqur; Fortuna, Ann-Marie; Borhan, Md Saidul; Saini-Eidukat, Bernhardt; Bezbaruah, Achintya N

    2016-08-11

    Hydrogen sulfide (H2S) and greenhouse gases' emission from livestock production facilities are of concern to human welfare and the environment. Application of nanoparticles (NPs) has emerged as a potential option for minimizing these gaseous emissions. Application of bare NPs, however, could have an adverse effect on plants, soil, human health, and the environment. To minimize NPs' exposure to the environment by recovering them, NPs were entrapped in polymeric beads for treating livestock manure. The objectives of the research were to understand the mechanism of gaseous reduction in swine manure treated for 33 days with zinc oxide nanoparticles (nZnO) or nZnO-entrapped alginate (alginate-nZnO) beads by different characterization techniques. Headspace gases from treated manure flasks were collected in 2-6-day intervals during the experimental period and were analyzed for methane (CH4), carbon dioxide (CO2), and H2S concentrations. The microbial analysis of manure was carried out using bacterial plate counts and Real-Time Polymerase Chain Reaction methods. Morphology and chemical composition of alginate-nZnO beads were analyzed by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), and X-ray Photoelectron Spectroscopy (XPS). Alginate-nZnO beads or bare nZnO proved to be an effective NP in reducing H2S (up to 99%), CH4 (49-72%), and CO2 (46-62%) from manure stored under anaerobic conditions and these reductions are likely due to the microbial inhibitory effect from nZnO, as well as chemical conversion. Both SEM-EDS and XPS analysis confirmed the presence of zinc sulfide (ZnS) in the beads, which is likely formed by reacting nZnO with H2S.

  10. Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water.

    PubMed

    Vipin, Adavan Kiliyankil; Hu, Baiyang; Fugetsu, Bunshi

    2013-08-15

    Prussian blue encapsulated in alginate beads reinforced with highly dispersed carbon nanotubes were prepared for the safe removal of cesium ions from aqueous solutions. Equilibrium and kinetic studies were conducted using different models and the goodness of mathematical fitting of the experimental data on the adsorption isotherms was in the order Langmuir>Freundlich, and that of the kinetic models were in the order of pseudo second order>pseudo first order. Fixed bed adsorption column analysis indicated that the beads can be used for large scale treatment of cesium contaminated water.

  11. Microencapsulation of probiotics in hydrogel particles: enhancing Lactococcus lactis subsp. cremoris LM0230 viability using calcium alginate beads.

    PubMed

    Yeung, Timothy W; Arroyo-Maya, Izlia J; McClements, David J; Sela, David A

    2016-04-01

    Probiotics are beneficial microbes often added to food products to enhance the health and wellness of consumers. A major limitation to producing efficacious functional foods containing probiotic cells is their tendency to lose viability during storage and gastrointestinal transit. In this study, the impact of encapsulating probiotics within food-grade hydrogel particles to mitigate sensitivity to environmental stresses was examined. Confocal fluorescence microscopy confirmed that Lactococcus lactis were trapped within calcium alginate beads formed by dripping a probiotic-alginate mixture into a calcium solution. Encapsulation improved the viability of the probiotics during aerobic storage: after seven days, less than a two-log reduction was observed in encapsulated cells stored at room temperature, demonstrating that a high concentration of cells survived relative to non-encapsulated bacteria. These hydrogel beads may have applications for improving the stability and efficacy of probiotics in functional foods.

  12. Degradation of synthetic pollutants in real wastewater using laccase encapsulated in core-shell magnetic copper alginate beads.

    PubMed

    Le, Thao Thanh; Murugesan, Kumarasamy; Lee, Chung-Seop; Vu, Chi Huong; Chang, Yoon-Seok; Jeon, Jong-Rok

    2016-09-01

    Immobilization of laccase has been highlighted to enhance their stability and reusability in bioremediation. In this study, we provide a novel immobilization technique that is very suitable to real wastewater treatment. A perfect core-shell system composing copper alginate for the immobilization of laccase (Lac-beads) was produced. Additionally, nFe2O3 was incorporated for the bead recycling through magnetic force. The beads were proven to immobilize 85.5% of total laccase treated and also to be structurally stable in water, acetate buffer, and real wastewater. To test the Lac-beads reactivity, triclosan (TCS) and Remazol Brilliant Blue R (RBBR) were employed. The Lac-beads showed a high percentage of TCS removal (89.6%) after 8h and RBBR decolonization at a range from 54.2% to 75.8% after 4h. Remarkably, the pollutants removal efficacy of the Lac-beads was significantly maintained in real wastewater with the bead recyclability, whereas that of the corresponding free laccase was severely deteriorated.

  13. Ultra-structural changes and expression of chondrogenic and hypertrophic genes during chondrogenic differentiation of mesenchymal stromal cells in alginate beads

    PubMed Central

    Dashtdar, Havva; Selvaratnam, Lakshmi; Balaji Raghavendran, Hanumantharao; Suhaeb, Abdulrazzaq Mahmod; Ahmad, Tunku Sara

    2016-01-01

    Chondrogenic differentiation of mesenchymal stromal cells (MSCs) in the form of pellet culture and encapsulation in alginate beads has been widely used as conventional model for in vitro chondrogenesis. However, comparative characterization between differentiation, hypertrophic markers, cell adhesion molecule and ultrastructural changes during alginate and pellet culture has not been described. Hence, the present study was conducted comparing MSCs cultured in pellet and alginate beads with monolayer culture. qPCR was performed to assess the expression of chondrogenic, hypertrophic, and cell adhesion molecule genes, whereas transmission electron microscopy (TEM) was used to assess the ultrastructural changes. In addition, immunocytochemistry for Collagen type II and aggrecan and glycosaminoglycan (GAG) analysis were performed. Our results indicate that pellet and alginate bead cultures were necessary for chondrogenic differentiation of MSC. It also indicates that cultures using alginate bead demonstrated significantly higher (p < 0.05) chondrogenic but lower hypertrophic (p < 0.05) gene expressions as compared with pellet cultures. N-cadherin and N-CAM1 expression were up-regulated in second and third weeks of culture and were comparable between the alginate bead and pellet culture groups, respectively. TEM images demonstrated ultrastructural changes resembling cell death in pellet cultures. Our results indicate that using alginate beads, MSCs express higher chondrogenic but lower hypertrophic gene expression. Enhanced production of extracellular matrix and cell adhesion molecules was also observed in this group. These findings suggest that alginate bead culture may serve as a superior chondrogenic model, whereas pellet culture is more appropriate as a hypertrophic model of chondrogenesis. PMID:26966647

  14. High pressure studies on hesperitin production with hesperidinase free and immobilized in calcium alginate beads

    NASA Astrophysics Data System (ADS)

    Furtado, Andreia; Rosário, Pedro M.; Calado, António R. T.; Alfaia, António J. I.; Ribeiro, Maria H. L.

    2012-03-01

    The use of high pressure for the enzymatic synthesis of pharmacologically interesting molecules is a very important tool. Hesperidin and hesperitin exhibit anti-inflammatory, antimicrobial, antioxidant, and anticarcinogenic properties and prevent bone loss. However, hesperidin has a low bioavailability compared with hesperitin, due to the rutinoside moiety attached to the flavonoid. The aim of this work was the enzymatic production of hesperitin from hesperidin (soluble and insoluble) with hesperidinase free and immobilized in Ca-alginate beads, under high pressure conditions. The work was focused on the optimization of enzyme activity, studying the effects: pressure (50-150 MPa), temperature (35-75 °C), concentration of substrate (100-800 mg/L), and immobilization of hesperidinase. An 18-fold increase in hesperidinase residual activity was observed under high pressure conditions of 100 MPa compared to 0.1 MPa. A higher specificity of the hydrolytic reaction under high pressure (100 MPa) with a two-and three-fold increase in the ratio K cat/K M (specificity constant) at 55 °C and 75 °C was observed. A two-fold increase in the maximum activity at 100 MPa was observed with immobilized hesperinase compared to 0.1 MPa. In the second reutilization, almost a four-fold increase was obtained under high pressure conditions in comparison to atmospheric pressure.

  15. Removal of endocrine disrupting compounds from wastewater by microalgae co-immobilized in alginate beads.

    PubMed

    Solé, Alba; Matamoros, Víctor

    2016-12-01

    Microalgae systems have been found to be efficient for removing microcontaminants from wastewater effluents, but the effectiveness of immobilized microalgae for removing endocrine disrupting compounds (EDCs) has not yet been addressed. This paper assesses the effect of free and immobilized microalgae on removal efficiency for 6 EDCs by mixing them in 2.5 L reactors with treated wastewater. The experimental design also included control reactors without microalgae. After 10 days of incubation, 64 and 89% of the NH4-N and 90 and 96% of total phosphorous (TP) had been eliminated in the free microalgae and immobilized microalgae reactors, respectively, while the control reactors eliminated only 40% and 70% of the NH4-N and TP, respectively. Both the free and immobilized microalgae reactors were able to remove up to 80% of most of the studied EDCs within 10 days of incubation. Free microalgae were found to increase the kinetic removal rate for bisphenol A, 17-α-ethinylestradiol, and 4-octylphenol (25%, 159%, and 41%, respectively). Immobilizing the microalgae in alginate beads additionally enhanced the kinetic removal rate for bisphenol AF, bisphenol F, and 2,4-dichlorophenol. This study shows that the use of co-immobilized microalgae-based wastewater treatment systems increases the removal efficiency for nutrients and some EDCs from wastewater effluents.

  16. Continuous flow adsorption of methylene blue by cellulose nanocrystal-alginate hydrogel beads in fixed bed columns.

    PubMed

    Mohammed, Nishil; Grishkewich, Nathan; Waeijen, Herman Ambrose; Berry, Richard M; Tam, Kam Chiu

    2016-01-20

    The adsorption behavior of methylene blue by cellulose nanocrystal-alginate (CNC-ALG) hydrogel beads in a fixed bed column was studied by varying the initial dye concentrations, bed depths and flow rates. An unusual phenomenon was observed in the early phase of the adsorption, and the phenomenon was elucidated by varying other critical design parameters, such as the flow direction, diameter of column and composition of adsorbent. The swelling and shrinkage of hydrogel beads during the adsorption was responsible for the anomalous concentration versus time profile of the adsorption process. The maximum adsorption capacity of the column was 255.5mg/g, which is in agreement with the batch study determined from the Langmuir adsorption isotherm. A comprehensive understanding on the adsorption mechanism of CNC-ALG hydrogel beads during the early stages of adsorption was derived from this study.

  17. Non-Invasive Evaluation of Alginate/Poly-L-lysine/Alginate Microcapsules by Magnetic Resonance Microscopy

    PubMed Central

    Constantinidis, Ioannis; Grant, Samuel C.; Celper, Susanne; Gauffin-Holmberg, Isabel; Agering, Kristina; Oca-Cossio, Jose A.; Bui, Jonathan D.; Flint, Jeremy; Hamaty, Christine; Simpson, Nicholas E.; Blackband, Stephen J.

    2007-01-01

    In this report, we present data to demonstrate the utility of 1H MR microscopy to noninvasively examine alginate/poly-L-lysine/alginate (APA) microcapsules. Specifically, high-resolution images were used to visualize and quantify the poly-L-lysine (PLL) layer, and monitor temporal changes in the alginate gel microstructure during a month long in vitro culture. The thickness of the alginate/PLL layer was quantified to be 40.6±6.2 μm regardless of the alginate composition used to generate the beads or the time of alginate/PLL interaction (2, 6, or 20 minutes). However, there was a notable difference in the contrast of the PLL layer that depended upon the guluronic content of the alginate and the alginate/PLL interaction time. The T2 relaxation time and the apparent diffusion coefficient (ADC) of the alginate matrix were measured periodically throughout the month long culture period. Alginate beads generated with a high guluronic content alginate demonstrated a temporal decrease in T2 over the duration of the experiment, while ADC was unaffected. This decrease in T2 is attributed to a reorganization of the alginate microstructure due to periodic media exchanges that mimicked a regular feeding regiment for cultured cells. In beads coated with a PLL layer, this temporal decrease in T2 was less pronounced suggesting that the PLL layer helped maintain the integrity of the initial alginate microstructure. Conversely, alginate beads generated with a high mannuronic content alginate (with or without a PLL layer) did not display temporal changes in either T2 or ADC. This observation suggests that the microstructure of high mannuronic content alginate beads is less susceptible to culture conditions. PMID:17239948

  18. Modeling competitive sorption of lead and copper ions onto alginate and greenly prepared algal-based beads.

    PubMed

    Wang, Shengye; Vincent, Thierry; Faur, Catherine; Guibal, Eric

    2017-05-01

    The binary sorption of Pb(II) and Cu(II) onto calcium alginate, algal biomass and algal/glutaraldehyde-crosslinked polyethyleneimine (PEI) composite beads was studied in the absence and presence of Ca(II). Different competitive models were compared for predicting the equilibrium data. Results show that all the sorbents have a significant preference for Pb(II) over Cu(II) in Pb-Cu system: the separation factors reach 14.1, 9.1 and 3.6 for alginate, algal biomass and algal/PEI beads, respectively. Kinetic studies confirm the occurrence of an ion-exchange mechanism between Pb(II) and Cu(II) as the sorption sites are progressively saturated. Competitive Sips model predicts well the sorption data for all the sorbents. In Pb-Cu-Ca system, the Cu(II) sorption by algal beads was negligible, while algal/PEI still maintained a significant sorption of Cu(II) sorption under these conditions.

  19. Enhanced polyhydroxyalkanoates accumulation by Halomonas spp. in artificial biofilms of alginate beads.

    PubMed

    Berlanga, Mercedes; Miñana-Galbis, David; Domènech, Oscar; Guerrero, Ricardo

    2012-12-01

    Microbial mats are complex but stable, multi-layered and multi-functional biofilms, which are the most frequent bacterial formations in nature. The functional strategies and physiological versatility of the bacterial populations growing in microbial mats allow bacteria to resist changing conditions within their environment. One of these strategies is the accumulation of carbon- and energy-rich polymers that permit the recovery of metabolic activities when favorable conditions are restored. In the present study, we systematically screened microbial mats for bacteria able to accumulate large amounts of the ester carbon polymers polyhydroxyalkanoates (PHA). Several of these strains were isolated from Ebro Delta microbial mats and their ability to accumulate PHA up to 40-60% of their dry weight was confirmed. According to two identification approaches (16S rRNA and rpoD genes), these strains were identified as Halomonas alkaliphila (MAT-7, -13, -16), H. neptunia (MAT-17), and H. venusta (MAT-28). To determine the mode of growth yielding maximum PHA accumulation, these three different species were cultured in an artificial biofilm in which the cells were immobilized on alginate beads. PHA accumulation by cells that had detached from the biofilm was compared with that of their planktonic counterparts. Experiments in different culture media showed that PHA accumulation, measured as the relative fluorescence intensity after 48 h of incubation at 30 degrees C, was higher in immobilized than in planktonic cells, with the exception of cells growing in 5% NaCl, in which PHA accumulation was drastically lower in both. Therefore, for obtaining high PHA concentrations, the use of immobilized cells may be a good alternative to the PHA accumulation by bacteria growing in the classical, planktonic mode. From the ecological point of view, increased PHA accumulation in detached cells from biofilms would be a natural strategy to improve bacterial dispersion capacity and, consequently

  20. Immobilization of tomato (Lycopersicon esculentum) pectinmethylesterase in calcium alginate beads and its application in fruit juice clarification.

    PubMed

    Bogra, Pushpa; Kumar, Ashwani; Kuhar, Kalika; Panwar, Surbhi; Singh, Randhir

    2013-11-01

    Clarity of fruit juices is desirable to maintain an aesthetically pleasing quality and international standards. The most commonly used enzymes in juice industries are pectinases. A partially-purified pectinmethylesterase from tomato was entrapped in calcium alginate beads and used for juice clarification. The activity yield was maximum at 1 % (w/v) CaCl2 and 2.5 % (w/v) alginate. The immobilized enzyme retained ~55 % of its initial activity (5.7 × 10(-2) units) after more than ten successive batch reactions. The Km, pH and temperature optima were increased after immobilization. The most effective clarification of fruit juice (%T620 ~60 %) by the immobilized enzyme was at 4 °C with a holding time of 20 min. The viscosity dropped by 56 % and the filterability increased by 260 %. The juice remains clear after 2 months of storage at 4 °C.

  1. Removal of copper(II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads.

    PubMed

    Vijayalakshmi, K; Gomathi, Thandapani; Latha, Srinivasan; Hajeeth, T; Sudha, P N

    2016-01-01

    The present study was aimed to prepare the novel ternary biopolymeric beads of nanochitosan (NCS)/sodium alginate (SA)/microcrystalline cellulose (MC) for the removal of heavy metal copper from aqueous solution through batch adsorption mode. The polymeric beads were characterized before and after adsorption using FTIR, XRD and EDX-SEM studies. The efficiency of the adsorbent was analyzed by varying the parameters such as initial metal ion concentration, contact time, adsorbent dose and pH. The experimental data obtained were fitted in the isotherm models such as Langmuir, Freundlich and Tempkin models and in pseudo first and second order kinetics studies. The isotherm and kinetics models revealed that the adsorption was found to fit well with Freundlich isotherm and follows pseudo second-order kinetics.

  2. Modeling studies: Adsorption of aniline blue by using Prosopis Juliflora carbon/Ca/alginate polymer composite beads.

    PubMed

    Kumar, M; Tamilarasan, R

    2013-02-15

    The research article describes the experimental and modeling study for the adsorptive removal of aniline blue dye (AB dye) from aqueous matrices using a Prosopis Juliflora modified carbon/Ca/alginate polymer bead as a low cost and eco-friendly adsorbent. The rate of adsorption was investigated under various experimental parameters such as contact time, adsorbent dose, dye concentration, pH and temperature. The kinetics, equilibrium and thermodynamic studies were assessed to find out the efficiency of the adsorption process. The equilibrium uptake capacity of the adsorption process was found with Freundlich and Langmuir adsorption isotherm equations and it was evaluated by dimensionless separation factor (R(L)). The dynamics of adsorption was predicted by pseudo-first order, pseudo-second order Lagergren's equation and intra particle diffusion model. Adsorption feasibility was assessed with thermodynamic parameters such as isosteric heat of adsorption (ΔH°), standard entropy (ΔS°) and Gibbs free energy (ΔG°) using VantHoff plot. The alginate bead was characterized with FTIR spectroscopy and Scanning Electron Microscopy (SEM).

  3. Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads: Preparation, characterization, and adsorption mechanism.

    PubMed

    Ren, Huixue; Gao, Zhimin; Wu, Daoji; Jiang, Jiahui; Sun, Youmin; Luo, Congwei

    2016-02-10

    Alginate-carboxymethyl cellulose (CMC) gel beads were prepared in this study using sodium alginate (SA) and sodium CMC through blending and cross-linking. The specific surface area and aperture of the prepared SA-CMC gel beads were tested. The SA-CMC structure was characterized and analyzed via infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Static adsorption experiment demonstrated that Pb(II) adsorption of SA-CMC exceeded 99% under the optimized conditions. In addition, experiments conducted under the same experimental conditions showed that the lead ion removal efficiency of SA-CMC was significantly higher than that of conventional adsorbents. The Pb(II) adsorption process of SA-CMC followed the Langmuir adsorption isotherm, and the dynamic adsorption model could be described through a pseudo-second-order rate equation. Pb(II) removal mechanisms of SA-CMC, including physical, chemical, and electrostatic adsorptions, were discussed based on microstructure analysis and adsorption kinetics. Chemical adsorption was the main adsorption method among these mechanisms.

  4. Thermodynamic, Kinetic, and Equilibrium Parameters for the Removal of Lead and Cadmium from Aqueous Solutions with Calcium Alginate Beads

    PubMed Central

    Alfaro-Cuevas-Villanueva, Ruth; Hidalgo-Vázquez, Aura Roxana; Cortés Penagos, Consuelo de Jesús; Cortés-Martínez, Raúl

    2014-01-01

    The sorption of cadmium (Cd) and lead (Pb) by calcium alginate beads (CAB) from aqueous solutions in batch systems was investigated. The kinetic and thermodynamic parameters, as well as the sorption capacities of CAB in each system at different temperatures, were evaluated. The rate of sorption for both metals was rapid in the first 10 minutes and reached a maximum in 50 minutes. Sorption kinetic data were fitted to Lagergren, pseudo-second-order and Elovich models and it was found that the second-order kinetic model describes these data for the two metals; comparing kinetic parameters for Cd and Pb sorption a higher kinetic rate (K2) for Pb was observed, indicating that the interaction between lead cations and alginate beads was faster than for cadmium. Similarly, isotherm data were fitted to different models reported in literature and it was found that the Langmuir-Freundlich (L-F) and Dubinin-Radushkevich (D-R) models describe the isotherms in all cases. CAB sorption capacity for cadmium was 27.4 mg/g and 150.4 mg/g for lead, at 25°C. Sorption capacities of Cd and Pb increase as temperature rises. According to the thermodynamic parameters, the cadmium and lead adsorption process was spontaneous and endothermic. It was also found that pH has an important effect on the adsorption of these metals by CAB, as more were removed at pH values between 6 and 7. PMID:24587740

  5. Papain entrapment in alginate beads for stability improvement and site-specific delivery: physicochemical characterization and factorial optimization using neural network modeling.

    PubMed

    Sankalia, Mayur G; Mashru, Rajshree C; Sankalia, Jolly M; Sutariya, Vijay B

    2005-09-30

    This work examines the influence of various process parameters (like sodium alginate concentration, calcium chloride concentration, and hardening time) on papain entrapped in ionotropically cross-linked alginate beads for stability improvement and site-specific delivery to the small intestine using neural network modeling. A 3(3) full-factorial design and feed-forward neural network with multilayer perceptron was used to investigate the effect of process variables on percentage of entrapment, time required for 50% and 90% of the enzyme release, particle size, and angle of repose. Topographical characterization was conducted by scanning electron microscopy, and entrapment was confirmed by Fourier transform infrared spectroscopy and differential scanning calorimetry. Times required for 50% (T(50)) and 90% (T(90)) of enzyme release were increased in all 3 of the process variables. Percentage entrapment and particle size were found to be directly proportional to sodium alginate concentration and inversely proportional to calcium chloride concentration and hardening time, whereas angle of repose and degree of cross-linking showed exactly opposite proportionality. Beads with >90% entrapment and T(50) of <10 minutes could be obtained at the low levels of all 3 of the process variables. The inability of beads to dissolve in acidic environment, with complete dissolution in buffer of pH >or=6.8, showed the suitability of beads to release papain into the small intestine. The shelf-life of the capsules prepared using the papain-loaded alginate beads was found to be 3.60 years compared with 1.01 years of the marketed formulation. It can be inferred from the above results that the proposed methodology can be used to prepare papain-loaded alginate beads for stability improvement and site-specific delivery.

  6. Evaluation of calcium alginate beads for Ce, La and Nd preconcentration from groundwater prior to ICP OES analysis.

    PubMed

    Arantes de Carvalho, Gabriel G; Kondaveeti, Stalin; Petri, Denise F S; Fioroto, Alexandre M; Albuquerque, Luiza G R; Oliveira, Pedro V

    2016-12-01

    Analytical methods for the determination of rare earth elements (REE) in natural waters by plasma spectrochemical techniques often require sample preparation procedures for analytes preconcentration as well as for removing matrix constituents, that may interfere on the analytical measurements. In the present work, calcium alginate (CA) beads were used for the first time aiming at Ce, La and Nd preconcentration from groundwater samples for further determination by inductively coupled plasma optical emission spectrometry (ICP OES). Test samples were analyzed in batch mode by transferring a 40mL test portion (pH=5±0.2) into a 50mL polyethylene flask containing 125mg CA beads. After 15min contact, the analytes were quantitatively extracted from the loaded CA beads with 2.0mL of 1.0molL(-1) HCl solution for further determination by ICP OES, using Ce (II) 456.236, La (II) 379.478 and Nd (II) 430.358nm emission lines. The proposed approach is a reliable alternative for REE single-stage preconcentration from aqueous samples, as it provided accurate results based on the addition and recovery analysis of groundwater. The results obtained by the proposed method were also compared with those from reference method based on inductively coupled plasma mass spectrometry (ICP-MS) and no significant differences were observed after applying the Student's t-test at 95% confidence level.

  7. Alginate-okra gum blend beads of diclofenac sodium from aqueous template using ZnSO4 as a cross-linker.

    PubMed

    Sinha, Priyanka; Ubaidulla, U; Hasnain, M Saquib; Nayak, Amit Kumar; Rama, Bobba

    2015-08-01

    Zinc (Zn(2+))-ion induced diclofenac sodium (DS)-loaded alginate-okra (Hibiscus esculentus) gum (OG) blend beads was successfully formulated through Zn(2+)-ion induced ionic-gelation cross-linking method in a complete aqueous environment. Effects of polymer-blend ratio and cross-linker concentration on drug encapsulation efficiency (DEE) and cumulative drug release at 8 h (R8h) were optimized by 3(2)-factorial design. The optimized formulation of Zn(2+)-ion induced DS-loaded alginate-OG beads demonstrated 89.27±3.58% of DEE and 43.73±2.83% of R8h. The bead sizes were within 1.10±0.07 to 1.38±0.14 mm. The bead surface morphology was analyzed by SEM. The drug-polymer interaction in the optimized bead matrix was analyzed by FTIR and P-XRD. These beads exhibited sustained in vitro drug release over a prolonged period of 8h and followed controlled-release (zero-order) pattern with super case-II transport mechanism. The swelling and degradation of the optimized beads was influenced by the pH of test mediums, which might be suitable for intestinal drug delivery.

  8. Efficiency of barium removal from radioactive waste water using the combination of maghemite and titania nanoparticles in PVA and alginate beads.

    PubMed

    Majidnia, Zohreh; Idris, Ani; Majid, MuhdZaimiAbd; Zin, RosliMohamad; Ponraj, Mohanadoss

    2015-11-01

    In this paper, both maghemite (γ-Fe2O3) and titanium oxide (TiO2) nanoparticles were synthesized and mixed in various ratios and embedded in PVA and alginate beads. Batch sorption experiments were applied for removal of barium ions from aqueous solution under sunlight using the beads. The process has been investigated as a function of pH, contact time, temperature, initial barium ion concentration and TiO2:γ-Fe2O3 ratios (1:10, 1:60 and 1). The recycling attributes of these beads were also considered. Furthermore, the results revealed that 99% of the Ba(II) was eliminated in 150min at pH 8 under sunlight. Also, the maghemite and titania PVA-alginate beads can be readily isolated from the aqueous solution after the process and reused for at least 7 times without significant losses of their initial properties. The reduction of Ba(II) with maghemite and titania PVA-alginate beads fitted the pseudo first order and second order Langmuir-Hinshelwood (L-H) kinetic model.

  9. Intermittent hydrostatic pressure maintains and enhances the chondrogenic differentiation of cartilage progenitor cells cultivated in alginate beads.

    PubMed

    Li, Yang; Zhou, Jianxin; Yang, Xiaofei; Jiang, Yiqiu; Gui, Jianchao

    2016-02-01

    The objective of this study was to explore the effects of intermittent hydrostatic pressure (IHP) on the chondrogenic differentiation of cartilage progenitor cells (CPCs) cultivated in alginate beads. CPCs were isolated from the knee joint cartilage of rabbits, and infrapatellar fat pad-derived stem cells (FPSCs) and chondrocytes (CCs) were included as the control cell types. Cells embedded in alginate beads were treated with IHP at 5 Mpa and 0.5 Hz for 4 h/day for 1, 2, or 4 weeks. The cells' migratory and proliferative capacities were evaluated using the scratch and Live/Dead assays, respectively. Hematoxylin and eosin staining, safranin O staining, and immunohistochemical staining were performed to determine the effects of IHP on the synthesis of extracellular matrix (ECM) proteins. Real-time polymerase chain reaction analysis was performed to measure the expression of genes related to chondrogenesis. The scratch and Live/Dead assays revealed that IHP significantly promoted the migration and proliferation of FPSCs and CPCs to different extents. The staining experiments showed greater production of cartilage ECM components (glycosaminoglycans and collagen II) by cells exposed to IHP, and the gene expression analysis demonstrated that IHP stimulated the expression of chondrocyte-related genes. Importantly, these effects of IHP were more prominent in CPCs than in FPSCs and CCs. Considering all of our experimental results combined, we conclude that CPCs demonstrated a stronger chondrogenic differentiation capacity than the FPSCs and CCs under stimulation with IHP. Thus, the use of CPCs, combined with mechanical stimulation, may represent a valuable strategy for cartilage tissue engineering.

  10. 11 alpha-Hydroxylation of progesterone in biphasic media using alginate-entrapped Aspergillus ochraceus gel beads coated with polyurea.

    PubMed

    Houng, J Y; Chiang, W P; Chen, K C; Tiu, C

    1994-06-01

    A novel cell-immobilization technique was developed in this study for increasing substrate partition to the gel matrix by coating a polyurea thin layer on the surface of Ca-alginate beads. The proposed method was simple and could be performed under mild conditions. The bioconversion of progesterone to 11 alpha-hydroxyprogesterone with these polyurea-coating alginate-entrapped Aspergillus ochraceus cells was investigated using different organic solvents in biphasic media. The reaction medium of ethyl acetate could markedly enhance the bioconversion rate with the existence of a hydrophobic layer, most likely resulting from the increasing partition of substrate to gel matrix. Bioconversion with higher substrate concentration was possible using an ethyl acetate-water medium. The conversion rate increased almost linearly with increasing substrate concentration from 10 to 80 g l-1. The rate with 80 g l-1 progesterone increased up to six times greater than the rate with the immobilized cells without coating, and also exhibited a much higher rate than that reported in the literature.

  11. Employment of pumpkin (Cucumis melo) urease entrapped in alginate beads for quantitation of cadmium in aqueous media.

    PubMed

    Prakash, Om; Talat, Mahe

    2008-10-01

    The potential of employment of free as well as alginate-immobilized urease for the quantitation of cadmium (Cd(2+)) was explored. Urease from the seeds of pumpkin (Cucumis melo) was purified to apparent homogeneity by heat treatment at 48 +/- 0.1 degrees C and gel filtration through Sephadex G-200. The purified enzyme exhibited a single band on native PAGE under coomassie brilliant blue and silver staining. The enzyme entrapped in 3.5% alginate beads (with 86% immobilization) exhibited no leaching over a period of 15 days at 4 degrees C. Urease-catalyzed urea hydrolysis by both soluble and immobilized enzyme revealed a dependence on the inhibitor concentration. The inhibition caused by Cd(2+) was non-competitive and the interaction of Cd(2+) with the enzyme was irreversible as the activity could not be restored by dialysis. The time-dependent inhibition both in the presence and in absence of substrate revealed a biphasic inhibition of the activity. The significance of the results is discussed.

  12. Validated HPLC method for the pharmacokinetic study of oral extended-release cefpodoxime proxetil chitosan-alginate beads in rabbits.

    PubMed

    Mujtaba, Ali; Kohli, Kanchan

    2017-05-01

    The aim of this study is to develop a simple and applicable HPLC method for the detection of cefpodoxime acid (CFA) in rabbit plasma after oral administration of cefpodoxime proxetil (CFP) loaded chitosan-alginate (CH-ALG) beads formulation. CFP is a prodrug that is deesterified in vivo to its active metabolite CFA to exhibit antibiotic activity. Chromatographic separation of CFA and internal standard (IS) was achieved by a RP18(C18), Phenomenax®100, (250×4.6mm) with the mobile phase consisting of (0.02mol/l (20mM) ammonium acetate solution and acetonitrile (92:8, v/v, pH=4.6) at a flow rate of 1.0ml/min. The method was validated according to the requirements of US-FDA guidelines for bioanalytical method validation. The linear regression analysis for the calibration plots showed good linear relationship (R(2)=0.9905) in the working concentration range of 0.5-50μg/ml. The limits of detection and quantification (S/N=3) were 0.069 and 0.136μg/ml. Plasma CFA levels were successfully determined in rabbit with satisfactory precision and accuracy. The analyte was found to be stable after a number of stability studies. The proposed HPLC method was successfully applied to pharmacokinetic study in rabbits for CFP loaded CH-ALG beads and marketed immediate release (IR) tablets. All pharmacokinetic parameters were assessed.

  13. Isolation of Inositol Hexaphosphate (IHP)-Degrading Bacteria from Arbuscular Mycorrhizal Fungal Hyphal Compartments Using a Modified Baiting Method Involving Alginate Beads Containing IHP

    PubMed Central

    Hara, Shintaro; Saito, Masanori

    2016-01-01

    Phytate (inositol hexaphosphate; IHP)-degrading microbes have been suggested to contribute to arbuscular mycorrhizal fungi (AMF)-mediated P transfer from IHP to plants; however, no IHP degrader involved in AMF-mediated P transfer has been isolated to date. We herein report the isolation of IHP-degrading bacteria using a modified baiting method. We applied alginate beads as carriers of IHP powder, and used them as recoverable IHP in the AM fungal compartment of plant cultivation experiments. P transfer from IHP in alginate beads via AMF was confirmed, and extracted DNA from alginate beads was analyzed by denaturing gradient gel electrophoresis targeting the 16S rRNA gene and a clone library method for the beta-propeller phytase (BPP) gene. The diversities of the 16S rRNA and BPP genes of microbes growing on IHP beads were simple and those of Sphingomonas spp. and Caulobacter spp. dominated. A total of 187 IHP-utilizing bacteria were isolated and identified, and they were consistent with the results of DNA analysis. Furthermore, some isolated Sphingomonas spp. and Caulobacter sp. showed IHP-degrading activity. Therefore, we successfully isolated dominant IHP-degrading bacteria from IHP in an AMF hyphal compartment. These strains may contribute to P transfer from IHP via AMF. PMID:27383681

  14. Monodisperse alginate microgel formation in a three-dimensional microfluidic droplet generator

    SciTech Connect

    Lian, Meng; Collier, C. Patrick; Doktycz, Mitchel J.; Retterer, Scott T.

    2012-12-01

    Droplet based microfluidic systems provide an ideal platform for partitioning and manipulating aqueous samples for analysis. Identifying stable operating conditions under which droplets are generated is challenging yet crucial for real-world applications. A novel three-dimensional microfluidic platform that facilitates the consistent generation and gelation of alginate-calcium hydrogel microbeads for microbial encapsulation, over a broad range of backing pressures, in the absence of surfactants, is described. The unique three-dimensional design of the fluidic network utilizes a height difference at the junction between the aqueous sample injection and organic carrier channels to induce droplet formation via a surface tension enhanced self-shearing mechanism. Combined within a flow-focusing geometry, under constant pressure control, this arrangement facilitates predictable generation of droplets over a much broader range of operating conditions than conventional two-dimensional systems. The impact of operating pressures and geometry on droplet gelation, aqueous and organic material flow rates, microbead size and bead generation frequency are described. The system presented provides a robust platform for encapsulating single microbes in complex mixtures into individual hydrogel beads, and provides the foundation for the development of a complete system for sorting and analyzing microbes at the single cell level.

  15. Biological Effects of Drug-Free Alginate Beads Cross-Linked by Copper Ions Prepared Using External Ionotropic Gelation.

    PubMed

    Pavelková, M; Kubová, K; Vysloužil, J; Kejdušová, M; Vetchý, D; Celer, V; Molinková, D; Lobová, D; Pechová, A; Vysloužil, J; Kulich, P

    2016-08-08

    External ionotropic gelation offers a unique possibility to entrap multivalent ions in a polymer structure. The aim of this experimental study was to prepare new drug-free sodium alginate (ALG) particles cross-linked by Cu(2+) ions and to investigate their technological parameters (particle size, sphericity, surface topology, swelling capacity, copper content, release of Cu(2+) ions, mucoadhesivity) and biological activity (cytotoxicity and efficiency against the most common vaginal pathogens-Herpes simplex, Escherichia coli, Candida albicans) with respect to potential vaginal administration. Beads prepared from NaALG dispersions (3 or 4%) were cross-linked by Cu(2+) ions (0.5 or 1.0 M CuCl2) using external ionotropic gelation. Prepared mucoadhesive beads with particle size over 1000 μm exhibited sufficient sphericity (all ˃0.89) and copper content (214.8-249.07 g/kg), which increased with concentration of polymer and hardening solution. Dissolution behaviour was characterized by extended burst effect, followed by 2 h of copper release. The efficiency of all samples against the most common vaginal pathogens was observed at cytotoxic Cu(2+) concentrations. Anti-HSV activity was demonstrated at a Cu(2+) concentration of 546 mg/L. Antibacterial activity of beads (expressed as minimum inhibition concentration, MIC) was influenced mainly by the rate of Cu(2+) release which was controlled by the extent of swelling capacity. Lower MIC values were found for E. coli in comparison with C. albicans. Sample ALG-3_1.0 exhibited the fastest copper release and was proved to be the most effective against both bacteria. This could be a result of its lower polymer concentration in combination with smaller particle size and thus larger surface area.

  16. Use of alginate beads as carriers for lactic acid bacteria in a structured system and preliminary validation in a meat product.

    PubMed

    Corbo, Maria Rosaria; Bevilacqua, Antonio; Speranza, Barbara; Di Maggio, Barbara; Gallo, Mariangela; Sinigaglia, Milena

    2016-01-01

    This paper proposes the microencapsulation into alginate beads of 4 isolates of lactic acid bacteria (Lactobacillus spp.), previously isolated from pork meat. First, the beads were studied in relation to the encapsulation yield (EY), kinetic of cell release in a structured system, and survival throughout bead storage at 4 °C. EY was 93-96% and the survival of the encapsulated microorganisms was variable, with two isolates showing a bacterial population of 6.1-6.9 log cfu/g after 35 days under refrigerated conditions. Thereafter, the paper addressed a preliminary validation in a meat model system, containing salt, nitrites and nitrates, lactose, pepper, and then in a commercial preparation of pork meat. For the validation in pork meat, free cells were used as controls. Cell released from beads were able to achieve a significant acidification; in particular, after 7 days they showed the same results of free cells.

  17. Characterization of structure, physico-chemical properties and diffusion behavior of Ca-Alginate gel beads prepared by different gelation methods.

    PubMed

    Puguan, John Marc C; Yu, Xiaohong; Kim, Hern

    2014-10-15

    Ca-Alginate beads were prepared with either external or internal calcium sources by dripping technique. It was found that beads synthesized with internal calcium source had a looser structure and bigger pore size than those produced with external calcium source. Consequently, a faster diffusion rate of Vitamin B12 (VB12) within the beads with an internal calcium source was observed. Furthermore, the concentration of calcium ion, ionic strength and pH of the external gel beads formation solution were investigated. Results showed that (a) the concentration of the calcium ion was found to be the determining factor in the gel formation phenomenon; (b) the weight and volume losses are in effect due to water removal; (c) NaCl acts as a competitor with calcium and a screen in the electrostatic repulsion; and (d) the pH controls the gel formation process by regulating the dissociation of alginate and the complexation of the calcium cations. These results are keys to understanding the behavior and performance of beads in their utilization medium.

  18. Simultaneous Alcoholic and Malolactic Fermentations by Saccharomyces cerevisiae and Oenococcus oeni Cells Co-immobilized in Alginate Beads

    PubMed Central

    Bleve, Gianluca; Tufariello, Maria; Vetrano, Cosimo; Mita, Giovanni; Grieco, Francesco

    2016-01-01

    Malolactic fermentation (MLF) usually takes place after the end of alcoholic fermentation (AF). However, the inoculation of lactic acid bacteria together with yeast starter cultures is a promising system to enhance the quality and safety of wine. In recent years, the use of immobilized cell systems has been investigated, with interesting results, for the production of different fermented foods and beverages. In this study we have carried out the simultaneous immobilization of Saccharomyces cerevisiae and Oenococcus oeni in alginate beads and used them in microvinifications tests to produce Negroamaro wine. The process was monitored by chemical and sensorial analyses and dominance of starters and cell leaking from beads were also checked. Co-immobilization of S. cerevisiae and O. oeni allowed to perform an efficient fermentation process, producing low volatile acidity levels and ethanol and glycerol concentrations comparable with those obtained by cell sequential inoculum and co-inoculum of yeast and bacteria cells in free form. More importantly, co-immobilization strategy produced a significant decrease of the time requested to complete AF and MLF. The immobilized cells could be efficiently reused for the wine fermentation at least three times without any apparent loss of cell metabolic activities. This integrated biocatalytic system is able to perform simultaneously AF and MLF, producing wines similar in organoleptic traits in comparison with wines fermented following traditional sequential AF and MLF with free cell starters. The immobilized-cell system, that we here describe for the first time in our knowledge, offers many advantages over conventional free cell fermentations, including: (i) elimination of non-productive cell growth phases; (ii) feasibility of continuous processing; (iii) re-use of the biocatalyst. PMID:27379072

  19. Equilibrium isotherms, kinetics, and thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nano-goethite.

    PubMed

    Munagapati, Venkata Subbaiah; Kim, Dong-Su

    2017-03-24

    The present study is concerned with the batch adsorption of congo red (CR) from an aqueous solution using calcium alginate beads impregnated with nano-goethite (CABI nano-goethite) as an adsorbent. The optimum conditions for CR removal were determined by studying operational variables viz. pH, adsorbent dose, contact time, initial dye ion concentration and temperature. The CABI nano-goethite was characterized by Fourier transform infrared spectroscopy (FTIR), X- ray diffraction (XRD) and Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) analysis. The CR sorption data onto CABI nano-goethite were described using Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherm models. The results show that the best fit was achieved with the Langmuir isotherm model. The maximum adsorption capacity (181.1mg/g) of CR was occurred at pH 3.0. Kinetic studies showed that the adsorption followed a pseudo-second-order model. Desorption experiments were carried out to explore the feasibility of regenerating the adsorbent and the adsorbed CR from CABI nano-goethite. The best desorbing agent was 0.1M NaOH with an efficiency of 94% recovery. The thermodynamic parameters ΔG°, ΔH°, and ΔS° for the CR adsorption were determined by using adsorption capacities at five different temperatures (293, 303, 313, 323 and 303K). Results show that the adsorption process was endothermic and favoured at high temperature.

  20. Decolorization of textile effluent by bitter gourd peroxidase immobilized on concanavalin A layered calcium alginate-starch beads.

    PubMed

    Matto, Mahreen; Husain, Qayyum

    2009-05-30

    Bitter gourd peroxidase immobilized on the surface of concanavalin A layered calcium alginate-starch beads was used for the successful and effective decolorization of textile industrial effluent. Effluent was recalcitrant to the action of bitter gourd peroxidase; however, in the presence of some redox mediators, it was successfully decolorized. Effluent decolorization was maximum (70%) in the presence of 1.0mM 1-hydroxybenzotriazole within 1h of incubation. However, immobilized bitter gourd peroxidase showed maximum decolorization at pH 5.0 and 40 degrees C. Immobilized bitter gourd peroxidase decolorized more than 90% effluent after 3h of incubation in a batch process. The two-reactor system, one reactor containing immobilized peroxidase and the other had activated silica, was quite effective in the decolorization of textile effluent. The system was capable of decolorizing 40% effluent even after 2 months of continuous operation. The absorption spectra of the untreated and treated effluent exhibited a marked difference in absorbance at various wavelengths. Immobilized peroxidase/1-hydroxybenzotriazole system could be employed for the treatment of a large volume of effluent in a continuous reactor.

  1. Production, partial characterization, and immobilization in alginate beads of an alkaline protease from a new thermophilic fungus Myceliophthora sp.

    PubMed

    Zanphorlin, Letícia Maria; Facchini, Fernanda Dell Antonio; Vasconcelos, Filipe; Bonugli-Santos, Rafaella Costa; Rodrigues, André; Sette, Lara Durães; Gomes, Eleni; Bonilla-Rodriguez, Gustavo Orlando

    2010-06-01

    Thermophilic fungi produce thermostable enzymes which have a number of applications, mainly in biotechnological processes. In this work, we describe the characterization of a protease produced in solidstate (SSF) and submerged (SmF) fermentations by a newly isolated thermophilic fungus identified as a putative new species in the genus Myceliophthora. Enzyme-production rate was evaluated for both fermentation processes, and in SSF, using a medium composed of a mixture of wheat bran and casein, the proteolytic output was 4.5-fold larger than that obtained in SmF. Additionally, the peak of proteolytic activity was obtained after 3 days for SSF whereas for SmF it was after 4 days. The crude enzyme obtained by both SSF and SmF displayed similar optimum temperature at 50 degrees C, but the optimum pH shifted from 7 (SmF) to 9(SSF). The alkaline protease produced through solid-state fermentation (SSF), was immobilized on beads of calcium alginate, allowing comparative analyses of free and immobilized proteases to be carried out. It was observed that both optimum temperature and thermal stability of the immobilized enzyme were higher than for the free enzyme. Moreover, the immobilized enzyme showed considerable stability for up to 7 reuses.

  2. Targeted removal of trichlorophenol in water by oleic acid-coated nanoscale palladium/zero-valent iron alginate beads.

    PubMed

    Chang, Jaewon; Woo, Heesoo; Ko, Myoung-Soo; Lee, Jaesang; Lee, Seockheon; Yun, Seong-Taek; Lee, Seunghak

    2015-08-15

    A new material was developed and evaluated for the targeted removal of trichlorophenol (TCP) from among potential interferents which are known to degrade removal activity. To achieve TCP-targeted activity, an alginate bead containing nanoscale palladium/zero-valent iron (Pd/nZVI) was coated with a highly hydrophobic oleic acid layer. The new material (Pd/nZVI-A-O) preferentially sorbed TCP from a mixture of chlorinated phenols into the oleic acid cover layer and subsequently dechlorinated it to phenol. The removal efficacy of TCP by Pd/nZVI-A-O was not affected by co-existing organic substances such as Suwannee River humic acid (SRHA), whereas the material without the oleic acid layer (Pd/nZVI-A) became less effective with increasing SRHA concentration. The inorganic substances nitrate and phosphate significantly reduced the reactivity of Pd/nZVI-A, however, Pd/nZVI-A-O showed similar TCP removal efficacies regardless of the initial inorganic ion concentrations. The influence of bicarbonate on the TCP removal efficacies of both Pd/nZVI-A and Pd/nZVI-A-O was not significant. The findings from this study suggest that Pd/nZVI-A-O, with its targeted, constant reactivity for TCP, would be effective for treating this contaminant in surface water or groundwater containing various competitive substrates.

  3. Evaluation of propidium monoazide real-time PCR for enumeration of probiotic lactobacilli microencapsulated in calcium alginate beads.

    PubMed

    Oketič, K; Matijašić, B Bogovič; Obermajer, T; Radulović, Z; Lević, S; Mirković, N; Nedović, V

    2015-01-01

    The aim of the study was to evaluate real-time PCR coupled with propidium monoazide (PMA) treatment for enumeration of microencapsulated probiotic lactobacilli microencapsulated in calcium alginate beads. Lactobacillus gasseri K7 (CCM 7710) and Lactobacillus delbrueckii subsp. bulgaricus (CCM 7712) were analysed by plate counting and PMA real-time PCR during storage at 4 °C for 90 days. PMA was effective in preventing PCR amplification of the target sequences of DNA released from heat-compromised bacteria. The values obtained by real-time PCR of non-treated samples were in general higher than those obtained by real-time PCR of PMA-treated samples or by plate counting, indicating the presence of sub-lethally injured cells. This study shows that plate count could not be completely replaced by culture independent method PMA real-time PCR for enumeration of probiotics, but may rather complement the well-established plate counting, providing useful information about the ratio of compromised bacteria in the samples.

  4. Improving of catalase stability properties by encapsulation in alginate/Fe3O4 magnetic composite beads for enzymatic removal of H2O2.

    PubMed

    Doğaç, Yasemin Ispirli; Çinar, Mürvet; Teke, Mustafa

    2015-01-01

    The aim of this study was enhancing of stability properties of catalase enzyme by encapsulation in alginate/nanomagnetic beads. Amounts of carrier (10-100 mg) and enzyme concentrations (0.25-1.5 mg/mL) were analyzed to optimize immobilization conditions. Also, the optimum temperature (25-50°C), optimum pH (3.0-8.0), kinetic parameters, thermal stability (20-70°C), pH stability (4.0-9.0) operational stability (0-390 min), and reusability were investigated for characterization of the immobilized catalase system. The optimum pH levels of both free and immobilized catalase were 7.0. At the thermal stability studies, the magnetic catalase beads protected 90% activity, while free catalase maintained only 10% activity at 70°C. The thermal profile of magnetic catalase beads was spread over a large area. Similarly, this system indicated the improving of the pH stability. The reusability, which is especially important for industrial applications, was also determined. Thus, the activity analysis was done 50 times in succession. Catalase encapsulated magnetic alginate beads protected 83% activity after 50 cycles.

  5. Graphene oxide/alginate beads as adsorbents: Influence of the load and the drying method on their physicochemical-mechanical properties and adsorptive performance.

    PubMed

    Platero, Emiliano; Fernandez, Maria Emilia; Bonelli, Pablo Ricardo; Cukierman, Ana Lea

    2017-04-01

    Graphene oxide/alginate beads were prepared from lab-synthesized graphene oxide, varying its content within the beads (0.05, 0.125, and 0.25wt.%). Ethanol-drying and lyophilization were compared as drying methods to obtain suitable adsorbents which were later tested to the removal of a model organic molecule (methylene blue). The morphological and textural properties of all the beads were characterized by scanning electron microscopy and N2 adsorption/desorption isotherms at -196°C, respectively. Limited porosity was obtained for all cases (SBET<60m(2)/g). Uniaxial compression tests were performed to assess the mechanical properties of the beads. Ethanol-dried ones exhibited higher Young's elasticity modulus (E=192kPa) than the lyophilized samples (twice at 0.25wt.% graphene oxide loading), which disclosed breakage points at lower deformation percentages. Adsorption experiments were conducted and dye adsorption isotherms were obtained for the beads with the best removal performance. The experimental data were better fitted by the Langmuir model. The highest maximum adsorption capacity (4.25mmol/g) was obtained for the lyophilized beads with the highest graphene oxide content. Mechanical properties were found to be affected also by the dye adsorption.

  6. Triboelectric generator based on a moving charged bead

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Chae, Soo Sang; Han, Sun Woong; Lee, Keun Ho; Ki, Tae Hoon; Oh, Jin Young; Lee, Ji Hoon; Kim, Won Shik; Jang, Woo Soon; Baik, Hong Koo

    2016-11-01

    An energy harvesting system using a triboelectric generator (TEG), which converts a small amount of mechanical energy to available electrical energy, has recently been developed by combining a simple one-directional mechanical force (contact and separation or sliding back and forth) with a 2D device materials. However, with regard to using the TEG in real world applications, there is no TEG design suitable for utilizing a variety of mechanical forces and for generating triboelectric charge in various environmental conditions, especially under high relative humidity. In this work, we introduce a design for a humidity-independent triboelectric generator (HITEG) that can generate triboelectric charges with a granular system by simple rotating or shaking under high relative humidity conditions. The HITEG can generate an open-circuit voltage of 81.63 V and a short-circuit current of 213.9 nA using 80 polytetrafluoroethylene beads. Electronic supplementary information (ESI) available: More detailed information for analytic calculation via COMSOL about available charge distance between the PTFE bead and Cu electrode, illustration of the speed-dependence contact area, and time dependent long-term stability.

  7. Boron removal by a composite sorbent: Polyethylenimine/tannic acid derivative immobilized in alginate hydrogel beads.

    PubMed

    Bertagnolli, Caroline; Grishin, Andrey; Vincent, Thierry; Guibal, Eric

    2017-03-21

    A novel composite material was prepared by the grafting of tannic acid on polyethylenimine (PEI), which allows an efficient sorption of boron (sorption capacity close to 0.89 mmol B g(-1)). The encapsulation of this chelating sorbent (finely crushed) facilitates its use (readily solid/liquid separation, use in fixed-bed columns) at the expense of a loss in sorption capacity (proportionally decreased by the introduction of alginate having poor efficiency for boron uptake). Sorption isotherms are modeled using the Langmuir equation, while the kinetic profiles are presented a good fit by pseudo-second order rate equation. In addition, the encapsulating matrix introduces supplementary resistance to intraparticle diffusion, especially when the resin is dried without control: freeze-drying partially limits this effect. The stability (at long-term storage) of the sorbent is improved when the sorbent is stored under nitrogen atmosphere. The presence of an excess of NaCl was investigated. The degradation of the hydrogel (by ion-exchange of Ca(II) with Na(I)) leads to a decrease in the sorption performance of composite material but the action of Ca(II) ions in the solutions re-stabilizes the hydrogel.

  8. Adsorptive removal of ciprofloxacin by sodium alginate/graphene oxide composite beads from aqueous solution.

    PubMed

    Fei, Yu; Li, Yong; Han, Sheng; Ma, Jie

    2016-12-15

    Graphene oxide (GO) was encapsulated into environmentally benign sodium alginate (SA) to prepare a GO-SA composite hydrogel and an aerogel, which were then used as adsorbents to remove ciprofloxacin from aqueous solutions. The characteristics of these materials were investigated using scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The characterizations demonstrated that the incorporation of GO improved the pore uniformity of the gels and decreased the pore sizes. Kinetic studies showed that the adsorption capacity of SA composite gels increased approximately seven to nine times after the incorporation of GO, matching with pseudo-second-order models. Non-linear fitting parameters of adsorption isotherm studies indicated that a Langmuir model could precisely represent the adsorption behavior. GO-SA aerogels exhibited high tolerance to changes in pH and ionic strength; changes in these parameters minimally influenced the adsorption capacity of the GO-SA aerogels for ciprofloxacin. This work is especially relevant for environmental applications. These graphene-based composites are environmentally benign adsorbents and can remove organic contaminants from aqueous solutions.

  9. Osteogenic Differentiation of Human Mesenchymal Stem Cells in Mineralized Alginate Matrices

    PubMed Central

    Westhrin, Marita; Xie, Minli; Olderøy, Magnus Ø.; Sikorski, Pawel

    2015-01-01

    Mineralized biomaterials are promising for use in bone tissue engineering. Culturing osteogenic cells in such materials will potentially generate biological bone grafts that may even further augment bone healing. Here, we studied osteogenic differentiation of human mesenchymal stem cells (MSC) in an alginate hydrogel system where the cells were co-immobilized with alkaline phosphatase (ALP) for gradual mineralization of the microenvironment. MSC were embedded in unmodified alginate beads and alginate beads mineralized with ALP to generate a polymer/hydroxyapatite scaffold mimicking the composition of bone. The initial scaffold mineralization induced further mineralization of the beads with nanosized particles, and scanning electron micrographs demonstrated presence of collagen in the mineralized and unmineralized alginate beads cultured in osteogenic medium. Cells in both types of beads sustained high viability and metabolic activity for the duration of the study (21 days) as evaluated by live/dead staining and alamar blue assay. MSC in beads induced to differentiate in osteogenic direction expressed higher mRNA levels of osteoblast-specific genes (RUNX2, COL1AI, SP7, BGLAP) than MSC in traditional cell cultures. Furthermore, cells differentiated in beads expressed both sclerostin (SOST) and dental matrix protein-1 (DMP1), markers for late osteoblasts/osteocytes. In conclusion, Both ALP-modified and unmodified alginate beads provide an environment that enhance osteogenic differentiation compared with traditional 2D culture. Also, the ALP-modified alginate beads showed profound mineralization and thus have the potential to serve as a bone substitute in tissue engineering. PMID:25769043

  10. Calcium alginate bead immobilization of cells containing tyrosine ammonia lyase activity for use in the production of p-hydroxycinnamic acid.

    PubMed

    Trotman, Robert J; Camp, Carl E; Ben-Bassat, Arie; DiCosimo, Robert; Huang, Lixuan; Crum, Grace A; Sariaslani, F Sima; Haynie, Sharon L

    2007-01-01

    An Escherichia coli catalyst with tyrosine ammonia lyase activity (TAL) has been stabilized for repeated use in batch conversions of high tyrosine solids to p-hydroxycinnamic acid (pHCA). The TAL biocatalyst was stabilized by controlling the reaction pH to 9.8 +/- 0.1 and immobilizing the cells within a calcium alginate matrix that was cross-linked with glutaraldehyde and polyethyleneimine (GA/PEI). We found a GA range where the bead-encapsulated TAL was not inactivated, and the resulting cross-linking provided the beads with the mechanical stability necessary for repeated use in consecutive batch reactions with catalyst recycle. The GA/PEI calcium alginate TAL catalyst was used in 41 1-L batch reactions where 50 g L(-1) tyrosine was converted to 39 +/- 4 g L(-1) pHCA in each batch. The practical usefulness and ease of this process was demonstrated by scaling up the TAL bead immobilization and using the immobilized TAL catalyst in four 125-L bioconversion reactions to produce over 12 kg of purified pHCA.

  11. Microwave-induced synthesis of alginate-graft-poly(N-isopropylacrylamide) and drug release properties of dual pH- and temperature-responsive beads.

    PubMed

    Işıklan, Nuran; Küçükbalcı, Gülcan

    2012-10-01

    The first decade of the 21st century saw an increasing interest in the development of devices and biomaterials for delivery of bioactive substances that can be controlled by external stimuli. This study deals with the production of novel pH and temperature responsive beads for colon-specific delivery of indomethacine (IM). For this purpose, N-isopropylacrylamide (NIPAAm) was grafted onto sodium alginate (NaAlg) with microwave radiation in aqueous solution. The graft copolymer (NaAlg-g-PNIPAAm) was characterized by using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), elemental analysis, differential scanning calorimetry (DSC), and thermogravimetric analysis. A series of pH- and temperature-responsive NaAlg-g-PNIPAAm beads were prepared as drug delivery matrices of indomethacine cross-linked by glutaraldehyde (GA) in the hydrochloric acid catalyst. Preparation condition of the beads was optimized by considering the percentage entrapment efficiency, particle size, swelling capacity of beads, and their release data. Effects of variables such as graft yield, drug/polymer ratio, exposure time to GA, and concentration of GA on the release of IM were investigated and discussed at two different pH values (1.2 and 7.4) and temperatures (25°C and 37°C). It was observed that IM release from the beads decreased when the grafting of NIPAAm, drug/polymer ratio (d/p), and extent of cross-linking were increased. The results also showed that NaAlg-g-PIPAAm beads were positive pH and temperature responsive. The release of IM from grafted beads was slower for the pH 1.2 solution than that of the pH 7.4 buffer solution, whereas the release rate was higher at 37°C than at 25°C.

  12. Enzymatic detection of mercuric ions in ground-water from vegetable wastes by immobilizing pumpkin (Cucumis melo) urease in calcium alginate beads.

    PubMed

    Prakash, Om; Talat, Mahe; Hasan, Syed Hadi; Pandey, Rajesh K

    2008-07-01

    Present report describes a quick and simple test based on enzyme inhibition for the detection of mercury in aqueous medium by urease immobilized in alginate beads. Urease was extracted from the discarded seeds of pumpkin (Cucumis melo) and was purified to apparent homogeneity (5.2-fold) by heat treatment at 48+/-0.1 degrees C and gel filtration through Sephadex G-200. The homogeneous enzyme preparation (Sp activity 353 U/mg protein, A(280)/A(260)=1.12) was immobilized in 3.5% alginate leading to 86% immobilization. Effect of mercuric ion on the activity of soluble as well as immobilized enzyme was investigated. Hg(2+) exhibited a concentration-dependent inhibition both in the presence and absence of the substrate. The alginate immobilized enzyme showed less inhibition. There was no leaching of the enzyme over a period of 15 days at 4 degrees C. The inhibition was non-competitive and the K(i) was found to be 1.26x10(-1)microM. Time-dependent interaction of urease with Hg(2+) exhibited a biphasic inhibition behavior in which approximately half of the initial activity was lost rapidly (within 10 min) and reminder in a slow phase. Binding of Hg(2+) with the enzyme was largely irreversible, as the activity could not be restored by dialysis. The significance of the observations is discussed.

  13. Effect of air-blast drying and the presence of protectants on the viability of yeast entrapped in calcium alginate beads with an aim to improve the survival rate.

    PubMed

    Kim, Dong-Hwan; Lee, Sae-Byuk; Park, Heui-Dong

    2017-01-01

    Five yeast strains, Saccharomyces cerevisiae D8, M12, and S13; Hanseniaspora uvarum S6; and Issatchenkia orientalis KMBL5774, isolated from Korean grapes, were entrapped in Ca-alginate beads, which are non-toxic, simple to use, and economical. Ca-alginate beads containing yeast cells were soaked in protective solutions, such as skim milk, saccharides, polyols, and nitrogen compounds, before air-blast drying to improve the yeast survival rate and storage ability. The results showed that both entrapment in Ca-alginate beads and soaking in protective agents favorably affected the survival of all strains. The microenvironment formed by the beads and protective agents can protect the yeast cells from harsh environmental conditions, such as low water (below 10 %). All the yeast strains entrapped in Ca-alginate beads showed greater than 80 % survival and less than 11 % water content after air-blast drying at 37 °C for 5 h. In addition, air-blast dried cells of S. cerevisiae D8, M12, S13; H. uvarum S6; and I. orientalis KMBL5774 entrapped in 2 % Ca-alginate beads and soaked in protective agents (10 % skim milk containing 10 % sucrose, 10 % raffinose, 10 % trehalose, 10 % trehalose, and 10 % glucose, respectively) after air-blast drying at 37 °C for 5 h showed 90, 87, 92, 90, and 87 % viability, respectively. All dried entrapped yeast cells showed survival rates of at least 51 % after storage at 4 °C for 3 months.

  14. Combination of Controllably Released Platelet Rich Plasma Alginate Beads and Bone Morphogenic Protein-2 Gene-Modified Mesenchymal Stem Cells for Bone Regeneration

    PubMed Central

    Fernandes, Gabriela; Wang, Changdong; Yuan, Xue; Liu, Zunpeng; Dziak, Rosemary; Yang, Shuying

    2016-01-01

    Background Platelet rich plasma (PRP) consists of platelet derived growth factor (PDGF) and Transforming growth factor-beta (TGF-β) that increase cell proliferation of mesenchymal stem cells (MSCs), whereas, bone morphogenic Protein-2 (BMP2) promotes osteogenic differentiation of MSCs. However, the high degradation rate of fibrin leads to the dissociation of cytokines even before the process of bone regeneration has begun. Hence, for the first time, we studied the combined effect of sustained released PRP from alginate beads on BMP2 modified MSCs osteogenic differentiation in vitro and of sustained PRP alone on a fracture defect model ex vivo as well as its effect on the calvarial suture closure. Methods After optimizing the concentration of alginate for the microspheres, the osteogenic and mineralization effect of PRP and BMP2 in combinations on MSCs was studied. A self-setting alginate hydrogel carrying PRP was tested on a femur defect model ex-vivo. The effect of PRP was studied on the closure of the embryonic (E15) mouse calvaria sutures ex vivo. Results Increase of PRP concentration promoted cellular proliferation of MSCs. 2.5%–10% of PRP displayed gradually increased ALP activity on the cells in a dose dependent manner. Sustained release PRP and BMP2 demonstrated a significantly higher ALP and mineralization activity (p<0.05). The radiographs of alginate hydrogel with PRP treated bone demonstrated a nearly complete healing of the fracture and the histological sections of the embryonic calvaria revealed that PRP leads to suture fusion. Conclusions Sustained release of PRP along with BMP2 gene modified MSCs can significantly promote bone regeneration. PMID:26745613

  15. Fabrication of magnetic alginate beads with uniform dispersion of CoFe2O4 by the polydopamine surface functionalization for organic pollutants removal

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli; Lu, Haijun; Zhang, Yun; He, Fu; Jing, Lingyun; He, Xinghua

    2016-12-01

    A simple and efficient method for production of magnetic composites by decorating CoFe2O4 with polydopamine (PDA) through oxidative polymerization of dopamine was conducted. Further, magnetic alginate beads with porous structure containing well-dispersed CoFe2O4-PDA were fabricated by ionic crosslinking technology. The resulting SA@CoFe2O4-PDA beads were characterized using scanning electron microscopy, Fourier transform infrared spectrometry, X-ray diffractometer, vibrating sample magnetometer and X-ray photoelectron spectroscopy. Adsorption potential of SA@CoFe2O4-PDA beads for organic dyes including Methylene Blue (MB), Crystal Violet (CV) and Malachite Green (MG) was evaluated. SA@CoFe2O4-PDA beads exhibited excellent adsorption performances due to the composite effect, large surface area and porous structure. Organic dyes could be removed from water solution with high efficiency in a wide pH range of 4.0-9.0. Moreover, it exhibited much higher adsorptivity towards MB and CV with the maximum adsorption capacities of 466.60 and 456.52 mg/g, respectively, which were much higher than that of MG (248.78 mg/g). Ca-electrolyte had obvious adverse effects on MB and CV adsorption than MG. FTIR and XPS demonstrated that carboxylate, catechol, hydroxyl and amine groups might be involved in adsorption of organic dyes. The characteristics of wide pH range, high adsorption capacity and convenient magnetic separation would make SA@CoFe2O4-PDA beads as effective adsorbent for removal of organic dyes from wastewater.

  16. Enhanced adsorption of cesium on PVA-alginate encapsulated Prussian blue-graphene oxide hydrogel beads in a fixed-bed column system.

    PubMed

    Jang, Jiseon; Lee, Dae Sung

    2016-10-01

    A continuous fixed-bed column study was performed using PVA-alginate encapsulated Prussian blue-graphene oxide (PB-GO) hydrogel beads as a novel adsorbent for the removal of cesium from aqueous solutions. The effects of different operating parameters, such as initial cesium concentration, pH, bed height, flow rate, and bead size, were investigated. The maximum adsorption capacity of the PB-GO hydrogel beads was 164.5mg/g at an initial cesium concentration of 5mM, bed height of 20cm, and flow rate of 0.83mL/min at pH 7. The Thomas, Adams-Bohart, and Yoon-Nelson models were applied to the experimental data to predict the breakthrough curves using non-linear regression. Although both the Thomas and Yoon-Nelson models showed good agreement with the experimental data, the Yoon-Nelson model was found to provide the best representation for cesium adsorption on the adsorbent, based on the χ(2) analysis.

  17. Immobilization of flax protoplasts in agarose and alginate beads. Correlation between ionically bound cell-wall proteins and morphogenetic response.

    PubMed Central

    Roger, D; David, A; David, H

    1996-01-01

    Linum usitatissimum protoplast-derived colonies that are cultured in auxin-supplemented medium and immobilized in Ca(2+)-alginate matrix form round colonies that develop into polarized, embryo-like structures. On the other hand, protoplast-derived colonies that are immobilized in agarose do not show an organized morphogenetic response, and unique, ionically bound cell-wall protein patterns match this response. Although only slight differences in neosynthesized or total constitutive polypeptides are observed, dramatic changes in ionically bound cell-wall proteins are seen. In protoplasts grown on Ca(2+)-alginate-solidified, auxin-containing medium, several basic polypeptides were strongly induced and were found tightly bound to the cell wall. In contrast, these basic proteins were found only weakly bound to the walls of protoplasts grown on agarose-solidified, auxin-containing medium or on Ca(2+)-alginate-solidified, auxin-free medium, in which they were released into the medium. Our results suggest that plant cells can perceive and respond to the adjacent extracellular matrix, since we show that the growth of flax cells on Ca(2+)-alginate in the presence of auxin-containing medium may promote the binding of specific proteins to the walls. This establishes a direct correlation of an embryo-like morphogenesis with ionically bound cell-wall basic proteins in flax protoplasts grown on Ca(2+)-alginate-solidified, auxin-containing medium. PMID:8938417

  18. In-situ photopolymerization of monodisperse and discoid oxidized methacrylated alginate microgels in a microfluidic channel

    DOE PAGES

    Wang, Shuo; Jeon, Oju; Shankles, Peter G.; ...

    2016-02-03

    Here, we present a simple microfluidic technique to in-situ photopolymerize (by 365 nm ultraviolet) monodisperse oxidized methacrylated alginate (OMA) microgels using a photoinitiator (VA-086). By this technique, we generated monodisperse spherical OMA beads and discoid non-spherical beads with better shape consistency than ionic crosslinking methods do. We found that a high monomer concentration (8 w/v %), a high photoinitiator concentration (1.5 w/v %) and absence of oxygen are critical factors to cure OMA microgels. This photopolymerizing method is an alternative to current methods to form alginate microgels and is a simpler approach to generate non-spherical alginate microgels.

  19. Process engineering of high voltage alginate encapsulation of mesenchymal stem cells.

    PubMed

    Gryshkov, Oleksandr; Pogozhykh, Denys; Zernetsch, Holger; Hofmann, Nicola; Mueller, Thomas; Glasmacher, Birgit

    2014-03-01

    Encapsulation of stem cells in alginate beads is promising as a sophisticated drug delivery system in treatment of a wide range of acute and chronic diseases. However, common use of air flow encapsulation of cells in alginate beads fails to produce beads with narrow size distribution, intact spherical structure and controllable sizes that can be scaled up. Here we show that high voltage encapsulation (≥ 15 kV) can be used to reproducibly generate spherical alginate beads (200-400 μm) with narrow size distribution (± 5-7%) in a controlled manner under optimized process parameters. Flow rate of alginate solution ranged from 0.5 to 10 ml/h allowed producing alginate beads with a size of 320 and 350 μm respectively, suggesting that this approach can be scaled up. Moreover, we found that applied voltages (15-25 kV) did not alter the viability and proliferation of encapsulated mesenchymal stem cells post-encapsulation and cryopreservation as compared to air flow. We are the first who employed a comparative analysis of electro-spraying and air flow encapsulation to study the effect of high voltage on alginate encapsulated cells. This report provides background in application of high voltage to encapsulate living cells for further medical purposes. Long-term comparison and work on alginate-cell interaction within these structures will be forthcoming.

  20. Study of the potential of the air lift bioreactor for xylitol production in fed-batch cultures by Debaryomyces hansenii immobilized in alginate beads.

    PubMed

    Pérez-Bibbins, Belinda; de Souza Oliveira, Ricardo Pinheiro; Torrado, Ana; Aguilar-Uscanga, María Guadalupe; Domínguez, José Manuel

    2014-01-01

    Cell immobilization has shown to be especially adequate for xylitol production. This work studies the suitability of the air lift bioreactor for xylitol production by Debaryomyces hansenii immobilized in Ca-alginate operating in fed-batch cultures to avoid substrate inhibition. The results showed that the air lift bioreactor is an adequate system since the minimum air flow required for fluidization was even lower than that leading to the microaerobic conditions that trigger xylitol accumulation by this yeast, also maintaining the integrity of the alginate beads and the viability of the immobilized cells until 3 months of reuses. Maximum productivities and yields of 0.43 g/l/h and 0.71 g/g were achieved with a xylose concentration of 60 g/l after each feeding. The xylose feeding rate, the air flow, and the biomass concentration at the beginning of the fed-batch operation have shown to be critical parameters for achieving high productivities and yields. Although a maximum xylitol production of 139 g/l was obtained, product inhibition was evidenced in batch experiments, which allowed estimating at 200 and 275 g/l the IC50 for xylitol productivity and yield, respectively. The remarkable production of glycerol in the absence of glucose was noticeable, which could not only be attributed to the osmoregulatory function of this polyol in conditions of high osmotic pressure caused by high xylitol concentrations but also to the role of the glycerol synthesis pathway in the regeneration of NAD(+) in conditions of suboptimal microaeration caused by insufficient aeration or high oxygen demand when high biomass concentrations were achieved.

  1. Preparation and swelling properties of pH-sensitive composite hydrogel beads based on chitosan-g-poly (acrylic acid)/vermiculite and sodium alginate for diclofenac controlled release.

    PubMed

    Wang, Qin; Xie, Xiaoling; Zhang, Xiaowei; Zhang, Junping; Wang, Aiqin

    2010-04-01

    A series of pH-sensitive composite hydrogel beads, chitosan-g-poly (acrylic acid)/vermiculite/sodium alginate (CTS-g-PAA/VMT/SA), was prepared using CTS-g-PAA/VMT composite and SA by Ca(2+) as the crosslinking agent. The structure and morphologies of the developed composite hydrogel beads were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The swelling properties and pH-sensitivity of the beads were investigated. In addition, the drug loading and controlled release behaviors of the beads were also evaluated using diclofenac sodium (DS) as the model drug in stimulated gastric fluids (pH 2.1) and intestinal fluids (pH 6.8). The results indicate that the composite hydrogel beads showed good pH-sensitivity. The release rate of the drug from the composite hydrogel beads is remarkably slowed down, which indicated that incorporating VMT into the composite hydrogel beads can improve the burst release effect of the drug.

  2. In-situ photopolymerization of monodisperse and discoid oxidized methacrylated alginate microgels in a microfluidic channel

    SciTech Connect

    Wang, Shuo; Jeon, Oju; Shankles, Peter G.; Liu, Yuan; Alsberg, Eben; Retterer, Scott T.; Lee, Bruce P.; Choi, Chang Kyoung

    2016-02-03

    Here, we present a simple microfluidic technique to in-situ photopolymerize (by 365 nm ultraviolet) monodisperse oxidized methacrylated alginate (OMA) microgels using a photoinitiator (VA-086). By this technique, we generated monodisperse spherical OMA beads and discoid non-spherical beads with better shape consistency than ionic crosslinking methods do. We found that a high monomer concentration (8 w/v %), a high photoinitiator concentration (1.5 w/v %) and absence of oxygen are critical factors to cure OMA microgels. This photopolymerizing method is an alternative to current methods to form alginate microgels and is a simpler approach to generate non-spherical alginate microgels.

  3. Liquid-core alginate hydrogel beads loaded with functional compounds of radish by-products by reverse spherification: Optimization by response surface methodology.

    PubMed

    Tsai, Fu-Hsuan; Kitamura, Yutaka; Kokawa, Mito

    2017-03-01

    Liquid-core hydrogel beads (LHB) were formulated through reverse spherification, by sodium alginate and using calcium lactate (CL) to replace the common calcium source, calcium chloride. The effect of four independent variables: first gelation time (X1), CL concentration in first gelation (X2), secondary gelation time (X3), and CL concentration in secondary gelation (X4), on seven physical properties of LHB: diameter, hardness (Y1), loading efficiency (LE, Y2), release amount of total phenolic compounds (TP) in simulated gastric (Y3) and small intestinal (Y4) fluid, swelling capacity (Y5), and sphericity (Y6), were evaluated. Furthermore, a central composite design with response surface methodology was used for the optimization of LHB properties Y1-Y6, and the importance of the four independent variables to physical properties was analyzed. The diameter of LHB was in the range of 4.17-5.84mm. The optimal conditions of LHB formulation were first gelation time of 23.99min, 0.13M CL in the first gelation, secondary gelation time of 6.04min, and 0.058M CL in secondary gelation. The optimized formulation of LHB demonstrated 25.5N of hardness, 85.67% of LE and 27.38% of TP release in simulated gastric fluid with the small error-values (-2.47 to 2.21%).

  4. Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue.

    PubMed

    Jung, Kyung-Won; Choi, Brian Hyun; Hwang, Min-Jin; Jeong, Tae-Un; Ahn, Kyu-Hong

    2016-11-01

    Biomass-based granular activated carbon was successfully prepared by entrapping activated carbon powder derived from spent coffee grounds into calcium-alginate beads (SCG-GAC) for the removal of acid orange 7 (AO7) and methylene blue (MB) from aqueous media. The dye adsorption process is highly pH-dependent and essentially independent of ionic effects. The adsorption kinetics was satisfactorily described by the pore diffusion model, which revealed that pore diffusion was the rate-limiting step during the adsorption process. The equilibrium isotherm and isosteric heat of adsorption indicate that SCG-GAC possesses an energetically heterogeneous surface and operates via endothermic process in nature. The maximum adsorption capacities of SCG-GAC for AO7 (pH 3.0) and MB (pH 11.0) adsorption were found to be 665.9 and 986.8mg/g at 30°C, respectively. Lastly, regeneration tests further confirmed that SCG-GAC has promising potential in its reusability, showing removal efficiency of more than 80% even after seven consecutive cycles.

  5. Adsorption of As(III), As(V) and Cu(II) on zirconium oxide immobilized alginate beads in aqueous phase.

    PubMed

    Kwon, Oh-Hun; Kim, Jong-Oh; Cho, Dong-Wan; Kumar, Rahul; Baek, Seung Han; Kurade, Mayur B; Jeon, Byong-Hun

    2016-10-01

    A composite adsorbent to remove arsenite [As(III)], arsenate [As(V)], and copper [Cu(II)] from aqueous phase was synthesized by immobilizing zirconium oxide on alginate beads (ZOAB). The composition (wt%) of ZOAB (Zr-34.0; O-32.7; C-21.3; Ca-1.0) was confirmed by energy dispersive X-ray (EDX) analysis. Sorption studies were conducted on single and binary sorbate systems, and the effects of contact time, initial adsorbate concentration, and pH on the adsorption performance of ZOAB (pHPZC = 4.3) were monitored. The sorption process for As(III)/As(V) and Cu(II) reached an equilibrium state within 240 h and 24 h, respectively, with maximum sorption capacities of 32.3, 28.5, and 69.9 mg g(-1), respectively. The addition of Cu(II) was favorable for As(V) sorption in contrast to As(III). In the presence of 48.6 mg L(-1) Cu(II), the sorption capacity of As(V) increased from 1.5 to 3.8 mg g(-1) after 240 h. The sorption data for As(III)/As(V) and Cu(II) conformed the Freundlich and Langmuir isotherm models, respectively. The adsorption of As(III), As(V), and Cu(II) followed pseudo second order kinetics. The effect of arsenic species on Cu(II) sorption was insignificant. The results of present study demonstrated that the synthesized sorbent could be useful for the simultaneous removal of both anionic and cationic contaminants from wastewaters.

  6. A microfluidic device approach to generate hollow alginate microfibers with controlled wall thickness and inner diameter

    NASA Astrophysics Data System (ADS)

    Pham, Uyen H. T.; Hanif, Madiha; Asthana, Amit; Iqbal, Samir M.

    2015-06-01

    Alginate is a natural polymer with inherent biocompatibility. A simple polydimethylsiloxane (PDMS) microfluidic device based self-assembled fabrication of alginate hollow microfibers is presented. The inner diameter as well as wall thickness of the microfibers were controlled effortlessly, by altering core and sheath flow rates in the microfluidic channels. The gelation/cross-linking occured while the solutions were ejected. The microfibers were generated spontaneously, extruding out of the outlet microchannel. It was observed that the outer diameter was independent of the flow rates, while the internal diameter and wall thickness of the hollow fibers were found to be functions of the core and sheath flow rates. At a constant sheath flow, with increasing core flow rates, the internal diameters increased and the wall thicknesses decreased. At a fixed core flow, when sheath flow rate increased, the internal diameters decreased and the wall thickness increased. The immobilization of enzymes in such hollow microfibers can be a potential application as microbioreactors.

  7. A Comparison between Ultraviolet Disinfection and Copper Alginate Beads within a Vortex Bioreactor for the Deactivation of Bacteria in Simulated Waste Streams with High Levels of Colour, Humic Acid and Suspended Solids

    PubMed Central

    Thomas, Simon F.; Rooks, Paul; Rudin, Fabian; Atkinson, Sov; Goddard, Paul; Bransgrove, Rachel M.; Mason, Paul T.; Allen, Michael J.

    2014-01-01

    We show in this study that the combination of a swirl flow reactor and an antimicrobial agent (in this case copper alginate beads) is a promising technique for the remediation of contaminated water in waste streams recalcitrant to UV-C treatment. This is demonstrated by comparing the viability of both common and UV-C resistant organisms in operating conditions where UV-C proves ineffective - notably high levels of solids and compounds which deflect UV-C. The swirl flow reactor is easy to construct from commonly available plumbing parts and may prove a versatile and powerful tool in waste water treatment in developing countries. PMID:25541706

  8. A comparison between ultraviolet disinfection and copper alginate beads within a vortex bioreactor for the deactivation of bacteria in simulated waste streams with high levels of colour, humic acid and suspended solids.

    PubMed

    Thomas, Simon F; Rooks, Paul; Rudin, Fabian; Atkinson, Sov; Goddard, Paul; Bransgrove, Rachel M; Mason, Paul T; Allen, Michael J

    2014-01-01

    We show in this study that the combination of a swirl flow reactor and an antimicrobial agent (in this case copper alginate beads) is a promising technique for the remediation of contaminated water in waste streams recalcitrant to UV-C treatment. This is demonstrated by comparing the viability of both common and UV-C resistant organisms in operating conditions where UV-C proves ineffective - notably high levels of solids and compounds which deflect UV-C. The swirl flow reactor is easy to construct from commonly available plumbing parts and may prove a versatile and powerful tool in waste water treatment in developing countries.

  9. In vitro evaluation of a fibrin gel antibiotic delivery system containing mesenchymal stem cells and vancomycin alginate beads for treating bone infections and facilitating bone formation.

    PubMed

    Hou, Tianyong; Xu, Jianzhong; Li, Qiang; Feng, Jianghua; Zen, Ling

    2008-07-01

    Bone infection and defects are two major problems that occur in the course of treating posttraumatic open bone fractures and osteomyelitis for which local antibiotic delivery is efficacious. Further, hemostasis is an essential treatment after removal of infected bones. Herein we report a new antibiotics delivery system made of vancomycin alginate beads embedded in a fibrin gel (Vanco-AB-FG) to treat bone infections, with the addition of bone marrow-derived mesenchymal stem cells (BMMSCs) seeded in the fibrin gel to promote bone formation. The proliferation of BMMSCs was measured under different conditions of three-dimensional (3D) gel or monolayer, with or without Vanco-AB; cells were labeled by enhanced green fluorescence protein, and their morphology and distribution were observed. The alkaline phosphatase (ALP) activity, real-time RT-PCR, and von Kossa staining were used for determining the osteogenic differentiation of BMMSCs. The concentrations of vancomycin resulting from the antibiotic delivery were determined; the antibiotic activity was evaluated by an assay with standard Staphylococcus aureus (ATCC 25923) as a biological target. The results showed that for Vanco-AB-FG, vancomycin concentrations remained above the breakpoint sensitivity for 22 days. The 3D culture within the gel and the addition of Vanco-AB affected the cell behavior. The morphology of BMMSCs within the 3D gel was different from that in monolayer. The proliferation of the cells within the 3D gel was lower than that in monolayer in early stage, but in later stage the number of BMMSCs in Vanco-AB-FG was similar to that in monolayer. The ALP activity was higher in the 3D gel, and the addition of Vanco-AB slightly increased ALP activity. The osteogenic gene expression levels of ALP, osteopontin, and alpha1 chain of collagen I were higher in the 3D gel than those in monolayer, and additional Vanco-AB could also increase their expression. The von Kossa staining showed that the deposition of

  10. Gel bead composition for metal adsorption

    SciTech Connect

    Scott, C.D.; Woodward, C.A.; Byers, C.H.

    1990-12-18

    This patent describes a gel bead consisting essentially of a sufficient amount of water and propylene glycol alginate to allow for bead formation and a sufficient amount of bone gelatin to allow for metal absorption and chemically crosslinked in an alkaline medium to form a stable structure. A gel bead contained therein a biological absorbent capable of removing metals from solution.

  11. Alternate polyelectrolyte coating of chitosan beads for extending drug release.

    PubMed

    Srinatha, A; Pandit, Jayanta K

    2008-01-01

    In the present study, we addressed the factors modifying ciprofloxacin release from multiple coated beads. Beads were prepared by simple ionic cross-linking with sodium tripolyphoshate and coated with alginate and/or chitosan to prepare single, double, or multilayered beads. The water uptake capacity depended on the nature of beads (coated or uncoated) and pH of test medium. The number of coatings given to the beads influenced ciprofloxacin release rate. The coating significantly decreased the drug release from the beads in comparison to uncoated beads (p < 0.001). When the beads were given three coatings, viz., alginate, chitosan, and again alginate, the drug release appeared to follow the pattern exhibited by colon-targeted drug delivery systems with time dependent release behavior. The increase in coating formed a barrier for easy ingress of dissolution medium into the bead matrix, reducing the diffusion of drug.

  12. Microfluidics-assisted generation of stimuli-responsive hydrogels based on alginates incorporated with thermo-responsive and amphiphilic polymers as novel biomaterials.

    PubMed

    Karakasyan, C; Mathos, J; Lack, S; Davy, J; Marquis, M; Renard, D

    2015-11-01

    We used a droplet-based microfluidics technique to produce monodisperse responsive alginate-block-polyetheramine copolymer microgels. The polyetheramine group (PEA), corresponding to a propylene oxide /ethylene oxide ratio (PO/EO) of 29/6 (Jeffamine(®) M2005), was condensed, via the amine link, to alginates with various mannuronic/guluronic acids ratios and using two alginate:jeffamine mass ratios. The size of the grafted-alginate microgels varied from 60 to 80 μm depending on the type of alginate used and the degree of substitution. The droplet-based microfluidics technique offered exquisite control of both the dimension and physical chemical properties of the grafted-alginate microgels. These microgels were therefore comparable to isolated grafted-alginate chains in retaining both their amphiphilic and thermo-sensitive properties. Amphiphilicity was demonstrated at the oil-water interface where grafted-alginate microgels were found to decrease interfacial tension by ∼ 50%. The thermo-sensitivity of microgels was clearly demonstrated and a 10 to 20% reduction in size between was evidenced on increasing the temperature above the lower critical solution temperature (TLCST) of Jeffamine. In addition, the reversibility of thermo-sensitivity was demonstrated by studying the oil-water affinity of microgels with temperature after Congo red labeling. Finally, droplet-based microfluidics was found to be a good and promising tool for generating responsive biobased hydrogels for drug delivery applications and potential new colloidal stabilizers for dispersed systems such as Pickering emulsions.

  13. Comparison of some biochemical properties of artichoke polyphenol oxidase entrapped in alginate-carrageenan and alginate gels.

    PubMed

    Yagar, Hulya; Kocaturk, Selin

    2014-08-01

    Polyphenol oxidase (PPO, EC.1.14.18.1) isolated from artichoke (Cynara scolymus) was entrapped within alginate and alginate+ carrageenan beads, and the catecholase and cresolase activities of both entrapped enzymes were determined. Some properties of these immobilized enzymes such as optimum pH and temperature, kinetic parameters (Km and Vmax), thermal, and storage stability were determined and compared to each other. The highest catecholase activity was observed in alginate gel (370 U/g bead) while the highest cresolase activity was in alginate+ carrageenan gel (90 U/g bead). For catecholase and cresolase activities, optimum pHs of alginate and alginate+ carrageenan beads were determined to be 7.0 and 4.0, respectively. Optimum temperatures for catecholase activity were determined to be 40°C for both entrapped enzymes. These values for cresolase activity were 30°C and 20°C, respectively. Immobilized artichoke PPOs greatly preserved their thermal stability which exists anyway. The catalytic efficiency value (Vmax/Km) of the alginate beads is approximately high as two-and-a-half folds of that of alginate+κ-carrageenan beads for cresolase activity. These values were very close for catecholase activity. Immobilized beads saved their both activities after 30 days of storage at 4°C.

  14. Role of Calcium Alginate and Mannitol in Protecting Bifidobacterium

    PubMed Central

    Dianawati, Dianawati; Mishra, Vijay

    2012-01-01

    Fourier transform infrared (FTIR) spectroscopy was carried out to ascertain the mechanism of Ca-alginate and mannitol protection of cell envelope components and secondary proteins of Bifidobacterium animalis subsp. lactis Bb12 after freeze-drying and after 10 weeks of storage at room temperature (25°C) at low water activities (aw) of 0.07, 0.1, and 0.2. Preparation of Ca-alginate and Ca-alginate-mannitol as microencapsulants was carried out by dropping an alginate or alginate-mannitol emulsion containing bacteria using a burette into CaCl2 solution to obtain Ca-alginate beads and Ca-alginate-mannitol beads, respectively. The wet beads were then freeze-dried. The aw of freeze-dried beads was then adjusted to 0.07, 0.1, and 0.2 using saturated salt solutions; controls were prepared by keeping Ca-alginate and Ca-alginate-mannitol in aluminum foil without aw adjustment. Mannitol in the Ca-alginate system interacted with cell envelopes during freeze-drying and during storage at low aws. In contrast, Ca-alginate protected cell envelopes after freeze-drying but not during 10-week storage. Unlike Ca-alginate, Ca-alginate-mannitol was effective in retarding the changes in secondary proteins during freeze-drying and during 10 weeks of storage at low aws. It appears that Ca-alginate-mannitol is more effective than Ca-alginate in preserving cell envelopes and proteins after freeze-drying and after 10 weeks of storage at room temperature (25°C). PMID:22843535

  15. Silk sericin-alginate-chitosan microcapsules: hepatocytes encapsulation for enhanced cellular functions.

    PubMed

    Nayak, Sunita; Dey, Sanchareeka; Kundu, Subhas C

    2014-04-01

    The encapsulation based technology permits long-term delivery of desired therapeutic products in local regions of body without the need of immunosuppressant drugs. In this study microcapsules composed of sericin and alginate micro bead as inner core and with an outer chitosan shell are prepared. This work is proposed for live cell encapsulation for potential therapeutic applications. The sericin protein is obtained from cocoons of non-mulberry silkworm Antheraea mylitta. The sericin-alginate micro beads are prepared via ionotropic gelation under high applied voltage. The beads further coated with chitosan and crosslinked with genipin. The microcapsules developed are nearly spherical in shape with smooth surface morphology. Alamar blue assay and confocal microscopy indicate high cell viability and uniform encapsulated cell distribution within the sericin-alginate-chitosan microcapsules indicating that the microcapsules maintain favourable microenvironment for the cells. The functional analysis of encapsulated cells demonstrates that the glucose consumption, urea secretion rate and intracellular albumin content increased in the microcapsules. The study suggests that the developed sericin-alginate-chitosan microcapsule contributes towards the development of cell encapsulation model. It also offers to generate enriched population of metabolically and functionally active cells for the future therapeutics especially for hepatocytes transplantation in acute liver failure.

  16. 3D Cell Culture in Alginate Hydrogels

    PubMed Central

    Andersen, Therese; Auk-Emblem, Pia; Dornish, Michael

    2015-01-01

    This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent), and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue. PMID:27600217

  17. Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates.

    PubMed

    Orive, G; Ponce, S; Hernández, R M; Gascón, A R; Igartua, M; Pedraz, J L

    2002-09-01

    The biocompatibility of alginate-PLL-alginate (APA) microcapsules has been evaluated with respect to impurity levels. The impurity content of three different alginates (a raw high M-alginate, a raw high G-alginate and a purified high G-alginate) has been determined and the in vivo antigenic response of APA beads made with each alginate assessed. Results show that purification of the alginate not only reduces the total amount of impurities (63% less in polyphenols, 91.45% less in endotoxins and 68.5% less in protein in relation to raw high M-alginate), but also avoids an antibody response when microcapsules of this material are implanted in mice. In contrast, raw alginates produced a detectable antibody response though the differences in their impurity content. Consequently, this work revealed that purity of the alginate rather than their chemical composition, is probably of greater importance in determining microcapsule biocompatibility.

  18. Multi-unit floating alginate system: effect of additives on ciprofloxacin release.

    PubMed

    Srinatha, A; Pandit, Jayanta K

    2008-09-01

    In an attempt to fabricate floating beads of ciprofloxacin, drugloaded alginate beads were prepared by simultaneous external and internal gelation. The effect of blending of alginate with gellan, hydroxypropyl methylcellulose, starch, and chitosan on the bead properties were evaluated. Beads were spherical with incorporation efficiency in the range of 52.81 +/- 2.64 to 78.95 +/- 1.92%. Beads exhibited buoyancy over a period of 7-24 hr based on the formulation variables. In vitro release of ciprofloxacin from the alginate beads in simulated gastric fluid (SGF) (0.1 N HCl, pH 1.2), was influenced significantly (p < 0.001) by the properties and concentration of additives. Among the polymers incorporated into alginate beads. Hydroxy propyl methylcellulose (HPMC) provided an extended release over 7 hr. The drug release predominately followed Higuchi's square root model.

  19. Surfactant and metal ion effects on the mechanical properties of alginate hydrogels.

    PubMed

    Kaygusuz, Hakan; Evingür, Gülşen Akın; Pekcan, Önder; von Klitzing, Regine; Erim, F Bedia

    2016-11-01

    This paper addresses the controlled variation of the mechanical properties of alginate gel beads by changing the alginate concentration or by adding different surfactants or cross-linking cations. Alginate beads containing nonionic Brij 35 or anionic sodium dodecyl sulfate (SDS) surfactants were prepared with two different types of cations (Ca(2+), Ba(2+)) as crosslinkers. Compression measurements were performed to investigate the effect of the surfactant and cation types and their concentrations on the Young's modulus of alginate beads. The Young's modulus was determined by using Hertz theory. For all types of alginate gel beads the Young's modulus showed an increasing value for increasing alginate contents. Addition of the anionic surfactant SDS increases the Young's modulus of the alginate beads while the addition of non-ionic surfactant Brij 35 leads to a decrease in Young's modulus. This opposite behavior is related to the contrary effect of both surfactants on the charge of the alginate beads. When Ba(2+) ions were used as crosslinker cation, the Young's modulus of the beads with the surfactant SDS was found to be approximately two times higher than the modulus of beads with the surfactant Brij 35. An ion specific effect was found for the crosslinking ability of divalent cations.

  20. Design of controlled-release solid dosage forms of alginate and chitosan using microwave.

    PubMed

    Wong, Tin Wui; Chan, Lai Wah; Kho, Shyan Bin; Sia Heng, Paul Wan

    2002-12-05

    The influence of microwave irradiation on the drug release properties of alginate, alginate-chitosan and chitosan beads was investigated. The beads were prepared with the highest possible concentration of polymer by an extrusion method. Sulphathiazole was selected as a model drug. The beads were subjected to microwave irradiation at various combinations of irradiation power and time. The profiles of drug dissolution, drug content, drug stability, drug polymorphism, drug-polymer interaction, polymer crosslinkage and complexation were determined by dissolution testing, drug content assay, differential scanning calorimetry (DSC) and fourier transform infra-red spectroscopy (FTIR). The chemical stability of the drug entrapped in the beads was unaffected by the microwave irradiation. However, the drug in the chitosan beads underwent polymorphic changes. Polymorphic changes were prevented by means of drug-alginate interaction in alginate and alginate-chitosan beads. Changes in the polymorphic state of drug were found to have insignificant effect on the drug release profiles of chitosan beads. The release-retarding property of alginate and alginate-chitosan beads was significantly enhanced by subjecting the beads to microwave irradiation. Positively charged calcium ions and chitosan are known to interact with negatively charged alginate. DSC and FTIR analyses indicated that the reduction in rate and extent of drug released from the treated beads was primarily due to additional formation of non-ionic bonds, involving alginate crosslinkage and alginate-chitosan complexation. The results showed that microwave technology can be employed in the design of solid dosage forms for controlled-release application without the use of noxious chemical agents.

  1. Extended release of vitamins from magnetite loaded polyanionic polymeric beads.

    PubMed

    Sonmez, Maria; Verisan, Cristina; Voicu, Georgeta; Ficai, Denisa; Ficai, Anton; Oprea, Alexandra Elena; Vlad, Mihaela; Andronescu, Ecaterina

    2016-08-30

    Here we explore a novel approach of increasing the release duration of folic and ascorbic acid from magnetite entrapped into calcium-alginate beads. Synthesis and characterization of magnetite-vitamins complexes are reported. The magnetite-vitamins complexes were characterized by FT-IR, XRD, SEM, BET and DTA-TG. Also calcium-alginate magnetic beads were prepared by dripping a mixture of sodium alginate with magnetite-vitamins complexes into calcium chloride solution. Extended release profile of the two experimental models was evaluated and quantified by UV-vis.

  2. Preparation, characterisation and viability of encapsulated Trichoderma harzianum UPM40 in alginate-montmorillonite clay.

    PubMed

    Adzmi, Fariz; Meon, Sariah; Musa, Mohamed Hanafi; Yusuf, Nor Azah

    2012-01-01

    Microencapsulation is a process by which tiny parcels of an active ingredient are packaged within a second material for the purpose of shielding the active ingredient from the surrounding environment. This study aims to determine the ability of the microencapsulation technique to improve the viability of Trichoderma harzianum UPM40 originally isolated from healthy groundnut roots as effective biological control agents (BCAs). Alginate was used as the carrier for controlled release, and montmorillonite clay (MMT) served as the filler. The encapsulated Ca-alginate-MMT beads were characterised using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The FTIR results showed the interaction between the functional groups of alginate and MMT in the Ca-alginate-MMT beads. Peaks at 1595, 1420 and 1020 cm(-1) characterised alginate, and peaks at 1028 and 453 cm(-1) characterised MMT; both sets of peaks appeared in the Ca-alginate-MMT FTIR spectrum. The TGA analysis showed an improvement in the thermal stability of the Ca-alginate-MMT beads compared with the alginate beads alone. SEM analysis revealed a homogeneous distribution of the MMT particles throughout the alginate matrix. T. harzianum UPM40 was successfully encapsulated in the Ca-alginate-MMT beads. Storage analysis of the encapsulated T. harzianum UPM40 showed that the low storage temperature of 5°C resulted in significantly (p < 0.05) better storage compared with room temperature (30°C).

  3. Montmorillonite-Alginate Composites as a Drug delivery System: Intercalation and In vitro Release of Diclofenac sodium

    PubMed Central

    Kevadiya, B. D.; Patel, H. A.; Joshi, G. V.; Abdi, S. H. R.; Bajaj, H. C.

    2010-01-01

    Diclofenac sodium and alginate was intercalated into montmorillonite to form uniform sized beads by gelation method. The structure and surface morphology of the synthesized composite beads were characterized by powdered X-ray diffraction, Fourier transform infrared spectroscopy, thermo gravimetric analysis and scanning electron microscopy. Diclofenac release kinetics of the composite in simulated intestinal fluid medium (pH 7.4) and effect of montmorillonite content on the in vitro release of diclofenac from diclofenac-montmorillonite-alginate composites bead was investigated by UV/Vis spectrophotometer. Diclofenac encapsulation efficiency in the montmorillonite-alginate composites bead increases with an increase in the montmorillonite content. The control release of diclofenac from diclofenac-montmorillonite-alginate composites beads was observed to be better as compared to diclofenac-alginate beads. PMID:21969745

  4. Heat generation ability in AC magnetic field of nano MgFe2O4-based ferrite powder prepared by bead milling

    NASA Astrophysics Data System (ADS)

    Hirazawa, Hideyuki; Aono, Hiromichi; Naohara, Takashi; Maehara, Tsunehiro; Sato, Mitsunori; Watanabe, Yuji

    2011-03-01

    Nanosized MgFe2O4-based ferrite powder having heat generation ability in an AC magnetic field was prepared by bead milling and studied for thermal coagulation therapy applications. The crystal size and the particle size significantly decreased by bead milling. The heat generation ability in an AC magnetic field improved with the milling time, i.e. a decrease in crystal size. However, the heat generation ability decreased for excessively milled samples with crystal sizes of less than 5.5 nm. The highest heat ability (ΔT=34 °C) in the AC magnetic field (370 kHz, 1.77 kA/m) was obtained for fine MgFe2O4 powder having a ca. 6 nm crystal size (the samples were milled for 6-8 h using 0.1 mm ϕ beads). The heat generation of the samples was closely related to hysteresis loss, a B-H magnetic property. The reason for the high heat generation properties of the samples milled for 6-8 h using 0.1 mm ϕ beads was ascribed to the increase in hysteresis loss by the formation of a single domain. Moreover, the improvement in heating ability was obtained by calcination of the bead-milled sample at low temperature. In this case, the maximum heat generation (ΔT=41 °C) ability was obtained for a ca. 11 nm crystal size sample was prepared by crystal growth during the sample calcination. On the other hand, the ΔT value for Mg0.5Ca0.5Fe2O4 was synthesized using a reverse precipitation method decreased by bead milling.

  5. Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method.

    PubMed

    Sohail, Asma; Turner, Mark S; Coombes, Allan; Bostrom, Thor; Bhandari, Bhesh

    2011-01-31

    Encapsulation of probiotic bacteria in cross-linked alginate beads is of major interest for improving the survivability in harsh acid and bile environment and also in food matrices. Alginate micro beads (10-40 μm) containing the probiotics Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM were produced by a novel technique based on dual aerosols of alginate solution and CaCl(2) cross linking solution. Extruded macro beads (approximately 2mm diameter) produced by the conventional method and micro beads produced by novel aerosols technique offered comparable protection to L. rhamnosus in high acid and bile environment. Chitosan coating of micro beads resulted in a significant increase in survival time of L. rhamnosus from 40 to 120 min in acid condition and the reduction in cell numbers was confined to 0.94 log over this time. Alginate macro beads are more effective than micro beads in protecting L. acidophilus against high acid and bile. Chitosan coating of micro beads resulted in similar protection to L. acidophilus in macro beads in acid and extended the survival time from 90 to at least 120 min. Viability of this organism in micro beads was 3.5 log after 120 min. The continuous processing capability and scale-up potential of the dual aerosol technique offers potential for an efficient encapsulation of probiotics in very small alginate micro beads below sensorial detection limits while still being able to confer effective protection in acid and bile environment.

  6. Gel bead composition for metal adsorption

    SciTech Connect

    Scott, Charles D.; Woodward, Charlene A.; Byers, Charles H.

    1990-01-01

    The invention is a gel bead comprising propylene glycol alginate and bone gelatin and is capable of removing metals such as Sr and Cs from solution without adding other adsorbents. The invention could have application to the nuclear industry's waste removal activities.

  7. Gel bead composition for metal adsorption

    DOEpatents

    Scott, Charles D.; Woodward, Charlene A.; Byers, Charles H.

    1991-01-01

    The invention is a gel bead comprising propylene glycol alginate and bone gelatin and is capable of removing metals such as Sr and Cs from solution without adding other adsorbents. The invention could have application to the nuclear industry's waste removal activities.

  8. Enhanced Ionic Conductivity and Power Generation Using Ion-Exchange Resin Beads in a Reverse-Electrodialysis Stack.

    PubMed

    Zhang, Bopeng; Gao, Haiping; Chen, Yongsheng

    2015-12-15

    Reverse electrodialysis (RED) is a promising technique for harvesting energy by mixing seawater with river water. The energy production is usually limited by ionic conductivity in dilute compartments of a RED system. Novel tests were conducted in this research, which used ion-exchange resin beads (IERB) to replace nonconductive spacer fabrics in RED compartments with dilute NaCl solution in a modified stack containing Fumasep FKS and Fumasep FAS membranes. We compared the conductivity of an IERB packed bed with that of an inert glass-beads-packed bed as a control to confirm IERB's effectiveness. When applied in a RED system, IERB decreased the stack resistance by up to 40%. The maximum gross power density improved by 83% in the RED stack compared to that in a regular RED stack at 1.3 cm/s average linear flow velocity. IERB-filled stack resistance was modeled. The model results fit well with experimental data, thereby confirming the effectiveness of the new approach presented here. The net power density is also estimated based on the measured pressure drop and pumping energy model. Both gross and net power density was improved by over 75% at higher flow rate. A net power density of 0.44 W/m(2) was achieved at a cell thickness of 500 μm. To the best of our knowledge, this research is the first to study the impact of IERB on power generation and establishes a new approach to improving the power performance of a RED system.

  9. Novel polymer-layered silicate intercalated composite beads for drug delivery.

    PubMed

    Xu, Ruifen; Feng, Xuyang; Li, Wei; Xin, Shangjing; Wang, Xiaoying; Deng, Hongbing; Xu, Lixian

    2013-01-01

    Core-shell structured beads were fabricated from chitosan (CS)/organic rectorite (OREC) composites and alginate (ALG) in Ca(2+) aqueous solutions with different mixing ratios by a cross-linking process. The mechanical properties, surface and internal morphology, intercalation structure between CS and OREC, porosity and pore size distribution, bovine serum albumin (BSA) encapsulation efficiency and its controllable release ability were investigated. Optical microscopy, scanning electron microscopy and transmission electron microscopy showed that the core-shell structure was generated in the beads. The Fourier transform infrared spectra results implied the presence of electrostatic and hydrogen-bonding interaction between CS and OREC. The energy-dispersive X-ray and X-ray photoelectron spectroscopy results verified the existence of OREC in the beads. Small-angle X-ray diffraction results confirmed that the interlayer of OREC was intercalated by CS chains successfully, and the interlayer distance increased from 2.42 to 2.60 nm. The BSA encapsulation and release test indicated that the beads released the drug continuously. OREC could not only avoid the burst release phenomenon in the first period but also improve the utilization efficacy of the drug. When the ratio of CS/OREC was 6:1 and CS-OREC/ALG was 2:1, the beads were better for drug released in stomach, and when CS/OREC was 12:1 and CS-OREC/ALG was 2:1, the beads were better for drug released in stomach than in intestine.

  10. Polygalacturonase production by calcium alginate immobilized Enterobacter aerogenes NBO2 cells.

    PubMed

    Darah, I; Nisha, M; Lim, Sheh-Hong

    2015-03-01

    Bacterial cells of Enterobacter aerogenes NBO2 were entrapped in calcium alginate beads in order to enhance polygalacturonase production compared to free cells. The optimized condition of 5 % (w/v) sodium alginate concentration, agitation speed of 250 rpm, and 15 beads of calcium alginate with inoculum size of 4 % (v/v; 5.4 × 10(7) cells/ml) produced 23.48 U/mL of polygalacturonase compared to free cells of 18.54 U/ml. There was about 26.6 % increment in polygalaturonase production. However, in this study, there was 296.6 % of increment in polygalacturonase production after improvement parameters compared to before improvement parameters of calcium alginate bead immobilization cells (5.92 U/ml). This research has indicated that optimized physical parameters of calcium alginate bead immobilization cells have significantly enhanced the production of polygalacturonase.

  11. Removable colored coatings based on calcium alginate hydrogels.

    PubMed

    Kobaslija, Muris; McQuade, D Tyler

    2006-08-01

    This article describes the creation of a nontoxic, biodegradable coating using calcium alginate and FD&C approved dyes. The coating is robust but is rapidly removed upon treatment with disodium ethylenediamine tetraacetate (EDTA). Dye leaching from calcium alginate films was studied, and it was determined that the efficiency of dye retention is proportional to the degree of cross-linking. Degradation rates were studied on calcium alginate beads serving as a model for a coating. We determined that degradation rates depend on the gel's cross-linking and on the amount of EDTA used. Bead size also influenced the degradation rates; smaller beads degraded faster than larger beads. We show that the coating can be used as an easily removable and environmentally friendly logotype on an artificial turf surface. Applications of these coatings can be extended to food, cosmetic, medicinal, and textile uses and to wherever nontoxic, easily removable colored coating is desired.

  12. Gene-scrambling mutagenesis: generation and analysis of insertional mutations in the alginate regulatory region of Pseudomonas aeruginosa.

    PubMed Central

    Mohr, C D; Deretic, V

    1990-01-01

    A novel method for random mutagenesis of targeted chromosomal regions in Pseudomona aeruginosa was developed. This method can be used with a cloned DNA fragment of indefinite size that contains a putative gene of interest. Cloned DNA is digested to produce small fragments that are then randomly reassembled into long DNA inserts by using cosmid vectors and lambda packaging reaction. This DNA is then transferred into P. aeruginosa and forced into the chromosome via homologous recombination, producing in a single step a random set of insertional mutants along a desired region of the chromosome. Application of this method to extend the analysis of the alginate regulatory region, using a cloned 6.2-kb fragment with the algR gene and the previously uncharacterized flanking regions, produced several insertional mutations. One mutation was obtained in algR, a known transcriptional regulatory of mucoidy in P. aeruginosa. The null mutation of algR was generated in a mucoid derivative of the standard genetic strain PAO responsive to different environmental factors. This mutation was used to demonstrate that the algR gene product was not essential for the regulation of its promoters. Additional insertions were obtained in regions downstream and upstream of algR. A mutation that did not affect mucoidy was generated in a gene located 1 kb upstream of algR. This gene was transcribed in the direction opposite that of algR transcription and encoded a polypeptide of 47 kDa. Partial nucleotide sequence analysis revealed strong homology of its predicted gene product with the human and yeast argininosuccinate lyases. An insertion downstream of algR produced a strain showing reduced induction of mucoidy in response to growth on nitrate as the nitrogen source. Images PMID:2121708

  13. Generation of memory T cells for adoptive transfer using clinical-grade anti-CD62L magnetic beads.

    PubMed

    Verfuerth, S; Sousa, P S E; Beloki, L; Murray, M; Peters, M D; O'Neill, A T; Mackinnon, S; Lowdell, M W; Chakraverty, R; Samuel, E R

    2015-10-01

    Pre-clinical studies of allogeneic stem cell transplantation suggest that depletion of naive T cells from donor lymphocytes will reduce the risk of GvHD but preserve immunity to infectious pathogens. In this study, we have established a clinical-grade protocol under good manufacturing practice conditions for purging CD62L(+) naive T cells from steady-state leukapheresis products using the CliniMACS system. The efficacy of immunomagnetic CD62L depletion was assessed by analysis of cell composition and functional immune responses. A median 2.9 log CD62L depletion was achieved with no evidence of CD62L shedding during the procedure and a mean T-cell yield of 47%. CD62L(-) cells comprised an equal mix of CD4(+) and CD8(+) T cells, with elimination of B cells but maintenance of regulatory T cells and natural killer cell populations. CD62L-depleted T cells were predominantly CD45RA(-) and CD45RA(+) effector memory (>90%) and contained the bulk of pentamer-staining antivirus-specific T cells. Functional assessment of CD62L(-) cells revealed the maintenance of antiviral T-cell reactivity and a reduction in the alloreactive immune response compared with unmanipulated cells. Clinical-grade depletion of naive T cells using immunomagnetic CD62L beads from steady-state leukapheresis products is highly efficient and generates cells suitable for adoptive transfer in the context of clinical trials.

  14. Transarterial Chemoembolization for Hepatocellular Carcinoma with a New Generation of Beads: Clinical–Radiological Outcomes and Safety Profile

    SciTech Connect

    Spreafico, Carlo Cascella, Tommaso; Facciorusso, Antonio Sposito, Carlo; Rodolfo, Lanocita Morosi, Carlo Civelli, Enrico M. Vaiani, Marta; Bhoori, Sherrie; Pellegrinelli, Alessandro; Marchianò, Alfonso; Mazzaferro, Vincenzo

    2015-02-15

    PurposeTo evaluate the short-term safety and efficacy of the new generation of 70–150 µm drug-eluting beads (M1 DEB) in patients with hepatocellular carcinoma undergoing transarterial chemoembolization (TACE) as a primary therapy or as a bridge to liver transplantation (LT).MethodsForty-five consecutive patients underwent TACE with M1 DEB loaded with doxorubicin (DEBDOX/M1). Clinical data were recorded at 12, 24, and 48 h, 7 and 30 days after treatment. Response was assessed by computed tomographic scan according to the modified response evaluation criteria in solid tumors criteria, and a second DEBDOX/M1 TACE was scheduled within 6 weeks in case of a noncomplete response.ResultsAll patients had well-compensated cirrhosis (97.7 % Child A, 44.4 % hepatitis C virus, median age 61 years). Twenty patients (44.4 %) had Barcelona Clinic for Liver Cancer class B disease; the median number of nodules and their sum of diameters were 2 (range 1–6) and 43 mm (range 10–190), respectively. The mean number of TACE procedures per patient was 1.4. Objective response rate (complete + partial response) was 77.7 % with a median time to best response of 3 months (95 % confidence interval 2–4). In 13 patients, DEBDOX/M1 TACE served as a bridge/downstaging to LT/surgery. Pathology showed that more than 90 % necrosis was achieved in 10 of 28 nodules. DEBDOX/M1 TACE was well tolerated, and the grade 3/4 adverse event rate was low (1 of 65 procedures).ConclusionDEBDOX/M1 TACE is an effective procedure with a favorable safety profile and promising results in terms of objective response rate, tumor downstaging, and necrosis.

  15. Carboxymethyl starch/alginate microspheres containing diamine oxidase for intestinal targeting

    PubMed Central

    Blemur, Lindsay; Le, Tien Canh; Marcocci, Lucia; Pietrangeli, Paola

    2015-01-01

    Abstract The association of carboxymethyl starch (CMS) and alginate is proposed as a novel matrix for the entrapment of bioactive agents in microspheres affording their protection against gastrointestinal degradation. In this study, the enzyme diamine oxidase (DAO) from white pea (Lathyrus sativus) was immobilized by inclusion in microspheres formed by ionotropic gelation of CMS/alginate by complexation with Ca2+. The association of CMS to alginate generated a more compact structure presenting a lesser porosity, thus decreasing the access of gastric fluid inside the microspheres and preventing the loss of entrapped enzyme. Moreover, the immobilized enzyme remained active and was able to oxidize the polyamine substrates even in the presence of degrading proteases of pancreatin. The inclusion yield in terms of entrapped protein was of about 82%–95%. The DAO entrapped in calcium CMS/alginate beads retained up to 70% of its initial activity in simulated gastric fluid (pH 2.0). In simulated intestinal fluid (pH 7.2) with pancreatin, an overall retention of 65% of activity for the immobilized DAO was observed over 24 H, whereas in similar conditions the free enzyme was totally inactivated. Our project proposes the vegetal DAO as an antihistaminic agent orally administered to treat food histaminosis and colon inflammation. PMID:25779356

  16. Carboxymethyl starch/alginate microspheres containing diamine oxidase for intestinal targeting.

    PubMed

    Blemur, Lindsay; Le, Tien Canh; Marcocci, Lucia; Pietrangeli, Paola; Mateescu, Mircea Alexandru

    2016-05-01

    The association of carboxymethyl starch (CMS) and alginate is proposed as a novel matrix for the entrapment of bioactive agents in microspheres affording their protection against gastrointestinal degradation. In this study, the enzyme diamine oxidase (DAO) from white pea (Lathyrus sativus) was immobilized by inclusion in microspheres formed by ionotropic gelation of CMS/alginate by complexation with Ca(2+) . The association of CMS to alginate generated a more compact structure presenting a lesser porosity, thus decreasing the access of gastric fluid inside the microspheres and preventing the loss of entrapped enzyme. Moreover, the immobilized enzyme remained active and was able to oxidize the polyamine substrates even in the presence of degrading proteases of pancreatin. The inclusion yield in terms of entrapped protein was of about 82%-95%. The DAO entrapped in calcium CMS/alginate beads retained up to 70% of its initial activity in simulated gastric fluid (pH 2.0). In simulated intestinal fluid (pH 7.2) with pancreatin, an overall retention of 65% of activity for the immobilized DAO was observed over 24 H, whereas in similar conditions the free enzyme was totally inactivated. Our project proposes the vegetal DAO as an antihistaminic agent orally administered to treat food histaminosis and colon inflammation.

  17. Alginate as a cell culture substrate for growth and differentiation of human retinal pigment epithelial cells.

    PubMed

    Heidari, Razeih; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Davari, Maliheh; Nazemroaya, Fatemeh; Bagheri, Abouzar; Deezagi, Abdolkhalegh

    2015-03-01

    The purpose of this study was to evaluate retinal pigment epithelium (RPE) cells' behavior in alginate beads that establish 3D environment for cellular growth and mimic extracellular matrix versus the conventional 2D monolayer culture. RPE cells were encapsulated in alginate beads by dripping alginate cell suspension into CaCl2 solution. Beads were suspended in three different media including Dulbecco's modified Eagle's medium (DMEM)/F12 alone, DMEM/F12 supplemented with 10 % fetal bovine serum (FBS), and DMEM/F12 supplemented with 30 % human amniotic fluid (HAF). RPE cells were cultivated on polystyrene under the same conditions as controls. Cell phenotype, cell proliferation, cell death, and MTT assay, immunocytochemistry, and real-time RT-PCR were performed to evaluate the effect of alginate on RPE cells characteristics and integrity. RPE cells can survive and proliferate in alginate matrixes. Immunocytochemistry analysis exhibited Nestin, RPE65, and cytokeratin expressions in a reasonable number of cultured cells in alginate beads. Real-time PCR data demonstrated high levels of Nestin, CHX10, RPE65, and tyrosinase gene expressions in RPE cells immobilized in alginate when compared to 2D monolayer culture systems. The results suggest that alginate can be used as a reliable scaffold for maintenance of RPE cells' integrity and in vitro propagation of human retinal progenitor cells for cell replacement therapies in retinal diseases.

  18. Bioactive apatite incorporated alginate microspheres with sustained drug-delivery for bone regeneration application.

    PubMed

    Li, Haibin; Jiang, Fei; Ye, Song; Wu, Yingying; Zhu, Kaiping; Wang, Deping

    2016-05-01

    The strontium-substituted hydroxyapatite microspheres (SrHA) incorporated alginate composite microspheres (SrHA/Alginate) were prepared via adding SrHA/alginate suspension dropwise into calcium chloride solution, in which the gel beads were formed by means of crosslinking reaction. The structure, morphology and in vitro bioactivity of the composite microspheres were studied by using XRD, SEM and EDS methods. The biological behaviors were characterized and analyzed through inductively coupled plasma optical emission spectroscopy (ICP-OES), CCK-8, confocal laser microscope and ALP activity evaluations. The experimental results indicated that the synthetic SrHA/Alginate showed similar morphology to the well-known alginate microspheres (Alginate) and both of them possessed a great in vitro bioactivity. Compared with the control Alginate, the SrHA/Alginate enhanced MC3T3-E1 cell proliferation and ALP activity by releasing osteoinductive and osteogenic Sr ions. Furthermore, vancomycin was used as a model drug to investigate the drug release behaviors of the SrHA/Alginate, Alginate and SrHA. The results suggested that the SrHA/Alginate had a highest drug-loading efficiency and best controlled drug release properties. Additionally, the SrHA/Alginate was demonstrated to be pH-sensitive as well. The increase of the pH value in phosphate buffer solution (PBS) accelerated the vancomycin release. Accordingly, the multifunctional SrHA/Alginate can be applied in the field of bioactive drug carriers and bone filling materials.

  19. Floating-mucoadhesive beads of clarithromycin for the treatment of Helicobacter pylori infection.

    PubMed

    Gattani, Surendra Ganeshlal; Savaliya, Pankaj Jayantilal; Belgamwar, Veena Shailendra

    2010-06-01

    An objective of the present study was to develop alginate/hydroxypropyl methylcellulose (HPMC) based floating-mucoadhesive beads of clarithromycin to provide prolonged contact time of antibiotic to treat stomach ulcer. Floating-mucoadhesive beads were prepared and characterized for in vitro performance followed by investigation of ex vivo study in albino-wistar rats. Beads were prepared by ionic gelation technique where calcium chloride used as gelating agent and incorporated liquid paraffin for floating of the beads. Prepared beads were evaluated extensively for particle size, drug entrapment; swelling and surface morphology by using scanning electron microscopy. X-ray radioimaging study in rabbits, in vitro mucoadhesion using rat stomach mucosal membrane and in vitro drug release studies were carried out. Ex vivo performance of alginate-HPMC beads were studied using albino rats in comparison to simple alginate-calcium beads. Alginate-HPMC beads may be suitable floating-muco-adhesive drug delivery system for delivering clarithromycin to treat stomach ulcers.

  20. Adsorption of a cationic dye, methylene blue, on to chitosan hydrogel beads generated by anionic surfactant gelation.

    PubMed

    Chatterjee, Sudipta; Chatterjee, Tania; Lim, Seong-Rin; Woo, Seung H

    2011-10-01

    Chitosan hydrogel beads (CSB) formed by sodium dodecyl sulphate (SDS) gelation were used for the removal of a cationic dye, methylene blue (MB), from aqueous solutions. The adsorption capacity of chitosan beads (CB) formed by alkali gelation was low because of charge repulsions between the chitosan (CS) and the MB. The adsorption capacity of CSB (4 g/L SDS gelation) for MB (100 mg/L) was 129.44 mg/g, and it decreased significantly with increasing SDS concentration during gelation. This decrease was a result of increased density of the CSB membrane materials. The CSB membrane materials formed with the 4 g/L SDS gelation showed the highest volumetric adsorption capacity. The MB adsorption on to CB and CSB increased with increasing values for the initial pH of solution. Data from both CB and CSB showed good fit to Sips isotherm models, and the maximum adsorption capacity of CSB (226.24 mg/g) was higher than that of CB (99.01 mg/g).

  1. Gelling process of sodium alginate with bivalent ions rich microsphere: Nature of bivalent ions

    NASA Astrophysics Data System (ADS)

    Mauri, Marco; Vicini, Silvia; Castellano, Maila

    2016-05-01

    In the paper we present a new approach for obtaining a controlled gelling process of sodium alginate, based on the quantity of bivalent ions rich alginate micro-beads added as crosslinkers. Typically, calcium ions are used in gelation of alginate solutions. In this study we present different gelling systems realized with alginate microspheres, made by electrospinning methodology, enriched with different bivalent ions (Ca2+, Ba2+ and Mg2+). The microspheres were characterized under the point of view of the morphology by OM and as the ions content. Realized gels were characterized in light of the amount of the ions added to the alginate solution, and in light of the different dimensions of the micro-beads, using rheological measurements to assess the variation in the storage modulus (G'), loss modulus (G″) and complex viscosity (η*).

  2. Development of PVA-alginate as a matrix for enzymatic decolorization of textile dye in bioreactor system

    NASA Astrophysics Data System (ADS)

    Yanto, Dede Heri Yuli; Zahara, Syifa; Laksana, Raden Permana Budi; Anita, Sita Heris; Oktaviani, Maulida; Sari, Fahriya Puspita

    2017-01-01

    An immobilization technique using polyvinyl alcohol (PVA) crosslinked with sodium alginate as a matrix has been developed for textile dyes decolorization. Textiles use dye as an addition to the aesthetic value of the product. Dyes are generally used is a textile dye where the waste will be released directly into the waters around 2-20%. Therefore, it is important to develop an enzyme immobilization method using PVA-Alginate as a matrix. Based on the results of the study showed that the PVA-Alginate beads produced high decolorization percent compared to beads which contains only Ca-alginate alone and formula matrix is optimum at PVA 6% and alginate 1.5%. Encapsulation with boric acid at 7% showed optimum decolorization and reduction for enzyme leakage during decolorization. This study suggested that immobilization of enzymes into PVA-alginate matrix might be used as a biodecolorating agent.

  3. An electrohydrodynamic bioprinter for alginate hydrogels containing living cells.

    PubMed

    Gasperini, Luca; Maniglio, Devid; Motta, Antonella; Migliaresi, Claudio

    2015-02-01

    In this work we present a bioprinting technique that exploits the electrohydrodynamic process to obtain a jet of liquid alginate beads containing cells. A printer is used to microfabricate hydrogels block by block following a bottom-up approach. Alginate beads constitute the building blocks of the microfabricated structures. The beads are placed at predefined position on a target substrate made of calcium-enriched gelatin, where they crosslink upon contact without the need of further postprocessing. The printed sample can be easily removed from the substrate at physiological temperature. Three-dimensional printing is accomplished by the deposition of multiple layers of hydrogel. We have investigated the parameters influencing the process, the compatibility of the printing procedure with cells, and their survival after printing.

  4. Next Generation Gene Synthesis by targeted retrieval of bead-immobilized, sequence verified DNA clones from a high throughput pyrosequencing device

    PubMed Central

    Matzas, Mark; Stähler, Peer F.; Kefer, Nathalie; Siebelt, Nicole; Boisguérin, Valesca; Leonard, Jack T.; Keller, Andreas; Stähler, Cord F.; Häberle, Pamela; Gharizadeh, Baback; Babrzadeh, Farbod; Church, George

    2012-01-01

    The setup of synthetic biological systems involving millions of bases is still limited by the required high quality of synthetic DNA. Important drivers to further open up the field are the accuracy and scale of chemical DNA synthesis and the downstream processing of longer DNA assembled from short fragments. We developed a new, highly parallel and miniaturized method for the preparation of high quality DNA termed “Megacloning” by using Next Generation Sequencing (NGS) technology in a preparative way. We demonstrate our method by processing both conventional and microarray-derived DNA oligonucleotides in combination with a bead-based high throughput pyrosequencing platform, gaining a 500-fold error reduction for microarray oligonucleotides in a first embodiment. We also show the assembly of synthetic genes as part of the Megacloning process. In principle, up to millions of DNA fragments can be sequenced, characterized and sorted in a single Megacloner run, enabling many new applications. PMID:21113166

  5. Alginate Hydrogel: A Shapeable and Versatile Platform for in Situ Preparation of Metal-Organic Framework-Polymer Composites.

    PubMed

    Zhu, He; Zhang, Qi; Zhu, Shiping

    2016-07-13

    This work reports a novel in situ growth approach for incorporating metal-organic framework (MOF) materials into an alginate substrate, which overcomes the challenges of processing MOF particles into specially shaped structures for real industrial applications. The MOF-alginate composites are prepared through the post-treatment of a metal ion cross-linked alginate hydrogel with a MOF ligand solution. MOF particles are well distributed and embedded in and on the surface of the composites. The macroscopic shape of the composite can be designed by controlling the shape of the corresponding hydrogel; thus MOF-alginate beads, fibers, and membranes are obtained. In addition, four different MOF-alginate composites, including HKUST-1-, ZIF-8-, MIL-100(Fe)-, and ZIF-67-alginate, were successfully prepared using different metal ion cross-linked alginate hydrogels. The mechanism of formation is revealed, and the composite is demonstrated to be an effective absorbent for water purification.

  6. Zinc cross-linked hydroxamated alginates for pulsed drug release

    PubMed Central

    Raut, Neha S; Deshmukh, Prasad R; Umekar, Milind J; Kotagale, Nandkishor R

    2013-01-01

    Introduction: Alginates can be tailored chemically to improve solubility, physicochemical, and biological properties and its complexation with metal ion is useful for controlling the drug release. Materials And Methods: Synthesized N,O-dimethyl, N-methyl, or N-Benzyl hydroxylamine derivatives of sodium alginate were subsequently complexed with zinc to form beads. Hydroxamation of sodium alginate was confirmed by Fourier transform infra-red spectroscopy (FTIR) and differential scanning calorimetry (DSC). Results: The synthesized polymeric material exhibited reduced aqueous, HCl and NaOH solubility. The hydroxamated derivatives demonstrated pulsed release where change in pH of the dissolution medium stimulated the atenolol release. Conclusion: Atenolol loaded Zn cross-linked polymeric beads demonstrated the sustained the plasma drug levels with increased half-life. Although the synthesized derivatives greatly altered the aqueous solubility of sodium alginate, no significant differences in in vitro and in vivo atenolol release behavior amongst the N,O-dimethyl, N-methyl, or N-Benzyl hydroxylamine derivatives of sodium alginate were observed. PMID:24350039

  7. Encapsulation optimization of lemon balm antioxidants in calcium alginate hydrogels.

    PubMed

    Najafi-Soulari, Samira; Shekarchizadeh, Hajar; Kadivar, Mahdi

    2016-11-01

    Calcium alginate hydrogel beads were used to encapsulate lemon balm extract. Chitosan layer was used to investigate the effect of hydrogel coating. To determine the interactions of antioxidant compounds of extract with encapsulation materials and its stability, microstructure of hydrogel beads was thoroughly monitored using scanning electron microscopy and Fourier transform infrared (FTIR). Total polyphenols content and antiradical activity of lemon balm extract were also evaluated before and after encapsulation. Three significant parameters (lemon balm extract, sodium alginate, and calcium chloride concentrations) were optimized by response surface methodology to obtain maximum encapsulation efficiency. The FTIR spectra showed no interactions between extract and polymers as there were no new band in spectra of alginate hydrogel after encapsulation of active compounds of lemon balm extract. The antioxidant activity of lemon balm extract did not change after encapsulation. Therefore, it was found that alginate is a suitable material for encapsulation of natural antioxidants. Sodium alginate solution concentration, 1.84%, lemon balm extract concentration, 0.4%, and calcium chloride concentration, 0.2% was determined to be the optimum condition to reach maximum encapsulation efficiency.

  8. Shape optimization and characterization of polysaccharide beads prepared by ionotropic gelation.

    PubMed

    Smrdel, Polona; Bogataj, Marija; Zega, Anamarija; Planinsek, Odon; Mrhar, Ales

    2008-03-01

    The shape of drug loaded polysaccharide beads produced by ionotropic gelation has been optimized, with the aim of producing spherical beads suitable for further technological operations, such as coating. The optimization was performed on a model system sodium alginate/theophylline by inclusion of various fillers. Incorporation of excipients markedly influenced the morphological characteristics of the beads. The undesired irregular shape of beads caused by incorporation of the drug could only be improved by incorporating a combination of polycarbophil (PK) and polyvinylpyrrolidone (PVP). The spherical shape of these beads was stabilized mechanically by numerous air bubbles trapped inside the beads, which prevented the collapse of the beads during drying. The optimized method was shown to be applicable to a target system of pectin and an anti-inflammatory drug, LK-423.

  9. Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform.

    PubMed

    Sista, Ramakrishna S; Eckhardt, Allen E; Srinivasan, Vijay; Pollack, Michael G; Palanki, Srinivas; Pamula, Vamsee K

    2008-12-01

    A digital microfluidic platform for performing heterogeneous sandwich immunoassays based on efficient handling of magnetic beads is presented in this paper. This approach is based on manipulation of discrete droplets of samples and reagents using electrowetting without the need for channels where the droplets are free to move laterally. Droplet-based manipulation of magnetic beads therefore does not suffer from clogging of channels. Immunoassays on a digital microfluidic platform require the following basic operations: bead attraction, bead washing, bead retention, and bead resuspension. Several parameters such as magnetic field strength, pull force, position, and buffer composition were studied for effective bead operations. Dilution-based washing of magnetic beads was demonstrated by immobilizing the magnetic beads using a permanent magnet and splitting the excess supernatant using electrowetting. Almost 100% bead retention was achieved after 7776-fold dilution-based washing of the supernatant. Efficient resuspension of magnetic beads was achieved by transporting a droplet with magnetic beads across five electrodes on the platform and exploiting the flow patterns within the droplet to resuspend the beads. All the magnetic-bead droplet operations were integrated together to generate standard curves for sandwich heterogeneous immunoassays on human insulin and interleukin-6 (IL-6) with a total time to result of 7 min for each assay.

  10. Expanded polylactide bead foaming - A new technology

    NASA Astrophysics Data System (ADS)

    Nofar, M.; Ameli, A.; Park, C. B.

    2015-05-01

    Bead foaming technology with double crystal melting peak structure has been recognized as a promising method to produce low-density foams with complex geometries. During the molding stage of the bead foams, the double peak structure generates a strong bead-to-bead sintering and maintains the overall foam structure. During recent years, polylactide (PLA) bead foaming has been of the great interest of researchers due to its origin from renewable resources and biodegradability. However, due to the PLA's low melt strength and slow crystallization kinetics, the attempts have been limited to the manufacturing methods used for expanded polystyrene. In this study, for the first time, we developed microcellular PLA bead foams with double crystal melting peak structure. Microcellular PLA bead foams were produced with expansion ratios and average cell sizes ranging from 3 to 30-times and 350 nm to 15 µm, respectively. The generated high melting temperature crystals during the saturation significantly affected the expansion ratio and cell density of the PLA bead foams by enhancing the PLA's poor melt strength and promoting heterogeneous cell nucleation around the crystals.

  11. Calcium alginate gel as encapsulation matrix for coimmobilized enzyme systems.

    PubMed

    Blandino, A; Macías, M; Cantero, D

    2003-07-01

    Encapsulation within calcium alginate gel capsules was used to produce a coimmobilized enzyme system. Glucose oxidase (GOD) and catalase (CAT) were chosen as model enzymes. The same values of Vmax and Km app for the GOD encapsulated system and for the GOD-CAT coencapsulated system were calculated. When gel beads and capsules were compared, the same catalyst deactivation sequence for the two enzymes was observed. However, when capsules were employed as immobilization support, GOD efficiencies were higher than for the gel beads. These results were explained in terms of the structure of the capsules.

  12. Preparation methods of alginate nanoparticles.

    PubMed

    Paques, Jerome P; van der Linden, Erik; van Rijn, Cees J M; Sagis, Leonard M C

    2014-07-01

    This article reviews available methods for the formation of alginate nano-aggregates, nanocapsules and nanospheres. Primarily, alginate nanoparticles are being prepared by two methods. In the "complexation method", complex formation on the interface of an oil droplet is used to form alginate nanocapsules, and complex formation in an aqueous solution is used to form alginate nano-aggregates. In a second method w/o emulsification coupled with gelation of the alginate emulsion droplet can be used to form alginate nanospheres. We review advantages and disadvantages of these methods, and give an overview of the properties of the alginate particles produced with these methods.

  13. Microencapsulation of bioactives in cross-linked alginate matrices by spray drying.

    PubMed

    Santa-Maria, Monica; Scher, Herbert; Jeoh, Tina

    2012-01-01

    Microencapsulation of biomolecules, cells and chemicals is widely used in the food and pharmaceutical industries to improve stability, delivery and to control the release of encapsulated moieties. Among encapsulation matrices, alginate is preferred due to its low cost, biodegradability and biocompatibility. Current methods for producing stable alginate gels involve dropping alginate suspensions into divalent cation solutions. This procedure is difficult to scale-up and produces undesirably large alginate beads. In our novel encapsulation method, alginate gelation occurs during spray drying upon volatilisation of a base and rapid release of otherwise unavailable calcium ions. The resulting particles, with median particle sizes in the range 15-120 µm, are insoluble in solution. Cellulase and hemicellulase activities encapsulated by this method were not compromised during spray drying and remained stable over prolonged storage. The procedure described here offers a one-step alternative to other encapsulation methods that are costly and difficult to scale-up.

  14. Alginate-based bipolymeric-nanobioceramic composite matrices for sustained drug release.

    PubMed

    Hasnain, M Saquib; Nayak, Amit Kumar; Singh, Mukul; Tabish, Mohammad; Ansari, Mohammed Tahir; Ara, Tahseen Jahan

    2016-02-01

    Alginate-based bipolymeric-nanobioceramic composite matrices for sustained drug release were developed through incorporation of nano-hydroxyapatite [nHAp] powders within ionotropically-gelled calcium ion-induced alginate-poly (vinyl pyrrolidone) blends polymeric systems. nHAp powders were synthesized by precipitation technique using calcium hydroxide [Ca(OH)2] and orthophosphoric acid [H3PO4] as raw materials. The average particle size of these was synthesized. nHAp powders was found as 19.04 nm and used to prepare nHAp-alginate-PVP beads containing DS. These beads exhibited drug entrapment efficiency (%) of 65.82±1.88 to 94.45±3.72% and average bead sizes of 0.98±0.07 to 1.23±0.15 mm. These beads were characterized by scanning electron microscopy (SEM) and Fourier transform-infra red (FTIR) spectroscopy analyses. Various nHAp-alginate-PVP beads containing DS exhibited prolonged sustained drug release and followed the Koresmeyer-Peppas model of drug release (R2=0.9908-0.9978) with non-Fickian release (anomalous transport) mechanism (n=0.73-0.84) for drug release over 8 h.

  15. Poly(glycidylmethacrylate) brushes generated on poly(VBC) beads by SI-ATRP technique: hydrazine and amino groups functionalized for invertase adsorption and purification.

    PubMed

    Yavuz, Erdem; Bayramoğlu, Gülay; Senkal, B Filiz; Arica, M Yakup

    2009-05-15

    Crosslinked-poly(vinylbenzylchloride), poly(VBC), beads were prepared by suspension polymerization and poly(glycidylmethacrylate) was grafted by surface-initiated-atom radical polymerization (SI-ATRP) technique. Epoxy groups of the grafted poly(GMA) were reacted with hydrazine and ammonia to create an affinity binding sites. The hydrazine and amine functionalized poly(VBC-g-GMA) beads were used as an affinity support for adsorption of invertase from solution and yeast crude extract. The influence of pH, equilibrium time, ionic strength and initial invertase concentration on the adsorption capacities of both hydrazine and amine functionalized beads has been investigated. Maximum invertase adsorptions onto hydrazine and amine functionalized beads, were 86.7 and 30.4 mg/g at pH 4.0 and 5.5, respectively. The experimental equilibrium data fitted well to the Temkin isotherm model. Finally, the hydrazine functionalized poly(VBC-g-GMA) beads were used for the purification of invertase from crude yeast extract in a batch system and the purity of the eluted invertase from the hydrazine functionalized beads was determined as 92% by HPLC from single step purification protocol.

  16. Alginate encapsulation parameters influence the differentiation of microencapsulated embryonic stem cell aggregates.

    PubMed

    Wilson, Jenna L; Najia, Mohamad Ali; Saeed, Rabbia; McDevitt, Todd C

    2014-03-01

    Pluripotent embryonic stem cells (ESCs) have tremendous potential as tools for regenerative medicine and drug discovery, yet the lack of processes to manufacture viable and homogenous cell populations of sufficient numbers limits the clinical translation of current and future cell therapies. Microencapsulation of ESCs within microbeads can shield cells from hydrodynamic shear forces found in bioreactor environments while allowing for sufficient diffusion of nutrients and oxygen through the encapsulation material. Despite initial studies examining alginate microbeads as a platform for stem cell expansion and directed differentiation, the impact of alginate encapsulation parameters on stem cell phenotype has not been thoroughly investigated. Therefore, the objective of this study was to systematically examine the effects of varying alginate compositions on microencapsulated ESC expansion and phenotype. Pre-formed aggregates of murine ESCs were encapsulated in alginate microbeads composed of a high or low ratio of guluronic to mannuronic acid residues (High G and High M, respectively), with and without a poly-L-lysine (PLL) coating, thereby providing four distinct alginate bead compositions for analysis. Encapsulation in all alginate compositions was found to delay differentiation, with encapsulation within High G alginate yielding the least differentiated cell population. The addition of a PLL coating to the High G alginate prevented cell escape from beads for up to 14 days. Furthermore, encapsulation within High M alginate promoted differentiation toward a primitive endoderm phenotype. Taken together, the findings of this study suggest that distinct ESC expansion capacities and differentiation trajectories emerge depending on the alginate composition employed, indicating that encapsulation material physical properties can be used to control stem cell fate.

  17. Structurally stable gel bead containing entrapped enzyme and method for manufacture thereof

    DOEpatents

    Woodward, J.

    1998-12-08

    This research provides a structurally stable gel bead containing an entrapped enzyme and a method for its manufacture. The enzyme is covalently cross-linked to gelatin in the presence of glutaraldehyde prior to the formation of the gel bead, to prevent leakage of the enzyme. Propylene glycol alginate is then added to the mixture. Once the gel beads are formed, they are then soaked in glutaraldehyde, which imparts structural stability to the gel beads. This method can be used with many types of enzymes, such as proteases, carbohydrases, proteases, ligases, isomerases, oxidoreductases, and specialty enzymes. These and other enzymes can be immobilized in the gel beads and utilized in a number of enzymatic processes. Exogenously added ions are not required to maintain the structural stability of these gel beads. 7 figs.

  18. Structurally stable gel bead containing entrapped enzyme and method for manufacture thereof

    DOEpatents

    Woodward, Jonathan

    1998-01-01

    A structurally stable gel bead containing an entrapped enzyme and a method for its manufacture. The enzyme is covalently cross-linked to gelatin in the presence of glutaraldehyde prior to the formation of the gel bead, to prevent leakage of the enzyme. Propylene glycol alginate is then added to the mixture. Once the gel beads are formed, they are then soaked in glutaraldehyde, which imparts structural stability to the gel beads. This method can be used with many types of enzymes, such as proteases, carbohydrases, proteases, ligases, isomerases, oxidoreductases, and specialty enzymes. These and other enzymes can be immobilized in the gel beads and utilized in a number of enzymatic processes. Exogenously added ions are not required to maintain the structural stability of these gel beads.

  19. TiO₂ beads and TiO₂-chitosan beads for urease immobilization.

    PubMed

    Ispirli Doğaç, Yasemin; Deveci, Ilyas; Teke, Mustafa; Mercimek, Bedrettin

    2014-09-01

    The aim of the present study is to synthesize TiO2 beads for urease immobilization. Two different strategies were used to immobilize the urease on TiO2 beads. In the first method (A), urease enzyme was immobilized onto TiO2 beads by adsorption and then crosslinking. In the second method (B), TiO2 beads were coated with chitosan-urease mixture. To determine optimum conditions of immobilization, different parameters were investigated. The parameters of optimization were initial enzyme concentration (0.5; 1; 1.5; 2mg/ml), alginate concentration (1; 2; 3%), glutaraldehyde concentration (1; 2; 3% v/v) and chitosan concentration (2; 3; 4 mg/ml). The optimum enzyme concentrations were determined as 1.5mg/ml for A and 1.0mg/ml for B. The other optimum conditions were found 2.0% (w/v) for alginate concentration (both A and B); 3.0mg/ml for chitosan concentration (B) and 2.0% (v/v) for glutaraldehyde concentration (A). The optimum temperature (20-60°C), optimum pH (3.0-10.0), kinetic parameters, thermal stability (4-70°C), pH stability (4.0-9.0), operational stability (0-230 min) and reusability (20 times) were investigated for characterization. The optimum temperatures were 30°C (A), 40°C (B) and 35°C (soluble). The temperature profiles of the immobilized ureases were spread over a large area. The optimum pH values for the soluble urease and immobilized urease prepared by using methods (A) and (B) were found to be 7.5, 7.0, 7.0, respectively. The thermal stabilities of immobilized enzyme sets were studied and they maintained 50% activity at 65°C. However, at this temperature free urease protected only 15% activity.

  20. Fused Bead Analysis of Diogenite Meteorites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D.W.; Beck, B.W.; McSween, H.Y.; Lee, C.T. A.

    2009-01-01

    Bulk rock chemistry is an essential dataset in meteoritics and planetary science [1]. A common method used to obtain the bulk chemistry of meteorites is ICP-MS. While the accuracy, precision and low detection limits of this process are advantageous [2], the sample size used for analysis (approx.70 mg) can be a problem in a field where small and finite samples are the norm. Fused bead analysis is another bulk rock analytical technique that has been used in meteoritics [3]. This technique involves forming a glass bead from 10 mg of sample and measuring its chemistry using a defocused beam on a microprobe. Though the ICP-MS has lower detection limits than the microprobe, the fused bead method destroys a much smaller sample of the meteorite. Fused bead analysis was initially designed for samples with near-eutectic compositions and low viscosities. Melts generated of this type homogenize at relatively low temperatures and produce primary melts near the sample s bulk composition [3]. The application of fused bead analysis to samples with noneutectic melt compositions has not been validated. The purpose of this study is to test if fused bead analysis can accurately determine the bulk rock chemistry of non-eutectic melt composition meteorites. To determine this, we conduct two examinations of the fused bead. First, we compare ICP-MS and fused bead results of the same samples using statistical analysis. Secondly, we inspect the beads for the presence of crystals and chemical heterogeneity. The presence of either of these would indicate incomplete melting and quenching of the bead.

  1. A microfluidic approach to encapsulate living cells in uniform alginate hydrogel microparticles.

    PubMed

    Martinez, Carlos J; Kim, Jin Woong; Ye, Congwang; Ortiz, Idelise; Rowat, Amy C; Marquez, Manuel; Weitz, David

    2012-07-01

    A microfluidic technique is described to encapsulate living cells in alginate hydrogel microparticles generated from monodisperse double-emulsion templates. A microcapillary device is used to fabricate double emulsion templates composed of an alginate drop surrounded by a mineral oil shell. Hydrogel formation begins when the alginate drop separates from the mineral oil shell and comes into contact with Ca(2+) ions in the continuous phase. Alginate hydrogel microparticles with diameters ranging from 60 to 230 µm are obtained. 65% of the cells encapsulated in the alginate microparticles were viable after one week. The technique provides a useful means to encapsulate the living cells in monodisperse hydrogel microparticles.

  2. Core-shell hydrogel beads with extracellular matrix for tumor spheroid formation

    PubMed Central

    Yu, L.; Grist, S. M.; Nasseri, S. S.; Ni, C.; Cheung, K. C.

    2015-01-01

    Creating multicellular tumor spheroids is critical for characterizing anticancer treatments since they may provide a better model of the tumor than conventional monolayer culture. Moreover, tumor cell interaction with the extracellular matrix can determine cell organization and behavior. In this work, a microfluidic system was used to form cell-laden core-shell beads which incorporate elements of the extracellular matrix and support the formation of multicellular spheroids. The bead core (comprising a mixture of alginate, collagen, and reconstituted basement membrane, with gelation by temperature control) and shell (comprising alginate hydrogel, with gelation by ionic crosslinking) were simultaneously formed through flow focusing using a cooled flow path into the microfluidic chip. During droplet gelation, the alginate acts as a fast-gelling shell which aids in preventing droplet coalescence and in maintaining spherical droplet geometry during the slower gelation of the collagen and reconstituted basement membrane components as the beads warm up. After droplet gelation, the encapsulated MCF-7 cells proliferated to form uniform spheroids when the beads contained all three components: alginate, collagen, and reconstituted basement membrane. The dose-dependent response of the MCF-7 cell tumor spheroids to two anticancer drugs, docetaxel and tamoxifen, was compared to conventional monolayer culture. PMID:25945144

  3. Comparative investigation of the binding characteristics of poly-L-lysine and chitosan on alginate hydrogel.

    PubMed

    Ren, Ying; Xie, Hongguo; Liu, Xiaocen; Bao, Jie; Yu, Weiting; Ma, Xiaojun

    2016-03-01

    The binding properties of poly-L-lysine and chitosan to alginate have been evaluated quantitatively and compared. Poly-L-lysine bound to alginate hydrogel more rapidly than chitosan as poly-L-lysine has a smaller molar hydrodynamic volume. In addition, poly-L-lysine showed a much higher binding capacity (6.14:1) for alginate hydrogel beads than chitosan (2.71:1), and a little higher binding stoichiometry (0.58) to sodium alginate molecules in solution than chitosan (0.49). An exothermic heat of alginate-poly-L-lysine complexes formation of 2.02 kJ/mol was detected. For alginate-chitosan complexes, the binding enthalpy has been seen to be -3.49 kJ/mol. The stability of the polyelectrolyte complexes was related to their binding enthalpy. The alginate-poly-L-lysine complexes could be disintegrated and rebuilt. By contrast, chitosan was bound with alginate in a steady state. These results provide fundamental insights regarding the structure and property relationships of macromolecules, and will be helpful in designing and selecting appropriate polymers.

  4. Effect of alginate culture and mechanical stimulation on cartilaginous matrix synthesis of rat dedifferentiated chondrocytes.

    PubMed

    Wang, Yun; de Isla, Natalia; Huselstein, Céline; Wang, Binghua; Netter, Patrick; Stoltz, Jean-François; Muller, Sylvaine

    2008-01-01

    To investigate whether the application of alginate culture and mechanical stimulation will improve the synthesis of cartilaginous matrix in dedifferentiated chondrocytes, rat chondrocytes underwent dedifferentiation upon serial monolayer culture up to passage 6, and then were encapsulated in 2% alginate gel and subject to static culture. After 28 days culture in static, the beads were exposed to 48 h of mechanical stimulation with continuous agitation. The sGAG content in alginate bead was measured by alcian blue staining. The expression of collagen protein was detected using immunofluorescence. After 28 days culture in alginate bead, the dedifferentiated chondrocytes remained round in shape and re-synthesized the chondrocyte-specific matrix. Compared with static culture, mechanical stimulation induced statistically increases in the production of glycosaminoglycan (p< or =0.01), as well as in the synthesis of collagen type II protein (p< or =0.05). On the contrary, no positive expression of collagen type I protein was observed at the end of culture. Our results demonstrated that both of alginate culture and mechanical stimulation help to restore chondrocyte phenotype and promotes the synthesis of cartilaginous matrix.

  5. Evaluation of microbeads of calcium alginate as a fluidized bed medium for affinity chromatography of Aspergillus niger Pectinase.

    PubMed

    Roy, Ipsita; Jain, Sulakshana; Teotia, Sunita; Gupta, Munishwar Nath

    2004-01-01

    Calcium alginate microbeads (212-425 microm) were prepared by spraying 2% (w/v) alginate solution into 1 M CaCl2 solution. The fluidization behavior of these beads was studied, and the bed expansion index and terminal velocity were found to be 4.3 and 1808 cm h(-1), respectively. Residence time distribution curves showed that the dispersion of the protein was much less with these microbeads than with conventionally prepared calcium alginate macrobeads when both kinds of beads were used for chromatography in a fluidized bed format. The fluidized bed of these beads was used for the purification of pectinase from a commercial preparation. The media performed well even with diluted feedstock; 90% activity recovery with 211-fold purification was observed.

  6. A bacteria-based bead for possible self-healing marine concrete applications

    NASA Astrophysics Data System (ADS)

    Palin, D.; Wiktor, V.; Jonkers, H. M.

    2016-08-01

    This work presents a bacteria-based bead for potential self-healing concrete applications in low-temperature marine environments. The bead consisting of calcium alginate encapsulated bacterial spores and mineral precursor compounds was assessed for: oxygen consumption, swelling, and its ability to form a biocomposite in a simulative marine concrete crack solution (SMCCS) at 8 °C. After six days immersion in the SMCCS the bacteria-based beads formed a calcite crust on their surface and calcite inclusions in their network, resulting in a calcite-alginate biocomposite. Beads swelled by 300% to a maximum diameter of 3 mm, while theoretical calculations estimate that 0.112 g of the beads were able to produce ˜1 mm3 of calcite after 14 days immersion; providing the bead with considerable crack healing potential. The bacteria-based bead shows great potential for the development of self-healing concrete in low-temperature marine environments, while the formation of a biocomposite healing material represents an exciting avenue for self-healing concrete research.

  7. Gelling process for sodium alginate: New technical approach by using calcium rich micro-spheres.

    PubMed

    Vicini, Silvia; Castellano, Maila; Mauri, Marco; Marsano, Enrico

    2015-12-10

    Alginate based materials have become an important class of products in many fields from the pharmaceutical industry to tissue engineering, because of their ability to create stimuli responsive hydrogels. We present a new technical approach for obtaining a controlled gelling process, based on the quantities of Ca(2+) rich alginate micro-beads added as crosslinkers. The gels have been evaluated in light of the amount of Ca(2+) added to the alginate solution, and in light of the different dimensions of the micro-beads, using rheological measurements to assess the variation in the storage modulus (G'), loss modulus (G'') and complex viscosity (η(*)) as well as swelling and deswelling tests. The methodology was developed to obtain a material with specific characteristics for application in the field of conservation. The material had to be able to create a stable gel after being applied on the artwork surface and to confine the solvent action at the interface during cleaning operations.

  8. Removal of two organophosphate pesticides by a bacterial consortium immobilized in alginate or tezontle.

    PubMed

    Yañez-Ocampo, Gustavo; Sanchez-Salinas, Enrique; Jimenez-Tobon, Gloria Alicia; Penninckx, Michel; Ortiz-Hernández, María Laura

    2009-09-15

    In order to remove methyl-parathion (MP) and tetrachlorvinphos (TCF), a bacterial consortium was immobilized with two supports consisting of alginate beads or stones of tezontle colonized by biofilm. Removal kinetics were recorded for suspended and immobilized consortium using a mineral salt medium supplemented with MP and TCF at 25mg/L and with 0.1% (w/v) glucose as a co-substrate. The viability of the consortium cultivated in suspension was maintained for 6 days, whereas the viability of the consortium immobilized in alginate and tezontle supports was maintained for up to 11 and 13 days, respectively. Growth was enhanced when using glucose as a co-substrate. The percentage of MP removed was significantly higher (alpha=0.05) when consortium was immobilized in alginate beads and biofilm on tezontle as compared to suspension culture.

  9. Crosslinked, porous, polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1977-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree. C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  10. Small, porous polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor); Dreyer, William J. (Inventor)

    1976-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree.C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  11. Crosslinked, porous, polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor); Dreyer, William J. (Inventor)

    1976-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree.C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  12. Sodium Alginate with PEG/PEO Blends as a Floating Drug Delivery Carrier - In vitro Evaluation.

    PubMed

    Mary, Christe Sonia; Swamiappan, Sasikumar

    2016-09-01

    Purpose: Floating drug delivery system reduces the quantity of drug intake and the risk of overloading the organs with excess drug. Methods: In the present study, we prepared the blends of sodium alginate with polyethylene glycol (PEG) and polyethylene oxide (PEO) as a matrix, sodium hydrogen carbonate as a pore forming agent, methyl cellulose as a binder and barium chloride containing 10% acetic acid as a hardening agent. Different ratios of pore forming agent to the polymer blend was used to prepare the floating beads with different porosity and morphology. Ciprofloxacin hydrochloride was used as a model drug for the release kinetics studies. Results: The beads were characterized by optical and FESEM microscopy to study the morphology and pore dimensions. The results obtained shows decrease in beads size with increase in the concentration of the pore forming agent. The swelling properties of the beads were found to be in the range of 80% to 125%. The release kinetics of the ciprofloxacin from the beads was measured by UV-Visible spectroscopy at λmax of 278nm and the results shows for highly porous beads. Conclusion: By varying the amount of alginate and pore forming agent the release kinetics is found to get altered. As a result, ciprofloxacin hydrochloride release is found to be sustained from the blended beads.

  13. Encapsulating betalains from Opuntia ficus-indica fruits by ionic gelation: Pigment chemical stability during storage of beads.

    PubMed

    Otálora, María Carolina; Carriazo, José Gregorio; Iturriaga, Laura; Osorio, Coralia; Nazareno, Mónica Azucena

    2016-07-01

    Betalain encapsulation was performed by ionic gelation as a stabilization strategy for these natural pigments. Betalains were extracted from purple cactus fruits and encapsulated in calcium-alginate and in combination of calcium alginate and bovine serum albumin. Beads were characterised by scanning electron microscopy and thermal analysis using differential scanning calorimetry and thermogravimetry. Moisture sorption isotherms were determined. Bead morphology was affected by matrix composition. Pigments storage stability was evaluated at different equilibrium relative humidity and temperatures. Pigment composition of beads was determined by HPLC-MS-MS and degradation products were also analysed after storage; betalamic acid being the major one. Both types of matrices protected the encapsulated pigments, being their storage stability better at low relative humidity than that of the non-encapsulated control material. Antiradical activities of beads were proportional to remaining betalain contents. At high relative humidity, there was no protection and low storage stability was observed in the samples.

  14. Molecular and biopharmaceutical investigation of alginate-inulin synbiotic co-encapsulation of probiotic to target the colon.

    PubMed

    Atia, Abdelbasset; Gomma, Ahmed I; Fliss, Ismail; Beyssac, Eric; Garrait, Ghiselain; Subirade, Muriel

    2017-03-28

    Colon targeting, as a site-specific delivery for oral formulation, remains a major challenge, especially for sensitive bioactive components such as therapeutic forms of phages, live attenuated virus, and prebiotics-probiotics association. Synbiotics could be used to protect encapsulated probiotics during the gastrointestinal tract and control their release in the colon. To achieve these goals, effective prebiotics such as inulin could be combined with alginate-the most exploited polymer used for probiotic encapsulation-in the form of beads. This work aimed to study the biopharmaceutical behavior of alginate beads (A) and inulin-Alginate beads of different inulin concentrations (5 or 20%) in 2% alginate (AI5, AI20). Beads were loaded with three probiotic strains (Pediococcus acidilactici Ul5, Lactobacillus reuteri and Lactobacillus salivarius). Dissolution of beads was studied by USP4 under conditions simulating the gastrointestinal condition. The survival rates of the bacterial strains were measured by a specific qPCR bacterial count. Mucoadhesiveness of beads was studied by an ex-vivo method using intestinal mucosa. To understand the behavior of each formulation, the ultrastructure of the polymeric network was studied using scanning electron microscopy (SEM). Molecular interactions between alginate and inulin were studied by Fourier transform infrared spectroscopy (FTIR). Dissolution results suggested that the presence of inulin in beads provided more protection for the tested bacterial strains against the acidic pH. AI5 was the most effective formulation to deliver probiotics to the colon simulation conditions. FTIR and SEM investigations explained the differences in behavior of each formula. The developed symbiotic form provided a promising matrix for the development of colonic controlled release systems.

  15. Apparatus for the production of gel beads containing a biocatalyst

    DOEpatents

    Scott, C.D.; Scott, T.C.; Davison, B.H.

    1998-03-19

    An apparatus is described for the large-scale and continuous production of gel beads containing a biocatalyst. The apparatus is a columnar system based on the chemical cross-linking of hydrocolloidal gels that contain and immobilize a biocatalyst, the biocatalyst being a microorganism or an enzyme. Hydrocolloidal gels, such as alginate, carrageenan, and a mixture of bone gelatin and modified alginate, provide immobilization matrices that can be used to entrap and retain the biocatalyst while allowing effective contact with substrates and release of products. Such immobilized biocatalysts are generally formulated into small spheres or beads that have high concentrations of the biocatalyst within the gel matrix. The columnar system includes a gel dispersion nozzle submerged in a heated non-interacting liquid, typically an organic liquid, that is immiscible with water to allow efficient formation of spherical gel droplets, the non-interacting liquid having a specific gravity that is less than water so that the gel droplets will fall through the liquid by the force of gravity. The heated non-interacting liquid is in direct contact with a chilled upflowing non-interacting liquid that will provide sufficient residence time for the gel droplets as they fall through the liquid so that they will be cooled below the gelling temperature and form solid spheres. The upflowing non-interacting liquid is in direct contact with an upflowing temperature-controlled aqueous solution containing the necessary chemicals for cross-linking or fixing of the gel beads to add the necessary stability. The flow rates of the two liquid streams can be varied to control the proper residence time in each liquid section to accommodate the production of gel beads of differing settling velocities. A valve is provided for continuous removal of the stabilized gel beads from the bottom of the column. 1 fig.

  16. Apparatus for the production of gel beads containing a biocatalyst

    DOEpatents

    Scott, Charles D.; Scott, Timothy C.; Davison, Brian H.

    1998-01-01

    An apparatus for the large-scale and continuous production of gel beads containing a biocatalyst. The apparatus is a columnar system based on the chemical cross-linking of hydrocolloidal gels that contain and immobilize a biocatalyst, the biocatalyst being a microorganism or an enzyme. Hydrocolloidal gels, such as alginate, carrageenan, and a mixture of bone gelatin and modified alginate, provide immobilization matrices that can be used to entrap and retain the biocatalyst while allowing effective contact with substrates and release of products. Such immobilized biocatalysts are generally formulated into small spheres or beads that have high concentrations of the biocatalyst within the gel matrix. The columnar system includes a gel dispersion nozzle submerged in a heated non-interacting liquid, typically an organic liquid, that is immiscible with water to allow efficient formation of spherical gel droplets, the non-interacting liquid having a specific gravity that is less than water so that the gel droplets will fall through the liquid by the force of gravity. The heated non-interacting liquid is in direct contact with a chilled upflowing non-interacting liquid that will provide sufficient residence time for the gel droplets as they fall through the liquid so that they will be cooled below the gelling temperature and form solid spheres. The upflowing non-interacting liquid is in direct contact with an upflowing temperature-controlled aqueous solution containing the necessary chemicals for cross-linking or fixing of the gel beads to add the necessary stability. The flow rates of the two liquid streams can be varied to control the proper residence time in each liquid section to accommodate the production of gel beads of differing settling velocities. A valve is provided for continuous removal of the stabilized gel beads from the bottom of the column.

  17. Efficacy of polymer coating of probiotic beads suspended in pressurized and pasteurized longan juices on the exposure to simulated gastrointestinal environment.

    PubMed

    Chaikham, Pittaya; Apichartsrangkoon, Arunee; George, Trevor; Jirarattanarangsri, Wachira

    2013-11-01

    Alginate-coated Lactobacillus acidophilus LA5 or Lactobacillus casei 01 was recoated with either 0.1-0.5% (w/v) alginate or 0.05-0.15% (w/v) poly-L-lysine (PLL) plus 0.2% (w/v) alginate or 5-15% (w/v) gelatin, after which they were determined for survivability in gastric or bile longan juices. The morphology of encapsulated probiotic cells illustrated that recoated beads with 0.5% alginate showed a more compact surface and a greater protective effect than other recoating materials. The recoated beads with 0.5% alginate and 0.05-0.15% PLL plus 0.2% alginate of both strains showed the highest viability in gastric longan juice. In bile longan juice, only 0.5% alginate showed the best protection for both recoated beads. When considering the storage stability, encapsulated L. acidophilus LA5 exhibited a higher viable count than those of the free cells, whereas L. casei 01 showed equivalent viability of both free and double-coated cells. Based on the impact of pressurization or pasteurization, both processed juices gave rise to equivalent survivability of the probiotic cells during storage.

  18. Dodecenyl succinylated alginate as a novel material for encapsulation and hyperactivation of lipases.

    PubMed

    Falkeborg, Mia; Paitaid, Pattarapon; Shu, Allen Ndonwi; Pérez, Bianca; Guo, Zheng

    2015-11-20

    Alginate was modified with dodecenyl succinic anhydride (SAC12) in an aqueous reaction medium at neutral pH. The highest degree of succinylation (33.9±3.5%) was obtained after 4h at 30°C, using four mole SAC12 per mol alginate monomer. Alginate was modified with succinic anhydride (SAC0) for comparison, and the structures and thermal properties of alg-SAC0 and alg-SAC12 were evaluated using FTIR, (1)H NMR, and DSC. Calcium-hydrogel beads were formed from native and modified alginates, in which lipases were encapsulated with a load of averagely 76μg lipase per mg alginate, irrespective of the type of alginate. Lipases with a "lid", which usually are dependent on interfacial activation, showed a 3-fold increase in specific activity toward water-soluble substrates when encapsulated in alg-SAC12, compared to the free lipase. Such hyperactivation was not observed for lipases independent of interfacial activation, or for lipases encapsulated in native alginate or alg-SAC0 hydrogels.

  19. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium alginate. 184.1187 Section 184.1187 Food... Specific Substances Affirmed as GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005.... Calcium alginate is prepared by the neutralization of purified alginic acid with appropriate pH...

  20. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Potassium alginate...

  1. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium alginate. 184.1724 Section 184.1724 Food and... Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Sodium alginate...

  2. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Sodium alginate is prepared by...

  3. Processing and Characterization of MMC Beads Based on Zirconia and TRIP Steel

    NASA Astrophysics Data System (ADS)

    Oppelt, Marie; Wenzel, Claudia; Aneziris, Christos G.; Berek, Harry

    2014-12-01

    A novel process for metal-matrix composite fabrication with the special focus on single beads and sintered bead structures is explored. The used gel-casting process by sodium alginate gelation is introduced, and various analyses with significant results are presented. The suspensions contained 16-7-3 steel and zirconia particles as well as sodium alginate and were subsequently added dropwise into water which contained solidifying agent for forming rubbery, substantially round beads. Sintered beads with adequate strength (~400 MPa) and perfect surface, homogeneous microstructure, and high energy absorption capability have been produced by this casting process. At lower strains (up to 15 pct), all zirconia reinforced steel beads obtain higher specific energy absorption (SEA) in comparison to pure steel beads. Especially the composition of 90 vol pct TRIP steel and 10 vol pct zirconia shows a significant improved energy absorption capability with 27.7 MJ/m3 at a strain of 15 pct. Pure steel only exhibits a SEA of 13.1 MJ/m3.

  4. Alginate synthesis in Pseudomonas aeruginosa: the role of AlgL (alginate lyase) and AlgX.

    PubMed Central

    Monday, S R; Schiller, N L

    1996-01-01

    Previous studies localized an alginate lyase gene (algL) within the alginate biosynthetic gene cluster at 34 min on the Pseudomonas aeruginosa chromosome. Insertion of a Tn501 polar transposon in a gene (algX) directly upstream of algL in mucoid P. aeruginosa FRD1 inactivated expression of algX, algL, and other downstream genes, including algA. This strain is phenotypically nonmucoid; however, alginate production could be restored by complementation in trans with a plasmid carrying all of the genes inactivated by the insertion, including algL and algX. Alginate production was also recovered when a merodiploid that generated a complete alginate gene cluster on the chromosome was constructed. However, alginate production by merodiploids formed in the algX::Tn501 mutant using an alginate cluster with an algL deletion was not restored to wild-type levels unless algL was provided on a plasmid in trans. In addition, complementation studies of Tn501 mutants using plasmids containing specific deletions in either algL or algX revealed that both genes were required to restore the mucoid phenotype. Escherichia coli strains which expressed algX produced a unique protein of approximately 53 kDa, consistent with the gene product predicted from the DNA sequencing data. These studies demonstrate that AlgX, whose biochemical function remains to be defined, and AlgL, which has alginate lyase activity, are both involved in alginate production by P. aeruginosa. PMID:8550492

  5. Laser-assisted fabrication of highly viscous alginate microsphere

    NASA Astrophysics Data System (ADS)

    Lin, Yafu; Huang, Yong

    2011-04-01

    Encapsulated microspheres have been widely used in various biomedical applications. However, fabrication of encapsulated microspheres from highly viscous materials has always been a manufacturing challenge. The objective of this study is to explore a novel metallic foil-assisted laser-induced forward transfer (LIFT), a laser-assisted fabrication technique, to make encapsulated microspheres using high sodium alginate concentration solutions. The proposed four-layer approach includes a quartz disk, a sacrificial and adhesive layer, a metallic foil, and a transferred suspension layer. It is found that the proposed four-layer modified LIFT approach provides a promising fabrication technology for making of bead-encapsulated microspheres from highly viscous solutions. During the process, the microsphere only can be formed if the direct-writing height is larger than the critical direct-writing height; otherwise, tail structured droplets are formed; and the encapsulated microsphere diameter linearly increases with the laser fluence and decreases with the sodium alginate concentration.

  6. Method To immobilize the aphid-pathogenic fungus erynia neoaphidis in an alginate matrix for biocontrol

    PubMed

    Shah; Aebi; Tuor

    1998-11-01

    Erynia neoaphidis is an important fungal pathogen of aphid pests worldwide. There have been few reported attempts to formulate this natural agent for use in biocontrol. In the current study, factors involved in the immobilization of E. neoaphidis hyphae in an alginate matrix were investigated. Hyphae of two isolates cultured in liquid medium were 220 to 620 &mgr;m in length and 7 to 19 &mgr;m in diameter with a 74 to 83% cytoplasmic content. The optimal concentration of low-viscosity sodium alginate for production of conidia from entrapped hyphae was 1.5% (wt/vol), and 0.1 and 0.25 M calcium chloride were equally suitable for use as the gelling solution. Alginate beads were rinsed with 10% sucrose after gelling. However, beads should not be left for longer than 40 min in 0.1 M calcium chloride or 10% sucrose to prevent a 10% loss in conidial production. A 40% (vol/vol) concentration of fungal biomass produced significantly more conidia than either 20% or the standard concentration of 10%. This effect persisted even after beads were dried overnight in a laminar flow hood and stored at 4 degreesC for 4 days. Conidia from freshly produced alginate beads caused 27 to 32% infection in Pea aphids as determined by standardized laboratory bioassays. This finding was not significantly different from infections in aphids inoculated with fresh mycelial mats or plugs from Petri dish cultures. In conclusion, algination appears to be a promising technique for utilizing E. neoaphidis in the biocontrol of aphid pests.

  7. Diffusion Retardation by Binding of Tobramycin in an Alginate Biofilm Model

    PubMed Central

    Cao, Bao; Christophersen, Lars; Jensen, Peter Østrup; Sneppen, Kim; Høiby, Niels; Moser, Claus

    2016-01-01

    Microbial cells embedded in a self-produced extracellular biofilm matrix cause chronic infections, e. g. by Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. The antibiotic killing of bacteria in biofilms is generally known to be reduced by 100–1000 times relative to planktonic bacteria. This makes such infections difficult to treat. We have therefore proposed that biofilms can be regarded as an independent compartment with distinct pharmacokinetics. To elucidate this pharmacokinetics we have measured the penetration of the tobramycin into seaweed alginate beads which serve as a model of the extracellular polysaccharide matrix in P. aeruginosa biofilm. We find that, rather than a normal first order saturation curve, the concentration of tobramycin in the alginate beads follows a power-law as a function of the external concentration. Further, the tobramycin is observed to be uniformly distributed throughout the volume of the alginate bead. The power-law appears to be a consequence of binding to a multitude of different binding sites. In a diffusion model these results are shown to produce pronounced retardation of the penetration of tobramycin into the biofilm. This filtering of the free tobramycin concentration inside biofilm beads is expected to aid in augmenting the survival probability of bacteria residing in the biofilm. PMID:27100887

  8. Antioxidant activity of low molecular weight alginate produced by thermal treatment.

    PubMed

    Kelishomi, Zahra Habibi; Goliaei, Bahram; Mahdavi, Hossein; Nikoofar, Alireza; Rahimi, Mahmood; Moosavi-Movahedi, Ali Akbar; Mamashli, Fatemeh; Bigdeli, Bahareh

    2016-04-01

    By definition, antioxidants are molecules that inhibit the oxidation of other molecules. Therefore, such compounds have very important clinical roles. In this study alginate polymer was depolymerized by heat treatment. The resulting low molecular weight alginates were investigated by UV-visible spectroscopy, Viscometry, Dynamic light scattering and FT-IR spectroscopy techniques. Antioxidant properties of these heat products were studied by ABTS and superoxide radical scavenging assays. Results showed that heating caused breaks in the polymer chain and so generation of low molecular weight alginates. Antioxidant measurements confirmed antioxidant activity of alginate increased upon a decrease in molecular weight. Therefore, low molecular weight alginate produced by heating could be considered as a stronger antioxidant than alginate polymer. These products could be useful for industrial and biomedical applications.

  9. Bead-Dazzled Baskets.

    ERIC Educational Resources Information Center

    St. Clair, Sharon

    2002-01-01

    Presents an art lesson used when teaching about North American Indians to fourth- and fifth-grade students. Explains that the students learn how to make baskets using a coil-wrap technique with colored yarns and beads. Provides a step-by-step explanation of how to create the baskets. (CMK)

  10. Weld-Bead Shaver

    NASA Technical Reports Server (NTRS)

    Guirguis, Kamal; Price, Daniel S.

    1990-01-01

    Hand-held power tool shaves excess metal from inside circumference of welded duct. Removes excess metal deposited by penetration of tungsten/inert-gas weld or by spatter from electron-beam weld. Produces smooth transition across joint. Easier to use and not prone to overshaving. Also cuts faster, removing 35 in. (89 cm) of weld bead per hour.

  11. Understanding Alginate Gel Development for Bioclogging and Biogeophysical Experiments

    NASA Astrophysics Data System (ADS)

    Brown, I.; Atekwana, E. A.; Abdel Aal, G. Z.; Atekwana, E. A.; Sarkisova, S.; Patrauchan, M.

    2012-12-01

    and bioclogging magnitude. However, the alginate concentration was found to be the leading factor for alginate gel yield in the pH range from 4 to 11. Results also suggest that alginate gel may absorb about 25 to 75 percent of dissolved Ca and the magnitude of this sorption depends on the ratio of Ca2+ and alginate concentrations. The absorption of such high concentrations of Ca2+ by the alginate gel may have significant implications on the degree of bioclogging and consequently the SIP response. The generation of the alginate gel within porous media decreased the velocity of liquid flow through solid phase up to 3-5 times. The magnitude of flow decrease was also dependent on the molar ratio between alginate and Ca reacted. The results presented here might be also applied to the optimization of bioremediation because of the stimulating effect of Ca2+ on the generation of biopolymeric gels and hence the development of subsurface biofilm and rate of bioclogging.

  12. Preparation and characterization of Ganoderma lucidum spores-loaded alginate microspheres by electrospraying.

    PubMed

    Zhao, Ding; Li, Jing-Song; Suen, William; Chang, Ming-Wei; Huang, Jie

    2016-05-01

    Ganoderma lucidum spores (GLSs), popular functional food in preventive medicine, are susceptible to oxidative and acidic degradation during processing, storage and oral administration, resulting in the loss of sensory and nutritional qualities. The main objective of the study was to encapsulate the GLS in order to fully preserve the bioactivity of the ingredients as well as providing controlled and targeted delivery. Electrospraying was applied to prepare GLS-Alginate (GLS/A) micro beads in the current study. The size of GLS/A beads can be tailored by varying the applied voltage and drying processes. pH responsive release profiles of GLS/A beads were revealed from in vitro study in a simulated gastrointestinal environment: no release of GLS encapsulated beads in the simulated gastric fluid (pH of 1.8) was observed; while a rapid, size dependent release was found in the simulated intestinal solution (pH of 7.5). The release from smaller beads (e.g. 600 μm) was 1.5 times faster than that of larger beads (e.g. 2000 μm). In addition, the GLS release from freeze dried beads was almost 3 times faster than those of air and vacuum dried beads in the first 90 min. The present results illustrate the potential to protect GLS by encapsulation using electrospraying to achieve the controlled release of GLS ingredients. This will pave the way to develop effective GLS products with desirable bioactive components for healthcare applications.

  13. Binding and leakage of barium in alginate microbeads.

    PubMed

    Mørch, Yrr A; Qi, Meirigeng; Gundersen, Per Ole M; Formo, Kjetil; Lacik, Igor; Skjåk-Braek, Gudmund; Oberholzer, Jose; Strand, Berit L

    2012-11-01

    Microbeads of alginate crosslinked with Ca(2+) and/or Ba(2+) are popular matrices in cell-based therapy. The aim of this study was to quantify the binding of barium in alginate microbeads and its leakage under in vitro and accumulation under in vivo conditions. Low concentrations of barium (1 mM) in combination with calcium (50 mM) and high concentrations of barium (20 mM) in gelling solutions were used for preparation of microbeads made of high-G and high-M alginates. High-G microbeads accumulated barium from gelling solution and contained higher concentrations of divalent ions for both low- and high-Ba exposure compared with high-G microbeads exposed to calcium solely and to high-M microbeads for all gelling conditions. Although most of the unbound divalent ions were removed during the wash and culture steps, leakage of barium was still detected during storage. Barium accumulation in blood and femur bone of mice implanted with high-G beads was found to be dose-dependent. Estimated barium leakage relevant to transplantation to diabetic patients with islets in alginate microbeads showed that the leakage was 2.5 times lower than the tolerable intake value given by WHO for high-G microbeads made using low barium concentration. The similar estimate gave 1.5 times higher than is the tolerable intake value for the high-G microbeads made using high barium concentration. To reduce the risk of barium accumulation that may be of safety concern, the microbeads made of high-G alginate gelled with a combination of calcium and low concentration of barium ions is recommended for islet transplantation.

  14. Alginate: A Versatile Biomaterial to Encapsulate Isolated Ovarian Follicles.

    PubMed

    Vanacker, Julie; Amorim, Christiani A

    2017-02-28

    In vitro culture of ovarian follicles isolated or enclosed in ovarian tissue fragments and grafting of isolated ovarian follicles represent a potential alternative to restore fertility in cancer patients who cannot undergo cryopreservation of embryos or oocytes or transplantation of frozen-thawed ovarian tissue. In this regard, respecting the three-dimensional (3D) architecture of isolated follicles is crucial to maintaining their proper follicular physiology. To this end, alginate hydrogel has been widely investigated using follicles from numerous animal species, yielding promising results. The goal of this review is therefore to provide an overview of alginate applications utilizing the biomaterial as a scaffold for 3D encapsulation of isolated ovarian follicles. Different methods of isolated follicle encapsulation in alginate are discussed in this review, as its use of 3D alginate culture systems as a tool for in vitro follicle analysis. Possible improvements of this matrix, namely modification with arginine-glycine-aspartic acid peptide or combination with fibrin, are also summarized. Encouraging results have been obtained in different animal models, and particularly with isolated follicles encapsulated in alginate matrices and grafted to mice. This summary is designed to guide the reader towards development of next-generation alginate scaffolds, with enhanced properties for follicle encapsulation.

  15. Formulation of nano-zinc oxide into biocomposite beads for dye decolorization

    NASA Astrophysics Data System (ADS)

    Elkady, M. F.; Hassan, H. Shokry; El-Shazly, A. H.

    2015-03-01

    Zinc oxide nano-powder was prepared using sol-gel technique to be encapsulated onto polymeric blend composed from alginate and polyvinyl alcohol to fabricate novel bio-composite beads of nano-zinc oxide. The XRD patterns of both zinc oxide nano-powder and its polymeric hybrid were crystalline in their nature. The FTIR analysis of the fabricated ZnO polymeric hybrid confirms the binding between zinc oxide and the polymeric matrix. The BET analysis demonstrated that the calculated specific surface area of the formulated ZnO beads that equal to 22.8 m2/g is comparatively less than that of the free ZnO nano-powdered that equivalent to 64.9 m2/g. The thermal stability of ZnO nano-powdered dramatically decreased with its immobilization into the polymeric alginate and PVA matrix. The formulated beads had very strong mechanical strength and they are difficult to be broken up to 1500rpm. Moreover, this hybrid beads are chemically stable at the acidic media. The formulated ZnO hybrid beads verified to be good adsorbent material for C.I basic blue 41 (CB41).

  16. Microfluidic one-step synthesis of alginate microspheres immobilized with antibodies

    PubMed Central

    Chen, Wanyu; Kim, Jong-Hoon; Zhang, Di; Lee, Kyong-Hoon; Cangelosi, G. A.; Soelberg, S. D.; Furlong, C. E.; Chung, Jae-Hyun; Shen, Amy Q.

    2013-01-01

    Micrometre- and submicrometre-size functionalized beads are frequently used to capture targets of interest from a biological sample for biological characterizations and disease diagnosis. The main challenge of the microbead-based assay is in the immobilization of probe molecules onto the microbead surfaces. In this paper, we report a versatile droplet microfluidics method to fabricate alginate microspheres while simultaneously immobilizing anti-Mycobacterium tuberculosis complex IgY and anti-Escherichia coli IgG antibodies primarily on the porous alginate carriers for specific binding and binding affinity tests. The binding affinity of antibodies is directly measured by fluorescence intensity of stained target bacteria on the microspheres. We demonstrate that the functionalized alginate microspheres yield specificity comparable with an enzyme-linked immunosorbent assay. The high surface area-to-volume ratio of the functionalized porous alginate microspheres improves the detection limit. By using the droplet microfluidics, we can easily modify the size and shape of alginate microspheres, and increase the concentration of functionalized alginate microspheres to further enhance binding kinetics and enable multiplexing. PMID:23966617

  17. Beaded streams of Arctic permafrost landscapes

    NASA Astrophysics Data System (ADS)

    Arp, C. D.; Whitman, M. S.; Jones, B. M.; Grosse, G.; Gaglioti, B. V.; Heim, K. C.

    2014-07-01

    Beaded streams are widespread in permafrost regions and are considered a common thermokarst landform. However, little is known about their distribution, how and under what conditions they form, and how their intriguing morphology translates to ecosystem functions and habitat. Here we report on a Circum-Arctic inventory of beaded streams and a watershed-scale analysis in northern Alaska using remote sensing and field studies. We mapped over 400 channel networks with beaded morphology throughout the continuous permafrost zone of northern Alaska, Canada, and Russia and found the highest abundance associated with medium- to high-ice content permafrost in moderately sloping terrain. In the Fish Creek watershed, beaded streams accounted for half of the drainage density, occurring primarily as low-order channels initiating from lakes and drained lake basins. Beaded streams predictably transition to alluvial channels with increasing drainage area and decreasing channel slope, although this transition is modified by local controls on water and sediment delivery. Comparison of one beaded channel using repeat photography between 1948 and 2013 indicate relatively stable form and 14C dating of basal sediments suggest channel formation may be as early as the Pleistocene-Holocene transition. Contemporary processes, such as deep snow accumulation in stream gulches effectively insulates river ice and allows for perennial liquid water below most beaded stream pools. Because of this, mean annual temperatures in pool beds are greater than 2 °C, leading to the development of perennial thaw bulbs or taliks underlying these thermokarst features. In the summer, some pools stratify thermally, which reduces permafrost thaw and maintains coldwater habitats. Snowmelt generated peak-flows decrease rapidly by two or more orders of magnitude to summer low flows with slow reach-scale velocity distributions ranging from 0.1 to 0.01 m s-1, yet channel runs still move water rapidly between pools

  18. Sodium Alginate with PEG/PEO Blends as a Floating Drug Delivery Carrier – In vitro Evaluation

    PubMed Central

    Mary, Christe Sonia; Swamiappan, Sasikumar

    2016-01-01

    Purpose: Floating drug delivery system reduces the quantity of drug intake and the risk of overloading the organs with excess drug. Methods: In the present study, we prepared the blends of sodium alginate with polyethylene glycol (PEG) and polyethylene oxide (PEO) as a matrix, sodium hydrogen carbonate as a pore forming agent, methyl cellulose as a binder and barium chloride containing 10% acetic acid as a hardening agent. Different ratios of pore forming agent to the polymer blend was used to prepare the floating beads with different porosity and morphology. Ciprofloxacin hydrochloride was used as a model drug for the release kinetics studies. Results: The beads were characterized by optical and FESEM microscopy to study the morphology and pore dimensions. The results obtained shows decrease in beads size with increase in the concentration of the pore forming agent. The swelling properties of the beads were found to be in the range of 80% to 125%. The release kinetics of the ciprofloxacin from the beads was measured by UV-Visible spectroscopy at λmax of 278nm and the results shows for highly porous beads. Conclusion: By varying the amount of alginate and pore forming agent the release kinetics is found to get altered. As a result, ciprofloxacin hydrochloride release is found to be sustained from the blended beads. PMID:27766228

  19. Coated Aerogel Beads

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  20. Detoxification of Hg(II) from aqueous and enzyme media: Pristine vs. tailored calcium alginate hydrogels.

    PubMed

    Sarkar, Kangkana; Ansari, Zarina; Sen, Kamalika

    2016-10-01

    Calcium alginate (CA) hydrogels were tailored using phenolic compounds (PC) like, thymol, morin, catechin, hesperidin, during their preparation. The PC incorporated gels show modified surface features as indicated by scanning electron microscopic images (SEM). The rheological studies show that excepting the hesperidin incorporated gels all the other kinds including calcium alginate pristine have similar mechanical strength. The hesperidine incorporated CA gels had the maximum capacity to adsorb Hg. The Freundlich adsorption isotherms show higher values of adsorption capacity for all PC incorporated CA beads than the pristine CA (PCA). The hesperidin incorporated CA gels were found to show the best adsorption condition at neutral pH and an optimum contact time of 2.5h at 25°C. Considering the possibility of ingested Hg detoxification from human alimentary tract, the hesperidin and morin incorporated CA beads were further modified through incorporation of cod liver oil as the digestion time of fat in stomach is higher. In vitro uptake capacities of Hg in pepsin and pancreatin containing enzyme media were studied with hesperidin and morin incorporated beads and their corresponding fat incorporated beads also. In the pepsin medium, there was no uptake by hesperidin and fat-hesperidin incorporated beads, which is possibly due to the higher acidity of the medium. But in pancreatin medium Hg was taken up by both kinds of beads. Morin and morin-fat incorporated beads were efficient to uptake Hg from both the pepsin and pancreatin medium. The tailored CA beads may therefore serve as efficient scaffolds to rescue Hg ingested individuals.

  1. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  2. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  3. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  4. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  5. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown...

  6. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown...

  7. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown...

  8. Optimization of a novel biocomposite synthesis (Ammi Visnaga extraction waste/alginate) for Cd(2+) biosorption.

    PubMed

    Nouri, Loubna; Bendjama, Zoubida; Hamitouche, Adh'ya-eddine; Boumaza, Salim; Kaouah, Farida; Trari, Mohamed; Riad, Ladji

    2015-09-01

    A novel environmentally friendly biocomposite namely calcium alginate immobilized Ammi Visnaga (Khella) extraction waste was prepared by electrostatic extrusion method. A full factorial design 2(3) was used to optimize the beads preparation conditions. The effect of sodium alginate concentration (X1), biomass concentration (X2) and cross-linker concentration (X3) on the Cd(2+) removal efficiency was examined in a batch system with a fixed biocomposite dose of 1g/L. Using the experimental results, a linear mathematical model representing the influence of different variables and their interactions was obtained. The optimized values of X1, X2 and X3 were found to be 4.35%, 2.5% and 1.99% respectively. The biocomposite beads were characterized by ATR spectroscopy, scanning electron microscopy for the surface morphology and optical microscopic for the particles size measurements.

  9. Protection of bifidobacteria encapsulated in polysaccharide-protein gel beads against gastric juice and bile.

    PubMed

    Guérin, Daniel; Vuillemard, Jean-Christophe; Subirade, Muriel

    2003-11-01

    Bifidobacterium cells were encapsulated in a mixed gel composed of alginate, pectin, and whey proteins. Two kinds of capsules were obtained: gel beads without membranes and gel beads with two membranes formed by the transacylation reaction. In vitro studies were carried out to determine the effects of simulated gastric pH and bile salts on the survival of free and encapsulated Bifidobacterium bifidum. The protective effects of gel beads without membranes and gel beads coated with two membranes formed by the transacylation reaction were evaluated. After 1 h in an acidic solution (pH 2.5), the free-cell counts decreased by 4.75 log units, compared with a <1-log decrease for entrapped cells. The free cells did not survive after 2 h of incubation at pH 2.5, while immobilized-cell counts decreased by about 2 log units. After incubation (1 or 3 h) in 2 and 4% bile salt solutions, the bifidobacterium mortality level for membrane-free gel beads (4 to 7 log units) was higher than that for free cells (2 to 3 log units). However, counts of bifidobacteria immobilized in membrane-coated gel beads decreased by <2 log units. Cell encapsulation in membrane-coated protein-polysaccharide gel beads could be used to increase the survival of healthy probiotic bacteria during their transit through the gastrointestinal tract.

  10. Microencapsulation in Alginate and Chitosan Microgels to Enhance Viability of Bifidobacterium longum for Oral Delivery.

    PubMed

    Yeung, Timothy W; Üçok, Elif F; Tiani, Kendra A; McClements, David J; Sela, David A

    2016-01-01

    Probiotic microorganisms are incorporated into a wide variety of foods, supplements, and pharmaceuticals to promote human health and wellness. However, maintaining bacterial cell viability during storage and gastrointestinal transit remains a challenge. Encapsulation of bifidobacteria within food-grade hydrogel particles potentially mitigates their sensitivity to environmental stresses. In this study, Bifidobacterium longum subspecies and strains were encapsulated in core-shell microgels consisting of an alginate core and a microgel shell. Encapsulated obligate anaerobes Bifidobacterium longum subsp. infantis and Bifidobacterium longum subsp. longum exhibited differences in viability in a strain-dependent manner, without a discernable relationship to subspecies lineage. This includes viability under aerobic storage conditions and modeled gastrointestinal tract conditions. Coating alginate microgels with chitosan did not improve viability compared to cells encapsulated in alginate microgels alone, suggesting that modifying the surface charge alone does not enhance delivery. Thus hydrogel beads have great potential for improving the stability and efficacy of bifidobacterial probiotics in various nutritional interventions.

  11. Microencapsulation in Alginate and Chitosan Microgels to Enhance Viability of Bifidobacterium longum for Oral Delivery

    PubMed Central

    Yeung, Timothy W.; Üçok, Elif F.; Tiani, Kendra A.; McClements, David J.; Sela, David A.

    2016-01-01

    Probiotic microorganisms are incorporated into a wide variety of foods, supplements, and pharmaceuticals to promote human health and wellness. However, maintaining bacterial cell viability during storage and gastrointestinal transit remains a challenge. Encapsulation of bifidobacteria within food-grade hydrogel particles potentially mitigates their sensitivity to environmental stresses. In this study, Bifidobacterium longum subspecies and strains were encapsulated in core-shell microgels consisting of an alginate core and a microgel shell. Encapsulated obligate anaerobes Bifidobacterium longum subsp. infantis and Bifidobacterium longum subsp. longum exhibited differences in viability in a strain-dependent manner, without a discernable relationship to subspecies lineage. This includes viability under aerobic storage conditions and modeled gastrointestinal tract conditions. Coating alginate microgels with chitosan did not improve viability compared to cells encapsulated in alginate microgels alone, suggesting that modifying the surface charge alone does not enhance delivery. Thus hydrogel beads have great potential for improving the stability and efficacy of bifidobacterial probiotics in various nutritional interventions. PMID:27148184

  12. The Bactericidal Effect of Dendritic Copper Microparticles, Contained in an Alginate Matrix, on Escherichia coli

    PubMed Central

    Thomas, Simon F.; Rooks, Paul; Rudin, Fabian; Atkinson, Sov; Goddard, Paul; Bransgrove, Rachel; Mason, Paul T.; Allen, Michael J.

    2014-01-01

    Although the bactericidal effect of copper has been known for centuries, there is a current resurgence of interest in the use of this element as an antimicrobial agent. During this study the use of dendritic copper microparticles embedded in an alginate matrix as a rapid method for the deactivation of Escherichia coli ATCC 11775 was investigated. The copper/alginate produced a decrease in the minimum inhibitory concentration from free copper powder dispersed in the media from 0.25 to 0.065 mg/ml. Beads loaded with 4% Cu deactivated 99.97% of bacteria after 90 minutes, compared to a 44.2% reduction in viability in the equivalent free copper powder treatment. There was no observed loss in the efficacy of this method with increasing bacterial loading up to 106 cells/ml, however only 88.2% of E. coli were deactivated after 90 minutes at a loading of 108 cells/ml. The efficacy of this method was highly dependent on the oxygen content of the media, with a 4.01% increase in viable bacteria observed under anoxic conditions compared to a >99% reduction in bacterial viability in oxygen tensions above 50% of saturation. Scanning electron micrographs (SEM) of the beads indicated that the dendritic copper particles sit as discrete clusters within a layered alginate matrix, and that the external surface of the beads has a scale-like appearance with dendritic copper particles extruding. E. coli cells visualised using SEM indicated a loss of cellular integrity upon Cu bead treatment with obvious visible blebbing. This study indicates the use of microscale dendritic particles of Cu embedded in an alginate matrix to effectively deactivate E. coli cells and opens the possibility of their application within effective water treatment processes, especially in high particulate waste streams where conventional methods, such as UV treatment or chlorination, are ineffective or inappropriate. PMID:24831035

  13. A BOD monitoring disposable reactor with alginate-entrapped bacteria.

    PubMed

    Villalobos, Patricio; Acevedo, Cristian A; Albornoz, Fernando; Sánchez, Elizabeth; Valdés, Erika; Galindo, Raúl; Young, Manuel E

    2010-10-01

    Biochemical oxygen demand (BOD) is a measure of the amount of dissolved oxygen that is required for the biochemical oxidation of the organic compounds in 5 days. New biosensor-based methods have been conducted for a faster determination of BOD. In this study, a mathematical model to evaluate the feasibility of using a BOD sensor, based on disposable alginate-entrapped bacteria, for monitoring BOD in situ was applied. The model considers the influences of alginate bead size and bacterial concentration. The disposable biosensor can be adapted according to specific requirements depending on the organic load contained in the wastewater. Using Klein and Washausen parameter in a Lineweaver-Burk plot, the glucose diffusivity was calculated in 6.4 × 10(-10) (m2/s) for beads of 1 mm in diameter and slight diffusion restrictions were observed (n = 0.85). Experimental results showed a correlation (p < 0.05) between the respirometric peak and the standard BOD test. The biosensor response was representative of BOD.

  14. Alginate: properties and biomedical applications

    PubMed Central

    Lee, Kuen Yong; Mooney, David J.

    2011-01-01

    Alginate is a biomaterial that has found numerous applications in biomedical science and engineering due to its favorable properties, including biocompatibility and ease of gelation. Alginate hydrogels have been particularly attractive in wound healing, drug delivery, and tissue engineering applications to date, as these gels retain structural similarity to the extracellular matrices in tissues and can be manipulated to play several critical roles. This review will provide a comprehensive overview of general properties of alginate and its hydrogels, their biomedical applications, and suggest new perspectives for future studies with these polymers. PMID:22125349

  15. Multipotent stromal cells derived from common marmoset Callithrix jacchus within alginate 3D environment: Effect of cryopreservation procedures.

    PubMed

    Gryshkov, Oleksandr; Hofmann, Nicola; Lauterboeck, Lothar; Pogozhykh, Denys; Mueller, Thomas; Glasmacher, Birgit

    2015-08-01

    Multipotent stromal cells derived from the common marmoset monkey Callithrix jacchus (cjMSCs) possess high phylogenetic similarity to humans, with a great potential for preclinical studies in the field of regenerative medicine. Safe and effective long-term storage of cells is of great significance to clinical and research applications. Encapsulation of such cell types within alginate beads that can mimic an extra-cellular matrix and provide a supportive environment for cells during cryopreservation, has several advantages over freezing of cells in suspension. In this study we have analysed the effect of dimethyl sulfoxide (Me2SO, 2.5-10%, v/v) and pre-freeze loading time of alginate encapsulated cjMSCs in Me2SO (0-45 min) on the viability and metabolic activity of the cells after freezing using a slow cooling rate (-1°C/min). It was found that these parameters affect the stability and homogeneity of alginate beads after thawing. Moreover, the cjMSCs can be frozen in alginate beads with lower Me2SO concentration of 7.5% after 30 min of loading, while retaining high cryopreservation outcome. We demonstrated the maximum viability, membrane integrity and metabolic activity of the cells under optimized, less cytotoxic conditions. The results of this study are another step forward towards the application of cryopreservation for the long-term storage and subsequent applications of transplants in cell-based therapies.

  16. Swelling and mechanical properties of alginate hydrogels with respect to promotion of neural growth.

    PubMed

    Matyash, Marina; Despang, Florian; Ikonomidou, Chrysanthy; Gelinsky, Michael

    2014-05-01

    Soft alginate hydrogels support robust neurite outgrowth, but their rapid disintegration in solutions of high ionic strength restricts them from long-term in vivo applications. Aiming to enhance the mechanical stability of soft alginate hydrogels, we investigated how changes in pH and ionic strength during gelation influence the swelling, stiffness, and disintegration of a three-dimensional (3D) alginate matrix and its ability to support neurite outgrowth. Hydrogels were generated from dry alginate layers through ionic crosslinks with Ca(2+) (≤ 10 mM) in solutions of low or high ionic strength and at pH 5.5 or 7.4. High- and low-viscosity alginates with different molecular compositions demonstrated pH and ionic strength-independent increases in hydrogel volume with decreases in Ca(2+) concentrations from 10 to 2 mM. Only soft hydrogels that were synthesized in the presence of 150 mM of NaCl (Ca-alginate NaCl) displayed long-term volume stability in buffered physiological saline, whereas analogous hydrogels generated in NaCl-free conditions (Ca-alginate) collapsed. The stiffnesses of Ca-alginate NaCl hydrogels elevated from 0.01 to 19 kPa as the Ca(2+)-concentration was raised from 2 to 10 mM; however, only Ca-alginate NaCl hydrogels with an elastic modulus ≤ 1.5 kPa that were generated with ≤ 4 mM of Ca(2+) supported robust neurite outgrowth in primary neuronal cultures. In conclusion, soft Ca-alginate NaCl hydrogels combine mechanical stability in solutions of high ionic strength with the ability to support neural growth and could be useful as 3D implants for neural regeneration in vivo.

  17. Physicochemical characterization and biocompatibility of alginate-polycation microcapsules designed for islet transplantation

    NASA Astrophysics Data System (ADS)

    Tam, Susan Kimberly

    diabetic mice. To achieve these aims, extensive physicochemical analyses of the alginates and microcapsules were carried out. Among the properties of the alginates that were investigated include their purity (LAL assay, microBCA), chemical composition (nuclear magnetic resonance, NMR), elemental composition (x-ray photoelectron spectroscopy, XPS), and hydrophilicity (contact angle technique). As for the microcapsules, we also examined their surface chemical composition (XPS), hydrophilicity, as well as alginate-polycation interactions (Fourier transform infrared spectroscopy, FTIR), and membrane strength (osmotic swelling). The results of this research led to a number of important conclusions about the biocompatibility of alginates and alginate-based microcapsules. First of all, purifying an alginate does not guarantee its biocompatibility. Indeed, we provided evidence that both the alginate chemical composition (i.e. relative content of mannuronate and guluronate) and its intrinsic viscosity influence the extent of host cell adhesion to alginate gel beads. Using a biocompatible alginate, we then provided evidence that microcapsule biocompatibility is greatly compromised by its polycationic membrane. We showed that this membrane is responsible for the adsorption of opsonizing proteins in vitro and the adhesion of immune cells in vivo. That said, the severity of inflammatory response to the membrane can vary, and this depended on the microcapsule design, including the choice of alginate and polycation type. Results of our physicochemical analyses suggested that the most important factor determining biocompatibility is the ability of the polycation to diffuse into, and subsequently bind to, the alginate gel core. Moreover, adding a final coating of alginate had no significant effect on reversing the effects of the membrane on various microcapsule properties (surface composition, hydrophobicity, stability), nor did this coating reduce its immunogenicity. Although we

  18. Discovery of novel integrin ligands from combinatorial libraries using a multiplex "beads on a bead" approach.

    PubMed

    Cho, Choi-Fong; Amadei, Giulio A; Breadner, Daniel; Luyt, Leonard G; Lewis, John D

    2012-11-14

    The development of screening approaches to identify novel affinity ligands has paved the way for a new generation of molecular targeted nanomedicines. Conventional methods typically bias the display of the target protein to ligands during the screening process. We have developed an unbiased multiplex "beads on a bead" strategy to isolate, characterize, and validate high affinity ligands from OBOC libraries. Novel non-RGD peptides that target α(v)β(3) integrin were discovered that do not affect cancer or endothelial cell biology. The peptides identified here represent novel integrin-targeted agents that can be used to develop targeted nanomedicines without the risk of increased tumor invasion and metastasis.

  19. Hyaluronate-alginate gel as a novel biomaterial: mechanical properties and formation mechanism.

    PubMed

    Oerther, S; Le Gall, H; Payan, E; Lapicque, F; Presle, N; Hubert, P; Dexheimer, J; Netter, P

    1999-04-20

    With the aim of producing a biomaterial for surgical applications, the alginate-hyaluronate association has been investigated to combine the gel-forming properties of alginate with the healing properties of hyaluronate. Gels were prepared by diffusion of calcium into alginate-hyaluronate mixtures, with an alginate content of 20 mg/mL. The hyaluronate source was shown to have significant effect on the aspect and the properties of the gels. The gels have viscoelastic behaviour and the transient measurements carried out in creep mode could be interpreted through a Kelvin-Voigt generalised model: experimental data led to the steady state hardness and a characteristic viscosity of the gel. Gels prepared from Na rooster comb hyaluronate with weight ratio up to 0.50 have satisfactory mechanical properties, and fully stable gels are obtained after a few days; on the contrary, use of lower molecular weight hyaluronate led to loose gels for hyaluronate contents over 0.25. Gel formation was investigated by measurements of the exchange fluxes between the calcium chloride solution and the forming gel, which allowed thorough investigations of the occuring diffusion phenomena of water, calcium ion and hyaluronate. Strong interactions of water with hyaluronate reduce significantly the rate of weight loss from the gel beads and allows higher water content in steady-state gels. Calcium content in the gel samples could be correlated to the actual alginate concentration, whatever the nature and the weight ratio of hyaluronate.

  20. Laponite as a rheology modifier of alginate solutions: Physical gelation and aging evolution.

    PubMed

    Dávila, José Luis; d'Ávila, Marcos Akira

    2017-02-10

    The rheological behavior of alginate and Laponite/alginate solutions was studied. It was observed that the Cross viscosity model successfully describes the steady-state shear behavior of this polysaccharide. The scaling behavior analyzed for the entangled regime is in good agreement with polyelectrolyte solutions (Ge∼cp(3/2)), with interactions generated between the alginate and the charged surfaces of the Laponite platelets. Therefore, the effect of Laponite as a rheology modifier is influenced by the alginate concentration. Higher alginate concentrations hindered the formation of the house of cards microstructure. Frequency sweep tests were performed to analyze the transition from solid-like to liquid-like behavior in a solid-like dominated domain. Soft physical gels were obtained at low alginate concentrations. The gel point was determined (1.65wt.% of alginate and 2wt.% of Laponite) through the Kramers-Krönig damping factor, and time sweep tests revealed the evolution of the storage (G') and loss modulus (G″) as functions of the waiting time (tw). The growing elasticity revealed that Laponite/alginate solutions undergo aging.

  1. Sodium cobalt hexacyanoferrate encapsulated in alginate vesicle with CNT for both cesium and strontium removal.

    PubMed

    Vipin, Adavan Kiliyankil; Ling, Sun; Fugetsu, Bunshi

    2014-10-13

    Sodium cobalt hexacyanoferrate (CoFC)-encapsulating alginate beads reinforced with highly dispersed multiwalled carbon nanotubes were prepared for the aqueous removal of cesium and strontium ions. Carbon nanotubes enhanced the effective surface area, encapsulation ability and adsorption capacity of beads. Equilibrium and kinetic studies were conducted with different mathematical models. The goodness of mathematical fitting of experimental data on the adsorption isotherm model was in the order Langmuir higher than Freundlich. The maximum Cs(+)/Sr(2+) adsorption capacity of beads modified with carbon nanotubes were 133/72 mg/g and that of beads without carbon nanotubes were 121/70 mg/g. Similarly in kinetic models pseudo-second-order gave better fitting than pseudo-first-order. The performance of beads was consistent in a wide range of pH as well as in high ionic competitions. The fixed bed adsorption column analysis indicated that beads can be used for large scale treatment of cesium and strontium contaminated water.

  2. Calcium-Alginate-Inulin Microbeads as Carriers for Aqueous Carqueja Extract.

    PubMed

    Balanč, Bojana; Kalušević, Ana; Drvenica, Ivana; Coelho, Maria Teresa; Djordjević, Verica; Alves, Vitor D; Sousa, Isabel; Moldão-Martins, Margarida; Rakić, Vesna; Nedović, Viktor; Bugarski, Branko

    2016-01-01

    Carqueja (Pterospartum tridentatum) is an endemic species and various bioactive compounds have been identified in its aqueous extract. The aim of this study was to protect the natural antioxidants from the aqueous extract of carqueja by encapsulation in Ca-alginate microbeads and Ca-alginate microbeads containing 10% and 20% (w/v) of inulin. The microbeads produced by electrostatic extrusion technique had an average diameter from 625 μm to 830 μm depending on the portion of inulin. The sphericity factor of the hydrogel microbeads had values between 0.014 and 0.026, while freeze dried microbeads had irregular shape, especially those with no excipient. The reduction in microbeads size after freeze drying process (expressed as shrinkage factor) ranged from 0.338 (alginate microbeads with 20% (w/v) of inulin) to 0.523 (plain alginate microbeads). The expressed radical scavenging activity against ABTS and DPPH radicals was found to be between 30% and 40% for encapsulated extract, while the fresh extract showed around 47% and 57% of radical scavenging activity for ABTS and DPPH radicals, respectively. The correlation between antioxidant activity and the total phenolic content were found to be positive (in both assay methods, DPPH and ABTS), which indicate that the addition of inulin didn't have influence on antioxidant activity. The presence of inulin reduced stiffness of the hydrogel, and protected bead structure from collapse upon freeze-drying. Alginate-inulin beads are envisaged to be used for delivery of aqueous P. tridentatum extract in functional food products.

  3. 21 CFR 582.7187 - Calcium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium alginate. 582.7187 Section 582.7187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium alginate. (a) Product. Calcium alginate. (b) Conditions of use. This substance is...

  4. 21 CFR 582.7133 - Ammonium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium alginate. 582.7133 Section 582.7133 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Ammonium alginate. (a) Product. Ammonium alginate. (b) Conditions of use. This substance is...

  5. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  6. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  7. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  8. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  9. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  10. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized...

  11. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized...

  12. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized...

  13. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized...

  14. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized...

  15. 21 CFR 184.1011 - Alginic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Alginic acid. 184.1011 Section 184.1011 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1011 Alginic acid. (a) Alginic acid is a colloidal,...

  16. 21 CFR 184.1011 - Alginic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Alginic acid. 184.1011 Section 184.1011 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1011 Alginic acid. (a) Alginic acid is a colloidal, hydrophilic polysaccharide obtained from...

  17. 21 CFR 184.1011 - Alginic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Alginic acid. 184.1011 Section 184.1011 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1011 Alginic acid. (a) Alginic acid is a colloidal,...

  18. 21 CFR 184.1011 - Alginic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Alginic acid. 184.1011 Section 184.1011 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1011 Alginic acid. (a) Alginic acid is a colloidal,...

  19. 21 CFR 184.1011 - Alginic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Alginic acid. 184.1011 Section 184.1011 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1011 Alginic acid. (a) Alginic acid is a colloidal,...

  20. Efficient functionalization of alginate biomaterials.

    PubMed

    Dalheim, Marianne Ø; Vanacker, Julie; Najmi, Maryam A; Aachmann, Finn L; Strand, Berit L; Christensen, Bjørn E

    2016-02-01

    Peptide coupled alginates obtained by chemical functionalization of alginates are commonly used as scaffold materials for cells in regenerative medicine and tissue engineering. We here present an alternative to the commonly used carbodiimide chemistry, using partial periodate oxidation followed by reductive amination. High and precise degrees of substitution were obtained with high reproducibility, and without formation of by-products. A protocol was established using l-Tyrosine methyl ester as a model compound and the non-toxic pic-BH3 as the reducing agent. DOSY was used to indirectly verify covalent binding and the structure of the product was further elucidated using NMR spectroscopy. The coupling efficiency was to some extent dependent on alginate composition, being most efficient on mannuronan. Three different bioactive peptide sequences (GRGDYP, GRGDSP and KHIFSDDSSE) were coupled to 8% periodate oxidized alginate resulting in degrees of substitution between 3.9 and 6.9%. Cell adhesion studies of mouse myoblasts (C2C12) and human dental stem cells (RP89) to gels containing various amounts of GRGDSP coupled alginate demonstrated the bioactivity of the material where RP89 cells needed higher peptide concentrations to adhere.

  1. Nonlinear elasticity of alginate gels

    NASA Astrophysics Data System (ADS)

    Hashemnejad, Seyed Meysam; Kundu, Santanu

    Alginate is a naturally occurring anionic polysaccharide extracted from brown algae. Because of biocompatibility, low toxicity, and simple gelation process, alginate gels are used in biomedical and food applications. Here, we report the rheological behavior of ionically crosslinked alginate gels, which are obtained by in situ gelation of alginates with calcium salts, in between two parallel plates of a rheometer. Strain stiffening behavior was captured using large amplitude oscillatory shear (LAOS) experiments. In addition, negative normal stress was observed for these gels, which has not been reported earlier for any polysaccharide networks. The magnitude of negative normal stress increases with applied strain and can exceed that of the shear stress at large strain. Rheological results fitted with a constitutive model that considers both stretching and bending of chains indicate that nonlinearity is likely related to the stretching of the chains between the crosslink junctions. The results provide an improved understanding of the deformation mechanism of ionically crosslinked alginate gel and the results will be important in developing synthetic extracellular matrix (ECM) from these materials.

  2. Obtaining transgenic plants using the bio-active beads method.

    PubMed

    Liu, Haibo; Kawabe, Akira; Matsunaga, Sachihiro; Murakawa, Tomoko; Mizukami, Atsushi; Yanagisawa, Masanobu; Nagamori, Eiji; Harashima, Satoshi; Kobayashi, Akio; Fukui, Kiichi

    2004-04-01

    Several methods of transformation are currently available for delivering exogenous DNA into animal and plant cells. In this study, a novel and efficient transformation system for DNA delivery/expression with a capacity to transport DNA of high molecular weight was developed. This system can overcome the shortcomings of traditional transformation methods such as Agrobacterium-mediated transformation, particle bombardment, and the electroporation method. The method developed in this study uses calcium alginate micro beads to immobilize DNA molecules in combination with polyethylene glycol treatment. In addition, it is simple and low-cost, and requires limited equipment. Using this method, we have successfully transformed tobacco plants, screening by kanamycin resistance. The transformed genes in the transformants were confirmed by PCR and Southern hybridization.

  3. Arsenate removal by layered double hydroxides embedded into spherical polymer beads: Batch and column studies.

    PubMed

    Nhat Ha, Ho Nguyen; Kim Phuong, Nguyen Thi; Boi An, Tran; Mai Tho, Nguyen Thi; Ngoc Thang, Tran; Quang Minh, Bui; Van Du, Cao

    2016-01-01

    In this study, the performance of poly(layered double hydroxides) [poly(LDHs)] beads as an adsorbent for arsenate removal from aqueous solution was investigated. The poly(LDHs) beads were prepared by immobilizing LDHs into spherical alginate/polyvinyl alcohol (PVA)-glutaraldehyde beads (spherical polymer beads). Batch adsorption studies were conducted to assess the effect of contact time, solution pH, initial arsenate concentrations and co-existing anions on arsenate removal performance. The potential reuse of these poly(LDHs) beads was also investigated. Approximately 79.1 to 91.2% of arsenic was removed from an arsenate solution (50 mg As L(-1)) by poly(LDHs). The adsorption data were well described by the pseudo-second-order kinetics model and the Langmuir isotherm model, and the adsorption capacities of these poly(LDHs) beads at pH 8 were from 1.64 to 1.73 mg As g(-1), as calculated from the Langmuir adsorption isotherm. The adsorption ability of the poly(LDHs) beads decreased by approximately 5-6% after 5 adsorption-desorption cycles. Phosphates markedly decreased arsenate removal. The effect of co-existing anions on the adsorption capacity declined in the following order: HPO4 (2-) > HCO3 (-) > SO4 (2-) > Cl(-). A fixed-bed column study was conducted with real-life arsenic-containing water. The breakthrough time was found to be from 7 to 10 h. Under optimized conditions, the poly(LDHs) removed more than 82% of total arsenic. The results obtained in this study will be useful for further extending the adsorbents to the field scale or for designing pilot plants in future studies. From the viewpoint of environmental friendliness, the poly(LDHs) beads are a potential cost-effective adsorbent for arsenate removal in water treatment.

  4. Effect of soil moisture on the release of alachlor from alginate-based controlled-release formulations.

    PubMed

    Nasser, Ahmed; Mingelgrin, Uri; Gerstl, Zev

    2008-02-27

    The release of alachlor from controlled-release formulations (CRFs) based on alginate-montmorillonite matrices into aqueous polyethylene glycol (PEG) solutions of different concentrations and into a soil at different moisture contents was studied. In distilled water and in PEG-containing solutions displaying -0.1 MPa potential and up, the beads imbibe water and swell. The ensuing increase in weight is about 5%, and the increase in the bead's diameter is about 10%. At water potentials of -0.5 MPa and lower, loss of weight and shrinkage of the beads were observed. The changes in weight and diameter of the alginate-clay beads incubated in a Hamra loamy sand soil at 26.5% moisture content (w/w; -0.18 MPa) were similar to those observed in PEG solutions of >-0.5 MPa moisture potential. The weight and diameter losses observed in the drier soils (12.0 and 7.1% water content; -0.49 and -1.11 MPa) were similar to those in the more concentrated PEG solutions. A decrease in the rate of release of the active ingredient from the beads into soil was observed as the water potential decreased (drier soils). The release of the active ingredient from the investigated CRFs displayed a linear relationship to the square root of time, suggesting a diffusion-controlled-release rate. Data extracted from this relationship enabled the formulation of a mathematical model that correlates rate of release to water content.

  5. Alginate Production by Plant-Pathogenic Pseudomonads

    PubMed Central

    Fett, William F.; Osman, Stanley F.; Fishman, Marshall L.; Siebles, T. S.

    1986-01-01

    Eighteen plant-pathogenic and three non-plant-pathogenic pseudomonads were tested for the ability to produce alginic acid as an exopolysaccharide in vitro. Alginate production was demonstrated for 10 of 13 fluorescent plant-pathogenic pseudomonads tested with glucose or gluconate as the carbon source, but not for all 5 nonfluorescent plant pathogens and all 3 non-plant pathogens tested. With sucrose as the carbon source, some strains produced alginate while others produced both polyfructan (levan) and alginate. Alginates ranged from <1 to 28% guluronic acid, were acetylated, and had number-average molecular weights of 11.3 × 103 to 47.1 × 103. Polyfructans and alginates were not elicitors of the soybean phytoalexin glyceollin when applied to wounded cotyledon surfaces and did not induce prolonged water soaking of soybean leaf tissues. All or most pseudomonads in rRNA-DNA homology group I may be capable of synthesizing alginate as an exopolysaccharide. PMID:16347146

  6. Efficient removal of heavy metal ions with biopolymer template synthesized mesoporous titania beads of hundreds of micrometers size.

    PubMed

    Wu, Na; Wei, Huanhuan; Zhang, Lizhi

    2012-01-03

    We demonstrated that mesoporous titania beads of uniform size (about 450 μm) and high surface area could be synthesized via an alginate biopolymer template method. These mesoporous titania beads could efficiently remove Cr(VI), Cd(II), Cr(III), Cu(II), and Co(II) ions from simulated wastewater with a facile subsequent solid-liquid separation because of their large sizes. We chose Cr(VI) removal as the case study and found that each gram of these titania beads could remove 6.7 mg of Cr(VI) from simulated wastewater containing 8.0 mg·L(-1) of Cr(VI) at pH = 2.0. The Cr(VI) removal process was found to obey the Langmuir adsorption model and its kinetics followed pseudo-second-order rate equation. The Cr(VI) removal mechanism of titania beads might be attributed to the electrostatic adsorption of Cr(VI) ions in the form of negatively charged HCrO(4)(-) by positively charged TiO(2) beads, accompanying partial reduction of Cr(VI) to Cr(III) by the reductive surface hydroxyl groups on the titania beads. The used titania beads could be recovered with 0.1 mol·L(-1) of NaOH solution. This study provides a promising micro/nanostructured adsorbent with easy solid-liquid separation property for heavy metal ions removal.

  7. Apparatus and method for the production of gel beads containing a biocatalyst

    DOEpatents

    Scott, Charles D.; Scott, Timothy C.; Davison, Brian H.

    1998-01-01

    An apparatus and method for the large-scale and continuous production of gel beads containing a biocatalyst. The apparatus is a columnar system based on the chemical cross-linking of hydrocolloidal gels that contain and immobilize a biocatalyst, the biocatalyst being a microorganism or an enzyme. Hydrocolloidal gels, such as alginate, carrageenan, and a mixture of bone gelatin and modified alginate, provide immobilization matrices that can be used to entrap and retain the biocatalyst while allowing effective contact with substrates and release of products. Such immobilized biocatalysts are generally formulated into small spheres or beads that have high concentrations of the biocatalyst within the gel matrix. The columnar system includes a gel dispersion nozzle submerged in a heated non-interacting liquid, typically an organic liquid, that is immiscible with water to allow efficient formation of spherical gel droplets, the non-interacting liquid having a specific gravity that is less than water so that the gel droplets will fall through the liquid by the force of gravity. The heated non-interacting liquid is in direct contact with a chilled upflowing non-interacting liquid that will provide sufficient residence time for the gel droplets as they fall through the liquid so that they will be cooled below the gelling temperature and form solid spheres. The upflowing non-interacting liquid is in direct contact with an upflowing temperature-controlled aqueous solution containing the necessary chemicals for cross-linking or fixing of the gel beads to add the necessary stability. The flow rates of the two liquid streams can be varied to control the proper residence time in each liquid section to accommodate the production of gel beads of differing settling velocities. A valve is provided for continuous removal of the stabilized gel beads from the bottom of the column.

  8. Apparatus and method for the production of gel beads containing a biocatalyst

    DOEpatents

    Scott, C.D.; Scott, T.C.; Davison, B.H.

    1998-01-27

    An apparatus and method are disclosed for the large-scale and continuous production of gel beads containing a biocatalyst. The apparatus is a columnar system based on the chemical cross-linking of hydrocolloidal gels that contain and immobilize a biocatalyst, the biocatalyst being a microorganism or an enzyme. Hydrocolloidal gels, such as alginate, carrageenan, and a mixture of bone gelatin and modified alginate, provide immobilization matrices that can be used to entrap and retain the biocatalyst while allowing effective contact with substrates and release of products. Such immobilized biocatalysts are generally formulated into small spheres or beads that have high concentrations of the biocatalyst within the gel matrix. The columnar system includes a gel dispersion nozzle submerged in a heated non-interacting liquid, typically an organic liquid, that is immiscible with water to allow efficient formation of spherical gel droplets, the non-interacting liquid having a specific gravity that is less than water so that the gel droplets will fall through the liquid by the force of gravity. The heated non-interacting liquid is in direct contact with a chilled upflowing non-interacting liquid that will provide sufficient residence time for the gel droplets as they fall through the liquid so that they will be cooled below the gelling temperature and form solid spheres. The upflowing non-interacting liquid is in direct contact with an upflowing temperature-controlled aqueous solution containing the necessary chemicals for cross-linking or fixing of the gel beads to add the necessary stability. The flow rates of the two liquid streams can be varied to control the proper residence time in each liquid section to accommodate the production of gel beads of differing settling velocities. A valve is provided for continuous removal of the stabilized gel beads from the bottom of the column. 1 fig.

  9. Photocatalytic degradation of pharmaceutical wastes by alginate supported TiO2 nanoparticles in packed bed photo reactor (PBPR).

    PubMed

    Sarkar, Santanu; Chakraborty, Sudip; Bhattacharjee, Chiranjib

    2015-11-01

    In recent years deposal of pharmaceutical wastes has become a major problem globally. Therefore, it is necessary to removes pharmaceutical waste from the municipal as well as industrial effluents before its discharge. The convectional wastewater and biological treatments are generally failed to separate different drugs from wastewater streams. Thus, heterogeneous photocatalysis process becomes lucrative method for reduction of detrimental effects of pharmaceutical compounds. The main disadvantage of the process is the reuse or recycle of photocatalysis is a tedious job. In this work, the degradation of aqueous solution of chlorhexidine digluconate (CHD), an antibiotic drug, by heterogeneous photocatalysis was study using supported TiO2 nanoparticle. The major concern of this study is to bring down the limitations of suspension mode heterogeneous photocatalysis by implementation of immobilized TiO2 with help of calcium alginate beads. The alginate supported catalyst beads was characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDAX) as well as the characteristic crystalline forms of TiO2 nanoparticle was confirmed by XRD. The degradation efficiency of TiO2 impregnated alginate beads (TIAB) was compared with the performance of free TiO2 suspension. Although, the degradation efficiency was reduced considerably using TIAB but the recycle and reuse of catalyst was increased quite appreciably. The kinetic parameters related to this work have also been measure. Moreover, to study the susceptibility of the present system photocatalysis of other three drugs ibuprofen (IBP), atenolol (ATL) and carbamazepine (CBZ) has been carried out using immobilized TiO2. The continuous mode operation in PBPR has ensured the applicability of alginate beads along with TiO2 in wastewater treatment. The variation of residence time has significant impact on the performance of PBPR.

  10. Adsorption and desorption of Zn(II) and Cu(II) on Ca- alginate immobilized activated rice bran

    NASA Astrophysics Data System (ADS)

    Suratman, A.; Kamalia, N. Z.; Kusumawati, W. A.

    2016-02-01

    Ca-alginate immobilized activated rice bran has been used for adsorption of Zn(II) and Cu(II) from aqueous solution. The effect of the pH, kinetics model, adsorption isotherm and desorption on the adsorption performance was investigated. Activated rice bran was immobilized by the entrapment in alginate beads. The adsorption strength of Ca-alginate immobilized activated rice bran was compared to Ca-alginate and non-immobilized activated rice bran. The concentrations of adsorbed ions were analyzed using Atomic Absorption Spectrophotometer (AAS). The result showed that pH of 4.0 and the contact time of 120 min are the optimum condition for adsorption of Zn(II) and Cu(II). The adsorption kinetic of Zn(II) and Cu(II) followed the pseudo-second-order model with adsorption rate constant 4.9 x 10-2 and 3.14 g.mg-1.min-1, respectively. The both adsorption processes obeyed Langmuir isotherm with adsorption capacity of 2.03 and 2.42 mg.g-1 of adsorbent, respectively. The strength of Zn adsorption on Ca-alginate immobilized activated rice bran (86.63%) was more effective compared to Ca-alginate beads (60.96%) and activated rice bran (43.85%). The strength of Cu adsorption was 80.00%, 61.50% and 22.10%, respectively. The desorption of Zn(II) and Cu(II) showed that recovery percentage of the adsorption was 76.56% and 57.80% with the condition of using HCl 0.1 M as desorption agent for 1 hour.

  11. Highly efficient, long life, reusable and robust photosynthetic hybrid core-shell beads for the sustainable production of high value compounds.

    PubMed

    Desmet, Jonathan; Meunier, Christophe; Danloy, Emeric; Duprez, Marie-Eve; Lox, Frédéric; Thomas, Diane; Hantson, Anne-Lise; Crine, Michel; Toye, Dominique; Rooke, Joanna; Su, Bao-Lian

    2015-06-15

    An efficient one-step process to synthesize highly porous (Ca-alginate-SiO2-polycation) shell: (Na-alginate-SiO2) core hybrid beads for cell encapsulation, yielding a reusable long-life photosynthetically active material for a sustainable manufacture of high-value metabolites is presented. Bead formation is based on crosslinking of an alginate biopolymer and mineralisation of silicic acid in combination with a coacervation process between a polycation and the silica sol, forming a semi-permeable external membrane. The excellent mechanical strength and durability of the monodispersed beads and the control of their porosity and textural properties is achieved by tailoring the silica and alginate loading, polycation concentration and incubation time during coacervation. This process has led to the formation of a remarkably robust hybrid material that confers exceptional protection to live cells against sheer stresses and contamination in a diverse range of applications. Dunaliella tertiolecta encapsulated within this hybrid core-shell system display high photosynthetic activity over a long duration (>1 year). This sustainable biotechnology could find use in high value chemical harvests and biofuel cells to photosynthetic solar cells (energy transformation, electricity production, water splitting technologies). Furthermore the material can be engineered into various forms from spheres to variable thickness films, broadening its potential applications.

  12. Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt.

    PubMed

    Sultana, K; Godward, G; Reynolds, N; Arumugaswamy, R; Peiris, P; Kailasapathy, K

    2000-12-05

    A modified method using calcium alginate for the microencapsulation of probiotic bacteria is reported in this study. Incorporation of Hi-Maize starch (a prebiotic) improved encapsulation of viable bacteria as compared to when the bacteria were encapsulated without the starch. Inclusion of glycerol (a cryo-protectant) with alginate mix increased the survival of bacteria when frozen at -20 degrees C. The acidification kinetics of encapsulated bacteria showed that the rate of acid produced was lower than that of free cultures. The encapsulated bacteria, however, did not demonstrate a significant increase in survival when subjected to in vitro high acid and bile salt conditions. A preliminary study was carried out in order to monitor the effects of encapsulation on the survival of Lactobacillus acidophilus and Bifidobacterium spp. in yoghurt over a period of 8 weeks. This study showed that the survival of encapsulated cultures of L. acidophilus and Bifidobacterium spp. showed a decline in viable count of about 0.5 log over a period of 8 weeks while there was a decline of about 1 log in cultures which were incorporated as free cells in yoghurt. The encapsulation method used in this study did not result in uniform bead size, and hence additional experiments need to be designed using uniform bead size in order to assess the role of different encapsulation parameters, such as bead size and alginate concentration, in providing protection to the bacteria.

  13. Encapsulation of porcine pancreatic islets within an immunoprotective capsule comprising methacrylated glycol chitosan and alginate.

    PubMed

    Hillberg, Anna Louise; Oudshoorn, Matthew; Lam, Janice B B; Kathirgamanathan, Kalyani

    2015-04-01

    Encapsulation of cells in biocompatible polymer matrices represents a powerful tool for cell-based therapies and therapeutic delivery systems. This technology has successfully been used to deliver pancreatic islets to humans for the treatment of Type 1 diabetes. However, the clinical impact of this technology may be improved by reducing the inflammatory response brought on after implantation of capsules in vivo. Within this study a biocompatible polymeric delivery system combining alginate and photo-crosslinked methacrylated glycol chitosan (MGC) was developed. This approach involved encapsulating cells in calcium-alginate beads, coating with MGC and photo-polymerizing using UVA in the presence of photo-initiator (VA-086), resulting in the formation of capsules ∼600 µm in size. Crosslinking of the MGC outer wall allowed control over capsule swelling and improved the capsules overall properties. Capsule characterization demonstrated the stabilizing influence of polymerization and fluorescence imaging showed that the distribution of glycol chitosan is dependent on molecular weight. Good islet viability and insulin release was demonstrated in vitro over the course of a month, and in vivo transplantation of the capsules demonstrated good biocompatibility, particularly when compared with standard alginate/poly-l-ornithine/alginate capsules.

  14. Enzyme-catalyzed phase transition of alginate gels and gelatin-alginate interpenetrated networks.

    PubMed

    Doumèche, Bastien; Picard, Julien; Larreta-Garde, Véronique

    2007-11-01

    The enzyme-catalyzed gel-sol transition of calcium-alginate obtained by internal gelling strategy with the help of an entrapped alginate lyase is described. We show that alginate molecules and enzyme-produced oligoalginates shorten the gel time of physical gelatin gels (5% and 1.5%), probably due to local protein concentration increase. Interpenetrated networks composed of calcium-alginate and of gelatin were obtained only if elongation of gelatin helices inside a pre-existing calcium-alginate network could occur and only for low gelatin concentration (1.5%). The physical gelatin network is almost reversible inside the alginate one. Both networks can be obtained in the presence of alginate lyase, but gel-sol transition of calcium-alginate cannot be obtained in the presence of gelatin.

  15. Microencapsulation of a probiotic bacteria with alginate-gelatin and its properties.

    PubMed

    Li, Xiao Yan; Chen, Xi Guang; Cha, Dong Su; Park, Hyun Jin; Liu, Cheng Sheng

    2009-06-01

    Lactobacillus casei ATCC 393-loaded microcapsules based on alginate and gelatin had been prepared by extrusion method and the product could increase the cell numbers of L. casei ATCC 393 to be 10(7) CFU g(-1) in the dry state of microcapsules. The microparticles homogeneously distributed with size of 1.1 ± 0.2 mm. Four kinds of microcapsules (S(1), S(2), S(3) and S(4)) exhibited swelling in simulated gastric fluid (SGF) while the beads eroded and disintegrated rapidly in simulated intestinal fluid (SIF). Cells of L. casei ATCC 393 could be continuously released from the microcapsules during simulated gastrointestinal tract (GIT) and the release amounts and speeds in SIF were much higher and faster than that in SGF. Encapsulation in alginate-gelatin microcapsules successfully improved the survival of L. casei ATCC 393 and this approach might be useful in delivery of probiotic cultures as a functional food.

  16. Ion Exchange Resin Bead Decoupled High-Pressure Electroosmotic Pump

    PubMed Central

    Yang, Bingcheng; Zhang, Feifang; Liang, Xinmiao; Dasgupta, Purnendu K.; Liu, Shaorong

    2009-01-01

    We describe an electroosmotic pump (EOP) that utilizes a cation exchange resin bead as the electric field decoupler. The resin bead serves as a electrical grounding joint without fluid leakage, thus eliminating electrolytic gas interference from the flow channels. The arrangement is easy to practice from readily available components, displays a very low electrical resistance, and is capable of bearing high backpressure (at least 3200 psi). We use a silica xerogel column as the EOP element to pump water and demonstrate a complete capillary ion chromatograph (CIC), which uses a similar bead based microelectrodialytic generator (μ-EDG) to generate a KOH eluent from the pumped water. We observed good operational stability of the complete arrangement over long periods. PMID:19449862

  17. Glass-bead peen plating

    NASA Technical Reports Server (NTRS)

    Graves, J. R.

    1974-01-01

    Peen plating of aluminum, copper, and nickel powders was investigated. Only aluminum was plated successfully within the range of peen plating conditions studied. Optimum plating conditions for aluminum were found to be: (1) bead/powder mixture containing 25 to 35% powder by weight, (2) peening intensity of 0.007A as measured by Almen strip, and (3) glass impact bead diameter of at least 297 microns (0.0117 inches) for depositing-100 mesh aluminum powder. No extensive cleaning or substrate preparation is required beyond removing loose dirt or heavy oil.

  18. Two new plate nozzles for the production of alginate microspheres.

    PubMed

    Yang, Fan; Wang, Kang; He, Zhimin

    2005-07-14

    Combining the Rayleigh-type jet break-up and two new plate nozzles, the alginate microsphere was produced. Spray generators made of syringe needle and laser-drilling nozzle plate and synthetic red stone nozzle plate were fabricated and contrasted. The above two plate nozzles provided lower liquid resistance and yield well. Furthermore, the more uniform microsphere was produced within a wider range of frequency by plate nozzles. Experiments using multiple-nozzle synthetic red stone plate was easy to feasible.

  19. Engineering alginate for intervertebral disc repair.

    PubMed

    Bron, Johannes L; Vonk, Lucienne A; Smit, Theodoor H; Koenderink, Gijsje H

    2011-10-01

    Alginate is frequently studied as a scaffold for intervertebral disc (IVD) repair, since it closely mimics mechanical and cell-adhesive properties of the nucleus pulposus (NP) of the IVD. The aim of this study was to assess the relation between alginate concentration and scaffold stiffness and find preparation conditions where the viscoelastic behaviour mimics that of the NP. In addition, we measured the effect of variations in scaffold stiffness on the expression of extracellular matrix molecules specific to the NP (proteoglycans and collagen) by native NP cells. We prepared sample discs of different concentrations of alginate (1%-6%) by two different methods, diffusion and in situ gelation. The stiffness increased with increasing alginate concentration, while the loss tangent (dissipative behaviour) remained constant. The diffusion samples were ten-fold stiffer than samples prepared by in situ gelation. Sample discs prepared from 2% alginate by diffusion closely matched the stiffness and loss tangent of the NP. The stiffness of all samples declined upon prolonged incubation in medium, especially for samples prepared by diffusion. The biosynthetic phenotype of native cells isolated from NPs was preserved in alginate matrices up to 4 weeks of culturing. Gene expression levels of extracellular matrix components were insensitive to alginate concentration and corresponding matrix stiffness, likely due to the poor adhesiveness of the cells to alginate. In conclusion, alginate can mimic the viscoelastic properties of the NP and preserve the biosynthetic phenotype of NP cells but certain limitations like long-term stability still have to be addressed.

  20. Engineering alginate as bioink for bioprinting

    PubMed Central

    Jia, Jia; Richards, Dylan J.; Pollard, Samuel; Tan, Yu; Rodriguez, Joshua; Visconti, Richard P.; Trusk, Thomas C.; Yost, Michael J.; Yao, Hai; Markwald, Roger R.; Mei, Ying

    2015-01-01

    Recent advances in 3D printing offer an excellent opportunity to address critical challenges faced by current tissue engineering approaches. Alginate hydrogels have been extensively utilized as bioinks for 3D bioprinting. However, most previous research has focused on native alginates with limited degradation. The application of oxidized alginates with controlled degradation in bioprinting has not been explored. Here, we prepared a collection of 30 different alginate hydrogels with varied oxidation percentages and concentrations to develop a bioink platform that can be applied to a multitude of tissue engineering applications. We systematically investigated the effects of two key material properties (i.e. viscosity and density) of alginate solutions on their printabilities to identify a suitable range of material properties of alginates to be applied to bioprinting. Further, four alginate solutions with varied biodegradability were printed with human adipose-derived stem cells (hADSCs) into lattice-structured, cell-laden hydrogels with high accuracy. Notably, these alginate-based bioinks were shown to be capable of modulating proliferation and spreading of hADSCs without affecting structure integrity of the lattice structures (except the highly degradable one) after 8 days in culture. This research lays a foundation for the development of alginate-based bioink for tissue-specific tissue engineering applications. PMID:24998183

  1. Engineering alginate as bioink for bioprinting.

    PubMed

    Jia, Jia; Richards, Dylan J; Pollard, Samuel; Tan, Yu; Rodriguez, Joshua; Visconti, Richard P; Trusk, Thomas C; Yost, Michael J; Yao, Hai; Markwald, Roger R; Mei, Ying

    2014-10-01

    Recent advances in three-dimensional (3-D) printing offer an excellent opportunity to address critical challenges faced by current tissue engineering approaches. Alginate hydrogels have been used extensively as bioinks for 3-D bioprinting. However, most previous research has focused on native alginates with limited degradation. The application of oxidized alginates with controlled degradation in bioprinting has not been explored. Here, a collection of 30 different alginate hydrogels with varied oxidation percentages and concentrations was prepared to develop a bioink platform that can be applied to a multitude of tissue engineering applications. The authors systematically investigated the effects of two key material properties (i.e. viscosity and density) of alginate solutions on their printabilities to identify a suitable range of material properties of alginates to be applied to bioprinting. Further, four alginate solutions with varied biodegradability were printed with human adipose-derived stem cells (hADSCs) into lattice-structured, cell-laden hydrogels with high accuracy. Notably, these alginate-based bioinks were shown to be capable of modulating proliferation and spreading of hADSCs without affecting the structure integrity of the lattice structures (except the highly degradable one) after 8days in culture. This research lays a foundation for the development of alginate-based bioink for tissue-specific tissue engineering applications.

  2. Identification of enzymes responsible for extracellular alginate depolymerization and alginate metabolism in Vibrio algivorus.

    PubMed

    Doi, Hidetaka; Tokura, Yuriko; Mori, Yukiko; Mori, Kenichi; Asakura, Yoko; Usuda, Yoshihiro; Fukuda, Hiroo; Chinen, Akito

    2017-02-01

    Alginate is a marine non-food-competing polysaccharide that has potential applications in biorefinery. Owing to its large size (molecular weight >300,000 Da), alginate cannot pass through the bacterial cell membrane. Therefore, bacteria that utilize alginate are presumed to have an enzyme that degrades extracellular alginate. Recently, Vibrio algivorus sp. SA2(T) was identified as a novel alginate-decomposing and alginate-utilizing species. However, little is known about the mechanism of alginate degradation and metabolism in this species. To address this issue, we screened the V. algivorus genomic DNA library for genes encoding polysaccharide-decomposing enzymes using a novel double-layer plate screening method and identified alyB as a candidate. Most identified alginate-decomposing enzymes (i.e., alginate lyases) must be concentrated and purified before extracellular alginate depolymerization. AlyB of V. algivorus heterologously expressed in Escherichia coli depolymerized extracellular alginate without requiring concentration or purification. We found seven homologues in the V. algivorus genome (alyB, alyD, oalA, oalB, oalC, dehR, and toaA) that are thought to encode enzymes responsible for alginate transport and metabolism. Introducing these genes into E. coli enabled the cells to assimilate soluble alginate depolymerized by V. algivorus AlyB as the sole carbon source. The alginate was bioconverted into L-lysine (43.3 mg/l) in E. coli strain AJIK01. These findings demonstrate a simple and novel screening method for identifying polysaccharide-degrading enzymes in bacteria and provide a simple alginate biocatalyst and fermentation system with potential applications in industrial biorefinery.

  3. Calibration beads containing luminescent lanthanide ion complexes

    EPA Science Inventory

    The reliability of lanthanide luminescence measurements, by both flow cytometry and digital microscopy, will be enhanced by the availability of narrow-band emitting lanthanide calibration beads. These beads can also be used to characterize spectrographic instruments, including mi...

  4. Seeds used for Bodhi beads in China

    PubMed Central

    2014-01-01

    Background Bodhi beads are a Buddhist prayer item made from seeds. Bodhi beads have a large and emerging market in China, and demand for the beads has particularly increased in Buddhism regions, especially Tibet. Many people have started to focus on and collect Bodhi beads and to develop a Bodhi bead culture. But no research has examined the source plants of Bodhi beads. Therefore, ethnobotanical surveys were conducted in six provinces of China to investigate and document Bodhi bead plants. Reasons for the development of Bodhi bead culture were also discussed. Methods Six provinces of China were selected for market surveys. Information was collected using semi-structured interviews, key informant interviews, and participatory observation with traders, tourists, and local residents. Barkhor Street in Lhasa was focused on during market surveys because it is one of the most popular streets in China. Results Forty-seven species (including 2 varieties) in 19 families and 39 genera represented 52 types of Bodhi beads that were collected. The most popular Bodhi bead plants have a long history and religious significance. Most Bodhi bead plants can be used as medicine or food, and their seeds or fruits are the main elements in these uses. ‘Bodhi seeds’ have been historically used in other countries for making ornaments, especially seeds of the legume family. Many factors helped form Bodhi bead culture in China, but its foundation was in Indian Buddhist culture. Conclusions As one of the earliest adornment materials, seeds played an important role for human production and life. Complex sources of Bodhi beads have different cultural and historical significance. People bought and collected Bodhi beads to reflect their love and admiration for the plants. Thus, the documentation of Bodhi bead plants can serve as a basis for future investigation of Bodhi bead culture and modern Buddhist culture. PMID:24479788

  5. Entrapment of mycelial fragments in calcium alginate: a general technique for the use of immobilized filamentous fungi in biocatalysis.

    PubMed

    Peart, Patrice C; Chen, Avril R M; Reynolds, William F; Reese, Paul B

    2012-01-01

    Transformation reactions on 3β,17β-dihydroxyandrost-5-ene using free fungal cells were compared with those carried out by macerated mycelia, immobilized in calcium alginate beads. Six fungi were utilized in this study, namely Rhizopus oryzae ATCC 11145, Mucor plumbeus ATCC 4740, Cunninghamella echinulata var. elegans ATCC 8688a, Aspergillus niger ATCC 9142, Phanerochaete chrysosporium ATCC 24725 and Whetzelinia sclerotiorum ATCC 18687. The results show, for the first time, that encapsulated mycelial fragments essentially carry out the same bioconversions as those observed with growing cells. As the immobilized cells were "resting", the products formed were free of contamination by natural products, and this greatly aided the purification of the metabolites. Conditions for bead preparation were optimized. Furthermore, it was noted that the beads could be reused, once they had been subjected to a rejuvenation process.

  6. Alginate cryogel based glucose biosensor

    NASA Astrophysics Data System (ADS)

    Fatoni, Amin; Windy Dwiasi, Dian; Hermawan, Dadan

    2016-02-01

    Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under sub-zero temperature. This porous structure was growth in a 100 μL micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μm. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R2 of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.

  7. Thermophysical and Magnetic Properties of Carbon Beads Containing Cobalt Nanocrystallites

    NASA Astrophysics Data System (ADS)

    Izydorzak, M.; Skumiel, A.; Leonowicz, M.; Kaczmarek-Klinowska, M.; Pomogailo, A. D.; Dzhardimalieva, G. I.

    2012-04-01

    Magnetic Co-beads were fabricated in the course of a three-step procedure comprising preparation of a metal-acrylamide complex, followed by frontal polymerization and finally pyrolysis of the polymer. The composites obtained were composed of cobalt nanocrystallites stabilized in a carbon matrix built of disordered graphite. The crystallite size, material morphology, fraction of the magnetic component, and thus the magnetic properties can be tailored by a proper choice of the processing variables. The samples were subjected to an alternating magnetic field of different strengths ( H = 0 to 5 kA · m-1) at a frequency of f = 500 kHz. From the calorimetric measurements, we concluded that the relaxation processes dominate in the heat generation mechanism for the beads pyrolyzed at 773 K. For the beads pyrolyzed at 1073 K, significant values of magnetic properties, such as the coercive force and remanence give substantial contribution to the energy losses for hysteresis. The specific absorption coefficient ( SAR) related to the cobalt mass unit for the 1073 K pyrolyzed beads {({SAR} = 1340 W \\cdot g^{-1 }_cobalt)} is in very good conformity with the results obtained by other authors. The effective density power loss, caused by eddy currents, can be neglected for heating processes applied in magnetic hyperthermia. The Co-beads can potentially be applied for hyperthermia treatment.

  8. A three-dimensional culture system using alginate hydrogel prolongs hatched cattle embryo development in vitro.

    PubMed

    Zhao, Shuan; Liu, Zhen-Xing; Gao, Hui; Wu, Yi; Fang, Yuan; Wu, Shuai-Shuai; Li, Ming-Jie; Bai, Jia-Hua; Liu, Yan; Evans, Alexander; Zeng, Shen-Ming

    2015-07-15

    No successful method exists to maintain the three-dimensional architecture of hatched embryos in vitro. Alginate, a linear polysaccharide derived from brown algae, has characteristics that make it an ideal material as a three-dimensional (3D) extracellular matrix for in vitro cell, tissue, or embryo culture. In this study, alginate hydrogel was used for IVC of posthatched bovine embryos to observe their development under the 3D system. In vitro-fertilized and parthenogenetically activated posthatched bovine blastocysts were cultured in an alginate encapsulation culture system (AECS), an alginate overlay culture system (AOCS), or control culture system. After 18 days of culture, the survival rate of embryos cultured in AECS was higher than that in the control group (P < 0.05), and the embryos were expanded and elongated in AECS with the maximal length of 1.125 mm. When the AECS shrinking embryos were taken out of the alginate beads on Day 18 and cultured in the normal culture system, 9.09% of them attached to the bottoms of the plastic wells and grew rapidly, with the largest area of an attached embryo being 66.00 mm(2) on Day 32. The embryos cultured in AOCS developed monovesicular or multivesicular morphologies. Total cell number of the embryos cultured in AECS on Day 19 was significantly higher than that of embryos on Day 8. Additionally, AECS and AOCS supported differentiation of the embryonic cells. Binuclear cells were visible in Day-26 adherent embryos, and the messenger RNA expression patterns of Cdx2 and Oct4 in AOCS-cultured embryos were similar to those in vivo embryos, whereas IFNT and ISG15 messenger RNA were still expressed in Day-26 and Day-32 prolong-cultured embryos. In conclusion, AECS and AOCS did support cell proliferation, elongation, and differentiation of hatched bovine embryos during prolonged IVC. The culture system will be useful to further investigate the molecular mechanisms controlling ruminant embryo elongation and implantation.

  9. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery.

    PubMed

    Zhang, Yeshun; Liu, Jia; Huang, Lei; Wang, Zheng; Wang, Lin

    2015-07-24

    Although alginate hydrogels have been extensively studied for tissue engineering applications, their utilization is limited by poor mechanical strength, rapid drug release, and a lack of cell adhesive ability. Aiming to improve these properties, we employ the interpenetrating hydrogel design rationale. Using alginate and sericin (a natural protein with many unique properties and a major component of silkworm silk), we develop an interpenetrating polymer network (IPN) hydrogel comprising interwoven sericin and alginate double networks. By adjusting the sericin-to-alginate ratios, IPNs' mechanical strength can be adjusted to meet stiffness requirements for various tissue repairs. The IPNs with high sericin content show increased stability during degradation, avoiding pure alginate's early collapse. These IPNs have high swelling ratios, benefiting various applications such as drug delivery. The IPNs sustain controlled drug release with the adjustable rates. Furthermore, these IPNs are adhesive to cells, supporting cell proliferation, long-term survival and migration. Notably, the IPNs inherit sericin's photoluminescent property, enabling bioimaging in vivo. Together, our study indicates that the sericin-alginate IPN hydrogels may serve as a versatile platform for delivering cells and drugs, and suggests that sericin may be a building block broadly applicable for generating IPN networks with other biomaterials for diverse tissue engineering applications.

  10. In vitro fermentation of alginate and its derivatives by human gut microbiota.

    PubMed

    Li, Miaomiao; Li, Guangsheng; Shang, Qingsen; Chen, Xiuxia; Liu, Wei; Pi, Xiong'e; Zhu, Liying; Yin, Yeshi; Yu, Guangli; Wang, Xin

    2016-06-01

    Alginate (Alg) has a long history as a food ingredient in East Asia. However, the human gut microbes responsible for the degradation of alginate and its derivatives have not been fully understood yet. Here, we report that alginate and the low molecular polymer derivatives of mannuronic acid oligosaccharides (MO) and guluronic acid oligosaccharides (GO) can be completely degraded and utilized at various rates by fecal microbiota obtained from six Chinese individuals. However, the derivative of propylene glycol alginate sodium sulfate (PSS) was not hydrolyzed. The bacteria having a pronounced ability to degrade Alg, MO and GO were isolated from human fecal samples and were identified as Bacteroides ovatus, Bacteroides xylanisolvens, and Bacteroides thetaiotaomicron. Alg, MO and GO can increase the production level of short chain fatty acids (SCFA), but GO generates the highest level of SCFA. Our data suggest that alginate and its derivatives could be degraded by specific bacteria in the human gut, providing the basis for the impacts of alginate and its derivates as special food additives on human health.

  11. Bacterial community structure and predicted alginate metabolic pathway in an alginate-degrading bacterial consortium.

    PubMed

    Kita, Akihisa; Miura, Toyokazu; Kawata, Satoshi; Yamaguchi, Takeshi; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nishio, Naomichi; Nakashimada, Yutaka

    2016-03-01

    Methane fermentation is one of the effective approaches for utilization of brown algae; however, this process is limited by the microbial capability to degrade alginate, a main polysaccharide found in these algae. Despite its potential, little is known about anaerobic microbial degradation of alginate. Here we constructed a bacterial consortium able to anaerobically degrade alginate. Taxonomic classification of 16S rRNA gene, based on high-throughput sequencing data, revealed that this consortium included two dominant strains, designated HUA-1 and HUA-2; these strains were related to Clostridiaceae bacterium SK082 (99%) and Dysgonomonas capnocytophagoides (95%), respectively. Alginate lyase activity and metagenomic analyses, based on high-throughput sequencing data, revealed that this bacterial consortium possessed putative genes related to a predicted alginate metabolic pathway. However, HUA-1 and 2 did not grow on agar medium with alginate by using roll-tube method, suggesting the existence of bacterial interactions like symbiosis for anaerobic alginate degradation.

  12. Alginate Biosynthesis Factories in Pseudomonas fluorescens: Localization and Correlation with Alginate Production Level.

    PubMed

    Maleki, Susan; Almaas, Eivind; Zotchev, Sergey; Valla, Svein; Ertesvåg, Helga

    2015-12-11

    Pseudomonas fluorescens is able to produce the medically and industrially important exopolysaccharide alginate. The proteins involved in alginate biosynthesis and secretion form a multiprotein complex spanning the inner and outer membranes. In the present study, we developed a method by which the porin AlgE was detected by immunogold labeling and transmission electron microscopy. Localization of the AlgE protein was found to depend on the presence of other proteins in the multiprotein complex. No correlation was found between the number of alginate factories and the alginate production level, nor were the numbers of these factories affected in an algC mutant that is unable to produce the precursor needed for alginate biosynthesis. Precursor availability and growth phase thus seem to be the main determinants for the alginate production rate in our strain. Clustering analysis demonstrated that the alginate multiprotein complexes were not distributed randomly over the entire outer cell membrane surface.

  13. Alginate Biosynthesis Factories in Pseudomonas fluorescens: Localization and Correlation with Alginate Production Level

    PubMed Central

    Maleki, Susan; Almaas, Eivind; Zotchev, Sergey; Valla, Svein

    2015-01-01

    Pseudomonas fluorescens is able to produce the medically and industrially important exopolysaccharide alginate. The proteins involved in alginate biosynthesis and secretion form a multiprotein complex spanning the inner and outer membranes. In the present study, we developed a method by which the porin AlgE was detected by immunogold labeling and transmission electron microscopy. Localization of the AlgE protein was found to depend on the presence of other proteins in the multiprotein complex. No correlation was found between the number of alginate factories and the alginate production level, nor were the numbers of these factories affected in an algC mutant that is unable to produce the precursor needed for alginate biosynthesis. Precursor availability and growth phase thus seem to be the main determinants for the alginate production rate in our strain. Clustering analysis demonstrated that the alginate multiprotein complexes were not distributed randomly over the entire outer cell membrane surface. PMID:26655760

  14. Thermal Profile of Metallic Beads in a Bead Sterilizer,

    DTIC Science & Technology

    1986-08-01

    another commonly used chairside sterilization method, principally for endodontic instruments. The bead sterilizer consists of a heated chamber containing...sterilization of endodontic instruments. However, several investigators have shown sterilization times ranging from 3 seconds to 14 minutes, are...et.al. The effect of autoclave sterilization on endodontic files. Oral Surg 55(2): 204-207, 1983. 3. Parkes, R. B. and Kolstad, R. A. Effects of

  15. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... alginic acid, a natural polyuronide constituent of certain brown algae. Calcium alginate is prepared by... Do. Fats and oils, § 170.3(n)(12) of this chapter 0.5 Do. Gelatins, puddings, § 170.3(n)(22) of...

  16. Scaling law and microstructure of alginate hydrogel.

    PubMed

    Liu, Sijun; Li, Huijun; Tang, Bijun; Bi, Shuguang; Li, Lin

    2016-01-01

    The gelation of alginate in aqueous solution was studied as a function of Ca(2+) concentration. At each given concentration of alginate, a critical gel concentration [Formula: see text] , was successfully determined for the first time using the Winter-Chambon criterion. The critical gel concentration [Formula: see text] was found to increase linearly with alginate concentration. At the same time, the critical relaxation exponent n decreased and the critical gel strength Sg increased linearly with alginate concentration. An improved egg-box model was proposed to describe the change in gel junction and gel network. In the stable gel state, the plateau modulus Ge of alginate gel depended on Ca(2+) concentration according to a power-law scaling, Ge=kɛ(1.5), where ɛ is the relative distance of a gelling variable (Ca(2+) concentration in this case) from the gel point ( [Formula: see text] ). The FESEM images verified the microstructure of alginate gel in which alginate chains associated into fibrils in the presence of Ca(2+) ions. The fibrillar diameter and network density increased with increasing Ca(2+) ion concentration while alginate concentration had a weak influence on fibrillar diameter.

  17. Dried calcium alginate/magnetite spheres: a new support for chromatographic separations and enzyme immobilization

    SciTech Connect

    Burns, M.A.; Kvesitadze, G.I.; Graves, D.J.

    1985-02-01

    Dried spheres made from an alginate solution containing magnetite particles have excellent potential as a support for enzyme immobilization and chromatographic applications. The beads were found to be much stronger than gels such as polyacrylamide and dextran, indicating that high flow rates and pressures could be used in column separations. The support withstood not only temperatures of up to 120/sup 0/C, but also most pH values and common solvents. While some solutions, such as phosphate buffers, dissolved the spheres, stabilization with Tyzor TE eliminated this problem. The physical properties of the beads include a glasslike density of 2.2 g/mL, excellent sphericity, low porosity, and a narrow size distribution. The magnetite present in the support allows the beads to be used for magnetic separations such as high gradient magnetic filtration. Their high degree of microroughness provides a large exposed surface area for enzyme and ligand binding. Mixed Actinomyces fradiae proteases and Aspergillus niger ..cap alpha..-amylase, two enzymes representative of classes which attack large substrates, were immobilized on the bead's surface with high activity and stability. A cyanuric dye which can be used in chromatographic applications (Cibacron Blue F3GA) was also readily coupled to the surface of this support with good yield.

  18. Biocompatibility of mannuronic acid-rich alginates.

    PubMed

    Klöck, G; Pfeffermann, A; Ryser, C; Gröhn, P; Kuttler, B; Hahn, H J; Zimmermann, U

    1997-05-01

    Highly purified algin preparations free of adverse contaminants with endotoxins and other mitogens recently became available by a new purification process (Klöck et al., Appl. Microbiol. Biotechnol., 1994, 40, 638-643). An advantage of this purification protocol is that it can be applied to alginates with various ratios of mannuronic acid to guluronic acid. High mannuronic acid alginate capsules are of particular practical interest for cell transplantation and for biohybrid organs, because mannuronate-rich alginates are usually less viscous, allowing one to make gels with a higher alginate content. This will increase their stability and reduce the diffusion permeability and could therefore protect immobilized cells more efficiently against the host immune system. Here we report the biocompatibility of purified, mannuronic acid-rich alginate (68% mannuronate residues) in a series of in vitro, as well as in vivo, assays. In contrast to raw alginate extracts, the purified product showed no mitogenic activity towards murine lymphocytes in vitro. Its endotoxin content was reduced to the level of the solvent. Animal studies with these new, purified algin formulations revealed the absence of a mitogen-induced foreign body reaction, even when the purified material (after cross-linking with Ba2+ ions) is implanted into animal models with elevated macrophage activity (diabetes-prone BB/OK rat). Thus, alginate capsules with high mannuronic acid content become available for applications such as implantation. In addition to the utilization as implantable cell reactors in therapy and biotechnology, these purified algins have broad application potential as ocular fillings, tissue replacements, microencapsulated growth factors and/or interleukins or slow-release dosage forms of antibodies, surface coatings of sensors and other invasive medical devices, and in encapsulation of genetically engineered cells for gene therapy.

  19. Alginate-immobilized bentonite clay: adsorption efficacy and reusability for Cu(II) removal from aqueous solution.

    PubMed

    Tan, Wei Shang; Ting, Adeline Su Yien

    2014-05-01

    This study evaluated the use of alginate-immobilized bentonite to remove Cu(II) as an alternative to mitigate clogging problems. The adsorption efficacy (under the influence of time, pH and initial Cu(II) concentration) and reusability of immobilized-bentonite (1% w/v bentonite) was tested against plain alginate beads. Results revealed that immobilized bentonite demonstrated significantly higher sorption efficacy compared to plain alginate beads with 114.70 and 94.04 mg Cu(II) adsorbed g(-1) adsorbent, respectively. Both sorbents were comparable in other aspects where sorption equilibrium was achieved within 6 h, with optimum pH between pH 4 and 5 for adsorption, displayed maximum adsorption capacity at initial Cu(II) concentrations of 400 mg l(-1), and demonstrated excellent reusability potential with desorption greater than 90% throughout three consecutive adsorption-desorption cycles. Both sorbents also conformed to Langmuir isotherm and pseudo-second order kinetic model. Immobilized bentonite is therefore recommended for use in water treatments to remove Cu(II) without clogging the system.

  20. Alginate-modifying enzymes: biological roles and biotechnological uses

    PubMed Central

    Ertesvåg, Helga

    2015-01-01

    Alginate denotes a group of industrially important 1-4-linked biopolymers composed of the C-5-epimers β-D-mannuronic acid (M) and α-L-guluronic acid (G). The polysaccharide is manufactured from brown algae where it constitutes the main structural cell wall polymer. The physical properties of a given alginate molecule, e.g., gel-strength, water-binding capacity, viscosity and biocompatibility, are determined by polymer length, the relative amount and distribution of G residues and the acetyl content, all of which are controlled by alginate modifying enzymes. Alginate has also been isolated from some bacteria belonging to the genera Pseudomonas and Azotobacter, and bacterially synthesized alginate may be O-acetylated at O-2 and/or O-3. Initially, alginate is synthesized as polymannuronic acid, and some M residues are subsequently epimerized to G residues. In bacteria a mannuronan C-5-epimerase (AlgG) and an alginate acetylase (AlgX) are integral parts of the protein complex necessary for alginate polymerization and export. All alginate-producing bacteria use periplasmic alginate lyases to remove alginate molecules aberrantly released to the periplasm. Alginate lyases are also produced by organisms that utilize alginate as carbon source. Most alginate-producing organisms encode more than one mannuronan C-5 epimerase, each introducing its specific pattern of G residues. Acetylation protects against further epimerization and from most alginate lyases. An enzyme from Pseudomonas syringae with alginate deacetylase activity has been reported. Functional and structural studies reveal that alginate lyases and epimerases have related enzyme mechanisms and catalytic sites. Alginate lyases are now utilized as tools for alginate characterization. Secreted epimerases have been shown to function well in vitro, and have been engineered further in order to obtain enzymes that can provide alginates with new and desired properties for use in medical and pharmaceutical applications

  1. Prednisolone Delivery Platforms: Capsules and Beads Combination for a Right Timing Therapy

    PubMed Central

    Cerciello, Andrea; Auriemma, Giulia; Morello, Silvana; Aquino, Rita P.; Del Gaudio, Pasquale

    2016-01-01

    In this work, a platform of alginate beads loaded with Prednisolone in hypromellose/gellan gum capsules (F6/Cps) able to delay steroidal anti-inflammatory drug (SAID) release as needed for chronotherapy of rheumatoid arthritis is proposed. Rheumatoid arthritis, showing a worsening in symptoms in the morning upon waking, is a pathology that can benefit from chronotherapy. With the aim to maximize prednisolone therapeutic action allowing the right timing of glucocorticoid therapy, different engineered microparticles (gel-beads) were manufactured using prilling (laminar jet break-up) as micro-encapsulation technique and Zn-alginate as gastroresistant carrier. Starting from various feed solutions and process parameters, the effect of the variables on particles size, morphology, solid state properties and drug release was studied. The optimization of operative and prilling/ionotropic gelation variables led to microspheres with almost spherical shape and a narrow dimensional range. The feed solution with the highest alginate (2.5% w/v) amount and drug/polymer ratio (1:5 w/w) gave rise to the highest encapsulation efficiency (78.5%) as in F6 formulation. As to drug release, F6 exhibited an interesting dissolution profile, releasing about 24% of the drug in simulated gastric fluid followed by a more sustained profile in simulated intestinal fluid. #F6, acting as a gastro-resistant and delayed release formulation, was selected for in vivo studies on male Wistar rats by means of a carrageenan-induced oedema model. Finally, this efficacious formulation was used as core material for the development of a final dosage form: F6/Cps allowed to significantly reduce prednisolone release in simulated gastric fluid (12.6%) and delayed drug release up to about 390 minutes. PMID:27472446

  2. A honeycomb composite of mollusca shell matrix and calcium alginate.

    PubMed

    You, Hua-jian; Li, Jin; Zhou, Chan; Liu, Bin; Zhang, Yao-guang

    2016-03-01

    A honeycomb composite is useful to carry cells for application in bone, cartilage, skin, and soft tissue regenerative therapies. To fabricate a composite, and expand the application of mollusca shells as well as improve preparing methods of calcium alginate in tissue engineering research, Anodonta woodiana shell powder was mixed with sodium alginate at varying mass ratios to obtain a gel mixture. The mixture was frozen and treated with dilute hydrochloric acid to generate a shell matrix/calcium alginate composite. Calcium carbonate served as the control. The composite was transplanted subcutaneously into rats. At 7, 14, 42, and 70 days after transplantation, frozen sections were stained with hematoxylin and eosin, followed by DAPI, β-actin, and collagen type-I immunofluorescence staining, and observed using laser confocal microscopy. The composite featured a honeycomb structure. The control and composite samples displayed significantly different mechanical properties. The water absorption rate of the composite and control group were respectively 205-496% and 417-586%. The composite (mass ratio of 5:5) showed good biological safety over a 70-day period; the subcutaneous structure of the samples was maintained and the degradation rate was lower than that of the control samples. Freezing the gel mixture afforded control over chemical reaction rates. Given these results, the composite is a promising honeycomb scaffold for tissue engineering.

  3. Effect of Diffusion on Discoloration of Congo Red by Alginate Entrapped Turnip (Brassica rapa) Peroxidase

    PubMed Central

    Ahmedi, Afaf; Abouseoud, Mahmoud; Abdeltif, Amrane; Annabelle, Couvert

    2015-01-01

    Enzymatic discoloration of the diazo dye, Congo red (CR), by immobilized plant peroxidase from turnip “Brassica rapa” is investigated. Partially purified turnip peroxidase (TP) was immobilized by entrapment in spherical particles of calcium alginate and was assayed for the discoloration of aqueous CR solution. Experimental data revealed that pH, reaction time, temperature, colorant, and H2O2 concentration play a significant role in dye degradation. Maximum CR removal was found at pH 2.0, constant temperature of 40°C in the presence of 10 mM H2O2, and 180 mg/L of CR. More than 94% of CR was removed by alginate immobilized TP after 1 h of incubation in a batch process under optimal conditions. About 74% removal efficiency was retained after four recycles. Diffusional limitations in alginate beads such as effectiveness factor η, Thiele modulus Φ, and effective diffusion coefficients (De) of Congo red were predicted assuming a first-order biodegradation kinetic. Results showed that intraparticle diffusion resistance has a significant effect on the CR biodegradation rate. PMID:25734011

  4. Effect of Diffusion on Discoloration of Congo Red by Alginate Entrapped Turnip (Brassica rapa) Peroxidase.

    PubMed

    Ahmedi, Afaf; Abouseoud, Mahmoud; Abdeltif, Amrane; Annabelle, Couvert

    2015-01-01

    Enzymatic discoloration of the diazo dye, Congo red (CR), by immobilized plant peroxidase from turnip "Brassica rapa" is investigated. Partially purified turnip peroxidase (TP) was immobilized by entrapment in spherical particles of calcium alginate and was assayed for the discoloration of aqueous CR solution. Experimental data revealed that pH, reaction time, temperature, colorant, and H2O2 concentration play a significant role in dye degradation. Maximum CR removal was found at pH 2.0, constant temperature of 40°C in the presence of 10 mM H2O2, and 180 mg/L of CR. More than 94% of CR was removed by alginate immobilized TP after 1 h of incubation in a batch process under optimal conditions. About 74% removal efficiency was retained after four recycles. Diffusional limitations in alginate beads such as effectiveness factor η, Thiele modulus Φ, and effective diffusion coefficients (D e ) of Congo red were predicted assuming a first-order biodegradation kinetic. Results showed that intraparticle diffusion resistance has a significant effect on the CR biodegradation rate.

  5. Expanded PLA Bead Foaming: Analysis of Crystallization Kinetics and Development of a Novel Technology

    NASA Astrophysics Data System (ADS)

    Nofar, Mohammadreza

    Bead foam technology with a double crystal-melting peak structure has been well established for polyolefins. The double crystal melting peak structure, which is required in the molding stage of the bead foams, generates a strong sintering among the foamed beads and maintains the overall foam structure. In this research, despite the PLA's poor foaming behavior and its slow crystallization kinetics, we successfully developed expanded PLA (EPLA) bead foams with double crystal melting peak structure and the inter-bead sintering behavior was verified through steam chest molding. For this purpose, the generation and evolution of double crystal melting peak structure in different PLA materials is simulated in a high-pressure differential scanning calorimeter (HP-DSC). The simulation results shows that the formation of double crystal melting peak with different peak ratios can be controlled by varying the processing parameters (i.e., saturation pressure, temperature, and time) during the saturation. The PLA bead foams characterization showed that the high melting temperature crystals generated during the saturation and the low melting temperature crystals formed during the cooling and foaming can significantly affect the foaming behavior of PLA bead foams. Moreover, the crystallization kinetics of different PLA materials are systematically investigated in presence of dissolved gas. It is shown that the different crystallization kinetics (i.e., crystal nucleation and growth rate) that can be induced at various gas pressures can significantly influence the PLA's foaming behavior (i.e., cell nucleation and expansion behavior).

  6. Alginic Acid Accelerates Calcite Dissolution

    NASA Astrophysics Data System (ADS)

    Perry, T. D.; Duckworth, O. W.; McNamara, C. J.; Martin, S. T.; Mitchell, R.

    2003-12-01

    Accelerated carbonate weathering through biological activity affects both geochemical cycling and the local pH and alkalinity of terrestrial and marine waters. Microbes affect carbonate dissolution through metabolic activity, production of acidic or chelating exudates, and cation binding by cell walls. Dissolution occurs within microbial biofilms - communities of microorganisms attached to stone in an exopolymer matrix. We investigated the effect of alginic acid, a common biological polymer produced by bacteria and algae, on calcite dissolution using a paired atomic force microscopy/flow-through reactor apparatus. The alginic acid caused up to an order of magnitude increase in dissolution rate at 3 < pH < 12. Additionally, the polymer preferentially binds to the obtuse pit steps and increases step velocity. We propose that the polymer is actively chelating surficial cations reducing the activation energy and increasing dissolution rate. The role of biologically produced polymers in mineral weathering is important in the protection of cultural heritage materials and understanding of marine and terrestrial systems.

  7. Tunable bead-on-string microstructures fabricated by mechano-electrospinning

    NASA Astrophysics Data System (ADS)

    Bu, Ningbin; Huang, YongAn; Deng, Huixu; Yin, Zhouping

    2012-10-01

    In this paper, bead-on-string microstructures are fabricated by the mechano-electrospinning (MES) process in a continuously tunable manner. The thin jet is pulled onto the substrate by the stable electric field force and tunable mechanical drawing force, and then the bead-on-string structures are generated by means of the force exerted on the jet, which changes from capillary force and resisting viscosity force to friction force at the contact point in the horizontal direction. In a stable bead-on-string formation process, one cycle can be divided into three stages from the point of view of the jet behaviour: being anchored, being stretched, and skipping. The bead size and the bead gap are continuously tunable through the MES process. The fabrication mechanisms of the bead-on-string microstructure are uncovered through theoretical analysis and experimental characterization. When a critical velocity is achieved, the jet directly falls on the substrate without accumulation since the mechanical drawing force in the horizontal direction overtakes the capillary force, which leads the bead-on-string microstructures to a continuous fibre line. It is a flexible and highly controllable method to fabricate bead-on-string microstructures.

  8. Encapsulation of R. planticola Rs-2 from alginate-starch-bentonite and its controlled release and swelling behavior under simulated soil conditions.

    PubMed

    Wu, Zhansheng; Guo, Lina; Qin, Shaohua; Li, Chun

    2012-02-01

    The plant growth-promoting bacteria (PGPR) Raoultella planticola Rs-2 was encapsulated with the various blends of alginate, starch, and bentonite for development of controlled-release formulations. The stability and release characteristics of these different capsule formulations were evaluated. The entrapment efficiency of Rs-2 in the beads (capsules) was more than 99%. The diameter of dry beads ranged from 0.98 to 1.41 mm. The bacteria release efficiency, swelling ratio, and biodegradability of the different bead formulations were enhanced by increasing the starch or alginate contents, but were impeded by higher bentonite content. The release kinetics of viable cells from capsules and the swelling ratio of capsules were studied in simulated soil media of varying temperature, moisture, pH, and salt content. The release of loaded Rs-2 cells and swelling of capsules are greatly affected by moisture, temperature, pH and salt content of the release medium. The release of viable Rs-2 cells from capsules was positively associated with the swelling properties of the capsules. The release of Rs-2 cells occurred through a Case II diffusion mechanism. In summary, this work indicates that alginate-starch-bentonite blends are a viable option for the development of efficient controlled-release formulations of Rs-2 biofertilizer, and which could have a promising application in natural field conditions.

  9. Ca-alginate-entrapped nanoscale iron: arsenic treatability and mechanism studies

    NASA Astrophysics Data System (ADS)

    Bezbaruah, Achintya N.; Kalita, Harjyoti; Almeelbi, Talal; Capecchi, Christopher L.; Jacob, Donna L.; Ugrinov, Angel G.; Payne, Scott A.

    2014-01-01

    The use of nanoscale zero-valent iron (NZVI, diameter 10-90 nm with an average value of 35 nm) entrapped in calcium (Ca)-alginate beads shows great promise for aqueous arsenic treatment. This research evaluated Ca-alginate-entrapped NZVI as an advanced treatment technique for aqueous arsenic removal. Arsenic is a serious threat to human health and millions of people are affected by arsenic contamination in various parts of the world including the USA. In bench scale batch studies with initial As(V) concentrations of 1-10 mg L-1, 85-100 % arsenic removal was achieved within 2 h. While the reaction kinetics differ between bare and entrapped NZVI, the overall reductions of arsenic are comparable. Surface area-normalized arsenic reduction reaction rate constants ( k sa) for bare and entrapped NZVI were 3.40-5.96 × 10-3 and 3.92-4.43 × 10-3 L m-2 min-1, respectively. The entrapped NZVI removed 100 μg L-1 As(V) to below detection limit within 2 h and groundwater with 53 μg L-1 As(V) was remediated to below instrument detection limit (10 μg L-1) within 1 h. The presence of Na+, Ca2+, Cl-, and HCO3^{ - }did not affect arsenic removal by entrapped NZVI and there was no leaching of iron from the beads. X-ray diffraction and Fourier transform infrared spectroscopic techniques have been used to understand the mechanism of arsenic removal by the entrapped NZVI. Ca-alginate polymer is an excellent choice as an entrapment medium as it is non-toxic and has little solubility in water.

  10. Effect of nutrients on the biodegradation of tributyltin (TBT) by alginate immobilized microalga, Chlorella vulgaris, in natural river water.

    PubMed

    Jin, Jing; Yang, Lihua; Chan, Sidney M N; Luan, Tiangang; Li, Yan; Tam, Nora F Y

    2011-01-30

    The removal and degradation of tributyltin (TBT) by alginate immobilized Chlorella vulgaris has been evidenced in our previously published work. The present study was further to investigate the effect of spiked nutrient concentrations on the TBT removal capacity and degradation in the same alginate immobilized C. vulgaris. During the 14-d experiment, compared to the control (natural river water), the spiked nutrient groups (50% or 100% nutrients of the commercial Bristol medium as the reference, marked as 1/2N or 1N) showed more rapid cell proliferation of microalgae and higher TBT removal rate. Moreover, significantly more TBT was adsorbed onto the alginate matrix, but less TBT was taken up by the algal cells of the nutrient groups than that of the control. Mass balance data showed that TBT was lost as inorganic tin in the highest degree in 1N group, followed by 1/2N group and the least was in the control, but the relative abundance of the intermediate products of debutylation (dibutyltin and monobutyltin) were comparable among three groups. In conclusion, the addition of nutrients in contaminated water stimulated the growth and physiological activity of C. vulgaris immobilized in alginate beads and improved its TBT degradation efficiency.

  11. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions.

    PubMed

    Chávarri, María; Marañón, Izaskun; Ares, Raquel; Ibáñez, Francisco C; Marzo, Florencio; Villarán, María del Carmen

    2010-08-15

    Chitosan was used as a coating material to improve encapsulation of a probiotic and prebiotic in calcium alginate beads. Chitosan-coated alginate microspheres were produced to encapsulate Lactobacillus gasseri (L) and Bifidobacterium bifidum (B) as probiotics and the prebiotic quercetin (Q) with the objective of enhancing survival of the probiotic bacteria and keeping intact the prebiotic during exposure to the adverse conditions of the gastro-intestinal tract. The encapsulation yield for viable cells for chitosan-coated alginate microspheres with quercetin (L+Q and B+Q) was very low. These results, together with the study about the survival of microspheres with quercetin during storage at 4 degrees C, demonstrated that probiotic bacteria microencapsulated with quercetin did not survive. Owing to this, quercetin and L. gasseri or B. bifidum were microencapsulated separately. Microencapsulated L. gasseri and microencapsulated B. bifidum were resistant to simulated gastric conditions (pH 2.0, 2h) and bile solution (3%, 2h), resulting in significantly (p<0.05) improved survival when compared with free bacteria. This work showed that the microencapsulation of L. gasseri and B. bifidum with alginate and a chitosan coating offers an effective means of delivery of viable bacterial cells to the colon and maintaining their survival during simulated gastric and intestinal juice.

  12. Injectable alginate-microencapsulated canine adipose tissue-derived mesenchymal stem cells for enhanced viable cell retention

    PubMed Central

    KOH, Eunji; JUNG, Yun Chan; WOO, Heung-Myong; KANG, Byung-Jae

    2017-01-01

    The purpose of this study was to establish an optimized protocol for the production of alginate-encapsulated canine adipose-derived mesenchymal stem cells (cASCs) and evaluate their suitability for clinical use, including viability, proliferation and in vivo cell retention. Alginate microbeads were formed by vibrational technology and the production of injectable microbeads was performed using various parameters with standard methodology. Microbead toxicity was tested in an animal model. Encapsulated cASCs were evaluated for viability and proliferation in vitro. HEK-293 cells, with or without microencapsulation, were injected into the subcutaneous tissue of mice and were tracked using in vivo bioluminescent imaging to evaluate the retention of transplanted cells. The optimized injectable microbeads were of uniform size and approximately 250 µm in diameter. There was no strong evidence of in vivo toxicity for the alginate beads. The cells remained viable after encapsulation, and there was evidence of in vitro proliferation within the microcapsules. In vivo bioluminescent imaging showed that alginate encapsulation improved the retention of transplanted cells and the encapsulated cells remained viable in vivo for 7 days. Encapsulation enhances the retention of viable cells in vivo and might represent a potential strategy to increase the therapeutic potency and efficacy of stem cells. PMID:28070061

  13. Ionene modified small polymeric beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1977-01-01

    Linear ionene polyquaternary cationic polymeric segments are bonded by means of the Menshutkin reaction (quaternization) to biocompatible, extremely small, porous particles containing halide or tertiary amine sites which are centers for attachment of the segments. The modified beads in the form of emulsions or suspensions offer a large, positively-charged surface area capable of irreversibly binding polyanions such as heparin, DNA, RNA or bile acids to remove them from solution or of reversibly binding monoanions such as penicillin, pesticides, sex attractants and the like for slow release from the suspension.

  14. BEADS: A Realistic Approach to Elementary Statistics.

    ERIC Educational Resources Information Center

    Gamble, Andy

    1983-01-01

    Having students gather their own statistics is promoted. The BEADS program provides an alternative; it simulated sampling from a binomial distribution. Illustrations from the program are included. (MNS)

  15. Fabrication and magnetic control of alginate-based rolling microrobots

    NASA Astrophysics Data System (ADS)

    Ali, Jamel; Cheang, U. Kei; Liu, Yigong; Kim, Hoyeon; Rogowski, Louis; Sheckman, Sam; Patel, Prem; Sun, Wei; Kim, Min Jun

    2016-12-01

    Advances in microrobotics for biological applications are often limited due to their complex manufacturing processes, which often utilize cytotoxic materials, as well as limitations in the ability to manipulate these small devices wirelessly. In an effort to overcome these challenges, we investigated a facile method for generating biocompatible hydrogel based robots that are capable of being manipulated using an externally generated magnetic field. Here, we experimentally demonstrate the fabrication and autonomous control of loaded-alginate microspheres, which we term artificial cells. In order to generate these microparticles, we employed a centrifuge-based method in which microspheres were rapidly ejected from a nozzle tip. Specifically, we used two mixtures of sodium alginate; one containing iron oxide nanoparticles and the other containing mammalian cells. This mixture was loaded into a needle that was fixed on top of a microtube containing calcium chloride, and then briefly centrifuged to generate hundreds of Janus microspheres. The fabricated microparticles were then magnetically actuated with a rotating magnetic field, generated using electromagnetic coils, prompting the particles to roll across a glass substrate. Also, using vision-based feedback control, a single artificial cell was manipulated to autonomously move in a programmed pattern.

  16. Relevance of rheological properties of sodium alginate in solution to calcium alginate gel properties.

    PubMed

    Fu, Shao; Thacker, Ankur; Sperger, Diana M; Boni, Riccardo L; Buckner, Ira S; Velankar, Sachin; Munson, Eric J; Block, Lawrence H

    2011-06-01

    The purpose of this study is to determine whether sodium alginate solutions' rheological parameters are meaningful relative to sodium alginate's use in the formulation of calcium alginate gels. Calcium alginate gels were prepared from six different grades of sodium alginate (FMC Biopolymer), one of which was available in ten batches. Cylindrical gel samples were prepared from each of the gels and subjected to compression to fracture on an Instron Universal Testing Machine, equipped with a 1-kN load cell, at a cross-head speed of 120 mm/min. Among the grades with similar % G, (grades 1, 3, and 4), there is a significant correlation between deformation work (L(E)) and apparent viscosity (η(app)). However, the results for the partial correlation analysis for all six grades of sodium alginate show that L(E) is significantly correlated with % G, but not with the rheological properties of the sodium alginate solutions. Studies of the ten batches of one grade of sodium alginate show that η(app) of their solutions did not correlate with L(E) while tan δ was significantly, but minimally, correlated to L(E). These results suggest that other factors--polydispersity and the randomness of guluronic acid sequencing--are likely to influence the mechanical properties of the resultant gels. In summary, the rheological properties of solutions for different grades of sodium alginate are not indicative of the resultant gel properties. Inter-batch differences in the rheological behavior for one specific grade of sodium alginate were insufficient to predict the corresponding calcium alginate gel's mechanical properties.

  17. Electrospun chitosan-alginate nanofibers with in situ polyelectrolyte complexation for use as tissue engineering scaffolds.

    PubMed

    Jeong, Sung In; Krebs, Melissa D; Bonino, Christopher A; Samorezov, Julia E; Khan, Saad A; Alsberg, Eben

    2011-01-01

    Electrospun natural biopolymers are of great interest in the field of regenerative medicine due to their unique structure, biocompatibility, and potential to support controlled release of bioactive agents and/or the growth of cells near a site of interest. The ability to electrospin chitosan and alginate to form polyionic complexed nanofibrous scaffolds was investigated. These nanofibers crosslink in situ during the electrospinning process, and thus do not require an additional chemical crosslinking step. Although poly(ethylene oxide) (PEO) is required for the electrospinning, it can be subsequently removed from the nanofibers simply by incubating in water for a few days, as confirmed by attenuated total reflectance Fourier transform infrared. Solutions that allowed uniform nanofiber formation were found to have viscosities in the range of 0.15-0.7 Pa·s and conductivities below 4 mS/cm for chitosan-PEO and below 2.2 mS/cm for alginate-PEO. The resultant nanofibers both before and after PEO extraction were found to be uniform and on the order of 100 nm as determined by scanning electron microscopy. The dynamic rheological properties of the polymer mixtures during gelation indicated that the hydrogel mixtures with low storage moduli provided uniform nanofiber formation without beaded structures. Increased amounts of chitosan in the PEO-extracted chitosan-alginate nanofibers resulted in a lower swelling ratio. Additionally, these nanofibrous scaffolds exhibit increased cell adhesion and proliferation compared to those made of alginate alone, due to the presence of the chitosan, which promotes the adsorption of serum proteins. Thus, these nanofibrous scaffolds formed purely via ionic complexation without toxic crosslinking agents have great potential for guiding cell behavior in tissue regeneration applications.

  18. Lead removal in rats using calcium alginate.

    PubMed

    Savchenko, Olga V; Sgrebneva, Marina N; Kiselev, Vladimir I; Khotimchenko, Yuri S

    2015-01-01

    Lead (Pb) exposure, even at low levels, causes a variety of health problems. The aims of this study were to investigate the tissue distribution of lead in the bodies of rats, to evaluate lead removal from the internal organs and bones using calcium alginate in doses of 500, 200 and 100 mg/kg per day for 28 days and to assess the impact of calcium alginate on the level of essential elements. Lead (Pb), calcium (Ca), manganese (Mn), iron (Fe), copper (Cu) and zinc (Zn) levels in the blood, hearts, kidneys, livers and femurs of the experimental animals were measured using mass spectrometry with inductively coupled plasma. The results revealed that lead acetate exposure increased the levels of Pb in the blood and organs of the animals and significantly reduced contents of Ca, Mn, Fe, Cu and Zn. Treatment with calcium alginate in dose 500 mg/kg contributed to significant decreases in the amount of lead in the kidney, heart and bones of animals and a slight increase in the content of essential elements in the liver, kidneys and heart, although these changes were not significant. Decreasing of lead was not significant in the internal organs, bones and blood of animals treated with calcium alginate 200 and 100 mg/kg. Consequently, calcium alginate dose of 500 mg/kg more efficiently removes lead accumulated in the body. Calcium alginate does not have negative effect on level of essential elements quite the contrary; reducing the levels of lead, calcium alginate helps normalize imbalances of Ca, Mn, Fe, Cu and Zn. The results of this study suggest that calcium alginate may potentially be useful for the treatment and prevention of heavy metal intoxications.

  19. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery

    NASA Astrophysics Data System (ADS)

    Zhang, Yeshun; Liu, Jia; Huang, Lei; Wang, Zheng; Wang, Lin

    2015-07-01

    Although alginate hydrogels have been extensively studied for tissue engineering applications, their utilization is limited by poor mechanical strength, rapid drug release, and a lack of cell adhesive ability. Aiming to improve these properties, we employ the interpenetrating hydrogel design rationale. Using alginate and sericin (a natural protein with many unique properties and a major component of silkworm silk), we develop an interpenetrating polymer network (IPN) hydrogel comprising interwoven sericin and alginate double networks. By adjusting the sericin-to-alginate ratios, IPNs’ mechanical strength can be adjusted to meet stiffness requirements for various tissue repairs. The IPNs with high sericin content show increased stability during degradation, avoiding pure alginate’s early collapse. These IPNs have high swelling ratios, benefiting various applications such as drug delivery. The IPNs sustain controlled drug release with the adjustable rates. Furthermore, these IPNs are adhesive to cells, supporting cell proliferation, long-term survival and migration. Notably, the IPNs inherit sericin’s photoluminescent property, enabling bioimaging in vivo. Together, our study indicates that the sericin-alginate IPN hydrogels may serve as a versatile platform for delivering cells and drugs, and suggests that sericin may be a building block broadly applicable for generating IPN networks with other biomaterials for diverse tissue engineering applications.

  20. Formulation of an alginate-vineyard pruning waste composite as a new eco-friendly adsorbent to remove micronutrients from agroindustrial effluents.

    PubMed

    Vecino, X; Devesa-Rey, R; Moldes, A B; Cruz, J M

    2014-09-01

    The cellulosic fraction of vineyard pruning waste (free of hemicellulosic sugars) was entrapped in calcium alginate beads and evaluated as an eco-friendly adsorbent for the removal of different nutrients and micronutrients (Mg, P, Zn, K, N-NH4, SO4, TN, TC and PO4) from an agroindustrial effluent (winery wastewater). Batch adsorption studies were performed by varying the amounts of cellulosic adsorbent (0.5-2%), sodium alginate (1-5%) and calcium chloride (0.05-0.9M) included in the biocomposite. The optimal formulation of the adsorbent composite varied depending on the target contaminant. Thus, for the adsorption of cationic contaminants (Mg, Zn, K, N-NH4 and TN), the best mixture comprised 5% sodium alginate, 0.05M calcium chloride and 0.5% cellulosic vineyard pruning waste, whereas for removal of anionic compounds (P, SO4 and PO4), the optimal mixture comprised 1% sodium alginate, 0.9M calcium chloride and 0.5% cellulosic vineyard pruning waste. To remove TC from the winery wastewater, the optimal mixture comprised 3% of sodium alginate, 0.475M calcium chloride and 0.5% cellulosic vineyard pruning waste.

  1. Control of Alginate Core Size in Alginate-Poly (Lactic-Co-Glycolic) Acid Microparticles

    NASA Astrophysics Data System (ADS)

    Lio, Daniel; Yeo, David; Xu, Chenjie

    2016-01-01

    Core-shell alginate-poly (lactic-co-glycolic) acid (PLGA) microparticles are potential candidates to improve hydrophilic drug loading while facilitating controlled release. This report studies the influence of the alginate core size on the drug release profile of alginate-PLGA microparticles and its size. Microparticles are synthesized through double-emulsion fabrication via a concurrent ionotropic gelation and solvent extraction. The size of alginate core ranges from approximately 10, 50, to 100 μm when the emulsification method at the first step is homogenization, vortexing, or magnetic stirring, respectively. The second step emulsification for all three conditions is performed with magnetic stirring. Interestingly, although the alginate core has different sizes, alginate-PLGA microparticle diameter does not change. However, drug release profiles are dramatically different for microparticles comprising different-sized alginate cores. Specifically, taking calcein as a model drug, microparticles containing the smallest alginate core (10 μm) show the slowest release over a period of 26 days with burst release less than 1 %.

  2. Porous bead packings for gas chromatography

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.; Woeller, F. H.

    1979-01-01

    Porous polyaromatic packing beads have low polarity, high efficiency, short retention time, and may be synthesized in size range of 50 to 150 micrometers (100 to 270 mesh). Mechanically strong beads may be produced using various materials depending on elements and compounds to be identified.

  3. Alginate/polyoxyethylene and alginate/gelatin hydrogels: preparation, characterization, and application in tissue engineering.

    PubMed

    Aroguz, Ayse Z; Baysal, Kemal; Adiguzel, Zelal; Baysal, Bahattin M

    2014-05-01

    Hydrogels are attractive biomaterials for three-dimensional cell culture and tissue engineering applications. The preparation of hydrogels using alginate and gelatin provides cross-linked hydrophilic polymers that can swell but do not dissolve in water. In this work, we first reinforced pure alginate by using polyoxyethylene as a supporting material. In an alginate/PEO sample that contains 20 % polyoxyethylene, we obtained a stable hydrogel for cell culture experiments. We also prepared a stable alginate/gelatin hydrogel by cross-linking a periodate-oxidized alginate with another functional component such as gelatin. The hydrogels were found to have a high fluid uptake. In this work, preparation, characterization, swelling, and surface properties of these scaffold materials were described. Lyophilized scaffolds obtained from hydrogels were used for cell viability experiments, and the results were presented in detail.

  4. Ultrasonic Characterization of Glass Beads

    NASA Astrophysics Data System (ADS)

    Lassila, I.; Siiriä, S.; Gates, F. K.; Hæggström, E.

    2008-02-01

    We report on the progress in developing a method for an in-line granule size measurement using ultrasonic through transmission method. The knowledge of granule size is important in the production of pharmaceutical dosage forms where the current optical and rheological methods have limitations such as fouling of the optical windows. The phase velocity of a wave propagated through interstitial air between glass balls of 1, 2 and 10 mm in diameter was 254±5 m/s, 261±3 m/s and 320±9 m/s, respectively. The power spectral density of the received signals showed that high frequencies were attenuated more in case of smaller beads due to increased scattering.

  5. Sargassum filipendula alginate from Brazil: seasonal influence and characteristics.

    PubMed

    Bertagnolli, Caroline; Espindola, Ana Paula D M; Kleinübing, Sirlei Jaiana; Tasic, Ljubica; da Silva, Meuris Gurgel Carlos

    2014-10-13

    The aim of this work is focused on the extraction and characterization of the Brazilian seaweed Sargassum filipendula alginate. Alginates obtained at different seasons were characterized by liquid state nuclear magnetic resonance spectroscopy and scanning electron microscopy. The alginate extraction efficiency was about 20%. Different seasons of the year and different stages in the life cycle of Sargassum sp. in southeastern Brazil influenced the M/G and, consequently, the technological properties of extracted alginates.

  6. The profile of adsorbed plasma and serum proteins on methacrylic acid copolymer beads: Effect on complement activation.

    PubMed

    Wells, Laura A; Guo, Hongbo; Emili, Andrew; Sefton, Michael V

    2017-02-01

    Polymer beads made of 45% methacrylic acid co methyl methacrylate (MAA beads) promote vascular regenerative responses in contrast to control materials without methacrylic acid (here polymethyl methacrylate beads, PMMA). In vitro and in vivo studies suggest that MAA copolymers induce differences in macrophage phenotype and polarization and inflammatory responses, presumably due to protein adsorption differences between the beads. To explore differences in protein adsorption in an unbiased manner, we used high resolution shotgun mass spectrometry to identify and compare proteins that adsorb from human plasma or serum onto MAA and PMMA beads. From plasma, MAA beads adsorbed many complement proteins, such as C1q, C4-related proteins and the complement inhibitor factor H, while PMMA adsorbed proteins, such as albumin, C3 and apolipoproteins. Because of the differences in complement protein adsorption, follow-up studies focused on using ELISA to assess complement activation. When incubated in serum, MAA beads generated significantly lower levels of soluble C5b9 and C3a/C3adesarg in comparison to PMMA beads, indicating a decrease in complement activation with MAA beads. The differences in adsorbed protein on the two materials likely alter subsequent cell-material interactions that ultimately result in different host responses and local vascularization.

  7. Bead mediated separation of microparticles in droplets

    PubMed Central

    Sung, Ki-Joo; Lin, Xiaoxia Nina; Burns, Mark A.

    2017-01-01

    Exchange of components such as particles and cells in droplets is important and highly desired in droplet microfluidic assays, and many current technologies use electrical or magnetic fields to accomplish this process. Bead-based microfluidic techniques offer an alternative approach that uses the bead’s solid surface to immobilize targets like particles or biological material. In this paper, we demonstrate a bead-based technique for exchanging droplet content by separating fluorescent microparticles in a microfluidic device. The device uses posts to filter surface-functionalized beads from a droplet and re-capture the filtered beads in a new droplet. With post spacing of 7 μm, beads above 10 μm had 100% capture efficiency. We demonstrate the efficacy of this system using targeted particles that bind onto the functionalized beads and are, therefore, transferred from one solution to another in the device. Binding capacity tests performed in the bulk phase showed an average binding capacity of 5 particles to each bead. The microfluidic device successfully separated the targeted particles from the non-targeted particles with up to 98% purity and 100% yield. PMID:28282412

  8. 21 CFR 172.858 - Propylene glycol alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Propylene glycol alginate. 172.858 Section 172.858... Propylene glycol alginate. The food additive propylene glycol alginate (CAS Reg. No. 9005-37-2) may be used... the act: (1) The name of the additive, “propylene glycol alginate” or “propylene glycol ester...

  9. Enzymatic Hydrolysis of Alginate to Produce Oligosaccharides by a New Purified Endo-Type Alginate Lyase

    PubMed Central

    Zhu, Benwei; Chen, Meijuan; Yin, Heng; Du, Yuguang; Ning, Limin

    2016-01-01

    Enzymatic hydrolysis of sodium alginate to produce alginate oligosaccharides has drawn increasing attention due to its advantages of containing a wild reaction condition, excellent gel properties and specific products easy for purification. However, the efficient commercial enzyme tools are rarely available. A new alginate lyase with high activity (24,038 U/mg) has been purified from a newly isolated marine strain, Cellulophaga sp. NJ-1. The enzyme was most active at 50 °C and pH 8.0 and maintained stability at a broad pH range (6.0–10.0) and temperature below 40 °C. It had broad substrate specificity toward sodium alginate, heteropolymeric MG blocks (polyMG), homopolymeric M blocks (polyM) and homopolymeric G blocks (polyG), and possessed higher affinity toward polyG (15.63 mM) as well as polyMG (23.90 mM) than polyM (53.61 mM) and sodium alginate (27.21 mM). The TLC and MS spectroscopy analysis of degradation products suggested that it completely hydrolyzed sodium alginate into oligosaccharides of low degrees of polymerization (DPs). The excellent properties would make it a promising tool for full use of sodium alginate to produce oligosaccharides. PMID:27275826

  10. Alginate lyases from alginate-degrading Vibrio splendidus 12B01 are endolytic.

    PubMed

    Badur, Ahmet H; Jagtap, Sujit Sadashiv; Yalamanchili, Geethika; Lee, Jung-Kul; Zhao, Huimin; Rao, Christopher V

    2015-03-01

    Alginate lyases are enzymes that degrade alginate through β-elimination of the glycosidic bond into smaller oligomers. We investigated the alginate lyases from Vibrio splendidus 12B01, a marine bacterioplankton species that can grow on alginate as its sole carbon source. We identified, purified, and characterized four polysaccharide lyase family 7 alginates lyases, AlyA, AlyB, AlyD, and AlyE, from V. splendidus 12B01. The four lyases were found to have optimal activity between pH 7.5 and 8.5 and at 20 to 25°C, consistent with their use in a marine environment. AlyA, AlyB, AlyD, and AlyE were found to exhibit a turnover number (kcat) for alginate of 0.60 ± 0.02 s(-1), 3.7 ± 0.3 s(-1), 4.5 ± 0.5 s(-1), and 7.1 ± 0.2 s(-1), respectively. The Km values of AlyA, AlyB, AlyD, and AlyE toward alginate were 36 ± 7 μM, 22 ± 5 μM, 60 ± 2 μM, and 123 ± 6 μM, respectively. AlyA and AlyB were found principally to cleave the β-1,4 bonds between β-d-mannuronate and α-l-guluronate and subunits; AlyD and AlyE were found to principally cleave the α-1,4 bonds involving α-l-guluronate subunits. The four alginate lyases degrade alginate into longer chains of oligomers.

  11. Alginate Lyases from Alginate-Degrading Vibrio splendidus 12B01 Are Endolytic

    PubMed Central

    Badur, Ahmet H.; Jagtap, Sujit Sadashiv; Yalamanchili, Geethika; Lee, Jung-Kul; Zhao, Huimin

    2015-01-01

    Alginate lyases are enzymes that degrade alginate through β-elimination of the glycosidic bond into smaller oligomers. We investigated the alginate lyases from Vibrio splendidus 12B01, a marine bacterioplankton species that can grow on alginate as its sole carbon source. We identified, purified, and characterized four polysaccharide lyase family 7 alginates lyases, AlyA, AlyB, AlyD, and AlyE, from V. splendidus 12B01. The four lyases were found to have optimal activity between pH 7.5 and 8.5 and at 20 to 25°C, consistent with their use in a marine environment. AlyA, AlyB, AlyD, and AlyE were found to exhibit a turnover number (kcat) for alginate of 0.60 ± 0.02 s−1, 3.7 ± 0.3 s−1, 4.5 ± 0.5 s−1, and 7.1 ± 0.2 s−1, respectively. The Km values of AlyA, AlyB, AlyD, and AlyE toward alginate were 36 ± 7 μM, 22 ± 5 μM, 60 ± 2 μM, and 123 ± 6 μM, respectively. AlyA and AlyB were found principally to cleave the β-1,4 bonds between β-d-mannuronate and α-l-guluronate and subunits; AlyD and AlyE were found to principally cleave the α-1,4 bonds involving α-l-guluronate subunits. The four alginate lyases degrade alginate into longer chains of oligomers. PMID:25556193

  12. Fed batch bioconversion of 2-propanol by a solvent tolerant strain of Alcaligenes faecalis entrapped in Ca-alginate gel.

    PubMed

    Mohammad, Balsam T; Bustard, Mark T

    2008-07-01

    A gram-negative, rod-shaped, aerobe, capable of converting 2-propanol (isopropanol, IPA) to acetone was isolated from an oil/sump, and identified by 16 S rDNA analysis as Alcaligenes faecalis. Investigations showed this strain to be extremely solvent-tolerant and it was subsequently named ST1. In this study, A. faecalis ST1 cells were immobilized by entrapment in Ca-alginate beads (3 mm in diameter), and used in the bioconversion of high concentration IPA. The biodegradation rates and the corresponding microbial growth inside the beads were measured at four different IPA concentration ranges from 2 to 15 g l(-1). The maximum cell concentration obtained was 9.59 g dry cell weight (DCW) l(-1) medium which equated to 66 g DCW l(-1) gel, at an initial IPA concentration of 15 g l(-1) after 216 h of incubation. A maximum biodegradation rate of 0.067 g IPA g cells(-1) h(-1) was achieved for 5 g l(-1) IPA where an increase in IPA concentration to 38 g l(-1) caused reduction in bead integrity. A modified growth medium was developed which allowed repeated use of the beads for more than 42 days without any loss of integrity and continued bioconversion activity.

  13. On-chip magnetic separation of superparamagnetic beads for integrated molecular analysis

    NASA Astrophysics Data System (ADS)

    Florescu, Octavian; Wang, Kevan; Au, Patrick; Tang, Jimmy; Harris, Eva; Beatty, P. Robert; Boser, Bernhard E.

    2010-03-01

    We have demonstrated a postprocessed complementary metal oxide semiconductor (CMOS) integrated circuit (IC) capable of on-chip magnetic separation, i.e., removing via magnetic forces the nonspecifically bound magnetic beads from the detection area on the surface of the chip. Initially, 4.5 μm wide superparamagnetic beads sedimenting out of solution due to gravity were attracted to the detection area by a magnetic concentration force generated by flowing current through a conductor embedded in the IC. After sedimentation, the magnetic beads that did not bind strongly to the functionalized surface of the IC through a specific biochemical complex were removed by a magnetic separation force generated by flowing current through another conductor placed laterally to the detection area. As the spherical bead pivoted on the surface of the chip, the lateral magnetic force was further amplified by mechanical leveraging, and 50 mA of current flowing through the separation conductor placed 18 μm away from the bead resulted in 7.5 pN of tensile force on the biomolecular tether immobilizing the bead. This force proved high enough to break nonspecific interactions while leaving specific antibody-antigen bonds intact. A sandwich capture immunoassay on purified human immunoglobulin G showed strong correlation with a control enzyme linked immunosorbent assay and a detection limit of 10 ng/ml or 70 pM. The beads bound to the detection area after on-chip magnetic separation were detected optically. To implement a fully integrated molecular diagnostics platform, the on-chip magnetic separation functionality presented in this work can be readily combine with state-of-the art CMOS-based magnetic bead detection technology.

  14. Beads + String = Atoms You Can See.

    ERIC Educational Resources Information Center

    Hermann, Christine K. F.

    1998-01-01

    Presents hands-on activities that give students a head start in learning the vocabulary and basic theory involved in understanding atomic structure. Uses beads to represent protons, neutrons, and electrons and string to represent orbitals. (DDR)

  15. New insights into Pseudomonas fluorescens alginate biosynthesis relevant for the establishment of an efficient production process for microbial alginates.

    PubMed

    Maleki, Susan; Mærk, Mali; Hrudikova, Radka; Valla, Svein; Ertesvåg, Helga

    2017-07-25

    Alginate denotes a family of linear polysaccharides with a wide range of industrial and pharmaceutical applications. Presently, all commercially available alginates are manufactured from brown algae. However, bacterial alginates have advantages with regard to compositional homogeneity and reproducibility. In order to be able to design bacterial strains that are better suited for industrial alginate production, defining limiting factors for alginate biosynthesis is of vital importance. Our group has been studying alginate biosynthesis in Pseudomonas fluorescens using several complementary approaches. Alginate is synthesised and transported out of the cell by a multiprotein complex spanning from the inner to the outer membrane. We have developed an immunogold labelling procedure in which the porin AlgE, as a part of this alginate factory, could be detected by transmission electron microscopy. No time-dependent correlation between the number of such factories on the cell surface and alginate production level was found in alginate-producing strains. Alginate biosynthesis competes with the central carbon metabolism for the key metabolite fructose 6-phosphate. In P. fluorescens, glucose, fructose and glycerol, are metabolised via the Entner-Doudoroff and pentose phosphate pathways. Mutational analysis revealed that disruption of the glucose 6-phosphate dehydrogenase gene zwf-1 resulted in increased alginate production when glycerol was used as carbon source. Furthermore, alginate-producing P. fluorescens strains cultivated on glucose experience acid stress due to the simultaneous production of alginate and gluconate. The combined results from our studies strongly indicate that the availability of fructose 6-phosphate and energy requires more attention in further research aimed at the development of an optimised alginate production process.

  16. Delaying cluster growth of ionotropic induced alginate gelation by oligoguluronate.

    PubMed

    Padoł, Anna Maria; Maurstad, Gjertrud; Draget, Kurt Ingar; Stokke, Bjørn Torger

    2015-11-20

    Alginates form gels in the presence of various divalent ions, such as Ca(2+) that mediate lateral association of chain segments. Various procedures exist that introduce Ca(2+) to yield alginate hydrogels with overall homogeneous or controlled gradients in the concentration profiles. In the present study, the effect of adding oligomers of α-l-guluronic acid (oligoGs) to gelling solutions of alginate was investigated by determination of the cluster growth stimulated by in situ release of Ca(2+). Three different alginate samples varying in fraction of α-l-guluronic acid and molecular weights were employed. The cluster growth was determined for both pure alginates and alginates with two different concentrations of the oligoGs employing dynamic light scattering. The results show that addition of oligoG slows down the cluster growth, the more efficient for the alginates with higher fraction of α-l-guluronic acid, and the higher molecular weight. The efficiency in delaying and slowing the cluster growth induced by added oligoG were discussed in view of the molecular parameters of the alginates. These results show that oligoG can be added to alginate solutions to control the cluster growth and eventually also transition to the gel state. Quantitative relation between the concentration of added oligoG, type and molecular weight of the alginate, and concentration, can be employed as guidelines in tuning alginate cluster growth with specific properties.

  17. Acupressure Bead in the Eustachian Tube.

    PubMed

    Igarashi, Kazunori; Matsumoto, Yu; Kakigi, Akinobu

    2015-08-01

    In this article, we aim to enlighten practitioners and patients involved with acupressure beads and to contribute to their safer use by reporting a unique case of insidious intrusion of an acupressure bead into the eustachian tube. A metallic object was found in the eustachian tube of a patient while conducting a magnetic resonance imaging (MRI) examination. The object was later confirmed to be an auricular acupressure bead, and was successfully removed by performing a tympanoplasty and a canal wall down mastoidectomy. The bead was assumed to have passed through an existing perforation of the tympanic membrane. According to previously published literature, tympanic membrane perforations exist in ∼1% of the population. Therefore, middle-ear foreign bodies are relatively common occurrences for otolaryngologists. However, metallic objects such as acupressure beads are especially important in the sense that they can cause severe burns during MRI. To avoid potential complications, acupressure-bead practitioners should be aware of the possibility that intrusions through the tympanic membrane could go unnoticed.

  18. Modeling Aspects of Two-Bead Microrheology

    NASA Astrophysics Data System (ADS)

    Hohenegger, Christel; Forest, M. Gregory

    2008-07-01

    We revisit the Mason and Weitz (Phys. Rev. Lett., 74, 1995) and Levine and Lubensky (Phys. Rev. Lett., 85, 2000) analysis for one- and two-bead microrheology. Our first motivation is the possibility of drawing inferences from experimental data about local diffusive properties of individual beads and nonlocal dynamic moduli of the medium separating the two beads. Our second motivation is the ability to perform direct numerical simulations of hydrodynamically coupled Brownian beads in soft matter. For both goals, we first must have a model for the coupling between these two transport properties. We reformulate the coupled generalized Langevin equations (GLE) following the scalar GLE analysis of Fricks et al. (J. Appl. Math., 2008), assuming an exponential series parametrization of both local and nonlocal memory kernels. We then show the two-bead GLE model can be represented as a vector Ornstein-Uhlenbeck process, which allows for a fast and statistically accurate numerical simulation of coupled bead paths (time series) and of ensemble-averaged statistics of the process. In this proceedings, we announce the framework to accomplish these two goals of inversion and direct simulation.

  19. Alginate hydrogel-mediated crystallization of calcium carbonate

    SciTech Connect

    Ma, Yufei; Feng, Qingling

    2011-05-15

    We documented a specific method for combining calcium ions and alginate molecules slowly and continuously in the mineralization system for the purpose of understanding the mediating function of alginate on the crystallization of calcium carbonate. The alginate was involved in the nucleation and the growth process of CaCO{sub 3}. The crystal size, morphology and roughness of crystal surface were significantly influenced by the type of the alginate, which could be accounted for by the length of the G blocks in alginate. A combination of Fourier transform infrared spectroscopy and thermogravimetric analysis showed that there were the chemical interactions between the alginate and the mineral phase. This strategic approach revealed the biologically controlled CaCO{sub 3} mineralization within calcium alginate hydrogels via the selective nucleation and the confined crystallization of CaCO{sub 3}. The results presented here could contribute to the understanding of the mineralization process in hydrogel systems. -- Graphical abstract: Schematic illustration of the growth of calcite aggregates with different morphologies obtained from (a) Low G alginate gels and (b) High G alginate gels. Display Omitted highlights: > We use a specific method for combining calcium ions and alginate molecules slowly and continuously in the mineralization system to understand the mediating function of alginate on the crystallization of CaCO{sub 3} crystals. > The crystal size, morphology and crystal surface roughness are influenced by the length of G blocks in alginate. There are chemical interactions between the alginate and the mineral phase. > We propose a potential mechanism of CaCO{sub 3} crystallization within High G and Low G calcium alginate hydrogel.

  20. Studies on improving the immobilized bead reusability and alkaline protease production by isolated immobilized Bacillus circulans (MTCC 6811) using overall evaluation criteria.

    PubMed

    Subba Rao, Ch; Madhavendra, S S; Sreenivas Rao, R; Hobbs, Phil J; Prakasham, R S

    2008-07-01

    This study uses an overall evaluation criterion for improving the immobilized bead reusability and extracellular enzyme production by immobilized cells by assigning relative weightage to bead reusability, enzyme production, and cell leakage. Initially, alkaline protease production by alginate-immobilized Bacillus circulans (MTCC 6811) was analyzed using L18 orthogonal array (OA). The resultant optimized parameters were further fine-tuned with L9 OA experimentation. At L18-OA analysis, inoculum level and CaCl(2) had least influence at individual level. At the interactive level, incubation time revealed maximum and minimum interaction with sodium alginate and glucose concentration, respectively. L9 experimentation indicated that glucose concentration contributed the major influence on protease production followed by matrix material and incubation time at the individual level, and at the interactive level, matrix concentration played a vital role by interacting with incubation time, inoculum, and CaCl(2) concentration. All selected input parameters showed significance either at individual level or interactive in both OAs. Scanning electron microscopy analysis showed bacterial morphology variation with variation of matrix concentration. Overall, glucose concentration depicted a major influence at the individual level for the enzyme production. Significant improvement, approximately 147%, in enzyme yield was observed. Economic enzyme production by immobilized B. circulans is regulated by interactive influence of fermentation parameters, which influence the immobilized bead stability, reusability, and enzyme yield.

  1. Calcium alginate particles for the combined delivery of platelet lysate and vancomycin hydrochloride in chronic skin ulcers.

    PubMed

    Mori, Michela; Rossi, Silvia; Bonferoni, Maria Cristina; Ferrari, Franca; Sandri, Giuseppina; Riva, Federica; Del Fante, Claudia; Perotti, Cesare; Caramella, Carla

    2014-01-30

    The aim of the present work was the development of a powder formulation for the combined delivery of platelet lysate and of a model antibiotic drug, vancomycin hydrochloride (VCM), in chronic skin ulcers. Calcium alginate particles were prepared by freeze-drying beads obtained by ionic gelation method. The experimental conditions adopted permitted the complete loading of VCM and of PDGF AB, the growth factor chosen as representative of those contained in PL. Such particles where able to absorb PBS (mimicking wound exudate), to form a gel and to modulate the release of VCM and of PDGF AB. They are characterized by enhancement properties of human fibroblast proliferation due to PL presence. In particular, PL, when loaded in alginate particles, was able not only to increase the number of viable cells, but also the number of cells in proliferative phase. Such properties were comparable to those of fresh PL indicating the capability of calcium alginate particles to load PL bioactive substances without altering their activity. The formulation developed is characterized by an easier and a less painful administration with respect to traditional gauzes and semisolid preparations and permits the loading in the same dosage form of active substances of different nature avoiding eventual incompatibility problems.

  2. NIST/ISAC standardization study: variability in assignment of intensity values to fluorescence standard beads and in cross calibration of standard beads to hard dyed beads.

    PubMed

    Hoffman, Robert A; Wang, Lili; Bigos, Martin; Nolan, John P

    2012-09-01

    Results from a standardization study cosponsored by the International Society for Advancement of Cytometry (ISAC) and the US National Institute of Standards and Technology (NIST) are reported. The study evaluated the variability of assigning intensity values to fluorophore standard beads by bead manufacturers and the variability of cross calibrating the standard beads to stained polymer beads (hard-dyed beads) using different flow cytometers. Hard dyed beads are generally not spectrally matched to the fluorophores used to stain cells, and spectral response varies among flow cytometers. Thus if hard dyed beads are used as fluorescence calibrators, one expects calibration for specific fluorophores (e.g., FITC or PE) to vary among different instruments. Using standard beads surface-stained with specific fluorophores (FITC, PE, APC, and Pacific Blue™), the study compared the measured intensity of fluorophore standard beads to that of hard dyed beads through cross calibration on 133 different flow cytometers. Using robust CV as a measure of variability, the variation of cross calibrated values was typically 20% or more for a particular hard dyed bead in a specific detection channel. The variation across different instrument models was often greater than the variation within a particular instrument model. As a separate part of the study, NIST and four bead manufacturers used a NIST supplied protocol and calibrated fluorophore solution standards to assign intensity values to the fluorophore beads. Values assigned to the reference beads by different groups varied by orders of magnitude in most cases, reflecting differences in instrumentation used to perform the calibration. The study concluded that the use of any spectrally unmatched hard dyed bead as a general fluorescence calibrator must be verified and characterized for every particular instrument model. Close interaction between bead manufacturers and NIST is recommended to have reliable and uniformly assigned

  3. Effect of nutrients on alginate synthesis in Azotobacter vinelandii and characterization of the produced alginate.

    PubMed

    Sabry, S A; Ghanem, K M; Sabra, W A

    1996-12-01

    The role of nutrients on alginate production by Azotobacter vinelandii was studied in batch cultures. The largest amount of bacterial alginate was obtained in presence of: 0.3 g/l MgSO4.7H2O. 0.4 g/l NaCl, 42 mg/l CaCl2.2H2O,.4 mg/l KH2PO4, 16 mg/l K2HPO4, 2.5 mg/l FeSO4.7H2O, 2.9 mg/l H3BO3, 2 mg/l ZnSO4.7H2O, 2 mg/l Na2MoO4.2H2O, 0.3 mg/l CuSO4.5H2O, 0.2 mg/l MnCl2.4H2O. Alginate production was not enhanced by natural additives or inducing agents, except for acetate, which increased alginate yield. The pure alginate contained 0.36% ash and 0.4% protein. It is similar to algal alginate, but it has an extra acetyl group. It contains 69.5% M-M block, 27.5% M-G block and 3% G-G block.

  4. Surface modified alginate microcapsules for 3D cell culture

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  5. Production of D-tagatose, a functional sweetener, utilizing alginate immobilized Lactobacillus fermentum CGMCC2921 cells.

    PubMed

    Xu, Zheng; Li, Sha; Fu, Fenggen; Li, Guixiang; Feng, Xiaohai; Xu, Hong; Ouyang, Pingkai

    2012-02-01

    D-tagatose is a ketohexose that can be used as a novel functional sweetener in foods, beverages, and dietary supplements. This study was aimed at developing a high-yielding D-tagatose production process using alginate immobilized Lactobacillus fermentum CGMCC2921 cells. For the isomerization from D-galactose into D-tagatose, the immobilized cells showed optimum temperature and pH at 65 °C and 6.5, respectively. The alginate beads exhibited a good stability after glutaraldehyde treatment and retained 90% of the enzyme activity after eight cycles (192 h at 65 °C) of batch conversion. The addition of borate with a molar ratio of 1.0 to D-galactose led to a significant enhancement in the D-tagatose yield. Using commercial β-galactosidase and immobilized L. fermentum cells, D-tagatose was successfully obtained from lactose after a two-step biotransformation. The relatively high conversion rate and productivity from D-galactose to D-tagatose of 60% and 11.1 g l⁻¹ h⁻¹ were achieved in a packed-bed bioreactor. Moreover, lactobacilli have been approved as generally recognized as safe organisms, which makes this L. fermentum strain an attracting substitute for recombinant Escherichia coli cells among D-tagatose production progresses.

  6. Conditions for efficient on-chip magnetic bead detection via magnetoresistive sensors.

    PubMed

    Albisetti, E; Petti, D; Cantoni, M; Damin, F; Torti, A; Chiari, M; Bertacco, R

    2013-09-15

    A commonly used figure of merit of magnetoresistive sensors employed to detect magnetic beads labeling biomolecules in lab-on-chip applications is the sensor sensitivity (S0) to external magnetic fields in the linear region of the sensor. In this paper we show that, in case of lock-in detection and bead excitation by a small AC magnetic field, S0 is not the good figure of merit to optimize. Indeed, the highest sensitivity to the magnetic beads is achieved biasing the sensor in the region of its characteristics where the product between the DC bias field and the second derivative of the resistance with respect to the magnetic field is maximum. The validity of this criterion, derived from a phenomenological model of bead detection, is proved in case of magnetic tunneling junction sensors detecting magnetic beads with 250nm diameter. This work paves the way to the development of a new generation of sensors properly designed to maximize the bead sensitivity.

  7. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... use in food (as served) (percent) Functional use Baked goods, § 170.3(n)(1) of this chapter 0.002... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium alginate. 184.1187 Section 184.1187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  8. 21 CFR 184.1133 - Ammonium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...: Category of food Maximum level of use in food (as served) (percent) Functional use Confections, frostings... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ammonium alginate. 184.1133 Section 184.1133 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  9. 21 CFR 184.1133 - Ammonium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... prepared by the neutralization of purified alginic acid with appropriate pH control agents. (b) The ingredient meets the specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 18, which is incorporated... food Maximum level of use in food (as served) (percent) Functional use Confections, frostings, §...

  10. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown algae... this chapter 0.6 Do. Fats and oils, § 170.3(n)(12) of this chapter 0.5 Do. Gelatins, puddings, §...

  11. 21 CFR 184.1133 - Ammonium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-34-9) is the ammonium salt of alginic acid, a natural polyuronide constituent of certain brown algae..., § 170.3(n)(9) of this chapter 0.4 Stabilizer, thickener, § 170.3(o)(28) of this chapter. Fats and...

  12. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown algae... this chapter 0.6 Do. Fats and oils, § 170.3(n)(12) of this chapter 0.5 Do. Gelatins, puddings, §...

  13. 21 CFR 184.1133 - Ammonium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-34-9) is the ammonium salt of alginic acid, a natural polyuronide constituent of certain brown algae..., § 170.3(n)(9) of this chapter 0.4 Stabilizer, thickener, § 170.3(o)(28) of this chapter. Fats and...

  14. 21 CFR 184.1133 - Ammonium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...: Category of food Maximum level of use in food (as served) (percent) Functional use Confections, frostings... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium alginate. 184.1133 Section 184.1133 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  15. The Beads of Translation: Using Beads to Translate mRNA into a Polypeptide Bracelet

    ERIC Educational Resources Information Center

    Dunlap, Dacey; Patrick, Patricia

    2012-01-01

    During this activity, by making beaded bracelets that represent the steps of translation, students simulate the creation of an amino acid chain. They are given an mRNA sequence that they translate into a corresponding polypeptide chain (beads). This activity focuses on the events and sites of translation. The activity provides students with a…

  16. Alginate composites for bone tissue engineering: a review.

    PubMed

    Venkatesan, Jayachandran; Bhatnagar, Ira; Manivasagan, Panchanathan; Kang, Kyong-Hwa; Kim, Se-Kwon

    2015-01-01

    Bone is a complex and hierarchical tissue consisting of nano hydroxyapatite and collagen as major portion. Several attempts have been made to prepare the artificial bone so as to replace the autograft and allograft treatment. Tissue engineering is a promising approach to solve the several issues and is also useful in the construction of artificial bone with materials including polymer, ceramics, metals, cells and growth factors. Composites consisting of polymer-ceramics, best mimic the natural functions of bone. Alginate, an anionic polymer owing enormous biomedical applications, is gaining importance particularly in bone tissue engineering due to its biocompatibility and gel forming properties. Several composites such as alginate-polymer (PLGA, PEG and chitosan), alginate-protein (collagen and gelatin), alginate-ceramic, alginate-bioglass, alginate-biosilica, alginate-bone morphogenetic protein-2 and RGD peptides composite have been investigated till date. These alginate composites show enhanced biochemical significance in terms of porosity, mechanical strength, cell adhesion, biocompatibility, cell proliferation, alkaline phosphatase increase, excellent mineralization and osteogenic differentiation. Hence, alginate based composite biomaterials will be promising for bone tissue regeneration. This review will provide a broad overview of alginate preparation and its applications towards bone tissue engineering.

  17. Single bead-based electrochemical biosensor

    PubMed Central

    Liu, Changchun; Schrlau, Michael G.; Bau, Haim H.

    2009-01-01

    A simple, robust, single bead-based electrochemical biosensor was fabricated and characterized. The sensor’s working electrode consists of an electrochemically-etched platinum wire, with a nominal diameter of 25 μm, hermetically heat-fusion sealed in a pulled glass capillary (micropipette). The sealing process does not require any epoxy or glue. A commercially available, densely functionalized agarose bead was mounted on the tip of the etched platinum wire. The use of a pre-functionalized bead eliminates the tedious and complicated surface functionalization process that is often the bottleneck in the development of electrochemical biosensors. We report on the use of a biotin agarose bead-based, micropipette, electrochemical (Bio-BMP) biosensor to monitor H2O2 concentration and the use of a streptavidin bead-based, micropipette, electrochemical (SA-BMP) biosensor to detect DNA amplicons. The Bio-BMP biosensor’s response increased linearly as the H2O2 concentration increased in the range from 1×10−6 to 1.2×10−4 M with a detection limit of 5×10−7 M. The SA-BMP was able to detect the amplicons of 1 pg DNA template of B. Cereus bacteria, thus providing better detection sensitivity than conventional gel-based electropherograms. PMID:19767195

  18. Aerogel Beads as Cryogenic Thermal Insulation System

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Augustynowicz, S. D.; Rouanet, S.; Thompson, Karen (Technical Monitor)

    2001-01-01

    An investigation of the use of aerogel beads as thermal insulation for cryogenic applications was conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Steady-state liquid nitrogen boiloff methods were used to characterize the thermal performance of aerogel beads in comparison with conventional insulation products such as perlite powder and multilayer insulation (MLI). Aerogel beads produced by Cabot Corporation have a bulk density below 100 kilograms per cubic meter (kg/cubic m) and a mean particle diameter of 1 millimeter (mm). The apparent thermal conductivity values of the bulk material have been determined under steady-state conditions at boundary temperatures of approximately 293 and 77 kelvin (K) and at various cold vacuum pressures (CVP). Vacuum levels ranged from 10(exp -5) torr to 760 torr. All test articles were made in a cylindrical configuration with a typical insulation thickness of 25 mm. Temperature profiles through the thickness of the test specimens were also measured. The results showed the performance of the aerogel beads was significantly better than the conventional materials in both soft-vacuum (1 to 10 torr) and no-vacuum (760 torr) ranges. Opacified aerogel beads performed better than perlite powder under high-vacuum conditions. Further studies for material optimization and system application are in progress.

  19. Bead-Fourier path integral molecular dynamics

    NASA Astrophysics Data System (ADS)

    Ivanov, Sergei D.; Lyubartsev, Alexander P.; Laaksonen, Aatto

    2003-06-01

    Molecular dynamics formulation of Bead-Fourier path integral method for simulation of quantum systems at finite temperatures is presented. Within this scheme, both the bead coordinates and Fourier coefficients, defining the path representing the quantum particle, are treated as generalized coordinates with corresponding generalized momenta and masses. Introduction of the Fourier harmonics together with the center-of-mass thermostating scheme is shown to remove the ergodicity problem, known to pose serious difficulties in standard path integral molecular dynamics simulations. The method is tested for quantum harmonic oscillator and hydrogen atom (Coulombic potential). The simulation results are compared with the exact analytical solutions available for both these systems. Convergence of the results with respect to the number of beads and Fourier harmonics is analyzed. It was shown that addition of a few Fourier harmonics already improves the simulation results substantially, even for a relatively small number of beads. The proposed Bead-Fourier path integral molecular dynamics is a reliable and efficient alternative to simulations of quantum systems.

  20. Inter-grade and inter-batch variability of sodium alginate used in alginate-based matrix tablets.

    PubMed

    Fu, Shao; Buckner, Ira S; Block, Lawrence H

    2014-10-01

    The purpose of this study is to characterize the inter-grade and inter-batch variability of sodium alginate used in the formulation of matrix tablets. Four different grades and three batches of one grade of sodium alginate were used to prepare matrix tablets. Swelling, erosion, and drug release tests of sodium alginate matrix tablets were conducted in a USP dissolution apparatus. Substantial differences in swelling and erosion behavior of sodium alginate matrix tablets were evident among different viscosity grades. Even different batches of the same grade exhibit substantial differences in the swelling and erosion behavior of their matrix tablets. The erosion behavior of sodium alginate matrix tablets can be partly explained by their rheological properties (both apparent viscosity and viscoelasticity) in solution. Sodium alginate with higher apparent viscosity and viscoelasticity in solution show slower erosion rate and higher swelling rate. Compacts prepared from grades or batches with higher viscosity and higher viscoelasticity show slower drug release. For grades or batches with similar apparent viscosities, apparent viscosities of sodium alginate solution at low concentration alone are not sufficient to predict the functionality of sodium alginate in matrix tablets. Viscoelastic properties of sodium alginate solutions at one high concentration corresponding to the polymer gel state, may be suitable indicia of the extended release behavior of sodium alginate matrix tablets.

  1. Falsirhodobacter sp. alg1 Harbors Single Homologs of Endo and Exo-Type Alginate Lyases Efficient for Alginate Depolymerization

    PubMed Central

    Takahashi, Mami; Tanaka, Reiji; Miyake, Hideo; Shibata, Toshiyuki; Chow, Seinen; Kuroda, Kouichi; Ueda, Mitsuyoshi; Takeyama, Haruko

    2016-01-01

    Alginate-degrading bacteria play an important role in alginate degradation by harboring highly efficient and unique alginolytic genes. Although the general mechanism for alginate degradation by these bacteria is fairly understood, much is still required to fully exploit them. Here, we report the isolation of a novel strain, Falsirhodobacter sp. alg1, the first report for an alginate-degrading bacterium from the family Rhodobacteraceae. Genome sequencing reveals that strain alg1 harbors a primary alginate degradation pathway with only single homologs of an endo- and exo-type alginate lyase, AlyFRA and AlyFRB, which is uncommon among such bacteria. Subsequent functional analysis showed that both enzymes were extremely efficient to depolymerize alginate suggesting evolutionary interests in the acquirement of these enzymes. The exo-type alginate lyase, AlyFRB in particular could depolymerize alginate without producing intermediate products making it a highly efficient enzyme for the production of 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH). Based on our findings, we believe that the discovery of Falsirhodobacter sp. alg1 and its alginolytic genes hints at the potentiality of a more diverse and unique population of alginate-degrading bacteria. PMID:27176711

  2. Coating Layer Characterization of Laser Deposited AlSi Coating over Laser Weld Bead

    NASA Astrophysics Data System (ADS)

    Gu, Hongping; Van Gelder, Aldo

    Corrosion protection of steel components is an important topic in automotive industry. Laser beam welding makes a narrow weld bead, thus minimizing the damage to the original coating on the steel material. However, the weld bead loses its original coating and is vulnerable to corrosive attack. It was demonstrated in this study that laser beam generated AlSi coating is an effective way to apply a protective coating on the weld bead. Coatings with different thickness and topography have been deposited under different laser power and processing speed. The microstructure of the as-deposited coating and its evolution after heat treatment has been studied. EDS was employed to analyze the distribution of chemical compositions of the laser generated coatings. Several metallic compounds of Al and iron have been identified. It was found that the type of metallic compounds can be influenced by the laser processing parameters.

  3. Cooling Rates of Lunar Volcanic Glass Beads

    NASA Technical Reports Server (NTRS)

    Hui, Hejiu; Hess, Kai-Uwe; Zhang, Youxue; Peslier, Anne; Lange, Rebecca; Dingwell, Donald; Neal, Clive

    2016-01-01

    It is widely accepted that the Apollo 15 green and Apollo 17 orange glass beads are of volcanic origin. The diffusion profiles of volatiles in these glass beads are believed to be due to degassing during eruption (Saal et al., 2008). The degree of degassing depends on the initial temperature and cooling rate. Therefore, the estimations of volatiles in parental magmas of lunar pyroclastic deposits depend on melt cooling rates. Furthermore, lunar glass beads may have cooled in volcanic environments on the moon. Therefore, the cooling rates may be used to assess the atmospheric condition in an early moon, when volcanic activities were common. The cooling rates of glasses can be inferred from direct heat capacity measurements on the glasses themselves (Wilding et al., 1995, 1996a,b). This method does not require knowledge of glass cooling environments and has been applied to calculate the cooling rates of natural silicate glasses formed in different terrestrial environments. We have carried out heat capacity measurements on hand-picked lunar glass beads using a Netzsch DSC 404C Pegasus differential scanning calorimeter at University of Munich. Our preliminary results suggest that the cooling rate of Apollo 17 orange glass beads may be 12 K/min, based on the correlation between temperature of the heat capacity curve peak in the glass transition range and glass cooling rate. The results imply that the parental magmas of lunar pyroclastic deposits may have contained more water initially than the early estimations (Saal et al., 2008), which used higher cooling rates, 60-180 K/min in the modeling. Furthermore, lunar volcanic glass beads could have been cooled in a hot gaseous medium released from volcanic eruptions, not during free flight. Therefore, our results may shed light on atmospheric condition in an early moon.

  4. Physical characterization of alginate-Pluronic F127 gel for endoluminal NABDs delivery.

    PubMed

    Abrami, Michela; D'Agostino, Ilenia; Milcovich, Gesmi; Fiorentino, Simona; Farra, Rossella; Asaro, Fioretta; Lapasin, Romano; Grassi, Gabriele; Grassi, Mario

    2014-02-07

    Here we focus the attention on the physical characteristics of a highly biocompatible hydrogel made up of crosslinked alginate and Pluronic F127 (PF127). This is a composite polymeric blend we propose for artery endoluminal delivery of an emerging class of molecules named nucleic acid based drugs (NABDs). The physical characterization of our composite gel, i.e. mesh size distribution and PF127-alginate mutual organization after crosslinking, can significantly determine the NABDs release kinetics. Thus, to explore these aspects, different technical approaches, i.e. rheology, low/high field NMR and TEM, were used. While rheology provided information at the macroscopic and nano-level, the other three approaches gave details at the nano-level. We observe that Pluronic micelles, organizing in cubic ordered domains, generate, upon alginate crosslinking, the formation of meshes (≈ 150 nm) larger than those occurring in a Pluronic-free alginate network (≈ 25 nm). Nevertheless, smaller alginate meshes are still on and can just host un-structured Pluronic micelles and water. Accordingly, the gel structure is quite inhomogeneous, where big meshes (filled by crystalline Pluronic) co-exist with smaller meshes (hosting water and un-structured PF127 micelles). While big meshes offer a considerable hindering action on a diffusing solute, smaller ones represent a sort of free space where solute diffusion is faster. The presence of big and small meshes indicates that drug release may follow a double kinetics characterized by a fast and slow release. Notably, this behavior is considered appropriate for endoluminal drug release to the arterial wall.

  5. Antibacterial performance of alginic acid coating on polyethylene film.

    PubMed

    Karbassi, Elika; Asadinezhad, Ahmad; Lehocký, Marian; Humpolíček, Petr; Vesel, Alenka; Novák, Igor; Sáha, Petr

    2014-08-21

    Alginic acid coated polyethylene films were examined in terms of surface properties and bacteriostatic performance against two most representative bacterial strains, that is, Escherichia coli and Staphylococcus aureus. Microwave plasma treatment followed by brush formation in vapor state from three distinguished precursors (allylalcohol, allylamine, hydroxyethyl methacrylate) was carried out to deposit alginic acid on the substrate. Surface analyses via various techniques established that alginic acid was immobilized onto the surface where grafting (brush) chemistry influenced the amount of alginic acid coated. Moreover, alginic acid was found to be capable of bacterial growth inhibition which itself was significantly affected by the brush type. The polyanionic character of alginic acid as a carbohydrate polymer was assumed to play the pivotal role in antibacterial activity. The cell wall composition of two bacterial strains along with the substrates physicochemical properties accounted for different levels of bacteriostatic performance.

  6. Bead and Process for Removing Dissolved Metal Contaminants

    SciTech Connect

    Summers, Bobby L., Jr.; Bennett, Karen L.; Foster, Scott A.

    2005-01-18

    A bead is provided which comprises or consists essentially of activated carbon immobilized by crosslinked poly (carboxylic acid) binder, sodium silicate binder, or polyamine binder. The bead is effective to remove metal and other ionic contaminants from dilute aqueous solutions. A method of making metal-ion sorbing beads is provided, comprising combining activated carbon, and binder solution (preferably in a pin mixer where it is whipped), forming wet beads, and heating and drying the beads. The binder solution is preferably poly(acrylic acid) and glycerol dissolved in water and the wet beads formed from such binder solution are preferably heated and crosslinked in a convection oven.

  7. Two Year Old With Water Bead Ingestion.

    PubMed

    Jackson, Jami; Randell, Kimberly A; Knapp, Jane F

    2015-08-01

    Foreign body ingestion is a common pediatric complaint. Two case reports describe intestinal obstruction in children from an ingestion of a single superabsorbent water ball, requiring surgical removal. We describe nonsurgical management of an asymptomatic child who ingested approximately 100 superabsorbent water beads.Because of the risk for subsequent intestinal obstruction, the patient was admitted for whole bowel irrigation. This case report is the first describing use of whole bowel irrigation in the management of an asymptomatic patient with multiple water beads ingestion.

  8. Preparation and characterization of physically modified glass beads used as model carriers in dry powder inhalers.

    PubMed

    Zellnitz, Sarah; Redlinger-Pohn, Jakob Dominik; Kappl, Michael; Schroettner, Hartmuth; Urbanetz, Nora Anne

    2013-04-15

    The aim of this work is the physical modification and characterization of the surface topography of glass beads used as model carriers in dry powder inhalers (DPIs). By surface modification the contact area between drug and carrier and thereby interparticle forces may be modified. Thus the performance of DPIs that relies on interparticle interactions may be improved. Glass beads were chosen as model carriers because various prospects of physical surface modification may be applied without affecting other factors also impacting interparticle interactions like particle size and shape. To generate rough surfaces glass beads were processed mechanically by friction and impaction in a ball mill with different grinding materials that were smaller and harder with respect to the glass beads. By varying the grinding time (4 h, 8 h) and by using different grinding media (tungsten carbide, quartz) surfaces with different shades of roughness were generated. Depending on the hardness of the grinding material and the grinding time the surface roughness was more or less pronounced. Surface roughness parameters and specific surface area were determined via several complementary techniques in order to get an enhanced understanding of the impact of the modifying procedure on the surface properties of the glass beads.

  9. Latex beads as probes of a neural crest pathway: effects of laminin, collagen, and surface charge on bead translocation

    PubMed Central

    1984-01-01

    In the trunk region of avian embryos, neural crest cells migrate along two pathways: dorsally just under the ectoderm, and ventrally between the neural tube and the somites. Previous work from this laboratory has shown that uncoated latex beads are able to translocate along the ventral neural crest pathway after injection into young embryos; however, beads coated with fibronectin are restricted from the ventral route ( Bronner -Fraser, M.E., 1982, Dev. Biol., 91: 50-63). Here, we extend these observations to determine the effects of other macromolecules on bead distribution. The data show that laminin-coated beads, like fibronectin-coated beads, are restricted from the ventral pathway. In contrast, beads coated with type I collagen translocate ventrally after injection. Because macromolecules have characteristic charge properties, changes in surface charge caused by coating the beads may confound interpretation of the results. Electrostatic effects on bead movement were examined by coating the latex beads with polyamino acids in order to predictably alter the initial surface charge. The surface charge before injection was measured for beads coated with amino acid polymers or with various biologically important macromolecules; the subsequent translocation ability of these beads was then monitored in the embryo. Polylysine-coated beads (positively charged) were restricted from the ventral pathway as were fibronectin and laminin-coated beads, even though fibronectin and laminin beads were both negatively charged. In contrast, polytyrosine -coated beads ( neutrally charged) translocated ventrally as did negatively charged collagen-coated or uncoated beads. The results demonstrate that no correlation exists between the charge properties on the latex bead surface and their subsequent ability to translocate along the ventral pathway. Therefore, an adhesion mechanism independent of surface charge effects must explain the restriction or translocation of latex beads on a

  10. Versatile click alginate hydrogels crosslinked via tetrazine-norbornene chemistry.

    PubMed

    Desai, Rajiv M; Koshy, Sandeep T; Hilderbrand, Scott A; Mooney, David J; Joshi, Neel S

    2015-05-01

    Alginate hydrogels are well-characterized, biologically inert materials that are used in many biomedical applications for the delivery of drugs, proteins, and cells. Unfortunately, canonical covalently crosslinked alginate hydrogels are formed using chemical strategies that can be biologically harmful due to their lack of chemoselectivity. In this work we introduce tetrazine and norbornene groups to alginate polymer chains and subsequently form covalently crosslinked click alginate hydrogels capable of encapsulating cells without damaging them. The rapid, bioorthogonal, and specific click reaction is irreversible and allows for easy incorporation of cells with high post-encapsulation viability. The swelling and mechanical properties of the click alginate hydrogel can be tuned via the total polymer concentration and the stoichiometric ratio of the complementary click functional groups. The click alginate hydrogel can be modified after gelation to display cell adhesion peptides for 2D cell culture using thiol-ene chemistry. Furthermore, click alginate hydrogels are minimally inflammatory, maintain structural integrity over several months, and reject cell infiltration when injected subcutaneously in mice. Click alginate hydrogels combine the numerous benefits of alginate hydrogels with powerful bioorthogonal click chemistry for use in tissue engineering applications involving the stable encapsulation or delivery of cells or bioactive molecules.

  11. PLGA/alginate composite microspheres for hydrophilic protein delivery.

    PubMed

    Zhai, Peng; Chen, X B; Schreyer, David J

    2015-11-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate.

  12. Stability testing of alginate-chitosan films.

    PubMed

    Rabisková, Miloslava; Dvorácková, Katerina; Kofronvá, Lenka

    2012-02-01

    Pellets containing rutin prepared by the extrusion/spheronization method were coated with sodium alginate-chitosan film. Important quality parameters in the pellets before coating were determined, and after coating the dissolution profiles of the drug were evaluated in dissolution media of the pH corresponding to the conditions in the gastrointestinal tract. Samples of coated pellets were located in the boxes for stability testing under different conditions, i.e. 25 degrees C and 60% of relative humidity (RH); 30 degrees C and 65% RH and 40 degrees C and 75% RH. After 1, 3, 6, 9 and 12 months (or 1, 3 and 6 months), the dissolution test was repeated and compared with the original profiles using similarity factors. All similarity factor values above 50 indicate excellent stability of alginate-chitosan films.

  13. Cutting Tool For Shaving Weld Beads

    NASA Technical Reports Server (NTRS)

    Hoffman, David S.; Mcferrin, David C.; Daniel, Ronald L., Jr.; Coby, John B., Jr.; Dawson, Sidney G.

    1995-01-01

    Cutting tool proposed for use in shaving weld beads flush with adjacent surfaces of weldments. Modified version of commercial pneumatically driven rotary cutting tool, cutting wheel of which turns at speeds sufficient for machining nickel alloys, titanium, and stainless steels. Equipped with forward-mounted handle and rear-mounted skid plate to maximize control and reduce dependence on skill of technician.

  14. Wood mimetic hydrogel beads for enzyme immobilization.

    PubMed

    Park, Saerom; Kim, Sung Hee; Won, Keehoon; Choi, Joon Weon; Kim, Yong Hwan; Kim, Hyung Joo; Yang, Yung-Hun; Lee, Sang Hyun

    2015-01-22

    Wood component-based composite hydrogels have potential applications in biomedical fields owing to their low cost, biodegradability, and biocompatibility. The controllable properties of wood mimetic composites containing three major wood components are useful for enzyme immobilization. Here, lipase from Candida rugosa was entrapped in wood mimetic beads containing cellulose, xylan, and lignin by dissolving wood components with lipase in [Emim][Ac], followed by reconstitution. Lipase entrapped in cellulose/xylan/lignin beads in a 5:3:2 ratio showed the highest activity; this ratio is very similar to that in natural wood. The lipase entrapped in various wood mimetic beads showed increased thermal and pH stability. The half-life times of lipase entrapped in cellulose/alkali lignin hydrogel were 31- and 82-times higher than those of free lipase during incubation under denaturing conditions of high temperature and low pH, respectively. Owing to their biocompatibility, biodegradability, and controllable properties, wood mimetic hydrogel beads can be used to immobilize various enzymes for applications in the biomedical, bioelectronic, and biocatalytic fields.

  15. Effect of Cellulose Acetate Beads on Interleukin-23 Release.

    PubMed

    Nishise, Shoichi; Abe, Yasuhiko; Nomura, Eiki; Sato, Takeshi; Sasaki, Yu; Iwano, Daisuke; Yoshizawa, Kazuya; Yagi, Makoto; Sakuta, Kazuhiro; Ueno, Yoshiyuki

    2016-08-01

    Interleukin (IL)-23, which is released by activated monocytes and neutrophils, promotes production of high levels of IL-17 by T-helper 17 cells. Cellulose acetate (CA) beads are used as carriers for granulocyte and monocyte (GM) adsorptive apheresis using Adacolumn. Contact between blood and CA beads induces cytokine release; however, their inflammatory effects on IL-23 release are unclear. We aimed to clarify the effect of CA beads on IL-23 release in vitro. We incubated peripheral blood with and without CA beads and measured IL-23. Compared to blood samples incubated without CA beads, blood samples incubated with CA beads had significantly decreased amounts of IL-23. In conclusion, CA beads inhibited IL-23 release from adsorbed GMs. The biological effects of this decrease in IL-23 release during GM adsorption to CA beads need further clarification.

  16. In vivo production of scFv-displaying biopolymer beads using a self-assembly-promoting fusion partner.

    PubMed

    Grage, Katrin; Rehm, Bernd H A

    2008-01-01

    Recombinant production and, in particular, immobilization of antibody fragments onto carrier materials are of high interest with regard to diagnostic and therapeutic applications. In this study, the recombinant production of scFv-displaying biopolymer beads intracellularly in Escherichia coli was investigated. An anti-beta-galactosidase scFv (single chain variable fragment of an antibody) was C-terminally tagged with the polymer-synthesizing enzyme PhaC from Cupriavidus necator by generating the respective hybrid gene. The functionality of the anti-beta-galactosidase scFv-PhaC fusion protein was assessed by producing the respective soluble fusion protein in an Escherichia coli AMEF mutant strain. AMEF (antibody-mediated enzyme formation) strains contain an inactive mutant beta-galactosidase, which can be activated by binding of an anti-beta-galactosidase antibody. In vivo activation of AMEF beta-galactosidase indicated that the scFv is functional with the C-terminal fusion partner PhaC. It was further demonstrated that polymer biosynthesis and bead formation were mediated by the scFv-PhaC fusion protein in the cytoplasm of recombinant E. coli when the polymer precursor was metabolically provided. This suggested that the C-terminal fusion partner PhaC acts as a functional insolubility partner, providing a natural cross-link to the bead and leading to in vivo immobilization of the scFv. Overproduction of the fusion protein at the polymer bead surface was confirmed by SDS-PAGE and MALDI-TOF/MS analysis of purified beads. Antigen binding functionality and specificity of the beads was assessed by analyzing the binding of beta-galactosidase to scFv-displaying beads and subsequently eluting the bound protein at pH 2.7. A strong enrichment of beta-galactosidase suggested the functional display of scFv at the bead surface as well as the applicability of these beads for antigen purification. Binding of beta-galactosidase to the scFv-displaying beads was quantitatively

  17. Metal-Containing Polystyrene Beads as Standards for Mass Cytometry.

    PubMed

    Abdelrahman, Ahmed I; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Kinach, Robert; Dai, Sheng; Thickett, Stuart C; Tanner, Scott; Winnik, Mitchell A

    2010-01-01

    We examine the suitability of metal-containing polystyrene beads for the calibration of a mass cytometer instrument, a single particle analyser based on an inductively coupled plasma ion source and a time of flight mass spectrometer. These metal-containing beads are also verified for their use as internal standards for this instrument. These beads were synthesized by multiple-stage dispersion polymerization with acrylic acid as a comonomer. Acrylic acid acts as a ligand to anchor the metal ions within the interior of the beads. Mass cytometry enabled the bead-by-bead measurement of the metal-content and determination of the metal-content distribution. Beads synthesized by dispersion polymerization that involved three stages were shown to have narrower bead-to-bead variation in their lanthanide content than beads synthesized by 2-stage dispersion polymerization. The beads exhibited insignificant release of their lanthanide content to aqueous solutions of different pHs over a period of six months. When mixed with KG1a or U937 cell lines, metal-containing polymer beads were shown not to affect the mass cytometry response to the metal content of element-tagged antibodies specifically attached to these cells.

  18. Optical vortex beam transmission with different OAM in scattering beads and brain tissue media

    NASA Astrophysics Data System (ADS)

    Wang, W. B.; Shi, Lingyan; Lindwasser, Lukas; Marque, Paulo; Lavery, M. P. J.; Alfano, R. R.

    2016-03-01

    Light transmission of Laguerre Gaussian (LG) vortex beams with different orbital angular momentum (OAM) values (L) in scattering beads and mouse brain tissue media were experimentally investigated for the first time in comparison with Gaussian (G) beams. The LG beams with different OAM were generated using a spatial light modulator (SLM) in reflection mode. The scattering beads media consist of various sizes and concentrations of latex beads in water solutions. The transmissions of LG and G beams through scattering beads and brain tissue media were measured with different ratios of sample thicknesses (z) to scattering mean free path (ls) of the turbid media, z/ls. The results indicate that within the ballistic region where z/ls is small, the LG and G beams show no significant difference, while in the diffusive region where z/ls is higher, the vortex beams show higher transmission than G beams. In the diffusive region, the LG beams with higher L values show higher transmission than the beams with lower L values due to the eigen channels in the media. The transition points from the ballistic to diffusive regions for different scattering beads and brain tissue media were studied.

  19. Experimental analysis of nanofluid pool boiling heat transfer in copper bead packed porous layers

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Wang, Ji

    2017-03-01

    Coupling the nanofluid as working fluid and the copper beads packed porous structure on heating surface were employed to enhance the pool boiling heat transfer by changing the fluid properties with the adjunction of nanoparticles in liquid and altering the heating surface with a bead porous layer. Due to the higher thermal conductivity, the copper beads served as an extended heating surface and the boiling nucleation sites rose, but the flow resistance increased. The CuO-water and SiO2-water nanofluids as well as the pure water were respectively employed as working fluids in the pool boiling experiments. Comparing with the base fluid of water, the higher thermal conductivity and lower surface tension occur in the nanofluids and those favor the boiling heat transfer, but the higher viscosity and density of nanofluids serve as deteriorative factors. So, the concentration region of the nanofluids should be chosen properly. The maximum relative error between the collected experimental data of the pure water on a flat surface and the theoretical prediction of pool boiling using the Rohsenow correlation was less than 12 %. The comparisons of the pool boiling heat transfer characteristics were also conducted between the pure water and the nanofluids respectively on the horizontal flat surface and on the heating surface packed with a copper bead porous layer. Besides, the boiling bubble generation, integration and departure have a great affect on the pool boiling and were recorded with a camera in the bead stacked porous structures at different heat flux.

  20. New approach for petroleum hydrocarbon degradation using bacterial spores entrapped in chitosan beads.

    PubMed

    Barreto, R V G; Hissa, D C; Paes, F A; Grangeiro, T B; Nascimento, R F; Rebelo, L M; Craveiro, A A; Melo, V M M

    2010-04-01

    Spores of Bacillus subtilis LAMI008 were entrapped in 3-mm chitosan beads and cross-linked with 0.3% glutaraldehyde for n-hexadecane biodegradation and biosurfactant recovery. When exposed to nutrients, the spores generated vegetative cells without morphological alterations as revealed by atomic force microscopy. The entrapped cells degraded almost 100% of 1% of n-hexadecane in medium supplemented with 1% glucose and produce biosurfactant within 48 h, as well as free cells. The number of viable cells inside the beads was maintained throughout the n-hexadecane degradation process and the released biosurfactant was not used as a carbon source. Entrapment of bacterial spores in chitosan beads overcomes problems with stability, storage, and long term cell viability encountered with vegetative cells. This approach can potentially be utilized for biodegradation of complex compounds by entrapping spores of different species of bacteria.

  1. Photonic crystal beads from gravity-driven microfluidics.

    PubMed

    Gu, Hongcheng; Rong, Fei; Tang, Baocheng; Zhao, Yuanjin; Fu, Degang; Gu, Zhongze

    2013-06-25

    This Letter reports a simple method for the mass production of 3D colloidal photonic crystal beads (PCBs) by using a gravity-driven microfluidic device and online droplet drying method. Compared to traditional methods, the droplet templates of the PCBs are generated by using the ultrastable gravity as the driving force for the microfluidics, thus the PCBs are formed with minimal polydispersity. Moreover, drying of the droplet templates is integrated into the production process, and the nanoparticles in the droplets self-assemble online. Overall, this process results in PCBs with good morphology, low polydispersity, brilliant structural colors, and narrow stop bands. PCBs could be bulk generated by this process for many practical applications, such as multiplex-encoded assays and the construction of novel optical materials.

  2. Screening of Alginate Lyase-Producing Bacteria and Optimization of Media Compositions for Extracellular Alginate Lyase Production

    PubMed Central

    Tavafi, Hadis; Abdi- Ali, Ahya A; Ghadam, Parinaz; Gharavi, Sara

    2017-01-01

    Background: Alginate is a linear polysaccharide consisting of guluronate (polyG) and mannuronate (polyM) subunits. Methods: In the initial screening of alginate-degrading bacteria from soil, 10 isolates were able to grow on minimal medium containing alginate. The optimization of cell growth and alginate lyase (algL) production was carried out by the addition of 0.8% alginate and 0.2-0.3 M NaCl to the culture medium. Of 10 isolates, one was selected based on its fast growth rate on minimal 9 medium containing 0.4% sodium alginate. The selected bacterium, identified based on morphological and biochemical characteristics, as well as 16S rDNA sequence data, was confirmed to be an isolate belonging to the genus Bacillus and designated as Bacillus sp. TAG8. Results: The results showed the ability of Bacillus sp. TAG8 in utilizing alginate as a sole carbon source. Bacillus sp. TAG8 growth and algL production were augmented with an increase in sodium alginate concentration and also by the addition of 0.2-0.3 M NaCl. Molecular analysis of TAG8 algL gene showed 99% sequence identity with algL of Pseudomonas aeruginosa PAO1. The algL produced by Bacillus sp. TAG8 cleaved both polyM and polyG blocks in alginate molecule, as well as acetylated alginate residues, confirming the bifunctionality of the isolated lyase. Conclusion: The identification of novel algL genes from microbial communities constitutes a new approach for exploring lyases with specific activity against bacterial alginates and may thus contribute to the eradication of persistent biofilms from clinical samples. PMID:27432784

  3. Small-angle X-ray scattering and rheological characterization of alginate gels. 3. Alginic acid gels.

    PubMed

    Draget, Kurt Ingar; Stokke, Bjørn T; Yuguchi, Yoshiaki; Urakawa, Hiroshi; Kajiwara, Kanji

    2003-01-01

    Alginic acid gels were studied by small-angle X-ray scattering and rheology to elucidate the influence of alginate chemical composition and molecular weight on the gel elasticity and molecular structure. The alginic acid gels were prepared by homogeneous pH reduction throughout the sample. Three alginates with different chemical composition and sequence, and two to three different molecular weights of each sample were examined. Three alginate samples with fractions of guluronic acid residues of 0.39 (LoG), 0.50 (InG), and 0.68 (HiG), covering the range of commercially available alginates, were employed. The excess scattering intensity I of the alginic acid gels was about 1 order of magnitude larger and exhibited a stronger curvature toward low q compared to ionically cross-linked alginate. The I(q) were decomposed into two components by assuming that the alginic acid gel is composed of aggregated multiple junctions and single chains. Time-resolved experiments showed a large increase in the average size of aggregates and their weight fraction within the first 2 h after onset of gelling, which also coincides with the most pronounced rheological changes. At equilibrium, little or no effect of molecular weight was observed, whereas at comparable molecular weights, an increased scattering intensity with increasing content of guluronic acid residues was recorded, probably because of a larger apparent molecular mass of domains. The results suggest a quasi-ordered junction zone is formed in the initial stage, followed by subsequent assembling of such zones, forming domains in the order of 50 A. The average length of the initial junction zones, being governed by the relative fraction of stabilizing G-blocks and destabilizing alternating (MG) blocks, determines the density of the final random aggregates. Hence, high-G alginates give alginic acid gels of a higher aggregate density compared to domains composed of loosely packed shorter junction zones in InG or LoG system.

  4. A comparative study on liquid core formulation on the diameter on the alginate capsules

    NASA Astrophysics Data System (ADS)

    Ong, Hui-Yen; Lee, Boon-Beng; Radzi, AkmalHadi Ma'; Zakaria, Zarina; Chan, Eng-Seng

    2015-08-01

    Liquid core capsule has vast application in biotechnology related industries such as pharmaceutical, medical, agriculture and food. Formulation of different types of capsule was important to determine the performance of the capsule. Generally, the liquid core capsule with different formulations generated different size of capsule.Therefore, the aim of this project is to investigate the effect of different liquid core solution formulations on the diameter of capsule. The capsule produced by extruding liquid core solutions into sodium alginate solution. Three types of liquid core solutions (chitosan, xanthan gum, polyethylene glycol (PEG)) were investigated. The results showed that there is significant change in capsule diameter despite in different types of liquid core solution were used and a series of capsule range in diameter of 3.1 mm to 4.5 mm were produced. Alginate capsule with chitosan formulation appeared to be the largest capsule among all.

  5. Use of laboratory-grown bacterial alginate in copper removal.

    PubMed

    Kivilcimdan Moral, Ç; Doğan, Ö; Sanin, F D

    2012-01-01

    Industrial production leads to toxic heavy metal pollution in water bodies. Copper is one of the examples that requires removal from effluents before being discharged. It is difficult and sometimes very expensive to remove toxic heavy metals by conventional treatment techniques. This study aims to remove copper by the use of bacterial alginate as a non-conventional technique. Bacterial alginates (natural polymers composed of mannuronic and guluronic acid monomers) were synthesized by Azotobacter vinelandii ATCC(®) 9046 in a laboratory fermentor under controlled environmental conditions. The alginates produced, with a range of different characteristics in terms of monomer distribution and viscosity, were investigated for maximum copper uptake capacities. The average copper uptake capacities of alginates produced were found to be about 1.90 mmol/L Cu(2+)/g alginate. Although the GG-block amount of alginates was varied from 12 to 87% and culture broth viscosities were changed within the range of 1.47 and 14 cP, neither the block distribution nor viscosities of alginate samples considerably affected the copper uptake of alginates.

  6. 21 CFR 172.858 - Propylene glycol alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Propylene glycol alginate. 172.858 Section 172.858... CONSUMPTION Multipurpose Additives § 172.858 Propylene glycol alginate. The food additive propylene glycol... information required by the act: (1) The name of the additive, “propylene glycol alginate” or...

  7. 21 CFR 172.858 - Propylene glycol alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Propylene glycol alginate. 172.858 Section 172.858... CONSUMPTION Multipurpose Additives § 172.858 Propylene glycol alginate. The food additive propylene glycol... information required by the act: (1) The name of the additive, “propylene glycol alginate” or...

  8. 21 CFR 172.858 - Propylene glycol alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Propylene glycol alginate. 172.858 Section 172.858... CONSUMPTION Multipurpose Additives § 172.858 Propylene glycol alginate. The food additive propylene glycol... information required by the act: (1) The name of the additive, “propylene glycol alginate” or...

  9. In vivo and in vitro taste masking of ofloxacin and sustained release by forming interpenetrating polymer network beads.

    PubMed

    Rajesh, A Michael; Popat, Kiritkumar Mangaldas

    2017-02-01

    Drug-resin complexes (DRCs) of ofloxacin and ion-exchange resins (IERs) were prepared in different ratios of drug/IERs, that is, 1:1, 1:2 and 1:4 (w/w) and investigated for taste masking by in vivo and in vitro release studies. Human volunteers graded AD1:4 (DRC) as tasteless with an average value of 0.3 ± 0.03 and in vitro study showed that AD 1:4 released only 1.70 ± 0.86% of drug at salivary pH within 30s. Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (P-XRD) and differential scanning calorimetry (DSC) studies of AD 1:4 showed the change in the morphology of the drug, that is, from crystalline phase to amorphous phase during complex formation. The release of drug from AD 1:4 was completed within 30 min at gastric pH 1.2 and to extend the release time of drug at gastric pH, it was entrapped with different biopolymers, such as sodium alginate (SA) and sodium carboxymethyl cellulose (SCMC), in the presence of ferric chloride and glutaraldehyde (GA) to form interpenetrating polymer network (IPN) beads. FTIR studies revealed that IPN beads were crosslinked with Fe(3+ )and GA. The release of drug at gastric and intestinal pH was 14.53 ± 1.52% and 65.86 ± 1.29%, respectively, for a contact time of 10 h. The kinetics release study shows fickian diffusion for ionically crosslinked beads and zero-order release for GA crosslinking beads.

  10. hνSABR: Photochemical Dose–Response Bead Screening in Droplets

    PubMed Central

    2016-01-01

    With the potential for each droplet to act as a unique reaction vessel, droplet microfluidics is a powerful tool for high-throughput discovery. Any attempt at compound screening miniaturization must address the significant scaling inefficiencies associated with library handling and distribution. Eschewing microplate-based compound collections for one-bead-one-compound (OBOC) combinatorial libraries, we have developed hνSABR (Light-Induced and -Graduated High-Throughput Screening After Bead Release), a microfluidic architecture that integrates a suspension hopper for compound library bead introduction, droplet generation, microfabricated waveguides to deliver UV light to the droplet flow for photochemical compound dosing, incubation, and laser-induced fluorescence for assay readout. Avobenzone-doped PDMS (0.6% w/w) patterning confines UV exposure to the desired illumination region, generating intradroplet compound concentrations (>10 μM) that are reproducible between devices. Beads displaying photochemically cleavable pepstatin A were distributed into droplets and exposed with five different UV intensities to demonstrate dose–response screening in an HIV-1 protease activity assay. This microfluidic architecture introduces a new analytical approach for OBOC library screening, and represents a key component of a next-generation distributed small molecule discovery platform. PMID:26815064

  11. Distribution and biophysical processes of beaded streams in Arctic permafrost landscapes

    NASA Astrophysics Data System (ADS)

    Arp, C. D.; Whitman, M. S.; Jones, B. M.; Grosse, G.; Gaglioti, B. V.; Heim, K. C.

    2015-01-01

    Beaded streams are widespread in permafrost regions and are considered a common thermokarst landform. However, little is known about their distribution, how and under what conditions they form, and how their intriguing morphology translates to ecosystem functions and habitat. Here we report on a circum-Arctic survey of beaded streams and a watershed-scale analysis in northern Alaska using remote sensing and field studies. We mapped over 400 channel networks with beaded morphology throughout the continuous permafrost zone of northern Alaska, Canada, and Russia and found the highest abundance associated with medium to high ground-ice content permafrost in moderately sloping terrain. In one Arctic coastal plain watershed, beaded streams accounted for half of the drainage density, occurring primarily as low-order channels initiating from lakes and drained lake basins. Beaded streams predictably transition to alluvial channels with increasing drainage area and decreasing channel slope, although this transition is modified by local controls on water and sediment delivery. The comparisons of one beaded channel using repeat photography between 1948 and 2013 indicate a relatively stable landform, and 14C dating of basal sediments suggest channel formation may be as early as the Pleistocene-Holocene transition. Contemporary processes, such as deep snow accumulation in riparian zones, effectively insulate channel ice and allows for perennial liquid water below most beaded stream pools. Because of this, mean annual temperatures in pool beds are greater than 2 °C, leading to the development of perennial thaw bulbs or taliks underlying these thermokarst features that range from 0.7 to 1.6 m. In the summer, some pools thermally stratify, which reduces permafrost thaw and maintains cold-water habitats. Snowmelt-generated peak flows decrease rapidly by two or more orders of magnitude to summer low flows with slow reach-scale velocity distributions ranging from 0.01 to 0.1 m s-1

  12. Distribution and biophysical processes of beaded streams in Arctic permafrost landscapes

    USGS Publications Warehouse

    Arp, Christopher D.; Whitman, Matthew S.; Jones, Benjamin M.; Grosse, Guido; Gaglioti, Benjamin V.; Heim, Kurt C.

    2015-01-01

    Beaded streams are widespread in permafrost regions and are considered a common thermokarst landform. However, little is known about their distribution, how and under what conditions they form, and how their intriguing morphology translates to ecosystem functions and habitat. Here we report on a Circum-Arctic survey of beaded streams and a watershed-scale analysis in northern Alaska using remote sensing and field studies. We mapped over 400 channel networks with beaded morphology throughout the continuous permafrost zone of northern Alaska, Canada, and Russia and found the highest abundance associated with medium- to high- ground ice content permafrost in moderately sloping terrain. In the Fish Creek watershed, beaded streams accounted for half of the drainage density, occurring primarily as low-order channels initiating from lakes and drained lake basins. Beaded streams predictably transition to alluvial channels with increasing drainage area and decreasing channel slope, although this transition is modified by local controls on water and sediment delivery. Comparison of one beaded channel using repeat photography between 1948 and 2013 indicate a relatively stable landform and 14C dating of basal sediments suggest channel formation may be as early as the Pleistocene-Holocene transition. Contemporary processes, such as deep snow accumulation in riparian zones effectively insulates channel ice and allows for perennial liquid water below most beaded stream pools. Because of this, mean annual temperatures in pool beds are greater than 2°C, leading to the development of perennial thaw bulbs or taliks underlying these thermokarst features. In the summer, some pools thermally stratify, which reduces permafrost thaw and maintains coldwater habitats. Snowmelt generated peak-flows decrease rapidly by two or more orders of magnitude to summer low flows with slow reach-scale velocity distributions ranging from 0.1 to 0.01 m/s, yet channel runs still move water rapidly

  13. Applications of Alginate-Based Bioinks in 3D Bioprinting

    PubMed Central

    Axpe, Eneko; Oyen, Michelle L.

    2016-01-01

    Three-dimensional (3D) bioprinting is on the cusp of permitting the direct fabrication of artificial living tissue. Multicellular building blocks (bioinks) are dispensed layer by layer and scaled for the target construct. However, only a few materials are able to fulfill the considerable requirements for suitable bioink formulation, a critical component of efficient 3D bioprinting. Alginate, a naturally occurring polysaccharide, is clearly the most commonly employed material in current bioinks. Here, we discuss the benefits and disadvantages of the use of alginate in 3D bioprinting by summarizing the most recent studies that used alginate for printing vascular tissue, bone and cartilage. In addition, other breakthroughs in the use of alginate in bioprinting are discussed, including strategies to improve its structural and degradation characteristics. In this review, we organize the available literature in order to inspire and accelerate novel alginate-based bioink formulations with enhanced properties for future applications in basic research, drug screening and regenerative medicine. PMID:27898010

  14. Compatible compositions based on aqueous polyurethane dispersions and sodium alginate.

    PubMed

    Daemi, Hamed; Barikani, Mehdi; Barmar, Mohammad

    2013-01-30

    A series of aqueous polyurethane dispersions were synthesized by the reaction of polytetramethylene glycol and isophorone diisocyanate, extended with dimethylol propionic acid. Their chemical structures were characterized using FTIR, (1)H NMR, and (13)C NMR, and thermal properties were determined by DMTA. Then, a number of aqueous polyurethane dispersions-sodium alginate (PUD/SA) compositions were prepared by addition of sodium alginate solution with different concentrations into the aqueous polyurethane dispersion. Characterization of chemical structure and thermal properties of these blends were performed by FTIR, EDX and DMTA, respectively. The morphology of the alginate in polyurethane matrix was studied by SEM. The hydrophilicity of the prepared samples decreases by increasing the content of sodium alginate in blends. These observations were attributed to the increase of hydrophilicity of the blends as a consequence of addition of hydrophilic carboxylate, hydroxyl and ether functional groups of the alginate to them.

  15. Maximization of volatile fatty acids production from alginate in acidogenesis.

    PubMed

    Pham, Hong Duc; Seon, Jiyun; Lee, Seong Chan; Song, Minkyung; Woo, Hee-Chul

    2013-11-01

    In this study, the response surface methodology (RSM) was applied to determine the optimum fermentative condition of alginate with the respect to the simultaneous effects of alginate concentration and initial pH to maximize the production of total volatile fatty acids (TVFAs) and alcohols. The results showed that the alginate fermentation was significantly affected by initial pH than by alginate concentration and there was no interaction between the two variables. The optimum condition was 6.2g alginate/L and initial pH 7.6 with a maximum TVFAs yield of 37.1%. Acetic acids were the main constituents of the TVFAs mixtures (i.e., 71.9-95.5%), while alcohols (i.e., ethanol, butanol, and propanol) were not detected.

  16. Application of Pcvd Process to Uniform Coating of TiO2 Thin Films on Polypropylene Beads

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Joo; Pham, Hung Cuong; Kim, Kyo-Seon

    The growth of the TiO2 thin films coated on the polypropylene beads was analyzed experimentally in a rotating cylindrical plasma chemical vapor deposition (PCVD) reactor. The precursors for the thin films were generated by plasma reactions, and they deposited on the polypropylene beads to become the uniform thin films. The TiO2 thin films grow more quickly on the polypropylene beads by increasing the mass flow rate of TTIP, or the rotation speed of the reactor. The smaller number of polypropylene beads in the reactor increases the growth rate of the thin films. The high-quality TiO2 thin films can be coated on particles uniformly by using the rotating cylindrical PCVD process. The particles coated with high-quality TiO2 thin films can be applied to the removal of air and water pollutants by a photodegradation reaction of TiO2.

  17. Development of a bead-based suspension array for the detection of pathogens in acute respiratory tract infections

    PubMed Central

    Li, Hong-Ru; Zhang, Wei; Hua, Zhi-Dan; Lin, Xiao-Hong; Lin, Meng-Qing; Huang, Wen-Sen; Huang, Li-Ping; Yu, Xiao-Li; Xu, Neng-Luan; Lin, Ming; Xie, Bao-Song; Shen, Xiao-Na; Xie, Jian-Feng; Wang, Yi; Huang, Meng; Wu, Yan-An; Hu, Xin-Lan

    2016-01-01

    We developed a high-throughput bead-based suspension array for simultaneous detection of 20 respiratory tract pathogens in clinical specimens. Pathogen-specific genes were amplified and hybridized to probes coupled to carboxyl-encoded microspheres. Fluorescence intensities generated via the binding of phycoerythrin-conjugated streptavidin with biotin-labeled targets were measured by the Luminex 100 bead-based suspension array system. The bead-based suspension array detected bacteria in a significantly higher number of samples compared to the conventional culture. There was no significant difference in the detection rate of atypical pathogensatypical pathogens or viruses between the bead-based suspension array and real-time PCR. This technology can play a significant role in screening patients with pneumonia. PMID:27190247

  18. Green stone beads at the dawn of agriculture.

    PubMed

    Bar-Yosef Mayer, Daniella E; Porat, Naomi

    2008-06-24

    The use of beads and other personal ornaments is a trait of modern human behavior. During the Middle and Upper Paleolithic periods, beads were made out of shell, bone, ivory, egg shell, and occasionally of minerals. During the transition to agriculture in the Near East, stone, in particular green stone, was used for the first time to make beads and pendants. We observed that a large variety of minerals of green colors were sought, including apatite, several copper-bearing minerals, amazonite and serpentinite. There seems to be an increase with time of distance from which the green minerals were sought. Because beads in white, red, yellow, brown, and black colors had been used previously, we suggest that the occurrence of green beads is directly related to the onset of agriculture. Green beads and bead blanks were used as amulets to ward off the evil eye and as fertility charms.

  19. Discrete dipole approximation simulation of bead enhanced diffraction grating biosensor

    NASA Astrophysics Data System (ADS)

    Arif, Khalid Mahmood

    2016-08-01

    We present the discrete dipole approximation simulation of light scattering from bead enhanced diffraction biosensor and report the effect of bead material, number of beads forming the grating and spatial randomness on the diffraction intensities of 1st and 0th orders. The dipole models of gratings are formed by volume slicing and image processing while the spatial locations of the beads on the substrate surface are randomly computed using discrete probability distribution. The effect of beads reduction on far-field scattering of 632.8 nm incident field, from fully occupied gratings to very coarse gratings, is studied for various bead materials. Our findings give insight into many difficult or experimentally impossible aspects of this genre of biosensors and establish that bead enhanced grating may be used for rapid and precise detection of small amounts of biomolecules. The results of simulations also show excellent qualitative similarities with experimental observations.

  20. Ion exchange in alginate gels--dynamic behaviour revealed by electron paramagnetic resonance.

    PubMed

    Ionita, Gabriela; Ariciu, Ana Maria; Smith, David K; Chechik, Victor

    2015-12-14

    The formation of alginate gel from low molecular weight alginate and very low molecular weight alginate in the presence of divalent cations was investigated using Electron Paramagnetic Resonance (EPR) spectroscopy. The transition from sol to gel in the presence of divalent cations was monitored by the changes in the dynamics of spin labelled alginate. The immobilisation of the spin labelled alginate in the gel reflects the strength of interaction between the cation and alginate chain. Diffusion experiments showed that both the cation and alginate polyanion in the gel fibres can exchange with molecules in solution. In particular, we showed that dissolved alginate polyanions can replace alginates in the gel fibres, which can hence diffuse through the bulk of the gel. This illustrates the surprisingly highly dynamic nature of these gels and opens up the possibility of preparing multicomponent alginate gels via polyanion exchange process.

  1. Ceramic Spheres From Cation Exchange Beads

    NASA Technical Reports Server (NTRS)

    Dynys, F. W.

    2003-01-01

    Porous ZrO2 and hollow TiO2 spheres were synthesized from a strong acid cation exchange resin. Spherical cation exchange beads, polystyrene based polymer, were used as a morphological-directing template. Aqueous ion exchange reaction was used to chemically bind (ZrO)(2+) ions to the polystyrene structure. The pyrolysis of the polystyrene at 600 C produces porous ZrO2 spheres with a surface area of 24 sq m/g with a mean sphere size of 42 microns. Hollow TiO2 spheres were synthesized by using the beads as a micro-reactor. A direct surface reaction - between titanium isopropoxide and the resin beads forms a hydrous TiO2 shell around the polystyrene core. The pyrolysis of the polystyrene core at 600 C produces hollow anatase spheres with a surface area of 42 sq m/g with a mean sphere size of 38 microns. The formation of ceramic spheres was studied by XRD, SEM and B.E.T. nitrogen adsorption measurements.

  2. Deterministic bead-in-droplet ejection utilizing an integrated plug-in bead dispenser for single bead–based applications

    PubMed Central

    Kim, Hojin; Choi, In Ho; Lee, Sanghyun; Won, Dong-Joon; Oh, Yong Suk; Kwon, Donghoon; Sung, Hyung Jin; Jeon, Sangmin; Kim, Joonwon

    2017-01-01

    This paper presents a deterministic bead-in-droplet ejection (BIDE) technique that regulates the precise distribution of microbeads in an ejected droplet. The deterministic BIDE was realized through the effective integration of a microfluidic single-particle handling technique with a liquid dispensing system. The integrated bead dispenser facilitates the transfer of the desired number of beads into a dispensing volume and the on-demand ejection of bead-encapsulated droplets. Single bead–encapsulated droplets were ejected every 3 s without any failure. Multiple-bead dispensing with deterministic control of the number of beads was demonstrated to emphasize the originality and quality of the proposed dispensing technique. The dispenser was mounted using a plug-socket type connection, and the dispensing process was completely automated using a programmed sequence without any microscopic observation. To demonstrate a potential application of the technique, bead-based streptavidin–biotin binding assay in an evaporating droplet was conducted using ultralow numbers of beads. The results evidenced the number of beads in the droplet crucially influences the reliability of the assay. Therefore, the proposed deterministic bead-in-droplet technology can be utilized to deliver desired beads onto a reaction site, particularly to reliably and efficiently enrich and detect target biomolecules. PMID:28393911

  3. Dimensional changes of alginate dental impression materials.

    PubMed

    Nallamuthu, N; Braden, M; Patel, M P

    2006-12-01

    The weight loss and corresponding dimensional changes of two dental alginate impression materials have been studied. The weight loss kinetics indicate this to be a diffusion controlled process, but with a boundary condition at the surface of the concentration decreasing exponentially with time. This is in marked contrast to most desorption processes, where the surface concentration becomes instantaneously zero. The appropriate theory has been developed for an exponential boundary condition, and its predictions compared with experimental data; the agreement was satisfactory. The diffusion coefficients for two thicknesses of the same material were not identical as predicted by theory; the possible reasons for this are discussed.

  4. Improved Enzyme Catalytic Characteristics upon Glutaraldehyde Cross-Linking of Alginate Entrapped Xylanase Isolated from Aspergillus flavus MTCC 9390

    PubMed Central

    Bhushan, Bharat; Pal, Ajay; Jain, Veena

    2015-01-01

    Purified fungal xylanase was entrapped in alginate beads. Its further cross-linking using glutaraldehyde resulted in large enzyme aggregates which may function as both a catalyst and a support material for numerous substrate molecules. Enzyme cross-linking presented a negative impact on enzyme leaching during repeated washings and recovery of enzyme activity was substantial after twelve cycles of usage. The entrapment followed by cross-linking doubled the total bound activity and also greatly improved the enzyme stability at extreme chemical environment. The wide pH stability, better thermo- and storage stability, lowered Km value, and protection from some metal ions are salient achievements of present immobilization. The study shows the efficacy, durability, and sustainability of immobilized catalytic system which could be efficiently used for various juice processing operations. PMID:26347814

  5. Improved production of isomaltulose by a newly isolated mutant of Serratia sp. cells immobilized in calcium alginate.

    PubMed

    Kim, Yonghwan; Koo, Bong-Seong; Lee, Hyeon-Cheol; Yoon, Youngdae

    2015-03-01

    Isomaltulose, also known as palatinose, is produced by sucrose isomerase and has been highlighted as a sugar substitute due to a number of advantageous properties. For the massive production of isomaltulose, high resistance to sucrose and stability of sucrose isomerase as well as sucrose conversion yields would be critical factors. We describe a series of screening procedures to isolate the mutant strain of Serratia sp. possessing enhanced isomaltulose production with improved stability. The new Serratia sp. isolated from a series of screening procedures allowed us to produce isomaltulose from 60% sucrose solution, with over 90% conversion yield. Moreover, when this strain was immobilized in calcium alginate beads and placed in a medium containing 60% sucrose, it showed over 70% sucrose conversion yields for 30 cycles of repeated-batch reactions. Thus, improved conversion activity and stability of the newly isolated Serratia sp. strain in the present study would be highly valuable for industries related to isomaltulose production.

  6. Immobilization of Saccharomyces cerevisiae using Ca-alginate for bioethanol production from empty fruit bunch of oil palm

    NASA Astrophysics Data System (ADS)

    Waluyo, Joko; Burhani, Dian; Hikmah, Nurul; Sudiyani, Yanni

    2017-01-01

    Immobilization of Saccharomyces cerevisiae using Ca-alginate bead was conducted to investigate the performance of S. cerevisiae in producing ethanol from empty fruit bunch of oil palm. Simultaneous saccharification and fermentation (SSF) and separated hydrolysis and fermentation (SHF) methods were used for both free cell and immobilized cell of S. cerevisiae. The result of SSF method for both immobilized and free cell of S. cerevisiae produced the highest ethanol concentration at 3.9% and 3.8%, respectively, after 48 hours fermentation. While the result of SHF method produced the highest ethanol concentration at 3.7% and 3.5%, respectively. Although ethanol concentration obtained with immobilized cell did not presented higher value as expected, it exhibited faster fermentation process, as at 24 hour fermentation, it converted higher ethanol concentration than the free cell.

  7. Single-bead arrays for fluorescence-based immunoassays on capillary-driven microfluidic chips

    NASA Astrophysics Data System (ADS)

    Temiz, Yuksel; Lim, Michel; Delamarche, Emmanuel

    2016-03-01

    We report a concept for the simple fabrication of easy-to-use chips for immunoassays in the context of point-of-care diagnostics. The chip concept comprises mainly three features: (1) the efficient integration of reagents using beads functionalized with receptors, (2) the generation of capillary-driven liquid flows without using external pumps, and (3) a high-sensitivity detection of analytes using fluorescence microscopy. We fabricated prototype chips using dry etching of Si wafers. 4.5-μm-diameter beads were integrated into hexagonal arrays by sedimentation and removing the excess using a stream of water. We studied the effect of different parameters and showed that array occupancies from 30% to 50% can be achieved by pipetting a 250 nL droplet of 1% bead solution and allowing the beads sediment for 3 min. Chips with integrated beads were sealed using a 50-μm-thick dry-film resist laminated at 45 °C. Liquids pipetted to loading pads were autonomously pulled by capillary pumps at a rate of 0.35 nL s-1 for about 30 min. We studied ligand-receptor interactions and binding kinetics using time-lapse fluorescence microscopy and demonstrated a 5 pM limit of detection (LOD) for an anti-biotin immunoassay. As a clinically-relevant example, we implemented an immunoassay to detect prostate specific antigen (PSA) and showed an LOD of 108 fM (i.e. 3.6 pg mL-1). While a specific implementation is provided here for the detection of PSA, we believe that combining capillary-driven microfluidics with arrays of single beads and fluorescence readout to be very flexible and sufficiently sensitive for the detection of other clinically-relevant analytes.

  8. Early differentiation patterning of mouse embryonic stem cells in response to variations in alginate substrate stiffness

    PubMed Central

    2013-01-01

    Background Embryonic stem cells (ESCs) have been implicated to have tremendous impact in regenerative therapeutics of various diseases, including Type 1 Diabetes. Upon generation of functionally mature ESC derived islet-like cells, they need to be implanted into diabetic patients to restore the loss of islet activity. Encapsulation in alginate microcapsules is a promising route of implantation, which can protect the cells from the recipient’s immune system. While there has been a significant investigation into islet encapsulation over the past decade, the feasibility of encapsulation and differentiation of ESCs has been less explored. Research over the past few years has identified the cellular mechanical microenvironment to play a central role in phenotype commitment of stem cells. Therefore it will be important to design the encapsulation material to be supportive to cellular functionality and maturation. Results This work investigated the effect of stiffness of alginate substrate on initial differentiation and phenotype commitment of murine ESCs. ESCs grown on alginate substrates tuned to similar biomechanical properties of native pancreatic tissue elicited both an enhanced and incrementally responsive differentiation towards endodermal lineage traits. Conclusions The insight into these biophysical phenomena found in this study can be used along with other cues to enhance the differentiation of embryonic stem cells toward a specific lineage fate. PMID:23570553

  9. Rheological characterization of a gel produced using human blood plasma and alginate mixtures.

    PubMed

    Malagón-Romero, Dionisio; Hernández, Nicolás; Cardozo, Carmen; Godoy-Silva, Rubén D

    2014-06-01

    Human blood plasma is a material used to generate tissue equivalents due to presence of fibrinogen. However, gels formed using human blood plasma has weak mechanical properties. In this study, different mixtures of sodium alginate and blood plasma were performed and evaluated. By determining ζ potential can be established the stability of the plasma-alginate mixture and by dynamic rheology can determine the most suitable parameters for the gelation of the above mixtures, when calcium chloride is used as a crosslinker. Experimental results evidence an increment in ζ potential at alginate concentrations of 0.8% and 1.6% with a resulting pseudoplastic behavior of evaluated mixtures, which described the homogenization of the mixture. On the other hand, mixtures were gelled by using aspersion of calcium chloride and characterized by dynamic rheology. Solid behavior is dominant in all range of frequency sweep test between 0.1Hz and 100Hz. Finally, the ultimate tensile strength of a gel reach 6.36938±0.24320kPa, which is enough for manual handling of the gel. Between the tasks of the gel would be used for cell entrapment, for controlled release of drugs or in the manufacture of wound dressings.

  10. Raman-based imaging uncovers the effects of alginate hydrogel implants in spinal cord injury

    NASA Astrophysics Data System (ADS)

    Galli, Roberta; Tamosaityte, Sandra; Koch, Maria; Sitoci-Ficici, Kerim H.; Later, Robert; Uckermann, Ortrud; Beiermeister, Rudolf; Gelinsky, Michael; Schackert, Gabriele; Kirsch, Matthias; Koch, Edmund; Steiner, Gerald

    2015-07-01

    The treatment of spinal cord injury by using implants that provide a permissive environment for axonal growth is in the focus of the research for regenerative therapies. Here, Raman-based label-free techniques were applied for the characterization of morphochemical properties of surgically induced spinal cord injury in the rat that received an implant of soft unfunctionalized alginate hydrogel. Raman microspectroscopy followed by chemometrics allowed mapping the different degenerative areas, while multimodal multiphoton microscopy (e.g. the combination of coherent anti-Stokes Raman scattering (CARS), endogenous two-photon fluorescence and second harmonic generation on the same platform) enabled to address the morphochemistry of the tissue at cellular level. The regions of injury, characterized by demyelination and scarring, were retrieved and the distribution of key tissue components was evaluated by Raman mapping. The alginate hydrogel was detected in the lesion up to six months after implantation and had positive effects on the nervous tissue. For instance, multimodal multiphoton microscopy complemented the results of Raman mapping, providing the micromorphology of lipid-rich tissue structures by CARS and enabling to discern lipid-rich regions that contained myelinated axons from degenerative regions characterized by myelin fragmentation and presence of foam cells. These findings demonstrate that Raman-based imaging methods provide useful information for the evaluation of alginate implant effects and have therefore the potential to contribute to new strategies for monitoring degenerative and regenerative processes induced in SCI, thereby improving the effectiveness of therapies.

  11. Production of polyhydroxybutyrate and alginate from glycerol by Azotobacter vinelandii under nitrogen-free conditions.

    PubMed

    Yoneyama, Fuminori; Yamamoto, Mayumi; Hashimoto, Wataru; Murata, Kousaku

    2015-01-01

    Glycerol is an interesting feedstock for biomaterials such as biofuels and bioplastics because of its abundance as a by-product during biodiesel production. Here we demonstrate glycerol metabolism in the nitrogen-fixing species Azotobacter vinelandii through metabolomics and nitrogen-free bacterial production of biopolymers, such as poly-d-3-hydroxybutyrate (PHB) and alginate, from glycerol. Glycerol-3-phosphate was accumulated in A. vinelandii cells grown on glycerol to the exponential phase, and its level drastically decreased in the cells grown to the stationary growth phase. A. vinelandii also overexpressed the glycerol-3-phosphate dehydrogenase gene when it was grown on glycerol. These results indicate that glycerol was first converted to glycerol-3-phosphate by glycerol kinase. Other molecules with industrial interests, such as lactic acid and amino acids including γ-aminobutyric acid, have also been accumulated in the bacterial cells grown on glycerol. Transmission electron microscopy revealed that glycerol-grown A. vinelandii stored PHB within the cells. The PHB production level reached 33% per dry cell weight in nitrogen-free glycerol medium. When grown on glycerol, alginate-overproducing mutants generated through chemical mutagenesis produced 2-fold the amount of alginate from glycerol than the parental wild-type strain. To the best of our knowledge, this is the first report on bacterial production of biopolymers from glycerol without addition of any nitrogen source.

  12. Production of polyhydroxybutyrate and alginate from glycerol by Azotobacter vinelandii under nitrogen-free conditions

    PubMed Central

    Yoneyama, Fuminori; Yamamoto, Mayumi; Hashimoto, Wataru; Murata, Kousaku

    2015-01-01

    Glycerol is an interesting feedstock for biomaterials such as biofuels and bioplastics because of its abundance as a by-product during biodiesel production. Here we demonstrate glycerol metabolism in the nitrogen-fixing species Azotobacter vinelandii through metabolomics and nitrogen-free bacterial production of biopolymers, such as poly-d-3-hydroxybutyrate (PHB) and alginate, from glycerol. Glycerol-3-phosphate was accumulated in A. vinelandii cells grown on glycerol to the exponential phase, and its level drastically decreased in the cells grown to the stationary growth phase. A. vinelandii also overexpressed the glycerol-3-phosphate dehydrogenase gene when it was grown on glycerol. These results indicate that glycerol was first converted to glycerol-3-phosphate by glycerol kinase. Other molecules with industrial interests, such as lactic acid and amino acids including γ-aminobutyric acid, have also been accumulated in the bacterial cells grown on glycerol. Transmission electron microscopy revealed that glycerol-grown A. vinelandii stored PHB within the cells. The PHB production level reached 33% per dry cell weight in nitrogen-free glycerol medium. When grown on glycerol, alginate-overproducing mutants generated through chemical mutagenesis produced 2-fold the amount of alginate from glycerol than the parental wild-type strain. To the best of our knowledge, this is the first report on bacterial production of biopolymers from glycerol without addition of any nitrogen source. PMID:25880041

  13. Propagation through alginate encapsulation of axillary buds of Cannabis sativa L. - an important medicinal plant.

    PubMed

    Lata, Hemant; Chandra, Suman; Khan, Ikhlas A; Elsohly, Mahmoud A

    2009-01-01

    Cannabis sativa L. (Cannabaceae) is an important medicinal plant well known for its pharmacologic and therapeutic potency. Because of allogamous nature of this species, it is difficult to maintain its potency and efficacy if grown from the seeds. Therefore, chemical profile-based screening, selection of high yielding elite clones and their propagation using biotechnological tools is the most suitable way to maintain their genetic lines. In this regard, we report a simple and efficient method for the in vitro propagation of a screened and selected high yielding drug type variety of Cannabis sativa, MX-1 using synthetic seed technology. Axillary buds of Cannabis sativa isolated from aseptic multiple shoot cultures were successfully encapsulated in calcium alginate beads. The best gel complexation was achieved using 5 % sodium alginate with 50 mM CaCl2.2H2O. Regrowth and conversion after encapsulation was evaluated both under in vitro and in vivo conditions on different planting substrates. The addition of antimicrobial substance - Plant Preservative Mixture (PPM) had a positive effect on overall plantlet development. Encapsulated explants exhibited the best regrowth and conversion frequency on Murashige and Skoog medium supplemented with thidiazuron (TDZ 0.5 μM) and PPM (0.075 %) under in vitro conditions. Under in vivo conditions, 100 % conversion of encapsulated explants was obtained on 1:1 potting mix- fertilome with coco natural growth medium, moistened with full strength MS medium without TDZ, supplemented with 3 % sucrose and 0.5 % PPM. Plantlets regenerated from the encapsulated explants were hardened off and successfully transferred to the soil. These plants are selected to be used in mass cultivation for the production of biomass as a starting material for the isolation of THC as a bulk active pharmaceutical.

  14. Alginate/polymethacrylate copolymer microparticles for the intestinal delivery of enzymes.

    PubMed

    Scocca, Sarah; Faustini, Massimo; Villani, Simona; Munari, Eleonora; Conte, Ubaldo; Russo, Vincenzo; Riccardi, Alessia; Vigo, Daniele; Torre, Maria Luisa

    2007-04-01

    Proteins administered orally must pass through the gastric environment in order to reach their site of absorption in the intestine. How to protect these exogenously administered proteins from the damaging effects of gastric acid and pepsin proteolytic activity, which often induce irreversible structural and functional alterations to the molecules, is an intriguing challenge. Another problem is the physical and chemical instability of proteins during some technological processes, which often involve the use of organic solvents or high temperatures. In this study we investigated the use of alginate microparticles containing one of two enzymes, an enteric polymer and a lyoprotectant for the intestinal delivery of proteins. The two enzymes tested in this protein delivery system were lactate dehydrogenase and alpha-amylase: the former was chosen because of its sensitivity to denaturation, the latter for its relevance in nutrition and medicine. A sodium alginate aqueous solution containing the enteric polymer, a lyoprotectant and the enzyme was either extruded or sprayed into a calcium chloride solution, with the resultant formation of beads and microspheres which were freeze-dried. About 90% of the enzyme activity was maintained during the process of loading the proteins into the microparticles and the subsequent freeze-drying process. The stability of the encapsulated enzyme in an acid medium and the enzymatic activity in an intestinal environment were then investigated by a dissolution test. This consisted of exposing the microparticles to simulated gastric fluid (pH 1.2) for 2 hours and to simulated intestinal fluid (pH 7.5+/-0.1) for 1 hour. The morphology of the microparticles did not change in the acid environment, whereas they completely dissolved within 3 min in the simulated intestinal fluid. Residual enzymatic activity after the test remained satisfactory for both enzymes. In conclusion, these microparticle systems offer promise for applications in human and

  15. Attomolar protein detection using a magnetic bead surface coverage assay.

    PubMed

    Tekin, H Cumhur; Cornaglia, Matteo; Gijs, Martin A M

    2013-03-21

    We demonstrate a microfluidic method for ultra-sensitive protein detection in serum. First, 'large' (2.8 μm) antibody-functionalized magnetic beads specifically capture antigen from a serum matrix under active microfluidic mixing. Subsequently, the large beads loaded with the antigens are gently exposed to a surface pattern of fixed 'small' (1.0 μm) antibody-coated magnetic beads. During the exposure, attractive magnetic bead dipole-dipole interactions improve the contact between the two bead types and help the antigen-antibody immunocomplex formation, while non-specific large bead adsorption is limited by exploiting viscous drag forces in the microfluidic channel on the small-bead pattern. This efficient antigen-antibody recognition and binding mechanism mimics a biological process of selective recognition of tissue molecules, like is the case when leukocytes roll and slow down on blood vessel walls by selectin-mediated adhesion. After exposure of the large beads to the pattern of small beads, the antigen concentration is detected by simply counting the number of surface pattern-bound large magnetic beads. The new technique allows detection of proteins down to the sub-zeptomole range. In particular, we demonstrate detection of only 200 molecules of Tumor Necrosis Factor-α (TNF-α) in a serum sample volume of 5 μL, corresponding to a concentration of 60 attomolar or 1 fg mL(-1).

  16. Molecular engineering of manipulated alginate-based polyurethanes.

    PubMed

    Daemi, Hamed; Barikani, Mehdi

    2014-11-04

    The novel soluble alginate-based polyurethanes in organic solvents were synthesized by the reaction of NCO-terminated prepolymers and tributylammonium alginate (TBA-Alg) for the first time. The chemical structures of synthesized polyurethanes were characterized using FTIR, (1)H NMR and TGA. The reaction completion was confirmed by disappearing of NCO band in FTIR spectra. Furthermore, a peak at 4.71 ppm and some small peaks at a range of 4.12-4.37 ppm in the (1)H NMR of alginate-based polyurethanes were assigned to the backbone of alginate. The results of both FTIR and (1)H NMR were remarkably confirmed by TGA data. The ionic nature of polyurethane backbone not only affects on thermal properties of samples, but it also changes the chemically-bonded alginate morphology. Both polyether and polyester based non-ionic polyurethanes extended by TBA-Alg illustrated the distinct alginate, whereas those ionomers extended by alginate were appeared as the continuous systems at nanoscale.

  17. Alginate-based hybrid aerogel microparticles for mucosal drug delivery.

    PubMed

    Gonçalves, V S S; Gurikov, P; Poejo, J; Matias, A A; Heinrich, S; Duarte, C M M; Smirnova, I

    2016-10-01

    The application of biopolymer aerogels as drug delivery systems (DDS) has gained increased interest during the last decade since these structures have large surface area and accessible pores allowing for high drug loadings. Being biocompatible, biodegradable and presenting low toxicity, polysaccharide-based aerogels are an attractive carrier to be applied in pharmaceutical industry. Moreover, some polysaccharides (e.g. alginate and chitosan) present mucoadhesive properties, an important feature for mucosal drug delivery. This feature allows to extend the contact of DDS with biological membranes, thereby increasing the absorption of drugs through the mucosa. Alginate-based hybrid aerogels in the form of microparticles (<50μm) were investigated in this work as carriers for mucosal administration of drugs. Low methoxyl pectin and κ-carrageenan were co-gelled with alginate and further dried with supercritical CO2 (sc-CO2). Spherical mesoporous aerogel microparticles were obtained for alginate, hybrid alginate/pectin and alginate/κ-carrageenan aerogels, presenting high specific surface area (370-548m(2)g(-1)) and mucoadhesive properties. The microparticles were loaded with ketoprofen via adsorption from its solution in sc-CO2, and with quercetin via supercritical anti-solvent precipitation. Loading of ketoprofen was in the range between 17 and 22wt% whereas quercetin demonstrated loadings of 3.1-5.4wt%. Both the drugs were present in amorphous state. Loading procedure allowed the preservation of antioxidant activity of quercetin. Release of both drugs from alginate/κ-carrageenan aerogel was slightly faster compared to alginate/pectin. The results indicate that alginate-based aerogel microparticles can be viewed as promising matrices for mucosal drug delivery applications.

  18. Quantitative Assessment of Islets of Langerhans Encapsulated in Alginate

    PubMed Central

    Johnson, Amy S.; O'Sullivan, Esther; D'Aoust, Laura N.; Omer, Abdulkadir; Bonner-Weir, Susan; Fisher, Robert J.; Weir, Gordon C.

    2011-01-01

    Improved methods have recently been developed for assessing islet viability and quantity in human islet preparations for transplantation, and these measurements have proven useful for predicting transplantation outcome. The objectives of this study were to adapt these methods for use with microencapsulated islets, to verify that they provide meaningful quantitative measurements, and to test them with two model systems: (1) barium alginate and (2) barium alginate containing a 70% (w/v) perfluorocarbon (PFC) emulsion, which presents challenges to use of these assays and is of interest in its own right as a means for reducing oxygen supply limitations to encapsulated tissue. Mitochondrial function was assessed by oxygen consumption rate measurements, and the analysis of data was modified to account for the increased solubility of oxygen in the PFC-alginate capsules. Capsules were dissolved and tissue recovered for nuclei counting to measure the number of cells. Capsule volume was determined from alginate or PFC content and used to normalize measurements. After low oxygen culture for 2 days, islets in normal alginate lost substantial viable tissue and displayed necrotic cores, whereas most of the original oxygen consumption rate was recovered with PFC alginate, and little necrosis was observed. All nuclei were recovered with normal alginate, but some nuclei from nonrespiring cells were lost with PFC alginate. Biocompatibility tests revealed toxicity at the islet periphery associated with the lipid emulsion used to provide surfactants during the emulsification process. We conclude that these new assay methods can be applied to islets encapsulated in materials as complex as PFC-alginate. Measurements made with these materials revealed that enhancement of oxygen permeability of the encapsulating material with a concentrated PFC emulsion improves survival of encapsulated islets under hypoxic conditions, but reformulation of the PFC emulsion is needed to reduce toxicity

  19. An anomalous behavior of trypsin immobilized in alginate network.

    PubMed

    Ganachaud, Chrystelle; Bernin, Diana; Isaksson, Dan; Holmberg, Krister

    2013-05-01

    Alginate is a biopolymer used in drug formulations and for surgical purposes. In the presence of divalent cations, it forms solid gels, and such gels are of interest for immobilization of cells and enzymes. In this work, we entrapped trypsin in an alginate gel together with a known substrate, N α-benzoyl-L-arginine-4-nitroanilide hydrochloride (L-BAPNA), and in the presence or absence of D-BAPNA, which is known to be a competitive inhibitor. Interactions between alginate and the substrate as well as the enzyme were characterized with transmission electron microscopy, rheology, and nuclear magnetic resonance spectroscopy. The biocatalysis was monitored by spectrophotometry at temperatures ranging from 10 to 42 °C. It was found that at 37 and 42 °C a strong acceleration of the reaction was obtained, whereas at 10 °C and at room temperature, the presence of D-BAPNA leads to a retardation of the reaction rate. The same effect was found when the reaction was performed in a non-cross-linked alginate solution. In alginate-free buffer solution, as well as in a solution of carboxymethylcellulose, a biopolymer that resembles alginate, the normal behavior was obtained; however, with D-BAPNA acting as an inhibitor at all temperatures. A more detailed investigation of the reaction kinetics showed that at higher temperature and in the presence of alginate, the curve of initial reaction rate versus L-BAPNA concentration had a sigmoidal shape, indicating an allosteric behavior. We believe that the anomalous behavior of trypsin in the presence of alginate is due to conformational changes caused by interactions between the positively charged trypsin and the strongly negatively charged alginate.

  20. Chitosan-alginate membranes accelerate wound healing.

    PubMed

    Caetano, Guilherme Ferreira; Frade, Marco Andrey Cipriani; Andrade, Thiago Antônio Moretti; Leite, Marcel Nani; Bueno, Cecilia Zorzi; Moraes, Ângela Maria; Ribeiro-Paes, João Tadeu

    2015-07-01

    The purpose of this study was to evaluate the efficacy of chitosan-alginate membrane to accelerate wound healing in experimental cutaneous wounds. Two wounds were performed in Wistar rats by punching (1.5 cm diameter), treated with membranes moistened with saline solution (CAM group) or with saline only (SL group). After 2, 7, 14, and 21 days of surgery, five rats of each group were euthanized and reepithelialization was evaluated. The wounds/scars were harvested for histological, flow cytometry, neutrophil infiltrate, and hydroxyproline analysis. CAM group presented higher inflammatory cells recruitment as compared to SL group on 2(nd) day. On the 7(th) day, CAM group showed higher CD11b(+) level and lower of neutrophils than SL group. The CAM group presented higher CD4(+) cells influx than SL group on 2(nd) day, but it decreased during the follow up and became lower on 14(th) and 21(st) days. Higher fibroplasia was noticed on days 7 and 14 as well as higher collagenesis on 21(st) in the CAM group in comparison to SL group. CAM group showed faster reepithelialization on 7(th) day than SL group, although similar in other days. In conclusion, chitosan-alginate membrane modulated the inflammatory phase, stimulated fibroplasia and collagenesis, accelerating wound healing process in rats.

  1. Extended Culture of Encapsulated Human Blastocysts in Alginate Hydrogel Containing Decidualized Endometrial Stromal Cells in the Presence of Melatonin.

    PubMed

    Arjmand, Fatemeh; Khanmohammadi, Manijeh; Arasteh, Shaghayegh; Mohammadzadeh, Afsaneh; Kazemnejad, Somaieh; Akhondi, Mohammad-Mehdi

    2016-10-01

    Extended in vitro culture of human embryos beyond blastocyst stage could serve as a tool to explore the molecular and physiological mechanisms underlying embryo development and to identify factors regulating pregnancy outcomes. This study presents the first report on the maintenance of human embryo in vitro by alginate co-encapsulation of human blastocyst and decidualized endometrial stromal cells (EnSCs) under melatonin-fortified culture conditions. The effectiveness of the 3D culture system was studied through monitoring of embryo development in terms of survival time, viability, morphological changes, and production of the two hormones of 17b-oestradiol and human chorionic gonadotropin. The embryo structural integrity was preserved during alginate encapsulation; however, only 23 % of the encapsulated embryos could retain in the hydrogels over time and survived until day 4 post-encapsulation. The culture medium fortification with melatonin significantly elevated the maintenance rate of expanded embryos in alginate beads by 65 % and prolonged survival time of human embryos to day 5. Furthermore, embryo co-culture with EnSCs using melatonin-fortified medium increased the survival time of encapsulated embryos to 44 %. The levels of two measured hormones significantly rose at day 4 in comparison with day 2 post-encapsulation especially in the group co-encapsulated with EnSCs and cultivated in melatonin-fortified culture medium. These data are the first evidence representing in vitro development of human embryos until day 10 post-fertilization. This achievement can facilitate the investigation of the mechanisms regulating human embryo development.

  2. Encapsulation of ammonium molybdophosphate and zirconium phosphate in alginate matrix for the sorption of rubidium(I).

    PubMed

    Krys, Pawel; Testa, Flaviano; Trochimczuk, Andrzej; Pin, Christian; Taulemesse, Jean-Marie; Vincent, Thierry; Guibal, Eric

    2013-11-01

    Ammonium molybdophosphate and Phozir (alone or in combination) have been encapsulated in alginate beads for the synthesis of rubidium sorbents. SEM and SEM-EDX analyses confirm the homogeneity of the sorbents in terms of composition and metal binding. AMP sorbent is less sensitive to pH than Phozir, and optimum pH is close to pH 3 for the binding of Rb(I). The Langmuir equation fitted well sorption isotherms and the maximum sorption capacities were in the range 0.65-0.74 mmol Rb g(-1). The resistance to intraparticle diffusion contributes to control uptake kinetics (effect of particle size) though the presence of solid inorganic particles reduces the impact of drying alginate capsules (preventing the collapse of the porous structure during the drying step). Breakthrough curves demonstrate the potential of these sorbents for the dynamic sorption of Rb(I) while using ammonium chloride (combined to nitric acid) allows recovering Rb(I) from loaded sorbents.

  3. In situ single cell detection via microfluidic magnetic bead assay

    PubMed Central

    KC, Pawan; Zhang, Ge; Zhe, Jiang

    2017-01-01

    We present a single cell detection device based on magnetic bead assay and micro Coulter counters. This device consists of two successive micro Coulter counters, coupled with a high gradient magnetic field generated by an external magnet. The device can identify single cells in terms of the transit time difference of the cell through the two micro Coulter counters. Target cells are conjugated with magnetic beads via specific antibody and antigen binding. A target cell traveling through the two Coulter counters interacts with the magnetic field, and have a longer transit time at the 1st counter than that at the 2nd counter. In comparison, a non-target cell has no interaction with the magnetic field, and hence has nearly the same transit times through the two counters. Each cell passing through the two counters generates two consecutive voltage pulses one after the other; the pulse widths and magnitudes indicating the cell’s transit times through the counters and the cell’s size respectively. Thus, by measuring the pulse widths (transit times) of each cell through the two counters, each single target cell can be differentiated from non-target cells even if they have similar sizes. We experimentally proved that the target human umbilical vein endothelial cells (HUVECs) and non-target rat adipose-derived stem cells (rASCs) have significant different transit time distribution, from which we can determine the recognition regions for both cell groups quantitatively. We further demonstrated that within a mixed cell population of rASCs and HUVECs, HUVECs can be detected in situ and the measured HUVECs ratios agree well with the pre-set ratios. With the simple device structure and easy sample preparation, this method is expected to enable single cell detection in a continuous flow and can be applied to facilitate general cell detection applications such as stem cell identification and enumeration. PMID:28222140

  4. Photo-activated ionic gelation of alginate hydrogel: real-time rheological monitoring of the two-step crosslinking mechanism.

    PubMed

    Higham, Alina K; Bonino, Christopher A; Raghavan, Srinivasa R; Khan, Saad A

    2014-07-21

    We examine the gelation of alginate undergoing ionic crosslinking upon ultraviolet (UV) irradiation using in situ dynamic rheology. Hydrogels are formed by combining alginate with calcium carbonate (CaCO3) particles and a photoacid generator (PAG). The PAG is photolyzed upon UV irradiation, resulting in the release of free calcium ions for ionic crosslinking. The viscous and elastic moduli during gelation are monitored as a function of the UV irradiation intensity, exposure time, alginate concentration, and the ratio between alginate and calcium carbonate. Gel time decreases as irradiation intensity increases because a larger concentration of PAG is photolyzed. Interestingly, dark curing, the continuing growth of microstructure in the absence of UV light, is observed. In some instances, the sample transitions from a solution to a gel during the dark curing phase. Additionally, when exposed to constant UV irradiation after the dark curing phase, samples reach the same plateau modulus as samples exposed to constant UV without dark curing, implying that dark curing does not affect the gelation mechanism. We believe the presence of dark curing is the result of the acidic environment persisting within the sample, allowing CaCO3 to dissociate, thereby releasing free Ca(2+) ions capable of binding with the available appropriate ionic blocks of the polymer chains. The growth of microstructure is then detected if the activation barrier has been crossed to release sufficient calcium ions. In this regard, we calculate a value of 30 J that represents the activation energy required to initiate gelation.

  5. Low intensity pulse ultrasound stimulate chondrocytes growth in a 3-D alginate scaffold through improved porosity and permeability.

    PubMed

    Guo, Gepu; Lu, Lu; Ji, Hongfei; Ma, Yong; Dong, Rui; Tu, Juan; Guo, Xiasheng; Qiu, Yuanyuan; Wu, Junru; Zhang, Dong

    2015-04-01

    A 3-D scaffold culture system has been used to promote in producing functional chondrocytes for repairing damaged cartilage. In the present study, the low intensity pulse ultrasound (LIPUS) (P(-)=0, 0.055, 0.085 and 0.11 MPa) was applied to improve the porosity and permeability of a 3-D alginate scaffold which was beneficial for the nutrition supply and metabolism during cell growth in 3-D alginate scaffold. The porosity and permeability of the scaffold was quantitatively analyzed based on scanning electron microscopy examination and fluorescence image observation. The results suggest that, for the scaffold exposed to LIPUS, its porosity and permeability could be significantly enhanced by the increasing LIPUS amplitude, which might be induced by the microstreaming shear stress generated by ultrasound-driven microbubble oscillations. Furthermore, the assessments of cell proliferation and collagen II expression confirmed that chondrocytes growth could be effectively promoted in 3-D alginate scaffolds treated by LIPUS, because of the improved scaffold porosity and permeability might benefit cell growth space and nutrition supply. It should also be noticed that appropriate LIPUS driving parameters should be adapted to achieve optimized chondrocytes culture effect in 3-D alginate scaffold.

  6. Chemical modification of alginic acid by ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Murdzheva, Dilyana; Denev, Panteley

    2016-03-01

    Abstract: Chemical modification of alginic acid has been done by ultrasonic irradiation to obtain its methylated, ethylated and isopropylated derivatives. The influence of ultrasonic frequency and power on esterification process of alginic acid has been investigated. Alginate derivatives have been characterized by degree of esterification (DE) and IR-FT spectroscopy. It has been found that 45 kHz ultrasonic frequency accelerated modification process as reduced the reaction time from 16 hours to 2 hours. The obtained results showed that ultrasound irradiation increased the reaction efficiency in methanol and depended on the ratio of the M/G.

  7. Modulation of immunity and gut microbiota after dietary administration of alginate encapsulated Shewanella putrefaciens Pdp11 to gilthead seabream (Sparus aurata L.).

    PubMed

    Cordero, Héctor; Guardiola, Francisco A; Tapia-Paniagua, Silvana Teresa; Cuesta, Alberto; Meseguer, José; Balebona, M Carmen; Moriñigo, M Ángel; Esteban, M Ángeles

    2015-08-01

    The potential benefits of probiotics when administering to fish could improve aquaculture production. The objective of this study was to examine the modulation of immune status and gut microbiota of gilthead seabream (Sparus aurata L.) specimens by a probiotic when administered encapsulated. Commercial diet was enriched with Shewanella putrefaciens Pdp11 (SpPdp11, at a concentration of 10(8) cfu g(-1)) before being encapsulated in calcium alginate beads. Fish were fed non-supplemented (control) or supplemented diet for 4 weeks. After 1, 2 and 4 weeks the main humoral and cellular immune parameters were determined. Furthermore, gene expression profile of five immune relevant genes (il1β, bd, mhcIIα, ighm and tcrβ) was studied by qPCR in head kidney. On the other hand, intestinal microbiota of fish was analysed at 7 and 30 days by DGGE. Results demonstrated that administration of alginate encapsulated SpPdp11 has immunostimulant properties on humoral parameters (IgM level and serum peroxidase activity). Although no immunostimulant effects were detected on leucocyte activities, significant increases were detected in the level of mRNA of head-kidney leucocytes for mhcIIα and tcrβ after 4 weeks of feeding the encapsulated-probiotic diet. The administration of SpPdp11 encapsulated in alginate beads produced important changes in the DGGE patterns corresponding to the intestinal microbiota. Predominant bands related to lactic acid bacteria, such as Lactococcus and Lactobacillus strains, were sequenced from the DGGE patterns of fish fed the probiotic diet, whereas they were not sequenced from fish receiving the control diet. The convenience or not of probiotic encapsulation is discussed.

  8. Microbial alginate dressings show improved binding capacity for pathophysiological factors in chronic wounds compared to commercial alginate dressings of marine origin.

    PubMed

    Fischer, Melissa; Gebhard, Florian; Hammer, Timo; Zurek, Christian; Meurer, Guido; Marquardt, Christoph; Hoefer, Dirk

    2017-01-01

    Marine alginates are well established in wound management. Compared with different modern wound dressings, marine alginates cannot prove superior effects on wound healing. Alginates from bacteria have never been studied for medical applications so far, although the microbial polymer raises expectations for improved binding of wound factors because of its unique O-acetylation. Due to its possible positive effects on wound healing, alginates from bacteria might be a superior future medical product for clinical use. To prove the binding capacity of microbial alginates to pathophysiological factors in chronic wounds, we processed microbial alginate fibres, produced from fermentation of the soil bacterium Azotobacter vinelandii ATCC 9046, into needle web dressings and compared them with commercial dressings made of marine alginate. Four dressings were assessed: Marine alginate dressings containing either ionic silver or zinc/manganese/calcium, and microbial alginate dressings with and without nanosilver. All dressings were tested in an in vitro approach for influence on chronic wound parameters such as elastase, matrix metalloproteases-2, tumour necrosis factor-α, interleukin-8, and free radical formation. Despite the alginate origin or addition of antimicrobials, all dressings were able to reduce the concentration of the proinflammatory cytokines TNF-α and IL-8. However, microbial alginate was found to bind considerable larger amounts of elastase and matrix metalloproteases-2 in contrast to the marine alginate dressings. The incorporation of zinc, silver or nanosilver into alginate fibres did not improve their binding capacity for proteases or cytokines. The addition of nanosilver slightly enhanced the antioxidant capacity of microbial alginate dressings, whereas the marine alginate dressing containing zinc/manganese/calcium was unable to inhibit the formation of free radicals. The enhanced binding affinity by microbial alginate of Azotobacter vinelandii to

  9. Engineered yeast whole-cell biocatalyst for direct degradation of alginate from macroalgae and production of non-commercialized useful monosaccharide from alginate.

    PubMed

    Takagi, Toshiyuki; Yokoi, Takahiro; Shibata, Toshiyuki; Morisaka, Hironobu; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2016-02-01

    Alginate is a major component of brown macroalgae. In macroalgae, an endolytic alginate lyase first degrades alginate into oligosaccharides. These oligosaccharides are further broken down into monosaccharides by an exolytic alginate lyase. In this study, genes encoding various alginate lyases derived from alginate-assimilating marine bacterium Saccharophagus degradans were isolated, and their enzymes were displayed using the yeast cell surface display system. Alg7A-, Alg7D-, and Alg18J-displaying yeasts showed endolytic alginate lyase activity. On the other hand, Alg7K-displaying yeast showed exolytic alginate lyase activity. Alg7A, Alg7D, Alg7K, and Alg18J, when displayed on yeast cell surface, demonstrated both polyguluronate lyase and polymannuronate lyase activities. Additionally, polyguluronic acid could be much easily degraded by Alg7A, Alg7K, and Alg7D than polymannuronic acid. In contrast, polymannuronic acid could be much easily degraded by Alg18J than polyguluronic acid. We further constructed yeasts co-displaying endolytic and exolytic alginate lyases. Degradation efficiency by the co-displaying yeasts were significantly higher than single alginate lyase-displaying yeasts. Alg7A/Alg7K co-displaying yeast had maximum alginate degrading activity, with production of 1.98 g/L of reducing sugars in a 60-min reaction. This system developed, along with our findings, will contribute to the efficient utilization and production of useful and non-commercialized monosaccharides from alginate by Saccharomyces cerevisiae.

  10. Development of immobilized biophotonic beads consisting of Photobacterium leiognathi for the detection of heavy metals and pesticide.

    PubMed

    Ranjan, Rajeev; Rastogi, Navin K; Thakur, M S

    2012-07-30

    The present communication deals with construction of immobilized robust biophotonic bead using P. leiognathi, a marine luminescent bacterium for their possible application in monitoring of environmental toxicants. Immobilization efficiency of agar, carrageenan and sodium alginate was evaluated separately in terms of luminescence response and was recorded as 30.3, 77.4 or 99.5%, respectively. Under optimized storage conditions, the luminescent response of P. leiognathi in the immobilized state was studied over a period of 30 days. These biophotonic beads were further used as a rapid and reliable optical biosensing tool for the detection of heavy metals [Hg(II), As(V) or Cd(II)] and pesticide [2,4-dichlorophenoxyacetic acid (2,4-D)] in water systems. The concentration range for the detection of Hg(II), As(V), Cd(II) and 2,4-D was 2-32ppm, 4-128ppm, 16-512ppm and 100-600ppm, respectively, while corresponding sensitivity threshold was 2.0ppm, 4.0ppm, 16.0ppm and 100ppm. A comparison of inhibition constant (K(d)) (or EC(20)) values indicated that the sensitivity thresholds rank as Hg(II)>As(V)>Cd(II)>2,4-D. Moreover, the time taken for the detection of heavy metals and pesticide was less than 30min. Using the bioluminescence inhibition method, the concentration of heavy metals and pesticide could be predicted.

  11. Mechanical and microstructural properties of "wet" alginate and composite films containing various carbohydrates.

    PubMed

    Harper, B Allison; Barbut, Shai; Smith, Alexandra; Marcone, Massimo F

    2015-01-01

    Composite "wet" alginate films were manufactured from alginate-carbohydrate solutions containing 5% alginate and 0.25% pectin, carrageenan (kappa or iota), potato starch (modified or unmodified), gellan gum, or cellulose (extracted or commercial). The "wet" alginate films were used as a model to understand co-extruded alginate sausage casings that are currently being used by several sausage manufacturers. The mechanical, optical, and microstructural properties of the calcium cross-linked composite films were explored. In addition, the water holding capacity and textural profile analysis properties of the alginate-carbohydrate gels were studied. The results indicate that the mechanical properties of "wet" alginate films/casings can be modified by adding various carbohydrates to them. Alginate films with pectin, carrageenan, and modified potato starch had significantly (P < 0.05) greater elongation values than pure alginate films. The alginate-pectin films also had greater (P < 0.05) tensile strengths than the pure alginate films. Alginate films with extracted cellulose, commercial cellulose, and modified potato starch had lower (P < 0.05) puncture force, distance, and work values than the alginate control films. Transmission electron microscopy images showed a very uniform alginate network in the control films. Several large cellulose fibers were visible in the films with extracted cellulose, while the cellulose fibers in the films with commercial cellulose were difficult to distinguish. Despite these apparent differences in cellulose fiber length, the 2 cellulose films had similar puncture and tensile properties.

  12. Development of functionalized multi-walled carbon-nanotube-based alginate hydrogels for enabling biomimetic technologies

    NASA Astrophysics Data System (ADS)

    Joddar, Binata; Garcia, Eduardo; Casas, Atzimba; Stewart, Calvin M.

    2016-08-01

    Alginate is a hydrogel commonly used for cell culture by ionically crosslinking in the presence of divalent Ca2+ ions. However these alginate gels are mechanically unstable, not permitting their use as scaffolds to engineer robust biological bone, breast, cardiac or tumor tissues. This issue can be addressed via encapsulation of multi-walled carbon nanotubes (MWCNT) serving as a reinforcing phase while being dispersed in a continuous phase of alginate. We hypothesized that adding functionalized MWCNT to alginate, would yield composite gels with distinctively different mechanical, physical and biological characteristics in comparison to alginate alone. Resultant MWCNT-alginate gels were porous, and showed significantly less degradation after 14 days compared to alginate alone. In vitro cell-studies showed enhanced HeLa cell adhesion and proliferation on the MWCNT-alginate compared to alginate. The extent of cell proliferation was greater when cultured atop 1 and 3 mg/ml MWCNT-alginate; although all MWCNT-alginates lead to enhanced cell cluster formation compared to alginate alone. Among all the MWCNT-alginates, the 1 mg/ml gels showed significantly greater stiffness compared to all other cases. These results provide an important basis for the development of the MWCNT-alginates as novel substrates for cell culture applications, cell therapy and tissue engineering.

  13. Development of functionalized multi-walled carbon-nanotube-based alginate hydrogels for enabling biomimetic technologies

    PubMed Central

    Joddar, Binata; Garcia, Eduardo; Casas, Atzimba; Stewart, Calvin M.

    2016-01-01

    Alginate is a hydrogel commonly used for cell culture by ionically crosslinking in the presence of divalent Ca2+ ions. However these alginate gels are mechanically unstable, not permitting their use as scaffolds to engineer robust biological bone, breast, cardiac or tumor tissues. This issue can be addressed via encapsulation of multi-walled carbon nanotubes (MWCNT) serving as a reinforcing phase while being dispersed in a continuous phase of alginate. We hypothesized that adding functionalized MWCNT to alginate, would yield composite gels with distinctively different mechanical, physical and biological characteristics in comparison to alginate alone. Resultant MWCNT-alginate gels were porous, and showed significantly less degradation after 14 days compared to alginate alone. In vitro cell-studies showed enhanced HeLa cell adhesion and proliferation on the MWCNT-alginate compared to alginate. The extent of cell proliferation was greater when cultured atop 1 and 3 mg/ml MWCNT-alginate; although all MWCNT-alginates lead to enhanced cell cluster formation compared to alginate alone. Among all the MWCNT-alginates, the 1 mg/ml gels showed significantly greater stiffness compared to all other cases. These results provide an important basis for the development of the MWCNT-alginates as novel substrates for cell culture applications, cell therapy and tissue engineering. PMID:27578567

  14. Formulation and Coating of Alginate and Alginate-Hydroxypropylcellulose Pellets Containing Ranolazine.

    PubMed

    Segale, Lorena; Mannina, Paolo; Giovannelli, Lorella; Muschert, Susanne; Pattarino, Franco

    2016-11-01

    The formulation and the coating composition of biopolymeric pellets containing ranolazine were studied to improve their technological and biopharmaceutical properties. Eudragit L100 (EU L100) and Eudragit L30 D-55-coated alginate and alginate-hydroxypropylcellulose (HPC) pellets were prepared by ionotropic gelation using 3 concentrations of HPC (0.50%, 0.65%, and 1.00% wt/wt) and applying different percentages (5%, 10%, 20%, and 30% wt/wt) of coating material. The uncoated pellets were regular in shape and had mean diameter between 1490 and 1570 μm. The rate and the entity of the swelling process were affected by the polymeric composition: increasing the HPC concentration, the structure of the pellets became more compact and slowed down the penetration of fluids. Coated alginate-HPC formulations were able to control the drug release at neutral pH: a higher quantity of HPC in the system determined a slower release of the drug. The nature of the coating polymer and the coating level applied affected the drug release in acidic environment: EU L100 gave better performance than Eudragit L30 D-55 and the best coating level was 20%. The pellets containing 0.65% of HPC and coated with 20% EU L100 represented the best formulation, able to limit the drug release in acidic environment and to control it at pH 6.8.

  15. Dispersion of fine phosphor particles by newly developed beads mill

    NASA Astrophysics Data System (ADS)

    Joni, I. Made; Panatarani, C.; Maulana, Dwindra W.

    2016-02-01

    Fine phosphor Y2O3:Eu3+ particles has advanced properties compare to conventional particles applied for compact fluorescent lamp (CFL) as three band phosphor. However, suspension of fine particles easily agglomerated during preparation of spray coating of the CFL tube. Therefore, it is introduced newly developed beads mill system to disperse fine phosphor. The beads mill consist of glass beads, dispersing chamber (impellers), separator chamber, slurry pump and motors. The first important performance of beads mill is the performance of the designed on separating the beads with the suspended fine particles. We report the development of beads mill and its separation performance vary in flow rate and separator rotation speeds. The 27 kg of glass beads with 30 µm in size was poured into dispersing chamber and then water was pumped continuously through the slurry pump. The samples for the separation test was obtained every 1 hours vary in rotation speed and slurry flow rate. The results shows that the separation performance was 99.99 % obtained for the rotation speed of >1000 rpm and flow rate of 8 L/minute. The performances of the system was verified by dispersing fine phosphor Y2O3:Eu3+ particles with concentration 1 wt.%. From the observed size distribution of particles after beads mill, it is concluded that the current design of bead mill effectively dispersed fine phosphor Y2O3:Eu3+.

  16. The Alginate Demonstration: Polymers, Food Science, and Ion Exchange

    NASA Astrophysics Data System (ADS)

    Waldman, Amy Sue; Schechinger, Linda; Govindarajoo, Geeta; Nowick, James S.; Pignolet, Louis H.

    1998-11-01

    We have recently devised a polymer demonstration involving the crosslinking and decrosslinking of alginate, a polysaccharide isolated from seaweed. The polymer is composed of D-mannuronic acid and L-guluronic acid subunits and is a component of cell walls. It is commonly used as a thickener in foods such as ice cream and fruit-filled snacks. For the demonstration, a 2% solution of sodium alginate is poured into a 1% solution of calcium chloride. Nontoxic calcium alginate "worms" form due to crosslinking of the polymer. Alternatively, the commercially available antacid Gaviscon can be used as a source of sodium alginate. The crosslinks can then be broken by shaking the worms in brine. The demonstration is a fine addition to any chemical educator's repertoire of polymer experiments.

  17. Getting drowned in a swirl: Deformable bead-spring model microswimmers in external flow fields

    NASA Astrophysics Data System (ADS)

    Küchler, Niklas; Löwen, Hartmut; Menzel, Andreas M.

    2016-02-01

    Deformability is a central feature of many types of microswimmers, e.g., for artificially generated self-propelled droplets. Here, we analyze deformable bead-spring microswimmers in an externally imposed solvent flow field as simple theoretical model systems. We focus on their behavior in a circular swirl flow in two spatial dimensions. Linear (straight) two-bead swimmers are found to circle around the swirl with a slight drift to the outside with increasing activity. In contrast to that, we observe for triangular three-bead or squarelike four-bead swimmers a tendency of being drawn into the swirl and finally getting drowned, although a radial inward component is absent in the flow field. During one cycle around the swirl, the self-propulsion direction of an active triangular or squarelike swimmer remains almost constant, while their orbits become deformed exhibiting an "egglike" shape. Over time, the swirl flow induces slight net rotations of these swimmer types, which leads to net rotations of the egg-shaped orbits. Interestingly, in certain cases, the orbital rotation changes sense when the swimmer approaches the flow singularity. Our predictions can be verified in real-space experiments on artificial microswimmers.

  18. ROMPgel beads in IRORI format: acylations revisited.

    PubMed

    Roberts, Richard S

    2005-01-01

    Functionalized "designer" polymers derived from ring-opening metathesis polymerization (ROMPgels) are attractive for their high loading, high purity, and ease of synthesis. Their physical state may vary from liquid to gel to granular solid, making a general method of handling these polymers difficult. By incorporating a suitable norbornene-substituted linker on standard Wang beads, ROMPgels can be easily grafted onto the resin, adding the convenience of a bead format while still maintaining the high loading and excellent site accessibility. This advantage is demonstrated by the use of an N-hydroxysuccinimide ROMPgel (3.3 mmol g(-1), a 3-fold increase from the parent linker resin) in IRORI Kan format. Conditions for the acylation of these IRORI-formatted ROMPgels are reported, along with the scope and limitations of the choice of acylating reagents. Yields are greatly improved by the use of perfluorinated solvents as a nonparticipating cosolvent in the acylation process. A simple titration method for the quantification of the acylated ROMPgels is also reported. Spent Kans are regenerated after each use without apparent loss of activity or purity after several cycles. Due to the high loading and reduced swelling of the ROMPgel resin, up to 0.39 mmol acyl group has successfully been recovered from a single IRORI miniKan, demonstrating the high capacity of the resin and applicability to both lead discovery and optimization programs.

  19. Microchannel liquid-flow focusing and cryo-polymerization preparation of supermacroporous cryogel beads for bioseparation.

    PubMed

    Yun, Junxian; Tu, Changming; Lin, Dong-Qiang; Xu, Linhong; Guo, Yantao; Shen, Shaochuan; Zhang, Songhong; Yao, Kejian; Guan, Yi-Xin; Yao, Shan-Jing

    2012-07-20

    Polymeric cryogels are sponge-like materials with supermacroporous structure, allowing them to be of interest as new chromatographic supports, cell scaffolds and drug carriers in biological and biomedical areas. The matrices of cryogels are always prepared in the form of monoliths by cryo-polymerization under frozen conditions. However, there are limited investigations on the production of cryogels in the form of adsorbent beads suitable for bioseparation. In this work, we provide a new approach by combining the microchannel liquid-flow focusing with cryo-polymerization for the preparation of polyacrylamide-based supermacroporous cryogel beads with a narrow particle size distribution. The present method was achieved by introducing the aqueous phase solution containing monomer, cross-linker and redox initiators, and the water-immiscible organic oil phase containing surfactant simultaneously into a microchannel with a cross-shaped junction, where the aqueous drops with uniform sizes were generated by the liquid shearing and the segmentation due to the steady flow focusing of the immiscible phase streams. These liquid drops were in situ suspended into the freezing bulk oil phase for cryo-polymerization and the cryogel matrix beads were obtained by thawing after the achievement of polymerization. By grafting the polymer chains containing sulfo binding groups onto these matrix beads, the cation-exchange cryogel beads for protein separation were produced. The results showed that at the aqueous phase velocities from 0.5 to 2.0 cm/s and the total velocities of the water-immiscible phase from 2.0 to 6.0 cm/s, the obtained cryogel beads by the present method have narrow size distributions with most of the bead diameters in the range from 800 to 1500 μm with supermacropores in sizes of about 3-50 μm. These beads also have high porosities with the averaged maximum porosity of 96.9% and the mean effective porosity of 86.2%, which are close to those of the polyacrylamide

  20. Characterization of a novel intrinsically radiopaque Drug-eluting Bead for image-guided therapy: DC Bead LUMI™.

    PubMed

    Ashrafi, Koorosh; Tang, Yiqing; Britton, Hugh; Domenge, Orianne; Blino, Delphine; Bushby, Andrew J; Shuturminska, Kseniya; den Hartog, Mark; Radaelli, Alessandro; Negussie, Ayele H; Mikhail, Andrew S; Woods, David L; Krishnasamy, Venkatesh; Levy, Elliot B; Wood, Bradford J; Willis, Sean L; Dreher, Matthew R; Lewis, Andrew L

    2017-03-28

    We have developed a straightforward and efficient method of introducing radiopacity into Polyvinyl alcohol (PVA)-2-Acrylamido-2-methylpropane sulfonic acid (AMPS) hydrogel beads (DC Bead™) that are currently used in the clinic to treat liver malignancies. Coupling of 2,3,5-triiodobenzaldehyde to the PVA backbone of pre-formed beads yields a uniformly distributed level of iodine attached throughout the bead structure (~150mg/mL) which is sufficient to be imaged under standard fluoroscopy and computed tomography (CT) imaging modalities used in treatment procedures (DC Bead LUMI™). Despite the chemical modification increasing the density of the beads to ~1.3g/cm(3) and the compressive modulus by two orders of magnitude, they remain easily suspended, handled and administered through standard microcatheters. As the core chemistry of DC Bead LUMI™ is the same as DC Bead™, it interacts with drugs using ion-exchange between sulfonic acid groups on the polymer and the positively charged amine groups of the drugs. Both doxorubicin (Dox) and irinotecan (Iri) elution kinetics for all bead sizes evaluated were within the parameters already investigated within the clinic for DC Bead™. Drug loading did not affect the radiopacity and there was a direct relationship between bead attenuation and Dox concentration. The ability (Dox)-loaded DC Bead LUMI™ to be visualized in vivo was demonstrated by the administration of into hepatic arteries of a VX2 tumor-bearing rabbit under fluoroscopy, followed by subsequent CT imaging.

  1. Nanocellulose-alginate hydrogel for cell encapsulation.

    PubMed

    Park, Minsung; Lee, Dajung; Hyun, Jinho

    2015-02-13

    TEMPO-oxidized bacterial cellulose (TOBC)-sodium alginate (SA) composites were prepared to improve the properties of hydrogel for cell encapsulation. TOBC fibers were obtained using a TEMPO/NaBr/NaClO system at pH 10 and room temperature. The fibrillated TOBCs mixed with SA were cross-linked in the presence of Ca(2+) solution to form hydrogel composites. The compression strength and chemical stability of the TOBC/SA composites were increased compared with the SA hydrogel, which indicated that TOBC performed an important function in enhancing the structural, mechanical and chemical stability of the composites. Cells were successfully encapsulated in the TOBC/SA composites, and the viability of cells was investigated. TOBC/SA composites can be a potential candidate for cell encapsulation engineering.

  2. Reduction of hypervalent chromium in acidic media by alginic acid.

    PubMed

    Bertoni, Fernando A; Bellú, Sebastian E; González, Juan C; Sala, Luis F

    2014-12-19

    Selective oxidation of carboxylate groups present in alginic acid by Cr(VI) affords CO2, oxidized alginic acid, and Cr(III) as final products. The redox reaction afforded first-order kinetics in [alginic acid], [Cr(VI)], and [H(+)], at fixed ionic strength and temperature. Kinetic studies showed that the redox reaction proceeds through a mechanism which combines Cr(VI)→Cr(IV)→Cr(II) and Cr(VI)→Cr(IV)→Cr(III) pathways. The mechanism was supported by the observation of free radicals, CrO2(2+) and Cr(V) as reaction intermediates. The reduction of Cr(IV) and Cr(V) by alginic acid was independently studied and it was found to occur more than 10(3) times faster than alginic acid/Cr(VI) reaction, in acid media. At pH 1-3, oxo-chromate(V)-alginic acid species remain in solution during several hours at 15°C. The results showed that this abundant structural polysaccharide present on brown seaweeds is able to reduce Cr(VI/V/IV) or stabilize high-valent chromium depending on pH value.

  3. Sodium alginate decreases the permeability of intestinal mucus.

    PubMed

    Mackie, Alan R; Macierzanka, Adam; Aarak, Kristi; Rigby, Neil M; Parker, Roger; Channell, Guy A; Harding, Stephen E; Bajka, Balazs H

    2016-01-01

    In the small intestine the nature of the environment leads to a highly heterogeneous mucus layer primarily composed of the MUC2 mucin. We set out to investigate whether the soluble dietary fibre sodium alginate could alter the permeability of the mucus layer. The alginate was shown to freely diffuse into the mucus and to have minimal effect on the bulk rheology when added at concentrations below 0.1%. Despite this lack of interaction between the mucin and alginate, the addition of alginate had a marked effect on the diffusion of 500 nm probe particles, which decreased as a function of increasing alginate concentration. Finally, we passed a protein stabilised emulsion through a simulation of oral, gastric and small intestinal digestion. We subsequently showed that the addition of 0.1% alginate to porcine intestinal mucus decreased the diffusion of fluorescently labelled lipid present in the emulsion digesta. This reduction may be sufficient to reduce problems associated with high rates of lipid absorption such as hyperlipidaemia.

  4. Sodium alginate decreases the permeability of intestinal mucus

    PubMed Central

    Mackie, Alan R.; Macierzanka, Adam; Aarak, Kristi; Rigby, Neil M.; Parker, Roger; Channell, Guy A.; Harding, Stephen E.; Bajka, Balazs H.

    2016-01-01

    In the small intestine the nature of the environment leads to a highly heterogeneous mucus layer primarily composed of the MUC2 mucin. We set out to investigate whether the soluble dietary fibre sodium alginate could alter the permeability of the mucus layer. The alginate was shown to freely diffuse into the mucus and to have minimal effect on the bulk rheology when added at concentrations below 0.1%. Despite this lack of interaction between the mucin and alginate, the addition of alginate had a marked effect on the diffusion of 500 nm probe particles, which decreased as a function of increasing alginate concentration. Finally, we passed a protein stabilised emulsion through a simulation of oral, gastric and small intestinal digestion. We subsequently showed that the addition of 0.1% alginate to porcine intestinal mucus decreased the diffusion of fluorescently labelled lipid present in the emulsion digesta. This reduction may be sufficient to reduce problems associated with high rates of lipid absorption such as hyperlipidaemia. PMID:26726279

  5. Empirical study of alginate impression materials by customized proportioning system

    PubMed Central

    2016-01-01

    PURPOSE Alginate mixers available in the market do not have the automatic proportioning unit. In this study, an automatic proportioning unit for the alginate mixer and controller software were designed and produced for a new automatic proportioning unit. With this device, it was ensured that proportioning operation could arrange weight-based alginate impression materials. MATERIALS AND METHODS The variation of coefficient in the tested groups was compared with the manual proportioning. Compression tension and tear tests were conducted to determine the mechanical properties of alginate impression materials. The experimental data were statistically analyzed using one way ANOVA and Tukey test at the 0.05 level of significance. RESULTS No statistically significant differences in modulus of elastisity (P>0.3), tensional/compresional strength (P>0.3), resilience (P>0.2), strain in failure (P>0.4), and tear energy (P>0.7) of alginate impression materials were seen. However, a decrease in the standard deviation of tested groups was observed when the customized machine was used. To verify the efficiency of the system, powder and powder/water mixing were weighed and significant decrease was observed. CONCLUSION It was possible to obtain more mechanically stable alginate impression materials by using the custom-made proportioning unit. PMID:27826387

  6. Development of hydrogel TentaGel shell-core beads for ultrahigh throughput solution-phase screening of encoded OBOC combinatorial small molecule libraries.

    PubMed

    Baek, Hyoung Gee; Liu, Ruiwu; Lam, Kit S

    2009-01-01

    The one-bead one-compound (OBOC) combinatorial library method enables the rapid generation and screening of millions of discrete chemical compounds on beads. Most of the OBOC screening methods require the library compounds to remain tethered to the bead during screening process. Methods have also been developed to release library compounds from immobilized beads for in situ solution phase or "lawn" assays. However, this latter approach, while extremely powerful, is severely limited by the lack of suitable solid supports for such assays. Here, we report on the development of a novel hydrogel TentaGel shell-core (HTSC) bead in which hydrogel is grafted onto the polystyrene-based TentaGel (TG) bead as an outer shell (5-80 mum thick) via free radical surface-initiated polymerization. This novel shell-core bilayer resin enables the preparation of encoded OBOC combinatorial small molecule libraries, such that the library compounds reside on the highly hydrophilic outer layer and the coding tags reside in the polystyrene-based TG core. Using fluorescein as a model small molecule compound, we have demonstrated that fluorescein molecules that have been linked covalently to the hydrogel shell via a disulfide bond could readily diffuse out of the hydrogel layer into the bead surrounding after reduction with dithiothreitol. In contrast, under identical condition, the released fluorescein molecules remained bound to unmodified TG bead. We have prepared an encoded OBOC small molecule library on the novel shell-core beads and demonstrated that the beads can be readily decoded.

  7. Smart designing of new hybrid materials based on brushite-alginate and monetite-alginate microspheres: bio-inspired for sequential nucleation and growth.

    PubMed

    Amer, Walid; Abdelouahdi, Karima; Ramananarivo, Hugo Ronald; Fihri, Aziz; El Achaby, Mounir; Zahouily, Mohamed; Barakat, Abdellatif; Djessas, Kamal; Clark, James; Solhy, Abderrahim

    2014-02-01

    In this report new hybrid materials based on brushite-alginate and monetite-alginate were prepared by self-assembling alginate chains and phosphate source ions via a gelation process with calcium ions. The alginate served as nanoreactor for nucleation and growth of brushite or/and monetite due to its gelling and swelling properties. The alginate gel framework, the crystalline phase and morphology of formed hybrid biomaterials were shown to be strongly dependent upon the concentration of the phosphate precursors. These materials were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDX).

  8. Ca(ii) and Ce(iii) homogeneous alginate hydrogels from the parent alginic acid precursor: a structural study.

    PubMed

    Sonego, Juan Manuel; Santagapita, Patricio R; Perullini, Mercedes; Jobbágy, Matías

    2016-06-14

    Alginate hydrogels are suitable for the encapsulation of biomolecules and microorganisms for the building of bioactive materials. Several alternatives to the conventional alginate formulation are being studied for a broad range of biotechnological applications; among them the crosslinking of alginate by lanthanide cations, Ln(iii), envisages expanded biomedical applications. The performance of these functional materials is highly related to the microstructure of the alginate matrix, which in turn is affected by the conditions of synthesis. In particular, when a diffusing gradient of the crosslinking cation is involved, microstructure inhomogeneities are expected at the macroscopic level. Here we discuss the subtle differences in the microstructure, as assessed by SAXS (Small Angle X-ray Scattering), established in the direction of the gradient of diffusion of Ca(ii) or Ce(iii).

  9. Generations.

    PubMed

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession.

  10. Tailored Freestanding Multilayered Membranes based on Chitosan and Alginate

    PubMed Central

    Silva, Joana M.; Duarte, Ana Rita C.; Caridade, Sofia G.; Picart, Catherine; Reis, Rui L.; Mano, João F.

    2016-01-01

    Engineering metabolically demanding tissues requires the supply of nutrients, oxygen and removal of metabolic byproducts, as well as adequate mechanical properties. In this work, we propose the development of chitosan (CHIT) / alginate (ALG) freestanding membranes fabricated by layer-by-layer (LbL). CHIT/ALG membranes were cross-linked with genipin at a concentration of 1 mg.mL-1 or 5 mg.mL-1. Mass transport properties of glucose and oxygen were evaluated on the freestanding membranes. The diffusion of glucose and oxygen decreases with increasing cross-linking concentration. Mechanical properties were also evaluated in physiological–simulated conditions. Increasing cross-linking density leads to an increase of storage modulus, Young modulus and ultimate tensile strength, but to a decrease in the maximum hydrostatic pressure. The in vitro biological performance demonstrates that cross-linked films are more favorable for cell adhesion. This work demonstrates the versatility and feasibility of LbL to generate nanostructured constructs with tunable permeability, mechanical and biological properties. PMID:25244323

  11. Sprayable Aerogel Bead Compositions With High Shear Flow Resistance and High Thermal Insulation Value

    NASA Technical Reports Server (NTRS)

    Ou, Danny; Trifu, Roxana; Caggiano, Gregory

    2013-01-01

    A sprayable aerogel insulation has been developed that has good mechanical integrity and lower thermal conductivity than incumbent polyurethane spray-on foam insulation, at similar or lower areal densities, to prevent insulation cracking and debonding in an effort to eliminate the generation of inflight debris. This new, lightweight aerogel under bead form can be used as insulation in various thermal management systems that require low mass and volume, such as cryogenic storage tanks, pipelines, space platforms, and launch vehicles.

  12. Improved enzyme properties upon glutaraldehyde cross-linking of alginate entrapped xylanase from Bacillus licheniformis.

    PubMed

    Kumar, Sharad; Haq, Izharul; Prakash, Jyoti; Raj, Abhay

    2017-05-01

    Enzyme immobilization is an exciting alternative to improve the stability of enzymatic processes and economic viability in terms of reusability. In the current study, purified xylanase from B. licheniformis Alk-1 was immobilized within glutaraldehyde activated calcium alginate beads and characterized in respect of free enzyme. Immobilization increases the optimum pH and temperature of entrapped and cross-linked enzyme from pH=8.0 to 9.0 and 50-60°C. The kinetics parameter of immobilized (cross-linked) enzyme showed an increase in Km (from 4.36mg/mL to 5.38mg/mL) and decrease in Vmax (from 383 IU/mg/min to 370 IU/mg/min). Immobilization increases the optimum reaction time for xylan degradation of immobilized xylanase from 15 to 30min when compare to free form. The storage stability study suggested that the immobilized enzyme retains 80% of its original activity at 4°C after 30days compared to free enzyme (5%). Further, immobilization improved enzyme stability in presence of different additives. The immobilized (cross-linked) enzyme also exhibited adequate recycling efficiency up to five reaction cycles with 37% retention activity. The finding of this study suggests improvement of overall performance of immobilized xylanase in respect to free form and can be used to make a bioreactor for various applications such as poultry feed preparations.

  13. Improved protocol for somatic embryogenesis and calcium alginate encapsulation in Anethum graveolens L.: a medicinal herb.

    PubMed

    Dhir, Richa; Shekhawat, G S; Alam, Afroz

    2014-08-01

    An improved procedure has been developed for efficient somatic embryogenesis in Anethum graveolens. Green friable embryogenic callus was obtained from hypocotyl segments on medium augmented with 2,4-dichlorophenoxyacetic acid (2,4-D). The highest embryogenic callus induction frequency of 87 % was obtained on Murashige and Skoog (MS) medium containing 1.13 μM 2,4-D. At lower concentration of 2,4-D (0.34 μM) callus turned dark in color and slow growing. Embryogenic cultures (76 %) responded with a mean number of 43 globular and 18 heart stage embryos. Somatic embryo maturation and subsequent conversion into plantlets took place on MS lacking growth regulators. Maximum number of somatic embryos developed on MS medium was 128.3 (per flask) and a plantlet conversion of 82 % was observed. Calcium alginate beads were produced by encapsulating somatic embryos. Highest percent germination (83 %) was observed on 0.8 % agar solidified MS medium with the plantlets acquiring an average length of 2.1 cm. Encapsulated somatic embryos could be stored at 4 °C up to 60 days with a conversion frequency of 49.3 %. Highest protein and proline content has been observed in embryogenic callus with small globular embryos. During morphological differentiation of the somatic embryos, changes in the antioxidant enzymatic system were observed. Superoxide dismutase (SOD) activity increased during initial stages and decreased catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) activities were detected.

  14. Immobilization of microalgae cells in alginate facilitates isolation of DNA and RNA.

    PubMed

    Lopez, Blanca R; Hernandez, Juan-Pablo; Bashan, Yoav; de-Bashan, Luz E

    2017-04-01

    Isolation of nucleic acids from Chlorella is difficult, given the chemically complex nature of their cell walls and variable production of metabolites. Immobilization of microalgae in polymers adds additional difficulty. Here, we modified, amended, and standardized methods for isolation of nucleic acids and compared the yield of DNA and RNA from free-living and encapsulated microalgae C. sorokiniana. Isolation of nucleic acids from immobilized cells required two steps in dissolving the alginate matrix, releasing the cells, and mechanical disruption with glass beads. For DNA extraction, we used modified versions of a commercial kit along with the hexadecyltrimethylammonium bromide (CTAB) method. For RNA extraction, we used the commercial TRI reagent procedure and the CTAB-dithiotreitol method. Quantity and quality of nucleic acids in extracts varied with growth conditions, isolation procedures, and time of incubation of the original culture. There were consistently higher amounts of DNA and RNA in extracts from immobilized cells. Quantitatively, the modified procedure with the commercial Promega kit was the most reliable procedure for isolating DNA and a modified commercial TRI reagent procedure was the choice for isolating RNA. All four procedures eliminated proteins efficiently and had low levels of contamination from residual polysaccharides from the matrices and/or metabolites naturally produced by the microalgae. All DNA extracts under both growth conditions, time of incubation, and two isolation methods successfully amplified the 18S ribosomal RNA by PCR and quantitative reverse transcription (RT-qPCR).

  15. Effect of alginate composition on profile release and characteristics of chitosan-alginate microparticles loaded with mangosteen extract

    NASA Astrophysics Data System (ADS)

    Mulia, Kamarza; Halimah, Nur; Krisanti, Elsa

    2017-03-01

    Preparation of mangostin-loaded chitosan-alginate microparticles, chemical and physical characterization of the particles, and mangostin release profiles, are described herein. Mangostin rich fraction was obtained from Garcinia mangostana L. pericarp by extraction followed by fractionation. Mangostin-loaded chitosan-alginate microparticles were prepared by ionic gelation method using tripolyphosphate as the linking agent and various concentration of alginate. Mangostin was effectively loaded in all microparticle formulations, resulting in ˜97% encapsulation efficiencies. The loading of mangostin and the in-vitro release profiles in simulated gastrointestinal fluids were affected by the chitosan to alginate ratios used in the preparation of the microparticles. Increased alginate concentration resulted in lowered release of mangostin from microparticles immersed in simulated gastric fluid (pH 1.2) up to two hours. Low release of mangostin in acidic fluid but high release in simulated colon fluid, indicated that the chitosan-alginate microparticles are prospective carrier for extended release of active compound in gastrointestinal system.

  16. Bead Collage: An Arts-Based Research Method

    ERIC Educational Resources Information Center

    Kay, Lisa

    2013-01-01

    In this paper, "bead collage," an arts-based research method that invites participants to reflect, communicate and construct their experience through the manipulation of beads and found objects is explained. Emphasizing the significance of one's personal biography and experiences as a researcher, I discuss how my background as an…

  17. Tests show that aluminum welds are improved by bead removal

    NASA Technical Reports Server (NTRS)

    Hood, D. W.

    1967-01-01

    Tests with 2218-T87 aluminum alloy plate indicate improvements in strength, ductility, fatigue properties, and burst pressure result when one or both of the top and bottom weld beads are removed. There is, however, a drop in yield strength. The consistency of test data is considerably improved by weld bead removal.

  18. Method for preparing spherical ferrite beads and use thereof

    SciTech Connect

    Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.

    2002-01-01

    The invention allows the fabrication of small, dense, highly polished spherical beads of hexagonal ferrites with selected compositions for use in nonreciprocal microwave and mm-wave devices as well as in microwave absorbent or reflective coatings, composites, and the like. A porous, generally spherical bead of hydrous iron oxide is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead is washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) under conditions of elevated temperature and pressure to convert the bead into a mixed hydrous iron-alkaline earth oxide while retaining the generally spherical shape. This mixed oxide bead is then washed, dried, and calcined to produce the desired (BaFe.sub.12 O.sub.19 or SrFe.sub.12 O.sub.19) crystal structure. The calcined bead is then sintered to form a dense bead of the BaFe.sub.12 O.sub.19 and SrFe.sub.12 O.sub.19 phase suitable for polishing and incorporation into various microwave devices and components.

  19. Artificial induction of autophagy around polystyrene beads in nonphagocytic cells.

    PubMed

    Kobayashi, Shouhei; Kojidani, Tomoko; Osakada, Hiroko; Yamamoto, Akitsugu; Yoshimori, Tamotsu; Hiraoka, Yasushi; Haraguchi, Tokuko

    2010-01-01

    Autophagy is an intracellular event that acts as an innate cellular defense mechanism to kill invading bacteria such as group A Streptococcus in nonphagocytic epithelial-like cells. The cellular events underlying autophagosome formation upon bacterial invasion remain unclear due to the biochemical complexity associated with uncharacterized bacterial components, and the difficulty of predicting the location as well as the timing of where/when autophagosome formation will take place. To overcome these problems, we monitored autophagosome formation in living nonphagocytic cells by inducing autophagy around artificial micrometer-sized beads instead of bacteria. Beads conjugated with bio-reactive molecules provide a powerful tool for examining biochemical properties in vitro. However, this technique has not been applied to living cells, except for phagocytes, because the beads cannot be easily incorporated into nonphagocytic cells. Here we report that micrometer-sized polystyrene beads coated with transfection reagents containing cationic lipids can be incorporated into nonphagocytic cells, and that autophagy can be efficiently induced around the beads in these cells. Monitoring the process of autophagosome formation for pH-sensitive fluorescent dye (pHrodo)-conjugated beads by fluorescence live cell imaging combined with correlative light and electron microscopy, we found that autophagosomes are formed around the beads after partial breakdown of the endosomal membrane. In addition, the beads were subsequently transferred to lysosomes within a couple of hours. Our findings demonstrate the cellular responses that lead to autophagy in response to pathogen invasion.

  20. Activities to Grow On: Buttons, Beads, and Beans.

    ERIC Educational Resources Information Center

    Gonzolis, Amy; And Others

    1992-01-01

    Presents new ideas for using buttons, beans, and beads as teaching manipulatives for elementary school children. The ideas include a button scavenger hunt, a button count, a cup puppet bean game, a numbers guessing game with beans in jars, and a bead stringing activity. (SM)

  1. Nanofibrous polymeric beads from aramid fibers for efficient bilirubin removal.

    PubMed

    Peng, Zihang; Yang, Ye; Luo, Jiyue; Nie, Chuanxiong; Ma, Lang; Cheng, Chong; Zhao, Changsheng

    2016-08-16

    Polymer based hemoperfusion has been developed as an effective therapy to remove the extra bilirubin from patients. However, the currently applied materials suffer from either low removal efficiency or poor blood compatibility. In this study, we report the development of a new class of nanofibrous absorbent that exhibited high bilirubin removal efficiency and good blood compatibility. The Kevlar nanofiber was prepared by dissolving micron-sized Kevlar fiber in proper solvent, and the beads were prepared by dropping Kevlar nanofiber solutions into ethanol. Owing to the nanofiborous structure of the Kevlar nanofiber, the beads displayed porous structures and large specific areas, which would facilitate the adsorption of toxins. In the adsorption test, it was noticed that the beads possessed an adsorption capacity higher than 40 mg g(-1) towards bilirubin. In plasma mimetic solutions, the beads still showed high bilirubin removal efficiency. Furthermore, after incorporating with carbon nanotubes, the beads were found to have increased adsorption capacity for human degradation waste. Moreover, the beads showed excellent blood compatibility in terms of a low hemolysis ratio, prolonged clotting times, suppressed coagulant activation, limited platelet activation, and inhibited blood related inflammatory activation. Additionally, the beads showed good compatibility with endothelial cells. In general, the Kevlar nanofiber beads, which integrated with high adsorption capacity, good blood compatibility and low cytotoxicity, may have great potential for hemoperfusion and some other applications in biomedical fields.

  2. Self-encoding resin beads of combinatorial library screening

    NASA Astrophysics Data System (ADS)

    Lei, Du; Zhao, Yuandi; Cheng, Tongsheng; Zeng, Shaoqun; Luo, Qingming

    2003-07-01

    The latest self-encoding resin bead is a novel technology for solid phase synthesis combinatorial library screening. A new encode-positional deconvolution strategy which was based on that technology been illustrated compared with positional scanning and iterative strategies. The self-encoding resin beads technology provides an efficient method for improving the high-throughput screening of combinatorial library.

  3. Bead-based microfluidic immunoassay for diagnosis of Johne's disease

    SciTech Connect

    Wadhwa, Ashutosh; Foote, Robert; Shaw, Robert W; Eda, Shigetoshi

    2012-01-01

    Microfluidics technology offers a platform for development of point-of-care diagnostic devices for various infectious diseases. In this study, we examined whether serodiagnosis of Johne s disease (JD) can be conducted in a bead-based microfluidic assay system. Magnetic micro-beads were coated with antigens of the causative agent of JD, Mycobacterium avium subsp. paratuberculosis. The antigen-coated beads were incubated with serum samples of JD-positive or negative serum samples and then with a fluorescently-labeled secondary antibody (SAB). To confirm binding of serum antibodies to the antigen, the beads were subjected to flow cytometric analysis. Different conditions (dilutions of serum and SAB, types of SAB, and types of magnetic beads) were optimized for a great degree of differentiation between the JD-negative and JD-positive samples. Using the optimized conditions, we tested a well-classified set of 155 serum samples from JD negative and JD-positive cattle by using the bead-based flow cytometric assay. Of 105 JD-positive samples, 63 samples (60%) showed higher antibody binding levels than a cut-off value determined by using antibody binding levels of JD-negative samples. In contrast, only 43-49 JD-positive samples showed higher antibody binding levels than the cut-off value when the samples were tested by commercially-available immunoassays. Microfluidic assays were performed by magnetically immobilizing a number of beads within a microchannel of a glass microchip and detecting antibody on the collected beads by laser-induced fluorescence. Antigen-coated magnetic beads treated with bovine serum sample and fluorescently-labeled SAB were loaded into a microchannel to measure the fluorescence (reflecting level of antibody binding) on the beads in the microfluidic system. When the results of five bovine serum samples obtained with the system were compared to those obtained with the flow cytometer, a high level of correlation (linear regression, r2 = 0.994) was

  4. Bead magnetorelaxometry with an on-chip magnetoresistive sensor.

    PubMed

    Dalslet, Bjarke Thomas; Damsgaard, Christian Danvad; Donolato, Marco; Strømme, Maria; Strömberg, Mattias; Svedlindh, Peter; Hansen, Mikkel Fougt

    2011-01-21

    Magnetorelaxometry measurements on suspensions of magnetic beads are demonstrated using a planar Hall effect sensor chip embedded in a microfluidic system. The alternating magnetic field used for magnetizing the beads is provided by the sensor bias current and the complex magnetic susceptibility spectra are recorded as the 2nd harmonic of the sensor response. The complex magnetic susceptibility signal appears when a magnetic bead suspension is injected, it scales with the bead concentration, and it follows the Cole-Cole expression for Brownian relaxation. The complex magnetic susceptibility signal resembles that from conventional magnetorelaxometry done on the same samples apart from an offset in Brownian relaxation frequency. The time dependence of the signal can be rationalized as originating from sedimented beads.

  5. Incorporation of pyrene in polypyrrole/polystyrene magnetic beads.

    PubMed

    Głowala, Paulina; Budniak, Adam; Krug, Pamela; Wysocka, Barbara; Berbeć, Sylwia; Dec, Robert; Dołęga, Izabela; Kacprzak, Kamil; Wojciechowski, Jarosław; Kawałko, Jakub; Kępka, Paweł; Kępińska, Daria; Kijewska, Krystyna; Mazur, Maciej

    2014-10-15

    Pyrene, a fluorescent dye, was incorporated into polystyrene particles coated with polypyrrole. The incorporation was achieved by treating the polypyrrole/polystyrene (PPy/PS) beads in a tetrahydrofuran (THF) solution of the pyrene fluorophore followed by rinsing with methanol. The polystyrene cores of the beads swell in THF, allowing penetration of pyrene molecules into the polystyrene structure. The addition of methanol causes contraction of the swollen polystyrene, which encapsulates the dye molecules inside the beads. It is shown that the polypyrrole coating is permeable with respect to both the dye and the solvent, allowing the transport of molecules between the polystyrene cores and the contacting solution. The polypyrrole adlayer can be used as a matrix for the incorporation of magnetic nanoparticles. Embedded particles provide magnetic functionality to the PPy/PS beads. It is demonstrated that the pyrene-loaded beads can be manipulated with an external magnetic field.

  6. Hollow polydimethylsiloxane beads with a porous structure for cell encapsulation.

    PubMed

    Oh, Myeong-Jin; Ryu, Tae-Kyoung; Choi, S-W

    2013-11-01

    Based on a water-in-oil-in-water emulsion system, porous and hollow polydimethylsiloxane (PDMS) beads containing cells using a simple fluidic device with three flow channels are fabricated. Poly(ethylene glycol) (PEG) in the PDMS oil phase is served as a porogen for pore development. The feasibility of the porous PDMS beads prepared with different PEG concentrations (10, 20, and 30 wt%) for cell encapsulation in terms of pore size, protein diffusion, and cell proliferation inside the PDMS beads is evaluated. The PDMS beads prepared with PEG 30 wt% are exhibited a highly porous structure and facilitated fast diffusion of protein from the core domain to the outer phase, eventually leading to enhanced cell proliferation. The results clearly indicate that hollow PDMS beads with a porous structure could provide a favorable microenvironment for cell survival due to the large porous structure.

  7. Switchable cell trapping using superparamagnetic beads

    SciTech Connect

    Bryan, M. T.; Smith, K. H.; Real, M. E.; Bashir, M. A.; Fry, P. W.; Fischer, P.; Im, M.-Y.; Schrefl, T.; Allwood, D. A.; Haycock, J. W.

    2010-04-30

    Ni{sub 81}Fe{sub 19} microwires are investigated as the basis of a switchable template for positioning magnetically-labeled neural Schwann cells. Magnetic transmission X-ray microscopy and micromagnetic modeling show that magnetic domain walls can be created or removed in zigzagged structures by an applied magnetic field. Schwann cells containing superparamagnetic beads are trapped by the field emanating from the domain walls. The design allows Schwann cells to be organized on a surface to form a connected network and then released from the surface if required. As aligned Schwann cells can guide nerve regeneration, this technique is of value for developing glial-neuronal co-culture models in the future treatment of peripheral nerve injuries.

  8. Differential effect of the shape of calcium alginate matrices on the physiology of immobilized neuroblastoma N2a and Vero cells: a comparative study.

    PubMed

    Kintzios, S; Yiakoumetis, I; Moschopoulou, G; Mangana, O; Nomikou, K; Simonian, A

    2007-11-30

    In order to investigate the effect of cell immobilization in calcium alginate gels on cell physiology, we immobilized Vero or N2a neuroblastoma cells in gels shaped either as spherical beads or as thin membrane layers. Throughout a culture period of 4 weeks cell viability, RNA and cytoplasmic calcium concentration and glutathione accumulation were assayed by fluorescence microscopy after provision of an appropriate dye. Non-elaborate culture conditions were applied throughout the experimental period in order to evaluate cell viability under less than optimal storage conditions. Vero cell proliferation was observed only in spherical beads, while N2a cell proliferation was observed in both configurations until the third week of culture. Increased [Ca2+]cyt could be associated with cell proliferation only when cells were immobilized in spherical beads, while a considerable decrease in the biosynthesis of reduced glutathione and RNA was observed in cells immobilized in thin membrane layers. The observed effects of the shape of the immobilization matrix may be due to differences in external mass transfer resistance. Therefore, depending on cell type, cell proliferation could have been promoted by either increased (Vero) or decreased (N2a) nutrient and oxygen flow to immobilized cells. The results of the present study could contribute to an improvement of immobilized cell sensor storability.

  9. Enhanced U(VI) bioreduction by alginate-immobilized uranium-reducing bacteria in the presence of carbon nanotubes and anthraquinone-2,6-disulfonate.

    PubMed

    Wang, Weida; Feng, Yali; Tang, Xinhua; Li, Haoran; Du, Zhuwei; Yi, Aifei; Zhang, Xu

    2015-05-01

    Uranium-reducing bacteria were immobilized with sodium alginate, anthraquinone-2,6-disulfonate (AQDS), and carbon nanotubes (CNTs). The effects of different AQDS-CNTs contents, U(IV) concentrations, and metal ions on U(IV) reduction by immobilized beads were examined. Over 97.5% U(VI) (20 mg/L) was removed in 8 hr when the beads were added to 0.7% AQDS-CNTs, which was higher than that without AQDS-CNTs. This result may be attributed to the enhanced electron transfer by AQDS and CNTs. The reduction of U(VI) occurred at initial U(VI) concentrations of 10 to 100 mg/L and increased with increasing AQDS-CNT content from 0.1% to 1%. The presence of Fe(III), Cu(II) and Mn(II) slightly increased U(VI) reduction, whereas Cr(VI), Ni(II), Pb(II), and Zn(II) significantly inhibited U(VI) reduction. After eight successive incubation-washing cycles or 8 hr of retention time (HRT) for 48 hr of continuous operation, the removal efficiency of uranium was above 90% and 92%, respectively. The results indicate that the AQDS-CNT/AL/cell beads are suitable for the treatment of uranium-containing wastewaters.

  10. Immobilized OBOC combinatorial bead array to facilitate multiplicative screening.

    PubMed

    Xiao, Wenwu; Bononi, Fernanda C; Townsend, Jared; Li, Yuanpei; Liu, Ruiwu; Lam, Kit S

    2013-07-01

    One-bead-one-compound (OBOC) combinatorial library screening has been broadly utilized for the last two decades to identify small molecules, peptides or peptidomimetics targeting variable screening probes such as cell surface receptors, bacteria, protein kinases, phosphatases, proteases etc. In previous screening methods, library beads were suspended in solution and screened against one single probe. Only the positive beads were tracked and isolated for additional screens and finally selected for chemical decoding. During this process, the remaining negative beads were not tracked and discarded. Here we report a novel bead immobilization method such that a bead library array can be conveniently prepared and screened in its entirety, sequentially many times with a series of distinct probes. This method not only allows us to increase the screening efficiency but also permits us to determine the binding profile of each and every library bead against a large number of target receptors. As proof of concept, we serially screened a random OBOC disulfide containing cyclic heptapeptide library with three water soluble dyes as model probes: malachite green, bromocresol purple and indigo carmine. This multiplicative screening approach resulted in a rapid determination of the binding profile of each and every bead respective to each of the three dyes. Beads that interacted with malachite green only, bromocresol purple only, or both indigo carmine and bromocresol purple were isolated, and their peptide sequences were determined with microsequencer. Ultimately, the novel OBOC multiplicative screening approach could play a key role in the enhancement of existing on-bead assays such as whole cell binding, bacteria binding, protein binding, posttranslational modifications etc. with increased efficiency, capacity, and specificity.

  11. Method for quantifying alginate and determining release from a food vehicle in gastrointestinal digesta.

    PubMed

    Houghton, David; Wilcox, Matthew D; Brownlee, Iain A; Chater, Peter; Seal, Chris J; Pearson, Jeffrey P

    2014-05-15

    To assess the efficacy of alginate as a modifier of enzyme activity, a suitable method to quantify its release must be developed. This paper develops and assesses the ability of the Periodic Acid Schiffs (PAS) assay to quantify alginate, and its release from bread during digestion in a model gut. Control and alginate enriched (4% w/w wet dough) bread were used. A model gut replicating the mouth, stomach and small intestines was used. Standard curves were created for alginate in deionised H2O and model gut solutions using a modified PAS to remove interference. The PAS assay quantified alginate with excellent linearity (R(2)=0.99), and optical density range (0.02-0.5). There was a significant difference in alginate release at 180 min compared to 0 and 60 min. The data indicate the modified