Science.gov

Sample records for alginate immobilized cells

  1. Stability of alginate-immobilized algal cells

    SciTech Connect

    Dainty, A.L.; Goulding, K.H.; Robinson, P.K.; Simpkins, I; Trevan, M.D.

    1986-01-01

    Investigations were carried out using immobilized Chlorella cells to determine the diameter, compressibility, tolerance to phosphate chelation, and ability to retain algal cells during incubation of various alginate beads. These physical bead-characteristics were affected by a variety of interactive factors, including multivalent cation type (hardening agent) and cell, cation, and alginate concentration, the latter exhibiting a predominant influence. The susceptibility of alginate beads to phosphate chelation involved a complex interaction of cation type, concentration, and pH of phosphate solution. A scale of response ranging from gel swelling to gel shrinking was observed for a range of conditions. However, stable Ca alginate beads were maintained in incubation media with a pH of 5.5 and a phosphate concentration of 5 micro M. A preliminary investigation into cell leakage from the beads illustrated the importance of maintaining a stable gel structure and limiting cell growth to reduce leakage.

  2. Cellobiose hydrolysis using Pichia etchellsii cells immobilized in calcium alginate

    SciTech Connect

    Jain, D.; Ghose, T.K.

    1984-04-01

    Cellulose degradation rates can be increased by the hydrolysis of cellobiose using immobilized beta-glucosidase. Production of beta-glucosidase in four yeasts was studied and a maximum activity of 1.22 IU/mg cells was obtained in cells of Pichia etchellsii grown on 3% cellobiose. The immobilization of beta-glucosidase containing cells on various solid supports was studied and entrapment in calcium alginate gel beads was found to be the best method. After ten sequential batch uses of the preparation, 96.5% of the initial activity was retained. The pH and temperature optima for free and immobilized cells were pH 6.5 (0.05M Maleate buffer) and 50/sup 0/C however, the enzyme has a better thermal stability at 45/sup 0/C. Beads stored at 4/sup 0/C for six months retain 80% of their activity. Kinetic studies performed on free and immobilized cells show that glucose is a noncompetitive product inhibitor. The immobilized preparation was limited by pore diffusion but exhibited no film-diffusion resistance during packed bed reactor operation. Good plug flow characteristics were observed. A model for reaction with pore diffusion for a noncompetitive type of inhibited system was developed and applied to this system. The reation rate with diffusional limitations was determined by using the model and effectiveness factors were calculated for different particle sizes. The modified rate expression using the effectiveness factor represented batch and packed bed reactor operation satisfactorily. The productivity in the packed bed column fell rapidly with an increase in conversion rate indicating that the operating conditions of the column would have to balance high conversion rates with acceptable productivity. The half-life in the column was affected by temperature, increasing to over seventeen days at 40/sup 0/C and decreasing to less than two days at 50/sup 0/C.

  3. Cellobiose hydrolysis using Pichia etchellsii cells immobilized in calcium alginate

    SciTech Connect

    Jain, D.; Ghose, T.K.

    1984-01-01

    The rate of cellulose degradation, limited by inhibition by cellobiose, can be increased by hydrolysis of cellobiose to glucose using immobilized ..beta..-glucosidase. Production of ..beta..-glucosidase in four yeasts was studied and a maximum activity of 1.22 IU/mg cells was obtained in cells of Pichia etchellsii when grown on 3% cellobiose as the sole carbon source. Immobilization of ..beta..-glucosidase containing cells of Pichia etchellsii on various solid supports was conducted and immobilization by entrapment in calcium alginate gel beads was found to be the most simple and efficient method. The immobilized preparation was found to be limited by pore diffusion but exhibited no film-diffusion resistance during packed bed reactor operation. Good plug flow characteristics were observed in the packed bed column indicated by a low dispersion number of 0.1348. A model for reaction with pore diffusion for a noncompetitive type of inhibited system was developed and applied to the cellobiose hydrolysis system. The rate of reaction with diffusional limitations was determined by using the model and effectiveness factors were calculated for different particle sizes. An effectiveness factor of 0.49 was obtained for a particle diameter of 2.5 mm. The modified rate expression using the effectiveness factor represented batch and packed bed reactor operation satisfactorily. The productivity in the packed bed column was found to fall rapidly with increase in conversion rate indicating that the operating conditions of the column would have to be a compromise between high conversion rates and reasonable productivity. A half-life of over seven days was obtained at the operating temperature of 45/sup 0/C in continuous operation of the packed bed reactor. However, the half-life in the column was found to be greatly affected by temperature, increasing to over seve

  4. The enhancement of chondrogenesis of ATDC5 cells in RGD-immobilized microcavitary alginate hydrogels.

    PubMed

    Yao, Yongchang; Zeng, Lei; Huang, Yuyang

    2016-07-01

    In our previous work, we have developed an effective microcavitary alginate hydrogel for proliferation of chondrocytes and maintenance of chondrocytic phenotype. In present work, we investigated whether microcavitary alginate hydrogel could promote the chondrogenesis of progenitor cells. Moreover, we attempted to further optimize this system by incorporating synthetic Arg-Gly-Asp peptide. ATDC5 cells were seeded into microcavitary alginate hydrogel with or without Arg-Gly-Asp immobilization. Cell Counting Kit-8 and live/dead staining were conducted to analyze cell proliferation. Real-time polymerase chain reaction (RT-PCR), hematoxylin and eosin, and Toluidine blue O staining as well as Western blot assay was performed to evaluate the cartilaginous markers at transcriptional level and at protein level, respectively. The obtained data demonstrated that Arg-Gly-Asp-immobilized microcavitary alginate hydrogel was preferable to promote the cell proliferation. Also, Arg-Gly-Asp-immobilized microcavitary alginate hydrogel improved the expression of chondrocytic genes including Collagen II and Aggrecan when compared with microcavitary alginate hydrogel. The results suggested that microcavitary alginate hydrogel could promote the chondrogenesis. And Arg-Gly-Asp would be promising to ameliorate this culture system for cartilage tissue engineering. PMID:27000189

  5. Growth and by-product profiles of Kluyveromyces marxianus cells immobilized in foamed alginate.

    PubMed

    Wilkowska, Agnieszka; Kregiel, Dorota; Guneser, Onur; Karagul Yuceer, Yonca

    2015-01-01

    The aim of this research was to study how the yeast cell immobilization technique influences the growth and fermentation profiles of Kluyveromyces marxianus cultivated on apple/chokeberry and apple/cranberry pomaces. Encapsulation of the cells was performed by droplet formation from a foamed alginate solution. The growth and metabolic profiles were evaluated for both free and immobilized cells. Culture media with fruit waste produced good growth of free as well as immobilized yeast cells. The fermentation profiles of K. marxianus were different with each waste material. The most varied aroma profiles were noted for immobilized yeast cultivated on apple/chokeberry pomace. PMID:25277269

  6. Effect of immobilized cells in calcium alginate beads in alcoholic fermentation

    PubMed Central

    2013-01-01

    Saccharomyces cerevisiae cells were immobilized in calcium alginate and chitosan-covered calcium alginate beads and studied in the fermentation of glucose and sucrose for ethanol production. The batch fermentations were carried out in an orbital shaker and assessed by monitoring the concentration of substrate and product with HPLC. Cell immobilization in calcium alginate beads and chitosan-covered calcium alginate beads allowed reuse of the beads in eight sequential fermentation cycles of 10 h each. The final concentration of ethanol using free cells was 40 g L-1 and the yields using glucose and sucrose as carbon sources were 78% and 74.3%, respectively. For immobilized cells in calcium alginate beads, the final ethanol concentration from glucose was 32.9 ± 1.7 g L-1 with a 64.5 ± 3.4% yield, while the final ethanol concentration from sucrose was 33.5 ± 4.6 g L-1 with a 64.5 ± 8.6% yield. For immobilized cells in chitosan-covered calcium alginate beads, the ethanol concentration from glucose was 30.7 ± 1.4 g L-1 with a 61.1 ± 2.8% yield, while the final ethanol concentration from sucrose was 31.8 ± 6.9 g L-1 with a 62.1 ± 12.8% yield. The immobilized cells allowed eight 10 h sequential reuse cycles to be carried out with stable final ethanol concentrations. In addition, there was no need to use antibiotics and no contamination was observed. After the eighth cycle, there was a significant rupture of the beads making them inappropriate for reuse. PMID:23721664

  7. Degradation of dimethylphthalate by cells of Bacillus sp. immobilized in calcium alginate and polyurethane foam.

    PubMed

    Niazi, J H; Karegoudar, T B

    2001-01-01

    A Bacillus sp. which is capable of degrading dimethylphthalate (DMP) was immobilized in calcium alginate and polyurethane foam for efficient and long term degradation of DMP. Freely suspended cells (10(12) cfu ml-1) degraded a maximum of 20 mM DMP. Whereas, alginate-(10(12)cfu g-1 beads) and polyurethane foam-entrapped (0.34 x 10(6-9) cfu g-1 foam cubes) cells degraded a maximum of 40 mM DMP within 12-15 days of incubation. Polyurethane foam-entrapped cells degraded 30 mM of DMP at 4 days and alginate-entrapped cells degraded within 10 to 12 days of incubation irrespective of the cell population. When the initial concentration of DMP increased to 50 mM, the DMP degrading ability of the immobilized cells was not increased even after 20 days. Repeated batch cultures by alginate-entrapped cells with initial 35 mM DMP loading could be reused for a maximum of 20 cycles. However, the degradation rate was gradually decreased when the beads were reused for more than 15 cycles. On the other hand, the foam-entrapped cells, with the same initial DMP loading there was no decrease in DMP degrading ability and could be reused for more than 20 cycles. The packed bed reactor with alginate-entrapped cells (1 x 10(10-12) cfu g-1 bead) could be continuously operated for 7-8 days with an initial 25 mM DMP at a flow rate of 50 ml h-1. Whereas, the polyurethane foam-entrapped cells (1 x 10(6-9) cfu g-1 foam cubes) could be operated continuously for more than 90 days with the same initial DMP loading at a flow rate of 100 ml h-1. Thus the enhanced degradation of DMP could be achieved by immobilizing the cells of Bacillus sp. in calcium alginate and polyurethane foam as compared to that of freely suspended cells. PMID:11501311

  8. Rifamycins Production by Amycolatopsis mediterranei in Batch and Repeated Batch Cultures Using Immobilized Cells in Alginate and Modified Alginate Beads

    NASA Astrophysics Data System (ADS)

    El-Enshasy, Hesham A.; Beshay, Usama I.; El-Diwany, Ahmed I.; Omar, Hoda M.; El-Kholy, Abdel Ghany E.; El-Najar, Rabab

    The production of rifamycins B and SV by Amycolatopsis mediterranei using immobilization technique was investigated. Alginate beads proved to be an alternative method for the production of rifamycin antibiotic as it has many advantage over using free cells such as it enables the operation at higher dilution rates without the danger of wash out, ease of handling and facilitates recycling or reverse of using microorganism. Different hardening agents were used to improve the stability of the beads and decrease cells escapement. Gum Arabic and gellan gum were used and the rate of rifamycin production increased by using gellan gum as hardening agent compared to pure alginate beads. The rifamycins B and SV increased from 685 to 810 and from 547.5 to 702 mg L-1, respectively by using gellan-gum modified beads compared to the non-treated beads. In repeated batch production, the beads were stable and no breaking of the gel beads was observed throughout the experiment time. The total amount of rifamycin B and SV during the five repeated batches (each of 144 h) reached 3360 and 2309 mg L-1, respectively. On reducing the batch time to only 72 h, the antibiotic production was not influenced and the total concentration of rifamycins B and SV for five batches was 3785 and 2393 mg L-1, respectively.

  9. NMR imaging of heavy metal absorption in alginate, immobilized cells, and kombu algal biosorbents.

    PubMed

    Nestle, N F; Kimmich, R

    1996-09-01

    In this contribution, an NMR imaging study of heavy metal absorption in alginate, immobilized-cell biosorbents, and kombu (Laminaria japonica) algal biomass is presented. This method provides the good possibility of directly monitoring the time evolution of the spatial distribution of the ions in the materials. From these results, we demonstrate that rare earth ions are absorbed with a steep reaction front that can be described very well with a modified shrinking core model, while copper ions are absorbed with a more diffuse front. PMID:18629817

  10. Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions.

    PubMed

    Kosourov, Sergey N; Seibert, Michael

    2009-01-01

    A new technique for immobilizing H2-photoproducing green algae within a thin (<400 microm) alginate film has been developed. Alginate films with entrapped sulfur/phosphorus-deprived Chlamydomonas reinhardtii, strain cc124, cells demonstrate (a) higher cell density (up to 2,000 microg Chl mL(-1) of matrix), (b) kinetics of H2 photoproduction similar to sulfur-deprived suspension cultures, (c) higher specific rates (up to 12.5 micromol mg(-1) Chl h(-1)) of H2 evolution, (d) light conversion efficiencies to H2 of over 1% and (e) unexpectedly high resistance of the H2-photoproducing system to inactivation by atmospheric O2. The algal cells, entrapped in alginate and then placed in vials containing 21% O2 in the headspace, evolved up to 67% of the H2 gas produced under anaerobic conditions. The results indicate that the lower susceptibility of the immobilized algal H2-producing system to inactivation by O2 depends on two factors: (a) the presence of acetate in the medium, which supports higher rates of respiration and (b) the capability of the alginate polymer itself to effectively separate the entrapped cells from O2 in the liquid and headspace and restrict O2 diffusion into the matrix. The strategy presented for immobilizing algal cells within thin polymeric matrices shows the potential for scale-up and possible future applications. PMID:18823051

  11. Hydrogen Photoproduction by Nutrient-Deprived Chalamydomonas reinhardtii Cells Immobilized Within Thin Alginate Films Under Aerobic and Anaerobic Conditions

    SciTech Connect

    Kosourov, S. N.; Seibert, M.

    2009-01-01

    A new technique for immobilizing H{sub 2}-photoproducing green algae within a thin (<400 {micro}m) alginate film has been developed. Alginate films with entrapped sulfur/phosphorus-deprived Chlamydomonas reinhardtii, strain cc124, cells demonstrate (a) higher cell density (up to 2,000 {micro}g Chl mL{sup -1} of matrix), (b) kinetics of H{sub 2} photoproduction similar to sulfur-deprived suspension cultures, (c) higher specific rates (up to 12.5 {micro}mol mg{sup -1} Chl h{sup -1}) of H{sub 2} evolution, (d) light conversion efficiencies to H{sub 2} of over 1% and (e) unexpectedly high resistance of the H{sub 2}-photoproducing system to inactivation by atmospheric O{sub 2}. The algal cells, entrapped in alginate and then placed in vials containing 21% O{sub 2} in the headspace, evolved up to 67% of the H{sub 2} gas produced under anaerobic conditions. The results indicate that the lower susceptibility of the immobilized algal H{sub 2}-producing system to inactivation by O{sub 2} depends on two factors: (a) the presence of acetate in the medium, which supports higher rates of respiration and (b) the capability of the alginate polymer itself to effectively separate the entrapped cells from O{sub 2} in the liquid and headspace and restrict O{sub 2} diffusion into the matrix. The strategy presented for immobilizing algal cells within thin polymeric matrices shows the potential for scale-up and possible future applications.

  12. Simultaneous Alcoholic and Malolactic Fermentations by Saccharomyces cerevisiae and Oenococcus oeni Cells Co-immobilized in Alginate Beads

    PubMed Central

    Bleve, Gianluca; Tufariello, Maria; Vetrano, Cosimo; Mita, Giovanni; Grieco, Francesco

    2016-01-01

    Malolactic fermentation (MLF) usually takes place after the end of alcoholic fermentation (AF). However, the inoculation of lactic acid bacteria together with yeast starter cultures is a promising system to enhance the quality and safety of wine. In recent years, the use of immobilized cell systems has been investigated, with interesting results, for the production of different fermented foods and beverages. In this study we have carried out the simultaneous immobilization of Saccharomyces cerevisiae and Oenococcus oeni in alginate beads and used them in microvinifications tests to produce Negroamaro wine. The process was monitored by chemical and sensorial analyses and dominance of starters and cell leaking from beads were also checked. Co-immobilization of S. cerevisiae and O. oeni allowed to perform an efficient fermentation process, producing low volatile acidity levels and ethanol and glycerol concentrations comparable with those obtained by cell sequential inoculum and co-inoculum of yeast and bacteria cells in free form. More importantly, co-immobilization strategy produced a significant decrease of the time requested to complete AF and MLF. The immobilized cells could be efficiently reused for the wine fermentation at least three times without any apparent loss of cell metabolic activities. This integrated biocatalytic system is able to perform simultaneously AF and MLF, producing wines similar in organoleptic traits in comparison with wines fermented following traditional sequential AF and MLF with free cell starters. The immobilized-cell system, that we here describe for the first time in our knowledge, offers many advantages over conventional free cell fermentations, including: (i) elimination of non-productive cell growth phases; (ii) feasibility of continuous processing; (iii) re-use of the biocatalyst. PMID:27379072

  13. 3D Cell Culture in Alginate Hydrogels

    PubMed Central

    Andersen, Therese; Auk-Emblem, Pia; Dornish, Michael

    2015-01-01

    This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent), and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue. PMID:27600217

  14. Efficacy and reusability of alginate-immobilized live and heat-inactivated Trichoderma asperellum cells for Cu (II) removal from aqueous solution.

    PubMed

    Tan, Wei Shang; Ting, Adeline Su Yien

    2012-11-01

    Cu(II) removal efficacies of alginate-immobilized Trichoderma asperellum using viable and non-viable forms were investigated with respect to time, pH, and initial Cu(II) concentrations. The reusability potential of the biomass was determined based on sorption/desorption tests. Cu(II) biosorption by immobilized heat-inactivated T. asperellum cells was the most efficient, with 134.22mg Cu(II) removed g(-1) adsorbent, compared to immobilized viable cells and plain alginate beads (control) with 105.96 and 94.04mg Cu(II) adsorbed g(-1) adsorbent, respectively. Immobilized non-viable cells achieved equilibrium more rapidly within 4h. For all biosorbents, optimum pH for Cu(II) removal was between pH 4 and 5. Reusability of all biosorbents were similar, with more than 90% Cu(II) desorbed with HCl. These alginate-immobilized cells can be applied to reduce clogging and post-separation process incurred from use of suspended biomass. PMID:22940332

  15. Immobilization of Erwinia sp. D12 Cells in Alginate-Gelatin Matrix and Conversion of Sucrose into Isomaltulose Using Response Surface Methodology

    PubMed Central

    Kawaguti, Haroldo Yukio; Carvalho, Priscila Hoffmann; Figueira, Joelise Alencar; Sato, Hélia Harumi

    2011-01-01

    Isomaltulose is a noncariogenic reducing disaccharide and also a structural isomer of sucrose and is used by the food industry as a sucrose replacement. It is obtained through enzymatic conversion of microbial sucrose isomerase. An Erwinia sp. D12 strain is capable of converting sucrose into isomaltulose. The experimental design technique was used to study the influence of immobilization parameters on converting sucrose into isomaltulose in a batch process using shaken Erlenmeyer flasks. We assessed the effect of gelatin and transglutaminase addition on increasing the reticulation of granules of Erwinia sp. D12 cells immobilized in alginate. Independent parameters, sodium alginate concentration, cell mass concentration, CaCl2 concentration, gelatin concentration, and transglutaminase concentration had all a significant effect (P < 0.05) on isomaltulose production. Erwinia sp. D12 cells immobilized in 3.0% (w/v) sodium alginate, 47.0% (w/v) cell mass, 0.3 molL−1 CaCl2, 1.7% (w/v) gelatin and 0.15% (w/v) transglutaminase presented sucrose conversion into isomaltulose, of around 50–60% in seven consecutive batches. PMID:21785708

  16. Improved production of isomaltulose by a newly isolated mutant of Serratia sp. cells immobilized in calcium alginate.

    PubMed

    Kim, Yonghwan; Koo, Bong-Seong; Lee, Hyeon-Cheol; Yoon, Youngdae

    2015-03-01

    Isomaltulose, also known as palatinose, is produced by sucrose isomerase and has been highlighted as a sugar substitute due to a number of advantageous properties. For the massive production of isomaltulose, high resistance to sucrose and stability of sucrose isomerase as well as sucrose conversion yields would be critical factors. We describe a series of screening procedures to isolate the mutant strain of Serratia sp. possessing enhanced isomaltulose production with improved stability. The new Serratia sp. isolated from a series of screening procedures allowed us to produce isomaltulose from 60% sucrose solution, with over 90% conversion yield. Moreover, when this strain was immobilized in calcium alginate beads and placed in a medium containing 60% sucrose, it showed over 70% sucrose conversion yields for 30 cycles of repeated-batch reactions. Thus, improved conversion activity and stability of the newly isolated Serratia sp. strain in the present study would be highly valuable for industries related to isomaltulose production. PMID:25660398

  17. Growth and metabolic activity of conventional and non-conventional yeasts immobilized in foamed alginate.

    PubMed

    Kregiel, Dorota; Berlowska, Joanna; Ambroziak, Wojciech

    2013-09-10

    The aim of this research was to study how the cell immobilization technique of forming foamed alginate gels influences the growth, vitality and metabolic activity of different yeasts. Two distinct strains were used, namely conventional yeast (exemplified by Saccharomyces cerevisiae) and a non-conventional strain (exemplified by Debaryomyces occidentalis). The encapsulation of the yeast cells was performed by the traditional process of droplet formation, but from a foamed alginate solution. The activities of two key enzymes, succinate dehydrogenase and pyruvate decarboxylase, together with the ATP content were measured in both the free and immobilized cells. This novel method of yeast cell entrapment had some notable effects. The number of living immobilized cells reached the level of 10(6)-10(7) per single bead, and was stable during the fermentation process. Reductions in both enzyme activity and ATP content were observed in all immobilized yeasts. However, S. cerevisiae showed higher levels of ATP and enzymatic activity than D. occidentalis. Fermentation trials with immobilized repitching cells showed that the tested yeasts adapted to the specific conditions. Nevertheless, the mechanical endurance of the carriers and the internal structure of the gel need to be improved to enable broad applications of alginate gels in industrial fermentation processes, especially with conventional yeasts. This is one of the few papers and patents that describe the technique of cell immobilization in foamed alginate and shows the fermentative capacities and activities of key enzymes in immobilized yeast cells. PMID:23931687

  18. A Ca-alginate particle co-immobilized with Phanerochaete chrysosporium cells and the combined cross-linked enzyme aggregates from Trametes versicolor.

    PubMed

    Li, Yanchun; Wang, Zhi; Xu, Xudong; Jin, Liqiang

    2015-12-01

    For improving stability of immobilized white-rot fungus to treat various effluents, Phanerochaete chrysosporium cells and the combined cross-link enzyme aggregates (combi-CLEAs) prepared from Trametes versicolor were co-immobilized into the Ca-alginate gel particles in this paper. The activity yields of obtained combi-CLEAs were 42.7% for lignin peroxidases (LiPs), 31.4% for manganese peroxidases (MnPs) and 40.4% for laccase (Lac), respectively. And their specific activities were 30.2U/g as combi-CLEAs-LiPs, 9.5 U/g as combi-CLEAs-MnPs and 28.4 U/g as combi-CLEAs-Lac. Further, the present of the combi-CLEAs in the particles extremely improved their ability to degrade the dyes. Compared to the immobilized Ph. chrysosporium without the combi-CLEAs, the co-immobilized particles enhanced the decolorized rate of Acid Violet 7 (from 45.2% to 93.4%) and Basic Fuchsin (from 12.1% to 67.9%). In addition, the addition of the combi-CLEAs improved the adaptability of the white-rot fungal particles to adverse environmental conditions. PMID:26413897

  19. Optimization of alpha-amylase immobilization in calcium alginate beads.

    PubMed

    Ertan, Figen; Yagar, Hulya; Balkan, Bilal

    2007-01-01

    alpha-Amylase enzyme was produced by Aspergillus sclerotiorum under SSF conditions, and immobilized in calcium alginate beads. Effects of immobilization conditions, such as alginate concentration, CaCl(2) concentration, amount of loading enzyme, bead size, and amount of beads, on enzymatic activity were investigated. Optimum alginate and CaCl(2) concentration were found to be 3% (w/v). Using a loading enzyme concentration of 140 U mL(-1), and bead (diameter 3 mm) amount of 0.5 g, maximum enzyme activity was observed. Beads prepared at optimum immobilization conditions were suitable for up to 7 repeated uses, losing only 35% of their initial activity. Among the various starches tested, the highest enzyme activity (96.2%) was determined in soluble potato starch hydrolysis for 120 min at 40 degrees C. PMID:17516249

  20. Immobilization of enzymes on alginic acid-polyacrylamide copolymers

    SciTech Connect

    Kumaraswamy, M.D.K.; Panduranga R.K.; Thomas J.K.; Santappa, M.

    1981-08-01

    In this report, the authors present initial results and limitations of a polymeric system for the immobilization of enzymes. Enzymes attached to insoluble polymers of natural and synthetic origin are gaining importance in many industrial and biomedical applications. Graft copolymers are used as enzyme supports and in this study a novel polymeric system of alginic acid-polyacrylamide graft copolymer is described which was used for immobilizing enzymes. (Refs. 4).

  1. Optimization of polyphenol oxidase immobilization in copper alginate beads.

    PubMed

    Kocaturk, Selin; Yagar, Hulya

    2010-05-01

    Polyphenol oxidase (PPO, EC 1.14.18.1) was isolated from artichoke head (Cynara scolymus L.) by using 0.1 M Tris-HCl buffer (pH 7.0), concentrated by (NH4)2SO4 precipitation, and immobilized in copper-alginate beads. Immobilization yield was determined to be 70%. The cresolase and catecholase activities of enzyme immobilized at optimum immobilization conditions were found to be 13.3 and 670 U g beads min(-1), respectively. Effects of immobilization conditions such as alginate concentration, CaCl2 concentration, amount of loading enzyme, bead size, and amount of beads on enzymatic activity were investigated. Optimum alginate and CuCl2 concentration were found to be 2 % and 3 % (w/v), respectively. Using bead (diameter 3 mm) amount of 0.25 g maximum enzyme activities were observed for both polyphenol activities. The initial concentrations of loading free enzyme were 6.5 U mL(-1) and 5815 U mL(-1) for cresolase activity and catecholase activities, respectively. Beads prepared at optimum immobilization conditions were suitable for up to 8 repeated uses. PMID:20429683

  2. 3-Chloro-1,2-propanediol biodegradation by Ca-alginate immobilized Pseudomonas putida DSM 437 cells applying different processes: mass transfer effects.

    PubMed

    Konti, Aikaterini; Mamma, Diomi; Hatzinikolaou, Dimitios G; Kekos, Dimitris

    2016-10-01

    3-Chloro-1,2-propanediol (3-CPD) biodegradation by Ca-alginate immobilized Pseudomonas putida cells was performed in batch system, continuous stirred tank reactor (CSTR), and packed-bed reactor (PBR). Batch system exhibited higher biodegradation rates and 3-CPD uptakes compared to CSTR and PBR. The two continuous systems (CSTR and PBR) when compared at 200 mg/L 3-CPD in the inlet exhibited the same removal of 3-CPD at steady state. External mass-transfer limitations are found negligible at all systems examined, since the observable modulus for external mass transfer Ω ≪ 1 and the Biot number Bi > 1. Intra-particle diffusion resistance had a significant effect on 3-CPD biodegradation in all systems studied, but to a different extent. Thiele modulus was in the range of 2.5 in batch system, but it was increased at 11 when increasing cell loading in the beads, thus lowering significantly the respective effectiveness factor. Comparing the systems at the same cell loading in the beads PBR was less affected by internal diffusional limitations compared to CSTR and batch system, and, as a result, exhibited the highest overall effectiveness factor. PMID:27262716

  3. Microencapsulation of alginate-immobilized bagasse with Lactobacillus rhamnosus NRRL 442: enhancement of survivability and thermotolerance.

    PubMed

    Shaharuddin, Shahrulzaman; Muhamad, Ida Idayu

    2015-03-30

    The aim of this research was to enhance the survivability of Lactobacillus rhamnosus NRRL 442 against heat exposure via a combination of immobilization and microencapsulation processes using sugarcane bagasse (SB) and sodium alginate (NaA), respectively. The microcapsules were synthesized using different alginate concentration of 1, 2 and 3% and NaA:SB ratio of 1:0, 1:1 and 1:1.5. This beneficial step of probiotic immobilization before microencapsulation significantly enhanced microencapsulation efficiency and cell survivability after heat exposure of 90°C for 30s. Interestingly, the microcapsule of SB-immobilized probiotic could obtain protection from heat using microencapsulation of NaA concentration as low as 1%. SEM images illustrated the incorporation of immobilized L. rhamnosus within alginate matrices and its changes after heat exposure. FTIR spectra confirmed the change in functional bonding in the presence of sugarcane bagasse, probiotic and alginate. The results demonstrated a great potential in the synthesis of heat resistant microcapsules for probiotic. PMID:25563958

  4. Immobilization of a Plant Lipase from Pachira aquatica in Alginate and Alginate/PVA Beads

    PubMed Central

    Bonine, Bárbara M.; Polizelli, Patricia Peres; Bonilla-Rodriguez, Gustavo O.

    2014-01-01

    This study reports the immobilization of a new lipase isolated from oleaginous seeds of Pachira aquatica, using beads of calcium alginate (Alg) and poly(vinyl alcohol) (PVA). We evaluated the morphology, number of cycles of reuse, optimum temperature, and temperature stability of both immobilization methods compared to the free enzyme. The immobilized enzymes were more stable than the free enzyme, keeping 60% of the original activity after 4 h at 50°C. The immobilized lipase was reused several times, with activity decreasing to approximately 50% after 5 cycles. Both the free and immobilized enzymes were found to be optimally active between 30 and 40°C. PMID:24818012

  5. Biodegradation of crystal violet using Burkholderia vietnamiensis C09V immobilized on PVA-sodium alginate-kaolin gel beads.

    PubMed

    Cheng, Ying; Lin, HongYan; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2012-09-01

    The strain, Burkholderia vietnamiensis C09V was immobilized on PVA-alginate-kaolin gel beads as a biomaterial to improve the degradation of crystal violet from aqueous solution. The results show that 98.6% (30 mg L(-1)) crystal violet was removed from aqueous solution using immobilized cells on PVA-alginate-kaolin gel beads, while 94.0% crystal violet was removed by free cells after degradation at the pH 5 and 30°C for 30 h. Kinetics studies show that the pseudo-second-order kinetics well described the adsorption of crystal violet on the PVA-alginate-kaolin beads. Biodegradation of crystal violet on immobilized cells was fitted well by first-order reaction kinetics, indicating that CV was adsorbed onto kaolin and followed their degradation by immobilized cells onto the the PVA-alginate-kaolin beads. Characterization with SEM shows that cells attached well to the surface of PVA-alginate-kaolin beads, leading to improved crystal violet transfer from aqueous solution to immobilized cells. In addition, UV-vis show that the absorption peak at 588 nm was reduced by the degraded N-bond linkages, as well as the formation of degrading products were observed by Fourier transform infrared (FTIR). These results suggest that crystal violet was biodegraded to N,N-dimethylaminophenol and Michler's Ketone prior to these intermediates being further degraded. PMID:22789742

  6. Rose protoplast isolation and culture and heterokaryon selection by immobilization in extra thin alginate film.

    PubMed

    Pati, P K; Sharma, Madhu; Ahuja, P S

    2008-01-01

    Somatic hybridization has been identified as one method for the genetic improvement of roses. The success of somatic hybridization programmes relies to a great extent upon efficient protoplast isolation and culture and selection of heterokaryons. This paper reports the isolation of rose cell suspension protoplasts by direct sucrose flotation and demonstrates their culture using extra thin alginate film. A comparative assessment of the efficiency of conventional culture techniques versus those with extra thin alginate film or thin alginate layer is also presented. A very high plating efficiency (80%) was obtained using thin alginate layer or extra thin alginate film techniques with improved media formulations. Protoplasts of Rosa damascena and R. bourboniana were fused by using polyethylene glycol as fusogen and later immobilized in the thin layer of alginate. The fused protoplasts were tracked on the basis of differential fluorescent staining, and the hybridity of heterokaryons following their development to callus was confirmed by molecular characterization. This novel selection strategy has general applicability and is faster and simpler to perform during somatic hybridization experiments. PMID:18787772

  7. Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense.

    PubMed

    de-Bashan, Luz E; Bashan, Yoav; Moreno, Manuel; Lebsky, Vladimir K; Bustillos, Jose J

    2002-06-01

    Three strains of the freshwater microalgae used for wastewater treatment, Chlorella vulgaris and Chlorella sorokiniana co-immobilized separately in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense Cd, resulted in significant changes in microalgal-population size, cell size, cell cytology, pigment, lipid content, and the variety of fatty acids produced in comparison with microalgae immobilized in alginate without the bacterium. Cells of C. vulgaris UTEX 2714 did not change in size, but the population size within the beads significantly increased. On the other hand, C. vulgaris UTEX 395 cells grew 62% larger, but their numbers did not increase. The population of C. sorokiniana UTEX 1602 increased, but not their cell size. The content of pigments chlorophyll a and b, lutein, and violoaxanthin increased in all microalgal species. The lipid content also significantly increased in all three strains, and the number of different fatty acids in the microalgae increased from four to eight. This study indicates that the microalgae-growth-promoting bacterium induced significant changes in the metabolism of the microalgae. PMID:12166678

  8. Isomaltulose production from sucrose by Protaminobacter rubrum immobilized in calcium alginate.

    PubMed

    de Oliva-Neto, P; Menão, Paula T P

    2009-09-01

    Different culture conditions for Protaminobacter rubrum and enzymatic reaction parameters were evaluated with the goal of improving isomaltulose production. P. rubrum was grown in a medium with 1% (w/v) cane molasses and 0.5% yeast extract and achieved a maximum cell yield Y(x/s) of 0.295 g of cells/g sucrose and a specific growth rate (mu) of 0.192 h(-1). The immobilization of P. rubrum cells was carried out with calcium alginate, glutaraldehyde and polyethyleneimine. Stabile immobilized cell pellets were obtained and used 24 times in batch processes. Enzymatic conversion was carried out at different sucrose concentrations and in pH 6 medium with 70% (w/v) sucrose at 30 degrees C an isomaltulose yield of 89-94% (w/v) was obtained. The specific activity of the P. rubrum immobilized pellets in calcium alginate at 30 degrees C ranged from 1.6 to 4.0 g isomaltulose g(-1) pellet h(-1), respectively with 70% and 65% sucrose solution, while in lower sucrose concentration had higher specific activities presumably due to substrate inhibition of the isomaltulose synthase in higher sucrose concentrations. PMID:19410450

  9. Improvement of Biodesulfurization Rate of Alginate Immobilized Rhodococcus erythropolis R1

    PubMed Central

    Derikvand, Peyman; Etemadifar, Zahra

    2014-01-01

    Background: Sulfur oxides released from the burning of oil causes severe environmental pollution. The sulfur can be removed via the 4S pathway in biodesulfurization (BDS). Immobilization approaches have been developed to prevent cell contamination of oil during the BDS process. Objectives: The encapsulation of Rhodococcus erythropolis R1 in calcium alginate beads was studied in order to enhance conversion of dibenzothiophene (DBT) to 2-hydroxy biphenyl (2-HBP) as the final product. Also the effect of different factors on the BDS process was investigated. Materials and Methods: Calcium alginate capsules were prepared using peristaltic pumps with different needle sizes to control the beads sizes. Scanning electron microscopy and flow cytometry methods were used to study the distribution and viability of encapsulated cells, respectively. Two non-ionic surfactants and also nano Ƴ-Al2O3were used with the ratio of 0.5% (v/v) and 1:5 (v/v) respectively to investigate their BDS efficiency. In addition, the effect of different bead sizes and different concentrations of sodium alginate in BDS activity was studied. Results: The 2% (w/v) sodium alginate beads with 1.5mm size were found to be the optimum for beads stability and efficient 2-HBP production. The viability of encapsulated cells decreased by 12% after 20 h of desulfurization, compared to free cells. Adding the non-ionic surfactants markedly enhanced the rate of BDS, because of increasing mass transfer of DBT to the gel matrix. In addition, Span 80 was more effective than Tween 80. The nanoƳ-Al2O3 particles could increase BDS rate by up to two-folds greater than that of the control beads. Conclusions: The nano Ƴ-Al2O3 can improve the immobilized biocatalyst for excellent efficiency of DBT desulfurization. Also the BDS activity can be enhanced by setting the other explained factors at optimum levels. PMID:25147685

  10. Immobilized cells in meat fermentation.

    PubMed

    McLoughlin, A J; Champagne, C P

    1994-01-01

    The immobilization of microbial cells can contribute to fermented meat technology at two basic levels. First, the solid/semisolid nature (low available water) of the substrate restricts the mobility of cells and results in spatial organizations based on "natural immobilization" within the fermentation matrix. The microniches formed influence the fermentation biochemistry through mass transfer limitations and the subsequent development and activity of the microflora. This form of immobilization controls the nature of competition between subpopulations within the microflora and ultimately exerts an effect on the ecological competence (ability to survive and compete) of the various cultures present. Second, immobilized cell technology (ICT) can be used to enhance the ecological competence of starter cultures added to initiate the fermentation. Immobilization matrices such as alginate can provide microniches or microenvironments that protect the culture during freezing or lyophilization, during subsequent rehydration, and when in competition with indigenous microflora. The regulated release of cells from the microenvironments can also contribute to competitive ability. The regulation of both immobilization processes can result in enhanced fermentation activity. PMID:8069934

  11. Immobilization of Escherichia coli novablue gamma-glutamyltranspeptidase in Ca-alginate-kappa-carrageenan beads.

    PubMed

    Hung, Chih-Peng; Lo, Huei-Fen; Hsu, Wen-Hwei; Chen, Shih-Chun; Lin, Long-Liu

    2008-08-01

    The recombinant Escherichia coli gamma-glutamyltranspeptidase (EcGGT) was immobilized in Ca-alginate-kappa-carrageenan beads. Effects of alginate concentration, amount of loading enzyme, and bead size on the entrapped activity were investigated. Optimum alginate concentration for EcGGT immobilization was found to be 2% (w/v). Using a loading enzyme concentration of 1.5 mg/g alginate, maximum enzyme activity was observed. With increase in bead size from 1.9 to 3.1 mm, the immobilization efficiency was decreased significantly because of mass transfer resistance. Thermal stability of the free EcGGT was increased as a result of the immobilization. Ca-alginate-kappa-carrageenan-EcGGT beads were suitable for up to six repeated uses, losing only 45% of their initial activity. Upon 30 days of storage the preserved activity of free and immobilized enzyme were found as 4% and 68%, respectively. The synthesis of L: -theanine was performed in 50 mM Tris-HCl buffer (pH 10) containing 25 mM L: -glutamine, 40 mM ethylamine, and 1.5 mg EcGGT/g alginate at 40 degrees C for 12 h, and a conversion rate of 27% was achieved. PMID:18483700

  12. Preparation and activity of bubbling-immobilized cellobiase within chitosan-alginate composite.

    PubMed

    Wang, Fang; Su, Rong-Xin; Qi, Wei; Zhang, Ming-Jia; He, Zhi-Min

    2010-01-01

    Cellobiase can hydrolyze cellobiose into glucose; it plays a key role in the process of cellulose hydrolysis by reducing the product inhibition. To reuse the enzyme and improve the economic value of cellulosic ethanol, cellobiase was immobilized using sodium alginate and chitosan as carriers by the bubbling method. The immobilization conditions were optimized as follows: enzyme loading of 100 U cellobiase/g carrier, 30 min immobilization, 3.5 wt% sodium alginate, 0.25 wt% chitosan, and 2 wt% calcium chloride. Compared to free enzyme, the immobilized cellobiase had a decreased apparent K(m) and the maximum activity at a lower pH, indicating its higher acidic and thermal stability. The immobilized cellobiase was further tested in the hydrolysis of cellobiose and various cellulosic substrates (microcrystalline cellulose, filter paper, and ammonia-pretreated corn cobs). Together with cellulases, the immobilized cellobiase converted the cellulosic substrates into glucose with the rate and extent similar to the free enzyme. PMID:20024795

  13. Study of phenol biodegradation using Bacillus amyloliquefaciens strain WJDB-1 immobilized in alginate-chitosan-alginate (ACA) microcapsules by electrochemical method.

    PubMed

    Lu, Daban; Zhang, Yan; Niu, Shiquan; Wang, Letao; Lin, Shaoxiong; Wang, Chunming; Ye, Weichun; Yan, Chunlei

    2012-04-01

    An aerobic microorganism with an ability to utilize phenol as sole carbon and energy source was isolated from phenol-contaminated wastewater samples. The isolate was identified as Bacillus amyloliquefaciens strain WJDB-1 based on morphological, physiological, and biochemical characteristics, and 16S rDNA sequence analysis. Strain WJDB-1 immobilized in alginate-chitosan-alginate (ACA) microcapsules could degrade 200 mg/l phenol completely within 36 h. The concentration of phenol was determined using differential pulse voltammetry (DPV) at glassy carbon electrode (GCE) with a linear relationship between peak current and phenol concentration ranging from 2.0 to 20.0 mg/l. Cells immobilized in ACA microcapsules were found to be superior to the free suspended ones in terms of improving the tolerance to the environmental loadings. The optimal conditions to prepare microcapsules for achieving higher phenol degradation rate were investigated by changing the concentrations of sodium alginate, calcium chloride, and chitosan. Furthermore, the efficiency of phenol degradation was optimized by adjusting various processing parameters, such as the number of microcapsules, pH value, temperature, and the initial concentration of phenol. This microorganism has the potential for the efficient treatment of organic pollutants in wastewater. PMID:21809019

  14. Immobilization of Laccase in Alginate-Gelatin Mixed Gel and Decolorization of Synthetic Dyes

    PubMed Central

    Mogharabi, Mehdi; Nassiri-Koopaei, Nasser; Bozorgi-Koushalshahi, Maryam; Nafissi-Varcheh, Nastaran; Bagherzadeh, Ghodsieh; Faramarzi, Mohammad Ali

    2012-01-01

    Alginate-gelatin mixed gel was applied to immobilized laccase for decolorization of some synthetic dyes including crystal violet. The immobilization procedure was accomplished by adding alginate to a gelatin solution containing the enzyme and the subsequent dropwise addition of the mixture into a stirred CaCl2 solution. The obtained data showed that both immobilized and free enzymes acted optimally at 50°C for removal of crystal violet, but the entrapped enzyme showed higher thermal stability compared to the free enzyme. The immobilized enzyme represented optimum decolorization at pH 8. Reusability of the entrapped laccase was also studied and the results showed that ca. 85% activity was retained after five successive cycles. The best removal condition was applied for decolorization of seven other synthetic dyes. Results showed that the maximum and minimum dye removal was related to amido black 10B and eosin, respectively. PMID:22899898

  15. Development of a new antibacterial biomaterial by tetracycline immobilization on calcium-alginate beads.

    PubMed

    Ozseker, Emine Erdogan; Akkaya, Alper

    2016-10-20

    In recent years, increasing risk of infection, caused by resistant microorganism to antibiotics, has become the limelight discovery of new and natural antibacterial materials. Heavy metals, such as silver, copper, mercury and titanium, have antibacterial activity. Products, which improved these metals, do not have stable antibacterial property. Therefore, use of these products is restricted. The aim of this study was to immobilize tetracycline to alginate and improve an antibacterial biomaterial. For this purpose, calcium-alginate beads were formed by dropping to calcium-chloride solution and tetracycline was immobilized to beads using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at optimum conditions. After immobilization, actualization of immobilization was investigated by analyzing ATR-FTIR spectrum and SEM images. Also, antibacterial property of obtained product was tested. Improved product demonstrated antibacterial property. It has potential for open wound, surgical drapes, bed and pillow sheath in hospitals and it may also be used for increasing human comfort in daily life. PMID:27474587

  16. Effects of Lactobacillus plantarum immobilization in alginate coated with chitosan and gelatin on antibacterial activity.

    PubMed

    Trabelsi, Imen; Ayadi, Dorra; Bejar, Wacim; Bejar, Samir; Chouayekh, Hichem; Ben Salah, Riadh

    2014-03-01

    The present study aimed to investigate and evaluate the efficiency of immobilizing the Lactobacillus plantarum TN9 strain in alginate using chitosan and gelatin as coating materials, in terms of viability and antibacterial activity. The results indicate that maximum concentrations of L. plantarum TN9 strain were produced with 2% sodium alginate, 10(8)UFC/ml, and 1M calcium chloride. The viability and antibacterial activity of the L. plantarum TN9 cultures before and after immobilization in alginate, chitosan-coated alginate, and gelatin-coated alginate, were studied. The findings revealed that the viability of encapsulated L. plantarum could be preserved more than 5.8 log CFU/ml after 35 day of incubation at 4 °C, and no effects were observed when gelatin was used. The antibacterial activity of encapsulated L. plantarum TN9 against Gram-positive and Gram-negative pathogenic bacteria was enhanced in the presence of chitosan coating materials, and no activity was observed in the presence of gelatin. The effects of catalase and proteolytic enzymes on the culture supernatant of L. plantarum TN9 were also investigated, and the results suggested that the antibacterial activity observed was due to the production of organic acids. Taken together, the findings indicated that immobilization in chitosan enhanced the antibacterial activity of L. plantarum TN9 against several pathogenic bacteria. This encapsulated strain could be considered as a potential strong candidate for future application as an additive in the food and animal feed industries. PMID:24315948

  17. Preparation and characterization of. beta. -D-glucosidase immobilized in calcium alginate

    SciTech Connect

    Krasniak, S. R.; Smith, R. D.

    1982-01-01

    Enzymatic hydrolysis of biomass to produce glucose may become feasible if an inexpensive method to reuse the enzyme can be found. This study investigated one such method whereby ..beta..-D-glucosidase (E.C. 3.2.1.21) was immobilized in calcium alginate gel spheres, which were shown to catalyze the hydrolysis of cellobiose to glucose. There was a loss of 49% of the enzyme from the alginate slurry during gelation. After gelation, in the stable gel spheres, there was a 37% retention of the enzyme activity that was actually immobilized. The reason for the loss in activity was investigated and may be caused by inhibition of the enzyme within the sphere by the calcium cations and the alginate anions also present. Mass transfer effects were minimal in this system and were not responsible for the activity loss.

  18. Modeling of saccharide utilization in primary beer fermentation with yeasts immobilized in calcium alginate.

    PubMed

    Smogrovicová, D; Dömmny, Z; Svitel, J

    2001-05-01

    Immobilized beer fermentation was studied using an industrial bottom-fermenting yeast strain Saccharomyces cerevisiae. The yeast cells were immobilized in 2.5% calcium alginate gel and used for brewing in a five-vessel cascade reactor. The fermentation was performed at 15 degrees C at various flow rates. A nonstructured mathematical model was developed to simulate the performance of continuous primary fermentation of lager beer. The model was based on the following variables: maltose, maltotriose, glucose, fructose, ethanol, and cell concentration. Experimental values of these variables were determined in samples taken at regular intervals. For experimental data fitting a nonlinear regression was used. Substrate consumption was characterized by specific substrate consumption rate and saturation constant. The values of these two parameters were optimized for all four substrates. Inhibition effects of substrates and product were analyzed using various inhibition patterns. Only the inhibition effect of maltose on maltose consumption was clearly identified. A good-fitting relationship for maltose inhibition was found, and inhibition constants were calculated. PMID:11456293

  19. Mussel-inspired alginate gel promoting the osteogenic differentiation of mesenchymal stem cells and anti-infection.

    PubMed

    Zhang, Shiwen; Xu, Kaige; Darabi, Mohammad Ali; Yuan, Quan; Xing, Malcolm

    2016-12-01

    Alginate hydrogels have been used in cell encapsulation for many years but a prevalent issue with pure alginates is that they are unable to provide enough bioactive properties to interact with mammalian cells. This paper discusses the modification of alginate with mussel-inspired dopamine for cell loading and anti-infection. Mouse bone marrow stem cells were immobilized into alginate and alginate-dopamine beads and fibers. Through live-dead and MTT assay, alginates modified by dopamine promoted cell viability and proliferation. In vitro cell differentiation results showed that such an alginate-dopamine gel can promote the osteogenic differentiation of mesenchymal stem cell after PCR and ALP assays. In addition to that, the adhesive prosperities of dopamine allowed for coating the surface of alginate-dopamine gel with silver nanoparticles, which provided the gel with significant antibacterial characteristics. Overall, these results demonstrate that a dopamine-modified alginate gel can be a great tool for cell encapsulation to promote cell proliferation and can be applied to bone regeneration, especially in contaminated bone defects. PMID:27612740

  20. Immobilization of thermoalkalophilic recombinant esterase enzyme by entrapment in silicate coated Ca-alginate beads and its hydrolytic properties.

    PubMed

    Gülay, Seçkin; Şanlı-Mohamed, Gülşah

    2012-04-01

    Thermoalkalophilic esterase enzyme from Balçova (Agamemnon) geothermal site were aimed to be immobilized effectively via a simple and cost-effective protocol in silicate coated Calcium alginate (Ca-alginate) beads by entrapment. The optimal immobilization conditions of enzyme in Ca-alginate beads were investigated and obtained with 2% alginate using 0.5mg/ml enzyme and 0.7 M CaCl(2) solution. In order to prevent enzyme from leaking out of the gel beads, Ca-alginate beads were then coated with silicate. Enzyme loading efficiency and immobilization yield for silicate coated beads was determined as 98.1% and 71.27%, respectively and compared with non-coated ones which were 68.5% and 45.80%, respectively. Surface morphologies, structure and elemental analysis of both silicate coated and non-coated alginate beads were also compared using Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscope (SEM) equipped with Energy-dispersive X-ray spectroscopy (EDX). Moreover, silicate coated alginate beads enhanced reusability of esterase in continuous processes compared to non-coated beads. The hydrolytic properties of free and immobilized enzyme in terms of storage and thermal stability as well as the effects of the temperature and pH were determined. It was observed that operational, thermal and storage stabilities of the esterase were increased with immobilization. PMID:22309712

  1. Covalent immobilization of pullulanase on alginate and study of its hydrolysis of pullulan.

    PubMed

    Ali, Ghina; Dulong, Virginie; Gasmi, Sarah N; Rihouey, Christophe; Picton, Luc; Le Cerf, Didier

    2015-01-01

    The immobilization of pullulanase from Klebsiella pneumoniae by grafting was investigated. Pullulanase was linked after activation of alginate via a covalent bond between the amine groups of the enzyme and the carboxylic acid groups of alginate. The immobilization yield was 60%. The activity of free pullulanase and immobilized pullulanase was followed by the quantification of reducing ends by colorimetric assay and the determination of the molar masses of the hydrolyzed pullulan by SEC/MALS/DRI. Compared to free pullulanase, the kinetics is largely slowed. The evolution of the weight average molar mass of pullulan leading to high production of shorter oligosaccharides during hydrolysis is not the same as that obtained with free enzyme. Immobilized pullulanase retained 75% and 30% of its initial activity after 24 h and 14 days of incubation at 60°C, respectively while free pullulanase lost its activity after 5 h of hydrolysis at the same temperature. The kinetic parameters of immobilized pullulanase were also investigated by isothermal titration calorimetry (ITC). The affinity of immobilized enzyme to its substrate was reduced compared to the free pullulanase due to steric hindrance and chemical links. PMID:25919860

  2. Biological deterioration of alginate beads containing immobilized microalgae and bacteria during tertiary wastewater treatment.

    PubMed

    Cruz, Ivonne; Bashan, Yoav; Hernàndez-Carmona, Gustavo; de-Bashan, Luz E

    2013-11-01

    Secondary treatment of municipal wastewater affects the mechanical stability of polymer Ca-alginate beads containing the microalgae Chlorella vulgaris that are jointly immobilized with Azospirillum brasilense as treating agents whose presence do not affect bead stability. Nine strains of potential alginate-degrading bacteria were isolated from wastewater and identified, based on their nearly complete 16S rDNA sequence. Still, their population was relatively low. Attempts to enhance the strength of the beads, using different concentrations of alginate and CaCl2 or addition of either of three polymers (polyvinylpyrrolidone, polyvinyl alcohol, carboxymethylcellulose), CaCO3, or SrCl2, failed. Beads lost their mechanical strength after 24 h of incubation but not the integrity of their shape for at least 96 h, a fact that sustained successful tertiary wastewater treatment for 48 h. In small bioreactors, removal of phosphorus was low under sterile conditions but high in unsterile wastewater. Alginate beads did not absorb PO4 (-3) in sterile wastewater, but in natural wastewater, they contained PO4 (-3). Consequently, PO4 (-3) content declined in the wastewater. A supplement of 10 % beads (w/v) was significantly more efficient in removing nutrients than 4 %, especially in a jointly immobilized treatment where >90 % of PO4 (-3) and >50 % ammonium were removed. Tertiary wastewater treatment in 25-L triangular, airlift, autotrophic bioreactors showed, as in small bioreactors, very similar nutrient removal patterns, decline in bead strength phenomena, and increase in total bacteria during the wastewater treatment only in the presence of the immobilized treatment agents. This study demonstrates that partial biological degradation of alginate beads occurred during tertiary wastewater treatment, but the beads survive long enough to permit efficient nutrient removal. PMID:23354446

  3. Immobilized Cell and Enzyme Technology

    NASA Astrophysics Data System (ADS)

    Dunnill, P.

    1980-08-01

    The development of immobilized enzyme and cell technology is summarized. Industrial processes for sucrose inversion, penicillin deacylation and glucose isomerization using immobilized enzymes are described. An alternative process for glucose isomerization using immobilized cells, and some other industrial applications of immobilized cells are indicated. Recent developments in immobilized enzyme and cell technology are assessed and the relative merits of the different biochemical catalyst forms are considered.

  4. Ethanol fermentation of sugarcane molasses by Zymomonas mobilis MTCC 92 immobilized in Luffa cylindrica L. sponge discs and Ca-alginate matrices.

    PubMed

    Behera, Shuvashish; Mohanty, Rama C; Ray, Ramesh C

    2012-10-01

    Bio-ethanol production from cane molasses (diluted to 15 % sugar w/v) was studied using the bacterium, Zymomonas mobilis MTCC 92 entrapped in luffa (Luffa cylindrica L.) sponge discs and Ca-alginate gel beads as the immobilizing matrices. At the end of 96 h fermentation, the final ethanol concentrations were 58.7 ± 0.09 and 59.1 ± 0.08 g/l molasses with luffa and Ca-alginate entrapped Z. mobilis cells, respectively exhibiting 83.25 ± 0.03 and 84.6 ± 0.02 % sugar conversion. There was no statistical significant difference (Fischer's LSD) in sugar utilization (t = 0.254, p<0.801) and ethanol production (t =-0.663, p<0.513) between the two immobilization matrices used. Further, the immobilized cells in both the matrices were physiologically active for three more cycles of operation with less than 15 % decrease in ethanol yield in the 4(th) cycle, which was due to some leakage of cells. In conclusion, luffa sponge was found to be equally good as Ca-alginate as a carrier material for bacterial (Z. mobilis) cell immobilization for ethanol production. Further, it has added advantages such as it is cheap, non-corrosive and has no environmental hazard. PMID:24031981

  5. Ethanol fermentation of sugarcane molasses by Zymomonas mobilis MTCC 92 immobilized in Luffa cylindrica L. sponge discs and Ca-alginate matrices

    PubMed Central

    Behera, Shuvashish; Mohanty, Rama C.; Ray, Ramesh C.

    2012-01-01

    Bio-ethanol production from cane molasses (diluted to 15 % sugar w/v) was studied using the bacterium, Zymomonas mobilis MTCC 92 entrapped in luffa (Luffa cylindrica L.) sponge discs and Ca-alginate gel beads as the immobilizing matrices. At the end of 96 h fermentation, the final ethanol concentrations were 58.7 ± 0.09 and 59.1 ± 0.08 g/l molasses with luffa and Ca-alginate entrapped Z. mobilis cells, respectively exhibiting 83.25 ± 0.03 and 84.6 ± 0.02 % sugar conversion. There was no statistical significant difference (Fischer’s LSD) in sugar utilization (t = 0.254, p<0.801) and ethanol production (t =-0.663, p<0.513) between the two immobilization matrices used. Further, the immobilized cells in both the matrices were physiologically active for three more cycles of operation with less than 15 % decrease in ethanol yield in the 4th cycle, which was due to some leakage of cells. In conclusion, luffa sponge was found to be equally good as Ca-alginate as a carrier material for bacterial (Z. mobilis) cell immobilization for ethanol production. Further, it has added advantages such as it is cheap, non-corrosive and has no environmental hazard. PMID:24031981

  6. Enzymatic cellulose hydrolysis: enzyme reusability and visualization of β-glucosidase immobilized in calcium alginate.

    PubMed

    Tsai, Chien-Tai; Meyer, Anne S

    2014-01-01

    The high cellulase enzyme dosages required for hydrolysis of cellulose is a major cost challenge in lignocellulosic ethanol production. One method to decrease the enzyme dosage and increase biocatalytic productivity is to re-use β-glucosidase (BG) via immobilization. In the present research, glutaraldehyde cross-linked BG was entrapped in calcium alginate gel particles. More than 60% of the enzyme activity could be recovered under optimized conditions, and glutaraldehyde cross-linking decreased leakage of BG from the calcium alginate particles. The immobilized BG aggregates were visualized by confocal laser scanning microscopy (CLSM). The CLSM images, which we believe are the first to be published, corroborate that more BG aggregates were entrapped in the matrix when the enzymes were cross-linked by glutaraldehyde as opposed to when they are not cross-linked. The particles with the immobilized BG were recycled for cellulase catalyzed hydrolysis of Avicel. No significant loss in BG activity was observed for up to 20 rounds of reaction recycle steps of the BG particles of 48 h each, verifying a significant stabilization of the BG by immobilization. Similar high glucose yields were obtained by one round of enzymatic hydrolysis of hydrothermally pretreated barley straw during a 72 h reaction with immobilized BG and free BG. PMID:25429563

  7. Osteogenic Differentiation of Human Mesenchymal Stem Cells in Mineralized Alginate Matrices

    PubMed Central

    Westhrin, Marita; Xie, Minli; Olderøy, Magnus Ø.; Sikorski, Pawel

    2015-01-01

    Mineralized biomaterials are promising for use in bone tissue engineering. Culturing osteogenic cells in such materials will potentially generate biological bone grafts that may even further augment bone healing. Here, we studied osteogenic differentiation of human mesenchymal stem cells (MSC) in an alginate hydrogel system where the cells were co-immobilized with alkaline phosphatase (ALP) for gradual mineralization of the microenvironment. MSC were embedded in unmodified alginate beads and alginate beads mineralized with ALP to generate a polymer/hydroxyapatite scaffold mimicking the composition of bone. The initial scaffold mineralization induced further mineralization of the beads with nanosized particles, and scanning electron micrographs demonstrated presence of collagen in the mineralized and unmineralized alginate beads cultured in osteogenic medium. Cells in both types of beads sustained high viability and metabolic activity for the duration of the study (21 days) as evaluated by live/dead staining and alamar blue assay. MSC in beads induced to differentiate in osteogenic direction expressed higher mRNA levels of osteoblast-specific genes (RUNX2, COL1AI, SP7, BGLAP) than MSC in traditional cell cultures. Furthermore, cells differentiated in beads expressed both sclerostin (SOST) and dental matrix protein-1 (DMP1), markers for late osteoblasts/osteocytes. In conclusion, Both ALP-modified and unmodified alginate beads provide an environment that enhance osteogenic differentiation compared with traditional 2D culture. Also, the ALP-modified alginate beads showed profound mineralization and thus have the potential to serve as a bone substitute in tissue engineering. PMID:25769043

  8. Continuous bioconversion of starch to ethanol by calcium-alginate immobilized enzymes and yeasts

    SciTech Connect

    McGhee, J.E.; Carr, M.E.; St. Julian, G.

    1984-01-01

    Continuous bioconversion of starch to EtOH by immobilized enzymes and yeasts was studied. Commercial corn starch (10%) was 1st batch-liquefied with bacterial alpha-amylase. In continuous-flow systems, liquefied starch was then converted to glucose with Ca alginate-entrapped fungal glucoamylase, and the resulting glucose was fermented to EtOH by Ca alginate-entrapped active dry yeast. The continuous-flow saccharification-fermentation processes were performed in either 2-stage (sequential) or single-stage (simultaneous) operations. In the single-stage operation, immobilized glucoamylase produced glucose from liquefied starch continuously for 11 days. In the simultaneous saccharification technique using immobilized glucoamylase and yeast mixture in a single-stage column, EtOH production was 69% of theoretical for 5 days. In the 2-stage operation, in which immobilized glucoamylase and yeast were contained in separate columns connected in tandem, EtOH production averaged 97% of theoretical for 5 days. The overall alcoholic production efficiency was significantly greater in the 2-stage system than in the single-stage system.

  9. Scaling up of ethanol production from sugar molasses using yeast immobilized with alginate-based MCM-41 mesoporous zeolite composite carrier.

    PubMed

    Zheng, Chunming; Sun, Xiaohong; Li, Landong; Guan, Naijia

    2012-07-01

    Microporous and mesoporous zeolites, including ZSM-5, H-β, H-Y, and MCM-41, were modified with 3-aminopropyl-triethoxysilane (APTES), then inorganic fillers, such as abovementioned zeolites or mesoporous materials, (α-AlOOH or γ-Al(2)O(3)), were mixed with alginate embedded with yeast; and finally these carriers were cross-linked through the double oxirane. The alginate-based immobilized yeast with MCM-41 exhibited much shorter fermentation time and higher ethanol concentration than pure alginate and other composite carriers with the highest cell concentration of 4.8×10(9) cells/mL. The composite carrier maintains the highest ethanol productivity of 6.55 g/L/h for 60 days in continuous fermentation process, implying good operational durability for commercial applications. The reason for the higher bio-catalytical function of the immobilized yeast might lay in the uniformly yeast distribution in the bio-reactor and high yeast cell concentration, which contributed by the improved transmission of fermentation media and combined effects of yeast adsorption by MCM-41 and embedment by alginate. PMID:22154581

  10. Immobilization of Brassica oleracea chlorophyllase 1 (BoCLH1) and Candida rugosa lipase (CRL) in magnetic alginate beads: an enzymatic evaluation in the corresponding proteins.

    PubMed

    Yang, Chih-Hui; Yen, Chih-Chung; Jheng, Jen-Jyun; Wang, Chih-Yu; Chen, Sheau-Shyang; Huang, Pei-Yu; Huang, Keng-Shiang; Shaw, Jei-Fu

    2014-01-01

    Enzymes have a wide variety of applications in diverse biotechnological fields, and the immobilization of enzymes plays a key role in academic research or industrialization due to the stabilization and recyclability it confers. In this study, we immobilized the Brassica oleracea chlorophyllase 1 (BoCLH1) or Candida rugosa lipase (CRL) in magnetic iron oxide nanoparticles-loaded alginate composite beads. The catalytic activity and specific activity of the BoCLH1 and CRL entrapped in magnetic alginate composite beads were evaluated. Results show that the activity of immobilized BoCLH1 in magnetic alginate composite beads (3.36±0.469 U/g gel) was higher than that of immobilized BoCLH1 in alginate beads (2.96±0.264 U/g gel). In addition, the specific activity of BoCLH1 beads (10.90±1.521 U/mg protein) was higher than that immobilized BoCLH1 in alginate beads (8.52±0.758 U/mg protein). In contrast, the immobilized CRL in magnetic alginate composite beads exhibited a lower enzyme activity (11.81±0.618) than CRL immobilized in alginate beads (94.83±7.929), and the specific activity of immobilized CRL entrapped in magnetic alginate composite beads (1.99±0.104) was lower than immobilized lipase in alginate beads (15.01±1.255). A study of the degradation of magnetic alginate composite beads immersed in acidic solution (pH 3) shows that the magnetic alginate composite beads remain intact in acidic solution for at least 6 h, indicating the maintenance of the enzyme catalytic effect in low-pH environment. Finally, the enzyme immobilized magnetic alginate composite beads could be collected by an external magnet and reused for at least six cycles. PMID:25105918

  11. CHO immobilization in alginate/poly-L: -lysine microcapsules: an understanding of potential and limitations.

    PubMed

    Breguet, Véronique; Gugerli, Raphaël; von Stockar, Urs; Marison, Ian William

    2007-04-01

    Microencapsulation offers a unique potential for high cell density, high productivity mammalian cell cultures. However, for successful exploitation there is the need for microcapsules of defined size, properties and mechanical stability. Four types of alginate/poly-L: -Lysine microcapsules, containing recombinant CHO cells, have been investigated: (a) 800 mum liquid core microcapsules, (b) 500 mum liquid core microcapsules, (c) 880 mum liquid core microcapsules with a double PLL membrane and (d) 740 mum semi-liquid core microcapsules. With encapsulated cells a reduced growth rate was observed, however this was accompanied by a 2-3 fold higher specific production rate of the recombinant protein. Interestingly, the maximal intracapsular cell concentration was only 8.7 x 10(7) cell mL(-1), corresponding to a colonization of 20% of the microcapsule volume. The low level of colonization is unlikely to be due to diffusional limitations since reduction of microcapsule size had no effect. Measurement of cell leaching and mechanical properties showed that liquid core microcapsules are not suitable for continuous long-term cultures (>1 month). By contrast semi-liquid core microcapsules were stable over long periods with a constant level of cell colonization (varphi = 3%). This indicates that the alginate in the core plays a predominant role in determining the level of microcapsule colonization. This was confirmed by experiments showing reduced growth rates of batch suspension cultures of CHO cells in medium containing dissolved alginate. Removal of this alginate would therefore be expected to increase microcapsule colonization. PMID:19003193

  12. Immobilization of rapeseed press-cake in an alginate matrix for the sorption of atrazine.

    PubMed

    Breguet, V; Boucher, J; Pesquet, F; Vojinovic, V; von Stockar, U; Marison, I W

    2008-03-01

    Due to residual oil retained within it, rapeseed press-cake has been shown to be effective for the removal of atrazine from water through an absorption mechanism. However, it is difficult to put this into practice due to the hygroscopic nature of the press-cake resulting in considerable swelling, together with the formation of a thick paste which hinders phase separation. In order to overcome this, press-cake has been immobilized in an alginate matrix. The kinetics and sorption efficiency of this immobilized press-cake to absorb the model pesticide atrazine, has been studied. The results show that the rate of atrazine removal is slower than for free press-cake, although the total amount of atrazine removed is the same (K(pc/w)=0.25). Phase separation was greatly simplified. The alginate immobilized press-cake could be dried, in order to reduce volume and weight, with no adverse effect on atrazine removal kinetics or sorption properties. PMID:18022667

  13. New immobilized cell system with protection against toxic solvents

    SciTech Connect

    Tanaka, H.; Harada, S.; Kurosawa, H.; Yajima, M.

    1987-01-01

    A new immobilized cell system providing protection against toxic solvents was investigated so that normal fermentations could be carried out in a medium containing toxic solvents. The system consists of immobilized growing cells in Ca-alginate gel beads to which vegetable oils, which are inexpensive absorbents of solvents, had been added. The ethanol fermentation of Saccharomyces cerevisiae ATCC 26603 was used as a model fermentation to study the protection afforded by the system against solvent toxicities. The fermentation was inhibited by solvents such as 2-octanol, benzene, toluene, and phenol. Ethanol production of one batch was not finished even after 35 h using immobilized growing yeast cells in conventional Ca-alginate gel beads in an ethanol production medium (5% glucose) containing 0.1% 2-octanol, which is used as a solvent for liquid-liquid extraction and is one of the most toxic solvents in our experiments. With the new immobilized growing cell system using vegetable oils, however, four repeated batch fermentations were completed in 35 h. Castor oil provided even more protection than soy bean, olive, and tung oils, and it was possible to complete six repeated batches in 35 h. The immobilized cell system with vegetable oils also provided protection against other toxic solvents such as benzene and toluene. A possible mechanism for the protective function of the new immobilized cell system is discussed.

  14. Polyurethane and alginate immobilized algal biomass for the removal of aqueous toxic metals

    SciTech Connect

    Fry, I.V.; Mehlhorn, R.J.

    1992-12-01

    We describe the development of immobilized, processed algal biomass for use as an adsorptive filter in the removal of toxic metals from waste water. To fabricate an adsorptive filter from precessed biomass several crucial criteria must be met, including: (1) high metal binding capacity, (2) long term stability (both mechanical and chemical), (3) selectivity for metals of concern (with regard to ionic competition), (4) acceptable flow capacity (to handle large volumes in short time frames), (5) stripping/regeneration (to recycle the adsorptive filter and concentrate the toxic metals to manageable volumes). This report documents experiments with processed algal biomass (Spirulina platensis and Spirulina maxima) immobilized in either alginate gel or preformed polyurethane foam. The adsorptive characteristics of these filters were assessed with regard to the criteria listed above.

  15. Adsorption and desorption of Zn(II) and Cu(II) on Ca- alginate immobilized activated rice bran

    NASA Astrophysics Data System (ADS)

    Suratman, A.; Kamalia, N. Z.; Kusumawati, W. A.

    2016-02-01

    Ca-alginate immobilized activated rice bran has been used for adsorption of Zn(II) and Cu(II) from aqueous solution. The effect of the pH, kinetics model, adsorption isotherm and desorption on the adsorption performance was investigated. Activated rice bran was immobilized by the entrapment in alginate beads. The adsorption strength of Ca-alginate immobilized activated rice bran was compared to Ca-alginate and non-immobilized activated rice bran. The concentrations of adsorbed ions were analyzed using Atomic Absorption Spectrophotometer (AAS). The result showed that pH of 4.0 and the contact time of 120 min are the optimum condition for adsorption of Zn(II) and Cu(II). The adsorption kinetic of Zn(II) and Cu(II) followed the pseudo-second-order model with adsorption rate constant 4.9 x 10-2 and 3.14 g.mg-1.min-1, respectively. The both adsorption processes obeyed Langmuir isotherm with adsorption capacity of 2.03 and 2.42 mg.g-1 of adsorbent, respectively. The strength of Zn adsorption on Ca-alginate immobilized activated rice bran (86.63%) was more effective compared to Ca-alginate beads (60.96%) and activated rice bran (43.85%). The strength of Cu adsorption was 80.00%, 61.50% and 22.10%, respectively. The desorption of Zn(II) and Cu(II) showed that recovery percentage of the adsorption was 76.56% and 57.80% with the condition of using HCl 0.1 M as desorption agent for 1 hour.

  16. Nanocellulose-alginate hydrogel for cell encapsulation.

    PubMed

    Park, Minsung; Lee, Dajung; Hyun, Jinho

    2015-02-13

    TEMPO-oxidized bacterial cellulose (TOBC)-sodium alginate (SA) composites were prepared to improve the properties of hydrogel for cell encapsulation. TOBC fibers were obtained using a TEMPO/NaBr/NaClO system at pH 10 and room temperature. The fibrillated TOBCs mixed with SA were cross-linked in the presence of Ca(2+) solution to form hydrogel composites. The compression strength and chemical stability of the TOBC/SA composites were increased compared with the SA hydrogel, which indicated that TOBC performed an important function in enhancing the structural, mechanical and chemical stability of the composites. Cells were successfully encapsulated in the TOBC/SA composites, and the viability of cells was investigated. TOBC/SA composites can be a potential candidate for cell encapsulation engineering. PMID:25458293

  17. Preparation of core-shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization.

    PubMed

    Hou, Chen; Qi, Zhigang; Zhu, Hao

    2015-04-01

    A flexible, biocompatible and bioadhesive enzyme immobilizing material, which was synthesized based on the covalent assembly of biomimetic polymer and oxidized polysaccharide on magnetic nanoparticles (NPs), has been developed in this feasibility study. In this work, the bio-inspired polymer, polydopamine (PDA), was used to modify the well-monodispersed Fe3O4 NPs (mPDA NPs) with a controllable thickness via a dip-coating process, then the alginate di-aldehyde (ADA) was covalently assembled on the mPDA NPs and employed as a naturally occurring linking agent for Candida rugosa lipase (CRL) immobilization. The resulting support material was characterized by means of the transmission electron microscope (TEM), Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), thermogravimetry (TG) analyser, and vibrating sample magnetometer (VSM). It was verified that the prepared mPDA NPs possessed distinct core-shell structure with uniform size and high saturation magnetization. For further application, the mPDA NPs was utilized in CRL immobilizing procedures and demonstrated can facilitate improving the enzyme activities. The optimum amount of lipase was 200 mg g(-1) support, the optimal pH and temperature for the catalyse condition of the immobilized CRL was 7.0 and 40°C, respectively. Moreover, the immobilized CRL kept the high activity at 77% after 12 times of recycling for batch hydrolysis of olive oil emulsion. This magnetic bioadhesive composite with functionalized properties and adhesion strength presents a general strategy for the immobilization of macromolecules. PMID:25784302

  18. CHO immobilization in alginate/poly-l-lysine microcapsules: an understanding of potential and limitations

    PubMed Central

    Breguet, Véronique; Gugerli, Raphaël; von Stockar, Urs

    2007-01-01

    Microencapsulation offers a unique potential for high cell density, high productivity mammalian cell cultures. However, for successful exploitation there is the need for microcapsules of defined size, properties and mechanical stability. Four types of alginate/poly-l-Lysine microcapsules, containing recombinant CHO cells, have been investigated: (a) 800 μm liquid core microcapsules, (b) 500 μm liquid core microcapsules, (c) 880 μm liquid core microcapsules with a double PLL membrane and (d) 740 μm semi-liquid core microcapsules. With encapsulated cells a reduced growth rate was observed, however this was accompanied by a 2–3 fold higher specific production rate of the recombinant protein. Interestingly, the maximal intracapsular cell concentration was only 8.7 × 107 cell mL-1, corresponding to a colonization of 20% of the microcapsule volume. The low level of colonization is unlikely to be due to diffusional limitations since reduction of microcapsule size had no effect. Measurement of cell leaching and mechanical properties showed that liquid core microcapsules are not suitable for continuous long-term cultures (>1 month). By contrast semi-liquid core microcapsules were stable over long periods with a constant level of cell colonization (ϕ = 3%). This indicates that the alginate in the core plays a predominant role in determining the level of microcapsule colonization. This was confirmed by experiments showing reduced growth rates of batch suspension cultures of CHO cells in medium containing dissolved alginate. Removal of this alginate would therefore be expected to increase microcapsule colonization. PMID:19003193

  19. Boost for Alginate Encapsulation in Beta Cell Transplantation.

    PubMed

    Pipeleers, Daniel; Keymeulen, Bart

    2016-05-01

    A recent study reported that encapsulation of human embryonic stem cell (hESC)-derived beta cells by a novel alginate formula protects against foreign body reactivity in immune-competent mice. Intraperitoneal implants corrected a diabetic state for at least 6 months. These observations will stimulate the development of alginate encapsulation towards novel cell therapy protocols for treating type 1 diabetes (T1DM). PMID:27037212

  20. High pressure studies on hesperitin production with hesperidinase free and immobilized in calcium alginate beads

    NASA Astrophysics Data System (ADS)

    Furtado, Andreia; Rosário, Pedro M.; Calado, António R. T.; Alfaia, António J. I.; Ribeiro, Maria H. L.

    2012-03-01

    The use of high pressure for the enzymatic synthesis of pharmacologically interesting molecules is a very important tool. Hesperidin and hesperitin exhibit anti-inflammatory, antimicrobial, antioxidant, and anticarcinogenic properties and prevent bone loss. However, hesperidin has a low bioavailability compared with hesperitin, due to the rutinoside moiety attached to the flavonoid. The aim of this work was the enzymatic production of hesperitin from hesperidin (soluble and insoluble) with hesperidinase free and immobilized in Ca-alginate beads, under high pressure conditions. The work was focused on the optimization of enzyme activity, studying the effects: pressure (50-150 MPa), temperature (35-75 °C), concentration of substrate (100-800 mg/L), and immobilization of hesperidinase. An 18-fold increase in hesperidinase residual activity was observed under high pressure conditions of 100 MPa compared to 0.1 MPa. A higher specificity of the hydrolytic reaction under high pressure (100 MPa) with a two-and three-fold increase in the ratio K cat/K M (specificity constant) at 55 °C and 75 °C was observed. A two-fold increase in the maximum activity at 100 MPa was observed with immobilized hesperinase compared to 0.1 MPa. In the second reutilization, almost a four-fold increase was obtained under high pressure conditions in comparison to atmospheric pressure.

  1. Immobilization of tomato (Lycopersicon esculentum) pectinmethylesterase in calcium alginate beads and its application in fruit juice clarification.

    PubMed

    Bogra, Pushpa; Kumar, Ashwani; Kuhar, Kalika; Panwar, Surbhi; Singh, Randhir

    2013-11-01

    Clarity of fruit juices is desirable to maintain an aesthetically pleasing quality and international standards. The most commonly used enzymes in juice industries are pectinases. A partially-purified pectinmethylesterase from tomato was entrapped in calcium alginate beads and used for juice clarification. The activity yield was maximum at 1 % (w/v) CaCl2 and 2.5 % (w/v) alginate. The immobilized enzyme retained ~55 % of its initial activity (5.7 × 10(-2) units) after more than ten successive batch reactions. The Km, pH and temperature optima were increased after immobilization. The most effective clarification of fruit juice (%T620 ~60 %) by the immobilized enzyme was at 4 °C with a holding time of 20 min. The viscosity dropped by 56 % and the filterability increased by 260 %. The juice remains clear after 2 months of storage at 4 °C. PMID:23881317

  2. Immobilized metal affinity chromatography without chelating ligands: purification of soybean trypsin inhibitor on zinc alginate beads.

    PubMed

    Gupta, Munishwar N; Jain, Sulakshana; Roy, Ipsita

    2002-01-01

    Immobilized metal affinity chromatography (IMAC) is a widely used technique for bioseparation of proteins in general and recombinant proteins with polyhistidine fusion tags in particular. An expensive and critical step in this process is coupling of a chelating ligand to the chromatographic matrix. This chelating ligand coordinates metal ions such as Cu(2+), Zn(2+), and Ni(2+), which in turn bind proteins. The toxicity of chemicals required for coupling and their slow release during the separation process are of considerable concern. This is an important issue in the context of purification of proteins/enzymes which are used in food processing or pharmaceutical purposes. In this work, a simpler IMAC design is described which should lead to a paradigm shift in the application of IMAC in separation. It is shown that zinc alginate beads (formed by chelating alginate with Zn(2+) directly) can be used for IMAC. As "proof of concept", soybean trypsin inhibitor was purified 18-fold from its crude extract with 90% recovery of biological activity. The dynamic binding capacity of the packed bed was 3919 U mL(-1), as determined by frontal analysis. The media could be regenerated with 8 M urea and reused five times without any appreciable loss in its binding capacity. PMID:11822903

  3. Degradation of h-acid by free and immobilized cells of Alcaligenes latus

    PubMed Central

    Usha, M.S.; Sanjay, M.K.; Gaddad, S.M.; Shivannavar, C.T.

    2010-01-01

    Alcaligenes latus, isolated from industrial effluent, was able to grow in mineral salts medium with 50 ppm (0.15 mM) of H-acid as a sole source of carbon. Immobilization of Alcaligenes latus in Ca-alginate and polyurethane foam resulted in cells embedded in the matrices. When free cells and immobilized cells were used for biodegradation studies at concentration ranging from 100 ppm (0.3 mM) to 500 ppm (1.15 mM) degradation rate was enhanced with immobilized cells. Cells immobilized in polyurethane foam showed 100% degradation up to 350 ppm (1.05 mM) and 57% degradation at 500 ppm (1.5 mM). Degradation rate of Ca-alginate immobilized cells was less as compared to that of polyurethane foam immobilized cells. With Ca-alginate immobilized cells 100% degradation was recorded up to 200 ppm (0.6 mM) of H-acid and only 33% degradation was recorded at 500 ppm (1.5 mM) of H-acid. Spectral analysis of the products after H-acid utilization showed that the spent medium did not contain any aromatic compounds indicating H-acid degradation by A. latus. PMID:24031573

  4. Alginate and alginate/gelatin microspheres for human adipose-derived stem cell encapsulation and differentiation.

    PubMed

    Yao, Rui; Zhang, Renji; Luan, Jie; Lin, Feng

    2012-06-01

    Human adipose-derived stem cells (hADSC) encapsulated in alginate and alginate/gelatin microspheres with adjustable properties were fabricated via an improved microsphere generating device. The mechanism of the device, porous property, swelling behavior of the microspheres and hADSC proliferation as well as adipogenic differentiation were studied extensively. Microspheres with high-ratio evenly distributed adipocytes could be obtained by utilizing the proper matrix material and manufacturing parameters. The adipocyte/hADSC microspheres were a sound in vitro mimicking of a natural fat lobule and therefore a good candidate for adipose tissue engineering and regenerative medicine. PMID:22556122

  5. [Studies on immobilization of suspension cells of peltate yam (Dioscorea zingiberensis C.H. Wright)].

    PubMed

    Ren, J W; Bai, Y; Guo, Q Y; Zhang, R C

    1994-09-01

    The suspension cells of D. zingiberensis were immobilized with 3% sodium alginate, and then cultured in MS+2, 4-D1.0 + 6-BA 0.1 at 25 degrees C for a long period of time. The culture fluid free from cells was extracted and analyzed by TLC. The result showed that the immobilized cells could secrete the main component of D. zingiberensis--diosgenin, but not consecutively. PMID:7811362

  6. Alginate-immobilized bentonite clay: adsorption efficacy and reusability for Cu(II) removal from aqueous solution.

    PubMed

    Tan, Wei Shang; Ting, Adeline Su Yien

    2014-05-01

    This study evaluated the use of alginate-immobilized bentonite to remove Cu(II) as an alternative to mitigate clogging problems. The adsorption efficacy (under the influence of time, pH and initial Cu(II) concentration) and reusability of immobilized-bentonite (1% w/v bentonite) was tested against plain alginate beads. Results revealed that immobilized bentonite demonstrated significantly higher sorption efficacy compared to plain alginate beads with 114.70 and 94.04 mg Cu(II) adsorbed g(-1) adsorbent, respectively. Both sorbents were comparable in other aspects where sorption equilibrium was achieved within 6 h, with optimum pH between pH 4 and 5 for adsorption, displayed maximum adsorption capacity at initial Cu(II) concentrations of 400 mg l(-1), and demonstrated excellent reusability potential with desorption greater than 90% throughout three consecutive adsorption-desorption cycles. Both sorbents also conformed to Langmuir isotherm and pseudo-second order kinetic model. Immobilized bentonite is therefore recommended for use in water treatments to remove Cu(II) without clogging the system. PMID:24405651

  7. Dried calcium alginate/magnetite spheres: a new support for chromatographic separations and enzyme immobilization

    SciTech Connect

    Burns, M.A.; Kvesitadze, G.I.; Graves, D.J.

    1985-02-01

    Dried spheres made from an alginate solution containing magnetite particles have excellent potential as a support for enzyme immobilization and chromatographic applications. The beads were found to be much stronger than gels such as polyacrylamide and dextran, indicating that high flow rates and pressures could be used in column separations. The support withstood not only temperatures of up to 120/sup 0/C, but also most pH values and common solvents. While some solutions, such as phosphate buffers, dissolved the spheres, stabilization with Tyzor TE eliminated this problem. The physical properties of the beads include a glasslike density of 2.2 g/mL, excellent sphericity, low porosity, and a narrow size distribution. The magnetite present in the support allows the beads to be used for magnetic separations such as high gradient magnetic filtration. Their high degree of microroughness provides a large exposed surface area for enzyme and ligand binding. Mixed Actinomyces fradiae proteases and Aspergillus niger ..cap alpha..-amylase, two enzymes representative of classes which attack large substrates, were immobilized on the bead's surface with high activity and stability. A cyanuric dye which can be used in chromatographic applications (Cibacron Blue F3GA) was also readily coupled to the surface of this support with good yield.

  8. Degradation of mix hydrocarbons by immobilized cells of mix culture using a trickle fluidized bed reactor

    SciTech Connect

    Chapatwala, K.D.

    1993-01-01

    The microorganisms, capable of degrading mix hydrocarbons were isolated from the soil samples collected from the hydrocarbon contaminated sites. The mix cultures were immobilized in calcium alginate solution in the form of beads. A trickle fluidized bed air-uplift-type reactor designed to study the degradation of mix hydrocarbons was filled with 0.85% normal saline containing the immobilized cells of mix culture. The immobilized beads were aerated with CO[sub 2]-free air at 200 ml/min. The degradation of different concentrations of hydrocarbons in the presence/absence of commercially available fertilizers by the immobilized cells of mix culture is now in progress.

  9. Oxidized alginate hydrogels as niche environments for corneal epithelial cells

    PubMed Central

    Wright, Bernice; De Bank, Paul A; Luetchford, Kim A; Acosta, Fernando R; Connon, Che J

    2014-01-01

    Chemical and biochemical modification of hydrogels is one strategy to create physiological constructs that maintain cell function. The aim of this study was to apply oxidised alginate hydrogels as a basis for development of a biomimetic niche for limbal epithelial stem cells that may be applied to treating corneal dysfunction. The stem phenotype of bovine limbal epithelial cells (LEC) and the viability of corneal epithelial cells (CEC) were examined in oxidised alginate gels containing collagen IV over a 3-day culture period. Oxidation increased cell viability (P ≤ 0.05) and this improved further with addition of collagen IV (P ≤ 0.01). Oxidised gels presented larger internal pores (diameter: 0.2–0.8 µm) than unmodified gels (pore diameter: 0.05–0.1 µm) and were significantly less stiff (P ≤ 0.001), indicating that an increase in pore size and a decrease in stiffness contributed to improved cell viability. The diffusion of collagen IV from oxidised alginate gels was similar to that of unmodified gels suggesting that oxidation may not affect the retention of extracellular matrix proteins in alginate gels. These data demonstrate that oxidised alginate gels containing corneal extracellular matrix proteins can influence corneal epithelial cell function in a manner that may impact beneficially on corneal wound healing therapy. © 2013 The Authors. Journal of Biomedical Materials Research Part A Published byWiley Periodicals, Inc. Part A: 102A: 3393–3400, 2014. PMID:24142706

  10. Immobilization of callus tissue cells of Salvia miltiorrhiza and the characteristics of their products.

    PubMed

    Yuan, J M; Tao, L L; Xu, J T

    1990-01-01

    The Salvia miltiorrhiza callus tissue cells were entrapped with 3% alginate. The immobilized cells were incubated in medium with LS + KT 0.1 + NAA 1.0 containing 3% sucrose at 25 degrees C for nearly one month. After incubation, the medium free from cells was extracted with ether 3 times. After evaporation, the residue of the ether extract was employed to determine the content on TLC and HPLC. The results showed that the incubation system mentioned above could continuously secrete the main components of S. miltiorrhiza, tanshinone IIA and cryptotanshinone, which were almost the same as the extract of S. miltiorrhiza roots. In addition, suspension incubation of callus tissue cells, the conditions of immobilization with alginate, the stability of immobilized cells and the characteristics of products were also examined. PMID:2104210

  11. Kinetic Characterization and Effect of Immobilized Thermostable β-Glucosidase in Alginate Gel Beads on Sugarcane Juice

    PubMed Central

    Keerti; Gupta, Anuradha; Dubey, Ashutosh; Verma, A. K.

    2014-01-01

    A thermostable β-glucosidase was effectively immobilized on alginate by the method of gel entrapment. After optimization of immobilized conditions, recovered enzyme activity was 60%. Optimum pH, temperature, kinetic parameters, thermal and pH stability, reusability, and storage stability were investigated. The Km and Vmax for immobilized β-glucosidase were estimated to be 5.0 mM and 0.64 U/ml, respectively. When comparing, free and immobilized enzyme, change was observed in optimum pH and temperature from 5.0 to 6.0 and 60°C to 80°C, respectively. Immobilized enzyme showed an increase in pH stability over the studied pH range (3.0–10.0) and stability at temperature up to 80°C. The storage stability and reusability of the immobilized β-glucosidase were improved significantly, with 12.09% activity retention at 30°C after being stored for 25 d and 17.85% residual activity after being repeatedly used for 4 times. The effect of both free and immobilized β-glucosidase enzyme on physicochemical properties of sugarcane juice was also analyzed. PMID:25969764

  12. Collective and individual glycolytic oscillations in yeast cells encapsulated in alginate microparticles

    NASA Astrophysics Data System (ADS)

    Amemiya, Takashi; Obase, Kouhei; Hiramatsu, Naoki; Itoh, Kiminori; Shibata, Kenichi; Takinoue, Masahiro; Yamamoto, Tetsuya; Yamaguchi, Tomohiko

    2015-06-01

    Yeast cells were encapsulated into alginate microparticles of a few hundred micrometers diameter using a centrifuge-based droplet shooting device. We demonstrate the first experimental results of glycolytic oscillations in individual yeast cells immobilized in this way. We investigated both the individual and collective oscillatory behaviors at different cell densities. As the cell density increased, the amplitude of the individual oscillations increased while their period decreased, and the collective oscillations became more synchronized, with an order parameter close to 1 (indicating high synchrony). We also synthesized biphasic-Janus microparticles encapsulating yeast cells of different densities in each hemisphere. The cellular oscillations between the two hemispheres were entrained at both the individual and population levels. Such systems of cells encapsulated into microparticles are useful for investigating how cell-to-cell communication depends on the density and spatial distribution of cells.

  13. Collective and individual glycolytic oscillations in yeast cells encapsulated in alginate microparticles.

    PubMed

    Amemiya, Takashi; Obase, Kouhei; Hiramatsu, Naoki; Itoh, Kiminori; Shibata, Kenichi; Takinoue, Masahiro; Yamamoto, Tetsuya; Yamaguchi, Tomohiko

    2015-06-01

    Yeast cells were encapsulated into alginate microparticles of a few hundred micrometers diameter using a centrifuge-based droplet shooting device. We demonstrate the first experimental results of glycolytic oscillations in individual yeast cells immobilized in this way. We investigated both the individual and collective oscillatory behaviors at different cell densities. As the cell density increased, the amplitude of the individual oscillations increased while their period decreased, and the collective oscillations became more synchronized, with an order parameter close to 1 (indicating high synchrony). We also synthesized biphasic-Janus microparticles encapsulating yeast cells of different densities in each hemisphere. The cellular oscillations between the two hemispheres were entrained at both the individual and population levels. Such systems of cells encapsulated into microparticles are useful for investigating how cell-to-cell communication depends on the density and spatial distribution of cells. PMID:26117131

  14. Production of xanthan gum by free and immobilized cells of Xanthomonas campestris and Xanthomonas pelargonii.

    PubMed

    Niknezhad, Seyyed Vahid; Asadollahi, Mohammad Ali; Zamani, Akram; Biria, Davoud

    2016-01-01

    Production of xanthan gum using immobilized cells of Xanthomonas campestris and Xanthomonas pelargonii grown on glucose or hydrolyzed starch as carbon sources was investigated. Calcium alginate (CA) and calcium alginate-polyvinyl alcohol-boric acid (CA-PVA) beads were used for the immobilization of cells. Xanthan titers of 8.2 and 9.2g/L were obtained for X. campestris cells immobilized in CA-PVA beads using glucose and hydrolyzed starch, respectively, whereas those for X. pelargonii were 8 and 7.9 g/L, respectively. Immobilized cells in CA-PVA beads were successfully employed in three consecutive cycles for xanthan production without any noticeable degradation of the beads whereas the CA beads were broken after the first cycle. The results of this study suggested that immobilized cells are advantageous over the free cells for xanthan production. Also it was shown that the cells immobilized in CA-PVA beads are more efficient than cells immobilized in CA beads for xanthan production. PMID:26526173

  15. Study of the potential of the air lift bioreactor for xylitol production in fed-batch cultures by Debaryomyces hansenii immobilized in alginate beads.

    PubMed

    Pérez-Bibbins, Belinda; de Souza Oliveira, Ricardo Pinheiro; Torrado, Ana; Aguilar-Uscanga, María Guadalupe; Domínguez, José Manuel

    2014-01-01

    Cell immobilization has shown to be especially adequate for xylitol production. This work studies the suitability of the air lift bioreactor for xylitol production by Debaryomyces hansenii immobilized in Ca-alginate operating in fed-batch cultures to avoid substrate inhibition. The results showed that the air lift bioreactor is an adequate system since the minimum air flow required for fluidization was even lower than that leading to the microaerobic conditions that trigger xylitol accumulation by this yeast, also maintaining the integrity of the alginate beads and the viability of the immobilized cells until 3 months of reuses. Maximum productivities and yields of 0.43 g/l/h and 0.71 g/g were achieved with a xylose concentration of 60 g/l after each feeding. The xylose feeding rate, the air flow, and the biomass concentration at the beginning of the fed-batch operation have shown to be critical parameters for achieving high productivities and yields. Although a maximum xylitol production of 139 g/l was obtained, product inhibition was evidenced in batch experiments, which allowed estimating at 200 and 275 g/l the IC50 for xylitol productivity and yield, respectively. The remarkable production of glycerol in the absence of glucose was noticeable, which could not only be attributed to the osmoregulatory function of this polyol in conditions of high osmotic pressure caused by high xylitol concentrations but also to the role of the glycerol synthesis pathway in the regeneration of NAD(+) in conditions of suboptimal microaeration caused by insufficient aeration or high oxygen demand when high biomass concentrations were achieved. PMID:24136467

  16. Effective Immobilization of Agrobacterium sp. IFO 13140 Cells in Loofa Sponge for Curdlan Biosynthesis.

    PubMed

    Martinez, Camila Ortiz; Ruiz, Suelen Pereira; Nogueira, Marcela Tiemi; Bona, Evandro; Portilho, Márcia; Matioli, Graciette

    2015-01-01

    Curdlan production by Agrobacterium sp. IFO13140 immobilized on loofa sponge, alginate and loofa sponge with alginate was investigated. There was no statistically-significant difference in curdlan production when the microorganism was immobilized in different matrices. The loofa sponge was chosen because of its practical application and economy and because it provides a high stability through its continued use. The best conditions for immobilization on loofa sponge were 50 mg of cell, 200 rpm and 72 h of incubation, which provided a curdlan production 1.50-times higher than that obtained by free cells. The higher volumetric productivity was achieved by immobilized cells (0.09 g/L/h) at 150 rpm. The operating stability was evaluated, and until the fourth cycle, immobilized cells retained 87.40% of the production of the first cycle. The immobilized cells remained active after 300 days of storage at 4 °C. The results of this study demonstrate success in immobilizing cells for curdlan biosynthesis, making the process potentially suitable for industrial scale-up. Additional studies may show a possible contribution to the reduction of operating costs. PMID:25946555

  17. Enhanced degradation of 2-nitrotoluene by immobilized cells of Micrococcus sp. strain SMN-1.

    PubMed

    Mulla, Sikandar I; Talwar, Manjunatha P; Bagewadi, Zabin K; Hoskeri, Robertcyril S; Ninnekar, Harichandra Z

    2013-02-01

    Nitrotoluenes are the toxic pollutants of the environment because of their large scale use in the production of explosives. Biodegradation of such chemicals by microorganisms may provide an effective method for their detoxification. We have studied the degradation of 2-nitrotoluene by cells of Micrococcus sp. strain SMN-1 immobilized in various matrices such as polyurethane foam (PUF), sodium alginate (SA), sodium alginate-polyvinyl alcohol (SA-PVA), agar and polyacrylamide. The rate of degradation of 15 and 30 mM 2-nitrotoluene by freely suspended cells and immobilized cells in batches and fed-batch with shaken cultures were compared. The PUF-immobilized cells achieved higher degradation of 15 and 30 mM 2-nitrotoluene than freely suspended cells and the cells immobilized in SA-PVA, polyacrylamide, SA and agar. The PUF-immobilized cells could be reused more than 24 cycles without loosing their degradation capacity and showed more tolerance to pH and temperature changes than freely suspended cells. These results revealed the enhanced rate of degradation of 2-nitrotoluene by PUF-immobilized cells of Micrococcus sp. strain SMN-1. PMID:23153775

  18. Calcium Alginate Gels as Stem Cell Matrix – Making Paracrine Stem Cell Activity Available for Enhanced Healing after Surgery

    PubMed Central

    Schmitt, Andreas; Rödel, Philipp; Anamur, Cihad; Seeliger, Claudine; Imhoff, Andreas B.; Herbst, Elmar; Vogt, Stephan; van Griensven, Martijn; Winter, Gerhard; Engert, Julia

    2015-01-01

    Regeneration after surgery can be improved by the administration of anabolic growth factors. However, to locally maintain these factors at the site of regeneration is problematic. The aim of this study was to develop a matrix system containing human mesenchymal stem cells (MSCs) which can be applied to the surgical site and allows the secretion of endogenous healing factors from the cells. Calcium alginate gels were prepared by a combination of internal and external gelation. The gelling behaviour, mechanical stability, surface adhesive properties and injectability of the gels were investigated. The permeability of the gels for growth factors was analysed using bovine serum albumin and lysozyme as model proteins. Human MSCs were isolated, cultivated and seeded into the alginate gels. Cell viability was determined by AlamarBlue assay and fluorescence microscopy. The release of human VEGF and bFGF from the cells was determined using an enzyme-linked immunoassay. Gels with sufficient mechanical properties were prepared which remained injectable through a syringe and solidified in a sufficient time frame after application. Surface adhesion was improved by the addition of polyethylene glycol 300,000 and hyaluronic acid. Humans MSCs remained viable for the duration of 6 weeks within the gels. Human VEGF and bFGF was found in quantifiable concentrations in cell culture supernatants of gels loaded with MSCs and incubated for a period of 6 weeks. This work shows that calcium alginate gels can function as immobilization matrices for human MSCs. PMID:25793885

  19. Industrial applications of immobilized cells

    SciTech Connect

    Linko, P.; Linko, Y.Y.

    1984-01-01

    Although the application of the natural attraction of many microorganisms to surfaces has been applied in vinegar production since the early 1980s, and has long been utilized in waste water purification, the development of microbial cell immobilization techniques for special applications dates back only to the early 1960s. The immobilization may involve whole cells, cell fragments, or lysed cells. Whole cells may retain their metabolic activity with their complex multienzyme systems and cofactor regeneration mechanisms intact, or they may be killed in the process with only a few desired enzymes remaining active in the final biocatalyst. Cells may also be coimmobilized with an enzyme to carry out special reactions. Although relatively few industrial scale applications exist today, some are of very large scale. Current applications vary from relatively small scale steroid conversions to amino acid production and high fructose syrup manufacture. A vast number of potential applications are already known, and one of the most interesting applications may be in continuous fermentation such as ethanol production by immobilized living microorganisms. 373 references.

  20. Biotransformation of L-tyrosine to Dopamine by a Calcium Alginate Immobilized Mutant Strain of Aspergillus oryzae.

    PubMed

    Ali, Sikander; Nawaz, Wajeeha

    2016-08-01

    The present research work is concerned with the biotransformation of L-tyrosine to dopamine (DA) by calcium alginate entrapped conidiospores of a mutant strain of Aspergillus oryzae. Different strains of A. oryzae were isolated from soil. Out of 13 isolated strains, isolate-2 (I-2) was found to be a better DA producer. The wild-type I-2 was chemically improved by treating it with different concentrations of ethyl methyl sulfonate (EMS). Among seven mutant variants, EMS-6 exhibiting maximal DA activity of 43 μg/ml was selected. The strain was further exposed with L-cysteine HCl to make it resistant against diversion and environmental stress. The conidiospores of selected mutant variant A. oryzae EMS-6 strain were entrapped in calcium alginate beads. Different parameters for immobilization were investigated. The activity was further improved from 44 to 62 μg/ml under optimized conditions (1.5 % sodium alginate, 2 ml inoculum, and 2 mm bead size). The best resistant mutant variable exhibited over threefold increase in DA activity (62 μg/ml) than did wild-type I-2 (21 μg/ml) in the reaction mixture. From the results presented in the study, it was observed that high titers of DA activity in vitro could effectively be achieved by the EMS-induced mutagenesis of filamentous fungus culture used. PMID:27068833

  1. Development of highly sensitive amperometric biosensor for glucose using carbon nanosphere/sodium alginate composite matrix for enzyme immobilization.

    PubMed

    Han, En; Li, Xia; Cai, Jian-Rong; Cui, Hai-Ying; Zhang, Xing-Ai

    2014-01-01

    In this study, we developed a highly sensitive amperometric biosensor for glucose detection based on glucose oxidase immobilized in a novel carbon nanosphere (CNS)/sodium alginate (SA) composite matrix. This hybrid material combined the advantages of CNS and natural biopolymer SA. This composite film was characterized by scanning electron microscope, electrochemical impedance spectroscopy and UV-vis, which indicated that the hybrid material was suitable for immobilization of glucose oxidase. Various experimental conditions were investigated that influenced the performance of the biosensor, such as pH, applied potential and temperature. Under the optimum conditions, the biosensor showed excellent performance for glucose over a wide linear concentration range from 1.0 × 10(-6) to 4.6 × 10(-3) M with a detection limit of 0.5 μM based on a signal-to-noise ratio of 3. Furthermore, the biosensor exhibited excellent long-term stability and satisfactory reproducibility. PMID:25213818

  2. Evaluation of various parameters of calcium-alginate immobilization method for enhanced alkaline protease production by Bacillus licheniformis NCIM-2042 using statistical methods.

    PubMed

    Potumarthi, Ravichandra; Subhakar, Ch; Pavani, A; Jetty, Annapurna

    2008-04-01

    Calcium-alginate immobilization method for the production of alkaline protease by Bacillus licheniformis NCIM-2042 was optimized statistically. Four variables, such as sodium-alginate concentration, calcium chloride concentration, inoculum size and agitation speed were optimized by 2(4) full factorial central composite design and subsequent analysis and model validation by a second-order regression equation. Eleven carbon, 11 organic nitrogen and seven inorganic nitrogen sources were screened by two-level Plackett-Burman design for maximum alkaline protease production by using optimized immobilized conditions. The levels of four variables, such as Na-alginate 2.78%; CaCl(2), 2.15%; inoculum size, 8.10% and agitation, 139 rpm were found to be optimum for maximal production of protease. Glucose, soybean meal and ammonium sulfate were resulted in maximum protease production at 644 U/ml, 720 U/ml, and 806 U/ml when screened for carbon, organic nitrogen and inorganic nitrogen sources, respectively, using optimized immobilization conditions. Repeated fed batch mode of operation, using optimized immobilized conditions, resulted in continuous operation for 12 cycles without disintegration of beads. Cross-sectional scanning electron microscope images have shown the growth pattern of B. licheniformis in Ca-alginate immobilized beads. PMID:17643299

  3. Biodegradation of tetrahydrofuran by Pseudomonas oleovorans DT4 immobilized in calcium alginate beads impregnated with activated carbon fiber: mass transfer effect and continuous treatment.

    PubMed

    Chen, Dong-Zhi; Fang, Jun-Yi; Shao, Qian; Ye, Jie-Xu; Ouyang, Du-Juan; Chen, Jian-Meng

    2013-07-01

    A novel entrapment matrix, calcium alginate (CA) coupled with activated carbon fiber (ACF), was prepared to immobilize Pseudomonas oleovorans DT4 for degrading tetrahydrofuran (THF). The addition of 1.5% ACF increased the adsorption capacity of the immobilized bead, thus resulting in an enhanced average removal rate of 30.3mg/(Lh). The synergism between adsorption and biodegradation was observed in the hybrid CA-ACF beads instead of in the system comprising CA beads and freely suspended ACF. The effective diffusion coefficient of the CA-ACF bead was not significantly affected by bead size, but the bead's value of 1.14×10(-6)cm(2)/s (for the bead diameter of 0.4 cm) was larger than that of the CA bead by almost one order of magnitude based on the intraparticle diffusion-reaction kinetics analysis. Continuous treatment of the THF-containing wastewater was succeeded by CA-ACF immobilized cells in a packed-bed reactor for 54 d with a >90% removal efficiency. PMID:23644074

  4. Mussel-inspired adhesive and transferable free-standing films by self-assembling dexamethasone encapsulated BSA nanoparticles and vancomycin immobilized oxidized alginate.

    PubMed

    Han, Lu; Wang, Zhen-ming; Lu, Xiong; Dong, Li; Xie, Chao-ming; Wang, Ke-feng; Chen, Xiao-lang; Ding, Yong-hui; Weng, Lu-tao

    2015-02-01

    This study developed an adhesive and transferable free-standing (FS) film with dual function of osteoinductivity and antibacterial activity, which was obtained by sequentially assembling vancomycin immobilized oxidized sodium alginate and dexamethasone encapsulated chitosan coated BSA nanoparticles on a poly-dopamine layer. The FS films enabled the dual release of vancomycin and dexamethasone. The FS films had excellent osteoinductivity and antibacterial activity by cell culture and antibacterial assay. The FS film was detached from substrates and transferred to non-fouling surfaces by a wet transfer method, which demonstrated that the adhesive FS film is potential to modify biopolymers with non-fouling surfaces in mild and biocompatible conditions for biomedical applications. PMID:25601750

  5. Poly(vinyl alcohol) and alginate cross-linked matrix with immobilized Prussian blue and ion exchange resin for cesium removal from waters.

    PubMed

    Lai, Yu-Chen; Chang, Yin-Ru; Chen, Man-Li; Lo, Yu-Kuo; Lai, Juin-Yih; Lee, Duu-Jong

    2016-08-01

    Cesium (Cs) removal from contaminated water bodies is an emerging issue after the disaster at the Fukushima Daiichi Nuclear Power Plant. The Prussian blue (PB) is an effective Cs adsorbent but will release hexacyanoferrate fragments from the adsorbent matrix during adsorption. Alginate is an affordable biopolymer for PB particles immobilization. This study synthesized poly(vinyl alcohol) (PVA) and alginate cross-linked matrix for immobilization of PB nano-sized particles and a surface-modified styrene-ethyl styrene divinyl benzene resin and tested their swelling stability and Cs adsorption performance in fresh water and in seawater. The PVA-alginate granules have high structural stability in both fresh water and seawater, with the Cs adsorption capability higher for the former than the latter. The adopted resin effectively remove released PB fragments from the tested granules. The transport and reaction parameters for the granules and for the sand filter bed were estimated. PMID:27132227

  6. Synthesis of superparamagnetic carboxymethyl chitosan/sodium alginate nanosphere and its application for immobilizing α-amylase.

    PubMed

    Jiang, Jianfang; Chen, Yongzheng; Wang, Wei; Cui, Baodong; Wan, Nanwei

    2016-10-20

    In order to improve catalytic activity, increase recycling times, reduce use cost for enzyme, superparamagnetic carboxymethyl chitosan/sodium alginate nanosphere (SM/CMC/SA) has been synthesized via an improved hydrothermal method, molecular self-assembly technology, electrostatic interaction and amide linkage. Its mean diameter was 65nm, zeta potential was -36.9mV and BET was 53.8m(2)/g. α-Amylase was selected as a simulation object to manufacture an immobilized enzyme (SM/CMC/CA/α-Amy), and its catalytic activity, release behavior, reusability and stability were researched. Immobilization increased 4.67 times to catalytic activity, slowed down release rate and improved reusable performance. SM/CMC/CA/α-Amy showed higher activity over a wider pH range, especially in strong acidic and alkaline environments. The thermal stability and storage stability were improved remarkably too. All these results indicated that SM/CMC/SA was an ideal carrier for immobilizing enzyme. PMID:27474605

  7. Preferential localization of Lactococcus lactis cells entrapped in a caseinate/alginate phase separated system.

    PubMed

    Léonard, Lucie; Gharsallaoui, Adem; Ouaali, Fahima; Degraeve, Pascal; Waché, Yves; Saurel, Rémi; Oulahal, Nadia

    2013-09-01

    This study aimed to entrap bioprotective lactic acid bacteria in a sodium caseinate/sodium alginate aqueous two-phase system. Phase diagram at pH=7 showed that sodium alginate and sodium caseinate were not miscible when their concentrations exceeded 1% (w/w) and 6% (w/w), respectively. The stability of the caseinate/alginate two-phase system was also checked at pH values of 6.0 and 5.5. Lactococcus lactis subsp. lactis LAB3 cells were added in a 4% (w/w) caseinate/1.5% (w/w) alginate two-phase system at pH=7. Fluorescence microscopy allowed to observe that the caseinate-rich phase formed droplets dispersed in a continuous alginate-rich phase. The distribution of bacteria in such a system was observed by epifluorescence microscopy: Lc. lactis LAB3 cells stained with Live/Dead(®) Baclight kit™ were located exclusively in the protein phase. Since zeta-potential measurements indicated that alginate, caseinate and bacterial cells all had an overall negative charge at pH 7, the preferential adhesion of LAB cells was assumed to be driven by hydrophobic effect or by depletion phenomena in such biopolymeric systems. Moreover, LAB cells viability was significantly higher in the ternary mixture obtained in the presence of both caseinate and alginate than in single alginate solution. Caseinate/alginate phase separated systems appeared thus well suited for Lc. lactis LAB3 cells entrapment. PMID:23665092

  8. Surface modified alginate microcapsules for 3D cell culture

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  9. Biodegradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1

    PubMed Central

    Tallur, Preeti N.; Mulla, Sikandar I.; Megadi, Veena B.; Talwar, Manjunatha P.; Ninnekar, Harichandra Z.

    2015-01-01

    Pyrethroid pesticide cypermethrin is a environmental pollutant because of its widespread use, toxicity and persistence. Biodegradation of such chemicals by microorganisms may provide an cost-effective method for their detoxification. We have investigated the degradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1 in various matrices such as, polyurethane foam (PUF), polyacrylamide, sodium alginate and agar. The optimum temperature and pH for the degradation of cypermethrin by immobilized cells of Micrococcus sp. were found to be 30 °C and 7.0, respectively. The rate of degradation of 10 and 20 mM of cypermethrin by freely suspended cells were compared with that of immobilized cells in batches and semi-continuous with shaken cultures. PUF-immobilized cells showed higher degradation of cypermethrin (10 mM and 20 mM) than freely suspended cells and cells immobilized in other matrices. The PUF-immobilized cells of Micrococcus sp. strain CPN 1 were retain their degradation capacity. Thus, they can be reused for more than 32 cycles, without losing their degradation capacity. Hence, the PUF-immobilized cells of Micrococcus sp. could potentially be used in the bioremediation of cypermethrin contaminated water. PMID:26413046

  10. Biodegradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1.

    PubMed

    Tallur, Preeti N; Mulla, Sikandar I; Megadi, Veena B; Talwar, Manjunatha P; Ninnekar, Harichandra Z

    2015-01-01

    Pyrethroid pesticide cypermethrin is a environmental pollutant because of its widespread use, toxicity and persistence. Biodegradation of such chemicals by microorganisms may provide an cost-effective method for their detoxification. We have investigated the degradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1 in various matrices such as, polyurethane foam (PUF), polyacrylamide, sodium alginate and agar. The optimum temperature and pH for the degradation of cypermethrin by immobilized cells of Micrococcus sp. were found to be 30 °C and 7.0, respectively. The rate of degradation of 10 and 20 mM of cypermethrin by freely suspended cells were compared with that of immobilized cells in batches and semi-continuous with shaken cultures. PUF-immobilized cells showed higher degradation of cypermethrin (10 mM and 20 mM) than freely suspended cells and cells immobilized in other matrices. The PUF-immobilized cells of Micrococcus sp. strain CPN 1 were retain their degradation capacity. Thus, they can be reused for more than 32 cycles, without losing their degradation capacity. Hence, the PUF-immobilized cells of Micrococcus sp. could potentially be used in the bioremediation of cypermethrin contaminated water. PMID:26413046

  11. Ethanol production from nonsterilized carob pod extract by free and immobilized Saccharomyces cerevisiae cells using fed-batch culture

    SciTech Connect

    Roukas, T. . Dept. of Food Science and Technology)

    1994-02-05

    The production of ethanol from carob pod extract by free and immobilized Saccharomyces cerevisiae cells in batch and fed-batch culture was investigated. Fed-batch culture proved to be a better fermentation system for the production of ethanol than batch culture. In fed-batch culture, both free and immobilized S. cerevisiae cells gave the same maximum concentration of final ethanol at an initial sugar concentration of 300 g/L and F = 167 mL/h. The maximum ethanol productivity was obtained with both free and immobilized cells at a substrate concentration of 300 g/L and F = 334 mL/h. In repeated fed-batch culture, immobilized S. cerevisiae cells gave a higher overall ethanol concentration compared with the free cells. The immobilized S. cerevisiae cells in Ca-alginate beads retained their ability to produce ethanol for 10 days.

  12. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment.

    PubMed

    Amir Afshar, Hamideh; Ghaee, Azadeh

    2016-10-20

    The chemical nature of biomaterials play important role in cell attachment, proliferation and migration in tissue engineering. Chitosan and alginate are biodegradable and biocompatible polymers used as scaffolds for various medical and clinical applications. Amine groups of chitosan scaffolds play an important role in cell attachment and water adsorption but also associate with alginate carboxyl groups via electrostatic interactions and hydrogen bonding, consequently the activity of amine groups in the scaffold decreases. In this study, chitosan/alginate/halloysite nanotube (HNTs) composite scaffolds were prepared using a freeze-drying method. Amine treatment on the scaffold occurred through chemical methods, which in turn caused the hydroxyl groups to be replaced with carboxyl groups in chitosan and alginate, after which a reaction between ethylenediamine, 1-ethyl-3,(3-dimethylaminopropyl) carbodiimide (EDC) and scaffold triggered the amine groups to connect to the carboxyl groups of chitosan and alginate. The chemical structure, morphology and mechanical properties of the composite scaffolds were investigated by FTIR, CHNS, SEM/EDS and compression tests. The electrostatic attraction and hydrogen bonding between chitosan, alginate and halloysite was confirmed by FTIR spectroscopy. Chitosan/alginate/halloysite scaffolds exhibit significant enhancement in compressive strength compared with chitosan/alginate scaffolds. CHNS and EDS perfectly illustrate that amine groups were effectively introduced in the aminated scaffold. The growth and cell attachment of L929 cells as well as the cytotoxicity of the scaffolds were investigated by SEM and Alamar Blue (AB). The results indicated that the aminated chitosan/alginate/halloysite scaffold has better cell growth and cell adherence in comparison to that of chitosan/alginate/halloysite samples. Aminated chitosan/alginate/halloysite composite scaffolds exhibit great potential for applications in tissue engineering, ideally in

  13. Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture.

    PubMed

    Utech, Stefanie; Prodanovic, Radivoje; Mao, Angelo S; Ostafe, Raluca; Mooney, David J; Weitz, David A

    2015-08-01

    Monodisperse alginate microgels (10-50 μm) are created via droplet-based microfluidics by a novel crosslinking procedure. Ionic crosslinking of alginate is induced by release of chelated calcium ions. The process separates droplet formation and gelation reaction enabling excellent control over size and homogeneity under mild reaction conditions. Living mesenchymal stem cells are encapsulated and cultured in the generated 3D microenvironments. PMID:26039892

  14. Digital microfluidic three-dimensional cell culture and chemical screening platform using alginate hydrogels

    PubMed Central

    2015-01-01

    Electro wetting-on-dielectric (EWOD) digital microfluidics (DMF) can be used to develop improved chemical screening platforms using 3-dimensional (3D) cell culture. Alginate hydrogels are one common method by which a 3D cell culture environment is created. This paper presents a study of alginate gelation on EWOD DMF and investigates designs to obtain uniform alginate hydrogels that can be repeatedly addressed by any desired liquids. A design which allows for gels to be retained in place during liquid delivery and removal without using any physical barriers or hydrophilic patterning of substrates is presented. A proof of concept screening platform is demonstrated by examining the effects of different concentrations of a test chemical on 3D cells in alginate hydrogels. In addition, the temporal effects of the various chemical concentrations on different hydrogel posts are demonstrated, thereby establishing the benefits of an EWOD DMF 3D cell culture and chemical screening platform using alginate hydrogels. PMID:25945142

  15. Digital microfluidic three-dimensional cell culture and chemical screening platform using alginate hydrogels.

    PubMed

    George, Subin M; Moon, Hyejin

    2015-03-01

    Electro wetting-on-dielectric (EWOD) digital microfluidics (DMF) can be used to develop improved chemical screening platforms using 3-dimensional (3D) cell culture. Alginate hydrogels are one common method by which a 3D cell culture environment is created. This paper presents a study of alginate gelation on EWOD DMF and investigates designs to obtain uniform alginate hydrogels that can be repeatedly addressed by any desired liquids. A design which allows for gels to be retained in place during liquid delivery and removal without using any physical barriers or hydrophilic patterning of substrates is presented. A proof of concept screening platform is demonstrated by examining the effects of different concentrations of a test chemical on 3D cells in alginate hydrogels. In addition, the temporal effects of the various chemical concentrations on different hydrogel posts are demonstrated, thereby establishing the benefits of an EWOD DMF 3D cell culture and chemical screening platform using alginate hydrogels. PMID:25945142

  16. Alginate Encapsulation Parameters Influence the Differentiation of Microencapsulated Embryonic Stem Cell Aggregates

    PubMed Central

    Wilson, Jenna L.; Najia, Mohamad Ali; Saeed, Rabbia; McDevitt, Todd C.

    2014-01-01

    Pluripotent embryonic stem cells (ESCs) have tremendous potential as tools for regenerative medicine and drug discovery, yet the lack of processes to manufacture viable and homogenous cell populations of sufficient numbers limits the clinical translation of current and future cell therapies. Microencapsulation of ESCs within microbeads can shield cells from hydrodynamic shear forces found in bioreactor environments while allowing for sufficient diffusion of nutrients and oxygen through the encapsulation material. Despite initial studies examining alginate microbeads as a platform for stem cell expansion and directed differentiation, the impact of alginate encapsulation parameters on stem cell phenotype has not been thoroughly investigated. Therefore, the objective of this study was to systematically examine the effects of varying alginate compositions on microencapsulated ESC expansion and phenotype. Pre-formed aggregates of murine ESCs were encapsulated in alginate microbeads composed of a high or low ratio of guluronic to mannuronic acid residues (High G and High M, respectively), with and without a poly-l-lysine (PLL) coating, thereby providing four distinct alginate bead compositions for analysis. Encapsulation in all alginate compositions was found to delay differentiation, with encapsulation within High G alginate yielding the least differentiated cell population. The addition of a PLL coating to the High G alginate prevented cell escape from beads for up to 14 days. Furthermore, encapsulation within High M alginate promoted differentiation toward a primitive endoderm phenotype. Taken together, the findings of this study suggest that distinct ESC expansion capacities and differentiation trajectories emerge depending on the alginate composition employed, indicating that encapsulation material physical properties can be used to control stem cell fate. PMID:24166004

  17. Biodegradation of pesticide profenofos by the free and immobilized cells of Pseudoxanthomonas suwonensis strain HNM.

    PubMed

    Talwar, Manjunatha P; Ninnekar, Harichandra Z

    2015-09-01

    Profenofos is an organophosphate pesticide used extensively in agriculture to control pests. A bacterium capable of degrading profenofos was isolated from pesticide-contaminated soil samples and identified as Pseudoxanthomonas suwonensis strain HNM based on its morphological and biochemical characteristics and phylogenetic analysis of 16S rRNA gene sequences. 4-Bromo-2-chlorophenol was identified as a metabolite of profenofos degradation by HPLC and GC-MS analysis. The organism degraded profenofos by hydrolysis to yield 4-bromo-2-chlorophenol which was further utilized as carbon source for growth. The organism utilized various organophosphate pesticides such as temephos, quinalphos, and chloropyrifos as carbon sources. The optimum conditions for degradation of profenofos by P. suwonensis strain HMN were found to be at pH 7 and 30 °C. We have investigated the rate of degradation of profenofos by the free and immobilized cells of P. suwonensis strain HNM in various matrices such as sodium alginate (SA), sodium alginate-polyvinyl alcohol (SA-PVA), and SA-bentonite clay. The rate of degradation of 3 and 6 mM profenofos by the freely suspended cells were compared with that by immobilized cells in batches and semi-continuous with shaken cultures. The SA-bentonite clay-immobilized cells showed higher rate of degradation of 3 and 6 mM profenofos then freely suspended cells and cells immobilized in SA and SA-PVA. The SA-bentonite clay-immobilized cells of P. suwonensis strain HNM could be reused for more than 32 cycles without losing their degradation capacity. Thus, the immobilized cells are more efficient than freely suspended cells for the degradation of organophosphate pesticide contaminated water. PMID:25832924

  18. Biomimetic Mineralization of the Alginate/Gelatin/Calcium Oxalate Matrix for Immobilization of Pectinase: Influence of Matrix on the Pectinolytic Activity.

    PubMed

    Bustamante-Vargas, Cindy Elena; de Oliveira, Débora; Valduga, Eunice; Venquiaruto, Luciana Dornelles; Paroul, Natalia; Backes, Geciane Toniazzo; Dallago, Rogério Marcos

    2016-07-01

    Pectinases catalyze the degradation of pectic substances and are used in several processes, mainly in food and textile industries. In this study, a biomimetic matrix of alginate/gelatin/calcium oxalate (AGOCa) was synthesized for the in situ immobilization via encapsulation of crude pectinase from Aspergillus niger ATCC 9642, obtaining an immobilization efficiency of about 61.7 %. To determine the performance of AGOCa matrix, this was compared to control matrices of alginate/calcium oxalate (AOxal) and alginate/water (ACa). By the evaluation of pH and temperature effects on the enzyme activity, it was observed an increase on pectinolytic activity for both three tested matrices with an increase on pH and temperature. The kinetic parameters for pectinase immobilized in the three matrices were determined using citric pectin as substrate. Values of K m of 0.003, 0.0013, and 0.0022 g mL(-1) and V max of 3.85, 4.32, and 3.17 μmol min(-1) g(-1) for AGOCa, AOxal, and ACa matrices were obtained, respectively. After 33 days of storage, the pectinase immobilized in the three different matrices kept its initial activity, but that immobilized in AGOCa presented high stability to the storage with a relative activity of about 160 %. The enzyme immobilized in AGOCa, AOxal, and ACa could be used in 10, 8, and 7 cycles, respectively, keeping 40 % of its initial activity. PMID:27040530

  19. Metabolic Responses of Bacterial Cells to Immobilization.

    PubMed

    Żur, Joanna; Wojcieszyńska, Danuta; Guzik, Urszula

    2016-01-01

    In recent years immobilized cells have commonly been used for various biotechnological applications, e.g., antibiotic production, soil bioremediation, biodegradation and biotransformation of xenobiotics in wastewater treatment plants. Although the literature data on the physiological changes and behaviour of cells in the immobilized state remain fragmentary, it is well documented that in natural settings microorganisms are mainly found in association with surfaces, which results in biofilm formation. Biofilms are characterized by genetic and physiological heterogeneity and the occurrence of altered microenvironments within the matrix. Microbial cells in communities display a variety of metabolic differences as compared to their free-living counterparts. Immobilization of bacteria can occur either as a natural phenomenon or as an artificial process. The majority of changes observed in immobilized cells result from protection provided by the supports. Knowledge about the main physiological responses occurring in immobilized cells may contribute to improving the efficiency of immobilization techniques. This paper reviews the main metabolic changes exhibited by immobilized bacterial cells, including growth rate, biodegradation capabilities, biocatalytic efficiency and plasmid stability. PMID:27455220

  20. Complete sucrose hydrolysis by heat-killed recombinant Pichia pastoris cells entrapped in calcium alginate

    PubMed Central

    2014-01-01

    Background An ideal immobilized biocatalyst for the industrial-scale production of invert sugar should stably operate at elevated temperatures (60-70°C) and high sucrose concentrations (above 60%, w/v). Commercial invertase from the yeast Saccharomyces cerevisiae is thermolabile and suffers from substrate inhibition. Thermotoga maritima β-fructosidase (BfrA) is the most thermoactive and thermostable sucrose-hydrolysing enzyme so far identified and allows complete inversion of the substrate in highly concentrated solutions. Results In this study, heat-killed Pichia pastoris cells bearing N-glycosylated BfrA in the periplasmic space were entrapped in calcium alginate beads. The immobilized recombinant yeast showed maximal sucrose hydrolysis at pH 5–7 and 90°C. BfrA was 65% active at 60°C and had no activity loss after incubation without the substrate at this temperature for 15 h. Complete inversion of cane sugar (2.04 M) at 60°C was achieved in batchwise and continuous operation with respective productivities of 4.37 and 0.88 gram of substrate hydrolysed per gram of dry beads per hour. The half-life values of the biocatalyst were 14 and 20 days when operated at 60°C in the stirred tank and the fixed-bed column, respectively. The reaction with non-viable cells prevented the occurrence of sucrose fermentation and the formation of by-products. Six-month storage of the biocatalyst in 1.46 M sucrose (pH 5.5) at 4°C caused no reduction of the invertase activity. Conclusions The features of the novel thermostable biocatalyst developed in this study are more attractive than those of immobilized S. cerevisiae cells for application in the enzymatic manufacture of inverted sugar syrup in batch and fixed-bed reactors. PMID:24943124

  1. Lactococcus lactis release from calcium alginate beads.

    PubMed Central

    Champagne, C P; Gaudy, C; Poncelet, D; Neufeld, R J

    1992-01-01

    Cell release during milk fermentation by Lactococcus lactis immobilized in calcium alginate beads was examined. Numbers of free cells in the milk gradually increased from 1 x 10(6) to 3 x 10(7) CFU/ml upon successive reutilization of the beads. Rinsing the beads between fermentations did not influence the numbers of free cells in the milk. Cell release was not affected by initial cell density within the beads or by alginate concentration, although higher acidification rates were achieved with increased cell loading. Coating alginate beads with poly-L-lysine (PLL) did not significantly reduce the release of cells during five consecutive fermentations. A double coating of PLL and alginate reduced cell release by a factor of approximately 50. However, acidification of milk with beads having the PLL-alginate coating was slower than that with uncoated beads. Immersing the beads in ethanol to kill cells on the periphery reduced cell release, but acidification activity was maintained. Dipping the beads in aluminum nitrate or a hot CaCl2 solution was not as effective as dipping them in ethanol. Ethanol treatment or heating of the beads appears to be a promising method for maintaining acidification activity while minimizing viable cell release due to loosely entrapped cells near the surface of the alginate beads. PMID:1622208

  2. Process engineering of high voltage alginate encapsulation of mesenchymal stem cells.

    PubMed

    Gryshkov, Oleksandr; Pogozhykh, Denys; Zernetsch, Holger; Hofmann, Nicola; Mueller, Thomas; Glasmacher, Birgit

    2014-03-01

    Encapsulation of stem cells in alginate beads is promising as a sophisticated drug delivery system in treatment of a wide range of acute and chronic diseases. However, common use of air flow encapsulation of cells in alginate beads fails to produce beads with narrow size distribution, intact spherical structure and controllable sizes that can be scaled up. Here we show that high voltage encapsulation (≥ 15 kV) can be used to reproducibly generate spherical alginate beads (200-400 μm) with narrow size distribution (± 5-7%) in a controlled manner under optimized process parameters. Flow rate of alginate solution ranged from 0.5 to 10 ml/h allowed producing alginate beads with a size of 320 and 350 μm respectively, suggesting that this approach can be scaled up. Moreover, we found that applied voltages (15-25 kV) did not alter the viability and proliferation of encapsulated mesenchymal stem cells post-encapsulation and cryopreservation as compared to air flow. We are the first who employed a comparative analysis of electro-spraying and air flow encapsulation to study the effect of high voltage on alginate encapsulated cells. This report provides background in application of high voltage to encapsulate living cells for further medical purposes. Long-term comparison and work on alginate-cell interaction within these structures will be forthcoming. PMID:24433889

  3. Antibacterial Performance of Alginic Acid Coating on Polyethylene Film

    PubMed Central

    Karbassi, Elika; Asadinezhad, Ahmad; Lehocký, Marian; Humpolíček, Petr; Vesel, Alenka; Novák, Igor; Sáha, Petr

    2014-01-01

    Alginic acid coated polyethylene films were examined in terms of surface properties and bacteriostatic performance against two most representative bacterial strains, that is, Escherichia coli and Staphylococcus aureus. Microwave plasma treatment followed by brush formation in vapor state from three distinguished precursors (allylalcohol, allylamine, hydroxyethyl methacrylate) was carried out to deposit alginic acid on the substrate. Surface analyses via various techniques established that alginic acid was immobilized onto the surface where grafting (brush) chemistry influenced the amount of alginic acid coated. Moreover, alginic acid was found to be capable of bacterial growth inhibition which itself was significantly affected by the brush type. The polyanionic character of alginic acid as a carbohydrate polymer was assumed to play the pivotal role in antibacterial activity. The cell wall composition of two bacterial strains along with the substrates physicochemical properties accounted for different levels of bacteriostatic performance. PMID:25196604

  4. Degradation of mix hydrocarbons by immobilized cells of mix culture using a trickle fluidized bed reactor. Annual progress report, June 1992--May 1993

    SciTech Connect

    Chapatwala, K.D.

    1993-06-01

    The microorganisms, capable of degrading mix hydrocarbons were isolated from the soil samples collected from the hydrocarbon contaminated sites. The mix cultures were immobilized in calcium alginate solution in the form of beads. A trickle fluidized bed air-uplift-type reactor designed to study the degradation of mix hydrocarbons was filled with 0.85% normal saline containing the immobilized cells of mix culture. The immobilized beads were aerated with CO{sub 2}-free air at 200 ml/min. The degradation of different concentrations of hydrocarbons in the presence/absence of commercially available fertilizers by the immobilized cells of mix culture is now in progress.

  5. Immobilization of Lactobacillus rhamnosus in mesoporous silica-based material: An efficiency continuous cell-recycle fermentation system for lactic acid production.

    PubMed

    Zhao, Zijian; Xie, Xiaona; Wang, Zhi; Tao, Yanchun; Niu, Xuedun; Huang, Xuri; Liu, Li; Li, Zhengqiang

    2016-06-01

    Lactic acid bacteria immobilization methods have been widely used for lactic acid production. Until now, the most common immobilization matrix used is calcium alginate. However, Ca-alginate gel disintegrated during lactic acid fermentation. To overcome this deficiency, we developed an immobilization method in which Lactobacillus rhamnosus cells were successfully encapsulated into an ordered mesoporous silica-based material under mild conditions with a high immobilization efficiency of 78.77% by using elemental analysis. We also optimized the cultivation conditions of the immobilized L. rhamnosus and obtained a high glucose conversion yield of 92.4%. Furthermore, L. rhamnosus encapsulated in mesoporous silica-based material exhibited operational stability during repeated fermentation processes and no decrease in lactic acid production up to 8 repeated batches. PMID:26803707

  6. Immobilized Enzymes and Cells as Practical Catalysts

    NASA Astrophysics Data System (ADS)

    Klibanov, Alexander M.

    1983-02-01

    Performance of enzymes and whole cells in commercial applications can often be dramatically improved by immobilization of the biocatalysts, for instance, by their covalent attachment to or adsorption on solid supports, entrapment in polymeric gels, encapsulation, and cross-linking. The effect of immobilization on enzymatic properties and stability of biocatalysts is considered. Applications of immobilized enzymes and cells in the chemical, pharmaceutical, and food industries, in clinical and chemical analyses, and in medicine, as well as probable future trends in enzyme technology are discussed.

  7. Immobilized enzymes and cells as practical catalysts

    SciTech Connect

    Klibanov, A.M.

    1983-02-11

    Performance of enzymes and whole cells in commercial applications can often be dramatically improved by immobilization of the biocatalysts, for instance, by their covalent attachment to or adsorption on solid supports, entrapment in polymeric gels, encapsulation, and cross-linking. The effect of immobilization on enzymatic properties and stability of biocatalysts is considered. Applications of immobilized enzymes and cells in the chemical, pharmaceutical, and food industries, in clinical and chemical analyses, and in medicine, as well as probable future trends in enzyme technology are discussed.

  8. Immobilization of whole cells using polymeric coatings

    SciTech Connect

    Lawton, C.W.; Klei, H.E.; Sunstrom, D.V.; Voronka, P.J.; Scott, C.D.

    1986-01-01

    A cell immobilization procedure was developed using latex coatings on solid particles. The method's widespread applicability has been demonstrated by successfully immobilizing Saccharomyces cerevisiae (ethanol production), Bacillus subtilis (tryptophan production). Penicillium chrysogenum (penicillin G production), and Escherichia coli (aspartic acid production). In contrast to other immobilization methods, this procedure produces a pellicular particle that is porous, allowing rapid substrate and gas transfer, has a hard core to avoid compression in large beds, and is dense to allow use in fluidized beds. The immobilization procedure was optimized with S. cerevisiae. Kinetic constants obtained were used to calculate effectiveness factors to show that there was minimal intraparticle diffusion resistance. Reactors utilizing the optimized particles were run for 300 hours to evaluate immobilized particle half-life which was 250 hours.

  9. Surface cell immobilization within perfluoroalkoxy microchannels

    NASA Astrophysics Data System (ADS)

    Stojkovič, Gorazd; Krivec, Matic; Vesel, Alenka; Marinšek, Marjan; Žnidaršič-Plazl, Polona

    2014-11-01

    Perfluoroalkoxy (PFA) is one of the most promising materials for the fabrication of cheap, solvent resistant and reusable microfluidic chips, which have been recently recognized as effective tools for biocatalytic process development. The application of biocatalysts significantly depends on efficient immobilization of enzymes or cells within the reactor enabling long-term biocatalyst use. Functionalization of PFA microchannels by 3-aminopropyltriethoxysilane (ATPES) and glutaraldehyde was used for rapid preparation of microbioreactors with surface-immobilized cells. X-ray photoelectron spectroscopy and scanning electron microscopy were used to accurately monitor individual treatment steps and to select conditions for cell immobilization. The optimized protocol for Saccharomyces cerevisiae immobilization on PFA microchannel walls comprised ethanol surface pretreatment, 4 h contacting with 10% APTES aqueous solution, 10 min treatment with 1% glutaraldehyde and 20 min contacting with cells in deionized water. The same protocol enabled also immobilization of Escherichia coli, Pseudomonas putida and Bacillus subtilis cells on PFA surface in high densities. Furthermore, the developed procedure has been proved to be very efficient also for surface immobilization of tested cells on other materials that are used for microreactor fabrication, including glass, polystyrene, poly (methyl methacrylate), polycarbonate, and two olefin-based polymers, namely Zeonor® and Topas®.

  10. Glucosyltransferase production by Klebsiella sp. K18 and conversion of sucrose to palatinose using immobilized cells.

    PubMed

    Orsi, Daniela C; Kawaguti, Haroldo Y; Sato, Hélia H

    2009-01-01

    The strain Klebsiella sp. K18 produces the enzyme glucosyltransferase and catalyses the conversion of sucrose to palatinose, an alternative sugar that presents low cariogenicity. Response Surface Methodology was successfully employed to determine the optimal concentration of culture medium components. Maximum glucosyltransferase production (21.78 U mL(-1)) was achieved using the optimized medium composed by sugar cane molasses (80 g L(-1)), bacteriological peptone (7 g L(-1)) and yeast extract (20 g L(-1)), after 8 hours of fermentation at 28°C. The conversion of sucrose to palatinose was studied utilizing immobilized cells in calcium alginate. The effects of the alginate concentration (2-4%), cell mass concentration (20-40%) and substrate concentration (25-45%) were evaluated and the yield of palatinose was approximately 62.5%. PMID:24031319

  11. Glucosyltransferase production by Klebsiella sp. K18 and conversion of sucrose to palatinose using immobilized cells

    PubMed Central

    Orsi, Daniela C.; Kawaguti, Haroldo Y.; Sato, Hélia H.

    2009-01-01

    The strain Klebsiella sp. K18 produces the enzyme glucosyltransferase and catalyses the conversion of sucrose to palatinose, an alternative sugar that presents low cariogenicity. Response Surface Methodology was successfully employed to determine the optimal concentration of culture medium components. Maximum glucosyltransferase production (21.78 U mL-1) was achieved using the optimized medium composed by sugar cane molasses (80 g L-1), bacteriological peptone (7 g L-1) and yeast extract (20 g L-1), after 8 hours of fermentation at 28°C. The conversion of sucrose to palatinose was studied utilizing immobilized cells in calcium alginate. The effects of the alginate concentration (2-4%), cell mass concentration (20-40%) and substrate concentration (25-45%) were evaluated and the yield of palatinose was approximately 62.5%. PMID:24031319

  12. Parameters and kinetics of olive mill wastewater dephenolization by immobilized Rhodotorula glutinis cells.

    PubMed

    Bozkoyunlu, Gaye; Takaç, Serpil

    2014-01-01

    Olive mill wastewater (OMW) with total phenol (TP) concentration range of 300-1200 mg/L was treated with alginate-immobilized Rhodotorula glutinis cells in batch system. The effects of pellet properties (diameter, alginate concentration and cell loading (CL)) and operational parameters (initial TP concentration, agitation rate and reusability of pellets) on dephenolization of OMW were studied. Up to 87% dephenolization was obtained after 120 h biodegradations. The utilization number of pellets increased with the addition of calcium ions into the biodegradation medium. The overall effectiveness factors calculated for different conditions showed that diffusional limitations arising from pellet size and pellet composition could be neglected. Mass transfer limitations appeared to be more effective at high substrate concentrations and low agitation rates. The parameters of logistic model for growth kinetics of R. glutinis in OMW were estimated at different initial phenol concentrations of OMW by curve-fitting of experimental data with the model. PMID:25244135

  13. Three-dimensional bioprinting of complex cell laden alginate hydrogel structures.

    PubMed

    Tabriz, Atabak Ghanizadeh; Hermida, Miguel A; Leslie, Nicholas R; Shu, Wenmiao

    2015-01-01

    Different bioprinting techniques have been used to produce cell-laden alginate hydrogel structures, however these approaches have been limited to 2D or simple three-dimension (3D) structures. In this study, a new extrusion based bioprinting technique was developed to produce more complex alginate hydrogel structures. This was achieved by dividing the alginate hydrogel cross-linking process into three stages: primary calcium ion cross-linking for printability of the gel, secondary calcium cross-linking for rigidity of the alginate hydrogel immediately after printing and tertiary barium ion cross-linking for long-term stability of the alginate hydrogel in culture medium. Simple 3D structures including tubes were first printed to ensure the feasibility of the bioprinting technique and then complex 3D structures such as branched vascular structures were successfully printed. The static stiffness of the alginate hydrogel after printing was 20.18 ± 1.62 KPa which was rigid enough to sustain the integrity of the complex 3D alginate hydrogel structure during the printing. The addition of 60 mM barium chloride was found to significantly extend the stability of the cross-linked alginate hydrogel from 3 d to beyond 11 d without compromising the cellular viability. The results based on cell bioprinting suggested that viability of U87-MG cells was 93 ± 0.9% immediately after bioprinting and cell viability maintained above 88% ± 4.3% in the alginate hydrogel over the period of 11 d. PMID:26689257

  14. Continuous ethanol production from Jerusalem artichoke tubers. II. Use of immobilized cells of Kluyveromyces marxianus

    SciTech Connect

    Margaritis, A.; Bajpai, P.

    1982-07-01

    Kluyveromyces marxianus UCD (FST) 55-82 cells were immobilized in Na alginate beads and used in a packed-bed bioreactor system for the continuous production of ethanol from the extract of Jerusalem artichoke tubers. Volumetric ethanol productivities of 104 and 80 g ethanol/L/h were obtained at 80 and 92% sugar utilization, respectively. The maximum volumetric ethanol productivity of the immobilized cell bioreactor system was found to be 15 times higher than that of an ordinary continuous-stirred-tank (CST) bioreactor using free cells of Kluyveromyces marxianus. The immobilized cell bioreactor system was operated continuously at a constant dilution rate of 0.66/h for 12 days resulting in only an 8% loss of the original immobilized cell activity, which corresponds to an estimated half-life of ca. 72 days. The maximum specific ethanol productivity and maximum specific sugar uptake rate of the immobilized cells were found to be 0.55 g ethanol/g biomass/h and 1.21 g sugars/g biomass/h, respectively. (Refs. 27).

  15. Calcium alginate matrix increases the stability and recycling capability of immobilized endo-β-1,4-xylanase from Geobacillus stearothermophilus KIBGE-IB29.

    PubMed

    Bibi, Zainab; Qader, Shah Ali Ul; Aman, Afsheen

    2015-07-01

    Exploration of microbial pool from extremely diversified ecosystem is significantly important for various industrial applications. Bacterial communities from extreme habitats including volcanic vents, hot springs, and industrial sectors are eagerly explored for the isolation of thermophiles. Geobacillus stearothermophilus KIBGE-IB29, isolated from blast furnace site of a steel processing industry, is capable of producing thermostable endo-β-1,4-xylanase. In the current study, this enzyme was immobilized within calcium alginate beads using entrapment technique. Amalgamation of sodium alginate (40.0 gL(-1)) and calcium chloride (0.4 M) was used for the formation of immobilized beads. It was observed that temperature (50 °C) and pH (7.0) optima of immobilized enzyme remained same, but enzyme-substrate reaction time increased from 5.0 to 30.0 min as compared to free enzyme. Diffusion limit of high molecular weight xylan (corncob) caused a decline in V max of immobilized enzyme from 4773 to 203.7 U min(-1), whereas K m value increased from 0.5074 to 0.5722 mg ml(-1) with reference to free enzyme. Immobilized endo-β-1,4-xylanase showed its stability even at high temperatures as compared to free enzyme and retained 18 and 9 % residual activity at 70 and 80 °C, respectively. Immobilized enzyme also exhibited sufficient recycling efficiency up to five reaction cycles which indicated that this enzyme can be a plausible candidate in paper and pulp industry. PMID:26001519

  16. Brown adipogenesis of mouse embryonic stem cells in alginate microstrands

    NASA Astrophysics Data System (ADS)

    Unser, Andrea Mannarino

    The ability of brown adipocytes (fat cells) to dissipate energy as heat shows great promise for the treatment of obesity and other metabolic disorders. Employing pluripotent stem cells, with an emphasis on directed differentiation, may overcome many issues currently associated with primary fat cell cultures. However, brown adipocytes are difficult to transplant in vivo due to the instability of fat, in terms of necrosis and neovascularization, once injected. Thus, 3D cell culture systems that have the potential to mimic adipogenic microenvironments are needed, not only to advance brown fat implantation, but also to better understand the role of brown adipocytes in treating obesity. To address this need, we created 3D "Brown-Fat-in-Microstrands" by microfluidic synthesis of alginate hydrogel microstrands that encapsulated cells and directly induced cell differentiation into brown adipocytes, using mouse embryonic stem cells (ESCs) as a model of pluripotent stem cells and brown preadipocytes as a positive control. The effect of hydrogel formation parameters on brown adipogenesis was studied, leading to the establishment of "Brown-Fat-in-Microstrands". Brown adipocyte differentiation within microstrands was confirmed by lipid droplet accumulation, immunocytochemistry and qPCR analysis of gene expression of brown adipocyte marker uncoupling protein 1 (UCP1) in addition to adipocyte marker expression. Compared to a 2D approach, 3D differentiated "Brown-Fat-in-Microstrands" exhibited higher level of brown adipocyte marker expression. The functional analysis of "Brown-Fat-in-Microstrands" was attempted by measuring the mitochondrial activity of ESC-differentiated brown adipocytes in 3D using Seahorse XF24 3 Extracellular Flux Analyzer. The ability to create "Brown-Fat-in-Microstrands" from pluripotent stem cells opens up a new arena to understanding brown adipogenesis and its implications in obesity and metabolic disorders.

  17. Mechanically reinforced cell-laden scaffolds formed using alginate-based bioink printed onto the surface of a PCL/alginate mesh structure for regeneration of hard tissue.

    PubMed

    Kim, Yong Bok; Lee, Hyeongjin; Yang, Gi-Hoon; Choi, Chang Hyun; Lee, DaeWeon; Hwang, Heon; Jung, Won-Kyo; Yoon, Hyeon; Kim, Geun Hyung

    2016-01-01

    Cell-printing technology has provided a new paradigm for biofabrication, with potential to overcome several shortcomings of conventional scaffold-based tissue regeneration strategies via controlled delivery of various cell types in well-defined target regions. Here we describe a cell-printing method to obtain mechanically reinforced multi-layered cell-embedded scaffolds, formed of micron-scale poly(ε-caprolactone) (PCL)/alginate struts coated with alginate-based bioink. To compare the physical and cellular activities, we used a scaffold composed of pure alginate (without cells) coated PCL/alginate struts as a control. We systematically varied the ratio of alginate cross-linking agent, and determined the optimal cell-coating conditions to form the PCL/alginate struts. Following fabrication of the cell (MG63)-laden PCL/alginate scaffold, the bioactivity was evaluated in vitro. The laden cells exhibited a substantially more developed cytoskeleton compared with those on a control scaffold consisting of the same material composition. Based on these results, the printed cells exhibited a significantly more homogenous distribution within the scaffold compared with the control. Cell proliferation was determined via MTT assays at 1, 3, 7, and 14 days of culture, and the proliferation of the cell-printed scaffold was substantially in excess (∼2.4-fold) of that on the control. Furthermore, the osteogenic activity such as ALP was measured, and the cell-laden scaffold exhibited significantly greater activity (∼3.2-fold) compared with the control scaffold. PMID:26409783

  18. Anaerobic ammonium oxidation in polyvinyl alcohol and sodium alginate immobilized biomass system: a potential tool to maintain anammox biomass in application.

    PubMed

    Zhu, Gang-Li; Yan, Jia; Hu, Yong-You

    2014-01-01

    Anaerobic ammonium oxidation (anammox) has been proved to be a promising nitrogen removal method for treating ammonium-rich wastewater. However, because of the low-growth rate of anammox bacteria, maintenance of a sufficient amount of anammox biomass in reactor became a key factor in application. Gel immobilization is an efficient method to prevent biomass from being washed out and to promote hyper-concentrated cultures. This study focused on a nitrogen removal process by anammox enrichment culture immobilized in polyvinyl alcohol and sodium alginate (PVA-SA) gel beads. The rapid startup of reactor demonstrated that gel entrapment was supposed to be a highly effective technique for immobilizing anammox bacteria. The anammox bacteria present in the enrichment were identified to be Jettenia-like species (>98%). Moreover, the effect of hydraulic retention time (HRT), pH, and temperature on immobilized anammox processes were investigated. The effect of pH and temperature on the anammox process was evidently weakened in PVA-SA immobilized gel beads, however, the effect of HRT on the anammox reaction was enhanced. Therefore, a stable operated reactor could be obtained in an anaerobic sequencing batch reactor, which proved gel immobilization was an excellent method to maintain the biomass in anammox reactor for application. PMID:24569269

  19. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery.

    PubMed

    Zhang, Yeshun; Liu, Jia; Huang, Lei; Wang, Zheng; Wang, Lin

    2015-01-01

    Although alginate hydrogels have been extensively studied for tissue engineering applications, their utilization is limited by poor mechanical strength, rapid drug release, and a lack of cell adhesive ability. Aiming to improve these properties, we employ the interpenetrating hydrogel design rationale. Using alginate and sericin (a natural protein with many unique properties and a major component of silkworm silk), we develop an interpenetrating polymer network (IPN) hydrogel comprising interwoven sericin and alginate double networks. By adjusting the sericin-to-alginate ratios, IPNs' mechanical strength can be adjusted to meet stiffness requirements for various tissue repairs. The IPNs with high sericin content show increased stability during degradation, avoiding pure alginate's early collapse. These IPNs have high swelling ratios, benefiting various applications such as drug delivery. The IPNs sustain controlled drug release with the adjustable rates. Furthermore, these IPNs are adhesive to cells, supporting cell proliferation, long-term survival and migration. Notably, the IPNs inherit sericin's photoluminescent property, enabling bioimaging in vivo. Together, our study indicates that the sericin-alginate IPN hydrogels may serve as a versatile platform for delivering cells and drugs, and suggests that sericin may be a building block broadly applicable for generating IPN networks with other biomaterials for diverse tissue engineering applications. PMID:26205586

  20. Biodegradation of Methyl Orange by alginate-immobilized Aeromonas sp. in a packed bed reactor: external mass transfer modeling.

    PubMed

    Kathiravan, Mathur Nadarajan; Praveen, Siluvai Antony; Gim, Geun Ho; Han, Gui Hawn; Kim, Si Wouk

    2014-11-01

    Azo dyes are recalcitrant and xenobiotic nature makes these compounds a challenging task for continuous biodegradation up to satisfactorily levels in large-scale. In the present report, the biodegradation efficiency of alginate immobilized indigenous Aeromonas sp. MNK1 on Methyl Orange (MO) in a packed bed reactor was explored. The experimental results were used to determine the external mass transfer model. Complete MO degradation and COD removal were observed at 0.20 cm bead size and 120 ml/h flow rate at 300 mg/l of initial dye concentration. The degradation of MO decreased with increasing bead sizes and flow rates, which may be attributed to the decrease in surface of the beads and higher flux of MO, respectively. The experimental rate constants (k ps) for various beads sizes and flow rates were calculated and compared with theoretically obtained rate constants using external film diffusion models. From the experimental data, the external mass transfer effect was correlated with a model J D = K Re (-(1 - n)). The model was tested with K value (5.7) and the Colburn factor correlation model for 0.20, 0.40 and 0.60 bead sizes were J D = 5.7 Re (-0.15), J D = 5.7 Re (-0.36) and J D = 5.7 Re (-0.48), respectively. Based on the results, the Colburn factor correlation models were found to predict the experimental data accurately. The proposed model was constructive to design and direct industrial applications in packed bed reactors within acceptable limits. PMID:24810435

  1. Enhancing isomaltulose production by recombinant Escherichia coli producing sucrose isomerase: culture medium optimization containing agricultural wastes and cell immobilization.

    PubMed

    Li, Sha; Xu, Hong; Yu, Jianguang; Wang, Yanyuan; Feng, Xiaohai; Ouyang, Pingkai

    2013-10-01

    Isomaltulose is a structural isomer of sucrose commercially used in food industries. In this work, recombinant Escherichia coli producing sucrose isomerase (SIase) was used to convert sucrose into isomaltulose. To develop an economical industrial medium, untreated cane molasses (10.63 g l⁻¹), yeast extract (25.93 g l⁻¹), and corn steep liquor (10.45 g l⁻¹) were used as main culture compositions for SIase production. The relatively high SIase activity (14.50 ± 0.11 U mg DCW⁻¹) was obtained by the recombinant cells. To the best of our knowledge, this is the first investigation on SIase production by engineered E. coli using untreated cane molasses. The recombinant E. coli cells expressing the SIase gene were immobilized in calcium alginate gel in order to improve the efficiency of recycling. The immobilization was most effective with 2 % (w/v) sodium alginate and 3 % (w/v) calcium chloride. The optimal initial biomass for immobilization was 20 % (w/v, wet wt.), with a hardening time of 8 h for cell immobilization. The immobilized E. coli cells exhibited good stability for 30 batches with the productivity of 0.45 g isomaltulose g pellet⁻¹ h⁻¹. A continuous isomaltulose formation process using a column reactor remained stable for 40 days with 83 ± 2 % isomaltulose yield, which would be beneficial for economical production of isomaltulose. PMID:23300051

  2. Hemicellulosic ethanol production by immobilized cells of Scheffersomyces stipitis: Effect of cell concentration and stirring

    PubMed Central

    Milessi, Thais S S; Antunes, Felipe A F; Chandel, Anuj K; da Silva, Silvio S

    2015-01-01

    Bioconversion of hemicellulosic hydrolysate into ethanol plays a pivotal role in the overall success of biorefineries. For the efficient fermentative conversion of hemicellulosic hydrolysates into ethanol, the use of immobilized cells system could provide the enhanced ethanol productivities with significant time savings. Here, we investigated the effect of 2 important factors (e.g., cell concentration and stirring) on ethanol production from sugarcane bagasse hydrolysate using the yeast Scheffersomyces stipitis immobilized in calcium alginate matrix. A 22 full factorial design of experiment was performed considering the process variables- immobilized cell concentration (3.0, 6.5 and 10.0 g/L) and stirring (100, 200 and 300 rpm). Statistical analysis showed that stirring has the major influence on ethanol production. Maximum ethanol production (8.90 g/l) with ethanol yield (Yp/s) of 0.33 g/g and ethanol productivity (Qp) of 0.185 g/l/h was obtained under the optimized process conditions (10.0 g/L of cells and 100 rpm). PMID:25488725

  3. Enhanced dibenzothiophene biodesulfurization by immobilized cells of Brevibacterium lutescens in n-octane-water biphasic system.

    PubMed

    Dai, Yong; Shao, Rong; Qi, Gang; Ding, Bin-Bin

    2014-11-01

    In this study, it was the first report that the Brevibacterium lutescens CCZU12-1 was employed as a sulfur removing bacteria. Using dibenzothiophene (DBT) as the sole sulfur source, B. lutescens could selectively degrade DBT into 2-hydroxybiphenyl (2-HBP) via the "4S" pathway. In the basal salt medium (BSM) supplemented with 0.25 mM DBT and 0.5 g/L Tween-80, high desulfurization rate (100 %) was obtained by growth cells after 60 h. Furthermore, the n-octane-water (10:90, v/v) biphasic system was built for the biodesulfurization by resting cells. Moreover, a combination of magnetic nano Fe3O4 particles with calcium alginate immobilization was used for enhancing biodesulfurization. In this n-octane-water biphasic system, immobilized B. lutescens cells could be reused for not less than four times. Therefore, B. lutescens CCZU12-1 shows high potential in the biodesulfurization. PMID:25173674

  4. Incorporation of magnesium ions into photo-crosslinked alginate hydrogel enhanced cell adhesion ability.

    PubMed

    Yin, Miao; Xu, Fei; Ding, Huifen; Tan, Fei; Song, Fangfang; Wang, Jiawei

    2015-09-01

    Photo-crosslinked alginate hydrogel attracts wide interest in tissue engineering because of its excellent controllability and stability. However, its highly hydrophilic property makes cell adhesion difficult. Plenty of studies have confirmed that magnesium ions (Mg(2+) ) can efficiently improve the attachment of osteoblasts. In this study, for the first time, we fabricated a durable, crosslinked, alginate hydrogel with a dual-crosslinking network. Photo-crosslinked alginate hydrogel was chosen as the basic backbone, and various amounts of Mg(2+) were incorporated into the hydrogel through ionic crosslinking. The results showed that the physicochemical properties of the hydrogels, including surface structure, composition, swelling ratio, ion release and elastic modulus, could be well tuned by controlling the amount of Mg(2+) incorporated. In addition, a certain amount of Mg(2+) significantly improved the attachment and spread of osteoblasts on the hydrogels. These characteristics make Mg(2+) -incorporated photo-crosslinked alginate hydrogel a promising scaffold for bone tissue engineering. PMID:25694165

  5. Simultaneous wastewater treatment, electricity generation and biomass production by an immobilized photosynthetic algal microbial fuel cell.

    PubMed

    He, Huanhuan; Zhou, Minghua; Yang, Jie; Hu, Youshuang; Zhao, Yingying

    2014-05-01

    A photosynthetic algal microbial fuel cell (PAMFC) was constructed by the introduction of immobilized microalgae (Chlorella vulgaris) into the cathode chamber of microbial fuel cells to fulfill electricity generation, biomass production and wastewater treatment. The immobilization conditions, including the concentration of immobilized matrix, initial inoculation concentration and cross-linking time, were investigated both for the growth of C. vulgaris and power generation. It performed the best at 5 % sodium alginate and 2 % calcium chloride as immobilization matrix, initial inoculation concentration of 10(6) cell/mL and cross-linking time of 4 h. Our findings indicated that C. vulgaris immobilization was an effective and promising approach to improve the performance of PAMFC, and after optimization the power density and Coulombic efficiency improved by 258 and 88.4 %, respectively. Important parameters such as temperature and light intensity were optimized on the performance. PAMFC could achieve a COD removal efficiency of 92.1 %, and simultaneously the maximum power density reached 2,572.8 mW/m(3) and the Coulombic efficiency was 14.1 %, under the light intensity of 5,000 lux and temperature at 25 °C. PMID:24057921

  6. Differentiation of Wharton's jelly mesenchymal stem cells into neurons in alginate scaffold

    PubMed Central

    Hosseini, Seyed Mojtaba; Vasaghi, Attiyeh; Nakhlparvar, Newsha; Roshanravan, Reza; Talaei-khozani, Tahereh; Razi, Zahra

    2015-01-01

    Alginate scaffold has been considered as an appropriate biomaterial for promoting the differentiation of embryonic stem cells toward neuronal cell lineage. We hypothesized that alginate scaffold is suitable for culturing Wharton's jelly mesenchymal stem cells (WJMSCs) and can promote the differentiation of WJMSCs into neuron-like cells. In this study, we cultured WJMSCs in a three-dimensional scaffold fabricated by 0.25% alginate and 50 mM CaCl2 in the presence of neurogenic medium containing 10 μM retinoic acid and 20 ng/mL basic fibroblast growth factor. These cells were also cultured in conventional two-dimensional culture condition in the presence of neurogenic medium as controls. After 10 days, immunofluorescence staining was performed for detecting β-tubulin (marker for WJMSCs-differentiated neuron) and CD271 (motor neuron marker). β-Tubulin and CD271 expression levels were significantly greater in the WJMSCs cultured in the three-dimensional alginate scaffold than in the conventional two-dimensional culture condition. These findings suggest that three-dimensional alginate scaffold cell culture system can induce neuronal differentiation of WJMSCs effectively. PMID:26487861

  7. Biodegradation of cyanides, cyanates and thiocyanates to ammonia and carbon dioxide by immobilized cells of Pseudomonas putida.

    PubMed

    Chapatwala, K D; Babu, G R; Vijaya, O K; Kumar, K P; Wolfram, J H

    1998-01-01

    Pseudomonas putida utilizes cyanide as the sole source of carbon and nitrogen. Agar, alginate, and carrageenan were screened as the encapsulating matrices for P. putida. Alginate-immobilized cells of P. putida degraded sodium cyanide (NaCN) more efficiently than non-immobilized cells or cells immobilized in agar or carrageenan. The end products of biodegradation of cyanide were identified as ammonia (NH3) and carbon dioxide (CO2). These products changed the medium pH. In bioreactors, the rate of cyanide degradation increased with an increase in the rate of aeration. Maximum utilization of cyanide was observed at 200 ml min-1 of aeration. Immobilized cells of P. putida degraded cyanides, cyanates and thiocyanates to NH3 and CO2. Use of Na[14C]-CN showed that 70% of carbon of Na[14C]-CN was converted into 14CO2 and only 10% was associated with the cell biomass. The substrate-dependent kinetics indicated that the Km and Vmax values of P. putida for the substrate, NaCN were 14 mM and 29 nmol of oxygen consumed mg protein-1 min-1 respectively. PMID:9523454

  8. Alginate based hydrogel as a potential biopolymeric carrier for drug delivery and cell delivery systems: present status and applications.

    PubMed

    Giri, Tapan Kumar; Thakur, Deepa; Alexander, Amit; Ajazuddin; Badwaik, Hemant; Tripathi, Dulal Krishna

    2012-11-01

    Alginate is a non-toxic, biocompatible and biodegradable natural polymer with a number of peculiar physicochemical properties for which it has wide applications in drug delivery and cell delivery systems. Hydrogel formation can be obtained by interactions of anionic alginates with multivalent inorganic cations by simple ionotropic gelation method. Hydrophilic polymeric network of three dimensional cross linked structures of hydrogels absorb substantial amount of water or biological fluids. Among the numerous biomaterials used for hydrogel formation alginate has been and will continue to be one of the most important biomaterial. Therefore, in view of the vast literature support, we focus in this review on alginate - based hydrogel as drug delivery and cell delivery carriers for biomedical applications. Various properties of alginates, their hydrogels and also various techniques used for preparing alginate hydrogels have been reviewed. PMID:22998675

  9. Alginate Hydrogel Protects Encapsulated Hepatic HuH-7 Cells against Hepatitis C Virus and Other Viral Infections

    PubMed Central

    Tran, Nhu-Mai; Dufresne, Murielle; Helle, François; Hoffmann, Thomas Walter; François, Catherine; Brochot, Etienne; Paullier, Patrick; Legallais, Cécile; Duverlie, Gilles; Castelain, Sandrine

    2014-01-01

    Cell microencapsulation in alginate hydrogel has shown interesting applications in regenerative medicine and the biomedical field through implantation of encapsulated tissue or for bioartificial organ development. Although alginate solution is known to have low antiviral activity, the same property regarding alginate gel has not yet been studied. The aim of this work is to investigate the potential protective effect of alginate encapsulation against hepatitis C virus (HCV) infection for a hepatic cell line (HuH-7) normally permissive to the virus. Our results showed that alginate hydrogel protects HuH-7 cells against HCV when the supernatant was loaded with HCV. In addition, alginate hydrogel blocked HCV particle release out of the beads when the HuH-7 cells were previously infected and encapsulated. There was evidence of interaction between the molecules of alginate hydrogel and HCV, which was dose- and incubation time-dependent. The protective efficiency of alginate hydrogel towards HCV infection was confirmed against a variety of viruses, whether or not they were enveloped. This promising interaction between an alginate matrix and viruses, whose chemical mechanisms are discussed, is of great interest for further medical therapeutic applications based on tissue engineering. PMID:25310111

  10. Use an alginate scaffold-bone marrow stromal cell (BMSC) complex for the treatment of acute liver failure in rats.

    PubMed

    Lin, Jizong; Meng, Lili; Yao, Zhicheng; Chen, Shuxian; Yang, Jun; Tang, Zhaofeng; Lin, Nan; Xu, Ruiyun

    2015-01-01

    To evaluate the effects of alginate scaffold-bone marrow stromal cell (BMSC) in the treatment of acute liver failure in rats and provide a basis for in vivo application of artificial liver tissue. CM-DiI-labeled BMSCs were planted and grown on alginate scaffolds to form alginate scaffold-BMSC complex. Alginate scaffold-BMSC complex (the experimental group) or alginate scaffolds (the control group) were placed onto the surface of liver wound of rats after 70% of hepatectomy. The scaffold-BMSC complex and alginate scaffolds were removed after 4 weeks and fluorescence microscopy was used to track the growth and distribution of CM-DiI-labeled BMSCs. The liver tissues were stained for albumin and glycogen to investigate the differentiation of BMSCs on alginate scaffolds. The survival rate and liver function were also compared between the two groups of rats. BMSCs on alginate scaffolds and liver tissues were clearly demonstrated by CM-DiI labeling. BMSCs on alginate scaffolds secreted albumin and produced glycogen. The survival rate and liver function of the rats of the experimental group were significantly higher than that the control group rats. Alginate scaffold-BMSC complex promotes the regeneration of liver tissues in rats of acute liver failure. PMID:26550170

  11. Enzymatically cross-linked alginic-hyaluronic acid composite hydrogels as cell delivery vehicles.

    PubMed

    Ganesh, Nitya; Hanna, Craig; Nair, Shantikumar V; Nair, Lakshmi S

    2013-04-01

    An injectable composite gel was developed from alginic and hyaluronic acid. The enzymatically cross-linked injectable gels were prepared via the oxidative coupling of tyramine modified sodium algiante and sodium hyaluronate in the presence of horse radish peroxidase (HRP) and hydrogen peroxide (H2O2). The composite gels were prepared by mixing equal parts of the two tyraminated polymer solutions in 10U HRP and treating with 1.0% H2O2. The properties of the alginate gels were significantly affected by the addition of hyaluronic acid. The percentage water absorption and storage modulus of the composite gels were found to be lower than the alginate gels. The alginate and composite gels showed lower protein release compared to hyaluronate gels in the absence of hyaluronidase. Even hyaluronate gels showed only approximately 10% protein release after 14 days incubation in phosphate buffer solution. ATDC-5 cells encapsulated in the injectable gels showed high cell viability. The composite gels showed the presence of enlarged spherical cells with significantly higher metabolic activity compared to cells in hyaluronic and alginic acid gels. The results suggest the potential of the composite approach to develop covalently cross-linked hydrogels with tuneable physical, mechanical, and biological properties. PMID:23357799

  12. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery

    PubMed Central

    Zhang, Yeshun; Liu, Jia; Huang, Lei; Wang, Zheng; Wang, Lin

    2015-01-01

    Although alginate hydrogels have been extensively studied for tissue engineering applications, their utilization is limited by poor mechanical strength, rapid drug release, and a lack of cell adhesive ability. Aiming to improve these properties, we employ the interpenetrating hydrogel design rationale. Using alginate and sericin (a natural protein with many unique properties and a major component of silkworm silk), we develop an interpenetrating polymer network (IPN) hydrogel comprising interwoven sericin and alginate double networks. By adjusting the sericin-to-alginate ratios, IPNs’ mechanical strength can be adjusted to meet stiffness requirements for various tissue repairs. The IPNs with high sericin content show increased stability during degradation, avoiding pure alginate’s early collapse. These IPNs have high swelling ratios, benefiting various applications such as drug delivery. The IPNs sustain controlled drug release with the adjustable rates. Furthermore, these IPNs are adhesive to cells, supporting cell proliferation, long-term survival and migration. Notably, the IPNs inherit sericin’s photoluminescent property, enabling bioimaging in vivo. Together, our study indicates that the sericin-alginate IPN hydrogels may serve as a versatile platform for delivering cells and drugs, and suggests that sericin may be a building block broadly applicable for generating IPN networks with other biomaterials for diverse tissue engineering applications. PMID:26205586

  13. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery

    NASA Astrophysics Data System (ADS)

    Zhang, Yeshun; Liu, Jia; Huang, Lei; Wang, Zheng; Wang, Lin

    2015-07-01

    Although alginate hydrogels have been extensively studied for tissue engineering applications, their utilization is limited by poor mechanical strength, rapid drug release, and a lack of cell adhesive ability. Aiming to improve these properties, we employ the interpenetrating hydrogel design rationale. Using alginate and sericin (a natural protein with many unique properties and a major component of silkworm silk), we develop an interpenetrating polymer network (IPN) hydrogel comprising interwoven sericin and alginate double networks. By adjusting the sericin-to-alginate ratios, IPNs’ mechanical strength can be adjusted to meet stiffness requirements for various tissue repairs. The IPNs with high sericin content show increased stability during degradation, avoiding pure alginate’s early collapse. These IPNs have high swelling ratios, benefiting various applications such as drug delivery. The IPNs sustain controlled drug release with the adjustable rates. Furthermore, these IPNs are adhesive to cells, supporting cell proliferation, long-term survival and migration. Notably, the IPNs inherit sericin’s photoluminescent property, enabling bioimaging in vivo. Together, our study indicates that the sericin-alginate IPN hydrogels may serve as a versatile platform for delivering cells and drugs, and suggests that sericin may be a building block broadly applicable for generating IPN networks with other biomaterials for diverse tissue engineering applications.

  14. Gas holdup in three-phase immobilized cell bioreactors

    SciTech Connect

    Bajpai, R.; Thompson, J.E.; Davison, B.

    1989-01-01

    A number of studies in the published literature deal with gas holdup in three-phase reactors. However, very few address the cases in which the solid density approaches that of the liquid phases and where low gas velocities are involved. These conditions are commonly encountered in immobilized-cell bubble columns and in fluidized-bed bioreactors. This paper reports the effect of gas and liquid velocity upon gas holdup and bed expansion in fluidized-bed bioreactors. For liquid-fluidization of low-density alginate beads in the absence of gas, the terminal sedimentation velocity (v/sub T/), of the particles is a constant and expansion of the bed follows Richardson and Zaki's correlation. In the presence of gas, however, the apparent terminal sedimentation velocity value is affected by the velocity of the gas and liquid phases. For gas velocities above a minimum value, the calculated value of v/sub T/ depends upon liquid velocity only and a constant bed expansion was observed for a range of gas and liquid flow rates. For the gas-liquid interactions, a modified drift-flux model was found to be valid. For superficial gas velocities between 5 and 17 cm/min, the modified drift-flux velocity was observed to be a function of gas velocity suggesting the prevalence of a coalescence regime. 21 refs., 4 figs., 1 tab.

  15. Transplantation of Neural Stem Cells Cultured in Alginate Scaffold for Spinal Cord Injury in Rats

    PubMed Central

    Sharafkhah, Ali; Koohi-Hosseinabadi, Omid; Semsar-Kazerooni, Maryam

    2016-01-01

    Study Design This study investigated the effects of transplantation of alginate encapsulated neural stem cells (NSCs) on spinal cord injury in Sprague-Dawley male rats. The neurological functions were assessed for 6 weeks after transplantation along with a histological study and measurement of caspase-3 levels. Purpose The aim of this study was to discover whether NSCs cultured in alginate transplantation improve recovery from spinal cord injury. Overview of Literature Spinal cord injury is one of the leading causes of disability and it has no effective treatment. Spinal cord injury can also cause sensory impairment. With an impetus on using stem cells therapy in various central nervous system settings, there is an interest in using stem cells for addressing spinal cord injury. Neural stem cell is one type of stem cells that is able to differentiate to all three neural lineages and it shows promise in spinal injury treatment. Furthermore, a number of studies have shown that culturing NSCs in three-dimensional (3D) scaffolds like alginate could enhance neural differentiation. Methods The NSCs were isolated from 14-day-old rat embryos. The isolated NSCs were cultured in growth media containing basic fibroblast growth factor and endothelial growth factor. The cells were characterized by differentiating to three neural lineages and they were cultured in an alginate scaffold. After 7 days the cells were encapsulated and transplanted in a rat model of spinal cord injury. Results Our data showed that culturing in an alginate 3D scaffold and transplantation of the NSCs could improve neurological outcome in a rat model of spinal cord injury. The inflammation scores and lesion sizes and also the activity of caspase-3 (for apoptosis evaluation) were less in encapsulated neural stem cell transplantation cases. Conclusions Transplantation of NSCs that were cultured in an alginate scaffold led to a better clinical and histological outcome for recovery from spinal cord injury in

  16. Influence of mechanical properties of alginate-based substrates on the performance of Schwann cells in culture.

    PubMed

    Ning, Liqun; Xu, Yitong; Chen, Xiongbiao; Schreyer, David J

    2016-06-01

    In tissue engineering, artificial tissue scaffolds containing living cells have been studied for tissue repair and regeneration. Notably, the performance of these encapsulated-in-scaffolds cells in terms of cell viability, proliferation, and expression of function during and after the scaffold fabrication process, has not been well documented because of the influence of mechanical, chemical, and physical properties of the scaffold substrate materials. This paper presents our study on the influence of mechanical properties of alginate-based substrates on the performance of Schwann cells, which are the major glial cells of peripheral nervous system. Given the fact that alginate polysaccharide hydrogel has poor cell adhesion properties, in this study, we examined several types of cell-adhesion supplements and found that alginate covalently modified with RGD peptide provided improved cell proliferation and adhesion. We prepared alginate-based substrates for cell culture using varying alginate concentrations for altering their mechanical properties, which were confirmed by compression testing. Then, we examined the viability, proliferation, morphology, and expression of the extracellular matrix protein laminin of Schwann cells that were seeded on the surface of alginate-based substrates (or 2D culture) or encapsulated within alginate-based substrates (3D cultures), and correlated the examined cell performance to the alginate concentration (or mechanical properties) of hydrogel substrates. Our findings suggest that covalent attachment of RGD peptide can improve the success of Schwann cell encapsulation within alginate-based scaffolds, and provide guidance for regulating the mechanical properties of alginate-based scaffolds containing Schwann cells for applications in peripheral nervous system regeneration and repair. PMID:27012482

  17. The role of alginate in Pseudomonas aeruginosa EPS adherence, viscoelastic properties and cell attachment.

    PubMed

    Orgad, Oded; Oren, Yoram; Walker, Sharon L; Herzberg, Moshe

    2011-08-01

    Among various functions, extracellular polymeric substances (EPS) provide microbial biofilms with mechanical stability and affect initial cell attachment, the first stage in the biofilm formation process. The role of alginate, an abundant polysaccharide in Pseudomonas aeruginosa biofilms, in the viscoelastic properties and adhesion kinetics of EPS was analyzed using a quartz crystal microbalance with dissipation (QCM-D) monitoring technology. EPS was extracted from two P. aeruginosa biofilms, a wild type strain, PAO1, and a mucoid strain, PAOmucA22 that over-expresses alginate production. The higher alginate content in the EPS originating from the mucoid biofilms was clearly shown to increase both the rate and the extent of attachment of the EPS, as well as the layer's thickness. Also, the presence of calcium and elevated ionic strength increased the thickness of the EPS layer. Dynamic light scattering (DLS) showed that the presence of calcium and elevated ionic strength induced intermolecular attractive interactions in the mucoid EPS molecules. For the wild type EPS, in the presence of calcium, an elevated shift in the distribution of the diffusion coefficients was observed with DLS due to a more compacted conformation of the EPS molecules. Moreover, the alginate over-expression effect on EPS adherence was compared to the effect of alginate over-expression on P. aeruginosa cell attachment. In a parallel plate flow cell, under similar hydraulic and aquatic conditions as those applied for the EPS adsorption tests in the QCM-D flow cell, reduced adherence of the mucoid strain was clearly observed compared to the wild type isogenic bacteria. The results suggest that alginate contributes to steric hindrance and shielding of cell surface features and adhesins that are known to promote cell attachment. PMID:21797737

  18. Adsorption of ochratoxin A from grape juice by yeast cells immobilised in calcium alginate beads.

    PubMed

    Farbo, Maria Grazia; Urgeghe, Pietro Paolo; Fiori, Stefano; Marceddu, Salvatore; Jaoua, Samir; Migheli, Quirico

    2016-01-18

    Grape juice can be easily contaminated with ochratoxin A (OTA), one of the known mycotoxins with the greatest public health significance. Among the different approaches to decontaminate juice from this mycotoxin, microbiological methods proved efficient, inexpensive and safe, particularly the use of yeast or yeast products. To ascertain whether immobilisation of the yeast biomass would lead to successful decontamination, alginate beads encapsulating Candida intermedia yeast cells were used in our experiments to evaluate their OTA-biosorption efficacy. Magnetic calcium alginate beads were also prepared by adding magnetite in the formulation to allow fast removal from the aqueous solution with a magnet. Calcium alginate beads were added to commercial grape juice spiked with 20 μg/kg OTA and after 48 h of incubation a significant reduction (>80%), of the total OTA content was achieved, while in the subsequent phases (72-120 h) OTA was slowly released into the grape juice by alginate beads. Biosorption properties of alginate-yeast beads were tested in a prototype bioreactor consisting in a glass chromatography column packed with beads, where juice amended with OTA was slowly flowed downstream. The adoption of an interconnected scaled-up bioreactor as an efficient and safe tool to remove traces of OTA from liquid matrices is discussed. PMID:26485316

  19. Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass.

    PubMed

    Keshaw, Hussila; Forbes, Alastair; Day, Richard M

    2005-07-01

    Attempts to stimulate therapeutic angiogenesis using gene therapy or delivery of recombinant growth factors, such as vascular endothelial growth factor (VEGF), have failed to demonstrate unequivocal efficacy in human trials. Bioactive glass stimulates fibroblasts to secrete significantly increased amounts of angiogenic growth factors and therefore has a number of potential applications in therapeutic angiogenesis. The aim of this study was to assess whether it is possible to encapsulate specific quantities of bioactive glass and fibroblasts into alginate beads, which will secrete growth factors capable of stimulating angiogenesis. Human fibroblasts (CCD-18Co) were encapsulated in alginate beads with specific quantities of 45S5 bioactive glass and incubated in culture medium (0-17 days). The conditioned medium was collected and assayed for VEGF or used to assess its ability to stimulate angiogenesis by measuring the proliferation of human dermal microvascular endothelial cells. At 17 days the beads were lysed and the amount of VEGF retained by the beads measured. Fibroblasts encapsulated in alginate beads containing 0.01% and 0.1% (w/v) 45S5 bioactive glass particles secreted increased quantities of VEGF compared with cells encapsulated with 0% or 1% (w/v) 45S5 bioactive glass particles. Lysed alginate beads containing 0.01% and 0.1% (w/v) 45S5 bioactive glass contained significantly more VEGF (p<0.01) compared with beads containing no glass particles. Endothelial cell proliferation was significantly increased (p<0.01) by conditioned medium collected from alginate beads containing 0.1% (w/v) 45S5 bioactive glass particles. The results of this study demonstrate that bioactive glass and fibroblasts can be successfully incorporated into alginate beads for use in delivering angiogenic growth factors. With further optimization, this technique offers a novel delivery device for stimulating therapeutic angiogenesis. PMID:15664644

  20. A novel bioreactor for immobilized phototrophs.

    PubMed

    Fermont, Saskia; Shama, Gilbert

    2010-02-01

    A novel configuration of photobioreactor is described in which filaments of alginate containing immobilized cells of a leaky mutant of Dunaliella parva are wound round a central light well which is located within a glass outer chamber so that a liquid medium is caused to flow in the annular space between the outside chamber and the alginate filaments. Glycerol production by D. parva was maintained for 700 h and the highest concentration of glycerol attained was approx. 12 mg l(-1). PMID:19838629

  1. Hemicellulosic Ethanol Production by Immobilized Wild Brazilian Yeast Scheffersomyces shehatae UFMG-HM 52.2: Effects of Cell Concentration and Stirring Rate.

    PubMed

    Antunes, F A F; Santos, J C; Chandel, A K; Milessi, T S S; Peres, G F D; da Silva, S S

    2016-02-01

    The use of sugarcane bagasse hemicellulosic hydrolysates presents an interesting alternative to second generation (2G) ethanol production. Techniques to enhance the fermentation process, e.g., the use of immobilized cells, is one of the key factors for efficient production. Here, the effect of two important parameters (cell concentration in immobilized system and stirring rate) on the 2G ethanol production using the wild Brazilian yeast S. shehatae UFMG-HM 52.2 immobilized in calcium alginate matrix are presented. A 2(2) full factorial design of experiments was carried out to evaluate the effect of cell concentrations in sodium alginate solution for immobilized bead production (3.0, 6.0, and 9.0 g/L) and stirring rate (150, 200, and 250 rpm) for 2G ethanol production. Statistical analysis showed that the use of both variables at low levels enhanced ethanol yield (YP/S). Under these process conditions, YP/S of 0.31 g/g and ethanol productivity (Qp) of 0.12 g/L h were achieved. Results showed the potential of this immobilized yeast in 2G ethanol production from C5 sugars and demonstrate the importance of adequate cell concentration in immobilized systems, a finding that stands to increase bioprocesses yields and productivity. PMID:26507335

  2. Alginate-Encapsulation for the Improved Hypothermic Preservation of Human Adipose-Derived Stem Cells.

    PubMed

    Swioklo, Stephen; Constantinescu, Andrei; Connon, Che J

    2016-03-01

    Despite considerable progress within the cell therapy industry, unmet bioprocessing and logistical challenges associated with the storage and distribution of cells between sites of manufacture and the clinic exist. We examined whether hypothermic (4°C-23°C) preservation of human adipose-derived stem cells could be improved through their encapsulation in 1.2% calcium alginate. Alginate encapsulation improved the recovery of viable cells after 72 hours of storage. Viable cell recovery was highly temperature-dependent, with an optimum temperature of 15°C. At this temperature, alginate encapsulation preserved the ability for recovered cells to attach to tissue culture plastic on rewarming, further increasing its effect on total cell recovery. On attachment, the cells were phenotypically normal, displayed normal growth kinetics, and maintained their capacity for trilineage differentiation. The number of cells encapsulated (up to 2 × 10(6) cells per milliliter) did not affect viable cell recovery nor did storage of encapsulated cells in a xeno-free, serum-free,current Good Manufacturing Practice-grade medium. We present a simple, low-cost system capable of enhancing the preservation of human adipose-derived stem cells stored at hypothermic temperatures, while maintaining their normal function. The storage of cells in this manner has great potential for extending the time windows for quality assurance and efficacy testing, distribution between the sites of manufacture and the clinic, and reducing the wastage associated with the limited shelf life of cells stored in their liquid state. PMID:26826163

  3. Chitosan and alginate types of bio-membrane in fuel cell application: An overview

    NASA Astrophysics Data System (ADS)

    Shaari, N.; Kamarudin, S. K.

    2015-09-01

    The major problems of polymer electrolyte membrane fuel cell technology that need to be highlighted are fuel crossovers (e.g., methanol or hydrogen leaking across fuel cell membranes), CO poisoning, low durability, and high cost. Chitosan and alginate-based biopolymer membranes have recently been used to solve these problems with promising results. Current research in biopolymer membrane materials and systems has focused on the following: 1) the development of novel and efficient biopolymer materials; and 2) increasing the processing capacity of membrane operations. Consequently, chitosan and alginate-based biopolymers seek to enhance fuel cell performance by improving proton conductivity, membrane durability, and reducing fuel crossover and electro-osmotic drag. There are four groups of chitosan-based membranes (categorized according to their reaction and preparation): self-cross-linked and salt-complexed chitosans, chitosan-based polymer blends, chitosan/inorganic filler composites, and chitosan/polymer composites. There are only three alginate-based membranes that have been synthesized for fuel cell application. This work aims to review the state-of-the-art in the growth of chitosan and alginate-based biopolymer membranes for fuel cell applications.

  4. Wound Dressing Model of Human Umbilical Cord Mesenchymal Stem Cells-Alginates Complex Promotes Skin Wound Healing by Paracrine Signaling

    PubMed Central

    Yang, Huachao; Tang, Zhenrui; Long, Gang; Huang, Wen

    2016-01-01

    Purpose. To probe growth characteristics of human umbilical cord mesenchymal stem cells (hUCMSCs) cultured with alginate gel scaffolds, and to explore feasibility of wound dressing model of hUCMSCs-alginates compound. Methods. hUCMSCs were isolated, cultured, and identified in vitro. Then cells were cultivated in 100 mM calcium alginate gel, and the capacity of proliferation and migration and the expression of vascular endothelial growth factors (VEGF) were investigated regularly. Wound dressing model of hUCMSCs-alginate gel mix was transplanted into Balb/c mice skin defects. Wound healing rate and immunohistochemistry were examined. Results. hUCMSCs grew well but with little migration ability in the alginate gel. Compared with control group, a significantly larger cell number and more VEGF expression were shown in the gel group after culturing for 3–6 days (P < 0.05). In addition, a faster skin wound healing rate with more neovascularization was observed in the hUCMSCs-alginate gel group than in control groups at 15th day after surgery (P < 0.05). Conclusion. hUCMSCs can proliferate well and express massive VEGF in calcium alginate gel porous scaffolds. Wound dressing model of hUCMSCs-alginate gel mix can promote wound healing through paracrine signaling. PMID:26880953

  5. Photo-crosslinked Alginate Hydrogels Support Enhanced Matrix Accumulation by Nucleus Pulposus Cells In Vivo

    PubMed Central

    Chou, Alice I.; Akintoye, Sunday O.; Nicoll, Steven B.

    2009-01-01

    Objective Intervertebral disc (IVD) degeneration is a major health concern in the United States. Replacement of the nucleus pulposus (NP) with injectable biomaterials represents a potential treatment strategy for IVD degeneration. The objective of this study was to characterize the extracellular matrix assembly and functional properties of NP cell-encapsulated, photo-crosslinked alginate hydrogels in comparison to ionically crosslinked alginate constructs. Methods Methacrylated alginate was synthesized by esterification of hydroxyl groups with methacrylic anhydride. Bovine nucleus pulposus cells were encapsulated in alginate hydrogels by ionic crosslinking using CaCl2 or through photo-crosslinking upon exposure to long-wave UV light in the presence of a photoinitiator. The hydrogels were evaluated in vitro by gross and histological analysis and in vivo using a murine subcutaneous pouch model. In vivo samples were analyzed for gene expression, extracellular matrix localization and accumulation, and equilibrium mechanical properties. Results Ionically crosslinked hydrogels exhibited inferior proteoglycan accumulation in vitro and were unable to maintain structural integrity in vivo. In further studies, photo-crosslinked alginate hydrogels were implanted for up to 8 weeks to examine NP tissue formation. Photo-crosslinked hydrogels displayed temporal increases in gene expression and assembly of type II collagen and proteoglycans. Additionally, hydrogels remained intact over the duration of the study and the equilibrium Young’s modulus increased from 1.24 ± 0.09 kPa to 4.31 ± 1.39 kPa, indicating the formation of functional matrix with properties comparable to those of the native NP. Conclusions These findings support the use of photo-crosslinked alginate hydrogels as biomaterial scaffolds for NP replacement. PMID:19427928

  6. Reduction of volatile acidity of acidic wines by immobilized Saccharomyces cerevisiae cells.

    PubMed

    Vilela, A; Schuller, D; Mendes-Faia, A; Côrte-Real, M

    2013-06-01

    Excessive volatile acidity in wines is a major problem and is still prevalent because available solutions are nevertheless unsatisfactory, namely, blending the filter-sterilized acidic wine with other wines of lower volatile acidity or using reverse osmosis. We have previously explored the use of an empirical biological deacidification procedure to lower the acetic acid content of wines. This winemaker's enological practice, which consists in refermentation associated with acetic acid consumption by yeasts, is performed by mixing the acidic wine with freshly crushed grapes, musts, or marc from a finished wine fermentation. We have shown that the commercial strain Saccharomyces cerevisiae S26 is able to decrease the volatile acidity of acidic wines with a volatile acidity higher than 1.44 g L(-1) acetic acid, with no detrimental impact on wine aroma. In this study, we aimed to optimize the immobilization of S26 cells in alginate beads for the bioreduction of volatile acidity of acidic wines. We found that S26 cells immobilized in double-layer alginate-chitosan beads could reduce the volatile acidity of an acidic wine (1.1 g L(-1) acetic acid, 12.5 % (v/v) ethanol, pH 3.12) by 28 and 62 % within 72 and 168 h, respectively, associated with a slight decrease in ethanol concentration (0.7 %). Similar volatile acidity removal efficiencies were obtained in medium with high glucose concentration (20 % w/v), indicating that this process may also be useful in the deacidification of grape musts. We, therefore, show that immobilized S. cerevisiae S26 cells in double-layer beads are an efficient alternative to improve the quality of wines with excessive volatile acidity. PMID:23361840

  7. Layer-by-layer immobilization of quaternized carboxymethyl chitosan/organic rectorite and alginate onto nanofibrous mats and their antibacterial application.

    PubMed

    Jiang, Linbin; Lu, Yuan; Liu, Xingyun; Tu, Hu; Zhang, Jianwei; Shi, Xiaowen; Deng, Hongbing; Du, Yumin

    2015-05-01

    Quaternized carboxymethyl chitosan (QCM-chitosan) and organic rectorite (OREC) immobilized nanofibrous mats are fabricated via layer-by-layer (LBL) technique in a self-assembly manner. The negatively charged cellulose nanofibrous mats hydrolyzed from electrospun cellulose acetate (CEL) mats are alternately modified with the positively charged QCM-chitosan and OREC intercalated composites and the negatively charged sodium alginate (ALG) via LBL technique. The morphology and antibacterial activity of the resultant mats are studied by changing the number of deposition bilayers, the compositions of dipping solutions and outermost layer. X-ray photoelectron spectroscopy results imply that QCM-chitosan and OREC are coated on cellulose mats. Besides, wide angle X-ray diffraction and small angle X-ray diffraction are applied to investigate the crystalline of the composite mats and the interlayer distance of OREC, respectively. The antibacterial activity of the mats increases with the incorporation of OREC into LBL films. PMID:25659718

  8. Magnetic Pycnoporus sanguineus-loaded alginate composite beads for removing dye from aqueous solutions.

    PubMed

    Yang, Chih-Hui; Shih, Ming-Cheng; Chiu, Han-Chen; Huang, Keng-Shiang

    2014-01-01

    Dye pollution in wastewater is a severe environmental problem because treating water containing dyes using conventional physical, chemical, and biological treatments is difficult. A conventional process is used to adsorb dyes and filter wastewater. Magnetic filtration is an emerging technology. In this study, magnetic Pycnoporus sanguineus-loaded alginate composite beads were employed to remove a dye solution. A white rot fungus, P. sanguineus, immobilized in alginate beads were used as a biosorbent to remove the dye solution. An alginate polymer could protect P. sanguineus in acidic environments. Superparamagnetic nanomaterials, iron oxide nanoparticles, were combined with alginate gels to form magnetic alginate composites. The magnetic guidability of alginate composites and biocompatibility of iron oxide nanoparticles facilitated the magnetic filtration and separation processes. The fungus cells were immobilized in loaded alginate composites to study the influence of the initial dye concentration and pH on the biosorption capacity. The composite beads could be removed easily post-adsorption by using a magnetic filtration process. When the amount of composite beads was varied, the results of kinetic studies of malachite green adsorption by immobilized cells of P. sanguineus fitted well with the pseudo-second-order model. The results indicated that the magnetic composite beads effectively adsorbed the dye solution from wastewater and were environmentally friendly. PMID:24945580

  9. Layered Alginate Constructs: A Platform for Co-culture of Heterogeneous Cell Populations.

    PubMed

    Sharma, Poonam; Twomey, Julianne D; Patkin, Michelle; Hsieh, Adam H

    2016-01-01

    Many load bearing tissues possess structurally and functionally distinct regions, typically accompanied by different cell phenotypes with differential mechanosensing characteristics. Engineering and analysis of these tissue types remain a challenge. Layered hydrogel constructs provide an opportunity for investigating the interactions among multiple cell populations within single constructs. Alginate hydrogels are both biocompatible and allow for easy isolation of cells after experimentation. Here, we describe a method for the development of small sized dual layered alginate hydrogel discs. This process maintains high cell viability of human mesenchymal stem cells during the formation process and these layered discs can withstand unconfined cyclic compression, commonly used for stimulation of hMSCs undergoing chondrogenesis. These layered constructs can potentially be scaled up to include additional levels, and also be used to segregate cell populations initially after layering. This dual layer alginate hydrogel culture platform can be used for many different applications including engineering and analysis of cells of load bearing tissues and co-cultures of other cell types. PMID:27583983

  10. 3D Porous Calcium-Alginate Scaffolds Cell Culture System Improved Human Osteoblast Cell Clusters for Cell Therapy

    PubMed Central

    Chen, Ching-Yun; Ke, Cherng-Jyh; Yen, Ko-Chung; Hsieh, Hui-Chen; Sun, Jui-Sheng; Lin, Feng-Huei

    2015-01-01

    Age-related orthopedic disorders and bone defects have become a critical public health issue, and cell-based therapy is potentially a novel solution for issues surrounding bone tissue engineering and regenerative medicine. Long-term cultures of primary bone cells exhibit phenotypic and functional degeneration; therefore, culturing cells or tissues suitable for clinical use remain a challenge. A platform consisting of human osteoblasts (hOBs), calcium-alginate (Ca-Alginate) scaffolds, and a self-made bioreactor system was established for autologous transplantation of human osteoblast cell clusters. The Ca-Alginate scaffold facilitated the growth and differentiation of human bone cell clusters, and the functionally-closed process bioreactor system supplied the soluble nutrients and osteogenic signals required to maintain the cell viability. This system preserved the proliferative ability of cells and cell viability and up-regulated bone-related gene expression and biological apatite crystals formation. The bone-like tissue generated could be extracted by removal of calcium ions via ethylenediaminetetraacetic acid (EDTA) chelation, and exhibited a size suitable for injection. The described strategy could be used in therapeutic application and opens new avenues for surgical interventions to correct skeletal defects. PMID:25825603

  11. Production of organic acids by periplasmic enzymes present in free and immobilized cells of Zymomonas mobilis.

    PubMed

    Malvessi, Eloane; Carra, Sabrina; Pasquali, Flávia Cristina; Kern, Denise Bizarro; da Silveira, Mauricio Moura; Ayub, Marco Antônio Záchia

    2013-01-01

    In this work the periplasmic enzymatic complex glucose-fructose oxidoreductase (GFOR)/glucono-δ-lactonase (GL) of permeabilized free or immobilized cells of Zymomonas mobilis was evaluated for the bioconversion of mixtures of fructose and different aldoses into organic acids. For all tested pairs of substrates with permeabilized free-cells, the best enzymatic activities were obtained in reactions with pH around 6.4 and temperatures ranging from 39 to 45 °C. Decreasing enzyme/substrate affinities were observed when fructose was in the mixture with glucose, maltose, galactose, and lactose, in this order. In bioconversion runs with 0.7 mol l(-1) of fructose and with aldose, with permeabilized free-cells of Z. mobilis, maximal concentrations of the respective aldonic acids of 0.64, 0.57, 0.51, and 0.51 mol l(-1) were achieved, with conversion yields of 95, 88, 78, and 78 %, respectively. Due to the important applications of lactobionic acid, the formation of this substance by the enzymatic GFOR/GL complex in Ca-alginate-immobilized cells was assessed. The highest GFOR/GL activities were found at pH 7.0-8.0 and temperatures of 47-50 °C. However, when a 24 h bioconversion run was carried out, it was observed that a combination of pH 6.4 and temperature of 47 °C led to the best results. In this case, despite the fact that Ca-alginate acts as a barrier for the diffusion of substrates and products, maximal lactobionic acid concentration, conversion yields and specific productivity similar to those obtained with permeabilized free-cells were achieved. PMID:23053345

  12. Aroma formation by immobilized yeast cells in fermentation processes.

    PubMed

    Nedović, V; Gibson, B; Mantzouridou, T F; Bugarski, B; Djordjević, V; Kalušević, A; Paraskevopoulou, A; Sandell, M; Šmogrovičová, D; Yilmaztekin, M

    2015-01-01

    Immobilized cell technology has shown a significant promotional effect on the fermentation of alcoholic beverages such as beer, wine and cider. However, genetic, morphological and physiological alterations occurring in immobilized yeast cells impact on aroma formation during fermentation processes. The focus of this review is exploitation of existing knowledge on the biochemistry and the biological role of flavour production in yeast for the biotechnological production of aroma compounds of industrial importance, by means of immobilized yeast. Various types of carrier materials and immobilization methods proposed for application in beer, wine, fruit wine, cider and mead production are presented. Engineering aspects with special emphasis on immobilized cell bioreactor design, operation and scale-up potential are also discussed. Ultimately, examples of products with improved quality properties within the alcoholic beverages are addressed, together with identification and description of the future perspectives and scope for cell immobilization in fermentation processes. PMID:25267117

  13. Effect of immobile isolated enzymes from rumen liquid by using alginate matrices on the bay leaf extraction

    NASA Astrophysics Data System (ADS)

    Paramita, Vita; Yulianto, Mohammad Endy; Yohana, Eflita; Arifan, Fahmi; Hanifah, Amjad, Muhammad Taqiyuddin

    2015-12-01

    This research aims to develop the enzymatically of bay leaves phytochemical extraction process. The novelty and the main innovations of this research is the development of extraction process by using enzymatic extractor and isolate the enzymes from rumen liquid to shift the equilibrium phase, increase the extraction rate and increase the extraction yield. The activity of rumen liquid enzyme was represented by the activity of cellulase and protease. The analyze of total flavonoid content was performed by using UV-Vis Spectrofometry. The activity of immobilized enzyme of cellulase (0.08±0.00 U/ml) was lower than the un-immobilized one (0.23±0.00 U/ml). However, there was no difference activity of the immobilized (0.75±0.00 U/ml) and un-immobilized (0.76±0.01 U/ml) of protease. The model of mass transfer of un-immobilized enzyme can be fitted on the experimental data, however the model of mass transfer of immobilized enzyme did not match with the experimental data. The mass transfer coefficient of enzymatic extraction flavonoids bay leaf without immobilization was 0.17167 s-1 which greater than the reported value of obtained KLa from extraction by using electric heating.

  14. Alginate based hybrid copolymer hydrogels--influence of pore morphology on cell-material interaction.

    PubMed

    Gnanaprakasam Thankam, Finosh; Muthu, Jayabalan

    2014-11-01

    Alginate based hybrid copolymer hydrogels with unidirectional pore morphology were prepared to achieve synergistic biological performance for cardiac tissue engineering applications. Alginate based hybrid copolymer (ALGP) were prepared using alginate and poly(propylene fumarate) (HT-PPF) units. Different hybrid bimodal hydrogels were prepared by covalent crosslinking using poly(ethylene glycol diacrylate) and vinyl monomer viz acrylic acid, methyl methacrylate, butyl methacrylate and N-N'-methylene-bis-acrylamide and ionic crosslinking with calcium. The morphologically modified hydrogels (MM-hydrogels) with unidirectional elongated pores and high aspect ratio were prepared. MM-hydrogels favour better mechanical properties; it also enhances cell viability and infiltration due to unidirectional pores. However, the crosslinkers influence the fibroblast infiltration of these hydrogels. Synthesis of collagen and fibroblast infiltration was greater for alginate copolymer crosslinked with poly(ethylene glycol diacrylate-acrylic acid (ALGP-PA) even after one month (288%). This hybrid MM-hydrogel promoted cardiomyoblast growth on to their interstices signifying its potent applications in cardiac tissue engineering. PMID:25129740

  15. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation

    NASA Astrophysics Data System (ADS)

    Nakashima, Y.; Tsusu, K.; Minami, K.; Nakanishi, Y.

    2014-06-01

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film was controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique.

  16. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation

    SciTech Connect

    Nakashima, Y.; Tsusu, K.; Minami, K.; Nakanishi, Y.

    2014-06-15

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film was controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique.

  17. Immobilization of Bacillus acidocaldarius whole-cell rhodanese in polysaccharide and insolubilized gelatin gels

    SciTech Connect

    De Riso, L.; Alteriis, E. de; Parascandola, P. |; La Cara, F.; Sada, A.

    1996-04-01

    The presence of rhodanese activity has been investigated in two strains of thermophilic eubacteria and two strains of extremophiles. Bacillus acidocaldarius, a thermoacidophilic eubacterium, showed the highest levels of enzyme activity. Whole cells, previously subjected to one cycle of freeze-thawing, were immobilized by entrapment in the polysaccharide matrices Ca-alginate, {kappa}-carrageenan and chitosan, and in an insolubilized gelatin gel. The results obtained with the different immobilizates in terms of activity yield, possibility of regeneration and operative stability were evaluated with the aim of setting up a continuous system. This was achieved with a system consisting of B. acidocaldarius cells entrapped in an insolubilized gelatin matrix. The latter, in the form of a thin membrane, was employed in a custom-conceived reactor operating as a plug flow reactor. 21 refs., 3 figs., 2 tabs.

  18. Fibronectin-Alginate microcapsules improve cell viability and protein secretion of encapsulated Factor IX-engineered human mesenchymal stromal cells.

    PubMed

    Sayyar, Bahareh; Dodd, Megan; Marquez-Curtis, Leah; Janowska-Wieczorek, Anna; Hortelano, Gonzalo

    2015-01-01

    Continuous delivery of proteins by engineered cells encapsu-lated in biocompatible polymeric microcapsules is of considerable therapeutic potential. However, this technology has not lived up to expectations due to inadequate cell--matrix interactions and subsequent cell death. In this study we hypoth-esize that the presence of fibronectin in an alginate matrix may enhance the viability and functionality of encapsulated human cord blood-derived mesenchymal stromal cells (MSCs) expressing the human Factor IX (FIX) gene. MSCs were encapsulated in alginate-PLL microcapsules containing 10, 100, or 500 μg/ml fibronectin to ameliorate cell survival. MSCs in microcapsules with 100 and 500 μg/ml fibronectin demonstrated improved cell viability and proliferation and higher FIX secretion compared to MSCs in non-supplemented microcapsules. In contrast, 10 μg/ml fibronectin did not significantly affect the viability and protein secretion from the encapsulated cells. Differentiation studies demonstrated osteogenic (but not chondrogenic or adipogenic) differentiation capability and efficient FIX secretion of the enclosed MSCs in the fibronectin-alginate suspension culture. Thus, the use of recombinant MSCs encapsulated in fibronectin-alginate microcapsules in basal or osteogenic cultures may be of practical use in the treatment of hemophilia B. PMID:24564349

  19. Controlled nucleation of hydroxyapatite on alginate scaffolds for stem cell-based bone tissue engineering

    PubMed Central

    Suárez-González, Darilis; Barnhart, Kara; Saito, Eiji; Vanderby, Ray; Hollister, Scott; Murphy, William L.

    2010-01-01

    Current bone tissue engineering strategies aim to grow a tissue similar to native bone by combining cells and biologically active molecules with a scaffold material. In this study, a macroporous scaffold made from the seaweed-derived polymer alginate was synthesized and mineralized for cell-based bone tissue engineering applications. Nucleation of a bone-like hydroxyapatite mineral was achieved by incubating the scaffold in modified simulated body fluids (mSBF) for four weeks. Analysis using scanning electron microscopy and energy dispersive x-ray analysis indicated growth of a continuous layer of mineral primarily composed of calcium and phosphorous. X-ray diffraction analysis showed peaks associated with hydroxyapatite, the major inorganic constituent of human bone tissue. In addition to the mineral characterization, the ability to control nucleation on the surface, into the bulk of the material, or on the inner pore surfaces of scaffolds was demonstrated. Finally, human MSCs attached and proliferated on the mineralized scaffolds and cell attachment improved when seeding cells on mineral coated alginate scaffolds. This novel alginate- HAP composite material could be used in bone tissue engineering as a scaffold material to deliver cells, and perhaps also biologically active molecules. PMID:20574984

  20. Utilizing Core–Shell Fibrous Collagen-Alginate Hydrogel Cell Delivery System for Bone Tissue Engineering

    PubMed Central

    Perez, Roman A.; Kim, Meeju; Kim, Tae-Hyun; Kim, Joong-Hyun; Lee, Jae Ho; Park, Jeong-Hui; Knowles, Jonathan C.

    2014-01-01

    Three-dimensional matrices that encapsulate and deliver stem cells with defect-tuned formulations are promising for bone tissue engineering. In this study, we designed a novel stem cell delivery system composed of collagen and alginate as the core and shell, respectively. Mesenchymal stem cells (MSCs) were loaded into the collagen solution and then deposited directly into a fibrous structure while simultaneously sheathing with alginate using a newly designed core–shell nozzle. Alginate encapsulation was achieved by the crosslinking within an adjusted calcium-containing solution that effectively preserved the continuous fibrous structure of the inner cell-collagen part. The constructed hydrogel carriers showed a continuous fiber with a diameter of ∼700–1000 μm for the core and 200–500 μm for the shell area, which was largely dependent on the alginate concentration (2%–5%) as well as the injection rate (20–80 mL/h). The water uptake capacity of the core–shell carriers was as high as 98%, which could act as a pore channel to supply nutrients and oxygen to the cells. Degradation of the scaffolds showed a weight loss of ∼22% at 7 days and ∼43% at 14 days, suggesting a possible role as a degradable tissue-engineered construct. The MSCs encapsulated within the collagen core showed excellent viability, exhibiting significant cellular proliferation up to 21 days with levels comparable to those observed in the pure collagen gel matrix used as a control. A live/dead cell assay also confirmed similar percentages of live cells within the core–shell carrier compared to those in the pure collagen gel, suggesting the carrier was cell compatible and was effective for maintaining a cell population. Cells allowed to differentiate under osteogenic conditions expressed high levels of bone-related genes, including osteocalcin, bone sialoprotein, and osteopontin. Further, when the core–shell fibrous carriers were implanted in a rat calvarium defect, the bone

  1. Removal and biodegradation of nonylphenol by immobilized Chlorella vulgaris.

    PubMed

    Gao, Q T; Wong, Y S; Tam, N F Y

    2011-11-01

    The removal and biodegradation of nonylphenol (NP) by alginate-immobilized cells of Chlorella vulgaris were compared with their respective free cultures. The effects of four cell densities of 10(4) per algal bead were investigated, as were the four algal bead concentrations, with regard to the removal and biodegradation of NP. Although immobilization significantly decreased the growth rate and NP's biodegradation efficiency of C. vulgaris, NP removal over a short period was enhanced. The NP removal mechanism by immobilized cells was similar to that by free cells, including adsorption onto alginate matrix and algal cells, absorption within cells and cellular biodegradation. The optimal cell density and bead concentration for the removal and biodegradation of NP was 50-100×10(4) cells algal bead(-1) and 2-4 beads ml(-1) of wastewater, respectively. These results demonstrated that immobilized C. vulgaris cells under optimal biomass and photoautotrophic conditions are effective in removing NP from contaminated water. PMID:21944284

  2. Porous matrix of calcium alginate/gelatin with enhanced properties as scaffold for cell culture.

    PubMed

    Cuadros, Teresa R; Erices, Alejandro A; Aguilera, José M

    2015-06-01

    Hydrophilic polysaccharides can be used to prepare porous matrices with a range of possible applications. One such application involves acting as scaffolds for cell culture. A new homogeneous and highly porous biopolymeric porous matrix (BPM) of calcium alginate/gelatin was produced by following a simple process. The key to this process was the selection of the porogen (aerated gelatin). The preparation technique comprises the following steps: incorporating the porogen into the solution of alginate (3%), molding, cross-linking the alginate in 1.41% CaCl2 (maximum gel strength; Cuadros et al., 2012. Carbohydr. Polym. 89, 1198-1206), molding, leaching and lyophilization. Cylinders of BPM were shown to have a relative density of 0.0274 ± 0.002, porosity of 97.26 ± 0.18%, an average internal pore size of 204 ± 58 µm and enhanced mechanical properties, while imbibing more than 11 times their dry weight in water. In vitro cell culture testing within BPM using mesenchymal stem cells was demonstrated by MTT assays and expression of alkaline phosphatase. The BPM provided a suitable microenvironment for seeding, adhesion, proliferation and osteogenic differentiation of cells. The preparation technique and resulting porous matrix represent potential tools for future study and further applications. PMID:25661688

  3. A kinetic study on the bioremediation of sodium cyanide and acetonitrile by free and immobilized cells of pseudomonas putida

    SciTech Connect

    Chapatwala, K.D.; Babu, G.R.V.; Armstead, E.R.

    1995-12-31

    Pseudomonas putida capable of utilizing organic nitrile (acetonitrile) and inorganic cyanide (sodium cyanide) as the sole source of carbon and nitrogen was isolated from contaminated industrial sites and waste water. The bacterium possesses nitrile aminohydrolase (EC 3.5.5.1) and amidase (EC 3.5.1.4), which are involved in the transformation of cyanides and nitrites into ammonia and CO{sub 2} through the formation of amide as an intermediate. Both of the enzymes have a high selectivity and affinity toward the {sup -}CN group. The rate of degradation of acetonitrile and sodium cyanide to ammonia and CO{sub 2} by the calcium-alginate immobilized cells of P. putida was studied. The rate of reaction during the biodegradation of acetonitrile and sodium cyanide, and the substrate- and product-dependent kinetics of these toxic compounds were studied using free and immobilized cells of P. putida and modeled using a simple Michaelis-Menten equation.

  4. Importance of solute partitioning in biphasic oxidation of benzyl alcohol by free and immobilized whole cells of Pichia pastoris

    SciTech Connect

    Kawakami, Koei; Nakahara, Takehiko . Dept. of Chemical Engineering)

    1994-04-25

    Using free and immobilized whole cells of Pichia pastoris, the biocatalytic oxidation of benzyl alcohol was investigated in different two-phase systems. This reaction was strongly influenced by both the substrate and product inhibitions, and the production rate of benzaldehyde in the aqueous system became maximum at the initial substrate concentration of ca. 29 g/L with the aldehyde formation less than 4 to 5 g/L even after a longer reaction period. The reaction rates in the two-liquid phase systems were predominantly determined by the partitioning behaviors of the substrate and the product between the two phases rather than by enzyme deactivation by the organic solvents. In the two-liquid phase systems, consequently, the organic solvent acted as a reservoir to reduce these inhibitory effects, and it was essential to select the organic solvent providing the optimal partitioning of the substrate into the aqueous phase as well as the preferential extraction of the product into the organic phase. The whole cells immobilized in a mixed matrix composed of silicone polymer and Ca alginate gel worked well in the xylene and decane media, providing comparable activities with the free cells. The production rate of aldehyde was also influenced by the solute partitioning into the hydrophilic alginate phase where the cells existed.

  5. Hydroxyapatite-doped alginate beads as scaffolds for the osteoblastic differentiation of mesenchymal stem cells.

    PubMed

    Wang, Martha O; Bracaglia, Laura; Thompson, Joshua A; Fisher, John P

    2016-09-01

    This work investigates the role of an osteoblastic matrix component, hydroxyapatite (HA), in modular alginate scaffolds to support osteoblastic differentiation of human mesenchymal stem cells for the purpose of tissue engineered bone constructs. This system is first evaluated in a tubular perfusion bioreactor, which has been shown to improve osteoblastic differentiation over static culture conditions. HMSCs in alginate scaffolds that contain HA show increased osteoblastic gene expression compared to cells in pure alginate scaffolds, as well as significantly more matrix production and mineralization. The differentiated hMSCs and cell-laid matrix are ultimately evaluated in an in vivo site specific model. Implantation of these scaffolds with preformed matrix into the rat femoral condyle defects results in abundant bone growth and significant incorporation of the scaffold into the surrounding tissue. The developed mineralized matrix, induced in part by the HA component in the scaffold, could lead to increased tissue development in critically sized defects, and should be included in future implant strategies. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2325-2333, 2016. PMID:27129735

  6. Chemoselective cross-linking and functionalization of alginate via Staudinger ligation

    PubMed Central

    Gattás-Asfura, Kerim M.; Stabler, Cherie L.

    2010-01-01

    In this study, we demonstrate the applicability of functionalized alginate to serve as a platform for the covalent cross-linking or immobilization of complimentary phosphine functionalized groups via the chemoselective Staudinger ligation scheme. Azide groups were covalently linked to alginate through a heterobifunctional polyethylene glycol (PEG) linker and carbodiimide. Degree of azide functionalization was varied as a function of carbodiimide concentration and determined by proton nuclear magnetic resonance (1H NMR) and infrared spectroscopy. Spontaneous and covalently cross-linked alginate-PEG gels were generated via the Staudinger ligation scheme upon incubation of the azide functionalized alginate with PEG chains having 1-methyl-2-diphenylphosphino-terephthalate (MDT) as end groups. Modulation of the MDT to N3 ratio resulted in variability of gel characteristics. In addition, azide functionalized alginate retained its capacity to instantaneously form hydrogels via electrostatic interaction with multivalent cations such as Ca2+ and Ba2+. Subsequently, covalent linkage of phosphine functionalized agents post-gelation of the alginate was feasible, as illustrated via linkage of MDT-PEG-carboxyfluorescein. Capitalization of the chemoselective and cell compatible Staudinger ligation scheme for covalent cross-linking of alginate hydrogels may enhance the utility of this polymer for the stable encapsulation of various cell types, in addition to their use in the immobilization of labeling agents, proteins, and other bioactive molecules. PMID:19848408

  7. Alginate Encapsulation of Human Embryonic Stem Cells to Enhance Directed Differentiation to Pancreatic Islet-Like Cells

    PubMed Central

    Richardson, Thomas; Kumta, Prashant N.

    2014-01-01

    The pluripotent property of human embryonic stem cells (hESCs) makes them attractive for treatment of degenerative diseases such as diabetes. We have developed a stage-wise directed differentiation protocol to produce alginate-encapsulated islet-like cells derived from hESCs, which can be directly implanted for diabetes therapy. The advantage of alginate encapsulation lies in its capability to immunoisolate, along with the added possibility of scalable culture. We have evaluated the possibility of encapsulating hESCs at different stages of differentiation. Encapsulation of predifferentiated cells resulted in insufficient cellular yield and differentiation. On the other hand, encapsulation of undifferentiated hESCs followed by differentiation induction upon encapsulation resulted in the highest viability and differentiation. More striking was that alginate encapsulation resulted in a much stronger differentiation compared to parallel two-dimensional cultures, resulting in 20-fold increase in c-peptide protein synthesis. To elucidate the mechanism contributing to encapsulation-mediated enhancement in hESC maturation, investigation of the signaling pathways revealed interesting insight. While the phospho-protein levels of all the tested signaling molecules were lower under encapsulation, the ratio of pSMAD/pAKT was significantly higher, indicating a more efficient signal transduction under encapsulation. These results clearly demonstrate that alginate encapsulation of hESCs and differentiation to islet-cell types provides a potentially translatable treatment option for type 1 diabetes. PMID:24881778

  8. Microfabrication of a tunable collagen/alginate-chitosan hydrogel membrane for controlling cell-cell interactions.

    PubMed

    Song, Yizhe; Zhang, Demeng; Lv, Yan; Guo, Xin; Lou, Ruyun; Wang, Shujun; Wang, Xiuli; Yu, Weiting; Ma, Xiaojun

    2016-11-20

    Indirect cell contact co-culture system is increasingly becoming more attractable owing to their advantages of easy cell separation and desirable outcomes for cell-cell interactions. However, how to precisely control the spatial position of cells within multicellular co-cultures is still experimentally challenging due to the incapability of the conventional methods in vitro. In the present study, a tunable collagen/alginate-chitosan (Col/Alg-Chi) membrane was established, which was capable of controlling intercellular distance between the neighboring cells at a level of micrometer resolution. It was showed that intercellular distance between the hepatocytes and the fibroblasts exerted significant influence on hepatic function in vitro. In particular, maintenance of the functionality of primary hepatocytes requires direct contact between the hepatocytes and their supportive stromal cells, and their effective contact distance is within 30μm. This technical platform would potentially enable investigations of dynamic cell-cell interaction in a multitude of applications including organogenesis, development or even neoplastic transformation. PMID:27561537

  9. Advances in ethanol production using immobilized cell systems

    SciTech Connect

    Margaritis, A.; Merchant, F.J.A.

    1984-01-01

    The application of immobilized cell systems for the production of ethanol has resulted in substantial improvements in the efficiency of the process when compared to the traditional free cell system. In this review, the various methods of cell immobilization employed in ethanol production systems have been described in detail. Their salient features, performance characteristics, advantages and limitations have been critically assessed. More recently, these immobilized cell systems have also been employed for the production of ethanol from non-conventional feedstocks such as Jerusalem artichoke extracts, cheese whey, cellulose, cellobiose and xylose. Ethanol production by immobilized yeast and bacterial cells has been attempted in various bioreactor types. Although most of these studies have been carried out using laboratory scale prototype bioreactors, it appears that only fluidized bed, horizontally packed bed bioreactors and tower fermenters may find application on scale-up. Several studies have indicated that upon immobilization, yeast cells performing ethanol fermentation exhibit more favourable physiological and metabolic properties. This, in addition to substantial improvements in ethanol productivities by immobilized cell systems, is indicative of the fact that future developments in the production of ethanol and alcoholic beverages will be directed towards the use of immobilized cell systems. 291 references.

  10. Citric acid production from partly deproteinized whey under non-sterile culture conditions using immobilized cells of lactose-positive and cold-adapted Yarrowia lipolytica B9.

    PubMed

    Arslan, Nazli Pinar; Aydogan, Mehmet Nuri; Taskin, Mesut

    2016-08-10

    The present study was performed to produce citric acid (CA) from partly deproteinized cheese whey (DPCW) under non-sterile culture conditions using immobilized cells of the cold-adapted and lactose-positive yeast Yarrowia lipolytica B9. DPCW was prepared using the temperature treatment of 90°C for 15min. Sodium alginate was used as entrapping agent for cell immobilization. Optimum conditions for the maximum CA production (33.3g/L) in non-sterile DPCW medium were the temperature of 20°C, pH 5.5, additional lactose concentration of 20g/L, sodium alginate concentration of 2%, number of 150 beads/100mL and incubation time of 120h. Similarly, maximum citric acid/isocitric acid (CA/ICA) ratio (6.79) could be reached under these optimal conditions. Additional nitrogen and phosphorus sources decreased CA concentration and CA/ICA ratio. Immobilized cells were reused in three continuous reaction cycles without any loss in the maximum CA concentration. The unique combination of low pH and temperature values as well as cell immobilization procedure could prevent undesired microbial contaminants during CA production. This is the first work on CA production by cold-adapted microorganisms under non-sterile culture conditions. Besides, CA production using a lactose-positive strain of the yeast Y. lipolytica was investigated for the first time in the present study. PMID:27234881

  11. Nitrogen fixation by immobilized NIF derepressed Klebsiella pneumoniae cells

    SciTech Connect

    Venkatasubramanian, K.; Toda, Y.

    1980-01-01

    In vitro production of ammonia through biological means poses a number of challenges. The organisms should be able to accumulate considerable concentrations of ammonia in the medium. Secondly, nonphotosynthetic organisms must be supplied with high-energy substrates to carry out the fixation reaction. Thirdly, the organisms must be kept in a viable state to produce ammonia over long periods of time. In this article, preliminary results on the production of ammonia by a mutant strain of Klebsiella pneumoniae in continuous reactor systems are discussed. Continuous production of ammonia becomes feasible through the immobilization of the whole microbial cells and then through the use of the resulting catalyst system in a flow-through reactor. The rationale for immobilizing microbial cells and the advantages of such an approach over traditional fermentation processes are briefly described as they relate to the microbial production of ammonia. The microbial cells can be immobilized in such a way that their viability is still maintained in the immobilized state. This, in turn, obviates addition of cofactors, which is often an expensive step associated with immobilized multi-enzyme systems. Reconstituted bovine-hide collagen as the carrier matrix for fixing the cells was the carrier of choice for our work on immobilized Klebsiella cells. Polyacrylamide gels were examined as an alternate carrier matrix but results from this were found to be inferior to those collagen immobilized cell system.

  12. Flicking technique for microencapsulation of cells in calcium alginate leading to the microtissue formation.

    PubMed

    Wong, Soon Chuan; Soon, Chin Fhong; Leong, Wai Yean; Tee, Kian Sek

    2016-01-01

    Microbeads have wide applications in biomedical engineering field that include drug delivery, encapsulation of biomolecules, tissue padding and tissue regeneration. In this paper, we report a simple, yet efficient, flicking technique to produce microcapsules of calcium alginate at a narrow distribution of size. The system consists of an infusion pump and a customised flicker that taps the syringe needle for dispersing microcapsules of sodium alginate that polymerised in the calcium chloride solution. The flow rate of the syringe pump and the velocity of the flicker were studied to achieve a well controlled and tunable size distribution of microbeads ranging from 200 to 400 μm. At a flow rate of 4 μl/min and flicking rate of 80 rpm, a narrow size distribution of microbeads were produced. Via this technique, HaCaT cells were encapsulated in calcium alginate microbeads that grown into microtissues with a size ranging from 100 to 300 μm after two weeks of culture. These microtissues could be potentially useful for pharmacological application. PMID:26878098

  13. Alginate Encapsulation of Pluripotent Stem Cells Using a Co-axial Nozzle.

    PubMed

    Horiguchi, Ikki; Sakai, Yasuyuki

    2015-01-01

    Pluripotent stem cells (PS cells) are the focus of intense research due to their role in regenerative medicine and drug screening. However, the development of a mass culture system would be required for using PS cells in these applications. Suspension culture is one promising culture method for the mass production of PS cells, although some issues such as controlling aggregation and limiting shear stress from the culture medium are still unsolved. In order to solve these problems, we developed a method of calcium alginate (Alg-Ca) encapsulation using a co-axial nozzle. This method can control the size of the capsules easily by co-flowing N₂ gas. The controllable capsule diameter must be larger than 500 µm because too high a flow rate of N₂ gas causes the breakdown of droplets and thus heterogeneous-sized capsules. Moreover, a low concentration of Alg-Na and CaCl₂ causes non-spherical capsules. Although an Alg-Ca capsule without a coating of Alg-PLL easily dissolves enabling the collection of cells, they can also potentially leak out from capsules lacking an Alg-PLL coating. Indeed, an alginate-PLL coating can prevent cellular leakage but is also hard to break. This technology can be used to research the stem cell niche as well as the mass production of PS cells because encapsulation can modify the micro-environment surrounding cells including the extracellular matrix and the concentration of secreted factors. PMID:26168084

  14. A tunable silk-alginate hydrogel scaffold for stem cell culture and transplantation

    PubMed Central

    Ziv, Keren; Nuhn, Harald; Ben-Haim, Yael; Sasportas, Laura S.; Kempen, Paul J.; Niedringhaus, Thomas P.; Hrynyk, Michael; Sinclair, Robert; Barron, Annelise E.; Gambhir, Sanjiv S.

    2014-01-01

    One of the major challenges in regenerative medicine is the ability to recreate the stem cell niche, which is defined by its signaling molecules, the creation of cytokine gradients, and the modulation of matrix stiffness. A wide range of scaffolds has been developed in order to recapitulate the stem cell niche, among them hydrogels. This paper reports the development of a new silk-alginate based hydrogel with a focus on stem cell culture. This biocomposite allows to fine tune its elasticity during cell culture, addressing the importance of mechanotransduction during stem cell differentiation. The silk-alginate scaffold promotes adherence of mouse embryonic stem cells and cell survival upon transplantation. In addition, it has tunable stiffness as function of the silk-alginte ratio and the concentration of crosslinker - a characteristic that is very hard to accomplish in current hydrogels. The hydrogel and the presented results represents key steps on the way of creating artificial stem cell niche, opening up new paths in regenerative medicine. PMID:24484675

  15. Calcium-alginate gel bead cross-linked with gelatin as microcarrier for anchorage-dependent cell culture.

    PubMed

    Kwon, Young Jik; Peng, Ching-An

    2002-07-01

    Valuable products obtainedfrom the cultivation of anchorage-dependent mammalian cells require large-scale processes to obtain commercially useful quantities. It is generally accepted that suspension culture is the ideal mode of operation. Because anchorage-dependent cells need surfaces to be able to attach and spread, the incorporation of microcarriers to suspension culture is indispensable. Since the dextran-based microcarrier wasfirst introduced, many different types of microcarriers have been developed and commercialized. In this study, alginate-based microcarriers were made in the following order: (i) calcium-alginate gel beads prepared by dropping a blend of sodium alginate and propylene glycol alginate (PGA) into calcium chloride solution, (ii) the PGA section of gel beads cross-linked with gelatin in alkaline solution (i.e., via the transacylation reaction between the ester group of PGA and amino group of gelatin), and (iii) gelatin membrane around the beads further cross-linked by glutaraldehyde. The glutaraldehyde-treated gelatintransacylated PGA/alginate microcarrier showed superior features in high stability under phosphate-containing solution, density close to that of culture medium, and transparency. Moreover, the Chinese hamster ovary CHO-KI and amphotropic retrovirus producer PA317 cells cultivated on the newly synthesized microcarriers exhibited similar growth kinetics of these two types of cell lines cultured on commercial polystyrene microcarriers. However, cell morphology was easily monitored on the transparent microcarriers made in this study. PMID:12139248

  16. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif

    SciTech Connect

    Maruyama, Yukie; Ochiai, Akihito; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku

    2011-02-18

    Research highlights: {yields} Bacterial alginate-binding Algp7 is similar to component EfeO of Fe{sup 2+} transporter. {yields} We determined the crystal structure of Algp7 with a metal-binding motif. {yields} Algp7 consists of two helical bundles formed through duplication of a single bundle. {yields} A deep cleft involved in alginate binding locates around the metal-binding site. {yields} Algp7 may function as a Fe{sup 2+}-chelated alginate-binding protein. -- Abstract: A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 A resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.

  17. [Observation and comparison on microstructure of immobilized Aerobacillus fusiformis under wastewater treatment].

    PubMed

    Zhang, Yongming; Zhang, Yue; Shi, Hanchang; Wang, Jianlong; Qian, Yi

    2003-05-01

    Aiming at printing ink wastewater, a strain of bacterium was isolated from activated sludge, and identified as Aerobacillus fusiformis. The Aerobacillus fusiformis was respectively immobilized in calcium alginate gel, polyvinyl alcohol (PVA) and microporous ceramics and their microstructure were observed by scanning electron microscope (SEM). It was found that calcium alginate gel might dissolve in the wastewater, and the activity was restricted as cells wrapped in PVA, so the COD removal ratio was low. The method of immobilized cells using microporous ceramics is simple and COD removal efficiency can be achieved. In addition, the immobilized bacterium could not be separated easily from the ceramics in the wastewater. PMID:12916206

  18. Immobilization of Pichia pastoris cells containing alcohol oxidase activity

    PubMed Central

    Maleknia, S; Ahmadi, H; Norouzian, D

    2011-01-01

    Background and Objectives The attempts were made to describe the development of a whole cell immobilization of P. pastoris by entrapping the cells in polyacrylamide gel beads. The alcohol oxidase activity of the whole cell Pichia pastoris was evaluated in comparison with yeast biomass production. Materials and Methods Methylotrophic yeast P. pastoris was obtained from Collection of Standard Microorganisms, Department of Bacterial Vaccines, Pasteur Institute of Iran (CSMPI). Stock culture was maintained on YPD agar plates. Alcohol oxidase was strongly induced by addition of 0.5% methanol as the carbon source. The cells were harvested by centrifugation then permeabilized. Finally the cells were immobilized in polyacrylamide gel beads. The activity of alcohol oxidase was determined by method of Tane et al. Results At the end of the logarithmic phase of cell culture, the alcohol oxidase activity of the whole cell P. Pastoris reached the highest level. In comparison, the alcohol oxidase activity was measured in an immobilized P. pastoris when entrapped in polyacrylamide gel beads. The alcohol oxidase activity of cells was induced by addition of 0.5% methanol as the carbon source. The cells were permeabilized by cetyltrimethylammonium bromide (CTAB) and immobilized. CTAB was also found to increase the gel permeability. Alcohol oxidase activity of immobilized cells was then quantitated by ABTS/POD spectrophotometric method at OD 420. There was a 14% increase in alcohol oxidase activity in immobilized cells as compared with free cells. By addition of 2-butanol as a substrate, the relative activity of alcohol oxidase was significantly higher as compared with other substrates added to the reaction media. Conclusion Immobilization of cells could eliminate lengthy and expensive procedures of enzyme separation and purification, protect and stabilize enzyme activity, and perform easy separation of the enzyme from the reaction media. PMID:22530090

  19. Continuous culture of immobilized streptomyces cells for kasugamycin production.

    PubMed

    Kim, C J; Chang, Y K; Chun, G T; Jeong, Y H; Lee, S J

    2001-01-01

    Continuous cultures of immobilized Streptomyces kasugaensis, a kasugamycin producer, were carried out on Celite beads. When using a prototype separator for immobilized-cell separation and recycling, the continuous operation could not be sustained for an extended period as a result of an excessive loss of immobilized cells caused by the poor performance of the separator. Accordingly, the immobilized-cell separator was revised to provide better immobilized-cell settling and thus recycling into the reactor. In a subsequent culture using the revised separator, a stable operation was maintained for over 820 h with a high kasugamycin productivity. The kasugamycin productivity ranged from 9.8 to 16.1 mg/L/h, which was about 14- to 23-fold higher than that in a batch suspended-cell culture. When the original feeding medium concentration was doubled at the end of the continuous culture, the productivity became severely impaired for several reasons, which will be discussed. An excessive formation of free cells and loss of immobilized cells through the separator were also observed. PMID:11386865

  20. Alginate hydrogel enriched with enamel matrix derivative to target osteogenic cell differentiation in TiO2 scaffolds

    PubMed Central

    Pullisaar, Helen; Verket, Anders; Szoke, Krisztina; Tiainen, Hanna; Haugen, Håvard J; Brinchmann, Jan E; Reseland, Janne E

    2015-01-01

    The purpose of bone tissue engineering is to employ scaffolds, cells, and growth factors to facilitate healing of bone defects. The aim of this study was to assess the viability and osteogenic differentiation of primary human osteoblasts and adipose tissue–derived mesenchymal stem cells from various donors on titanium dioxide (TiO2) scaffolds coated with an alginate hydrogel enriched with enamel matrix derivative. Cells were harvested for quantitative reverse transcription polymerase chain reaction on days 14 and 21, and medium was collected on days 2, 14, and 21 for protein analyses. Neither coating with alginate hydrogel nor alginate hydrogel enriched with enamel matrix derivative induced a cytotoxic response. Enamel matrix derivative–enriched alginate hydrogel significantly increased the expression of osteoblast markers COL1A1, TNFRSF11B, and BGLAP and secretion of osteopontin in human osteoblasts, whereas osteogenic differentiation of human adipose tissue–derived mesenchymal stem cells seemed unaffected by enamel matrix derivative. The alginate hydrogel coating procedure may have potential for local delivery of enamel matrix derivative and other stimulatory factors for use in bone tissue engineering. PMID:26090086

  1. Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors.

    PubMed

    Ansari, Sahar; Chen, Chider; Xu, Xingtian; Annabi, Nasim; Zadeh, Homayoun H; Wu, Benjamin M; Khademhosseini, Ali; Shi, Songtao; Moshaverinia, Alireza

    2016-06-01

    Repair and regeneration of muscle tissue following traumatic injuries or muscle diseases often presents a challenging clinical situation. If a significant amount of tissue is lost the native regenerative potential of skeletal muscle will not be able to grow to fill the defect site completely. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material, present an advantageous alternative therapeutic option for muscle tissue engineering in comparison to current treatment modalities available. To date, there has been no report on application of gingival mesenchymal stem cells (GMSCs) in three-dimensional scaffolds for muscle tissue engineering. The objectives of the current study were to develop an injectable 3D RGD-coupled alginate scaffold with multiple growth factor delivery capacity for encapsulating GMSCs, and to evaluate the capacity of encapsulated GMSCs to differentiate into myogenic tissue in vitro and in vivo where encapsulated GMSCs were transplanted subcutaneously into immunocompromised mice. The results demonstrate that after 4 weeks of differentiation in vitro, GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited muscle cell-like morphology with high levels of mRNA expression for gene markers related to muscle regeneration (MyoD, Myf5, and MyoG) via qPCR measurement. Our quantitative PCR analyzes revealed that the stiffness of the RGD-coupled alginate regulates the myogenic differentiation of encapsulated GMSCs. Histological and immunohistochemical/fluorescence staining for protein markers specific for myogenic tissue confirmed muscle regeneration in subcutaneous transplantation in our in vivo animal model. GMSCs showed significantly greater capacity for myogenic regeneration in comparison to hBMMSCs (p < 0.05). Altogether, our findings confirmed that GMSCs encapsulated in RGD-modified alginate hydrogel with multiple growth factor delivery capacity is a promising

  2. Fluid and cell behaviors along a 3D printed alginate/gelatin/fibrin channel.

    PubMed

    Xu, Yufan; Wang, Xiaohong

    2015-08-01

    Three-dimensional (3D) cell manipulation is available with the integration of microfluidic technology and rapid prototyping techniques. High-Fidelity (Hi-Fi) constructs hold enormous therapeutic potential for organ manufacturing and regenerative medicine. In the present paper we introduced a quasi-three-dimensional (Q3D) model with parallel biocompatible alginate/gelatin/fibrin hurdles. The behaviors of fluids and cells along the microfluidic channels with various widths were studied. Cells inside the newly designed microfluidic channels attached and grew well. Morphological changes of adipose-derived stem cells (ADSCs) in both two-dimensional (2D) and 3D milieu were found on the printed constructs. Endothelialization occurred with the co-cultures of ADSCs and hepatocytes. This study provides insights into the interactions among fluids, cells and biomaterials, the behaviors of fluids and cells along the microfluidic channels, and the applications of Q3D techniques. PMID:25727058

  3. Adsorption of As(III), As(V) and Cu(II) on zirconium oxide immobilized alginate beads in aqueous phase.

    PubMed

    Kwon, Oh-Hun; Kim, Jong-Oh; Cho, Dong-Wan; Kumar, Rahul; Baek, Seung Han; Kurade, Mayur B; Jeon, Byong-Hun

    2016-10-01

    A composite adsorbent to remove arsenite [As(III)], arsenate [As(V)], and copper [Cu(II)] from aqueous phase was synthesized by immobilizing zirconium oxide on alginate beads (ZOAB). The composition (wt%) of ZOAB (Zr-34.0; O-32.7; C-21.3; Ca-1.0) was confirmed by energy dispersive X-ray (EDX) analysis. Sorption studies were conducted on single and binary sorbate systems, and the effects of contact time, initial adsorbate concentration, and pH on the adsorption performance of ZOAB (pHPZC = 4.3) were monitored. The sorption process for As(III)/As(V) and Cu(II) reached an equilibrium state within 240 h and 24 h, respectively, with maximum sorption capacities of 32.3, 28.5, and 69.9 mg g(-1), respectively. The addition of Cu(II) was favorable for As(V) sorption in contrast to As(III). In the presence of 48.6 mg L(-1) Cu(II), the sorption capacity of As(V) increased from 1.5 to 3.8 mg g(-1) after 240 h. The sorption data for As(III)/As(V) and Cu(II) conformed the Freundlich and Langmuir isotherm models, respectively. The adsorption of As(III), As(V), and Cu(II) followed pseudo second order kinetics. The effect of arsenic species on Cu(II) sorption was insignificant. The results of present study demonstrated that the synthesized sorbent could be useful for the simultaneous removal of both anionic and cationic contaminants from wastewaters. PMID:27372261

  4. Physiological and Morphological Modifications in Immobilized Gibberella fujikuroi Mycelia

    PubMed Central

    Saucedo, José Edmundo Nava; Barbotin, Jean-Noël; Thomas, Daniel

    1989-01-01

    Constraints created by immobilization conditions modified the physiological behavior and morphological characteristics of Gibberella fujikuroi mycelia in comparison with their development in free-cell conditions. G. fujikuroi mycelia were immobilized in different support matrices (polyurethane, carrageenan, and alginate) and showed a variety of reactions in response to the different microenvironmental factors encountered during and after immobilization. The best support with respect to gibberellic acid yield and biocatalyst stability was found to be an alginate with a high degree of polymerization. The most visible effects of immobilization included changes in growth development, morphological appearance, metabolite production, mycelial pigmentation, mycelial viability under starvation conditions, and induction of resting forms when previously immobilized mycelia were subcultured. Images PMID:16348017

  5. Cell immobilization for microbial production of 1,3-propanediol.

    PubMed

    Gungormusler-Yilmaz, Mine; Cicek, Nazim; Levin, David B; Azbar, Nuri

    2016-06-01

    Cell and enzyme immobilization are often used for industrial production of high-value products. In recent years, immobilization techniques have been applied to the production of value-added chemicals such as 1,3-Propanediol (1,3-PDO). Biotechnological fermentation is an attractive alternative to current 1,3-PDO production methods, which are primarily thermochemical processes, as it generates high volumetric yields of 1,3-PDO, is a much less energy intensive process, and generates lower amounts of environmental organic pollutants. Although several approaches including: batch, fed-batch, continuous-feed and two-step continuous-feed were tested in suspended systems, it has been well demonstrated that cell immobilization techniques can significantly enhance 1,3-PDO production and allow robust continuous production in smaller bioreactors. This review covers various immobilization methods and their application for 1,3-PDO production. PMID:25600463

  6. Alginate Inhibits Iron Absorption from Ferrous Gluconate in a Randomized Controlled Trial and Reduces Iron Uptake into Caco-2 Cells

    PubMed Central

    Wawer, Anna A.; Harvey, Linda J.; Dainty, Jack R.; Perez-Moral, Natalia; Sharp, Paul; Fairweather-Tait, Susan J.

    2014-01-01

    Previous in vitro results indicated that alginate beads might be a useful vehicle for food iron fortification. A human study was undertaken to test the hypothesis that alginate enhances iron absorption. A randomised, single blinded, cross-over trial was carried out in which iron absorption was measured from serum iron appearance after a test meal. Overnight-fasted volunteers (n = 15) were given a test meal of 200 g cola-flavoured jelly plus 21 mg iron as ferrous gluconate, either in alginate beads mixed into the jelly or in a capsule. Iron absorption was lower from the alginate beads than from ferrous gluconate (8.5% and 12.6% respectively, p = 0.003). Sub-group B (n = 9) consumed the test meals together with 600 mg calcium to determine whether alginate modified the inhibitory effect of calcium. Calcium reduced iron absorption from ferrous gluconate by 51%, from 11.5% to 5.6% (p = 0.014), and from alginate beads by 37%, from 8.3% to 5.2% (p = 0.009). In vitro studies using Caco-2 cells were designed to explore the reasons for the difference between the previous in vitro findings and the human study; confirmed the inhibitory effect of alginate. Beads similar to those used in the human study were subjected to simulated gastrointestinal digestion, with and without cola jelly, and the digestate applied to Caco-2 cells. Both alginate and cola jelly significantly reduced iron uptake into the cells, by 34% (p = 0.009) and 35% (p = 0.003) respectively. The combination of cola jelly and calcium produced a very low ferritin response, 16.5% (p<0.001) of that observed with ferrous gluconate alone. The results of these studies demonstrate that alginate beads are not a useful delivery system for soluble salts of iron for the purpose of food fortification. Trial Registration ClinicalTrials.gov NCT01528644 PMID:25391138

  7. Propionic acid production by immobilized cells of a propionate-tolerant strain of Propionibacterium acidipropionici.

    PubMed

    Paik, H D; Glatz, B A

    1994-10-01

    Cells of the propionate-tolerant strain Propionibacterium acidipropionici P200910, immobilized in calcium alginate beads, were tested for propionic and acetic acid production both in a semidefined laboratory medium and in corn steep liquor in batch, fed-batch, and continuous fermentation. Cell density was about 9.8 x 10(9) cells/g (wet weight) of beads, and beads were added to the medium at 0.1 g (wet weight) beads/ml. Beads could be reused for several consecutive batch fermentations; propionic acid production in the tenth cycle was about 50%-70% of that in the first cycle. In batch culture complete substrate consumption (glucose in semidefined medium, lactate in corn steep liquor) and maximum acid production were seen within 36 h, and acid yields from the substrate were higher than in free-cell fermentations. Fed-batch fermentations were incubated up to 250 h. Maximum propionic acid concentrations obtained were 45.6 g/l in corn steep liquor and 57 g/l in semidefined medium; this is the highest concentration achieved to date in our laboratory. Maximum acetic acid concentrations were 17 g/l and 12 g/l, respectively. In continuous fermentation of semide-fined medium, dilution rates up to 0.31 h-1 could be used, which gave higher volumetric productivities (0.96 g l-1 h-1 for propionic acid and 0.26 g l-1 h-1 for acetic acid) than we have obtained with free cells. Corn steep liquor shows promise as an inexpensive medium for production of both acids by immobilized cells of propionibacteria. PMID:7765817

  8. Immobilized cell cross-flow reactor. [Saccharomyces cerevisiae

    SciTech Connect

    Chotani, G.K.; Constantinides, A.

    1984-01-01

    A cross-current flow reactor was operated using sodium alginate gel entrapped yeast cells (Saccharomyces cerevisiae) under growth conditions. Micron-sized silica, incorporated into the biocatalyst particles (1 mm mean diameter) improved mechanical strength and internal surface adhesion. The process showed decreased productivity and stability at 35/sup 0/C compared to the normal study done at 30/sup 0/C. The increased number of cross flows diminish the product inhibition effect. The residence time distribution shows that the cross-flow bioreactor system can be approximated to either a train of backmixed fermentors in series or a plug flow fermentor with moderate axial dispersion.

  9. An animal model study for bone repair with encapsulated differentiated osteoblasts from adipose-derived stem cells in alginate

    PubMed Central

    Hashemibeni, Batool; Esfandiari, Ebrahim; Sadeghi, Farzaneh; Heidary, Fariba; Roshankhah, Shiva; Mardani, Mohammad; Goharian, Vahid

    2014-01-01

    Objective(s): Adipose derived stem cells (ADSCs) can be engineered to express bone specific markers. The aim of this study is to evaluate repairing tibia in animal model with differentiated osteoblasts from autologous ADSCs in alginate scaffold. Materials and Methods: In this study, 6 canine's ADSCs were encapsulated in alginate and differentiated into osteoblasts. Alkaline phosphatase assay (ALP) and RT-PCR method were applied to confirm the osteogenic induction. Then, encapsulated differentiated cells (group 1) and cell-free alginate (group 2) implanted in defected part of dog's tibia for 4 and 8 weeks. Regenerated tissues and compressive strength of samples were evaluated by histological and Immunohistochemical (IHC) methods and Tensometer Universal Machine. Results: Our results showed that ADSCs were differentiated into osteoblasts in vitro, and type I collagen and osteocalcin genes expression in differentiated osteoblasts was proved by RT-PCR. In group 2, ossification and thickness of trabecula were low compared to group 1, and in both groups woven bone was observed instead of control group's compact bone. Considering time, we found bone trabeculae regression and ossification reduction after 8 weeks compared with 4 weeks in group 2, but in group 1 bone formation was increased in 8 weeks. Presence of differentiated cells caused significantly more compressive strength in comparison with group 2 (P-value ≤0.05). Conclusion: This research showed that engineering bone from differentiated adipose-derived stem cells, encapsulated in alginate can repair tibia defects. PMID:25691926

  10. Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration.

    PubMed

    Moshaverinia, Alireza; Xu, Xingtian; Chen, Chider; Akiyama, Kentaro; Snead, Malcolm L; Shi, Songtao

    2013-12-01

    Dental-derived mesenchymal stem cells (MSCs) are promising candidates for cartilage regeneration, with a high capacity for chondrogenic differentiation. This property helps make dental MSCs an advantageous therapeutic option compared to current treatment modalities. The MSC delivery vehicle is the principal determinant for the success of MSC-mediated cartilage regeneration therapies. The objectives of this study were to: (1) develop a novel co-delivery system based on TGF-β1 loaded RGD-coupled alginate microspheres encapsulating periodontal ligament stem cells (PDLSCs) or gingival mesenchymal stem cells (GMSCs); and (2) investigate dental MSC viability and chondrogenic differentiation in alginate microspheres. The results revealed the sustained release of TGF-β1 from the alginate microspheres. After 4 weeks of chondrogenic differentiation in vitro, PDLSCs and GMSCs as well as human bone marrow mesenchymal stem cells (hBMMSCs) (as positive control) revealed chondrogenic gene expression markers (Col II and Sox-9) via qPCR, as well as matrix positively stained by Toluidine Blue and Safranin-O. In animal studies, ectopic cartilage tissue regeneration was observed inside and around the transplanted microspheres, confirmed by histochemical and immunofluorescent staining. Interestingly, PDLSCs showed more chondrogenesis than GMSCs and hBMMSCs (p<0.05). Taken together, these results suggest that RGD-modified alginate microencapsulating dental MSCs make a promising candidate for cartilage regeneration. Our results highlight the vital role played by the microenvironment, as well as value of presenting inductive signals for viability and differentiation of MSCs. PMID:23891740

  11. Continuous IBE fermentation by immobilized growing Clostridium beijerinckii cells in a stirred-tank fermentor. [Isopropanol-Butanol-Ethanol (IBE)

    SciTech Connect

    Krouwel, P.G.; Groot, W.J.; Kossen, M.W.

    1983-01-01

    The potential of continuous isopropanol-butanol-ethanol (IBE) fermentation by Ca-alginate-immobilized Clostridium beijerinckii cells in a continuous stirred-tank reactor is investigated. A mathematical model is presented to describe steady-state reactor performance. It appeared to be possible to use the biocatalyst particles repeatedly for successive fermentations (at least three times for a total duration of two months). Reactor productivity was 6-16 times higher than that of a batch fermentation (free cells), while the solvents yield was also increased. Measurements of substrate, product, and biomass concentrations were only partially in agreement with the model; however, a solid basis for further technological development of the process has been laid. (Refs. 15).

  12. Microbial degradation of quinoline by immobilized cells of Burkholderia pickettii.

    PubMed

    Jianlong, Wang; Xiangchun, Quan; Liping, Han; Yi, Qian; Hegemann, Werner

    2002-05-01

    A quinoline-biodegrading microorganism was isolated from activated sludge of coke-oven wastewater treatment plant using quinoline as sole carbon and nitrogen source. It is a gram negative, rod-shaped and aerobic strain, which was identified as Burkholderia pickettii. The biodegradation of quinoline was carried out with this isolated strain. Analysis by high performance liquid chromatography and gas chromatography/mass spectrum (GC/MS) revealed that 2-hydroxyquinoline (2-OH-Q) was the first intermediate in the course of quinoline biodegradation. A novel immobilization carrier, that is, polyvinyl alcohol (PVA)-gauze hybrid carrier, was developed. The isolated strain was immobilized by two different immobilizing techniques and used for the quinolinerdegradation. It was found that biodegradation rate of quinoline by the microorganisms immobilized on PVA-gauze hybrid carrier was faster than that by the microorganisms immobilized in PVA gel beads. Kinetics of quinoline biodegradation by cells of Burkholderia pickettii immobilized on PVA-gauze hybrid carrier was investigated. The results demonstrate that quinoline degradation could be described by zero-order reaction rate equation when the initial quinoline concentration was in the range of 50-500 mg l(-1). PMID:12108721

  13. Ca-alginate hydrogel mechanical transformations--the influence on yeast cell growth dynamics.

    PubMed

    Pajić-Lijaković, Ivana; Plavsić, Milenko; Bugarski, Branko; Nedović, Viktor

    2007-05-01

    A mathematical model was formulated to describe yeast cell growth within the Ca-alginate microbead during air-lift bioreactor cultivation. Model development was based on experimentally obtained data for the intra-bead cell concentration profile, after reached the equilibrium state, as well as, total yeast cell concentration per microbed and microbead volume as function of time. Relatively uniform cell concentration in the carrier matrix indicated that no internal nutrient diffusion limitations, but microenvironmental restriction, affected dominantly the dynamics of cell growth. Also interesting phenomenon of very different rates of cell number growth during cultivation is observed. After some critical time, the growth rate of cell colonies decreased drastically, but than suddenly increased again under all other experimental condition been the same. It is interpreted as disintegration of gel network and opening new free space for growth of cell clusters. These complex phenomena are modeled using the thermodynamical, free energy formalism. The particular form of free energy functional is proposed to describe various kinds of interactions, which affected the dynamics of cell growth and cause pseudo-phase transition of hydrogel. The good agreement of experimentally obtained data and model predictions are obtained. In that way the model provides both, the quantitative tools for further technological optimization of the process and deeper insight into dynamics of cell growth mechanism. PMID:17331608

  14. Enhancing cell migration in shape-memory alginate-collagen composite scaffolds: In vitro and ex vivo assessment for intervertebral disc repair.

    PubMed

    Guillaume, Olivier; Naqvi, Syeda Masooma; Lennon, Kerri; Buckley, Conor Timothy

    2015-04-01

    Lower lumbar disc disorders pose a significant problem in an aging society with substantial socioeconomic consequences. Both inner tissue (nucleus pulposus) and outer tissue (annulus fibrosus) of the intervertebral disc are affected by such debilitating disorders and can lead to disc herniation and lower back pain. In this study, we developed an alginate-collagen composite porous scaffold with shape-memory properties to fill defects occurring in annulus fibrosus tissue of degenerated intervertebral discs, which has the potential to be administered using minimal invasive surgery. In the first part of this work, we assessed how collagen incorporation on preformed alginate scaffolds influences the physical properties of the final composite scaffold. We also evaluated the ability of annulus fibrosus cells to attach, migrate, and proliferate on the composite alginate-collagen scaffolds compared to control scaffolds (alginate only). In vitro experiments, performed in intervertebral disc-like microenvironmental conditions (low glucose and low oxygen concentrations), revealed that for alginate only scaffolds, annulus fibrosus cells agglomerated in clusters with limited infiltration and migration capacity. In comparison, for alginate-collagen scaffolds, annulus fibrosus cells readily attached and colonized constructs, while preserving their typical fibroblastic-like cell morphology with spreading behavior and intense cytoskeleton expression. In a second part of this study, we investigated the effects of alginate-collagen scaffold when seeded with bone marrow derived mesenchymal stem cells. In vitro, we observed that alginate-collagen porous scaffolds supported cell proliferation and extracellular matrix deposition (collagen type I), with secretion amplified by the local release of transforming growth factor-β3. In addition, when cultured in ex vivo organ defect model, alginate-collagen scaffolds maintained viability of transplanted mesenchymal stem cells for up to 5

  15. Biodegradation of petroleum hydrocarbons in an immobilized cell airlift bioreactor.

    PubMed

    Kermanshahi pour, A; Karamanev, D; Margaritis, A

    2005-09-01

    An "immobilized cell airlift bioreactor", was used for the aerobic bioremediation of simulated diesel fuel contaminated groundwater and tested with p-xylene and naphthalene in batch and continuous regimes. The innovative design of the experiments consists of two stages. At the first stage "immobilized soil bioreactor" (ISBR) was used to develop an efficient microbial consortium from the indigenous microorganisms, which exist in diesel fuel contaminated soil. The concept of ISBR relies on the entrapment of the soil particles into the pores of a semi-permeable membrane, which divides the bioreactor into two aerated and non-aerated portions. The second stage involves inoculating the "immobilized cell air lift bioreactor" with the cultivated microbial consortia of the first stage. Immobilized cell airlift bioreactor has the same configuration as ISBR except that in this bioreactor instead of soil, microorganisms were immobilized on the fibers of the membrane. The performance of a 0.83 L immobilized cell airlift bioreactor was investigated at various retention time (0.5-6 h) and concentrations of p-xylene (15, 40 and 77 mg/L) and naphthalene (8, 15 and 22 mg/L) in the continuous operation. In the batch regime, 0.9L bioreactor was operated at various biodegradation times (15-135 min) and concentrations of p-xylene (13.6, 44.9 and 67.5 mg/L) and naphthalene (1.5 and 3.8 mg/L). Under the conditions of the complete biodegradation of p-xylene and naphthalene, the obtained volumetric biodegradation rates at biomass density of 720 mg/L were 15 and 16 mg/L h, respectively. PMID:16095655

  16. Nanoscale dielectrophoretic spectroscopy of individual immobilized mammalian blood cells.

    PubMed

    Lynch, Brian P; Hilton, Al M; Simpson, Garth J

    2006-10-01

    Dielectrophoretic force microscopy (DEPFM) and spectroscopy have been performed on individual intact surface-immobilized mammalian red blood cells. Dielectrophoretic force spectra were obtained in situ in approximately 125 ms and could be acquired over a region comparable in dimension to the effective diameter of a scanning probe microscopy tip. Good agreement was observed between the measured dielectrophoretic spectra and predictions using a single-shell cell model. In addition to allowing for highly localized dielectric characterization, DEPFM provided a simple means for noncontact imaging of mammalian blood cells under aqueous conditions. These studies demonstrate the feasibility of using DEPFM to monitor localized changes in membrane capacitance in real time with high spatial resolution on immobilized cells, complementing previous studies of mobile whole cells and cell suspensions. PMID:16798803

  17. The study of MCF-7 cell aggregates encapsulated in alginate microbeads under the modeled weightlessness

    NASA Astrophysics Data System (ADS)

    Li, Yu; Zheng, Hongxia; Tian, Weiming; Yu, Lei; Zhang, Yao; Han, Fengtong

    Assessing the risks associated with exposure to the microgravity encountered in space is essential for the success of long-term space exploration. For understanding of the effects of microgravity, either traditional 2-dimensional (2D) cell cultures of adherent cell populations or animal models were typically used. The 2D in vitro systems do not allow assessment of the dynamic effects of intercellular interactions within tissues, whereas potentially confounding factors tend to be overlooked in animal models. Therefore novel cell culture model representative of the cellular interactions and with extracellular matrix present in tissues needs to be used. Toward this overall goal, 3D cell aggregates of breast cancer cell line MCF-7 was constructed by encapsu-lating in alginate microbeads. With this model we studied the simulated microgravity effects on MCF-7 by incubating the microbeads in NASA rotary cell culture system with a rate of 15rpm.We found MCF-7 showed higher proliferation rate than that of control group character-ized by up regulation of Ki-67. Further study showed that the effect was achieved by activating the MAPK intercellular signaling pathway. The result is inconsistent with previous conclusion obtained with 2D cell culture model which indicated that 3D cell culture model maybe better for elucidating the microgravity effects.

  18. Spontaneous gene transfection of human bone cells using 3D mineralized alginate-chitosan macrocapsules.

    PubMed

    Green, David W; Kim, Eun-Jung; Jung, Han-Sung

    2015-09-01

    The effectiveness of nonviral gene therapy remains uncertain because of low transfection efficiencies and high toxicities compared with viral-based strategies. We describe a simple system for transient transfection of continuous human cell lines, with low toxicity, using mineral-coated chitosan and alginate capsules. As proof-of-concept, we demonstrate transfection of Saos-2 and MG63 human osteosarcoma continuous cell lines with gfp, LacZ reporter genes, and a Sox-9 carrying plasmid, to illustrate expression of a functional gene with therapeutic relevance. We show that continuous cell lines transfect with significant efficiency of up to 65% possibly through the interplay between chitosan and DNA complexation and calcium/phosphate-induced translocation into cells entrapped within the 3D polysaccharide based environment, as evidenced by an absence of transfection in unmineralized and chitosan-free capsules. We demonstrated that our transfection system was equally effective at transfection of primary human bone marrow stromal cells. To illustrate, the Sox-9, DNA plasmid was spontaneously expressed in primary human bone marrow stromal cells at 7 days with up to 90% efficiency in two repeats. Mineralized polysaccharide macrocapsules are gene delivery vehicles with a number of biological and practical advantages. They are highly efficient at self-transfecting primary bone cells, with programmable spatial and temporal delivery prospects, premineralized bone-like environments, and have no cytotoxic effects, as compared with many other nonviral systems. PMID:25645372

  19. BIODEGRADABLE PHOTO-CROSSLINKED ALGINATE NANOFIBRE SCAFFOLDS WITH TUNEABLE PHYSICAL PROPERTIES, CELL ADHESIVITY AND GROWTH FACTOR RELEASE

    PubMed Central

    Jeong, Sung In; Jeon, Oju; Krebs, Melissa D.; Hill, Michael C.; Alsberg, Eben

    2012-01-01

    Nanofibrous scaffolds are of interest in tissue engineering due to their high surface area to volume ratio, interconnected pores, and architectural similarity to the native extracellular matrix. Our laboratory recently developed a biodegradable, photo-crosslinkable alginate biopolymer. Here, we show the capacity of the material to be electrospun into a nanofibrous matrix, and the ability to enhance cell adhesion and proliferation on these matrices by covalent modification with cell adhesion peptides. Additionally, the potential of covalently incorporating heparin into the hydrogels during the photopolymerisation process to sustain the release of a heparin binding growth factor via affinity interactions was demonstrated. Electrospun photo-crosslinkable alginate nanofibrous scaffolds endowed with cell adhesion ligands and controlled delivery of growth factors may allow for improved regulation of cell behaviour for regenerative medicine. PMID:23070945

  20. Production and characterization of engineered alginate-based microparticles containing ECM powder for cell/tissue engineering applications.

    PubMed

    Mazzitelli, Stefania; Luca, Giovanni; Mancuso, Francesca; Calvitti, Mario; Calafiore, Riccardo; Nastruzzi, Claudio; Johnson, Scott; Badylak, Stephen F

    2011-03-01

    A method for the production of engineered alginate-based microparticles, containing extracellular matrix and neonatal porcine Sertoli cells (SCs), is described. As a source for extracellular matrix, a powder form of isolated and purified urinary bladder matrix (UBM) was employed. We demonstrated that the incorporation of UBM does not significantly alter the morphological and dimensional characteristics of the microparticles. The alginate microparticles were used for SC encapsulation as an immunoprotective barrier for transplant purposes, while the co-entrapped UBM promoted retention of cell viability and function. These engineered microparticles could represent a novel approach to enhancing immunological acceptance and increasing the functional life-span of the entrapped cells for cell/tissue engineering applications. In this respect, it is noteworthy that isolated neonatal porcine SCs, administered alone in highly biocompatible microparticles, led to diabetes prevention and reversion in nonobese diabetic (NOD) mice. PMID:20950716

  1. Drug carrier systems based on collagen-alginate composite structures for improving the performance of GDNF-secreting HEK293 cells.

    PubMed

    Lee, M; Lo, A C; Cheung, P T; Wong, D; Chan, B P

    2009-02-01

    Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor. Development of drug delivery technologies facilitating controlled release of GDNF is critical to applying GDNF in treating neurodegenerative diseases. We previously developed 3D collagen microspheres and demonstrated enhanced GDNF secretion after encapsulation of HEK293 cells, which were transduced to overexpress GDNF in these microspheres. However, the entrapped HEK293 cells were able to migrate out of the collagen microspheres, making it undesirable for clinical applications. In this report, we investigate two new carrier designs, namely collagen-alginate composite gel and collagen microspheres embedded in alginate gel in preventing cell leakage, maintaining cell growth and controlling GDNF secretion in the HEK293 cells. We demonstrated that inclusion of alginate gel in both designs is efficient in preventing cell leakage to the surrounding yet permitting the GDNF secretion, although the cellular growth rate is reduced in an alginate concentration dependent manner. Differential patterns of GDNF secretion in the two designs were demonstrated. The collagen-alginate composite gel maintains a more or less constant GDNF secretion over time while the collagen microspheres embedded in alginate gel continue to increase the secretion level of GDNF over time. This study contributes towards the development of cell-based GDNF delivery devices for the future therapeutics of neurodegenerative diseases. PMID:19059641

  2. Efficient Immobilization and Patterning of Live Bacterial Cells

    PubMed Central

    Suo, Zhiyong; Avci, Recep; Yang, Xinghong; Pascual, David W.

    2008-01-01

    A monolayer of live bacterial cells has been patterned onto substrates through the interaction between CFA/I fimbriae and the corresponding antibody. Patterns of live bacteria have been prepared with cellular resolution on silicon and gold substrates for Salmonella enterica serovar Typhimurium as a model with high specificity and efficiency. The immobilized cells are capable of dividing in growth medium to form a self-sustaining bacterial monolayer on the patterned areas. Interestingly, the immobilized cells can alter their orientation on the substrate, from lying-down to standing-up, as a response to the cell density increase during incubation. This method was successfully used to sort a targeted bacterial species from a mixed culture within 2 h. PMID:18321142

  3. New biosensor for detection of copper ions in water based on immobilized genetically modified yeast cells.

    PubMed

    Vopálenská, Irena; Váchová, Libuše; Palková, Zdena

    2015-10-15

    Contamination of water by heavy metals represents a potential risk for both aquatic and terrestrial organisms, including humans. Heavy metals in water resources can come from various industrial activities, and drinking water can be ex-post contaminated by heavy metals such as Cu(2+) from house fittings (e.g., water reservoirs) and pipes. Here, we present a new copper biosensor capable of detecting copper ions at concentrations of 1-100 μM. This biosensor is based on cells of a specifically modified Saccharomyces cerevisiae strain immobilized in alginate beads. Depending on the concentration of copper, the biosensor beads change color from white, when copper is present in concentrations below the detection limit, to pink or red based on the increase in copper concentration. The biosensor was successfully tested in the determination of copper concentrations in real samples of water contaminated with copper ions. In contrast to analytical methods or other biosensors based on fluorescent proteins, the newly designed biosensor does not require specific equipment and allows the quick detection of copper in many parallel samples. PMID:25982723

  4. Influence of hydrophobic modification in alginate-based hydrogels for biomedical applications

    NASA Astrophysics Data System (ADS)

    Choudhary, Soumitra

    Alginate has been exploited commercially for decades in foods, textiles, paper, pharmaceutical industries, and also as a detoxifier for removing heavy metals. Alginate is also popular in cell encapsulation because of its relatively mild gelation protocol and simple chemistry with which biological active entities can be immobilized. Surface modification of alginate gels has been explored to induce desired cell interactions with the gel matrix. These modifications alter the bulk properties, which strongly determine on how cells feel and response to the three-dimensional microenvironment. However, there is a need to develop strategies to engineer functionalities into bulk alginate hydrogels that not only preserve their inherent qualities but are also less toxic. In this thesis, our main focus was to optimize the mechanical properties of alginate-based hydrogels, and by doing so control the performance of the biomaterials. In the first scheme, we used alginate and hydrophobically modified ethyl hydroxy ethyl cellulose as components in interpenetrating polymer network (IPN) gels. The second network was used to control gelation time and rheological properties. We believe these experiments also may provide insight into the mechanical and structural properties of more complex biopolymer gels and naturally-occurring IPNs. Next, we worked on incorporating a hydrophobic moiety directly into the alginate chain, resulting in materials for extended release of hydrophobic drugs. We successfully synthesized hydrophobically modified alginate (HMA) by attaching octylamine groups onto the alginate backbone by standard carbodiimide based amide coupling reaction. Solubility of several model hydrophobic drugs in dilute HMA solutions was found to be increased by more than an order of magnitude. HMA hydrogels, prepared by crosslinking the alginate chains with calcium ions, were found to exhibit excellent mechanical properties (modulus ˜100 kPa) with release extended upto 5 days. Ability

  5. An understanding of potential and limitations of alginate/PLL microcapsules as a cell retention system for perfusion cultures.

    PubMed

    Demont, Aurelie; Cole, Harriet; Marison, Ian W

    2016-02-01

    Microcapsules for high cell density culture of mammalian cells have found an increasing interest, however, the poor stability of the microcapsules and the lack of characterisation methods led to few quantitative results. Alginate-poly-L-lysine (PLL) microcapsules have been studied in detail in order to form a basis for comparison of capsules made from different polymers. Since the microcapsules can be easily retained in the bioreactor without the need for a cell separation device, high cell densities were achieved with a maximum of 4 × 10(7) cell/ml(microcapsules), corresponding to a colonisation of 5% of the internal capsule volume. Measurement of microcapsule integrity and mechanical resistance showed that alginate-PLL microcapsules are not suitable for perfusion cultures since they are very sensitive to media composition, mainly the presence of non-gelling ions that have a higher affinity for alginate than PLL and Ca(2+), leading to the leakage of PLL and Ca(2+), and to microcapsule rupture. PMID:26754597

  6. Human hepatoma cell lines on gas foaming templated alginate scaffolds for in vitro drug-drug interaction and metabolism studies.

    PubMed

    Stampella, A; Rizzitelli, G; Donati, F; Mazzarino, M; de la Torre, X; Botrè, F; Giardi, M F; Dentini, M; Barbetta, A; Massimi, M

    2015-12-25

    Liver in vitro systems that allow reliable prediction of major human in vivo metabolic pathways have a significant impact in drug screening and drug metabolism research. In the present study, a novel porous scaffold composed of alginate was prepared by employing a gas-in-liquid foaming approach. Galactose residues were introduced on scaffold surfaces to promote cell adhesion and to enhance liver specific functions of the entrapped HepG2/C3A cells. Hepatoma cells in the gal-alginate scaffold showed higher levels of liver specific products (albumin and urea) and were more responsive to specific inducers (e.g. dexamethasone) and inhibitors (e.g. ketoconazole) of the CYP3A4 system than in conventional monolayer culture. HepG2/C3A cells were also more efficient in terms of rapid elimination of testosterone, used as a model substance, at rates comparable to those of in vivo excretion. In addition, an improvement in metabolism of testosterone, in terms of phase II metabolite formation, was also observed when the more differentiated HepaRG cells were used. Together the data suggest that hepatocyte/gas templated alginate-systems provide an innovative high throughput platform for in vitro drug metabolism and drug-drug interaction studies, with broad fields of application, and might provide a valid tool for minimizing animal use in preclinical testing of human relevance. PMID:26456671

  7. Design and Fabrication of a Biodegradable, Covalently Crosslinked Shape-Memory Alginate Scaffold for Cell and Growth Factor Delivery

    PubMed Central

    Wang, Lin; Shansky, Janet; Borselli, Cristina; Mooney, David

    2012-01-01

    The successful use of transplanted cells and/or growth factors for tissue repair is limited by a significant cell loss and/or rapid growth factor diffusion soon after implantation. Highly porous alginate scaffolds formed with covalent crosslinking have been used to improve cell survival and growth factor release kinetics, but require open-wound surgical procedures for insertion and have not previously been designed to readily degrade in vivo. In this study, a biodegradable, partially crosslinked alginate scaffold with shape-memory properties was fabricated for minimally invasive surgical applications. A mixture of high and low molecular weight partially oxidized alginate modified with RGD peptides was covalently crosslinked using carbodiimide chemistry. The scaffold was compressible 11-fold and returned to its original shape when rehydrated. Scaffold degradation properties in vitro indicated ∼85% mass loss by 28 days. The greater than 90% porous scaffolds released the recombinant growth factor insulin-like growth factor-1 over several days in vitro and allowed skeletal muscle cell survival, proliferation, and migration from the scaffold over a 28-day period. The compressible scaffold thus has the potential to be delivered by a minimally invasive technique, and when rehydrated in vivo with cells and/or growth factors, could serve as a temporary delivery vehicle for tissue repair. PMID:22646518

  8. Ultra-structural changes and expression of chondrogenic and hypertrophic genes during chondrogenic differentiation of mesenchymal stromal cells in alginate beads

    PubMed Central

    Dashtdar, Havva; Selvaratnam, Lakshmi; Balaji Raghavendran, Hanumantharao; Suhaeb, Abdulrazzaq Mahmod; Ahmad, Tunku Sara

    2016-01-01

    Chondrogenic differentiation of mesenchymal stromal cells (MSCs) in the form of pellet culture and encapsulation in alginate beads has been widely used as conventional model for in vitro chondrogenesis. However, comparative characterization between differentiation, hypertrophic markers, cell adhesion molecule and ultrastructural changes during alginate and pellet culture has not been described. Hence, the present study was conducted comparing MSCs cultured in pellet and alginate beads with monolayer culture. qPCR was performed to assess the expression of chondrogenic, hypertrophic, and cell adhesion molecule genes, whereas transmission electron microscopy (TEM) was used to assess the ultrastructural changes. In addition, immunocytochemistry for Collagen type II and aggrecan and glycosaminoglycan (GAG) analysis were performed. Our results indicate that pellet and alginate bead cultures were necessary for chondrogenic differentiation of MSC. It also indicates that cultures using alginate bead demonstrated significantly higher (p < 0.05) chondrogenic but lower hypertrophic (p < 0.05) gene expressions as compared with pellet cultures. N-cadherin and N-CAM1 expression were up-regulated in second and third weeks of culture and were comparable between the alginate bead and pellet culture groups, respectively. TEM images demonstrated ultrastructural changes resembling cell death in pellet cultures. Our results indicate that using alginate beads, MSCs express higher chondrogenic but lower hypertrophic gene expression. Enhanced production of extracellular matrix and cell adhesion molecules was also observed in this group. These findings suggest that alginate bead culture may serve as a superior chondrogenic model, whereas pellet culture is more appropriate as a hypertrophic model of chondrogenesis. PMID:26966647

  9. Continuous glutamate production using an immobilized whole-cell system

    SciTech Connect

    Kim, H.S.; Ryu, D.D.Y.

    1982-10-01

    For the purpose of saving the energy and raw materials required in a glutamate fermentation, an immobilized whole-cell system was prepared and its performance in a continuous reactor system was evaluated. Corynebacterium glutamicum (a mutant strain of ATCC 13058) whole cell was immobilized in k-carrageenan matrix and the gel structure was strengthened by treatment with a hardening agent. The effective diffusivities of carrageenan gel for glucose and oxygen were formed to decrease significantly with an increase in carrageenan concentration, while the gel strength showed an increasing trend. Based on the physical and chemical properties of carrageenan gel, the immobilized method was improved and the operation of the continuous reactor system was partially optimized. In an air-stirred fermentor, the continuous production of glutamate was carried out. The effect of the dilution rate of glutamate production and operation stability was investigated. The performance of the continuous wbole-cell reactor system was evaluated by measuring glutamate productivity for a period of 30 days; it was found to be far superior to the performance of convention batch reactor systems using free cells.

  10. Continuous beer fermentation using immobilized yeast cell bioreactor systems.

    PubMed

    Brányik, Tomás; Vicente, António A; Dostálek, Pavel; Teixeira, José A

    2005-01-01

    Traditional beer fermentation and maturation processes use open fermentation and lager tanks. Although these vessels had previously been considered indispensable, during the past decades they were in many breweries replaced by large production units (cylindroconical tanks). These have proved to be successful, both providing operating advantages and ensuring the quality of the final beer. Another promising contemporary technology, namely, continuous beer fermentation using immobilized brewing yeast, by contrast, has found only a limited number of industrial applications. Continuous fermentation systems based on immobilized cell technology, albeit initially successful, were condemned to failure for several reasons. These include engineering problems (excess biomass and problems with CO(2) removal, optimization of operating conditions, clogging and channeling of the reactor), unbalanced beer flavor (altered cell physiology, cell aging), and unrealized cost advantages (carrier price, complex and unstable operation). However, recent development in reactor design and understanding of immobilized cell physiology, together with application of novel carrier materials, could provide a new stimulus to both research and application of this promising technology. PMID:15932239

  11. Cell proliferation on PVA/sodium alginate and PVA/poly(γ-glutamic acid) electrospun fiber.

    PubMed

    Yang, Jen Ming; Yang, Jhe Hao; Tsou, Shu Chun; Ding, Chian Hua; Hsu, Chih Chin; Yang, Kai Chiang; Yang, Chun Chen; Chen, Ko Shao; Chen, Szi Wen; Wang, Jong Shyan

    2016-09-01

    To overcome the obstacles of easy dissolution of PVA nanofibers without crosslinking treatment and the poor electrospinnability of the PVA cross-linked nanofibers via electrospinning process, the PVA based electrospun hydrogel nanofibers are prepared with post-crosslinking method. To expect the electrospun hydrogel fibers might be a promising scaffold for cell culture and tissue engineering applications, the evaluation of cell proliferation on the post-crosslinking electrospun fibers is conducted in this study. At beginning, poly(vinyl alcohol) (PVA), PVA/sodium alginate (PVASA) and PVA/poly(γ-glutamic acid) (PVAPGA) electrospun fibers were prepared by electrospinning method. The electrospun PVA, PVASA and PVAPGA nanofibers were treated with post-cross-linking method with glutaraldehyde (Glu) as crosslinking agent. These electrospun fibers were characterized with thermogravimetry analysis (TGA) and their morphologies were observed with a scanning electron microscope (SEM). To support the evaluation and explanation of cell growth on the fiber, the study of 3T3 mouse fibroblast cell growth on the surface of pure PVA, SA, and PGA thin films is conducted. The proliferation of 3T3 on the electrospun fiber surface of PVA, PVASA, and PVAPGA was evaluated by seeding 3T3 fibroblast cells on these crosslinked electrospun fibers. The cell viability on electrospun fibers was conducted with water-soluble tetrazolium salt-1 assay (Cell Proliferation Reagent WST-1). The morphology of the cells on the fibers was also observed with SEM. The results of WST-1 assay revealed that 3T3 cells cultured on different electrospun fibers had similar viability, and the cell viability increased with time for all electrospun fibers. From the morphology of the cells on electrospun fibers, it is found that 3T3 cells attached on all electrospun fiber after 1day seeded. Cell-cell communication was noticed on day 3 for all electrospun fibers. Extracellular matrix (ECM) productions were found and

  12. Delivering MC3T3-E1 cells into injectable calcium phosphate cement through alginate-chitosan microcapsules for bone tissue engineering*

    PubMed Central

    Qiao, Peng-yan; Li, Fang-fang; Dong, Li-min; Xu, Tao; Xie, Qiu-fei

    2014-01-01

    Objective: To deliver cells deep into injectable calcium phosphate cement (CPC) through alginate-chitosan (AC) microcapsules and investigate the biological behavior of the cells released from microcapsules into the CPC. Methods: Mouse osteoblastic MC3T3-E1 cells were embedded in alginate and AC microcapsules using an electrostatic droplet generator. The two types of cell-encapsulating microcapsules were then mixed with a CPC paste. MC3T3-E1 cell viability was investigated using a Wst-8 kit, and osteogenic differentiation was demonstrated by an alkaline phosphatase (ALP) activity assay. Cell attachment in CPC was observed by an environment scanning electron microscopy. Results: Both alginate and AC microcapsules were able to release the encapsulated MC3T3-E1 cells when mixed with CPC paste. The released cells attached to the setting CPC scaffolds, survived, differentiated, and formed mineralized nodules. Cells grew in the pores concomitantly created by the AC microcapsules in situ within the CPC. At Day 21, cellular ALP activity in the AC group was approximately four times that at Day 7 and exceeded that of the alginate microcapsule group (P<0.05). Pores formed by the AC microcapsules had a diameter of several hundred microns and were spherical compared with those formed by alginate microcapsules. Conclusions: AC microcapsule is a promising carrier to release seeding cells deep into an injectable CPC scaffold for bone engineering. PMID:24711359

  13. A microfluidic manifold with a single pump system to generate highly mono-disperse alginate beads for cell encapsulation

    PubMed Central

    Kim, Choong; Park, Juyoung

    2014-01-01

    Cell encapsulation technology is a promising strategy applicable to tissue engineering and cell therapy. Many advanced microencapsulation chips that function via multiple syringe pumps have been developed to generate mono-disperse hydrogel beads encapsulating cells. However, their operation is difficult and only trained microfluidic engineers can use them with dexterity. Hence, we propose a microfluidic manifold system, driven by a single syringe pump, which can enable the setup of automated flow sequences and generate highly mono-disperse alginate beads by minimizing disturbances to the pump pressure. The encapsulation of P19 mouse embryonic carcinoma cells and embryonic body formation are demonstrated to prove the efficiency of the proposed system. PMID:25587376

  14. Immobilization of microbial cell and yeast cell and its application to biomass conversion using radiation techniques

    NASA Astrophysics Data System (ADS)

    Kaetsu, Isao; Kumakura, Minoru; Fujimura, Takashi; Kasai, Noboru; Tamada, Masao

    The recent results of immobilization of cellulase-producing cells and ethanol-fermentation yeast by radiation were reported. The enzyme of cellulase produced by immobilized cells was used for saccharification of lignocellulosic wastes and immobilized yeast cells were used for fermentation reaction from glucose to ethanol. The wastes such as chaff and bagasse were treated by γ-ray or electron-beam irradiation in the presence of alkali and subsequent mechanical crushing, to form a fine powder less than 50 μm in diameter. On the other hand, Trichoderma reesei as a cellulase-producing microbial cell was immobilized on a fibrous carrier having a specific porous structure and cultured to produce cellulase. The enzymatic saccharification of the pretreated waste was carried out using the produced cellulase. The enhanced fermentation process to produce ethanol from glucose with the immobilized yeast by radiation was also studied. The ethanol productivity of immobilized growing yeast cells thus obtained was thirteen times that of free yeast cells in a 1:1 volume of liquid medium to immobilized yeast cells.

  15. Cell Alignment Driven by Mechanically Induced Collagen Fiber Alignment in Collagen/Alginate Coatings.

    PubMed

    Chaubaroux, Christophe; Perrin-Schmitt, Fabienne; Senger, Bernard; Vidal, Loïc; Voegel, Jean-Claude; Schaaf, Pierre; Haikel, Youssef; Boulmedais, Fouzia; Lavalle, Philippe; Hemmerlé, Joseph

    2015-09-01

    For many years it has been a major challenge to regenerate damaged tissues using synthetic or natural materials. To favor the healing processes after tendon, cornea, muscle, or brain injuries, aligned collagen-based architectures are of utmost interest. In this study, we define a novel aligned coating based on a collagen/alginate (COL/ALG) multilayer film. The coating exhibiting a nanofibrillar structure is cross-linked with genipin for stability in physiological conditions. By stretching COL/ALG-coated polydimethylsiloxane substrates, we developed a versatile method to align the collagen fibrils of the polymeric coating. Assays on cell morphology and alignment were performed to investigate the properties of these films. Microscopic assessments revealed that cells align with the stretched collagen fibrils of the coating. The degree of alignment is tuned by the stretching rate (i.e., the strain) of the COL/ALG-coated elastic substrate. Such coatings are of great interest for strategies that require aligned nanofibrillar biological material as a substrate for tissue engineering. PMID:25658028

  16. Enhanced antiproliferative activity of carboplatin-loaded chitosan-alginate nanoparticles in a retinoblastoma cell line.

    PubMed

    Parveen, Suphiya; Mitra, Moutushy; Krishnakumar, S; Sahoo, Sanjeeb K

    2010-08-01

    In the present study the potential of carboplatin-loaded chitosan-alginate nanoparticles (CANPs) for the treatment of retinoblastoma was investigated. The carboplatin-loaded CANPs were approximately 300 nm in size, exhibited a high zeta potential of approximately 36 mV and drug encapsulation of approximately 20 wt.%. The CANPs were further characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry and transmission electron microscopy. In vitro release studies revealed fast release of approximately 25% of the drug during the first 24h, followed by sustained release. CANPs demonstrated greater and sustained antiproliferative activity of the drug in a dose- and time-dependent manner (carboplatin IC(50)=0.56 microg ml(-1), carboplatin-loaded CANPs IC(50)=0.004 microg ml(-1)), as well as an enhanced apoptotic effect as compared with the drug in solution in a retinoblastoma cell line (Y79). The higher cytotoxic effect of CANPs may be due to their greater cellular uptake as compared with native carboplatin. It was also demonstrated that clathrin-mediated endocytosis plays a key role in the internalization of CANPs in the Y79 cell line. In conclusion, biodegradable chitosan nanoparticles could be used as an effective ocular drug delivery system for sustained intracellular delivery of carboplatin for the treatment of retinoblastoma. PMID:20149903

  17. Enzymatic properties of immobilized Alcaligenes faecalis cells with cell-associated beta-glucosidase activity

    SciTech Connect

    Wheatly, M.A.; Phillips, C.R.

    1984-06-01

    Enzymatic properties of Alcaligenes faecalis cells immobilized in polyacrylamide were characterized and compared with those reported for the extracted enzyme, and with those measured for free cells. Many of the properties reflected those of the extracted enzyme rather than those measured in the free whole cells prior to immobilization, suggesting cell disruption during immobilization. These properties included the pH activity profile, a slightly broader pH stability profile, and the activation energy. Electron micrographs showed evidence of cell debris among the polymer matrix. The immobilized cells were not viable, and did not consume glucose. Thermal stability was less after immobilization with a half-line of 16 h at 45 degrees C, and 3.5 h at 50 degrees C. The immobilized preparation was more stable when stored lyophilized rather than in buffer, losing 23 and 52% activity, respectively, after six months. The enzyme was irreversibly inhibited by both acetate and citrate buffers. If the immobilized enzyme is to be used in conjunction with cellulases from Trichoderma reesei for cellulase saccharification, the optimal conditions would be pH 5.5 and 45 degrees C in a buffer containing no carboxylic acid groups.

  18. Encapsulated human hepatocellular carcinoma cells by alginate gel beads as an in vitro metastasis model

    SciTech Connect

    Xu, Xiao-xi; Liu, Chang; Liu, Yang; Li, Nan; Guo, Xin; Wang, Shu-jun; Sun, Guang-wei; Wang, Wei; Ma, Xiao-jun

    2013-08-15

    Hepatocellular carcinoma (HCC) is the most common primary liver cancer and often forms metastases, which are the most important prognostic factors. For further elucidation of the mechanism underlying the progression and metastasis of HCC, a culture system mimicking the in vivo tumor microenvironment is needed. In this study, we investigated the metastatic ability of HCC cells cultured within alginate gel (ALG) beads. In the culture system, HCC cells formed spheroids by proliferation and maintained in nuclear abnormalities. The gene and protein expression of metastasis-related molecules was increased in ALG beads, compared with the traditional adhesion culture. Furthermore, several gene expression levels in ALG bead culture system were even closer to liver cancer tissues. More importantly, in vitro invasion assay showed that the invasion cells derived from ALG beads was 7.8-fold higher than adhesion cells. Our results indicated that the in vitro three-dimensional (3D) model based on ALG beads increased metastatic ability compared with adhesion culture, even partly mimicked the in vivo tumor tissues. Moreover, due to the controllable preparation conditions, steady characteristics and production at large-scale, the 3D ALG bead model would become an important tool used in the high-throughput screening of anti-metastasis drugs and the metastatic mechanism research. -- Highlights: •We established a 3D metastasis model mimicking the metastatic ability in vivo. •The invasion ability of cells derived from our model was increased significantly. •The model is easy to reproduce, convenient to handle, and amenable for large-scale.

  19. Degradation of mix hydrocarbons by immobilized cells of mix culture using a trickle fluidized bed reactor. Final report: June 1992--June 1994

    SciTech Connect

    Chapatwala, K.D.

    1994-12-01

    The microorganisms capable of degrading mix hydrocarbons were isolated from the soil samples collected from the hydrocarbon contaminated sites. The mix cultures were identified as Pseudomonas acidovorans, Flavobacterium indoltheticum and Phyllobacterium rubiaceum. The bacterial cells of mix cultures were immobilized in calcium-alginate solution in the form of beads. A trickle fluidized bed air-uplift-type reactor designed to study the degradation of mix hydrocarbons was filled with 0.85% normal saline containing the immobilized cells of mix culture. The immobilized beads were aerated with different amounts of CO{sub 2}-free air. The normal saline saturated with BTXs was circulated in the bioreactors at the rate of 2--4 ml/min. The biodegradation of BTXs by the immobilized beads of mix culture was monitored by determining the concentrations of the BTXs and the metabolites formed during their degradation in the samples at regular intervals using GC. The peaks obtained through the degradation of BTXs were not identified and quantified in this study.

  20. Three dimensional alginate-fucoidan composite hydrogel augments the chondrogenic differentiation of mesenchymal stromal cells.

    PubMed

    Karunanithi, Puvanan; Murali, Malliga Raman; Samuel, Shani; Raghavendran, Hanumanantha Rao Balaji; Abbas, Azlina Amir; Kamarul, Tunku

    2016-08-20

    Presence of sulfated polysaccharides like heparan sulphate has often been implicated in the regulation of chondrogenesis. However, recently there has been a plethora of interest in the use of non-animal extracted analogs of heparan sulphate. Here we remodeled alginate (1.5%) by incorporating fucoidan (0.5%), a natural sulphated polysaccharide extracted from seaweeds to form a composite hydrogel (Al-Fu), capable of enhancing chondrogenesis of human mesenchymal stromal cells (hMSCs). We confirmed the efficiency of fucoidan incorporation by FTIR and EDX analysis. Further, its ability to support hMSC attachment and chondrogenic differentiation was confirmed by SEM, biochemical glycosaminoglycan quantification, real-time quantitative PCR and immunocytochemical analyses of chondrogenic markers Sox-9, Collagen II, Aggrecan and COMP. Effect of Al-Fu hydrogel on hMSC hypertrophy was also confirmed by the downregulation of hypertrophic genes Collagen X and Runx2. This composite scaffold can hence be used as a cartilage biomimetic biomaterial to drive hMSC chondrogenesis and for other cartilage repair based therapies. PMID:27178935

  1. Characterization of alginate lyase activity on liquid, gelled, and complexed states of alginate.

    PubMed

    Breguet, Véronique; von Stockar, Urs; Marison, Ian W

    2007-01-01

    A study of alginate lyase was carried out to determine if this enzyme could be used to remove alginate present in the core of alginate/poly-L-lysine (AG/PLL) microcapsules in order to maximize cell growth and colonization. A complete kinetic study was undertaken, which indicated an optimal activity of the enzyme at pH 7-8, 50 degrees C, in the presence of Ca2+. The buffer, not the ionic strength, influenced the alginate degradation rate. Alginate lyase was also shown to be active on gelled forms of alginate, as well as on the AG/PLL complex constituting the membrane of microcapsules. Batch cultures of CHO cells in the presence of alginate showed a decrease of the growth rate by a factor of 2, although the main metabolic flux rates were not modified. The addition of alginate lyase to cell culture medium increased the doubling time 5-7-fold and decreased the protein production rate, although cell viability was not affected. The addition of enzyme to medium containing alginate did not improve growth conditions. This suggests that alginate lyase is probably not suitable for hydrolysis of microcapsules in the presence of cells, in order to achieve high cell density and high productivity. However, the high activity may be useful for releasing cells from alginate beads or AG/PLL microcapsules. PMID:17691813

  2. Effect of temperature and pH on ethanol production by free and immobilized cells of Kluyveromyces marxianus grown on Jerusalem artichoke extract

    SciTech Connect

    Bajpai, P.; Margaritis, A.

    1987-01-01

    The effect of temperature and pH on the kinetics of ethanol production by free and calcium alginate immobilized cells of Kluyveromyces marxianus grown on Jerusalem artichoke extract was investigated. With the free cells, the ethanol and biomass yields were relatively constant over the temperature range 25-35 degrees C, but dropped sharply beyond 35 degrees C. Other kinetic parameters, specific growth rate, specific ethanol production rate, and specific total sugar uptake rate were maximum at 35 degrees C. However, with the immobilized cells, ethanol yield remained almost constant in the temperatue range 25-45 degrees C, and the specific ethanol production rate and specific total sugar uptake rate attained their maximum values at 40 degrees C. For the pH range between 3 and 7, the free-cell optimum for growth and product formation was found to be circa pH 5. At this pH, the specific growth rate was 0.35/h and specific ethanol production rate was 2.83 g/g/h. At values higher or lower than pH 5, a sharp decrease in specific ethanol production rate as well as specific growth rate was observed. In comparison, the immobilized cells showed a broad optimum pH profile. The best ethanol production rates were observed between pH 4 and 6. (Refs. 22).

  3. A simple method for encapsulating single cells in alginate microspheres allows for direct PCR and whole genome amplification.

    PubMed

    Bigdeli, Saharnaz; Dettloff, Roger O; Frank, Curtis W; Davis, Ronald W; Crosby, Laurel D

    2015-01-01

    Microdroplets are an effective platform for segregating individual cells and amplifying DNA. However, a key challenge is to recover the contents of individual droplets for downstream analysis. This paper offers a method for embedding cells in alginate microspheres and performing multiple serial operations on the isolated cells. Rhodobacter sphaeroides cells were diluted in alginate polymer and sprayed into microdroplets using a fingertip aerosol sprayer. The encapsulated cells were lysed and subjected either to conventional PCR, or whole genome amplification using either multiple displacement amplification (MDA) or a two-step PCR protocol. Microscopic examination after PCR showed that the lumen of the occupied microspheres contained fluorescently stained DNA product, but multiple displacement amplification with phi29 produced only a small number of polymerase colonies. The 2-step WGA protocol was successful in generating fluorescent material, and quantitative PCR from DNA extracted from aliquots of microspheres suggested that the copy number inside the microspheres was amplified up to 3 orders of magnitude. Microspheres containing fluorescent material were sorted by a dilution series and screened with a fluorescent plate reader to identify single microspheres. The DNA was extracted from individual isolates, re-amplified with full-length sequencing adapters, and then a single isolate was sequenced using the Illumina MiSeq platform. After filtering the reads, the only sequences that collectively matched a genome in the NCBI nucleotide database belonged to R. sphaeroides. This demonstrated that sequencing-ready DNA could be generated from the contents of a single microsphere without culturing. However, the 2-step WGA strategy showed limitations in terms of low genome coverage and an uneven frequency distribution of reads across the genome. This paper offers a simple method for embedding cells in alginate microspheres and performing PCR on isolated cells in common bulk

  4. Drying of micro-encapsulated lactic acid bacteria — Effects of trehalose and immobilization on cell survival and release properties

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyan; Chen, Xiguang

    2009-03-01

    Lactic acid bacteria (LAB) were encapsulated with alginate, gelatin and trehalose additives by the extrusion method and dried at 4 °C. The microcapsules were generally spherical and had a wrinkled surface with a size of 1.7 mm ± 0.2 mm. Trehalose as a carbohydrate source in the culture medium could reduce acid production and performed no function in the positive proliferation of LAB. Using trehalose as a carbohydrate source and protective medium simultaneously had a benefit in the protection of LAB cells during the storage at 4 °C. The density of live LAB cells could be 107 CFU g-1 after 8 weeks of storage. Cells of LAB could be continuously released from the capsules from the acidic (pH 1.2) to neutral conditions (pH 6.8). The release amounts and proliferation speeds of LAB cells in neutral medium were much larger and faster than those in acidic conditions. Additionally, immobilization of LAB could improve the survival of cells when they were exposed to acidic medium (pH 1.2) with a survival rate of 76 %.

  5. Alginate-modifying enzymes: biological roles and biotechnological uses

    PubMed Central

    Ertesvåg, Helga

    2015-01-01

    Alginate denotes a group of industrially important 1-4-linked biopolymers composed of the C-5-epimers β-D-mannuronic acid (M) and α-L-guluronic acid (G). The polysaccharide is manufactured from brown algae where it constitutes the main structural cell wall polymer. The physical properties of a given alginate molecule, e.g., gel-strength, water-binding capacity, viscosity and biocompatibility, are determined by polymer length, the relative amount and distribution of G residues and the acetyl content, all of which are controlled by alginate modifying enzymes. Alginate has also been isolated from some bacteria belonging to the genera Pseudomonas and Azotobacter, and bacterially synthesized alginate may be O-acetylated at O-2 and/or O-3. Initially, alginate is synthesized as polymannuronic acid, and some M residues are subsequently epimerized to G residues. In bacteria a mannuronan C-5-epimerase (AlgG) and an alginate acetylase (AlgX) are integral parts of the protein complex necessary for alginate polymerization and export. All alginate-producing bacteria use periplasmic alginate lyases to remove alginate molecules aberrantly released to the periplasm. Alginate lyases are also produced by organisms that utilize alginate as carbon source. Most alginate-producing organisms encode more than one mannuronan C-5 epimerase, each introducing its specific pattern of G residues. Acetylation protects against further epimerization and from most alginate lyases. An enzyme from Pseudomonas syringae with alginate deacetylase activity has been reported. Functional and structural studies reveal that alginate lyases and epimerases have related enzyme mechanisms and catalytic sites. Alginate lyases are now utilized as tools for alginate characterization. Secreted epimerases have been shown to function well in vitro, and have been engineered further in order to obtain enzymes that can provide alginates with new and desired properties for use in medical and pharmaceutical applications

  6. Geometrical design of immobilized cell modula units for ethanol fermentation

    SciTech Connect

    Bourassa, J.F.; LeDuy, A.

    1987-06-01

    Formula are developed for calculating the performance characteristics (surface-to-total-volume ratio, surface-to-packing-volume ratio, and void volume fraction) of four different types of immobilized cell modular units (ICMUs) for ethanol fermentation: plate-type, spiral-type, beehive-type and bead-type ICMUs. Examples are used to illustrate how the formulas are useful for investigating the effects of characteristic dimensions of packing geometry, as well as the effect of scale on the performance characteristics of the ICMUs. (Refs. 4).

  7. Geometrical design of immobilized cell modular units for ethanol fermentation.

    PubMed

    Bourassa, J F; Leduy, A

    1987-06-01

    Formula are developed for calculating the performance characteristics (surface-to-total-volume ratio, surface-to-packing-volume ratio, and void volume fraction) of four different types of immobilized cell modular units (ICMUs) for ethanol fermentation: plate-type, spiral-type, beehive-type and bead-type ICMUs. Examples are used to illustrate how the formulas are useful for investigating the effects of characteristic dimensions of packing geometry, as well as the effect of scale on the performance characteristics of the ICMUs. PMID:18576567

  8. Cisplatin-alginate conjugate liposomes for targeted delivery to EGFR-positive ovarian cancer cells.

    PubMed

    Wang, Yunfei; Zhou, Jinhua; Qiu, Lihua; Wang, Xinran; Chen, Lilan; Liu, Ting; Di, Wen

    2014-05-01

    Systemic side effects and low aqueous solubility have limited the clinical use of cisplatin (CDDP) in ovarian carcinoma and have contributed to failures in developing effective drug delivery systems. In order to develop a novel drug delivery system with enhanced efficacy and minimal adverse effects, we exploited the properties of sodium alginate (SA) to synthesize CDDP-SA conjugate (CS), which is highly soluble and readily incorporated into liposomes (CS-PEG-Lip). Epidermal growth factor receptor (EGFR) is overexpressed in many ovarian cancers, therefore we modified EGF on the liposomes (CS-EGF-Lip) to specifically target EGFR-expressing tumors, thereby increasing the bioavailability and efficacy of CDDP. In vitro experiments confirmed that EGF-Lip selectively recognized EGFR-positive SKOV3 cells and effectively penetrated tumor spheroids. We demonstrated that CS-EGF-Lip possessed satisfactory size distribution and exhibited significantly improved encapsulation and loading efficiency. Furthermore, CS-EGF-Lip sustained release of CDDP in vitro, suggesting that CS-EGF-Lip may retain the antitumor activity of CDDP. Inhibition of proliferation and migration was also greater with CS-EGF-Lip compared to CDDP. In vivo xenograft experiments revealed that administration of CS-EGF-Lip enhanced delivery of CDDP into ovarian tumor tissues and improved the antitumor efficacy of CDDP, while reducing nephrotoxicity and body weight loss in mice. These results suggest that CS-EGF-Lip may offer a promising strategy for CDDP delivery in the treatment of EGFR-positive ovarian carcinoma or similar tumors, with enhanced efficacy and fewer adverse effects. PMID:24565522

  9. Degradation of pentachlorophenol by polyurethane-immobilized Flavobacterium cells.

    PubMed Central

    O'Reilly, K T; Crawford, R L

    1989-01-01

    Polyurethane-immobilized Flavobacterium cells (ATCC 39723) degraded pentachlorophenol (PCP) at initial concentrations as high as 300 mg liter-1. The reversible binding of PCP to the polyurethane was shown to be important in the protection of the cells from inhibition of PCP degradation. The degradation activity of the bacteria was monitored for 150 days in semicontinuous batch reactors. The degradation rate dropped by about 0.6% per day. PCP was degraded in a continuous-culture bioreactor at a rate of 3.5 to 4 mg g of foam-1 day-1 for 25 days. Electron micrographs of the polyurethane suggested that the cells were entrapped within 50- to 500-microns-diameter pockets in the foam. PMID:2508552

  10. Proliferation and enrichment of CD133+ glioblastoma cancer stem cells on 3D chitosan-alginate scaffolds

    PubMed Central

    Kievit, Forrest M.; Florczyk, Stephen J.; Leung, Matthew C.; Wang, Kui; Wu, Jennifer D.; Silber, John R.; Ellenbogen, Richard G.; Lee, Jerry S.H.; Zhang, Miqin

    2014-01-01

    Emerging evidence implicates cancer stem cells (CSCs) as primary determinants of the clinical behavior of human cancers, representing an ideal target for next-generation anticancer therapies. However CSCs are difficult to propagate in vitro, severely limiting the study of CSC biology and drug development. Here we report that growing cells from glioblastoma (GBM) cell lines on three dimensional (3D) porous chitosan-alginate (CA) scaffolds dramatically promotes the proliferation and enrichment of cells possessing the hallmarks of CSCs. CA scaffold-grown cells were found more tumorigenic in nude mouse xenografts than cells grown from monolayers. Growing in CA scaffolds rapidly promoted expression of genes involved in the epithelial-to-mesenchymal transition that has been implicated in the genesis of CSCs. Our results indicate that CA scaffolds have utility as a simple and inexpensive means to cultivate CSCs in vitro in support of studies to understand CSC biology and develop more effective anti-cancer therapies. PMID:25109438

  11. Cell-Laden Poly(ɛ-caprolactone)/Alginate Hybrid Scaffolds Fabricated by an Aerosol Cross-Linking Process for Obtaining Homogeneous Cell Distribution: Fabrication, Seeding Efficiency, and Cell Proliferation and Distribution

    PubMed Central

    Lee, HyeongJin; Ahn, SeungHyun; Bonassar, Lawrence J.; Chun, Wook

    2013-01-01

    Generally, solid-freeform fabricated scaffolds show a controllable pore structure (pore size, porosity, pore connectivity, and permeability) and mechanical properties by using computer-aided techniques. Although the scaffolds can provide repeated and appropriate pore structures for tissue regeneration, they have a low biological activity, such as low cell-seeding efficiency and nonuniform cell density in the scaffold interior after a long culture period, due to a large pore size and completely open pores. Here we fabricated three different poly(ɛ-caprolactone) (PCL)/alginate scaffolds: (1) a rapid prototyped porous PCL scaffold coated with an alginate, (2) the same PCL scaffold coated with a mixture of alginate and cells, and (3) a multidispensed hybrid PCL/alginate scaffold embedded with cell-laden alginate struts. The three scaffolds had similar micropore structures (pore size=430–580 μm, porosity=62%–68%, square pore shape). Preosteoblast cells (MC3T3-E1) were used at the same cell density in each scaffold. By measuring cell-seeding efficiency, cell viability, and cell distribution after various periods of culturing, we sought to determine which scaffold was more appropriate for homogeneously regenerated tissues. PMID:23469894

  12. In vitro evaluation of alginate encapsulated adipose-tissue stromal cells for use as injectable bone graft substitute

    SciTech Connect

    Abbah, S.A.; Lu, W.W. . E-mail: wwlu@hkusua.hku.hk; Chan, D.; Cheung, K.M.C.; Liu, W.G.; Zhao, F.; Li, Z.Y.; Leong, J.C.Y.; Luk, K.D.K.

    2006-08-18

    This study aims to investigate the survival and osteogenic behavior of murine-derived adipose-tissue stromal cells (ATSCs) encapsulated in alginate microcapsules thereby instigating further studies in this cell delivery strategy for in vivo osteogenesis. Cell viability was quantified using a tetrazolium-based assay and osteogenic differentiation was evaluated by both alkaline-phosphatase (ALP) histochemistry and osteocalcin mRNA analysis. Following microencapsulation, cell numbers increased from 3.9 x 10{sup 3} on day 1 to 7.8 x 10{sup 3} on day 7 and maintained excellent viability in the course of 21-day culture. ALP was 6.9, 5.5, and 3.2 times higher than monolayer cultures on days 7, 14, and 21, respectively. In addition, osteocalcin mRNA was detectable in encapsulated cultures earlier (day 14) than monolayer cultures. We conclude that alginate microcapsules can act as three-dimensional matrix for ATSC proliferation and has potential for use as injectable, biodegradable scaffold in bone tissue engineering.

  13. Metal organic frameworks for enzyme immobilization in biofuel cells

    NASA Astrophysics Data System (ADS)

    Bodell, JaDee

    Interest in biofuel cells has been rapidly expanding as an ever-growing segment of the population gains access to electronic devices. The largest areas of growth for new populations using electronic devices are often in communities without electrical infrastructure. This lack of infrastructure in remote environments is one of the key driving factors behind the development of biofuel cells. Biofuel cells employ biological catalysts such as enzymes to catalyze oxidation and reduction reactions of select fuels to generate power. There are several benefits to using enzymes to catalyze reactions as compared to traditional fuel cells which use metal catalysts. First, enzymes are able to catalyze reactions at or near room temperature, whereas traditional metal catalysts are only efficient at very high temperatures. Second, biofuel cells can operate under mild pH conditions which is important for the eventual design of safe, commercially viable devices. Also, biofuel cells allow for implantable and flexible technologies. Finally, enzymes exhibit high selectivity and can be combined to fully oxidize or reduce the fuel which can generate several electrons from a single molecule of fuel, increasing the overall device efficiency. One of the main challenges which persist in biofuel cells is the instability of enzymes over time which tend to denature after hours or days. For a viable commercial biofuel cell to be produced, the stability of enzymes must be extended to months or years. Enzymes have been shown to have improved stability after being immobilized. The focus of this research was to find a metal organic framework (MOF) structure which could successfully immobilize enzymes while still allowing for electron transport to occur between the catalytic center of the enzyme and the electrode surface within a biofuel cell for power generation. Four MOF structures were successfully synthesized and were subsequently tested to determine the MOF's ability to immobilize the following

  14. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres

    PubMed Central

    Liao, Yu-Te; Liu, Chia-Hung; Yu, Jiashing; Wu, Kevin C-W

    2014-01-01

    A new microsphere consisting of inorganic mesoporous silica nanoparticles (MSNs) and organic alginate (denoted as MSN@Alg) was successfully synthesized by air-dynamic atomization and applied to the intracellular drug delivery systems (DDS) of liver cancer cells with sustained release and specific targeting properties. MSN@Alg microspheres have the advantages of MSN and alginate, where MSN provides a large surface area for high drug loading and alginate provides excellent biocompatibility and COOH functionality for specific targeting. Rhodamine 6G was used as a model drug, and the sustained release behavior of the rhodamine 6G-loaded MSN@Alg microspheres can be prolonged up to 20 days. For targeting therapy, the anticancer drug doxorubicin was loaded into MSN@Alg microspheres, and the (lysine)4-tyrosine-arginine-glycine-aspartic acid (K4YRGD) peptide was functionalized onto the surface of MSN@Alg for targeting liver cancer cells, hepatocellular carcinoma (HepG2). The results of the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and confocal laser scanning microscopy indicate that the MSN@Alg microspheres were successfully uptaken by HepG2 without apparent cytotoxicity. In addition, the intracellular drug delivery efficiency was greatly enhanced (ie, 3.5-fold) for the arginine-glycine-aspartic acid (RGD)-labeled, doxorubicin-loaded MSN@Alg drug delivery system compared with the non-RGD case. The synthesized MSN@Alg microspheres show great potential as drug vehicles with high biocompatibility, sustained release, and targeting features for future intracellular DDS. PMID:24940057

  15. Enhanced trophic factor secretion by mesenchymal stem/stromal cells with Glycine-Histidine-Lysine (GHK)-modified alginate hydrogels

    PubMed Central

    Jose, Soumia; Hughbanks, Marissa L.; Binder, Bernard Y.K.; Ingavle, Ganesh C.; Leach, J. Kent

    2014-01-01

    Recombinant proteins and cytokines are under broad preclinical and clinical investigation to promote angiogenesis, but their success is limited by ineffective delivery, lack of long-term stability, and excessive cost. Mesenchymal stem/stromal cells (MSC) secrete bioactive trophic factors, and thus, may provide an effective alternative to address these challenges. Glycine-Histidine-Lysine (GHK) is a peptide fragment of osteonectin (SPARC), a matricellular protein with reported proangiogenic potential. We examined the capacity of GHK to upregulate secretion of proangiogenic factors from human MSC in culture and when covalently coupled to alginate hydrogels. GHK had no apparent cytotoxic effects on MSC in culture over a wide range of concentrations. We detected a dose-dependent increase in vascular endothelial growth factor (VEGF) concentration in media conditioned by GHK-treated MSC, which increased endothelial cell proliferation, migration, and tubule formation. We covalently coupled GHK to alginate using carbodiimide chemistry, and human MSC were entrapped in alginate hydrogels to assess VEGF secretion. Similar to monolayer culture, MSC responded to GHK-modified gels by secreting increased concentrations of VEGF and basic fibroblast growth factor (bFGF) compared to unmodified gels. The pre-treatment of MSC with antibodies to α6 and β1 integrins prior to entrapment in GHK-modified gels abrogated VEGF secretion, suggesting that the proangiogenic response of MSC was integrin-mediated. These data demonstrate that the proangiogenic potential of MSC can be significantly increased by the presentation of GHK with a biodegradable carrier, therefore increasing their clinical potential when used for tissue repair. PMID:24468583

  16. Gingival Mesenchymal Stem Cell (GMSC) Delivery System Based on RGD-Coupled Alginate Hydrogel with Antimicrobial Properties: A Novel Treatment Modality for Peri-Implantitis

    PubMed Central

    Diniz, Ivana M. A.; Chen, Chider; Ansari, Sahar; Zadeh, Homayoun H.; Moshaverinia, Maryam; Chee, Daniel; Marques, Márcia M.; Shi, Songtao; Moshaverinia, Alireza

    2015-01-01

    Purpose Peri-implantitis is one of the most common inflammatory complications in dental implantology. Similar to periodontitis, in peri-implantitis, destructive inflammatory changes take place in the tissues surrounding a dental implant. Bacterial flora at the failing implant sites resemble the pathogens in periodontal disease and consist of Gram-negative anaerobic bacteria including Aggregatibacter actinomycetemcomitans (Aa). Here we demonstrate the effectiveness of a silver lactate (SL)-containing RGD-coupled alginate hydrogel scaffold as a promising stem cell delivery vehicle with antimicrobial properties. Materials and Methods Gingival mesenchymal stem cells (GMSCs) or human bone marrow mesenchymal stem cells (hBMMSCs) were encapsulated in SL-loaded alginate hydrogel microspheres. Stem cell viability, proliferation, and osteo-differentiation capacity were analyzed. Results Our results showed that SL exhibited antimicrobial properties against Aa in a dose-dependent manner, with 0.50 mg/ml showing the greatest antimicrobial properties while still maintaining cell viability. At this concentration, SL-containing alginate hydrogel was able to inhibit Aa on the surface of Ti discs and significantly reduce the bacterial load in Aa suspensions. Silver ions were effectively released from the SL-loaded alginate microspheres for up to 2 weeks. Osteogenic differentiation of GMSCs and hBMMSCs encapsulated in the SL-loaded alginate microspheres were confirmed by the intense mineral matrix deposition and high expression of osteogenesis-related genes. Conclusion Taken together, our findings confirm that GMSCs encapsulated in RGD-modified alginate hydrogel containing SL show promise for bone tissue engineering with antimicrobial properties against Aa bacteria in vitro. PMID:26216081

  17. Efficient biosynthesis of γ-decalactone in ionic liquids by immobilized whole cells of Yarrowia lipolytica G3-3.21 on attapulgite.

    PubMed

    Zhao, Yuping; Xu, Yan; Jiang, Changxing

    2015-10-01

    In this study, the biosynthesis of γ-decalactone (GDL) was successfully conducted in an ionic liquid (IL)-containing cosolvent system using immobilized cells of Yarrowia lipolytica G3-3.21 on attapulgite (ATG). We found the immobilized Y. lipolytica G3-3.21 cells in N-butyl-pyridinium tetrafluoroborate ([BPy]BF4) solution gave the highest activity of C16-Acyl-CoA oxidase and the maximum yield of GDL. The optimum immobilization conditions for the highest yield of GDL were 20 g/L of ATG, 1.5 % of CaCl2 and 2 % of sodium alginate (NaAlg). The optimal [BPy]BF4 content, buffer pH, reaction temperature, shaking speed, castor oil and glucose contents were 7.5 %, 26 °C, 150 rpm, 100 g/L and 10 %, respectively. Under the optimized conditions, the GDL yield was up to 8.05 g/L. After ten times of reuse, the GDL yield was 7.51 g/L, corresponding to 93.3 % of that obtained in the first batch, suggesting a good reusability and potential for industrial applications. PMID:26091898

  18. Co-encapsulation of anti-BMP2 monoclonal antibody and mesenchymal stem cells in alginate microspheres for bone tissue engineering.

    PubMed

    Moshaverinia, Alireza; Ansari, Sahar; Chen, Chider; Xu, Xingtian; Akiyama, Kentaro; Snead, Malcolm L; Zadeh, Homayoun H; Shi, Songtao

    2013-09-01

    Recently, it has been shown that tethered anti-BMP2 monoclonal antibodies (mAbs) can trap BMP ligands and thus provide BMP inductive signals for osteo-differentiation of progenitor cells. The objectives of this study were to: (1) develop a co-delivery system based on murine anti-BMP2 mAb-loaded alginate microspheres encapsulating human bone marrow mesenchymal stem cells (hBMMSCs); and (2) investigate osteogenic differentiation of encapsulated stem cells in alginate microspheres in vitro and in vivo. Alginate microspheres of 1 ± 0.1 mm diameter were fabricated with 2 × 10(6) hBMMSCs per mL of alginate. Critical-size calvarial defects (5 mm diameter) were created in immune-compromised mice and alginate microspheres preloaded with anti-BMP mAb encapsulating hBMMSCs were transplanted into defect sites. Alginate microspheres pre-loaded with isotype-matched non-specific antibody were used as the negative control. After 8 weeks, micro CT and histologic analyses were used to analyze bone formation. In vitro analysis demonstrated that anti-BMP2 mAbs tethered BMP2 ligands that can activate the BMP receptors on hBMMSCs. The co-delivery system described herein, significantly enhanced hBMMSC-mediated osteogenesis, as confirmed by the presence of BMP signal pathway-activated osteoblast determinants Runx2 and ALP. Our results highlight the importance of engineering the microenvironment for stem cells, and particularly the value of presenting inductive signals for osteo-differentiation of hBMMSCs by tethering BMP ligands using mAbs. This strategy of engineering the microenvironment with captured BMP signals is a promising modality for repair and regeneration of craniofacial, axial and appendicular bone defects. PMID:23773817

  19. Alginate Biosynthesis Factories in Pseudomonas fluorescens: Localization and Correlation with Alginate Production Level.

    PubMed

    Maleki, Susan; Almaas, Eivind; Zotchev, Sergey; Valla, Svein; Ertesvåg, Helga

    2016-02-01

    Pseudomonas fluorescens is able to produce the medically and industrially important exopolysaccharide alginate. The proteins involved in alginate biosynthesis and secretion form a multiprotein complex spanning the inner and outer membranes. In the present study, we developed a method by which the porin AlgE was detected by immunogold labeling and transmission electron microscopy. Localization of the AlgE protein was found to depend on the presence of other proteins in the multiprotein complex. No correlation was found between the number of alginate factories and the alginate production level, nor were the numbers of these factories affected in an algC mutant that is unable to produce the precursor needed for alginate biosynthesis. Precursor availability and growth phase thus seem to be the main determinants for the alginate production rate in our strain. Clustering analysis demonstrated that the alginate multiprotein complexes were not distributed randomly over the entire outer cell membrane surface. PMID:26655760

  20. Alginate Biosynthesis Factories in Pseudomonas fluorescens: Localization and Correlation with Alginate Production Level

    PubMed Central

    Maleki, Susan; Almaas, Eivind; Zotchev, Sergey; Valla, Svein

    2015-01-01

    Pseudomonas fluorescens is able to produce the medically and industrially important exopolysaccharide alginate. The proteins involved in alginate biosynthesis and secretion form a multiprotein complex spanning the inner and outer membranes. In the present study, we developed a method by which the porin AlgE was detected by immunogold labeling and transmission electron microscopy. Localization of the AlgE protein was found to depend on the presence of other proteins in the multiprotein complex. No correlation was found between the number of alginate factories and the alginate production level, nor were the numbers of these factories affected in an algC mutant that is unable to produce the precursor needed for alginate biosynthesis. Precursor availability and growth phase thus seem to be the main determinants for the alginate production rate in our strain. Clustering analysis demonstrated that the alginate multiprotein complexes were not distributed randomly over the entire outer cell membrane surface. PMID:26655760

  1. Cytotoxicity and genotoxicity of a trypanocidal drug quinapyramine sulfate loaded-sodium alginate nanoparticles in mammalian cells.

    PubMed

    Manuja, Anju; Kumar, Balvinder; Chopra, Meenu; Bajaj, Anshu; Kumar, Rajender; Dilbaghi, Neeraj; Kumar, Sandeep; Singh, Sandeep; Riyesh, T; Yadav, Suresh C

    2016-07-01

    We synthesized quinapyramine sulfate loaded-sodium alginate nanoparticles (QS-NPs) to reduce undesirable toxic effects of QS against the parasite Trypanosoma evansi, a causative agent of trypanosomosis. To determine the safety of the formulated nanoparticles, biocompatibility of QS-NPs was determined using Vero, Hela cell lines and horse erythrocytes in a dose-dependent manner. Our experiments unveiled a concentration-dependent safety/cytotoxicity (metabolic activity), genotoxicity (DNA damage, chromosomal aberrations), production of reactive oxygen species and hemolysis in QS-NPs treated cells. Annexin-V propidium iodide (PI) staining showed no massive apoptosis or necrosis. However, at very high doses (more than 300 times than the effective doses), we observed more toxicity in QS-NPs treated cells as compared to QS treated cells. QS-NPs were safe at effective trypanocidal doses and even at doses several times higher than the effective dose. PMID:27000439

  2. Cell growth on immobilized cell growth factor. 7. Protein-free cell culture by using growth-factor-immobilized polymer membrane.

    PubMed

    Liu, S Q; Ito, Y; Imanishi, Y

    1993-02-01

    A protein-free culture of anchorage-dependent cells, mouse fibroblast cells, STO and 3T3-L1 and fibroic sarcoma cells, Swiss albino HSDM1C1, grown on a cell-growth protein, insulin, and/or a cell-adhesion protein, collagen, which are immobilized or coimmobilized on surface-hydrolyzed poly(methyl methacrylate) membrane, was investigated. By adding metal ions and lipids to the culture medium, a protein-free culture medium was composed, which was potent in promoting cell proliferation similarly to serum-containing culture medium. In particular, with insulin/collagen-coimmobilized membrane, a protein-free culture was established without detachment of growing cells over a long period. These protein-immobilized membranes could be used repeatedly. PMID:7763456

  3. Conjugation of alginate to a synthetic peptide containing T- and B-cell epitopes as an induction for protective immunity against Pseudomonas aeruginosa.

    PubMed

    Farjaha, Ali; Owlia, Parviz; Siadat, Seyed Davar; Mousavi, Seyed Fazlollah; Shafieeardestani, Mehdi

    2014-12-20

    Pseudomonas aeruginosa is a major cause of respiratory tract infections worldwide, particularly in hospitalized patients with immunosuppressed conditions and cystic fibrosis (CF). Excessive use of antibiotics means that there is currently resistance among bacterial infections to many drugs. Vaccination is a strategy that can reduce mortality and morbidity rates in infections such as those caused by P. aeruginosa. Alginate has a critical role in such infections and affects pathogenicity of the bacterium. In this work, the bioinformatics approach was used to design and synthesis a carrier peptide (ERRANAVRDVLVNEY), derived from OMP F P. aeruginosa. This peptide contained both B- and T-cell epitopes based on prediction models. Conjugation of alginate to carrier peptide was performed and then analyzed by Fourier transform infrared spectroscopy (FTIR). Results of this study on mice showed that the conjugate elicited anti-alginate-IgG that were not detected after immunization with naive alginate. The effect of the antibodies to alginate conjugate was evaluated as highly opsonic and showed moderate to high-level killing activity against two mucoid strains. IgG1 was also dominant among IgG subclasses. Mice vaccinated with the conjugate vaccine survived lethal challenges (2 ×LD 50). Furthermore, using an acute pneumonia model of infection in mice, determined that levels of P. aeruginosa in mice were significantly reduced in the vaccinated group. Thus, tests confirmed ability of this conjugate to elicit protective and opsonophagocytic antibodies that candidate our vaccine for further studies. PMID:25449544

  4. Protein-Free Cell Culture on an Artificial Substrate with Covalently Immobilized Insulin

    NASA Astrophysics Data System (ADS)

    Ito, Yoshihiro; Zheng, Ji; Imanishi, Yukio; Yonezawa, Kazuyoshi; Kasuga, Masato

    1996-04-01

    Insulin was immobilized on a surface-hydrolyzed poly(methyl methacrylate) film. Chinese hamster ovary cells overexpressing human insulin receptors were cultured on the film in the absence of serum or soluble proteins. Small amounts of immobilized insulin (1-10% of the required amount of free insulin) were sufficient to stimulate cell proliferation. In addition, the maximal mitogenic effect of immobilized insulin was greater than that of free insulin. Immobilized insulin activated the insulin receptor and down-stream signaling proteins, and this activation persisted for longer periods than that obtained with free insulin, probably explaining the greater mitogenic effect of the immobilized insulin. Finally the immobilized-insulin film was usable repeatedly without marked loss of activity.

  5. Enhanced cellular activities of polycaprolactone/alginate-based cell-laden hierarchical scaffolds for hard tissue engineering applications.

    PubMed

    Lee, HyeongJin; Kim, GeunHyung

    2014-09-15

    Biomedical scaffolds have been widely investigated because they are essential for support and promotion of cell adhesion, proliferation and differentiation in three-dimensional (3D) structures. An ideal scaffold should be highly porous to enable efficient nutrient and oxygen transfer and have a 3D structure that provides optimal micro-environmental conditions for the seeded cells to obtain homogeneous growth after a long culture period. In this study, new hierarchical osteoblast-like cell (MG-63)-laden scaffolds consisting of micro-sized struts/inter-layered micro-nanofibres and cell-laden hydrogel struts with mechanically stable and biologically superior properties were introduced. Poly(ethylene oxide) (PEO) was used as a sacrificial component to generate pores within the cell-laden hydrogel struts to attain a homogeneous cell distribution and rapid cell growth in the scaffold interior. The alginate-based cell-laden struts with PEO induced fast/homogeneous cell release, in contrast to nonporous cell-laden struts. Various weight fractions (0.5, 1, 2, 3 and 3.5 wt%) of PEO were used, of which 2 wt% PEO in the cell-laden strut resulted in the most appropriate cell release and enhanced biological activities (cell proliferation and calcium deposition), compared to nonporous cell-laden struts. PMID:24974244

  6. Comparison of some biochemical properties of artichoke polyphenol oxidase entrapped in alginate-carrageenan and alginate gels.

    PubMed

    Yagar, Hulya; Kocaturk, Selin

    2014-08-01

    Polyphenol oxidase (PPO, EC.1.14.18.1) isolated from artichoke (Cynara scolymus) was entrapped within alginate and alginate+ carrageenan beads, and the catecholase and cresolase activities of both entrapped enzymes were determined. Some properties of these immobilized enzymes such as optimum pH and temperature, kinetic parameters (Km and Vmax), thermal, and storage stability were determined and compared to each other. The highest catecholase activity was observed in alginate gel (370 U/g bead) while the highest cresolase activity was in alginate+ carrageenan gel (90 U/g bead). For catecholase and cresolase activities, optimum pHs of alginate and alginate+ carrageenan beads were determined to be 7.0 and 4.0, respectively. Optimum temperatures for catecholase activity were determined to be 40°C for both entrapped enzymes. These values for cresolase activity were 30°C and 20°C, respectively. Immobilized artichoke PPOs greatly preserved their thermal stability which exists anyway. The catalytic efficiency value (Vmax/Km) of the alginate beads is approximately high as two-and-a-half folds of that of alginate+κ-carrageenan beads for cresolase activity. These values were very close for catecholase activity. Immobilized beads saved their both activities after 30 days of storage at 4°C. PMID:23795723

  7. Inhibition of gamma-irradiation induced adhesion molecules and NO production by alginate in human endothelial cells.

    PubMed

    Son, E W; Cho, C K; Rhee, D K; Pyo, S

    2001-10-01

    Inflammation is a frequent radiation-induced reaction following therapeutic irradiation. Treatment of human umbilical endothelial cells (HUVEC) with gamma-irradiation (gammaIR) induces the expression of adhesion proteins such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. Since the upregulation of these proteins on endothelial cell surface has been known to be associated with inflammation, interfering with the expression of adhesion molecules is an important therapeutic target. In the present study, we demonstrate that high mannuronic acid-containing alginate (HMA) inhibits gammaIR induced expression of ICAM-1, VCAM-1, and E-selectin on HUVEC in a dose dependent manner. HMA also inhibited gammaIR induced production of Nitric oxide (NO). These data suggest that HMA has therapeutic potential for the treatment of various inflammatory disorder associated with an increase of endothelial leukocyte adhesion molecules. PMID:11693551

  8. Engineering alginate as bioink for bioprinting.

    PubMed

    Jia, Jia; Richards, Dylan J; Pollard, Samuel; Tan, Yu; Rodriguez, Joshua; Visconti, Richard P; Trusk, Thomas C; Yost, Michael J; Yao, Hai; Markwald, Roger R; Mei, Ying

    2014-10-01

    Recent advances in three-dimensional (3-D) printing offer an excellent opportunity to address critical challenges faced by current tissue engineering approaches. Alginate hydrogels have been used extensively as bioinks for 3-D bioprinting. However, most previous research has focused on native alginates with limited degradation. The application of oxidized alginates with controlled degradation in bioprinting has not been explored. Here, a collection of 30 different alginate hydrogels with varied oxidation percentages and concentrations was prepared to develop a bioink platform that can be applied to a multitude of tissue engineering applications. The authors systematically investigated the effects of two key material properties (i.e. viscosity and density) of alginate solutions on their printabilities to identify a suitable range of material properties of alginates to be applied to bioprinting. Further, four alginate solutions with varied biodegradability were printed with human adipose-derived stem cells (hADSCs) into lattice-structured, cell-laden hydrogels with high accuracy. Notably, these alginate-based bioinks were shown to be capable of modulating proliferation and spreading of hADSCs without affecting the structure integrity of the lattice structures (except the highly degradable one) after 8days in culture. This research lays a foundation for the development of alginate-based bioink for tissue-specific tissue engineering applications. PMID:24998183

  9. Engineering alginate as bioink for bioprinting

    PubMed Central

    Jia, Jia; Richards, Dylan J.; Pollard, Samuel; Tan, Yu; Rodriguez, Joshua; Visconti, Richard P.; Trusk, Thomas C.; Yost, Michael J.; Yao, Hai; Markwald, Roger R.; Mei, Ying

    2015-01-01

    Recent advances in 3D printing offer an excellent opportunity to address critical challenges faced by current tissue engineering approaches. Alginate hydrogels have been extensively utilized as bioinks for 3D bioprinting. However, most previous research has focused on native alginates with limited degradation. The application of oxidized alginates with controlled degradation in bioprinting has not been explored. Here, we prepared a collection of 30 different alginate hydrogels with varied oxidation percentages and concentrations to develop a bioink platform that can be applied to a multitude of tissue engineering applications. We systematically investigated the effects of two key material properties (i.e. viscosity and density) of alginate solutions on their printabilities to identify a suitable range of material properties of alginates to be applied to bioprinting. Further, four alginate solutions with varied biodegradability were printed with human adipose-derived stem cells (hADSCs) into lattice-structured, cell-laden hydrogels with high accuracy. Notably, these alginate-based bioinks were shown to be capable of modulating proliferation and spreading of hADSCs without affecting structure integrity of the lattice structures (except the highly degradable one) after 8 days in culture. This research lays a foundation for the development of alginate-based bioink for tissue-specific tissue engineering applications. PMID:24998183

  10. Intermittent hydrostatic pressure maintains and enhances the chondrogenic differentiation of cartilage progenitor cells cultivated in alginate beads.

    PubMed

    Li, Yang; Zhou, Jianxin; Yang, Xiaofei; Jiang, Yiqiu; Gui, Jianchao

    2016-02-01

    The objective of this study was to explore the effects of intermittent hydrostatic pressure (IHP) on the chondrogenic differentiation of cartilage progenitor cells (CPCs) cultivated in alginate beads. CPCs were isolated from the knee joint cartilage of rabbits, and infrapatellar fat pad-derived stem cells (FPSCs) and chondrocytes (CCs) were included as the control cell types. Cells embedded in alginate beads were treated with IHP at 5 Mpa and 0.5 Hz for 4 h/day for 1, 2, or 4 weeks. The cells' migratory and proliferative capacities were evaluated using the scratch and Live/Dead assays, respectively. Hematoxylin and eosin staining, safranin O staining, and immunohistochemical staining were performed to determine the effects of IHP on the synthesis of extracellular matrix (ECM) proteins. Real-time polymerase chain reaction analysis was performed to measure the expression of genes related to chondrogenesis. The scratch and Live/Dead assays revealed that IHP significantly promoted the migration and proliferation of FPSCs and CPCs to different extents. The staining experiments showed greater production of cartilage ECM components (glycosaminoglycans and collagen II) by cells exposed to IHP, and the gene expression analysis demonstrated that IHP stimulated the expression of chondrocyte-related genes. Importantly, these effects of IHP were more prominent in CPCs than in FPSCs and CCs. Considering all of our experimental results combined, we conclude that CPCs demonstrated a stronger chondrogenic differentiation capacity than the FPSCs and CCs under stimulation with IHP. Thus, the use of CPCs, combined with mechanical stimulation, may represent a valuable strategy for cartilage tissue engineering. PMID:26771816

  11. Immobilization of microbial cells on cellulose-polymer surfaces by radiation polymerization

    SciTech Connect

    Kumakura, M.; Kaetsu, I.

    1983-12-01

    Streptomyces phaeochromogens cells were immobilized on cellulose-polymer surfaces by radiation polymerization using hydrophilic monomers and paper. The enzyme activity of immobilized cell sheets was higher than that of immobilized cell composites obtained by the usual radiation polymerization technique. The enzyme activity of the sheets was affected by monomer concentration, the thickness of paper, and the degree of polymerization of paper. The copolymerization of hydroxyethyl methacrylate and methoxytetraethyleneglycol methacrylate in the sheets led to a further increase of the enzyme activity due to the increase of the hydrophilicity of the polymer matrix. The Michaelis constant of the sheets from low monomer concentration was close to that of intact cells.

  12. Enhancement of phototoxicity against human pancreatic cancer cells with photosensitizer-encapsulated amphiphilic sodium alginate derivative nanoparticles.

    PubMed

    Yu, Zhong; Li, Huajie; Zhang, Li-Ming; Zhu, Zhaohua; Yang, Liqun

    2014-10-01

    Photosensitizer-encapsulated amphiphilic sodium alginate derivative (Photosan-CSAD) nanoparticles were prepared because of their ability to enhance phototoxicity in the photodynamic therapy of pancreatic cancer. These nanoparticles are spherical, 150-250 nm in size as determined by transmission electron microscopy, and have negative zeta potentials. Upon incubation with human pancreatic cancer cells, the Photosan-CSAD nanoparticles showed high fluorescence activity and reactive oxygen species generation, resulting in strong phototoxicity. However, no dark toxicity was observed. Apoptosis played a leading role in the cell death process induced by the Photosan phototoxicity. These results demonstrate that the Photosan-CSAD nanoparticles are a candidate for the photodynamic therapy of pancreatic cancer. PMID:25089506

  13. Controlled Cell Growth and Cell Migration in Periodic Mesoporous Organosilica/Alginate Nanocomposite Hydrogels.

    PubMed

    Seda Kehr, Nermin; Riehemann, Kristina

    2016-01-21

    Nanocomposite (NC) hydrogels with different periodic mesoporous organosilica (PMO) concentrations and a NC hydrogel bilayer with various PMO concentrations inside the layers of the hydrogel matrix are prepared. The effect of the PMO concentration on cell growth and migration of cells is reported. The cells migrate in the bilayer NC hydrogel towards higher PMO concentrations and from cell culture plates to NC hydrogel scaffolds. PMID:26648333

  14. Physiological tests for yeast brewery cells immobilized on modified chamotte carrier.

    PubMed

    Berlowska, Joanna; Kregiel, Dorota; Ambroziak, Wojciech

    2013-11-01

    In this study yeast cell physiological activity was assessed on the basis of the in situ activity of two important enzymes, succinate dehydrogenase and pyruvate decarboxylase. FUN1 dye bioconversion and cellular ATP content were also taken as important indicators of yeast cell activity. The study was conducted on six brewing yeast strains, which were either free cells or immobilized on a chamotte carrier. The experimental data obtained indicate clearly that, in most cases, the immobilized cells showed lower enzyme activity than free cells from analogous cultures. Pyruvate decarboxylase activity in immobilized cells was higher than in planktonic cell populations only in the case of the Saccharomyces pastorianus 680 strain. However, in a comparative assessment of the fermentation process, conducted with the use of free and immobilized cells, much more favorable dynamics and carbon dioxide productivity were observed in immobilized cells, especially in the case of brewing lager yeast strains. This may explain the higher total cell density per volume unit of the fermented medium and the improved resistance of immobilized cells to environmental changes. PMID:23887884

  15. Effects of TGF-β1 and alginate on the differentiation of rabbit bone marrow-derived mesenchymal stem cells into a chondrocyte cell lineage

    PubMed Central

    WANG, WAN-ZONG; YAO, XIAO-DONG; HUANG, XIAO-JIN; LI, JIN-QUAN; XU, HAO

    2015-01-01

    The aim of the present study was to investigate the effect of a three-dimensional (3D) culture system of sodium alginate gel on the directional differentiation induction of bone marrow-derived mesenchymal stem cells (BMSCs) into chondrocytes, as well as the in vitro gene transfection technique. The biological characteristics of the passage and proliferation of rabbit BMSCs were investigated under conditions of in vitro monolayer and 3D culture of sodium alginate gel. Transforming growth factor (TGF)-β1 gene recombinant adenoviral cosmid vectors and the recombinant adenoviral vector Ad.TGF-β1 were constructed, and the effect of Ad.TGF-β1 transfection on the differentiation of BMSCs into chondrocytes was investigated. The whole bone marrow rinsing method was used to obtain, separate and purify the rabbit BMSCs, and the in vitro monolayer and 3D culture of sodium alginate gel were thus successfully and stably established. A safe, stable and efficient method of constructing Ad.TGF-β1 TGF-β1 gene recombinant adenoviral vectors was established. Following TGF-β1 transfection, BMSCs were able to continuously secrete significantly increased amounts of specific extracellular matrix components of chondrocytes, such as collagen II and proteoglycans. Furthermore, the effects in the post-gene transfection 3D culture group were found to be enhanced compared with those in the monolayer culture group. In conclusion, the 3D culture system of sodium alginate gel and in vitro gene transfection exhibited significant inductive effects on differentiation, which could be used to promote BMSCs to differentiate into chondrocytes. PMID:26622428

  16. Kinetic analysis of dihydroxyacetone production from crude glycerol by immobilized cells of Gluconobacter oxydans MTCC 904.

    PubMed

    Dikshit, Pritam Kumar; Moholkar, Vijayanand S

    2016-09-01

    The present study has investigated kinetic features of bioconversion of biodiesel-derived crude glycerol to dihydroxyacetone with immobilized Gluconobacter oxydans cells using modified Haldane substrate-inhibition model. The results have been compared against free cells and pure glycerol. Relative variations in the kinetic parameters KS, KI, Vmax, n and X reveal that immobilized G. oxydans cells (on PU foam substrate) with crude glycerol as substrate give higher order of inhibition (n) and lower maximum reaction velocities (Vmax). These results are essentially implications of substrate transport restrictions across immobilization matrix, which causes retention of substrate in the matrix and reduction in fractional available substrate (X) for the cells. This causes reduction in both KS (substrate concentration at Vmax/2) and KI (inhibition constant) as compared to free cells. For immobilized cells, substrate concentration (Smax) corresponding to Vmax is practically same for both pure and crude glycerol as substrate. PMID:27343447

  17. Decolorization of azo dyes with Enterobacter agglomerans immobilized in different supports by using fluidized bed bioreactor.

    PubMed

    Moutaouakkil, Adnane; Zeroual, Youssef; Dzayri, Fatima Zohra; Talbi, Mohamed; Lee, Kangmin; Blaghen, Mohamed

    2004-02-01

    Immobilized cells of Enterobacter agglomerans, able to reduce azo dyes enzymatically, were used as a biocatalyst for the decolorization of synthetic medium containing the toxic azo dye methyl red (MR). This bacterial strain exhibits high ability to completely decolorize 100 mg/L of MR after only 6 h of incubation under aerobic conditions. Cells of E. agglomerans were immobilized in calcium alginate, polyacylamide, cooper beech, and vermiculite, and were used for the decolorization of MR from synthetic water by using a fluidized bed bioreactor. The highest specific decolorization rate was obtained when E. agglomerans was entrapped in calcium alginate beads and was of about 3.04 mg MR/g cell/h with a 50% conversion time ( t(1/2)) of about 1.6 h. Moreover, immobilized cells in calcium alginate continuously decolorized MR even after seven repeated experiments without significant loss of activity, while polyacrylamide-, cooper beech-, and vermiculite-immobilized cells retained only 62, 15, and 13% of their original activity, respectively. PMID:15057480

  18. Endothelial Cell Growth and Differentiation on Collagen-Immobilized Polycaprolactone Nanowire Surfaces.

    PubMed

    Leszczak, Victoria; Baskett, Dominique A; Popat, Ketul C

    2015-06-01

    The success of cardiovascular implants is associated with the development of an endothelium on material surface, critical to the prevention of intimal hyperplasia, calcification and thrombosis. A thorough understanding of the interaction between vascular endothelial cells and the biomaterial involved is essential in order to have a successful application which promotes healing and regeneration through integration with native tissue. In this study, we have developed collagen immobilized nanostructured surfaces with controlled arrays of high aspect ratio nanowires for the growth and maintenance of human microvascular endothelial cells (HMVECs). The nanowire surfaces were fabricated from polycaprolactone using a novel nanotemplating technique, and were immobilized with collagen utilizing an aminolysis method. The collagen immobilized nanowire surfaces were characterized using contact angle measurements, scanning electron microscopy and X-ray photoelectron spectroscopy. Human microvascular endothelial cells were used to evaluate the efficacy of the collagen immobilized nanowire surfaces to promote cell adhesion, proliferation, viability and differentiation. The results presented here indicate significantly higher cellular adhesion, proliferation and viability on nanowire and collagen immobilized surfaces as compared to the control surface. Further, HMVECs have a more elongated body and low shape factor on nanostructured surfaces. The differentiation potential of collagen immobilized nanowire surfaces was also evaluated by immunostaining and western blotting for key endothelial cell markers that are expressed when human microvascular endothelial cells are differentiated. Results indicate that expression of VE-cadherin is increased on collagen immobilized surfaces while the expression of von Willebrand factor is statistically similar on all surfaces. PMID:26353596

  19. Bone Regeneration Potential of Stem Cells Derived from Periodontal Ligament or Gingival Tissue Sources Encapsulated in RGD-Modified Alginate Scaffold

    PubMed Central

    Chen, Chider; Xu, Xingtian; Akiyama, Kentaro; Ansari, Sahar; Zadeh, Homayoun H.; Shi, Songtao

    2014-01-01

    Mesenchymal stem cells (MSCs) provide an advantageous alternative therapeutic option for bone regeneration in comparison to current treatment modalities. However, delivering MSCs to the defect site while maintaining a high MSC survival rate is still a critical challenge in MSC-mediated bone regeneration. Here, we tested the bone regeneration capacity of periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs) encapsulated in a novel RGD- (arginine-glycine-aspartic acid tripeptide) coupled alginate microencapsulation system in vitro and in vivo. Five-millimeter-diameter critical-size calvarial defects were created in immunocompromised mice and PDLSCs and GMSCs encapsulated in RGD-modified alginate microspheres were transplanted into the defect sites. New bone formation was assessed using microcomputed tomography and histological analyses 8 weeks after transplantation. Results confirmed that our microencapsulation system significantly enhanced MSC viability and osteogenic differentiation in vitro compared with non-RGD-containing alginate hydrogel microspheres with larger diameters. Results confirmed that PDLSCs were able to repair the calvarial defects by promoting the formation of mineralized tissue, while GMSCs showed significantly lower osteogenic differentiation capability. Further, results revealed that RGD-coupled alginate scaffold facilitated the differentiation of oral MSCs toward an osteoblast lineage in vitro and in vivo, as assessed by expression of osteogenic markers Runx2, ALP, and osteocalcin. In conclusion, these results for the first time demonstrated that MSCs derived from orofacial tissue encapsulated in RGD-modified alginate scaffold show promise for craniofacial bone regeneration. This treatment modality has many potential dental and orthopedic applications. PMID:24070211

  20. Bone regeneration potential of stem cells derived from periodontal ligament or gingival tissue sources encapsulated in RGD-modified alginate scaffold.

    PubMed

    Moshaverinia, Alireza; Chen, Chider; Xu, Xingtian; Akiyama, Kentaro; Ansari, Sahar; Zadeh, Homayoun H; Shi, Songtao

    2014-02-01

    Mesenchymal stem cells (MSCs) provide an advantageous alternative therapeutic option for bone regeneration in comparison to current treatment modalities. However, delivering MSCs to the defect site while maintaining a high MSC survival rate is still a critical challenge in MSC-mediated bone regeneration. Here, we tested the bone regeneration capacity of periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs) encapsulated in a novel RGD- (arginine-glycine-aspartic acid tripeptide) coupled alginate microencapsulation system in vitro and in vivo. Five-millimeter-diameter critical-size calvarial defects were created in immunocompromised mice and PDLSCs and GMSCs encapsulated in RGD-modified alginate microspheres were transplanted into the defect sites. New bone formation was assessed using microcomputed tomography and histological analyses 8 weeks after transplantation. Results confirmed that our microencapsulation system significantly enhanced MSC viability and osteogenic differentiation in vitro compared with non-RGD-containing alginate hydrogel microspheres with larger diameters. Results confirmed that PDLSCs were able to repair the calvarial defects by promoting the formation of mineralized tissue, while GMSCs showed significantly lower osteogenic differentiation capability. Further, results revealed that RGD-coupled alginate scaffold facilitated the differentiation of oral MSCs toward an osteoblast lineage in vitro and in vivo, as assessed by expression of osteogenic markers Runx2, ALP, and osteocalcin. In conclusion, these results for the first time demonstrated that MSCs derived from orofacial tissue encapsulated in RGD-modified alginate scaffold show promise for craniofacial bone regeneration. This treatment modality has many potential dental and orthopedic applications. PMID:24070211

  1. Sustained Delivery of Bioactive GDNF from Collagen and Alginate-Based Cell-Encapsulating Gel Promoted Photoreceptor Survival in an Inherited Retinal Degeneration Model

    PubMed Central

    Chan, Barbara P.; Lo, Amy C. Y.

    2016-01-01

    Encapsulated-cell therapy (ECT) is an attractive approach for continuously delivering freshly synthesized therapeutics to treat sight-threatening posterior eye diseases, circumventing repeated invasive intravitreal injections and improving local drug availability clinically. Composite collagen-alginate (CAC) scaffold contains an interpenetrating network that integrates the physical and biological merits of its constituents, including biocompatibility, mild gelling properties and availability. However, CAC ECT properties and performance in the eye are not well-understood. Previously, we reported a cultured 3D CAC system that supported the growth of GDNF-secreting HEK293 cells with sustainable GDNF delivery. Here, the system was further developed into an intravitreally injectable gel with 1x104 or 2x105 cells encapsulated in 2mg/ml type I collagen and 1% alginate. Gels with lower alginate concentration yielded higher initial cell viability but faster spheroid formation while increasing initial cell density encouraged cell growth. Continuous GDNF delivery was detected in culture and in healthy rat eyes for at least 14 days. The gels were well-tolerated with no host tissue attachment and contained living cell colonies. Most importantly, gel-implanted in dystrophic Royal College of Surgeons rat eyes for 28 days retained photoreceptors while those containing higher initial cell number yielded better photoreceptor survival. CAC ECT gels offers flexible system design and is a potential treatment option for posterior eye diseases. PMID:27441692

  2. Sustained Delivery of Bioactive GDNF from Collagen and Alginate-Based Cell-Encapsulating Gel Promoted Photoreceptor Survival in an Inherited Retinal Degeneration Model.

    PubMed

    Wong, Francisca S Y; Wong, Calvin C H; Chan, Barbara P; Lo, Amy C Y

    2016-01-01

    Encapsulated-cell therapy (ECT) is an attractive approach for continuously delivering freshly synthesized therapeutics to treat sight-threatening posterior eye diseases, circumventing repeated invasive intravitreal injections and improving local drug availability clinically. Composite collagen-alginate (CAC) scaffold contains an interpenetrating network that integrates the physical and biological merits of its constituents, including biocompatibility, mild gelling properties and availability. However, CAC ECT properties and performance in the eye are not well-understood. Previously, we reported a cultured 3D CAC system that supported the growth of GDNF-secreting HEK293 cells with sustainable GDNF delivery. Here, the system was further developed into an intravitreally injectable gel with 1x104 or 2x105 cells encapsulated in 2mg/ml type I collagen and 1% alginate. Gels with lower alginate concentration yielded higher initial cell viability but faster spheroid formation while increasing initial cell density encouraged cell growth. Continuous GDNF delivery was detected in culture and in healthy rat eyes for at least 14 days. The gels were well-tolerated with no host tissue attachment and contained living cell colonies. Most importantly, gel-implanted in dystrophic Royal College of Surgeons rat eyes for 28 days retained photoreceptors while those containing higher initial cell number yielded better photoreceptor survival. CAC ECT gels offers flexible system design and is a potential treatment option for posterior eye diseases. PMID:27441692

  3. Study of Carbon Nano-Tubes Effects on the Chondrogenesis of Human Adipose Derived Stem Cells in Alginate Scaffold

    PubMed Central

    Valiani, Ali; Hashemibeni, Batool; Esfandiary, Ebrahim; Ansar, Malek Masoud; Kazemi, Mohammad; Esmaeili, Nafiseh

    2014-01-01

    Background: Osteoarthritis is one of the most common diseases in middle-aged populations in the World and could become the fourth principal cause of disability by the year 2020. One of the critical properties for cartilage tissue engineering (TE) is the ability of scaffolds to closely mimic the extracellular matrix and bond to the host tissue. Therefore, TE has been presented as a technique to introduce the best combination of cells and biomaterial scaffold and to stimulate growth factors to produce a cartilage tissue resembling natural articular cartilage. The aim of study is to improve differentiation of adipose derived stem cells (ADSCs) into chondrocytes in order to provide a safe and modern treatment for patients suffering from cartilage damages. Methods: After functionalization, dispersions and sterilizing carbon nano-tubes (CNTs), a new type of nanocomposite gel was prepared from water-soluble CNTs and alginate. ADSCs seeded in 1.5% alginate scaffold and cultured in chondrogenic media with and without transforming growth factor-β1 (TGF-β1) for 7 and 14 days. The genes expression of sex determining region Y-box 9 (SOX9), types II and X collagens was assessed by real-time polymerase chain reaction and the amount of aggrecan (AGC) and type I collagen was measured by ELISA. Results: Our findings showed that the expression of essential cartilage markers, SOX9, type II collagen and AGC, in differentiated ADSCs at the concentration of 1 μg/ml CNTs in the presence of TGF-β1 were significantly increased in comparison with the control group (P < 0.001). Meanwhile, type X collagen expression and also type I collagen production were significantly decreased (P < 0.001). Conclusions: The results showed that utilized three-dimensional scaffold had a brilliant effect in promoting gene expression of chondrogenesis. PMID:25104993

  4. Dual Ionic and Photo-Crosslinked Alginate Hydrogels for Micropatterned Spatial Control of Material Properties and Cell Behavior.

    PubMed

    Samorezov, Julia E; Morlock, Colin M; Alsberg, Eben

    2015-07-15

    Biomaterial properties such as mechanics, degradation rate, and cell adhesivity affect cell behaviors including spreading, proliferation, and differentiation. To engineer complex tissues, it is often desirable to achieve precise spatial control over these properties. Here, methacrylated alginate (MA-ALG) was used to create hydrogels comprising a single base material with regions of different types and levels of crosslinking and subsequently different material properties. Ionic and ultraviolet light crosslinking mechanisms were combined to create dual-crosslinked hydrogels with significantly increased stiffness and decreased swelling compared to calcium-crosslinked or UV-crosslinked hydrogels. MC3T3 cells showed significantly enhanced proliferation on the surface of dual-crosslinked hydrogels compared with calcium-crosslinked hydrogels. Photomasks were then used to create patterned hydrogels with precise spatial control over regions that were only calcium-crosslinked versus dual-crosslinked. This spatial variation in crosslinking mechanism permitted local regulation of the hydrogel physical properties and alignment of cells seeded on their surface. Photomasks were also used to create hydrogels with patterned presentation of cell adhesion ligands, leading to spatial control over cell attachment and proliferation. This biomaterial system can be useful for providing patterned, instructive cues to guide cell behavior for engineering complex tissues. PMID:25799217

  5. Progress on implantable biofuel cell: Nano-carbon functionalization for enzyme immobilization enhancement.

    PubMed

    Babadi, Arman Amani; Bagheri, Samira; Hamid, Sharifah Bee Abdul

    2016-05-15

    Biofuel cells are bio-electrochemical devices, which are suitable for the environmentally friendly generation of energy. Enzymatic biofuel cell (EBFC) operates at ambient temperature and pH. Biofuel cells utilize vegetable and animal fluids (e.g. glucose) as a biofuel to produce energy. Fundamental part of each Glucose biofuel cell (GBFC) is two bioelectrodes which their surface utilizes as an enzyme immobilized site. Glucose oxidase (GOx) or glucose dehydrogenase (GDH) were immobilized on bioanode and oxidize glucose while oxygen reduced in biocathode using immobilized laccase or bilirubin oxidase in order to generate sufficient power. Glucose biofuel cells are capable to generate sufficient power for implanted devices. The key step of manufacturing a bioelectrode is the effective enzyme immobilization on the electrode surface. Due to the thin diameter of carbon nanomaterials, which make them accessible to the enzyme active sites, they are applicable materials to establish electronic communication with redox enzymes. Carbon nanomaterials regenerate the biocatalysts either by direct electron transfer or redox mediators which serve as intermediated for the electron transfer. Nano-carbon functionalization is perfectly compatible with other chemical or biological approaches to enhance the enzyme functions in implantable biofuel cells. Efficient immobilization of enzyme using the functionalized nano-carbon materials is the key point that greatly increases the possibilities of success. Current review highlights the progress on implantable biofuel cell, with focus on the nano-carbon functionalization for enzyme immobilization enhancement in glucose/O2 biofuel cells. PMID:26785309

  6. “Fish-in-Net”, a Novel Method for Cell Immobilization of Zymomonas mobilis

    PubMed Central

    Niu, Xuedun; Wang, Zhi; Li, Yang; Zhao, Zijian; Liu, Jiayin; Jiang, Li; Xu, Haoran; Li, Zhengqiang

    2013-01-01

    Background Inorganic mesoporous materials exhibit good biocompatibility and hydrothermal stability for cell immobilization. However, it is difficult to encapsulate living cells under mild conditions, and new strategies for cell immobilization are needed. We designed a “fish-in-net” approach for encapsulation of enzymes in ordered mesoporous silica under mild conditions. The main objective of this study is to demonstrate the potential of this approach in immobilization of living cells. Methodology/Principal Findings Zymomonas mobilis cells were encapsulated in mesoporous silica-based materials under mild conditions by using a “fish-in-net” approach. During the encapsulation process, polyethyleneglycol was used as an additive to improve the immobilization efficiency. After encapsulation, the pore size, morphology and other features were characterized by various methods, including scanning electron microscopy, nitrogen adsorption-desorption analysis, transmission electron microscopy, fourier transform infrared spectroscopy, and elemental analysis. Furthermore, the capacity of ethanol production by immobilized Zymomonas mobilis and free Zymomonas mobilis was compared. Conclusions/Significance In this study, Zymomonas mobilis cells were successfully encapsulated in mesoporous silica-based materials under mild conditions by the “fish-in-net” approach. Encapsulated cells could perform normal metabolism and exhibited excellent reusability. The results presented here illustrate the enormous potential of the “fish-in-net” approach for immobilization of living cells. PMID:24236145

  7. Cells (MC3T3-E1)-laden alginate scaffolds fabricated by a modified solid-freeform fabrication process supplemented with an aerosol spraying.

    PubMed

    Ahn, SeungHyun; Lee, HyeongJin; Bonassar, Lawrence J; Kim, GeunHyung

    2012-09-10

    In this study, we propose a new cell encapsulation method consisting of a dispensing method and an aerosol-spraying method. The aerosol spray using a cross-linking agent, calcium chloride (CaCl(2)), was used to control the surface gelation of dispensed alginate struts during dispensing. To show the feasibility of the method, we used preosteoblast (MC3T3-E1) cells. By changing the relationship between the various dispensing/aerosol-spraying conditions and cell viability, we could determine the optimal cell-dispensing process: a nozzle size (240 μm) and an aerosol spray flow rate (0.93 ± 0.12 mL min(-1)), 10 mm s(-1) nozzle moving speed, a 10 wt % concentration of CaCl(2) in the aerosol solution, and 2 wt % concentration of CaCl(2) in the second cross-linking process. Based on these optimized process conditions, we successfully fabricated a three-dimensional, pore-structured, cell-laden alginate scaffold of 20 × 20 × 4.6 mm(3) and 84% cell viability. During long cell culture periods (16, 25, 33, and 45 days), the preosteoblasts in the alginate scaffold survived and proliferated well. PMID:22913233

  8. Cell immobilization on polymer by air atmospheric pressure plasma jet treatment

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Hwan; Kwon, Jae-Sung; Om, Ji-yeon; Kim, Yong-Hee; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2014-08-01

    The study of cell immobilization on delicate polymer by an air atmospheric pressure plasma jet (AAPPJ) is required for its medical application. The aim of this study was to evaluate whether AAPPJ treatment induce cell immobilization effect on delicate polymers without significant change of surface roughness by AAPPJ treatment. After surface roughness, dynamic contact angle, and chemical characteristics were investigated, the immobilization effect was evaluated with the mouse fibroblast L929 cell line. Surface roughness change was not observed (P > 0.05) in either delicate dental wax or polystyrene plate (PSP) as advancing and receding contact angles significantly decreased (P < 0.05), thanks to decreased hydrocarbon and formation of oxygen-related functional groups in treated PSP. Adherent L929 cells with elongated morphology were found in treated PSP along with the formation of immobilization markers vinculin and actin cytoskeleton. Increased PTK2 gene expression upregulated these markers on treated PSP.

  9. Analysis of secondary cells with lithium anodes and immobilized fused-salt electrolytes

    NASA Technical Reports Server (NTRS)

    Cairns, E. J.; Rogers, G. L.; Shimotake, H.

    1969-01-01

    Secondary cells with liquid lithium anodes, liquid bismuth or tellurium cathodes, and fused lithium halide electrolytes immobilized as rigid pastes operate between 380 and 485 degrees. Applications include power sources in space, military vehicle propulsion and special commercial vehicle propulsion.

  10. DETOXIFICATION OF ORGANOPHOSPHATE PESTICIDES BY IMMOBILIZED ESCHERICHIA COLI EXPRESSING ORGANOPHOSPHORUS HYDROLASE ON CELL SURFACE. (R823663)

    EPA Science Inventory

    An improved whole-cell technology for detoxifying organophosphate nerve agents was recently developed based on genetically engineered Escherichia coli with organophosphorus hydrolase anchored on the surface. This article reports the immobilization of these novel biocatalys...

  11. Microwave-synthesized magnetic chitosan microparticles for the immobilization of yeast cells.

    PubMed

    Safarik, Ivo; Pospiskova, Kristyna; Maderova, Zdenka; Baldikova, Eva; Horska, Katerina; Safarikova, Mirka

    2015-01-01

    An extremely simple procedure has been developed for the immobilization of Saccharomyces cerevisiae cells on magnetic chitosan microparticles. The magnetic carrier was prepared using an inexpensive, simple, rapid, one-pot process, based on the microwave irradiation of chitosan and ferrous sulphate at high pH. Immobilized yeast cells have been used for sucrose hydrolysis, hydrogen peroxide decomposition and the adsorption of selected dyes. PMID:24753015

  12. Recent insights into the cell immobilization technology applied for dark fermentative hydrogen production.

    PubMed

    Kumar, Gopalakrishnan; Mudhoo, Ackmez; Sivagurunathan, Periyasamy; Nagarajan, Dillirani; Ghimire, Anish; Lay, Chyi-How; Lin, Chiu-Yue; Lee, Duu-Jong; Chang, Jo-Shu

    2016-11-01

    The contribution and insights of the immobilization technology in the recent years with regards to the generation of (bio)hydrogen via dark fermentation have been reviewed. The types of immobilization practices, such as entrapment, encapsulation and adsorption, are discussed. Materials and carriers used for cell immobilization are also comprehensively surveyed. New development of nano-based immobilization and nano-materials has been highlighted pertaining to the specific subject of this review. The microorganisms and the type of carbon sources applied in the dark hydrogen fermentation are also discussed and summarized. In addition, the essential components of process operation and reactor configuration using immobilized microbial cultures in the design of varieties of bioreactors (such as fixed bed reactor, CSTR and UASB) are spotlighted. Finally, suggestions and future directions of this field are provided to assist the development of efficient, economical and sustainable hydrogen production technologies. PMID:27561626

  13. Enhanced Glycerol Content in Wines Made with Immobilized Candida stellata Cells

    PubMed Central

    Ciani, M.; Ferraro, L.

    1996-01-01

    Screening tests carried out for 10 strains of Candida stellata confirmed high levels of glycerol production, although a low fermentation rate and reduced ethanol content were observed. To overcome the poor competition with Saccharomyces cerevisiae, fermentation tests with immobilized C. stellata cells, alone or in combination with S. cerevisiae, have been carried out. The immobilization of C. stellata cells consistently reduced the fermentation length when compared with that obtained with free cells, immobilized cells exhibiting about a 30-and a 2-fold improvement in fermentation rate compared with rates for C. stellata and S. cerevisiae free cells, respectively. Moreover, immobilized C. stellata cells produced a twofold increase in ethanol content and a strong reduction in acetaldehyde and acetoin production in comparison with levels for free cells. The evaluation of different combinations of C. stellata immobilized cells and S. cerevisiae showed interesting results with regard to analytical profiles for practical application in wine making. In fact, analytical profiles of combinations showed, apart from a high glycerol content, a reduction in the amounts of acetic acid and higher alcohols and a consistent increase in succinic acid content in comparison with values for the S. cerevisiae control strain. Sequential fermentation first with immobilized C. stellata cells and then after 3 days with an added inoculum of S. cerevisiae free cells was the best combination, producing 15.10 g of glycerol per liter, i.e., 136% more than the S. cerevisiae control strain produced. Fermentation with immobilized C. stellata cells could be an interesting process by which to enhance glycerol content in wine. PMID:16535203

  14. Cancer stem cell marker-expressing cell-rich spheroid fabrication from PANC-1 cells using alginate microcapsules with spherical cavities templated by gelatin microparticles.

    PubMed

    Sakai, Shinji; Inamoto, Kazuya; Ashida, Tomoaki; Takamura, Ryo; Taya, Masahito

    2015-01-01

    Cancer stem-like cells (CSCs) are rare subpopulations of cancer cells. The development of three-dimensional tissues abundant in CSCs is important to both the understanding and establishment of novel therapeutics targeting them. Here, we describe the fabrication of multicellular tumor spheroids (MTSs) abundant in CSCs by employing alginate microcapsules with spherical cavities templated by cell-enclosing gelatin microparticles. Encapsulated human pancreatic cancer cell line PANC-1 cells grew for 14 days until they filled the cavities. The percentage of cells expressing reported CSC markers CD24, CD44, and epithelial-specific antigen (ESA), increased during this growth period. The percentage at 24 days of incubation, 22%, was 1.6 times higher than that of MTSs formed on a nonadherent surface in the same period of incubation. The MTSs in microcapsules could be cryopreserved in liquid nitrogen using a conventional method. No significant difference in the content of CSC marker-expressing cells was detected at 3 days of incubation when thawed after cryopreservation for 2 weeks, compared with cells incubated without prior cryopreservation. PMID:26013961

  15. Alginate/PEG based microcarriers with cleavable crosslinkage for expansion and non-invasive harvest of human umbilical cord blood mesenchymal stem cells.

    PubMed

    Li, Chunge; Qian, Yufeng; Zhao, Shuang; Yin, Yuji; Li, Junjie

    2016-07-01

    Porous microcarriers are increasingly used to expand and harvest stem cells. Generally, the cells are harvested via proteolytic enzyme treatment, which always leads to damages to stem cells. To address this disadvantage, a series of alginate/PEG (AL/PEG) semi-interpenetrating network microcarriers are prepared in this study. In this AL/PEG system, the chemically cross-linked alginate networks are formed via the reaction between carboxylic acid group of alginate and di-terminated amine groups of cystamine. PEG is introduced to modulate the degradation of microcarriers, which does not participate in this cross-linked reaction, while it interpenetrates in alginate network via physical interactions. In addition, chitosan are coated on the surface of AL/PEG to improve the mechanical strength via the electrostatic interactions. Biocompatible fibronectin are also coated on these microcarriers to modulate the biological behaviors of cells seeded in microcarriers. Results suggest that the size of AL/PEG microcarriers can be modulated via adjusting the contents and molecular weight of PEG. Moreover, the microcarriers are designed to be degraded with cleavage of disulfide crosslinkage. By changing the type and concentration of reductant, the ratio of AL to PEG, and the magnitude of chitosan coating, the degradation ability of AL/PEG microcarriers can be well controlled. In addition, AL/PEG microcarriers can support the attachment and proliferation of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs). More importantly, the expanded hUCB-MSCs can be detached from microcarriers after addition of reductant, which indeed reduce the cell damage caused by proteolytic enzyme treatment. Therefore, it is convinced that AL/PEG based microcarriers will be a promising candidate for large-scale expansion of hUCB-MSCs. PMID:27127027

  16. Kluyveromyces lactis cells entrapped in Ca-alginate beads for the continuous production of a heterologous glucoamylase.

    PubMed

    de Alteriis, Elisabetta; Silvestro, Giovanni; Poletto, Massimo; Romano, Vittorio; Capitanio, Daniele; Compagno, Concetta; Parascandola, Palma

    2004-04-01

    Viable cells of Kluyveromyces lactis, transformed with the glucoamylase gene from Arxula adeninivorans, were entrapped in beads of Ca-alginate and employed on a lab scale in a continuous stirred and a fluidised bed reactor (FBR), both fed with a rich medium (YEP) containing lactose as carbon source. Experiments with freely suspended cells in batch and chemostat had demonstrated that glucoamylase production was favoured in the presence of lactose and YEP medium. Employing controlled-sized beads having a 2.13 mm diameter, specific glucoamylase productivity was higher in the stirred reactor (CSTR) than in the FBR; in the latter a higher volumetric productivity was achieved, due to the lower void degree. The performance of the immobilised cell systems, in terms of specific glucoamylase productivity, was strongly affected by mass transfer limitations occurring throughout the gel due to the high molecular weight of the product. In the perspective to improve and scale-up the immobilised cell system proposed, a mathematical model, which takes into account substrate transfer limitations throughout the gel, has been developed. The effective lactose diffusivity was related to the bead reactive efficiency by means of the Thiele modulus. The regression of the model parameters on the experimental data of substrate consumption obtained both in the CSTR and in the FBR allowed to estimate lactose diffusivity and the kinetic parameters of the immobilised yeast. PMID:15063616

  17. Cell-on-hydrogel platform made of agar and alginate for rapid, low-cost, multidimensional test of antimicrobial susceptibility.

    PubMed

    Sun, Han; Liu, Zhengzhi; Hu, Chong; Ren, Kangning

    2016-08-01

    Antimicrobial resistance (AMR) is a rapidly increasing threat to the effective treatment of infectious diseases worldwide. The two major remedies include: (1) using narrow-spectrum antibiotics based on rapid diagnosis; and (2) developing new antibiotics. A key part of both remedies is the antimicrobial susceptibility test (AST). However, the current standard ASTs that monitor colony formation are costly and time-consuming and the new strategies proposed are not yet practical to be implemented. Herein, we report a strategy to fabricate whole-hydrogel microfluidic chips using alginate-doped agar. This agar-based microfabrication makes it possible to prepare inexpensive hydrogel devices, and allows a seamless link between microfluidics and conventional agar-based cell culture. Different from common microfluidic systems, in our system the cells are cultured on top of the device, similar to normal agar plate culture; on the other hand, the microfluidic channels inside the hydrogel allow precise generation of linear gradient of drugs, thus giving a better performance than the conventional disk diffusion method. Cells in this system are not exposed to any shear flow, which allows the reliable tracking of individual cells and AST results to be obtained within 2-3 hours. Furthermore, our system could test the synergistic effect of drugs through two-dimensional gradient generation. Finally, the platform could be directly implemented to new drug discovery and other applications wherein a fast, cost-efficient method for studying the response of microorganisms upon drug administration is desirable. PMID:27452345

  18. Engineering cholesterol-based fibers for antibody immobilization and cell capture

    NASA Astrophysics Data System (ADS)

    Cohn, Celine

    In 2015, the United States is expected to have nearly 600,000 deaths attributed to cancer. Of these 600,000 deaths, 90% will be a direct result of cancer metastasis, the spread of cancer throughout the body. During cancer metastasis, circulating tumor cells (CTCs) are shed from primary tumors and migrate through bodily fluids, establishing secondary cancer sites. As cancer metastasis is incredibly lethal, there is a growing emphasis on developing "liquid biopsies" that can screen peripheral blood, search for and identify CTCs. One popular method for capturing CTCs is the use of a detection platform with antibodies specifically suited to recognize and capture cancer cells. These antibodies are immobilized onto the platform and can then bind and capture cells of interest. However, current means to immobilize antibodies often leave them with drastically reduced function. The antibodies are left poorly suited for cell capture, resulting in low cell capture efficiencies. This body of work investigates the use of lipid-based fibers to immobilize proteins in a way that retains protein function, ultimately leading to increased cell capture efficiencies. The resulting increased efficiencies are thought to arise from the retained three-dimensional structure of the protein as well as having a complete coating of the material surface with antibodies that are capable of interacting with their antigens. It is possible to electrospin cholesterol-based fibers that are similar in design to the natural cell membrane, providing proteins a more natural setting during immobilization. Such fibers have been produced from cholesterol-based cholesteryl succinyl silane (CSS). These fibers have previously illustrated a keen aptitude for retaining protein function and increasing cell capture. Herein the work focuses on three key concepts. First, a model is developed to understand the immobilization mechanism used by electrospun CSS fibers. The antibody immobilization and cell capturing

  19. Alginate cryogel based glucose biosensor

    NASA Astrophysics Data System (ADS)

    Fatoni, Amin; Windy Dwiasi, Dian; Hermawan, Dadan

    2016-02-01

    Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under sub-zero temperature. This porous structure was growth in a 100 μL micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μm. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R2 of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.

  20. Development of functionalized multi-walled carbon-nanotube-based alginate hydrogels for enabling biomimetic technologies

    PubMed Central

    Joddar, Binata; Garcia, Eduardo; Casas, Atzimba; Stewart, Calvin M.

    2016-01-01

    Alginate is a hydrogel commonly used for cell culture by ionically crosslinking in the presence of divalent Ca2+ ions. However these alginate gels are mechanically unstable, not permitting their use as scaffolds to engineer robust biological bone, breast, cardiac or tumor tissues. This issue can be addressed via encapsulation of multi-walled carbon nanotubes (MWCNT) serving as a reinforcing phase while being dispersed in a continuous phase of alginate. We hypothesized that adding functionalized MWCNT to alginate, would yield composite gels with distinctively different mechanical, physical and biological characteristics in comparison to alginate alone. Resultant MWCNT-alginate gels were porous, and showed significantly less degradation after 14 days compared to alginate alone. In vitro cell-studies showed enhanced HeLa cell adhesion and proliferation on the MWCNT-alginate compared to alginate. The extent of cell proliferation was greater when cultured atop 1 and 3 mg/ml MWCNT-alginate; although all MWCNT-alginates lead to enhanced cell cluster formation compared to alginate alone. Among all the MWCNT-alginates, the 1 mg/ml gels showed significantly greater stiffness compared to all other cases. These results provide an important basis for the development of the MWCNT-alginates as novel substrates for cell culture applications, cell therapy and tissue engineering. PMID:27578567

  1. Development of functionalized multi-walled carbon-nanotube-based alginate hydrogels for enabling biomimetic technologies.

    PubMed

    Joddar, Binata; Garcia, Eduardo; Casas, Atzimba; Stewart, Calvin M

    2016-01-01

    Alginate is a hydrogel commonly used for cell culture by ionically crosslinking in the presence of divalent Ca(2+) ions. However these alginate gels are mechanically unstable, not permitting their use as scaffolds to engineer robust biological bone, breast, cardiac or tumor tissues. This issue can be addressed via encapsulation of multi-walled carbon nanotubes (MWCNT) serving as a reinforcing phase while being dispersed in a continuous phase of alginate. We hypothesized that adding functionalized MWCNT to alginate, would yield composite gels with distinctively different mechanical, physical and biological characteristics in comparison to alginate alone. Resultant MWCNT-alginate gels were porous, and showed significantly less degradation after 14 days compared to alginate alone. In vitro cell-studies showed enhanced HeLa cell adhesion and proliferation on the MWCNT-alginate compared to alginate. The extent of cell proliferation was greater when cultured atop 1 and 3 mg/ml MWCNT-alginate; although all MWCNT-alginates lead to enhanced cell cluster formation compared to alginate alone. Among all the MWCNT-alginates, the 1 mg/ml gels showed significantly greater stiffness compared to all other cases. These results provide an important basis for the development of the MWCNT-alginates as novel substrates for cell culture applications, cell therapy and tissue engineering. PMID:27578567

  2. Propagation of human iPS cells in alginate-based microcapsules prepared using reactions catalyzed by horseradish peroxidase and catalase.

    PubMed

    Ashida, Tomoaki; Sakai, Shinji; Taya, Masahito

    2016-09-01

    Cell encapsulation has been investigated as a bioproduction system in the biomedical and pharmaceutical fields. We encaps-ulated human induced pluripotent stem (hiPS) cells in duplex microcapsules prepared from an alginate derivative possessing phenolic hydroxyl moieties, in a single-step procedure based on two competing enzymatic reactions catalyzed by horseradish peroxidase (HRP) and catalase. The encapsulated cells maintained 91.4% viability and proliferated to fill the microcapsules following 19 days of culture. Encapsulated hiPS cells showed pluripotency comparable to that of unencapsulated cells during the cultures, as demonstrated by the expression of the SSEA-4 marker. PMID:26148179

  3. Development of a morphogenetically active scaffold for three-dimensional growth of bone cells: biosilica-alginate hydrogel for SaOS-2 cell cultivation.

    PubMed

    Müller, Werner E G; Schröder, Heinz C; Feng, Qingling; Schlossmacher, Ute; Link, Thorben; Wang, Xiaohong

    2015-11-01

    Polymeric silica is formed from ortho-silicate during a sol-gel formation process, while biosilica is the product of an enzymatically driven bio-polycondensation reaction. Both polymers have recently been described as a template that induces an increased expression of the genes encoding bone morphogenetic protein 2 (BMP-2) and osteoprotegerin in osteoblast-related SaOS-2 cells; simultaneously or subsequently the cells respond with enhanced hydroxyapatite formation. In order to assess whether the biocompatible polymeric silica/biosilica can serve as a morphogenetically active matrix suitable for three-dimensional (3D) cell growth, or even for 3D cell bioprinting, SaOS-2 cells were embedded into a Na-alginate-based hydrogel. Four different gelatinous hydrogel matrices were used for suspending SaOS-2 cells: (a) the hydrogel alone; (b) the hydrogel with 400 μM ortho-silicate; (c) the hydrogel supplemented with 400 μM ortho-silicate and recombinant silicatein to allow biosilica synthesis to occur; and (d) the hydrogel with ortho-silicate and BSA. The SaOS-2 cells showed an increased growth if silica/biosilica components were present in the hydrogel. Likewise intensified was the formation of hydroxyapatite nodules in the silica-containing hydrogels. After an incubation period of 2 weeks, cells present in silica-containing hydrogels showed a significantly higher expression of the genes encoding the cytokine BMP-2, the major fibrillar structural protein collagen 1 and likewise of carbonic anhydrase. It is concluded that silica, and to a larger extent biosilica, retains its morphogenetic/osteogenic potential after addition to Na-alginate-based hydrogels. This property might qualify silica hydrogels to be also used as a matrix for 3D cell printing. PMID:23585362

  4. Engineering cholesterol-based fibers for antibody immobilization and cell capture

    NASA Astrophysics Data System (ADS)

    Cohn, Celine

    In 2015, the United States is expected to have nearly 600,000 deaths attributed to cancer. Of these 600,000 deaths, 90% will be a direct result of cancer metastasis, the spread of cancer throughout the body. During cancer metastasis, circulating tumor cells (CTCs) are shed from primary tumors and migrate through bodily fluids, establishing secondary cancer sites. As cancer metastasis is incredibly lethal, there is a growing emphasis on developing "liquid biopsies" that can screen peripheral blood, search for and identify CTCs. One popular method for capturing CTCs is the use of a detection platform with antibodies specifically suited to recognize and capture cancer cells. These antibodies are immobilized onto the platform and can then bind and capture cells of interest. However, current means to immobilize antibodies often leave them with drastically reduced function. The antibodies are left poorly suited for cell capture, resulting in low cell capture efficiencies. This body of work investigates the use of lipid-based fibers to immobilize proteins in a way that retains protein function, ultimately leading to increased cell capture efficiencies. The resulting increased efficiencies are thought to arise from the retained three-dimensional structure of the protein as well as having a complete coating of the material surface with antibodies that are capable of interacting with their antigens. It is possible to electrospin cholesterol-based fibers that are similar in design to the natural cell membrane, providing proteins a more natural setting during immobilization. Such fibers have been produced from cholesterol-based cholesteryl succinyl silane (CSS). These fibers have previously illustrated a keen aptitude for retaining protein function and increasing cell capture. Herein the work focuses on three key concepts. First, a model is developed to understand the immobilization mechanism used by electrospun CSS fibers. The antibody immobilization and cell capturing

  5. Immobilized-cell membrane bioreactor for high-strength phenol wastewater

    SciTech Connect

    Loh, K.C.; Chung, T.S.; Ang, W.F.

    2000-01-01

    An immobilized-cell membrane bioreactor was fabricated to investigate degradation of phenol at high concentrations using Pseudomonas putida American Type Culture Collection 49451. In the case of suspension cultures, P. putida utilized phenol at concentrations below 1,000 mg/L, but experienced substrate inhibition at higher concentrations. On the other hand, cells immobilized in 25% by weight polysulfone fibers degraded phenol at concentrations above 1,000 mg/L. At an initial phenol concentration of 1,200 mg/L, phenol was fully degraded within 95 h in the immobilized system, whereas no cell growth and phenol degradation were observed in the free suspension system at 1,000 mg/L phenol. In the immobilized system, it was observed that cells diffused from the membranes when phenol concentration reached noninhibitory levels in a few experiments. In such cases, the time taken for complete degradation was shorter with cell diffusion because suspensions cells were responsible for the rapid phenol degradation. Further biodegradation studies at phenol concentrations of 2,000 and 3,500 mg/L were also performed to evaluate the effectiveness of cell immobilization for delaying the effects of substrate inhibition. Phenol could be completely degraded at both high concentrations.

  6. Viability, ultrastructure and cytokinin metabolism of free and immobilized tobacco chloroplasts.

    PubMed

    Polanská, Lenka; Vicánková, Anna; Dobrev, Petre I; Cková, Ivana Macháv; Vanková, Radomíra

    2004-10-01

    Cytokinins play a decisive role in regulation of plastid development and differentiation, but their metabolism in plastids is not known. Metabolic studies using intact chloroplasts are prevented by their instability once they are isolated from leaf cells. Chloroplasts of Nicotiana tabacum L. cv. Petit Havana SR1 were therefore immobilized into low-viscosity alginate. Their intactness was assessed by a glyceraldehyde-3-phosphate dehydrogenase assay which indicated that free chloroplasts totally disintegrated within 7 h, while more than 50% of immobilized chloroplasts remained intact after 24 h. The immobilization had no marked impact on ultrastructure and postponed final destruction. The metabolite profile was similar in free and immobilized chloroplasts after 4 h incubation with tritiated zeatin. Nevertheless, the yield of conversion products decreased twice in immobilized chloroplasts, which was probably the outcome of mass transfer limitations and/or the sorption to polysaccharide matrix. PMID:15604795

  7. Cultivation characteristics of immobilized Aspergillus oryzae for kojic acid production.

    PubMed

    Kwak, M Y; Rhee, J S

    1992-04-15

    Aspergillus oryzae in situ grown from spores entrapped in calcium alginate gel beads was used for the production of kojic acid. The immobilized cells in flask cultures produced kojic acid in a linear proportion while maintaining the stable metabolic activity for a prolonged production period. Kojic acid was accumulated up to a high concentration of 83 g/L, at which the kojic acid began to crystallize, and, thus, the culture had to be replaced with fresh media for the next batch culture. The overall productivities of two consecutive cultivations were higher than that of free mycelial fermentation. However, the production rate of kojic acid by the immobilized cells was suddenly decreased with the appearance of central cavernae inside the immobilized gel beads after 12 days of the third batch cultivation. PMID:18601027

  8. Combination of Controllably Released Platelet Rich Plasma Alginate Beads and Bone Morphogenic Protein-2 Gene-Modified Mesenchymal Stem Cells for Bone Regeneration

    PubMed Central

    Fernandes, Gabriela; Wang, Changdong; Yuan, Xue; Liu, Zunpeng; Dziak, Rosemary; Yang, Shuying

    2016-01-01

    Background Platelet rich plasma (PRP) consists of platelet derived growth factor (PDGF) and Transforming growth factor-beta (TGF-β) that increase cell proliferation of mesenchymal stem cells (MSCs), whereas, bone morphogenic Protein-2 (BMP2) promotes osteogenic differentiation of MSCs. However, the high degradation rate of fibrin leads to the dissociation of cytokines even before the process of bone regeneration has begun. Hence, for the first time, we studied the combined effect of sustained released PRP from alginate beads on BMP2 modified MSCs osteogenic differentiation in vitro and of sustained PRP alone on a fracture defect model ex vivo as well as its effect on the calvarial suture closure. Methods After optimizing the concentration of alginate for the microspheres, the osteogenic and mineralization effect of PRP and BMP2 in combinations on MSCs was studied. A self-setting alginate hydrogel carrying PRP was tested on a femur defect model ex-vivo. The effect of PRP was studied on the closure of the embryonic (E15) mouse calvaria sutures ex vivo. Results Increase of PRP concentration promoted cellular proliferation of MSCs. 2.5%–10% of PRP displayed gradually increased ALP activity on the cells in a dose dependent manner. Sustained release PRP and BMP2 demonstrated a significantly higher ALP and mineralization activity (p<0.05). The radiographs of alginate hydrogel with PRP treated bone demonstrated a nearly complete healing of the fracture and the histological sections of the embryonic calvaria revealed that PRP leads to suture fusion. Conclusions Sustained release of PRP along with BMP2 gene modified MSCs can significantly promote bone regeneration. PMID:26745613

  9. Lactic acid fermentation by cells immobilised on various porous cellulosic materials and their alginate/poly-lactic acid composites.

    PubMed

    Kumar, Mrinal Nishant; Gialleli, Angelika-Ioanna; Masson, Jean Bernard; Kandylis, Panagiotis; Bekatorou, Argyro; Koutinas, Athanasios A; Kanellaki, Maria

    2014-08-01

    Porous delignified cellulose (or tubular cellulose, abbr. TC) from Indian Mango (Mangifera indica) and Sal (Shorea robusta) wood and Rice husk, and TC/Ca-alginate/polylactic acid composites, were used as Lactobacillus bulgaricus immobilisation carriers leading to improvements in lactic acid fermentation of cheese whey and synthetic lactose media, compared to free cells. Specifically, shorter fermentation rates, higher lactic acid yields (g/g sugar utilised) and productivities (g/Ld), and higher amounts of volatile by-products were achieved, while no significant differences were observed on the performance of the different immobilised biocatalysts. The proposed biocatalysts are of food grade purity, cheap and easy to prepare, and they are attractive for bioprocess development based on immobilised cells. Such composite biocatalysts may be used for the co-immobilisation of different microorganisms or enzymes (in separate layers of the biocatalyst), to efficiently conduct different types of fermentations in the same bioreactor, avoiding inhibition problems of chemical or biological (competition) nature. PMID:24690466

  10. Production of Poly-γ-Glutamate (PGA) Biopolymer by Batch and Semicontinuous Cultures of Immobilized Bacilluslicheniformis strain-R

    PubMed Central

    Berekaa, Mahmoud M.; El Aassar, Samy A.; El-Sayed, Samia M.; EL Borai, Aliaa M.

    2009-01-01

    Production of Polyglutamate (PGA) biopolymer by immobilized Bacillus licheniformis strain-R was intensively investigated. Preliminary experiments were carried out to address the most suitable immobilization methodology. Entrapment of Bacillus cells in alginate–agar led optimal PGA production (36.75 g/l), with 1.32-and 2.18-fold increase in comparison with alginate-or K-carrageenan-immobilized cells, respectively. During semicontinuous cultivation of agar-alginate gel-cell mixture, production of PGA by 10 ml mixture was increased from 2nd to 3rd run whereas, increased till the 4th run using 15ml mixture. Adsorption was the most suitable immobilization technique for production of PGA and the sponge cubes was the preferred matrix recording 43.2 g/l of PGA with the highest cell adsorption. Furthermore, no PGA was detected when B. licheniformis cells were adsorbed on wood and pumice. Although luffa pulp-adsorbed cells recorded the highest PGA production (50.4 g/l), cell adsorption was the lowest. Semicontinuous cultivation of B. licheniformis cells adsorbed on sponge led to increase of PGA production till the 3rd run and reached 55.5 g/l then slightly decreased in the 4th run. The successful use of fixed-bed bioreactor for semicontinuous cultivation of B. licheniformis cells held on sponge cubes (3 runs, 96 hours/run) provides insight for the potential biotechnological production of PGA by immobilized cells. PMID:24031418

  11. Alginate composites for bone tissue engineering: a review.

    PubMed

    Venkatesan, Jayachandran; Bhatnagar, Ira; Manivasagan, Panchanathan; Kang, Kyong-Hwa; Kim, Se-Kwon

    2015-01-01

    Bone is a complex and hierarchical tissue consisting of nano hydroxyapatite and collagen as major portion. Several attempts have been made to prepare the artificial bone so as to replace the autograft and allograft treatment. Tissue engineering is a promising approach to solve the several issues and is also useful in the construction of artificial bone with materials including polymer, ceramics, metals, cells and growth factors. Composites consisting of polymer-ceramics, best mimic the natural functions of bone. Alginate, an anionic polymer owing enormous biomedical applications, is gaining importance particularly in bone tissue engineering due to its biocompatibility and gel forming properties. Several composites such as alginate-polymer (PLGA, PEG and chitosan), alginate-protein (collagen and gelatin), alginate-ceramic, alginate-bioglass, alginate-biosilica, alginate-bone morphogenetic protein-2 and RGD peptides composite have been investigated till date. These alginate composites show enhanced biochemical significance in terms of porosity, mechanical strength, cell adhesion, biocompatibility, cell proliferation, alkaline phosphatase increase, excellent mineralization and osteogenic differentiation. Hence, alginate based composite biomaterials will be promising for bone tissue regeneration. This review will provide a broad overview of alginate preparation and its applications towards bone tissue engineering. PMID:25020082

  12. Lindane removal by pure and mixed cultures of immobilized actinobacteria.

    PubMed

    Saez, Juliana M; Benimeli, Claudia S; Amoroso, María J

    2012-11-01

    Lindane (γ-HCH) is an organochlorine insecticide that has been widely used in developing countries. It is known to persist in the environment and can cause serious health problems. One of the strategies adopted to remove lindane from the environment is bioremediation using microorganisms. Immobilized cells present advantages over free suspended cells, like their high degradation efficiency and protection against toxins. The aims of this work were: (1) To evaluate the ability of Streptomyces strains immobilized in four different matrices to remove lindane, (2) To select the support with optimum lindane removal by pure cultures, (3) To assay the selected support with consortia and (4) To evaluate the reusability of the immobilized cells. Four Streptomyces sp. strains had previously shown their ability to grow in the presence of lindane. Lindane removal by microorganisms immobilized was significantly higher than in free cells. Specifically immobilized cells in cloth sachets showed an improvement of around 25% in lindane removal compared to the abiotic control. Three strains showed significantly higher microbial growth when they were entrapped in silicone tubes. Strains immobilized in PVA-alginate demonstrated lowest growth. Mixed cultures immobilized inside cloth sachets showed no significant enhancement compared to pure cultures, reaching a maximum removal of 81% after 96 h for consortium I, consisting of the four immobilized strains together. Nevertheless, the cells could be reused for two additional cycles of 96 h each, obtaining a maximum removal efficiency of 71.5% when each of the four strains was immobilized in a separate bag (consortium III). PMID:22840534

  13. Toward cell-free biofuel production: Stable immobilization of oligomeric enzymes.

    PubMed

    Grimaldi, J; Collins, C H; Belfort, G

    2014-01-01

    To overcome the main challenges facing alcohol-based biofuel production, we propose an alternate simplified biofuel production scheme based on a cell-free immobilized enzyme system. In this paper, we measured the activity of two tetrameric enzymes, a control enzyme with a colorimetric assay, β-galactosidase, and an alcohol-producing enzyme, alcohol dehydrogenase, immobilized on multiple surface curvatures and chemistries. Several solid supports including silica nanoparticles (convex), mesopourous silica (concave), diatomaceous earth (concave), and methacrylate (concave) were examined. High conversion rates and low protein leaching was achieved by covalent immobilization of both enzymes on methacrylate resin. Alcohol dehydrogenase (ADH) exhibited long-term stability and over 80% conversion of aldehyde to alcohol over 16 days of batch cycles. The complete reaction scheme for the conversion of acid to aldehyde to alcohol was demonstrated in vitro by immobilizing ADH with keto-acid decarboxylase free in solution. PMID:24449684

  14. Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation.

    PubMed

    Shi, Changcan; Yuan, Wenjie; Khan, Musammir; Li, Qian; Feng, Yakai; Yao, Fanglian; Zhang, Wencheng

    2015-05-01

    Gelatin contains many functional motifs which can modulate cell specific adhesion, so we modified polycarbonate urethane (PCU) scaffold surface by immobilization of gelatin. PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatins onto the surface of aminated PCU scaffolds. To increase the immobilization amount of gelatin, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto PCU scaffolds by surface initiated atom transfer radical polymerization. Then, following amination and immobilization, PCU-g-PEGMA-g-gelatin scaffolds were obtained. Both modified scaffolds were characterized by chemical and biological methods. After immobilization of gelatin, the microfiber surface became rough, but the original morphology of scaffolds was maintained successfully. PCU-g-PEGMA-g-gelatin scaffolds were more hydrophilic than PCU-g-gelatin scaffolds. Because hydrophilic PEGMA and gelatin were grafted and immobilized onto the surface, the PCU-g-PEGMA-g-gelatin scaffolds showed low platelet adhesion, perfect anti-hemolytic activity and excellent cell growth and proliferation capacity. It could be envisioned that PCU-g-PEGMA-g-gelatin scaffolds might have potential applications in tissue engineering artificial scaffolds. PMID:25746263

  15. Immobilization of Escherichia coli cells with penicillin-amidohydrolase activity on solid polymeric carriers.

    PubMed

    Zurková, E; Drobník, J; Kálal, J; Svec, F; Tyrácková, V; Vojtísek, V; Zeman, R

    1983-09-01

    Whole cells of Escherichia coli containing the enzyme penicillinamidohydrolase EC 3.5.1.11 were immobilized on the surface of modified macroporous copolymers of glycidylmethacrylate with ethylenedimethacrylate and of copolymers of methacrylaldehyde (MA) with divinylbenzene (DVB) by means of glutaraldehyde. These polymeric carriers were modified before cell binding by using ammonia or polyamines, especially ethylenediamine and hexamethylenediamine (HMDA). The highest specific activity and the largest yield in cell immobilization were achieved with the macroporous copolymer of MA and DVB modified with HMDA. The material thus obtained was used in repeated conversions of benzylpenicillin to 6-aminopenicillanic acid in a stirred batch reactor. PMID:18574818

  16. Ethanol production by Kluyveromyces lactis immobilized cells in copolymer carriers produced by radiation polymerization.

    PubMed

    El-Batal, A I; Farahat, L M; El-Rehim, H A

    2000-01-01

    The conditions for batch and continuous production of ethanol, using immobilized growing yeast cells of Kluyveromyces lactis, have been optimized. Yeast cells have been immobilized in hydrogel copolymer carriers composed of polyvinyl alcohol (PVA) with various hydrophilic monomers, using radiation copolymerization technique. Yeast cells were immobilized through adhesion and multiplication of yeast cells themselves. The ethanol production of immobilized growing yeast cells with these hydrogel carriers was related to the monomer composition of the copolymers and the optimum monomer composition was hydroxyethyl methacrylate (HEMA). In this case by using batch fermentation, the superior ethanol production was 32.9 g L(-1) which was about 4 times higher than that of cells in free system. The relation between the activity of immobilized yeast cells and the water content of the copolymer carriers was also discussed. Immobilized growing yeast cells in PVA: HEMA (7%: 10%, w/w) hydrogel copolymer carrier, were used in a packed-bed column reactor for the continuous production of ethanol from lactose at different levels of concentrations (50, 100 and 150) g L(-1). For all lactose feed concentrations, an increase in dilution rates from 0.1 h(-1) to 0.3 h(-1) lowered ethanol concentration in fermented broth, but the volumetric ethanol productivity and volumetric lactose uptake rate were improved. The fermentation efficiency was lowered with the increase in dilution rate and also at higher lactose concentration in feed medium and a maximum of 70.2% was obtained at the lowest lactose concentration 50 g L(-1). PMID:11093678

  17. Entrapment of cross-linked cellulase colloids in alginate beads for hydrolysis of cellulose.

    PubMed

    Nguyen, Le Truc; Lau, Yun Song; Yang, Kun-Lin

    2016-09-01

    Entrapment of enzymes in calcium alginate beads is a popular enzyme immobilization method. However, leaching of immobilized enzymes from the alginate beads is a common problem because enzyme molecules are much smaller than the pore size of alginate beads (∼200nm). To address this issue, we employ a millifluidic reactor to prepare cross-linked cellulase aggregate (XCA) colloids with a uniform size (∼300nm). Subsequently, these colloids are immobilized in calcium alginate beads as biocatalysts to hydrolyze cellulose substrates. By using fluorescent microscopy, we conclude that the immobilized XCA colloids distribute uniformly inside the beads and do not leach out from the beads after long-term incubation. Meanwhile, the pore size of the alginate beads is big enough for the cellulose substrates and fibers to diffuse into the beads for hydrolysis. For example, palm oil fiber and microcrystalline cellulose can be hydrolyzed within 48h and release reducing sugar concentrations up to 2.48±0.08g/l and 4.99±0.09g/l, respectively. Moreover, after 10 cycles of hydrolysis, 96.4% of the XCA colloids remain inside the alginate beads and retain 67% of the original activity. In contrast, free cellulase immobilized in the alginate beads loses its activity completely after 10 cycles. The strategy can also be used to prepare other types of cross-linked enzyme aggregates with high uniformity. PMID:27318817

  18. On chip single-cell separation and immobilization using optical tweezers and thermosensitive hydrogel.

    PubMed

    Arai, Fumihito; Ng, Chinaik; Maruyama, Hisataka; Ichikawa, Akihiko; El-Shimy, Haitham; Fukuda, Toshio

    2005-12-01

    A novel approach appropriate for rapid separation and immobilization of a single cell by concomitantly utilizing laser manipulation and locally thermosensitive hydrogelation is proposed in this paper. We employed a single laser beam as optical tweezers for separating a target cell and locating it adjacent to a fabricated, transparent micro heater. Simultaneously, the target cell is immobilized or partially entrapped by heating the thermosensitive hydrogel with the micro heater. The state of the thermosensitive hydrogel can be switched from sol to gel and gel to sol by controlling the temperature through heating and cooling by the micro heater. After other unwanted cells are removed by the high-speed cleaning flow in the microchannel, the entrapped cell is successfully isolated. It is possible to collect the immobilized target cell for analysis or culture by switching off the micro heater and releasing the cell from the entrapment. We demonstrated that the proposed approach is feasible for rapid manipulation, immobilization, cleaning, isolation and extraction of a single cell. The experimental results are shown here. PMID:16286972

  19. The production of sulfonated chitosan-sodium alginate found in brown algae (Sargassum sp.) composite membrane as proton exchange membrane fuel cell (PEMFC)

    NASA Astrophysics Data System (ADS)

    Wafiroh, Siti; Pudjiastuti, Pratiwi; Sari, Ilma Indana

    2016-03-01

    The majority of energy was used in this period is from fossil fuel, which getting decreased in the future. The objective of this research is production and characterization of sulfonated chitosan-sodium alginate found in brown algae (Sargassum sp.) composite membrane as Proton Exchange Membrane Fuel Cell (PEMFC) for alternative energy. PEMFC was produced with 4 variations (w/w) ratio between chitosan and sodium alginate, 8 : 0, 8 : 1, 8 : 2, 8 : 4 (w/w). The production of membrane was mixed sodium alginate solution into chitosan solution and sulfonated with H2SO4 0.72 N. The characterization of the PEM was uses Modulus Young analysis, water swelling, ion exchange capacity, FTIR, SEM, DTA, methanol permeability and proton conductivity. The result of the research, showed that the optimum membrane was with ratio 8 : 2 (w/w) that the Modulus Young 8564 kN/m2, water swelling 31.86%, ion exchange capacity 1.020 meq/g, proton conductivity 8,8 × 10-6 S/cm, methanol permeability 1.90 × 10-8 g/cm2s and glass transition temperature (Tg) 100.9 °C, crystalline temperature (Tc) 227.6 °C, and the melting temperature (Tm) 267.9 °C.

  20. Immobilization of Rubia tinctorum L. Suspension Cultures and Biomass Production.

    PubMed

    Nartop, Pınar

    2016-01-01

    Plants are natural sources of valuable secondary metabolites used as pharmaceuticals, agrochemicals, flavors, fragrances, colors, biopesticides, and food additives. There is an increasing demand to obtain these metabolites through more productive plant tissue applications and cell culture methods due to the importance of secondary metabolites.Immobilization of plant cells is a method used in plant cell cultures to induce secondary metabolite production. In this method, plant cells are fixed in or on a supporting material or matrix such as agar, agarose, calcium alginate, glass, or polyurethane foam. In the present study, three natural lignocellulosic materials, loofah sponge, and the long fibers of sisal and jute, were used to immobilize suspended R. tinctorum cells. PMID:27108315

  1. Matrix molecule influence on chondrocyte phenotype and proteoglycan 4 expression by alginate-embedded zonal chondrocytes and mesenchymal stem cells.

    PubMed

    Coates, Emily E; Riggin, Corinne N; Fisher, John P

    2012-12-01

    Articular cartilage resists load and provides frictionless movement at joint surfaces. The tissue is organized into the superficial, middle, deep, and calcified zones throughout its depth, each which serve distinct functions. Proteoglycan 4 (PRG4), found in the superficial zone, is a critical component of the joint's lubricating mechanisms. Maintenance of both the chondrocyte and zonal chondrocyte phenotype remain challenges for in vitro culture and tissue engineering. Here we investigate the expression of PRG4 mRNA and protein by primary bovine superficial zone chondrocytes, middle/deep zone chondrocytes, and mesenchymal stem cells encapsulated in alginate hydrogels with hyaluronic acid (HA) and chondroitin sulfate (CS) additives. Chondrogenic phenotype and differentiation markers are evaluated by mRNA expression, histochemical, and immunohistochemical staining. Results show middle/deep cells express no measurable PRG4 mRNA by day 7. In contrast, superficial zone cells express elevated PRG4 mRNA throughout culture time. This expression can be significantly enhanced up to 15-fold by addition of both HA and CS to scaffolds. Conversely, PRG4 mRNA expression is downregulated (up to 5-fold) by CS and HA in differentiating MSCs, possibly due to build up of entrapped protein. HA and CS demonstrate favorable effects on chondrogenesis by upregulating transcription factor Sox9 mRNA (up to 4.6-fold) and downregulating type I collagen mRNA (up to 18-fold). Results highlight the important relationship between matrix components and expression of critical lubricating proteins in an engineered cartilage scaffold. PMID:22674584

  2. Effect of aeration during cell growth on ketone reactions by immobilized yeast.

    PubMed

    Gervais, T R; Carta, G; Gainer, J L

    2000-01-01

    The effect of aeration during cell growth on the subsequent reduction of 2-hexanone and 2-octanone by yeast cells entrapped in calcium alginate beads was studied. The reactions were conducted using 2-propanol as a sacrificial substrate to regenerate the cofactor NAD(H), and a mixture of (S)- and (R)-alcohols was produced. The use of strictly aerobic conditions when growing the cells resulted in the highest initial reaction rates, as well as the production of only a single product (i.e., the enantiomeric excess of the (S)-alcohols was 1.0). However, initial reaction rates decreased proportionally with fermentation time regardless of whether the yeast were grown aerobically or under both aerobic and anaerobic conditions. The data also suggest that it is the aerobic (or anaerobic) condition, rather than the cell growth phase, which is responsible for the results seen. PMID:10753445

  3. Wheat Bran Enhances the Cytotoxicity of Immobilized Alcaligenes aquatilis F8 against Microcystis aeruginosa

    PubMed Central

    Sun, Pengfei; Lin, Hui; Wang, Guan; Zhang, Ximing; Zhang, Qichun; Zhao, Yuhua

    2015-01-01

    Algicidal bacteria offer a promising option for killing cyanobacteria. Therefore, a new Alcaligenes aquatilis strain F8 was isolated to control Microcystis aeruginosa in this study. The algicidal activity of strain F8 was dependent on the cell density of M. aeruginosa, and the maximal algicidal rate of the free bacterium reached 88.45% within 72 h. With a view to its application to the control of M. aeruginosa in the natural environment, strain F8 was immobilized in sodium alginate beads, but immobilization of the strain decreased its algicidal rate compared to that of the free bacterium. However, addition of wheat bran to the sodium alginate matrix used to immobilize strain F8 not only eliminated the adverse effects of immobilization on the bacteria but also resulted in an 8.83% higher algicidal rate of the immobilized than free bacteria. Exclusion and recovery methods were used to identify key ingredients of wheat bran and gain insight into the mechanism underlying the observed enhancement of algicidal activity. This analysis indicated that certain factors in wheat bran, including vitamins B1, B2, B9, and E were responsible for promoting bacterial growth and thereby improving the algicidal rate of immobilized strain F8. Our findings indicate that wheat bran is able to improve the algicidal efficiency of A. aquatilis strain F8 for killing M. aeruginosa and is a good source of not only carbon and nitrogen but also vitamins for bacteria. PMID:26295573

  4. [Comparison of fibroblastic cell compatibility of type I collagen-immobilized titanium between electrodeposition and immersion].

    PubMed

    Kyuragi, Takeru

    2014-03-01

    Titanium is widely used for medical implants. While many techniques for surface modification have been studied for optimizing its biocompatibility with hard tissues, little work has been undertaken to explore ways of maximizing its biocompatibility with soft tissues. We investigated cell attachment to titanium surfaces modified with bovine Type I collagen immobilized by either electrodeposition or a conventional immersion technique. The apparent thickness and durability of the immobilized collagen layer were evaluated prior to incubation of the collagen-immobilized titanium surfaces with NIH/3T3 mouse embryonic fibroblasts. The initial cell attachment and expression of actin and vinculin were evaluated. We determined that the immobilized collagen layer was much thicker and more durable when placed using the electrodeposition technique than the immersion technique. Both protocols produced materials that promoted better cell attachment, growth and structural protein expression than titanium alone. However, electrodeposition was ultimately superior to immersion because it is quicker to perform and produces a more durable collagen coating. We conclude that electrodeposition is an effective technique for immobilizing type I collagen on titanium surfaces, thus improving their cytocompatibility with fibroblasts. PMID:24812763

  5. Continuous separation of cells of high osteoblastic differentiation potential from mesenchymal stem cells on an antibody-immobilized column.

    PubMed

    Mahara, Atsushi; Yamaoka, Tetsuji

    2010-05-01

    Here, we report that two distinctive cell populations with osteoblastic differentiation ability were found in adherent cell populations from bone marrow. Mesenchymal stem cells (MSCs) were conventionally isolated by using adherent property of bone marrow cells onto a plastic culture dish. MSCs enriched on the basis of their adherent property were considered phenotypically and functionally heterogeneous. We developed a ligand-immobilized surface for separating subpopulation of adherent cells derived from bone marrow by the cell rolling process. We successfully isolate two cell populations with high differentiation ability for osteoblasts in adherent bone marrow cells by using the anti-CD34 antibody-immobilized column. The antibody was covalently conjugated with polyacrylic acid and introduced onto the inner surface of a silicone tube. When cell suspension of MSCs was injected into the antibody-immobilized column, different cell populations were isolated. After the cultivation of isolated cells in the osteoblastic differentiation medium for 1 week, few sub-populations were strongly induced to form osteoblastic cells. This study revealed that the ligand-immobilized surface can be used to continually separate cell populations under a labeling-free condition. PMID:20185169

  6. Stability of alginate microbead properties in vitro

    PubMed Central

    Moya, Monica L.; Morley, Michael; Khanna, Omaditya; Opara, Emmanuel C.

    2013-01-01

    Alginate microbeads have been investigated clinically for a number of therapeutic interventions, including drug delivery for treatment of ischemic tissues, cell delivery for tissue regeneration, and islet encapsulation as a therapy for type I diabetes. The physical properties of the microbeads play an important role in regulating cell behavior, protein release, and biological response following implantation. In this research alginate microbeads were synthesized, varying composition (mannuronic acid to guluronic acid ratio), concentration of alginate and needle gauge size. Following synthesis, the size, volume fraction, and morphometry of the beads were quantified. In addition, these properties were monitored over time in vitro in the presence of varying calcium levels in the microenvironment. The initial volume available for solute diffusion increased with alginate concentration and mannuronic (M) acid content, and bead diameter decreased with M content but increased with needle diameter. Interestingly, microbeads eroded completely in saline in less than 3 weeks regardless of synthesis conditions much faster than what has been observed in vivo. However, microbead stability was increased by the addition of calcium in the culture medium. Beads synthesized with low alginate concentration and high G content exhibited a more rapid change in physical properties even in the presence of calcium. These data suggest that temporal variations in the physical characteristics of alginate microbeads can occur in vitro depending on synthesis conditions and microbead environment. The results presented here will assist in optimizing the design of the materials for clinical application in drug delivery and cell therapy. PMID:22350778

  7. Immobilization of anode-attached microbes in a microbial fuel cell

    PubMed Central

    2012-01-01

    Current-generating (exoelectrogenic) bacteria in bioelectrochemical systems (BESs) may not be culturable using standard in vitro agar-plating techniques, making isolation of new microbes a challenge. More in vivo like conditions are needed where bacteria can be grown and directly isolated on an electrode. While colonies can be developed from single cells on an electrode, the cells must be immobilized after being placed on the surface. Here we present a proof-of-concept immobilization approach that allows exoelectrogenic activity of cells on an electrode based on applying a layer of latex to hold bacteria on surfaces. The effectiveness of this procedure to immobilize particles was first demonstrated using fluorescent microspheres as bacterial analogs. The latex coating was then shown to not substantially affect the exoelectrogenic activity of well-developed anode biofilms in two different systems. A single layer of airbrushed coating did not reduce the voltage produced by a biofilm in a microbial fuel cell (MFC), and more easily applied dip-and-blot coating reduced voltage by only 11% in a microbial electrolysis cell (MEC). This latex immobilization procedure will enable future testing of single cells for exoelectrogenic activity on electrodes in BESs. PMID:22214379

  8. Alginate Oligosaccharides Inhibit Fungal Cell Growth and Potentiate the Activity of Antifungals against Candida and Aspergillus spp

    PubMed Central

    Tøndervik, Anne; Sletta, Håvard; Klinkenberg, Geir; Emanuel, Charlotte; Powell, Lydia C.; Pritchard, Manon F.; Khan, Saira; Craine, Kieron M.; Onsøyen, Edvar; Rye, Phil D.; Wright, Chris; Thomas, David W.; Hill, Katja E.

    2014-01-01

    The oligosaccharide OligoG, an alginate derived from seaweed, has been shown to have anti-bacterial and anti-biofilm properties and potentiates the activity of selected antibiotics against multi-drug resistant bacteria. The ability of OligoG to perturb fungal growth and potentiate conventional antifungal agents was evaluated using a range of pathogenic fungal strains. Candida (n = 11) and Aspergillus (n = 3) spp. were tested using germ tube assays, LIVE/DEAD staining, scanning electron microscopy (SEM), atomic force microscopy (AFM) and high-throughput minimum inhibition concentration assays (MICs). In general, the strains tested showed a significant dose-dependent reduction in cell growth at ≥6% OligoG as measured by optical density (OD600; P<0.05). OligoG (>0.5%) also showed a significant inhibitory effect on hyphal growth in germ tube assays, although strain-dependent variations in efficacy were observed (P<0.05). SEM and AFM both showed that OligoG (≥2%) markedly disrupted fungal biofilm formation, both alone, and in combination with fluconazole. Cell surface roughness was also significantly increased by the combination treatment (P<0.001). High-throughput robotic MIC screening demonstrated the potentiating effects of OligoG (2, 6, 10%) with nystatin, amphotericin B, fluconazole, miconazole, voriconazole or terbinafine with the test strains. Potentiating effects were observed for the Aspergillus strains with all six antifungal agents, with an up to 16-fold (nystatin) reduction in MIC. Similarly, all the Candida spp. showed potentiation with nystatin (up to 16-fold) and fluconazole (up to 8-fold). These findings demonstrate the antifungal properties of OligoG and suggest a potential role in the management of fungal infections and possible reduction of antifungal toxicity. PMID:25409186

  9. Evaluation of biocompatible alginate- and deferoxamine-coated ternary composites for magnetic resonance imaging and gene delivery into glioblastoma cells

    PubMed Central

    Sham, Kathy W. Y.; Chak, Chun-Pong; Lai, Josie M. Y.; Lee, Siu-Fung

    2015-01-01

    Background This paper describes comparative studies in cytotoxicities, magnetic resonance imaging (MRI), and gene delivery into glioblastoma U87MG or U138MG cells with ternary composites that are consist of superparamagnetic iron oxide (SPIO) nanoparticles (NPs) (size: 8-10 nm) with different surface coatings, circular plasmid DNA (pDNA) (~4 kb) equipped with fluorescent/luminescent probe, and branched polyethylenimine (25 kDa, PDI 2.5). Methods Three types of SPIO-NPs were used, including: (I) naked iron oxide NPs with Fe-OH surface group (Bare-NP); (II) iron oxide NPs with a coating of alginate (Alg-NPs); and (III) iron oxide NPs with a coating of deferoxamine (Def-NPs). By tuning the polyethylenimine (PEI)/NP ratios and with a fixed DNA amount, different ternary composites were employed for NP/gene transfection into glioblastoma U87MG or U138MG cells, which were then characterized by Prussian blue staining, in vitro MRI, green fluorescence protein (GFP) fluorescence and luciferase assay. Results Among the composites prepared, 0.2 ng PEI/0.5 µg DNA/1.0 µg Bare-NP ternary composite possessed the best cellular uptake efficiency of NP to the cytoplasm, following the trend Bare-NP > Alg-NP > Def-NP. This observation was consistent to the MRI assessments with in vitro T2 relaxivity (r2) values of 46.0, 35.5, and 23.7 s−1·µM−1·Fe, respectively. For cellular uptake efficiency of the pDNA, all variations of PEI/NP ratios of the composites did not yield significant differences. However, cellular uptake efficiencies of pDNA in the ternary composites in U138MG cells were generally higher than that of U87MG cells by an order of magnitude. Exceptionally, the ternary composite 0.2 ng PEI/0.5 µg DNA/1.0 µg Bare-NP possessed a lowered luciferase activity RLU for gene expression in U138MG cells. A total of 0.2 ng PEI/0.5 µg DNA/0.1 µg Bare-NP would be uptaken to the cell nucleus with the highest luciferase activity. A working concentration range of PEI with at least

  10. Effects of RGD immobilization on light-induced cell sheet detachment from TiO2 nanodots films.

    PubMed

    Cheng, Kui; Wang, Tiantian; Yu, Mengliu; Wan, Hongping; Lin, Jun; Weng, Wenjian; Wang, Huiming

    2016-06-01

    Light-induced cell detachment is reported to be a safe and effective cell sheet harvest method. In the present study, the effects of arginine-glycine-aspartic acid (RGD) immobilization on cell growth, cell sheet construction and cell harvest through light illumination are investigated. RGD was first immobilized on TiO2 nanodots films through simple physical adsorption, and then mouse pre-osteoblastic MC3T3-E1 cells were seeded on the films. It was found that RGD immobilization promoted cell adhesion and proliferation. It was also observed that cells cultured on RGD immobilized films showed relatively high level of pan-cadherin. Cells harvested with ultraviolet illumination (365nm) showed good viability on both RGD immobilized and unmodified TiO2 nanodot films. Single cell detachment assay showed that cells detached more quickly on RGD immobilized TiO2 nanodot films. That could be ascribed to the RGD release after UV365 illumination. The current study demonstrated that RGD immobilization could effectively improve both the cellular responses and light-induced cell harvest. PMID:27040216

  11. PLGA/alginate composite microspheres for hydrophilic protein delivery.

    PubMed

    Zhai, Peng; Chen, X B; Schreyer, David J

    2015-11-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. PMID:26249587

  12. Enzyme-entrapping behaviors in alginate fibers and their papers

    SciTech Connect

    Kobayashi, Y.; Matsuo, R.; Ohya, T.; Yokoi, N.

    1987-01-01

    Enzyme immobilization in the form of fiber and paper was easily achieved by wet spinning of aqueous admixture of sodium alginate and enzymes into divalent metallic ion solution as a coagulating bath, followed by paper making of resultant shortly cut fibers. Entrapment yields of enzymes used, e.g., glucoamylase, cyclodextrin glucanotransferase, endo-polygalacturonase, and protease, were always higher in calcium alginate fibers and their papers than those in corresponding beads. It was found that the yields increased with an increase of the discharge rate through the spinning nozzle because the higher discharge rate could provide more highly oriented metal-chelate linear polymer molecules along the fiber axis for preventing leakage of entrapped enzymes. Divalent metallic ions affected greatly the entrapment of glucoamylase in alginate fibers, the order of which followed rougly the ionotropic series of Thiele. Entrapment of glucoamylase in bicomponent systems comprising alginate and other water-soluble polymers was also investigated. (Refs. 41).

  13. Immobilization of Cell-Adhesive Laminin Peptides in Degradable PEGDA Hydrogels Influences Endothelial Cell Tubulogenesis

    PubMed Central

    Ali, Saniya; Saik, Jennifer E.; Gould, Dan J.; Dickinson, Mary E.

    2013-01-01

    Abstract Attachment, spreading, and organization of endothelial cells into tubule networks are mediated by interactions between cells in the extracellular microenvironment. Laminins are key extracellular matrix components and regulators of cell adhesion, migration, and proliferation. In this study, laminin-derived peptides were conjugated to poly(ethylene glycol) (PEG) monoacrylate and covalently incorporated into degradable PEG diacrylate (PEGDA) hydrogels to investigate the influence of these peptides on endothelial cellular adhesion and function in organizing into tubule networks. Degradable PEGDA hydrogels were synthesized by incorporating a matrix metalloproteinase (MMP)–sensitive peptide, GGGPQGIWGQGK (abbreviated PQ), into the polymer backbone. The secretion of MMP-2 and MMP-9 by endothelial cells promotes polymer degradation and consequently cell migration. We demonstrate the formation of extensive networks of tubule-like structures by encapsulated human umbilical vein endothelial cells in hydrogels with immobilized synthetic peptides. The resulting structures were stabilized by pericyte precursor cells (10T1/2s) in vitro. During tubule formation and stabilization, extracellular matrix proteins such as collagen IV and laminin were deposited. Tubules formed in the matrix of metalloproteinase sensitive hydrogels were visualized from 7 days to 4 weeks in response to different combination of peptides. Moreover, hydrogels functionalized with laminin peptides and transplanted in a mouse cornea supported the ingrowth and attachment of endothelial cells to the hydrogel during angiogenesis. Results of this study illustrate the use of laminin-derived peptides as potential candidates for modification of biomaterials to support angiogenesis. PMID:23914330

  14. Biofunctionalized Calcium Phosphate Cement to Enhance the Attachment and Osteodifferentiation of Stem Cells Released from Fast-Degradable Alginate-Fibrin Microbeads

    PubMed Central

    Chen, Wenchuan; Weir, Michael D.

    2012-01-01

    Stem cell-encapsulating microbeads could be mixed into a paste such as calcium phosphate cement (CPC), where the microbeads could protect the cells from the mixing and injection forces. After being placed, the microbeads could quickly degrade to release the cells throughout the scaffold, while creating macropores. The objectives of this study were to (1) construct alginate-fibrin microbeads encapsulating human umbilical cord mesenchymal stem cells (hUCMSCs) embedded in the surface of novel biofunctionalized CPC and (2) investigate microbead degradation, cell release, and osteodifferentiation on CPC. Hydrogel microbeads were fabricated that encapsulated hUCMSCs at 1×106 cells/mL. CPC was biofunctionalized with fibronectin (Fn) and Arg-Gly-Asp (RGD). Four scaffolds were tested: CPC control, CPC mixed with Fn, CPC mixed with RGD, and CPC grafted with RGD. The degradable microbeads released hUCMSCs at 7 days, which attached to CPC. Adding Fn or RGD to CPC greatly improved cell attachment. CPC grafted with RGD showed the fastest cell proliferation, with cell density being ninefold that on CPC control. The released hUCMSCs underwent osteodifferentiation. Alkaline phosphatase, osteocalcin, collagen 1, and runt-related transcription factor 2 (Runx2) gene expression increased by 10 to 30 fold at 7–21 days, compared with day 1. The released cells on CPC synthesized bone minerals, with the mineralization amount at 21 days being two orders of magnitude higher than that at 7 days. In conclusion, alginate-fibrin microbeads embedded in CPC surface were able to quickly release the hUCMSCs that attached to biofunctionalized CPC. Incorporating Fn and RGD into CPC greatly improved cell function, and CPC grafted with RGD had the fastest cell proliferation. The released cells on CPC differentiated into the osteogenic lineage and synthesized bone minerals. The new biofunctionalized CPC with hUCMSC-encapsulating microbeads is promising for bone regeneration applications. PMID:22435653

  15. Secreted Endothelial Cell Factors Immobilized on Collagen Scaffolds Enhance the Recipient Endothelial Cell Environment

    PubMed Central

    Hamilton, Charlotte; Callanan, Anthony

    2016-01-01

    Abstract Strategies to design novel vascular scaffolds are a continuing aim in tissue engineering and often such designs encompass the use of recombinant factors to enhance the performance of the scaffold. The established use of cell secretion utilized in feeder systems and conditioned media offer a source of paracrine factors, which has potential to be used in tissue-engineered (TE) scaffolds. Here we utilize this principle from endothelial cells (ECs), to create a novel TE scaffold by harnessing secreted factors and immobilizing these to collagen scaffolds. This research revealed increased cellular attachment and positive angiogenic gene upregulation responses in recipient ECs grown on these conditioned scaffolds. Also, the conditioning method did not affect the mechanical structural integrity of the scaffolds. These results may advocate the potential use of this system to improve vascular scaffolds' in vivo performance. In addition, this process may be a future method utilized to improve other tissue engineering scaffold therapies. PMID:27057474

  16. Production and estimation of alkaline protease by immobilized Bacillus licheniformis isolated from poultry farm soil of 24 Parganas and its reusability

    PubMed Central

    Chatterjee, Shamba

    2015-01-01

    Microbial alkaline protease has become an important industrial and commercial biotech product in the recent years and exerts major applications in food, textile, detergent, and pharmaceutical industries. By immobilization of microbes in different entrapment matrices, the enzyme produced can be more stable, pure, continuous, and can be reused which in turn modulates the enzyme production in an economical manner. There have been reports in support of calcium alginate and corn cab as excellent matrices for immobilization of Bacillus subtilis and Bacillus licheniformis, respectively. This study has been carried out using calcium alginate, κ-carrageenan, agar-agar, polyacrylamide gel, and gelatin which emphasizes not only on enzyme activity of immobilized whole cells by different entrapment matrices but also on their efficiency with respect to their reusability as first attempt. Gelatin was found to be the best matrix among all with highest enzyme activity (517 U/ml) at 24 h incubation point and also showed efficiency when reused. PMID:25709962

  17. Bioflavour production from orange peel hydrolysate using immobilized Saccharomyces cerevisiae.

    PubMed

    Lalou, Sofia; Mantzouridou, Fani; Paraskevopoulou, Adamantini; Bugarski, Branko; Levic, Steva; Nedovic, Victor

    2013-11-01

    The rising trend of bioflavour synthesis by microorganisms is hindered by the high manufacturing costs, partially attributed to the cost of the starting material. To overcome this limitation, in the present study, dilute-acid hydrolysate of orange peel was employed as a low-cost, rich in fermentable sugars substrate for the production of flavour-active compounds by Saccharomyces cerevisiae. With this purpose, the use of immobilized cell technology to protect cells against the various inhibitory compounds present in the hydrolysate was evaluated with regard to yeast viability, carbon and nitrogen consumption and cell ability to produce flavour active compounds. For cell immobilization the encapsulation in Ca alginate beads was used. The results were compared with those obtained using free-cell system. Based on the data obtained immobilized cells showed better growth performance and increased ability for de novo synthesis of volatile esters of "fruity" aroma (phenylethyl acetate, ethyl hexanoate, octanoate, decanoate and dodecanoate) than those of free cells. The potential for in situ production of new formulations containing flavour-active compounds derive from yeast cells and also from essential oil of orange peel (limonene, α-terpineol) was demonstrated by the fact that bioflavour mixture was found to accumulate within the beads. Furthermore, the ability of the immobilized yeast to perform efficiently repeated batch fermentations of orange peel hydrolysate for bioflavour production was successfully maintained after six consecutive cycles of a total period of 240 h. PMID:23995224

  18. Optimization of surface-immobilized extracellular matrices for the proliferation of neural progenitor cells derived from induced pluripotent stem cells.

    PubMed

    Komura, Takashi; Kato, Koichi; Konagaya, Shuhei; Nakaji-Hirabayashi, Tadashi; Iwata, Hiroo

    2015-11-01

    Neural progenitor cells derived from induced pluripotent stem cells have been considered as a potential source for cell-transplantation therapy of central nervous disorders. However, efficient methods to expand neural progenitor cells are further required for their clinical applications. In this study, a protein array was fabricated with nine extracellular matrices and used to screen substrates suitable for the expansion of neural progenitor cells derived from mouse induced pluripotent stem cells. The results showed that neural progenitor cells efficiently proliferated on substrates with immobilized laminin-1, laminin-5, or Matrigel. Based on this result, further attempts were made to develop clinically compliant substrates with immobilized polypeptides that mimic laminin-1, one of the most effective extracellular matrices as identified in the array-based screening. We used here recombinant DNA technology to prepare polypeptide containing the globular domain 3 of laminin-1 and immobilized it onto glass-based substrates. Our results showed that neural progenitor cells selectively proliferated on substrate with the immobilized polypeptide while maintaining their differentiated state. PMID:25943789

  19. Cell-secreted extracellular matrix formation and differentiation of adipose-derived stem cells in 3D alginate scaffolds with tunable properties.

    PubMed

    Guneta, Vipra; Loh, Qiu Li; Choong, Cleo

    2016-05-01

    Three dimensional (3D) alginate scaffolds with tunable mechanical and structural properties are explored for investigating the effect of the scaffold properties on stem cell behavior and extracellular matrix (ECM) formation. Varying concentrations of crosslinker (20 - 60%) are used to tune the stiffness, porosity, and the pore sizes of the scaffolds post-fabrication. Enhanced cell proliferation and adipogenesis occur in scaffolds with 3.52 ± 0.59 kPa stiffness, 87.54 ± 18.33% porosity and 68.33 ± 0.88 μm pore size. On the other hand, cells in scaffolds with stiffness greater than 11.61 ± 1.74 kPa, porosity less than 71.98 ± 6.25%, and pore size less than 64.15 ± 4.34 μm preferentially undergo osteogenesis. When cultured in differentiation media, adipose-derived stem cells (ASCs) undergoing terminal adipogenesis in 20% firming buffer (FB) scaffolds and osteogenesis in 40% and 60% FB scaffolds show the highest secretion of collagen as compared to other groups of scaffolds. Overall, this study demonstrates the three-way relationship between 3D scaffolds, ECM composition, and stem cell differentiation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1090-1101, 2016. PMID:26749566

  20. Encapsulation of eukaryotic cells in alginate microparticles: cell signaling by TNF-alpha through capsular structure of cystic fibrosis cells.

    PubMed

    Mazzitelli, Stefania; Borgatti, Monica; Breveglieri, Giulia; Gambari, Roberto; Nastruzzi, Claudio

    2011-06-01

    Entrapment of mammalian cells in natural or synthetic biomaterials represents an important tool for both basic and applied research in tissue engineering. For instance, the encapsulation procedures allow to physically isolate cells from the surrounding environment, after their transplantation maintaining the normal cellular physiology. The first part of the current paper describes different microencapsulation techniques including bulk emulsion technique, vibrating-nozzle procedure, gas driven mono-jet device protocol and microfluidic based approach. In the second part, the application of a microencapsulation procedure to the embedding of IB3-1 cells is also described. IB3-1 is a bronchial epithelial cell line, derived from a cystic fibrosis (CF) patient. Different experimental parameters of the encapsulation process were analyzed, including frequency and amplitude of vibration, polymer pumping rate and distance between the nozzle and the gelling bath. We have found that the microencapsulation procedure does not alter the viability of the encapsulated IB3-1 cells. The encapsulated IB3-1 cells were characterized in term of protein secretion, analysing the culture medium by Bio-Plex strategy. The analyzed factors include members of the interleukin family (IL-6), chemokines (IL-8 and MCP-1) and growth factors (G-CSF). The experiments demonstrated that most of the analyzed proteins, were secreted both by the free and encapsulated cells, even if in a different extent. PMID:21484183

  1. Chondrocyte Culture in Three Dimensional Alginate Sulfate Hydrogels Promotes Proliferation While Maintaining Expression of Chondrogenic Markers

    PubMed Central

    Mhanna, Rami; Kashyap, Aditya; Palazzolo, Gemma; Vallmajo-Martin, Queralt; Becher, Jana; Möller, Stephanie; Schnabelrauch, Matthias

    2014-01-01

    The loss of expression of chondrogenic markers during monolayer expansion remains a stumbling block for cell-based treatment of cartilage lesions. Here, we introduce sulfated alginate hydrogels as a cartilage biomimetic biomaterial that induces cell proliferation while maintaining the chondrogenic phenotype of encapsulated chondrocytes. Hydroxyl groups of alginate were converted to sulfates by incubation with sulfur trioxide–pyridine complex (SO3/pyridine), yielding a sulfated material cross-linkable with calcium chloride. Passage 3 bovine chondrocytes were encapsulated in alginate and alginate sulfate hydrogels for up to 35 days. Cell proliferation was five-fold higher in alginate sulfate compared with alginate (p=0.038). Blocking beta1 integrins in chondrocytes within alginate sulfate hydrogels significantly inhibited proliferation (p=0.002). Sulfated alginate increased the RhoA activity of chondrocytes compared with unmodified alginate, an increase that was blocked by β1 blocking antibodies (p=0.017). Expression and synthesis of type II collagen, type I collagen, and proteoglycan was not significantly affected by the encapsulation material evidenced by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry. Alginate sulfate constructs showed an opaque appearance in culture, whereas the unmodified alginate samples remained translucent. In conclusion, alginate sulfate provides a three dimensional microenvironment that promotes both chondrocyte proliferation and maintenance of the chondrogenic phenotype and represents an important advance for chondrocyte-based cartilage repair therapies providing a material in which cell expansion can be done in situ. PMID:24320935

  2. Bioactive apatite incorporated alginate microspheres with sustained drug-delivery for bone regeneration application.

    PubMed

    Li, Haibin; Jiang, Fei; Ye, Song; Wu, Yingying; Zhu, Kaiping; Wang, Deping

    2016-05-01

    The strontium-substituted hydroxyapatite microspheres (SrHA) incorporated alginate composite microspheres (SrHA/Alginate) were prepared via adding SrHA/alginate suspension dropwise into calcium chloride solution, in which the gel beads were formed by means of crosslinking reaction. The structure, morphology and in vitro bioactivity of the composite microspheres were studied by using XRD, SEM and EDS methods. The biological behaviors were characterized and analyzed through inductively coupled plasma optical emission spectroscopy (ICP-OES), CCK-8, confocal laser microscope and ALP activity evaluations. The experimental results indicated that the synthetic SrHA/Alginate showed similar morphology to the well-known alginate microspheres (Alginate) and both of them possessed a great in vitro bioactivity. Compared with the control Alginate, the SrHA/Alginate enhanced MC3T3-E1 cell proliferation and ALP activity by releasing osteoinductive and osteogenic Sr ions. Furthermore, vancomycin was used as a model drug to investigate the drug release behaviors of the SrHA/Alginate, Alginate and SrHA. The results suggested that the SrHA/Alginate had a highest drug-loading efficiency and best controlled drug release properties. Additionally, the SrHA/Alginate was demonstrated to be pH-sensitive as well. The increase of the pH value in phosphate buffer solution (PBS) accelerated the vancomycin release. Accordingly, the multifunctional SrHA/Alginate can be applied in the field of bioactive drug carriers and bone filling materials. PMID:26952484

  3. Capture of endothelial cells under flow using immobilized vascular endothelial growth factor.

    PubMed

    Smith, Randall J; Koobatian, Maxwell T; Shahini, Aref; Swartz, Daniel D; Andreadis, Stelios T

    2015-05-01

    We demonstrate the ability of immobilized vascular endothelial growth factor (VEGF) to capture endothelial cells (EC) with high specificity under fluid flow. To this end, we engineered a surface consisting of heparin bound to poly-l-lysine to permit immobilization of VEGF through the C-terminal heparin-binding domain. The immobilized growth factor retained its biological activity as shown by proliferation of EC and prolonged activation of KDR signaling. Using a microfluidic device we assessed the ability to capture EC under a range of shear stresses from low (0.5 dyne/cm(2)) to physiological (15 dyne/cm(2)). Capture was significant for all shear stresses tested. Immobilized VEGF was highly selective for EC as evidenced by significant capture of human umbilical vein and ovine pulmonary artery EC but no capture of human dermal fibroblasts, human hair follicle derived mesenchymal stem cells, or mouse fibroblasts. Further, VEGF could capture EC from mixtures with non-EC under low and high shear conditions as well as from complex fluids like whole human blood under high shear. Our findings may have far reaching implications, as they suggest that VEGF could be used to promote endothelialization of vascular grafts or neovascularization of implanted tissues by rare but continuously circulating EC. PMID:25771020

  4. Efficiently engineered cell sheet using a complex of polyethylenimine–alginate nanocomposites plus bone morphogenetic protein 2 gene to promote new bone formation

    PubMed Central

    Jin, Han; Zhang, Kai; Qiao, Chunyan; Yuan, Anliang; Li, Daowei; Zhao, Liang; Shi, Ce; Xu, Xiaowei; Ni, Shilei; Zheng, Changyu; Liu, Xiaohua; Yang, Bai; Sun, Hongchen

    2014-01-01

    Regeneration of large bone defects is a common clinical problem. Recently, stem cell sheet has been an emerging strategy in bone tissue engineering. To enhance the osteogenic potential of stem cell sheet, we fabricated bone morphogenetic protein 2 (BMP-2) gene-engineered cell sheet using a complex of polyethylenimine–alginate (PEI–al) nanocomposites plus human BMP-2 complementary(c)DNA plasmid, and studied its osteogenesis in vitro and in vivo. PEI–al nanocomposites carrying BMP-2 gene could efficiently transfect bone marrow mesenchymal stem cells. The cell sheet was made by culturing the cells in medium containing vitamin C for 10 days. Assays on the cell culture showed that the genetically engineered cells released the BMP-2 for at least 14 days. The expression of osteogenesis-related gene was increased, which demonstrated that released BMP-2 could effectively induce the cell sheet osteogenic differentiation in vitro. To further test the osteogenic potential of the cell sheet in vivo, enhanced green fluorescent protein or BMP-2-producing cell sheets were treated on the cranial bone defects. The results indicated that the BMP-2-producing cell sheet group was more efficient than other groups in promoting bone formation in the defect area. Our results suggested that PEI–al nanocomposites efficiently deliver the BMP-2 gene to bone marrow mesenchymal stem cells and that BMP-2 gene-engineered cell sheet is an effective way for promoting bone regeneration. PMID:24855355

  5. Optimizing Immobilized Enzyme Performance in Cell-Free Environments to Produce Liquid Fuels

    SciTech Connect

    Belfort, Georges; Grimaldi, Joseph J.

    2015-01-27

    Limitations on biofuel production using cell culture (Escherichia coli, Clostridium, Saccharomyces cerevisiae, brown microalgae, blue-green algae and others) include low product (alcohol) concentrations (≤0.2 vol%) due to feedback inhibition, instability of cells, and lack of economical product recovery processes. To overcome these challenges, an alternate simplified biofuel production scheme was tested based on a cell-free immobilized enzyme system. Using this cell free system, we were able to obtain about 2.6 times higher concentrations of iso-butanol using our non-optimized system as compared with live cell systems. This process involved two steps: (i) converts acid to aldehyde using keto-acid decarboxylase (KdcA), and (ii) produces alcohol from aldehyde using alcohol dehydrogenase (ADH) with a cofactor (NADH) conversion from inexpensive formate using a third enzyme, formate dehydrogenase (FDH). To increase stability and conversion efficiency with easy separations, the first two enzymes were immobilized onto methacrylate resin. Fusion proteins of labile KdcA (fKdcA) were expressed to stabilize the covalently immobilized KdcA. Covalently immobilized ADH exhibited long-term stability and efficient conversion of aldehyde to alcohol over multiple batch cycles without fusions. High conversion rates and low protein leaching were achieved by covalent immobilization of enzymes on methacrylate resin. The complete reaction scheme was demonstrated by immobilizing both ADH and fKdcA and using FDH free in solution. The new system without in situ removal of isobutanol achieved a 55% conversion of ketoisovaleric acid to isobutanol at a concentration of 0.5 % (v/v). Further increases in titer will require continuous removal of the isobutanol using our novel brush membrane system that exhibits a 1.5 fold increase in the separation factor of isobutanol from water versus that obtained for commercial silicone rubber membranes. These bio-inspired brush membranes are based on the

  6. In-vivo delivery of therapeutic proteins by genetically-modified cells: comparison of organoids and human serum albumin alginate-coated beads.

    PubMed

    Shinya, E; Dervillez, X; Edwards-Lévy, F; Duret, V; Brisson, E; Ylisastigui, L; Lévy, M C; Cohen, J H; Klatzmann, D

    1999-12-01

    We have designed a self-assembling multimeric soluble CD4 molecule by inserting the C-terminal fragment of the alpha chain of human C4-binding protein (C4bp alpha) at the C-terminal end of human soluble CD4 genes. This CD4-C4bp alpha fusion protein (sMulti-CD4) and two other reference molecules, a fusion protein of human serum albumin (HSA) and the first two domains of CD4 (HSA-CD4) and monomeric soluble CD4 (sMono-CD4), were delivered in vivo by genetically modified 293 cells. These cells were implanted in mice as organoids and also encapsulated in HSA alginate-coated beads. sMulti-CD4 showed an apparent molecular weight of about 300-350 kDa, in accordance with a possible heptamer formula. sMulti-CD4 produced either in cell culture or in vivo in mice appeared to be a better invitro inhibitor of HIV infection than sMono-CD4. Plasma levels of sMulti-CD4, HSA-CD4, and sMono-CD4 reached approximately 2,300, 2,700, and 170 ng/mL, respectively, 13 weeks after in-vivo organoid implantation, which had formed tumours at that time. This suggests that the plasma half-life of sMulti-CD4 is much longer than that of sMono-CD4. The 293 xenogeneic cells encapsulated in HSA alginate-coated beads remained alive and kept secreting sMono-CD4 or HSA-CD4 continuously at significant levels for 18 weeks in nude mice, without tumour formation. When implanted in immunocompetent Balb/c mice, they were rejected two to three weeks after implantation. In contrast, encapsulated BL4 hybridoma cells remained alive and kept secreting BL4 anti-CD4 mAb for at least four weeks in Balb/c mice. These results suggest the clinical potential of the C4bp-multimerizing system, which could improve both the biological activity and the poor in-vivo pharmacokinetic performance of a monomeric functional protein like soluble CD4. These data also show that a systemic delivery of therapeutic proteins, including immunoglobulins, can be obtained by the in-vivo implantation of engineered allogeneic cells encapsulated

  7. Three immobilized-cell columnar bioreactors for enhanced production of commodity chemicals

    SciTech Connect

    Davison, B.H.; Scott, C.D.; Kaufman, E.N.

    1993-07-01

    Immobilized-cell fluidized-bed bioreactors (FBRS) can be used with a variety of fermentations to increase production of fuels, solvents, organic acids, and other fermentation products. Part of the increased rates and yields are due to the immobilization of the biocatalyst at high concentrations. This FBR system with immobilized Zymomonas mobiles increased ethanol productivity more than tenfold with 99% conversion and near stoichiometric yields. FBRs also offer several additional modes of operation for simultaneous fermentation and separation to further increase production by removing the inhibitory products directly from the continuous fermentation. The production of lactic acid by immobilized Lactobacillus was augmented with the addition and removal of solid adsorbent particles to the FBR. An immiscible organic extractant also was used to extract butanol from the acetone-butanol fermentation by Clostridium acetobutylicum. Demonstrations with these FBR systems have already shown definite advantages by improved overall product yields (decreasing feed costs) and by increased rates (decreasing capital and operating costs). Further demonstration and scale-up continue.

  8. Internalization: acute apoptosis of breast cancer cells using herceptin-immobilized gold nanoparticles

    PubMed Central

    Rathinaraj, Pierson; Al-Jumaily, Ahmed M; Huh, Do Sung

    2015-01-01

    Herceptin, the monoclonal antibody, was successfully immobilized on gold nanoparticles (GNPs) to improve their precise interactions with breast cancer cells (SK-BR3). The mean size of the GNPs (29 nm), as determined by dynamic light scattering, enlarged to 82 nm after herceptin immobilization. The in vitro cell culture experiment indicated that human skin cells (FB) proliferated well in the presence of herceptin-conjugated GNP (GNP–Her), while most of the breast cancer cells (SK-BR3) had died. To elucidate the mechanism of cell death, the interaction of breast cancer cells with GNP–Her was tracked by confocal laser scanning microscopy. Consequently, GNP–Her was found to be bound precisely to the membrane of the breast cancer cell, which became almost saturated after 6 hours incubation. This shows that the progression signal of SK-BR3 cells is retarded completely by the precise binding of antibody to the human epidermal growth factor receptor 2 receptor of the breast cancer cell membrane, causing cell death. PMID:25709498

  9. A novel cell weighing method based on the minimum immobilization pressure for biological applications

    SciTech Connect

    Zhao, Qili; Shirinzadeh, Bijan; Cui, Maosheng; Sun, Mingzhu; Liu, Yaowei; Zhao, Xin

    2015-07-28

    A novel weighing method for cells with spherical and other regular shapes is proposed in this paper. In this method, the relationship between the cell mass and the minimum aspiration pressure to immobilize the cell (referred to as minimum immobilization pressure) is derived for the first time according to static theory. Based on this relationship, a robotic cell weighing process is established using a traditional micro-injection system. Experimental results on porcine oocytes demonstrate that the proposed method is able to weigh cells at an average speed of 16.3 s/cell and with a success rate of more than 90%. The derived cell mass and density are in accordance with those reported in other published results. The experimental results also demonstrated that this method is able to detect less than 1% variation of the porcine oocyte mass quantitatively. It can be conducted by a pair of traditional micropipettes and a commercial pneumatic micro-injection system, and is expected to perform robotic operation on batch cells. At present, the minimum resolution of the proposed method for measuring the cell mass can be 1.25 × 10{sup −15 }kg. Above advantages make it very appropriate for quantifying the amount of the materials injected into or moved out of the cells in the biological applications, such as nuclear enucleations and embryo microinjections.

  10. A novel cell weighing method based on the minimum immobilization pressure for biological applications

    NASA Astrophysics Data System (ADS)

    Zhao, Qili; Shirinzadeh, Bijan; Cui, Maosheng; Sun, Mingzhu; Liu, Yaowei; Zhao, Xin

    2015-07-01

    A novel weighing method for cells with spherical and other regular shapes is proposed in this paper. In this method, the relationship between the cell mass and the minimum aspiration pressure to immobilize the cell (referred to as minimum immobilization pressure) is derived for the first time according to static theory. Based on this relationship, a robotic cell weighing process is established using a traditional micro-injection system. Experimental results on porcine oocytes demonstrate that the proposed method is able to weigh cells at an average speed of 16.3 s/cell and with a success rate of more than 90%. The derived cell mass and density are in accordance with those reported in other published results. The experimental results also demonstrated that this method is able to detect less than 1% variation of the porcine oocyte mass quantitatively. It can be conducted by a pair of traditional micropipettes and a commercial pneumatic micro-injection system, and is expected to perform robotic operation on batch cells. At present, the minimum resolution of the proposed method for measuring the cell mass can be 1.25 × 10-15 kg. Above advantages make it very appropriate for quantifying the amount of the materials injected into or moved out of the cells in the biological applications, such as nuclear enucleations and embryo microinjections.

  11. Continuous Ethanol Production Using Immobilized-Cell/Enzyme Biocatalysts in Fluidized-Bed Bioreactor (FBR)

    SciTech Connect

    Nghiem, NP

    2003-11-16

    The immobilized-cell fluidized-bed bioreactor (FBR) was developed at Oak Ridge National Laboratory (ORNL). Previous studies at ORNL using immobilized Zymomonas mobilis in FBR at both laboratory and demonstration scale (4-in-ID by 20-ft-tall) have shown that the system was more than 50 times as productive as industrial benchmarks (batch and fed-batch free cell fermentations for ethanol production from glucose). Economic analysis showed that a continuous process employing the FBR technology to produce ethanol from corn-derived glucose would offer savings of three to six cents per gallon of ethanol compared to a typical batch process. The application of the FBR technology for ethanol production was extended to investigate more complex feedstocks, which included starch and lignocellulosic-derived mixed sugars. Economic analysis and mathematical modeling of the reactor were included in the investigation. This report summarizes the results of these extensive studies.

  12. Continuous conversion of sweet sorghum juice to ethanol using immobilized yeast cells

    SciTech Connect

    Mohite, U.; SivaRaman, H.

    1984-01-01

    While extensive work has been reported on sugarcane and sugarcane molasses for ethanol production, relatively few reports are available on ethanol production from sweet sorghum juice. With the advent of immobilized cell technology, an attempt has been made to utilize this technology for the production of ethanol from sweet sorghum juice. The species was Sorghum bicolar (Moench). The maximum productivity obtained at 30/sup 0/C with Saccharomyces uvarum cells immobilized in gelatin was 168 g/L h at an ethanol concentration of 2.4 g (w/v) using sweet sorghum juice having 11.5% fermentable sugars. The calculated value for full conversion was 86 g/L at an ethanol concentration of 5.5 g (w/v). The low concentration of total sugars in the juice, however, would make ethanol recovery expensive unless a uniformly high concentration of 16% or more of total sugars can be obtained.

  13. Immobilized N-alkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed.

    PubMed

    Milović, Nebojsa M; Wang, Jun; Lewis, Kim; Klibanov, Alexander M

    2005-06-20

    Several critical mechanistic and phenomenological aspects of the microbicidal surface coatings based on immobilized hydrophobic polycations, previously developed by us, are addressed. Using Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria, remarkable bactericidal action (up to a 10(9)-fold reduction in live bacteria count in the surface-exposed solution and a 100% inactivation of the surface-adhered bacteria) of an amino-glass slide covalently derivatized with N-hexyl,methyl-polyethylenimine (PEI) is found to be due to rupturing bacterial cell membranes by the polymeric chains. The bacteria fail to develop noticeable resistance to this lethal action over the course of many successive generations. Finally, the immobilized N-alkyl-PEI, while deadly to bacteria, is determined to be harmless to mammalian (monkey kidney) cells. PMID:15803464

  14. Study of acetic acid production by immobilized acetobacter cells: oxygen transfer

    SciTech Connect

    Ghommidh, C.; Navarro, J.M.; Durand, G.

    1982-03-01

    The immobilization of living Acetobacter cells by adsorption onto a large-surface-area ceramic support was studied in a pulsed flow reactor. The high oxygen transfer capability of the reactor enabled acetic acid production rates up to 10.4 g/L/h to be achieved. Using a simple mathematical model incorporating both internal and external mass transfer coefficients, it was shown that oxygen transfer in the microbial film controls the reactor productivity. (Refs. 10).

  15. Polyglycerol dendrimers immobilized on radiation grafted poly-HEMA hydrogels: Surface chemistry characterization and cell adhesion

    NASA Astrophysics Data System (ADS)

    Higa, Olga Z.; Faria, Henrique Antonio Mendonça; de Queiroz, Alvaro A. A.

    2014-05-01

    Radiation induced grafting of poly(2-hydroxyethylmethacrylate) (PHEMA) on low density polyethylene (LDPE) films and subsequent immobilization of poly(glycerol) dendrimer (PGLD) has been performed with the aim to improve cell adhesion and proliferation on the surface of the polymer, in order to enhance their properties for bone tissue engineering scaffolding applications. Radiation grafting of PHEMA onto LDPE was promoted by γ-ray radiation. The covalent immobilization of PGLD on LDPE-g-PHEMA surface was performed by using a dicyclohexyl carbodiimide (DCC)/N,N-dimethylaminopyridine (DMAP) method. The occurrence of grafting polymerization of PHEMA and further immobilization of PGLD was quantitatively confirmed by photoelectron spectroscopy (XPS) and fluorescence, respectively. The LDPE-g-PHEMA surface topography after PGLD coupling was studied by atomic force microscopy (AFM). The hydrophilicity of the LDPE-g-PHEMA film was remarkably improved compared to that of the ungrafted LDPE. The core level XPS ESCA spectrum of PHEMA-grafted LDPE showed two strong peaks at 286.6 eV (from hydroxyl groups and ester groups) and 289.1 eV (from ester groups) due to PHEMA brushes grafted onto LDPE surfaces. The results from the cell adhesion studies show that MCT3-E1 cells tended to spread more slowly on the LDPE-g-PHEMA than on the LDPE-g-PHEMA-i-PGLD.

  16. Conidia immobilization of T-DNA inserted Trichoderma atroviride mutant AMT-28 with dichlorvos degradation ability and exploration of biodegradation mechanism.

    PubMed

    Sun, Wenliang; Chen, Yunpeng; Liu, Lixing; Tang, Jun; Chen, Jie; Liu, Peng

    2010-12-01

    An immobilizing conidia approach was used to study the degradation ability of dichlorvos in Trichoderma atroviride T-DNA insertional mutant AMT-28. Beads with 10(7) immobilized conidia per 100 mL of Na-alginate solution exhibited the highest degradation abilities. The immobilized conidia showed enhanced degradation abilities compared with immobilized or freely suspended mycelia. The immobilized cells kept good storage capacity and reusability. Dichlorvos was confirmed to be completely removed by mycelia of AMT-28 within 7 days using HPLC analysis. The dichlorvos degradation rates in auxotrophic Burk media varied and were significantly affected by nitrogen sources. There was no detectable biosorption and the removal of dichlorvos in AMT-28 was primarily attributed to a kind of Biomineralization process. PMID:20685111

  17. Mobile and immobile calcium buffers in bovine adrenal chromaffin cells.

    PubMed Central

    Zhou, Z; Neher, E

    1993-01-01

    1. The calcium binding capacity (kappa S) of bovine chromaffin cells preloaded with fura-2 was measured during nystatin-perforated-patch recordings. 2. Subsequently, the perforated patch was ruptured to obtain a whole-cell recording situation, and the time course of kappa S was monitored during periods of up to one hour. 3. No rapid change (within 10-20 s) of kappa S was observed upon transition to whole-cell recording, as would be expected, if highly mobile organic anions contributed significantly to calcium buffering. However, approximately half of the cells investigated displayed a drop in kappa S within 2-5 min, indicative of the loss of soluble Ca2+ binding proteins in the range of 7-20 kDa. 4. The average Ca2+ binding capacity (differential ratio of bound calcium over free calcium) was 9 +/- 7 (mean +/- S.E.M.) for the poorly mobile component and 31 +/- 10 for the fixed component. It was concluded that a contribution of 7 from highly mobile buffer would have been detected, if present. Thus, this value can be considered as an upper bound to highly mobile Ca2+ buffer. 5. Both mobile and fixed calcium binding capacity appeared to have relatively low Ca2+ affinity, since kappa S did not change in the range of Ca2+ concentrations between 0.1 and 3 microM. 6. It was found that cellular autofluorescence and contributions to fluorescence of non-hydrolysed or compartmentalized dye contribute a serious error in estimation of kappa S. 'Balanced loading', a degree of fura-2 loading such that the calcium binding capacity of fura-2 equals cellular calcium binding capacity, minimizes these errors. Also, changes in kappa S at the transition from perforated-patch to whole-cell recording can be most faithfully recorded for similar degrees of loading in both situations. 7. Nystatin was found unable to make pores from inside of the plasma membrane of chromaffin cells. With careful preparation and storage the diluted nystatin solution maintained its high activity of membrane

  18. Multi-featured macroporous agarose-alginate cryogel: synthesis and characterization for bioengineering applications.

    PubMed

    Tripathi, Anuj; Kumar, Ashok

    2011-01-10

    In this study agarose-alginate scaffolds are synthesized using cryogelation technology in different formats like monolith, sheet, discs, and beads, and show amiable mechanical strength like soft tissue properties and high interconnected macroporous degradable architecture. In cell-material interactions, fibroblast (NIH-3T3) cells showed good adherence and proliferation on these scaffolds presenting its potential application in soft tissue engineering. The application of cryogel beads and monoliths was also examined by the efficient immobilization of bacterial cells (BL21) on these matrices revealing their use for recovery of product from continuous fermentation systems without cell leakage. These scaffolds also showed potential as a filter for repeated recovery of heavy metal binding, such as copper and nickel from the waste water. The cryogels prepared herein do have a number of unique features that make them an important class of soft materials for developing multi-featured scaffolds as a novel carrier for bioengineering applications. PMID:21077225

  19. Encapsulation of brewing yeast in alginate/chitosan matrix: lab-scale optimization of lager beer fermentation

    PubMed Central

    Naydenova, Vessela; Badova, Mariyana; Vassilev, Stoyan; Iliev, Vasil; Kaneva, Maria; Kostov, Georgi

    2014-01-01

    Two mathematical models were developed for studying the effect of main fermentation temperature (T MF), immobilized cell mass (M IC) and original wort extract (OE) on beer fermentation with alginate-chitosan microcapsules with a liquid core. During the experiments, the investigated parameters were varied in order to find the optimal conditions for beer fermentation with immobilized cells. The basic beer characteristics, i.e. extract, ethanol, biomass concentration, pH and colour, as well as the concentration of aldehydes and vicinal diketones, were measured. The results suggested that the process parameters represented a powerful tool in controlling the fermentation time. Subsequently, the optimized process parameters were used to produce beer in laboratory batch fermentation. The system productivity was also investigated and the data were used for the development of another mathematical model. PMID:26019512

  20. Increased Growth of the Microalga Chlorella vulgaris when Coimmobilized and Cocultured in Alginate Beads with the Plant-Growth-Promoting Bacterium Azospirillum brasilense†

    PubMed Central

    Gonzalez, Luz E.; Bashan, Yoav

    2000-01-01

    Coimmobilization of the freshwater microalga Chlorella vulgaris and the plant-growth-promoting bacterium Azospirillum brasilense in small alginate beads resulted in a significantly increased growth of the microalga. Dry and fresh weight, total number of cells, size of the microalgal clusters (colonies) within the bead, number of microalgal cells per cluster, and the levels of microalgal pigments significantly increased. Light microscopy revealed that both microorganisms colonized the same cavities inside the beads, though the microalgae tended to concentrate in the more aerated periphery while the bacteria colonized the entire bead. The effect of indole-3-acetic acid addition to microalgal culture prior to immobilization of microorganisms in alginate beads partially imitated the effect of A. brasilense. We propose that coimmobilization of microalgae and plant-growth-promoting bacteria is an effective means of increasing microalgal populations within confined environments. PMID:10742237

  1. Immobilization of Acetobacter sp. CCTCC M209061 for efficient asymmetric reduction of ketones and biocatalyst recycling

    PubMed Central

    2012-01-01

    Background The bacterium Acetobacter sp. CCTCC M209061 is a promising whole-cell biocatalyst with exclusive anti-Prelog stereoselectivity for the reduction of prochiral ketones that can be used to make valuable chiral alcohols such as (R)-4-(trimethylsilyl)-3-butyn-2-ol. Although it has promising catalytic properties, its stability and reusability are relatively poor compared to other biocatalysts. Hence, we explored various materials for immobilizing the active cells, in order to improve the operational stability of biocatalyst. Results It was found that Ca-alginate give the best immobilized biocatalyst, which was then coated with chitosan to further improve its mechanical strength and swelling-resistance properties. Conditions were optimized for formation of reusable immobilized beads which can be used for repeated batch asymmetric reduction of 4′-chloroacetophenone. The optimized immobilized biocatalyst was very promising, with a specific activity of 85% that of the free-cell biocatalyst (34.66 μmol/min/g dw of cells for immobilized catalyst vs 40.54 μmol/min/g for free cells in the asymmetric reduction of 4′-chloroacetophenone). The immobilized cells showed better thermal stability, pH stability, solvent tolerance and storability compared with free cells. After 25 cycles reaction, the immobilized beads still retained >50% catalytic activity, which was 3.5 times higher than degree of retention of activity by free cells reused in a similar way. The cells could be recultured in the beads to regain full activity and perform a further 25 cycles of the reduction reaction. The external mass transfer resistances were negligible as deduced from Damkohler modulus Da < <1, and internal mass transfer restriction affected the reduction action but was not the principal rate-controlling step according to effectiveness factors η < 1 and Thiele modulus 0.3<∅ <1. Conclusions Ca-alginate coated with chitosan is a highly effective material for immobilization of

  2. Bioethanol Production from Uncooked Raw Starch by Immobilized Surface-engineered Yeast Cells

    NASA Astrophysics Data System (ADS)

    Chen, Jyh-Ping; Wu, Kuo-Wei; Fukuda, Hideki

    Surface-engineered yeast Saccharomyces cerevisiae codisplaying Rhizopus oryzae glucoamylase and Streptococcus bovis α-amylase on the cell surface was used for direct production of ethanol from uncooked raw starch. By using 50 g/L cells during batch fermentation, ethanol concentration could reach 53 g/L in 7 days. During repeated batch fermentation, the production of ethanol could be maintained for seven consecutive cycles. For cells immobilized in loofa sponge, the concentration of ethanol could reach 42 g/L in 3 days in a circulating packed-bed bioreactor. However, the production of ethanol stopped thereafter because of limited contact between cells and starch. The bioreactor could be operated for repeated batch production of ethanol, but ethanol concentration dropped to 55% of its initial value after five cycles because of a decrease in cell mass and cell viability in the bioreactor. Adding cells to the bioreactor could partially restore ethanol production to 75% of its initial value.

  3. Bioethanol production from uncooked raw starch by immobilized surface-engineered yeast cells.

    PubMed

    Chen, Jyh-Ping; Wu, Kuo-Wei; Fukuda, Hideki

    2008-03-01

    Surface-engineered yeast Saccharomyces cerevisiae codisplaying Rhizopus oryzae glucoamylase and Streptococcus bovis alpha-amylase on the cell surface was used for direct production of ethanol from uncooked raw starch. By using 50 g/L cells during batch fermentation, ethanol concentration could reach 53 g/L in 7 days. During repeated batch fermentation, the production of ethanol could be maintained for seven consecutive cycles. For cells immobilized in loofa sponge, the concentration of ethanol could reach 42 g/L in 3 days in a circulating packed-bed bioreactor. However, the production of ethanol stopped thereafter because of limited contact between cells and starch. The bioreactor could be operated for repeated batch production of ethanol, but ethanol concentration dropped to 55% of its initial value after five cycles because of a decrease in cell mass and cell viability in the bioreactor. Adding cells to the bioreactor could partially restore ethanol production to 75% of its initial value. PMID:18425612

  4. Monoolein production by triglycerides hydrolysis using immobilized Rhizopus oryzae lipase.

    PubMed

    Ghattas, Nesrine; Abidi, Ferid; Galai, Said; Marzouki, M Nejib; Salah, Abderraouf Ben

    2014-07-01

    Lipase extracted from Rhizopus oryzae was immobilized in alginate gel beads. The effects of the immobilization conditions, such as, alginate concentration, CaCl2 concentration and amount of initial enzyme on retained activity (specific activity ratio of entrapped active lipase to free lipase) were investigated. The optimal conditions for lipase entrapment were determined: 2% (w/v) alginate concentration, 100mM CaCl2 and enzyme ratio of 2000IU/mL.In such conditions, immobilized lipase by inclusion in alginate showed a highest stability and activity, on olive oil hydrolysis reaction where it could be reused for 10 cycles. After 15min of hydrolysis reaction, the mass composition of monoolein, diolein and triolein were about 78%, 10% and 12%. Hydrolysis' products purification by column chromatography lead to a successful separation of reaction compounds and provide a pure fraction of monoolein which is considered as the widest used emulsifier in food and pharmaceutical industries. PMID:24755261

  5. Whole cells in enantioselective reduction of benzyl acetoacetate

    PubMed Central

    Ribeiro, Joyce Benzaquem; Ramos, Aline de Souza; Lopes, Raquel de Oliveira; da Silva, Gabriela Veloso Vieira; de Souza, Rodrigo Octavio Mendonça Alves

    2014-01-01

    The β-ketoester benzyl acetoacetate was enantioselectively reduced to benzyl (S)-3-hydroxybutanoate by seven microorganism species. The best result using free cells was obtained with the yeast Hansenula sp., which furnished 97% ee and 85% of conversion within 24 h. After immobilization in calcium alginate spheres, K.marxianus showed to be more stable after 2 cycles of reaction. PMID:25477927

  6. Rapid one-step purification of single-cells encapsulated in alginate microcapsules from oil to aqueous phase using a hydrophobic filter paper: implications for single-cell experiments.

    PubMed

    Lee, Do-Hyun; Jang, Miran; Park, Je-Kyun

    2014-10-01

    By virtue of the biocompatibility and physical properties of hydrogel, picoliter-sized hydrogel microcapsules have been considered to be a biometric signature containing several features similar to that of encapsulated single cells, including phenotype, viability, and intracellular content. To maximize the experimental potential of encapsulating cells in hydrogel microcapsules, a method that enables efficient hydrogel microcapsule purification from oil is necessary. Current methods based on centrifugation for the conventional stepwise rinsing of oil, are slow and laborious and decrease the monodispersity and yield of the recovered hydrogel microcapsules. To remedy these shortcomings we have developed a simple one-step method to purify alginate microcapsules, containing a single live cell, from oil to aqueous phase. This method employs oil impregnation using a commercially available hydrophobic filter paper without multistep centrifugal purification and complicated microchannel networks. The oil-suspended alginate microcapsules encapsulating single cells from mammalian cancer cell lines (MCF-7, HepG2, and U937) and microorganisms (Chlorella vulgaris) were successfully exchanged to cell culture media by quick (~10 min) depletion of the surrounding oil phase without coalescence of neighboring microcapsules. Cell proliferation and high integrity of the microcapsules were also demonstrated by long-term incubation of microcapsules containing a single live cell. We expect that this method for the simple and rapid purification of encapsulated single-cell microcapsules will attain widespread adoption, assisting cell biologists and clinicians in the development of single-cell experiments. PMID:25130499

  7. Cell Proliferation on Macro/Nano Surface Structure and Collagen Immobilization of 3D Polycaprolactone Scaffolds.

    PubMed

    Park, Young-Ouk; Myung, Sung-Woon; Kook, Min-Suk; Jung, Sang-Chul; Kim, Byung-Hoon

    2016-02-01

    In this study, 3D polycaprolactone (PCL) scaffolds were fabricated by 3D printing technique. The macro/nano morphology of, 3D PCL scaffolds surface was etched with oxygen plasma. Acrylic acid (AA) plasma-polymerization was performed to functionalize the macro/nano surface with carboxyl groups and then collagen was immobilized with plasma-polymerized 3D PCL scaffolds. After O2 plasma and AA plasma-polymerization, contact angles were decreased. The FE-SEM and AFM results showed that O2 plasma is increased the surface roughness. The MTT assay results showed that proliferation of the M3CT3-E1 cells increased on the oxygen plasma treated and collagen immobilized 3D PCL scaffolds. PMID:27433597

  8. Investigation of catalytic properties of immobilized enzymes and cells by flow microcalorimetry.

    PubMed

    Stefuca, V; Gemeiner, P

    1999-01-01

    The investigation of catalytic properties of immobilized biocatalysts (IMB) is a time-consuming and not-always-simple procedure, requiring a simple and accurate method of enzyme-activity measurement. In comparison with generally-used techniques, flow microcalorimetry (FMC) has proven to be a very practical and versatile technique for direct monitoring of the course of enzyme reactions. The principal advantage of FMC is integration of the enzyme reaction and its monitoring in one step. This review summarizes the information needed for the complete kinetic or catalytic characterization of the IMB by FMC, without the requirement of any independent analytical method. The optimal experimental procedure is proposed. Examples of experimental studies on immobilized biocatalysts using the FMC are provided. The method is applicable to purified enzymes as well as to enzymes fixed in cells. PMID:9933976

  9. Potential of Immobilized Whole-Cell Methylocella tundrae as a Biocatalyst for Methanol Production from Methane.

    PubMed

    Mardina, Primata; Li, Jinglin; Patel, Sanjay K S; Kim, In-Won; Lee, Jung-Kul; Selvaraj, Chandrabose

    2016-07-28

    Methanol is a versatile compound that can be biologically synthesized from methane (CH4) by methanotrophs using a low energy-consuming and environment-friendly process. Methylocella tundrae is a type II methanotroph that can utilize CH4 as a carbon and energy source. Methanol is produced in the first step of the metabolic pathway of methanotrophs and is further oxidized into formaldehyde. Several parameters must be optimized to achieve high methanol production. In this study, we optimized the production conditions and process parameters for methanol production. The optimum incubation time, substrate, pH, agitation rate, temperature, phosphate buffer and sodium formate concentration, and cell concentration were determined to be 24 h, 50% CH4, pH 7, 150 rpm, 30°C, 100 mM and 50 mM, and 18 mg/ml, respectively. The optimization of these parameters significantly improved methanol production from 0.66 to 5.18 mM. The use of alginate-encapsulated cells resulted in enhanced methanol production stability and reusability of cells after five cycles of reuse under batch culture conditions. PMID:27012239

  10. Quaternized Chitosan/Alginate-Fe3O4 Magnetic Nanoparticles Enhance the Chemosensitization of Multidrug-Resistant Gastric Carcinoma by Regulating Cell Autophagy Activity in Mice.

    PubMed

    Li, Xiujuan; Feng, Jing; Zhang, Ran; Wang, Jinda; Su, Tao; Tian, Zuhong; Han, Dong; Zhao, Chuanxu; Fan, Miaomiao; Li, Congye; Liu, Bing; Feng, Xuyang; Nie, Yongzhan; Wu, Kaichun; Chen, Yundai; Deng, Hongbing; Cao, Feng

    2016-05-01

    Multidrug resistance (MDR) and targeted therapies present major challenges in tumor chemotherapy. Nanoparticles (NPs) hold promise for use in cancer theranostics due to their advantages in terms of tumor-targeted cytotoxicity and imaging. In this study, we developed N-((2-hydroxy-3-trimethylammonium) propyl) chitosan chloride (HTCC)/alginate-encapsulated Fe3O4 magnetic NPs (HTCC-MNPs) and applied them to MDR gastric cancer both in vivo and in vitro. HTCC-MNPs were fabricated from sodium alginate (ALG), Fe3O4 and HTCC using an ionic gelation method. The sizes and physical characteristics of the NPs were determined using dynamic light scattering, transmission electron microscopy (TEM) and zeta potential analysis. The HTCC-MNPs exhibited excellent water solubility and biocompatibility as well as significantly reduced cell viability in the drug-resistant cancer cell line SGC7901/ADR, but not in normal gastric cells (P < 0.05). An analysis of LC3 expression demonstrated the involvement of autophagy in HTCC-MNP cytotoxicity. Additionally, apoptosis was verified using a DNA content assay. HTCC-MNPs led to mitochondrial membrane potential loss, decreased ATP production and excessive reactive oxygen species (ROS) generation compared to a control group (P < 0.05). Magnetic resonance imaging showed enrichment of HTCC-MNPs in tumor-bearing mice. In vivo bioluminescence imaging and tumor volume measurements revealed that HTCC-MNPs markedly inhibited in vivo tumor growth (P < 0.05). In conclusion, HTCC-MNPs significantly inhibited MDR gastric tumor growth and reduced tumor volume via the induction of cellular autophagy and apoptosis, which was attributed to mitochondrial dysfunction and excessive ROS accumulation. PMID:27305817

  11. Chitooligomer-Immobilized Biointerfaces with Micropatterned Geometries for Unidirectional Alignment of Myoblast Cells.

    PubMed

    Poosala, Pornthida; Kitaoka, Takuya

    2016-01-01

    Skeletal muscle possesses a robust capacity to regenerate functional architectures with a unidirectional orientation. In this study, we successfully arranged skeletal myoblast (C2C12) cells along micropatterned gold strips on which chitohexaose was deposited via a vectorial chain immobilization approach. Hexa-N-acetyl-D-glucosamine (GlcNAc6) was site-selectively modified at its reducing end with thiosemicarbazide, then immobilized on a gold substrate in striped micropatterns via S-Au chemisorption. Gold micropatterns ranged from 100 to 1000 µm in width. Effects of patterning geometries on C2C12 cell alignment, morphology, and gene expression were investigated. Unidirectional alignment of C2C12 cells having GlcNAc6 receptors was clearly observed along the micropatterns. Decreasing striped pattern width increased cell attachment and proliferation, suggesting that the fixed GlcNAc6 and micropatterns impacted cell function. Possibly, interactions between nonreducing end groups of fixed GlcNAc6 and cell surface receptors initiated cellular alignment. Our technique for mimicking native tissue organization should advance applications in tissue engineering. PMID:26784249

  12. Chitooligomer-Immobilized Biointerfaces with Micropatterned Geometries for Unidirectional Alignment of Myoblast Cells

    PubMed Central

    Poosala, Pornthida; Kitaoka, Takuya

    2016-01-01

    Skeletal muscle possesses a robust capacity to regenerate functional architectures with a unidirectional orientation. In this study, we successfully arranged skeletal myoblast (C2C12) cells along micropatterned gold strips on which chitohexaose was deposited via a vectorial chain immobilization approach. Hexa-N-acetyl-d-glucosamine (GlcNAc6) was site-selectively modified at its reducing end with thiosemicarbazide, then immobilized on a gold substrate in striped micropatterns via S–Au chemisorption. Gold micropatterns ranged from 100 to 1000 µm in width. Effects of patterning geometries on C2C12 cell alignment, morphology, and gene expression were investigated. Unidirectional alignment of C2C12 cells having GlcNAc6 receptors was clearly observed along the micropatterns. Decreasing striped pattern width increased cell attachment and proliferation, suggesting that the fixed GlcNAc6 and micropatterns impacted cell function. Possibly, interactions between nonreducing end groups of fixed GlcNAc6 and cell surface receptors initiated cellular alignment. Our technique for mimicking native tissue organization should advance applications in tissue engineering. PMID:26784249

  13. Utilization of Cheese Whey Using Synergistic Immobilization of β-Galactosidase and Saccharomyces cerevisiae Cells in Dual Matrices.

    PubMed

    Kokkiligadda, Anusha; Beniwal, Arun; Saini, Priyanka; Vij, Shilpa

    2016-08-01

    Whey is a byproduct of the dairy industry, which has prospects of using as a source for production of various valuable compounds. The lactose present in whey is considered as an environmental pollutant and its utilization for enzyme and fuel production, may be effective for whey bioremediation. The dairy yeast Kluyveromyces marxianus have the ability to utilize lactose sharply as the major carbon source for the production of the enzyme. Five strains were tested for the production of the β-galactosidase using whey. The maximum β-galactosidase activity of 1.74 IU/mg dry weight was achieved in whey using K. marxianus MTCC 1389. The biocatalyst was further immobilized on chitosan macroparticles and exhibited excellent functional activity at 35 °C. Almost 89 % lactose hydrolysis was attained for concentrated whey (100 g/L) and retained 89 % catalytic activity after 15 cycles of reuse. Finally, β-galactosidase was immobilized on chitosan and Saccharomyces cerevisiae on calcium alginate, and both were used together for the production of ethanol from concentrated whey. Maximal ethanol titer of 28.9 g/L was achieved during fermentation at 35 °C. The conclusions generated by employing two different matrices will be beneficial for the future modeling using engineered S. cerevisiae in scale-up studies. PMID:27059625

  14. Immobilization of yeast cells on hydrogel carriers obtained by radiation-induced polymerization

    NASA Astrophysics Data System (ADS)

    Xin, Lu Zhao; Carenza, Mario; Kaetsu, Isao; Kumakura, Minoru; Yoshida, Masaru; Fujimura, Takashi

    Polymer hydrogels were obtained by radiation-induced copolymerization at -78°C of aqueous solutions of acrylic and methacrylic esters. The matrices were characterized by equilibrium water content measurements, by optical microscopy observations and by scanning electron microscopy analysis. Yeast cells were immobilized on these hydrogels and the ethanol productivity by batch fermentation was determined. Matrix hydrophilicity and porosity were found to deeply influence the adhesion of yeast cells and, hence, the ethanol productivity. The latter as well as other physico-chemical properties were also affected by the presence of a crosslinking agent added in small amounts to the polymerizing mixture.

  15. Integration of a Novel Injectable Nano Calcium Sulfate/Alginate Scaffold and BMP2 Gene-Modified Mesenchymal Stem Cells for Bone Regeneration

    PubMed Central

    He, Xiaoning; Dziak, Rosemary; Mao, Keya; Genco, Robert; Swithart, Mark; Li, Chunyi

    2013-01-01

    The repair of craniofacial bone defects is surgically challenging due to the complex anatomical structure of the craniofacial skeleton. Current strategies for bone tissue engineering using a preformed scaffold have not resulted in the expected clinical regeneration due to difficulty in seeding cells into the deep internal space of scaffold, and the inability to inject them in minimally invasive surgeries. In this study, we used the osteoconductive and mechanical properties of nano-scale calcium sulfate (nCS) and the biocompatibility of alginate to develop the injectable nCS/alginate (nCS/A) paste, and characterized the effect of this nCS/A paste loaded with bone morphogenetic protein 2 (BMP2) gene-modified rat mesenchymal stem cells (MSCs) on bone and blood vessel growth. Our results showed that the nCS/A paste was injectable under small injection forces. The mechanical properties of the nCS/A paste were increased with an increased proportion of alginate. MSCs maintained their viability after the injection, and MSCs and BMP2 gene-modified MSCs in the injectable pastes remained viable, osteodifferentiated, and yielded high alkaline phosphatase activity. By testing the ability of this injectable paste and BMP2-gene-modified MSCs for the repair of critical-sized calvarial bone defects in a rat model, we found that BMP2-gene-modified MSCs in nCS/A (nCS/A+M/B2) showed robust osteogenic activity, which resulted in consistent bone bridging of the bone defects. The vessel density in nCS/A+M/B2 was significantly higher than that in the groups of blank control, nCS/A alone, and nCS/A mixed with MSCs (nCS/A+M). These results indicate that BMP2 promotes MSCs-mediated bone formation and vascularization in nCS/A paste. Overall, the results demonstrated that the combination of injectable nCS/A paste and BMP2-gene-modified MSCs is a new and effective strategy for the repair of bone defects. PMID:22994418

  16. The use of covalently immobilized stem cell factor to selectively affect hematopoietic stem cell activity within a gelatin hydrogel.

    PubMed

    Mahadik, Bhushan P; Pedron Haba, Sara; Skertich, Luke J; Harley, Brendan A C

    2015-10-01

    Hematopoietic stem cells (HSCs) are a rare stem cell population found primarily in the bone marrow and responsible for the production of the body's full complement of blood and immune cells. Used clinically to treat a range of hematopoietic disorders, there is a significant need to identify approaches to selectively expand their numbers ex vivo. Here we describe a methacrylamide-functionalized gelatin (GelMA) hydrogel for in vitro culture of primary murine HSCs. Stem cell factor (SCF) is a critical biomolecular component of native HSC niches in vivo and is used in large dosages in cell culture media for HSC expansion in vitro. We report a photochemistry based approach to covalently immobilize SCF within GelMA hydrogels via acrylate-functionalized polyethylene glycol (PEG) tethers. PEG-functionalized SCF retains the native bioactivity of SCF but can be stably incorporated and retained within the GelMA hydrogel over 7 days. Freshly-isolated murine HSCs cultured in GelMA hydrogels containing covalently-immobilized SCF showed reduced proliferation and improved selectivity for maintaining primitive HSCs. Comparatively, soluble SCF within the GelMA hydrogel network induced increased proliferation of differentiating hematopoietic cells. We used a microfluidic templating approach to create GelMA hydrogels containing gradients of immobilized SCF that locally direct HSC response. Together, we report a biomaterial platform to examine the effect of the local presentation of soluble vs. matrix-immobilized biomolecular signals on HSC expansion and lineage specification. This approach may be a critical component of a biomaterial-based artificial bone marrow to provide the correct sequence of niche signals to grow HSCs in the laboratory. PMID:26232879

  17. An appropriate selection of a 3D alginate culture model for hepatic Huh-7 cell line encapsulation intended for viral studies.

    PubMed

    Tran, Nhu Mai; Dufresne, Murielle; Duverlie, Gilles; Castelain, Sandrine; Défarge, Christian; Paullier, Patrick; Legallais, Cecile

    2013-01-01

    Three-dimensional (3D) culture systems have been introduced to provide cells with a biomimetic environment that is similar to in vivo conditions. Among the polymeric molecules available, sodium-alginate (Na-alg) salt is a material that is currently employed in different areas of drug delivery and tissue engineering, because it offers biocompatibility and optimal chemical properties, and its gelation with calcium chloride provides calcium-alginate (Ca-alg) scaffolds with mechanical stability and relative permeability. In this work, four different preparations of Ca-alg beads with varying Na-alg viscosity and concentration were used for a human hepatoma cell line (Huh-7) encapsulation. The effects of Ca-alg bead preparation on structural cell organization, liver-specific functions, and the expression of specific receptors implicated in hepatotropic virus permissivity were evaluated. Hepatic cells were cultured in 500 μm diameter Ca-alg beads for 7 days under dynamic conditions. For all culture systems, cell viability reached almost 100% at day 7. Cell proliferation was concomitantly followed by hepatocyte organization in aggregates, which adopted two different morphologies (spheroid aggregates or multicellular channel-like structures), depending on Ca-alg bead preparation. These cellular organizations established a real 3D hepatocyte architecture with cell polarity, cell junctions, and abundant bile canaliculi possessing microvillus-lined channels. The functionality of these 3D cultures was confirmed by the production of albumin and the exhibition of CYP1A activity over culture time, which were variable, according to Ca-alg bead condition. The expression of specific receptors of hepatitis C virus by Huh-7 cells suggests encouraging data for the further development of a new viral culture system in Ca-alg beads. In summary, this 3D hepatic cell culture represents a promising physiologically relevant system for further in vitro studies and demonstrates that an

  18. High accumulation of dehydrodiconiferyl alcohol-4-beta-D: -glucoside in free and immobilized Linum usitatissimum cell cultures.

    PubMed

    Attoumbré, Jacques; Charlet, Stéphane; Baltora-Rosset, Sylvie; Hano, Christophe; Raynaud-Le Grandic, Sophie; Gillet, Françoise; Bensaddek, Lamine; Mesnard, François; Fliniaux, Marc-André

    2006-08-01

    As flaxseed mainly accumulates lignans (secoisolariciresinol diglucoside and matairesinol), these compounds were barely or not detected in plant cell suspensions initiated from Linum usitatissimum. In contrast, these cell suspensions were shown to accumulate substantial amounts of a neolignan identified as dehydrodiconiferyl alcohol-4-beta-D: -glucoside (DCG) (up to 47.7 mg g(-1) DW). The formation of this pharmacologically active compound was evaluated as a function of cell growth and in relation to phytohormone balance of the culture media. After establishment of efficient culture conditions, production of DCG was investigated in immobilized plant cell suspensions initiated from plantlet roots of L. usitatissimum. The results indicate that immobilization enhances the DCG production up to 60.0 mg g(-1) DW but depresses the cell growth resulting in no improvement of the total DCG yield. Nevertheless, with immobilized cell suspensions, a release of DCG into the medium is observed allowing an easier recovery. PMID:16523286

  19. Affinity-based in situ product removal coupled with co-immobilization of oily substrate and filamentous fungus.

    PubMed

    Dukler, A; Freeman, A

    1998-01-01

    In situ product removal (ISPR) involves actions taken for the fast removal of a product from the producing cell. ISPR is implemented to improve yield and productivity via minimization of product inhibition, minimization of product losses due to degradation or evaporation, and reduction of the number of subsequent downstream processing steps. Here we describe the implementation of affinity-based, specific ISPR as a crucial component of an integrative approach to problems associated with the biocatalytic production of a product exhibiting poor water solubility from an oily, water-insoluble precursor. Our integrative ISPR-based approach consists of co-immobilization of the oily substrate emulsion and the biocatalyst within bilayered alginate beads. A particulate-specific adsorbent, exhibiting high binding capacity of the product, is suspended in the reaction medium with periodical replacements. According to this approach, ISPR implementation is expected to shift the equilibration of product distribution between the co-immobilized oily substrate and the outer medium via specific product immobilization onto the added adsorbent. The product may subsequently be readily recovered via single-step final purification. This integrative approach was successfully demonstrated by the affinity-based ISPR of gamma-decalactone (4-decanolide). gamma-Decalactone was produced from castor oil via its beta-oxidation by the filamentous fungus Tyromyces sambuceus, co-immobilized with emulsified substrate within bilayered alginate beads. Product immobilization onto medium-suspended epichlorohydrin-crosslinked beta-cyclodextrin resulted in higher yield and easy pure product recovery. PMID:10076845

  20. [Biodegradation of tetrahydrofuran by combined immobilized of Pseudomonas oleovorans DT4].

    PubMed

    Shao, Qian; Ye, Jie-Xu; Ouyang, Du-Juan; Chen, Jian-Meng; Chen, Dong-Zhi

    2013-08-01

    A new composite matrix, calcium alginate (CA) coupled with activated carbon fiber (ACF) was designed to immobilize the cells of Pseudomonas oleovorans DT4 for tetrahydrofuran (THF) degradation. The average removal rate of the CA-ACF immobilized cells reached 24.0 mg x (L x h)(-1) with an initial THF concentration of 360 mg x L(-1) when the concentration of CA and ACF was 3% and 1.5% respectively. The mechanical strength of the mobilized cells was also significantly improved with the addition of ACF. Compared to the free suspended cells, higher stable removal efficiency (more than 80%) of CA-ACF cells was detected under different conditions of temperature and pH. The feasibility of the newly designed matrix was also reflected by the repeated batch degradation which showed that the removal activity decreased insignificantly after 80 cycles with the modified reaction system (PNS). PMID:24191576

  1. In Vivo Assessment of Bone Regeneration in Alginate/Bone ECM Hydrogels with Incorporated Skeletal Stem Cells and Single Growth Factors

    PubMed Central

    Gothard, David; Smith, Emma L.; Kanczler, Janos M.; Black, Cameron R.; Wells, Julia A.; Roberts, Carol A.; White, Lisa J.; Qutachi, Omar; Peto, Heather; Rashidi, Hassan; Rojo, Luis; Stevens, Molly M.; El Haj, Alicia J.; Rose, Felicity R. A. J.; Shakesheff, Kevin M.; Oreffo, Richard O. C.

    2015-01-01

    The current study has investigated the use of decellularised, demineralised bone extracellular matrix (ECM) hydrogel constructs for in vivo tissue mineralisation and bone formation. Stro-1-enriched human bone marrow stromal cells were incorporated together with select growth factors including VEGF, TGF-β3, BMP-2, PTHrP and VitD3, to augment bone formation, and mixed with alginate for structural support. Growth factors were delivered through fast (non-osteogenic factors) and slow (osteogenic factors) release PLGA microparticles. Constructs of 5 mm length were implanted in vivo for 28 days within mice. Dense tissue assessed by micro-CT correlated with histologically assessed mineralised bone formation in all constructs. Exogenous growth factor addition did not enhance bone formation further compared to alginate/bone ECM (ALG/ECM) hydrogels alone. UV irradiation reduced bone formation through degradation of intrinsic growth factors within the bone ECM component and possibly also ECM cross-linking. BMP-2 and VitD3 rescued osteogenic induction. ALG/ECM hydrogels appeared highly osteoinductive and delivery of angiogenic or chondrogenic growth factors led to altered bone formation. All constructs demonstrated extensive host tissue invasion and vascularisation aiding integration and implant longevity. The proposed hydrogel system functioned without the need for growth factor incorporation or an exogenous inducible cell source. Optimal growth factor concentrations and spatiotemporal release profiles require further assessment, as the bone ECM component may suffer batch variability between donor materials. In summary, ALG/ECM hydrogels provide a versatile biomaterial scaffold for utilisation within regenerative medicine which may be tailored, ultimately, to form the tissue of choice through incorporation of select growth factors. PMID:26675008

  2. Fast and safe fabrication of a free-standing chitosan/alginate nanomembrane to promote stem cell delivery and wound healing

    PubMed Central

    Kong, Yi; Xu, Rui; Darabi, Mohammad Ali; Zhong, Wen; Luo, Gaoxing; Xing, Malcolm MQ; Wu, Jun

    2016-01-01

    Polymeric ultrathin membranes that are compatible with cells offer tremendous advantages for tissue engineering. In this article, we report a free-standing nanomembrane that was developed using a layer-by-layer self-assembly technique with a safe and sacrificial substrate method. After ionization, two oppositely charged polyelectrolytes, alginate and chitosan, were alternately deposited on a substrate of a solidified gelatin block to form an ultrathin nanomembrane. The space between the two adjacent layers was ∼200 nm. The thickness of the nanomembrane was proportional to the number of layers. The temperature-sensitive gelatin gel served as a sacrificial template at 37°C. The free-standing nanomembrane promoted bone marrow stem cell adhesion and proliferation. Fluorescence-activated cell sorting was used to analyze green-fluorescent-protein-positive mesenchymal stem cells from the wounds, which showed a significantly high survival and proliferation from the nanomembrane when cells were transplanted to mouse dorsal skin that had a full-thickness burn. The bone-marrow-stem-cell-loaded nanomembrane also accelerated wound contraction and epidermalization. Therefore, this methodology provides a fast and facile approach to construct free-standing ultrathin scaffolds for tissue engineering. The biocompatibility and free-standing nature of the fabricated nanomembrane may be particularly useful for stem cell delivery and wound healing. PMID:27354789

  3. Fast and safe fabrication of a free-standing chitosan/alginate nanomembrane to promote stem cell delivery and wound healing.

    PubMed

    Kong, Yi; Xu, Rui; Darabi, Mohammad Ali; Zhong, Wen; Luo, Gaoxing; Xing, Malcolm Mq; Wu, Jun

    2016-01-01

    Polymeric ultrathin membranes that are compatible with cells offer tremendous advantages for tissue engineering. In this article, we report a free-standing nanomembrane that was developed using a layer-by-layer self-assembly technique with a safe and sacrificial substrate method. After ionization, two oppositely charged polyelectrolytes, alginate and chitosan, were alternately deposited on a substrate of a solidified gelatin block to form an ultrathin nanomembrane. The space between the two adjacent layers was ∼200 nm. The thickness of the nanomembrane was proportional to the number of layers. The temperature-sensitive gelatin gel served as a sacrificial template at 37°C. The free-standing nanomembrane promoted bone marrow stem cell adhesion and proliferation. Fluorescence-activated cell sorting was used to analyze green-fluorescent-protein-positive mesenchymal stem cells from the wounds, which showed a significantly high survival and proliferation from the nanomembrane when cells were transplanted to mouse dorsal skin that had a full-thickness burn. The bone-marrow-stem-cell-loaded nanomembrane also accelerated wound contraction and epidermalization. Therefore, this methodology provides a fast and facile approach to construct free-standing ultrathin scaffolds for tissue engineering. The biocompatibility and free-standing nature of the fabricated nanomembrane may be particularly useful for stem cell delivery and wound healing. PMID:27354789

  4. Antimicrobial potential of immobilized Lactococcus lactis subsp. lactis ATCC 11454 against selected bacteria.

    PubMed

    Millette, M; Smoragiewicz, W; Lacroix, M

    2004-06-01

    Immobilization of living cells of lactic acid bacteria could be an alternative or complementary method of immobilizing organic acids and bacteriocins and inhibit undesirable bacteria in foods. This study evaluated the inhibition potential of immobilized Lactococcus lactis subsp. lactis ATCC 11454 on selected bacteria by a modified method of the agar spot test. L. lactis was immobilized in calcium alginate (1 to 2%)-whey protein concentrate (0 and 1%) beads. The antimicrobial potential of immobilized L. lactis was evaluated in microbiological media against pathogenic bacteria (Escherichia coli, Salmonella, and Staphylococcus aureus) or Pseudomonas putida, a natural meat contaminant, and against seven gram-positive bacteria used as indicator strains. Results obtained in this study indicated that immobilized L. lactis inhibited the growth of S. aureus, Enterococcus faecalis, Enterococcus faecium, Lactobacillus curvatus, Lactobacillus sakei, Kocuria varians, and Pediococcus acidilactici. Only 4 h of incubation at 35 degrees C resulted in a clear inhibition zone around the beads that increased with time. With the addition of 10 mM of a chelating agent (EDTA) to the media, results showed growth inhibition of E. coli; however, P. putida and Salmonella Typhi were unaffected by this treatment. These results indicate that immobilized lactic acid bacteria strains can be successfully used to produce nisin and inhibit bacterial growth in semisolid synthetic media. PMID:15222547

  5. Oxygen supply for CHO cells immobilized on a packed-bed of Fibra-Cel disks.

    PubMed

    Meuwly, F; Loviat, F; Ruffieux, P-A; Bernard, A R; Kadouri, A; von Stockar, U

    2006-03-01

    Packed-bed bioreactors (PBR) have proven to be efficient systems to culture mammalian cells at very high cell density in perfusion mode, thus leading to very high volumetric productivity. However, the immobilized cells must be continuously supplied with all nutrients in sufficient quantities to remain viable and productive over the full duration of the perfusion culture. Among all nutrients, oxygen is the most critical since it is present at very low concentration due to its low solubility in cell culture medium. This work presents the development of a model for oxygenation in a packed-bed bioreactor system. The experimental system used to develop the model was a packed-bed of Fibra-Cel disk carriers used to cultivate Chinese Hamster Ovary cells at high density ( approximately 6.1 x 10(7) cell/mL) in perfusion mode. With the help of this model, it was possible to identify if a PBR system is operated in optimal or sub-optimal conditions. Using the model, two options were proposed, which could improve the performance of the basal system by about twofold, that is, by increasing the density of immobilized cells per carrier volume from 6.1 x 10(7) to 1.2 x 10(8) cell/mL, or by increasing the packed-bed height from 0.2 to 0.4 m. Both strategies would be rather simple to test and implement in the packed-bed bioreactor system used for this study. As a result, it would be possible to achieve a substantial improvement of about twofold higher productivity as compared with the basal conditions. PMID:16358288

  6. Cr(VI) sorption by free and immobilised chromate-reducing bacterial cells in PVA-alginate matrix: equilibrium isotherms and kinetic studies.

    PubMed

    Rawat, Monica; Rawat, A P; Giri, Krishna; Rai, J P N

    2013-08-01

    Chromate-resistant bacterial strain isolated from the soil of tannery was studied for Cr(VI) bioaccumulation in free and immobilised cells to evaluate its applicability in chromium removal from aqueous solution. Based on the comparative analysis of the 16S rRNA gene, and phenotypic and biochemical characterization, this strain was identified as Paenibacillus xylanilyticus MR12. Mechanism of Cr adsorption was also ascertained by chemical modifications of the bacterial biomass followed by Fourier transform infrared spectroscopy analysis of the cell wall constituents. The equilibrium biosorption analysed using isotherms (Langmuir, Freundlich and Dubinin-Redushkevich) and kinetics models (pseudo-first-order, second-order and Weber-Morris) revealed that the Langmuir model best correlated to experimental data, and Weber-Morris equation well described Cr(VI) biosorption kinetics. Polyvinyl alcohol alginate immobilised cells had the highest Cr(VI) removal efficiency than that of free cells and could also be reused four times for Cr(VI) removal. Complete reduction of chromate in simulated effluent containing Cu(2+), Mg(2+), Mn(2+) and Zn(2+) by immobilised cells, demonstrated potential applications of a novel immobilised bacterial strain MR12, as a vital bioresource in Cr(VI) bioremediation technology. PMID:23361177

  7. Synthesis of composite gelatin-hyaluronic acid-alginate porous scaffold and evaluation for in vitro stem cell growth and in vivo tissue integration.

    PubMed

    Singh, Deepti; Tripathi, Anuj; Zo, Sunmi; Singh, Dolly; Han, Sung Soo

    2014-04-01

    Engineering three-dimensional (3-D) porous scaffolds with precise bio-functional properties is one of the most important issues in tissue engineering. In the present study, a three-dimensional gelatin-hyaluronic acid-alginate (GHA) polymeric composite was synthesized by freeze-drying, which was followed by ionic crosslinking using CaCl2, and evaluated for its suitability in bone tissue engineering applications. The obtained matrix showed high porosity (85%), an interconnected pore morphology and a rapid swelling behavior. The rheological analysis of GHA showed a viscoelastic characteristic, which suggested a high load bearing capacity without fractural deformation. The influence of the GHA matrix on cell growth and on modulating the differentiation ability of mesenchymal stem cells was evaluated by different biochemical and immunostaining assays. The monitoring of cells over a period of four weeks showed increased cellular proliferation and osteogenic differentiation without external growth factors, compared with control (supplemented with osteogenic differentiation medium). The in vivo matrix implantation showed higher matrix-tissue integration and cell infiltration as the duration of the implant increased. These results suggest that a porous GHA matrix with suitable mechanical integrity and tissue compatibility is a promising substrate for the osteogenic differentiation of stem cells for bone tissue engineering applications. PMID:24572494

  8. The production of cellulase in a spouted bed fermentor using cells immobilized in biomass support particles.

    PubMed

    Webb, C; Fukuda, H; Atkinson, B

    1986-01-01

    Continuous cellulase production by Trichoderma viride QM 9123, immobilized in 6 mm diameter, spherical, stainless steel biomass support particles, has been achieved using a medium containing glucose as the main carbon source. Experiments were carried out in a 10-L spouted bed fermentor. In this type of reactor-recycled broth is used to create a jet at the base of a bed of particles, causing the particles to spout and circulate. During the circulation, particles pass through a region of high shear near the jet inlet. This effectively prevents a buildup of excess biomass and thus enables steady-state conditions to be achieved during continuous operation. Continuous production of cellulase was achieved at significantly higher yield and productivity than in conventional systems. At a dilution rate of 0.15 h(-1) (nominal washout rate for freely suspended cells is 0.012 h(-1)), the yield of cellulase on glucose was 31% higher than that measured during batch operation, while the volumetric productivity (31.5 FPA U/L. h) was 53% greater than in the batch system. The specific cellulase productivity of the immobilized cells was more than 3 times that of freely suspended cells, showing that diffusional limitations can be beneficial. This offers significant opportunity for the further development of biomass support particles and associated bioreactors. PMID:18553840

  9. Multiplexed tyrosine kinase activity detection in cancer cells using hydrogel immobilized substrate

    PubMed Central

    Powers, Alicia D.; Han, Wenquing; Liu, Bi; Palecek, Sean P.

    2013-01-01

    Kinases play a key role in cellular signaling, and the overactivation or overexpression of these kinases has been linked to a variety of cancers. Tyrosine kinase inhibitors treat the mechanism of these cancers by targeting the specific kinases that are overactive. Some patients, however, do not respond to these inhibitors or develop resistance to these inhibitors during treatment. Additionally, even within cancers of the same tissue type, different kinases may be overactive in different patients. For example, some lung cancers overexpress epidermal growth factor receptor (EGFR) and respond to EGFR inhibitors, while other lung cancers do not overexpress EGFR and receive no benefit from this treatment. Even among patients exhibiting EGFR overexpression, some do not respond to EGFR kinase inhibitors because other kinases, such as Met kinase, are also overactivated. Here we describe a quantitative and specific multiplexed microfluidic assay using a hydrogel immobilized substrate for measuring the kinase activity of Met and Abl kinase from cancer cells. We immobilized kinase specific substrates into macroporous hydrogel micropillars in microchannels. These microchannels were incubated with 6 µl of a kinase reaction solution containing cancer cell lysate and measured kinase activity via fluorescence detection of a phosphotyrosine antibody. We showed that the assay can specifically measure the activity of both Met and Abl kinase within one microchannel with potential to measure the activity of as many as 5 kinases within one microchannel. The assay also detected Met kinase inhibition from lysates of cancer cells grown in the Met kinase inhibitor PHA665752. PMID:23624904

  10. Effects of lubricant and autologous bone marrow stromal cell augmentation on immobilized flexor tendon repairs.

    PubMed

    Zhao, Chunfeng; Ozasa, Yasuhiro; Shimura, Haruhiko; Reisdorf, Ramona L; Thoreson, Andrew R; Jay, Gregory; Moran, Steven L; An, Kai-Nan; Amadio, Peter C

    2016-01-01

    The purpose of the study was to test a novel treatment that carbodiimide-derivatized-hyaluronic acid-lubricin (cd-HA-lubricin) combined cell-based therapy in an immobilized flexor tendon repair in a canine model. Seventy-eight flexor tendons from 39 dogs were transected. One tendon was treated with cd-HA-lubricin plus an interpositional graft of 8 × 10(5) BMSCs and GDF-5. The other tendon was repaired without treatment. After 21 day of immobilization, 19 dogs were sacrificed; the remaining 20 dogs underwent a 21-day rehabilitation protocol before euthanasia. The work of flexion, tendon gliding resistance, and adhesion score in treated tendons were significantly less than the untreated tendons (p < 0.05). The failure strength of the untreated tendons was higher than the treated tendons at 21 and 42 days (p < 0.05). However, there is no significant difference in stiffness between two groups at day 42. Histologic analysis of treated tendons showed a smooth surface and viable transplanted cells 42 days after the repair, whereas untreated tendons showed severe adhesion formation around the repair site. The combination of lubricant and cell treatment resulted in significantly improved digit function, reduced adhesion formation. This novel treatment can address the unmet needs of patients who are unable to commence an early mobilization protocol after flexor tendon repair. PMID:26177854

  11. Biodegradation of naphthalene by free and alginate entrapped Pseudomonas sp.

    PubMed

    Abou Seoud, Mahmoud; Maachi, Rachida

    2003-01-01

    Naphthalene degradation by freely suspended and immobilized cells of Pseudomonas sp. isolated from contaminated effluents has been investigated in batch cultures and continuously in a packed bed reactor. Naphthalene concentration was varied from 25 mM to 75 mM, the temperature (30 degrees C) and pH (7.0) were kept constant. The results showed good acclimation of the strain to carbon source and degradation rate was highly affected by initial concentration. Alginate-entrapped cells have given good yields although initial rates were not as high as those encountered with free cells. A first order exponential decay kinetic model was proposed with values of parameters for each initial concentration. A laboratory scale packed-bed bioreactor was designed using parameters calculated above and continuous experiments were realized at different flow rates (100 to 200 ml/h), with different feed concentrations and operating during 30 days. The conversion at low feed concentrations and low flow rates was complete whereas at high flow rates and high concentrations it was less efficient because of diffusional limitations and short residence time. PMID:14577639

  12. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium alginate. 184.1187 Section 184.1187 Food... GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Calcium alginate is prepared...

  13. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Potassium alginate...

  14. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium alginate. 184.1724 Section 184.1724 Food and... Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Sodium alginate...

  15. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Sodium alginate is prepared by...

  16. Continuous production of L-phenylalanine by Rhodotorula glutinis immobilized cells using a column reactor.

    PubMed

    El-Batal, Ahmed I

    2002-01-01

    Studies have been conducted on L-phenylalanine (L-Phe) production and phenylalanine ammonia lyase (PAL) stabilization in the presence of several optimum effectors and reducing agents under bioconversion of transcinnamic acid (t-CA) conditions during repeated batch operations. L-Phe production was maximized and reuseability of PAL catalyst was extended to eight consecutive cycles (repeated batches) in the presence of optimum effectors (glutamic acid, polyethylene glycol and glycerol), thioglycolic acid and sparging with nitrogen gas. These best optimum bioconversion conditions desensitize the PAL catalyst to substantially elevated higher substrate t-CA concentrations and inhibit inactivation of PAL enzyme over longer reaction periods compared to the control. The fed batch mode operation of bioconversion of total t-CA (300 mM) to L-Phe was superior (65.2%, conversion), comparing with conventional batch and repeated batch (58.4%, conversion) operations after 120 h. Gamma irradiation process was employed to polymerize and crosslink polyvinyl alcohol (PVA) with N,N'-methylene-bisacrylamide (BIS) agent. The use of immobilized PAL biocatalyst containing cells in PVA-BIS copolymer gel carrier produced by radiation polymerization is obviously advantageous with regards to the yield of L-Phe which was increased in average 1.2-fold when compare to those obtained with free cells during optimum bioconversion process. When comparing the magnitudes of gamma irradiation effects on immobilized entrapped yeast cells in PVA-BIS copolymer gel carrier using scanning electron microscopy it was show that yeast cells were protected and capable to overcome these conditions and had normal shape and other features as free (unirradiated) intact yeast cells. Optimum conditions for continuous production of L-Phe by PVA-BIS copolymer carrier entrapped yeast cells in a packed bed column reactor in recycle fed-batch mode were investigated. Under these optimum conditions L-Phe accumulated to

  17. Efficient treatment of phenolic wastewater with high salinity using a novel integrated system of magnetically immobilized cells coupling with electrodes.

    PubMed

    Jiang, Bei; Shi, Shengnan; Song, Lun; Tan, Liang; Li, Meidi; Liu, Jiaxin; Xue, Lanlan

    2016-10-01

    A novel integrated system in which magnetically immobilized cells coupled with a pair of stainless iron meshes-graphite plate electrodes has been designed and operated to enhance the treatment performance of phenolic wastewater under high salinity. With NaCl concentration increased, phenol, o-cresol, m-cresol, p-cresol and COD removal rates by integrated system increased significantly, which were obviously higher than the sum of removal rates by single magnetically immobilized cells and electrode reaction. This integrated system exhibited higher removal rates for all the compounds than that by single magnetically immobilized cells during six cycles for reuse, and it still performed better, even when the voltage was cut off. These results indicated that there was a coupling effect between biodegradation and electrode reaction. The investigation of phenol hydroxylase activity and cells concentration confirmed that electrode reaction played an important role in this coupling effect. PMID:27347805

  18. Immobilized Kluyveromyces marxianus cells in carboxymethyl cellulose for production of ethanol from cheese whey: experimental and kinetic studies.

    PubMed

    Roohina, Fatemeh; Mohammadi, Maedeh; Najafpour, Ghasem D

    2016-09-01

    Cheese whey fermentation to ethanol using immobilized Kluyveromyces marxianus cells was investigated in batch and continuous operation. In batch fermentation, the yeast cells were immobilized in carboxymethyl cellulose (CMC) polymer and also synthesized graft copolymer of CMC with N-vinyl-2-pyrrolidone, denoted as CMC-g-PVP, and the efficiency of the two developed cell entrapped beads for lactose fermentation to ethanol was examined. The yeast cells immobilized in CMC-g-PVP performed slightly better than CMC with ethanol production yields of 0.52 and 0.49 g ethanol/g lactose, respectively. The effect of supplementation of cheese whey with lactose (42, 70, 100 and 150 g/l) on fermentative performance of K. marxianus immobilized in CMC beads was considered and the results were used for kinetic studies. The first order reaction model was suitable to describe the kinetics of substrate utilization and modified Gompertz model was quite successful to predict the ethanol production. For continuous ethanol fermentation, a packed-bed immobilized cell reactor (ICR) was operated at several hydraulic retention times; HRTs of 11, 15 and 30 h. At the HRT of 30 h, the ethanol production yield using CMC beads was 0.49 g/g which implies that 91.07 % of the theoretical yield was achieved. PMID:27126500

  19. Preservation of Bacillus firmus strain 37 and optimization of cyclodextrin biosynthesis by cells immobilized on loofa sponge.

    PubMed

    Pazzetto, Rúbia; Ferreira, Sabrina Barbosa de Souza; Santos, Elder James Silva; Moriwaki, Cristiane; Guedes, Teresinha Aparecida; Matioli, Graciette

    2012-01-01

    The preservation of Bacillus firmus strain 37 cells by lyophilization was evaluated and response surface methodology (RSM) was used to optimize the β-cyclodextrin (β-CD) production by cells immobilized on loofa sponge. Interactions were studied with the variables temperature, pH and dextrin concentration using a central composite design (CCD). Immobilization time influence on β-CD production was also investigated. B. firmus strain 37 cells remained viable after one year of storage, showing that the lyophilization is a suitable method for preservation of the microorganism. From the three-dimensional diagrams and contour plots, the best conditions for β-CD production were determined: temperature 60 °C, pH 8, and 18% dextrin. Considering that the amount of dextrin was high, a new assay was carried out, in which dextrin concentrations of 10, 15, and 18% were tested and the temperature of 60 °C and pH 8 were maintained. The results achieved showed very small differences and therefore, for economic reasons, the use of 10% dextrin is suggested. Increasing the immobilization time of cells immobilized on synthetic sponge the β-CD production decreased and did not change for cells immobilized on loofa sponge. The results of this research are important for microorganism preservation and essential in the optimization of the biosynthesis of CD. PMID:22874792

  20. Cartilage Regeneration of Adipose-Derived Stem Cells in the TGF-β1-Immobilized PLGA-Gelatin Scaffold.

    PubMed

    Yin, Feng; Cai, Junfeng; Zen, Wen; Wei, Yanhui; Zhou, Wei; Yuan, Feng; Singh, Shree Ram; Wei, Yiyong

    2015-06-01

    Articular cartilage has restricted self-regenerative capacity; therefore, treatment of cartilage lesions is a great challenge in the field of orthopedics. In the present study, we evaluate the enhancing effect of a transforming growth factor-beta 1 (TGF-β1)-immobilized scaffold, fabricated by incorporating TGF-β1-loaded gelatin microspheres into PLGA framework, on the differentiation of adipose-derived stem cells (ASCs) into chondrocytes. Significant increase in cell proliferation was observed in the TGF-β1-immobilized PLGA-gelatin scaffold, as compared with the ASC-seeded non-TGF-β1-immobilized PLGA-gelatin scaffold. When chondrogenic differentiation of ASCs was evaluated for both constructs, sulfated glycosaminoglycan (sGAG) content was significantly higher in the TGF-β1-immobilized scaffold. This study showed that ASCs containing the TGF-β1-immobilized scaffold better promoted cartilage regeneration in defective articular cartilage, which is assessed by histological observation. Based on the above results, we conclude that TGF-β1-immobilized PLGA-gelatin scaffold seeded with ASCs considerably enhances the quality of the tissue-engineered cartilage, therefore, advancing the field of cartilage tissue engineering. PMID:25267436

  1. Enhancing anticoagulation and endothelial cell proliferation of titanium surface by sequential immobilization of poly(ethylene glycol) and collagen

    NASA Astrophysics Data System (ADS)

    Pan, Chang-Jiang; Hou, Yan-Hua; Ding, Hong-Yan; Dong, Yun-Xiao

    2013-12-01

    In the present study, poly(ethylene glycol) (PEG) and collagen I were sequentially immobilized on the titanium surface to simultaneously improve the anticoagulation and endothelial cell proliferation. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy analysis confirmed that PEG and collagen I were successfully immobilized on the titanium surface. Water contact angle results suggested the excellent hydrophilic surface after the immobilization. The anticoagulation experiments demonstrated that the immobilized PEG and collagen I on the titanium surface could not only obviously prevent platelet adhesion and aggregation but also prolong activated partial thromboplastin time (APTT), leading to the improved blood compatibility. Furthermore, immobilization of collagen to the end of PEG chain did not abate the anticoagulation. As compared to those on the pristine and PEG-modified titanium surfaces, endothelial cells exhibited improved proliferative profiles on the surface modified by the sequential immobilization of PEG and collagen in terms of CCK-8 assay, implying that the modified titanium may promote endothelialization without abating the blood compatibility. Our method may be used to modify the surface of blood-contacting biomaterials such as titanium to promote endothelialization and improve the anticoagulation, it may be helpful for development of the biomedical devices such as coronary stents, where endothelializaton and excellent anticoagulation are required.

  2. Covalent layer-by-layer assembly of hyperbranched polymers on alginate microcapsulesto impart stability and permselectivity.

    PubMed

    Gattás-Asfura, Km; Valdes, M; Celik, E; Stabler, Cl

    2014-12-14

    The microencapsulation of cells has shown promise as a therapeutic vehicle for the treatment of a wide variety of diseases. While alginate microcapsules provide an ideal cell encapsulation material, polycations coatings are commonly employed to enhance stability and impart permselectivity. In this study, functionalized hyperbranched alginate and dendrimer polymers were used to generate discreet nanoscale coatings onto alginate microbeads via covalent layer-by-layer assembly. The bioorthogonal Staudinger ligation scheme was used to chemoselectively crosslink azide functionalized hyperbranched alginate (alginate-hN3) to methyl-2-diphenylphosphino-terephthalate (MDT) linked PAMAM dendrimer (PAMAM-MDT). Covalent layer-by-layer deposition of PAMAM-MDT/alginate-hN3 coatings onto alginate microbeads resulted in highly stable coatings, even after the inner alginate gel was liquefied to form microcapsules. The permselectivity of the coated microcapsules could be manipulated via the charge density of the PAMAM, the number of layers deposited, and the length of the functional arms. The cytocompatibility of the resulting PAMAM-MDT/alginate-hN3 coating was evaluated using a beta cell line, with no significant detrimental response observed. The biocompatibility of the coatings in vivo was also found comparable to uncoated alginate beads. The remarkable stability and versatile nature of these coatings provides an appealing option for bioencapsulation and the release of therapeutic agents. PMID:25478165

  3. Use of ATP to characterize biomass viability in freely suspended and immobilized cell bioreactors

    SciTech Connect

    Gikas, P.; Livingston, A.G. . Dept. of Chemical Engineering)

    1993-12-01

    This work describes investigations into the viability of cells growing on 3,4-dichloroaniline (34DCA). Two bio-reactors are employed for microbial growth, a continuous stirred tank (CST) bioreactor with a 2-L working volume, and a three-phase air lift (TPAL) bioreactor with a 3-L working volume. Experiments have been performed at several dilution rates between 0.027 and 0.115 h[sup [minus]1] in the CST bioreactor and between 0.111 and 0.500h[sup [minus]1] in the TPAL bioreactor. The specific ATP concentration was calculated at each dilution rate in the suspended biomass in both bioreactors as well as in the immobilized biomass in the TPAL bioreactor. The cultures were inspected under an electron microscope to monitor compositional changes. Results from the CST bioreactor showed that the biomass-specific ATP concentration increases from 0.44 to 1.86 mg ATP g[sup [minus]1] dry weight (dw) as dilution rate increases from 0.027 to 0.115 h[sup [minus]1]. At this upper dilution rate the cells were washed out. The specific ATP concentration reached a limiting average value of 1.73 mg ATP g[sup [minus]1] dw, which is assumed to be the quantity of ATP in 100% viable biomass, In the TPAL bioreactor, the ATP level increased with dilution rat in both the immobilized and suspended biomass. The specific ATP concentration in the immobilized biomass increased from approximately 0.051 mg ATP g[sup [minus]1] dw at dilution rates between 0.111 and 0.200 h[sup [minus]1] to approximately 0.119 mg ATP g[sup [minus]1] dw at dilution rates between 0.300 and 0.500 h[sup [minus]1].

  4. Alginic Acid Accelerates Calcite Dissolution

    NASA Astrophysics Data System (ADS)

    Perry, T. D.; Duckworth, O. W.; McNamara, C. J.; Martin, S. T.; Mitchell, R.

    2003-12-01

    Accelerated carbonate weathering through biological activity affects both geochemical cycling and the local pH and alkalinity of terrestrial and marine waters. Microbes affect carbonate dissolution through metabolic activity, production of acidic or chelating exudates, and cation binding by cell walls. Dissolution occurs within microbial biofilms - communities of microorganisms attached to stone in an exopolymer matrix. We investigated the effect of alginic acid, a common biological polymer produced by bacteria and algae, on calcite dissolution using a paired atomic force microscopy/flow-through reactor apparatus. The alginic acid caused up to an order of magnitude increase in dissolution rate at 3 < pH < 12. Additionally, the polymer preferentially binds to the obtuse pit steps and increases step velocity. We propose that the polymer is actively chelating surficial cations reducing the activation energy and increasing dissolution rate. The role of biologically produced polymers in mineral weathering is important in the protection of cultural heritage materials and understanding of marine and terrestrial systems.

  5. Microbial Desulfurization of Gasoline in a Mycobacterium goodii X7B Immobilized-Cell System

    PubMed Central

    Li, Fuli; Xu, Ping; Feng, Jinhui; Meng, Ling; Zheng, Yuan; Luo, Lailong; Ma, Cuiqing

    2005-01-01

    Mycobacterium goodii X7B, which had been primarily isolated as a bacterial strain capable of desulfurizing dibenzothiophene to produce 2-hydroxybiphenyl via the 4S pathway, was also found to desulfurize benzothiophene. The desulfurization product was identified as o-hydroxystyrene by gas chromatography (GC)-mass spectrometry analysis. This strain appeared to have the ability to remove organic sulfur from a broad range of sulfur species in gasoline. When Dushanzi straight-run gasoline (DSRG227) containing various organic sulfur compounds was treated with immobilized cells of strain X7B for 24 h, the total sulfur content significantly decreased, from 227 to 71 ppm at 40°C. GC flame ionization detection and GC atomic emission detection analysis were used to qualitatively evaluate the effects of M. goodii X7B treatment on the contents of gasoline. In addition, when immobilized cells were incubated at 40°C with DSRG275, the sulfur content decreased from 275 to 54 ppm in two consecutive reactions. With this excellent efficiency, strain X7B is considered a good potential candidate for industrial applications for the biodesulfurization of gasoline. PMID:15640198

  6. Immobilization of pamidronic acids on the nanotube surface of titanium discs and their interaction with bone cells

    PubMed Central

    2013-01-01

    Self-assembled layers of vertically aligned titanium nanotubes were fabricated on a Ti disc by anodization. Pamidronic acids (PDAs) were then immobilized on the nanotube surface to improve osseointegration. Wide-angle X-ray diffraction, X-ray photoelectron microscopy, and scanning electron microscopy were employed to characterize the structure and morphology of the PDA-immobilized TiO2 nanotubes. The in vitro behavior of osteoblast and osteoclast cells cultured on an unmodified and surface-modified Ti disc was examined in terms of cell adhesion, proliferation, and differentiation. Osteoblast adhesion, proliferation, and differentiation were improved substantially by the topography of the TiO2 nanotubes, producing an interlocked cell structure. PDA immobilized on the TiO2 nanotube surface suppressed the viability of the osteoclasts and reduced their bone resorption activity. PMID:23497321

  7. Improved Production of Cyclodextrins by Alkalophilic Bacilli Immobilized on Synthetic or Loofa Sponges

    PubMed Central

    de Oliveira Delani, Tieles Carina; Pazzetto, Rúbia; Mangolim, Camila Sampaio; Fenelon, Vanderson Carvalho; Moriwaki, Cristiane; Matioli, Graciette

    2012-01-01

    This study aimed to improve the production of β-cyclodextrin (β-CD) by microbial cells immobilized on synthetic or loofa sponges both with and without the use of alginate or chitosan. The most suitable matrix for the immobilization of Bacillus firmus strain 7B was synthetic sponge and for Bacillus sphaericus strain 41 was loofa sponge. After 330 days of storage, the β-CD production by Bacillus firmus and Bacillus sphaericus remained at around 41% and 49%, respectively, of initial levels. After 24 days of immobilization on loofa sponge, Bacillus sphaericus strain 41 achieved an improved operational stability, reaching 86.6 mM β-CD after 20 days of production, compared to only 32.8 mM of β-CD produced by free Bacillus sphaericus strain 41 cells. The expected increase in β-CD production by immobilized cells of Bacillus firmus strain 7B on synthetic sponge for 4 days was not statistically different to that for cells immobilized for 24 days. The application of this process on an industrial scale using loofa sponge, an inexpensive and renewable matrix, will allow the stable production of β-CD. PMID:23202953

  8. Nanotextured PDMS Substrates for Enhanced Roughness and Aptamer Immobilization for Cancer Cell Capture

    NASA Astrophysics Data System (ADS)

    Islam, Muhymin; Mahmood, Arif; Bellah, Md.; Kim, Young-Tae; Iqbal, Samir

    2014-03-01

    Detection of circulating tumor cells (CTCs) in the early stages of cancer is requires very sensitive approach. Nanotextured polydimethylsiloxane (PDMS) substrates were fabricated by micro reactive ion etching (Micro-RIE) to have better control on surface morphology and to improve the affinity of PDMS surfaces to capture cancer cells using surface immobilized aptamers. The aptamers were specific to epidermal growth factor receptors (EGFR) present in cell membranes, and overexpressed in tumor cells. We also investigated the effect of nano-scale features on cell capturing by implementing various surfaces of different roughnesses. Three different recipes were used to prepare nanotextured PDMS by micro-RIE using oxygen (O2) and carbon tetrafluoride (CF4). The measured average roughness of three nanotextured PDMS surfaces were found to impact average densities of captured cells. In all cases, nanotextured PDMS facilitated cell capturing possibly due to increased effective surface area of roughened substrates at nanoscale. It was also observed that cell capture efficiency was higher for higher surface roughness. The nanotextured PDMS substrates are thus useful for cancer cytology devices.

  9. Bioethanol production from mixed sugars by Scheffersomyces stipitis free and immobilized cells, and co-cultures with Saccharomyces cerevisiae.

    PubMed

    De Bari, Isabella; De Canio, Paola; Cuna, Daniela; Liuzzi, Federico; Capece, Angela; Romano, Patrizia

    2013-09-25

    Bioethanol can be produced from several biomasses including lignocellulosic materials. Besides 6-carbon sugars that represent the prevalent carbohydrates, some of these feedstocks contain significant amounts of 5-carbon sugars. One common limit of the major part of the xylose-fermenting yeasts is the diauxic shift between the uptake of glucose and xylose during the fermentation of mixed syrups. Thus, optimized fermentation strategies are required. In this paper the ability of Scheffersomyces stipitis strain NRRLY-11544 to ferment mixed syrups with a total sugar concentration in the range 40-80 g/L was investigated by using mono cultures, co-cultures with Saccharomyces cerevisiae strain Bakers Yeast Type II and single cultures immobilized in silica-hydrogel films. The experimental design for the fermentations with immobilized cells included the process analysis in function of two parameters: the fraction of the gel in the broth and the concentration of the cells loaded in the gel. Furthermore, for each total sugars level, the fermentative course of S. stipitis was analyzed at several glucose-to xylose ratios. The results indicated that the use of S. stipitis and S. cerevisiae in free co-cultures ensured faster processes than single cultures of S. stipitis either free or immobilized. However, the rapid production of ethanol by S. cerevisiae inhibited S. stipitis and caused a stuck of the process. Immobilization of S. stipitis in silica-hydrogel increased the relative consumption rate of xylose-to-glucose by 2-6 times depending on the composition of the fermentation medium. Furthermore the films performances appeared stable over three weeks of continuous operations. However, on the whole, the final process yields obtained with the immobilized cells were not meaningfully different from that of the free cells. This was probably due to concurrent fermentations operated by the cells released in the broth. Optimization of the carrier characteristics could improve the

  10. A Pseudomonas aeruginosa alginate-exotoxin A conjugate that elicits anti-alginate and exotoxin A-neutralizing antibodies.

    PubMed

    Coin, D; Vacheron, M J; Guinand, M; Michel, G

    1991-08-01

    Pseudomonas aeruginosa alginate was covalently coupled to exotoxin A by reductive amination using adipic acid dihydrazide as spacer. The conjugate was composed of 25% alginate and 75% exotoxin A and possessed an average molecular mass higher than 700 kDa as determined by polyacrylamide gel electrophoresis. The conjugate had virtually no ADP-ribosyltransferase activity and a reduced cytotoxicity for TSA8 murine cells, derived from Friend erythroleukemia cells, as indicated by a greater than 50-fold increased LD50. Anti-conjugate antibodies recognized exotoxin A and alginate. A booster injection resulted in markedly increased antibody ELISA titers to both exotoxin A and alginate. The antibodies neutralized the exotoxin A toxicity. PMID:1931130

  11. Integrated immobilized cell reactor-adsorption system for beta-cyclodextrin production: a model study using PVA-cryogel entrapped Bacillus agaradhaerens cells.

    PubMed

    Martins, Rita F; Plieva, Fatima M; Santos, Ana; Hatti-Kaul, Rajni

    2003-09-01

    Production of cyclodextrins (CDs) by immobilized cells of the alkaliphilic Bacillus agaradhaerens LS-3C with integrated product recovery was studied. The microorganism was entrapped in polyvinyl alcohol-cryogel beads and used as a convenient source of immobilized cyclodextrin glycosyltransferase (CGTase). On activation by incubation in the cultivation medium containing 1% (w/v) starch, the entrapped cells multiplied and secreted CGTase with an activity of 2-3 mg beta-cyclodextrin h(-1) g(-1) beads. The immobilized biocatalyst exhibited maximum activity at pH 9 and 50 degrees C, and formed cyclodextrins comprising 92-94% beta-CD and remaining alpha-CD. The cyclodextrin product from the immobilized cell bioreactor was continuously recovered by adsorption to Amberlite XAD-4 in a recycle batch mode. The product adsorption was facilitated at low temperature while hot water was used for elution. PMID:14571979

  12. A Hydrogel Bridge Incorporating Immobilized Growth Factors and Neural Stem/Progenitor Cells to Treat Spinal Cord Injury.

    PubMed

    Li, Hang; Ham, Trevor R; Neill, Nicholas; Farrag, Mahmoud; Mohrman, Ashley E; Koenig, Andrew M; Leipzig, Nic D

    2016-04-01

    Spinal cord injury (SCI) causes permanent, often complete disruption of central nervous system (CNS) function below the damaged region, leaving patients without the ability to regenerate lost tissue. To engineer new CNS tissue, a unique spinal cord bridge is created to deliver stem cells and guide their organization and development with site-specifically immobilized growth factors. In this study, this bridge is tested, consisting of adult neural stem/progenitor cells contained within a methacrylamide chitosan (MAC) hydrogel and protected by a chitosan conduit. Interferon-γ (IFN-γ) and platelet-derived growth factor-AA (PDGF-AA) are recombinantly produced and tagged with an N-terminal biotin. They are immobilized to streptavidin-functionalized MAC to induce either neuronal or oligodendrocytic lineages, respectively. These bridges are tested in a rat hemisection model of SCI between T8 and T9. After eight weeks treatments including chitosan conduits result in a significant reduction in lesion area and macrophage infiltration around the lesion site (p < 0.0001). Importantly, neither immobilized IFN-γ nor PDGF-AA increased macrophage infiltration. Retrograde tracing demonstrates improved neuronal regeneration through the use of immobilized growth factors. Immunohistochemistry staining demonstrates that immobilized growth factors are effective in differentiating encapsulated cells into their anticipated lineages within the hydrogel, while qualitatively reducing glial fibrillary acid protein expression. PMID:26913590

  13. Immobilized WNT Proteins Act as a Stem Cell Niche for Tissue Engineering.

    PubMed

    Lowndes, Molly; Rotherham, Michael; Price, Joshua C; El Haj, Alicia J; Habib, Shukry J

    2016-07-12

    The timing, location, and level of WNT signaling are highly regulated during embryonic development and for the maintenance of adult tissues. Consequently the ability to provide a defined and directed source of WNT proteins is crucial to fully understand its role in tissue development and to mimic its activity in vitro. Here we describe a one-step immobilization technique to covalently bind WNT3A proteins as a basal surface with easy storage and long-lasting activity. We show that this platform is able to maintain adult and embryonic stem cells while also being adaptable for 3D systems. Therefore, this platform could be used for recapitulating specific stem cell niches with the goal of improving tissue engineering. PMID:27411105

  14. Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris

    NASA Astrophysics Data System (ADS)

    Zhou, Minghua; He, Huanhuan; Jin, Tao; Wang, Hongyu

    2012-09-01

    With the increasing concerns for global climate change, a sustainable, efficient and renewable energy production from wastewater is imperative. In this study, a novel microbial carbon capture cell (MCC), is constructed for the first time by the introduction of immobilized microalgae (Chlorella vulgaris) into the cathode chamber of microbial fuel cells (MFCs) to fulfill the zero discharge of carbon dioxide. This process can achieve an 84.8% COD removal, and simultaneously the maximum power density can reach 2485.35 mW m-3 at a current density of 7.9 A m-3 and the Coulombic efficiency is 9.40%, which are 88% and 57.7% greater than that with suspended C. vulgaris, respectively. These enhancements in performance demonstrate the feasibility of an economical and effective approach for the simultaneous wastewater treatment, electricity generation and biodiesel production from microalgae.

  15. Wet Chemistry and Peptide Immobilization on Polytetrafluoroethylene for Improved Cell-adhesion.

    PubMed

    Gabriel, Matthias; Niederer, Kerstin; Frey, Holger

    2016-01-01

    Endowing materials surface with cell-adhesive properties is a common strategy in biomaterial research and tissue engineering. This is particularly interesting for already approved polymers that have a long standing use in medicine because these materials are well characterized and legal issues associated with the introduction of newly synthesized polymers may be avoided. Polytetrafluoroethylene (PTFE) is one of the most frequently employed materials for the manufacturing of vascular grafts but the polymer lacks cell adhesion promoting features. Endothelialization, i.e., complete coverage of the grafts inner surface with a confluent layer of endothelial cells is regarded key to optimal performance, mainly by reducing thrombogenicity of the artificial interface. This study investigates the growth of endothelial cells on peptide-modified PTFE and compares these results to those obtained on unmodified substrate. Coupling with the endothelial cell adhesive peptide Arg-Glu-Asp-Val (REDV) is performed via activation of the fluorin-containing polymer using the reagent sodium naphthalenide, followed by subsequent conjugation steps. Cell culture is accomplished using Human Umbilical Vein Endothelial Cells (HUVECs) and excellent cellular growth on peptide-immobilized material is demonstrated over a two-week period. PMID:27584937

  16. The use of microporous divinyl benzene copolymer for yeast cell immobilization and ethanol production in packed-bed reactor.

    PubMed

    Karagöz, Pinar; Erhan, Elif; Keskinler, Bülent; Ozkan, Melek

    2009-01-01

    Microporous divinyl benzene copolymer (MDBP) was used for the first time as immobilization material for Saccharomyces cerevisiae ATCC 26602 cells in a bed reactor and ethanol production from glucose was studied as a model system. A very homogenous thick layer of yeast cells were seen from the scanning electron micrographs on the outer walls of biopolymer. The dried weight of the cells was found to be approximately 2 g per gram of cell supporting material. Hydrophobic nature of polymer is an important factor increasing cell adhesion on polymer pieces. The dynamic flow conditions through the biomaterial due to its microporous architecture prevented exopolysaccharide matrix formation around cells and continuous washing out of toxic metabolites and dead and degraded cells from the reactor provided less diffusional limitations and dynamic living environment to the cells. In order to see the ethanol production performance of immobilized yeast cells, a large initial concentration range of glucose between 6.7 and 300 g/l was studied at 1 ml/min in continuous packed-bed reactor. The inhibition effect of glucose with increasing initial concentration was observed at above 150 g/l, a relatively high substrate concentration. The continuous fluid flow around the microenvironment of the attached cells and mass transferring ability of cell immobilized on MDBP can help in decreasing the inhibition effect of ethanol accumulation and high substrate concentration in the vicinity of the cells. PMID:18712507

  17. Kinetics of the biodegradation of phenol in wastewaters from the chemical industry by covalently immobilized Trichosporon cutaneum cells.

    PubMed

    Yotova, Lyubov; Tzibranska, Irene; Tileva, Filadia; Markx, G H; Georgieva, Nelly

    2009-03-01

    A simple method for the preparation of the biocatalyst with whole cells is presented, and the applicability of the technique for biodegradation of phenol in wastewater from the chemical industries using the basidomycetes yeast Trichosporon cutaneum is explored. Kinetic studies of the influence of other compounds contained in wastewater as naphthalene, benzene, toluene and pyridine indicate that apart from oil fraction, which is removed, the phenol concentration is the only major factor limiting the growth of immobilized cells. Mathematical models are applied to describe the kinetic behavior of immobilized yeast cells. From the analysis of the experimental curves was shown that the obtained values for the apparent rate parameters vary depending on the substrate concentration (mu(maxapp) from 0.35 to 0.09 h(-1) and K (sapp) from 0.037 to 0.4 g dm(-3)). The inhibitory effect of the phenol on the obtained yield coefficients was investigated too. It has been shown that covalent immobilization of T. cutaneum whole cells to plastic carrier beads is possible, and that cell viability and phenol degrading activity are maintained after the chemical modification of cell walls during the binding procedure. The results obtained indicate a possible future application of immobilized T. cutaneum for destroying phenol in industrial wastewaters. PMID:19052785

  18. Kojic acid production from cocoa juice by Aspergillus flavus entrapped in calcium alginate.

    PubMed

    el-Sharkawy, S H

    1995-06-01

    Sixteen microorganisms of Aspergillus strains were screened for production of kojic acid using cocoa juice as carbon source. Only Aspergillus flavus ATCC 9179 was found to produce the acid in low yield (22 mg/ml). Calcium alginate immobilization of the cells was used under optimum conditions to maximize the yield of kojic acid (60 mg/ml). Cultures were incubated in the medium with 50% of cocoa juice added in pulses of 8 ml each every 96 hours, and 4% methanol, pH 3.5, 150 rpm, 26 degrees C for three weeks. The incubations were monitored by thin layer and high pressure liquid chromatography. Kojic acid was extracted from the culture broth by organic solvent, concentrated and crystallized. The chemical identity of kojic acid was determined by HPLC, MS, 1H- and 13C-NMR spectroscopy. PMID:7546538

  19. A 3D Porous Gelatin-Alginate-Based-IPN Acts as an Efficient Promoter of Chondrogenesis from Human Adipose-Derived Stem Cells

    PubMed Central

    Jianu, Dana; Tumbar, Tudorita

    2015-01-01

    Cartilage has limited regeneration potential. Thus, there is an imperative need to develop new strategies for cartilage tissue engineering (CTE) amenable for clinical use. Recent CTE approaches rely on optimal cell-scaffold interactions, which require a great deal of optimization. In this study we attempt to build a novel gelatin- (G-) alginate- (A-) polyacrylamide (PAA) 3D interpenetrating network (IPN) with superior performance in promoting chondrogenesis from human adipose-derived stem cells (hADSCs). We show that our G-A-PAA scaffold is capable of supporting hADSCs proliferation and survival, with no apparent cytotoxic effect. Moreover, we find that after exposure to prochondrogenic conditions a key transcription factor known to induce chondrogenesis, namely, Sox9, is highly expressed in our hADSCs/G-A-PAA bioconstruct, along with cartilage specific markers such as collagen type II, CEP68, and COMP extracellular matrix (ECM) components. These data suggest that our G-A-PAA structural properties and formulation might enable hADSCs conversion towards functional chondrocytes. We conclude that our novel G-A-PAA biomatrix is a good candidate for prospective in vivo CTE applications. PMID:26106422

  20. Fabrication of freestanding alginate microfibers and microstructures for tissue engineering applications.

    PubMed

    Szymanski, John M; Feinberg, Adam W

    2014-06-01

    Natural biopolymers such as alginate have become important materials for a variety of biotechnology applications including drug delivery, cell encapsulation and tissue engineering. This expanding use has spurred the development of new approaches to engineer these materials at the nano- and microscales to better control cell interactions. Here we describe a method to fabricate freestanding alginate-based microfibers and microstructures with tunable geometries down to approximately 3 µm. To do this, a polydimethylsiloxane stamp is used to micromold alginate or alginate-fibrin blends onto a sacrificial layer of thermally-sensitive poly(N-isopropylacrylamide) (PIPAAm). A warm calcium chloride solution is then used to crosslink the alginate and, upon cooling below the lower critical solution temperature (~32 °C), the PIPAAm layer dissolves and releases the alginate or alginate-fibrin as freestanding microfibers and microstructures. Proof-of-concept experiments demonstrate that C2C12 myoblasts seeded onto the alginate-fibrin microfibers polarize along the fiber length forming interconnected cell strands. Thus, we have developed the ability to engineer alginate-based microstructured materials that can selectively bind cells and direct cellular assembly. PMID:24695323

  1. The Alginate Demonstration: Polymers, Food Science, and Ion Exchange

    NASA Astrophysics Data System (ADS)

    Waldman, Amy Sue; Schechinger, Linda; Govindarajoo, Geeta; Nowick, James S.; Pignolet, Louis H.

    1998-11-01

    We have recently devised a polymer demonstration involving the crosslinking and decrosslinking of alginate, a polysaccharide isolated from seaweed. The polymer is composed of D-mannuronic acid and L-guluronic acid subunits and is a component of cell walls. It is commonly used as a thickener in foods such as ice cream and fruit-filled snacks. For the demonstration, a 2% solution of sodium alginate is poured into a 1% solution of calcium chloride. Nontoxic calcium alginate "worms" form due to crosslinking of the polymer. Alternatively, the commercially available antacid Gaviscon can be used as a source of sodium alginate. The crosslinks can then be broken by shaking the worms in brine. The demonstration is a fine addition to any chemical educator's repertoire of polymer experiments.

  2. Immobilization of Escherichia coli Cells Containing Aspartase Activity with Polyurethane and Its Application for l-Aspartic Acid Production

    PubMed Central

    Fusee, Murray C.; Swann, Wayne E.; Calton, Gary J.

    1981-01-01

    Whole cells of Escherichia coli containing aspartase activity were immobilized by mixing a cell suspension with a liquid isocyanate-capped polyurethane prepolymer (Hypol). The immobilized cell preparation was used to convert ammonium fumarate to l-aspartic acid. Properties of the immobilized E. coli cells containing aspartase were investigated with a batch reactor. A 1.67-fold increase in the l-aspartic acid production rate was observed at 37°C as compared to 25°C operating temperature. The pH optimum was broad, ranging from 8.5 to 9.2. Increasing the concentration of ammonium fumarate to 1.5 M from 1.0 M negatively affected the reaction rate. l-Aspartic acid was produced at an average rate of 2.18 × 10−4 mol/min per g (wet weight) of immobilized E. coli cells with a 37°C substrate solution consisting of 1.0 M ammonium fumarate with 1 mM Mg2+ (pH 9.0). PMID:16345865

  3. PCL film surfaces conjugated with P(DMAEMA)/gelatin complexes for improving cell immobilization and gene transfection.

    PubMed

    Li, C Y; Yuan, W; Jiang, H; Li, J S; Xu, F J; Yang, W T; Ma, J

    2011-09-21

    Successful gene transfection on a tissue scaffold is of crucial importance in facilitating tissue repair and regeneration by enabling the localized production of therapeutic drugs. Polycaprolactone (PCL) has been widely adopted as a scaffold biomaterial, but its unfavorable cell-adhesion property needs to be improved. In this work, the PCL film surface was conjugated with poly((2-dimethyl amino)ethyl methacrylate) (P(DMAEMA))/gelatin complexes via surface-initiated atom transfer radical polymerization (ATRP) for improving cell immobilization and subsequent gene transfection. A simple aminolysis-based method was first used for the covalent immobilization of ATRP initiators on the PCL film. Well-defined P(DMAEMA) brushes were subsequently prepared via surface-initiated ATRP from the initiator-functionalized PCL surfaces. The P(DMAEMA) chains with a pK(a) of 7.0-7.3 were used for conjugating gelatin with a pI of 4.7 via electrostatic interaction. The amount of complexed gelatin increased as that of the grafted P(DMAEMA) layer. The cell-adhesion property on the functionalized PCL surface could be controlled by adjusting the ratio of P(DMAEMA)/gelatin. It was found that the gene transfection property on the immobilized cells was dependent on the density of the immobilized cells on the functionalized PCL film. With the good cell-adhesive nature of gelatin and the efficient gene transfection on the dense immobilized cells, the incorporating the suitable of P(DMAEMA)/gelatin complexes onto PCL surfaces could endow the PCL substrates new and interesting properties for potential tissue engineering applications. PMID:21848338

  4. Immobilization of pectin depolymerising polygalacturonase using different polymers.

    PubMed

    Ur Rehman, Haneef; Aman, Afsheen; Nawaz, Muhammad Asif; Karim, Asad; Ghani, Maria; Baloch, Abdul Hameed; Ul Qader, Shah Ali

    2016-01-01

    Polygalacturonase catalyses the hydrolysis of pectin substances and widely has been used in food and textile industries. In current study, different polymers such as calcium alginate beads, polyacrylamide gel and agar-agar matrix were screened for the immobilization of polygalacturonase through entrapment technique. Polyacrylamide gel was found to be most promising one and gave maximum (89%) immobilization yield as compared to agar-agar (80%) and calcium alginate beads (46%). The polymers increased the reaction time of polygalacturonase and polymers entrapped polygalacturonases showed maximum pectinolytic activity after 10 min of reaction as compared to free polygalacturonase which performed maximum activity after 5.0 min of reaction time. The temperature of polygalacturonase for maximum enzymatic activity was increased from 45°C to 50°C and 55°C when it was immobilized within agar-agar and calcium alginate beads, respectively. The optimum pH (pH 10) of polygalacturonase was remained same when it was immobilized within polyacrylamide gel and calcium alginate beads, but changed from pH 10 to pH 9.0 after entrapment within agar-agar. Thermal stability of polygalacturonase was improved after immobilization and immobilized polygalacturonases showed higher tolerance against different temperatures as compared to free enzyme. Polymers entrapped polygalacturonases showed good reusability and retained more than 80% of their initial activity during 2nd cycles. PMID:26454112

  5. Immobilization of Heparan Sulfate on Electrospun Meshes to Support Embryonic Stem Cell Culture and Differentiation*

    PubMed Central

    Meade, Kate A.; White, Kathryn J.; Pickford, Claire E.; Holley, Rebecca J.; Marson, Andrew; Tillotson, Donna; van Kuppevelt, Toin H.; Whittle, Jason D.; Day, Anthony J.; Merry, Catherine L. R.

    2013-01-01

    As our understanding of what guides the behavior of multi- and pluripotent stem cells deepens, so too does our ability to utilize certain cues to manipulate their behavior and maximize their therapeutic potential. Engineered, biologically functionalized materials have the capacity to influence stem cell behavior through a powerful combination of biological, mechanical, and topographical cues. Here, we present the development of a novel electrospun scaffold, functionalized with glycosaminoglycans (GAGs) ionically immobilized onto the fiber surface. Bound GAGs retained the ability to interact with GAG-binding molecules and, crucially, presented GAG sulfation motifs fundamental to mediating stem cell behavior. Bound GAG proved to be biologically active, rescuing the neural differentiation capacity of heparan sulfate-deficient mouse embryonic stem cells and functioning in concert with FGF4 to facilitate the formation of extensive neural processes across the scaffold surface. The combination of GAGs with electrospun scaffolds creates a biomaterial with potent applicability for the propagation and effective differentiation of pluripotent stem cells. PMID:23235146

  6. Biodiesel Production: Utilization of Loofah Sponge to Immobilize Rhizopus chinensis CGMCC #3.0232 Cells as a Whole-Cell Biocatalyst.

    PubMed

    He, Qiyang; Xia, Qianjun; Wang, Yuejiao; Li, Xun; Zhang, Yu; Hu, Bo; Wang, Fei

    2016-07-28

    Rhizopus chinensis cells immobilized on loofah (Luffa cylindrica) sponges were used to produce biodiesel via the transesterification of soybean oil. In whole-cell immobilization, loofah sponge is considered to be a superior alternative to conventional biomass carriers because of its biodegradable and renewable properties. During cell cultivation, Rhizopus chinensis mycelia can spontaneously and firmly adhere to the surface of loofah sponge particles. The optimal conditions for processing 9.65 g soybean oil at 40°C and 180 rpm using a 3:1 methanol-to-oil molar ratio were found to be 8% cell addition and 3-10% water content (depending on the oil's weight). Under optimal conditions, an over 90% methyl ester yield was achieved after the first reaction batch. The operational stability of immobilized Rhizopus chinensis cells was assayed utilizing a 1:1 methanol-to-oil molar ratio, thus resulting in a 16.5-fold increase in half-life when compared with immobilized cells of the widely studied Rhizopus oryzae. These results suggest that transesterification of vegetable oil using Rhizopus chinensis whole cells immobilized onto loofah sponge is an effective approach for biodiesel production. PMID:27090185

  7. Preparation and performance of immobilized yeast cells in columns containing no inert carrier. [Schizosaccharomyces pombe

    SciTech Connect

    Hsiao, H.Y.; Chiang, L.C.; Yang, C.M.; Chen, L.F.; Tsao, G.T.

    1983-02-01

    Schizosaccharomyes pombe was cultivated in a medium of glucose (10 g/l), malt extract (3 g/l), yeast extract (3 g/l), and bactopeptone (5 g/l) to form flocs. More than 95% of the cell population were flocculated. Variation in glucose concentration (from 10 to 11 g/l) did not affect flocculation. Yeast extract helped induce flocculation. Application of the immobilized yeast for the continuous production of ethanol was tested in a column reactor. Soft yeast flocs (50-200 mesh) underwent morphological changes to heavy particles (0.1-9.3 cm diameter) after continuously being fed with fresh substrates in the column. Productivity as high as 87 g EtOH/l/hour was obtained when a 150 g/l glucose medium was fed. The performance of this yeast reactor was stable over a two-month period. The ethanol yield was 97% of the theoretical maximum based upon glucose consumed. (Refs. 16).

  8. Immobilization of imidazole moieties in polymer electrolyte composite membrane for elevated temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Ke; Zhou, Bei; Ye, Gongbo; Pan, Mu; Zhang, Haining

    2015-12-01

    Development of membrane electrolyte with reasonable proton conductivity at elevated temperature without external humidification is essential for practical applications of elevated temperature proton exchange membrane fuel cells. Herein, a novel polymer electrolyte composite membrane using imidazole as anhydrous proton carriers for elevated temperature fuel cells is investigated. The imidazole moieties are immobilized inside the Nafion/poly(tetrafluoroethylene) (PTFE) composite membrane through in situ formation of imidazole functionalized silica nanoparticles in Nafion dispersion. The thus-formed membrane exhibits strong Coulombic interaction between negatively charged sulfonic acid groups of Nafion and protonated imidazole moieties, leading to an anhydrous proton conductivity of 0.018 S cm-1 at 180 °C. With the introduction of PTFE matrix, the mechanical strength of the membrane is greatly improved. The peak power density of a single cell assembled from the hybrid membrane is observed to be 130 mW cm-2 under 350 mA cm-2 at 110 °C without external humidification and it remains stable for 20 h continuous operation. The obtained results demonstrate that the developed composite membranes could be utilized as promising membrane electrolytes for elevated temperature fuel cells.

  9. Surface engineering of PHBV by covalent collagen immobilization to improve cell compatibility.

    PubMed

    Wang, Yingjun; Ke, Yu; Ren, Li; Wu, Gang; Chen, Xiaofeng; Zhao, Qichun

    2009-03-01

    Covalent immobilization of collagen onto poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film was achieved to improve its cell compatibility. Amide groups photografted on PHBV films were initially converted into amine groups through Hofmann degradation and collagen was then chemically bonded to amine groups, consequently forming the amide, amine, and collagen-modified PHBV. The structures of these modified PHBV films were confirmed by ATR-FTIR, XPS, and SEM analyses. Compared with that of PHBV film, surface wettability of the modified PHBV films enhanced remarkably. In particular, water contact angle of the collagen-modified PHBV film decreased from 65.0 degrees to 2.1 degrees within 130 s. Sheep chondrocytes cultured on PHBV and modified PHBV films were evaluated by cell adhesion test, MTT assay, and morphological observation under SEM. Results showed that the collagen-modified PHBV film had better cell adhesion and proliferation than other modified PHBV films and PHBV film. Chondrocytes on the collagen-modified PHBV film adhered through filopodia, spread by cytoplasmic webbing, and formed cells layer earlier than other modified ones, indicating that the collagen-modified PHBV is a promising biomaterial for cartilage tissue engineering. PMID:18314894

  10. Development of thrombus-resistant and cell compatible crimped polyethylene terephthalate cardiovascular grafts using surface co-immobilized heparin and collagen.

    PubMed

    Al Meslmani, Bassam; Mahmoud, Gihan; Strehlow, Boris; Mohr, Eva; Leichtweiß, Thomas; Bakowsky, Udo

    2014-10-01

    Short-term patency of polyethylene terephthalate (PET) cardiovascular grafts is determined mainly by the inherent thrombogenicity and improper endothelialization following grafts implantation. The aim of the present study was to immobilize heparin to develop thrombus resistant grafts. Additionally, collagen was co-immobilized to enhance the host cell compatibility. The synthetic woven and knitted forms of crimped PET grafts were surface modified by Denier reduction to produce functional carboxyl groups. The produced groups were used as anchor sites for covalent immobilization of heparin or co-immobilization of heparin/collagen by the end-point method. The modified surface was characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The biological activity of immobilized molecules was investigated in vitro using direct blood coagulation test, and "platelet deposition under flow condition. Furthermore, the biocompatibility of modified grafts with host cells was assessed using L929 cell as model. All modified grafts showed significant resistance against fibrin and clot formation. The number of deposited platelets on heparin-immobilized woven and knitted grafts obviously decreased by 3 fold and 2.8 fold per unit surface area respectively, while the heparin/collagen co-immobilized grafts showed only a decrease by 1.7 and 1.8 fold compared to unmodified PET. Heparin-immobilized grafts reported no significant effect on L929 cells adhesion and growth (P>0.05), conversely, collagen co-immobilization considerably increased cell adhesion almost ~1.3 fold and 2 fold per unit surface area for woven and knitted grafts respectively. Our results emphasize that immobilization of heparin minimized the inherent thrombogenicity of the PET grafts. The simultaneous co-immobilization of collagen supported host cell adhesion and growth required for the grafts biocompatibility. PMID:25175248

  11. Time-lapse electrical impedance spectroscopy for monitoring the cell cycle of single immobilized S. pombe cells

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen; Frey, Olivier; Haandbaek, Niels; Franke, Felix; Rudolf, Fabian; Hierlemann, Andreas

    2015-11-01

    As a complement and alternative to optical methods, wide-band electrical impedance spectroscopy (EIS) enables multi-parameter, label-free and real-time detection of cellular and subcellular features. We report on a microfluidics-based system designed to reliably capture single rod-shaped Schizosaccharomyces pombe cells by applying suction through orifices in a channel wall. The system enables subsequent culturing of immobilized cells in an upright position, while dynamic changes in cell-cycle state and morphology were continuously monitored through EIS over a broad frequency range. Besides measuring cell growth, clear impedance signals for nuclear division have been obtained. The EIS system has been characterized with respect to sensitivity and detection limits. The spatial resolution in measuring cell length was 0.25 μm, which corresponds to approximately a 5-min interval of cell growth under standard conditions. The comprehensive impedance data sets were also used to determine the occurrence of nuclear division and cytokinesis. The obtained results have been validated through concurrent confocal imaging and plausibilized through comparison with finite-element modeling data. The possibility to monitor cellular and intracellular features of single S. pombe cells during the cell cycle at high spatiotemporal resolution renders the presented microfluidics-based EIS system a suitable tool for dynamic single-cell investigations.

  12. Time-lapse electrical impedance spectroscopy for monitoring the cell cycle of single immobilized S. pombe cells

    PubMed Central

    Zhu, Zhen; Frey, Olivier; Haandbaek, Niels; Franke, Felix; Rudolf, Fabian; Hierlemann, Andreas

    2015-01-01

    As a complement and alternative to optical methods, wide-band electrical impedance spectroscopy (EIS) enables multi-parameter, label-free and real-time detection of cellular and subcellular features. We report on a microfluidics-based system designed to reliably capture single rod-shaped Schizosaccharomyces pombe cells by applying suction through orifices in a channel wall. The system enables subsequent culturing of immobilized cells in an upright position, while dynamic changes in cell-cycle state and morphology were continuously monitored through EIS over a broad frequency range. Besides measuring cell growth, clear impedance signals for nuclear division have been obtained. The EIS system has been characterized with respect to sensitivity and detection limits. The spatial resolution in measuring cell length was 0.25 μm, which corresponds to approximately a 5-min interval of cell growth under standard conditions. The comprehensive impedance data sets were also used to determine the occurrence of nuclear division and cytokinesis. The obtained results have been validated through concurrent confocal imaging and plausibilized through comparison with finite-element modeling data. The possibility to monitor cellular and intracellular features of single S. pombe cells during the cell cycle at high spatiotemporal resolution renders the presented microfluidics-based EIS system a suitable tool for dynamic single-cell investigations. PMID:26608589

  13. Microencapsulated Aliivibrio fischeri in alginate microspheres for monitoring heavy metal toxicity in environmental waters.

    PubMed

    Futra, Dedi; Heng, Lee Yook; Surif, Salmijah; Ahmad, Asmat; Ling, Tan Ling

    2014-01-01

    In this article a luminescence fiber optic biosensor for the microdetection of heavy metal toxicity in waters based on the marine bacterium Aliivibrio fischeri (A. fischeri) encapsulated in alginate microspheres is described. Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(II) were selected as sample toxic heavy metal ions for evaluation of the performance of this toxicity microbiosensor. The loss of bioluminescence response from immobilized A. fischeri bacterial cells corresponds to changes in the toxicity levels. The inhibition of the luminescent biosensor response collected at excitation and emission wavelengths of 287 ± 2 nm and 487 ± 2 nm, respectively, was found to be reproducible and repeatable within the relative standard deviation (RSD) range of 2.4-5.7% (n = 8). The toxicity biosensor based on alginate micropsheres exhibited a lower limit of detection (LOD) for Cu(II) (6.40 μg/L), Cd(II) (1.56 μg/L), Pb(II) (47 μg/L), Ag(I) (18 μg/L) than Zn(II) (320 μg/L), Cr(VI) (1,000 μg/L), Co(II) (1700 μg/L), Ni(II) (2800 μg/L), and Fe(III) (3100 μg/L). Such LOD values are lower when compared with other previous reported whole cell toxicity biosensors using agar gel, agarose gel and cellulose membrane biomatrices used for the immobilization of bacterial cells. The A. fischeri bacteria microencapsulated in alginate biopolymer could maintain their metabolic activity for a prolonged period of up to six weeks without any noticeable changes in the bioluminescence response. The bioluminescent biosensor could also be used for the determination of antagonistic toxicity levels for toxicant mixtures. A comparison of the results obtained by atomic absorption spectroscopy (AAS) and using the proposed luminescent A. fischeri-based biosensor suggests that the optical toxicity biosensor can be used for quantitative microdetermination of heavy metal toxicity in environmental water samples. PMID:25490588

  14. Microencapsulated Aliivibrio fischeri in Alginate Microspheres for Monitoring Heavy Metal Toxicity in Environmental Waters

    PubMed Central

    Futra, Dedi; Heng, Lee Yook; Surif, Salmijah; Ahmad, Asmat; Ling, Tan Ling

    2014-01-01

    In this article a luminescence fiber optic biosensor for the microdetection of heavy metal toxicity in waters based on the marine bacterium Aliivibrio fischeri (A. fischeri) encapsulated in alginate microspheres is described. Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(II) were selected as sample toxic heavy metal ions for evaluation of the performance of this toxicity microbiosensor. The loss of bioluminescence response from immobilized A. fischeri bacterial cells corresponds to changes in the toxicity levels. The inhibition of the luminescent biosensor response collected at excitation and emission wavelengths of 287 ± 2 nm and 487 ± 2 nm, respectively, was found to be reproducible and repeatable within the relative standard deviation (RSD) range of 2.4–5.7% (n = 8). The toxicity biosensor based on alginate micropsheres exhibited a lower limit of detection (LOD) for Cu(II) (6.40 μg/L), Cd(II) (1.56 μg/L), Pb(II) (47 μg/L), Ag(I) (18 μg/L) than Zn(II) (320 μg/L), Cr(VI) (1,000 μg/L), Co(II) (1700 μg/L), Ni(II) (2800 μg/L), and Fe(III) (3100 μg/L). Such LOD values are lower when compared with other previous reported whole cell toxicity biosensors using agar gel, agarose gel and cellulose membrane biomatrices used for the immobilization of bacterial cells. The A. fischeri bacteria microencapsulated in alginate biopolymer could maintain their metabolic activity for a prolonged period of up to six weeks without any noticeable changes in the bioluminescence response. The bioluminescent biosensor could also be used for the determination of antagonistic toxicity levels for toxicant mixtures. A comparison of the results obtained by atomic absorption spectroscopy (AAS) and using the proposed luminescent A. fischeri-based biosensor suggests that the optical toxicity biosensor can be used for quantitative microdetermination of heavy metal toxicity in environmental water samples. PMID:25490588

  15. The Effects of TiO2 Nanodot Films with RGD Immobilization on Light-Induced Cell Sheet Technology

    PubMed Central

    Yu, Meng-Liu; Yu, Meng-Fei; Zhu, Li-Qin; Wang, Tian-Tian; Zhou, Yi; Wang, Hui-Ming

    2015-01-01

    Cell sheet technology is a new strategy in tissue engineering which could be possible to implant into the body without a scaffold. In order to get an integrated cell sheet, a light-induced method via UV365 is used for cell sheet detachment from culture dishes. In this study, we investigated the possibility of cell detachment and growth efficiency on TiO2 nanodot films with RGD immobilization on light-induced cell sheet technology. Mouse calvaria-derived, preosteoblastic (MC3T3-E1) cells were cultured on TiO2 nanodot films with (TR) or without (TN) RGD immobilization. After cells were cultured with or without 5.5 mW/cm2 UV365 illumination, cell morphology, cell viability, osteogenesis related RNA and protein expression, and cell detachment ability were compared, respectively. Light-induced cell detachment was possible when cells were cultured on TR samples. Also, cells cultured on TR samples showed better cell viability, alongside higher protein and RNA expression than on TN samples. This study provides a new biomaterial for light-induced cell/cell sheet harvesting. PMID:26417596

  16. Hydrodynamic guiding for addressing subsets of immobilized cells and molecules in microfluidic systems

    PubMed Central

    Brevig, Thomas; Krühne, Ulrich; Kahn, Rachel A; Ahl, Thomas; Beyer, Michael; Pedersen, Lars H

    2003-01-01

    Background The interest in microfluidics and surface patterning is increasing as the use of these technologies in diverse biomedical applications is substantiated. Controlled molecular and cellular surface patterning is a costly and time-consuming process. Methods for keeping multiple separate experimental conditions on a patterned area are, therefore, needed to amplify the amount of biological information that can be retrieved from a patterned surface area. We describe, in three examples of biomedical applications, how this can be achieved in an open microfluidic system, by hydrodynamically guiding sample fluid over biological molecules and living cells immobilized on a surface. Results A microfluidic format of a standard assay for cell-membrane integrity showed a fast and dose-dependent toxicity of saponin on mammalian cells. A model of the interactions of human mononuclear leukocytes and endothelial cells was established. By contrast to static adhesion assays, cell-cell adhesion in this dynamic model depended on cytokine-mediated activation of both endothelial and blood cells. The microfluidic system allowed the use of unprocessed blood as sample material, and a specific and fast immunoassay for measuring the concentration of C-reactive protein in whole blood was demonstrated. Conclusion The use of hydrodynamic guiding made multiple and dynamic experimental conditions on a small surface area possible. The ability to change the direction of flow and produce two-dimensional grids can increase the number of reactions per surface area even further. The described microfluidic system is widely applicable, and can take advantage of surfaces produced by current and future techniques for patterning in the micro- and nanometer scale. PMID:12875662

  17. Cell-Free Expression and In Situ Immobilization of Parasite Proteins from Clonorchis sinensis for Rapid Identification of Antigenic Candidates

    PubMed Central

    Ju, Jung Won; Kim, Ho-Cheol; Shin, Hyun-Il; Kim, Yu Jung; Kim, Dong-Myung

    2015-01-01

    Progress towards genetic sequencing of human parasites has provided the groundwork for a post-genomic approach to develop novel antigens for the diagnosis and treatment of parasite infections. To fully utilize the genomic data, however, high-throughput methodologies are required for functional analysis of the proteins encoded in the genomic sequences. In this study, we investigated cell-free expression and in situ immobilization of parasite proteins as a novel platform for the discovery of antigenic proteins. PCR-amplified parasite DNA was immobilized on microbeads that were also functionalized to capture synthesized proteins. When the microbeads were incubated in a reaction mixture for cell-free synthesis, proteins expressed from the microbead-immobilized DNA were instantly immobilized on the same microbeads, providing a physical linkage between the genetic information and encoded proteins. This approach of in situ expression and isolation enables streamlined recovery and analysis of cell-free synthesized proteins and also allows facile identification of the genes coding antigenic proteins through direct PCR of the microbead-bound DNA. PMID:26599101

  18. Microfluidic generation of hollow Ca-alginate microfibers.

    PubMed

    Meng, Zhi-Jun; Wang, Wei; Xie, Rui; Ju, Xiao-Jie; Liu, Zhuang; Chu, Liang-Yin

    2016-07-01

    This work reports on an efficient microfluidic approach for continuous production of hollow Ca-alginate microfibers with controllable structures and functions. A coaxial microcapillary microfluidic device combined with a rotator is constructed to produce a cylindrical flow jet with four aqueous solutions as templates for continuous fabrication and collection of microfibers. A four-aqueous-phase flow jet with an intermediate buffer flow between the Ca(2+)-containing and alginate-containing flows is used as the template for microfiber fabrication. The buffer flow efficiently controls the diffusion of Ca(2+) into the alginate-containing flow as well as the crosslinking reaction, thus ensuring the continuous fabrication of hollow Ca-alginate microfibers under relatively low flow rates without clogging of the microchannel. The structure of the hollow microfibers can be flexibly adjusted by changing the flow rates and device dimensions. Meanwhile, the continuous fabrication process of the microfibers allows flexible incorporation of a functional component into the sheath flow for functionalization and addition of active substances in the core flow for encapsulation. This is demonstrated by fabricating hollow Ca-alginate microfibers with a wall containing magnetic nanoparticles for magnetic functionalization and with hollow internals containing Chlorella pyrenoidosa cells for confined growth. This work provides an efficient strategy for continuous fabrication of functional hollow Ca-alginate microfibers with controllable structures and functions. PMID:27302737

  19. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium alginate. 184.1187 Section 184.1187 Food... Specific Substances Affirmed as GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown...

  20. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  1. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  2. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  3. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  4. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown...

  5. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown...

  6. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown...

  7. Understanding Alginate Gel Development for Bioclogging and Biogeophysical Experiments

    NASA Astrophysics Data System (ADS)

    Brown, I.; Atekwana, E. A.; Abdel Aal, G. Z.; Atekwana, E. A.; Sarkisova, S.; Patrauchan, M.

    2012-12-01

    Bioremediation strategies to mitigate the transport of heavy metals and radionuclides in subsurface sediments have largely targeted to increase the mobility and/or solubility of these compounds by the stimulation of biogeochemical activity of the metal- and sulfate-reducing bacteria. The latter secrete and/or release out diverse biochemical molecule including, first of all, organic acids and biopolymers such as alginic acid, proteins and DNA. Alginate gel is one of the major components determining the structure of biofilm which causes clogging in porous media. Biopolymers composing biofilm having, at least, two main functions: to be a scaffold for a microbial biofilm, and to regulate the exchange of metabolites and ions between an environment and bacterial cells. Additionally, the accumulation of biopolymers and a matured biofilm within porous media was shown to contribute to a detectable biogeophysical signal, spectral induced polarization (SIP), in particular. Our objective is to understand the role of different biofilm components on the SIP response as the latter has been proposed as a non-invasive tool to monitor biofilm development and rate of clogging in the subsurface. Understanding the process of alginate gel development may aid in the understanding of the fate and transport of mineralized heavy metals and radionuclides in contaminated soils. Here we describe the reciprocal relationship between environmental chemistry and alginate gel development. Commercial (Sigma) alginic acid (AA) was used as a substratum for the preparation of a model gel. AA was solubilized by adjusting solutions with pH up to 4 with 0.1 NaOH. Both Ca(OH)2 or CaCl2 were used to initiate the gelation of alginate. pH, fluid conductivity, soluble Ca2+ concentration, and a yield of gelated alginate were monitored in both liquid and porous media after the interaction of calcium compounds with alginate. This study confirms the critical role of Ca2+ for alginate gelation, biofilm development

  8. Immobilization of gold nanoparticles on cell culture surfaces for safe and enhanced gold nanoparticle-mediated laser transfection

    NASA Astrophysics Data System (ADS)

    Kalies, Stefan; Heinemann, Dag; Schomaker, Markus; Gentemann, Lara; Meyer, Heiko; Ripken, Tammo

    2014-07-01

    In comparison to standard transfection methods, gold nanoparticle-mediated laser transfection has proven to be a versatile alternative. This is based on its minor influence on cell viability and its high efficiency, especially for the delivery of small molecules like small interfering RNA. However, in order to transfer it to routine usage, a safety aspect is of major concern: The avoidance of nanoparticle uptake by the cells is desired. The immobilization of the gold nanoparticles on cell culture surfaces can address this issue. In this study, we achieved this by silanization of the appropriate surfaces and the binding of gold nanoparticles to them. Comparable perforation efficiencies to the previous approaches of gold nanoparticle-mediated laser transfection with free gold nanoparticles are demonstrated. The uptake of the immobilized particles by the cells is unlikely. Consequently, these investigations offer the possibility of bringing gold nanoparticle-mediated laser transfection closer to routine usage.

  9. Immobilization of Microbial Cells for Alcoholic and Malolactic Fermentation of Wine and Cider

    NASA Astrophysics Data System (ADS)

    Kourkoutas, Yiannis; Manojlović, Verica; Nedović, Viktor A.

    Wine- or cider-making is highly associated with biotechnology owing to the traditional nature of must fermentation.. Nowadays, there have been considerable developments in wine- or cider-making techniques affecting all phases of wine or cider production, but more importantly, the fermentation process. It is well-known that the transformation of grape must by microbial activity results in the production of wine, and the fermentation of apples (or sometimes pears) in the production of cider. In this process, a variety of compounds affecting the organoleptic profile of wine or cider are synthesized. It is also common sense that in wine- or cider-making, the main objective is to achieve an adequate quality of the product. The technological progress and the improved quality of the wines or ciders have been associated with the control of technical parameters. Herein, cell immobilization offers numerous advantages, such as enhanced fermentation productivity, ability for cell recycling, application of continuous configurations, enhanced cell stability and viability, and improvement of quality (Margaritis and Merchant 1984; Stewart and Russel 1986; Kourkoutas et al. 2004a).

  10. Production of L-glutamic Acid with Corynebacterium glutamicum (NCIM 2168) and Pseudomonas reptilivora (NCIM 2598): A Study on Immobilization and Reusability

    PubMed Central

    Shyamkumar, Rajaram; Moorthy, Innasi Muthu Ganesh; Ponmurugan, Karuppiah; Baskar, Rajoo

    2014-01-01

    Background L-glutamic acid is one of the major amino acids that is present in a wide variety of foods. It is mainly used as a food additive and flavor enhancer in the form of sodium salt. Corynebacterium glutamicum (C. glutamicum) is one of the major organisms widely used for glutamic acid production. Methods The study was dealing with immobilization of C. glutamicum and mixed culture of C. glutamicum and Pseudomonas reptilivora (P. reptilivora) for L-glutamic acid production using submerged fermentation. 2, 3 and 5% sodium alginate concentrations were used for production and reusability of immobilized cells for 5 more trials. Results The results revealed that 2% sodium alginate concentration produced the highest yield (13.026±0.247 g/l by C. glutamicum and 16.026±0.475 g/l by mixed immobilized culture). Moreover, reusability of immobilized cells was evaluated in 2% concentration with 5 more trials. However, when the number of cycles increased, the production of L-glutamic acid decreased. Conclusion Production of glutamic acid using optimized medium minimizes the time needed for designing the medium composition. It also minimizes external contamination. Glutamic acid production gradually decreased due to multiple uses of beads and consequently it reduces the shelf life. PMID:25215180

  11. Modulation of Protein Adsorption and Cell Proliferation on Polyethylene Immobilized Graphene Oxide Reinforced HDPE Bionanocomposites.

    PubMed

    Upadhyay, Rahul; Naskar, Sharmistha; Bhaskar, Nitu; Bose, Suryasarathi; Basu, Bikramjit

    2016-05-18

    The uniform dispersion of nanoparticles in a polymer matrix, together with an enhancement of interfacial adhesion is indispensable toward achieving better mechanical properties in the nanocomposites. In the context to biomedical applications, the type and amount of nanoparticles can potentially influence the biocompatibility. To address these issues, we prepared high-density polyethylene (HDPE) based composites reinforced with graphene oxide (GO) by melt mixing followed by compression molding. In an attempt to tailor the dispersion and to improve the interfacial adhesion, we immobilized polyethylene (PE) onto GO sheets by nucleophilic addition-elimination reaction. A good combination of yield strength (ca. 20 MPa), elastic modulus (ca. 600 MPa), and an outstanding elongation at failure (ca. 70%) were recorded with 3 wt % polyethylene grafted graphene oxide (PE-g-GO) reinforced HDPE composites. Considering the relevance of protein adsorption as a biophysical precursor to cell adhesion, the protein adsorption isotherms of bovine serum albumin (BSA) were determined to realize three times higher equilibrium constant (Keq) for PE-g-GO-reinforced HDPE composites as compared to GO-reinforced composites. To assess the cytocompatibility, we grew osteoblast cell line (MC3T3) and human mesenchymal stem cells (hMSCs) on HDPE/GO and HDPE/PE-g-GO composites, in vitro. The statistically significant increase in metabolically active cell over different time periods in culture for up to 6 days in MC3T3 and 7 days for hMSCs was observed, irrespective of the substrate composition. Such observation indicated that HDPE with GO or PE-g-GO addition (up to 3 wt %) can be used as cell growth substrate. The extensive proliferation of cells with oriented growth pattern also supported the fact that tailored GO addition can support cellular functionality in vitro. Taken together, the experimental results suggest that the PE-g-GO in HDPE can effectively be utilized to enhance both mechanical and

  12. Jellyfish collagen and alginate: Combined marine materials for superior chondrogenesis of hMSC.

    PubMed

    Pustlauk, W; Paul, B; Gelinsky, M; Bernhardt, A

    2016-07-01

    Marine, hybrid constructs of porous scaffolds from fibrillized jellyfish collagen and alginate hydrogel are mimicking both of the main tissue components of cartilage, thus being a promising approach for chondrogenic differentiation of human mesenchymal stem cells (hMSC). Investigating their potential for articular cartilage repair, the present study examined scaffolds being either infiltrated with an alginate-cell-suspension (ACS) or seeded with hMSC and embedded in alginate after cell adhesion (EAS). Hybrid constructs with 2×10(5) and 4.5×10(5)hMSC/scaffold were compared to hMSC encapsulated in pure alginate discs, both chondrogenically stimulated for 21days. Typical round, chondrocyte-like morphology was observed in pure alginate gels and ACS scaffolds, while cells in EAS were elongated and tightly attached to the collagen pores. Col 2 gene expression was comparable in all scaffold types examined. However, the Col 2/Col 1 ratio was higher for pure alginate discs and ACS scaffolds compared to EAS. In contrast, cells in EAS scaffolds displayed higher gene expression of Sox 9, Col 11 and ACAN compared to ACS and pure alginate. Secretion of sulfated glycosaminoglycans (sGAG) was comparable for ACS and EAS scaffolds. In conclusion hybrid constructs of jellyfish collagen and alginate support hMSC chondrogenic differentiation and provide more stable and constructs compared to pure hydrogels. PMID:27127044

  13. Encapsulated dental-derived mesenchymal stem cells in an injectable and biodegradable scaffold for applications in bone tissue engineering.

    PubMed

    Moshaverinia, Alireza; Chen, Chider; Akiyama, Kentaro; Xu, Xingtian; Chee, Winston W L; Schricker, Scott R; Shi, Songtao

    2013-11-01

    Bone grafts are currently the major family of treatment options in modern reconstructive dentistry. As an alternative, stem cell-scaffold constructs seem to hold promise for bone tissue engineering. However, the feasibility of encapsulating dental-derived mesenchymal stem cells in scaffold biomaterials such as alginate hydrogel remains to be tested. The objectives of this study were, therefore, to: (1) develop an injectable scaffold based on oxidized alginate microbeads encapsulating periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs); and (2) investigate the cell viability and osteogenic differentiation of the stem cells in the microbeads both in vitro and in vivo. Microbeads with diameters of 1 ± 0.1 mm were fabricated with 2 × 10(6) stem cells/mL of alginate. Microbeads containing PDLSCs, GMSCs, and human bone marrow mesenchymal stem cells as a positive control were implanted subcutaneously and ectopic bone formation was analyzed by micro CT and histological analysis at 8-weeks postimplantation. The encapsulated stem cells remained viable after 4 weeks of culturing in osteo-differentiating induction medium. Scanning electron microscopy and X-ray diffraction results confirmed that apatitic mineral was deposited by the stem cells. In vivo, ectopic mineralization was observed inside and around the implanted microbeads containing the immobilized stem cells. These findings demonstrate for the first time that immobilization of PDLSCs and GMSCs in alginate microbeads provides a promising strategy for bone tissue engineering. PMID:23983201

  14. Microbial alginate production, modification and its applications

    PubMed Central

    Hay, Iain D; Rehman, Zahid Ur; Moradali, M Fata; Wang, Yajie; Rehm, Bernd H A

    2013-01-01

    Alginate is an important polysaccharide used widely in the food, textile, printing and pharmaceutical industries for its viscosifying, and gelling properties. All commercially produced alginates are isolated from farmed brown seaweeds. These algal alginates suffer from heterogeneity in composition and material properties. Here, we will discuss alginates produced by bacteria; the molecular mechanisms involved in their biosynthesis; and the potential to utilize these bacterially produced or modified alginates for high-value applications where defined material properties are required. PMID:24034361

  15. Sodium alginate-cross-linked polymyxin B sulphate-loaded solid lipid nanoparticles: Antibiotic resistance tests and HaCat and NIH/3T3 cell viability studies.

    PubMed

    Severino, Patrícia; Chaud, Marco V; Shimojo, Andrea; Antonini, Danilo; Lancelloti, Marcelo; Santana, Maria Helena A; Souto, Eliana B

    2015-05-01

    Polymyxins are a group of antibiotics with a common structure of a cyclic peptide with a long hydrophobic tail. Polymyxin B sulphate (PLX) has cationic charge, which is an obstacle for the efficient loading into Solid Lipid Nanoparticles (SLN). In the present paper, we describe an innovative method to load PLX into SLN to achieve the sustained release of the drug. PLX was firstly cross-linked with sodium alginate (SA) at different ratios (1:1, 1:2 and 1:3 SA/PLX), and loaded into SLN produced by high pressure homogenization (HPH). Optimized SLN were produced applying 500bar pressure and 5 homogenization cycles. The best results were obtained with SA/PLX (1:1), recording 99.08±1.2% for the association efficiency of the drug with SA, 0.99±10g for the loading capacity and 212.07±5.84% degree of swelling. The rheological profile of aqueous SA solution followed the typical behaviour of concentrated polymeric solutions, whereas aqueous SA/PLX solution exhibited a gel-like dynamic behaviour. Micrographs show that SA/PLX depicted a porous and discontinuous amorphous phase in different ratios. The encapsulation efficiency of SA/PLX (1:1) in SLN, the mean particle diameter, polydispersity index and zeta potential were, respectively, 82.7±5.5%; 439.5±20.42nm, 0.241±0.050 and -34.8±0.55mV. The effect of SLN on cell viability was checked in HaCat and NIH/3T3 cell lines, and the minimal inhibitory concentrations (MIC) were determined in Pseudomonas aeruginosa strains. SA/PLX-loaded SLN were shown to be less toxic than free PLX. Minimal inhibitory concentrations (MIC) showed the presence of the cross-linker polymer-drug complex, and SLN were shown to enhance MIC in the evaluated strains. PMID:25863712

  16. Hydrogen peroxide photoproduction by immobilized cells of the blue-green alga Anabaena variabilis: A way to solar energy conversion

    SciTech Connect

    Morales, I.; La Rosa, F.F. de )

    1992-07-01

    A photosystem for hydrogen peroxide photoproduction formed by immobilized cells of the blue-green alga, Anabaena variabilis and the redox mediator methyl viologen is described. Hydrogen peroxide is produced in a redox catalyst cycle in which methyl viologen is reduced by electrons from water obtained by the photosynthetic apparatus of the algae using solar energy, and reoxidized by the introduction of oxygen into the solution. Hydrogen peroxide is produced during methyl viologen re-oxidation in two steps by means of the formation of superoxide. Experimental conditions for maximum photoproduction (catalyst charge, chlorophyll, and agar final concentration for cell immobilization) have been investigated using a continuous photosystem with immobilized A. variabilis as photocatalyst. Under the determined optimum conditions, the photosystem with immobilized A. variabilis is photocatalyst. Under the determined optimum conditions, the photosystem produces hydrogen peroxide at a rate of 100 {mu}moles/mg Chl{center dot}h, maintaining the production for several hours, and with an energy conversion efficiency of about 2%. Taking into account the use of hydrogen peroxide as fuel, this photosystem can be a useful tool in the storage of solar energy.

  17. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM.

    PubMed

    Zhang, Wen; Stack, Andrew G; Chen, Yongsheng

    2011-02-01

    To better understand environmental behaviors of nanoparticles (NPs), we used the atomic force microscopy (AFM) to measure interaction forces between E. coli cells and NPs immobilized on surfaces in an aqueous environment. The results showed that adhesion force strength was significantly influenced by particle size for both hematite (α-Fe(2)O(3)) and corundum (α-Al(2)O(3)) NPs whereas the effect on the repulsive force was not observed. The adhesion force decreased from 6.3±0.7nN to 0.8±0.4nN as hematite NPs increased from 26nm to 98nm in diameter. Corundum NPs exhibited a similar dependence of adhesion force on particle size. The Johnson-Kendall-Roberts (JKR) model was employed to estimate the contact area between E. coli cells and NPs, and based on the JKR model a new model that considers local effective contact area was developed. The prediction of the new model matched the size dependence of adhesion force in experimental results. Size effects on adhesion forces may originate from the difference in local effective contact areas as supported by our model. These findings provide fundamental information for interpreting the environmental behaviors and biological interactions of NPs, which barely have been addressed. PMID:20932723

  18. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM

    SciTech Connect

    Zhang, Wen; Chen, Yongsheng

    2011-01-01

    To better understand environmental behaviors of nanoparticles (NPs), we used the atomic force microscopy (AFM) to measure interaction forces between E. coli cells and NPs immobilized on surfaces in an aqueous environment. The results showed that adhesion force strength was significantly influenced by particle size for both hematite ( -Fe2 O3 ) and corundum ( -Al2 O3 ) NPs whereas the effect on the repulsive force was not observed. The adhesion force decreased from 6.3 0.7 nN to 0.8 0.4 nN as hematite NPs increased from 26 nm to 98 nm in diameter. Corundum NPs exhibited a similar dependence of adhesion force on particle size. The Johnson Kendall Roberts (JKR) model was employed to estimate the contact area between E. coli cells and NPs, and based on the JKR model a new model that considers local effective contact area was developed. The prediction of the new model matched the size dependence of adhesion force in experimental results. Size effects on adhesion forces may originate from the difference in local effective contact areas as supported by our model. These findings provide fundamental information for interpreting the environmental behaviors and biological interactions of NPs, which barely have been addressed.

  19. Micro-environmentally restricted hybridoma cell growth within polysaccharide hydrogel microbeads.

    PubMed

    Pajic-Lijakovic, Ivana

    2013-01-01

    The mechanism of micro-environmentally restricted hybridoma cell growth caused by action of local mechanical compression stress generated within various polysaccharide hydrogel matrixes is estimated by comparing the growth of hybridoma cells within (1) 1.5% Ca-alginate microbeads from Bugarski et al. [in: Fundamentals of Animal Cells Immobilization and Microencapsulation, M.F.A. Goosen, ed., CRC Press, Boca Raton, FL, 1993, p. 267] and (2) 1.3% alginate-agarose microbeads from Shen et al. [Animal Cell Technology: Basic & Applied Aspects, H. Murakami ed., Kluwer Academic Publishers, The Netherlands, 1992, p. 173].Consideration of restricted cell growth dynamics based on developed kinetic model and kinetic 3D Monte Carlo simulation include: (1) changes the fraction of active proliferating cells in the exponential phase and (2) changes of non-proliferating cell concentration in the plateau phase.Higher value of the specific decrease of active fraction of proliferating cells κ is obtained for 1.3% alginate-agarose compared to 1.5% alginate microbeads. It corresponds to higher compression stress generated within hydrogel matrix during cell growth obtained for 1.3% alginate-agarose microbeads. PMID:23988708

  20. Intensified nitrogen removal in immobilized nitrifier enhanced constructed wetlands with external carbon addition.

    PubMed

    Wang, Wei; Ding, Yi; Wang, Yuhui; Song, Xinshan; Ambrose, Richard F; Ullman, Jeffrey L

    2016-10-01

    Nitrogen removal performance response of twelve constructed wetlands (CWs) to immobilized nitrifier pellets and different influent COD/N ratios (chemical oxygen demand: total nitrogen in influent) were investigated via 7-month experiments. Nitrifier was immobilized on a carrier pellet containing 10% polyvinyl alcohol (PVA), 2.0% sodium alginate (SA) and 2.0% calcium chloride (CaCl2). A batch experiment demonstrated that 73% COD and 85% ammonia nitrogen (NH4-N) were degraded using the pellets with immobilized nitrifier cells. In addition, different carbon source supplement strategies were applied to remove the nitrate (NO3-N) transformed from NH4-N. An increase in COD/N ratio led to increasing reduction in NO3-N. Efficient nitrification and denitrification promoted total nitrogen (TN) removal in immobilized nitrifier biofortified constructed wetlands (INB-CWs). The results suggested that immobilized nitrifier pellets combined with high influent COD/N ratios could effectively improve the nitrogen removal performance in CWs. PMID:27396293

  1. Simultaneous fermentation and separation in an immobilized cell trickle bed reactor: Acetone-butanol-ethane (ABE) and ethanol fermentation

    SciTech Connect

    Park, C.H.

    1989-01-01

    A novel process employing immobilized cells and in-situ product removal was studied for acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum and ethanol fermentation by Saccharomyces cerevisiae. Experimental studies of ABE fermentation in a trickle bed reactor without product separation showed that solvent production could be improved by one order of magnitude compared to conventional batch fermentation. Control of effluent pH near 4.3 and feed glucose concentrations higher than 10 g/L were the necessary conditions for cell growth and solvent production. A mathematical model using an equilibrium staged model predicted efficient separation of butanol from the fermentation broth. Activity coefficients of multicomponent system were estimated by Wilson's equation or the ASOG method. Inhibition by butanol and organic acids was incorporated into the kinetic expression. Experimental performance of simultaneous fermentation and separation in an immobilized cell trickle bed reactor showed that glucose conversion was improved as predicted by mathematical modeling and analysis. The effect of pH and temperature on ethanol fermentation by Saccharomyces cerevisiae was studied in free and immobilized cell reactors. Conditions for the highest glucose conversion, cell viability and least glycerol yield were determined.

  2. The Experimental Study of the Performance of Nano-Thin Polyelectrolyte Shell for Dental Pulp Stem Cells Immobilization.

    PubMed

    Grzeczkowicz, A; Granicka, L H; Maciejewska, I; Strawski, M; Szklarczyk, M; Borkowska, M

    2015-12-01

    Carious is the most frequent disease of mineralized dental tissues which might result in dental pulp inflammation and mortality. In such cases an endodontic treatment is the only option to prolong tooth functioning in the oral cavity; however, in the cases of severe pulpitis, especially when complicated with periodontal tissue inflammation, the endodontic treatment might not be enough to protect against tooth loss. Thus, keeping the dental pulp viable and/or possibility of the reconstruction of a viable dental pulp complex, appears to become a critical factor for carious and/or pulp inflammation treatment. The nowadays technologies, which allow handling dental pulp stem cells (DPSC), seem to bring us closer to the usage of dental stem cells for tooth tissues reconstruction. Thus, DPSC immobilized within nano-thin polymeric shells, allowing for a diffusion of produced factors and separation from bacteria, may be considered as a cover system supporting technology of dental pulp reconstruction. The DPSC were immobilized using a layer-by-layer technique within nano-thin polymeric shells constructed and modified by nanostructure involvement to ensure the layers stability and integrity as well as separation from bacterial cells. The cytotoxity of the material used for membrane production was assessed on the model of adherent cells. The performance of DPSC nano-coating was assessed in vitro. Membrane coatings showed no cytotoxicity on the immobilized cells. The presence of coating shell was confirmed with flow cytometry, atomic force microscopy and visualized with fluorescent microscopy. The transfer of immobilized DPSC within the membrane system ensuring cells integrity, viability and protection from bacteria should be considered as an alternative method for dental tissues transportation and regeneration. PMID:26682375

  3. A microbial biosensor using Pseudomonas putida cells immobilized in an expanded bed reactor for the on-line monitoring of phenolic compounds

    SciTech Connect

    Nandakumar, R.; Mattiasson, B.

    1999-09-01

    A cell based biosensor for phenolic substances has been developed. The set up is based on a flow injection system with an expanded bed column with immobilized Pseudomonas cells. The cells were immobilized on glass particles pretreated with poly (ethylene diamine). The system responds to a range of phenolic substances. Storage and operational stabilities are good. The expanded bed concept makes the system reliable also when treating samples with particulate matter.

  4. Postelectrospinning modifications for alginate nanofiber-based wound dressings.

    PubMed

    Leung, Victor; Hartwell, Ryan; Elizei, Sanam Salimi; Yang, Heejae; Ghahary, Aziz; Ko, Frank

    2014-04-01

    Alginate nanofibers have been attractive for potential tissue regeneration applications due to a combination of their moisture retention ability and large surface area available in a nonwoven nanofiber form. This study aims to address several challenges in alginate nanofiber application, including the lack of structural stability in aqueous environment and limited cell attachment as compared to commercial wound dressings, via examining crosslinking techniques. In addition to the commonly performed divalent ion crosslinking, a glutaraldehyde double-crosslinking step and polylysine addition were applied to an electrospun alginate nanofiber nonwoven mat. With optimization of the electrospinning solution, nanofiber morphology was maintained after the two-stage crosslinking process. Extensibility of the nanofiber mat reduced after the crosslinking process. However, both aqueous stability and cell attachment improved after the postspinning modifications, as shown through degradation tests in phosphate buffered saline solutions and fibroblast cell culture studies, respectively. PMID:24155096

  5. Alginate: properties and biomedical applications

    PubMed Central

    Lee, Kuen Yong; Mooney, David J.

    2011-01-01

    Alginate is a biomaterial that has found numerous applications in biomedical science and engineering due to its favorable properties, including biocompatibility and ease of gelation. Alginate hydrogels have been particularly attractive in wound healing, drug delivery, and tissue engineering applications to date, as these gels retain structural similarity to the extracellular matrices in tissues and can be manipulated to play several critical roles. This review will provide a comprehensive overview of general properties of alginate and its hydrogels, their biomedical applications, and suggest new perspectives for future studies with these polymers. PMID:22125349

  6. Improving the controlled delivery formulations of caffeine in alginate hydrogel beads combined with pectin, carrageenan, chitosan and psyllium.

    PubMed

    Belščak-Cvitanović, Ana; Komes, Draženka; Karlović, Sven; Djaković, Senka; Spoljarić, Igor; Mršić, Gordan; Ježek, Damir

    2015-01-15

    Alginate-based blends consisting of carrageenan, pectin, chitosan or psyllium husk powder were prepared for assessment of the best formulation aimed at encapsulation of caffeine. Alginate-pectin blend exhibited the lowest viscosity and provided the smallest beads. Alginate-psyllium husk blend was characterised with higher viscosity, yielding the largest bead size and the highest caffeine encapsulation efficiency (83.6%). The release kinetics of caffeine indicated that the porosity of alginate hydrogel was not reduced sufficiently to retard the diffusion of caffeine from the beads. Chitosan coated alginate beads provided the most retarded release of caffeine in water. Morphological characteristics of beads encapsulating caffeine were adversely affected by freeze drying. Bitterness intensity of caffeine-containing beads in water was the lowest for alginate-psyllium beads and chitosan coated alginate beads. Higher sodium alginate concentration (3%) for production of hydrogel beads in combination with psyllium or chitosan coating would present the most favourable carrier systems for immobilization of caffeine. PMID:25149001

  7. Stabilization of k-carrageenan gel with polymeric amines: use of immobilized cells as biocatalysts at elevated temperatures

    SciTech Connect

    Chao, K.C.; Haugen, M.M.; Royer, G.P.

    1986-09-01

    Spherical beads of kappa-carrageenan containing entrapped cells were prepared in a two-step process. First, the beads were formed by dispersing a warm carrageenan cell suspension into stirring oil. After cooling (gelation) the beads were cured by treatment with amines. Ten amines of various sizes and structures were tested. The mechanical strength and the applicability of amine-treated gels as immobilization matrices was evaluated. The results of critical compression tests indicate that linear and branched polyethylenimines (PEI) are both good curing agents. PEI-treated carrageenan beds also exhibited superior resistance to heat and abrasion. Furthermore, PEI polymers were demonstrated to be effective in stabilizing the lactase activity of the free and immobilized Bacillus stearothermophilus cells. The immobilized cell preparations of Saccharomyces cerevisiae, B. stearothermophilus, and Flavobacterium sp. were treated with branched PEI and evaluated for the activity of invertase (EC 3.2.1.26), lactase (EC 3.2.1.23), and glucose isomerase (EC 5.3.1.18), respectively, in a packed bed reactor at 60 degrees C. The apparent half-lives were 108, 39, and 64 days, respectively.

  8. Caffeine-induced immobilization of gating charges in isolated guinea-pig ventricular heart cells

    PubMed Central

    Leroy, Jérôme; Lignon, Jacques M; Gannier, François; Argibay, Jorge A; Malécot, Claire O

    2002-01-01

    The effects of 10 mM caffeine (CAF) on intramembrane charge movements (ICM) were studied in isolated guinea-pig ventricular heart cells with the whole-cell patch-clamp technique.In the presence of CAF, the properties (voltage dependence, maximum QON [Qmax], availability with voltage) of QON charge activated from −110 mV were barely affected. Following a 100 ms prepulse to −50 mV to decrease the participation of charges originating from Na channels, the voltage dependence of QON was shifted by 5 mV (negative component) and by 10 mV (positive component) towards negative potentials, and Qmax was depressed by 16.5%.CAF drastically reduced in a time- and voltage-dependent manner QOFF on repolarization to −50 mV, the effects being greater at positive potentials.CAF-induced QOFF immobilization could be almost entirely removed by repolarization to voltages as negative as −170 mV. In these conditions, the voltage-dependence of QOFF (repolarization to +30 to −170 mV) was shifted by 17 mV (negative component) and 30 mV (positive component) towards negative potentials, suggesting an interconversion into charge 2.Most of CAF effects were suppressed when the sarcoplasmic reticulum (SR) was not functional or when the cells were loaded with BAPTA-AM.We conclude that CAF effects on ICM are likely due to Ca2+ ions released from the SR, and which accumulate in the subsarcolemmal fuzzy spaces in the vicinity of the Ca channels. Because CAF effects were more pronounced on QOFF than on QON the channels have likely to open before Ca2+ ions could affect their gating properties. It is speculated that such an effect on gating charges might contribute to the Ca-induced inactivation of the Ca current. PMID:11834620

  9. Optimization of process parameters for the continuous ethanol production by Kluyveromyces lactis immobilized cells in hydrogel copolymer carrier.

    PubMed

    Deriase, S F; Farahat, L M; El-Batal, A I

    2001-01-01

    In the present study the optimized parameters for highest ethanol productivity by Kluyveromyces lactis immobilized cells bioreactor were obtained using the method of Lagrange multipliers. Immobilized growing yeast cells in PVA: HEMA (7%: 10%, w/w) hydrogel copolymer carrier produced by radiation polymerization were used in a packed-bed column reactor for the continuous production of ethanol from lactose at different levels of concentrations (50, 100 and 150) gL(-1). The results indicate that volumetric ethanol productivity is influenced by substrate concentration and dilution rate. The highest value 7.17 gL(-1) h(-1) is obtained at higher lactose concentration (150 gL(-1)) in feed medium and 0.3 h(-1) dilution rate. The same results have been obtained through the application of "LINGO" software for mathematical optimization. PMID:11518393

  10. Impact of alginate concentration on the viability, cryostorage, and angiogenic activity of encapsulated fibroblasts.

    PubMed

    Mohanty, Swetaparna; Wu, Yang; Chakraborty, Nilay; Mohanty, Pravansu; Ghosh, Gargi

    2016-08-01

    Cryopreservation or cryostorage of tissue engineered constructs can enhance the off-the shelf availability of these products and thus can potentially facilitate the commercialization or clinical translation of tissue engineered products. Encapsulation of cells within hydrogel matrices, in particular alginate, is widely used for fabrication of tissue engineered constructs. While previous studies have explored the cryopreservation response of cells encapsulated within alginate matrices, systematic investigation of the impact of alginate concentration on the metabolic activity and functionality of cryopreserved cells is lacking. The objective of the present work is to determine the metabolic and angiogenic activity of cryopreserved human dermal fibroblasts encapsulated within 1.0%, 1.5% and 2.0% (w/v) alginate matrices. In addition, the goal is to compare the efficacy of dimethyl sulfoxide (DMSO) and trehalose as cryoprotectant. Our study revealed that the concentration of alginate plays a significant role in the cryopreservation response of encapsulated cells. The lowest metabolic activity of the cryopreserved cells was observed in 1% alginate microspheres. When higher concentration of alginate was utilized for cell encapsulation, the metabolic and angiogenic activity of the cells frozen in the absence of cryoprotectants was comparable to that observed in the presence of DMSO or trehalose. PMID:27157752

  11. Time-Course Changes of Steroidogenic Gene Expression and Steroidogenesis of Rat Leydig Cells after Acute Immobilization Stress

    PubMed Central

    Lin, Han; Yuan, Kai-ming; Zhou, Hong-yu; Bu, Tiao; Su, Huina; Liu, Shiwen; Zhu, Qiqi; Wang, Yiyan; Hu, Yuanyuan; Shan, Yuanyuan; Lian, Qing-quan; Wu, Xiao-yun; Ge, Ren-shan

    2014-01-01

    Leydig cells secrete testosterone, which is essential for male fertility and reproductive health. Stress increases the secretion of glucocorticoid (corticosterone, CORT; in rats), which decreases circulating testosterone levels in part through a direct action by binding to the glucocorticoid receptors (NR3C1) in Leydig cells. The intratesticular CORT level is dependent on oxidative inactivation of glucocorticoid by 11β-hydroxysteroid dehydrogenase 1 (HSD11B1) in Leydig cells. In the present study, we investigated the time-course changes of steroidogenic gene expression levels after acute immobilization stress in rats. The plasma CORT levels were significantly increased 0.5, 1, 3 and 6 h after immobilization stress, while plasma testosterone levels were significantly reduced 3 and 6 h, after stress and luteinizing hormone (LH) did not change. Immobilization stress caused the down-regulation of Scarb1, Star and Cyp17a1 expression levels in the rat testis starting at the first hour of stress, ahead of the significant decreases of plasma testosterone levels. Other mRNA levels, including Cyp11a1, Hsd3b1 and Hsd17b3, began to decline after 3 h. Hsd11b1 and Nos2 mRNA levels did not change during the course of stress. Administration of glucocorticoid antagonist RU486 significantly restored plasma testosterone levels. In conclusion, Scarb1, Star and Cyp17a1 expression levels are more sensitive to acute stress, and acute immobilization stress causes the decline of the steroidogenic pathway via elevating the levels of glucocorticoid, which binds to NR3C1 in Leydig cells to inhibit steroidogenic gene expression. PMID:25405735

  12. Alginate Polymerization and Modification Are Linked in Pseudomonas aeruginosa

    PubMed Central

    Fata Moradali, M.; Donati, Ivan; Sims, Ian M.; Ghods, Shirin

    2015-01-01

    ABSTRACT The molecular mechanisms of alginate polymerization/modification/secretion by a proposed envelope-spanning multiprotein complex are unknown. Here, bacterial two-hybrid assays and pulldown experiments showed that the catalytic subunit Alg8 directly interacts with the proposed copolymerase Alg44 while embedded in the cytoplasmic membrane. Alg44 additionally interacts with the lipoprotein AlgK bridging the periplasmic space. Site-specific mutagenesis of Alg44 showed that protein-protein interactions and stability were independent of conserved amino acid residues R17 and R21, which are involved in c-di-GMP binding, the N-terminal PilZ domain, and the C-terminal 26 amino acids. Site-specific mutagenesis was employed to investigate the c-di-GMP-mediated activation of alginate polymerization by the PilZAlg44 domain and Alg8. Activation was found to be different from the proposed activation mechanism for cellulose synthesis. The interactive role of Alg8, Alg44, AlgG (epimerase), and AlgX (acetyltransferase) on alginate polymerization and modification was studied by using site-specific deletion mutants, inactive variants, and overproduction of subunits. The compositions, molecular masses, and material properties of resulting novel alginates were analyzed. The molecular mass was reduced by epimerization, while it was increased by acetylation. Interestingly, when overproduced, Alg44, AlgG, and the nonepimerizing variant AlgG(D324A) increased the degree of acetylation, while epimerization was enhanced by AlgX and its nonacetylating variant AlgX(S269A). Biofilm architecture analysis showed that acetyl groups promoted cell aggregation while nonacetylated polymannuronate alginate promoted stigmergy. Overall, this study sheds new light on the arrangement of the multiprotein complex involved in alginate production. Furthermore, the activation mechanism and the interplay between polymerization and modification of alginate were elucidated. PMID:25968647

  13. Changes in mast cells and in permeability of mesenteric microvessels under the effect of immobilization and electrostimulation

    NASA Technical Reports Server (NTRS)

    Gorizontova, M. P.

    1980-01-01

    It was shown that a reduction in the amount of mast cells in the mesentery and an increase in their degranulation was accompanied by an increase in vascular permeability of rat mesentery. It is supposed that immobilization and electrostimulation causing degranulation of mast cells prompted histamine and serotonin release from them, thus increasing the permeability of the venular portion of the microvascular bed. Prophylactic use of esculamin preparation with P-vitaminic activity decreased mast cell degranulation, which apparently prolonged the release of histamine and serotonin from them and normalized vascular permeability.

  14. Biosynthesis of Indole-3-Acetic Acid by New Klebsiella oxytoca Free and Immobilized Cells on Inorganic Matrices

    PubMed Central

    Celloto, Valéria R.; Oliveira, Arildo J. B.; Gonçalves, José E.; Watanabe, Cecília S. F.; Matioli, Graciette; Gonçalves, Regina A. C.

    2012-01-01

    While many natural and synthetic compounds exhibit auxin-like activity in bioassays, indole-3-acetic acid (IAA) is recognized as the key auxin in most plants. IAA has been implicated in almost all aspects of plant growth and development and a large array of bacteria have been reported to enhance plant growth. Cells of Klebsiella oxytoca isolated from the rhizosphere of Aspidosperma polyneuron and immobilized by adsorption on different inorganic matrices were used for IAA production. The matrices were prepared by the sol-gel method and the silica-titanium was the most suitable matrix for effective immobilization. In operational stability assays, IAA production was maintained after four cycles of production, obtaining 42.80 ± 2.03 μg mL−1 of IAA in the third cycle, which corresponds to a 54% increase in production in relation to the first cycle, whereas free cells began losing activity after the first cycle. After 90 days of storage at 4°C the immobilized cells showed the slight reduction of IAA production without significant loss of activity. PMID:22623901

  15. Reinforcement of porous alginate scaffolds by incorporating electrospun fibres.

    PubMed

    Sakai, Shinji; Takagi, Yousuke; Yamada, Yusuke; Yamaguchi, Tetsu; Kawakami, Koei

    2008-09-01

    The mechanical properties of scaffolds play a vital role in transmitting input mechanical signals to the cells within them. We aimed to modify mechanical properties of porous scaffolds by incorporating electrospun fibres into their frameworks. Porous constructs containing electrospun silicate fibres were prepared from Na-alginate aqueous solutions suspending the silicate fibres with (ASF) or without amino groups (NASF) via an all-aqueous method based on a freeze-drying technique. The repulsion forces of constructs containing ASF towards compression increased as the fibre content increased. In contrast, constructs containing NASF showed no such increases in repulsion forces. Cells seeded onto constructs containing ASF exhibited suppressed growth, similar to cells seeded onto alginate scaffolds without fibres. In contrast, cells seeded onto scaffolds containing NASF showed about two-fold faster growth than cells seeded onto scaffolds containing ASF. The differences in the mechanical properties and cell growth profiles between the scaffolds containing ASF and NASF can be explained by the formation and non-formation of electrostatic bonds between the fibres and alginate, respectively. The results obtained in the present study demonstrate the feasibility of incorporating electrospun fibres for reinforcement of alginate scaffolds and enhancement of cell growth. PMID:18689918

  16. Interaction between immobilized polyelectrolyte complex nanoparticles and human mesenchymal stromal cells

    PubMed Central

    Woltmann, Beatrice; Torger, Bernhard; Müller, Martin; Hempel, Ute

    2014-01-01

    Background Implant loosening or deficient osseointegration is a major problem in patients with systemic bone diseases (eg, osteoporosis). For this reason, the stimulation of the regional cell population by local and sustained drug delivery at the bone/implant interface to induce the formation of a mechanical stable bone is promising. The purpose of this study was to investigate the interaction of polymer-based nanoparticles with human bone marrow-derived cells, considering nanoparticles’ composition and surface net charge. Materials and methods Polyelectrolyte complex nanoparticles (PECNPs) composed of the polycations poly(ethyleneimine) (PEI), poly(L-lysine) (PLL), or (N,N-diethylamino)ethyldextran (DEAE) in combination with the polyanions dextran sulfate (DS) or cellulose sulfate (CS) were prepared. PECNPs’ physicochemical properties (size, net charge) were characterized by dynamic light scattering and particle charge detector measurements. Biocompatibility was investigated using human mesenchymal stromal cells (hMSCs) cultured on immobilized PECNP films (5–50 nmol·cm−2) by analysis for metabolic activity of hMSCs in dependence of PECNP surface concentration by MTS (3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium, inner salt) assay, as well as cell morphology (phase contrast microscopy). Results PECNPs ranging between ~50 nm and 150 nm were prepared. By varying the ratio of polycations and polyanions, PECNPs with a slightly positive (PEC+NP) or negative (PEC−NP) net charge were obtained. The PECNP composition significantly affected cell morphology and metabolic activity, whereas the net charge had a negligible influence. Therefore, we classified PECNPs into “variant systems” featuring a significant dose dependency of metabolic activity (DEAE/CS, PEI/DS) and “invariant systems” lacking such a dependency (DEAE/DS, PEI/CS). Immunofluorescence imaging of fluorescein isothiocyanate isomer I (FITC

  17. The production of freeze-dried immobilized cultures of Streptococcus thermophilus and their acidification properties in milk.

    PubMed

    Champagne, C P; Gardner, N J; Soulignac, L; Innocent, J P

    2000-01-01

    The aim of this study was to prepare alginate-immobilized freeze-dried cultures of Streptococcus thermophilus and to compare the acidifying activities of these rehydrated cultures with classical free cell liquid inoculants. Streptococcus thermophilus BT1 grew in alginate beads and the population reached 10(10) cfu g(-1) after 6 h incubation. Re-inoculation of the beads in fresh medium with a further 6 h incubation did not improve the biomass level, but extending the incubation at 42 degrees C to 24 h caused significant death. The rehydrated immobilized cell technology (ICT) starter contained 13% free cells. In acidifying activity tests, the ICT culture had a similar acidification curve to that of a classical milk-grown free cell culture, except that it reached lower final pH values. Although the differences between the ICT and liquid cultures were not important, there were significant effects of inoculation level on lag time, maximum acidification rate and on the pH and time at which the acidification rate was at its highest. PMID:10735251

  18. Injectable MMP-sensitive alginate hydrogels as hMSC delivery systems

    PubMed Central

    Fonseca, Keila B.; Gomes, David B.; Lee, Kangwon; Santos, Susana G.; Sousa, Aureliana; Silva, Eduardo A.; Mooney, David J.; Granja, Pedro L.; Barrias, Cristina C.

    2014-01-01

    Hydrogels with the potential to provide minimally invasive cell delivery represent a powerful tool for tissue-regeneration therapies. In this context, entrapped cells should be able to escape the matrix becoming more available to actively participate in the healing process. Here, we analyzed the performance of proteolytically-degradable alginate hydrogels as vehicles for human mesenchymal stem cells (hMSC) transplantation. Alginate was modified with the matrix metalloproteinase (MMP)-sensitive peptide Pro-Val-Gly-Leu-Iso-Gly (PVGLIG), which did not promote dendritic cell maturation in vitro, neither free nor conjugated to alginate chains, indicating low immunogenicity. hMSC were entrapped within MMP-sensitive and MMP-insensitive alginate hydrogels, both containing cell-adhesion RGD peptides. Softer (2 wt% alginate) and stiffer (4 wt% alginate) matrices were tested. When embedded in a Matrigel™ layer, hMSC-laden MMP-sensitive alginate hydrogels promoted more extensive outward cell migration and invasion into the tissue mimic. In vivo, after 4 weeks of subcutaneous implantation in a xenograft mouse model, hMSC-laden MMP-sensitive alginate hydrogels showed higher degradation and host tissue invasion than their MMP-insensitive equivalents. In both cases, softer matrices degraded faster than stiffer ones. The transplanted hMSC were able to produce their own collagenous extracellular matrix, and were located not only inside the hydrogels, but also outside, integrated in the host tissue. In summary, injectable MMP-sensitive alginate hydrogels can act as localized depots of cells, and confer protection to transplanted cells while facilitating tissue regeneration. PMID:24345197

  19. Optimization of culturing condition and medium composition for the production of alginate lyase by a marine Vibrio sp. YKW-34

    NASA Astrophysics Data System (ADS)

    Fu, Xiaoting; Lin, Hong; Kim, Sang Moo

    2008-02-01

    Carbohydrases secreted by marine Vibrio sp. YKW-34 with strong Laminaria cell wall degrading ability were screened, and among them alginate lyase was found to be dominant. The effects of medium composition and culturing condition on the production of alginate lyase by marine Vibrio sp. YKW-34 in flask were investigated in this study. In the culture medium of marine broth, no alginate lyase was produced. The activity of the alginate lyase, after being induced, reached 5 UmL-1. The best inoculum volume and inoculum age were 10% and 12 h, respectively. The optimal temperature for alginate lyase production was 25°C. The fermentation medium was composed of 0.5% of Laminaria powder and 0.2% of KNO3 with an initial acidity of pH 8.0. Alginate could induce alginate lyase production but not as efficiently as Laminaria powder did. The addition of fucoidan, cellulose and glucose had negative effect on the alginate lyase production. Other kinds of nitrogen sources, such as yeast extract, beef extract and peptone, had positive effect on the growth of the microorganism and negative effect on alginate lyase production. In addition, the time course of alginate lyase production under the optimized condition was described. The optimal harvest time was 48 h.

  20. Evaluation of Osteoblast-Like Cell Viability and Differentiation on the Gly-Arg-Gly-Asp-Ser Peptide Immobilized Titanium Dioxide Nanotube via Chemical Grafting.

    PubMed

    Kim, Ga-Hyun; Kim, Il-Shin; Park, Sang-Won; Lee, Kwangmin; Yun, Kwi-Dug; Kim, Hyun-Seung; Oh, Gye-Jeong; Ji, Min-Kyung; Lim, Hyun-Pil

    2016-02-01

    This study examined the effect of the immobilization of the Gly-Arg-Gly-Asp-Ser (GRGDS) peptide on titanium dioxide (TiO2) nanotube via chemical grafting on osteoblast-like cell (MG-63) viability and differentiation. The specimens were divided into two groups; TiO2 nanotubes and GRGDS-immobilized TiO2 nanotubes. The surface characteristics of GRGDS-immobilized TiO2 nanotubes were observed by using X-ray photoelectron spectroscopy (XPS) and a field emission scanning electron microscope (FE-SEM). The morphology of cells on specimens was observed by FE-SEM after 2 hr and 24 hr. The level of cell viability was investigated via a tetrazolium (XTT) assay after 2 and 4 days. Alkaline phosphatase (ALP) activity was evaluated to measure the cell differentiation after 4 and 7 days. The presence of nitrogen up-regulation or C==O carbons con- firmed that TiO2 nanotubes were immobilized with GRGDS peptides. Cell adhesion was enhanced on the GRGDS-immobilized TiO2 nanotubes compared to TiO2 nanotubes. Furthermore, significantly increased cell spreading and proliferation were observed with the cells grown on GRGDS-immobilized TiO2 nanotubes (P < .05). However, there was no significant difference in ALP activity between GRGDS-immobilized TiO2 nanotubes and TiO2 nanotubes. These results suggest that the GRGDS-immobilized TiO2 nanotubes might be effective in improving the osseointegration of dental implants. PMID:27433593

  1. Quick and low cost immobilization of proteinases on polyesters: Comparison of lactobacilli cell-envelope proteinase and trypsin for protein degradation.

    PubMed

    Agyei, Dominic; Tambimuttu, Shaun; Kasargod, Bhuvana; Gao, Yuan; He, Lizhong

    2014-10-20

    Cell-envelope proteinases (CEPs) are a class of proteolytic enzymes produced by lactic acid bacteria and have several industrially relevant applications. However, soluble CEPs are economically unfavorable for such applications due to their poor stability and lack of reusability. In a quest to prepare stable biocatalysts with improved performance, CEP from Lactobacillus delbrueckii subsp. lactis 313 and trypsin (as a model enzyme) were immobilized onto nonwoven polyester fabrics in a three-step protocol including ethylenediamine activation and glutaraldehyde crosslinking. Immobilization gave protein loading yields of 21.9% (CEP) and 67.7% (trypsin) while residual activity yields were 85.6% (CEP) and 4.1% (trypsin). The activity of the immobilized enzymes was dependent on pH, but was retained at elevated temperatures (40-70 °C). An increase in Km values was observed for both enzymes after immobilization. After 70 days of storage, the immobilized CEP retained ca. 62% and 96% of initial activity when the samples were stored in a lyophilized form at -20 °C or in a buffer at 4 °C, respectively. Both immobilized CEP and trypsin were able to hydrolyze proteins such as casein, skimmed milk proteins and bovine serum albumin. This immobilization protocol can be used to prepare immobilized biocatalyst for various protein degradation processes. PMID:25128611

  2. Pseudomonas fluorescens 134 as a biological control agent (BCA) model in cell immobilization technology.

    PubMed

    Russo, Anna; Basaglia, Marina; Casella, Sergio; Nuti, Marco Paolo

    2005-01-01

    Antifungal activity against Rhizoctonia solani was achieved in vivo through the application of Pseudomonas fluorescens strain 134 encapsulated in sodium alginate beads of different sizes (0.5, 1, and 2 mm). The activity was compared to that obtainable with chemical treatments and bead-derived liquid formulations. The latter was obtained by dissolving alginate beads of 1 and 0.5 mm in 1% Na-citrate solution before application, without any significant (P < 0.05) reduction of bacterial numbers during the dissolution process. The dry bead formulations were applied next to the seeds in plant inoculation experiments, resulting in a reduction of disease symptoms, which were markedly reduced when the liquid formulation was applied. Moreover, the rate of disease symptoms related to liquid formulations from both 1 and 0.5 mm beads was comparable (near to 10%) to that of chemical treatment. Pseudomonas fluorescens strain 134 delivered as both dry and liquid formulations was able to colonize cotton root at a population density of about 10(8) CFU/g fresh root, 15 days after sowing. PMID:15903270

  3. Influence of /sup 226/Ra on bone marrow stem cells in mice: effect of radium decorporation by a long-term treatment with Na-alginate on stem-cell damage

    SciTech Connect

    Schoeters, G.; Van Puymbroeck, S.; Vanderborght, O.

    1980-04-01

    Three-month old male BALB/c mice were injected intraperitoneally with /sup 226/RaCl/sub 2/ at dose levels of 4.5, 6.9, 9.0, and 13.5 ..mu..Ci /sup 226/Ra/kg body wt. At the two highest doses, the number of multipotential bone marrow stem cells was severely depressed 8 weeks after the injection. By 30 weeks no depression was observed compared to controls. The number of peripheral red blood cells was never altered, while the number of white blood cells was slghtly depressed after 8 weeks of contamination. Mice fed every other week with standard pellets and on alternate weeks with a diet containing 6% Na-alginate (first given 12 days after the injection of /sup 226/RaCl/sub 2/) showed a significant reduction of stem-cell depression 8 and 12 weeks after contamination in three of the six treatment groups with manifest radiation effects on the stem cells.

  4. A degradable, bioactive, gelatinized alginate hydrogel to improve stem cell/growth factor delivery and facilitate healing after myocardial infarction

    PubMed Central

    Della Rocca, Domenico G.; Willenberg, Bradley J.; Ferreira, Leonardo F.; Wate, Prateek S.; Petersen, John W.; Handberg, Eileen M.; Zheng, Tong; Steindler, Dennis A.; Terada, Naohiro; Batich, Christopher D.; Byrne, Barry J.; Pepine, Carl J.

    2013-01-01

    Despite remarkable effectiveness of reperfusion and drug therapies to reduce morbidity and mortality following myocardial infarction (MI), many patients have debilitating symptoms and impaired left ventricular (LV) function highlighting the need for improved post-MI therapies. A promising concept currently under investigation is intramyocardial injection of high-water content, polymeric biomaterial gels (e.g., hydrogels) to modulate myocardial scar formation and LV adverse remodeling. We propose a degradable, bioactive hydrogel that forms a unique microstructure of continuous, parallel capillary-like channels (Capgel). We hypothesize that the innovative architecture and composition of Capgel can serve as a platform for endogenous cell recruitment and drug/cell delivery, therefore facilitating myocardial repair after MI. PMID:22939314

  5. Alginate-polymethacrylate hybrid hydrogels with double ionic and covalent network for tissue engineering

    NASA Astrophysics Data System (ADS)

    Schizzi, I.; Utzeri, R.; Castellano, M.; Stagnaro, P.

    2016-05-01

    Hydrogels based on alginates are very promising candidates to realize scaffolds for tissue engineering. Indeed, alginate hydrogels are able to mimic the extracellular matrix (ECM) thus promoting in vitro and/or in vivo cell growth; moreover, their capability of giving rise to highly porous structures can specifically favor the osteochondral tissue regeneration. However, mechanical properties of polymeric hydrogels are often inadequate to endow the final constructs with the required characteristics of elasticity and toughness. Here alginate/polymethacrylate hybrid hydrogels, with a suitable porous structure and characterized by a double network, ionic (from alginate) and covalent (from polymethacrylate) were designed and realized. The mechanical performance of these hybrid materials resulted, as expected, improved due to the double interconnected network, where the alginate portion provides the appropriate micro-environment mimicking the ECM, whereas the polymethacrylate portion acts as a reinforce.

  6. Structural Characterization of Sodium Alginate and Calcium Alginate.

    PubMed

    Hecht, Hadas; Srebnik, Simcha

    2016-06-13

    Alginate readily aggregates and forms a physical gel in the presence of cations. The association of the chains, and ultimately gel structure and mechanics, depends not only on ion type, but also on the sequence and composition of the alginate chain that ultimately determines its stiffness. Chain flexibility is generally believed to decrease with guluronic residue content, but it is also known that both polymannuronate and polyguluronate blocks are stiffer than heteropolymeric blocks. In this work, we use atomistic molecular dynamics simulation to primarily explore the association and aggregate structure of different alginate chains under various Ca(2+) concentrations and for different alginate chain composition. We show that Ca(2+) ions in general facilitate chain aggregation and gelation. However, aggregation is predominantly affected by alginate monomer composition, which is found to correlate with chain stiffness under certain solution conditions. In general, greater fractions of mannuronic monomers are found to increase chain flexibility of heteropolymer chains. Furthermore, differences in chain guluronic acid content are shown to lead to different interchain association mechanisms, such as lateral association, zipper mechanism, and entanglement, where the mannuronic residues are shown to operate as an elasticity moderator and therefore promote chain association. PMID:27177209

  7. Optimizing immobilized enzyme performance in cell-free environments to produce liquid fuels.

    SciTech Connect

    Kumar, Sanat

    2015-02-05

    The overall goal of this project was to optimize enzyme performance for the production of bio-diesel fuel. Enzyme immobilization has attracted much attention as a means to increase productivity. Mesorporous silica materials have been known to be best suited for immobilizing enzymes. A major challenge is to ensure that the enzymatic activity is retained after immobilization. Two major factors which drive enzymatic deactivation are protein-surface and inter-protein interactions. Previously, we studied protein stability inside pores and how to optimize protein-surface interactions to minimize protein denaturation. In this work we studied eh effect of surface curvature and chemistry on inter-protein interactions. Our goal was to find suitable immobilization supports which minimize these inter-protein interactions. Our studies carried out in the frame work of Hydrophobic-Polar (HP) model showed that enzymes immobilized inside hydrophobic pores of optimal sizes are best suited to minimize these inter-protein interactions. Besides, this study is also of biological importance to understand the role of chaperonins in protein disaggregation. Both of these aspects profited immensely with collaborations with our experimental colleague, Prof. Georges Belfort (RPI), who performed the experimental analog of our theoretical works.

  8. Four alginate dressings in the treatment of partial thickness wounds: a comparative experimental study.

    PubMed

    Agren, M S

    1996-03-01

    Alginate-based absorption materials for wound treatment are meeting with increasing clinical acceptance. The purpose of this study was to compare four different calcium alginate dressings (Algosteril, Comfeel Alginate, Kaltostat and Sorbsan) with respect to wound fluid retaining ability, adherence, dressing residues, epithelialisation and inflammatory cell infiltration using a standardised partial-thickness wound model in domestic pigs. Wound fluid spread laterally onto surrounding normal skin by about 40% more with Sorbsan than with the other alginate dressings after 24 h of treatment (P = 0.026). The corresponding figure after 66 h of treatment was 20% (P = 0.030). Algosteril (mean 1.7 [sem 0.3]) adhered significantly (P = 0.014) more to the wounds than Comfeel Alginate (mean 0.2 [0.2]). Kaltostat (mean 1.8 [0.3]) left significantly (P = 0.038) more dressing residues on the wound surface at dressing removal than the Comfeel Alginate dressing (mean 0.8 [0.2]). In the effect on epithelialisation or dermal inflammation there was no statistically significant difference at significance level 5% among the four alginate dressings, as assessed by light microscopy. In summary, the four alginate dressings showed significant differences in important handling characteristics and did not differ significantly in their effect on epithelialisation. PMID:8733355

  9. Interpenetrated Si-HPMC/alginate hydrogels as a potential scaffold for human tissue regeneration.

    PubMed

    Viguier, Alexia; Boyer, Cecile; Chassenieux, Christophe; Benyahia, Lazhar; Guicheux, Jérôme; Weiss, Pierre; Rethore, Gildas; Nicolai, Taco

    2016-05-01

    Interpenetrated gels of biocompatible polysaccharides alginate and silanized hydroxypropyl methyl cellulose (Si-HPMC) have been studied in order to assess their potential as scaffolds for the regeneration of human tissues. Si-HPMC networks were formed by reduction of the pH to neutral and alginate networks were formed by progressive in situ release of Ca(2+). Linear and non-linear mechanical properties of the mixed gels at different polymer and calcium concentrations were compared with those of the corresponding single gels. The alginate/Si-HPMC gels were found to be stiffer than pure Si-HPMC gels, but weaker and more deformable than pure alginate gels. No significant difference was found for the maximum stress at rupture measured during compression for all these gels. The degrees of swelling or contraction in excess water at pH 7 as well as the release of Ca(2+) was measured as a function of time. Pure alginate gels contracted by as much as 50 % and showed syneresis, which was much reduced or even eliminated for mixed gels. The important release of Ca(2+) upon ageing for pure alginate gels was much reduced for the mixed gels. Furthermore, results of cytocompatibility assays indicated that there was no cytotoxicity of Si-HPMC/alginate hydrogels in 2D and 3D culture of human SW1353 cells. The results show that using interpenetrated Si-HPMC/alginate gels has clear advantages over the use of single gels for application in tissue regeneration. PMID:27022979

  10. Immobilization by Polyurethane of Pseudomonas dacunhae Cells Containing l-Aspartate β-Decarboxylase Activity and Application to l-Alanine Production

    PubMed Central

    Fusee, Murray C.; Weber, Jennifer E.

    1984-01-01

    Whole cells of Pseudomonas dacunhae containing l-aspartate β-decarboxylase activity were immobilized by mixing a cell suspension with a liquid isocyanate-capped polyurethane prepolymer (Hypol; W. R. Grace & Co., Lexington, Mass.). The immobilized cell preparation was used to convert l-aspartic acid to l-alanine. Properties of the immobilized P. dacunhae cells containing aspartate β-decarboxylase activity were investigated with batch reactors. Retention of enzyme activity was observed to be as much as 100% when cell lysis was allowed to occur before immobilization. The pH and temperature optima were determined to be 5.5 and 45°C, respectively. Immobilized P. dacunhael-aspartate β-decarboxylase activity was stabilized by the addition of 0.1 mM pyridoxal-5-phosphate and 0.1 mM α-ketoglutaric acid to a 1.7 M ammonium aspartate (pH 5.5) substrate solution. Under conditions of semicontinuous use in a batch reactor, a 2.5% loss in immobilized l-aspartate β-decarboxylase activity was observed over a 31-day period. PMID:16346636

  11. Immobilization of Keratinase from Aspergillus flavus K-03 for Degradation of Feather Keratin

    PubMed Central

    2005-01-01

    Extracellular keratinase isolated from Aspergillus flavus K-03 was immobilized on calcium alginate. The properties and reaction activities of free and immobilized keratinase with calcium alginate were characterized. The immobilized keratinase showed proteolytic activity against soluble azo-casein and azo-keratin, and insoluble feather keratin. Heat stability and pH tolerance of keratinase were greatly enhanced by immobilization. It also displayed a higher level of heat stability and an increased tolerance toward alkaline pHs compared with free keratinase. During the durability test at 40℃, 48% of the original enzyme activity of the immobilized keratinase was remained after 7 days of incubation. The immobilized keratinase exhibited better stability, thus increasing its potential for use in industrial application. PMID:24049486

  12. Synthesis of thiolated alginate and evaluation of mucoadhesiveness, cytotoxicity and