Sample records for alginate immobilized cells

  1. Polygalacturonase production by calcium alginate immobilized Enterobacter aerogenes NBO2 cells.

    PubMed

    Darah, I; Nisha, M; Lim, Sheh-Hong

    2015-03-01

    Bacterial cells of Enterobacter aerogenes NBO2 were entrapped in calcium alginate beads in order to enhance polygalacturonase production compared to free cells. The optimized condition of 5 % (w/v) sodium alginate concentration, agitation speed of 250 rpm, and 15 beads of calcium alginate with inoculum size of 4 % (v/v; 5.4 × 10(7) cells/ml) produced 23.48 U/mL of polygalacturonase compared to free cells of 18.54 U/ml. There was about 26.6 % increment in polygalaturonase production. However, in this study, there was 296.6 % of increment in polygalacturonase production after improvement parameters compared to before improvement parameters of calcium alginate bead immobilization cells (5.92 U/ml). This research has indicated that optimized physical parameters of calcium alginate bead immobilization cells have significantly enhanced the production of polygalacturonase.

  2. Production of tannase by the immobilized cells of Bacillus licheniformis KBR6 in Ca-alginate beads.

    PubMed

    Mohapatra, P K D; Mondal, K C; Pati, B R

    2007-06-01

    The present study was aimed at finding the optimal conditions for immobilization of Bacillus licheniformis KBR6 cells in calcium-alginate (Ca-alginate) beads and determining the operational stability during the production of tannin-acyl-hydrolase (tannase) under semicontinous cultivation. The active cells of B. licheniformis KBR6 were immobilized in Ca-alginate and used for the production of tannase. The influence of alginate concentration (5, 10, 20 and 30 g l(-1)) and initial cell loading on enzyme production were studied. The production of tannase increased significantly with increasing alginate concentration and reached a maximum enzyme yield of 0.56 +/- 0.03 U ml(-1) at 20 g l(-1). This was about 1.70-fold higher than that obtained by free cells. The immobilized cells produced tannase consistently over 13 repeated cycles and reached a maximum level at the third cycle. Scanning electron microscope study indicated that the cells in Ca-alginate beads remain in normal shape. The Ca-alginate entrapment is a promising immobilization method of B. licheniformis KBR6 for repeated tannase production. Tannase production by immobilized cells is superior to that of free cells because it leads to higher volumetric activities within the same period of fermentation. This is the first report of tannase production from immobilized bacterial cells. The bacterium under study can produce higher amounts of tannase with respect to other fungal strains within a short cultivation period.

  3. Pancreatic cell immobilization in alginate beads produced by emulsion and internal gelation.

    PubMed

    Hoesli, Corinne A; Raghuram, Kamini; Kiang, Roger L J; Mocinecová, Dušana; Hu, Xiaoke; Johnson, James D; Lacík, Igor; Kieffer, Timothy J; Piret, James M

    2011-02-01

    Alginate has been used to protect transplanted pancreatic islets from immune rejection and as a matrix to increase the insulin content of islet progenitor cells. The throughput of alginate bead generation by the standard extrusion and external gelation method is limited by the rate of droplet formation from nozzles. Alginate bead generation by emulsion and internal gelation is a scaleable alternative that has been used with biological molecules and microbial cells, but not mammalian cells. We describe the novel adaptation of this process to mammalian cell immobilization. After optimization, the emulsion process yielded 90 ± 2% mouse insulinoma 6 (MIN6) cell survival, similar to the extrusion process. The MIN6 cells expanded at the same rate in both bead types to form pseudo-islets with increased glucose stimulation index compared to cells in suspension. The emulsion process was suitable for primary pancreatic exocrine cell immobilization, leading to 67 ± 32 fold increased insulin expression after 10 days of immobilized culture. Due to the scaleability and broad availability of stirred mixers, the emulsion process represents an attractive option for laboratories that are not equipped with extrusion-based cell encapsulators, as well as for the production of immobilized or encapsulated cellular therapeutics on a clinical scale. © 2010 Wiley Periodicals, Inc.

  4. Phenol biodegradation by immobilized Pseudomonas putida FNCC-0071 cells in alginate beads

    NASA Astrophysics Data System (ADS)

    Hakim, Lukman Nul; Rochmadi, Sutijan

    2017-06-01

    Phenol is one of industrial liquid waste which is harmful to the environment, so it must be degraded. It can be degraded by immobilized Pseudomonas putida FNCC-0071 cells. It needs the kinetics and mass transfer data to design this process which can be estimated by the proposed dynamic model in this study. This model involves simultaneous diffusion and reaction in the alginate bead and liquid bulk. The preliminary stage of phenol biodegradation process was acclimatization cells. This is the stage where cells were acclimated to phenol as carbon source (substrate). Then the acclimated cells were immobilized in alginate beads by extrusion method. The variation of the initial phenol concentration in the solution is 350 to 850 ppm where 60 g alginate bead contained by cells loaded into its solution in reactor batch, so then biodegradation occurs. In this study, the average radius of alginate bead was 0.152 cm. The occurred kinetic reaction process can be explained by Blanch kinetic model with the decreasing of parameter μmax' while the increasing values of initial phenol concentration in the same time, but the parameters KM, KM', and kt were increasing by the rising values of initial phenol concentration. The value of the parameter β is almost zero. Effective diffusivity of phenol and cells are 1.11 × 10-5±4.5% cm2 s-1 and 1.39 × 10-7± 0.04% cm2 s-1. The partition coefficient of phenol and cells are 0.39 ± 15% and 2.22 ± 18%.

  5. Mercury bioremediation by mercury accumulating Enterobacter sp. cells and its alginate immobilized application.

    PubMed

    Sinha, Arvind; Khare, Sunil Kumar

    2012-02-01

    The effective microbial remediation of the mercury necessitates the mercury to be trapped within the cells without being recycled back to the environment. The study describes a mercury bioaccumulating strain of Enterobacter sp., which remediated mercury from the medium simultaneous to its growth. The transmission electron micrographs and electron dispersive X-ray analysis revealed the accumulation of remediated mercury as nano-size particles in the cytoplasm as well as on the cell wall. The Enterobacter sp. in the present work was able to accumulate mercury, without being engineered in its native form. The possibility of recovering the accumulated mercury from the cells is also indicated. The applicability of the alginate immobilized cells in removing mercury from synthetic and complex industrial effluent in a batch mode was amply demonstrated. The initial load of 7.3 mg l(-1) mercury in the industrial effluent was completely removed in 72 h. The cells immobilized in calcium alginate were similarly effective in the complete removal of 5 mg l(-1) HgCl(2) of mercury from the synthetic effluent in less than 72 h. The immobilized cells could be reused for multiple cycles.

  6. Efficient biodegradation of cyanide and ferrocyanide by Na-alginate beads immobilized with fungal cells of Trichoderma koningii.

    PubMed

    Zhou, Xiaoying; Liu, Lixing; Chen, Yunpeng; Xu, Shufa; Chen, Jie

    2007-09-01

    Cyanide or metal cyanide contaminations have become serious environmental and food-health problems. A fungal mutant of Trichoderma koningii, TkA8, constructed by restriction enzyme-mediated integration, has been verified to have a high cyanide degradation ability in our previous study. In this study, the mutant cells were entrapped in sodium-alginate (Na-alginate) immobilization beads to degrade cyanide and ferrocyanide in a liquid mineral medium. The results showed that the fungus in immobilization beads consisting of 3% Na-alginate and 3% CaCl2 could degrade cyanide more efficiently than a nonimmobilized fungal culture. For maximum degradation efficiency, the optimal ratio of Na-alginate and wet fungal biomass was 20:1 (m/m) and the initial pH was 6.5. In comparison, cell immobilization took at least 3 and 8 days earlier, respectively, to completely degrade cyanide and ferrocyanide. In addition, we showed that the immobilized beads could be easily recovered from the medium and reused for up to 5 batches without significant losses of fungal remediation abilities. The results of this study provide a promising alternative method for the large-scale remediation of soil or water systems from cyanide contamination.

  7. Enhanced production of alkaline thermostable keratinolytic protease from calcium alginate immobilized cells of thermoalkalophilic Bacillus halodurans JB 99 exhibiting dehairing activity.

    PubMed

    Shrinivas, Dengeti; Kumar, Raghwendra; Naik, G R

    2012-01-01

    The thermoalkalophilic Bacillus halodurans JB 99 cells known for production of novel thermostable alkaline keratinolytic protease were immobilized in calcium alginate matrix. Batch and repeated batch cultivation using calcium alginate immobilized cells were studied for alkaline protease production in submerged fermentation. Immobilized cells with 2.5% alginate and 350 beads/flask of initial cell loading showed enhanced production of alkaline protease by 23.2% (5,275 ± 39.4 U/ml) as compared to free cells (4,280 ± 35.4 U/ml) after 24 h. In the semicontinuous mode of cultivation, immobilized cells under optimized conditions produced an appreciable level of alkaline protease in up to nine cycles and reached a maximal value of 5,975 U/ml after the seventh cycle. The enzyme produced from immobilized cells efficiently degraded chicken feathers in the presence of a reducing agent which can help the poultry industry in the management of keratin-rich waste and obtaining value-added products.

  8. Efficacy and reusability of alginate-immobilized live and heat-inactivated Trichoderma asperellum cells for Cu (II) removal from aqueous solution.

    PubMed

    Tan, Wei Shang; Ting, Adeline Su Yien

    2012-11-01

    Cu(II) removal efficacies of alginate-immobilized Trichoderma asperellum using viable and non-viable forms were investigated with respect to time, pH, and initial Cu(II) concentrations. The reusability potential of the biomass was determined based on sorption/desorption tests. Cu(II) biosorption by immobilized heat-inactivated T. asperellum cells was the most efficient, with 134.22mg Cu(II) removed g(-1) adsorbent, compared to immobilized viable cells and plain alginate beads (control) with 105.96 and 94.04mg Cu(II) adsorbed g(-1) adsorbent, respectively. Immobilized non-viable cells achieved equilibrium more rapidly within 4h. For all biosorbents, optimum pH for Cu(II) removal was between pH 4 and 5. Reusability of all biosorbents were similar, with more than 90% Cu(II) desorbed with HCl. These alginate-immobilized cells can be applied to reduce clogging and post-separation process incurred from use of suspended biomass. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. 3D Cell Culture in Alginate Hydrogels

    PubMed Central

    Andersen, Therese; Auk-Emblem, Pia; Dornish, Michael

    2015-01-01

    This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent), and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue. PMID:27600217

  10. Enzyme immobilization in novel alginate-chitosan core-shell microcapsules.

    PubMed

    Taqieddin, Ehab; Amiji, Mansoor

    2004-05-01

    Alginate-chitosan core-shell microcapsules were prepared in order to develop a biocompatible matrix for enzyme immobilization, where the protein is retained either in a liquid or solid core and the shell allows permeability control over substrates and products. The permeability coefficients of different molecular weight compounds (vitamin B2, vitamin B12, and myoglobin) were determined through sodium tripolyphosphate (Na-TPP)-crosslinked chitosan membrane. The microcapsule core was formed by crosslinking sodium alginate with either calcium or barium ions. The crosslinked alginate core was uniformly coated with a chitosan layer and crosslinked with Na-TPP. In the case of calcium alginate, the phosphate ions of Na-TPP were able to extract the calcium ions from alginate and liquefy the core. A model enzyme, beta-galactosidase, was immobilized in the alginate core and the catalytic activity was measured with o-nitrophenyl-beta-D-galactopyranoside (ONPG). Change in the activity of free and immobilized enzyme was determined at three different temperatures. Na-TPP crosslinked chitosan membranes were found to be permeable to solutes of up to 17,000Da molecular weight. The enzyme loading efficiency was higher in the barium alginate core (100%) as compared to the calcium alginate core (60%). The rate of ONPG conversion to o-nitrophenol was faster in the case of calcium alginate-chitosan microcapsules as compared to barium alginate-chitosan microcapsules. Barium alginate-chitosan microcapsules, however, did improve the stability of the enzyme at 37 degrees C relative to calcium alginate-chitosan microcapsules or free enzyme. This study illustrates a new method of enzyme immobilization for biotechnology applications using liquid or solid core and shell microcapsule technology.

  11. Production of D-tagatose, a functional sweetener, utilizing alginate immobilized Lactobacillus fermentum CGMCC2921 cells.

    PubMed

    Xu, Zheng; Li, Sha; Fu, Fenggen; Li, Guixiang; Feng, Xiaohai; Xu, Hong; Ouyang, Pingkai

    2012-02-01

    D-tagatose is a ketohexose that can be used as a novel functional sweetener in foods, beverages, and dietary supplements. This study was aimed at developing a high-yielding D-tagatose production process using alginate immobilized Lactobacillus fermentum CGMCC2921 cells. For the isomerization from D-galactose into D-tagatose, the immobilized cells showed optimum temperature and pH at 65 °C and 6.5, respectively. The alginate beads exhibited a good stability after glutaraldehyde treatment and retained 90% of the enzyme activity after eight cycles (192 h at 65 °C) of batch conversion. The addition of borate with a molar ratio of 1.0 to D-galactose led to a significant enhancement in the D-tagatose yield. Using commercial β-galactosidase and immobilized L. fermentum cells, D-tagatose was successfully obtained from lactose after a two-step biotransformation. The relatively high conversion rate and productivity from D-galactose to D-tagatose of 60% and 11.1 g l⁻¹ h⁻¹ were achieved in a packed-bed bioreactor. Moreover, lactobacilli have been approved as generally recognized as safe organisms, which makes this L. fermentum strain an attracting substitute for recombinant Escherichia coli cells among D-tagatose production progresses.

  12. Immobilization of ammonia-oxidizing bacteria by polyvinyl alcohol and sodium alginate.

    PubMed

    Dong, Yuwei; Zhang, Yanqiu; Tu, Baojun

    Ammonia-oxidizing bacteria were immobilized by polyvinyl alcohol (PVA) and sodium alginate. The immobilization conditions and ammonia oxidation ability of the immobilized bacteria were investigated. The following immobilization conditions were observed to be optimal: PVA, 12%; sodium alginate, 1.1%; calcium chloride, 1.0%; inoculum concentration, 1.3 immobilized balls/mL of immobilized medium; pH, 10; and temperature, 30°C. The immobilized ammonia-oxidizing bacteria exhibited strong ammonia oxidation ability even after being recycled four times. The ammonia nitrogen removal rate of the immobilized ammonia-oxidizing bacteria reached 90.30% under the optimal immobilization conditions. When compared with ammonia-oxidizing bacteria immobilized by sodium alginate alone, the bacteria immobilized by PVA and sodium alginate were superior with respect to pH resistance, the number of reuses, material cost, heat resistance, and ammonia oxidation ability. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Heavy metal removal by caustic-treated yeast immobilized in alginate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Y.; Wilkins, E.

    1995-12-31

    Saccharomyces cerevisiae yeast biomass was treated with hot alkali to increase its biosorption capacity for heavy metals and then was immobilized in alginate gel. Biosorption capacities for Cu{sup 2+}, Cd{sup 2+}, and Zn{sup 2+} on alginate gel, native yeast, native yeast immobilized in alginate gel, and caustic-treated yeast immobilized in alginate gel were all compared. Immobilized yeasts could be reactivated and reused in a manner similar to the ion exchange resins. Immobilized caustic-treated yeast has high heavy metal biosorption capacity and high metal removal efficiency in a rather wide acidic pH region. The biosorption isotherm of immobilized caustic-treated yeast wasmore » studied, and empirical equations were obtained. The initial pH of polluted water affected the metal removal efficiency significantly, and the equilibrium biosorption capacity seemed to be temperature independent at lower initial metal concentrations.« less

  14. Kinetic analysis of beer primary fermentation using yeast cells immobilized by ceramic support adsorption and alginate gel entrapment.

    PubMed

    Zhang, Yongming; Kennedy, John F; Knill, Charles J; Panesar, Parmjit S

    2006-01-01

    Yeast cells were immobilized by absorption onto porous ceramic support and evaluated for continuous beer primary fermentation using a bioreactor in comparison to yeast cells immobilized by entrapment in calcium alginate gel. The effects of temperature and flow rate as a function of reaction/fermentation time on fermentation rate were investigated. The fermentation reaction (in terms of loss of total soluble solids in the beer wort as a function of time) was first-order with half-lifes in the range of approximately 9-11 hours at approximately 10-12 degrees C at beer wort linear flow rates of approximately 0.8-1.6 cm/minute for ceramic support, compared with approximately 16 hours for Ca-alginate gel, the former support matrix being more efficient and demonstrating greater potential for future commercial application.

  15. Removal of acetaminophen in water by laccase immobilized in barium alginate.

    PubMed

    Ratanapongleka, Karnika; Punbut, Supot

    2018-02-01

    This research has focused on the optimization of immobilized laccase condition and utilization in degradation of acetaminophen contaminated in aqueous solution. Laccase from Lentinus polychrous was immobilized in barium alginate. The effects of laccase immobilization such as sodium alginate concentration, barium chloride concentration and gelation time were studied. The optimal conditions for immobilization were sodium alginate 5% (w/v), barium chloride 5% (w/v) and gelation time of 60 min. Immobilized laccase was then used for acetaminophen removal. Acetaminophen was removed quickly in the first 50 min. The degradation rate and percentage of removal increased when the enzyme concentration increased. Immobilized laccase at 0.57 U/g-alginate showed the maximum removal at 94% in 240 min. The removal efficiency decreased with increasing initial acetaminophen concentration. The K m value for immobilized laccase (98.86 µM) was lower than that of free laccase (203.56 µM), indicating that substrate affinity was probably enhanced by immobilization. The immobilized enzyme exhibited high activity and good acetaminophen removal at pH 7 and temperature of 35°C. The activation energies of free and immobilized laccase for degradation of acetaminophen were 8.08 and 17.70 kJ/mol, respectively. It was also found that laccase stability to pH and temperature increased after immobilization. Furthermore, immobilized laccase could be reused for five cycles. The capability of removal and enzyme activity were retained above 70%.

  16. Biodegradation and kinetic study of benzene in bioreactor packed with PUF and alginate beads and immobilized with Bacillus sp. M3.

    PubMed

    Kureel, M K; Geed, S R; Giri, B S; Rai, B N; Singh, R S

    2017-10-01

    Benzene removal in free and immobilized cells on polyurethane foam (PUF) and polyvinyl alcohol (PVA)-alginate beads was studied using an indigenous soil bacterium Bacillus sp. M3 isolated from petroleum-contaminated soil. The important process parameters (pH, temperature and inoculums size) were optimized and found to be 7, 37°C and 6.0×10 8 CFU/mL, respectively. Benzene removals were observed to be 70, 84 and 90% within 9days in a free cell, immobilized PVA-alginate beads and PUF, respectively under optimum operating conditions. FT-IR and GC-MS analysis confirm the presence of phenol, 1,2-benzenediol, hydroquinone and benzoate as metabolites. The important kinetic parameter ratios (µ max /K s ; L/mg·day ) calculated using Monod model was found to be 0.00123 for free cell, 0.00159 for immobilized alginate beads and 0.002016 for immobilized PUF. Similarly inhibition constants (K i ; mg/L) calculated using Andrew-Haldane model was found to be 435.84 for free cell, 664.25 for immobilized alginate beads and 724.93 for immobilized PUF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Immobilization of naringinase in PVA-alginate matrix using an innovative technique.

    PubMed

    Nunes, Mário A P; Vila-Real, Hélder; Fernandes, Pedro C B; Ribeiro, Maria H L

    2010-04-01

    A synthetic polymer, polyvinyl alcohol (PVA), a cheap and nontoxic synthetic polymer to organism, has been ascribed for biocatalyst immobilization. In this work PVA-alginate beads were developed with thermal, mechanical, and chemical stability to high temperatures (<80 degrees C). The combination of alginate and bead treatment with sodium sulfate not only prevented agglomeration but produced beads of high gel strength and conferred enzyme protection from inactivation by boric acid. Naringinase from Penicillium decumbens was immobilized in PVA (10%)-alginate beads with three different sizes (1-3 mm), at three different alginate concentrations (0.2-1.0%), and these features were investigated in terms of swelling ratio within the beads, enzyme activity, and immobilization yield during hydrolysis of naringin. The pH and temperature optimum were 4.0 and 70 degrees C for the PVA-alginate-immobilized naringinase. The highest naringinase activity yield in PVA (10%)-alginate (1%) beads of 2 mm was 80%, at pH 4.0 and 70 degrees C. The Michaelis constant (K(Mapp)) and the maximum reaction velocity (V(maxapp)) were evaluated for both free (K(Mapp) = 0.233 mM; V(maxapp) = 0.13 mM min(-1)) and immobilized naringinase (K(Mapp) = 0.349 mM; V(maxapp) = 0.08 mM min(-1)). The residual activity of the immobilized enzyme was followed in eight consecutive batch runs with a retention activity of 70%. After 6 weeks, upon storage in acetate buffer pH 4 at 4 degrees C, the immobilized biocatalyst retained 90% of the initial activity. These promising results are illustrative of the potential of this immobilization strategy for the system evaluated and suggest that its application may be effectively performed for the entrapment of other biocatalysts.

  18. Enhanced biosorption of transition metals by living Chlorella vulgaris immobilized in Ca-alginate beads.

    PubMed

    Ahmad, Ashfaq; Bhat, A H; Buang, Azizul

    2018-02-01

    In this study freely suspended and Ca-alginate immobilized C. vulgaris cells were used for the biosorption of Fe(II), Mn(II), and Zn(II) ions, from the aqueous solution. Experimental data showed that biosorption capacity of algal cells was strongly dependent on the operational condition such as pH, initial metal ions concentration, dosages, contact time and temperature. The maximum biosorption of Fe(II) 43.43, Mn(II) 40.98 and Zn(II) 37.43 mg/g was achieved with Ca-alginate immobilized algal cells at optimum pH of 6.0, algal cells dosage 0.6 g/L, and contact time of 450 min at room temperature. The biosorption efficiency of freely suspended and immobilized C. vulgaris cells for heavy metals removal from the industrial wastewater was validated. Modeling of biosorption kinetics showed good agreements with pseudo-second-order. Langmuir and D-R isotherm models exhibited the best fit of experimental data. The thermodynamic parameters (ΔG°, ΔH°, and ΔS°) revealed that the biosorption of considered metal ions was feasible, spontaneous and exothermic at 25-45°C. The SEM showed porous morphology which greatly helps in the biosorption of heavy metals. The Fourier transform infrared spectrophotometer (FTIR) and X-rays Photon Spectroscopy (XPS) data spectra indicated that the functional groups predominately involved in the biosorption were C-N, -OH, COO-, -CH, C=C, C=S and -C-. These results shows that immobilized algal cells in alginate beads could potentially enhance the biosorption of considered metal ions than freely suspended cells. Furthermore, the biosorbent has significantly removed heavy metals from industrial wastewater at the optimized condition.

  19. Immobilization of microalgae cells in alginate facilitates isolation of DNA and RNA.

    PubMed

    Lopez, Blanca R; Hernandez, Juan-Pablo; Bashan, Yoav; de-Bashan, Luz E

    2017-04-01

    Isolation of nucleic acids from Chlorella is difficult, given the chemically complex nature of their cell walls and variable production of metabolites. Immobilization of microalgae in polymers adds additional difficulty. Here, we modified, amended, and standardized methods for isolation of nucleic acids and compared the yield of DNA and RNA from free-living and encapsulated microalgae C. sorokiniana. Isolation of nucleic acids from immobilized cells required two steps in dissolving the alginate matrix, releasing the cells, and mechanical disruption with glass beads. For DNA extraction, we used modified versions of a commercial kit along with the hexadecyltrimethylammonium bromide (CTAB) method. For RNA extraction, we used the commercial TRI reagent procedure and the CTAB-dithiotreitol method. Quantity and quality of nucleic acids in extracts varied with growth conditions, isolation procedures, and time of incubation of the original culture. There were consistently higher amounts of DNA and RNA in extracts from immobilized cells. Quantitatively, the modified procedure with the commercial Promega kit was the most reliable procedure for isolating DNA and a modified commercial TRI reagent procedure was the choice for isolating RNA. All four procedures eliminated proteins efficiently and had low levels of contamination from residual polysaccharides from the matrices and/or metabolites naturally produced by the microalgae. All DNA extracts under both growth conditions, time of incubation, and two isolation methods successfully amplified the 18S ribosomal RNA by PCR and quantitative reverse transcription (RT-qPCR). Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Dye decolorization and detoxification potential of Ca-alginate beads immobilized manganese peroxidase.

    PubMed

    Bilal, Muhammad; Asgher, Muhammad

    2015-12-10

    In view of compliance with increasingly stringent environmental legislation, an eco-friendly treatment technology of industrial dyes and effluents is a major environmental challenge in the color industry. In present study, a promising and eco-friendly entrapment approach was adopted to immobilize purified manganese peroxidase (MnP) produced from an indigenous strain of Ganoderma lucidum IBL-05 on Ca-alginate beads. The immobilized MnP was subsequently used for enhanced decolorization and detoxification of textile reactive dyes). MnP isolated from solid-state culture of G. lucidum IBL-05, presented highest immobilization yield (83.9 %) using alginate beads prepared at optimized conditions of 4 % (w/v) sodium alginate, 2 % (w/v) Calcium chloride (CaCl2) and 0.5 mg/ml enzyme concentration. Immobilization of MnP enhanced optimum temperature but caused acidic shift in optimum pH of the enzyme. The immobilized MnP showed optimum activity at pH 4.0 and 60 °C as compared to pH 5.0 and 35 °C for free enzyme. The kinetic parameters K(m) and V(max) of MnP were significantly improved by immobilization. The enhanced catalytic potential of immobilized MnP led to 87.5 %, 82.1 %, 89.4 %, 95.7 % and 83 % decolorization of Sandal-fix Red C4BLN, Sandal-fix Turq Blue GWF, Sandal-fix Foron Blue E2BLN, Sandal-fix Black CKF and Sandal-fix Golden Yellow CRL dyes, respectively. The insolubilized MnP was reusable for 7 repeated cycles in dye color removal. Furthermore, immobilized MnP also caused a significant reduction in biochemical oxygen demand (BOD) (94.61-95.47 %), chemical oxygen demand (COD) (91.18-94.85 %), and total organic carbon (TOC) (89.58-95 %) of aqueous dye solutions. G. lucidum MnP was immobilized in Ca-alginate beads by entrapment method to improve its practical effectiveness. Ca-alginate bound MnP was catalytically more vigorous, thermo-stable, reusable and worked over wider ranges of pH and temperature as compared to its free counterpart. Results of cytotoxicity like

  1. Improvement of Biodesulfurization Rate of Alginate Immobilized Rhodococcus erythropolis R1.

    PubMed

    Derikvand, Peyman; Etemadifar, Zahra

    2014-03-01

    Sulfur oxides released from the burning of oil causes severe environmental pollution. The sulfur can be removed via the 4S pathway in biodesulfurization (BDS). Immobilization approaches have been developed to prevent cell contamination of oil during the BDS process. The encapsulation of Rhodococcus erythropolis R1 in calcium alginate beads was studied in order to enhance conversion of dibenzothiophene (DBT) to 2-hydroxy biphenyl (2-HBP) as the final product. Also the effect of different factors on the BDS process was investigated. Calcium alginate capsules were prepared using peristaltic pumps with different needle sizes to control the beads sizes. Scanning electron microscopy and flow cytometry methods were used to study the distribution and viability of encapsulated cells, respectively. Two non-ionic surfactants and also nano Ƴ-Al2O3were used with the ratio of 0.5% (v/v) and 1:5 (v/v) respectively to investigate their BDS efficiency. In addition, the effect of different bead sizes and different concentrations of sodium alginate in BDS activity was studied. The 2% (w/v) sodium alginate beads with 1.5mm size were found to be the optimum for beads stability and efficient 2-HBP production. The viability of encapsulated cells decreased by 12% after 20 h of desulfurization, compared to free cells. Adding the non-ionic surfactants markedly enhanced the rate of BDS, because of increasing mass transfer of DBT to the gel matrix. In addition, Span 80 was more effective than Tween 80. The nanoƳ-Al2O3 particles could increase BDS rate by up to two-folds greater than that of the control beads. The nano Ƴ-Al2O3 can improve the immobilized biocatalyst for excellent efficiency of DBT desulfurization. Also the BDS activity can be enhanced by setting the other explained factors at optimum levels.

  2. Simultaneous Alcoholic and Malolactic Fermentations by Saccharomyces cerevisiae and Oenococcus oeni Cells Co-immobilized in Alginate Beads

    PubMed Central

    Bleve, Gianluca; Tufariello, Maria; Vetrano, Cosimo; Mita, Giovanni; Grieco, Francesco

    2016-01-01

    Malolactic fermentation (MLF) usually takes place after the end of alcoholic fermentation (AF). However, the inoculation of lactic acid bacteria together with yeast starter cultures is a promising system to enhance the quality and safety of wine. In recent years, the use of immobilized cell systems has been investigated, with interesting results, for the production of different fermented foods and beverages. In this study we have carried out the simultaneous immobilization of Saccharomyces cerevisiae and Oenococcus oeni in alginate beads and used them in microvinifications tests to produce Negroamaro wine. The process was monitored by chemical and sensorial analyses and dominance of starters and cell leaking from beads were also checked. Co-immobilization of S. cerevisiae and O. oeni allowed to perform an efficient fermentation process, producing low volatile acidity levels and ethanol and glycerol concentrations comparable with those obtained by cell sequential inoculum and co-inoculum of yeast and bacteria cells in free form. More importantly, co-immobilization strategy produced a significant decrease of the time requested to complete AF and MLF. The immobilized cells could be efficiently reused for the wine fermentation at least three times without any apparent loss of cell metabolic activities. This integrated biocatalytic system is able to perform simultaneously AF and MLF, producing wines similar in organoleptic traits in comparison with wines fermented following traditional sequential AF and MLF with free cell starters. The immobilized-cell system, that we here describe for the first time in our knowledge, offers many advantages over conventional free cell fermentations, including: (i) elimination of non-productive cell growth phases; (ii) feasibility of continuous processing; (iii) re-use of the biocatalyst. PMID:27379072

  3. Sodium alginate-grafted β-cyclodextrins as a matrix for immobilized Arthrobacter simplex for cortisone acetate biotransfromation

    NASA Astrophysics Data System (ADS)

    Shen, Yanbing; Niu, Lulu; Yu, Ziqi; Wang, Min; Shang, Zhihua; Yang, Yan

    2018-06-01

    Cyclodextrins (CDs) are used to resolve the low aqueous solubility of steroids, but the high cost of CDs is still a limiting factor in biotransformation process. This study, which is based on grafting and immobilization techniques, focused on synthesizing for the first time sodium alginate (SA)-grafted β-CD (SA-β-CD) and alginate-grafted β-CD for the immobilization of Arthrobacter simplex (ASP) cells (SA-β-CD-cells) and subsequent recycling of CDs and cells. FTIR spectium and X-ray diffraction proved that β-CD was successfully grafted with SA, whereas the grafting yield of β-CD was 10.3 μmol g-1. SA-β-CD could increase the solubility of CA by 3.5-fold, whereas the transformation rate was enhanced by 10%. The conversion ratio of CA was over 92% after the SA-β-CD recycling for nine cycles. In addition, after SA-β-CD-cells were applied in biocatalytic reactions for eight cycles, the conversion ratio of CA was over 90%. These advantages suggest great potential for using both grafting and immobilized techniques in steroid transformation.

  4. Improvement of Biodesulfurization Rate of Alginate Immobilized Rhodococcus erythropolis R1

    PubMed Central

    Derikvand, Peyman; Etemadifar, Zahra

    2014-01-01

    Background: Sulfur oxides released from the burning of oil causes severe environmental pollution. The sulfur can be removed via the 4S pathway in biodesulfurization (BDS). Immobilization approaches have been developed to prevent cell contamination of oil during the BDS process. Objectives: The encapsulation of Rhodococcus erythropolis R1 in calcium alginate beads was studied in order to enhance conversion of dibenzothiophene (DBT) to 2-hydroxy biphenyl (2-HBP) as the final product. Also the effect of different factors on the BDS process was investigated. Materials and Methods: Calcium alginate capsules were prepared using peristaltic pumps with different needle sizes to control the beads sizes. Scanning electron microscopy and flow cytometry methods were used to study the distribution and viability of encapsulated cells, respectively. Two non-ionic surfactants and also nano Ƴ-Al2O3were used with the ratio of 0.5% (v/v) and 1:5 (v/v) respectively to investigate their BDS efficiency. In addition, the effect of different bead sizes and different concentrations of sodium alginate in BDS activity was studied. Results: The 2% (w/v) sodium alginate beads with 1.5mm size were found to be the optimum for beads stability and efficient 2-HBP production. The viability of encapsulated cells decreased by 12% after 20 h of desulfurization, compared to free cells. Adding the non-ionic surfactants markedly enhanced the rate of BDS, because of increasing mass transfer of DBT to the gel matrix. In addition, Span 80 was more effective than Tween 80. The nanoƳ-Al2O3 particles could increase BDS rate by up to two-folds greater than that of the control beads. Conclusions: The nano Ƴ-Al2O3 can improve the immobilized biocatalyst for excellent efficiency of DBT desulfurization. Also the BDS activity can be enhanced by setting the other explained factors at optimum levels. PMID:25147685

  5. Preparation and activity of bubbling-immobilized cellobiase within chitosan-alginate composite.

    PubMed

    Wang, Fang; Su, Rong-Xin; Qi, Wei; Zhang, Ming-Jia; He, Zhi-Min

    2010-01-01

    Cellobiase can hydrolyze cellobiose into glucose; it plays a key role in the process of cellulose hydrolysis by reducing the product inhibition. To reuse the enzyme and improve the economic value of cellulosic ethanol, cellobiase was immobilized using sodium alginate and chitosan as carriers by the bubbling method. The immobilization conditions were optimized as follows: enzyme loading of 100 U cellobiase/g carrier, 30 min immobilization, 3.5 wt% sodium alginate, 0.25 wt% chitosan, and 2 wt% calcium chloride. Compared to free enzyme, the immobilized cellobiase had a decreased apparent K(m) and the maximum activity at a lower pH, indicating its higher acidic and thermal stability. The immobilized cellobiase was further tested in the hydrolysis of cellobiose and various cellulosic substrates (microcrystalline cellulose, filter paper, and ammonia-pretreated corn cobs). Together with cellulases, the immobilized cellobiase converted the cellulosic substrates into glucose with the rate and extent similar to the free enzyme.

  6. Optimization of Enzyme Co-Immobilization with Sodium Alginate and Glutaraldehyde-Activated Chitosan Beads.

    PubMed

    Gür, Sinem Diken; İdil, Neslihan; Aksöz, Nilüfer

    2018-02-01

    In this study, two different materials-alginate and glutaraldehyde-activated chitosan beads-were used for the co-immobilization of α-amylase, protease, and pectinase. Firstly, optimization of multienzyme immobilization with Na alginate beads was carried out. Optimum Na alginate and CaCl 2 concentration were found to be 2.5% and 0.1 M, respectively, and optimal enzyme loading ratio was determined as 2:1:0.02 for pectinase, protease, and α-amylase, respectively. Next, the immobilization of multiple enzymes on glutaraldehyde-activated chitosan beads was optimized (3% chitosan concentration, 0.25% glutaraldehyde with 3 h of activation and 3 h of coupling time). While co-immobilization was successfully performed with both materials, the specific activities of enzymes were found to be higher for the enzymes co-immobilized with glutaraldehyde-activated chitosan beads. In this process, glutaraldehyde was acting as a spacer arm. SEM and FTIR were used for the characterization of activated chitosan beads. Moreover, pectinase and α-amylase enzymes immobilized with chitosan beads were also found to have higher activity than their free forms. Three different enzymes were co-immobilized with these two materials for the first time in this study.

  7. Optimization of covalent immobilization of pectinase on sodium alginate support.

    PubMed

    Li, Tuoping; Wang, Na; Li, Suhong; Zhao, Qiancheng; Guo, Mei; Zhang, Cheyun

    2007-09-01

    Pectinase was immobilized on a sodium alginate support using glutaraldehyde and retained 66% activity. The optimal pH for activity shifted from 3.0 to 3.5 after immobilization; however, the optimum temperature remained unchanged at 40 degrees C. The immobilized enzyme also had a higher thermal stability and reusability than the free enzyme, and retained 80% of initial activity after 11 batch reactions.

  8. Effect of nutrients on the biodegradation of tributyltin (TBT) by alginate immobilized microalga, Chlorella vulgaris, in natural river water.

    PubMed

    Jin, Jing; Yang, Lihua; Chan, Sidney M N; Luan, Tiangang; Li, Yan; Tam, Nora F Y

    2011-01-30

    The removal and degradation of tributyltin (TBT) by alginate immobilized Chlorella vulgaris has been evidenced in our previously published work. The present study was further to investigate the effect of spiked nutrient concentrations on the TBT removal capacity and degradation in the same alginate immobilized C. vulgaris. During the 14-d experiment, compared to the control (natural river water), the spiked nutrient groups (50% or 100% nutrients of the commercial Bristol medium as the reference, marked as 1/2N or 1N) showed more rapid cell proliferation of microalgae and higher TBT removal rate. Moreover, significantly more TBT was adsorbed onto the alginate matrix, but less TBT was taken up by the algal cells of the nutrient groups than that of the control. Mass balance data showed that TBT was lost as inorganic tin in the highest degree in 1N group, followed by 1/2N group and the least was in the control, but the relative abundance of the intermediate products of debutylation (dibutyltin and monobutyltin) were comparable among three groups. In conclusion, the addition of nutrients in contaminated water stimulated the growth and physiological activity of C. vulgaris immobilized in alginate beads and improved its TBT degradation efficiency. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Enhanced degradation of pendimethalin by immobilized cells of Bacillus lehensis XJU.

    PubMed

    More, Veena S; Tallur, Preeti N; Niyonzima, Francois N; More, Sunil S

    2015-12-01

    A bacterium capable of degrading pendimethalin was isolated from the contaminated soil samples and identified as Bacillus lehensis XJU based on 16S rRNA gene sequence analysis. 6-Aminopendimethalin and 3,4-dimethyl 2,6-dinitroaniline were identified as the metabolites of pendimethalin degradation by the bacterium. The biodegradation of pendimethalin by freely suspended and the immobilized cells of B. lehensis on various matrices namely agar, alginate, polyacrylamide, and polyurethane foam was also investigated. The batch degradation rate was nearly the same for both free and immobilized cells in agar and alginate, whereas polyacrylamide- and PUF-immobilized cells degraded 93 and 100 of 0.1 % pendimethalin after 96 and 72 h, respectively. At higher concentration, the degradation rate of freely suspended cells decreased; whereas the same immobilized cells on polyurethane foam completely degraded 0.2 % pendimethalin within 96 h. The repeated batch degradation with the polyurethane foam-immobilized cells was reused for 35 cycles without losing the 0.1 % pendimethalin degrading ability. In contrast, agar-, alginate- and polyacrylamide-immobilized cells could be reused for 15, 18, and 25 cycles, respectively. When the pendimethalin concentration was increased to 0.2 %, the immobilized cells could be reused but the pendimethalin degradation rate was decreased. Polyurethane foam-immobilized cells exhibited better tolerance to pH and temperature alterations than freely suspended cells and could be stored for more than 3 months without losing pendimethalin degrading ability. The immobilization of cells capable of degrading pendimethalin may serve as an ideal technique for the complete degradation of the herbicide in the environment.

  10. Mammalian Cell Encapsulation in Alginate Beads Using a Simple Stirred Vessel.

    PubMed

    Hoesli, Corinne A; Kiang, Roger L J; Raghuram, Kamini; Pedroza, René G; Markwick, Karen E; Colantuoni, Antonio M R; Piret, James M

    2017-06-29

    Cell encapsulation in alginate beads has been used for immobilized cell culture in vitro as well as for immunoisolation in vivo. Pancreatic islet encapsulation has been studied extensively as a means to increase islet survival in allogeneic or xenogeneic transplants. Alginate encapsulation is commonly achieved by nozzle extrusion and external gelation. Using this method, cell-containing alginate droplets formed at the tip of nozzles fall into a solution containing divalent cations that cause ionotropic alginate gelation as they diffuse into the droplets. The requirement for droplet formation at the nozzle tip limits the volumetric throughput and alginate concentration that can be achieved. This video describes a scalable emulsification method to encapsulate mammalian cells in 0.5% to 10% alginate with 70% to 90% cell survival. By this alternative method, alginate droplets containing cells and calcium carbonate are emulsified in mineral oil, followed by a decrease in pH leading to internal calcium release and ionotropic alginate gelation. The current method allows the production of alginate beads within 20 min of emulsification. The equipment required for the encapsulation step consists in simple stirred vessels available to most laboratories.

  11. In vivo evaluation of EPO-secreting cells immobilized in different alginate-PLL microcapsules.

    PubMed

    Ponce, S; Orive, G; Hernández, R M; Gascón, A R; Canals, J M; Muñoz, M T; Pedraz, J L

    2006-11-01

    Alginates are the most employed biomaterials for cell encapsulation due to their abundance, easy gelling properties and apparent biocompatibility. However, as natural polymers different impurities including endotoxins, proteins and polyphenols can be found in their composition. Several purification protocols as well as different batteries of assays to prove the biocompatibility of the alginates in vitro have been recently developed. However, little is known about how the use of alginates with different purity grade may affect the host immune response after their implantation in vivo. The present paper investigates the long-term functionality and biocompatibility of murine erythropoietin (EPO) secreting C2C12 cells entrapped in microcapsules elaborated with alginates with different properties (purity, composition and viscosity). Results showed that independently of the alginate type employed, the animals presented elevated hematocrit levels until day 130, remaining at values between 70-87%. However, histological analysis of the explanted devices showed higher overgrowth around non-biomedical grade alginate microcapsules which could be directly related with higher impurity content of this type of alginate. Although EPO delivery may be limited by the formation of a fibrotic layer around non-biomedical grade alginate microcapsules, the high EPO secretion of the encapsulated cells together with the pharmacodynamic behaviour and the angiogenic and immune-modulatory properties of EPO result in no direct correlation between the biocompatibility of the alginate and the therapeutic response obtained.

  12. Novel characteristics of horseradish peroxidase immobilized onto the polyvinyl alcohol-alginate beads and its methyl orange degradation potential.

    PubMed

    Bilal, Muhammad; Rasheed, Tahir; Iqbal, Hafiz M N; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2017-12-01

    Herein, we report the immobilization of in-house isolated horseradish peroxidase (HRP) from Armoracia rusticana with novel characteristics. The HRP was immobilized onto the self-fabricated polyvinyl alcohol-alginate (PVA-alginate) beads using sodium nitrate as a cross-linker. The PVA-alginate beads (2.0mm size) developed using 10% PVA and 1.5% sodium alginate showed maximal immobilization yield. The surface morphologies of the PVA-alginate (control) and immobilized-HRP were characterized by scanning electron microscopy (SEM). The immobilized-HRP retained 64.14% of its initial activity after 10 consecutive substrate-oxidation cycles as compared to the free counterpart. Simultaneously, the thermal stability of the immobilized-HRP was significantly enhanced as compared to the free HRP. The enzyme leakage (E L ) assay was performed by storing the immobilized-HRP in phosphate buffer solution for 30days. Evidently, the leakage of immobilized-HRP was recorded to be 6.98% and 14.82% after 15 and 30days of incubation, respectively. Finally, the immobilized-HRP was used for methyl orange (MO) dye degradation in a batch mode. A noticeable decline in spectral shift accompanied by no appearance of a new peak demonstrated the complete degradation of MO. The degraded fragments of MO were scrutinized by ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS). A plausible degradation pathway for MO was proposed based on the identified intermediates. In conclusion, the study portrays the PVA-alginate-immobilized-HRP as a cost-effective and industrially desirable green catalyst, for biotechnological at large and industrial in particular, especially for the treatment of textile dyes or dye-containing industrial waste effluents. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Alginate Immobilization of Metabolic Enzymes (AIME) for High ...

    EPA Pesticide Factsheets

    Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays DE DeGroot, RS Thomas, and SO SimmonsNational Center for Computational Toxicology, US EPA, Research Triangle Park, NC USAThe EPA’s ToxCast program utilizes a wide variety of high-throughput screening (HTS) assays to assess chemical perturbations of molecular and cellular endpoints. A key criticism of using HTS assays for toxicity assessment is the lack of xenobiotic metabolism (XM) which precludes both metabolic detoxification as well as bioactivation of chemicals tested in vitro thereby mischaracterizing the potential risk posed by these chemicals. To address this deficiency, we have developed an extracellular platform to retrofit existing HTS assays with XM activity. This platform utilizes the S9 fraction of liver homogenate encapsulated in an alginate gel network which reduces the cytotoxicity caused by direct addition of S9 to cells in culture. Alginate microspheres containing encapsulated human liver S9 were cross-linked to solid supports extending from a 96-well plate lid and were assayed using a pro-luciferin substrate specific for CYP3A4 (IPA). We demonstrate that S9 was successfully encapsulated and remained enzymatically active post-encapsulation with 5-10X the CYP3A4 activity as compared to 1 µg solubilized human liver S9. Ketoconazole, a known inhibitor of human CYP3A4, inhibited CYP3A4 activity in a concentration-dependent manner (IC50: 0.27 µM) and inhibiti

  14. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead.

    PubMed

    Kim, Hojeong; Hong, Hye-Jin; Jung, Juri; Kim, Seong-Hye; Yang, Ji-Won

    2010-04-15

    Nowadays, many researchers have studied the environmental application of the nanoscale zero-valent iron (nZVI) and several field applications for the groundwater remediation have been reported. Still, there are many concerns on the fate and transport of the nZVI and the corresponding risks. To avoid such concerns, it was investigated to immobilize nZVI in a support and then it was applied to degrade trichloroethylene (TCE). The nZVI and palladium-doped nZVI (Fe(0)- and Fe/Pd-alginate) were immobilized in the alginate bead where ferric and barium ions are used as the cross-linking cations of the bead. According to TEM (transmission electron microscopy), the size of the immobilized ZVI was as small as a few nanometers. From the surface analysis of the Fe/Pd-alginate, it is found that the immobilized nZVI has the core-shell structure. The core is composed of single crystal Fe(0), while most of irons on the surface are oxidized to Fe(3+). When 50 g/L of Fe/Pd-alginate (3.7 g Fe/L) was introduced to the aqueous solution, >99.8% of TCE was removed and the release of metal from the support was <3% of the loaded iron. The removal of TCE by Fe/Pd-alginate followed pseudo-first-order kinetics. The observed pseudo-first-order reaction constant (k(obs)) of Fe/Pd-alginate was 6.11 h(-1) and the mass normalized rate constant (k(m)) was 1.6 L h(-1) g(-1). The k(m) is the same order of magnitude with that of iron nanoparticles. In conclusion, it is considered that Fe/Pd-alginate can be used efficiently in the treatment of chlorinated solvent. 2009 Elsevier B.V. All rights reserved.

  15. Alginate as a cell culture substrate for growth and differentiation of human retinal pigment epithelial cells.

    PubMed

    Heidari, Razeih; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Davari, Maliheh; Nazemroaya, Fatemeh; Bagheri, Abouzar; Deezagi, Abdolkhalegh

    2015-03-01

    The purpose of this study was to evaluate retinal pigment epithelium (RPE) cells' behavior in alginate beads that establish 3D environment for cellular growth and mimic extracellular matrix versus the conventional 2D monolayer culture. RPE cells were encapsulated in alginate beads by dripping alginate cell suspension into CaCl2 solution. Beads were suspended in three different media including Dulbecco's modified Eagle's medium (DMEM)/F12 alone, DMEM/F12 supplemented with 10 % fetal bovine serum (FBS), and DMEM/F12 supplemented with 30 % human amniotic fluid (HAF). RPE cells were cultivated on polystyrene under the same conditions as controls. Cell phenotype, cell proliferation, cell death, and MTT assay, immunocytochemistry, and real-time RT-PCR were performed to evaluate the effect of alginate on RPE cells characteristics and integrity. RPE cells can survive and proliferate in alginate matrixes. Immunocytochemistry analysis exhibited Nestin, RPE65, and cytokeratin expressions in a reasonable number of cultured cells in alginate beads. Real-time PCR data demonstrated high levels of Nestin, CHX10, RPE65, and tyrosinase gene expressions in RPE cells immobilized in alginate when compared to 2D monolayer culture systems. The results suggest that alginate can be used as a reliable scaffold for maintenance of RPE cells' integrity and in vitro propagation of human retinal progenitor cells for cell replacement therapies in retinal diseases.

  16. Alginate as immobilization matrix and stabilizing agent in a two-phase liquid system: application in lipase-catalysed reactions.

    PubMed

    Hertzberg, S; Kvittingen, L; Anthonsen, T; Skjåk-Braek, G

    1992-01-01

    Alginate was evaluated as an immobilization matrix for enzyme-catalyzed reactions in organic solvents. In contrast to most hydrogels, calcium alginate was found to be stable in a range of organic solvents and to retain the enzyme inside the gel matrix. In hydrophobic solvents, the alginate gel (greater than 95% water) thus provided a stable, two-phase liquid system. The lipase from Candida cylindracea, after immobilization in alginate beads, catalysed esterification and transesterification in n-hexane under both batch and continuous-flow conditions. The operational stability of the lipase was markedly enhanced by alginate entrapment. In the esterification of butanoic acid with n-butanol, better results were obtained in the typical hydrophilic calcium alginate beads than in less hydrophilic matrices. The effects of substrate concentration, matrix area, and polarity of the substrate alcohols and of the organic solvent on the esterification activity were examined. The transesterification of octyl 2-bromopropanoate with ethanol was less efficient than that of ethyl 2-bromopropanoate with octanol. By using the hydrophilic alginate gel as an immobilization matrix in combination with a mobile hydrophobic phase, a two-phase liquid system was achieved with definite advantages for a continuous, enzyme-catalysed process.

  17. Alginate-immobilized bentonite clay: adsorption efficacy and reusability for Cu(II) removal from aqueous solution.

    PubMed

    Tan, Wei Shang; Ting, Adeline Su Yien

    2014-05-01

    This study evaluated the use of alginate-immobilized bentonite to remove Cu(II) as an alternative to mitigate clogging problems. The adsorption efficacy (under the influence of time, pH and initial Cu(II) concentration) and reusability of immobilized-bentonite (1% w/v bentonite) was tested against plain alginate beads. Results revealed that immobilized bentonite demonstrated significantly higher sorption efficacy compared to plain alginate beads with 114.70 and 94.04 mg Cu(II) adsorbed g(-1) adsorbent, respectively. Both sorbents were comparable in other aspects where sorption equilibrium was achieved within 6 h, with optimum pH between pH 4 and 5 for adsorption, displayed maximum adsorption capacity at initial Cu(II) concentrations of 400 mg l(-1), and demonstrated excellent reusability potential with desorption greater than 90% throughout three consecutive adsorption-desorption cycles. Both sorbents also conformed to Langmuir isotherm and pseudo-second order kinetic model. Immobilized bentonite is therefore recommended for use in water treatments to remove Cu(II) without clogging the system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Degradation of complex carbohydrate: immobilization of pectinase from Bacillus licheniformis KIBGE-IB21 using calcium alginate as a support.

    PubMed

    Rehman, Haneef Ur; Aman, Afsheen; Silipo, Alba; Qader, Shah Ali Ul; Molinaro, Antonio; Ansari, Asma

    2013-08-15

    Pectinases are heterogeneous group of enzymes that catalyse the hydrolysis of pectin substances which is responsible for the turbidity and undesirable cloudiness in fruits juices. In current study, partially purified pectinase from Bacillus licheniformis KIBGE-IB21 was immobilized in calcium alginate beads. The effect of sodium alginate and calcium chloride concentration on immobilization was studied and it was found that the optimal sodium alginate and calcium chloride concentration was 3.0% and 0.2 M, respectively. It was found that immobilization increases the optimal reaction time for pectin degradation from 5 to 10 min and temperature from 45 to 55°C, whereas, the optimal pH remained same with reference to free enzyme. Thermal stability of enzyme increased after immobilization and immobilized pectinase retained more than 80% of its initial activity after 5 days at 30°C as compared with free enzyme which showed only 30% of residual activity. The immobilized enzyme also exhibited good operational stability and 65% of its initial activity was observed during third cycle. In term of pectinase immobilization efficiency and stability, this calcium alginate beads approach seemed to permit good results and can be used to make a bioreactor for various applications in food industries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Oxygen consumption in T-47D cells immobilized in alginate.

    PubMed

    Larsen, B E; Sandvik, J A; Karlsen, J; Pettersen, E O; Melvik, J E

    2013-08-01

    Encapsulation or entrapment of cells is increasingly being used in a wide variety of scientific studies for tissue engineering and development of novel medical devices. The effect on cell metabolism of such systems is, in general, not well characterized. In this work, a simple system for monitoring respiration of cells embedded in 3-D alginate cultures was characterized. T-47D cells were cultured in alginate gels. Oxygen concentration curves were recorded within cell-gel constructs using two different sensor systems, and cell viability and metabolic state were characterized using confocal microscopy and commercially available stains. At sufficient depth within constructs, recorded oxygen concentration curves were not significantly influenced by influx of oxygen through cell-gel layers and oxygen consumption rate could be calculated simply by dividing oxygen loss in the system per time, by the number of cells. This conclusion was supported by a 3-D numeric simulation. For the T-47D cells, the oxygen consumption rate was found to be 61 ± 6 fmol/cell/h, 3-4 times less than has previously been found for these cells, when grown exponentially in monolayer culture. The experimental set-up presented here may be varied in multiple ways by changing the cell-gel construct 3-D microenvironment, easily allowing investigation of a variety of factors on cell respiration. © 2013 John Wiley & Sons Ltd.

  20. Saccharification of citrus wastes by immobilized polygalacturonase in an improved alginate matrix.

    PubMed

    Ramírez-Tapias, Yuly A; Lapasset Laumann, Aldana S; Britos, Claudia N; Rivero, Cintia W; Trelles, Jorge A

    2017-12-01

    Enzyme immobilization using hydrogels is a low-cost and effective system for the degradation of bulk pectin derived from orange industry residues. Polygalacturonases obtained from four different bacterial strains of Streptomyces genus were immobilized in alginate gel and assayed for pectin hydrolysis. The enzyme from Streptomyces halstedii ATCC 10897 proved to be superior and more stable within the alginate matrix. Furthermore, a new strategy to improve alginate bead stability using a mixture of calcium and strontium is reported; this technique allowed enhancing the mechanical properties by combining different amounts of these cations for ionotropic gelation. The developed biocatalyst showed maximum hydrolysis at 2 h, generating 1.54 mg/mL of reducing sugars and decreasing the viscosity of polygalacturonic acid by 98.9%. Reusability up to 29 successive reactions (58 h) demonstrated a very stable performance. The heterogeneous biocatalyst was used in the enzymatic saccharification of orange peel albedo (2.23 mg/mL) for adding value to this agro-waste by industrial exploitation.

  1. Enhanced degradation of 2-nitrotoluene by immobilized cells of Micrococcus sp. strain SMN-1.

    PubMed

    Mulla, Sikandar I; Talwar, Manjunatha P; Bagewadi, Zabin K; Hoskeri, Robertcyril S; Ninnekar, Harichandra Z

    2013-02-01

    Nitrotoluenes are the toxic pollutants of the environment because of their large scale use in the production of explosives. Biodegradation of such chemicals by microorganisms may provide an effective method for their detoxification. We have studied the degradation of 2-nitrotoluene by cells of Micrococcus sp. strain SMN-1 immobilized in various matrices such as polyurethane foam (PUF), sodium alginate (SA), sodium alginate-polyvinyl alcohol (SA-PVA), agar and polyacrylamide. The rate of degradation of 15 and 30 mM 2-nitrotoluene by freely suspended cells and immobilized cells in batches and fed-batch with shaken cultures were compared. The PUF-immobilized cells achieved higher degradation of 15 and 30 mM 2-nitrotoluene than freely suspended cells and the cells immobilized in SA-PVA, polyacrylamide, SA and agar. The PUF-immobilized cells could be reused more than 24 cycles without loosing their degradation capacity and showed more tolerance to pH and temperature changes than freely suspended cells. These results revealed the enhanced rate of degradation of 2-nitrotoluene by PUF-immobilized cells of Micrococcus sp. strain SMN-1. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Raman probing of molecular interactions of alginate biopolymers with cells

    NASA Astrophysics Data System (ADS)

    Chourpa, Igor; Carpentier, Philippe; Maingault, Philippe; Fetissoff, Franck; Dubois, Pierre

    2000-05-01

    The biological polymers extracted from brown algae, alginates, are novel materials in biotechnology and biomedicine. Their ability to form viscous gels is used to immobilize or encapsulate yeast, enzymes, living cells and drugs. Calcium-alginate fibers are extensively used in wound dressings since exhibit antihaemostatic and healing properties. The problem with alginate-made dressings in surgery is their slow biodegradability: if entrapped within tissues, they can induce a local cellular recruitment with an inflammatory response contemporaneous to the resorption phase. In part, this problem is a consequence of poor solubility of the calcium alginates in water. Although calcium alginate fibers can exchange calcium ions with sodium ions from the wound exudate to create a calcium/sodium alginate fibers, the residual alginates are thought to be not totally degradable in vivo. Rapid and non- destructive characterization of series of the crude alginates and calcium alginate fibers has been performed using Raman spectroscopy with near IR excitation. Study of structural organization of the polymeric chains within calcium alginate fibers have been previously reported as made by confocal Raman multispectral imaging (CRMSI) in visible. Here, the Raman approach has been used to monitor the ion exchange reactions for different types of alginates and their salts in vitro. For in vivo evaluation, histological sections of alginate-treated rat tissue have been analyzed by light microscopy and CRMSI. The in vitro Raman modeling and the histochemical mapping were a necessary precursor for application of the Raman microprobe to follow in a non-invasive way the alginate-cell molecular interactions in rat tissue.

  3. Generation of Stable Co-Cultures of Vascular Cells in a Honeycomb Alginate Scaffold

    PubMed Central

    Yamamoto, Masaya; James, Daylon; Li, Hui; Butler, Jason; Rafii, Shahin

    2010-01-01

    Scaffold-guided vascular tissue engineering has been investigated as a means to generate functional and transplantable vascular tissue grafts that increase the efficacy of cell-based therapeutic strategies in regenerative medicine. In this study, we employed confocal microscopy and three-dimensional reconstruction to assess the engraftment and growth potential of vascular cells within an alginate scaffold with aligned pores. We fabricated honeycomb alginate scaffolds with aligned pores, whose surface was immobilized with fibronectin and subsequently coated with matrigel. Endothelial cells were seeded into aligned pore scaffolds in the presence and absence of human smooth muscle cells. We showed that endothelial cells seeded into alginate scaffolds attach on the surface of aligned pores in vitro, giving rise to stable co-cultures of vascular cells. Moreover, the three-dimensional alginate depots containing the cells were exposed to laminar flow in order to recapitulate physiological shear stress found in the vasculature in vivo. After the flow exposure, the scaffold remained intact and some cells remained adherent to the scaffold and aligned in the flow direction. These studies demonstrate that alginate scaffolds provide a suitable matrix for establishing durable angiogenic modules that may ultimately enhance organ revascularization. PMID:19705957

  4. Osteogenic differentiation of human mesenchymal stem cells in mineralized alginate matrices.

    PubMed

    Westhrin, Marita; Xie, Minli; Olderøy, Magnus Ø; Sikorski, Pawel; Strand, Berit L; Standal, Therese

    2015-01-01

    Mineralized biomaterials are promising for use in bone tissue engineering. Culturing osteogenic cells in such materials will potentially generate biological bone grafts that may even further augment bone healing. Here, we studied osteogenic differentiation of human mesenchymal stem cells (MSC) in an alginate hydrogel system where the cells were co-immobilized with alkaline phosphatase (ALP) for gradual mineralization of the microenvironment. MSC were embedded in unmodified alginate beads and alginate beads mineralized with ALP to generate a polymer/hydroxyapatite scaffold mimicking the composition of bone. The initial scaffold mineralization induced further mineralization of the beads with nanosized particles, and scanning electron micrographs demonstrated presence of collagen in the mineralized and unmineralized alginate beads cultured in osteogenic medium. Cells in both types of beads sustained high viability and metabolic activity for the duration of the study (21 days) as evaluated by live/dead staining and alamar blue assay. MSC in beads induced to differentiate in osteogenic direction expressed higher mRNA levels of osteoblast-specific genes (RUNX2, COL1AI, SP7, BGLAP) than MSC in traditional cell cultures. Furthermore, cells differentiated in beads expressed both sclerostin (SOST) and dental matrix protein-1 (DMP1), markers for late osteoblasts/osteocytes. In conclusion, Both ALP-modified and unmodified alginate beads provide an environment that enhance osteogenic differentiation compared with traditional 2D culture. Also, the ALP-modified alginate beads showed profound mineralization and thus have the potential to serve as a bone substitute in tissue engineering.

  5. Osteogenic Differentiation of Human Mesenchymal Stem Cells in Mineralized Alginate Matrices

    PubMed Central

    Westhrin, Marita; Xie, Minli; Olderøy, Magnus Ø.; Sikorski, Pawel

    2015-01-01

    Mineralized biomaterials are promising for use in bone tissue engineering. Culturing osteogenic cells in such materials will potentially generate biological bone grafts that may even further augment bone healing. Here, we studied osteogenic differentiation of human mesenchymal stem cells (MSC) in an alginate hydrogel system where the cells were co-immobilized with alkaline phosphatase (ALP) for gradual mineralization of the microenvironment. MSC were embedded in unmodified alginate beads and alginate beads mineralized with ALP to generate a polymer/hydroxyapatite scaffold mimicking the composition of bone. The initial scaffold mineralization induced further mineralization of the beads with nanosized particles, and scanning electron micrographs demonstrated presence of collagen in the mineralized and unmineralized alginate beads cultured in osteogenic medium. Cells in both types of beads sustained high viability and metabolic activity for the duration of the study (21 days) as evaluated by live/dead staining and alamar blue assay. MSC in beads induced to differentiate in osteogenic direction expressed higher mRNA levels of osteoblast-specific genes (RUNX2, COL1AI, SP7, BGLAP) than MSC in traditional cell cultures. Furthermore, cells differentiated in beads expressed both sclerostin (SOST) and dental matrix protein-1 (DMP1), markers for late osteoblasts/osteocytes. In conclusion, Both ALP-modified and unmodified alginate beads provide an environment that enhance osteogenic differentiation compared with traditional 2D culture. Also, the ALP-modified alginate beads showed profound mineralization and thus have the potential to serve as a bone substitute in tissue engineering. PMID:25769043

  6. A Ca-alginate particle co-immobilized with Phanerochaete chrysosporium cells and the combined cross-linked enzyme aggregates from Trametes versicolor.

    PubMed

    Li, Yanchun; Wang, Zhi; Xu, Xudong; Jin, Liqiang

    2015-12-01

    For improving stability of immobilized white-rot fungus to treat various effluents, Phanerochaete chrysosporium cells and the combined cross-link enzyme aggregates (combi-CLEAs) prepared from Trametes versicolor were co-immobilized into the Ca-alginate gel particles in this paper. The activity yields of obtained combi-CLEAs were 42.7% for lignin peroxidases (LiPs), 31.4% for manganese peroxidases (MnPs) and 40.4% for laccase (Lac), respectively. And their specific activities were 30.2U/g as combi-CLEAs-LiPs, 9.5 U/g as combi-CLEAs-MnPs and 28.4 U/g as combi-CLEAs-Lac. Further, the present of the combi-CLEAs in the particles extremely improved their ability to degrade the dyes. Compared to the immobilized Ph. chrysosporium without the combi-CLEAs, the co-immobilized particles enhanced the decolorized rate of Acid Violet 7 (from 45.2% to 93.4%) and Basic Fuchsin (from 12.1% to 67.9%). In addition, the addition of the combi-CLEAs improved the adaptability of the white-rot fungal particles to adverse environmental conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Growth and morphology of thermophilic dairy starters in alginate beads.

    PubMed

    Lamboley, Laurence; St-Gelais, Daniel; Champagne, Claude P; Lamoureux, Maryse

    2003-06-01

    The aim of this research was to produce concentrated biomasses of thermophilic lactic starters using immobilized cell technology (ICT). Fermentations were carried out in milk using pH control with cells microentrapped in alginate beads. In the ICT fermentations, beads represented 17% of the weight. Some assays were carried out with free cells without pH control, in order to compare the ICT populations with those of classical starters. With Streptococcus thermophilus, overall populations in the fermentor were similar, but maximum bead population for (8.2 x 10(9) cfu/g beads) was 13 times higher than that obtained in a traditional starter (4.9 x 10(8) cfu/ml). For both Lactobacillus helveticus strains studied, immobilized-cell populations were about 3 x 10(9) cfu/g beads. Production of immobilized Lb. bulgaricus 210R strain was not possible, since no increases in viable counts occurred in beads. Therefore, production of concentrated cell suspension in alginate beads was more effective for S. thermophilus. Photomicrographs of cells in alginate beads demonstrated that, while the morphology of S. thermophilus remained unchanged during the ICT fermentation, immobilized cells of Lb. helveticus appeared wider. In addition, cells of Lb. bulgaricus were curved and elongated. These morphological changes would also impair the growth of immobilized lactobacilli.

  8. Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays (SOT)

    EPA Science Inventory

    Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays DE DeGroot, RS Thomas, and SO SimmonsNational Center for Computational Toxicology, US EPA, Research Triangle Park, NC USAThe EPA’s ToxCast program utilizes a wide variety of high-throughput s...

  9. Evaluation of various parameters of calcium-alginate immobilization method for enhanced alkaline protease production by Bacillus licheniformis NCIM-2042 using statistical methods.

    PubMed

    Potumarthi, Ravichandra; Subhakar, Ch; Pavani, A; Jetty, Annapurna

    2008-04-01

    Calcium-alginate immobilization method for the production of alkaline protease by Bacillus licheniformis NCIM-2042 was optimized statistically. Four variables, such as sodium-alginate concentration, calcium chloride concentration, inoculum size and agitation speed were optimized by 2(4) full factorial central composite design and subsequent analysis and model validation by a second-order regression equation. Eleven carbon, 11 organic nitrogen and seven inorganic nitrogen sources were screened by two-level Plackett-Burman design for maximum alkaline protease production by using optimized immobilized conditions. The levels of four variables, such as Na-alginate 2.78%; CaCl(2), 2.15%; inoculum size, 8.10% and agitation, 139 rpm were found to be optimum for maximal production of protease. Glucose, soybean meal and ammonium sulfate were resulted in maximum protease production at 644 U/ml, 720 U/ml, and 806 U/ml when screened for carbon, organic nitrogen and inorganic nitrogen sources, respectively, using optimized immobilization conditions. Repeated fed batch mode of operation, using optimized immobilized conditions, resulted in continuous operation for 12 cycles without disintegration of beads. Cross-sectional scanning electron microscope images have shown the growth pattern of B. licheniformis in Ca-alginate immobilized beads.

  10. Production optimization of invertase by Lactobacillus brevis Mm-6 and its immobilization on alginate beads.

    PubMed

    Awad, Ghada E A; Amer, Hassan; El-Gammal, Eman W; Helmy, Wafaa A; Esawy, Mona A; Elnashar, Magdy M M

    2013-04-02

    A sequential optimization strategy, based on statistical experimental designs, was employed to enhance the production of invertase by Lactobacillus brevis Mm-6 isolated from breast milk. First, a 2-level Plackett-Burman design was applied to screen the bioprocess parameters that significantly influence the invertase production. The second optimization step was performed using fractional factorial design in order to optimize the amounts of variables have the highest positive significant effect on the invertase production. A maximal enzyme activity of 1399U/ml was more than five folds the activity obtained using the basal medium. Invertase was immobilized onto grafted alginate beads to improve the enzyme's stability. Immobilization process increased the operational temperature from 30 to 60°C compared to the free enzyme. The reusability test proved the durability of the grafted alginate beads for 15 cycles with retention of 100% of the immobilized enzyme activity to be more convenient for industrial uses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Analysis of removal of cadmium by action of immobilized Chlorella sp. micro-algae in alginate beads

    PubMed Central

    Valdez, Christian; Perengüez, Yomaira; Mátyás, Bence; Guevara, María Fernanda

    2018-01-01

    Cadmium (Cd) is a metal that can negatively interfere with the metabolic systems of living beings. The objective of this work was to evaluate the capacity for cadmium removal in aqueous solutions by immobilized Chlorella sp. in calcium alginate beads. Beads without Chlorella sp. were used as a control. All the treatments were established in triplicate for 80 min, at four concentrations of cadmium (0, 20, 100 and 200 ppm), taking samples of aqueous solution every 10 min, to be read using atomic absorption equipment. The study determined that the treatment of alginate beads with immobilized Chlorella sp. removed 59.67% of cadmium at an initial concentration of 20 ppm, this being the best removal result. PMID:29399326

  12. Immobilization of tomato (Lycopersicon esculentum) pectinmethylesterase in calcium alginate beads and its application in fruit juice clarification.

    PubMed

    Bogra, Pushpa; Kumar, Ashwani; Kuhar, Kalika; Panwar, Surbhi; Singh, Randhir

    2013-11-01

    Clarity of fruit juices is desirable to maintain an aesthetically pleasing quality and international standards. The most commonly used enzymes in juice industries are pectinases. A partially-purified pectinmethylesterase from tomato was entrapped in calcium alginate beads and used for juice clarification. The activity yield was maximum at 1 % (w/v) CaCl2 and 2.5 % (w/v) alginate. The immobilized enzyme retained ~55 % of its initial activity (5.7 × 10(-2) units) after more than ten successive batch reactions. The Km, pH and temperature optima were increased after immobilization. The most effective clarification of fruit juice (%T620 ~60 %) by the immobilized enzyme was at 4 °C with a holding time of 20 min. The viscosity dropped by 56 % and the filterability increased by 260 %. The juice remains clear after 2 months of storage at 4 °C.

  13. Biodegradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1

    PubMed Central

    Tallur, Preeti N.; Mulla, Sikandar I.; Megadi, Veena B.; Talwar, Manjunatha P.; Ninnekar, Harichandra Z.

    2015-01-01

    Pyrethroid pesticide cypermethrin is a environmental pollutant because of its widespread use, toxicity and persistence. Biodegradation of such chemicals by microorganisms may provide an cost-effective method for their detoxification. We have investigated the degradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1 in various matrices such as, polyurethane foam (PUF), polyacrylamide, sodium alginate and agar. The optimum temperature and pH for the degradation of cypermethrin by immobilized cells of Micrococcus sp. were found to be 30 °C and 7.0, respectively. The rate of degradation of 10 and 20 mM of cypermethrin by freely suspended cells were compared with that of immobilized cells in batches and semi-continuous with shaken cultures. PUF-immobilized cells showed higher degradation of cypermethrin (10 mM and 20 mM) than freely suspended cells and cells immobilized in other matrices. The PUF-immobilized cells of Micrococcus sp. strain CPN 1 were retain their degradation capacity. Thus, they can be reused for more than 32 cycles, without losing their degradation capacity. Hence, the PUF-immobilized cells of Micrococcus sp. could potentially be used in the bioremediation of cypermethrin contaminated water. PMID:26413046

  14. Biodegradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1.

    PubMed

    Tallur, Preeti N; Mulla, Sikandar I; Megadi, Veena B; Talwar, Manjunatha P; Ninnekar, Harichandra Z

    2015-01-01

    Pyrethroid pesticide cypermethrin is a environmental pollutant because of its widespread use, toxicity and persistence. Biodegradation of such chemicals by microorganisms may provide an cost-effective method for their detoxification. We have investigated the degradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1 in various matrices such as, polyurethane foam (PUF), polyacrylamide, sodium alginate and agar. The optimum temperature and pH for the degradation of cypermethrin by immobilized cells of Micrococcus sp. were found to be 30 °C and 7.0, respectively. The rate of degradation of 10 and 20 mM of cypermethrin by freely suspended cells were compared with that of immobilized cells in batches and semi-continuous with shaken cultures. PUF-immobilized cells showed higher degradation of cypermethrin (10 mM and 20 mM) than freely suspended cells and cells immobilized in other matrices. The PUF-immobilized cells of Micrococcus sp. strain CPN 1 were retain their degradation capacity. Thus, they can be reused for more than 32 cycles, without losing their degradation capacity. Hence, the PUF-immobilized cells of Micrococcus sp. could potentially be used in the bioremediation of cypermethrin contaminated water.

  15. Biomimetic Mineralization of the Alginate/Gelatin/Calcium Oxalate Matrix for Immobilization of Pectinase: Influence of Matrix on the Pectinolytic Activity.

    PubMed

    Bustamante-Vargas, Cindy Elena; de Oliveira, Débora; Valduga, Eunice; Venquiaruto, Luciana Dornelles; Paroul, Natalia; Backes, Geciane Toniazzo; Dallago, Rogério Marcos

    2016-07-01

    Pectinases catalyze the degradation of pectic substances and are used in several processes, mainly in food and textile industries. In this study, a biomimetic matrix of alginate/gelatin/calcium oxalate (AGOCa) was synthesized for the in situ immobilization via encapsulation of crude pectinase from Aspergillus niger ATCC 9642, obtaining an immobilization efficiency of about 61.7 %. To determine the performance of AGOCa matrix, this was compared to control matrices of alginate/calcium oxalate (AOxal) and alginate/water (ACa). By the evaluation of pH and temperature effects on the enzyme activity, it was observed an increase on pectinolytic activity for both three tested matrices with an increase on pH and temperature. The kinetic parameters for pectinase immobilized in the three matrices were determined using citric pectin as substrate. Values of K m of 0.003, 0.0013, and 0.0022 g mL(-1) and V max of 3.85, 4.32, and 3.17 μmol min(-1) g(-1) for AGOCa, AOxal, and ACa matrices were obtained, respectively. After 33 days of storage, the pectinase immobilized in the three different matrices kept its initial activity, but that immobilized in AGOCa presented high stability to the storage with a relative activity of about 160 %. The enzyme immobilized in AGOCa, AOxal, and ACa could be used in 10, 8, and 7 cycles, respectively, keeping 40 % of its initial activity.

  16. Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: II. Heterotrophic conditions.

    PubMed

    Choix, Francisco J; de-Bashan, Luz E; Bashan, Yoav

    2012-10-10

    The effect of the bacterium Azospirillum brasilense jointly immobilized with Chlorella vulgaris or C. sorokiniana in alginate beads on total carbohydrates and starch was studied under dark and heterotrophic conditions for 144 h in synthetic growth medium supplemented with either d-glucose or Na-acetate as carbon sources. In all treatments, enhanced total carbohydrates and starch content per culture and per cell was obtained after 24h; only jointly immobilized C. vulgaris growing on d-glucose significantly increased total carbohydrates and starch content after 96 h. Enhanced accumulation of carbohydrate and starch under jointly immobilized conditions was variable with time of sampling and substrate used. Similar results occurred when the microalgae was immobilized alone. In both microalgae growing on either carbon sources, the bacterium promoted accumulation of carbohydrates and starch; when the microalgae were immobilized alone, they used the carbon sources for cell multiplication. In jointly immobilized conditions with Chlorella spp., affinity to carbon source and volumetric productivity and yield were higher than when Chlorella spp. were immobilized alone; however, the growth rate was higher in microalgae immobilized alone. This study demonstrates that under heterotrophic conditions, A. brasilense promotes the accumulation of carbohydrates in two strains Chlorella spp. under certain time-substrate combinations, producing mainly starch. As such, this bacterium is a biological factor that can change the composition of compounds in microalgae in dark, heterotrophic conditions. Copyright © 2012. Published by Elsevier Inc.

  17. Reduction of Brochothrix thermosphacta on beef surfaces following immobilization of nisin in calcium alginate gels.

    PubMed

    Cutter, C N; Siragusa, G R

    1996-07-01

    Lean and adipose beef carcass tissues inoculated with Brochothrix thermosphacta (BT) (approx. 4.50 log10 cfu cm-2) were left untreated (U) or treated with 100 micrograms ml-1 nisin (N), calcium alginate (A) or 100 micrograms ml-1 nisin immobilized in a calcium alginate gel (AN). Tissue samples were refrigerated after treatments and bacterial populations and nisin activity were determined at 0, 1, 2 and 7 d. U, A and N treatments of lean and adipose tissues did not suppress bacterial growth ( > 6 log10 cfu cm-2 by day 7) while treatments of lean and adipose tissues with AN suppressed bacteria ( > 2.42 log10 cfu cm-2 by day 7). Bacteriocin titres from both tissues were higher in AN vs N samples after the 7 d incubation. This study demonstrates that immobilization of nisin in a gel may be a more effective delivery system of a bacteriocin to the carcass surface than direct application.

  18. Methylene blue adsorption on graphene oxide/calcium alginate composites.

    PubMed

    Li, Yanhui; Du, Qiuju; Liu, Tonghao; Sun, Jiankun; Wang, Yonghao; Wu, Shaoling; Wang, Zonghua; Xia, Yanzhi; Xia, Linhua

    2013-06-05

    Graphene oxide has been used as an adsorbent in wastewater treatment. However, the dispersibility in aqueous solution and the biotoxicity to human cells of graphene oxide limits its practical application in environmental protection. In this research, a novel environmental friendly adsorbent, calcium alginate immobilized graphene oxide composites was prepared. The effects of pH, contact time, temperature and dosage on the adsorption properties of methylene blue onto calcium alginate immobilized graphene oxide composites were investigated. The equilibrium adsorption data were described by the Langmuir and Freundlich isotherms. The maximum adsorption capacity obtained from Langmuir isotherm equation was 181.81 mg/g. The pseudo-first order, pseudo-second order, and intraparticle diffusion equation were used to evaluate the kinetic data. Thermodynamic analysis of equilibriums indicated that the adsorption reaction of methylene blue onto calcium alginate immobilized graphene oxide composites was exothermic and spontaneous in nature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Production of α-keto acids Part I. Immobilized cells ofTrigonopsis variabilis containing D-amino acid oxidase.

    PubMed

    Brodelius, P; Nilsson, K; Mosbach, K

    1981-12-01

    Whole cells ofTrigonopsis variabilis were immobilized by entrapment in Ca(2+)-alginate and used for the production of α-keto acids from the corresponding D-amino acids. The D-amino acid oxidase within the immobilized cells has a broad substrate specificity. Hydrogen peroxide formed in the enzymatic reaction was efficiently hydrolyzed by manganese oxide co-immobilized with the cells. The amino acid oxidase activity was assayed with a new method based on reversed-phase HPLC. Oxygen requirements, bead size, concentration of cells in the beads, flow rate, and other factors were investigated in a " trickle-bed " reactor.

  20. Degradation of Carbazole by Microbial Cells Immobilized in Magnetic Gellan Gum Gel Beads▿

    PubMed Central

    Wang, Xia; Gai, Zhonghui; Yu, Bo; Feng, Jinhui; Xu, Changyong; Yuan, Yong; Lin, Zhixin; Xu, Ping

    2007-01-01

    Polycyclic aromatic heterocycles, such as carbazole, are environmental contaminants suspected of posing human health risks. In this study, we investigated the degradation of carbazole by immobilized Sphingomonas sp. strain XLDN2-5 cells. Four kinds of polymers were evaluated as immobilization supports for Sphingomonas sp. strain XLDN2-5. After comparison with agar, alginate, and κ-carrageenan, gellan gum was selected as the optimal immobilization support. Furthermore, Fe3O4 nanoparticles were prepared by a coprecipitation method, and the average particle size was about 20 nm with 49.65-electromagnetic-unit (emu) g−1 saturation magnetization. When the mixture of gellan gel and the Fe3O4 nanoparticles served as an immobilization support, the magnetically immobilized cells were prepared by an ionotropic method. The biodegradation experiments were carried out by employing free cells, nonmagnetically immobilized cells, and magnetically immobilized cells in aqueous phase. The results showed that the magnetically immobilized cells presented higher carbazole biodegradation activity than nonmagnetically immobilized cells and free cells. The highest biodegradation activity was obtained when the concentration of Fe3O4 nanoparticles was 9 mg ml−1 and the saturation magnetization of magnetically immobilized cells was 11.08 emu g−1. Additionally, the recycling experiments demonstrated that the degradation activity of magnetically immobilized cells increased gradually during the eight recycles. These results support developing efficient biocatalysts using magnetically immobilized cells and provide a promising technique for improving biocatalysts used in the biodegradation of not only carbazole, but also other hazardous organic compounds. PMID:17827304

  1. Preparation, characterization and catalytic behavior of pectinase covalently immobilized onto sodium alginate/graphene oxide composite beads.

    PubMed

    Dai, Xiao-Yan; Kong, Li-Min; Wang, Xiao-Ling; Zhu, Qing; Chen, Kai; Zhou, Tao

    2018-07-01

    Pectinase was immobilized onto sodium alginate/graphene oxide beads via amide bonds by using N,N'-dicyclohexylcarbodiimide/N-hydroxysuccinimide as the activating agent. The immobilized pectinase was characterized by Fourier transform infrared spectra and scanning electron microscopy analyses. Immobilization conditions were optimized by Box-Behnken design and the response surface method. The activity of the immobilized pectinase prepared under optimal conditions reached 1236.86 ± 40.21 U/g, with an enzyme activity recovery of 83.5%. The optimal pH of free pectinase was 4.5, while that of immobilized pectinase was shifted to 4.0. The optimal temperature of immobilized pectinase was increased to 60 °C, which was 10 °C higher than that of free form. Furthermore, the immobilized pectinase possessed a superior thermal stability and storage stability to those of free pectinase. Reusability studies indicated that the immobilized pectinase retained 73% of initial activity after six times cycles. Due to these good properties, such immobilized pectinase may find application in food industry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Formation of novel hydrogel bio-anode by immobilization of biocatalyst in alginate/polyaniline/titanium-dioxide/graphite composites and its electrical performance.

    PubMed

    Szöllősi, Attila; Hoschke, Ágoston; Rezessy-Szabó, Judit M; Bujna, Erika; Kun, Szilárd; Nguyen, Quang D

    2017-05-01

    A new bio-anode containing gel-entrapped bacteria in alginate/polyaniline/TiO 2 /graphite composites was constructed and electrically investigated. Alginate as dopant and template as well as entrapped gel was used for immobilization of microorganism cells. Increase of polyaniline concentration resulted an increase in the conductivity in gels. Addition of 0.01 and 0.02 g/mL polyaniline caused 6-fold and 10-fold higher conductivity, respectively. Furthermore, addition of 0.05 g/mL graphite powder caused 10-fold higher conductivity and 4-fold higher power density, respectively. The combination of polyaniline and graphite resulted 105-fold higher conductivity and 7-fold higher power-density output. Optimized concentrations of polyaniline and graphite powder were determined to be 0.02 g/mL and 0.05 g/mL, respectively. Modified hydrogel anode was successfully used in microbial fuel cell systems both in semi- and continuous operations modes. In semi-continuous mode, about 7.88 W/m 3 power density was obtained after 13 h of fermentation. The glucose consumption rate was calculated to be about 7 mg glucose/h/1.2·10 7  CFU immobilized cells. Similar power density was observed in the continuous operation mode of the microbial fuel cell, and it was operated stably for more than 7 days. Our results are very promising for development of an improved microbial fuel cell with new type of bio-anode that have higher power density and can operate for long term. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Hemicellulosic Ethanol Production by Immobilized Wild Brazilian Yeast Scheffersomyces shehatae UFMG-HM 52.2: Effects of Cell Concentration and Stirring Rate.

    PubMed

    Antunes, F A F; Santos, J C; Chandel, A K; Milessi, T S S; Peres, G F D; da Silva, S S

    2016-02-01

    The use of sugarcane bagasse hemicellulosic hydrolysates presents an interesting alternative to second generation (2G) ethanol production. Techniques to enhance the fermentation process, e.g., the use of immobilized cells, is one of the key factors for efficient production. Here, the effect of two important parameters (cell concentration in immobilized system and stirring rate) on the 2G ethanol production using the wild Brazilian yeast S. shehatae UFMG-HM 52.2 immobilized in calcium alginate matrix are presented. A 2(2) full factorial design of experiments was carried out to evaluate the effect of cell concentrations in sodium alginate solution for immobilized bead production (3.0, 6.0, and 9.0 g/L) and stirring rate (150, 200, and 250 rpm) for 2G ethanol production. Statistical analysis showed that the use of both variables at low levels enhanced ethanol yield (YP/S). Under these process conditions, YP/S of 0.31 g/g and ethanol productivity (Qp) of 0.12 g/L h were achieved. Results showed the potential of this immobilized yeast in 2G ethanol production from C5 sugars and demonstrate the importance of adequate cell concentration in immobilized systems, a finding that stands to increase bioprocesses yields and productivity.

  4. Repeated-batch operation of immobilized β-galactosidase inclusion bodies-containing Escherichia coli cell reactor for lactose hydrolysis.

    PubMed

    Yeon, Ji-Hyeon; Jung, Kyung-Hwan

    2011-09-01

    In this study, we investigated the performance of an immobilized β-galactosidase inclusion bodies-containing Escherichia coli cell reactor, where the cells were immobilized in alginate beads, which were then used in repeated-batch operations for the hydrolysis of o-nitrophenyl-β-D-galactoside or lactose over the long-term. In particular, in the Tris buffer system, disintegration of the alginate beads was not observed during the operation, which was observed for the phosphate buffer system. The o-nitrophenyl-β-D-galactoside hydrolysis was operated successfully up to about 80 h, and the runs were successfully repeated at least eight times. In addition, hydrolysis of lactose was successfully carried out up to 240 h. Using Western blotting analyses, it was verified that the beta-galactosidase inclusion bodies were sustained in the alginate beads during the repeated-batch operations. Consequently, we experimentally verified that β-galactosidase inclusion bodies-containing Escherichia coli cells could be used in a repeated-batch reactor as a biocatalyst for the hydrolysis of o-nitrophenyl-β-D-galactoside or lactose. It is probable that this approach can be applied to enzymatic synthesis reactions for other biotechnology applications, particularly reactions that require long-term and stable operation.

  5. Immobilization of iron oxide nanoparticles within alginate nanogels for enhanced MR imaging applications.

    PubMed

    Sun, Wenjie; Yang, Jia; Zhu, Jianzhi; Zhou, Yiwei; Li, Jingchao; Zhu, Xiaoyue; Shen, Mingwu; Zhang, Guixiang; Shi, Xiangyang

    2016-10-20

    We report the design of iron oxide (Fe3O4) nanoparticle (NP)-immobilized alginate (AG) nanogels (NGs) as a novel contrast agent for enhanced magnetic resonance (MR) imaging applications. In this study, an aqueous solution of AG activated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride was double emulsified to form NGs, followed by in situ cross-linking with polyethyleneimine (PEI)-coated Fe3O4 NPs (PEI-Fe3O4 NPs). The resultant Fe3O4 NP-immobilized AG NGs (AG/PEI-Fe3O4 NGs) were characterized via different techniques. Our results reveal that the hybrid NGs with a size of 186.1 ± 33.1 nm are water dispersible, colloidally stable, and cytocompatible in the given concentration range. Importantly, these NGs have a high r2 relaxivity (170.87 mM(-1) s(-1)) due to the high loading of Fe3O4 NPs within the NGs, and can be more significantly uptaken by cancer cells when compared with carboxylated Fe3O4 NPs. The formed AG/PEI-Fe3O4 NGs are able to be used as an effective contrast agent for the MR imaging of cancer cells in vitro and the xenografted tumor model in vivo after intravenous injection. The developed AG/PEI-Fe3O4 NGs may hold great promise for use as a novel contrast agent for the enhanced MR imaging of different biological systems.

  6. Hemicellulosic ethanol production by immobilized cells of Scheffersomyces stipitis: Effect of cell concentration and stirring

    PubMed Central

    Milessi, Thais S S; Antunes, Felipe A F; Chandel, Anuj K; da Silva, Silvio S

    2015-01-01

    Bioconversion of hemicellulosic hydrolysate into ethanol plays a pivotal role in the overall success of biorefineries. For the efficient fermentative conversion of hemicellulosic hydrolysates into ethanol, the use of immobilized cells system could provide the enhanced ethanol productivities with significant time savings. Here, we investigated the effect of 2 important factors (e.g., cell concentration and stirring) on ethanol production from sugarcane bagasse hydrolysate using the yeast Scheffersomyces stipitis immobilized in calcium alginate matrix. A 22 full factorial design of experiment was performed considering the process variables- immobilized cell concentration (3.0, 6.5 and 10.0 g/L) and stirring (100, 200 and 300 rpm). Statistical analysis showed that stirring has the major influence on ethanol production. Maximum ethanol production (8.90 g/l) with ethanol yield (Yp/s) of 0.33 g/g and ethanol productivity (Qp) of 0.185 g/l/h was obtained under the optimized process conditions (10.0 g/L of cells and 100 rpm). PMID:25488725

  7. 3-Chloro-1,2-propanediol biodegradation by Ca-alginate immobilized Pseudomonas putida DSM 437 cells applying different processes: mass transfer effects.

    PubMed

    Konti, Aikaterini; Mamma, Diomi; Hatzinikolaou, Dimitios G; Kekos, Dimitris

    2016-10-01

    3-Chloro-1,2-propanediol (3-CPD) biodegradation by Ca-alginate immobilized Pseudomonas putida cells was performed in batch system, continuous stirred tank reactor (CSTR), and packed-bed reactor (PBR). Batch system exhibited higher biodegradation rates and 3-CPD uptakes compared to CSTR and PBR. The two continuous systems (CSTR and PBR) when compared at 200 mg/L 3-CPD in the inlet exhibited the same removal of 3-CPD at steady state. External mass-transfer limitations are found negligible at all systems examined, since the observable modulus for external mass transfer Ω ≪ 1 and the Biot number Bi > 1. Intra-particle diffusion resistance had a significant effect on 3-CPD biodegradation in all systems studied, but to a different extent. Thiele modulus was in the range of 2.5 in batch system, but it was increased at 11 when increasing cell loading in the beads, thus lowering significantly the respective effectiveness factor. Comparing the systems at the same cell loading in the beads PBR was less affected by internal diffusional limitations compared to CSTR and batch system, and, as a result, exhibited the highest overall effectiveness factor.

  8. Combined of ultrasound irradiation with high hydrostatic pressure (US/HHP) as a new method to improve immobilization of dextranase onto alginate gel.

    PubMed

    Bashari, Mohanad; Abbas, Shabbar; Xu, Xueming; Jin, Zhengyu

    2014-07-01

    In this research work, dextranase was immobilized onto calcium alginate beads by the combination of ultrasonic irradiation and high hydrostatic pressure (US/HHP) treatments. Effects of US/HHP treatments on loading efficiency and immobilization yield of dextranase enzyme onto calcium alginate beads were investigated. Furthermore, the activities of immobilized enzymes prepared with and without US/HHP treatments and that prepared with ultrasonic irradiation (US) and high hydrostatic pressure (HHP), as a function of pH, temperature, recyclability and enzyme kinetic parameters, were compared with that for free enzyme. The maximum loading efficiency and the immobilization yield were observed when the immobilized dextranase was prepared with US (40 W at 25 kHz for 15 min) combined with HHP (400 MPa for 15 min), under which the loading efficiency and the immobilization yield increased by 88.92% and 80.86%, respectively, compared to immobilized enzymes prepared without US/HHP treatment. On the other hand, immobilized enzyme prepared with US/HHP treatment showed Vmax, KM, catalytic and specificity constants values higher than that for the immobilized enzyme prepared with HHP treatment, indicated that, this new US/HHP method improved the catalytic kinetics activity of immobilized dextranase at all the reaction conditions studied. Compared to immobilized enzyme prepared either with US or HHP, the immobilized enzymes prepared with US/HHP method exhibited a higher: pH optimum, optimal reaction temperature, thermal stability and recyclability, and lower activation energy, which, illustrating the effectiveness of the US/HHP method. These results indicated that, the combination of US and HHP treatments could be an effective method for improving the immobilization of enzymes in polymers. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Immobilization of alginate-encapsulated Bacillus thuringiensis var. israelensis containing different multivalent counterions for mosquito control.

    PubMed

    Prabakaran, G; Hoti, S L

    2008-08-01

    Immobilized techniques have been used widely for the controlled release formulation of mosquitoes. Among the microbial formulations, polymeric matrices play an important role in the controlled release of microbial pesticide at rates sufficiently effective to kill mosquitoes in the field. The advantage of these matrices is that they enhance the stability of both spores and toxin against pH, temperature variations, and UV irradiation. The disadvantage of using calcium alginate beads is that they are unstable upon contact with phosphate of potassium or sodium ions rich in the mosquito habitats. To overcome these problems, attempts were made to encapsulate Bacillus thuringiensis var. israelensis within alginate by using different multivalent counterions, namely, calcium chloride, zinc sulfate, copper sulfate, cobalt chloride, and ferric chloride, and the beads formed were tested for its mosquito larvicidal activity. Among all the beads tested, zinc alginate beads resulted in maximum larvicidal activity of 98% (+/-1.40 SE) against Culex quinquefasciatus IIIrd instar larvae and maximum spore count of 3.36 x 10(5) (+/-5291.50 SE) CFU/ml. Zinc alginate beads maintained their structure for up to 48 h when shaken vigorously on a rotary shaker at 180 rpm in the presence of 10 mM potassium phosphate buffer (pH 6.8 +/- 0.1). In conclusion, our results suggest that the use of zinc sulfate as counterions to encapsulate B. thuringiensis var. israelensis within alginate may be a potent mosquito control program in the habitats where more phosphate ions are present.

  10. Antibacterial Performance of Alginic Acid Coating on Polyethylene Film

    PubMed Central

    Karbassi, Elika; Asadinezhad, Ahmad; Lehocký, Marian; Humpolíček, Petr; Vesel, Alenka; Novák, Igor; Sáha, Petr

    2014-01-01

    Alginic acid coated polyethylene films were examined in terms of surface properties and bacteriostatic performance against two most representative bacterial strains, that is, Escherichia coli and Staphylococcus aureus. Microwave plasma treatment followed by brush formation in vapor state from three distinguished precursors (allylalcohol, allylamine, hydroxyethyl methacrylate) was carried out to deposit alginic acid on the substrate. Surface analyses via various techniques established that alginic acid was immobilized onto the surface where grafting (brush) chemistry influenced the amount of alginic acid coated. Moreover, alginic acid was found to be capable of bacterial growth inhibition which itself was significantly affected by the brush type. The polyanionic character of alginic acid as a carbohydrate polymer was assumed to play the pivotal role in antibacterial activity. The cell wall composition of two bacterial strains along with the substrates physicochemical properties accounted for different levels of bacteriostatic performance. PMID:25196604

  11. Immobilization of the proteins in the natural rubber with dialdehyde sodium alginate.

    PubMed

    Gong, Ying; Liu, Guangjiao; Peng, Wei; Su, Xiaoyu; Chen, Jiping

    2013-11-06

    The biodegradable dialdehyde sodium alginate (DASA) was exploited to immobilize the proteins in the natural rubber latex (NRL) and the variations of the properties for the NRL films were estimated in detail. As demonstrated, the proteins were distributed more uniformly in the NRL films with DASA and the extractable protein (EP) content was effectively decreased. Particularly, the EP content was lowered to a value about 46 μg/g with 0.40% DASA, which could meet with the demands of the allergy protein threshold limit of 50 μg/g as described in ASTM D 5712 standard. Furthermore, there was some improve on the burial degradability of the NRL films modified with DASA. The mechanical properties, however, had no evident variation in the presence of DASA. In conclusion, the immobilization of the proteins with DASA should be a potential alternative to tackle the protein allergy problem for the NRL and its products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Optimization of pectinase immobilization on grafted alginate-agar gel beads by 24 full factorial CCD and thermodynamic profiling for evaluating of operational covalent immobilization.

    PubMed

    Abdel Wahab, Walaa A; Karam, Eman A; Hassan, Mohamed E; Kansoh, Amany L; Esawy, Mona A; Awad, Ghada E A

    2018-07-01

    Pectinase produced by a honey derived from the fungus Aspergillus awamori KX943614 was covalently immobilized onto gel beads made of alginate and agar. Polyethyleneimine, glutaraldehyde, loading time and enzyme's units were optimized by 2 4 full factorial central composite design (CCD). The immobilization process increased the optimal working pH for the free pectinase from 5 to a broader range of pH4.5-5.5 and the optimum operational temperature from 55°C to a higher temperature, of 60°C, which is favored to reduce the enzyme's microbial contamination. The thermodynamics studies showed a thermal stability enhancement against high temperature for the immobilized formula. Moreover, an increase in half-lives and D-values was achieved. The thermodynamic studies proved that immobilization of pectinase made a remarkable increase in enthalpy and free energy because of enzyme stability enhancement. The reusability test revealed that 60% of pectinase's original activity was retained after 8 successive cycles. This gel formula may be convenient for immobilization of other industrial enzymes. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Calcium alginate gels as stem cell matrix-making paracrine stem cell activity available for enhanced healing after surgery.

    PubMed

    Schmitt, Andreas; Rödel, Philipp; Anamur, Cihad; Seeliger, Claudine; Imhoff, Andreas B; Herbst, Elmar; Vogt, Stephan; van Griensven, Martijn; Winter, Gerhard; Engert, Julia

    2015-01-01

    Regeneration after surgery can be improved by the administration of anabolic growth factors. However, to locally maintain these factors at the site of regeneration is problematic. The aim of this study was to develop a matrix system containing human mesenchymal stem cells (MSCs) which can be applied to the surgical site and allows the secretion of endogenous healing factors from the cells. Calcium alginate gels were prepared by a combination of internal and external gelation. The gelling behaviour, mechanical stability, surface adhesive properties and injectability of the gels were investigated. The permeability of the gels for growth factors was analysed using bovine serum albumin and lysozyme as model proteins. Human MSCs were isolated, cultivated and seeded into the alginate gels. Cell viability was determined by AlamarBlue assay and fluorescence microscopy. The release of human VEGF and bFGF from the cells was determined using an enzyme-linked immunoassay. Gels with sufficient mechanical properties were prepared which remained injectable through a syringe and solidified in a sufficient time frame after application. Surface adhesion was improved by the addition of polyethylene glycol 300,000 and hyaluronic acid. Humans MSCs remained viable for the duration of 6 weeks within the gels. Human VEGF and bFGF was found in quantifiable concentrations in cell culture supernatants of gels loaded with MSCs and incubated for a period of 6 weeks. This work shows that calcium alginate gels can function as immobilization matrices for human MSCs.

  14. Method To immobilize the aphid-pathogenic fungus erynia neoaphidis in an alginate matrix for biocontrol

    PubMed

    Shah; Aebi; Tuor

    1998-11-01

    Erynia neoaphidis is an important fungal pathogen of aphid pests worldwide. There have been few reported attempts to formulate this natural agent for use in biocontrol. In the current study, factors involved in the immobilization of E. neoaphidis hyphae in an alginate matrix were investigated. Hyphae of two isolates cultured in liquid medium were 220 to 620 &mgr;m in length and 7 to 19 &mgr;m in diameter with a 74 to 83% cytoplasmic content. The optimal concentration of low-viscosity sodium alginate for production of conidia from entrapped hyphae was 1.5% (wt/vol), and 0.1 and 0.25 M calcium chloride were equally suitable for use as the gelling solution. Alginate beads were rinsed with 10% sucrose after gelling. However, beads should not be left for longer than 40 min in 0.1 M calcium chloride or 10% sucrose to prevent a 10% loss in conidial production. A 40% (vol/vol) concentration of fungal biomass produced significantly more conidia than either 20% or the standard concentration of 10%. This effect persisted even after beads were dried overnight in a laminar flow hood and stored at 4 degreesC for 4 days. Conidia from freshly produced alginate beads caused 27 to 32% infection in Pea aphids as determined by standardized laboratory bioassays. This finding was not significantly different from infections in aphids inoculated with fresh mycelial mats or plugs from Petri dish cultures. In conclusion, algination appears to be a promising technique for utilizing E. neoaphidis in the biocontrol of aphid pests.

  15. Reduction of volatile acidity of acidic wines by immobilized Saccharomyces cerevisiae cells.

    PubMed

    Vilela, A; Schuller, D; Mendes-Faia, A; Côrte-Real, M

    2013-06-01

    Excessive volatile acidity in wines is a major problem and is still prevalent because available solutions are nevertheless unsatisfactory, namely, blending the filter-sterilized acidic wine with other wines of lower volatile acidity or using reverse osmosis. We have previously explored the use of an empirical biological deacidification procedure to lower the acetic acid content of wines. This winemaker's enological practice, which consists in refermentation associated with acetic acid consumption by yeasts, is performed by mixing the acidic wine with freshly crushed grapes, musts, or marc from a finished wine fermentation. We have shown that the commercial strain Saccharomyces cerevisiae S26 is able to decrease the volatile acidity of acidic wines with a volatile acidity higher than 1.44 g L(-1) acetic acid, with no detrimental impact on wine aroma. In this study, we aimed to optimize the immobilization of S26 cells in alginate beads for the bioreduction of volatile acidity of acidic wines. We found that S26 cells immobilized in double-layer alginate-chitosan beads could reduce the volatile acidity of an acidic wine (1.1 g L(-1) acetic acid, 12.5 % (v/v) ethanol, pH 3.12) by 28 and 62 % within 72 and 168 h, respectively, associated with a slight decrease in ethanol concentration (0.7 %). Similar volatile acidity removal efficiencies were obtained in medium with high glucose concentration (20 % w/v), indicating that this process may also be useful in the deacidification of grape musts. We, therefore, show that immobilized S. cerevisiae S26 cells in double-layer beads are an efficient alternative to improve the quality of wines with excessive volatile acidity.

  16. Immobilization of sodium alginate sulfates on polysulfone ultrafiltration membranes for selective adsorption of low-density lipoprotein.

    PubMed

    Wang, Wei; Huang, Xiao-Jun; Cao, Jian-Da; Lan, Ping; Wu, Wen

    2014-01-01

    A novel method for the immobilization of sodium alginate sulfates (SAS) on polysulfone (PSu) ultrafiltration membranes to achieve selective adsorption of low-density lipoprotein (LDL) was developed, which involved the photoinduced graft polymerization of acrylamide on the membrane and the Hofmann rearrangement reaction of grafted acrylamide followed by chemical binding of SAS with glutaraldehyde. The surface modification processes were confirmed by attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy characterization. Zeta potential and water contact angle measurements were performed to investigate the surface charge and wettability of the membranes. An enzyme-linked immunosorbent assay was used to measure the binding of LDL on plain and modified PSu membranes. It was found that the PSu membrane immobilized with sodium alginate sulfates (PSu-SAS) greatly enhanced the selective adsorption of LDL from protein solutions and the absorbed LDL could be easily eluted with sodium chloride solution, indicating a specific and reversible binding of LDL to SAS, mainly driven by electrostatic forces. Furthermore, the PSu-SAS membrane showed good blood compatibility as examined by platelet adhesion. The results suggest that the PSu-SAS membranes are promising for application in simultaneous hemodialysis and LDL apheresis therapy. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Parameters and kinetics of olive mill wastewater dephenolization by immobilized Rhodotorula glutinis cells.

    PubMed

    Bozkoyunlu, Gaye; Takaç, Serpil

    2014-01-01

    Olive mill wastewater (OMW) with total phenol (TP) concentration range of 300-1200 mg/L was treated with alginate-immobilized Rhodotorula glutinis cells in batch system. The effects of pellet properties (diameter, alginate concentration and cell loading (CL)) and operational parameters (initial TP concentration, agitation rate and reusability of pellets) on dephenolization of OMW were studied. Up to 87% dephenolization was obtained after 120 h biodegradations. The utilization number of pellets increased with the addition of calcium ions into the biodegradation medium. The overall effectiveness factors calculated for different conditions showed that diffusional limitations arising from pellet size and pellet composition could be neglected. Mass transfer limitations appeared to be more effective at high substrate concentrations and low agitation rates. The parameters of logistic model for growth kinetics of R. glutinis in OMW were estimated at different initial phenol concentrations of OMW by curve-fitting of experimental data with the model.

  18. Immobilization of Paecilomyces variotii tannase and properties of the immobilized enzyme.

    PubMed

    Schons, Patrícia Fernanda; Lopes, Fernanda Cristina Rezende; Battestin, Vania; Macedo, Gabriela Alves

    2011-01-01

    Tannase produced by Paecilomyces variotii was encapsulated in sodium alginate beads and used for the effective hydrolysis of tannic acid; the efficiency of hydrolysis was comparable to that of the free enzyme. The alginate beads retained 100% of their efficiency in the first three rounds of successive use and 60% in rounds 4 and 5. The response surface methodology showed that the best conditions to hydrolysis of tannic acid by immobilized tannase were: sodium alginate 5.2%, CaCl₂ 0.55 M and 9 h to curing time. The optimized process resulted in 2.4 times more hydrolysed tannic acid than that obtained before optimization. The optimum pH for the actions of both the encapsulated and the free enzymes was 5.5. The optimum temperature of the reaction was determined to be 40 °C for the free enzyme and 60 °C for the immobilized form. The immobilization process improved the stability at low pH.

  19. Production of D-tagatose at high temperatures using immobilized Escherichia coli cells expressing L-arabinose isomerase from Thermotoga neapolitana.

    PubMed

    Hong, Young-Ho; Lee, Dong-Woo; Lee, Sang-Jae; Choe, Eun-Ah; Kim, Seong-Bo; Lee, Yoon-Hee; Cheigh, Chan-Ick; Pyun, Yu-Ryang

    2007-04-01

    Escherichia coli cells expressing L-arabinose isomerase from Thermotoga neapolitana (TNAI) were immobilized in calcium alginate beads. The resulting cell reactor (2.4 U, t (1/2) = 43 days at 70 degrees C) in a continuous recycling mode at 70 degrees C produced 49 and 38 g D-tagatose/l from 180 and 90 g D-galactose/l, respectively, within 12 h.

  20. Neutralization of acidic drainage by Cryptococcus sp. T1 immobilized in alginate beads.

    PubMed

    Okai, Masahiko; Suwa, Chisato; Nagaoka, Shintaro; Obara, Nobuo; Mitsuya, Daisuke; Kurihara, Ayako; Ishida, Masami; Urano, Naoto

    2017-11-01

    We isolated Cryptococcus sp. T1 from Lake Tazawa's acidic water in Japan. Cryptococcus sp. T1 neutralized an acidic casamino acid solution (pH 3.0) and released ammonia from the casamino acids to aid the neutralization. The neutralization volume was estimated to be approximately 0.4 mL/h. The casamino acids' amino acids decreased (1.24→0.15 mM); ammonia increased (0.22→0.99 mM). We neutralized acidic drainage water (1 L) from a Tamagawa River neutralization plant, which was run through the column with the T1-immobilized alginate beads at a flow rate of 0.5 mL/min, and observed that the viscosity, particle size and amounts of the alginate beads affected the acidic drainage neutralization with an increase of the pH value from 5.26 to 6.61 in the last fraction. An increase in the Al concentration decreased Cryptococcus sp. T1's neutralization ability. After 48 h, the pH of acidic water with 50 mg/L Al was apparently lower than that without Al. Almost no pH increase was observed at 75 mg/L.

  1. Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: I. Autotrophic conditions.

    PubMed

    Choix, Francisco J; de-Bashan, Luz E; Bashan, Yoav

    2012-10-10

    The effect of the microalgae-growth promoting bacterium Azospirillum brasilense on accumulation of total carbohydrates and starch in two species of Chlorella (Chlorella vulgaris and Chlorella sorokiniana), when the bacterium and each microalga were jointly immobilized in alginate beads was studied under autotrophic conditions for 144 h in synthetic medium. The interaction of the bacterium with the microalgae enhanced accumulation of total carbohydrate and starch. Cells of Chlorella accumulated the highest amounts of carbohydrate after incubation for 24h. Yet, this did not coincide with the highest affinity and volumetric productivity measured in these cultures. However, after incubation for 72 h, mainly in jointly immobilized treatments of both microalgae species, the cultures reached their highest total carbohydrate content (mainly as starch) and also the highest affinity and volumetric productivity. These results demonstrate the potential of A. brasilense to affect carbohydrates and starch accumulation in Chlorella spp. when both microorganisms are co-cultured, which can be an important tool for applications of microalgae. Copyright © 2012. Published by Elsevier Inc.

  2. Three-dimensional bioprinting of complex cell laden alginate hydrogel structures.

    PubMed

    Tabriz, Atabak Ghanizadeh; Hermida, Miguel A; Leslie, Nicholas R; Shu, Wenmiao

    2015-12-21

    Different bioprinting techniques have been used to produce cell-laden alginate hydrogel structures, however these approaches have been limited to 2D or simple three-dimension (3D) structures. In this study, a new extrusion based bioprinting technique was developed to produce more complex alginate hydrogel structures. This was achieved by dividing the alginate hydrogel cross-linking process into three stages: primary calcium ion cross-linking for printability of the gel, secondary calcium cross-linking for rigidity of the alginate hydrogel immediately after printing and tertiary barium ion cross-linking for long-term stability of the alginate hydrogel in culture medium. Simple 3D structures including tubes were first printed to ensure the feasibility of the bioprinting technique and then complex 3D structures such as branched vascular structures were successfully printed. The static stiffness of the alginate hydrogel after printing was 20.18 ± 1.62 KPa which was rigid enough to sustain the integrity of the complex 3D alginate hydrogel structure during the printing. The addition of 60 mM barium chloride was found to significantly extend the stability of the cross-linked alginate hydrogel from 3 d to beyond 11 d without compromising the cellular viability. The results based on cell bioprinting suggested that viability of U87-MG cells was 93 ± 0.9% immediately after bioprinting and cell viability maintained above 88% ± 4.3% in the alginate hydrogel over the period of 11 d.

  3. Culture of hESC-derived pancreatic progenitors in alginate-based scaffolds.

    PubMed

    Formo, Kjetil; Cho, Candy H-H; Vallier, Ludovic; Strand, Berit L

    2015-12-01

    The effect of alginate-based scaffolds with added basement membrane proteins on the in vitro development of hESC-derived pancreatic progenitors was investigated. Cell clusters were encapsulated in scaffolds containing the basement membrane proteins collagen IV, laminin, fibronectin, or extracellular matrix-derived peptides, and maintained in culture for up to 46 days. The cells remained viable throughout the experiment with no signs of central necrosis. Whereas nonencapsulated cells aggregated into larger clusters, some of which showed signs of morphological changes and tissue organization, the alginate matrix stabilized the cluster size and displayed more homogeneous cell morphologies, allowing culture for long periods of time. For all conditions tested, a stable or declining expression of insulin and PDX1 and an increase in glucagon and somatostatin over time indicated a progressive reduction in beta cell-related gene expression. Alginate scaffolds can provide a chemically defined, xeno-free and easily scalable alternative for culture of pancreatic progenitors. Although no increase in insulin and PDX1 gene expression after alginate-immobilized cell culture was seen in this study, further optimization of the matrix physicochemical and biological properties and of the medium composition may still be a relevant strategy to promote the stabilization or maturation of stem cell-derived beta cells. © 2015 Wiley Periodicals, Inc.

  4. Improved production of isomaltulose by a newly isolated mutant of Serratia sp. cells immobilized in calcium alginate.

    PubMed

    Kim, Yonghwan; Koo, Bong-Seong; Lee, Hyeon-Cheol; Yoon, Youngdae

    2015-03-01

    Isomaltulose, also known as palatinose, is produced by sucrose isomerase and has been highlighted as a sugar substitute due to a number of advantageous properties. For the massive production of isomaltulose, high resistance to sucrose and stability of sucrose isomerase as well as sucrose conversion yields would be critical factors. We describe a series of screening procedures to isolate the mutant strain of Serratia sp. possessing enhanced isomaltulose production with improved stability. The new Serratia sp. isolated from a series of screening procedures allowed us to produce isomaltulose from 60% sucrose solution, with over 90% conversion yield. Moreover, when this strain was immobilized in calcium alginate beads and placed in a medium containing 60% sucrose, it showed over 70% sucrose conversion yields for 30 cycles of repeated-batch reactions. Thus, improved conversion activity and stability of the newly isolated Serratia sp. strain in the present study would be highly valuable for industries related to isomaltulose production.

  5. Stemness of spermatogonial stem cells encapsulated in alginate hydrogel during cryopreservation.

    PubMed

    Pirnia, A; Parivar, K; Hemadi, M; Yaghmaei, P; Gholami, M

    2017-06-01

    This study investigated the effect of spermatogonial stem cell encapsulated in alginate hydrogel during cryopreservation, as cells were protected against damage during cryopreservation within the hydrogel. Spermatogonial stem cells were isolated from the testes of Balb/c mice pups (6 days old), purified in laminin-coated dishes and CD90.1 microbeads, encapsulated in alginate hydrogel and then cryopreserved. After thawing, cell viability and Spermatogonial stem cell (SSC) colony diameter were evaluated. After RNA was isolated and cDNA was synthesised, the expression of stemness genes was considered using RT real-time PCR. Finally, spermatogonial stem cells labelled with BrdU were transplanted to busulfan azoospermic mouse models. Lin28a and Sall4 genes were significantly upregulated after cryopreservation in alginate hydrogel. However, cell viability was significantly decreased. The diameter of colonies consisting of spermatogonial stem cells freeze-thawed in alginate microbeads showed no significant difference with fresh spermatogonial stem cells and the control group. The injection of freeze-thawed spermatogonial stem cells encapsulated in alginate hydrogel resulted in spermatogenesis recovery. Alginate mimics the extracellular matrices (ECM) for spermatogonial stem cells; therefore, it can support stemness potential during the cell cryopreservation process and restart spermatogenesis after transplantation. © 2016 Blackwell Verlag GmbH.

  6. The effect of biomass concentration on polymer alginate in the immobilized biosorbent formation during the sorption processof heavy metal Cu2+

    NASA Astrophysics Data System (ADS)

    Rinanti, A.; Jonathan, D.; Silalahi, M. D. S.; Fachrul, M. F.; Hadisoebroto, R.

    2018-01-01

    A research in environmental biotechnology has been done to analysis adsorption of ion Cu2+ by biomass of microalgae (Chlorella sp, Ankistrodesmus braunii, Scenedesmus quadricauda) and Saccharomyces cerevisiae onto alginate polymeras immobilized biosorbent on laboratory scale. The purpose of this study is to achieve the optimum biomass concentration which gives the best biosorption performance. Biosorption of Cu2+ was carried out in continuous fixed-bed column reactor system, volume of 1.5 L, equipped with peristaltic pump with a flow rate of 13 mL/min. Biosorption of Cu2+ was investigated using immobilized biosorbent with concentration of (g biomass/g polymer) 0.25; 0.5; 1, at pH4,initial concentration Cu2+15 mg/L and 26°C±1. The results of this study showed that the increasing of biomass concentration (0 to 0.5 g/g) would result in better biosorption performance but soon decreased its performance at biomass concentration of 1 g/g. Biosorption capacity and highest removal efficiency of 0.1025 mg Cu2+/g biosorbent and 66.36% occurred by immobilized biosorbent with 0.5 g/g concentration. The connection between the variation of biomass concentration in alginate to the biosorption performance by immobilized biosorbent shown by breakthrough curve, total adsorbed metal mass(qtotal ), efficiency of removal (%R) and biosorption capacity at breakthrough(qe ). Excessive biomass concentrations lead to reduced porosity of the beads thus slowing down the adsorption process.

  7. Development of PVA-alginate as a matrix for enzymatic decolorization of textile dye in bioreactor system

    NASA Astrophysics Data System (ADS)

    Yanto, Dede Heri Yuli; Zahara, Syifa; Laksana, Raden Permana Budi; Anita, Sita Heris; Oktaviani, Maulida; Sari, Fahriya Puspita

    2017-01-01

    An immobilization technique using polyvinyl alcohol (PVA) crosslinked with sodium alginate as a matrix has been developed for textile dyes decolorization. Textiles use dye as an addition to the aesthetic value of the product. Dyes are generally used is a textile dye where the waste will be released directly into the waters around 2-20%. Therefore, it is important to develop an enzyme immobilization method using PVA-Alginate as a matrix. Based on the results of the study showed that the PVA-Alginate beads produced high decolorization percent compared to beads which contains only Ca-alginate alone and formula matrix is optimum at PVA 6% and alginate 1.5%. Encapsulation with boric acid at 7% showed optimum decolorization and reduction for enzyme leakage during decolorization. This study suggested that immobilization of enzymes into PVA-alginate matrix might be used as a biodecolorating agent.

  8. Efficient Production of Prebiotic Gluco-oligosaccharides in Orange Juice Using Immobilized and Co-immobilized Dextransucrase.

    PubMed

    Tingirikari, Jagan Mohan Rao; Gomes, Wesley Faria; Rodrigues, Sueli

    2017-12-01

    Dextransucrase from Leuconostoc mesenteroides NRRL B-512F was subjected to immobilization and co-immobilization with dextranase from Chaetomium erraticum. Immobilization has enhanced the operational and storage stability of dextransucrase. Two hundred milligrammes (2.4 IU/mg) of alginate beads (immobilized and co-immobilized) were found to be optimum for the production of gluco-oligosaccharides (GOS) in orange juice with a high degree of polymerization. The pulp of the orange juice did not interfere in the reaction. In the batch process, co-immobilized dextransucrase (41 g/L) produced a significantly higher amount of GOS than immobilized dextransucrase (37 g/L). Alginate entrapment enhanced the thermal stability of dextransucrase for up to 3 days in orange juice at 30 °C. The production of GOS in semi-continuous process was 39 g/L in co-immobilized dextransucrase and 33 g/L in immobilized dextransucrase. Thus, immobilization technology offers a great scope in terms of reusability and efficient production of a value added functional health drink.

  9. Immobilization Increases the Stability and Reusability of Pigeon Pea NADP+ Linked Glucose-6-Phosphate Dehydrogenase.

    PubMed

    Singh, Siddhartha; Singh, Amit Kumar; Singh, M Chandrakumar; Pandey, Pramod Kumar

    2017-02-01

    Immobilization of enzymes is valuably important as it improves the stability and hence increases the reusability of enzymes. The present investigation is an attempt for immobilization of purified glucose-6-phosphate dehydrogenase from pigeon pea on different matrix. Maximum immobilization was achieved when alginate was used as immobilization matrix. As compared to soluble enzyme the alginate immobilized enzyme exhibited enhanced optimum pH and temperature. The alginate immobilized enzyme displayed more than 80% activity up to 7 continuous reactions and more than 50% activity up to 11 continuous reactions.

  10. Halloysite nanotubes as carriers of vancomycin in alginate-based wound dressing.

    PubMed

    Kurczewska, Joanna; Pecyna, Paulina; Ratajczak, Magdalena; Gajęcka, Marzena; Schroeder, Grzegorz

    2017-09-01

    The influence of an inorganic support - halloysite nanotubes - on the release rate and biological activity of the antibiotic encapsulated in alginate-based dressings was studied. The halloysite samples were loaded with approx. 10 wt.% of the antibiotic and then encapsulated in Alginate and Gelatin/Alginate gels. The material functionalized with aliphatic amine significantly extended the release of vancomycin from alginate-based gels as compared to that achieved when silica was used. After 24 h, the released amounts of the antibiotic immobilized at silica reached 70%, while for the drug immobilized at halloysite the released amount of vancomycin reached 44% for Alginate discs. The addition of gelatin resulted in even more prolonged sustained release of the drug. The antibiotic was released from the system with a double barrier with Higuchi kinetic model and Fickian diffusion mechanism. Only the immobilized drug encapsulated in Alginate gel demonstrated very good antimicrobial activity against various bacteria. The inhibition zones were greater than those of the standard discs for the staphylococci and enterococci bacteria tested. The addition of gelatin adversely affected the biological activity of the system. The inhibition zones were smaller than those of the reference samples. A reduction in the drug dose by half had no significant effect on changing the release rate and microbiological activity. The in vivo toxicity studies of the material with immobilized drug were carried out with Acutodesmus acuminatus and Daphnia magna . The material studied had no effect on the living organisms used in the bioassays. The proposed system with a double barrier demonstrated high storage stability.

  11. Immobilization technique for enhanced production of the immunosuppressant mycophenolic acid by ultraviolet and gamma-irradiated Penicillium roqueforti.

    PubMed

    Ismaiel, A A; Ahmed, A S; El-Sayed, E R

    2015-07-01

    Different entrapment matrices were screened to immobilize two strains of Penicillium roqueforti (AG101 and LG109) for more effective production of mycophenolic acid (MPA). Further improvement in the MPA productivity from immobilization of spores and mycelia was adopted by UV and gamma irradiation. Penicillium roqueforti strains were immobilized in different entrapping carriers and used for MPA production in shake flask cultures. Maximum MPA production was achieved on using an alginate concentration of 3·0% (w/v) and a mycelial fresh weight of 10% (w/v). MPA produced by alginate-immobilized spores and mycelia was almost double in comparison to the free system. The MPA-producing ability of immobilized AG101 and LG109 strain was significantly enhanced by mutagenesis through irradiation by UV (254 nm) for 120 and 90 min, respectively and gamma rays at 0·75 KGy. The feasibility of MPA production in a semi-continuous form by immobilized cells as affected by irradiation was adopted. MPA production by immobilized spores and mycelia was more intensified by UV and gamma irradiation. Moreover, the immobilized cell culture was superior to free-cell culture. These findings indicate the future possibility to reduce the cost of producing fermentation-based drugs. © 2015 The Society for Applied Microbiology.

  12. Microfabrication of proangiogenic cell-laden alginate-g-pyrrole hydrogels.

    PubMed

    DeVolder, Ross J; Zill, Andrew T; Jeong, Jae H; Kong, Hyunjoon

    2012-11-01

    Cells have been extensively studied for their uses in various therapies because of their capacities to produce therapeutic proteins and recreate new tissues. It has often been suggested that the efficacy of cell therapies can greatly be improved through the ability to localize and regulate cellular activities at a transplantation site; however, the technologies for this control are lacking. Therefore, this study reports a cell-Laden hydrogel patch engineered to support the proliferation and angiogenic growth factor expression of cells adhered to their surfaces, and to further promote neovascularization. Hydrogels consisting of alginate chemically linked with pyrrole units, termed alginate-g-pyrrole, were prepared through an oxidative cross-linking reaction between pyrrole units. Fibroblasts adhered to the alginate-g-pyrrole hydrogels, and exhibited increased proliferation and overall vascular endothelial growth factor (VEGF) expression, compared to those on pyrrole-free hydrogels. Furthermore, the alginate-g-pyrrole hydrogel surfaces were modified to present microposts, subsequently increasing the amount of pyrrole units on their surfaces. Cells adhered to the microfabricated gel surfaces exhibited increased proliferation and overall VEGF expression proportional to the density of the microposts. The resulting micropatterned alginate-g-pyrrole hydrogels exhibited increases in the size and density of mature blood vessels when implanted on chick chorioallantoic membranes (CAMs). The hydrogel system developed in this study will be broadly useful for improving the efficacy of a wide array of cell-based wound healing and tissue regenerative therapies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Biotransformation of L-tyrosine to Dopamine by a Calcium Alginate Immobilized Mutant Strain of Aspergillus oryzae.

    PubMed

    Ali, Sikander; Nawaz, Wajeeha

    2016-08-01

    The present research work is concerned with the biotransformation of L-tyrosine to dopamine (DA) by calcium alginate entrapped conidiospores of a mutant strain of Aspergillus oryzae. Different strains of A. oryzae were isolated from soil. Out of 13 isolated strains, isolate-2 (I-2) was found to be a better DA producer. The wild-type I-2 was chemically improved by treating it with different concentrations of ethyl methyl sulfonate (EMS). Among seven mutant variants, EMS-6 exhibiting maximal DA activity of 43 μg/ml was selected. The strain was further exposed with L-cysteine HCl to make it resistant against diversion and environmental stress. The conidiospores of selected mutant variant A. oryzae EMS-6 strain were entrapped in calcium alginate beads. Different parameters for immobilization were investigated. The activity was further improved from 44 to 62 μg/ml under optimized conditions (1.5 % sodium alginate, 2 ml inoculum, and 2 mm bead size). The best resistant mutant variable exhibited over threefold increase in DA activity (62 μg/ml) than did wild-type I-2 (21 μg/ml) in the reaction mixture. From the results presented in the study, it was observed that high titers of DA activity in vitro could effectively be achieved by the EMS-induced mutagenesis of filamentous fungus culture used.

  14. Selective digestion of Ba2+/Ca2+ alginate gel microdroplets for single-cell handling

    NASA Astrophysics Data System (ADS)

    Odaka, Masao; Hattori, Akihiro; Matsuura, Kenji; Yasuda, Kenji

    2018-06-01

    Cells encapsuled by polymer microdroplets are an effective platform for the identification and separation of individual cells for single-cell-based analysis. However, a key challenge is to maintain and release the captured cells in the microdroplets selectively, nondestructively, and noninvasively. We developed a simple method of encapsulating cells in alginate microdroplets having different digestion characteristics. Cells were diluted with an alginate polymer of sol state and encapsulated into microdroplets with Ba2+ and Ca2+ by a spray method. When a chelating buffer was applied, alginate gel microdroplets were digested according to the difference in chelating efficiency of linkage-divalent cations; hence, two types of alginate microdroplets were formed. Moreover, we examined the capability of the alginate gel to exchange linkage-divalent cations and found that both Ca2+ exchange in Ba-alginate microdroplets and Ba2+ exchange in Ca-alginate microdroplets occurred. These results indicate that the potential applications of a mixture of alginate microdroplets with different divalent cations control the selective digestion of microdroplets to improve the high-throughput, high-content microdroplet-based separation, analysis, or storage of single cells.

  15. Immobilization of pectin depolymerising polygalacturonase using different polymers.

    PubMed

    Ur Rehman, Haneef; Aman, Afsheen; Nawaz, Muhammad Asif; Karim, Asad; Ghani, Maria; Baloch, Abdul Hameed; Ul Qader, Shah Ali

    2016-01-01

    Polygalacturonase catalyses the hydrolysis of pectin substances and widely has been used in food and textile industries. In current study, different polymers such as calcium alginate beads, polyacrylamide gel and agar-agar matrix were screened for the immobilization of polygalacturonase through entrapment technique. Polyacrylamide gel was found to be most promising one and gave maximum (89%) immobilization yield as compared to agar-agar (80%) and calcium alginate beads (46%). The polymers increased the reaction time of polygalacturonase and polymers entrapped polygalacturonases showed maximum pectinolytic activity after 10 min of reaction as compared to free polygalacturonase which performed maximum activity after 5.0 min of reaction time. The temperature of polygalacturonase for maximum enzymatic activity was increased from 45°C to 50°C and 55°C when it was immobilized within agar-agar and calcium alginate beads, respectively. The optimum pH (pH 10) of polygalacturonase was remained same when it was immobilized within polyacrylamide gel and calcium alginate beads, but changed from pH 10 to pH 9.0 after entrapment within agar-agar. Thermal stability of polygalacturonase was improved after immobilization and immobilized polygalacturonases showed higher tolerance against different temperatures as compared to free enzyme. Polymers entrapped polygalacturonases showed good reusability and retained more than 80% of their initial activity during 2nd cycles. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment.

    PubMed

    Amir Afshar, Hamideh; Ghaee, Azadeh

    2016-10-20

    The chemical nature of biomaterials play important role in cell attachment, proliferation and migration in tissue engineering. Chitosan and alginate are biodegradable and biocompatible polymers used as scaffolds for various medical and clinical applications. Amine groups of chitosan scaffolds play an important role in cell attachment and water adsorption but also associate with alginate carboxyl groups via electrostatic interactions and hydrogen bonding, consequently the activity of amine groups in the scaffold decreases. In this study, chitosan/alginate/halloysite nanotube (HNTs) composite scaffolds were prepared using a freeze-drying method. Amine treatment on the scaffold occurred through chemical methods, which in turn caused the hydroxyl groups to be replaced with carboxyl groups in chitosan and alginate, after which a reaction between ethylenediamine, 1-ethyl-3,(3-dimethylaminopropyl) carbodiimide (EDC) and scaffold triggered the amine groups to connect to the carboxyl groups of chitosan and alginate. The chemical structure, morphology and mechanical properties of the composite scaffolds were investigated by FTIR, CHNS, SEM/EDS and compression tests. The electrostatic attraction and hydrogen bonding between chitosan, alginate and halloysite was confirmed by FTIR spectroscopy. Chitosan/alginate/halloysite scaffolds exhibit significant enhancement in compressive strength compared with chitosan/alginate scaffolds. CHNS and EDS perfectly illustrate that amine groups were effectively introduced in the aminated scaffold. The growth and cell attachment of L929 cells as well as the cytotoxicity of the scaffolds were investigated by SEM and Alamar Blue (AB). The results indicated that the aminated chitosan/alginate/halloysite scaffold has better cell growth and cell adherence in comparison to that of chitosan/alginate/halloysite samples. Aminated chitosan/alginate/halloysite composite scaffolds exhibit great potential for applications in tissue engineering, ideally in

  17. Production of Poly-γ-Glutamate (PGA) Biopolymer by Batch and Semicontinuous Cultures of Immobilized Bacilluslicheniformis strain-R

    PubMed Central

    Berekaa, Mahmoud M.; El Aassar, Samy A.; El-Sayed, Samia M.; EL Borai, Aliaa M.

    2009-01-01

    Production of Polyglutamate (PGA) biopolymer by immobilized Bacillus licheniformis strain-R was intensively investigated. Preliminary experiments were carried out to address the most suitable immobilization methodology. Entrapment of Bacillus cells in alginate–agar led optimal PGA production (36.75 g/l), with 1.32-and 2.18-fold increase in comparison with alginate-or K-carrageenan-immobilized cells, respectively. During semicontinuous cultivation of agar-alginate gel-cell mixture, production of PGA by 10 ml mixture was increased from 2nd to 3rd run whereas, increased till the 4th run using 15ml mixture. Adsorption was the most suitable immobilization technique for production of PGA and the sponge cubes was the preferred matrix recording 43.2 g/l of PGA with the highest cell adsorption. Furthermore, no PGA was detected when B. licheniformis cells were adsorbed on wood and pumice. Although luffa pulp-adsorbed cells recorded the highest PGA production (50.4 g/l), cell adsorption was the lowest. Semicontinuous cultivation of B. licheniformis cells adsorbed on sponge led to increase of PGA production till the 3rd run and reached 55.5 g/l then slightly decreased in the 4th run. The successful use of fixed-bed bioreactor for semicontinuous cultivation of B. licheniformis cells held on sponge cubes (3 runs, 96 hours/run) provides insight for the potential biotechnological production of PGA by immobilized cells. PMID:24031418

  18. Influence of hydrophobic modification in alginate-based hydrogels for biomedical applications

    NASA Astrophysics Data System (ADS)

    Choudhary, Soumitra

    Alginate has been exploited commercially for decades in foods, textiles, paper, pharmaceutical industries, and also as a detoxifier for removing heavy metals. Alginate is also popular in cell encapsulation because of its relatively mild gelation protocol and simple chemistry with which biological active entities can be immobilized. Surface modification of alginate gels has been explored to induce desired cell interactions with the gel matrix. These modifications alter the bulk properties, which strongly determine on how cells feel and response to the three-dimensional microenvironment. However, there is a need to develop strategies to engineer functionalities into bulk alginate hydrogels that not only preserve their inherent qualities but are also less toxic. In this thesis, our main focus was to optimize the mechanical properties of alginate-based hydrogels, and by doing so control the performance of the biomaterials. In the first scheme, we used alginate and hydrophobically modified ethyl hydroxy ethyl cellulose as components in interpenetrating polymer network (IPN) gels. The second network was used to control gelation time and rheological properties. We believe these experiments also may provide insight into the mechanical and structural properties of more complex biopolymer gels and naturally-occurring IPNs. Next, we worked on incorporating a hydrophobic moiety directly into the alginate chain, resulting in materials for extended release of hydrophobic drugs. We successfully synthesized hydrophobically modified alginate (HMA) by attaching octylamine groups onto the alginate backbone by standard carbodiimide based amide coupling reaction. Solubility of several model hydrophobic drugs in dilute HMA solutions was found to be increased by more than an order of magnitude. HMA hydrogels, prepared by crosslinking the alginate chains with calcium ions, were found to exhibit excellent mechanical properties (modulus ˜100 kPa) with release extended upto 5 days. Ability

  19. The removal of thermo-tolerant coliform bacteria by immobilized waste stabilization pond algae.

    PubMed

    Pearson, H W; Marcon, A E; Melo, H N

    2011-01-01

    This study investigated the potential of laboratory- scale columns of immobilized micro-algae to disinfect effluents using thermo-tolerant coliforms (TTC) as a model system. Cells of a Chlorella species isolated from a waste stabilization pond complex in Northeast Brazil were immobilized in calcium alginate, packed into glass columns and incubated in contact with TTC suspensions for up to 24 hours. Five to six log removals of TTC were achieved in 6 hours and 11 log removals in 12 hours contact time. The results were similar under artificial light and shaded sunlight. However little or no TTC removal occurred in the light in columns of alginate beads without immobilized algae present or when the immobilized algae were incubated in the dark suggesting that the presence of both algae and light were necessary for TTC decay. There was a positive correlation between K(b) values for TTC and increasing pH in the effluent from the immobilized algal columns within the range pH 7.2 and 8.9. The potential of immobilized algal technology for wastewater disinfection may warrant further investigation.

  20. Citric acid production from partly deproteinized whey under non-sterile culture conditions using immobilized cells of lactose-positive and cold-adapted Yarrowia lipolytica B9.

    PubMed

    Arslan, Nazli Pinar; Aydogan, Mehmet Nuri; Taskin, Mesut

    2016-08-10

    The present study was performed to produce citric acid (CA) from partly deproteinized cheese whey (DPCW) under non-sterile culture conditions using immobilized cells of the cold-adapted and lactose-positive yeast Yarrowia lipolytica B9. DPCW was prepared using the temperature treatment of 90°C for 15min. Sodium alginate was used as entrapping agent for cell immobilization. Optimum conditions for the maximum CA production (33.3g/L) in non-sterile DPCW medium were the temperature of 20°C, pH 5.5, additional lactose concentration of 20g/L, sodium alginate concentration of 2%, number of 150 beads/100mL and incubation time of 120h. Similarly, maximum citric acid/isocitric acid (CA/ICA) ratio (6.79) could be reached under these optimal conditions. Additional nitrogen and phosphorus sources decreased CA concentration and CA/ICA ratio. Immobilized cells were reused in three continuous reaction cycles without any loss in the maximum CA concentration. The unique combination of low pH and temperature values as well as cell immobilization procedure could prevent undesired microbial contaminants during CA production. This is the first work on CA production by cold-adapted microorganisms under non-sterile culture conditions. Besides, CA production using a lactose-positive strain of the yeast Y. lipolytica was investigated for the first time in the present study. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Encapsulating Non-Human Primate Multipotent Stromal Cells in Alginate via High Voltage for Cell-Based Therapies and Cryopreservation

    PubMed Central

    Gryshkov, Oleksandr; Pogozhykh, Denys; Hofmann, Nicola; Pogozhykh, Olena; Mueller, Thomas; Glasmacher, Birgit

    2014-01-01

    Alginate cell-based therapy requires further development focused on clinical application. To assess engraftment, risk of mutations and therapeutic benefit studies should be performed in an appropriate non-human primate model, such as the common marmoset (Callithrix jacchus). In this work we encapsulated amnion derived multipotent stromal cells (MSCs) from Callithrix jacchus in defined size alginate beads using a high voltage technique. Our results indicate that i) alginate-cell mixing procedure and cell concentration do not affect the diameter of alginate beads, ii) encapsulation of high cell numbers (up to 10×106 cells/ml) can be performed in alginate beads utilizing high voltage and iii) high voltage (15–30 kV) does not alter the viability, proliferation and differentiation capacity of MSCs post-encapsulation compared with alginate encapsulated cells produced by the traditional air-flow method. The consistent results were obtained over the period of 7 days of encapsulated MSCs culture and after cryopreservation utilizing a slow cooling procedure (1 K/min). The results of this work show that high voltage encapsulation can further be maximized to develop cell-based therapies with alginate beads in a non-human primate model towards human application. PMID:25259731

  2. Bioremediation of Bisphenol A and Benzophenone by Glycosylation with Immobilized Marine Microalga Pavlova sp.

    PubMed Central

    Shimoda, Kei; Hamada, Hiroki

    2009-01-01

    Cultured cells of Pavlova sp. glycosylated bisphenol A to its mono-glucoside, 2-(4-β-D-glucopyranosyloxyphenyl)-2-hydroxyphenylpropane (9%). Use of immobilized Pavlova cells in sodium alginate gel improved yield of the product (17%). On the other hand, Pavlova cell cultures converted benzophenone into diphenylmethanol (49%) and diphenylmethyl β-D-glucopyranoside (6%). Incubation of benzophenone with immobilized Pavlova cells gave products in higher yields; the yields of diphenylmethanol and diphenylmethyl β-D-glucopyranoside were 85 and 15%, respectively. PMID:20508758

  3. Alginate Microcapsules Incorporating Hyaluronic Acid Recreate Closer in Vivo Environment for Mesenchymal Stem Cells.

    PubMed

    Cañibano-Hernández, Alberto; Saenz Del Burgo, Laura; Espona-Noguera, Albert; Orive, Gorka; Hernández, Rosa M; Ciriza, Jesús; Pedraz, Jose Luis

    2017-07-03

    The potential clinical application of alginate cell microencapsulation has advanced enormously during the past decade. However, the 3D environment created by alginate beads does not mimic the natural extracellular matrix surrounding cells in vivo, responsible of cell survival and functionality. As one of the most frequent macromolecules present in the extracellular matrix is hyaluronic acid, we have formed hybrid beads with alginate and hyaluronic acid recreating a closer in vivo cell environment. Our results show that 1% alginate-0.25% hyaluronic acid microcapsules retain 1.5% alginate physicochemical properties. Moreover, mesenchymal stem cells encapsulated in these hybrid beads show enhanced viability therapeutic protein release and mesenchymal stem cells' potential to differentiate into chondrogenic lineage. Although future studies with additional proteins need to be done in order to approach even more the extracellular matrix features, we have shown that hyaluronic acid protects alginate encapsulated mesenchymal stem cells by providing a niche-like environment and remaining them competent as a sustainable drug delivery system.

  4. Tris-sucrose buffer system: a new specially designed medium for extracellular invertase production by immobilized cells of isolated yeast Cryptococcus laurentii MT-61.

    PubMed

    Aydogan, Mehmet Nuri; Taskin, Mesut; Canli, Ozden; Arslan, Nazli Pinar; Ortucu, Serkan

    2014-01-01

    The aims of the present study were to isolate new yeasts with high extracellular (exo) invertase activity and to investigate the usability of buffer systems as invertase production media by immobilized yeast cells. Among 70 yeast isolates, Cryptococcus laurentii MT-61 had the highest exo-invertase activity. Immobilization of yeast cells was performed using sodium alginate. Higher exo-invertase activity for immobilized cells was achieved in tris-sucrose buffer system (TSBS) compared to sodium acetate buffer system and potassium phosphate buffer system. TSBS was prepared by dissolving 30 g of sucrose in 1 L of tris buffer solution. The optimum pH, temperature, and incubation time for invertase production with immobilized cells were determined as 8.0, 35 °C and 36 h in TSBS, respectively. Under optimized conditions, maximum exo-invertase activity was found to be 28.4 U/mL in sterile and nonsterile TSBS. Immobilized cells could be reused in 14 and 12 successive cycles in sterile and nonsterile TSBS without any loss in the maximum invertase activity, respectively. This is the first report which showed that immobilized microbial cells could be used as a biocatalyst for exo-invertase production in buffer system. As an additional contribution, a new yeast strain with high invertase activity was isolated.

  5. Preferential localization of Lactococcus lactis cells entrapped in a caseinate/alginate phase separated system.

    PubMed

    Léonard, Lucie; Gharsallaoui, Adem; Ouaali, Fahima; Degraeve, Pascal; Waché, Yves; Saurel, Rémi; Oulahal, Nadia

    2013-09-01

    This study aimed to entrap bioprotective lactic acid bacteria in a sodium caseinate/sodium alginate aqueous two-phase system. Phase diagram at pH=7 showed that sodium alginate and sodium caseinate were not miscible when their concentrations exceeded 1% (w/w) and 6% (w/w), respectively. The stability of the caseinate/alginate two-phase system was also checked at pH values of 6.0 and 5.5. Lactococcus lactis subsp. lactis LAB3 cells were added in a 4% (w/w) caseinate/1.5% (w/w) alginate two-phase system at pH=7. Fluorescence microscopy allowed to observe that the caseinate-rich phase formed droplets dispersed in a continuous alginate-rich phase. The distribution of bacteria in such a system was observed by epifluorescence microscopy: Lc. lactis LAB3 cells stained with Live/Dead(®) Baclight kit™ were located exclusively in the protein phase. Since zeta-potential measurements indicated that alginate, caseinate and bacterial cells all had an overall negative charge at pH 7, the preferential adhesion of LAB cells was assumed to be driven by hydrophobic effect or by depletion phenomena in such biopolymeric systems. Moreover, LAB cells viability was significantly higher in the ternary mixture obtained in the presence of both caseinate and alginate than in single alginate solution. Caseinate/alginate phase separated systems appeared thus well suited for Lc. lactis LAB3 cells entrapment. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Investigation of cell viability and morphology in 3D bio-printed alginate constructs with tunable stiffness.

    PubMed

    Shi, Pujiang; Laude, Augustinus; Yeong, Wai Yee

    2017-04-01

    In this article, mouse fibroblast cells (L929) were seeded on 2%, 5%, and 10% alginate hydrogels, and they were also bio-printed with 2%, 5%, and 10% alginate solutions individually to form constructs. The elastic and viscous moduli of alginate solutions, their interior structure and stiffness, interactions of cells and alginate, cell viability, migration and morphology were investigated by rheometer, MTT assay, scanning electron microscope (SEM), and fluorescent microscopy. The three types of bio-printed scaffolds of distinctive stiffness were prepared, and the seeded cells showed robust viability either on the alginate hydrogel surfaces or in the 3D bio-printed constructs. Majority of the proliferated cells in the 3D bio-printed constructs weakly attached to the surrounding alginate matrix. The concentration of alginate solution and hydrogel stiffness influenced cell migration and morphology, moreover the cells formed spheroids in the bio-printed 10% alginate hydrogel construct. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1009-1018, 2017. © 2017 Wiley Periodicals, Inc.

  7. Immobilization of Acetobacter sp. CCTCC M209061 for efficient asymmetric reduction of ketones and biocatalyst recycling.

    PubMed

    Chen, Xiao-Hong; Wang, Xiao-Ting; Lou, Wen-Yong; Li, Ying; Wu, Hong; Zong, Min-Hua; Smith, Thomas J; Chen, Xin-De

    2012-09-04

    The bacterium Acetobacter sp. CCTCC M209061 is a promising whole-cell biocatalyst with exclusive anti-Prelog stereoselectivity for the reduction of prochiral ketones that can be used to make valuable chiral alcohols such as (R)-4-(trimethylsilyl)-3-butyn-2-ol. Although it has promising catalytic properties, its stability and reusability are relatively poor compared to other biocatalysts. Hence, we explored various materials for immobilizing the active cells, in order to improve the operational stability of biocatalyst. It was found that Ca-alginate give the best immobilized biocatalyst, which was then coated with chitosan to further improve its mechanical strength and swelling-resistance properties. Conditions were optimized for formation of reusable immobilized beads which can be used for repeated batch asymmetric reduction of 4'-chloroacetophenone. The optimized immobilized biocatalyst was very promising, with a specific activity of 85% that of the free-cell biocatalyst (34.66 μmol/min/g dw of cells for immobilized catalyst vs 40.54 μmol/min/g for free cells in the asymmetric reduction of 4'-chloroacetophenone). The immobilized cells showed better thermal stability, pH stability, solvent tolerance and storability compared with free cells. After 25 cycles reaction, the immobilized beads still retained >50% catalytic activity, which was 3.5 times higher than degree of retention of activity by free cells reused in a similar way. The cells could be recultured in the beads to regain full activity and perform a further 25 cycles of the reduction reaction. The external mass transfer resistances were negligible as deduced from Damkohler modulus Da < <1, and internal mass transfer restriction affected the reduction action but was not the principal rate-controlling step according to effectiveness factors η < 1 and Thiele modulus 0.3<∅ <1. Ca-alginate coated with chitosan is a highly effective material for immobilization of Acetobacter sp. CCTCC M209061 cells for

  8. Biological methanol production by immobilized Methylocella tundrae using simulated biohythane as a feed.

    PubMed

    Patel, Sanjay K S; Singh, Raushan K; Kumar, Ashok; Jeong, Jae-Hoon; Jeong, Seong Hun; Kalia, Vipin C; Kim, In-Won; Lee, Jung-Kul

    2017-10-01

    Biohythane may be used as an alternative feed for methanol production instead of costly pure methane. In this study, methanol production potential of Methylocella tundrae immobilized through covalent immobilization, adsorption, and encapsulation was evaluated. Cells covalently immobilized on groundnut shells and chitosan showed a relative methanol production potential of 83.9 and 91.6%, respectively, compared to that of free cells. The maximum methanol production by free cells and cells covalently immobilized on groundnut shells and chitosan was 6.73, 6.20, and 7.23mM, respectively, using simulated biohythane as a feed. Under repeated batch conditions of eight cycles, cells covalently immobilized on chitosan and groundnut shells, and cells encapsulated in sodium-alginate resulted in significantly higher cumulative methanol production of 37.76, 31.80, and 25.58mM, respectively, than free cells (18.57mM). This is the first report on immobilization of methanotrophs on groundnut shells and its application in methanol production using biohythane as a feed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Development of highly sensitive amperometric biosensor for glucose using carbon nanosphere/sodium alginate composite matrix for enzyme immobilization.

    PubMed

    Han, En; Li, Xia; Cai, Jian-Rong; Cui, Hai-Ying; Zhang, Xing-Ai

    2014-01-01

    In this study, we developed a highly sensitive amperometric biosensor for glucose detection based on glucose oxidase immobilized in a novel carbon nanosphere (CNS)/sodium alginate (SA) composite matrix. This hybrid material combined the advantages of CNS and natural biopolymer SA. This composite film was characterized by scanning electron microscope, electrochemical impedance spectroscopy and UV-vis, which indicated that the hybrid material was suitable for immobilization of glucose oxidase. Various experimental conditions were investigated that influenced the performance of the biosensor, such as pH, applied potential and temperature. Under the optimum conditions, the biosensor showed excellent performance for glucose over a wide linear concentration range from 1.0 × 10(-6) to 4.6 × 10(-3) M with a detection limit of 0.5 μM based on a signal-to-noise ratio of 3. Furthermore, the biosensor exhibited excellent long-term stability and satisfactory reproducibility.

  10. Release of tissue inhibitor of metalloproteinase-2 from alginate microcapsule encapsulating genetically engineered cells

    PubMed Central

    Kim, Yeon Seong; Jeong, Young-II; Jin, Shu-Guang; Pei, Jian; Wen, Min; Kim, In-Young; Moon, Kyung-Sub; Jung, Tae-Young; Ryu, Hyang-Hwa; Jung, Shin

    2013-01-01

    Background In this study, 293T cells were genetically engineered to secrete tissue inhibitor of metalloproteinase-2 (TIMP2) and encapsulated into alginate microcapsules to continuously release TIMP2 protein. Methods The anti-invasive potential of the microcapsules was studied in vitro using brain tumor cells. The TIMP2 gene was transfected to 293T cells, and genetically engineered 293TIMP2 cells were encapsulated into alginate microcapsules. Release of TIMP2 protein was detected with Western blot analysis and the anti-invasive potential against U87MG cells was tested using gelatin zymography and a Matrigel assay. Results Cell viability within the alginate microcapsules was maintained at a cell density of 5 × 106. Because polycationic polymers are helpful for maintaining the mechanical strength of microcapsules with good cell viability, the alginate microcapsules were reinforced with chitosan (0.1% w/v). Expression of TIMP2 protein in cell lysates and secretion of TIMP2 into the conditioned medium was confirmed by Western blot analysis. Alginate microcapsules encapsulating 293TIMP2 cells released TIMP2 protein into the medium efficiently, where the TIMP2 protein participated in degradation of the matrix metalloproteinase-2 enzyme and inhibited invasion of U87MG cells. Conclusion Alginate microcapsules encapsulating 293TIMP2 cells are promising candidates for anti-invasive treatment of glioma. PMID:24231999

  11. Dried calcium alginate/magnetite spheres: a new support for chromatographic separations and enzyme immobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, M.A.; Kvesitadze, G.I.; Graves, D.J.

    1985-02-01

    Dried spheres made from an alginate solution containing magnetite particles have excellent potential as a support for enzyme immobilization and chromatographic applications. The beads were found to be much stronger than gels such as polyacrylamide and dextran, indicating that high flow rates and pressures could be used in column separations. The support withstood not only temperatures of up to 120/sup 0/C, but also most pH values and common solvents. While some solutions, such as phosphate buffers, dissolved the spheres, stabilization with Tyzor TE eliminated this problem. The physical properties of the beads include a glasslike density of 2.2 g/mL, excellentmore » sphericity, low porosity, and a narrow size distribution. The magnetite present in the support allows the beads to be used for magnetic separations such as high gradient magnetic filtration. Their high degree of microroughness provides a large exposed surface area for enzyme and ligand binding. Mixed Actinomyces fradiae proteases and Aspergillus niger ..cap alpha..-amylase, two enzymes representative of classes which attack large substrates, were immobilized on the bead's surface with high activity and stability. A cyanuric dye which can be used in chromatographic applications (Cibacron Blue F3GA) was also readily coupled to the surface of this support with good yield.« less

  12. Digital microfluidic three-dimensional cell culture and chemical screening platform using alginate hydrogels

    PubMed Central

    2015-01-01

    Electro wetting-on-dielectric (EWOD) digital microfluidics (DMF) can be used to develop improved chemical screening platforms using 3-dimensional (3D) cell culture. Alginate hydrogels are one common method by which a 3D cell culture environment is created. This paper presents a study of alginate gelation on EWOD DMF and investigates designs to obtain uniform alginate hydrogels that can be repeatedly addressed by any desired liquids. A design which allows for gels to be retained in place during liquid delivery and removal without using any physical barriers or hydrophilic patterning of substrates is presented. A proof of concept screening platform is demonstrated by examining the effects of different concentrations of a test chemical on 3D cells in alginate hydrogels. In addition, the temporal effects of the various chemical concentrations on different hydrogel posts are demonstrated, thereby establishing the benefits of an EWOD DMF 3D cell culture and chemical screening platform using alginate hydrogels. PMID:25945142

  13. Preparation of highly stable zeolite-alginate foam composite for strontium(90Sr) removal from seawater and evaluation of Sr adsorption performance.

    PubMed

    Hong, Hye-Jin; Kim, Byoung-Gyu; Ryu, Jungho; Park, In-Su; Chung, Kang-Sup; Lee, Sang Moon; Lee, Jin-Bae; Jeong, Hyeon Su; Kim, Hyunchul; Ryu, Taegong

    2018-01-01

    Alginate bead is a promising strontium (Sr) adsorbent in seawater, but highly concentrated Na ions caused over-swelling and damaged the hydrogel bead. To improve the mechanical stability of alginate bead, flexible foam-type zeolite-alginate composite was synthesized and Sr adsorption performance was evaluated in seawater; 1-10% zeolite immobilized alginate foams were prepared by freeze-dry technique. Immobilization of zeolite into alginate foam converted macro-pores to meso-pores which lead to more compact structure. It resulted in less swollen composite in seawater medium and exhibited highly improved mechanical stability compared with alginate bead. Besides, Sr adsorption efficiency and selectivity were enhanced by immobilization of zeolite in alginate foam due to the increase of Sr binding sites (zeolite). In particular, Sr selectivity against Na was highly improved. The 10% zeolite-alginate foam exhibited a higher log K d of 3.3, while the pure alginate foam exhibited 2.7 in the presence of 0.1 M Na. Finally, in the real seawater, the 10% zeolite-alginate foam exhibited 1.5 times higher Sr adsorption efficiency than the pure alginate foam. This result reveals that zeolite-alginate foam composite is appropriate material for Sr removal in seawater due to its swelling resistance as well as improved Sr adsorption performance in complex media. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Biodegradation of diesel by mixed bacteria immobilized onto a hybrid support of peat moss and additives: a batch experiment.

    PubMed

    Lee, Young-Chul; Shin, Hyun-Jae; Ahn, Yeonghee; Shin, Min-Chul; Lee, Myungjin; Yang, Ji-Won

    2010-11-15

    We report microbial cell immobilization onto a hybrid support of peat moss for diesel biodegradation. Three strains isolated from a site contaminated with diesel oil were used in this study: Acinetobacter sp., Gordonia sp., and Rhodococcus sp. To increase not only diesel adsorption but also diesel biodegradation, additives such as zeolite, bentonite, chitosan, and alginate were tested. In this study, a peat moss, bentonite, and alginate (2/2.9/0.1 g, w/w/w) hybrid support (PBA) was the best support matrix, considering both diesel physical adsorption capacity and mixed microbial immobilization. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Mesenchymal stem cells and alginate microcarriers for craniofacial bone tissue engineering: A review.

    PubMed

    Saltz, Adam; Kandalam, Umadevi

    2016-05-01

    Craniofacial bone is a complex structure with an intricate anatomical and physiological architecture. The defects that exist in this region therefore require a precise control of osteogenesis in their reconstruction. Unlike traditional surgical intervention, tissue engineering techniques mediate bone development with limited postoperative risk and cost. Alginate stands as the premier polymer in bone repair because of its mild ionotropic gelation and excellent biocompatibility, biodegradability, and injectability. Alginate microcarriers are candidates of choice to mediate cells and accommodate into 3-D environment. Several studies reported the use of alginate microcarriers for delivering cells, drugs, and growth factors. This review will explore the potential use of alginate microcarrier for stem cell systems and its application in craniofacial bone tissue engineering. © 2016 Wiley Periodicals, Inc.

  16. Catalytical Properties of Free and Immobilized Aspergillus niger Tannase.

    PubMed

    Flores-Maltos, Abril; Rodríguez-Durán, Luis V; Renovato, Jacqueline; Contreras, Juan C; Rodríguez, Raúl; Aguilar, Cristóbal N

    2011-01-01

    A fungal tannase was produced, recovered, and immobilized by entrapment in calcium alginate beads. Catalytical properties of the immobilized enzyme were compared with those of the free one. Tannase was produced intracellularly by the xerophilic fungus Aspergillus niger GH1 in a submerged fermentation system. Enzyme was recovered by cell disruption and the crude extract was partially purified. The catalytical properties of free and immobilized tannase were evaluated using tannic acid and methyl gallate as substrates. K(M) and V(max) values for free enzyme were very similar for both substrates. But, after immobilization, K(M) and V(max) values increased drastically using tannic acid as substrate. These results indicated that immobilized tannase is a better biocatalyst than free enzyme for applications on liquid systems with high tannin content, such as bioremediation of tannery or olive-mill wastewater.

  17. Catalytical Properties of Free and Immobilized Aspergillus niger Tannase

    PubMed Central

    Flores-Maltos, Abril; Rodríguez-Durán, Luis V.; Renovato, Jacqueline; Contreras, Juan C.; Rodríguez, Raúl; Aguilar, Cristóbal N.

    2011-01-01

    A fungal tannase was produced, recovered, and immobilized by entrapment in calcium alginate beads. Catalytical properties of the immobilized enzyme were compared with those of the free one. Tannase was produced intracellularly by the xerophilic fungus Aspergillus niger GH1 in a submerged fermentation system. Enzyme was recovered by cell disruption and the crude extract was partially purified. The catalytical properties of free and immobilized tannase were evaluated using tannic acid and methyl gallate as substrates. K M and V max values for free enzyme were very similar for both substrates. But, after immobilization, K M and V max values increased drastically using tannic acid as substrate. These results indicated that immobilized tannase is a better biocatalyst than free enzyme for applications on liquid systems with high tannin content, such as bioremediation of tannery or olive-mill wastewater. PMID:21918717

  18. Enzymatically Cross-linked Alginic-Hyaluronic acid Composite Hydrogels As Cell Delivery Vehicles

    PubMed Central

    Ganesh, Nitya; Hanna, Craig; Nair, Shantikumar V.; Nair, Lakshmi S.

    2013-01-01

    An injectable composite gel was developed from alginic and hyaluronic acid. The ezymatically cross-linked injectable gels were prepared via the oxidative coupling of tyramine modified sodium algiante and sodium hyaluronate in the presence of horse radish peroxidase (HRP) and hydrogen peroxide (H2O2). The composite gels were prepared by mixing equal parts of the two tryaminated polymer solutions in 10U HRP and treating with 1.0% H2O2. The properties of the alginate gels were significanly affected by the addition of hyaluronic acid. The percentage water absorption and storage modulus of the composite gels were found to be lower than the alginate gels. The alginate and composite gels showed lower protein release compared to hyaluronate gels in the absence of hyaluronidase. Even hyaluronate gels showed only approximately 10% protein release after 14 days incubation in phosphate buffer solution. ATDC-5 cells encapsulated in the injectable gels showed high cell viability. The composite gels showed the presence of enlarged spherical cells with significantly higher metabolic activity compared to cells in hyaluronic and alginic acid gels. The results suggest the potential of the composite approach to develop covalently cross-linked hydrogels with tuneable physical, mechanical, and biological properties. PMID:23357799

  19. Introduction of N-cadherin-binding motif to alginate hydrogels for controlled stem cell differentiation.

    PubMed

    Lee, Jae Won; An, Hyoseok; Lee, Kuen Yong

    2017-07-01

    Control of stem cell fate and phenotype using biomimetic synthetic extracellular matrices (ECMs) is an important tissue engineering approach. Many studies have focused on improving cell-matrix interactions. However, proper control of cell-cell interactions using synthetic ECMs could be critical for tissue engineering, especially with undifferentiated stem cells. In this study, alginate hydrogels were modified with a peptide derived from the low-density lipoprotein receptor-related protein 5 (LRP5), which is known to bind to N-cadherin, as a cell-cell interaction motif. In vitro changes in the morphology and differentiation of mouse bone marrow stromal cells (D1 stem cells) cultured in LRP5-alginate hydrogels were investigated. LRP5-alginate gels successfully induced stem cell aggregation and enhanced chondrogenic differentiation of D1 stem cells, compared to RGD-alginate gels, at low cell density. This approach to tailoring synthetic biomimetic ECMs using cell-cell interaction motifs may be critical in tissue engineering approaches using stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Immobilization of Bacillus amyloliquefaciens SP1 and its alkaline protease in various matrices for effective hydrolysis of casein.

    PubMed

    Guleria, Shiwani; Walia, Abhishek; Chauhan, Anjali; Shirkot, C K

    2016-12-01

    An extracellular alkaline protease producing B. amyloliquefaciens SP1 was isolated from apple rhizosphere having multifarious plant growth-promoting activities. B. amyloliquefaciens SP1 protease was immobilized using various concentrations of calcium alginate, agar and polyacrylamide to determine the optimum concentration for formation of the beads. Enzyme activity before immobilization (at 60 °C, pH 8.0 for 5 min) was 3580 µg/ml/min. The results of immobilization with various matrices revealed that 3 % calcium alginate (2829.92 µg/ml/min), 2 % agar (2600 µg/ml/min) and 10 % polyacrylamide (5698.99 µg/ml/min) were optimum concentrations for stable bead formation. Immobilized enzyme reusability results indicated that calcium alginate, agar and polyacrylamide beads retained 25.63, 22.05 and 34.04 % activity in their fifth repeated cycle, respectively. In cell immobilization technique, the free movement of microorganisms is restricted in the process, and a semi-continuous system of fermentation can be used. In the present work, this technique has been used for alkaline protease production using different matrices. Polyacrylamide (10 %) was found with the highest total alkaline protease titer, i.e., 24,847 µg/ml/min semi-continuously for 18 days as compared to agar (total enzyme titer: 5800 in 10 days) and calcium alginate (total enzyme titer: 13,010 in 15 days). This present study reported that polyacrylamide (10 %) among different matrices has maximum potential of immobilization of B. amyloliquefaciens SP1 and its detergent stable alkaline protease with effective application in bloodstain removal.

  1. Fabrication of large size alginate beads for three-dimensional cell-cluster culture

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengtao; Ruan, Meilin; Liu, Hongni; Cao, Yiping; He, Rongxiang

    2017-08-01

    We fabricated large size alginate beads using a simple microfluidic device under a co-axial injection regime. This device was made by PDMS casting with a mold formed by small diameter metal and polytetrafluorothylene tubes. Droplets of 2% sodium alginate were generated in soybean oil through the device and then cross-linked in a 2% CaCl2 solution, which was mixed tween80 with at a concentration of 0.4 to 40% (w/v). Our results showed that the morphology of the produced alginate beads strongly depends on the tween80 concentration. With the increase of concentration of tween80, the shape of the alginate beads varied from semi-spherical to tailed-spherical, due to the decrease of interface tension between oil and cross-link solution. To access the biocompatibility of the approach, MCF-7 cells were cultured with the alginate beads, showing the formation of cancer cells clusters which might be useful for future studies.

  2. Cultivation characteristics of immobilized Aspergillus oryzae for kojic acid production.

    PubMed

    Kwak, M Y; Rhee, J S

    1992-04-15

    Aspergillus oryzae in situ grown from spores entrapped in calcium alginate gel beads was used for the production of kojic acid. The immobilized cells in flask cultures produced kojic acid in a linear proportion while maintaining the stable metabolic activity for a prolonged production period. Kojic acid was accumulated up to a high concentration of 83 g/L, at which the kojic acid began to crystallize, and, thus, the culture had to be replaced with fresh media for the next batch culture. The overall productivities of two consecutive cultivations were higher than that of free mycelial fermentation. However, the production rate of kojic acid by the immobilized cells was suddenly decreased with the appearance of central cavernae inside the immobilized gel beads after 12 days of the third batch cultivation.

  3. Thermodynamic and kinetic studies on pectinase extracted from Aspergillus aculeatus: Free and immobilized enzyme entrapped in alginate beads.

    PubMed

    de Oliveira, Rodrigo Lira; da Silva, Osmar Soares; Converti, Attilio; Porto, Tatiana Souza

    2018-05-01

    The kinetics and thermodynamics of Aspergillus aculeatus pectinase, either free or immobilized in alginate beads, were investigated. Pectinase immobilization ensured an enzyme immobilization yield of 59.71%. The irreversible denaturation of pectinase in both preparations was evaluated at temperatures ranging from 30 to 60 °C. When temperature was raised, the first-order thermal denaturation constant increased from 0.0011 to 0.0231 min -1 for the free enzyme and from 0.0017 to 0.0700 min -1 for the immobilized one, respectively. The results of residual activity tests enabled us to estimate, for denaturation of both free and immobilized pectinase, the activation energy (E ⁎ d  = 85.1 and 101.6 kJ·mol -1 ), enthalpy (82.59 ≤ ΔH ⁎ d  ≤ 82.34 kJ·mol -1 and 99.11 ≤ ΔH ⁎ d  ≤ 98.86 kJ·mol -1 ), entropy (-63.26 ≤ ΔS ⁎ d  ≤ -63.85 J·mol -1 ·K -1 and -5.50 ≤ ΔS ⁎ d  ≤ -5.23 J·mol -1 ·K -1 ) and Gibbs free energy (101.8 ≤ ΔG ⁎ d  ≤ 104.7 kJ·mol -1 and 100.6 ≤ ΔG ⁎ d  ≤ 102.0 kJ·mol -1 ). The integral activity of a continuous system using the free and immobilized enzyme was also predicted, whose results indicated a satisfactory enzyme long-term thermostability in both preparations at temperatures commonly used to clarify juice. These results suggest that both free and immobilized pectinase from A. aculeatus may be profitably exploited in future food industrial applications, with special concern to the immobilized enzyme because of its reusability. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Immobilization of Acetobacter sp. CCTCC M209061 for efficient asymmetric reduction of ketones and biocatalyst recycling

    PubMed Central

    2012-01-01

    Background The bacterium Acetobacter sp. CCTCC M209061 is a promising whole-cell biocatalyst with exclusive anti-Prelog stereoselectivity for the reduction of prochiral ketones that can be used to make valuable chiral alcohols such as (R)-4-(trimethylsilyl)-3-butyn-2-ol. Although it has promising catalytic properties, its stability and reusability are relatively poor compared to other biocatalysts. Hence, we explored various materials for immobilizing the active cells, in order to improve the operational stability of biocatalyst. Results It was found that Ca-alginate give the best immobilized biocatalyst, which was then coated with chitosan to further improve its mechanical strength and swelling-resistance properties. Conditions were optimized for formation of reusable immobilized beads which can be used for repeated batch asymmetric reduction of 4′-chloroacetophenone. The optimized immobilized biocatalyst was very promising, with a specific activity of 85% that of the free-cell biocatalyst (34.66 μmol/min/g dw of cells for immobilized catalyst vs 40.54 μmol/min/g for free cells in the asymmetric reduction of 4′-chloroacetophenone). The immobilized cells showed better thermal stability, pH stability, solvent tolerance and storability compared with free cells. After 25 cycles reaction, the immobilized beads still retained >50% catalytic activity, which was 3.5 times higher than degree of retention of activity by free cells reused in a similar way. The cells could be recultured in the beads to regain full activity and perform a further 25 cycles of the reduction reaction. The external mass transfer resistances were negligible as deduced from Damkohler modulus Da < <1, and internal mass transfer restriction affected the reduction action but was not the principal rate-controlling step according to effectiveness factors η < 1 and Thiele modulus 0.3<∅ <1. Conclusions Ca-alginate coated with chitosan is a highly effective material for immobilization of

  5. Bioremediation of contaminated surface water by immobilized Micrococcus roseus.

    PubMed

    Li, H; Li, P; Hua, T; Zhang, Y; Xiong, X; Gong, Z

    2005-08-01

    The problems caused by contaminated surface water have gradually become more serious in recent years. Although various remediation technologies were investigated, unfortunately, no efficient method was developed. In this paper, a new bioremediation technology was studied using Micrococcus roseus, which was immobilized in porous spherical beads by an improved polyvinyl alcohol (PVA) - sodium alginate (SA) embedding method. The experimental results indicated that COD removal rate could reach 64.7 % within 72 hours when immobilized M. roseus beads were used, which was ten times as high as that of free cells. The optimum inoculation rate of immobilized M. roseus beads was 10 % (mass percent of the beads in water sample, g g(-1)). Suitable aeration was proved necessary to enhance the bioremediation process. The immobilized cells had an excellent tolerance to pH and temperature changes, and were also more resistant to heavy metal stress compared with free cells. The immobilized M. roseus beads had an excellent regeneration capacity and could be reused after 180-day continuous usage. The Scanning Electronic Microscope (SEM) analysis showed that the bead microstructure was suitable for M. roseus growth, however, some defect structures should still be improved.

  6. An acid/alkaline stress and the addition of amino acids induce a prolonged viability of Lactobacillus plantarum loaded into alginate gel.

    PubMed

    Bevilacqua, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria

    2010-08-15

    This study reports on the investigation on the effects of the conditions used throughout the step of biomass production on the survival of Lactobacillus plantarum loaded into alginate gels. L. plantarum was grown under different conditions (MRS or a laboratory medium-LB(2)-at acidic or alkaline pHs, with NaCl, phenols, vitamins or amino acids) and immobilized in sodium alginate; cell number was evaluated throughout the storage and death (delta(stand)) and first-reduction times (delta) were calculated. The storage of alginate gels at 4 degrees C prolonged cell viability up to 60 days (ca. 20 days for cells produced in MRS and stored at 30 degrees C); however, a similar prolongation was achieved for cells produced in LB(2) adjusted to pH 5.0 and 9.0 or added with amino acids (death time>50-60 days). Copyright 2010 Elsevier B.V. All rights reserved.

  7. Use of Magnetic Nanoparticles to Monitor Alginate-Encapsulated βTC-tet Cells

    PubMed Central

    Constantinidis, Ioannis; Grant, Samuel C.; Simpson, Nicholas E.; Oca-Cossio, Jose A.; Sweeney, Carol A.; Mao, Hui; Blackband, Stephen J.; Sambanis, Athanassios

    2008-01-01

    Non-invasive monitoring of tissue-engineered constructs is an important component in optimizing construct design and assessing therapeutic efficacy. In recent years, cellular and molecular imaging initiatives have spurred the use of iron oxide based contrast agents in the field of NMR imaging. Although their use in medical research has been widespread, their application in tissue engineering has been limited. In this study, the utility of Monocrystalline Iron Oxide Nanoparticles (MION) as an NMR contrast agent was evaluated for βTC-tet cells encapsulated within alginate/poly-L-lysine/alginate (APA) microbeads. The constructs were labeled with MION in two different ways: (a) MION-labeled βTC-tet cells were encapsulated in APA beads (i.e., intracellular compartment); and (b) MION particles were suspended in the alginate solution prior to encapsulation so that the alginate matrix was labeled with MION instead of the cells (i.e., extracellular compartment). The data show that although the location of cells can be identified within APA beads, cell growth or rearrangement within these constructs cannot be effectively monitored, regardless of the location of MION compartmentalization. The advantages and disadvantages of these techniques and their potential use in tissue engineering are discussed. PMID:19165877

  8. Enzymatic detection of As(III) in aqueous solution using alginate immobilized pumpkin urease: optimization of process variables by response surface methodology.

    PubMed

    Talat, Mahe; Prakash, Om; Hasan, S H

    2009-10-01

    Urease immobilized on alginate was utilized to detect and quantify As(3+) in aqueous solution. Urease from the seeds of pumpkin (vegetable waste) was purified to apparent homogeneity by heat treatment and gel filtration (Sephadex G-200). Further enzyme was entrapped in 3.5% alginate beads. Urea hydrolysis by enzyme revealed a clear dependence on the concentration and interaction time of As(3+). The process variables effecting the quantitation of As(3+) was investigated using central composite design with Minitab 15 software. The predicted results were found in good agreement (R(2)=96.71%) with experimental results indicating the applicability of proposed model. The multiple regression analysis and ANOVA showed that enzyme activity decreased with increase of As(3+) concentration and interaction time. 3D plot and contour plot between As(3+) concentration and interaction time was helpful to predict residual activity of enzyme for a particular As(3+) at a particular time.

  9. Lindane removal by pure and mixed cultures of immobilized actinobacteria.

    PubMed

    Saez, Juliana M; Benimeli, Claudia S; Amoroso, María J

    2012-11-01

    Lindane (γ-HCH) is an organochlorine insecticide that has been widely used in developing countries. It is known to persist in the environment and can cause serious health problems. One of the strategies adopted to remove lindane from the environment is bioremediation using microorganisms. Immobilized cells present advantages over free suspended cells, like their high degradation efficiency and protection against toxins. The aims of this work were: (1) To evaluate the ability of Streptomyces strains immobilized in four different matrices to remove lindane, (2) To select the support with optimum lindane removal by pure cultures, (3) To assay the selected support with consortia and (4) To evaluate the reusability of the immobilized cells. Four Streptomyces sp. strains had previously shown their ability to grow in the presence of lindane. Lindane removal by microorganisms immobilized was significantly higher than in free cells. Specifically immobilized cells in cloth sachets showed an improvement of around 25% in lindane removal compared to the abiotic control. Three strains showed significantly higher microbial growth when they were entrapped in silicone tubes. Strains immobilized in PVA-alginate demonstrated lowest growth. Mixed cultures immobilized inside cloth sachets showed no significant enhancement compared to pure cultures, reaching a maximum removal of 81% after 96 h for consortium I, consisting of the four immobilized strains together. Nevertheless, the cells could be reused for two additional cycles of 96 h each, obtaining a maximum removal efficiency of 71.5% when each of the four strains was immobilized in a separate bag (consortium III). Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Chitosan and alginate types of bio-membrane in fuel cell application: An overview

    NASA Astrophysics Data System (ADS)

    Shaari, N.; Kamarudin, S. K.

    2015-09-01

    The major problems of polymer electrolyte membrane fuel cell technology that need to be highlighted are fuel crossovers (e.g., methanol or hydrogen leaking across fuel cell membranes), CO poisoning, low durability, and high cost. Chitosan and alginate-based biopolymer membranes have recently been used to solve these problems with promising results. Current research in biopolymer membrane materials and systems has focused on the following: 1) the development of novel and efficient biopolymer materials; and 2) increasing the processing capacity of membrane operations. Consequently, chitosan and alginate-based biopolymers seek to enhance fuel cell performance by improving proton conductivity, membrane durability, and reducing fuel crossover and electro-osmotic drag. There are four groups of chitosan-based membranes (categorized according to their reaction and preparation): self-cross-linked and salt-complexed chitosans, chitosan-based polymer blends, chitosan/inorganic filler composites, and chitosan/polymer composites. There are only three alginate-based membranes that have been synthesized for fuel cell application. This work aims to review the state-of-the-art in the growth of chitosan and alginate-based biopolymer membranes for fuel cell applications.

  11. 3D porous calcium-alginate scaffolds cell culture system improved human osteoblast cell clusters for cell therapy.

    PubMed

    Chen, Ching-Yun; Ke, Cherng-Jyh; Yen, Ko-Chung; Hsieh, Hui-Chen; Sun, Jui-Sheng; Lin, Feng-Huei

    2015-01-01

    Age-related orthopedic disorders and bone defects have become a critical public health issue, and cell-based therapy is potentially a novel solution for issues surrounding bone tissue engineering and regenerative medicine. Long-term cultures of primary bone cells exhibit phenotypic and functional degeneration; therefore, culturing cells or tissues suitable for clinical use remain a challenge. A platform consisting of human osteoblasts (hOBs), calcium-alginate (Ca-Alginate) scaffolds, and a self-made bioreactor system was established for autologous transplantation of human osteoblast cell clusters. The Ca-Alginate scaffold facilitated the growth and differentiation of human bone cell clusters, and the functionally-closed process bioreactor system supplied the soluble nutrients and osteogenic signals required to maintain the cell viability. This system preserved the proliferative ability of cells and cell viability and up-regulated bone-related gene expression and biological apatite crystals formation. The bone-like tissue generated could be extracted by removal of calcium ions via ethylenediaminetetraacetic acid (EDTA) chelation, and exhibited a size suitable for injection. The described strategy could be used in therapeutic application and opens new avenues for surgical interventions to correct skeletal defects.

  12. Culture of C3A cells in alginate beads for fluidized bed bioartificial liver.

    PubMed

    Kinasiewicz, A; Gautier, A; Lewinska, D; Bukowski, J; Legallais, C; Weryński, A

    2007-11-01

    Extracorporeal bioartificial liver has been designed to sustain the detoxification and synthetic function of the failed liver in patients suffering from acute liver failure until the time of liver allotransplantation or regeneration of their own. A fluidized bed, bioartificial liver improves the mass transfer velocity between the medium and the hepatocytes. Detoxification functions of the liver could be replaced by completely artificial systems, but the synthetic functions of hepatocytes may be obtained only by metabolically active cells. The aim of our study was to investigate the influence of C3A cell culture in alginate beads on synthetic function in a fluidized bed, bioartificial liver. Cells in alginate beads were prepared using an electrostatic droplet generator of our own design using low-viscosity alginate. Beads were cultured for 24 hours then 7 days in static conditions and then 24 hours of fluidization in the bioreactor to assess albumin production. We observed significantly increased albumin production by C3A cells entrapped in alginate beads during static culture. Fluidization increased albumin production compared with static culture. Fluidization performed after 7 days of static culture resulted in a significant increase in albumin synthesis. In conclusion, static culture of alginate beads hosting hepatic cells facilitates restoration of cell function.

  13. Alginate cryogel based glucose biosensor

    NASA Astrophysics Data System (ADS)

    Fatoni, Amin; Windy Dwiasi, Dian; Hermawan, Dadan

    2016-02-01

    Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under sub-zero temperature. This porous structure was growth in a 100 μL micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μm. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R2 of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.

  14. Determination of diffusion coefficients and diffusion characteristics for chlorferon and diethylthiophosphate in Ca-alginate gel beads.

    PubMed

    Ha, Jiyeon; Engler, Cady R; Lee, Seung Jae

    2008-07-01

    Diffusion characteristics of chlorferon and diethylthiophosphate (DETP) in Ca-alginate gel beads were studied to assist in designing and operating bioreactor systems. Diffusion coefficients for chlorferon and DETP in Ca-alginate gel beads determined at conditions suitable for biodegradation studies were 2.70 x 10(-11) m(2)/s and 4.28 x 10(-11) m(2)/s, respectively. Diffusivities of chlorferon and DETP were influenced by several factors, including viscosity of the bulk solution, agitation speed, and the concentrations of diffusing substrate and immobilized cells. Diffusion coefficients increased with increasing agitation speed, probably due to poor mixing at low speed and some attrition of beads at high speeds. Diffusion coefficients also increased with decreasing substrate concentration. Increased cell concentration in the gel beads caused lower diffusivity. Theoretical models to predict diffusivities as a function of cell weight fraction overestimated the effective diffusivities for both chlorferon and DETP, but linear relations between effective diffusivity and cell weight fraction were derived from experimental data. Calcium-alginate gel beads with radii of 1.65-1.70 mm used in this study were not subject to diffusional limitations: external mass transfer resistances were negligible based on Biot number calculations and effectiveness factors indicated that internal mass transfer resistance was negligible. Therefore, the degradation rates of chlorferon and DETP inside Ca-alginate gel beads were reaction-limited. (c) 2007 Wiley Periodicals, Inc.

  15. Identification of enzymes responsible for extracellular alginate depolymerization and alginate metabolism in Vibrio algivorus.

    PubMed

    Doi, Hidetaka; Tokura, Yuriko; Mori, Yukiko; Mori, Kenichi; Asakura, Yoko; Usuda, Yoshihiro; Fukuda, Hiroo; Chinen, Akito

    2017-02-01

    Alginate is a marine non-food-competing polysaccharide that has potential applications in biorefinery. Owing to its large size (molecular weight >300,000 Da), alginate cannot pass through the bacterial cell membrane. Therefore, bacteria that utilize alginate are presumed to have an enzyme that degrades extracellular alginate. Recently, Vibrio algivorus sp. SA2 T was identified as a novel alginate-decomposing and alginate-utilizing species. However, little is known about the mechanism of alginate degradation and metabolism in this species. To address this issue, we screened the V. algivorus genomic DNA library for genes encoding polysaccharide-decomposing enzymes using a novel double-layer plate screening method and identified alyB as a candidate. Most identified alginate-decomposing enzymes (i.e., alginate lyases) must be concentrated and purified before extracellular alginate depolymerization. AlyB of V. algivorus heterologously expressed in Escherichia coli depolymerized extracellular alginate without requiring concentration or purification. We found seven homologues in the V. algivorus genome (alyB, alyD, oalA, oalB, oalC, dehR, and toaA) that are thought to encode enzymes responsible for alginate transport and metabolism. Introducing these genes into E. coli enabled the cells to assimilate soluble alginate depolymerized by V. algivorus AlyB as the sole carbon source. The alginate was bioconverted into L-lysine (43.3 mg/l) in E. coli strain AJIK01. These findings demonstrate a simple and novel screening method for identifying polysaccharide-degrading enzymes in bacteria and provide a simple alginate biocatalyst and fermentation system with potential applications in industrial biorefinery.

  16. Alginate microencapsulation technology for the percutaneous delivery of adipose-derived stem cells.

    PubMed

    Moyer, Hunter R; Kinney, Ramsey C; Singh, Kimberly A; Williams, Joseph K; Schwartz, Zvi; Boyan, Barbara D

    2010-11-01

    Autologous fat is the ideal soft-tissue filler; however, its widespread application is limited because of variable clinical results and poor survival. Engineered fillers have the potential to maximize survival. Alginate is a hydrogel copolymer that can be engineered into spheres of <200 μm, thus facilitating mass transfer, allowing for subcutaneous injection, and protecting cells from shearing forces. Alginate powder was dissolved in saline, and adipose-derived stem cells (ADSCs) were encapsulated (1 million cells/mL) in alginate using an electrostatic bead generator. To assess effects of injection on cell viability, microspheres containing ADSCs were separated into 2 groups: the control group was decanted into culture wells and the injection group was mixed with basal media and injected through a 21-gauge needle into culture wells. Microbeads were cultured for 3 weeks, and cell number and viability were measured weekly using electron and confocal microscopy. To assess effects of percutaneous injection in vivo, twenty-four male nude mice were randomly separated into 2 groups and injected with either empty microcapsules or ADSC-laden microcapsules. Mice were harvested at 1 and 3 months, and the implants were examined microscopically to assess bead and cell viability. A flow rate of 5 mL/h and an electrostatic potential of 7 kV produced viable ADSC-laden microbeads of <200 μm. There were no differences in bead morphology and ADSC viability between microcapsules placed versus injected into tissue culture plates for up to 3 weeks. Microspheres implanted in a nude mouse model show durability up to 3 months with a host response around each individual sphere. ADSCs remained viable and showed signs of mitosis. ADSCs can be readily cultured, encapsulated, and injected in alginate microspheres. Stem cells suspended in alginate microspheres survive in vivo and are seen to replicate in vitro.

  17. Yeast Immobilization Systems for Alcoholic Wine Fermentations: Actual Trends and Future Perspectives

    PubMed Central

    Moreno-García, Jaime; García-Martínez, Teresa; Mauricio, Juan C.; Moreno, Juan

    2018-01-01

    Yeast immobilization is defined as the physical confinement of intact cells to a region of space with conservation of biological activity. The use of these methodologies for alcoholic fermentation (AF) offers many advantages over the use of the conventional free yeast cell method and different immobilization systems have been proposed so far for different applications, like winemaking. The most studied methods for yeast immobilization include the use of natural supports (e.g., fruit pieces), organic supports (e.g., alginate), inorganic (e.g., porous ceramics), membrane systems, and multi-functional agents. Some advantages of the yeast-immobilization systems include: high cell densities, product yield improvement, lowered risk of microbial contamination, better control and reproducibility of the processes, as well as reuse of the immobilization system for batch fermentations and continuous fermentation technologies. However, these methods have some consequences on the behavior of the yeasts, affecting the final products of the fermentative metabolism. This review compiles current information about cell immobilizer requirements for winemaking purposes, the immobilization methods applied to the production of fermented beverages to date, and yeast physiological consequences of immobilization strategies. Finally, a recent inter-species immobilization methodology has been revised, where yeast cells are attached to the hyphae of a Generally Recognized As Safe fungus and remain adhered following loss of viability of the fungus. The bio-capsules formed with this method open new and promising strategies for alcoholic beverage production (wine and low ethanol content beverages). PMID:29497415

  18. Applications of alginate in bioseparation of proteins.

    PubMed

    Jain, Sulakshana; Mondal, Kalyani; Gupta, Munishwar N

    2006-01-01

    Alginate is a polysaccharide that is a block polymer consisting of block units of guluronic acid and mannuronic acid. It shows inherent biological affinity for a variety of enzymes such as pectinase, lipase, phospholipase D, a and ss amylases and glucoamylase. Taking advantage of its precipitation with Ca2+ and the above-mentioned property, alginate has been used for purification of these enzymes by affinity precipitation, aqueous two phase separation, macroaffinity ligand facilitated three phase partitioning, immobilized metal affinity chromatography and expanded bed affinity chromatography. Thus, this versatile marine resource has tremendous potential in bioseparation of proteins.

  19. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery.

    PubMed

    Zhang, Yeshun; Liu, Jia; Huang, Lei; Wang, Zheng; Wang, Lin

    2015-07-24

    Although alginate hydrogels have been extensively studied for tissue engineering applications, their utilization is limited by poor mechanical strength, rapid drug release, and a lack of cell adhesive ability. Aiming to improve these properties, we employ the interpenetrating hydrogel design rationale. Using alginate and sericin (a natural protein with many unique properties and a major component of silkworm silk), we develop an interpenetrating polymer network (IPN) hydrogel comprising interwoven sericin and alginate double networks. By adjusting the sericin-to-alginate ratios, IPNs' mechanical strength can be adjusted to meet stiffness requirements for various tissue repairs. The IPNs with high sericin content show increased stability during degradation, avoiding pure alginate's early collapse. These IPNs have high swelling ratios, benefiting various applications such as drug delivery. The IPNs sustain controlled drug release with the adjustable rates. Furthermore, these IPNs are adhesive to cells, supporting cell proliferation, long-term survival and migration. Notably, the IPNs inherit sericin's photoluminescent property, enabling bioimaging in vivo. Together, our study indicates that the sericin-alginate IPN hydrogels may serve as a versatile platform for delivering cells and drugs, and suggests that sericin may be a building block broadly applicable for generating IPN networks with other biomaterials for diverse tissue engineering applications.

  20. Diatomite Modified Immobilized Delftia sp. for the Bio-Abiotic Removal of Antibiotics Amoxicillin in the Aqueous System

    NASA Astrophysics Data System (ADS)

    Gao, Lijuan; Sun, Jing; Guan, Kai; Shen, Tingting; Wang, Xikui

    2017-05-01

    Diatomite modified sodium alginate (Si/SA) immobilized Delftia sp. A2(2011) (STT01) was applied to degrade amoxicillin. The immobilized pellets provided a direct and visual probe for the degradation process due to their intrinsic bright colour. The results demonstrated that 100% of amoxicillin and 68.5% of CODcr removal were achieved after 72 h, comparing with the cases of sodium alginate (SA) system (81.2%, 46.9%) and the free cells system (60.5%, 35.5%). The degradation kinetics was in good agreement with Michaelis-Menten equation. The maximum rate (Vm ) and Michaelis constant (Km ) were calculated as 9.09 mg L-1 h-1 and 228 mg L-1, respectively. The results further revealed that diatomite not only acted as immobilization support to improve the mechanical strength and lifetime of the pellets but also as absorbent to promote the treatment efficiency. Therefore, both enzymatic catalysis and chemisorption were responsible for the removal of amoxicillin.

  1. Biochemical consequences of alginate encapsulation: a NMR study of insulin-secreting cells.

    PubMed

    Simpson, Nicholas E; Grant, Samuel C; Gustavsson, Lenita; Peltonen, Vilje-Mia; Blackband, Stephen J; Constantinidis, Ioannis

    2006-04-01

    In this study we explore the biochemical consequences of alginate encapsulation on betaTC3 cells. (13)C NMR spectroscopy and isotopomer analysis were used to investigate the effects of encapsulation on several enzymatic processes associated with the TCA cycle. Our data show statistically significant differences in various enzymatic fluxes related to the TCA cycle and insulin secretion between monolayer and alginate-encapsulated cultures. The principal cause for these effects was the process of trypsinization. Embedding the trypsinized cells in alginate beads did not have a compounded effect on the enzymatic fluxes of entrapped cells. However, an additional small but statistically significant decrease in insulin secretion was measured in encapsulated cells. Finally, differences in either enzymatic fluxes or glucose consumption as a function of bead diameter were not observed. However, differences in T(2), assessed by (1)H NMR microimaging, were observed as a function of bead diameter, suggesting that smaller beads became more organized with time in culture, while larger beads displayed a looser organization.

  2. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakashima, Y., E-mail: yuta-n@mech.kumamoto-u.ac.jp; Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611; Tsusu, K.

    2014-06-15

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film wasmore » controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique.« less

  3. The role of alginate in Pseudomonas aeruginosa EPS adherence, viscoelastic properties and cell attachment.

    PubMed

    Orgad, Oded; Oren, Yoram; Walker, Sharon L; Herzberg, Moshe

    2011-08-01

    Among various functions, extracellular polymeric substances (EPS) provide microbial biofilms with mechanical stability and affect initial cell attachment, the first stage in the biofilm formation process. The role of alginate, an abundant polysaccharide in Pseudomonas aeruginosa biofilms, in the viscoelastic properties and adhesion kinetics of EPS was analyzed using a quartz crystal microbalance with dissipation (QCM-D) monitoring technology. EPS was extracted from two P. aeruginosa biofilms, a wild type strain, PAO1, and a mucoid strain, PAOmucA22 that over-expresses alginate production. The higher alginate content in the EPS originating from the mucoid biofilms was clearly shown to increase both the rate and the extent of attachment of the EPS, as well as the layer's thickness. Also, the presence of calcium and elevated ionic strength increased the thickness of the EPS layer. Dynamic light scattering (DLS) showed that the presence of calcium and elevated ionic strength induced intermolecular attractive interactions in the mucoid EPS molecules. For the wild type EPS, in the presence of calcium, an elevated shift in the distribution of the diffusion coefficients was observed with DLS due to a more compacted conformation of the EPS molecules. Moreover, the alginate over-expression effect on EPS adherence was compared to the effect of alginate over-expression on P. aeruginosa cell attachment. In a parallel plate flow cell, under similar hydraulic and aquatic conditions as those applied for the EPS adsorption tests in the QCM-D flow cell, reduced adherence of the mucoid strain was clearly observed compared to the wild type isogenic bacteria. The results suggest that alginate contributes to steric hindrance and shielding of cell surface features and adhesins that are known to promote cell attachment. © 2011 Taylor & Francis

  4. Surface cell immobilization within perfluoroalkoxy microchannels

    NASA Astrophysics Data System (ADS)

    Stojkovič, Gorazd; Krivec, Matic; Vesel, Alenka; Marinšek, Marjan; Žnidaršič-Plazl, Polona

    2014-11-01

    Perfluoroalkoxy (PFA) is one of the most promising materials for the fabrication of cheap, solvent resistant and reusable microfluidic chips, which have been recently recognized as effective tools for biocatalytic process development. The application of biocatalysts significantly depends on efficient immobilization of enzymes or cells within the reactor enabling long-term biocatalyst use. Functionalization of PFA microchannels by 3-aminopropyltriethoxysilane (ATPES) and glutaraldehyde was used for rapid preparation of microbioreactors with surface-immobilized cells. X-ray photoelectron spectroscopy and scanning electron microscopy were used to accurately monitor individual treatment steps and to select conditions for cell immobilization. The optimized protocol for Saccharomyces cerevisiae immobilization on PFA microchannel walls comprised ethanol surface pretreatment, 4 h contacting with 10% APTES aqueous solution, 10 min treatment with 1% glutaraldehyde and 20 min contacting with cells in deionized water. The same protocol enabled also immobilization of Escherichia coli, Pseudomonas putida and Bacillus subtilis cells on PFA surface in high densities. Furthermore, the developed procedure has been proved to be very efficient also for surface immobilization of tested cells on other materials that are used for microreactor fabrication, including glass, polystyrene, poly (methyl methacrylate), polycarbonate, and two olefin-based polymers, namely Zeonor® and Topas®.

  5. Ag/alginate nanofiber membrane for flexible electronic skin

    NASA Astrophysics Data System (ADS)

    Hu, Wei-Peng; Zhang, Bin; Zhang, Jun; Luo, Wei-Ling; Guo, Ya; Chen, Shao-Juan; Yun, Mao-Jin; Ramakrishna, Seeram; Long, Yun-Ze

    2017-11-01

    Flexible electronic skin has stimulated significant interest due to its widespread applications in the fields of human-machine interactivity, smart robots and health monitoring. As typical elements of electrical skin, the fabrication process of most pressure sensors combined nanomaterials and PDMS films are redundant, expensive and complicated, and their unknown biological toxicity could not be widely used in electronic skin. Hence, we report a novel, cost-effective and antibacterial approach to immobilizing silver nanoparticles into-electrospun Na-alginate nanofibers. Due to the unique role of carboxyl and hydroxyl groups in Na-alginate, the silver nanopaticles with 30 nm size in diameter were uniformly distributed inside and outside the alginate nanofibers, which obtained pressure sensor shows stable response, including an ultralow detection limited (1 pa) and high durability (>1000 cycles). Notably, the pressure sensor fabricated by these Ag/alginate nanofibers could not only follow human respiration but also accurately distinguish words like ‘Nano’ and ‘Perfect’ spoke by a tester. Interestingly, the pixelated sensor arrays based on these Ag/alginate nanofibers could monitor distribution of objects and reflect their weight by measuring the different current values. Moreover, these Ag/alginate nanofibers exhibit great antibacterial activity, implying the great potential application in artificial electronic skin.

  6. Variations in chondrogenesis of human bone marrow-derived mesenchymal stem cells in fibrin/alginate blended hydrogels

    PubMed Central

    Ma, Kun; Titan, Ashley L.; Stafford, Melissa; Zheng, Chun hua; Levenston, Marc E.

    2012-01-01

    Fibrin and alginate hydrogels have been widely used to support chondrogenesis of bone marrow-derived mesenchymal stem cells (BM-MSCs) for articular cartilage and fibrocartilage tissue engineering, with distinct advantages and disadvantages to each material. Attempting to produce a gel scaffold exhibiting beneficial characteristics of both materials, we fabricated fibrin/alginate blended hydrogels at various blend ratios and evaluated the gel morphology, mechanical properties and their support for BM-MSC chondrogenesis. Results show that when the fibrin/alginate ratio decreased, the fibrin architecture transitioned from uniform to interconnected fibrous and finally to disconnected islands against an alginate background, with opposing trends in the alginate architecture. Fibrin maintained gel extensibility and promoted cell proliferation, while alginate improved the gel biostability and better supported glycosaminoglycan and collagen II production and chondrogenic gene expression. Blended gels had physical and biological characteristics intermediate between fibrin and alginate. Of the blends examined, FA 40:8 (40 mg/mL fibrinogen blended with 8 mg/mL alginate) was found to be the most appropriate group for future studies on tension-driven BM-MSC fibrochondrogenesis. As BM-MSC differentiation appeared to vary between fibrin and alginate regions of blended scaffolds, this study also highlighted the potential to develop spatially heterogeneous tissues through manipulating the heterogeneity of scaffold composition. PMID:22750738

  7. Immobilized Cell Research

    DTIC Science & Technology

    1990-10-31

    specifically with the biotech nologi cal side of cellular immobilization, there aje aspects of this research that have importance in other fields. 20 C...meetings dealt lem facing the Navy. The techniques reviewed here specifically with the biotechnological side of cellular im- should be of particular...phenomena. types of organisms, and the many techniques used to compare cellular physiologies. Undoubtedly, any tech- Why Use Immobilized Cells in

  8. Alginate-perlite encapsulated Pseudomonas putida A (ATCC 12633) cells: Preparation, characterization and potential use as plant inoculants.

    PubMed

    Liffourrena, Andrés S; Lucchesi, Gloria I

    2018-04-30

    Microbial immobilization can be used to prepare encapsulated inoculants. Here, we characterize and describe the preparation of Ca-alginate-perlite microbeads loaded with cells of plant growth-promoting Pseudomonas putida A (ATCC 12633), for their future application as agricultural inoculants. The microbeads were prepared by dropwise addition of a CaCl 2 -paraffin emulsion mixture to an emulsion containing alginate 2% (w/v), perlite 0.1-0.4% (w/v) and bacterial suspension in 0.9% NaCl (10 10  CFU/mL). For all perlite concentrations used, microbead size was 90-120 μm, the trapped population was 10 8  CFU/g microbeads and the increase in mechanical stability was proportional to perlite concentration. Microbeads containing 0.4% (w/v) perlite were able to release bacteria into the medium after 30 days of incubation. When we evaluated how P. putida A (ATCC 12633) entrapped in Ca-alginate-perlite (0.4% (w/v)) microbeads colonized the Arabidopsis thaliana rhizosphere, an increase in colonization over time was detected (from an initial 2.1 × 10 4 to 9.2 × 10 5  CFU/g soil after 21 days). With this treatment, growth promotion of A. thaliana occurred with an increase in the amount of proteins, and in root and leaf biomass. It was concluded that the microbeads could be applied as possible inoculants, since they provide protection and a controlled release of microorganisms into the rhizosphere. Copyright © 2018. Published by Elsevier B.V.

  9. Wheat Bran Enhances the Cytotoxicity of Immobilized Alcaligenes aquatilis F8 against Microcystis aeruginosa

    PubMed Central

    Sun, Pengfei; Lin, Hui; Wang, Guan; Zhang, Ximing; Zhang, Qichun; Zhao, Yuhua

    2015-01-01

    Algicidal bacteria offer a promising option for killing cyanobacteria. Therefore, a new Alcaligenes aquatilis strain F8 was isolated to control Microcystis aeruginosa in this study. The algicidal activity of strain F8 was dependent on the cell density of M. aeruginosa, and the maximal algicidal rate of the free bacterium reached 88.45% within 72 h. With a view to its application to the control of M. aeruginosa in the natural environment, strain F8 was immobilized in sodium alginate beads, but immobilization of the strain decreased its algicidal rate compared to that of the free bacterium. However, addition of wheat bran to the sodium alginate matrix used to immobilize strain F8 not only eliminated the adverse effects of immobilization on the bacteria but also resulted in an 8.83% higher algicidal rate of the immobilized than free bacteria. Exclusion and recovery methods were used to identify key ingredients of wheat bran and gain insight into the mechanism underlying the observed enhancement of algicidal activity. This analysis indicated that certain factors in wheat bran, including vitamins B1, B2, B9, and E were responsible for promoting bacterial growth and thereby improving the algicidal rate of immobilized strain F8. Our findings indicate that wheat bran is able to improve the algicidal efficiency of A. aquatilis strain F8 for killing M. aeruginosa and is a good source of not only carbon and nitrogen but also vitamins for bacteria. PMID:26295573

  10. Synthesis of a novel alginate-rubber joint immobilization strains H-1 and its application in removal of Pb (II) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Huidong; Huo, Kaili; Li, Xiaolei; Zhang, Lin; Yun, Yueqing; Song, Lei; Bai, Runying; Liu, Yuhong

    2018-02-01

    In this study, a novel alginate-rubber-strains immobilized beads (ARSIBs) was synthesized at the optimum conditions that the concentration of sodium alginate was 4%; the volume of bacterial suspension was 75%; the quality of rubber powder was 3.2%; the crosslinking time was 24 h by the orthogonal experiments. The optimum conditions for Pb (II) adsorption were 1.2% ARSIBs, 100 mg L-1 initial concentrations, pH 5 and 3 h contact time. The equilibrium data were well fitted by the Freundlich isotherm model. The biosorption process was nearly consistent with the pseudo-second-order model. Meanwhile, the biosorption mechanism could be that Pb (II) was adsorbed by the hydroxyl and carboxyl, finally precipitated with phosphate in the form of NaPb4(PO4)3, Pb5(PO4)3(OH) and Pb(H2PO4)2 based on the spectra of FTIR and XRD, respectively. In addition, the stability of ARSIBs was enhanced due to the addition to the rubber powder in the process of wastewater treatment.

  11. Encapsulation of brewing yeast in alginate/chitosan matrix: lab-scale optimization of lager beer fermentation.

    PubMed

    Naydenova, Vessela; Badova, Mariyana; Vassilev, Stoyan; Iliev, Vasil; Kaneva, Maria; Kostov, Georgi

    2014-03-04

    Two mathematical models were developed for studying the effect of main fermentation temperature ( T MF ), immobilized cell mass ( M IC ) and original wort extract (OE) on beer fermentation with alginate-chitosan microcapsules with a liquid core. During the experiments, the investigated parameters were varied in order to find the optimal conditions for beer fermentation with immobilized cells. The basic beer characteristics, i.e. extract, ethanol, biomass concentration, pH and colour, as well as the concentration of aldehydes and vicinal diketones, were measured. The results suggested that the process parameters represented a powerful tool in controlling the fermentation time. Subsequently, the optimized process parameters were used to produce beer in laboratory batch fermentation. The system productivity was also investigated and the data were used for the development of another mathematical model.

  12. Encapsulation of brewing yeast in alginate/chitosan matrix: lab-scale optimization of lager beer fermentation

    PubMed Central

    Naydenova, Vessela; Badova, Mariyana; Vassilev, Stoyan; Iliev, Vasil; Kaneva, Maria; Kostov, Georgi

    2014-01-01

    Two mathematical models were developed for studying the effect of main fermentation temperature (T MF), immobilized cell mass (M IC) and original wort extract (OE) on beer fermentation with alginate-chitosan microcapsules with a liquid core. During the experiments, the investigated parameters were varied in order to find the optimal conditions for beer fermentation with immobilized cells. The basic beer characteristics, i.e. extract, ethanol, biomass concentration, pH and colour, as well as the concentration of aldehydes and vicinal diketones, were measured. The results suggested that the process parameters represented a powerful tool in controlling the fermentation time. Subsequently, the optimized process parameters were used to produce beer in laboratory batch fermentation. The system productivity was also investigated and the data were used for the development of another mathematical model. PMID:26019512

  13. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery

    PubMed Central

    Zhang, Yeshun; Liu, Jia; Huang, Lei; Wang, Zheng; Wang, Lin

    2015-01-01

    Although alginate hydrogels have been extensively studied for tissue engineering applications, their utilization is limited by poor mechanical strength, rapid drug release, and a lack of cell adhesive ability. Aiming to improve these properties, we employ the interpenetrating hydrogel design rationale. Using alginate and sericin (a natural protein with many unique properties and a major component of silkworm silk), we develop an interpenetrating polymer network (IPN) hydrogel comprising interwoven sericin and alginate double networks. By adjusting the sericin-to-alginate ratios, IPNs’ mechanical strength can be adjusted to meet stiffness requirements for various tissue repairs. The IPNs with high sericin content show increased stability during degradation, avoiding pure alginate’s early collapse. These IPNs have high swelling ratios, benefiting various applications such as drug delivery. The IPNs sustain controlled drug release with the adjustable rates. Furthermore, these IPNs are adhesive to cells, supporting cell proliferation, long-term survival and migration. Notably, the IPNs inherit sericin’s photoluminescent property, enabling bioimaging in vivo. Together, our study indicates that the sericin-alginate IPN hydrogels may serve as a versatile platform for delivering cells and drugs, and suggests that sericin may be a building block broadly applicable for generating IPN networks with other biomaterials for diverse tissue engineering applications. PMID:26205586

  14. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery

    NASA Astrophysics Data System (ADS)

    Zhang, Yeshun; Liu, Jia; Huang, Lei; Wang, Zheng; Wang, Lin

    2015-07-01

    Although alginate hydrogels have been extensively studied for tissue engineering applications, their utilization is limited by poor mechanical strength, rapid drug release, and a lack of cell adhesive ability. Aiming to improve these properties, we employ the interpenetrating hydrogel design rationale. Using alginate and sericin (a natural protein with many unique properties and a major component of silkworm silk), we develop an interpenetrating polymer network (IPN) hydrogel comprising interwoven sericin and alginate double networks. By adjusting the sericin-to-alginate ratios, IPNs’ mechanical strength can be adjusted to meet stiffness requirements for various tissue repairs. The IPNs with high sericin content show increased stability during degradation, avoiding pure alginate’s early collapse. These IPNs have high swelling ratios, benefiting various applications such as drug delivery. The IPNs sustain controlled drug release with the adjustable rates. Furthermore, these IPNs are adhesive to cells, supporting cell proliferation, long-term survival and migration. Notably, the IPNs inherit sericin’s photoluminescent property, enabling bioimaging in vivo. Together, our study indicates that the sericin-alginate IPN hydrogels may serve as a versatile platform for delivering cells and drugs, and suggests that sericin may be a building block broadly applicable for generating IPN networks with other biomaterials for diverse tissue engineering applications.

  15. Enzyme-entrapping behaviors in alginate fibers and their papers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Y.; Matsuo, R.; Ohya, T.

    1987-01-01

    Enzyme immobilization in the form of fiber and paper was easily achieved by wet spinning of aqueous admixture of sodium alginate and enzymes into divalent metallic ion solution as a coagulating bath, followed by paper making of resultant shortly cut fibers. Entrapment yields of enzymes used, e.g., glucoamylase, cyclodextrin glucanotransferase, endo-polygalacturonase, and protease, were always higher in calcium alginate fibers and their papers than those in corresponding beads. It was found that the yields increased with an increase of the discharge rate through the spinning nozzle because the higher discharge rate could provide more highly oriented metal-chelate linear polymer moleculesmore » along the fiber axis for preventing leakage of entrapped enzymes. Divalent metallic ions affected greatly the entrapment of glucoamylase in alginate fibers, the order of which followed rougly the ionotropic series of Thiele. Entrapment of glucoamylase in bicomponent systems comprising alginate and other water-soluble polymers was also investigated. (Refs. 41).« less

  16. Potential application of immobilized streptokinase extracted from Streptococcus equinus VIT_VB2.

    PubMed

    Vaishnavi, B; Subathra Devi, C

    2017-11-26

    Streptokinase purified from Streptococcus equinus VIT_VB2 isolated from bovine milk sample was immobilized in various solid supports namely entrapment in agarose gel, calcium alginate beads and gelatin gel by cross-linking with formaldehyde. Immobilization of streptokinase in calcium alginate beads showed maximum efficiency (81.8 ± 1.06%) when compared with entrapment with agarose gel (55.6 ± 2.17%) and cross-linked gelatin formaldehyde gel (71.0 ± 1.54%). The purified SK activity was expressed maximum in calcium alginate (1%) and gelatin gel (0.25%) with 1292.68 ± 1.33 and 1121.9 ± 1.2 U mL -1 , respectively. Similarly, SK entrapped in gelatin gel and calcium alginate showed maximum in vitro blood clot lysis activity with 77.67 ± 2.64% and 76.16 ± 2.72%, respectively. The immobilized SK in gelatin gel showed complete clot lysis within 15 min; hence, this application of the study could be used in the treatment of superficial thrombophlebitis, phlebitis, and venous thrombosis. These beads were used for three repeated cycles to check the conversion of substrates into their products, and we concluded that SK can be immobilized in the suitable matrices. Therefore, this helps in the drug-delivery strategies in highly efficient way, moreover, economically competent process in the pharmaceutics.

  17. Surface modified alginate microcapsules for 3D cell culture

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  18. Production of L-glutamic Acid with Corynebacterium glutamicum (NCIM 2168) and Pseudomonas reptilivora (NCIM 2598): A Study on Immobilization and Reusability

    PubMed Central

    Shyamkumar, Rajaram; Moorthy, Innasi Muthu Ganesh; Ponmurugan, Karuppiah; Baskar, Rajoo

    2014-01-01

    Background L-glutamic acid is one of the major amino acids that is present in a wide variety of foods. It is mainly used as a food additive and flavor enhancer in the form of sodium salt. Corynebacterium glutamicum (C. glutamicum) is one of the major organisms widely used for glutamic acid production. Methods The study was dealing with immobilization of C. glutamicum and mixed culture of C. glutamicum and Pseudomonas reptilivora (P. reptilivora) for L-glutamic acid production using submerged fermentation. 2, 3 and 5% sodium alginate concentrations were used for production and reusability of immobilized cells for 5 more trials. Results The results revealed that 2% sodium alginate concentration produced the highest yield (13.026±0.247 g/l by C. glutamicum and 16.026±0.475 g/l by mixed immobilized culture). Moreover, reusability of immobilized cells was evaluated in 2% concentration with 5 more trials. However, when the number of cycles increased, the production of L-glutamic acid decreased. Conclusion Production of glutamic acid using optimized medium minimizes the time needed for designing the medium composition. It also minimizes external contamination. Glutamic acid production gradually decreased due to multiple uses of beads and consequently it reduces the shelf life. PMID:25215180

  19. Production of L-glutamic Acid with Corynebacterium glutamicum (NCIM 2168) and Pseudomonas reptilivora (NCIM 2598): A Study on Immobilization and Reusability.

    PubMed

    Shyamkumar, Rajaram; Moorthy, Innasi Muthu Ganesh; Ponmurugan, Karuppiah; Baskar, Rajoo

    2014-07-01

    L-glutamic acid is one of the major amino acids that is present in a wide variety of foods. It is mainly used as a food additive and flavor enhancer in the form of sodium salt. Corynebacterium glutamicum (C. glutamicum) is one of the major organisms widely used for glutamic acid production. The study was dealing with immobilization of C. glutamicum and mixed culture of C. glutamicum and Pseudomonas reptilivora (P. reptilivora) for L-glutamic acid production using submerged fermentation. 2, 3 and 5% sodium alginate concentrations were used for production and reusability of immobilized cells for 5 more trials. The results revealed that 2% sodium alginate concentration produced the highest yield (13.026±0.247 g/l by C. glutamicum and 16.026±0.475 g/l by mixed immobilized culture). Moreover, reusability of immobilized cells was evaluated in 2% concentration with 5 more trials. However, when the number of cycles increased, the production of L-glutamic acid decreased. Production of glutamic acid using optimized medium minimizes the time needed for designing the medium composition. It also minimizes external contamination. Glutamic acid production gradually decreased due to multiple uses of beads and consequently it reduces the shelf life.

  20. Efficient functionalization of alginate biomaterials.

    PubMed

    Dalheim, Marianne Ø; Vanacker, Julie; Najmi, Maryam A; Aachmann, Finn L; Strand, Berit L; Christensen, Bjørn E

    2016-02-01

    Peptide coupled alginates obtained by chemical functionalization of alginates are commonly used as scaffold materials for cells in regenerative medicine and tissue engineering. We here present an alternative to the commonly used carbodiimide chemistry, using partial periodate oxidation followed by reductive amination. High and precise degrees of substitution were obtained with high reproducibility, and without formation of by-products. A protocol was established using l-Tyrosine methyl ester as a model compound and the non-toxic pic-BH3 as the reducing agent. DOSY was used to indirectly verify covalent binding and the structure of the product was further elucidated using NMR spectroscopy. The coupling efficiency was to some extent dependent on alginate composition, being most efficient on mannuronan. Three different bioactive peptide sequences (GRGDYP, GRGDSP and KHIFSDDSSE) were coupled to 8% periodate oxidized alginate resulting in degrees of substitution between 3.9 and 6.9%. Cell adhesion studies of mouse myoblasts (C2C12) and human dental stem cells (RP89) to gels containing various amounts of GRGDSP coupled alginate demonstrated the bioactivity of the material where RP89 cells needed higher peptide concentrations to adhere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effective ethanol production from whey powder through immobilized E. coli expressing Vitreoscilla hemoglobin.

    PubMed

    Sar, Taner; Stark, Benjamin C; Yesilcimen Akbas, Meltem

    2017-03-04

    Ethanol production from whey powder was investigated by using free as well as alginate immobilized E. coli and E. coli expressing Vitreoscilla hemoglobin (VHb) in both shake flask and fermenter cultures. Media with varying levels of whey (lactose contents of 3%, 5%, 8% or 15%) and yeast extract (0.3% or 0.5%) were evaluated with fermentation times of 48-96 h. Immobilization and VHb expression resulted in higher ethanol production with all media; the increases ranged from 2% to 89% for immobilization and from 2% to 182% for VHb expression. It was determined that growth medium containing 8% lactose with 0.5% yeast extract yielded the highest ethanol production for free or immobilized strains, with or without VHb expression, in both shake flask and fermenter cultures. Immobilization with alginate was found to be a promising process for ethanol production by VHb-expressing ethanologenic E. coli.

  2. Effective ethanol production from whey powder through immobilized E. coli expressing Vitreoscilla hemoglobin

    PubMed Central

    Sar, Taner; Stark, Benjamin C.; Yesilcimen Akbas, Meltem

    2017-01-01

    ABSTRACT Ethanol production from whey powder was investigated by using free as well as alginate immobilized E. coli and E. coli expressing Vitreoscilla hemoglobin (VHb) in both shake flask and fermenter cultures. Media with varying levels of whey (lactose contents of 3%, 5%, 8% or 15%) and yeast extract (0.3% or 0.5%) were evaluated with fermentation times of 48–96 h. Immobilization and VHb expression resulted in higher ethanol production with all media; the increases ranged from 2% to 89% for immobilization and from 2% to 182% for VHb expression. It was determined that growth medium containing 8% lactose with 0.5% yeast extract yielded the highest ethanol production for free or immobilized strains, with or without VHb expression, in both shake flask and fermenter cultures. Immobilization with alginate was found to be a promising process for ethanol production by VHb-expressing ethanologenic E. coli. PMID:27579556

  3. Immobilized Rhodotorula mucilaginosa: a novel urethanase-producing strain for degrading ethyl carbamate.

    PubMed

    Wu, Qun; Zhao, Yamin; Wang, Dong; Xu, Yan

    2013-12-01

    Rhodotorula mucilaginosa, producing the ethyl carbamate (EC)-degrading enzyme, urethanase, was newly isolated from the Chinese rice wine making process. It removed 80 % of EC when it was incubated with 5.0 g/L EC. It grew and stably produced urethanase, with pH ranging from 7.0 to 3.0. In addition, urethanase production by R. mucilaginosa was systematically optimized. Glucose, yeast extract, peptone, and inoculum size were selected with the Plackett-Burman design. They were further optimized via uniform design and determined to be 24.6 g/L, 2.5 g/L, 23.1 g/L, and 65.8 mL/500 mL, respectively. Urethanase activity reached 4,340.0 U/L in the optimal fermentation condition. Furthermore, cell immobilization of R. mucilaginosa in calcium alginate/chitosan was applied to improve cell resistance to environmental stresses. The immobilized cells removed 51.6 % of EC in commercial rice wine, which was 10 times more than that of the free cells. It indicated that the immobilized R. mucilaginosa was effective for degrading EC.

  4. Preparation and properties of an immobilized pectinlyase for the treatment of fruit juices.

    PubMed

    Busto, M D; García-Tramontín, K E; Ortega, N; Perez-Mateos, M

    2006-09-01

    Pectinlyase, present in different commercial pectinases used in juice technology, was immobilized on alginate beads. The optimal conditions were: 0.17 g alginate ml(-1), 1.2% (w/v or v/v) enzyme concentration and acetic-HCl/glycine-HCl buffer at pH 3.6 or tris-HCl/imidazole buffer at pH 6.4. Maximum percentage of immobilization (10.6%) was obtained with Rapidase C80. Kinetic parameters of free and immobilized pectinlyase were also determined. The pH and temperature at which activity of soluble and immobilized enzyme was maximum were 7.2 and 55 degrees C. Thermal stability was not significantly altered by immobilization, especially at 40 degrees C, showing two periods of different stability. Free and immobilized preparation reduced the viscosity of highly esterified pectin from 1.09 to 0.70 and 0.72 mm(2) s(-1), respectively, after 30 min at 40 degrees C. Furthermore, the immobilized enzyme could be re-used through 4 cycles and the efficiency loss in viscosity reduction was found to be only 9.2%.

  5. Light-addressable electrodeposition of cell-encapsulated alginate hydrogels for a cellular microarray using a digital micromirror device

    PubMed Central

    Huang, Shih-Hao; Hsueh, Hui-Jung; Jiang, Yeu-Long

    2011-01-01

    This paper describes a light-addressable electrolytic system used to perform an electrodeposition of calcium alginate hydrogels using a digital micromirror device (DMD). In this system, a patterned light illumination is projected onto a photoconductive substrate serving as a photo-anode to electrolytically produce protons, which can lead to a decreased pH gradient. The low pH generated at the anode can locally release calcium ions from insoluble calcium carbonate (CaCO3) to cause gelation of calcium alginate through sol-gel transition. By controlling the illumination pattern on the DMD, a light-addressable electrodeposition of calcium alginate hydrogels with different shapes and sizes, as well as multiplexed micropatterning was performed. The effects of the concentration of the alginate and CaCO3 solutions on the dimensional resolution of alginate hydrogel formation were experimentally examined. A 3 × 3 array of cell-encapsulated alginate hydrogels was also successfully demonstrated through light-addressable electrodeposition. Our proposed method provides a programmable method for the spatiotemporally controllable assembly of cell populations into cellular microarrays and could have a wide range of biological applications in cell-based biosensing, toxicology, and drug discovery. PMID:22685500

  6. Light-addressable electrodeposition of cell-encapsulated alginate hydrogels for a cellular microarray using a digital micromirror device.

    PubMed

    Huang, Shih-Hao; Hsueh, Hui-Jung; Jiang, Yeu-Long

    2011-09-01

    This paper describes a light-addressable electrolytic system used to perform an electrodeposition of calcium alginate hydrogels using a digital micromirror device (DMD). In this system, a patterned light illumination is projected onto a photoconductive substrate serving as a photo-anode to electrolytically produce protons, which can lead to a decreased pH gradient. The low pH generated at the anode can locally release calcium ions from insoluble calcium carbonate (CaCO(3)) to cause gelation of calcium alginate through sol-gel transition. By controlling the illumination pattern on the DMD, a light-addressable electrodeposition of calcium alginate hydrogels with different shapes and sizes, as well as multiplexed micropatterning was performed. The effects of the concentration of the alginate and CaCO(3) solutions on the dimensional resolution of alginate hydrogel formation were experimentally examined. A 3 × 3 array of cell-encapsulated alginate hydrogels was also successfully demonstrated through light-addressable electrodeposition. Our proposed method provides a programmable method for the spatiotemporally controllable assembly of cell populations into cellular microarrays and could have a wide range of biological applications in cell-based biosensing, toxicology, and drug discovery.

  7. Nanocellulose-alginate hydrogel for cell encapsulation.

    PubMed

    Park, Minsung; Lee, Dajung; Hyun, Jinho

    2015-02-13

    TEMPO-oxidized bacterial cellulose (TOBC)-sodium alginate (SA) composites were prepared to improve the properties of hydrogel for cell encapsulation. TOBC fibers were obtained using a TEMPO/NaBr/NaClO system at pH 10 and room temperature. The fibrillated TOBCs mixed with SA were cross-linked in the presence of Ca(2+) solution to form hydrogel composites. The compression strength and chemical stability of the TOBC/SA composites were increased compared with the SA hydrogel, which indicated that TOBC performed an important function in enhancing the structural, mechanical and chemical stability of the composites. Cells were successfully encapsulated in the TOBC/SA composites, and the viability of cells was investigated. TOBC/SA composites can be a potential candidate for cell encapsulation engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Advances in ethanol production using immobilized cell systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margaritis, A.; Merchant, F.J.A.

    The application of immobilized cell systems for the production of ethanol has resulted in substantial improvements in the efficiency of the process when compared to the traditional free cell system. In this review, the various methods of cell immobilization employed in ethanol production systems have been described in detail. Their salient features, performance characteristics, advantages and limitations have been critically assessed. More recently, these immobilized cell systems have also been employed for the production of ethanol from non-conventional feedstocks such as Jerusalem artichoke extracts, cheese whey, cellulose, cellobiose and xylose. Ethanol production by immobilized yeast and bacterial cells has beenmore » attempted in various bioreactor types. Although most of these studies have been carried out using laboratory scale prototype bioreactors, it appears that only fluidized bed, horizontally packed bed bioreactors and tower fermenters may find application on scale-up. Several studies have indicated that upon immobilization, yeast cells performing ethanol fermentation exhibit more favourable physiological and metabolic properties. This, in addition to substantial improvements in ethanol productivities by immobilized cell systems, is indicative of the fact that future developments in the production of ethanol and alcoholic beverages will be directed towards the use of immobilized cell systems. 291 references.« less

  9. Behavior of a Spontaneously Arising Human Retinal Pigment Epithelial Cell Line Cultivated on Thin Alginate Film.

    PubMed

    Najafabadi, Hoda Shams; Soheili, Zahra-Soheila; Ganji, Shahla Mohammad

    2015-01-01

    A cell line spontaneously derived from human retinal pigment epithelium (hRPE) was cultured on alginate film gelatinized with different concentrations of neurobasal cell culture medium (NCCM) to assess its growth and morphological behavior on this naturally occurring polysaccharide. Neonatal human globes were used to isolate hRPE cells. They were cultured in Dulbecco's modified Eagle's-medium-and-Ham's-F12-medium-(DMEM/F12) supplemented with 10% fetal bovine serum (FBS). Cultures were continuously studied using phase contrast microscopy. After the nineth passage, cells were characterized through immunocytochemical analysis for Oct4, Chx10, and Pax6 and Ki67 markers. In each well of a 6-well microplate, 1 and 2% weight/volume (w/v) alginate in deionized water was added and gelatinized using 1× and 10× NCCM. hRPE cells were cultured at a density of 2 × 105 cells/well in alginate-coated microplates. After 5 days, hRPE colonies were harvested and re-plated on polystyrene substrates. Morphology and growth of hRPE cultures were determined during the next 2 weeks. The first few passages of the cultures were purely hRPE cells that revealed typical morphological features of the pigmented epithelium. They made spaces, devoid of cells, between hRPE cell monolayer and fill in the unoccupied spaces. They grew faster than native RPE cells and rapidly overgrew. Immunocytochemical test revealed that the founded cells expressed Chx10, Pax6, Ki67 and Oct4. The hRPE cells survived unlimitedly on alginate film and formed giant adjoining colonies. After re-plating, hRPE colonies adhered quickly on polystyrene and displayed native hRPE morphological features. Alginate film can support the survival and growth of hRPE cells and induce the cells to re-organize in tissue-like structures.

  10. Behavior of a Spontaneously Arising Human Retinal Pigment Epithelial Cell Line Cultivated on Thin Alginate Film

    PubMed Central

    Najafabadi, Hoda Shams; Soheili, Zahra-Soheila; Ganji, Shahla Mohammad

    2015-01-01

    Purpose: A cell line spontaneously derived from human retinal pigment epithelium (hRPE) was cultured on alginate film gelatinized with different concentrations of neurobasal cell culture medium (NCCM) to assess its growth and morphological behavior on this naturally occurring polysaccharide. Methods: Neonatal human globes were used to isolate hRPE cells. They were cultured in Dulbecco's modified Eagle’s-medium-and-Ham’s-F12-medium-(DMEM/F12) supplemented with 10% fetal bovine serum (FBS). Cultures were continuously studied using phase contrast microscopy. After the nineth passage, cells were characterized through immunocytochemical analysis for Oct4, Chx10, and Pax6 and Ki67 markers. In each well of a 6-well microplate, 1 and 2% weight/volume (w/v) alginate in deionized water was added and gelatinized using 1× and 10× NCCM. hRPE cells were cultured at a density of 2 × 105 cells/well in alginate-coated microplates. After 5 days, hRPE colonies were harvested and re-plated on polystyrene substrates. Morphology and growth of hRPE cultures were determined during the next 2 weeks. Results: The first few passages of the cultures were purely hRPE cells that revealed typical morphological features of the pigmented epithelium. They made spaces, devoid of cells, between hRPE cell monolayer and fill in the unoccupied spaces. They grew faster than native RPE cells and rapidly overgrew. Immunocytochemical test revealed that the founded cells expressed Chx10, Pax6, Ki67 and Oct4. The hRPE cells survived unlimitedly on alginate film and formed giant adjoining colonies. After re-plating, hRPE colonies adhered quickly on polystyrene and displayed native hRPE morphological features. Conclusion: Alginate film can support the survival and growth of hRPE cells and induce the cells to re-organize in tissue-like structures. PMID:26730315

  11. 3D culture of human pluripotent stem cells in RGD-alginate hydrogel improves retinal tissue development.

    PubMed

    Hunt, Nicola C; Hallam, Dean; Karimi, Ayesha; Mellough, Carla B; Chen, Jinju; Steel, David H W; Lako, Majlinda

    2017-02-01

    No treatments exist to effectively treat many retinal diseases. Retinal pigmented epithelium (RPE) and neural retina can be generated from human embryonic stem cells/induced pluripotent stem cells (hESCs/hiPSCs). The efficacy of current protocols is, however, limited. It was hypothesised that generation of laminated neural retina and/or RPE from hiPSCs/hESCs could be enhanced by three dimensional (3D) culture in hydrogels. hiPSC- and hESC-derived embryoid bodies (EBs) were encapsulated in 0.5% RGD-alginate; 1% RGD-alginate; hyaluronic acid (HA) or HA/gelatin hydrogels and maintained until day 45. Compared with controls (no gel), 0.5% RGD-alginate increased: the percentage of EBs with pigmented RPE foci; the percentage EBs with optic vesicles (OVs) and pigmented RPE simultaneously; the area covered by RPE; frequency of RPE cells (CRALBP+); expression of RPE markers (TYR and RPE65) and the retinal ganglion cell marker, MATH5. Furthermore, 0.5% RGD-alginate hydrogel encapsulation did not adversely affect the expression of other neural retina markers (PROX1, CRX, RCVRN, AP2α or VSX2) as determined by qRT-PCR, or the percentage of VSX2 positive cells as determined by flow cytometry. 1% RGD-alginate increased the percentage of EBs with OVs and/or RPE, but did not significantly influence any other measures of retinal differentiation. HA-based hydrogels had no significant effect on retinal tissue development. The results indicated that derivation of retinal tissue from hESCs/hiPSCs can be enhanced by culture in 0.5% RGD-alginate hydrogel. This RGD-alginate scaffold may be useful for derivation, transport and transplantation of neural retina and RPE, and may also enhance formation of other pigmented, neural or epithelial tissue. The burden of retinal disease is ever growing with the increasing age of the world-wide population. Transplantation of retinal tissue derived from human pluripotent stem cells (PSCs) is considered a promising treatment. However, derivation of

  12. d-Tagatose production by permeabilized and immobilized Lactobacillus plantarum using whey permeate.

    PubMed

    Jayamuthunagai, J; Srisowmeya, G; Chakravarthy, M; Gautam, P

    2017-07-01

    The aim of the work is to produce d-Tagatose by direct addition of alginate immobilized Lactobacillus plantarum cells to lactose hydrolysed whey permeate. The cells were untreated and immobilized (UIC), permeabilized and immobilized (PIC) and the relative activities were compared with purified l-arabinose isomerase (l-AI) for d-galactose isomerization. Successive lactose hydrolysis by β-galactosidase from Escherichia coli and d-galactose isomerization using l-AI from Lactobacillus plantarum was performed to investigate the in vivo production of d-tagatose in whey permeate. In whey permeate, maximum conversion of 38% and 33% (w/w) d-galactose isomerization by PIC and UIC has been obtained. 162mg/g and 141mg/g of d-tagatose production was recorded in a 48h reaction time at 50°C, pH 7.0 with 5mM Mn 2+ ion concentration in the initial substrate mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Alginate-Encapsulation for the Improved Hypothermic Preservation of Human Adipose-Derived Stem Cells.

    PubMed

    Swioklo, Stephen; Constantinescu, Andrei; Connon, Che J

    2016-03-01

    Despite considerable progress within the cell therapy industry, unmet bioprocessing and logistical challenges associated with the storage and distribution of cells between sites of manufacture and the clinic exist. We examined whether hypothermic (4°C-23°C) preservation of human adipose-derived stem cells could be improved through their encapsulation in 1.2% calcium alginate. Alginate encapsulation improved the recovery of viable cells after 72 hours of storage. Viable cell recovery was highly temperature-dependent, with an optimum temperature of 15°C. At this temperature, alginate encapsulation preserved the ability for recovered cells to attach to tissue culture plastic on rewarming, further increasing its effect on total cell recovery. On attachment, the cells were phenotypically normal, displayed normal growth kinetics, and maintained their capacity for trilineage differentiation. The number of cells encapsulated (up to 2 × 10(6) cells per milliliter) did not affect viable cell recovery nor did storage of encapsulated cells in a xeno-free, serum-free,current Good Manufacturing Practice-grade medium. We present a simple, low-cost system capable of enhancing the preservation of human adipose-derived stem cells stored at hypothermic temperatures, while maintaining their normal function. The storage of cells in this manner has great potential for extending the time windows for quality assurance and efficacy testing, distribution between the sites of manufacture and the clinic, and reducing the wastage associated with the limited shelf life of cells stored in their liquid state. ©AlphaMed Press.

  14. RGDfK-Peptide Modified Alginate Scaffold for Cell Transplantation and Cardiac Neovascularization.

    PubMed

    Sondermeijer, Hugo P; Witkowski, Piotr; Seki, Tetsunori; van der Laarse, Arnoud; Itescu, Silviu; Hardy, Mark A

    2018-05-01

    Cell implantation for tissue repair is a promising new therapeutic strategy. Although direct injection of cells into tissue is appealing, cell viability and retention are not very good. Cell engraftment and survival following implantation are dependent on a sufficient supply of oxygen and nutrients through functional microcirculation as well as a suitable local microenvironment for implanted cells. In this study, we describe the development of a porous, biocompatible, three-dimensional (3D) alginate scaffold covalently modified with the synthetic cyclic RGDfK (Arg-Gly-Asp-D-Phe-Lys) peptide. Cyclic RGDfK peptide is protease resistant, highly stable in aqueous solutions, and has high affinity for cellular integrins. Cyclic RGDfK-modified alginate scaffolds were generated using a novel silicone sheet sandwich technique in combination with freeze-gelation, resulting in highly porous nonimmunogenic scaffolds that promoted both human and rodent cell survival in vitro, and neoangiogenesis in vivo. Two months following implantation in abdominal rectus muscles in rats, cyclic RGDfK-modified scaffolds were fully populated by host cells, especially microvasculature without an overt immune response or fibrosis, whereas unmodified control scaffolds did not show cell ingrowth. Importantly, modified scaffolds that were seeded with human mesenchymal precursor cells and were patched to the epicardial surface of infarcted myocardium induced myocardial neoangiogenesis and significantly improved cardiac function. In summary, purified cyclic RGDfK peptide-modified 3D alginate scaffolds are biocompatible and nonimmunogenic, enhance cell viability, promote angiogenesis, and may be used as a means to deliver cells to myocardial infarct areas to improve neovascularization and cardiac function.

  15. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, Yukie; Ochiai, Akihito; Mikami, Bunzo

    Research highlights: {yields} Bacterial alginate-binding Algp7 is similar to component EfeO of Fe{sup 2+} transporter. {yields} We determined the crystal structure of Algp7 with a metal-binding motif. {yields} Algp7 consists of two helical bundles formed through duplication of a single bundle. {yields} A deep cleft involved in alginate binding locates around the metal-binding site. {yields} Algp7 may function as a Fe{sup 2+}-chelated alginate-binding protein. -- Abstract: A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit.more » Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 A resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.« less

  16. A smart bioconjugate of alginate and pectinase with unusual biological activity toward chitosan.

    PubMed

    Sardar, Meryam; Roy, Ipsita; Gupta, Munishwar N

    2003-01-01

    The commercial preparation of pectinase (Pectinex Ultra SP-L) was conjugated to alginate by noncovalent interactions by employing 1% alginate during the conjugation protocol. The optimum "immobilization efficiency" was 0.76. The pH optimum and the thermal stability of the enzyme remained unchanged upon conjugation with alginate. The soluble bioconjugate showed a 3-fold increase in V(max)/K(m) as compared to the free enzyme when the smart biocatalyst was used for chitosan hydrolysis. Time course hydrolysis of chitosan thus showed higher conversion of chitosan into reducing oligosaccharides/sugars. The smart bioconjugate could be reused five times without any detectable loss of chitosanase activity.

  17. Synthesis and characterization of chitosan-alginate scaffolds for seeding human umbilical cord derived mesenchymal stem cells.

    PubMed

    Kumbhar, Sneha G; Pawar, S H

    2016-01-01

    Chitosan and alginate are two natural and accessible polymers that are known to be biocompatible, biodegradable and possesses good antimicrobial activity. When combined, they exhibit desirable characteristics and can be created into a scaffold for cell culture. In this study interaction of chitosan-alginate scaffolds with mesenchymal stem cells are studied. Mesenchymal stem cells were derived from human umbilical cord tissues, characterized by flow cytometry and other growth parameters studied as well. Proliferation and viability of cultured cells were studied by MTT Assay and Trypan Blue dye exclusion assay. Besides chitosan-alginate scaffold was prepared by freeze-drying method and characterized by FTIR, SEM and Rheological properties. The obtained 3D porous structure allowed very efficient seeding of hUMSCs that are able to inhabit the whole volume of the scaffold, showing good adhesion and proliferation. These materials showed desirable rheological properties for facile injection as tissue scaffolds. The results of this study demonstrated that chitosan-alginate scaffold may be promising biomaterial in the field of tissue engineering, which is currently under a great deal of examination for the development and/or restoration of tissue and organs. It combines the stem cell therapy and biomaterials.

  18. Biohydrogen production from rotten orange with immobilized mixed culture: Effect of immobilization media for various composition of substrates

    NASA Astrophysics Data System (ADS)

    Damayanti, Astrilia; Sarto, Syamsiah, Siti; Sediawan, Wahyudi B.

    2015-12-01

    Enriched-immobilized mixed culture was utilized to produce biohydrogen in mesophilic condition under anaerobic condition using rotten orange as substrate. The process was conducted in batch reactors for 100 hours. Microbial cultures from three different sources were subject to a series of enrichment and immobilized in two different types of media, i.e. calcium alginate (CA, 2%) and mixture of alginate and activated carbon (CAC, 1:1). The performance of immobilized culture in each media was tested for biohydrogen production using four different substrate compositions, namely orange meat (OM), orange meat added with peel (OMP), orange meat added with limonene (OML), and mixture of orange meat and peel added with limonene (OMPL). The results show that, with immobilized culture in CA, the variation of substrate composition gave significant effect on the production of biohydrogen. The highest production of biohydrogen was detected for substrate containing only orange meet, i.e. 2.5%, which was about 3-5 times higher than biohydrogen production from other compositions of substrate. The use of immobilized culture in CAC in general has increased the hydrogen production by 2-7 times depending on the composition of substrate, i.e. 5.4%, 4.8%, 5.1%, and 4.4% for OM, OMP, OML, and OMPL, respectively. The addition of activated carbon has eliminated the effect of inhibitory compounds in the substrate. The major soluble metabolites were acetic acid, propionic acid, and butyric acid.

  19. Biohydrogen production from rotten orange with immobilized mixed culture: Effect of immobilization media for various composition of substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damayanti, Astrilia, E-mail: liasholehasd@gmail.com; Department of Chemical Engineering, Faculty of Engineering, Gadjah Mada University, Jl. Grafika No. 2, Kampus UGM, Yogyakarta 55281; Sarto,

    Enriched–immobilized mixed culture was utilized to produce biohydrogen in mesophilic condition under anaerobic condition using rotten orange as substrate. The process was conducted in batch reactors for 100 hours. Microbial cultures from three different sources were subject to a series of enrichment and immobilized in two different types of media, i.e. calcium alginate (CA, 2%) and mixture of alginate and activated carbon (CAC, 1:1). The performance of immobilized culture in each media was tested for biohydrogen production using four different substrate compositions, namely orange meat (OM), orange meat added with peel (OMP), orange meat added with limonene (OML), and mixturemore » of orange meat and peel added with limonene (OMPL). The results show that, with immobilized culture in CA, the variation of substrate composition gave significant effect on the production of biohydrogen. The highest production of biohydrogen was detected for substrate containing only orange meet, i.e. 2.5%, which was about 3-5 times higher than biohydrogen production from other compositions of substrate. The use of immobilized culture in CAC in general has increased the hydrogen production by 2-7 times depending on the composition of substrate, i.e. 5.4%, 4.8%, 5.1%, and 4.4% for OM, OMP, OML, and OMPL, respectively. The addition of activated carbon has eliminated the effect of inhibitory compounds in the substrate. The major soluble metabolites were acetic acid, propionic acid, and butyric acid.« less

  20. Injectable MMP-sensitive alginate hydrogels as hMSC delivery systems.

    PubMed

    Fonseca, Keila B; Gomes, David B; Lee, Kangwon; Santos, Susana G; Sousa, Aureliana; Silva, Eduardo A; Mooney, David J; Granja, Pedro L; Barrias, Cristina C

    2014-01-13

    Hydrogels with the potential to provide minimally invasive cell delivery represent a powerful tool for tissue-regeneration therapies. In this context, entrapped cells should be able to escape the matrix becoming more available to actively participate in the healing process. Here, we analyzed the performance of proteolytically degradable alginate hydrogels as vehicles for human mesenchymal stem cells (hMSC) transplantation. Alginate was modified with the matrix metalloproteinase (MMP)-sensitive peptide Pro-Val-Gly-Leu-Iso-Gly (PVGLIG), which did not promote dendritic cell maturation in vitro, neither free nor conjugated to alginate chains, indicating low immunogenicity. hMSC were entrapped within MMP-sensitive and MMP-insensitive alginate hydrogels, both containing cell-adhesion RGD peptides. Softer (2 wt % alginate) and stiffer (4 wt % alginate) matrices were tested. When embedded in a Matrigel layer, hMSC-laden MMP-sensitive alginate hydrogels promoted more extensive outward cell migration and invasion into the tissue mimic. In vivo, after 4 weeks of subcutaneous implantation in a xenograft mouse model, hMSC-laden MMP-sensitive alginate hydrogels showed higher degradation and host tissue invasion than their MMP-insensitive equivalents. In both cases, softer matrices degraded faster than stiffer ones. The transplanted hMSC were able to produce their own collagenous extracellular matrix, and were located not only inside the hydrogels, but also outside, integrated in the host tissue. In summary, injectable MMP-sensitive alginate hydrogels can act as localized depots of cells and confer protection to transplanted cells while facilitating tissue regeneration.

  1. Nitrate removal from drinking water through the use of encapsulated microorganisms in alginate beads.

    PubMed

    Liu, S X; Hermanowicz, S W; Peng, M

    2003-09-01

    Biological treatment for removal of nitrate from drinking water is of great significance, as traditional physical and chemical methods could not effectively remove soluble nitrate. In this report immobilized microorganisms with co-immobilized calcium tartrate were used for reducing nitrate concentration (110 mg l(-1) NO3-N) in a model solution. The carbon source also functions as a stabilizing agent for the immobilization matrix. Experiments of denitrification showed a high nitrate removal rate while nitrite residual was at a concentration higher than expected. The nitrate concentration was reduced to nearly zero (0.2-1.4 mg l(-1)) after 3 days of operation. The calcium tartrate (4%, w/w) co-immobilized alginate beads had better nitrate removal performance than tartrate in solution. The nitrite-N residual concentration was approximately 1.1-2.9 mg l(-1) at the end of the experiments, showing the desirability of further denitrification. The stability of alginate beads was also tested both to evaluate their behaviors and investigate the efficacy of bead recycling. It was found that the beads could be used for 8-13 days consecutively without any structural deterioration and leaking of microbes.

  2. Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo.

    PubMed

    Chou, A I; Akintoye, S O; Nicoll, S B

    2009-10-01

    Intervertebral disc (IVD) degeneration is a major health concern in the United States. Replacement of the nucleus pulposus (NP) with injectable biomaterials represents a potential treatment strategy for IVD degeneration. The objective of this study was to characterize the extracellular matrix (ECM) assembly and functional properties of NP cell-encapsulated, photo-crosslinked alginate hydrogels in comparison to ionically crosslinked alginate constructs. Methacrylated alginate was synthesized by esterification of hydroxyl groups with methacrylic anhydride. Bovine NP cells were encapsulated in alginate hydrogels by ionic crosslinking using CaCl(2) or through photo-crosslinking upon exposure to long-wave UV light in the presence of a photoinitiator. The hydrogels were evaluated in vitro by gross and histological analysis and in vivo using a murine subcutaneous pouch model. In vivo samples were analyzed for gene expression, ECM localization and accumulation, and equilibrium mechanical properties. Ionically crosslinked hydrogels exhibited inferior proteoglycan accumulation in vitro and were unable to maintain structural integrity in vivo. In further studies, photo-crosslinked alginate hydrogels were implanted for up to 8 weeks to examine NP tissue formation. Photo-crosslinked hydrogels displayed temporal increases in gene expression and assembly of type II collagen and proteoglycans. Additionally, hydrogels remained intact over the duration of the study and the equilibrium Young's modulus increased from 1.24+/-0.09 kPa to 4.31+/-1.39 kPa, indicating the formation of functional matrix with properties comparable to those of the native NP. These findings support the use of photo-crosslinked alginate hydrogels as biomaterial scaffolds for NP replacement.

  3. Sol-gel immobilization as a suitable technique for enhancement of α-amylase activity of Aspergillus oryzae PP.

    PubMed

    Evstatieva, Yana; Yordanova, Mariya; Chernev, Georgi; Ruseva, Yanislava; Nikolova, Dilyana

    2014-07-04

    Bioencapsulation of microbial cells in silica-based matrices has proved to be a good strategy to enhance the biosynthetic capabilities and viability of bioproducers. In the present study, mycelium and pellet cultures of strain Aspergillus oryzae PP were successfully immobilized in sol-gel hybrid matrices composed of tetraethylorthosilicate as an inorganic precursor, 5% (w/v) starch and 10 or 15% (w/v) polyethylene oxide, or 10% (w/v) calcium alginate as organic compounds. Biosynthetic activity of immobilized cultures was investigated by batch and fed-batch cultivation and the obtained results of 3042.04 IU cm -3 were comparable with the enzyme activity of the free cell culture. Immobilized cultures retained their viability and biosynthetic capabilities up to the 744th h during fed-batch fermentation processes. Consequently, sol-gel encapsulation in hybrid matrices could be considered as a promising technique for immobilization of Aspergillus oryzae PP in order to increase the α-amylase production.

  4. Enhancing cell migration in shape-memory alginate-collagen composite scaffolds: In vitro and ex vivo assessment for intervertebral disc repair.

    PubMed

    Guillaume, Olivier; Naqvi, Syeda Masooma; Lennon, Kerri; Buckley, Conor Timothy

    2015-04-01

    Lower lumbar disc disorders pose a significant problem in an aging society with substantial socioeconomic consequences. Both inner tissue (nucleus pulposus) and outer tissue (annulus fibrosus) of the intervertebral disc are affected by such debilitating disorders and can lead to disc herniation and lower back pain. In this study, we developed an alginate-collagen composite porous scaffold with shape-memory properties to fill defects occurring in annulus fibrosus tissue of degenerated intervertebral discs, which has the potential to be administered using minimal invasive surgery. In the first part of this work, we assessed how collagen incorporation on preformed alginate scaffolds influences the physical properties of the final composite scaffold. We also evaluated the ability of annulus fibrosus cells to attach, migrate, and proliferate on the composite alginate-collagen scaffolds compared to control scaffolds (alginate only). In vitro experiments, performed in intervertebral disc-like microenvironmental conditions (low glucose and low oxygen concentrations), revealed that for alginate only scaffolds, annulus fibrosus cells agglomerated in clusters with limited infiltration and migration capacity. In comparison, for alginate-collagen scaffolds, annulus fibrosus cells readily attached and colonized constructs, while preserving their typical fibroblastic-like cell morphology with spreading behavior and intense cytoskeleton expression. In a second part of this study, we investigated the effects of alginate-collagen scaffold when seeded with bone marrow derived mesenchymal stem cells. In vitro, we observed that alginate-collagen porous scaffolds supported cell proliferation and extracellular matrix deposition (collagen type I), with secretion amplified by the local release of transforming growth factor-β3. In addition, when cultured in ex vivo organ defect model, alginate-collagen scaffolds maintained viability of transplanted mesenchymal stem cells for up to 5

  5. Barium-cross-linked alginate-gelatine microcapsule as a potential platform for stem cell production and modular tissue formation.

    PubMed

    Alizadeh Sardroud, Hamed; Nemati, Sorour; Baradar Khoshfetrat, Ali; Nabavinia, Mahbobeh; Beygi Khosrowshahi, Younes

    2017-08-01

    Influence of gelatine concentration and cross-linker ions of Ca 2+ and Ba 2+ was evaluated on characteristics of alginate hydrogels and proliferation behaviours of model adherent and suspendable stem cells of fibroblast and U937 embedded in alginate microcapsules. Increasing gelatine concentration to 2.5% increased extent of swelling to 15% and 25% for barium- and calcium-cross-linked hydrogels, respectively. Mechanical properties also decreased with increasing swelling of hydrogels. Both by increasing gelatine concentration and using barium ions increased considerably the proliferation of encapsulated model stem cells. Barium-cross-linked alginate-gelatine microcapsule tested for bone building block showed a 13.5 ± 1.5-fold expansion for osteoblast cells after 21 days with deposition of bone matrix. The haematopoietic stem cells cultured in the microcapsule after 7 days also showed up to 2-fold increase without adding any growth factor. The study demonstrates that barium-cross-linked alginate-gelatine microcapsule has potential for use as a simple and efficient 3D platform for stem cell production and modular tissue formation.

  6. Three-dimensional plotting of a cell-laden alginate/methylcellulose blend: towards biofabrication of tissue engineering constructs with clinically relevant dimensions.

    PubMed

    Schütz, Kathleen; Placht, Anna-Maria; Paul, Birgit; Brüggemeier, Sophie; Gelinsky, Michael; Lode, Anja

    2017-05-01

    Biofabrication of tissue engineering constructs with tailored architecture and organized cell placement using rapid prototyping technologies is a major research focus in the field of regenerative therapies. This study describes a novel alginate-based material suitable for both cell embedding and fabrication of three-dimensional (3D) structures with predefined geometry by 3D plotting. The favourable printing properties of the material were achieved by using a simple strategy: addition of methylcellulose (MC) to a 3% alginate solution resulted in a strongly enhanced viscosity, which enabled accurate and easy deposition without high technical efforts. After scaffold plotting, the alginate chains were crosslinked with Ca 2+ ; MC did not contribute to the gelation and was released from the scaffolds during the following cultivation. The resulting constructs are characterized by high elasticity and stability, as well as an enhanced microporosity caused by the transient presence of MC. The suitability of the alginate/MC blend for cell embedding was evaluated by direct incorporation of mesenchymal stem cells during scaffold fabrication. The embedded cells showed high viability after 3 weeks of cultivation, which was similar to those of cells within pure alginate scaffolds which served as control. Maintenance of the differentiation potential of embedded cells, as an important requirement for the generation of functional tissue engineering constructs, was proven for adipogenic differentiation as a model for soft tissue formation. In conclusion, the temporary integration of MC into a low-concentrated alginate solution allowed the generation of scaffolds with dimensions in the range of centimetres without loss of the positive properties of low-concentrated alginate hydrogels with regard to cell embedding. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Oyster mushroom’s lipase enzyme entrapment on calcium alginate as biocatalyst in the synthesis of lauryl diethanolamide

    NASA Astrophysics Data System (ADS)

    Wijayati, N.; Masubah, K.; Supartono

    2017-02-01

    Lipase is an enzyme with large biotechnology applications, such as hydrolysis in the food industry, applications in chemical industry, synthesis of polymers and surfactants. Lipase was isolated from oyster mushroom with activity 0,93 U/mg and protein content 1,1234 mg/mL. Lipase was immobilized by entrapment method in a matrix of Ca-alginate. This report describes that we have developed for the synthesis of lauryl diethanolamide The result showed that the optimum condition of lipase immobilization was achieved on 3% Na-alginate solution with protein content 0,84 mg/mL and the activity 3,33 U/mg. An amide (22.911%) formed from the amidation of lauric acid and diethanolamine.

  8. Alginic acid cell entrapment: a novel method for measuring in vivo macrophage cholesterol homeostasis

    PubMed Central

    Sontag, Timothy J.; Chellan, Bijoy; Bhanvadia, Clarissa V.; Getz, Godfrey S.; Reardon, Catherine A.

    2015-01-01

    Macrophage conversion to atherosclerotic foam cells is partly due to the balance of uptake and efflux of cholesterol. Cholesterol efflux from cells by HDL and its apoproteins for subsequent hepatic elimination is known as reverse cholesterol transport. Numerous methods have been developed to measure in vivo macrophage cholesterol efflux. Most methods do not allow for macrophage recovery for analysis of changes in cellular cholesterol status. We describe a novel method for measuring cellular cholesterol balance using the in vivo entrapment of macrophages in alginate, which retains incorporated cells while being permeable to lipoproteins. Recipient mice were injected subcutaneously with CaCl2 forming a bubble into which a macrophage/alginate suspension was injected, entrapping the macrophages. Cells were recovered after 24 h. Cellular free and esterified cholesterol mass were determined enzymatically and normalized to cellular protein. Both normal and cholesterol loaded macrophages undergo measureable changes in cell cholesterol when injected into WT and apoA-I-, LDL-receptor-, or apoE-deficient mice. Cellular cholesterol balance is dependent on initial cellular cholesterol status, macrophage cholesterol transporter expression, and apolipoprotein deficiency. Alginate entrapment allows for the in vivo measurement of macrophage cholesterol homeostasis and is a novel platform for investigating the role of genetics and therapeutic interventions in atherogenesis. PMID:25465389

  9. Increased Growth of the Microalga Chlorella vulgaris when Coimmobilized and Cocultured in Alginate Beads with the Plant-Growth-Promoting Bacterium Azospirillum brasilense†

    PubMed Central

    Gonzalez, Luz E.; Bashan, Yoav

    2000-01-01

    Coimmobilization of the freshwater microalga Chlorella vulgaris and the plant-growth-promoting bacterium Azospirillum brasilense in small alginate beads resulted in a significantly increased growth of the microalga. Dry and fresh weight, total number of cells, size of the microalgal clusters (colonies) within the bead, number of microalgal cells per cluster, and the levels of microalgal pigments significantly increased. Light microscopy revealed that both microorganisms colonized the same cavities inside the beads, though the microalgae tended to concentrate in the more aerated periphery while the bacteria colonized the entire bead. The effect of indole-3-acetic acid addition to microalgal culture prior to immobilization of microorganisms in alginate beads partially imitated the effect of A. brasilense. We propose that coimmobilization of microalgae and plant-growth-promoting bacteria is an effective means of increasing microalgal populations within confined environments. PMID:10742237

  10. Aroma formation by immobilized yeast cells in fermentation processes.

    PubMed

    Nedović, V; Gibson, B; Mantzouridou, T F; Bugarski, B; Djordjević, V; Kalušević, A; Paraskevopoulou, A; Sandell, M; Šmogrovičová, D; Yilmaztekin, M

    2015-01-01

    Immobilized cell technology has shown a significant promotional effect on the fermentation of alcoholic beverages such as beer, wine and cider. However, genetic, morphological and physiological alterations occurring in immobilized yeast cells impact on aroma formation during fermentation processes. The focus of this review is exploitation of existing knowledge on the biochemistry and the biological role of flavour production in yeast for the biotechnological production of aroma compounds of industrial importance, by means of immobilized yeast. Various types of carrier materials and immobilization methods proposed for application in beer, wine, fruit wine, cider and mead production are presented. Engineering aspects with special emphasis on immobilized cell bioreactor design, operation and scale-up potential are also discussed. Ultimately, examples of products with improved quality properties within the alcoholic beverages are addressed, together with identification and description of the future perspectives and scope for cell immobilization in fermentation processes. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Decolorization of the anthraquinone dye Cibacron Blue 3G-A with immobilized Coprinus cinereus in fluidized bed bioreactor.

    PubMed

    Moutaouakkil, A; Blaghen, M

    2011-01-01

    Coprinus cinereus, which was able to decolorize the anthraquinone dye Cibacron Blue 3G-A (CB) enzymatically, was used as a biocatalyst for the decolorization of synthetic solutions containing this reactive dye. Coprinus cinereus was immobilized in both calcium alginate and polyacrylamide gels, and was used for the decolorization of CB from synthetic water by using a fluidized bed bioreactor. The highest specific decolorization rate was obtained when Coprinus cinereus was entrapped in calcium alginate beads, and was of about 3.84 mg g(-1) h(-1) with a 50% conversion time (t1/2) of about 2.60 h. Moreover, immobilized fungal biomass in calcium alginate continuously decolorized CB even after 7 repeated experiments without significant loss of activity, while polyacrylamide-immobilized fungal biomass retained only 67% of its original activity. The effects of some physicochemical parameters such as temperature, pH and dye concentration on decolorization performance of isolated fungal strain were also investigated.

  12. Light transfer in agar immobilized microalgae cell cultures

    NASA Astrophysics Data System (ADS)

    Kandilian, Razmig; Jesus, Bruno; Legrand, Jack; Pilon, Laurent; Pruvost, Jérémy

    2017-09-01

    This paper experimentally and theoretically investigates light transfer in agar-immobilized cell cultures. Certain biotechnological applications such as production of metabolites secreted by photosynthetic microorganisms require cells to be immobilized in biopolymers to minimize contamination and to facilitate metabolite recovery. In such applications, light absorption by cells is one of the most important parameters affecting cell growth or metabolite productivity. Modeling light transfer therein can aid design and optimize immobilized-cell reactors. In this study, Parachlorella kessleri cells with areal biomass concentrations ranging from 0.36 to 16.9 g/m2 were immobilized in 2.6 mm thick agar gels. The average absorption and scattering cross-sections as well as the scattering phase function of P. kessleri cells were measured. Then, the absorption and transport scattering coefficients of the agar gel were determined using an inverse method based on the modified two-flux approximation. The forward model was used to predict the normal-hemispherical transmittance and reflectance of the immobilized-cell films accounting for absorption and scattering by both microalgae and the agar gel. Good agreement was found between the measured and predicted normal-hemispherical transmittance and reflectance provided absorption and scattering by agar were taken into account. Moreover, good agreement was found between experimentally measured and predicted mean rate of photon absorption. Finally, optimal areal biomass concentration was determined to achieve complete absorption of the incident radiation.

  13. Immobilized anaerobic fermentation for bio-fuel production by Clostridium co-culture.

    PubMed

    Xu, Lei; Tschirner, Ulrike

    2014-08-01

    Clostridium thermocellum/Clostridium thermolacticum co-culture fermentation has been shown to be a promising way of producing ethanol from several carbohydrates. In this research, immobilization techniques using sodium alginate and alkali pretreatment were successfully applied on this co-culture to improve the bio-ethanol fermentation performance during consolidated bio-processing (CBP). The ethanol yield obtained increased by over 60 % (as a percentage of the theoretical maximum) as compared to free cell fermentation. For cellobiose under optimized conditions, the ethanol yields were approaching about 85 % of the theoretical efficiency. To examine the feasibility of this immobilization co-culture on lignocellulosic biomass conversion, untreated and pretreated aspen biomasses were also used for fermentation experiments. The immobilized co-culture shows clear benefits in bio-ethanol production in the CBP process using pretreated aspen. With a 3-h, 9 % NaOH pretreatment, the aspen powder fermentation yields approached 78 % of the maximum theoretical efficiency, which is almost twice the yield of the untreated aspen fermentation.

  14. Immobilization of Pichia pastoris cells containing alcohol oxidase activity

    PubMed Central

    Maleknia, S; Ahmadi, H; Norouzian, D

    2011-01-01

    Background and Objectives The attempts were made to describe the development of a whole cell immobilization of P. pastoris by entrapping the cells in polyacrylamide gel beads. The alcohol oxidase activity of the whole cell Pichia pastoris was evaluated in comparison with yeast biomass production. Materials and Methods Methylotrophic yeast P. pastoris was obtained from Collection of Standard Microorganisms, Department of Bacterial Vaccines, Pasteur Institute of Iran (CSMPI). Stock culture was maintained on YPD agar plates. Alcohol oxidase was strongly induced by addition of 0.5% methanol as the carbon source. The cells were harvested by centrifugation then permeabilized. Finally the cells were immobilized in polyacrylamide gel beads. The activity of alcohol oxidase was determined by method of Tane et al. Results At the end of the logarithmic phase of cell culture, the alcohol oxidase activity of the whole cell P. Pastoris reached the highest level. In comparison, the alcohol oxidase activity was measured in an immobilized P. pastoris when entrapped in polyacrylamide gel beads. The alcohol oxidase activity of cells was induced by addition of 0.5% methanol as the carbon source. The cells were permeabilized by cetyltrimethylammonium bromide (CTAB) and immobilized. CTAB was also found to increase the gel permeability. Alcohol oxidase activity of immobilized cells was then quantitated by ABTS/POD spectrophotometric method at OD 420. There was a 14% increase in alcohol oxidase activity in immobilized cells as compared with free cells. By addition of 2-butanol as a substrate, the relative activity of alcohol oxidase was significantly higher as compared with other substrates added to the reaction media. Conclusion Immobilization of cells could eliminate lengthy and expensive procedures of enzyme separation and purification, protect and stabilize enzyme activity, and perform easy separation of the enzyme from the reaction media. PMID:22530090

  15. Standards and guidelines for biopolymers in tissue-engineered medical products: ASTM alginate and chitosan standard guides. American Society for Testing and Materials.

    PubMed

    Dornish, M; Kaplan, D; Skaugrud, O

    2001-11-01

    The American Society for Testing and Materials (ASTM) is making a concerted effort to establish standards and guidelines for the entire field of tissue-engineered medical products (TEMPS). Safety, consistency, and functionality of biomaterials used as matrices, scaffolds, and immobilizing agents in TEMPS are a concern. Therefore, the ASTM has established a number of task groups to produce standards and guidelines for such biomaterials. Alginate is a naturally occurring biomaterial used for immobilizing living cells to form an artificial organ, such as encapsulated pancreatic islets. In order to aid in successful clinical applications and to help expedite regulatory approval, the alginate used must be fully documented. The ASTM alginate guide gives information on selection of testing methodologies and safety criteria. Critical parameters such as monomer content, molecular weight, and viscosity, in addition to more general parameters, such as dry matter content, heavy metal content, bioburden, and endotoxin content are described in the ASTM document. In a like manner, the characterization parameters for chitosan, a bioadhesive polycationic polysaccharide, are described in a separate guide. For chitosan, the degree of deacetylation is of critical importance. Control of protein content and, hence, potential for hypersensitivity, endotoxin content, and total bioburden are important in chitosan preparations for TEMPS. Together these two guides represent part of the effort on behalf of the ASTM and other interested parties to ensure quality and standardization in TEMPS.

  16. 3 dimensional cell cultures: a comparison between manually and automatically produced alginate beads.

    PubMed

    Lehmann, R; Gallert, C; Roddelkopf, T; Junginger, S; Wree, A; Thurow, K

    2016-08-01

    Cancer diseases are a common problem of the population caused by age and increased harmful environmental influences. Herein, new therapeutic strategies and compound screenings are necessary. The regular 2D cultivation has to be replaced by three dimensional cell culturing (3D) for better simulation of in vivo conditions. The 3D cultivation with alginate matrix is an appropriate method for encapsulate cells to form cancer constructs. The automated manufacturing of alginate beads might be an ultimate method for large-scaled manufacturing constructs similar to cancer tissue. The aim of this study was the integration of full automated systems for the production, cultivation and screening of 3D cell cultures. We compared the automated methods with the regular manual processes. Furthermore, we investigated the influence of antibiotics on these 3D cell culture systems. The alginate beads were formed by automated and manual procedures. The automated steps were processes by the Biomek(®) Cell Workstation (celisca, Rostock, Germany). The proliferation and toxicity were manually and automatically evaluated at day 14 and 35 of cultivation. The results visualized an accumulation and expansion of cell aggregates over the period of incubation. However, the proliferation and toxicity were faintly and partly significantly decreased on day 35 compared to day 14. The comparison of the manual and automated methods displayed similar results. We conclude that the manual production process could be replaced by the automation. Using automation, 3D cell cultures can be produced in industrial scale and improve the drug development and screening to treat serious illnesses like cancer.

  17. Three-dimensional alginate spheroid culture system of murine osteosarcoma.

    PubMed

    Akeda, Koji; Nishimura, Akinobu; Satonaka, Haruhiko; Shintani, Ken; Kusuzaki, Katsuyuki; Matsumine, Akihiko; Kasai, Yuichi; Masuda, Koichi; Uchida, Atsumasa

    2009-11-01

    Osteosarcoma (OS) is the most common primary malignant tumor of the bone and often forms pulmonary metastases, which are the most important prognostic factor. For further elucidation of the mechanism underlying the progression and metastasis of human OS, a culture system mimicking the microenvironment of the tumor in vivo is needed. We report a novel three-dimensional (3D) alginate spheroid culture system of murine osteosarcoma. Two different metastatic clones, the parental Dunn and its derivative line LM8, which has a higher metastatic potential to the lungs, were encapsulated in alginate beads to develop the 3D culture system. The beads containing murine OS cells were also transplanted into mice to determine their metastatic potential in vivo. In this culture system, murine OS cells encapsulated in alginate beads were able to grow in a 3D structure with cells detaching from the alginate environment. The number of detaching cells was higher in the LM8 cell line than the Dunn cell line. In the in vivo alginate bead transplantation model, the rate of pulmonary metastasis was higher with LM8 cells compared with that of Dunn cells. The cell characteristics and kinetics in this culture system closely reflect the original malignant potential of the cells in vivo.

  18. Study on the biodegradation of crude oil by free and immobilized bacterial consortium in marine environment.

    PubMed

    Chen, Qingguo; Li, Jingjing; Liu, Mei; Sun, Huiling; Bao, Mutai

    2017-01-01

    Five strains of bacteria, namely, Exiguobacterium sp. ASW-1, Pseudomonas aeruginosa strain ASW-2, Alcaligenes sp. ASW-3, Alcaligenes sp. ASS-1, and Bacillus sp. ASS-2, were isolated from the Zhejiang coast in China. The mixed flora of the five strains performed well with degrading 75.1% crude oil (1%, w/v) in 7 days. The calcium alginate-activated carbon embedding carrier was used to immobilize bacterial consortium. Immobilized cells performed better than free ones in variations of environmental factors containing incubated temperature, initial pH, salinity of the medium and crude oil concentration. The degradation process of crude oil by immobilized bacteria was accelerated compared with that of the free ones. Bacterial consortium showed better performance on biodegradation of normal alkanes than that of PAHs. Improvement of immobilization on the biodegradation efficiency of normal alkanes (31.9%) was apparently high than that of PAHs (1.9%).

  19. Preparation of bismuth titanate/calcium alginate composite bead and its photocatalytic degradation of dye pollutants

    NASA Astrophysics Data System (ADS)

    Gan, Huihui; Dong, Nanyang; Lu, Linxiao; Fu, Yan; Zhang, Huining; Qian, Yongxin; Zhang, Kefeng; Jin, Huixia

    2017-08-01

    In this study, the bismuth titanate/calcium alginate composite bead was synthesized by immobilizing bismuth titanate Bi4Ti3O12 particles into 1.5% sodium alginate (SA) matrix. The Bi4Ti3O12 particles were characterized by X-ray diffraction (XRD). The photocatalytic activity for the degradation of dye Rhodamine B in solution by as-prepared bismuth titanate/calcium alginate composite bead was investigated. The as-prepared composite beads CA/BTO-700 exhibited best photocatalytic efficiency for the degradation of RhB compared with CA/BTO-800 and CA/BTO-900 under simulated solar light. After 4 cycles in photocatalytic degradation of RhB, the degradation rate of the CA/BTO-700 nearly remained unchanged.

  20. Alginate-Encapsulation for the Improved Hypothermic Preservation of Human Adipose-Derived Stem Cells

    PubMed Central

    Swioklo, Stephen; Constantinescu, Andrei

    2016-01-01

    Despite considerable progress within the cell therapy industry, unmet bioprocessing and logistical challenges associated with the storage and distribution of cells between sites of manufacture and the clinic exist. We examined whether hypothermic (4°C–23°C) preservation of human adipose-derived stem cells could be improved through their encapsulation in 1.2% calcium alginate. Alginate encapsulation improved the recovery of viable cells after 72 hours of storage. Viable cell recovery was highly temperature-dependent, with an optimum temperature of 15°C. At this temperature, alginate encapsulation preserved the ability for recovered cells to attach to tissue culture plastic on rewarming, further increasing its effect on total cell recovery. On attachment, the cells were phenotypically normal, displayed normal growth kinetics, and maintained their capacity for trilineage differentiation. The number of cells encapsulated (up to 2 × 106 cells per milliliter) did not affect viable cell recovery nor did storage of encapsulated cells in a xeno-free, serum-free,current Good Manufacturing Practice-grade medium. We present a simple, low-cost system capable of enhancing the preservation of human adipose-derived stem cells stored at hypothermic temperatures, while maintaining their normal function. The storage of cells in this manner has great potential for extending the time windows for quality assurance and efficacy testing, distribution between the sites of manufacture and the clinic, and reducing the wastage associated with the limited shelf life of cells stored in their liquid state. Significance Despite considerable advancement in the clinical application of cell-based therapies, major logistical challenges exist throughout the cell therapy supply chain associated with the storage and distribution of cells between the sites of manufacture and the clinic. A simple, low-cost system capable of preserving the viability and functionality of human adipose-derived stem

  1. Enhancement of algicidal activity by immobilization of algicidal bacteria antagonistic to Stephanodiscus hantzschii (Bacillariophyceae).

    PubMed

    Kang, Y-H; Kim, B-R; Choi, H J; Seo, J G; Kim, B-H; Han, M-S

    2007-11-01

    Enhancement of algicidal activity by immobilization of algicidal bacteria antagonistic to Stephanodiscus hantzschii. In laboratory studies, A diatom-lysing bacterium, Pseudomonas fluorescens HYK0210-SK09 showed strong algicidal activity against S. hantzschii, but a natural mesocosm study revealed that this bacterium failed to fully control natural blooms of Stephanodiscus at the low water temperatures that favour these blooms. Here, we sought to develop an effective immobilization strategy for enhancing the algicidal activity of HYK0210-SK09 in the natural setting. Bacterium HYK0210-SK09 was immobilized with various carriers including agar, alginate, polyurethane and cellulose sponge. The bacterial cells immobilized with cellulose sponge (CIS) induced more rapid and complete lysis of S. hantzschii than other carriers, and had a higher packing ability than polyurethane. Furthermore, CIS-immobilized cells showed higher lysis of S. hantzschii at the same concentrations as that of free cells (< or =1 x 10(7) cells ml(-1)), and had especially strong algicidal activity at the low temperatures (<10 degrees C). Based on these laboratory studies, we assessed the possible application of HYK0210-SK09 cells in the field by performing a mesocosm study during the winter season. The CIS-immobilized cells with species-specific activity towards the genera Stephanodiscus showed extremely high algicidal activity (up to 95%) against a bloom of Stephanodiscus hantzschii even at low water temperatures, because of high cell packing and subsequent cell protection against low temperatures and predators, whereas free cells showed negligible algicidal activities under these conditions. Immobilizing cells of HYK0210-SK09 in CIS foam, rather than in the other matrices tested, could achieve more efficient control of Stephanodiscus blooms and showed a significant algicidal activity on in vitro and in vivo blooms, even at low water temperature. Collectively, these results indicate that CIS of

  2. Delivering MC3T3-E1 cells into injectable calcium phosphate cement through alginate-chitosan microcapsules for bone tissue engineering*

    PubMed Central

    Qiao, Peng-yan; Li, Fang-fang; Dong, Li-min; Xu, Tao; Xie, Qiu-fei

    2014-01-01

    Objective: To deliver cells deep into injectable calcium phosphate cement (CPC) through alginate-chitosan (AC) microcapsules and investigate the biological behavior of the cells released from microcapsules into the CPC. Methods: Mouse osteoblastic MC3T3-E1 cells were embedded in alginate and AC microcapsules using an electrostatic droplet generator. The two types of cell-encapsulating microcapsules were then mixed with a CPC paste. MC3T3-E1 cell viability was investigated using a Wst-8 kit, and osteogenic differentiation was demonstrated by an alkaline phosphatase (ALP) activity assay. Cell attachment in CPC was observed by an environment scanning electron microscopy. Results: Both alginate and AC microcapsules were able to release the encapsulated MC3T3-E1 cells when mixed with CPC paste. The released cells attached to the setting CPC scaffolds, survived, differentiated, and formed mineralized nodules. Cells grew in the pores concomitantly created by the AC microcapsules in situ within the CPC. At Day 21, cellular ALP activity in the AC group was approximately four times that at Day 7 and exceeded that of the alginate microcapsule group (P<0.05). Pores formed by the AC microcapsules had a diameter of several hundred microns and were spherical compared with those formed by alginate microcapsules. Conclusions: AC microcapsule is a promising carrier to release seeding cells deep into an injectable CPC scaffold for bone engineering. PMID:24711359

  3. Purification-Free, Target-Selective Immobilization of a Protein from Cell Lysates.

    PubMed

    Cha, Jaehyun; Kwon, Inchan

    2018-02-27

    Protein immobilization has been widely used for laboratory experiments and industrial processes. Preparation of a recombinant protein for immobilization usually requires laborious and expensive purification steps. Here, a novel purification-free, target-selective immobilization technique of a protein from cell lysates is reported. Purification steps are skipped by immobilizing a target protein containing a clickable non-natural amino acid (p-azidophenylalanine) in cell lysates onto alkyne-functionalized solid supports via bioorthogonal azide-alkyne cycloaddition. In order to achieve a target protein-selective immobilization, p-azidophenylalanine was introduced into an exogenous target protein, but not into endogenous non-target proteins using host cells with amber codon-free genomic DNAs. Immobilization of superfolder fluorescent protein (sfGFP) from cell lysates is as efficient as that of the purified sfGFP. Using two fluorescent proteins (sfGFP and mCherry), the authors also demonstrated that the target proteins are immobilized with a minimal immobilization of non-target proteins (target-selective immobilization). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Bioconversion of l-glutamic acid to α-ketoglutaric acid by an immobilized whole-cell biocatalyst expressing l-amino acid deaminase from Proteus mirabilis.

    PubMed

    Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-dong; Chen, Rachel R; Du, Guocheng; Liu, Long; Chen, Jian

    2014-01-01

    The goal of this work was to develop an immobilized whole-cell biocatalytic process for the environment-friendly synthesis of α-ketoglutaric acid (α-KG) from l-glutamic acid. We compared the suitability of Escherichia coli and Bacillus subtilis strains overexpressing Proteus mirabilisl-amino acid deaminase (l-AAD) as potential biocatalysts. Although both recombinant strains were biocatalytically active, the performance of B. subtilis was superior to that of E. coli. With l-glutamic acid as the substrate, α-KG production levels by membranes isolated from B. subtilis and E. coli were 55.3±1.73 and 21.7±0.39μg/mg protein/min, respectively. The maximal conversion ratio of l-glutamic acid to α-KG was 31% (w/w) under the following optimal conditions: 15g/L l-glutamic acid, 20g/L whole-cell biocatalyst, 5mM MgCl2, 40°C, pH 8.0, and 24-h incubation. Immobilization of whole cells with alginate increased the recyclability by an average of 23.33% per cycle. This work established an efficient one-step biotransformation process for the production of α-KG using immobilized whole B. subtilis overexpressing P. mirabilisl-AAD. Compared with traditional multistep chemical synthesis, the biocatalytic process described here has the advantage of reducing environmental pollution and thus has great potential for the large-scale production of α-KG. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Dental mesenchymal stem cells encapsulated in alginate hydrogel co-delivery microencapsulation system for cartilage regeneration

    PubMed Central

    Moshaverinia, Alireza; Xu, Xingtian; Chen, Chider; Akiyama, Kentaro; Snead, Malcolm L; Shi, Songtao

    2013-01-01

    Dental-derived MSCs are promising candidates for cartilage regeneration, with high chondrogenic differentiation capacity. This property contributes to making dental MSCs an advantageous therapeutic option compared to current treatment modalities. The MSC delivery vehicle is the principal determinant for the success of MSC-mediated cartilage regeneration therapies. The objectives of this study were to: (1) develop a novel co-delivery system based on TGF-β1 loaded RGD-coupled alginate microspheres encapsulating Periodontal Ligament Stem Cells (PDLSCs) or Gingival Mesenchymal Stem Cells (GMSCs); and (2) investigate dental MSC viability and chondrogenic differentiation in alginate microspheres. The results revealed the sustained release of TGF-β1 from the alginate microspheres. After 4 weeks of chondrogenic differentiation in vitro, PDLSCs, GMSCs as well as human bone marrow mesenchymal stem cells (hBMMSC) (as positive control) revealed chondrogenic gene expression markers (Col II and Sox-9) via qPCR, as well as matrix positively stained by toluidine blue and safranin-O. In animal studies, ectopic cartilage tissue regeneration was observed inside and around the transplanted microspheres, confirmed by histochemical and immunofluorescent staining. Interestingly, PDLSCs showed more chondrogenesis than GMSCs and hBMMSCs (P<0.05). Taken together, these results suggest that RGD-modified alginate microencapsulating dental MSCs make a promising candidate for cartilage regeneration. Our results highlight the vital role played by the microenvironment, as well as value of presenting inductive signals for viability and differentiation of MSCs. PMID:23891740

  6. Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor

    NASA Technical Reports Server (NTRS)

    Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

    1995-01-01

    Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

  7. Alginate Encapsulation of Pluripotent Stem Cells Using a Co-axial Nozzle

    PubMed Central

    Horiguchi, Ikki; Sakai, Yasuyuki

    2015-01-01

    Pluripotent stem cells (PS cells) are the focus of intense research due to their role in regenerative medicine and drug screening. However, the development of a mass culture system would be required for using PS cells in these applications. Suspension culture is one promising culture method for the mass production of PS cells, although some issues such as controlling aggregation and limiting shear stress from the culture medium are still unsolved. In order to solve these problems, we developed a method of calcium alginate (Alg-Ca) encapsulation using a co-axial nozzle. This method can control the size of the capsules easily by co-flowing N2 gas. The controllable capsule diameter must be larger than 500 µm because too high a flow rate of N2 gas causes the breakdown of droplets and thus heterogeneous-sized capsules. Moreover, a low concentration of Alg-Na and CaCl2 causes non-spherical capsules. Although an Alg-Ca capsule without a coating of Alg-PLL easily dissolves enabling the collection of cells, they can also potentially leak out from capsules lacking an Alg-PLL coating. Indeed, an alginate-PLL coating can prevent cellular leakage but is also hard to break. This technology can be used to research the stem cell niche as well as the mass production of PS cells because encapsulation can modify the micro-environment surrounding cells including the extracellular matrix and the concentration of secreted factors. PMID:26168084

  8. Immobilization of microbial cell and yeast cell and its application to biomass conversion using radiation techniques

    NASA Astrophysics Data System (ADS)

    Kaetsu, Isao; Kumakura, Minoru; Fujimura, Takashi; Kasai, Noboru; Tamada, Masao

    The recent results of immobilization of cellulase-producing cells and ethanol-fermentation yeast by radiation were reported. The enzyme of cellulase produced by immobilized cells was used for saccharification of lignocellulosic wastes and immobilized yeast cells were used for fermentation reaction from glucose to ethanol. The wastes such as chaff and bagasse were treated by γ-ray or electron-beam irradiation in the presence of alkali and subsequent mechanical crushing, to form a fine powder less than 50 μm in diameter. On the other hand, Trichoderma reesei as a cellulase-producing microbial cell was immobilized on a fibrous carrier having a specific porous structure and cultured to produce cellulase. The enzymatic saccharification of the pretreated waste was carried out using the produced cellulase. The enhanced fermentation process to produce ethanol from glucose with the immobilized yeast by radiation was also studied. The ethanol productivity of immobilized growing yeast cells thus obtained was thirteen times that of free yeast cells in a 1:1 volume of liquid medium to immobilized yeast cells.

  9. Enhanced viability of corneal epithelial cells for efficient transport/storage using a structurally modified calcium alginate hydrogel.

    PubMed

    Wright, Bernice; Cave, Richard A; Cook, Joseph P; Khutoryanskiy, Vitaliy V; Mi, Shengli; Chen, Bo; Leyland, Martin; Connon, Che J

    2012-05-01

    Therapeutic limbal epithelial stem cells could be managed more efficiently if clinically validated batches were transported for 'on-demand' use. In this study, corneal epithelial cell viability in calcium alginate hydrogels was examined under cell culture, ambient and chilled conditions for up to 7 days. Cell viability improved as gel internal pore size increased, and was further enhanced with modification of the gel from a mass to a thin disc. Ambient storage conditions were optimal for supporting cell viability in gel discs. Cell viability in gel discs was significantly enhanced with increases in pore size mediated by hydroxyethyl cellulose. Our novel methodology of controlling alginate gel shape and pore size together provides a more practical and economical alternative to established corneal tissue/cell storage methods.

  10. Alginate Inhibits Iron Absorption from Ferrous Gluconate in a Randomized Controlled Trial and Reduces Iron Uptake into Caco-2 Cells

    PubMed Central

    Wawer, Anna A.; Harvey, Linda J.; Dainty, Jack R.; Perez-Moral, Natalia; Sharp, Paul; Fairweather-Tait, Susan J.

    2014-01-01

    Previous in vitro results indicated that alginate beads might be a useful vehicle for food iron fortification. A human study was undertaken to test the hypothesis that alginate enhances iron absorption. A randomised, single blinded, cross-over trial was carried out in which iron absorption was measured from serum iron appearance after a test meal. Overnight-fasted volunteers (n = 15) were given a test meal of 200 g cola-flavoured jelly plus 21 mg iron as ferrous gluconate, either in alginate beads mixed into the jelly or in a capsule. Iron absorption was lower from the alginate beads than from ferrous gluconate (8.5% and 12.6% respectively, p = 0.003). Sub-group B (n = 9) consumed the test meals together with 600 mg calcium to determine whether alginate modified the inhibitory effect of calcium. Calcium reduced iron absorption from ferrous gluconate by 51%, from 11.5% to 5.6% (p = 0.014), and from alginate beads by 37%, from 8.3% to 5.2% (p = 0.009). In vitro studies using Caco-2 cells were designed to explore the reasons for the difference between the previous in vitro findings and the human study; confirmed the inhibitory effect of alginate. Beads similar to those used in the human study were subjected to simulated gastrointestinal digestion, with and without cola jelly, and the digestate applied to Caco-2 cells. Both alginate and cola jelly significantly reduced iron uptake into the cells, by 34% (p = 0.009) and 35% (p = 0.003) respectively. The combination of cola jelly and calcium produced a very low ferritin response, 16.5% (p<0.001) of that observed with ferrous gluconate alone. The results of these studies demonstrate that alginate beads are not a useful delivery system for soluble salts of iron for the purpose of food fortification. Trial Registration ClinicalTrials.gov NCT01528644 PMID:25391138

  11. Alginate Hydrogel Microencapsulation Inhibits Devitrification and Enables Large-Volume Low-CPA Cell Vitrification

    PubMed Central

    Huang, Haishui; Choi, Jung Kyu; Rao, Wei; Zhao, Shuting; Agarwal, Pranay; Zhao, Gang

    2015-01-01

    Cryopreservation of stem cells is important to meet their ever-increasing demand by the burgeoning cell-based medicine. The conventional slow freezing for stem cell cryopreservation suffers from inevitable cell injury associated with ice formation and the vitrification (i.e., no visible ice formation) approach is emerging as a new strategy for cell cryopreservation. A major challenge to cell vitrification is intracellular ice formation (IIF, a lethal event to cells) induced by devitrification (i.e., formation of visible ice in previously vitrified solution) during warming the vitrified cells at cryogenic temperature back to super-zero temperatures. Consequently, high and toxic concentrations of penetrating cryoprotectants (i.e., high CPAs, up to ~8 M) and/or limited sample volumes (up to ~2.5 μl) have been used to minimize IIF during vitrification. We reveal that alginate hydrogel microencapsulation can effectively inhibit devitrification during warming. Our data show that if ice formation were minimized during cooling, IIF is negligible in alginate hydrogel-microencapsulated cells during the entire cooling and warming procedure of vitrification. This enables vitrification of pluripotent and multipotent stem cells with up to ~4 times lower concentration of penetrating CPAs (up to 2 M, low CPA) in up to ~100 times larger sample volume (up to ~250 μl, large volume). PMID:26640426

  12. Alginate Hydrogel Microencapsulation Inhibits Devitrification and Enables Large-Volume Low-CPA Cell Vitrification.

    PubMed

    Huang, Haishui; Choi, Jung Kyu; Rao, Wei; Zhao, Shuting; Agarwal, Pranay; Zhao, Gang; He, Xiaoming

    2015-11-25

    Cryopreservation of stem cells is important to meet their ever-increasing demand by the burgeoning cell-based medicine. The conventional slow freezing for stem cell cryopreservation suffers from inevitable cell injury associated with ice formation and the vitrification ( i.e. , no visible ice formation) approach is emerging as a new strategy for cell cryopreservation. A major challenge to cell vitrification is intracellular ice formation (IIF, a lethal event to cells) induced by devitrification ( i.e. , formation of visible ice in previously vitrified solution) during warming the vitrified cells at cryogenic temperature back to super-zero temperatures. Consequently, high and toxic concentrations of penetrating cryoprotectants ( i.e. , high CPAs, up to ~8 M) and/or limited sample volumes (up to ~2.5 μl) have been used to minimize IIF during vitrification. We reveal that alginate hydrogel microencapsulation can effectively inhibit devitrification during warming. Our data show that if ice formation were minimized during cooling, IIF is negligible in alginate hydrogel-microencapsulated cells during the entire cooling and warming procedure of vitrification. This enables vitrification of pluripotent and multipotent stem cells with up to ~4 times lower concentration of penetrating CPAs (up to 2 M, low CPA) in up to ~100 times larger sample volume (up to ~250 μl, large volume).

  13. Engineering cholesterol-based fibers for antibody immobilization and cell capture

    NASA Astrophysics Data System (ADS)

    Cohn, Celine

    In 2015, the United States is expected to have nearly 600,000 deaths attributed to cancer. Of these 600,000 deaths, 90% will be a direct result of cancer metastasis, the spread of cancer throughout the body. During cancer metastasis, circulating tumor cells (CTCs) are shed from primary tumors and migrate through bodily fluids, establishing secondary cancer sites. As cancer metastasis is incredibly lethal, there is a growing emphasis on developing "liquid biopsies" that can screen peripheral blood, search for and identify CTCs. One popular method for capturing CTCs is the use of a detection platform with antibodies specifically suited to recognize and capture cancer cells. These antibodies are immobilized onto the platform and can then bind and capture cells of interest. However, current means to immobilize antibodies often leave them with drastically reduced function. The antibodies are left poorly suited for cell capture, resulting in low cell capture efficiencies. This body of work investigates the use of lipid-based fibers to immobilize proteins in a way that retains protein function, ultimately leading to increased cell capture efficiencies. The resulting increased efficiencies are thought to arise from the retained three-dimensional structure of the protein as well as having a complete coating of the material surface with antibodies that are capable of interacting with their antigens. It is possible to electrospin cholesterol-based fibers that are similar in design to the natural cell membrane, providing proteins a more natural setting during immobilization. Such fibers have been produced from cholesterol-based cholesteryl succinyl silane (CSS). These fibers have previously illustrated a keen aptitude for retaining protein function and increasing cell capture. Herein the work focuses on three key concepts. First, a model is developed to understand the immobilization mechanism used by electrospun CSS fibers. The antibody immobilization and cell capturing

  14. Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration.

    PubMed

    Moshaverinia, Alireza; Xu, Xingtian; Chen, Chider; Akiyama, Kentaro; Snead, Malcolm L; Shi, Songtao

    2013-12-01

    Dental-derived mesenchymal stem cells (MSCs) are promising candidates for cartilage regeneration, with a high capacity for chondrogenic differentiation. This property helps make dental MSCs an advantageous therapeutic option compared to current treatment modalities. The MSC delivery vehicle is the principal determinant for the success of MSC-mediated cartilage regeneration therapies. The objectives of this study were to: (1) develop a novel co-delivery system based on TGF-β1 loaded RGD-coupled alginate microspheres encapsulating periodontal ligament stem cells (PDLSCs) or gingival mesenchymal stem cells (GMSCs); and (2) investigate dental MSC viability and chondrogenic differentiation in alginate microspheres. The results revealed the sustained release of TGF-β1 from the alginate microspheres. After 4 weeks of chondrogenic differentiation in vitro, PDLSCs and GMSCs as well as human bone marrow mesenchymal stem cells (hBMMSCs) (as positive control) revealed chondrogenic gene expression markers (Col II and Sox-9) via qPCR, as well as matrix positively stained by Toluidine Blue and Safranin-O. In animal studies, ectopic cartilage tissue regeneration was observed inside and around the transplanted microspheres, confirmed by histochemical and immunofluorescent staining. Interestingly, PDLSCs showed more chondrogenesis than GMSCs and hBMMSCs (p<0.05). Taken together, these results suggest that RGD-modified alginate microencapsulating dental MSCs make a promising candidate for cartilage regeneration. Our results highlight the vital role played by the microenvironment, as well as value of presenting inductive signals for viability and differentiation of MSCs. Copyright © 2013 Acta Materialia Inc. All rights reserved.

  15. Using Biotechnology in the Laboratory: Using an Immobilized-Laccase Reactor-System to Learn about Wastewater Treatment

    ERIC Educational Resources Information Center

    Genc, Rukan; Rodriguez-Couto, Susana

    2009-01-01

    This article includes a practical guide, which was used to teach the phenomenon of immobilization of enzymes and their subsequent use for discoloration of dyes to under-graduate students of Biotechnology at the Rovira i Virgili University (Tarragona, Spain). Alginate was selected as a support for the immobilization of laccase. Remazol Brilliant…

  16. Immobilization and characterization of tannase from a metagenomic library and its use for removal of tannins from green tea infusion.

    PubMed

    Yao, Jian; Chen, Qinglong; Zhong, Guoxiang; Cao, Wen; Yu, An; Liu, Yuhuan

    2014-01-01

    Tannase (Tan410) from a soil metagenomic library was immobilized on different supports, including mesoporous silica SBA-15, chitosan, calcium alginate, and amberlite IRC 50. Entrapment in calcium alginate beads was comparatively found to be the best method and was further characterized. The optimum pH of the immobilized Tan410 was shifted toward neutrality compared with the free enzyme (from pH 6.4 to pH 7.0). The optimum temperature was determined to be 45°C for the immobilized enzyme and 30°C for the free enzyme, respectively. The immobilized enzyme had no loss of activity after 10 cycles, and retained more than 90% of its original activity after storage for 30 days. After immobilization, the enzyme activity was only slightly affected by Hg(2+), which completely inhibited the activity of the free enzyme. The immobilized tannase was used to remove 80% of tannins from a green tea infusion on the first treatment. The beads were used for six successive runs resulting in overall hydrolysis of 56% of the tannins.

  17. Optimization and Immobilization of Purified Labeo rohita Visceral Protease by Entrapment Method

    PubMed Central

    Geethanjali, S.; Subash, Anitha

    2013-01-01

    The purified fish visceral protease enzyme was immobilized by using various concentrations of sodium alginate and calcium chloride to optimize the best concentration for the formation of the beads. Then it was characterized by assaying the optimal pH, temperature, storage stability and reusability. The results on immobilization with sodium alginate and calcium chloride showed that a combination of 2% sodium alginate and 0.3 M calcium chloride weas found to be the optimum concentration for the formation of spherical and stable beads, this gave a maximal entrapped activity of 48.31%, and there was no change in the optimum pH 8.0 and temperature 40°C of protease before and after entrapment. The results on stability and reusability indicated that it was stable at 4°C retaining 100% residual activity after 5 days of storage and 67% loss of activity after ten days of storage and it retained 100% residual activity on the first reuse, 75% residual activity on the second reuse, 25% residual activity on the third use and complete loss in the activity on the fourth reuse. PMID:23533718

  18. Citric acid production using immobilized conidia of Aspergillus niger TMB 2022

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsay, S.S.; To, K.Y.

    1987-02-20

    Conidia of Aspergillus niger TMB 2022 were immobilized in calcium alginate for the production of citric acid. A 1-ml condidia suspension containing ca. 2.32 x 10/sup 8/ conidia were entrapped into sodium alginate solution in order to prepare 3% Ca-alginate (w/v) gel bead. Immobilized conidia were inoculated into productive medium containing 14% sucrose, 0.25% (NH/sub 4/)/sub 2/CO/sub 3/, 0.25% KH/sub 2/PO/sub 4/, and 0.025% MgSO/sub 4/.7H/sub 2/O with addition of 0.06 mg/l CuSO/sub 4/.5H/sub 2/O, 0.25 mg/l ZnCl/sub 2/, 1.3 mg/l FeCl/sub 3/.6H/sub 2/O, pH 3.8, and incubated at 35 degrees C for 13 days by surface culture to producemore » 61.53 g/l anhydrous citric acid. Under the same conditions with a batchwise culture, it was found that immobilized conidia could maintain a longer period for citric acid production (31 days): over 70 g/l anhydrous citric acid from runs No. 2-4, with the maximum yield for anhydrous citric acid reaching 77.02 g/l for run No. 2. In contrast, free conidia maintained a shorter acid-producing phase, circa 17 days; the maximum yield for anhydrous citric acid was 71.07 g/l for run No. 2 but dropped quickly as the run number increased. 14 references.« less

  19. Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells.

    PubMed

    Raguvaran, R; Manuja, Balvinder K; Chopra, Meenu; Thakur, Rajesh; Anand, Taruna; Kalia, Anu; Manuja, Anju

    2017-03-01

    An ideal biomaterial for wound dressing applications should possess antibacterial and anti-inflammatory properties without any toxicity to the host cells while providing the maximum healing activity. Zinc oxide nanoparticles (ZnONPs) possess antimicrobial activity and enhance wound healing, but the questions regarding their safety arise before application to the biological systems. We synthesized ZnONPs-loaded-sodium alginate-gum acacia hydrogels (SAGA-ZnONPs) by cross linking hydroxyl groups of the polymers sodium alginate and gum acacia with the aldehyde group of gluteradehyde. Here, we report the wound healing properties of sodium alginate/gum acacia/ZnONPs, circumventing the toxicity of ZnONPs simultaneously. We demonstrated the concentration-dependent zones of inhibition in treated cultures of Pseudomonas aerigunosa and Bacillus cereus and biocompatability on peripheral blood mononuclear/fibroblast cells. SAGA-ZnONPs hydrogels showed a healing effect at a low concentration of ZnONPs using sheep fibroblast cells. Our findings suggest that high concentrations of ZnONPs were toxic to cells but SAGA-ZnONPs hydrogels significantly reduced the toxicity and preserved the beneficial antibacterial and healing effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Jellyfish collagen and alginate: Combined marine materials for superior chondrogenesis of hMSC.

    PubMed

    Pustlauk, W; Paul, B; Gelinsky, M; Bernhardt, A

    2016-07-01

    Marine, hybrid constructs of porous scaffolds from fibrillized jellyfish collagen and alginate hydrogel are mimicking both of the main tissue components of cartilage, thus being a promising approach for chondrogenic differentiation of human mesenchymal stem cells (hMSC). Investigating their potential for articular cartilage repair, the present study examined scaffolds being either infiltrated with an alginate-cell-suspension (ACS) or seeded with hMSC and embedded in alginate after cell adhesion (EAS). Hybrid constructs with 2×10(5) and 4.5×10(5)hMSC/scaffold were compared to hMSC encapsulated in pure alginate discs, both chondrogenically stimulated for 21days. Typical round, chondrocyte-like morphology was observed in pure alginate gels and ACS scaffolds, while cells in EAS were elongated and tightly attached to the collagen pores. Col 2 gene expression was comparable in all scaffold types examined. However, the Col 2/Col 1 ratio was higher for pure alginate discs and ACS scaffolds compared to EAS. In contrast, cells in EAS scaffolds displayed higher gene expression of Sox 9, Col 11 and ACAN compared to ACS and pure alginate. Secretion of sulfated glycosaminoglycans (sGAG) was comparable for ACS and EAS scaffolds. In conclusion hybrid constructs of jellyfish collagen and alginate support hMSC chondrogenic differentiation and provide more stable and constructs compared to pure hydrogels. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Adsorption of ochratoxin A from grape juice by yeast cells immobilised in calcium alginate beads.

    PubMed

    Farbo, Maria Grazia; Urgeghe, Pietro Paolo; Fiori, Stefano; Marceddu, Salvatore; Jaoua, Samir; Migheli, Quirico

    2016-01-18

    Grape juice can be easily contaminated with ochratoxin A (OTA), one of the known mycotoxins with the greatest public health significance. Among the different approaches to decontaminate juice from this mycotoxin, microbiological methods proved efficient, inexpensive and safe, particularly the use of yeast or yeast products. To ascertain whether immobilisation of the yeast biomass would lead to successful decontamination, alginate beads encapsulating Candida intermedia yeast cells were used in our experiments to evaluate their OTA-biosorption efficacy. Magnetic calcium alginate beads were also prepared by adding magnetite in the formulation to allow fast removal from the aqueous solution with a magnet. Calcium alginate beads were added to commercial grape juice spiked with 20 μg/kg OTA and after 48 h of incubation a significant reduction (>80%), of the total OTA content was achieved, while in the subsequent phases (72-120 h) OTA was slowly released into the grape juice by alginate beads. Biosorption properties of alginate-yeast beads were tested in a prototype bioreactor consisting in a glass chromatography column packed with beads, where juice amended with OTA was slowly flowed downstream. The adoption of an interconnected scaled-up bioreactor as an efficient and safe tool to remove traces of OTA from liquid matrices is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. TiO₂ beads and TiO₂-chitosan beads for urease immobilization.

    PubMed

    Ispirli Doğaç, Yasemin; Deveci, Ilyas; Teke, Mustafa; Mercimek, Bedrettin

    2014-09-01

    The aim of the present study is to synthesize TiO2 beads for urease immobilization. Two different strategies were used to immobilize the urease on TiO2 beads. In the first method (A), urease enzyme was immobilized onto TiO2 beads by adsorption and then crosslinking. In the second method (B), TiO2 beads were coated with chitosan-urease mixture. To determine optimum conditions of immobilization, different parameters were investigated. The parameters of optimization were initial enzyme concentration (0.5; 1; 1.5; 2mg/ml), alginate concentration (1; 2; 3%), glutaraldehyde concentration (1; 2; 3% v/v) and chitosan concentration (2; 3; 4 mg/ml). The optimum enzyme concentrations were determined as 1.5mg/ml for A and 1.0mg/ml for B. The other optimum conditions were found 2.0% (w/v) for alginate concentration (both A and B); 3.0mg/ml for chitosan concentration (B) and 2.0% (v/v) for glutaraldehyde concentration (A). The optimum temperature (20-60°C), optimum pH (3.0-10.0), kinetic parameters, thermal stability (4-70°C), pH stability (4.0-9.0), operational stability (0-230 min) and reusability (20 times) were investigated for characterization. The optimum temperatures were 30°C (A), 40°C (B) and 35°C (soluble). The temperature profiles of the immobilized ureases were spread over a large area. The optimum pH values for the soluble urease and immobilized urease prepared by using methods (A) and (B) were found to be 7.5, 7.0, 7.0, respectively. The thermal stabilities of immobilized enzyme sets were studied and they maintained 50% activity at 65°C. However, at this temperature free urease protected only 15% activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Dispensing of very low volumes of ultra high viscosity alginate gels: a new tool for encapsulation of adherent cells and rapid prototyping of scaffolds and implants.

    PubMed

    Gepp, Michael M; Ehrhart, Friederike; Shirley, Stephen G; Howitz, Steffen; Zimmermann, Heiko

    2009-01-01

    We present a tool for dispensing very low volumes (20 nL or more) of ultra high viscosity (UHV) medical-grade alginate hydrogels. It uses a modified piezo-driven micrometering valve, integrated into a versatile system that allows fast prototyping of encapsulation procedures and scaffold production. Valves show excellent dispensing properties for UHV alginate in concentrations of 0.4% and 0.7% and also for aqueous liquids. An optimized process flow provides excellent handling of biological samples under sterile conditions. This technique allows the encapsulation of adherent cells and structuring of substrates for biotechnology and regenerative medicine. A variety of cell lines showed at least 70% viability after encapsulation (including cell lines that are relevant in regenerative medicine like Hep G2), and time-lapse analysis revealed cells proliferating and showing limited motility under alginate spots. Cells show metabolic activity, gene product expression, and physiological function. Encapsulated cells have contact with the substrate and can exchange metabolites while being isolated from macromolecules in the environment. Contactless dispensing allows structuring of substrates with alginate, isolation and transfer of cell-alginate complexes, and the dispensing of biological active hydrogels like extracellular matrix-derived gels.

  4. Effect of dynamic three-dimensional culture on osteogenic potential of human periodontal ligament-derived mesenchymal stem cells entrapped in alginate microbeads.

    PubMed

    Vecchiatini, R; Penolazzi, L; Lambertini, E; Angelozzi, M; Morganti, C; Mazzitelli, S; Trombelli, L; Nastruzzi, C; Piva, R

    2015-08-01

    Bioreactors are devices that efficiently create an environment that enables cell cultures to grow in a three-dimensional (3D) context mimicking in vivo conditions. In this study, we investigate the effect of dynamic fluid flow on the osteogenic potential of human mesenchymal stem cells obtained from periodontal ligament and entrapped in alginate microbeads. After proper immunophenotyping, cells were encapsulated in barium alginate, cultured in 3D static or 3D dynamic conditions represented by a bioreactor system. Calcein-AM/propidium iodide staining was used to assess cellular viability. Quantitative real-time polymerase chain reaction was used to analyze the expression of osteogenic markers (Runx2 and COL1). Alizarin Red S staining and the Fourier transform infrared spectroscopy were used to assess mineral matrix deposition. Optimal encapsulation procedure, in terms of polymer pumping rate, distance from droplet generator to the gelling bath and atomizing airflow was assessed. Cell viability was not affected by encapsulation in alginate microbeads. Bioreactor cell exposure was effective in anticipating osteogenic differentiation and improving mineral matrix deposition. For the first time human mesenchymal stem cells obtained from periodontal ligaments encapsulated in alginate microbeads were cultured in a bioreactor system. This combination could represent a promising strategy to create a cell-based smart system with enhanced osteogenic potential useful for many different dental applications. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Continuous cider fermentation with co-immobilized yeast and Leuconostoc oenos cells.

    PubMed

    Nedovic; Durieuxb; Van Nedervelde L; Rosseels; Vandegans; Plaisant; Simon

    2000-06-01

    Ca-alginate matrix was used to co-immobilize Saccharomyces bayanus and Leuconostoc oenos in one integrated biocatalytic system in order to perform simultaneously alcoholic and malo-lactic fermentation of apple juice to produce cider, in a continuous packed bed bioreactor. The continuous process permitted much faster fermentation compared with the traditional batch process. The flavor formation was also better controlled. By adjusting the flow rate of feeding substrate through the bioreactor, i.e. its residence time, it was possible to obtain either "soft" or "dry" cider. However, the profile of volatile compounds in the final product was modified comparatively to the batch process, especially for higher alcohols, isoamylacetate, and diacetyl. This modification is due to different physiology states of yeast in two processes. Nevertheless, the taste of cider was quite acceptable.

  6. Biodegradation of Direct Blue 15 by free and immobilized Trametes versicolor.

    PubMed

    Pazarlioglu, Nurdan Kasikara; Akkaya, Alper; Akdogan, Hatice Ardag; Gungor, Burcin

    2010-07-01

    To investigate biodegradability by Trametes versicolor, five structurally different direct azo-dyes--Direct Black 38, Direct Blue 15 (DB 15), Direct Orange 26, Direct Green 6, and Direct Yellow 12--were studied. The DB 15 was determined as the best biodegradable dye by this white-rot fungus. Laccase and manganese peroxidase activities were monitored with the biodegradation process; it was observed that laccase played an important role in the dye degradation, while manganese peroxidase activity could not be detected. Possible degradation products also were examined by gas chromatography-mass spectrometry, but no metabolite was detected after the degradation and/or decolorization process. To enhance performance of the fungi during the degradation, Trametes versicolor cells were immobilized in alginate beads. Then, DB 15 decolorization by immobilized Trametes versicolor was studied in a small-scale packed-bed reactor. The color removal efficiency in repeated batches was found to be 98 and 93% for 50 mg/L DB 15.

  7. Alginate foam-based three-dimensional culture to investigate drug sensitivity in primary leukaemia cells.

    PubMed

    Karimpoor, Mahroo; Yebra-Fernandez, Eva; Parhizkar, Maryam; Orlu, Mine; Craig, Duncan; Khorashad, Jamshid S; Edirisinghe, Mohan

    2018-04-01

    The development of assays for evaluating the sensitivity of leukaemia cells to anti-cancer agents is becoming an important aspect of personalized medicine. Conventional cell cultures lack the three-dimensional (3D) structure of the bone marrow (BM), the extracellular matrix and stromal components which are crucial for the growth and survival of leukaemia stem cells. To accurately predict the sensitivity of the leukaemia cells in an in vitro assay a culturing system containing the essential components of BM is required. In this study, we developed a porous calcium alginate foam-based scaffold to be used for 3D culture. The new 3D culture was shown to be cell compatible as it supported the proliferation of both normal haematopoietic and leukaemia cells. Our cell differential assay for myeloid markers showed that the porous foam-based 3D culture enhanced myeloid differentiation in both leukaemia and normal haematopoietic cells compared to two-dimensional culture. The foam-based scaffold reduced the sensitivity of the leukaemia cells to the tested antileukaemia agents in K562 and HL60 leukaemia cell line model and also primary myeloid leukaemia cells. This observation supports the application of calcium alginate foams as scaffold components of the 3D cultures for investigation of sensitivity to antileukaemia agents in primary myeloid cells. © 2018 The Author(s).

  8. Effect of sodium-alginate and laminaran on Salmonella Typhimurium infection in human enterocyte-like HT-29-Luc cells and BALB/c mice.

    PubMed

    Kuda, Takashi; Kosaka, Misa; Hirano, Shino; Kawahara, Miho; Sato, Masahiro; Kaneshima, Tai; Nishizawa, Makoto; Takahashi, Hajime; Kimura, Bon

    2015-07-10

    Brown algal polysaccharides such as alginate, polymers of uronic acids, and laminaran, beta-1,3 and 1,6-glucan, can be fermented by human intestinal microbiota. To evaluate the effects of these polysaccharides on infections caused by food poisoning pathogens, we investigated the adhesion and invasion of pathogens (Salmonella Typhimurium, Listeria monocytogenes and Vibrio parahaemolyticus) in human enterocyte-like HT-29-Luc cells and in infections caused in BALB/c mice. Both sodium Na-alginate and laminaran (0.1% each) inhibited the adhesion of the pathogens to HT-29-Luc cells by approximately 70-90%. The invasion of S. Typhimurium was also inhibited by approximately 70 and 80% by Na-alginate and laminaran, respectively. We observed that incubation with Na-alginate for 18 h increased the transepithelial electrical resistance of HT-29-Luc monolayer cells. Four days after inoculation with 7 log CFU/mouse of S. Typhimurium, the faecal pathogen count in mice that were not fed polysaccharides (control mice) was about 6.5 log CFU/g while the count in mice that were fed Na-alginate had decreased to 5.0 log CFU/g. The liver pathogen count, which was 4.1 log CFU/g in the control mice, was also decreased in mice that were fed Na-alginate. In contrast, the mice that were fed laminaran exhibited a more severe infection than that exhibited by control mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering.

    PubMed

    Kundu, Joydip; Shim, Jin-Hyung; Jang, Jinah; Kim, Sung-Won; Cho, Dong-Woo

    2015-11-01

    Regenerative medicine is targeted to improve, restore or replace damaged tissues or organs using a combination of cells, materials and growth factors. Both tissue engineering and developmental biology currently deal with the process of tissue self-assembly and extracellular matrix (ECM) deposition. In this investigation, additive manufacturing (AM) with a multihead deposition system (MHDS) was used to fabricate three-dimensional (3D) cell-printed scaffolds using layer-by-layer (LBL) deposition of polycaprolactone (PCL) and chondrocyte cell-encapsulated alginate hydrogel. Appropriate cell dispensing conditions and optimum alginate concentrations for maintaining cell viability were determined. In vitro cell-based biochemical assays were performed to determine glycosaminoglycans (GAGs), DNA and total collagen contents from different PCL-alginate gel constructs. PCL-alginate gels containing transforming growth factor-β (TGFβ) showed higher ECM formation. The 3D cell-printed scaffolds of PCL-alginate gel were implanted in the dorsal subcutaneous spaces of female nude mice. Histochemical [Alcian blue and haematoxylin and eosin (H&E) staining] and immunohistochemical (type II collagen) analyses of the retrieved implants after 4 weeks revealed enhanced cartilage tissue and type II collagen fibril formation in the PCL-alginate gel (+TGFβ) hybrid scaffold. In conclusion, we present an innovative cell-printed scaffold for cartilage regeneration fabricated by an advanced bioprinting technology. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Chondrocyte Culture in Three Dimensional Alginate Sulfate Hydrogels Promotes Proliferation While Maintaining Expression of Chondrogenic Markers

    PubMed Central

    Mhanna, Rami; Kashyap, Aditya; Palazzolo, Gemma; Vallmajo-Martin, Queralt; Becher, Jana; Möller, Stephanie; Schnabelrauch, Matthias

    2014-01-01

    The loss of expression of chondrogenic markers during monolayer expansion remains a stumbling block for cell-based treatment of cartilage lesions. Here, we introduce sulfated alginate hydrogels as a cartilage biomimetic biomaterial that induces cell proliferation while maintaining the chondrogenic phenotype of encapsulated chondrocytes. Hydroxyl groups of alginate were converted to sulfates by incubation with sulfur trioxide–pyridine complex (SO3/pyridine), yielding a sulfated material cross-linkable with calcium chloride. Passage 3 bovine chondrocytes were encapsulated in alginate and alginate sulfate hydrogels for up to 35 days. Cell proliferation was five-fold higher in alginate sulfate compared with alginate (p=0.038). Blocking beta1 integrins in chondrocytes within alginate sulfate hydrogels significantly inhibited proliferation (p=0.002). Sulfated alginate increased the RhoA activity of chondrocytes compared with unmodified alginate, an increase that was blocked by β1 blocking antibodies (p=0.017). Expression and synthesis of type II collagen, type I collagen, and proteoglycan was not significantly affected by the encapsulation material evidenced by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry. Alginate sulfate constructs showed an opaque appearance in culture, whereas the unmodified alginate samples remained translucent. In conclusion, alginate sulfate provides a three dimensional microenvironment that promotes both chondrocyte proliferation and maintenance of the chondrogenic phenotype and represents an important advance for chondrocyte-based cartilage repair therapies providing a material in which cell expansion can be done in situ. PMID:24320935

  11. Alginate-gelatin encapsulation of human endothelial cells promoted angiogenesis in in vivo and in vitro milieu.

    PubMed

    Nemati, Sorour; Rezabakhsh, Aysa; Khoshfetrat, Ali Baradar; Nourazarian, Alireza; Biray Avci, Çığır; Goker Bagca, Bakiye; Alizadeh Sardroud, Hamed; Khaksar, Majid; Ahmadi, Mahdi; Delkhosh, Aref; Sokullu, Emel; Rahbarghazi, Reza

    2017-12-01

    Up to present, many advantages have been achieved in the field of cell-based therapies by applying sophisticated methodologies and delivery approaches. Microcapsules are capable to provide safe microenvironment for cells during transplantation in a simulated physiological 3D milieu. Here, we aimed to investigate the effect of alginate-gelatin encapsulation on angiogenic behavior of human endothelial cells over a period of 5 days. Human umbilical vein endothelial cells were encapsulated by alginate-gelatin substrate and incubated for 5 days. MTT and autophagy PCR array analysis were used to monitor cell survival rate. For in vitro angiogenesis analysis, cell distribution of Tie-1, Tie-2, VEGFR-1, and VEGFR-2 were detected by ELISA. In addition to in vitro tubulogenesis assay, we monitored the expression of VE-cadherin by Western blotting. The migration capacity of encapsulated HUVECs was studied by measuring MMP-2 and MMP-9 via gelatin zymography. The in vivo angiogenic potential of encapsulated HUVECs was analyzed in immune-compromised mouse implant model during 7 days post-transplantation. We demonstrated that encapsulation promoted HUVECs cell survival and proliferation. Compared to control, no significant differences were observed in autophagic status of encapsulated cells (p > 0.05). The level of Tie-1, Tie-2, VEGFR-1, and VEGFR-2 were increased, but did not reach to significant levels. Encapsulation decreased MMP-2, -9 activity and increased the VE-cadherin level in enclosed cells (p < 0.05). Moreover, an enhanced in vivo angiogenic response of encapsulated HUVECs was evident as compared to non-capsulated cells (p < 0.05). These observations suggest that alginate-gelatin encapsulation can induce angiogenic response in in vivo and in vitro conditions. © 2017 Wiley Periodicals, Inc.

  12. Review: peripheral nerve regeneration using non-tubular alginate gel crosslinked with covalent bonds.

    PubMed

    Hashimoto, Tadashi; Suzuki, Yoshihisa; Suzuki, Kyoko; Nakashima, Toshihide; Tanihara, Masao; Ide, Chizuka

    2005-06-01

    We have developed a nerve regeneration material consisting of alginate gel crosslinked with covalent bonds. in the first part of this study, we attempted to analyze nerve regeneration through alginate gel in the early stages within 2 weeks. in the second part, we tried to regenerate cat peripheral nerve by using alginate tubular or non-tubular nerve regeneration devices, and compared their efficacies. Four days after surgery, regenerating axons grew without Schwann cell investment through the partially degraded alginate gel, being in direct contact with the alginate without a basal lamina covering. One to 2 weeks after surgery, regenerating axons were surrounded by common Schwann cells, forming small bundles, with some axons at the periphery being partly in direct contact with alginate. At the distal stump, numerous Schwann cells had migrated into the alginate 8-14 days after surgery. Remarkable restorations of the 50-mm gap in cat sciatic nerve were obtained after a long term by using tubular or non-tubular nerve regeneration material consisting mainly of alginate gel. However, there was no significant difference between both groups at electrophysiological and morphological evaluation. Although, nowadays, nerve regeneration materials being marketed mostly have a tubular structure, our results suggest that the tubular structure is not indispensable for peripheral nerve regeneration.

  13. Photosynthetic aeration in biological wastewater treatment using immobilized microalgae-bacteria symbiosis.

    PubMed

    Praveen, Prashant; Loh, Kai-Chee

    2015-12-01

    Chlorella vulgaris encapsulated in alginate beads were added into a bioreactor treating synthetic wastewater using Pseudomonas putida. A symbiotic CO2/O2 gas exchange was established between the two microorganisms for photosynthetic aeration of wastewater. During batch operation, glucose removal efficiency in the bioreactor improved from 50% in 12 h without aeration to 100% in 6 h, when the bioreactor was aerated photosynthetically. During continuous operation, the bioreactor was operated at a low hydraulic retention time of 3.3 h at feed concentrations of 250 and 500 mg/L glucose. The removal efficiency at 500 mg/L increased from 73% without aeration to 100% in the presence of immobilized microalgae. The initial microalgae concentration was critical to achieve adequate aeration, and the removal rate increased with increasing microalgae concentration. The highest removal rate of 142 mg/L-h glucose was achieved at an initial microalgae concentration of 190 mg/L. Quantification of microalgae growth in the alginate beads indicated an exponential growth during symbiosis, indicating that the bioreactor performance was limited by oxygen production rates. Under symbiotic conditions, the chlorophyll content of the immobilized microalgae increased by more than 30%. These results indicate that immobilized microalgae in symbiosis with heterotrophic bacteria are promising in wastewater aeration.

  14. Biosorption of americium-241 by immobilized Rhizopus arrihizus.

    PubMed

    Liao, Jiali; Yang, Yuanyou; Luo, Shunzhong; Liu, Ning; Jin, Jiannan; Zhang, Taiming; Zhao, Pengji

    2004-01-01

    Rhizopus arrihizus (R. arrihizus), a fungus, which in previous experiments had shown encouraging ability to remove 241Am from solutions, was immobilized by calcium alginate and other reagents. The various factors affecting 241Am biosorption by the immobilized R. arrihizus were investigated. The results showed that not only can immobilized R. arrihizus adsorb 241Am as efficiently as free R. arrihizus, but that also can be used repeatedly or continuously. The biosorption equilibrium was achieved within 2 h, and more than 94% of 241Am was removed from 241Am solutions of 1.08 MBq/l by immobilized R. arrihizu in the pH range 1-7. Temperature did not affect the adsorption on immobilized R. arrihizus in the range 15-45 degrees C. After repeated adsorption for 8 times, the immobilized R. arrihizus still adsorbed more than 97% of 241Am. At this time, the total adsorption of 241Am was more than 88.6 KBq/g, and had not yet reached saturation. Ninety-five percent of the adsorbed 241Am was desorbed by saturated EDTA solution and 98% by 2 mol/l HNO(3).

  15. Mineralized alginate hydrogels using marine carbonates for bone tissue engineering applications.

    PubMed

    Diaz-Rodriguez, P; Garcia-Triñanes, P; Echezarreta López, M M; Santoveña, A; Landin, M

    2018-09-01

    The search for an ideal bone tissue replacement has led to the development of new composite materials designed to simulate the complex inorganic/organic structure of bone. The present work is focused on the development of mineralized calcium alginate hydrogels by the addition of marine derived calcium carbonate biomineral particles. Following a novel approach, we were able to obtain calcium carbonate particles of high purity and complex micro and nanostructure dependent on the source material. Three different types of alginates were selected to develop inorganic/organic scaffolds in order to correlate alginate composition with scaffold properties and cell behavior. The incorporation of calcium carbonates into alginate networks was able to promote extracellular matrix mineralization and osteoblastic differentiation of mesenchymal stem cells when added at 7 mg/ml. We demonstrated that the selection of the alginate type and calcium carbonate origin is crucial to obtain adequate systems for bone tissue engineering as they modulate the mechanical properties and cell differentiation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Surface design of antibody-immobilized thermoresponsive cell culture dishes for recovering intact cells by low-temperature treatment.

    PubMed

    Kobayashi, Jun; Hayashi, Masaki; Ohno, Takahiro; Nishi, Masanori; Arisaka, Yoshinori; Matsubara, Yoshinori; Kakidachi, Hiroshi; Akiyama, Yoshikatsu; Yamato, Masayuki; Horii, Akihiro; Okano, Teruo

    2014-11-01

    Antibody-immobilized thermoresponsive poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide) [poly(IPAAm-co-CIPAAm)]-grafted cell culture surfaces were designed to enhance both the initial adhesion of weakly adhering cells and the ability of cells to detach in response to low temperature through the regulation of affinity binding between immobilized antibodies and antigens on the cellular surface. Ty-82 cells and neonatal normal human dermal fibroblasts (NHDFs), which express CD90 on the cell surface, adhered to anti-CD90 antibody-immobilized thermoresponsive surfaces at 37°C, a condition at which the grafted thermoresponsive polymer chains shrank. Adherent Ty-82 cells were detached from the surfaces by lowering the temperature to 20°C and applying external forces, such as pipetting, whereas cultured NHDF sheets spontaneously detached themselves from the surface in response to reduced temperature alone. When the temperature was decreased to 20°C, the swelling of grafted thermoresponsive polymer chains weakened the affinity binding between immobilized antibody and antigen on the cells due to the increasing steric hindrance of the polymer chains around the antigen-recognition site of the immobilized antibodies. No contamination was detected on cells harvested from covalently immobilized antibodies on the culture surfaces by low-temperature treatment, whereas a carryover of the antibody and avidin from the avidin-biotin binding surface was observed. Furthermore, the initial adhesion of adipose tissue-derived cells, which adhere weakly to PIPAAm-grafted surfaces, was enhanced on the antibody-immobilized thermoresponsive surfaces. © 2013 Wiley Periodicals, Inc.

  17. Bacterial supersystem for alginate import/metabolism and its environmental and bioenergy applications.

    PubMed

    Hashimoto, Wataru; Kawai, Shigeyuki; Murata, Kousaku

    2010-01-01

    Distinct from most alginate-assimilating bacteria that secrete polysaccharide lyases extracellularly, a gram-negative bacterium, Sphingomonas sp. A1 (strain A1), can directly incorporate alginate into its cytoplasm, without degradation, through a "superchannel" consisting of a mouth-like pit on the cell surface, periplasmic binding proteins, and a cytoplasmic membrane-bound ATP-binding cassette transporter. Flagellin homologues function as cell surface alginate receptors essential for expressing the superchannel. Cytoplasmic alginate lyases with different substrate specificities and action modes degrade the polysaccharide to its constituent monosaccharides. The resultant monosaccharides, α-keto acids, are converted to a reduced form by NADPH-dependent reductase, and are finally metabolized in the TCA cycle. Transplantation of the strain A1 superchannel to xenobiotic-degrading sphingomonads enhances bioremediation through the propagation of bacteria with an elevated transport activity. Furthermore, strain A1 cells transformed with Zymomonas mobilis genes for pyruvate decarboxylase and alcohol dehydrogenase II produce considerable amounts of biofuel ethanol from alginate when grown statically. © 2010 Landes Bioscience

  18. Micromagnetic Cancer Cell Immobilization and Release for Real-Time Single Cell Analysis

    NASA Astrophysics Data System (ADS)

    Jaiswal, Devina; Rad, Armin Tahmasbi; Nieh, Mu-Ping; Claffey, Kevin P.; Hoshino, Kazunori

    2017-04-01

    Understanding the interaction of live cells with macromolecules is crucial for designing efficient therapies. Considering the functional heterogeneity found in cancer cells, real-time single cell analysis is necessary to characterize responses. In this study, we have designed and fabricated a microfluidic channel with patterned micromagnets which can temporarily immobilize the cells during analysis and release them after measurements. The microchannel is composed of plain coverslip top and bottom panels to facilitate easy microscopic observation and undisturbed application of analytes to the cells. Cells labeled with functionalized magnetic beads were immobilized in the device with an efficiency of 90.8±3.6%. Since the micromagnets are made of soft magnetic material (Ni), they released cells when external magnetic field was turned off from the channel. This allows the reuse of the channel for a new sample. As a model drug analysis, the immobilized breast cancer cells (MCF7) were exposed to fluorescent lipid nanoparticles and association and dissociation were measured through fluorescence analysis. Two concentrations of nanoparticles, 0.06 μg/ml and 0.08 μg/ml were tested and time lapse images were recorded and analyzed. The microfluidic device was able to provide a microenvironment for sample analysis, making it an efficient platform for real-time analysis.

  19. Applying multi-criteria analysis for preliminary assessment of the properties of alginate immobilized Myriophyllum spicatum in lake water samples.

    PubMed

    Milojković, Jelena V; Popović-Djordjević, Jelena B; Pezo, Lato L; Brčeski, Ilija D; Kostić, Aleksandar Ž; Milošević, Vladan D; Stojanović, Mirjana D

    2018-05-11

    The preliminary assessment of the properties of alginate immobilized aquatic weed Myriophyllum spicatum beads-MsAlg in a multi-element system of nine Serbian lakes water samples was done. Herein, the results obtained in the biosorption experiment with MsAlg contents of twenty-two elements analysed by inductively coupled plasma-optical emission spectrometry, biosorption capacity, element removal efficiency, total hardness (TH) and quality index of water (WQI) are presented. Scanning electron microscopy with energy dispersive X-ray spectroscopy was used for the characterization of M. spicatum and its beads. The study showed that aluminium, magnesium and strontium were adsorbed by MsAlg in the water samples from all examined lakes; barium and iron in the water samples from six lakes. The overall average efficiency of MsAlg in biosorption of elements was in the following order: Al > Ba > Sr > Fe > Mg (58.6, 51.7, 48.2, 23.9 and 17.7%, respectively). The increase of TH and WQI values after the biosorption was noticed in all studied lake water samples. The most significant correlations for pH were regarding the contents of B, Mg and Ca, whereas WQI was highly correlated to the contents of B and Mg, and pH. The complexity of the obtained data was explained by Cluster Analysis and Principal Component Analysis, which showed good discrimination capabilities between the water samples taken from different locations. Considering that the invasive M. spicatum is natural, widespread and that its immobilization is cheap and eco-friendly, presented findings could be helpful in further assessment of MsAlg beads for its potential use as biofilter. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Alginate/hyaluronic acid hydrogel delivery system characteristics regulate the differentiation of periodontal ligament stem cells toward chondrogenic lineage.

    PubMed

    Ansari, Sahar; Diniz, Ivana M; Chen, Chider; Aghaloo, Tara; Wu, Benjamin M; Shi, Songtao; Moshaverinia, Alireza

    2017-09-15

    Cartilage tissue regeneration often presents a challenging clinical situation. Recently, it has been shown that Periodontal Ligament Stem Cells (PDLSCs) possess high chondrogenic differentiation capacity. In this study, we developed a stem cell delivery system based on alginate/hyaluronic acid (HA) loaded with TGF-β1 ligand, encapsulating PDLSCs; and investigated the chondrogenic differentiation of encapsulated cells in alginate/HA hydrogel microspheres in vitro and in vivo. The results showed that PDLSCs, as well as human bone marrow mesenchymal stem cells (hBMMSCs), as the positive control, were stained positive for both toluidine blue and alcian blue staining, while exhibiting high levels of gene expression related to chondrogenesis (Col II, Aggrecan and Sox-9), as assessed via qPCR. The quantitative PCR analyses exhibited that the chondrogenic differentiation of encapsulated MSCs can be regulated by the modulus of elasticity of hydrogel delivery system, confirming the vital role of the microenvironment, and the presence of inductive signals for viability and differentiation of MSCs. In vivo, histological and immunofluorescence staining for chondrogenic specific protein markers confirmed ectopic cartilage-like tissue regeneration inside transplanted hydrogels. PDLSCs presented significantly greater capability for chondrogenic differentiation than hBMMSCs (P < 0.05). Altogether, our findings confirmed that alginate/HA hydrogels encapsulating PDLSCs are a promising candidate for cartilage regeneration.

  1. PVA-chitosan composite hydrogel versus alginate beads as a potential mesenchymal stem cell carrier for the treatment of focal cartilage defects.

    PubMed

    Dashtdar, Havva; Murali, Malliga Raman; Abbas, Azlina Amir; Suhaeb, Abdulrazzaq Mahmod; Selvaratnam, Lakshmi; Tay, Liang Xin; Kamarul, Tunku

    2015-05-01

    To investigate whether mesenchymal stem cells (MSCs) seeded in novel polyvinyl alcohol (PVA)-chitosan composite hydrogel can provide comparable or even further improve cartilage repair outcomes as compared to previously established alginate-transplanted models. Medial femoral condyle defect was created in both knees of twenty-four mature New Zealand white rabbits, and the animals were divided into four groups containing six animals each. After 3 weeks, the right knees were transplanted with PVA-chitosan-MSC, PVA-chitosan scaffold alone, alginate-MSC construct or alginate alone. The left knee was kept as untreated control. Animals were killed at the end of 6 months after transplantation, and the cartilage repair was assessed through Brittberg morphological score, histological grading by O'Driscoll score and quantitative glycosaminoglycan analysis. Morphological and histological analyses showed significant (p < 0.05) tissue repair when treated with PVA-chitosan-MSC or alginate MSC as compared to the scaffold only and untreated control. In addition, safranin O staining and the glycosaminoglycan (GAG) content were significantly higher (p < 0.05) in MSC treatment groups than in scaffold-only or untreated control group. No significant difference was observed between the PVA-chitosan-MSC- and alginate-MSC-treated groups. PVA-chitosan hydrogel seeded with mesenchymal stem cells provides comparable treatment outcomes to that of previously established alginate-MSC construct implantation. This study supports the potential use of PVA-chitosan hydrogel seeded with MSCs for clinical use in cartilage repair such as traumatic injuries.

  2. Immobilized oleaginous microalgae for production of lipid and phytoremediation of secondary effluent from palm oil mill in fluidized bed photobioreactor.

    PubMed

    Cheirsilp, Benjamas; Thawechai, Tipawan; Prasertsan, Poonsuk

    2017-10-01

    Oleaginous microalga Nannochloropsis sp. was immobilized in alginate gel beads and cultivated under optimal conditions that their growth and lipid production were comparable to those of free cells. The immobilized cells were used in phytoremediation of secondary effluent from palm oil mill and easily recovered by simple sieving method. The immobilized cells contributed to removal of nitrogen and phosphorus >90% and CO 2 mitigation >99%. They also gave the biomass and lipid production of 1.300±0.050g/L and 0.356±0.097g/L, respectively. The repeated-batch cultivation improved the biomass and lipid production by 2.66 folds and 1.41 folds, respectively. The scale up in 3L-fluidized bed photobioreactor gave the maximum biomass of 3.280±0.049g/L and lipid production of 0.362±0.010g/L. Fatty acid compositions of Nannochloropsis sp. lipids showed their suitability as biodiesel feedstocks. This system not only contributes as tertiary treatment of industrial effluent and CO 2 mitigation but also low-cost production of renewable energy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Physicochemical characterization and biocompatibility of alginate-polycation microcapsules designed for islet transplantation

    NASA Astrophysics Data System (ADS)

    Tam, Susan Kimberly

    Microencapsulation represents a method for immunoprotecting transplanted therapeutic cells or tissues from graft rejection using a physical barrier. This approach is advantageous in that it eliminates the need to induce long-term immunosuppression and allows the option of transplanting non-cadaveric cell sources, such as animal cells and stem cell-derived tissues. The microcapsules that we have investigated are designed to immunoprotect islets of Langerhans (i.e. clusters of insulin-secreting cells), with the goal of treating insulin-dependent diabetes. With the aid of techniques for physicochemical analysis, this research focused on understanding which properties of the microcapsule are the most important for determining its biocompatibility. The objective of this work was to elucidate correlations between the chemical make-up, physicochemical properties, and in vivo biocompatibility of alginate-based microcapsules. Our approach was based on the hypothesis that the immune response to the microcapsules is governed by, and can therefore be controlled by, specific physicochemical properties of the microcapsule and its material components. The experimental work was divided into five phases, each associated with a specific aim : (1) To prove that immunoglobulins adsorb to the surface of alginate-polycation microcapsules, and to correlate this adsorption with the microcapsule chemistry. (2) To test interlaboratory reproducibility in making biocompatible microcapsules, and evaluate the suitability of our materials and fabrication protocols for subsequent studies. (3) To determine which physicochemical properties of alginates affect the in vivo biocompatibility of their gels. (4) To determine which physiochemical properties of alginate-polycation microcapsules are most important for determining their in vivo biocompatibility (5) To determine whether a modestly immunogenic membrane hinders or helps the ability of the microcapsule to immunoprotect islet xenografts in

  4. Petroleum oil removal by immobilized bacterial cells on polyurethane foam under different temperature conditions.

    PubMed

    Alessandrello, Mauricio J; Juárez Tomás, María S; Raimondo, Enzo E; Vullo, Diana L; Ferrero, Marcela A

    2017-09-15

    In this work, a mixed biofilm composed by Pseudomonas monteilii P26 and Gordonia sp. H19 was formed using polyurethane foam (PUF) as immobilization support, for crude oil removal from artificial sea water. Fresh immobilized cells and immobilized cells that were stored at 4°C for two months before use were assessed. The oil removal assays were carried out at microcosm scale at 4, 15 and 30°C. A viability loss of P. monteilii P26 was observed after the storage. The highest removal value (75%) was obtained at 30°C after 7days using fresh immobilized cells on PUF. Enhanced oil bioremoval was obtained at 4°C and 15°C with the previously stored immobilized cells compared to the fresh immobilized cells. Crude oil sorption on the different systems was responsible for the removal of 22-33% oil at the different temperatures. In conclusion, an economic tool for petroleum bioremediation is proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Silk sericin-alginate-chitosan microcapsules: hepatocytes encapsulation for enhanced cellular functions.

    PubMed

    Nayak, Sunita; Dey, Sanchareeka; Kundu, Subhas C

    2014-04-01

    The encapsulation based technology permits long-term delivery of desired therapeutic products in local regions of body without the need of immunosuppressant drugs. In this study microcapsules composed of sericin and alginate micro bead as inner core and with an outer chitosan shell are prepared. This work is proposed for live cell encapsulation for potential therapeutic applications. The sericin protein is obtained from cocoons of non-mulberry silkworm Antheraea mylitta. The sericin-alginate micro beads are prepared via ionotropic gelation under high applied voltage. The beads further coated with chitosan and crosslinked with genipin. The microcapsules developed are nearly spherical in shape with smooth surface morphology. Alamar blue assay and confocal microscopy indicate high cell viability and uniform encapsulated cell distribution within the sericin-alginate-chitosan microcapsules indicating that the microcapsules maintain favourable microenvironment for the cells. The functional analysis of encapsulated cells demonstrates that the glucose consumption, urea secretion rate and intracellular albumin content increased in the microcapsules. The study suggests that the developed sericin-alginate-chitosan microcapsule contributes towards the development of cell encapsulation model. It also offers to generate enriched population of metabolically and functionally active cells for the future therapeutics especially for hepatocytes transplantation in acute liver failure. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Control of Alginate Core Size in Alginate-Poly (Lactic-Co-Glycolic) Acid Microparticles

    NASA Astrophysics Data System (ADS)

    Lio, Daniel; Yeo, David; Xu, Chenjie

    2016-01-01

    Core-shell alginate-poly (lactic-co-glycolic) acid (PLGA) microparticles are potential candidates to improve hydrophilic drug loading while facilitating controlled release. This report studies the influence of the alginate core size on the drug release profile of alginate-PLGA microparticles and its size. Microparticles are synthesized through double-emulsion fabrication via a concurrent ionotropic gelation and solvent extraction. The size of alginate core ranges from approximately 10, 50, to 100 μm when the emulsification method at the first step is homogenization, vortexing, or magnetic stirring, respectively. The second step emulsification for all three conditions is performed with magnetic stirring. Interestingly, although the alginate core has different sizes, alginate-PLGA microparticle diameter does not change. However, drug release profiles are dramatically different for microparticles comprising different-sized alginate cores. Specifically, taking calcein as a model drug, microparticles containing the smallest alginate core (10 μm) show the slowest release over a period of 26 days with burst release less than 1 %.

  7. Continuous beer fermentation using immobilized yeast cell bioreactor systems.

    PubMed

    Brányik, Tomás; Vicente, António A; Dostálek, Pavel; Teixeira, José A

    2005-01-01

    Traditional beer fermentation and maturation processes use open fermentation and lager tanks. Although these vessels had previously been considered indispensable, during the past decades they were in many breweries replaced by large production units (cylindroconical tanks). These have proved to be successful, both providing operating advantages and ensuring the quality of the final beer. Another promising contemporary technology, namely, continuous beer fermentation using immobilized brewing yeast, by contrast, has found only a limited number of industrial applications. Continuous fermentation systems based on immobilized cell technology, albeit initially successful, were condemned to failure for several reasons. These include engineering problems (excess biomass and problems with CO(2) removal, optimization of operating conditions, clogging and channeling of the reactor), unbalanced beer flavor (altered cell physiology, cell aging), and unrealized cost advantages (carrier price, complex and unstable operation). However, recent development in reactor design and understanding of immobilized cell physiology, together with application of novel carrier materials, could provide a new stimulus to both research and application of this promising technology.

  8. Bromelain Loading and Release from a Hydrogel Formulated Using Alginate and Arabic Gum.

    PubMed

    Ataide, Janaína Artem; Cefali, Letícia Caramori; Rebelo, Marcia de Araujo; Spir, Lívia Genovez; Tambourgi, Elias Basile; Jozala, Angela Faustino; Chaud, Marco Vinícius; Silveira, Edgar; Gu, Xiaochen; Gava Mazzola, Priscila

    2017-07-01

    An ideal wound dressing ensures a moist environment around the wound area and absorbs exudates from the wound surface. Topical application of bromelain to incised wounds has been shown to reprogram the wound microenvironment to promote effective tissue repair. Combining the characteristics of hydrogels and bromelain is therefore of great interest. Herein, we describe the development of a hydrogel, formulated using alginate and Arabic gum, for bromelain loading and release. The hydrogel formulation was evaluated using response surface methodology, considering the pH value and the concentration of alginate and Arabic gum. Bromelain loading and release were evaluated based on passive diffusion. Differential scanning calorimetry and Fourier transform infrared spectroscopy were performed to confirm bromelain immobilization in the hydrogel. The final hydrogel formulation had a swelling ratio of 227 % and incorporated 19 % of bromelain from a bromelain solution. Bromelain immobilization in the hydrogel was the result of hydrogen bond formation and was optimal at 4 °C after 4 h of contact. This evidence suggests that bromelain entrapment into a hydrogel is a promising strategy for the development of wound dressings that support the debridement of burns and wounds. Georg Thieme Verlag KG Stuttgart · New York.

  9. Degradation of cationic surfactants using immobilized bacteria: Its effect on adsorption to activated sludge.

    PubMed

    Bergero, María F; Lucchesi, Gloria I

    2018-04-20

    Adsorption of cationic surfactants (QACs) Br-tetradecyltrimethylammonium (TTAB), Cl-tetradecylbenzyldimethylammonium (C 14 BDMA) and Cl-hexadecylbenzyldimethylammonium (C 16 BDMA) to activated sludge from a wastewater treatment plant was tested. Adsorption equilibrium was reached after 2 h, and for initial 200 mg L -1 81%, 90% and 98% of TTAB, C 14 BDMA and C 16 BDMA were respectively adsorbed. After six successive desorption cycles, 21% of TTAB and 12.7% of C 14 BDMA were desorbed from the sludge. In agreement with the percentage of QACs pre-adsorbed, the more hydrophobic the compound, the lesser the extent of desorption. Wastewater samples with activated sludge were supplemented with TTAB 200 mg L -1 and Ca-alginate beads containing the QACs-degrading microorganisms Pseudomonas putida A (ATCC 12633) and Aeromonas hydrophila MFB03. After 24 h, 10 mg L -1 of TTAB were detected in the liquid phase and 6-8 mg L -1 adsorbed to the sludge. Since without Ca-alginate beads or with empty beads total TTAB amount (phase solid and liquid) did not change, the 90% reduction of the initial 200 mg L -1 after treatment with immobilized cells was attributed to the bacterial consortium's capacity to biodegrade QACs. The results show the advantages of using immobilized bacteria to achieve complete QACs elimination from wastewater systems, thus preventing them from reaching the environment. Copyright © 2018. Published by Elsevier B.V.

  10. Calcium alginate gel as encapsulation matrix for coimmobilized enzyme systems.

    PubMed

    Blandino, A; Macías, M; Cantero, D

    2003-07-01

    Encapsulation within calcium alginate gel capsules was used to produce a coimmobilized enzyme system. Glucose oxidase (GOD) and catalase (CAT) were chosen as model enzymes. The same values of Vmax and Km app for the GOD encapsulated system and for the GOD-CAT coencapsulated system were calculated. When gel beads and capsules were compared, the same catalyst deactivation sequence for the two enzymes was observed. However, when capsules were employed as immobilization support, GOD efficiencies were higher than for the gel beads. These results were explained in terms of the structure of the capsules.

  11. The Alginate Demonstration: Polymers, Food Science, and Ion Exchange

    NASA Astrophysics Data System (ADS)

    Waldman, Amy Sue; Schechinger, Linda; Govindarajoo, Geeta; Nowick, James S.; Pignolet, Louis H.

    1998-11-01

    We have recently devised a polymer demonstration involving the crosslinking and decrosslinking of alginate, a polysaccharide isolated from seaweed. The polymer is composed of D-mannuronic acid and L-guluronic acid subunits and is a component of cell walls. It is commonly used as a thickener in foods such as ice cream and fruit-filled snacks. For the demonstration, a 2% solution of sodium alginate is poured into a 1% solution of calcium chloride. Nontoxic calcium alginate "worms" form due to crosslinking of the polymer. Alternatively, the commercially available antacid Gaviscon can be used as a source of sodium alginate. The crosslinks can then be broken by shaking the worms in brine. The demonstration is a fine addition to any chemical educator's repertoire of polymer experiments.

  12. A feasible enzymatic process for D-tagatose production by an immobilized thermostable L-arabinose isomerase in a packed-bed bioreactor.

    PubMed

    Kim, Hye-Jung; Ryu, Se-Ah; Kim, Pil; Oh, Deok-Kun

    2003-01-01

    To develop a feasible enzymatic process for d-tagatose production, a thermostable l-arabinose isomerase, Gali152, was immobilized in alginate, and the galactose isomerization reaction conditions were optimized. The pH and temperature for the maximal galactose isomerization reaction were pH 8.0 and 65 degrees C in the immobilized enzyme system and pH 7.5 and 60 degrees C in the free enzyme system. The presence of manganese ion enhanced galactose isomerization to tagatose in both the free and immobilized enzyme systems. The immobilized enzyme was more stable than the free enzyme at the same pH and temperature. Under stable conditions of pH 8.0 and 60 degrees C, the immobilized enzyme produced 58 g/L of tagatose from 100 g/L galactose in 90 h by batch reaction, whereas the free enzyme produced 37 g/L tagatose due to its lower stability. A packed-bed bioreactor with immobilized Gali152 in alginate beads produced 50 g/L tagatose from 100 g/L galactose in 168 h, with a productivity of 13.3 (g of tagatose)/(L-reactor.h) in continuous mode. The bioreactor produced 230 g/L tagatose from 500 g/L galactose in continuous recycling mode, with a productivity of 9.6 g/(L.h) and a conversion yield of 46%.

  13. The Incorporation of Strontium in a Sodium Alginate Coating on Titanium Surfaces for Improved Biological Properties

    PubMed Central

    Yuan, Ning; Jia, Lili; Geng, Zhen; Wang, Renfeng; Yang, Xianjin; Cui, Zhenduo; Zhu, Shengli; Liang, Yanqin; Liu, Yunde

    2017-01-01

    Orthopedic implant failure is mainly attributed to the poor bonding of the implant to bone tissue. An effective approach to minimize the implant failure would be modifying the surface of the implant. Strontium (Sr) can stimulate the proliferation and differentiation of osteoblasts and reduce the activity of osteoclasts. In this study, a titanium (Ti) surface was successively functionalized by covalently grafting dopamine, sodium alginate (SA), and Sr2+ via the electrostatic immobilization method. The as-prepared coatings on the Ti surface were characterized by using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and contact angle. The results indicated that the Sr-incorporated coatings were successfully prepared and that Sr distributed uniformly on the surface. A long-lasting and sustained Sr release had been observed in Sr2+ release studies. The Ti/DOPA/SA/Sr exhibited little cytotoxicity and a robust effect of Sr incorporation on the adhesion and spreading of MG63 cells. The proliferation and alkaline phosphatase (ALP) activity of MG63 cells were enhanced by immobilizing Sr2+ on the SA-grafted Ti. The Sr-containing coatings, which displayed excellent biocompatibility and osteogenic activity, may provide a promising solution for promoting the tissue integration of implants. PMID:29109961

  14. Increased Production of Food-Grade d-Tagatose from d-Galactose by Permeabilized and Immobilized Cells of Corynebacterium glutamicum, a GRAS Host, Expressing d-Galactose Isomerase from Geobacillus thermodenitrificans.

    PubMed

    Shin, Kyung-Chul; Sim, Dong-Hyun; Seo, Min-Ju; Oh, Deok-Kun

    2016-11-02

    The generally recognized as safe microorganism Corynebacterium glutamicum expressing Geobacillus thermodenitrificans d-galactose isomerase (d-GaI) was an efficient host for the production of d-tagatose, a functional sweetener. The d-tagatose production at 500 g/L d-galactose by the host was 1.4-fold higher than that by Escherichia coli expressing d-GaI. The d-tagatose-producing activity of permeabilized C. glutamicum (PCG) cells treated with 1% (w/v) Triton X-100 was 2.1-fold higher than that of untreated cells. Permeabilized and immobilized C. glutamicum (PICG) cells in 3% (w/v) alginate showed a 3.1-fold longer half-life at 50 °C and 3.1-fold higher total d-tagatose concentration in repeated batch reactions than PCG cells. PICG cells, which produced 165 g/L d-tagatose after 3 h, with a conversion of 55% (w/w) and a productivity of 55 g/L/h, showed significantly higher d-tagatose productivity than that reported for other cells. Thus, d-tagatose production by PICG cells may be an economical process to produce food-grade d-tagatose.

  15. A comparative study on decolorization of reactive azo and indigoid dyes by free/immobilized pellets of Trametes versicolor and Funalia trogii.

    PubMed

    Yildirim, Seval Cing; Yesilada, Ozfer

    2015-11-01

    The objective of the present study was to investigate decolorization of Acid Blue 74 and Reactive Blue 198 dyes by free and immobilized white rot fungal pellets in order to confirm the possibility of practical application via repeated-batch cultivation. Decolorization studies were conducted using free pellets (FP), fungal cells immobilized on activated carbon (IFCAC) and pinewood (IFCP), and also fungal cells entrapped in alginate beads (FCEAB). No additional nitrogen and carbon source was used and high decolorization rates were achieved in only dye-contained media without pH adjustment. Acid Blue 74 was decolorized 96 and 94% within 2 hr by Trametes versicolor and Funalia trogii free pellets, respectively. These values were 87 and 84% for Reactive Blue 198, in this respect. Immobilization of fungal cells on pinewood increased the usability of pellets and the average decolorization efficiency of both dyes. The micro environment changed in the presence of pinewood and increased the stability of immobilized pellets. Decolorization was performed rapidly and efficiently. Laccase activity enhanced with availability of pinewood, and high laccase production with F. trogii was obtained. After separation by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), the molecular weight of T versicolor and F. trogii laccase bands was determined 64 and 61 kDa approximately. Green bands were obtained by the activity staining process with laccase substrate (ABTS) after gel renaturation step.

  16. MC3T3-E1 Cells on Titanium Surfaces with Nanometer Smoothness and Fibronectin Immobilization

    PubMed Central

    Hayakawa, Tohru; Yoshida, Eiji; Yoshimura, Yoshitaka; Uo, Motohiro; Yoshinari, Masao

    2012-01-01

    The present study was aimed to evaluate the viability and total protein contents of osteoblast-like cells on the titanium surface with different surface mechanical treatment, namely, nanometer smoothing (Ra: approximately 2.0 nm) and sandblasting (Ra: approximately 1.0 μm), and biochemical treatment, namely, with or without fibronectin immobilization. Fibronectin could be easily immobilized by tresyl chloride-activation technique. MC3T3-E1 cells were seeded on the different titanium surfaces. Cell viability was determined by MTT assay. At 1 day of cell culture, there were no significant differences in cell viability among four different titanium surfaces. At 11 days, sandblasted titanium surface with fibronectin immobilization showed the significantly highest cell viability than other titanium surface. No significant differences existed for total protein contents among four different titanium surfaces at 11 days of cell culture. Scanning electron microscopy observation revealed that smoothness of titanium surface produced more spread cell morphologies, but that fibronectin immobilization did not cause any changes of the morphologies of attached cells. Fibronectin immobilization provided greater amount of the number of attached cells and better arrangement of attached cells. In conclusion, the combination of sandblasting and fibronectin immobilization enhanced the cell viability and fibronectin immobilization providing better arrangements of attached cells. PMID:22675359

  17. Design and Properties of an Immobilization Enzyme System for Inulin Conversion.

    PubMed

    Hang, Hua; Wang, Changbao; Cheng, Yiqun; Li, Ning; Song, Liuli

    2018-02-01

    A commercial inulinase could convert inulin into fructose, which was optimized to be entrapped in the calcium alginate-gelatin beads with the immobilization yield of 86% for free inulinase activities. The optimum pH values and temperatures were 4.5 and 40 °C for the free enzyme and 5.0-5.5 and 45-50 °C for the immobilized enzyme. The kinetic parameters of V max and K m were 5.24 μmol/min and 57.6 mg/mL for the free inulinase and 4.32 μmol/min and 65.8 mg/mL for the immobilized inulinase, respectively. The immobilized enzyme retained 80% of its initial activities at 45 °C for 4 days, which could exhibit better thermal stability. The reuse of immobilized inulinase throughout the continuous batch operations was explored, which had better reusability of the immobilized biocatalyst. At the same time, the stability of immobilized enzyme in the continuous packed-bed bioreactor was estimated, which showed the better results and had its potential scale-up fructose production for inulin conversion.

  18. Toward a new generation of therapeutics: artificial cell targeted delivery of live cells for therapy.

    PubMed

    Prakash, Satya; Martoni, Christopher

    2006-01-01

    Scientific evidence in the prevention and treatment of various disorders is accumulating regarding probiotics. The health benefits supported by adequate clinical data include increased resistance to infectious disease, decreased duration of diarrhea, management of inflammatory bowel disease, reduction of serum cholesterol, prevention of allergy, modulation of cytokine gene expression, and suppression of carcinogen production. Recent ventures in metabolic engineering and heterologous protein expression have enhanced the enzymatic and immunomodulatory effects of probiotics and, with time, may allow more active intervention among critical care patients. In addition, a number of approaches are currently being explored, including the physical and chemical protection of cells, to increase probiotic viability and its health benefits. Traditional immobilization of probiotics in gel matrices, most notably calcium alginate and kappa-carrageenan, has frequently been employed, with noted improvements in viability during freezing and storage. Conflicting reports exist, however, on the protection offered by immobilization from harsh physiologic environments. An alternative approach, microencapsulation in "artificial cells," builds on immobilization technologies by combining enhanced mechanical stability of the capsule membrane with improved mass transport, increased cell loading, and greater control of parameters. This review summarizes the current clinical status of probiotics, examines the promises and challenges of current immobilization technologies, and presents the concept of artificial cells for effective delivery of therapeutic bacterial cells.

  19. Comparative study on antibody immobilization strategies for efficient circulating tumor cell capture.

    PubMed

    Ates, Hatice Ceren; Ozgur, Ebru; Kulah, Haluk

    2018-03-23

    Methods for isolation and quantification of circulating tumor cells (CTCs) are attracting more attention every day, as the data for their unprecedented clinical utility continue to grow. However, the challenge is that CTCs are extremely rare (as low as 1 in a billion of blood cells) and a highly sensitive and specific technology is required to isolate CTCs from blood cells. Methods utilizing microfluidic systems for immunoaffinity-based CTC capture are preferred, especially when purity is the prime requirement. However, antibody immobilization strategy significantly affects the efficiency of such systems. In this study, two covalent and two bioaffinity antibody immobilization methods were assessed with respect to their CTC capture efficiency and selectivity, using an anti-epithelial cell adhesion molecule (EpCAM) as the capture antibody. Surface functionalization was realized on plain SiO 2 surfaces, as well as in microfluidic channels. Surfaces functionalized with different antibody immobilization methods are physically and chemically characterized at each step of functionalization. MCF-7 breast cancer and CCRF-CEM acute lymphoblastic leukemia cell lines were used as EpCAM positive and negative cell models, respectively, to assess CTC capture efficiency and selectivity. Comparisons reveal that bioaffinity based antibody immobilization involving streptavidin attachment with glutaraldehyde linker gave the highest cell capture efficiency. On the other hand, a covalent antibody immobilization method involving direct antibody binding by N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC)-N-hydroxysuccinimide (NHS) reaction was found to be more time and cost efficient with a similar cell capture efficiency. All methods provided very high selectivity for CTCs with EpCAM expression. It was also demonstrated that antibody immobilization via EDC-NHS reaction in a microfluidic channel leads to high capture efficiency and selectivity.

  20. Chondrocyte response to cyclic hydrostatic pressure in alginate versus pellet culture.

    PubMed

    Elder, Steven H; Sanders, Shawn W; McCulley, William R; Marr, Misti L; Shim, Joon W; Hasty, Karen A

    2006-04-01

    Cells are often cultured at high density (e.g., confluent monolayer and as pellets) to promote chondrogenic differentiation and to maintain the chondrocyte phenotype. They are also frequently suspended in hydrogels such as agarose or alginate for the same purposes. These culture techniques differ markedly with respect to frequency of direct contact between cells and overall intercellular spacing. Because these factors may significantly affect mechanotransduction, the purpose of this study was to determine if the response of articular chondrocytes to cyclic hydrostatic pressure would depend on the culture condition. Primary articular chondrocytes from young and mature pigs were cultured either as pellets or suspended in alginate beads. Both groups were exposed to dynamic hydrostatic pressure (4 MPa, 1 Hz, 5400 cycles per day) for 7 days. Cell proliferation was unaffected by pressure, but pressurized chondrocytes in pellet culture had significantly greater sGAG content and incorporated [3H]proline at a higher rate than nonpressurized controls. Electron microscopy revealed a fibrous extracellular matrix (ECM) surrounding pellets, but not cells in alginate. In addition, expression of Connexin 43 (Cx43) mRNA was slightly lower in alginate than in pellet cultures and was not significantly altered by loading. Thus, metabolic response of chondrocytes to dynamic hydrostatic pressure was affected by culture technique; chondrocytes cultured as pellets exhibited the classical anabolic response to dynamic hydrostatic pressure, but those in alginate did not. Although cell-ECM interaction could be important, the differential response is not likely attributable to differential expression of Cx43 mRNA. Copyright 2006 Orthopaedic Research Society

  1. A novel bio electro active alginate-aniline tetramer/ agarose scaffold for tissue engineering: synthesis, characterization, drug release and cell culture study.

    PubMed

    Atoufi, Zhale; Zarrintaj, Payam; Motlagh, Ghodratollah Hashemi; Amiri, Anahita; Bagher, Zohreh; Kamrava, Seyed Kamran

    2017-10-01

    In this study, synthesis of a novel biocompatible stimuli-responsive conducting hydrogel based on agarose/alginate-aniline tetramer with the capability of a tailored electrically controlled drug-release for neuroregeneration is investigated. First, aniline tetramer is synthesized and grafted onto sodium alginate. Then, this material is added to agarose as an electrical conductivity modifier to obtain Agarose/alginate-aniline tetramer hydrogel. The synthesized materials are characterized by H NMR and FTIR. The hydrogels are prepared with varying content of aniline tetramer and their swelling-deswelling and shape memory behavior is evaluated. The electroactivity and ionic conductivity of hydrogels against temperature is measured. The sample with 10% aniline tetramer (AT10) reveals the highest ionic conductivity. In MTT and SEM assays, AT10 shows the best cell viability and cell proliferation due to its highest ionic conductivity highlighting the fact that electrical stimuli cell signaling. Hydrogels also represent great potentials for passive and electro-stimulated dexamethasone release. These results demonstrate that the newly developed conducting hydrogels are promising materials for neuroregenerative medicine.

  2. Immobilization of an enzyme from a Fusarium fungus WZ-I for chlorpyrifos degradation.

    PubMed

    Xie, Hui; Zhu, Lusheng; Ma, Tingting; Wang, Jun; Wang, Jinhua; Su, Jun; Shao, Bo

    2010-01-01

    The free enzyme extracted from WZ-I, which was identified as Fusarium LK. ex Fx, could effectively degrade chlorpyrifos, an organophosphate insecticide. The methods of immobilizing this free enzyme and determined its degradation-related characteristics were investigated. The properties of the immobilized enzyme were compared with those of the free enzyme. The optimal immobilization of the enzyme was achieved in a solution of 30 g/L sodium alginate at 4 degrees C for 4-12 hr. The immobilized enzyme showed the maximal activity at pH 8.0, 45 degrees C. The maximum initial rate and the substrate concentration of the immobilized enzyme were less than that of the free enzyme. The immobilized enzyme, therefore, had a higher capacity to withstand a broader range of temperatures and pH conditions than the free enzyme. With varying pH and temperatures, the immobilized enzyme was more active than the free enzyme in the degradation reaction. In addition, the immobilized enzyme exhibited only a slight loss in its initial activity, even after three repeated uses. The results showed that the immobilized enzyme was more resistant to different environmental conditions, suggesting that it was viable for future practical use.

  3. Photocatalytic degradation of pharmaceutical wastes by alginate supported TiO2 nanoparticles in packed bed photo reactor (PBPR).

    PubMed

    Sarkar, Santanu; Chakraborty, Sudip; Bhattacharjee, Chiranjib

    2015-11-01

    In recent years deposal of pharmaceutical wastes has become a major problem globally. Therefore, it is necessary to removes pharmaceutical waste from the municipal as well as industrial effluents before its discharge. The convectional wastewater and biological treatments are generally failed to separate different drugs from wastewater streams. Thus, heterogeneous photocatalysis process becomes lucrative method for reduction of detrimental effects of pharmaceutical compounds. The main disadvantage of the process is the reuse or recycle of photocatalysis is a tedious job. In this work, the degradation of aqueous solution of chlorhexidine digluconate (CHD), an antibiotic drug, by heterogeneous photocatalysis was study using supported TiO2 nanoparticle. The major concern of this study is to bring down the limitations of suspension mode heterogeneous photocatalysis by implementation of immobilized TiO2 with help of calcium alginate beads. The alginate supported catalyst beads was characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDAX) as well as the characteristic crystalline forms of TiO2 nanoparticle was confirmed by XRD. The degradation efficiency of TiO2 impregnated alginate beads (TIAB) was compared with the performance of free TiO2 suspension. Although, the degradation efficiency was reduced considerably using TIAB but the recycle and reuse of catalyst was increased quite appreciably. The kinetic parameters related to this work have also been measure. Moreover, to study the susceptibility of the present system photocatalysis of other three drugs ibuprofen (IBP), atenolol (ATL) and carbamazepine (CBZ) has been carried out using immobilized TiO2. The continuous mode operation in PBPR has ensured the applicability of alginate beads along with TiO2 in wastewater treatment. The variation of residence time has significant impact on the performance of PBPR. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. New biosensor for detection of copper ions in water based on immobilized genetically modified yeast cells.

    PubMed

    Vopálenská, Irena; Váchová, Libuše; Palková, Zdena

    2015-10-15

    Contamination of water by heavy metals represents a potential risk for both aquatic and terrestrial organisms, including humans. Heavy metals in water resources can come from various industrial activities, and drinking water can be ex-post contaminated by heavy metals such as Cu(2+) from house fittings (e.g., water reservoirs) and pipes. Here, we present a new copper biosensor capable of detecting copper ions at concentrations of 1-100 μM. This biosensor is based on cells of a specifically modified Saccharomyces cerevisiae strain immobilized in alginate beads. Depending on the concentration of copper, the biosensor beads change color from white, when copper is present in concentrations below the detection limit, to pink or red based on the increase in copper concentration. The biosensor was successfully tested in the determination of copper concentrations in real samples of water contaminated with copper ions. In contrast to analytical methods or other biosensors based on fluorescent proteins, the newly designed biosensor does not require specific equipment and allows the quick detection of copper in many parallel samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Biodiesel Production: Utilization of Loofah Sponge to Immobilize Rhizopus chinensis CGMCC #3.0232 Cells as a Whole-Cell Biocatalyst.

    PubMed

    He, Qiyang; Xia, Qianjun; Wang, Yuejiao; Li, Xun; Zhang, Yu; Hu, Bo; Wang, Fei

    2016-07-28

    Rhizopus chinensis cells immobilized on loofah (Luffa cylindrica) sponges were used to produce biodiesel via the transesterification of soybean oil. In whole-cell immobilization, loofah sponge is considered to be a superior alternative to conventional biomass carriers because of its biodegradable and renewable properties. During cell cultivation, Rhizopus chinensis mycelia can spontaneously and firmly adhere to the surface of loofah sponge particles. The optimal conditions for processing 9.65 g soybean oil at 40°C and 180 rpm using a 3:1 methanol-to-oil molar ratio were found to be 8% cell addition and 3-10% water content (depending on the oil's weight). Under optimal conditions, an over 90% methyl ester yield was achieved after the first reaction batch. The operational stability of immobilized Rhizopus chinensis cells was assayed utilizing a 1:1 methanol-to-oil molar ratio, thus resulting in a 16.5-fold increase in half-life when compared with immobilized cells of the widely studied Rhizopus oryzae. These results suggest that transesterification of vegetable oil using Rhizopus chinensis whole cells immobilized onto loofah sponge is an effective approach for biodiesel production.

  6. Alginate Nanoparticles Containing Curcumin and Resveratrol: Preparation, Characterization, and In Vitro Evaluation Against DU145 Prostate Cancer Cell Line.

    PubMed

    Saralkar, Pushkar; Dash, Alekha K

    2017-10-01

    Curcumin and resveratrol are naturally occurring polyphenolic compounds having anti-cancer potential. However, their poor aqueous solubility and bioavailability limit their clinical use. Entrapment of hydrophobic drugs into hydrophilic nanoparticles such as calcium alginate presents a means to deliver these drugs to their target site. Curcumin and resveratrol-loaded calcium alginate nanoparticles were prepared by emulsification and cross-linking process. The nanoparticles were characterized for particle size, zeta potential, moisture content, physical state of the drugs, physical stability, and entrapment efficiency. An UPLC method was developed and validated for the simultaneous analysis of curcumin and resveratrol. Alginate nanoformulation was tested for in vitro efficacy on DU145 prostate cancer cells. The particle size of the nanosuspension and freeze-dried nanoparticles was found to be 12.53 ± 1.06 and 60.23 ± 15 nm, respectively. Both DSC and powder XRD studies indicated that curcumin as well as resveratrol were present in a non-crystalline state, in the nanoparticles. The entrapment efficiency for curcumin and resveratrol was found to be 49.3 ± 4.3 and 70.99 ± 6.1%, respectively. Resveratrol showed a higher percentage of release than curcumin (87.6 ± 7.9 versus 16.3 ± 3.1%) in 24 h. Curcumin was found to be taken up by the cells from solution as well as the nanoparticles. Resveratrol had a poor cellular uptake. The drug-loaded nanoparticles exhibit cytotoxic effects on DU145 cells. At high concentration, drug solution exhibited greater toxicity than nanoparticles. The alginate nanoformulation was found to be safe for intravenous administration.

  7. Investigating the feasibility of stem cell enrichment mediated by immobilized selectins.

    PubMed

    Charles, Nichola; Liesveld, Jane L; King, Michael R

    2007-01-01

    Hematopoietic stem cell therapy is used to treat both malignant and non-malignant diseases, and enrichment of the hematopoietic stem and progenitor cells (HSPCs) has the potential to reduce the likelihood of graft vs host disease or relapse, potentially fatal complications associated with the therapy. Current commercial HSPC isolation technologies rely solely on the CD34 surface marker, and while they have proven to be invaluable, they can be time-consuming with variable recoveries reported. We propose that selectin-mediated enrichment could prove to be a quick and effective method for recovering HSPCs from adult bone marrow (ABM) on the basis of differences in rolling velocities and independently of CD34 expression. Purified CD34+ ABM cells and the unselected CD34- ABM cells were perfused over immobilized P-, E-, and L-selectin-IgG at physiologic wall shear stresses, and rolling velocities and cell retention data were collected. CD34+ ABM cells generally exhibited lower rolling velocities and higher retention than the unselected CD34- ABM cells on all three selectins. For initial CD34+ ABM cell concentrations ranging from 1% to 5%, we predict an increase in purity ranging from 5.2% to 36.1%, depending on the selectin used. Additionally, selectin-mediated cell enrichment is not limited to subsets of cells with inherent differences in rolling velocities. CD34+ KG1a cells and CD34- HL60 cells exhibited nearly identical rolling velocities on immobilized P-selectin-IgG over the entire range of shear stresses studied. However, when anti-CD34 antibody was co-immobilized with the P-selectin-IgG, the rolling velocity of the CD34+ KG1a cells was significantly reduced, making selectin-mediated cell enrichment a feasible option. Optimal cell enrichment in immobilized selectin surfaces can be achieved within 10 min, much faster than most current commercially available systems.

  8. Indirect immobilized Jagged1 suppresses cell cycle progression and induces odonto/osteogenic differentiation in human dental pulp cells.

    PubMed

    Manokawinchoke, Jeeranan; Nattasit, Praphawi; Thongngam, Tanutchaporn; Pavasant, Prasit; Tompkins, Kevin A; Egusa, Hiroshi; Osathanon, Thanaphum

    2017-08-31

    Notch signaling regulates diverse biological processes in dental pulp tissue. The present study investigated the response of human dental pulp cells (hDPs) to the indirect immobilized Notch ligand Jagged1 in vitro. The indirect immobilized Jagged1 effectively activated Notch signaling in hDPs as confirmed by the upregulation of HES1 and HEY1 expression. Differential gene expression profiling using an RNA sequencing technique revealed that the indirect immobilized Jagged1 upregulated genes were mainly involved in extracellular matrix organization, disease, and signal transduction. Downregulated genes predominantly participated in the cell cycle, DNA replication, and DNA repair. Indirect immobilized Jagged1 significantly reduced cell proliferation, colony forming unit ability, and the number of cells in S phase. Jagged1 treated hDPs exhibited significantly higher ALP enzymatic activity, osteogenic marker gene expression, and mineralization compared with control. Pretreatment with a γ-secretase inhibitor attenuated the Jagged1-induced ALP activity and mineral deposition. NOTCH2 shRNA reduced the Jagged1-induced osteogenic marker gene expression, ALP enzymatic activity, and mineral deposition. In conclusion, indirect immobilized Jagged1 suppresses cell cycle progression and induces the odonto/osteogenic differentiation of hDPs via the canonical Notch signaling pathway.

  9. Polypyrrole/Alginate Hybrid Hydrogels: Electrically Conductive and Soft Biomaterials for Human Mesenchymal Stem Cell Culture and Potential Neural Tissue Engineering Applications.

    PubMed

    Yang, Sumi; Jang, LindyK; Kim, Semin; Yang, Jongcheol; Yang, Kisuk; Cho, Seung-Woo; Lee, Jae Young

    2016-11-01

    Electrically conductive biomaterials that can efficiently deliver electrical signals to cells or improve electrical communication among cells have received considerable attention for potential tissue engineering applications. Conductive hydrogels are desirable particularly for neural applications, as they can provide electrical signals and soft microenvironments that can mimic native nerve tissues. In this study, conductive and soft polypyrrole/alginate (PPy/Alg) hydrogels are developed by chemically polymerizing PPy within ionically cross-linked alginate hydrogel networks. The synthesized hydrogels exhibit a Young's modulus of 20-200 kPa. Electrical conductance of the PPy/Alg hydrogels could be enhanced by more than one order of magnitude compared to that of pristine alginate hydrogels. In vitro studies with human bone marrow-derived mesenchymal stem cells (hMSCs) reveal that cell adhesion and growth are promoted on the PPy/Alg hydrogels. Additionally, the PPy/Alg hydrogels support and greatly enhance the expression of neural differentiation markers (i.e., Tuj1 and MAP2) of hMSCs compared to tissue culture plate controls. Subcutaneous implantation of the hydrogels for eight weeks induces mild inflammatory reactions. These soft and conductive hydrogels will serve as a useful platform to study the effects of electrical and mechanical signals on stem cells and/or neural cells and to develop multifunctional neural tissue engineering scaffolds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Immobilization of yeast cells with ionic hydrogel carriers by adhesion-multiplication.

    PubMed

    Zhaoxin, L; Fujimura, T

    2000-12-01

    The mixture of an ionic monomer, 2-acrylamido 2-methylpropanesulfonic acid (TBAS), and a series of poly(ethylene glycol) dimethacrylate (nG) monomers were copolymerized with 60Co gamma-rays, and the produced ionic hydrogel polymers were used for immobilization of yeast cells. The cells were adhered onto the surface of the hydrogel polymers and intruded into the interior of the polymers with growing. The immobilized yeast cells with these hydrogel polymers had higher ethanol productivity than that of free cells. The yield of ethanol with poly(TBAS-14G) carrier was the highest and increased by 3.5 times compared to the free cells. It was found that the ethanol yield increased with the increase of glycol number in poly(ethylene glycol) dimethacrylate. The state of the immobilized cells was observed with microscope, and it was also found that the difference in the ethanol productivity is mainly due to the difference in the internal structure and properties of polymer carrier, such as surface charge, hydrophilicity, and swelling ability of polymer carrier.

  11. Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors.

    PubMed

    Ansari, Sahar; Chen, Chider; Xu, Xingtian; Annabi, Nasim; Zadeh, Homayoun H; Wu, Benjamin M; Khademhosseini, Ali; Shi, Songtao; Moshaverinia, Alireza

    2016-06-01

    Repair and regeneration of muscle tissue following traumatic injuries or muscle diseases often presents a challenging clinical situation. If a significant amount of tissue is lost the native regenerative potential of skeletal muscle will not be able to grow to fill the defect site completely. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material, present an advantageous alternative therapeutic option for muscle tissue engineering in comparison to current treatment modalities available. To date, there has been no report on application of gingival mesenchymal stem cells (GMSCs) in three-dimensional scaffolds for muscle tissue engineering. The objectives of the current study were to develop an injectable 3D RGD-coupled alginate scaffold with multiple growth factor delivery capacity for encapsulating GMSCs, and to evaluate the capacity of encapsulated GMSCs to differentiate into myogenic tissue in vitro and in vivo where encapsulated GMSCs were transplanted subcutaneously into immunocompromised mice. The results demonstrate that after 4 weeks of differentiation in vitro, GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited muscle cell-like morphology with high levels of mRNA expression for gene markers related to muscle regeneration (MyoD, Myf5, and MyoG) via qPCR measurement. Our quantitative PCR analyzes revealed that the stiffness of the RGD-coupled alginate regulates the myogenic differentiation of encapsulated GMSCs. Histological and immunohistochemical/fluorescence staining for protein markers specific for myogenic tissue confirmed muscle regeneration in subcutaneous transplantation in our in vivo animal model. GMSCs showed significantly greater capacity for myogenic regeneration in comparison to hBMMSCs (p < 0.05). Altogether, our findings confirmed that GMSCs encapsulated in RGD-modified alginate hydrogel with multiple growth factor delivery capacity is a promising

  12. Alginate microparticles as oral colon drug delivery device: A review.

    PubMed

    Agüero, Lissette; Zaldivar-Silva, Dionisio; Peña, Luis; Dias, Marcos L

    2017-07-15

    The increase in the research interest on alginate microparticles in pharmaceutical and biomedical areas confirms its potential use as an effective matrix for drug and cell delivery. Among the well known alginate properties, pH sensitivity remains as an attractive option for targeting of drug in the colon region. This essential aspect is advantageous to enhance therapeutic efficacy of treatment of inflammatory bowel diseases, which require multi-drug administration frequently in a long period. As consequence, severe side effect appears leading to discontinuation of therapy and affecting quality of patient life. This review gives an overview of relevant properties of alginate as oral colon delivery systems and the recent innovative strategies of using alginate with other polymers as well as microencapsulation techniques. At the same time, it describes the several advantages of coating processes involving alginate over microparticles in order to design better material with sustained release characteristic for colon-targeted delivery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Co-immobilization of active antibiotics and cell adhesion peptides on calcium based biomaterials.

    PubMed

    Palchesko, Rachelle N; Buckholtz, Gavin A; Romeo, Jared D; Gawalt, Ellen S

    2014-07-01

    Two bioactive molecules with unrelated functions, vancomycin and a cell adhesion peptide, were immobilized on the surface of a potential bone scaffold material, calcium aluminum oxide. In order to accomplish immobilization and retain bioactivity three sequential surface functionalization strategies were compared: 1.) vancomycin was chemically immobilized before a cell adhesion peptide (KRSR), 2.) vancomycin was chemically immobilized after KRSR and 3.) vancomycin was adsorbed after binding the cell adhesion peptide. Both molecules remained on the surface and active using all three reaction sequences and after autoclave sterilization based on osteoblast attachment, bacterial turbidity and bacterial zone inhibition test results. However, the second strategy was superior at enhancing osteoblast attachment and significantly decreasing bacterial growth when compared to the other sequences. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Potassium alginate is...

  15. The release of alginate lyase from growing Pseudomonas syringae pathovar phaseolicola

    NASA Technical Reports Server (NTRS)

    Ott, C. M.; Day, D. F.; Koenig, D. W.; Pierson, D. L.

    2001-01-01

    Pseudomonas syringae pathovar phaseolicola, which produces alginate during stationary growth phase, displayed elevated extracellular alginate lyase activity during both mid-exponential and late-stationary growth phases of batch growth. Intracellular activity remained below 22% of the total activity during exponential growth, suggesting that alginate lyase has an extracellular function for this organism. Extracellular enzyme activity in continuous cultures, grown in either nutrient broth or glucose-simple salts medium, peaked at 60% of the washout rate, although nutrient broth-grown cultures displayed more than twice the activity per gram of cell mass. These results imply that growth rate, nutritional composition, or both initiate a release of alginate lyase from viable P. syringae pv. phaseolicola, which could modify its entrapping biofilm.

  16. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium alginate. 184.1187 Section 184.1187 Food... GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Calcium alginate is prepared by...

  17. Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing.

    PubMed

    Castilho, Miguel; Rodrigues, Jorge; Pires, Inês; Gouveia, Barbara; Pereira, Manuel; Moseke, Claus; Groll, Jürgen; Ewald, Andrea; Vorndran, Elke

    2015-01-06

    The development of polymer-calcium phosphate composite scaffolds with tailored architectures and properties has great potential for bone regeneration. Herein, we aimed to improve the functional performance of brittle ceramic scaffolds by developing a promising biopolymer-ceramic network. For this purpose, two strategies, namely, direct printing of a powder composition consisting of a 60:40 mixture of α/β-tricalcium phosphate (TCP) powder and alginate powder or vacuum infiltration of printed TCP scaffolds with an alginate solution, were tracked. Results of structural characterization revealed that the scaffolds printed with 2.5 wt% alginate-modified TCP powders presented a uniformly distributed and interfusing alginate TCP network. Mechanical results indicated a significant increase in strength, energy to failure and reliability of powder-modified scaffolds with an alginate content in the educts of 2.5 wt% when compared to pure TCP, as well as to TCP scaffolds containing 5 wt% or 7.5 wt% in the educts, in both dry and wet states. Culture of human osteoblast cells on these scaffolds also demonstrated a great improvement of cell proliferation and cell viability. While in the case of powder-mixed alginate TCP scaffolds, isolated alginate gels were formed between the calcium phosphate crystals, the vacuum-infiltration strategy resulted in the covering of the surface and internal pores of the TCP scaffold with a thin alginate film. Furthermore, the prediction of the scaffolds' critical fracture conditions under more complex stress states by the applied Mohr fracture criterion confirmed the potential of the powder-modified scaffolds with 2.5 wt% alginate in the educts as structural biomaterial for bone tissue engineering.

  18. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Sodium alginate is prepared by the...

  19. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium alginate. 184.1724 Section 184.1724 Food and... Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Sodium alginate is...

  20. Augmenting in vitro osteogenesis of a glycine-arginine-glycine-aspartic-conjugated oxidized alginate-gelatin-biphasic calcium phosphate hydrogel composite and in vivo bone biogenesis through stem cell delivery.

    PubMed

    Linh, Nguyen Tb; Paul, Kallyanashis; Kim, Boram; Lee, Byong-Taek

    2016-11-01

    A functionally modified peptide-conjugated hydrogel system was fabricated with oxidized alginate/gelatin loaded with biphasic calcium phosphate to improve its biocompatibility and functionality. Sodium alginate was treated by controlled oxidation to transform the cis-diol group into an aldehyde group in a controlled manner, which was then conjugated to the amine terminus of glycine-arginine-glycine-aspartic. Oxidized alginate glycine-arginine-glycine-aspartic was then combined with gelatin-loaded biphasic calcium phosphate to form a hydrogel of composite oxidized alginate/gelatin/biphasic calcium phosphate that displayed enhanced human adipose stem cell adhesion, spreading and differentiation. 1 H nuclear magnetic resonance and electron spectroscopy for chemical analysis confirmed that the glycine-arginine-glycine-aspartic was successfully grafted to the oxidized alginate. Co-delivery of glycine-arginine-glycine-aspartic and human adipose stem cell in a hydrogel matrix was studied with the results indicating that hydrogel incorporated modified with glycine-arginine-glycine-aspartic and seeded with human adipose stem cell enhanced osteogenesis in vitro and bone formation in vivo. © The Author(s) 2016.

  1. Chondrogenic Differentiation Increases Antidonor Immune Response to Allogeneic Mesenchymal Stem Cell Transplantation

    PubMed Central

    Ryan, Aideen E; Lohan, Paul; O'Flynn, Lisa; Treacy, Oliver; Chen, Xizhe; Coleman, Cynthia; Shaw, Georgina; Murphy, Mary; Barry, Frank; Griffin, Matthew D; Ritter, Thomas

    2014-01-01

    Allogeneic mesenchymal stem cells (allo-MSCs) have potent regenerative and immunosuppressive potential and are being investigated as a therapy for osteoarthritis; however, little is known about the immunological changes that occur in allo-MSCs after ex vivo induced or in vivo differentiation. Three-dimensional chondrogenic differentiation was induced in an alginate matrix, which served to immobilize and potentially protect MSCs at the site of implantation. We show that allogeneic differentiated MSCs lost the ability to inhibit T-cell proliferation in vitro, in association with reduced nitric oxide and prostaglandin E2 secretion. Differentiation altered immunogenicity as evidenced by induced proliferation of allogeneic T cells and increased susceptibility to cytotoxic lysis by allo-specific T cells. Undifferentiated or differentiated allo-MSCs were implanted subcutaneously, with and without alginate encapsulation. Increased CD3+ and CD68+ infiltration was evident in differentiated and splenocyte encapsulated implants only. Without encapsulation, increased local memory T-cell responses were detectable in recipients of undifferentiated and differentiated MSCs; however, only differentiated MSCs induced systemic memory T-cell responses. In recipients of encapsulated allogeneic cells, only differentiated allo-MSCs induced memory T-cell responses locally and systemically. Systemic alloimmune responses to differentiated MSCs indicate immunogenicity regardless of alginate encapsulation and may require immunosuppressive therapy for therapeutic use. PMID:24184966

  2. Microencapsulation of islets within alginate/poly(ethylene glycol) gels cross-linked via Staudinger ligation

    PubMed Central

    Hall, Kristina K.; Gattás-Asfura, Kerim M.; Stabler, Cherie L.

    2010-01-01

    Functionalized alginate and PEG polymers were used to generate covalently linked alginate-PEG (XAlgPEG) microbeads of high stability. The cell-compatible Staudinger ligation scheme was used to chemoselectively cross-link phosphine-terminated poly(ethylene glycol) (PEG) to azide-functionalized alginate, resulting in XAlgPEG hydrogels. XAlgPEG microbeads were formed by co-incubation of the two polymers, followed by ionic cross-linking of the alginate using barium ions. The enhanced stability and gel properties of the resulting XAlgPEG microbeads, as well as the compatibility of these polymers for the encapsulation of islets and beta cells lines, were investigated. Our data show that XAlgPEG microbeads exhibit superior resistance to osmotic swelling compared to traditional barium cross-linked alginate (Ba-Alg) beads, with a 5-fold reduction in observed swelling, as well as resistance to dissolution via chelation solution. Diffusion and porosity studies found XAlgPEG beads to exhibit properties comparable to standard Ba-Alg. Our data found XAlgPEG microbeads to be highly cell compatible with insulinoma cell lines, as well as rat and human pancreatic islets, where the viability and functional assessment of cells within XAlgPEG were comparable to Ba-Alg controls. The remarkable improved stability, as well as demonstrated cellular compatibility, of XAlgPEG hydrogels makes them an appealing option for a wide variety of tissue engineering applications. PMID:20654745

  3. Antibody-immobilized column for quick cell separation based on cell rolling.

    PubMed

    Mahara, Atsushi; Yamaoka, Tetsuji

    2010-01-01

    Cell separation using methodological standards that ensure high purity is a very important step in cell transplantation for regenerative medicine and for stem cell research. A separation protocol using magnetic beads has been widely used for cell separation to isolate negative and positive cells. However, not only the surface marker pattern, e.g., negative or positive, but also the density of a cell depends on its developmental stage and differentiation ability. Rapid and label-free separation procedures based on surface marker density are the focus of our interest. In this study, we have successfully developed an antiCD34 antibody-immobilized cell-rolling column, that can separate cells depending on the CD34 density of the cell surfaces. Various conditions for the cell-rolling column were optimized including graft copolymerization, and adjustment of the column tilt angle, and medium flow rate. Using CD34-positive and -negative cell lines, the cell separation potential of the column was established. We observed a difference in the rolling velocities between CD34-positive and CD34-negative cells on antibody-immobilized microfluidic device. Cell separation was achieved by tilting the surface 20 degrees and the increasing medium flow. Surface marker characteristics of the isolated cells in each fraction were analyzed using a cell-sorting system, and it was found that populations containing high density of CD34 were eluted in the delayed fractions. These results demonstrate that cells with a given surface marker density can be continuously separated using the cell rolling column.

  4. Optimization of date syrup for enhancement of the production of citric acid using immobilized cells of Aspergillus niger

    PubMed Central

    Mostafa, Yasser S.; Alamri, Saad A.

    2012-01-01

    Date syrup as an economical source of carbohydrates and immobilized Aspergillus niger J4, which was entrapped in calcium alginate pellets, were employed for enhancing the production of citric acid. Maximum production was achieved by pre-treating date syrup with 1.5% tricalcium phosphate to remove heavy metals. The production of citric acid using a pretreated medium was 38.87% higher than an untreated one that consumed sugar. The appropriate presence of nitrogen, phosphate and magnesium appeared to be important in order for citric acid to accumulate. The production of citric acid and the consumed sugar was higher when using 0.1% ammonium nitrate as the best source of nitrogen. The production of citric acid increased significantly when 0.1 g/l of KH2PO4 was added to the medium of date syrup. The addition of magnesium sulfate at the rate of 0.20 g/l had a stimulating effect on the production of citric acid. Maximum production of citric acid was obtained when calcium chloride was absent. One of the most important benefits of immobilized cells is their ability and stability to produce citric acid under a repeated batch culture. Over four repeated batches, the production of citric acid production was maintained for 24 days when each cycle continued for 144 h. The results obtained in the repeated batch cultivation using date syrup confirmed that date syrup could be used as a medium for the industrial production of citric acid. PMID:23961184

  5. Probiotic cheese production using Lactobacillus casei cells immobilized on fruit pieces.

    PubMed

    Kourkoutas, Y; Bosnea, L; Taboukos, S; Baras, C; Lambrou, D; Kanellaki, M

    2006-05-01

    Lactobacillus casei cells were immobilized on fruit (apple and pear) pieces and the immobilized biocatalysts were used separately as adjuncts in probiotic cheese making. In parallel, cheese with free L. casei cells and cheese only from renneted milk were prepared. The produced cheeses were ripened at 4 to 6 degrees C and the effect of salting and ripening time on lactose, lactic acid, ethanol concentration, pH, and lactic acid bacteria viable counts were investigated. Fat, protein, and moisture contents were in the range of usual levels of commercial cheeses. Reactivation in whey of L. casei cells immobilized on fruit pieces after 7 mo of ripening showed a higher rate of pH decrease and lower final pH value compared with reactivation of samples withdrawn from the remaining mass of the cheese without fruit pieces, from cheese with free L. casei, and rennet cheese. Preliminary sensory evaluation revealed the fruity taste of the cheeses containing immobilized L. casei cells on fruit pieces. Commercial Feta cheese was characterized by a more sour taste, whereas no significant differences concerning cheese flavor were reported by the panel between cheese containing free L. casei and rennet cheese. Salted cheeses scored similar values to commercial Feta cheese, whereas unsalted cheese scores were significantly lower, but still acceptable to the sensory panelists.

  6. Tagatose production by immobilized recombinant Escherichia coli cells containing Geobacillus stearothermophilus l-arabinose isomerase mutant in a packed-bed bioreactor.

    PubMed

    Jung, Eun-Sook; Kim, Hye-Jung; Oh, Deok-Kun

    2005-01-01

    Using immobilized recombinant Escherichia coli cells containing Geobacillus stearothermophilus l-arabinose isomerase mutant (Gali 152), we found that the galactose isomerization reaction was maximal at 70 degrees C and pH 7.0. Manganese ion enhanced galactose isomerization to tagatose. The immobilized cells were most stable at 60 degrees C and pH 7.0. The cell and substrate concentrations and dilution rate were optimal at 34 g/L, 300 g/L, and 0.05 h(-1), respectively. Under the optimum conditions, the immobilized cell reactor with Mn2+ produced an average of 59 g/L tagatose with a productivity of 2.9 g/L.h and a conversion yield of 19.5% for the first 20 days. The operational stability of immobilized cells with Mn2+ was demonstrated, and their half-life for tagatose production was 34 days. Tagatose production was compared for free and immobilized enzymes and free and immobilized cells using the same mass of cells. Immobilized cells produced the highest tagatose concentration, indicating that cell immobilization was more efficient for tagatose production than enzyme immobilization.

  7. Preparation of corncob grits as a carrier for immobilizing yeast cells for ethanol production.

    PubMed

    Lee, Sang-Eun; Lee, Choon Geun; Kang, Do Hyung; Lee, Hyeon-Yong; Jung, Kyung-Hwan

    2012-12-01

    In this study, DEAE-corncobs [delignified corncob grits derivatized with 2-(diethylamino)ethyl chloride hydrochloride (DEAE·HCl)] were prepared as a carrier to immobilize yeast (Saccharomyces cerevisiae) for ethanol production. The immobilized yeast cell reactor produced ethanol under optimized DEAE·HCl derivatization and adsorption conditions between yeast cells and the DEAE-corncobs. When delignified corncob grit (3.0 g) was derivatized with 0.5M DEAE·HCl, the yeast cell suspension (OD600 = 3.0) was adsorbed at >90% of the initial cell OD600. This amount of adsorbed yeast cells was estimated to be 5.36 mg-dry cells/g-DEAE corncobs. The Qmax (the maximum cell adsorption by the carrier) of the DEAE-corncobs was estimated to be 25.1 (mg/g), based on a Languir model biosorption isotherm experiment. When we conducted a batch culture with medium recycling using the immobilized yeast cells, the yeast cells on DEAE-corncobs produced ethanol gradually, according to glucose consumption, without cells detaching from the DEAE-corncobs. We observed under electron microscopy that the yeast cells grew on the surface and in the holes of the DEAEcorncobs. In a future study, DEAE-corncobs and the immobilized yeast cell reactor system will contribute to bioethanol production from biomass hydrolysates.

  8. Immobilization of concanavalin A receptors during differentiation of neuroblastoma cells.

    PubMed

    Fishman, M C; Dragsten, P R; Spector, I

    1981-04-30

    Neuroblastoma cells serve as a useful model of neuronal development because compounds such as dimethyl sulphoxide (DMSO) and dibutyryl cyclic AMP cause them to undergo a process of controlled differentiation in tissue culture, during which they can extend long processes, develop characteristic excitability mechanisms, synthesize neurotransmitters and form synapses. We have used the technique of fluorescence photobleaching recovery to study the lateral mobility of cell-surface constituents during the differentiation of neuroblastoma clone N1E-115 cells. The concanavalin A (Con A) binding sites appear as discrete patches distributed over the entire cell surface and exhibit lateral mobility in undifferentiated cells comparable with that of surface glycoproteins of other cells. After induction of differentiation, however, the vast majority of Con A binding sites become immobilized, and we present data which suggest that the mechanism of this immobilization may involve linkage to the internal actin network.

  9. Alginate Lyase (AlgL) Activity Is Required for Alginate Biosynthesis in Pseudomonas aeruginosa

    PubMed Central

    Albrecht, Mark T.; Schiller, Neal L.

    2005-01-01

    To determine whether AlgL's lyase activity is required for alginate production in Pseudomonas aeruginosa, an algLΔ::Gmr mutant (FRD-MA7) was created. algL complementation of FRD-MA7 restored alginate production, but algL constructs containing mutations inactivating lyase activity did not, demonstrating that the enzymatic activity of AlgL is required for alginate production. PMID:15901714

  10. Efficacy of chitosan and sodium alginate scaffolds for repair of spinal cord injury in rats

    PubMed Central

    Yao, Zi-ang; Chen, Feng-jia; Cui, Hong-li; Lin, Tong; Guo, Na; Wu, Hai-ge

    2018-01-01

    Spinal cord injury results in the loss of motor and sensory pathways and spontaneous regeneration of adult mammalian spinal cord neurons is limited. Chitosan and sodium alginate have good biocompatibility, biodegradability, and are suitable to assist the recovery of damaged tissues, such as skin, bone and nerve. Chitosan scaffolds, sodium alginate scaffolds and chitosan-sodium alginate scaffolds were separately transplanted into rats with spinal cord hemisection. Basso-Beattie-Bresnahan locomotor rating scale scores and electrophysiological results showed that chitosan scaffolds promoted recovery of locomotor capacity and nerve transduction of the experimental rats. Sixty days after surgery, chitosan scaffolds retained the original shape of the spinal cord. Compared with sodium alginate scaffolds- and chitosan-sodium alginate scaffolds-transplanted rats, more neurofilament-H-immunoreactive cells (regenerating nerve fibers) and less glial fibrillary acidic protein-immunoreactive cells (astrocytic scar tissue) were observed at the injury site of experimental rats in chitosan scaffold-transplanted rats. Due to the fast degradation rate of sodium alginate, sodium alginate scaffolds and composite material scaffolds did not have a supporting and bridging effect on the damaged tissue. Above all, compared with sodium alginate and composite material scaffolds, chitosan had better biocompatibility, could promote the regeneration of nerve fibers and prevent the formation of scar tissue, and as such, is more suitable to help the repair of spinal cord injury. PMID:29623937

  11. Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities.

    PubMed

    Bilal, Muhammad; Rasheed, Tahir; Iqbal, Hafiz M N; Li, Chuanlong; Hu, Hongbo; Zhang, Xuehong

    2017-12-01

    Herein, a facile biosynthesis of silver nanoparticles (AgNPs) and AgNPs-loaded chitosan-alginate constructs with biomedical potentialities is reported. The UV-vis spectroscopic profile confirmed the synthesis of AgNPs using methanolic leaves extract of Euphorbia helioscopia. The newly developed AgNPs were characterized using various analytical and imaging techniques including UV-vis and FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The optimally yielded AgNPs at 24h reaction period were loaded onto various chitosan-alginate constructs. A maximum of 95% loading efficiency (LE) was recorded with a chitosan: alginate ratio at 2:1, followed by 81% at 2:2 ratios. The anti-bacterial activities of AgNPs and AgNPs loaded chitosan-alginate constructs were tested against six bacterial strains i.e. Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, Morganella morganii and Haemophilus influenza. A significant reduction in the log values was recorded for all test constructs, in comparison to the initial bacterial count (control value, i.e., 1.5×10 8 CFU/mL). The cytotoxicity profile revealed complete biocompatibility against normal cell line i.e. L929. Almost all constructs showed considerable cytotoxicity up to certain extant against human epithelial cells (HeLa) cancer cells. In summary, the highest antibacterial activities along with anti-cancer behavior both suggest the biomedical potentialities of newly engineered AgNPs and AgNPs-loaded chitosan-alginate constructs. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Adsorption of As(III), As(V) and Cu(II) on zirconium oxide immobilized alginate beads in aqueous phase.

    PubMed

    Kwon, Oh-Hun; Kim, Jong-Oh; Cho, Dong-Wan; Kumar, Rahul; Baek, Seung Han; Kurade, Mayur B; Jeon, Byong-Hun

    2016-10-01

    A composite adsorbent to remove arsenite [As(III)], arsenate [As(V)], and copper [Cu(II)] from aqueous phase was synthesized by immobilizing zirconium oxide on alginate beads (ZOAB). The composition (wt%) of ZOAB (Zr-34.0; O-32.7; C-21.3; Ca-1.0) was confirmed by energy dispersive X-ray (EDX) analysis. Sorption studies were conducted on single and binary sorbate systems, and the effects of contact time, initial adsorbate concentration, and pH on the adsorption performance of ZOAB (pHPZC = 4.3) were monitored. The sorption process for As(III)/As(V) and Cu(II) reached an equilibrium state within 240 h and 24 h, respectively, with maximum sorption capacities of 32.3, 28.5, and 69.9 mg g(-1), respectively. The addition of Cu(II) was favorable for As(V) sorption in contrast to As(III). In the presence of 48.6 mg L(-1) Cu(II), the sorption capacity of As(V) increased from 1.5 to 3.8 mg g(-1) after 240 h. The sorption data for As(III)/As(V) and Cu(II) conformed the Freundlich and Langmuir isotherm models, respectively. The adsorption of As(III), As(V), and Cu(II) followed pseudo second order kinetics. The effect of arsenic species on Cu(II) sorption was insignificant. The results of present study demonstrated that the synthesized sorbent could be useful for the simultaneous removal of both anionic and cationic contaminants from wastewaters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Synthesis and characterisation of multifunctional alginate microspheres via the in situ formation of ZnO quantum dots and the graft of 4-(1-pyrenyl) butyric acid to sodium alginate.

    PubMed

    Luo, Guilin; Wang, Jianxin; Wang, Yingying; Feng, Bo; Weng, Jie

    2015-01-01

    Growth factor-loaded fluorescent alginate microspheres, which can realise sustained growth factor release and fluorescence imaging, were synthesised by in situ formation of ZnO quantum dots (QDs) and covalent graft of 4-(1-pyrenyl) butyric acid (PBA). BSA was chosen as a growth factor model protein to study the release kinetic of growth factors from alginate microspheres. The microsphere size and fluorescent properties were also investigated. Investigations of cell culture were used for evaluating biocompatibility of BSA-loaded fluorescent microspheres and fluorescence imaging property of ZnO QDs and PBA-grafted sodium alginate from the microspheres. The results show that they have good fluorescent property either to microspheres or to cells and fluorescent microspheres have good biocompatibility and property in sustained release of growth factors. The obtained microspheres will be expected to realise the imaging of cells and materials and also the release of growth factor in tissue engineering or in cell culture.

  14. Time-Dependent Effect of Encapsulating Alginate Hydrogel on Neurogenic Potential

    PubMed Central

    Razavi, Shahnaz; Khosravizadeh, Zahra; Bahramian, Hamid; Kazemi, Mohammad

    2015-01-01

    Objective Due to the restricted potential of neural stem cells for regeneration of central nervous system (CNS) after injury, providing an alternative source for neural stem cells is essential. Adipose derived stem cells (ADSCs) are multipotent cells with properties suitable for tissue engineering. In addition, alginate hydrogel is a biocompatible polysaccharide polymer that has been used to encapsulate many types of cells. The aim of this study was to assess the proliferation rate and level of expression of neural markers; NESTIN, glial fibrillary acidic protein (GFAP) and microtubule-associated protein 2 (MAP2) in encapsulated human ADSCs (hADSCs) 10 and14 days after neural induction. Materials and Methods In this experimental study, ADSCs isolated from human were cultured in neural induction media and seeded into alginate hydrogel. The rate of proliferation and differentiation of encapsulated cells were evaluated by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide (MTT) assay, immunocytoflourescent and realtime reverse transcriptase polymerase chain reaction (RT-PCR) analyzes 10 and 14 days after induction. Results The rate of proliferation of encapsulated cells was not significantly changed with time passage. The expression of NESTIN and GFAP significantly decreased on day 14 relative to day 10 (P<0.001) but MAP2 expression was increased. Conclusion Alginate hydrogel can promote the neural differentiation of encapsulated hADSCs with time passage. PMID:26199909

  15. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain brown...

  16. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain brown...

  17. Progress in biocatalysis with immobilized viable whole cells: systems development, reaction engineering and applications.

    PubMed

    Polakovič, Milan; Švitel, Juraj; Bučko, Marek; Filip, Jaroslav; Neděla, Vilém; Ansorge-Schumacher, Marion B; Gemeiner, Peter

    2017-05-01

    Viable microbial cells are important biocatalysts in the production of fine chemicals and biofuels, in environmental applications and also in emerging applications such as biosensors or medicine. Their increasing significance is driven mainly by the intensive development of high performance recombinant strains supplying multienzyme cascade reaction pathways, and by advances in preservation of the native state and stability of whole-cell biocatalysts throughout their application. In many cases, the stability and performance of whole-cell biocatalysts can be highly improved by controlled immobilization techniques. This review summarizes the current progress in the development of immobilized whole-cell biocatalysts, the immobilization methods as well as in the bioreaction engineering aspects and economical aspects of their biocatalytic applications.

  18. Tuning cell adhesive properties via layer-by-layer assembly of chitosan and alginate

    PubMed Central

    Silva, Joana M.; García, José R.; Reis, Rui L.; García, Andrés J.; Mano, João F.

    2017-01-01

    Understanding the mechanisms controlling cell-multilayer film interactions is crucial to the successful engineering of these coatings for biotechnological and biomedical applications. Herein, we present a strategy to tune the cell adhesive properties of multilayers based on marine polysaccharides with and without cross-linking and/or coating with extracellular matrix proteins. Chemical cross-linking of multilayers improved mechanical properties of the coatings but also elicited changes in surface chemistry that alter the adhesion of human umbilical vein endothelial cells. We evaluated a strategy to decouple the mechanical and chemical properties of these films, enabling the transition from cell-adhesive to cell-resistant multilayers. Addition of chitosan/alginate multilayers on top of cross-linked films decreased endothelial cell adhesion, spreading, and proliferation to similar levels as uncross-linked films. Our findings highlight the key role of surface chemistry in cell-multilayer film interactions, and these engineered nanocoatings represent a tunable model of cell adhesive and non-adhesive multilayered films. PMID:28126597

  19. Falsirhodobacter sp. alg1 Harbors Single Homologs of Endo and Exo-Type Alginate Lyases Efficient for Alginate Depolymerization

    PubMed Central

    Takahashi, Mami; Tanaka, Reiji; Miyake, Hideo; Shibata, Toshiyuki; Chow, Seinen; Kuroda, Kouichi; Ueda, Mitsuyoshi; Takeyama, Haruko

    2016-01-01

    Alginate-degrading bacteria play an important role in alginate degradation by harboring highly efficient and unique alginolytic genes. Although the general mechanism for alginate degradation by these bacteria is fairly understood, much is still required to fully exploit them. Here, we report the isolation of a novel strain, Falsirhodobacter sp. alg1, the first report for an alginate-degrading bacterium from the family Rhodobacteraceae. Genome sequencing reveals that strain alg1 harbors a primary alginate degradation pathway with only single homologs of an endo- and exo-type alginate lyase, AlyFRA and AlyFRB, which is uncommon among such bacteria. Subsequent functional analysis showed that both enzymes were extremely efficient to depolymerize alginate suggesting evolutionary interests in the acquirement of these enzymes. The exo-type alginate lyase, AlyFRB in particular could depolymerize alginate without producing intermediate products making it a highly efficient enzyme for the production of 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH). Based on our findings, we believe that the discovery of Falsirhodobacter sp. alg1 and its alginolytic genes hints at the potentiality of a more diverse and unique population of alginate-degrading bacteria. PMID:27176711

  20. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae...

  1. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae...

  2. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae...

  3. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium alginate. 184.1187 Section 184.1187 Food... Specific Substances Affirmed as GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown algae...

  4. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium alginate. 184.1187 Section 184.1187 Food... Specific Substances Affirmed as GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown algae...

  5. A computational modeling approach for the characterization of mechanical properties of 3D alginate tissue scaffolds.

    PubMed

    Nair, K; Yan, K C; Sun, W

    2008-01-01

    Scaffold guided tissue engineering is an innovative approach wherein cells are seeded onto biocompatible and biodegradable materials to form 3-dimensional (3D) constructs that, when implanted in the body facilitate the regeneration of tissue. Tissue scaffolds act as artificial extracellular matrix providing the environment conducive for tissue growth. Characterization of scaffold properties is necessary to understand better the underlying processes involved in controlling cell behavior and formation of functional tissue. We report a computational modeling approach to characterize mechanical properties of 3D gellike biomaterial, specifically, 3D alginate scaffold encapsulated with cells. Alginate inherent nonlinearity and variations arising from minute changes in its concentration and viscosity make experimental evaluation of its mechanical properties a challenging and time consuming task. We developed an in silico model to determine the stress-strain relationship of alginate based scaffolds from experimental data. In particular, we compared the Ogden hyperelastic model to other hyperelastic material models and determined that this model was the most suitable to characterize the nonlinear behavior of alginate. We further propose a mathematical model that represents the alginate material constants in Ogden model as a function of concentrations and viscosity. This study demonstrates the model capability to predict mechanical properties of 3D alginate scaffolds.

  6. Live cell imaging compatible immobilization of Chlamydomonas reinhardtii in microfluidic platform for biodiesel research.

    PubMed

    Park, Jae Woo; Na, Sang Cheol; Nguyen, Thanh Qua; Paik, Sang-Min; Kang, Myeongwoo; Hong, Daewha; Choi, Insung S; Lee, Jae-Hyeok; Jeon, Noo Li

    2015-03-01

    This paper describes a novel surface immobilization method for live-cell imaging of Chlamydomonas reinhardtii for continuous monitoring of lipid droplet accumulation. Microfluidics allows high-throughput manipulation and analysis of single cells in precisely controlled microenvironment. Fluorescence imaging based quantitative measurement of lipid droplet accumulation in microalgae had been difficult due to their intrinsic motile behavior. We present a simple surface immobilization method using gelatin coating as the "biological glue." We take advantage of hydroxyproline (Hyp)-based non-covalent interaction between gelatin and the outer cell wall of microalgae to anchor the cells inside the microfluidic device. We have continuously monitored single microalgal cells for up to 6 days. The immobilized microalgae remain viable (viability was comparable to bulk suspension cultured controls). When exposed to wall shear stress, most of the cells remain attached up to 0.1 dyne/cm(2) . Surface immobilization allowed high-resolution, live-cell imaging of mitotic process in real time-which followed previously reported stages in mitosis of suspension cultured cells. Use of gelatin coated microfluidics devices can result in better methods for microalgae strain screening and culture condition optimization that will help microalgal biodiesel become more economically viable. © 2014 Wiley Periodicals, Inc.

  7. Free-standing polyelectrolyte membranes made of chitosan and alginate

    PubMed Central

    Caridade, Sofia G.; Monge, Claire; Gilde, Flora; Boudou, Thomas; Mano, João F.; Picart, Catherine

    2014-01-01

    Free-standing films have increasing applications in the biomedical field as drug delivery systems, for wound healing and tissue engineering. Here, we prepared free-standing membranes by the layer-by-layer assembly of chitosan and alginate, two widely used biomaterials. Our aim was to produce thick membrane, to study the permeation of model drugs and the adhesion of muscle cells. We first defined the optimal growth conditions in terms of pH and alginate concentration. The membranes could be easily detached from polystyrene or polypropylene substrate without any post-processing step. They dry thickness was varied over a large range from 4 to 35 μm. A two-fold swelling was observed by confocal microscopy when they were immersed in PBS. In addition, we quantified the permeation of model drugs (fluorescent dextrans) through the free standing membrane, which depended on the dextran molecular weight. Finally, we showed that myoblast cells exhibited a preferential adhesion on the alginate-ending membrane as compared to the chitosan-ending membrane or to the substrate side. PMID:23590116

  8. Degradation of synthetic pollutants in real wastewater using laccase encapsulated in core-shell magnetic copper alginate beads.

    PubMed

    Le, Thao Thanh; Murugesan, Kumarasamy; Lee, Chung-Seop; Vu, Chi Huong; Chang, Yoon-Seok; Jeon, Jong-Rok

    2016-09-01

    Immobilization of laccase has been highlighted to enhance their stability and reusability in bioremediation. In this study, we provide a novel immobilization technique that is very suitable to real wastewater treatment. A perfect core-shell system composing copper alginate for the immobilization of laccase (Lac-beads) was produced. Additionally, nFe2O3 was incorporated for the bead recycling through magnetic force. The beads were proven to immobilize 85.5% of total laccase treated and also to be structurally stable in water, acetate buffer, and real wastewater. To test the Lac-beads reactivity, triclosan (TCS) and Remazol Brilliant Blue R (RBBR) were employed. The Lac-beads showed a high percentage of TCS removal (89.6%) after 8h and RBBR decolonization at a range from 54.2% to 75.8% after 4h. Remarkably, the pollutants removal efficacy of the Lac-beads was significantly maintained in real wastewater with the bead recyclability, whereas that of the corresponding free laccase was severely deteriorated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Physicochemical properties of marine collagen-alginate biomaterial

    NASA Astrophysics Data System (ADS)

    Soon, K. S.; Hii, S. L.; Wong, C. L.; Leong, L. K.; Woo, K. K.

    2017-12-01

    Collagen base biomaterials are widely applied in the field of tissue engineering. However, these fibrous proteins in animal connective tissues are insufficient to fulfill the mechanical properties for such applications. Therefore, alginate as a natural polysaccharide was incorporated. In this study, Smooth wolf herring skins was collected from the local fish ball processing industry for collagen extraction using acid solubilisation method. On the other hand, alginate from brown seaweed (Sargassum polycystum) was extracted with calcium carbonate at 50 °C. The composite films of different collagen and alginate ratio were prepared by lyophilisation with pure collagen film as control. The effects of alginate on swelling behaviour, porosity, collagenase degradation and tensile strength of the composite films were investigated. Swelling behaviour increased with alginate content, 50 % alginate film achieved 1254.75 % swelling after 24 h. All composite films achieved more than 80 % porosity except the film with 80 % collagen (65.41 %). Porosity was highest in 100 % alginate (94.30 %). Highest tensile strength (1585.87 kPa) and young modulus (27.05 MPa) was found in 50 % alginate film. In addition, resistance to collagenase degradation was improved with alginate content, lowest degradation rate was determined in 80 % alginate film. Results indicated alginate is efficient in improving some mechanical properties of the composite film.

  10. Synthesis of thiolated chitosan and preparation nanoparticles with sodium alginate for ocular drug delivery.

    PubMed

    Zhu, Xuan; Su, Meiqin; Tang, Shaoheng; Wang, Lingsong; Liang, Xinfang; Meng, Feihong; Hong, Ying; Xu, Zhiran

    2012-01-01

    The goal of the present study was to synthesize mucoadhesive polymer - thiolated chitosan (TCS) from chitosan (CS), then prepared CS/TCS-sodium alginate nanoparticles (CS/TCS-SA NPs), determined which was more potential for ocular drug delivery. A new method for preparing TCS was developed, and the characteristics were determined using Fourier transform infrared spectroscopy and the degree of thiol immobilized was measured by Ellman's reagent. Human corneal epithelium (HCE) cells were incubated with different concentrations of TCS for 48 h to determine the cell viabilities. CS/TCS-SA NPs were prepared and optimized by a modified ionic gelation method. The particle sizes, zeta potentials, Scanning electron microscopy images, mucoadhesion, in vitro cell uptake and in vivo studies of the two types of NP were compared. The new method enabled a high degree of thiol substitution of TCS, up to 1,411.01±4.02 μmol/g. In vitro cytocompatibility results suggest that TCS is nontoxic. Compared to CS-SA NPs, TCS-SA NPs were more stable, with higher mucoadhesive properties and could deliver greater amounts of drugs into HCE cells in vitro and cornea in vivo. TCS-SA NPs have better delivery capability, suggesting they have good potential for ocular drug delivery applications.

  11. Production of R-Mandelic Acid Using Nitrilase from Recombinant E. coli Cells Immobilized with Tris(Hydroxymethyl)Phosphine.

    PubMed

    Zhang, Xin-Hong; Liu, Zhi-Qiang; Xue, Ya-Ping; Wang, Yuan-Shan; Yang, Bo; Zheng, Yu-Guo

    2018-03-01

    Recombinant Escherichia coli cells harboring nitrilase from Alcaligenes faecalis were immobilized using tris(hydroxymethyl)phosphine (THP) as the coupling agent. The optimal pH and temperature of the THP-immobilized cells were determined at pH 8.0 and 55 °C. The half-lives of THP-immobilized cells measured at 35, 40, and 50 °C were 1800, 965, and 163 h, respectively. The concentration of R-mandelic acid (R-MA) reached 358 mM after merely 1-h conversion by the immobilized cells with 500 mM R,S-mandelonitrile (R,S-MN), affording the highest productivity of 1307 g L -1  day -1 and the space-time productivity of 143.2 mmol L -1  h -1  g -1 . The immobilized cells with granular shape were successfully recycled for 60 batches using 100 mM R,S-MN as substrate at 40 °C with 64% of relative activity, suggesting that the immobilized E. coli cells obtained in this study are promising for the production of R-MA.

  12. Evaluation of protein immobilization capacity on various carbon nanotube embedded hydrogel biomaterials.

    PubMed

    Derkus, Burak; Emregul, Kaan Cebesoy; Emregul, Emel

    2015-11-01

    This study investigates effective immobilization of proteins, an important procedure in many fields of bioengineering and medicine, using various biomaterials. Gelatin, alginate and chitosan were chosen as polymeric carriers, and applied in both their composites and nanocomposite forms in combination with carbon nanotubes (CNTs). The prepared nano/composite structures were characterized using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TG) and contact angle analysis (CA). Electrochemical impedance spectroscopy analysis revealed gelatin composites in general to exhibit better immobilization performance relative to the native gelatin which can be attributed to enhanced film morphologies of the composite structures. Moreover, superior immobilization efficiencies were obtained with the addition of carbon nanotubes, due to their conducting and surface enhancement features, especially in the gelatin-chitosan structures due to the presence of structural active groups. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Self-disinfecting Alginate vs Conventional Alginate: Effect on Surface Hardness of Gypsum Cast-An in vitro Study.

    PubMed

    Madhavan, Ranjith; George, Navia; Thummala, Niharika R; Ravi, S V; Nagpal, Ajay

    2017-11-01

    For the construction of any dental prosthesis, accurate impressions are necessary. Hence, we undertook the present study to evaluate and compare the surface hardness of gypsum casts poured from impressions made using conventional alginate and self-disinfecting alginate. A total of 30 impressions of stainless steel die were made, out of which 15 impressions were made with conventional alginate and 15 were made with self-disinfecting alginate and poured using Type III dental stone. Thirty stone specimens were subjected for hardness testing. Data were analyzed using independent samples t-test to compare the mean surface hardness. Difference in surface hardness was statistically insignificant (p > 0.05). Surface hardness of gypsum casts poured using impressions made from self-disinfecting alginate and conventional alginates were comparable. Self-disinfecting alginates may be employed in clinical practice as safe and effective materials to overcome the infection control issues without compromising on the properties of the material.

  14. Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles.

    PubMed

    Venkatesan, Jayachandran; Lee, Jin-Young; Kang, Dong Seop; Anil, Sukumaran; Kim, Se-Kwon; Shim, Min Suk; Kim, Dong Gyu

    2017-05-01

    The main aim of this study was to obtain porous antimicrobial composites consisting of chitosan, alginate, and biosynthesized silver nanoparticles (AgNPs). Chitosan and alginate were used owing to their pore-forming capacity, while AgNPs were used for their antimicrobial property. The developed porous composites of chitosan-alginate-AgNPs were characterized using Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy, X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). The FT-IR results revealed the presence of a strong chemical interaction between chitosan and alginate due to polyelectrolyte complex; whereas, the XRD results confirmed the presence of AgNPs in the composites. The dispersion of AgNPs in the porous membrane was uniform with a pore size of 50-500μm. Antimicrobial activity of the composites was checked with Escherichia coli and Staphylococcus aureus. The developed composites resulted in the formation of a zone of inhibition of 11±1mm for the Escherichia coli, and 10±1mm for Staphylococcus aureus. The bacterial filtration efficiency of chitosan-alginate-AgNPs was 1.5-times higher than that of the chitosan-alginate composite. The breast cancer cell line MDA-MB-231 was used to test the anticancer activity of the composites. The IC 50 value of chitosan-alginate-AgNPs on MDA-MB-231 was 4.6mg. The developed chitosan-alginate-AgNPs composite showed a huge potential for its applications in antimicrobial filtration and cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Degradation of diesel oil by immobilized Candida tropicalis and biofilm formed on gravels.

    PubMed

    Chandran, Preethy; Das, Nilanjana

    2011-11-01

    The performance of diesel oil degradation by Candida tropicalis immobilized on various conventional matrices (sodium alginate, carboxyl methyl cellulose, chitosan) and biowaste materials (wheat bran, sawdust, peanut hull powder) was investigated using the method of entrapment and physical adsorption. The yeast species immobilized in wheat bran showed enhanced efficiency in degrading diesel oil (98%) compared to free cells culture (80%) over a period of 7 days. Copious amount of exopolysaccharides were also produced in the presence of diesel oil. The biofilm forming ability of C. tropicalis on PVC strips was evaluated using XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) reduction assay and monitored by scanning electron microscopy and atomic force microscopy. Yeast biofilm formed on gravels showed 97% degradation of diesel oil over a period of 10 days. The potential use of the biofilms for preparing trickling filters (gravel particles), for attenuating hydrocarbons in oily liquid wastes before their disposal in the open environment is suggested and discussed. This is the first successful attempt for 'artificially' establishing hydrocarbon degrading yeast biofilm on solid substrates.

  16. Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds.

    PubMed

    Kim, Min Seong; Kim, GeunHyung

    2014-12-19

    Micro/nanofibrous scaffolds have been used widely in biomedical applications because the micro/nano-scale fibres resemble natural extracellular matrix and the high surface-to-volume ratio encourages cellular activities (attachment and proliferation). However, poor mechanical properties, low controllability of various shapes and difficulties in obtaining controllable pore structure have been obstacles to their use in hard-tissue regeneration. To overcome these shortcomings, we suggest a new composite system, which uses a combination method of wet electrospinning, rapid prototyping and a physical punching process. Using the process, we obtained polycaprolactone (PCL)/alginate composite scaffolds, consisting of electrospun PCL/alginate fibres and micro-sized PCL struts, with mean pore sizes of 821 ± 55 μm. To show the feasibility of the scaffolds for hard-tissue regeneration, the scaffolds were assessed not only for physical properties, including hydrophilicity, water absorption, and tensile and compressive strength, but also in vitro cellular responses (cell viability and proliferation) and osteogenic differentiation (alkaline phosphatase (ALP) activity, and mineralisation) by culturing with pre-osteoblasts (MC3T3-E1 cells). With the reinforcing micro-sized PCL struts, the elastic modulus of the PCL/alginate scaffold was significantly improved versus a pure PCL scaffold. Additionally, due to the alginate component in the fibrous scaffold, they showed significantly enhanced hydrophilic behaviour, water absorption (∼8-fold) and significant biological activities (∼1.6-fold for cell viability at 7 days, ∼2.3-fold for ALP activity at 14 days and ∼6.4-fold for calcium mineralisation at 14 days) compared with those of a pure PCL fibrous scaffold. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Anti-thrombogenicity and permeability of polyethersulfone hollow fiber membrane with sulfonated alginate toward blood purification.

    PubMed

    Salimi, Esmaeil; Ghaee, Azadeh; Ismail, Ahmad Fauzi; Karimi, Majid

    2018-04-30

    The main aim of this study was to evaluate the suitability of sulfonated alginate as a modifying agent to enhance the hemocompatibility of self-fabricated polyethersulfone (PES) hollow fiber membrane for blood detoxification. Sodium alginate was sulfonated with a degree of 0.6 and immobilized on the membrane via surface amination and using glutaraldehyde as cross-linking agent. Coating layer not only improved the membrane surface hydrophilicity, but also induced -39.2 mV negative charges on the surface. Water permeability of the modified membrane was enhanced from 67 to 95 L/m 2 ·h·bar and flux recovery ratio increased more than 2-fold. Furthermore, the modified membrane presented higher platelet adhesion resistance (reduced by more than 90%) and prolonged coagulation time (35 s for APTT and 14 s for PT) in comparison with the pristine PES hollow fiber membrane, which verified the improved anti-thrombogenicity of the modified membrane. On the other hand, obtained membrane after 3 h coating could remove up-to 60% of the uremic toxins. According to the obtained data, sulfonated alginate can be a promising modifying agent for the future blood-contacting membrane and specially blood purification issues. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Effect of immobile isolated enzymes from rumen liquid by using alginate matrices on the bay leaf extraction

    NASA Astrophysics Data System (ADS)

    Paramita, Vita; Yulianto, Mohammad Endy; Yohana, Eflita; Arifan, Fahmi; Hanifah, Amjad, Muhammad Taqiyuddin

    2015-12-01

    This research aims to develop the enzymatically of bay leaves phytochemical extraction process. The novelty and the main innovations of this research is the development of extraction process by using enzymatic extractor and isolate the enzymes from rumen liquid to shift the equilibrium phase, increase the extraction rate and increase the extraction yield. The activity of rumen liquid enzyme was represented by the activity of cellulase and protease. The analyze of total flavonoid content was performed by using UV-Vis Spectrofometry. The activity of immobilized enzyme of cellulase (0.08±0.00 U/ml) was lower than the un-immobilized one (0.23±0.00 U/ml). However, there was no difference activity of the immobilized (0.75±0.00 U/ml) and un-immobilized (0.76±0.01 U/ml) of protease. The model of mass transfer of un-immobilized enzyme can be fitted on the experimental data, however the model of mass transfer of immobilized enzyme did not match with the experimental data. The mass transfer coefficient of enzymatic extraction flavonoids bay leaf without immobilization was 0.17167 s-1 which greater than the reported value of obtained KLa from extraction by using electric heating.

  19. Alginate Polymerization and Modification Are Linked in Pseudomonas aeruginosa

    PubMed Central

    Moradali, M. Fata; Donati, Ivan; Sims, Ian M.; Ghods, Shirin

    2015-01-01

    ABSTRACT The molecular mechanisms of alginate polymerization/modification/secretion by a proposed envelope-spanning multiprotein complex are unknown. Here, bacterial two-hybrid assays and pulldown experiments showed that the catalytic subunit Alg8 directly interacts with the proposed copolymerase Alg44 while embedded in the cytoplasmic membrane. Alg44 additionally interacts with the lipoprotein AlgK bridging the periplasmic space. Site-specific mutagenesis of Alg44 showed that protein-protein interactions and stability were independent of conserved amino acid residues R17 and R21, which are involved in c-di-GMP binding, the N-terminal PilZ domain, and the C-terminal 26 amino acids. Site-specific mutagenesis was employed to investigate the c-di-GMP-mediated activation of alginate polymerization by the PilZAlg44 domain and Alg8. Activation was found to be different from the proposed activation mechanism for cellulose synthesis. The interactive role of Alg8, Alg44, AlgG (epimerase), and AlgX (acetyltransferase) on alginate polymerization and modification was studied by using site-specific deletion mutants, inactive variants, and overproduction of subunits. The compositions, molecular masses, and material properties of resulting novel alginates were analyzed. The molecular mass was reduced by epimerization, while it was increased by acetylation. Interestingly, when overproduced, Alg44, AlgG, and the nonepimerizing variant AlgG(D324A) increased the degree of acetylation, while epimerization was enhanced by AlgX and its nonacetylating variant AlgX(S269A). Biofilm architecture analysis showed that acetyl groups promoted cell aggregation while nonacetylated polymannuronate alginate promoted stigmergy. Overall, this study sheds new light on the arrangement of the multiprotein complex involved in alginate production. Furthermore, the activation mechanism and the interplay between polymerization and modification of alginate were elucidated. PMID:25968647

  20. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering.

    PubMed

    Jang, Jinah; Seol, Young-Joon; Kim, Hyeon Ji; Kundu, Joydip; Kim, Sung Won; Cho, Dong-Woo

    2014-09-01

    An effective cross-linking of alginate gel was made through reaction with calcium carbonate (CaCO3). We used human chondrocytes as a model cell to study the effects of cross-linking density. Three different pore size ranges of cross-linked alginate hydrogels were fabricated. The morphological, mechanical, and rheological properties of various alginate hydrogels were characterized and responses of biosynthesis of cells encapsulated in each gel to the variation in cross-linking density were investigated. Desired outer shape of structure was maintained when the alginate solution was cross-linked with the applied method. The properties of alginate hydrogel could be tailored through applying various concentrations of CaCO3. The rate of synthesized GAGs and collagens was significantly higher in human chondrocytes encapsulated in the smaller pore structure than that in the larger pore structure. The expression of chondrogenic markers, including collagen type II and aggrecan, was enhanced in the smaller pore structure. It was found that proper structural morphology is a critical factor to enhance the performance and tissue regeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Kinetic analysis of dihydroxyacetone production from crude glycerol by immobilized cells of Gluconobacter oxydans MTCC 904.

    PubMed

    Dikshit, Pritam Kumar; Moholkar, Vijayanand S

    2016-09-01

    The present study has investigated kinetic features of bioconversion of biodiesel-derived crude glycerol to dihydroxyacetone with immobilized Gluconobacter oxydans cells using modified Haldane substrate-inhibition model. The results have been compared against free cells and pure glycerol. Relative variations in the kinetic parameters KS, KI, Vmax, n and X reveal that immobilized G. oxydans cells (on PU foam substrate) with crude glycerol as substrate give higher order of inhibition (n) and lower maximum reaction velocities (Vmax). These results are essentially implications of substrate transport restrictions across immobilization matrix, which causes retention of substrate in the matrix and reduction in fractional available substrate (X) for the cells. This causes reduction in both KS (substrate concentration at Vmax/2) and KI (inhibition constant) as compared to free cells. For immobilized cells, substrate concentration (Smax) corresponding to Vmax is practically same for both pure and crude glycerol as substrate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Synthesis of Thiolated Alginate and Evaluation of Mucoadhesiveness, Cytotoxicity and Release Retardant Properties

    PubMed Central

    Jindal, A. B.; Wasnik, M. N.; Nair, Hema A.

    2010-01-01

    Modification of polymers by covalent attachment of thiol bearing pendant groups is reported to impart many beneficial properties to them. Hence in the present study, sodium alginate–cysteine conjugate was synthesized by carbodiimide mediated coupling under varying reaction conditions and the derivatives characterized for thiol content. The thiolated alginate species synthesized had bound thiol content ranging from 247.8±11.03–324.54±10.107 ΅mol/g of polymer depending on the reaction conditions. Matrix tablets based on sodium alginate-cysteine conjugate and native sodium alginate containing tramadol hydrochloride as a model drug were prepared and mucoadhesive strength and in vitro drug release from the tablets were compared. Tablets containing 75 mg sodium alginate-cysteine conjugate could sustain release of 10 mg of model drug for 3 h, whereas 90% of the drug was released within 1 h from corresponding tablets prepared using native sodium alginate. An approximately 2-fold increase in the minimal detachment force of the tablets from an artificial mucin film was observed for sodium alginate–cysteine conjugate as compared to native sodium alginate. In vitro cytotoxicity studies in L-929 mouse fibroblast cells studied using an MTT assay revealed that at low concentrations of polymer, sodium alginate–cysteine conjugate was less toxic to L-929 mouse fibroblast cell line when compared to native sodium alginate. Hence, thiolation is found to be a simple route to improving polymer performance. The combination of improved controlled drug release and mucoadhesive properties coupled with the low toxicity of these new excipients builds up immense scope for the use of thiolated polymers in mucoadhesive drug delivery systems. PMID:21969750

  3. Immobilization of Lipase Inhibitor on the Biopolymers from Agaricus bisporus Cell Walls

    PubMed Central

    2017-01-01

    Summary One of the methods for curing obesity is the inclusion of some substances with the antilipase activity in the diet and thus reducing the uptake of fat components from food. The aim of this research is to provide a stabilized form of lipase inhibitor by immobilization of enzyme on the biopolymers from Agaricus bisporus cell walls. The phenolic compounds extracted from the rapeseed were considered as the lipase inhibitor. The activity of the inhibitor was considerably reduced in the gastric juice, as well as at temperatures above 37 °C and during its storage, which determined the suitability of the inhibitor for stabilization on the matrix. The effectiveness of the phenolic compound stabilization was investigated by means of immobilization on the biopolymers from Agaricus bisporus cell wall matrix. The biopolymers used were β-glucan, chitin, melanin and proteins. A number of samples, which differed both in the content of the inhibitor (from 1 to 16%) and in the ratio of biopolymers in the matrix composition, was obtained. The conditions of immobilization (temperature, duration of the process) were also varied. The expediency of obtaining the sample with the inhibitor content of 12% and matrix containing 47.9% of glucan, 18.8% of chitin, 18.8% of melanin and 11.1% of proteins was shown. The best immobilization was carried out at 20–25 °C for 30 min. Thermal analysis and infrared spectroscopy data confirmed that immobilization of the lipase inhibitor on the matrix was due to the hydrogen bonds. The immobilized inhibitor had higher pH stability and higher thermal stability than the original one. The remaining activity of the immobilized inhibitor was higher than the original one after incubation in the gastric acid and bile. The immobilized inhibitor was characterized by a low loss of activity after 12 months of storage. PMID:29540987

  4. Biosorption of trivalent chromium by free and immobilized blue green algae: kinetics and equilibrium studies.

    PubMed

    Shashirekha, V; Sridharan, M R; Swamy, Mahadeswara

    2008-03-01

    The process of biosorption of trivalent chromium (Cr(3+)) by live culture of Spirulina platensis and the sorption potential by the dried biomass, in both free and immobilized states have been investigated for a simulated chrome liquor in the concentration range of 100-4500 ppm. Both live and dried biomass were very good biosorbents as they could remove high amounts of chromium from tannery wastewater. Polyurethane foam and sodium alginate were used as immobilizing agents and their performances compared. Biosorption kinetic data on Cr(3+) sorption onto dried biomass were analyzed using pseudo-first-and pseudo-second-order kinetic models in batch column experiments. The second-order equation was more appropriate to predict the rate of biosorption. Subsequently, the effects of height of packing & diameter of the column, concentration of blue-green algae (BGA) in varying amounts of sodium alginate, chromium concentration were studied. The results fit into both Langmuir & Freundlich isotherm models with very high regression coefficients. Furthermore, equilibrium studies using retan chrome liquor (RCL), with a chromium concentration of 1660 ppm, obtained from a tannery also showed promising results. In general, our studies indicate the efficacy of the algal species in removal of chromium from tannery wastewater.

  5. Optimizing Immobilized Enzyme Performance in Cell-Free Environments to Produce Liquid Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belfort, Georges; Grimaldi, Joseph J.

    2015-01-27

    Limitations on biofuel production using cell culture (Escherichia coli, Clostridium, Saccharomyces cerevisiae, brown microalgae, blue-green algae and others) include low product (alcohol) concentrations (≤0.2 vol%) due to feedback inhibition, instability of cells, and lack of economical product recovery processes. To overcome these challenges, an alternate simplified biofuel production scheme was tested based on a cell-free immobilized enzyme system. Using this cell free system, we were able to obtain about 2.6 times higher concentrations of iso-butanol using our non-optimized system as compared with live cell systems. This process involved two steps: (i) converts acid to aldehyde using keto-acid decarboxylase (KdcA), andmore » (ii) produces alcohol from aldehyde using alcohol dehydrogenase (ADH) with a cofactor (NADH) conversion from inexpensive formate using a third enzyme, formate dehydrogenase (FDH). To increase stability and conversion efficiency with easy separations, the first two enzymes were immobilized onto methacrylate resin. Fusion proteins of labile KdcA (fKdcA) were expressed to stabilize the covalently immobilized KdcA. Covalently immobilized ADH exhibited long-term stability and efficient conversion of aldehyde to alcohol over multiple batch cycles without fusions. High conversion rates and low protein leaching were achieved by covalent immobilization of enzymes on methacrylate resin. The complete reaction scheme was demonstrated by immobilizing both ADH and fKdcA and using FDH free in solution. The new system without in situ removal of isobutanol achieved a 55% conversion of ketoisovaleric acid to isobutanol at a concentration of 0.5 % (v/v). Further increases in titer will require continuous removal of the isobutanol using our novel brush membrane system that exhibits a 1.5 fold increase in the separation factor of isobutanol from water versus that obtained for commercial silicone rubber membranes. These bio-inspired brush membranes are based

  6. Metal organic frameworks for enzyme immobilization in biofuel cells

    NASA Astrophysics Data System (ADS)

    Bodell, JaDee

    Interest in biofuel cells has been rapidly expanding as an ever-growing segment of the population gains access to electronic devices. The largest areas of growth for new populations using electronic devices are often in communities without electrical infrastructure. This lack of infrastructure in remote environments is one of the key driving factors behind the development of biofuel cells. Biofuel cells employ biological catalysts such as enzymes to catalyze oxidation and reduction reactions of select fuels to generate power. There are several benefits to using enzymes to catalyze reactions as compared to traditional fuel cells which use metal catalysts. First, enzymes are able to catalyze reactions at or near room temperature, whereas traditional metal catalysts are only efficient at very high temperatures. Second, biofuel cells can operate under mild pH conditions which is important for the eventual design of safe, commercially viable devices. Also, biofuel cells allow for implantable and flexible technologies. Finally, enzymes exhibit high selectivity and can be combined to fully oxidize or reduce the fuel which can generate several electrons from a single molecule of fuel, increasing the overall device efficiency. One of the main challenges which persist in biofuel cells is the instability of enzymes over time which tend to denature after hours or days. For a viable commercial biofuel cell to be produced, the stability of enzymes must be extended to months or years. Enzymes have been shown to have improved stability after being immobilized. The focus of this research was to find a metal organic framework (MOF) structure which could successfully immobilize enzymes while still allowing for electron transport to occur between the catalytic center of the enzyme and the electrode surface within a biofuel cell for power generation. Four MOF structures were successfully synthesized and were subsequently tested to determine the MOF's ability to immobilize the following

  7. Hybrid 3D printing and electrodeposition approach for controllable 3D alginate hydrogel formation.

    PubMed

    Shang, Wanfeng; Liu, Yanting; Wan, Wenfeng; Hu, Chengzhi; Liu, Zeyang; Wong, Chin To; Fukuda, Toshio; Shen, Yajing

    2017-06-07

    Calcium alginate hydrogels are widely used as biocompatible materials in a substantial number of biomedical applications. This paper reports on a hybrid 3D printing and electrodeposition approach for forming 3D calcium alginate hydrogels in a controllable manner. Firstly, a specific 3D hydrogel printing system is developed by integrating a customized ejection syringe with a conventional 3D printer. Then, a mixed solution of sodium alginate and CaCO 3 nanoparticles is filled into the syringe and can be continuously ejected out of the syringe nozzle onto a conductive substrate. When applying a DC voltage (∼5 V) between the substrate (anode) and the nozzle (cathode), the Ca 2+ released from the CaCO 3 particles can crosslink the alginate to form calcium alginate hydrogel on the substrate. To elucidate the gel formation mechanism and better control the gel growth, we can further establish and verify a gel growth model by considering several key parameters, i.e., applied voltage and deposition time. The experimental results indicate that the alginate hydrogel of various 3D structures can be formed by controlling the movement of the 3D printer. A cell viability test is conducted and shows that the encapsulated cells in the gel can maintain a high survival rate (∼99% right after gel formation). This research establishes a reliable method for the controllable formation of 3D calcium alginate hydrogel, exhibiting great potential for use in basic biology and applied biomedical engineering.

  8. Continuous D-tagatose production by immobilized thermostable L-arabinose isomerase in a packed-bed bioreactor.

    PubMed

    Ryu, Se-Ah; Kim, Chang Sup; Kim, Hye-Jung; Baek, Dae Heoun; Oh, Deok-Kun

    2003-01-01

    D-Tagatose was continuously produced using thermostable L-arabinose isomerase immobilized in alginate with D-galactose solution in a packed-bed bioreactor. Bead size, L/D (length/diameter) of reactor, dilution rate, total loaded enzyme amount, and substrate concentration were found to be optimal at 0.8 mm, 520/7 mm, 0.375 h(-1), 5.65 units, and 300 g/L, respectively. Under these conditions, the bioreactor produced about 145 g/L tagatose with an average productivity of 54 g tagatose/L x h and an average conversion yield of 48% (w/w). Operational stability of the immobilized enzyme was demonstrated, with a tagatose production half-life of 24 days.

  9. Bioconversion of D-galactose to D-tagatose: continuous packed bed reaction with an immobilized thermostable L-arabinose isomerase and efficient purification by selective microbial degradation.

    PubMed

    Liang, Min; Chen, Min; Liu, Xinying; Zhai, Yafei; Liu, Xian-wei; Zhang, Houcheng; Xiao, Min; Wang, Peng

    2012-02-01

    The continuous enzymatic conversion of D-galactose to D-tagatose with an immobilized thermostable L-arabinose isomerase in packed-bed reactor and a novel method for D-tagatose purification were studied. L-arabinose isomerase from Thermoanaerobacter mathranii (TMAI) was recombinantly overexpressed and immobilized in calcium alginate. The effects of pH and temperature on D-tagatose production reaction catalyzed by free and immobilized TMAI were investigated. The optimal condition for free enzyme was pH 8.0, 60°C, 5 mM MnCl(2). However, that for immobilized enzyme was pH 7.5, 75°C, 5 mM MnCl(2). In addition, the catalytic activity of immobilized enzyme at high temperature and low pH was significantly improved compared with free enzyme. The optimum reaction yield with immobilized TMAI increased by four percentage points to 43.9% compared with that of free TMAI. The highest productivity of 10 g/L h was achieved with the yield of 23.3%. Continuous production was performed at 70°C; after 168 h, the reaction yield was still above 30%. The resultant syrup was then incubated with Saccharomyces cerevisiae L1 cells. The selective degradation of D-galactose was achieved, obtaining D-tagatose with the purity above 95%. The established production and separation methods further potentiate the industrial production of D-tagatose via bioconversion and biopurification processes.

  10. Plasma modified PLA electrospun membranes for actinorhodin production intensification in Streptomyces coelicolor immobilized-cell cultivations.

    PubMed

    Scaffaro, Roberto; Lopresti, Francesco; Sutera, Alberto; Botta, Luigi; Fontana, Rosa Maria; Gallo, Giuseppe

    2017-09-01

    Most of industrially relevant bioproducts are produced by submerged cultivations of actinomycetes. The immobilization of these Gram-positive filamentous bacteria on suitable porous supports may prevent mycelial cell-cell aggregation and pellet formation which usually negatively affect actinomycete submerged cultivations, thus, resulting in an improved biosynthetic capability. In this work, electrospun polylactic acid (PLA) membranes, subjected or not to O 2 -plasma treatment (PLA-plasma), were used as support for immobilized-cell submerged cultivations of Streptomyces coelicolor M145. This strain produces different bioactive compounds, including the blue-pigmented actinorhodin (ACT) and red-pigmented undecylprodigiosin (RED), and constitutes a model for the study of antibiotic-producing actinomycetes. Wet contact angles and X-ray photoelectron spectroscopy analysis confirmed the increased wettability of PLA-plasma due to the formation of polar functional groups such as carboxyl and hydroxyl moieties. Scanning electron microscope observations, carried out at different incubation times, revealed that S. coelicolor immobilized-cells created a dense "biofilm-like" mycelial network on both kinds of PLA membranes. Cultures of S. coelicolor immobilized-cells on PLA or PLA-plasma membranes produced higher biomass (between 1.5 and 2 fold) as well as higher levels of RED and ACT than planktonic cultures. In particular, cultures of immobilized-cells on PLA and PLA-plasma produced comparable levels of RED that were approximatively 4 and 5 fold higher than those produced by planktonic cultures, respectively. In contrast, levels of ACT produced by immobilized-cell cultures on PLA and PLA-plasma were different, being 5 and 10 fold higher than those of planktonic cultures, respectively. Therefore, this is study demonstrated the positive influence of PLA membrane on growth and secondary metabolite production in S. coelicolor and also revealed that O 2 -plasma treated PLA membranes

  11. Immobilization of Rose Waste Biomass for Uptake of Pb(II) from Aqueous Solutions

    PubMed Central

    Ansari, Tariq Mahmood; Hanif, Muhammad Asif; Mahmood, Abida; Ijaz, Uzma; Khan, Muhammad Aslam; Nadeem, Raziya; Ali, Muhammad

    2011-01-01

    Rosa centifolia and Rosa gruss an teplitz distillation waste biomass was immobilized using sodium alginate for Pb(II) uptake from aqueous solutions under varied experimental conditions. The maximum Pb(II) adsorption occurred at pH 5. Immobilized rose waste biomasses were modified physically and chemically to enhance Pb(II) removal. The Langmuir sorption isotherm and pseudo-second-order kinetic models fitted well to the adsorption data of Pb(II) by immobilized Rosa centifolia and Rosa gruss an teplitz. The adsorbed metal is recovered by treating immobilized biomass with different chemical reagents (H2SO4, HCl and H3PO4) and maximum Pb(II) recovered when treated with sulphuric acid (95.67%). The presence of cometals Na, Ca(II), Al(III), Cr(III), Cr(VI), and Cu(II), reduced Pb(II) adsorption on Rosa centifolia and Rosa gruss an teplitz waste biomass. It can be concluded from the results of the present study that rose waste can be effectively used for the uptake of Pb(II) from aqueous streams. PMID:21350666

  12. Evaluation of PBS Treatment and PEI Coating Effects on Surface Morphology and Cellular Response of 3D-Printed Alginate Scaffolds.

    PubMed

    Mendoza García, María A; Izadifar, Mohammad; Chen, Xiongbiao

    2017-11-01

    Three-dimensional (3D) printing is an emerging technology for the fabrication of scaffolds to repair/replace damaged tissue/organs in tissue engineering. This paper presents our study on 3D printed alginate scaffolds treated with phosphate buffered saline (PBS) and polyethyleneimine (PEI) coating and their impacts on the surface morphology and cellular response of the printed scaffolds. In our study, sterile alginate was prepared by means of the freeze-drying method and then, used to prepare the hydrogel for 3D printing into calcium chloride, forming 3D scaffolds. Scaffolds were treated with PBS for a time period of two days and seven days, respectively, and PEI coating; then they were seeded with Schwann cells (RSC96) for the examination of cellular response (proliferation and differentiation). In addition, swelling and stiffness (Young's modulus) of the treated scaffolds was evaluated, while their surface morphology was assessed using scanning electron microscopy (SEM). SEM images revealed significant changes in scaffold surface morphology due to degradation caused by the PBS treatment over time. Our cell proliferation assessment over seven days showed that a two-day PBS treatment could be more effective than seven-day PBS treatment for improving cell attachment and elongation. While PEI coating of alginate scaffolds seemed to contribute to cell growth, Schwann cells stayed round on the surface of alginate over the period of cell culture. In conclusion, PBS-treatment may offer the potential to induce surface physical cues due to degradation of alginate, which could improve cell attachment post cell-seeding of 3D-printed alginate scaffolds.

  13. Development of a Spirulina Extract/Alginate-Imbedded PCL Nanofibrous Cosmetic Patch.

    PubMed

    Byeon, Seon Yeong; Cho, Myung Kwon; Shim, Kyou Hee; Kim, Hye Jin; Song, Hyeon Gi; Shin, Hwa Sung

    2017-09-28

    Cosmetic patches have recently been developed as skin products for personal care owing to rapid advances in the technology of delivery of active ingredients, moisture, and adhesiveness to skin. Alginate and Spirulina are typical marine resources used in cosmetic products. This research involved the development of a Spirulina extract-impregnated alginate nanofiber cosmetic patch supported by a polycaprolactone (PCL) nanofiber cover ( Spi /Alg-PCL NF patch). In addition to the ability of alginate to affect moisture and adhesiveness to skin, the impregnation of Spirulina extract strengthened those abilities as well as its own bioactive effectiveness. All fabrication processing steps were undertaken in aqueous solution. The three components (alginate, Spirulina extract, and PCL) had no detected cytotoxicity in human keratinocyte cell-based examination. In addition, wetting the pre-dried patch on the skin resulted in the Spirulina extract being released within 30 min. The results indicate the excellence of the Spi /Alg-PCL NF patch as a skin-care cosmetic device.

  14. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is generally...

  15. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is generally...

  16. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is generally...

  17. 21 CFR 582.7187 - Calcium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium alginate. 582.7187 Section 582.7187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium alginate. (a) Product. Calcium alginate. (b) Conditions of use. This substance is generally...

  18. 21 CFR 582.7187 - Calcium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium alginate. 582.7187 Section 582.7187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium alginate. (a) Product. Calcium alginate. (b) Conditions of use. This substance is generally...

  19. 21 CFR 582.7187 - Calcium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium alginate. 582.7187 Section 582.7187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium alginate. (a) Product. Calcium alginate. (b) Conditions of use. This substance is generally...

  20. Effect of alginate composition on profile release and characteristics of chitosan-alginate microparticles loaded with mangosteen extract

    NASA Astrophysics Data System (ADS)

    Mulia, Kamarza; Halimah, Nur; Krisanti, Elsa

    2017-03-01

    Preparation of mangostin-loaded chitosan-alginate microparticles, chemical and physical characterization of the particles, and mangostin release profiles, are described herein. Mangostin rich fraction was obtained from Garcinia mangostana L. pericarp by extraction followed by fractionation. Mangostin-loaded chitosan-alginate microparticles were prepared by ionic gelation method using tripolyphosphate as the linking agent and various concentration of alginate. Mangostin was effectively loaded in all microparticle formulations, resulting in ˜97% encapsulation efficiencies. The loading of mangostin and the in-vitro release profiles in simulated gastrointestinal fluids were affected by the chitosan to alginate ratios used in the preparation of the microparticles. Increased alginate concentration resulted in lowered release of mangostin from microparticles immersed in simulated gastric fluid (pH 1.2) up to two hours. Low release of mangostin in acidic fluid but high release in simulated colon fluid, indicated that the chitosan-alginate microparticles are prospective carrier for extended release of active compound in gastrointestinal system.

  1. Preparation of in situ hardening composite microcarriers: Calcium phosphate cement combined with alginate for bone regeneration

    PubMed Central

    Park, Jung-Hui; Lee, Eun-Jung; Knowles, Jonathan C

    2014-01-01

    Novel microcarriers consisting of calcium phosphate cement and alginate were prepared for use as three-dimensional scaffolds for the culture and expansion of cells that are effective for bone tissue engineering. The calcium phosphate cement-alginate composite microcarriers were produced by an emulsification of the composite aqueous solutions mixed at varying ratios (calcium phosphate cement powder/alginate solution = 0.8–1.2) in an oil bath and the subsequent in situ hardening of the compositions during spherodization. Moreover, a porous structure could be easily created in the solid microcarriers by soaking the produced microcarriers in water and a subsequent freeze-drying process. Bone mineral-like apatite nanocrystallites were shown to rapidly develop on the calcium phosphate cement–alginate microcarriers under moist conditions due to the conversion of the α-tricalcium phosphate phase in the calcium phosphate cement into a carbonate–hydroxyapatite. Osteoblastic cells cultured on the microspherical scaffolds were proven to be viable, with an active proliferative potential during 14 days of culture, and their osteogenic differentiation was confirmed by the determination of alkaline phosphatase activity. The in situ hardening calcium phosphate cement–alginate microcarriers developed herein may be used as potential three-dimensional scaffolds for cell delivery and tissue engineering of bone. PMID:23836845

  2. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized as...

  3. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized as...

  4. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized as...

  5. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized as...

  6. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized as...

  7. Removal of Cd (II) from synthetic wastewater by alginate-Ayous wood sawdust (Triplochiton scleroxylon) composite material.

    PubMed

    Njimou, Jacques Romain; Măicăneanu, Andrada; Indolean, Cerasella; Nanseu-Njiki, Charles Péguy; Ngameni, Emmanuel

    2016-01-01

    The biosorption characteristics of Cd (II) ions from synthetic wastewater using raw Ayous wood sawdust (Triplochiton scleroxylon), r-AS, immobilized by sodium alginate were investigated with respect to pH, biomass quantity, contact time, initial concentration of heavy metal, temperature and stirring rate. The experimental data fitted well with the Langmuir isotherm, suggesting that monolayer adsorption of the cadmium ions onto alginate-Ayous sawdust composite (a-ASC). The obtained monolayer adsorption capacity of a-ASC for Cd (II) was 6.21 mg/g. From the Dubinin-Radushkevich isotherm model, a 5.39 kJ/mol value for the mean free energy was calculated, indicating that Cd (II) biosorption could include an important physisorption stage. Thermodynamic calculations showed that the Cd (II) biosorption process was feasible, endothermic and spontaneous in nature under examined conditions. The results indicated that a-ASC could be an alternative material replacing more costly adsorbents used for the removal of heavy metals.

  8. Towards cell-free isobutanol production: Development of a novel immobilized enzyme system.

    PubMed

    Grimaldi, Joseph; Collins, Cynthia H; Belfort, Georges

    2016-01-01

    Producing fuels and chemical intermediates with cell cultures is severely limited by low product concentrations (≤0.2%(v/v)) due to feedback inhibition, cell instability, and lack of economical product recovery processes. We have developed an alternate simplified production scheme based on a cell-free immobilized enzyme system. Two immobilized enzymes (keto-acid decarboxylase (KdcA) and alcohol dehydrogenase (ADH)) and one enzyme in solution (formate dehydrogenase (FDH) for NADH recycle) produced isobutanol titers 8 to 20 times higher than the highest reported titers with S. cerevisiae on a mol/mol basis. These high conversion rates and low protein leaching were achieved by covalent immobilization of enzymes (ADH) and enzyme fusions (fKdcA) on methacrylate resin. The new enzyme system without in situ removal of isobutanol achieved a 55% conversion of ketoisovaleric acid to isobutanol at a concentration of 0.135 (mole isobutanol produced for each mole ketoisovaleric acid consumed). Further increasing titer will require continuous removal of the isobutanol using an in situ recovery system. © 2015 American Institute of Chemical Engineers.

  9. Immobilization of Escherichia coli cells with penicillin-amidohydrolase activity on solid polymeric carriers.

    PubMed

    Zurková, E; Drobník, J; Kálal, J; Svec, F; Tyrácková, V; Vojtísek, V; Zeman, R

    1983-09-01

    Whole cells of Escherichia coli containing the enzyme penicillinamidohydrolase EC 3.5.1.11 were immobilized on the surface of modified macroporous copolymers of glycidylmethacrylate with ethylenedimethacrylate and of copolymers of methacrylaldehyde (MA) with divinylbenzene (DVB) by means of glutaraldehyde. These polymeric carriers were modified before cell binding by using ammonia or polyamines, especially ethylenediamine and hexamethylenediamine (HMDA). The highest specific activity and the largest yield in cell immobilization were achieved with the macroporous copolymer of MA and DVB modified with HMDA. The material thus obtained was used in repeated conversions of benzylpenicillin to 6-aminopenicillanic acid in a stirred batch reactor.

  10. A conformational landscape for alginate secretion across the outer membrane of Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Jingquan; Rouse, Sarah L.; Li, Dianfan

    2014-08-01

    Crystal structures of the β-barrel porin AlgE reveal a mechanism whereby alginate is exported from P. aeruginosa for biofilm formation. The exopolysaccharide alginate is an important component of biofilms produced by Pseudomonas aeruginosa, a major pathogen that contributes to the demise of cystic fibrosis patients. Alginate exits the cell via the outer membrane porin AlgE. X-ray structures of several AlgE crystal forms are reported here. Whilst all share a common β-barrel constitution, they differ in the degree to which loops L2 and T8 are ordered. L2 and T8 have been identified as an extracellular gate (E-gate) and a periplasmic gatemore » (P-gate), respectively, that reside on either side of an alginate-selectivity pore located midway through AlgE. Passage of alginate across the membrane is proposed to be regulated by the sequential opening and closing of the two gates. In one crystal form, the selectivity pore contains a bound citrate. Because citrate mimics the uronate monomers of alginate, its location is taken to highlight a route through AlgE taken by alginate as it crosses the pore. Docking and molecular-dynamics simulations support and extend the proposed transport mechanism. Specifically, the P-gate and E-gate are flexible and move between open and closed states. Citrate can leave the selectivity pore bidirectionally. Alginate docks stably in a linear conformation through the open pore. To translate across the pore, a force is required that presumably is provided by the alginate-synthesis machinery. Accessing the open pore is facilitated by complex formation between AlgE and the periplasmic protein AlgK. Alginate can thread through a continuous pore in the complex, suggesting that AlgK pre-orients newly synthesized exopolysaccharide for delivery to AlgE.« less

  11. Biological treatment of toxic petroleum spent caustic in fluidized bed bioreactor using immobilized cells of Thiobacillus RAI01.

    PubMed

    Potumarthi, Ravichandra; Mugeraya, Gopal; Jetty, Annapurna

    2008-12-01

    In the present studies, newly isolated Thiobacillus sp was used for the treatment of synthetic spent sulfide caustic in a laboratory-scale fluidized bed bioreactor. The sulfide oxidation was tested using Ca-alginate immobilized Thiobacillus sp. Initially, response surface methodology was applied for the optimization of four parameters to check the sulfide oxidation efficiency in batch mode. Further, reactor was operated in continuous mode for 51 days at different sulfide loading rates and retention times to test the sulfide oxidation and sulfate and thiosulfate formation. Sulfide conversions in the range of 90-98% were obtained at almost all sulfide loading rates and hydraulic retention times. However, increased loading rates resulted in lower sulfide oxidation capacity. All the experiments were conducted at constant pH of around 6 and temperature of 30 +/- 5 degrees C.

  12. Muscle regeneration potential and satellite cell activation profile during recovery following hindlimb immobilization in mice.

    PubMed

    Guitart, Maria; Lloreta, Josep; Mañas-Garcia, Laura; Barreiro, Esther

    2018-05-01

    Reduced muscle activity leads to muscle atrophy and function loss in patients and animal models. Satellite cells (SCs) are postnatal muscle stem cells that play a pivotal role in skeletal muscle regeneration following injury. The regenerative potential, satellite cell numbers, and markers during recovery following immobilization of the hindlimb for 7 days were explored. In mice exposed to 7 days of hindlimb immobilization, in those exposed to recovery (7 days, splint removal), and in contralateral control muscles, muscle precursor cells were isolated from all hindlimb muscles (fluorescence-activated cell sorting, FACS) and SCs, and muscle regeneration were identified using immunofluorescence (gastrocnemius and soleus) and electron microscopy (EM, gastrocnemius). Expression of ki67, pax7, myoD, and myogenin was quantified (RT-PCR) from SC FACS yields. Body and grip strength were determined. Following 7 day hindlimb immobilization, a decline in SCs (FACS, immunofluorescence) was observed together with an upregulation of SC activation markers and signs of muscle regeneration including fusion to existing myofibers (EM). Recovery following hindlimb immobilization was characterized by a program of muscle regeneration events. Hindlimb immobilization induced a decline in SCs together with an upregulation of markers of SC activation, suggesting that fusion to existing myofibers takes place during unloading. Muscle recovery induced a significant rise in muscle precursor cells and regeneration events along with reduced SC activation expression markers and a concomitant rise in terminal muscle differentiation expression. These are novel findings of potential applicability for the treatment of disuse muscle atrophy, which is commonly associated with severe chronic and acute conditions. © 2017 Wiley Periodicals, Inc.

  13. Rapid one-step purification of single-cells encapsulated in alginate microcapsules from oil to aqueous phase using a hydrophobic filter paper: implications for single-cell experiments.

    PubMed

    Lee, Do-Hyun; Jang, Miran; Park, Je-Kyun

    2014-10-01

    By virtue of the biocompatibility and physical properties of hydrogel, picoliter-sized hydrogel microcapsules have been considered to be a biometric signature containing several features similar to that of encapsulated single cells, including phenotype, viability, and intracellular content. To maximize the experimental potential of encapsulating cells in hydrogel microcapsules, a method that enables efficient hydrogel microcapsule purification from oil is necessary. Current methods based on centrifugation for the conventional stepwise rinsing of oil, are slow and laborious and decrease the monodispersity and yield of the recovered hydrogel microcapsules. To remedy these shortcomings we have developed a simple one-step method to purify alginate microcapsules, containing a single live cell, from oil to aqueous phase. This method employs oil impregnation using a commercially available hydrophobic filter paper without multistep centrifugal purification and complicated microchannel networks. The oil-suspended alginate microcapsules encapsulating single cells from mammalian cancer cell lines (MCF-7, HepG2, and U937) and microorganisms (Chlorella vulgaris) were successfully exchanged to cell culture media by quick (~10 min) depletion of the surrounding oil phase without coalescence of neighboring microcapsules. Cell proliferation and high integrity of the microcapsules were also demonstrated by long-term incubation of microcapsules containing a single live cell. We expect that this method for the simple and rapid purification of encapsulated single-cell microcapsules will attain widespread adoption, assisting cell biologists and clinicians in the development of single-cell experiments. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Capture and release of cells using a temperature-responsive surface that immobilizes an antibody through DNA duplex formation.

    PubMed

    Kimura, Tsuyoshi; Nakamura, Naoko; Umeda, Kanji; Hashimoto, Yoshihide; Kishida, Akio

    We synthesized a temperature-responsive surface that immobilized an antibody via DNA duplex formation for selective capture and release of target cells. Polyethylene films were modified by grafting poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAAm-co-AAc)), which were prepared at various ratios of NIPAAm/AAc. The increased hydrophilicity of P(NIPAAm-co-PAA) film with decreased temperature was confirmed by water contact angle measurement. Single strand DNA (20mer) was chemically immobilized on the surface and then antibody (anti-mouse CD45, mCD45) modified with the complementary single strand DNA was immobilized on the surface through DNA duplex formation. The mCD45 antibody immobilization was confirmed by immunostaining. HeLa cells (mCD45 negative) and mouse bone marrow (BM) cells (mCD45 positive) were adhered on the surfaces at 37 °C. Although HeLa cells were detached by 4 °C incubation, BM cells were still adhered on the surface and then the adhered cells were released by DNase treatment. From these results, it was suggested that cells could be selectively captured and collected by using a film having surface that immobilizes an antibody via DNA duplex formation.

  15. Design, fabrication and characterization of oxidized alginate-gelatin hydrogels for muscle tissue engineering applications.

    PubMed

    Baniasadi, Hossein; Mashayekhan, Shohreh; Fadaoddini, Samira; Haghirsharifzamini, Yasamin

    2016-07-01

    In this study, we reported the preparation of self cross-linked oxidized alginate-gelatin hydrogels for muscle tissue engineering. The effect of oxidation degree (OD) and oxidized alginate/gelatin (OA/GEL) weight ratio were examined and the results showed that in the constant OA/GEL weight ratio, both cross-linking density and Young's modulus enhanced by increasing OD due to increment of aldehyde groups. Furthermore, the degradation rate was increased with increasing OD probably due to decrement in alginate molecular weight during oxidation reaction facilitated degradation of alginate chains. MTT cytotoxicity assays performed on Wharton's Jelly-derived umbilical cord mesenchymal stem cells cultured on hydrogels with OD of 30% showed that the highest rate of cell proliferation belong to hydrogel with OA/GEL weight ratio of 30/70. Overall, it can be concluded from all obtained results that the prepared hydrogel with OA/GEL weight ratio and OD of 30/70 and 30%, respectively, could be proper candidate for use in muscle tissue engineering. © The Author(s) 2016.

  16. Microchip-based Integration of Cell Immobilization, Electrophoresis, Post-column Derivatization, and Fluorescence Detection for Monitoring the Release of Dopamine from PC 12 Cells

    PubMed Central

    Li, Michelle W.; Martin, R. Scott

    2008-01-01

    In this paper, we describe the fabrication and evaluation of a multilayer microchip device that can be used to quantitatively measure the amount of catecholamines released from PC 12 cells immobilized within the same device. This approach allows immobilized cells to be stimulated on-chip and, through rapid actuation of integrated microvalves, the products released from the cells are repeatedly injected into the electrophoresis portion of the microchip, where the analytes are separated based upon mass and charge and detected through post-column derivatization and fluorescence detection. Following optimization of the post-column derivatization detection scheme (using naphthalene-2,3-dicarboxaldehyde and 2-β-mercaptoethanol), off-chip cell stimulation experiments were performed to demonstrate the ability of this device to detect dopamine from a population of PC 12 cells. The final 3-dimensional device that integrates an immobilized PC 12 cell reactor with the bilayer continuous flow sampling/electrophoresis microchip was used to continuously monitor the on-chip stimulated release of dopamine from PC 12 cells. Similar dopamine release was seen when stimulating on-chip versus off-chip yet the on-chip immobilization studies could be carried out with 500 times fewer cells in a much reduced volume. While this paper is focused on PC 12 cells and neurotransmitter analysis, the final device is a general analytical tool that is amenable to immobilization of a variety of cell lines and analysis of various released analytes by electrophoretic means. PMID:18810283

  17. Impact of plant growth-promoting rhizobacteria on root colonization potential and life cycle of Rhizophagus irregularis following co-entrapment into alginate beads.

    PubMed

    Loján, P; Demortier, M; Velivelli, S L S; Pfeiffer, S; Suárez, J P; de Vos, P; Prestwich, B D; Sessitsch, A; Declerck, S

    2017-02-01

    This study aimed at evaluating the impact of seven plant growth-promoting rhizobacteria (PGPR) on root colonization and life cycle of Rhizophagus irregularis MUCL 41833 when co-entrapped in alginate beads. Two in vitro experiments were conducted. The first consisted of the immobilization of R. irregularis and seven PGPR isolates into alginate beads to assess the effect of the bacteria on the pre-symbiotic growth of the fungus. In the second experiment, the best performing PGPR from experiment 1 was tested for its ability to promote the symbiotic development of the AMF in potato plantlets from three cultivars. Results showed that only one isolate identified as Pseudomonas plecoglossicida (R-67094) promoted germ tube elongation and hyphal branching of germinated spores during the pre-symbiotic phase of the fungus. This PGPR further promoted the symbiotic development of the AMF in potato plants. The co-entrapment of Ps. plecoglossicida R-67094 and R. irregularis MUCL 41833 in alginate beads improved root colonization by the AMF and its further life cycle under the experimental conditions. Co-entrapment of suitable AMF-PGPR combinations within alginate beads may represent an innovative technology that can be fine-tuned for the development of efficient consortia-based bioformulations. © 2016 The Society for Applied Microbiology.

  18. Binding and Leakage of Barium in Alginate Microbeads

    PubMed Central

    Mørch, Yrr A.; Qi, Meirigeng; Gundersen, Per Ole M.; Formo, Kjetil; Lacik, Igor; Skjåk-Bræk, Gudmund; Oberholzer, Jose; Strand, Berit L.

    2013-01-01

    Microbeads of alginate cross-linked with Ca2+ and/or Ba2+ are popular matrices in cell-based therapy. The aim of this study was to quantify the binding of barium in alginate microbeads and its leakage under in vitro and accumulation under in vivo conditions. Low concentrations of barium (1 mM) in combination with calcium (50 mM) and high concentrations of barium (20 mM) in gelling solutions were used for preparation of microbeads made of high-G and high-M alginates. High-G microbeads accumulated barium from gelling solution and contained higher concentrations of divalent ions for both low- and high-Ba exposure compared to high-G microbeads exposed to calcium solely and to high-M microbeads for all gelling conditions. Although most of the unbound divalent ions were removed during the wash and culture steps, leakage of barium was still detected during storage. Barium accumulation in blood and femur bone of mice implanted with high-G beads was found to be dose-dependent. Estimated barium leakage relevant to transplantation to diabetic patients with islets in alginate microbeads showed that the leakage was 2.5 times lower than the tolerable intake value given by WHO for high-G microbeads made using low barium concentration. The similar estimate gave 1.5 times higher than is the tolerable intake value for the high-G microbeads made using high barium concentration. In order to reduce the risk of barium accumulation that may be of safety concern, the microbeads made of high-G alginate gelled with a combination of calcium and low concentration of barium ions is recommended for islet transplantation. PMID:22700168

  19. Binding and leakage of barium in alginate microbeads.

    PubMed

    Mørch, Yrr A; Qi, Meirigeng; Gundersen, Per Ole M; Formo, Kjetil; Lacik, Igor; Skjåk-Braek, Gudmund; Oberholzer, Jose; Strand, Berit L

    2012-11-01

    Microbeads of alginate crosslinked with Ca(2+) and/or Ba(2+) are popular matrices in cell-based therapy. The aim of this study was to quantify the binding of barium in alginate microbeads and its leakage under in vitro and accumulation under in vivo conditions. Low concentrations of barium (1 mM) in combination with calcium (50 mM) and high concentrations of barium (20 mM) in gelling solutions were used for preparation of microbeads made of high-G and high-M alginates. High-G microbeads accumulated barium from gelling solution and contained higher concentrations of divalent ions for both low- and high-Ba exposure compared with high-G microbeads exposed to calcium solely and to high-M microbeads for all gelling conditions. Although most of the unbound divalent ions were removed during the wash and culture steps, leakage of barium was still detected during storage. Barium accumulation in blood and femur bone of mice implanted with high-G beads was found to be dose-dependent. Estimated barium leakage relevant to transplantation to diabetic patients with islets in alginate microbeads showed that the leakage was 2.5 times lower than the tolerable intake value given by WHO for high-G microbeads made using low barium concentration. The similar estimate gave 1.5 times higher than is the tolerable intake value for the high-G microbeads made using high barium concentration. To reduce the risk of barium accumulation that may be of safety concern, the microbeads made of high-G alginate gelled with a combination of calcium and low concentration of barium ions is recommended for islet transplantation. Copyright © 2012 Wiley Periodicals, Inc.

  20. Alginate Particles with Ovalbumin (OVA) Peptide Can Serve as a Carrier and Adjuvant for Immune Therapy in B16-OVA Cancer Model.

    PubMed

    Zhu, Longbao; Ge, Fei; Yang, Liangjun; Li, Wanzhen; Wei, Shenghua; Tao, Yugui; Du, Guocheng

    2017-04-28

    BACKGROUND Alginate is a natural polysaccharide obtained from brown algae and has been shown to have numerous applications in biomedical science, such as wound healing, delivery of bioactive agents, and cell transplantation. Ovalbumin (OVA) peptide 323-339 has been reported to be involved in immune response.  MATERIAL AND METHODS This work investigated the use of alginate particles as a carrier and adjuvant for the immune therapy of cancer. Alginate particles loaded with OVA peptide were produced via emulsion. A tumor model was established in C57BL/6J mice via subcutaneous injection of 3×105 B16-OVA tumor cells. The effect of alginate/OVA peptide on cell viability was analyzed by use of the CCK-8 assay kit. Activation of macrophages was examined by checking cell surface makers CD40 and CD86 by FACs. RESULTS Alginate/OVA peptide inhibited tumor progression more effectively than using the peptide alone. The viability and uptake study illustrated that this particle is safe and non-toxic. The activation study demonstrated that alginate particles can promote the activation of surface markers on macrophages. ELISA assay showed that the particles with peptide can promote the secretion of inflammatory and effector cytokines from macrophages.  CONCLUSIONS This study demonstrated that alginate has dual functions in immune therapy of cancer, serving both as a carrier and an adjuvant.

  1. Comparative analysis for the production of fatty acid alkyl esterase using whole cell biocatalyst and purified enzyme from Rhizopus oryzae on waste cooking oil (sunflower oil).

    PubMed

    Balasubramaniam, Bharathiraja; Sudalaiyadum Perumal, Ayyappasamy; Jayaraman, Jayamuthunagai; Mani, Jayakumar; Ramanujam, Praveenkumar

    2012-08-01

    The petroleum fuel is nearing the line of extinction. Recent research and technology have provided promising outcomes to rely on biodiesel as the alternative and conventional source of fuel. The use of renewable source - vegetable oil constitutes the main stream of research. In this preliminary study, Waste Cooking Oil (WCO) was used as the substrate for biodiesel production. Lipase enzyme producing fungi Rhizopus oryzae 262 and commercially available pure lipase enzyme were used for comparative study in the production of Fatty Acid Alkyl Esters (FAAE). The whole cell (RO 262) and pure lipase enzyme (PE) were immobilized using calcium alginate beads. Calcium alginate was prepared by optimizing with different molar ratios of calcium chloride and different per cent sodium alginate. Entrapment immobilization was done for whole cell biocatalyst (WCB). PE was also immobilized by entrapment for the transesterification reaction. Seven different solvents - methanol, ethanol, n-propanol, n-butanol, iso-propanol, iso-butanol and iso-amyl alcohol were used as the acyl acceptors. The reaction parameters like temperature (30°C), molar ratio (1:3 - oil:solvent), reaction time (24 h), and amount of enzyme (10% mass ratio to oil) were also optimized for methanol alone. The same parameters were adopted for the other acyl acceptors too. Among the different acyl acceptors - methanol, whose reaction parameters were optimized showed maximum conversion of triglycerides to FAAE-94% with PE and 84% with WCB. On the whole, PE showed better catalytic converting ability with all the acyl acceptor compared to WCB. Gas chromatography analysis (GC) was done to determine the fatty acid composition of WCO (sunflower oil) and FAAE production with different acyl acceptors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Statistical optimization of arsenic biosorption by microbial enzyme via Ca-alginate beads.

    PubMed

    Banerjee, Suchetana; Banerjee, Anindita; Sarkar, Priyabrata

    2018-04-16

    Bioremediation of arsenic using green technology via microbial enzymes has attracted scientists due to its simplicity and cost effectiveness. Statistical optimization of arsenate bioremediation was conducted by the enzyme arsenate reductase extracted from arsenic tolerant bacterium Pseudomonas alcaligenes. Response surface methodology based on Box-Behnken design matrix was performed to determine the optimal operational conditions of a multivariable system and their interactive effects on the bioremediation process. The highest biosorptive activity of 96.2 µg gm -1 of beads was achieved under optimized conditions (pH = 7.0; As (V) concentration = 1000 ppb; time = 2 h). SEM analysis showed the morphological changes on the surface of enzyme immobilized gluteraldehyde crosslinked Ca-alginate beads. The immobilized enzyme retained its activity for 8 cycles. ANOVA with a high correlation coefficient (R 2 > 0.99) and lower "Prob > F"value (<0.0001) corroborated the second-order polynomial model for the biosorption process. This study on the adsorptive removal of As (V) by enzyme-loaded biosorbent revealed a possible way of its application in large scale treatment of As (V)-contaminated water bodies.

  3. Fabrication of micropatterned alginate-gelatin and k-carrageenan hydrogels of defined shapes using simple wax mould method as a platform for stem cell/induced Pluripotent Stem Cells (iPSC) culture.

    PubMed

    Vignesh, S; Gopalakrishnan, Aswathi; M R, Poorna; Nair, Shantikumar V; Jayakumar, R; Mony, Ullas

    2018-06-01

    Micropatterning techniques involve soft lithography, which is laborious, expensive and restricted to a narrow spectrum of biomaterials. In this work we report, first time employment of patterned wax moulds for generation of micropatterned alginate-gelatin and κ-carrageenan (κ-CRG) hydrogel systems by a novel, simple and cost effective method. We generated and characterized uniform and reproducible micropatterned hydrogels of varying sizes and shapes such as square projections, square grooves, and circular grids and crisscrossed hillocks. The rheological analysis showed that κ-carrageenan hydrogels had higher gel strength when compared to alginate-gelatin hydrogels. Human Mesenchymal stem cells (hMSCs) and Human Induced Pluripotent Stem Cells (hiPSCs) were found to be cytocompatible with these hydrogels. This micropatterned hydrogel system may have potential application in tissue engineering and also in understanding the basic biology behind the stem cell/iPSC fate. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Transplantation of an alginate-matrigel matrix containing isolated ovarian cells: first step in developing a biodegradable scaffold to transplant isolated preantral follicles and ovarian cells.

    PubMed

    Vanacker, Julie; Luyckx, Valérie; Dolmans, Marie-Madeleine; Des Rieux, Anne; Jaeger, Jonathan; Van Langendonckt, Anne; Donnez, Jacques; Amorim, Christiani A

    2012-09-01

    For women diagnosed with leukemia, transplantation of cryopreserved ovarian tissue after disease remission is not advisable. Therefore, to restore fertility in these patients, we aim to develop a biodegradable artificial ovary that offers an environment where isolated follicles and ovarian cells (OCs) can survive and grow. Four NMRI mice were ovariectomized and their ovaries used to isolate OCs. Groups of 50,000 OCs were embedded in an alginate-matrigel matrix for further fixation (fresh controls), one week of in vitro culture (IVC) or heterotopic autografting. OC proliferation (Ki67), apoptosis (TUNEL), scaffold degradation, vessel formation (CD34) and inflammation (CD45) were analyzed. Ki67-positive OCs were found in 2.3%, 9.0% and 15.5% cells of cases in fresh, IVC and grafted beads respectively, while cells were TUNEL-positive in 0%, 1.5% and 6.9% of cases. After IVC or grafting, the beads degraded, losing their original round aspect, and infiltrating blood capillaries could be observed in the grafted beads. CD34-positive cells and 22% CD45-positive cells were found around and inside the matrix. In conclusion, our results demonstrate that an alginate-based matrix is a promising proposition to graft isolated OCs. After transplantation, this matrix was able to degrade, allowed vascularization and elicited a low inflammatory response. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Binding constant of cell adhesion receptors and substrate-immobilized ligands depends on the distribution of ligands

    NASA Astrophysics Data System (ADS)

    Li, Long; Hu, Jinglei; Xu, Guangkui; Song, Fan

    2018-01-01

    Cell-cell adhesion and the adhesion of cells to tissues and extracellular matrix, which are pivotal for immune response, tissue development, and cell locomotion, depend sensitively on the binding constant of receptor and ligand molecules anchored on the apposing surfaces. An important question remains of whether the immobilization of ligands affects the affinity of binding with cell adhesion receptors. We have investigated the adhesion of multicomponent membranes to a flat substrate coated with immobile ligands using Monte Carlo simulations of a statistical mesoscopic model with biologically relevant parameters. We find that the binding of the adhesion receptors to ligands immobilized on the substrate is strongly affected by the ligand distribution. In the case of ligand clusters, the receptor-ligand binding constant can be significantly enhanced due to the less translational entropy loss of lipid-raft domains in the model cell membranes upon the formation of additional complexes. For ligands randomly or uniformly immobilized on the substrate, the binding constant is rather decreased since the receptors localized in lipid-raft domains have to pay an energetic penalty in order to bind ligands. Our findings help to understand why cell-substrate adhesion experiments for measuring the impact of lipid rafts on the receptor-ligand interactions led to contradictory results.

  6. Constrained diffusion or immobile fraction on cell surfaces: a new interpretation.

    PubMed Central

    Feder, T J; Brust-Mascher, I; Slattery, J P; Baird, B; Webb, W W

    1996-01-01

    Protein lateral mobility in cell membranes is generally measured using fluorescence photobleaching recovery (FPR). Since the development of this technique, the data have been interpreted by assuming free Brownian diffusion of cell surface receptors in two dimensions, an interpretation that requires that a subset of the diffusing species remains immobile. The origin of this so-called immobile fraction remains a mystery. In FPR, the motions of thousands of particles are inherently averaged, inevitably masking the details of individual motions. Recently, tracking of individual cell surface receptors has identified several distinct types of motion (Gross and Webb, 1988; Ghosh and Webb, 1988, 1990, 1994; Kusumi et al. 1993; Qian et al. 1991; Slattery, 1995), thereby calling into question the classical interpretation of FPR data as free Brownian motion of a limited mobile fraction. We have measured the motion of fluorescently labeled immunoglobulin E complexed to high affinity receptors (Fc epsilon RI) on rat basophilic leukemia cells using both single particle tracking and FPR. As in previous studies, our tracking results show that individual receptors may diffuse freely, or may exhibit restricted, time-dependent (anomalous) diffusion. Accordingly, we have analyzed FPR data by a new model to take this varied motion into account, and we show that the immobile fraction may be due to particles moving with the anomalous subdiffusion associated with restricted lateral mobility. Anomalous subdiffusion denotes random molecular motion in which the mean square displacements grow as a power law in time with a fractional positive exponent less than one. These findings call for a new model of cell membrane structure. PMID:8744314

  7. Pre-treatment of high oil and grease pet food industrial wastewaters using immobilized lipase hydrolyzation.

    PubMed

    Jeganathan, Jeganaesan; Bassi, Amarjeet; Nakhla, George

    2006-09-01

    Wastewaters generating from pet food industries contain high concentration of oil and grease (O&G), which is difficult to treat through conventional biological treatment systems. In this study, the hydrolysis of O&G originating from pet food industrial wastewater was evaluated. Candida rugosa lipase was immobilized in calcium alginate beads and applied in the hydrolysis experiment. Results showed that approximately 50% of the O&G was hydrolyzed due to the enzyme activity. A significant increment in COD and VFA production was also observed. The immobilized lipase activity was confirmed with p-nitrophenyl palmitate (pNPP) before and after O&G hydrolysis. During the 3-day experiment, approximately 65% of the beads were recovered and after the hydrolysis, approximately 70% of the enzyme activity remained in the beads. This study shows the potential of immobilized lipase as a pre-treatment step in biological treatment of pet food manufacturing wastewater.

  8. Еvaluation of biocompatibility and antioxidant efficiency of chitosan-alginate nanoparticles loaded with quercetin.

    PubMed

    Aluani, Denitsa; Tzankova, Virginia; Kondeva-Burdina, Magdalena; Yordanov, Yordan; Nikolova, Elena; Odzhakov, Feodor; Apostolov, Alexandar; Markova, Tzvetanka; Yoncheva, Krassimira

    2017-10-01

    The present study deals with development and evaluation of the safety profile of chitosan/alginate nanoparticles as a platform for delivery of a natural antioxidant quercetin. The nanoparticles were prepared by varying the ratios between both biopolymers giving different size and charge of the formulations. The biocompatibility was explored in vitro in cells from different origin: cultivated HepG2 cells, isolated primary rat hepatocytes, isolated murine spleen lymphocytes and macrophages. In vivo toxicological evaluation was performed after repeated 14-day oral administration to rats. The study revealed that chitosan/alginate nanoparticles did not change body weight, the relative weight of rat livers, liver histology, hematology and biochemical parameters. The protective effects of quercetin-loaded nanoparticles were investigated in the models of iron/ascorbic acid (Fe 2+ /AA) induced lipid peroxidation in microsomes and tert-butyl hydroperoxide oxidative stress in isolated rat hepatocytes. Interesting finding was that the empty chitosan/alginate nanoparticles possessed protective activity themselves. The antioxidant effects of quercetin loaded into the nanoparticles formulated with higher concentration of chitosan were superior compared to quercetin encapsulated in nanoparticles with higher amount of sodium alginate. In conclusion, chitosan/alginate nanoparticles can be considered appropriate carrier for quercetin, combining safety profile and improved protective activity of the encapsulated antioxidant. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Alginate: properties and biomedical applications

    PubMed Central

    Lee, Kuen Yong; Mooney, David J.

    2011-01-01

    Alginate is a biomaterial that has found numerous applications in biomedical science and engineering due to its favorable properties, including biocompatibility and ease of gelation. Alginate hydrogels have been particularly attractive in wound healing, drug delivery, and tissue engineering applications to date, as these gels retain structural similarity to the extracellular matrices in tissues and can be manipulated to play several critical roles. This review will provide a comprehensive overview of general properties of alginate and its hydrogels, their biomedical applications, and suggest new perspectives for future studies with these polymers. PMID:22125349

  10. Biotransformation and Detoxification of Xylidine Orange Dye Using Immobilized Cells of Marine-Derived Lysinibacillus sphaericus D3

    PubMed Central

    Devi, Prabha; Wahidullah, Solimabi; Sheikh, Farhan; Pereira, Rochelle; Narkhede, Niteen; Amonkar, Divya; Tilvi, Supriya; Meena, Ram Murthy

    2017-01-01

    Lysinibacillus sphaericus D3 cell-immobilized beads in natural gel sodium alginate decolorized the xylidine orange dye 1-(dimethylphenylazo)-2-naphthol-6-sulfonic acid sodium salt in the laboratory. Optimal conditions were selected for decolorization and the products formed were evaluated for toxicity by disc diffusion assay against common marine bacteria which revealed the non-toxic nature of the dye-degraded products. Decolorization of the brightly colored dye to colorless products was measured on an Ultra Violet-Vis spectrophotometer and its biodegradation products monitored on Thin Layer Chromatographic plate and High Performance Liquid Chromatography (HPLC). Finally, the metabolites formed in the decolorized medium were characterized by mass spectrometry. This analysis confirms the conversion of the parent molecule into lower molecular weight aromatic phenols and sulfonic acids as the final products of biotransformation. Based on the results, the probable degradation products of xylidine orange were naphthol, naphthylamine-6-sulfonic acid, 2-6-dihydroxynaphthalene, and bis-dinaphthylether. Thus, it may be concluded that the degradation pathway of the dye involved (a) reduction of its azo group by azoreductase enzyme (b) dimerization of the hydrazo compound followed by (c) degradation of monohydrazo as well as dimeric metabolites into low molecular weight aromatics. Finally, it may be worth exploring the possibility of commercially utilizing L. sphaericus D3 for industrial applications for treating large-scale dye waste water. PMID:28208715

  11. Alginate-Encapsulated Bacteria for the Treatment of Hypersaline Solutions in Microbial Fuel Cells.

    PubMed

    Alkotaini, Bassam; Tinucci, Samantha L; Robertson, Stuart J; Hasan, Kamrul; Minteer, Shelley D; Grattieri, Matteo

    2018-04-27

    A microbial fuel cell (MFC) based on a new wild-type strain of Salinivibrio sp. allowed the self-sustained treatment of hypersaline solutions (100 g L -1 , 1.71 m NaCl), reaching a removal of (87±11) % of the initial chemical oxygen demand after five days of operation, being the highest value achieved for hypersaline MFC. The degradation process and the evolution of the open circuit potential of the MFCs were correlated, opening the possibility for online monitoring of the treatment. The use of alginate capsules to trap bacterial cells, increasing cell density and stability, resulted in an eightfold higher power output, together with a more stable system, allowing operation up to five months with no maintenance required. The reported results are of critical importance to efforts to develop a sustainable and cost-effective system that treats hypersaline waste streams and reduces the quantity of polluting compounds released. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Recent insights into the cell immobilization technology applied for dark fermentative hydrogen production.

    PubMed

    Kumar, Gopalakrishnan; Mudhoo, Ackmez; Sivagurunathan, Periyasamy; Nagarajan, Dillirani; Ghimire, Anish; Lay, Chyi-How; Lin, Chiu-Yue; Lee, Duu-Jong; Chang, Jo-Shu

    2016-11-01

    The contribution and insights of the immobilization technology in the recent years with regards to the generation of (bio)hydrogen via dark fermentation have been reviewed. The types of immobilization practices, such as entrapment, encapsulation and adsorption, are discussed. Materials and carriers used for cell immobilization are also comprehensively surveyed. New development of nano-based immobilization and nano-materials has been highlighted pertaining to the specific subject of this review. The microorganisms and the type of carbon sources applied in the dark hydrogen fermentation are also discussed and summarized. In addition, the essential components of process operation and reactor configuration using immobilized microbial cultures in the design of varieties of bioreactors (such as fixed bed reactor, CSTR and UASB) are spotlighted. Finally, suggestions and future directions of this field are provided to assist the development of efficient, economical and sustainable hydrogen production technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Capture of endothelial cells under flow using immobilized vascular endothelial growth factor

    PubMed Central

    Smith, Randall J.; Koobatian, Maxwell T.; Shahini, Aref; Swartz, Daniel D.; Andreadis, Stelios T.

    2015-01-01

    We demonstrate the ability of immobilized vascular endothelial growth factor (VEGF) to capture endothelial cells (EC) with high specificity under fluid flow. To this end, we engineered a surface consisting of heparin bound to poly-L-lysine to permit immobilization of VEGF through the C-terminal heparin-binding domain. The immobilized growth factor retained its biological activity as shown by proliferation of EC and prolonged activation of KDR signaling. Using a microfluidic device we assessed the ability to capture EC under a range of shear stresses from low (0.5 dyne/cm2) to physiological (15 dyne/cm2). Capture was significant for all shear stresses tested. Immobilized VEGF was highly selective for EC as evidenced by significant capture of human umbilical vein and ovine pulmonary artery EC but no capture of human dermal fibroblasts, human hair follicle derived mesenchymal stem cells, or mouse fibroblasts. Further, VEGF could capture EC from mixtures with non-EC under low and high shear conditions as well as from complex fluids like whole human blood under high shear. Our findings may have far reaching implications, as they suggest that VEGF could be used to promote endothelialization of vascular grafts or neovascularization of implanted tissues by rare but continuously circulating EC. PMID:25771020

  14. Alginate nanobeads interspersed fibrin network as in situ forming hydrogel for soft tissue engineering.

    PubMed

    Deepthi, S; Jayakumar, R

    2018-06-01

    Hydrogels are a class of materials that has the property of injectability and in situ gel formation. This property of hydrogels is manipulated in this study to develop a biomimetic bioresorbable injectable system of alginate nanobeads interspersed in fibrin network. Alginate nanobeads developed by calcium cross-linking yielded a size of 200-500 nm. The alginate nanobeads fibrin hydrogel was formed using dual syringe apparatus. Characterization of the in situ injectable hydrogel was done by SEM, FTIR and Rheometer. The developed hydrogel showed mechanical strength of 19 kPa which provides the suitable compliance for soft tissue engineering. Cytocompatibility studies using human umbilical cord blood derived mesenchymal stem cells showed good attachment, proliferation and infiltration within the hydrogel similar to fibrin gel. The developed in situ forming hydrogel could be a suitable delivery carrier of stem cells for soft tissue regeneration.

  15. Ancient acquisition of "alginate utilization loci" by human gut microbiota.

    PubMed

    Mathieu, Sophie; Touvrey-Loiodice, Mélanie; Poulet, Laurent; Drouillard, Sophie; Vincentelli, Renaud; Henrissat, Bernard; Skjåk-Bræk, Gudmund; Helbert, William

    2018-05-23

    In bacteria from the phylum Bacteroidetes, the genes coding for enzymes involved in polysaccharide degradation are often colocalized and coregulated in so-called "polysaccharide utilization loci" (PULs). PULs dedicated to the degradation of marine polysaccharides (e.g. laminaran, ulvan, alginate and porphyran) have been characterized in marine bacteria. Interestingly, the gut microbiome of Japanese individuals acquired, by lateral transfer from marine bacteria, the genes involved in the breakdown of porphyran, the cell wall polysaccharide of the red seaweed used in maki. Sequence similarity analyses predict that the human gut microbiome also encodes enzymes for the degradation of alginate, the main cell wall polysaccharide of brown algae. We undertook the functional characterization of diverse polysaccharide lyases from family PL17, frequently found in marine bacteria as well as those of human gut bacteria. We demonstrate here that this family is polyspecific. Our phylogenetic analysis of family PL17 reveals that all alginate lyases, which have all the same specificity and mode of action, cluster together in a very distinct subfamily. The alginate lyases found in human gut bacteria group together in a single clade which is rooted deeply in the PL17 tree. These enzymes were found in PULs containing PL6 enzymes, which also clustered together in the phylogenetic tree of PL6. Together, biochemical and bioinformatics analyses suggest that acquisition of this system appears ancient and, because only traces of two successful transfers were detected upon inspection of PL6 and PL17 families, the pace of acquisition of marine polysaccharide degradation system is probably very slow.

  16. Optimization of alginate purification using polyvinylidene difluoride membrane filtration: Effects on immunogenicity and biocompatibility of three-dimensional alginate scaffolds

    PubMed Central

    Sondermeijer, Hugo P; Witkowski, Piotr; Woodland, David; Seki, Tetsunori; Aangenendt, Frank J; van der Laarse, Arnoud; Itescu, Silviu; Hardy, Mark A

    2017-01-01

    Sodium alginate is an effective biomaterial for tissue engineering applications. Non-purified alginate is contaminated with protein, lipopolysaccharide, DNA, and RNA, which could elicit adverse immunological reactions. We developed a purification protocol to generate biocompatible alginate based on (a) activated charcoal treatment, (b) use of hydrophobic membrane filtration (we used hydrophobic polyvinylidene difluoride membranes to remove organic contaminants), (c) dialysis, and finally (d) ethanol precipitation. Using this approach, we could omit pre-treatment with chloroform and significantly reduce the quantities of reagents used. Purification resulted in reduction of residual protein by 70% down to 0.315 mg/g, DNA by 62% down to 1.28 μg/g, and RNA by 61% down to less than 10 μg/g, respectively. Lipopolysaccharide levels were reduced by >90% to less than 125 EU/g. Purified alginate did not induce splenocyte proliferation in vitro. Three-dimensional scaffolds generated from purified alginate did not elicit a significant foreign body reaction, fibrotic overgrowth, or macrophage infiltration 4 weeks after implantation. This study describes a simplified and economical alginate purification method that results in alginate purity, which meets clinically useful criteria. PMID:27114440

  17. Brown adipogenesis of mouse embryonic stem cells in alginate microstrands

    NASA Astrophysics Data System (ADS)

    Unser, Andrea Mannarino

    The ability of brown adipocytes (fat cells) to dissipate energy as heat shows great promise for the treatment of obesity and other metabolic disorders. Employing pluripotent stem cells, with an emphasis on directed differentiation, may overcome many issues currently associated with primary fat cell cultures. However, brown adipocytes are difficult to transplant in vivo due to the instability of fat, in terms of necrosis and neovascularization, once injected. Thus, 3D cell culture systems that have the potential to mimic adipogenic microenvironments are needed, not only to advance brown fat implantation, but also to better understand the role of brown adipocytes in treating obesity. To address this need, we created 3D "Brown-Fat-in-Microstrands" by microfluidic synthesis of alginate hydrogel microstrands that encapsulated cells and directly induced cell differentiation into brown adipocytes, using mouse embryonic stem cells (ESCs) as a model of pluripotent stem cells and brown preadipocytes as a positive control. The effect of hydrogel formation parameters on brown adipogenesis was studied, leading to the establishment of "Brown-Fat-in-Microstrands". Brown adipocyte differentiation within microstrands was confirmed by lipid droplet accumulation, immunocytochemistry and qPCR analysis of gene expression of brown adipocyte marker uncoupling protein 1 (UCP1) in addition to adipocyte marker expression. Compared to a 2D approach, 3D differentiated "Brown-Fat-in-Microstrands" exhibited higher level of brown adipocyte marker expression. The functional analysis of "Brown-Fat-in-Microstrands" was attempted by measuring the mitochondrial activity of ESC-differentiated brown adipocytes in 3D using Seahorse XF24 3 Extracellular Flux Analyzer. The ability to create "Brown-Fat-in-Microstrands" from pluripotent stem cells opens up a new arena to understanding brown adipogenesis and its implications in obesity and metabolic disorders.

  18. Biodegradation of different petroleum hydrocarbons by free and immobilized microbial consortia.

    PubMed

    Shen, Tiantian; Pi, Yongrui; Bao, Mutai; Xu, Nana; Li, Yiming; Lu, Jinren

    2015-12-01

    The efficiencies of free and immobilized microbial consortia in the degradation of different types of petroleum hydrocarbons were investigated. In this study, the biodegradation rates of naphthalene, phenanthrene, pyrene and crude oil reached about 80%, 30%, 56% and 48% under the optimum environmental conditions of free microbial consortia after 7 d. We evaluated five unique co-metabolic substances with petroleum hydrocarbons, α-lactose was the best co-metabolic substance among glucose, α-lactose, soluble starch, yeast powder and urea. The orthogonal biodegradation analysis results showed that semi-coke was the best immobilized carrier followed by walnut shell and activated carbon. Meanwhile, the significance of various factors that contribute to the biodegradation of semi-coke immobilized microbial consortia followed the order of: α-lactose > semi-coke > sodium alginate > CaCl2. Moreover, the degradation rate of the immobilized microbial consortium (47%) was higher than that of a free microbial consortium (26%) under environmental conditions such as the crude oil concentration of 3 g L(-1), NaCl concentration of 20 g L(-1), pH at 7.2-7.4 and temperature of 25 °C after 5 d. SEM and FTIR analyses revealed that the structure of semi-coke became more porous and easily adhered to the microbial consortium; the functional groups (e.g., hydroxy and phosphate) were identified in the microbial consortium and were changed by immobilization. This study demonstrated that the ability of microbial adaptation to the environment can be improved by immobilization which expands the application fields of microbial remediation.

  19. Three immobilized-cell columnar bioreactors for enhanced production of commodity chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davison, B.H.; Scott, C.D.; Kaufman, E.N.

    1993-07-01

    Immobilized-cell fluidized-bed bioreactors (FBRS) can be used with a variety of fermentations to increase production of fuels, solvents, organic acids, and other fermentation products. Part of the increased rates and yields are due to the immobilization of the biocatalyst at high concentrations. This FBR system with immobilized Zymomonas mobiles increased ethanol productivity more than tenfold with 99% conversion and near stoichiometric yields. FBRs also offer several additional modes of operation for simultaneous fermentation and separation to further increase production by removing the inhibitory products directly from the continuous fermentation. The production of lactic acid by immobilized Lactobacillus was augmented withmore » the addition and removal of solid adsorbent particles to the FBR. An immiscible organic extractant also was used to extract butanol from the acetone-butanol fermentation by Clostridium acetobutylicum. Demonstrations with these FBR systems have already shown definite advantages by improved overall product yields (decreasing feed costs) and by increased rates (decreasing capital and operating costs). Further demonstration and scale-up continue.« less

  20. Three immobilized-cell columnar bioreactors for enhanced production of commodity chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davison, B.H.; Scott, C.D.; Kaufman, E.N.

    1993-12-31

    Immobilized-cell fluidized-bed bioreactors (FBRs) can be used with a variety of fermentations to increase production of fuels, solvents, organic acids, and other fermentation products. Part of the increased rates and yields are due to the immobilization of the biocatalyst at high concentrations. This FBR system with immobilized Zymomonas mobilis increased ethanol productivity more than tenfold with 99% conversion and near stoichiometric yields. FBRs also offer several additional modes of operation for simultaneous fermentation and separation to further increase production by removing the inhibitory products directly from the continuous fermentation. The production of lactic acid by immobilized Lactobacillus was augmented withmore » the addition and removal of solid adsorbent particles to the FBR. An immiscible organic extractant also was used to extract butanol from the acetone-butanol fermentation by Clostridium acetobutylicum. Demonstrations with these FBR systems have already shown definite advantages by improved overall product yields (decreasing feed costs) and by increased rates (decreasing capital and operating costs). Further demonstration and scale-up continue.« less

  1. Immobilization of Escherichia coli Cells Containing Aspartase Activity with Polyurethane and Its Application for l-Aspartic Acid Production

    PubMed Central

    Fusee, Murray C.; Swann, Wayne E.; Calton, Gary J.

    1981-01-01

    Whole cells of Escherichia coli containing aspartase activity were immobilized by mixing a cell suspension with a liquid isocyanate-capped polyurethane prepolymer (Hypol). The immobilized cell preparation was used to convert ammonium fumarate to l-aspartic acid. Properties of the immobilized E. coli cells containing aspartase were investigated with a batch reactor. A 1.67-fold increase in the l-aspartic acid production rate was observed at 37°C as compared to 25°C operating temperature. The pH optimum was broad, ranging from 8.5 to 9.2. Increasing the concentration of ammonium fumarate to 1.5 M from 1.0 M negatively affected the reaction rate. l-Aspartic acid was produced at an average rate of 2.18 × 10−4 mol/min per g (wet weight) of immobilized E. coli cells with a 37°C substrate solution consisting of 1.0 M ammonium fumarate with 1 mM Mg2+ (pH 9.0). PMID:16345865

  2. Utilization of Cheese Whey Using Synergistic Immobilization of β-Galactosidase and Saccharomyces cerevisiae Cells in Dual Matrices.

    PubMed

    Kokkiligadda, Anusha; Beniwal, Arun; Saini, Priyanka; Vij, Shilpa

    2016-08-01

    Whey is a byproduct of the dairy industry, which has prospects of using as a source for production of various valuable compounds. The lactose present in whey is considered as an environmental pollutant and its utilization for enzyme and fuel production, may be effective for whey bioremediation. The dairy yeast Kluyveromyces marxianus have the ability to utilize lactose sharply as the major carbon source for the production of the enzyme. Five strains were tested for the production of the β-galactosidase using whey. The maximum β-galactosidase activity of 1.74 IU/mg dry weight was achieved in whey using K. marxianus MTCC 1389. The biocatalyst was further immobilized on chitosan macroparticles and exhibited excellent functional activity at 35 °C. Almost 89 % lactose hydrolysis was attained for concentrated whey (100 g/L) and retained 89 % catalytic activity after 15 cycles of reuse. Finally, β-galactosidase was immobilized on chitosan and Saccharomyces cerevisiae on calcium alginate, and both were used together for the production of ethanol from concentrated whey. Maximal ethanol titer of 28.9 g/L was achieved during fermentation at 35 °C. The conclusions generated by employing two different matrices will be beneficial for the future modeling using engineered S. cerevisiae in scale-up studies.

  3. Performance of polymer nano composite membrane electrode assembly using Alginate as a dopant in polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Mulijani, S.

    2017-01-01

    Polymer membrane and composite polymer for membrane electrode assembly (MEAs) are synthesized and studied for usage in direct methanol fuel cell (DMFC). In this study, we prepared 3 type of MEAs, polystyrene (PS), sulfonated polystyrene (SPS) and composite polymer SPS-alginat membrane via catalyst hot pressed method. The performance and properties of prepared MEAs were evaluated and analyzed by impedance spectrometry and scanning electron microscopy (SEM). The result showed that, water up take of MEA composite polymer SPS-alginate was obtained higher than that in SPS and PS. The proton conductivity of MEA-SPS-alginate was also higher than that PS and PSS. SEM characterization revealed that the intimate contact between the carbon catalyst layers (CL) and the membranes, and the uniformly porous structure correlate positively with the MEAs prepared by hot pressed method, exhibiting high performances for DMFC.

  4. Effects of immobilization on spermiogenesis

    NASA Technical Reports Server (NTRS)

    Meitner, E. R.

    1980-01-01

    The influence of immobilization stress on spermiogenesis in rats was investigated. After 96 hour immobilization, histological changes began to manifest themselves in the form of practically complete disappearance of cell population of the wall of seminiferous tubule as well as a markedly increased number of cells with pathologic mitoses. Enzymological investigations showed various changes of activity (of acid and alkaline phosphatase and nonspecific esterase) in the 24, 48, and 96 hour immobilization groups.

  5. Degradation of pentachlorophenol by polyurethane-immobilized Flavobacterium cells.

    PubMed Central

    O'Reilly, K T; Crawford, R L

    1989-01-01

    Polyurethane-immobilized Flavobacterium cells (ATCC 39723) degraded pentachlorophenol (PCP) at initial concentrations as high as 300 mg liter-1. The reversible binding of PCP to the polyurethane was shown to be important in the protection of the cells from inhibition of PCP degradation. The degradation activity of the bacteria was monitored for 150 days in semicontinuous batch reactors. The degradation rate dropped by about 0.6% per day. PCP was degraded in a continuous-culture bioreactor at a rate of 3.5 to 4 mg g of foam-1 day-1 for 25 days. Electron micrographs of the polyurethane suggested that the cells were entrapped within 50- to 500-microns-diameter pockets in the foam. PMID:2508552

  6. 21 CFR 172.858 - Propylene glycol alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Propylene glycol alginate. 172.858 Section 172.858... Propylene glycol alginate. The food additive propylene glycol alginate (CAS Reg. No. 9005-37-2) may be used... the act: (1) The name of the additive, “propylene glycol alginate” or “propylene glycol ester of...

  7. Rapid Fabrication of Cell-Laden Alginate Hydrogel 3D Structures by Micro Dip-Coating.

    PubMed

    Ghanizadeh Tabriz, Atabak; Mills, Christopher G; Mullins, John J; Davies, Jamie A; Shu, Wenmiao

    2017-01-01

    Development of a simple, straightforward 3D fabrication method to culture cells in 3D, without relying on any complex fabrication methods, remains a challenge. In this paper, we describe a new technique that allows fabrication of scalable 3D cell-laden hydrogel structures easily, without complex machinery: the technique can be done using only apparatus already available in a typical cell biology laboratory. The fabrication method involves micro dip-coating of cell-laden hydrogels covering the surface of a metal bar, into the cross-linking reagents calcium chloride or barium chloride to form hollow tubular structures. This method can be used to form single layers with thickness ranging from 126 to 220 µm or multilayered tubular structures. This fabrication method uses alginate hydrogel as the primary biomaterial and a secondary biomaterial can be added depending on the desired application. We demonstrate the feasibility of this method, with survival rate over 75% immediately after fabrication and normal responsiveness of cells within these tubular structures using mouse dermal embryonic fibroblast cells and human embryonic kidney 293 cells containing a tetracycline-responsive, red fluorescent protein (tHEK cells).

  8. Alleviation effect of alginate-derived oligosaccharides on Vicia faba root tip cells damaged by cadmium.

    PubMed

    Ma, L J; Zhang, Y; Bu, N; Wang, S H

    2010-02-01

    Cadmium has been shown to prevent Vicia faba growth by inhibiting cell mitosis. In this study we investigated the role of Alginate-derived Oligosaccharides (ADO) in alleviating Vicia faba root tip cells damaged by 6 and 8 mg L(-1) CdCl2. Micronucleus assay and chromosomal aberration assay were used to determine mitotic index, micronucleus frequency and chromosomal aberration frequency. The results showed that micronucleus frequency of Vicia faba root tip cells was inhibited under all the ADO concentrations. Especially, the inhibition ratio of 0.125% ADO highly reached 66.11 and 67.17% in 6 and 8 mg L(-1) CdCl2, respectively. Furthermore, the mitotic index increased (p < 0.05) and chromosomal aberration frequency decreased (p < 0.05) under all the ADO concentrations. This indicated that ADO had a significant alleviation effect on Vicia faba root tip cells damaged by cadmium.

  9. Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels.

    PubMed

    Darnell, Max C; Sun, Jeong-Yun; Mehta, Manav; Johnson, Christopher; Arany, Praveen R; Suo, Zhigang; Mooney, David J

    2013-11-01

    Although hydrogels now see widespread use in a host of applications, low fracture toughness and brittleness have limited their more broad use. As a recently described interpenetrating network (IPN) of alginate and polyacrylamide demonstrated a fracture toughness of ≈ 9000 J/m(2), we sought to explore the biocompatibility and maintenance of mechanical properties of these hydrogels in cell culture and in vivo conditions. These hydrogels can sustain a compressive strain of over 90% with minimal loss of Young's Modulus as well as minimal swelling for up to 50 days of soaking in culture conditions. Mouse mesenchymal stem cells exposed to the IPN gel-conditioned media maintain high viability, and although cells exposed to conditioned media demonstrate slight reductions in proliferation and metabolic activity (WST assay), these effects are abrogated in a dose-dependent manner. Implantation of these IPN hydrogels into subcutaneous tissue of rats for 8 weeks led to mild fibrotic encapsulation and minimal inflammatory response. These results suggest the further exploration of extremely tough alginate/PAAM IPN hydrogels as biomaterials. © 2013 Elsevier Ltd. All rights reserved.

  10. Injectable alginate-O-carboxymethyl chitosan/nano fibrin composite hydrogels for adipose tissue engineering.

    PubMed

    Jaikumar, Dhanya; Sajesh, K M; Soumya, S; Nimal, T R; Chennazhi, K P; Nair, Shantikumar V; Jayakumar, R

    2015-03-01

    Injectable, biodegradable scaffolds are required for soft tissue reconstruction owing to its minimally invasive approach. Such a scaffold can mimic the native extracellular matrix (ECM), provide uniform distribution of cells and overcome limitations like donor site morbidity, volume loss, etc. So, here we report two classes of biocompatible and biodegradable hydrogel blend systems namely, Alginate/O-carboxymethyl chitosan (O-CMC) and Alginate/poly (vinyl alcohol) (PVA) with the inclusion of fibrin nanoparticles in each. The hydrogels were prepared by ionic cross-linking method. The developed hydrogels were compared in terms of its swelling ratio, degradation profile, compressive strength and elastic moduli. From these preliminary findings, it was concluded that Alginate/O-CMC formed a better blend for tissue engineering applications. The potential of the formed hydrogel as an injectable scaffold was revealed by the survival of adipose derived stem cells (ADSCs) on the scaffold by its adhesion, proliferation and differentiation into adipocytes. Cell differentiation studies of fibrin incorporated hydrogel scaffolds showed better differentiation was confirmed by Oil Red O staining technique. These injectable gels have potential in soft tissue regeneration. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Immobilized Kluyveromyces marxianus cells in carboxymethyl cellulose for production of ethanol from cheese whey: experimental and kinetic studies.

    PubMed

    Roohina, Fatemeh; Mohammadi, Maedeh; Najafpour, Ghasem D

    2016-09-01

    Cheese whey fermentation to ethanol using immobilized Kluyveromyces marxianus cells was investigated in batch and continuous operation. In batch fermentation, the yeast cells were immobilized in carboxymethyl cellulose (CMC) polymer and also synthesized graft copolymer of CMC with N-vinyl-2-pyrrolidone, denoted as CMC-g-PVP, and the efficiency of the two developed cell entrapped beads for lactose fermentation to ethanol was examined. The yeast cells immobilized in CMC-g-PVP performed slightly better than CMC with ethanol production yields of 0.52 and 0.49 g ethanol/g lactose, respectively. The effect of supplementation of cheese whey with lactose (42, 70, 100 and 150 g/l) on fermentative performance of K. marxianus immobilized in CMC beads was considered and the results were used for kinetic studies. The first order reaction model was suitable to describe the kinetics of substrate utilization and modified Gompertz model was quite successful to predict the ethanol production. For continuous ethanol fermentation, a packed-bed immobilized cell reactor (ICR) was operated at several hydraulic retention times; HRTs of 11, 15 and 30 h. At the HRT of 30 h, the ethanol production yield using CMC beads was 0.49 g/g which implies that 91.07 % of the theoretical yield was achieved.

  12. Ethanol production using immobilized Saccharomyces cerevisiae in lyophilized cellulose gel.

    PubMed

    Winkelhausen, Eleonora; Velickova, Elena; Amartey, Samuel A; Kuzmanova, Slobodanka

    2010-12-01

    A new lyophilization technique was used for immobilization of Saccharomyces cerevisiae cells in hydroxyethylcellulose (HEC) gels. The suitability of the lyophilized HEC gels to serve as immobilization matrices for the yeast cells was assessed by calculating the immobilization efficiency and the cell retention in three consecutive batches, each in duration of 72 h. Throughout the repeated batch fermentation, the immobilization efficiency was almost constant with an average value of 0.92 (12-216 h). The maximum value of cell retention was 0.24 g immobilized cells/g gel. Both parameters indicated that lyophilized gels are stable and capable of retaining the immobilized yeast cells. Showing the yeast cells propagation within the polymeric matrix, the scanning electron microscope images also confirmed that the lyophilization technique for immobilization of S. cerevisiae cells in the HEC gels was successful. The activity of the immobilized yeast cells was demonstrated by their capacity to convert glucose to ethanol. Ethanol yield of 0.40, 0.43 and 0.30 g ethanol/g glucose corresponding to 79%, 84% and 60% of the theoretical yield was attained in the first, second and third batches, respectively. The cell leakage was less than 10% of the average concentration of the immobilized cells.

  13. Growth and substrate consumption of Nitrobacter agilis cells immobilized in carrageenan: part 1. Dynamic modeling.

    PubMed

    de Gooijer, C D; Wijffels, R H; Tramper, J

    1991-07-01

    The modeling of the growth of Nitrobacter agilis cell immobilized in kappa-carrageenan is presented. A detailed description is given of the modeling of internal diffusion and growth of cells in the support matrix in addition to external mass transfer resistance. The model predicts the substrate and biomass profiles in the support as well as the macroscopic oxygen consumption rate of the immobilized biocatalyst in time. The model is tested by experiments with continuously operated airlift loop reactors containing cells immobilized in kappa-carrageenan. The model describes experimental data very well. It is clearly shown that external mass transfer may not be neglected. Furthermore, a sensitivity analysis of the parameters at their values during the experiments revealed that apart from the radius of the spheres and the substrate bulk concentration, the external mass transfer resistance coefficient is the most sensitive parameter for our case.

  14. An improved method for the production of fructooligosaccharides by immobilized β-fructofuranosidase from Sclerotinia sclerotiorum.

    PubMed

    Mouelhi, Refka; Abidi, Ferid; Marzouki, Mohamed Nejib

    2016-01-01

    This work is focused on the prebiotic synthesis by a purified immobilized β-fructofuranosidase (FFase) using a by-product molasses as a substrate. When cultivated on wheat bran, the fungus Sclerotinia sclerotiorum produces FFase with interesting transfructosylating activity. The enzyme was purified by gel filtration and anion exchange chromatography to homogeneity. It showed a specific activity of 66.06 U/mg and a molecular mass of 50 kDa. The FFase was immobilized covalently on alginate and chitosan, and the immobilization yield was 90% and 81% respectively, yet the immobilization efficiency was 52% and 93% in that order. The fixed enzymes were stable at a pH varying from 4.0 to 7.0 and at a temperature ranging from 4 to 70 °C. Yet, kinetic parameters and catalytic efficiency were determined for both immobilized and free FFases. Interestingly, chitosan cross-linked enzyme activity was maintained at 89.24% level after 50 reuses during 1 week. Continuous production of fructooligosaccharides (FOS) from beet molasses in chitosan enzyme reactor was improved. The maximum production yield obtained in 12 H was 72.2% (g FOS/g Sucrose). Thin-layer chromatography analysis showed that the major products are kestose and nystose. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  15. A three-dimensional culture system using alginate hydrogel prolongs hatched cattle embryo development in vitro.

    PubMed

    Zhao, Shuan; Liu, Zhen-Xing; Gao, Hui; Wu, Yi; Fang, Yuan; Wu, Shuai-Shuai; Li, Ming-Jie; Bai, Jia-Hua; Liu, Yan; Evans, Alexander; Zeng, Shen-Ming

    2015-07-15

    No successful method exists to maintain the three-dimensional architecture of hatched embryos in vitro. Alginate, a linear polysaccharide derived from brown algae, has characteristics that make it an ideal material as a three-dimensional (3D) extracellular matrix for in vitro cell, tissue, or embryo culture. In this study, alginate hydrogel was used for IVC of posthatched bovine embryos to observe their development under the 3D system. In vitro-fertilized and parthenogenetically activated posthatched bovine blastocysts were cultured in an alginate encapsulation culture system (AECS), an alginate overlay culture system (AOCS), or control culture system. After 18 days of culture, the survival rate of embryos cultured in AECS was higher than that in the control group (P < 0.05), and the embryos were expanded and elongated in AECS with the maximal length of 1.125 mm. When the AECS shrinking embryos were taken out of the alginate beads on Day 18 and cultured in the normal culture system, 9.09% of them attached to the bottoms of the plastic wells and grew rapidly, with the largest area of an attached embryo being 66.00 mm(2) on Day 32. The embryos cultured in AOCS developed monovesicular or multivesicular morphologies. Total cell number of the embryos cultured in AECS on Day 19 was significantly higher than that of embryos on Day 8. Additionally, AECS and AOCS supported differentiation of the embryonic cells. Binuclear cells were visible in Day-26 adherent embryos, and the messenger RNA expression patterns of Cdx2 and Oct4 in AOCS-cultured embryos were similar to those in vivo embryos, whereas IFNT and ISG15 messenger RNA were still expressed in Day-26 and Day-32 prolong-cultured embryos. In conclusion, AECS and AOCS did support cell proliferation, elongation, and differentiation of hatched bovine embryos during prolonged IVC. The culture system will be useful to further investigate the molecular mechanisms controlling ruminant embryo elongation and implantation

  16. Fabrication of cell-benign inverse opal hydrogels for three-dimensional cell culture.

    PubMed

    Im, Pilseon; Ji, Dong Hwan; Kim, Min Kyung; Kim, Jaeyun

    2017-05-15

    Inverse opal hydrogels (IOHs) for cell culture were fabricated and optimized using calcium-crosslinked alginate microbeads as sacrificial template and gelatin as a matrix. In contrast to traditional three-dimensional (3D) scaffolds, the gelatin IOHs allowed the utilization of both the macropore surface and inner matrix for cell co-culture. In order to remove templates efficiently for the construction of 3D interconnected macropores and to maintain high cell viability during the template removal process using EDTA solution, various factors in fabrication, including alginate viscosity, alginate concentration, alginate microbeads size, crosslinking calcium concentration, and gelatin network density were investigated. Low viscosity alginate, lower crosslinking calcium ion concentration, and lower concentration of alginate and gelatin were found to obtain high viability of cells encapsulated in the gelatin matrix after removal of the alginate template by EDTA treatment by allowing rapid dissociation and diffusion of alginate polymers. Based on the optimized fabrication conditions, gelatin IOHs showed good potential as a cell co-culture system, applicable to tissue engineering and cancer research. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Encapsulation of Autoinducer Sensing Reporter Bacteria in Reinforced Alginate-Based Microbeads.

    PubMed

    Li, Ping; Müller, Mareike; Chang, Matthew Wook; Frettlöh, Martin; Schönherr, Holger

    2017-07-12

    Quorum sensing, in which bacteria communities use signaling molecules for inter- and intracellular communication, has been intensively studied in recent decades. In order to fabricate highly sensitive easy-to-handle point of care biosensors that detect quorum sensing molecules, we have developed, as is reported here, reporter bacteria loaded alginate-methacrylate (alginate-MA) hydrogel beads. The alginate-MA beads, which were obtained by electrostatic extrusion, were reinforced by photo-cross-linking to increase stability and thereby to reduce bacteria leaching. In these beads the genetically engineered fluorescent reporter bacterium Escherichia coli pTetR-LasR-pLuxR-GFP (E. coli pLuxR-GFP) was encapsulated, which responds to the autoinducer N-(3-oxododecanoyl)homoserine lactone secreted by Pseudomonas aeruginosa. After encapsulation in alginate-MA hydrogel beads with diameters in the range of 100-300 μm that were produced by an electrostatic extrusion method and rapid photo-cross-linking, the E. coli pLuxR-GFP were found to possess a high degree of viability and sensing activity. The encapsulated bacteria could proliferate inside the hydrogel beads, when exposed to bacteria culture medium. In media containing the autoinducer N-(3-oxododecanoyl)homoserine lactone, the encapsulated reporter bacteria responded with a strong fluorescence signal due to an increased green fluorescent protein (GFP) expression. A prototype dipstick type sensor developed here underlines the potential of encapsulation of viable and functional reporter bacteria inside reinforced alginate-methacrylate hydrogel beads for whole cell sensors for bacteria detection.

  18. Calcium-Alginate Hydrogel-Encapsulated Fibroblasts Provide Sustained Release of Vascular Endothelial Growth Factor

    PubMed Central

    Hunt, Nicola C.; Shelton, Richard M.; Henderson, Deborah J.

    2013-01-01

    Vascularization of engineered or damaged tissues is essential to maintain cell viability and proper tissue function. Revascularization of the left ventricle (LV) of the heart after myocardial infarction is particularly important, since hypoxia can give rise to chronic heart failure due to inappropriate remodeling of the LV after death of cardiomyocytes (CMs). Fibroblasts can express vascular endothelial growth factor (VEGF), which plays a major role in angiogenesis and also acts as a chemoattractant and survival factor for CMs and cardiac progenitors. In this in vitro model study, mouse NIH 3T3 fibroblasts encapsulated in 2% w/v Ca-alginate were shown to remain viable for 150 days. Semiquantitative reverse transcription–polymerase chain reaction and immunohistochemistry demonstrated that over 21 days of encapsulation, fibroblasts continued to express VEGF, while enzyme-linked immunosorbent assay showed that there was sustained release of VEGF from the Ca-alginate during this period. The scaffold degraded gradually over the 21 days, without reduction in volume. Cells released from the Ca-alginate at 7 and 21 days as a result of scaffold degradation were shown to retain viability, to adhere to fibronectin in a normal manner, and continue to express VEGF, demonstrating their potential to further contribute to maintenance of cardiac function after scaffold degradation. This model in vitro study therefore demonstrates that fibroblasts encapsulated in Ca-alginate provide sustained release of VEGF. PMID:23082964

  19. Growth, metabolic activity, and productivity of immobilized and freely suspended CHO cells in perfusion culture.

    PubMed

    Hilal-Alnaqbi, Ali; Hu, Alan Y C; Zhang, Zhibing; Al-Rubeai, Mohamed

    2013-01-01

    Chinese hamster ovary (CHO) cells producing β-galactosidase (β-gal) were successfully cultured on silicone-based porous microcarriers (ImmobaSil FS) in a 1 L stirred-tank perfusion bioreactor. We studied the growth, metabolism, and productivity of free and immobilized cells to understand cellular activity in immobilized conditions. CHO cells attached to ImmobaSil FS significantly better than to other microcarriers. Scanning electron microscope images showed that the CHO cells thoroughly colonized the porous surfaces of the ImmobaSil FS, exhibiting a spherical morphology with microvilli that extended to anchorage cells on the silicone surface. In perfusion culture, the concentration of the attached cells reached 8 × 10(8) cells/mL of carrier, whereas those that remained freely suspended reached 2 × 10(7) cells/mL medium. The β-gal concentration reached more than 5 unit/mL in perfusion culture, more than fivefold that of batch culture. The maximum concentration per microcarrier was proportional to the initial cell density. The specific growth rate, the specific β-gal production rate, the percentage of S phase, and the oxygen uptake rate were all relatively lower for immobilized cells than freely suspended cells in the same bioreactor, indicating that not only do cells survive and grow to a greater extent in a free suspension state, but they are also metabolically more active than viable cells inside the pores of the microcarriers. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  20. Proliferation and enrichment of CD133(+) glioblastoma cancer stem cells on 3D chitosan-alginate scaffolds.

    PubMed

    Kievit, Forrest M; Florczyk, Stephen J; Leung, Matthew C; Wang, Kui; Wu, Jennifer D; Silber, John R; Ellenbogen, Richard G; Lee, Jerry S H; Zhang, Miqin

    2014-11-01

    Emerging evidence implicates cancer stem cells (CSCs) as primary determinants of the clinical behavior of human cancers, representing an ideal target for next-generation anti-cancer therapies. However CSCs are difficult to propagate in vitro, severely limiting the study of CSC biology and drug development. Here we report that growing cells from glioblastoma (GBM) cell lines on three dimensional (3D) porous chitosan-alginate (CA) scaffolds dramatically promotes the proliferation and enrichment of cells possessing the hallmarks of CSCs. CA scaffold-grown cells were found more tumorigenic in nude mouse xenografts than cells grown from monolayers. Growing in CA scaffolds rapidly promoted expression of genes involved in the epithelial-to-mesenchymal transition that has been implicated in the genesis of CSCs. Our results indicate that CA scaffolds have utility as a simple and inexpensive means to cultivate CSCs in vitro in support of studies to understand CSC biology and develop more effective anti-cancer therapies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Optimization of culturing condition and medium composition for the production of alginate lyase by a marine Vibrio sp. YKW-34

    NASA Astrophysics Data System (ADS)

    Fu, Xiaoting; Lin, Hong; Kim, Sang Moo

    2008-02-01

    Carbohydrases secreted by marine Vibrio sp. YKW-34 with strong Laminaria cell wall degrading ability were screened, and among them alginate lyase was found to be dominant. The effects of medium composition and culturing condition on the production of alginate lyase by marine Vibrio sp. YKW-34 in flask were investigated in this study. In the culture medium of marine broth, no alginate lyase was produced. The activity of the alginate lyase, after being induced, reached 5 UmL-1. The best inoculum volume and inoculum age were 10% and 12 h, respectively. The optimal temperature for alginate lyase production was 25°C. The fermentation medium was composed of 0.5% of Laminaria powder and 0.2% of KNO3 with an initial acidity of pH 8.0. Alginate could induce alginate lyase production but not as efficiently as Laminaria powder did. The addition of fucoidan, cellulose and glucose had negative effect on the alginate lyase production. Other kinds of nitrogen sources, such as yeast extract, beef extract and peptone, had positive effect on the growth of the microorganism and negative effect on alginate lyase production. In addition, the time course of alginate lyase production under the optimized condition was described. The optimal harvest time was 48 h.

  2. The type and composition of alginate and hyaluronic-based hydrogels influence the viability of stem cells of the apical papilla.

    PubMed

    Lambricht, Laure; De Berdt, Pauline; Vanacker, Julie; Leprince, Julian; Diogenes, Anibal; Goldansaz, Hadi; Bouzin, Caroline; Préat, Véronique; Dupont-Gillain, Christine; des Rieux, Anne

    2014-12-01

    The goal of the present work was to evaluate in vitro and in vivo the influence of various types and compositions of natural hydrogels on the viability and metabolic activity of SCAPs. Two alginate, three hyaluronic-based (Corgel™) hydrogel formulations and Matrigel were characterized for their mechanical, surface and microstructure properties using rheology, X-ray photoelectron spectroscopy and scanning electron microscopy, respectively. A characterized SCAP cell line (RP89 cells) was encapsulated in the different experimental hydrogel formulations. Cells were cultured in vitro, or implanted in cyclosporine treated mice. In vitro cell viability was evaluated using a Live/Dead assay and in vitro cellular metabolic activity was evaluated with a MTS assay. In vivo cell apoptosis was evaluated by a TUNEL test and RP89 cells were identified by human mitochondria immunostaining. Hydrogel composition influenced their mechanical and surface properties, and their microstructure. In vitro cell viability was above 80% after 2 days but decreased significantly after 7 days (60-40%). Viability at day 7 was the highest in Matrigel (70%) and then in Corgel 1.5 (60%). Metabolic activity increased over time in all the hydrogels, excepted in alginate SLM. SCAPs survived after 1 week in vivo with low apoptosis (<1%). The highest number of RP89 cells was found in Corgel 5.5 (140cells/mm(2)). Collectively, these data demonstrate that SCAP viability was directly modulated by hydrogel composition and suggest that a commercially available hyaluronic acid-based formulation might be a suitable delivery vehicle for SCAP-based dental pulp regeneration strategies. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Controlled Electrospray Generation of Nonspherical Alginate Microparticles.

    PubMed

    Jeyhani, Morteza; Mak, Sze Yi; Sammut, Stephen; Shum, Ho Cheung; Hwang, Dae Kun; Tsai, Scott S H

    2017-12-11

    Electrospraying is a technique used to generate microparticles in a high throughput manner. For biomedical applications, a biocompatible electrosprayed material is often desirable. Using polymers, such as alginate hydrogels, makes it possible to create biocompatible and biodegradable microparticles that can be used for cell encapsulation, to be employed as drug carriers, and for use in 3D cell culturing. Evidence in the literature suggests that the morphology of the biocompatible microparticles is relevant in controlling the dynamics of the microparticles in drug delivery and 3D cell culturing applications. Yet, most electrospray-based techniques only form spherical microparticles, and there is currently no widely adopted technique for producing nonspherical microparticles at a high throughput. Here, we demonstrate the generation of nonspherical biocompatible alginate microparticles by electrospraying, and control the shape of the microparticles by varying experimental parameters such as chemical concentration and the distance between the electrospray tip and the particle-solidification bath. Importantly, we show that these changes to the experimental setup enable the synthesis of different shaped particles, and the systematic change in parameters, such as chemical concentration, result in monotonic changes to the particle aspect ratio. We expect that these results will find utility in many biomedical applications that require biocompatible microparticles of specific shapes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Design and Fabrication of Anatomical Bioreactor Systems Containing Alginate Scaffolds for Cartilage Tissue Engineering

    PubMed Central

    Gharravi, Anneh Mohammad; Orazizadeh, Mahmoud; Ansari-Asl, Karim; Banoni, Salem; Izadi, Sina; Hashemitabar, Mahmoud

    2012-01-01

    The aim of the present study was to develop a tissue-engineering approach through alginate gel molding to mimic cartilage tissue in a three-dimensional culture system. The perfusion biomimetic bioreactor was designed to mimic natural joint. The shear stresses exerting on the bioreactor chamber were calculated by Computational Fluid Dynamic (CFD). Several alginate/bovine chondrocyte constructs were prepared, and were cultured in the bioreactor. Histochemical and immunohistochemical staining methods for the presence of glycosaminoglycan(GAG), overall matrix production and type II collagen protein were performed, respectively. The dynamic mechanical device applied a linear mechanical displacement of 2 mm to 10 mm. The CFD modeling indicated peak velocity and maximum wall shear stress were 1.706×10−3 m/s and 0.02407 dyne/cm 2, respectively. Histochemical and immunohistochemical analysis revealed evidence of cartilage-like tissue with lacunas similar to those of natural cartilage and the production of sulfated GAG of matrix by the chondrons, metachromatic territorial matrix-surrounded cells and accumulation of type II collagen around the cells. The present study indicated that when chondrocytes were seeded in alginate hydrogel and cultured in biomimetic cell culture system, cells survived well and secreted newly synthesized matrix led to improvement of chondrogenesis. PMID:23408660

  5. Diesel oil removal by immobilized Pseudoxanthomonas sp. RN402.

    PubMed

    Nopcharoenkul, Wannarak; Netsakulnee, Parichat; Pinyakong, Onruthai

    2013-06-01

    Pseudoxanthomonas sp. RN402 was capable of degrading diesel, crude oil, n-tetradecane and n-hexadecane. The RN402 cells were immobilized on the surface of high-density polyethylene plastic pellets at a maximum cell density of 10(8) most probable number (MPN) g(-1) of plastic pellets. The immobilized cells not only showed a higher efficacy of diesel oil removal than free cells but could also degrade higher concentrations of diesel oil. The rate of diesel oil removal by immobilized RN402 cells in liquid culture was 1,050 mg l(-1) day(-1). Moreover, the immobilized cells could maintain high efficacy and viability throughout 70 cycles of bioremedial treatment of diesel-contaminated water. The stability of diesel oil degradation in the immobilized cells resulted from the ability of living RN402 cells to attach to material surfaces by biofilm formation, as was shown by CLSM imaging. These characteristics of the immobilized RN402 cells, including high degradative efficacy, stability and flotation, make them suitable for the purpose of continuous wastewater bioremediation.

  6. Immobilized bacterial spores for use as bioindicators in the validation of thermal sterilization processes.

    PubMed

    Serp, D; von Stockar, U; Marison, I W

    2002-07-01

    Spores of Bacillus subtilis ATCC 6051 and Bacillus stearothermophilus NCTC 10003 were immobilized in monodisperse alginate beads (diameter, 550 microm +/- 5%), and the capacity of the immobilized bioindicators to provide accurate and reliable F-values for sterilization processes was studied. The resistance of the beads to abrasion and heat was strong enough to ensure total retention of the bioindicators in the beads in a sterilization cycle. D- and z-values for free spores were identical to those for immobilized spores, which shows that immobilization does not modify the thermal resistance of the bioindicators. A D(100 degrees C) value of 1.5 min was found for free and immobilized B. subtilis spores heated in demineralized water, skimmed milk, and milk containing 4% fat, suggesting that a lipid concentration as low as 4% does not alter the thermal resistance of B. subtilis spores. Providing that the pH range is kept between 3.4 to 10 and that sufficiently low concentrations of Ca2+ competitors or complexants are present in the medium, immobilized bioindicators may serve as an efficient, accurate, and reliable tool with which to validate the efficiency of any sterilization process. The environmental factors (pH, media composition) affecting the thermoresistance of native contaminants are intrinsically reflected in the F-value, allowing for a sharper adjustment of the sterilization process. Immobilized spores of B. stearothermophilus were successfully used to validate a resonance and interference microwave system that is believed to offer a convenient alternative for the sterilization of temperature-sensitive products and medical wastes.

  7. Properties of alginate fiber spun-dyed with fluorescent pigment dispersion.

    PubMed

    Wang, Ping; Tawiah, Benjamin; Tian, Anli; Wang, Chunxia; Zhang, Liping; Fu, Shaohai

    2015-03-15

    Spun-dyed alginate fiber was prepared by the spun-dyeing method with the mixture of fluorescent pigment dispersion and sodium alginate fiber spinning solution, and its properties were characterized by SEM, TGA, DSC, and XRD. The results indicate that fluorescent pigment dispersion prepared with esterified poly (styrene-alt maleic acid) had excellent compatibility with sodium alginate fiber spinning solution, and small amount of fluorescent pigment could reduce the viscosity of spun-dyed spinning solutions. SEM photo of spun-dyed alginate fiber indicated that fewer pigment particles deposited on its surface. TGA, DSC, and XRD results suggested that thermal properties and crystal phase of spun-dyed alginate fibers had slight changes compared to the original alginate fibers. The fluorescence intensity of spun-dyed alginate fiber reached its maximum when the content of fluorescent pigment was 4%. The spun-dyed alginate fiber showed excellent rubbing and washing fastness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Production of polyhydroxybutyrate and alginate from glycerol by Azotobacter vinelandii under nitrogen-free conditions.

    PubMed

    Yoneyama, Fuminori; Yamamoto, Mayumi; Hashimoto, Wataru; Murata, Kousaku

    2015-01-01

    Glycerol is an interesting feedstock for biomaterials such as biofuels and bioplastics because of its abundance as a by-product during biodiesel production. Here we demonstrate glycerol metabolism in the nitrogen-fixing species Azotobacter vinelandii through metabolomics and nitrogen-free bacterial production of biopolymers, such as poly-d-3-hydroxybutyrate (PHB) and alginate, from glycerol. Glycerol-3-phosphate was accumulated in A. vinelandii cells grown on glycerol to the exponential phase, and its level drastically decreased in the cells grown to the stationary growth phase. A. vinelandii also overexpressed the glycerol-3-phosphate dehydrogenase gene when it was grown on glycerol. These results indicate that glycerol was first converted to glycerol-3-phosphate by glycerol kinase. Other molecules with industrial interests, such as lactic acid and amino acids including γ-aminobutyric acid, have also been accumulated in the bacterial cells grown on glycerol. Transmission electron microscopy revealed that glycerol-grown A. vinelandii stored PHB within the cells. The PHB production level reached 33% per dry cell weight in nitrogen-free glycerol medium. When grown on glycerol, alginate-overproducing mutants generated through chemical mutagenesis produced 2-fold the amount of alginate from glycerol than the parental wild-type strain. To the best of our knowledge, this is the first report on bacterial production of biopolymers from glycerol without addition of any nitrogen source.

  9. Defined surface immobilization of glycosaminoglycan molecules for probing and modulation of cell-material interactions.

    PubMed

    Wang, Kai; Luo, Ying

    2013-07-08

    As one important category of biological molecules on the cell surface and in the extracellular matrix (ECM), glycosaminoglycans (GAGs) have been widely studied for biomedical applications. With the understanding that the biological functions of GAGs are driven by the complex dynamics of physiological and pathological processes, methodologies are desired to allow the elucidation of cell-GAG interactions with molecular level precision. In this study, a microtiter plate-based system was devised through a new surface modification strategy involving polydopamine (PDA) and GAG molecules functionalized with hydrazide chemical groups. A small library of GAGs including hyaluronic acid (with different molecular weights), heparin, and chondroitin sulfate was successfully immobilized via defined binding sites onto the microtiter plate surface under facile aqueous conditions. The methodology then allowed parallel studies of the GAG-modified surfaces in a high-throughput format. The results show that immobilized GAGs possess distinct properties to mediate protein adsorption, cell adhesion, and inflammatory responses, with each property showing dependence on the type and molecular weight of specific GAG molecules. The PDA-assisted immobilization of hydrazide-functionalized GAGs allows biomimetic attachment of GAG molecules and retains their bioactivity, providing a new methodology to systematically probe fundamental cell-GAG interactions to modulate the bioactivity and biocompatibility of biomaterials.

  10. Cell culture surfaces with immobilized gold nanostars: a new approach for laser-induced plasmonic cell optoporation

    NASA Astrophysics Data System (ADS)

    Vanzha, Ekaterina; Pylaev, Timofey; Prilepskii, Artur; Golubev, Alexander; Khlebtsov, Boris; Bogatyrev, Vladimir; Khlebtsov, Nikolai

    2017-03-01

    The application of gold nanoparticles (GNPs) for laser-induced cell transfection has been studied intensively during the past decade as efficient and gentle alternative to well-established molecule delivery methods like lipid-based transfection or electroporation. The method is based on temporal increase of membrane permeability induced by laser irradiation of GNPs attached to cell membranes. Although this approach is attractive due to high throughput and easy usability, it is not free from serious drawbacks related to random adsorption of GNPs during preincubation of cells with GNPs. This stage can affect the optoporation results because of potential nanoparticle toxicity, thus leading to decreased delivery efficiency and to low reproducibility of independent optoporation runs. Herein, we suggest a novel GNP-mediated laser transfection technique based on immobilized gold nanostars (GNSs) that are adsorbed on microplate wells and act as a plasmonic surface. The HeLa cells are grown directly on the monolayer of immobilized GNSs followed by CW NIR laser irradiation. We used the propidium iodide (PI) as a model transfecting agent to monitor simultaneously the delivery of PI into HeLa cells and their viability. These proof-of-the-concept experiments demonstrated enhanced penetration of PI into irradiated cells as compared to untreated ones.

  11. Microencapsulation in Alginate and Chitosan Microgels to Enhance Viability of Bifidobacterium longum for Oral Delivery

    PubMed Central

    Yeung, Timothy W.; Üçok, Elif F.; Tiani, Kendra A.; McClements, David J.; Sela, David A.

    2016-01-01

    Probiotic microorganisms are incorporated into a wide variety of foods, supplements, and pharmaceuticals to promote human health and wellness. However, maintaining bacterial cell viability during storage and gastrointestinal transit remains a challenge. Encapsulation of bifidobacteria within food-grade hydrogel particles potentially mitigates their sensitivity to environmental stresses. In this study, Bifidobacterium longum subspecies and strains were encapsulated in core-shell microgels consisting of an alginate core and a microgel shell. Encapsulated obligate anaerobes Bifidobacterium longum subsp. infantis and Bifidobacterium longum subsp. longum exhibited differences in viability in a strain-dependent manner, without a discernable relationship to subspecies lineage. This includes viability under aerobic storage conditions and modeled gastrointestinal tract conditions. Coating alginate microgels with chitosan did not improve viability compared to cells encapsulated in alginate microgels alone, suggesting that modifying the surface charge alone does not enhance delivery. Thus hydrogel beads have great potential for improving the stability and efficacy of bifidobacterial probiotics in various nutritional interventions. PMID:27148184

  12. Kinetics of the biodegradation of phenol in wastewaters from the chemical industry by covalently immobilized Trichosporon cutaneum cells.

    PubMed

    Yotova, Lyubov; Tzibranska, Irene; Tileva, Filadia; Markx, G H; Georgieva, Nelly

    2009-03-01

    A simple method for the preparation of the biocatalyst with whole cells is presented, and the applicability of the technique for biodegradation of phenol in wastewater from the chemical industries using the basidomycetes yeast Trichosporon cutaneum is explored. Kinetic studies of the influence of other compounds contained in wastewater as naphthalene, benzene, toluene and pyridine indicate that apart from oil fraction, which is removed, the phenol concentration is the only major factor limiting the growth of immobilized cells. Mathematical models are applied to describe the kinetic behavior of immobilized yeast cells. From the analysis of the experimental curves was shown that the obtained values for the apparent rate parameters vary depending on the substrate concentration (mu(maxapp) from 0.35 to 0.09 h(-1) and K (sapp) from 0.037 to 0.4 g dm(-3)). The inhibitory effect of the phenol on the obtained yield coefficients was investigated too. It has been shown that covalent immobilization of T. cutaneum whole cells to plastic carrier beads is possible, and that cell viability and phenol degrading activity are maintained after the chemical modification of cell walls during the binding procedure. The results obtained indicate a possible future application of immobilized T. cutaneum for destroying phenol in industrial wastewaters.

  13. [Use of claydite-immobilized oil-oxidizing microbial cells for purification of water from oil].

    PubMed

    Pirog, T P; Shevchuk, T A; Voloshinka, I N; Gregirchak, N N

    2005-01-01

    Oil-oxidizing bacteria were isolated from oil-polluted soil and water samples and identified as Acinetobacter calcoaceticus K-4, Nocardia vaceinii K-8, Rhodococcus erythropolis EK-1, and Mycobacterium sp. K-2. It was found that immobilization of the bacteria on an expanded clay aggregate accelerated their growth and consumption of hydrocarbon substrates. It was also found that water polluted with 100 mg/l oil could be purified with Rhodococcus erythropolis EK-1 and Nocardia vaceinii K-8 cells immobilized in this way. The dependence of the degree of water purification on its flow rate, aeration, and availability of nitrogen and phosphorus sources was determined. The efficiency of water purification from oil by immobilized Rhodococcus erythropolis EK-1 cells at high flow rates (of up to 0.68 l/h), low aeration (of 0.1 l/l per min) and an intermittent supply of 0.01% diammonium phosphate reached 99.5-99.8%.

  14. Ethanol production by fermentation using immobilized cells of Saccharomyces cerevisiae in cashew apple bagasse.

    PubMed

    Pacheco, Alexandre Monteiro; Gondim, Diego Romão; Gonçalves, Luciana Rocha Barros

    2010-05-01

    In this work, cashew apple bagasse (CAB) was used for Saccharomyces cerevisiae immobilization. The support was prepared through a treatment with a solution of 3% HCl, and delignification with 2% NaOH was also conducted. Optical micrographs showed that high populations of yeast cells adhered to pre-treated CAB surface. Ten consecutive fermentations of cashew apple juice for ethanol production were carried out using immobilized yeasts. High ethanol productivity was observed from the third fermentation assay until the tenth fermentation. Ethanol concentrations (about 19.82-37.83 g L(-1) in average value) and ethanol productivities (about 3.30-6.31 g L(-1) h(-1)) were high and stable, and residual sugar concentrations were low in almost all fermentations (around 3.00 g L(-1)) with conversions ranging from 44.80% to 96.50%, showing efficiency (85.30-98.52%) and operational stability of the biocatalyst for ethanol fermentation. Results showed that cashew apple bagasse is an efficient support for cell immobilization aiming at ethanol production.

  15. Controlled release of metronidazole from composite poly-ε-caprolactone/alginate (PCL/alginate) rings for dental implants.

    PubMed

    Lan, Shih-Feng; Kehinde, Timilehin; Zhang, Xiangming; Khajotia, Sharukh; Schmidtke, David W; Starly, Binil

    2013-06-01

    Dental implants provide support for dental crowns and bridges by serving as abutments for the replacement of missing teeth. To prevent bacterial accumulation and growth at the site of implantation, solutions such as systemic antibiotics and localized delivery of bactericidal agents are often employed. The objective of this study was to demonstrate a novel method of controlled localized delivery of antibacterial agents to an implant site using a biodegradable custom fabricated ring. The study involved incorporating a model antibacterial agent (metronidazole) into custom designed poly-ε-caprolactone/alginate (PCL/alginate) composite rings to produce the intended controlled release profile. The rings can be designed to fit around the body of any root form dental implants of various diameters, shapes and sizes. In vitro release studies indicate that pure (100%) alginate rings exhibited an expected burst release of metronidazole in the first few hours, whereas Alginate/PCL composite rings produced a medium burst release followed by a sustained release for a period greater than 4 weeks. By varying the PCL/alginate weight ratios, we have shown that we can control the amount of antibacterial agents released to provide the minimal inhibitory concentration (MIC) needed for adequate protection. The fabricated composite rings have achieved a 50% antibacterial agent release profile over the first 48 h and the remaining amount slowly released over the remainder of the study period. The PCL/alginate agent release characteristic fits the Ritger-Peppas model indicating a diffusion-based mechanism during the 30-day study period. The developed system demonstrates a controllable drug release profile and the potential for the ring to inhibit bacterial biofilm growth for the prevention of diseases such as peri-implantitis resulting from bacterial infection at the implant site. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Distribution of alginate and cellulose and regulatory role of calcium in the cell wall of the brown alga Ectocarpus siliculosus (Ectocarpales, Phaeophyceae).

    PubMed

    Terauchi, Makoto; Nagasato, Chikako; Inoue, Akira; Ito, Toshiaki; Motomura, Taizo

    2016-08-01

    This work investigated a correlation between the three-dimensional architecture and compound-components of the brown algal cell wall. Calcium greatly contributes to the cell wall integrity. Brown algae have a unique cell wall consisting of alginate, cellulose, and sulfated polysaccharides. However, the relationship between the architecture and the composition of the cell wall is poorly understood. Here, we investigated the architecture of the cell wall and the effect of extracellular calcium in the sporophyte and gametophyte of the model brown alga, Ectocarpus siliculosus (Dillwyn) Lyngbye, using transmission electron microscopy, histochemical, and immunohistochemical studies. The lateral cell wall of vegetative cells of the sporophyte thalli had multilayered architecture containing electron-dense and negatively stained fibrils. Electron tomographic analysis showed that the amount of the electron-dense fibrils and the junctions was different between inner and outer layers, and between the perpendicular and tangential directions of the cell wall. By immersing the gametophyte thalli in the low-calcium (one-eighth of the normal concentration) artificial seawater medium, the fibrous layers of the lateral cell wall of vegetative cells became swollen. Destruction of cell wall integrity was also induced by the addition of sorbitol. The results demonstrated that electron-dense fibrils were composed of alginate-calcium fibrous gels, and electron negatively stained fibrils were crystalline cellulose microfibrils. It was concluded that the spatial arrangement of electron-dense fibrils was different between the layers and between the directions of the cell wall, and calcium was necessary for maintaining the fibrous layers in the cell wall. This study provides insights into the design principle of the brown algal cell wall.

  17. Probing Dynamic Cell-Substrate Interactions using Photochemically Generated Surface-Immobilized Gradients: Application to Selectin-Mediated Leukocyte Rolling

    PubMed Central

    Herman, Christine T.; Potts, Gregory K.; Michael, Madeline C.; Tolan, Nicole V.

    2014-01-01

    Model substrates presenting biochemical cues immobilized in a controlled and well-defined manner are of great interest for their applications in biointerface studies that elucidate the molecular basis of cell receptor-ligand interactions. Herein, we describe a direct, photochemical method to generate one-component surface-immobilized biomolecular gradients that are applied to the study of selectin-mediated leukocyte rolling. The technique employs benzophenone-modified glass substrates, which upon controlled exposure to UV light (350 – 365 nm) in the presence of protein-containing solutions facilitate the generation of covalently immobilized protein gradients. Conditions were optimized to generate gradient substrates presenting P-selectin and PSGL-1 (P-selectin Glycoprotein Ligand-1) immobilized at site densities over a 5- to 10-fold range (from as low as ~200 molecules/μm2 to as high as 6000 molecules/μm2). The resulting substrates were quantitatively characterized via fluorescence analysis and radioimmunoassays before their use in the leukocyte rolling assays. HL-60 promyelocytes and Jurkat T lymphocytes were assessed for their ability to tether to and roll on substrates presenting immobilized P-selectin and PSGL-1 under conditions of physiologically relevant shear stress. The results of these flow assays reveal the combined effect of immobilized protein site density and applied wall shear stress on cell rolling behavior. Two-component substrates presenting P-selectin and ICAM-1 (intercellular adhesion molecule-1) were also generated to assess the interplay between these two proteins and their effect on cell rolling and adhesion. These proof-of-principle studies verify that the described gradient generation approach yields well-defined gradient substrates that present immobilized proteins over a large range of site densities that are applicable for investigation of cell-materials interactions, including multi-parameter leukocyte flow studies. Future

  18. Assessment of porcine endogenous retrovirus transmission across an alginate barrier used for the encapsulation of porcine islets.

    PubMed

    Crossan, Claire; Mourad, Nizar I; Smith, Karen; Gianello, Pierre; Scobie, Linda

    2018-05-21

    Subcutaneous implantation of a macroencapsulated patch containing human allogenic islets has been successfully used to alleviate type 1 diabetes mellitus (T1DM) in a human recipient without the need for immunosuppression. The use of encapsulated porcine islets to treat T1DM has also been reported. Although no evidence of pathogen transfer using this technology has been reported to date, we deemed it appropriate to determine if the encapsulation technology would prevent the release of virus, in particular, the porcine endogenous retrovirus (PERV). HEK293 (human epithelial kidney) and swine testis (ST) cells were co-cultured with macroencapsulated pig islets embedded in an alginate patch, macroencapsulated PK15 (swine kidney epithelial) cells embedded in an alginate patch and free PK15 cells. Cells and supernatant were harvested at weekly time points from the cultures for up to 60 days and screened for evidence of PERV release using qRT-PCR to detect PERV RNA and SG-PERT to detect reverse transcriptase (RT). No PERV virus, or evidence of PERV replication, was detected in the culture medium of HEK293 or pig cells cultured with encapsulated porcine islets. Increased PERV activity relative to the background was not detected in ST cells cultured with encapsulated PK15 cells. However, PERV was detected in 1 of the 3 experimental replicates of HEK293 cells cultured with encapsulated PK15 cells. Both HEK293 and ST cells cultured with free PK15 cells showed an increase in RT detection. With the exception of 1 replicate, there does not appear to be evidence of transmission of replication competent PERV from the encapsulated islet cells or the positive control PK15 cells across the alginate barrier. The detection of PERV would suggest the alginate barrier of this replicate may have become compromised, emphasizing the importance of quality control when producing encapsulated islet patches. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury.

    PubMed

    Liu, Shengwen; Sandner, Beatrice; Schackel, Thomas; Nicholson, LaShae; Chtarto, Abdelwahed; Tenenbaum, Liliane; Puttagunta, Radhika; Müller, Rainer; Weidner, Norbert; Blesch, Armin

    2017-09-15

    Grafting of cell-seeded alginate capillary hydrogels into a spinal cord lesion site provides an axonal bridge while physically directing regenerating axonal growth in a linear pattern. However, without an additional growth stimulus, bridging axons fail to extend into the distal host spinal cord. Here we examined whether a combinatory strategy would support regeneration of descending axons across a cervical (C5) lateral hemisection lesion in the rat spinal cord. Following spinal cord transections, Schwann cell (SC)-seeded alginate hydrogels were grafted to the lesion site and AAV5 expressing brain-derived neurotrophic factor (BDNF) under control of a tetracycline-regulated promoter was injected caudally. In addition, we examined whether SC injection into the caudal spinal parenchyma would further enhance regeneration of descending axons to re-enter the host spinal cord. Our data show that both serotonergic and descending axons traced by biotinylated dextran amine (BDA) extend throughout the scaffolds. The number of regenerating axons is significantly increased when caudal BDNF expression is activated and transient BDNF delivery is able to sustain axons after gene expression is switched off. Descending axons are confined to the caudal graft/host interface even with continuous BDNF expression for 8weeks. Only with a caudal injection of SCs, a pathway facilitating axonal regeneration through the host/graft interface is generated allowing axons to successfully re-enter the caudal spinal cord. Recovery from spinal cord injury is poor due to the limited regeneration observed in the adult mammalian central nervous system. Biomaterials, cell transplantation and growth factors that can guide axons across a lesion site, provide a cellular substrate, stimulate axon growth and have shown some promise in increasing the growth distance of regenerating axons. In the present study, we combined an alginate biomaterial with linear channels with transplantation of Schwann cells within

  20. Low intensity pulse ultrasound stimulate chondrocytes growth in a 3-D alginate scaffold through improved porosity and permeability.

    PubMed

    Guo, Gepu; Lu, Lu; Ji, Hongfei; Ma, Yong; Dong, Rui; Tu, Juan; Guo, Xiasheng; Qiu, Yuanyuan; Wu, Junru; Zhang, Dong

    2015-04-01

    A 3-D scaffold culture system has been used to promote in producing functional chondrocytes for repairing damaged cartilage. In the present study, the low intensity pulse ultrasound (LIPUS) (P(-)=0, 0.055, 0.085 and 0.11 MPa) was applied to improve the porosity and permeability of a 3-D alginate scaffold which was beneficial for the nutrition supply and metabolism during cell growth in 3-D alginate scaffold. The porosity and permeability of the scaffold was quantitatively analyzed based on scanning electron microscopy examination and fluorescence image observation. The results suggest that, for the scaffold exposed to LIPUS, its porosity and permeability could be significantly enhanced by the increasing LIPUS amplitude, which might be induced by the microstreaming shear stress generated by ultrasound-driven microbubble oscillations. Furthermore, the assessments of cell proliferation and collagen II expression confirmed that chondrocytes growth could be effectively promoted in 3-D alginate scaffolds treated by LIPUS, because of the improved scaffold porosity and permeability might benefit cell growth space and nutrition supply. It should also be noticed that appropriate LIPUS driving parameters should be adapted to achieve optimized chondrocytes culture effect in 3-D alginate scaffold. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Investigating the effect of design parameters on the response time of a highly sensitive microbial hydrogen sulfide biosensor based on oxygen consumption.

    PubMed

    Vosoughi, Amin; Yazdian, Fatemeh; Amoabediny, Ghassem; Hakim, Maziar

    2015-08-15

    A novel hydrogen sulfide microbial biosensor was developed based on investigating the influence of four design parameters: cell concentration, immobilization bed type, hydrogen sulfide concentration, and geometrical shape of the biosensor. Thiobacillus thioparus was used as the recognition element and it was immobilized on sodium alginate as well as agarose bed. The results were optimized by the application of statistical optimization software based on response time of the system. Oxygen reduction was considered as the detection sign. Sodium alginate solution with a concentration of 2.3% (w/v) and optical density of 10 at 605 nm was found as the optimum conditions for immobilization with response time of 72s . Optimum response time of immobilized T. thioparus on agarose was also found equal to 120 s at agarose concentration of 1.2% (w/v) and optical density of 10.83. Performance of the biosensor in different temperatures, pH and agitation speeds was also analyzed. The designed biosensor could detect concentrations of hydrogen sulfide as low as 0.5 ppm. T. thioparus could retain 99% of the original activity in both systems, after ten days passing the fabrication. A fractal analysis was also done theoretically to investigate the diffusion of oxygen in immobilized cells which showed a satisfactory value of oxygen take up by the immobilized cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Analysis of secondary cells with lithium anodes and immobilized fused-salt electrolytes

    NASA Technical Reports Server (NTRS)

    Cairns, E. J.; Rogers, G. L.; Shimotake, H.

    1969-01-01

    Secondary cells with liquid lithium anodes, liquid bismuth or tellurium cathodes, and fused lithium halide electrolytes immobilized as rigid pastes operate between 380 and 485 degrees. Applications include power sources in space, military vehicle propulsion and special commercial vehicle propulsion.

  3. Alginate-based hybrid aerogel microparticles for mucosal drug delivery.

    PubMed

    Gonçalves, V S S; Gurikov, P; Poejo, J; Matias, A A; Heinrich, S; Duarte, C M M; Smirnova, I

    2016-10-01

    The application of biopolymer aerogels as drug delivery systems (DDS) has gained increased interest during the last decade since these structures have large surface area and accessible pores allowing for high drug loadings. Being biocompatible, biodegradable and presenting low toxicity, polysaccharide-based aerogels are an attractive carrier to be applied in pharmaceutical industry. Moreover, some polysaccharides (e.g. alginate and chitosan) present mucoadhesive properties, an important feature for mucosal drug delivery. This feature allows to extend the contact of DDS with biological membranes, thereby increasing the absorption of drugs through the mucosa. Alginate-based hybrid aerogels in the form of microparticles (<50μm) were investigated in this work as carriers for mucosal administration of drugs. Low methoxyl pectin and κ-carrageenan were co-gelled with alginate and further dried with supercritical CO2 (sc-CO2). Spherical mesoporous aerogel microparticles were obtained for alginate, hybrid alginate/pectin and alginate/κ-carrageenan aerogels, presenting high specific surface area (370-548m(2)g(-1)) and mucoadhesive properties. The microparticles were loaded with ketoprofen via adsorption from its solution in sc-CO2, and with quercetin via supercritical anti-solvent precipitation. Loading of ketoprofen was in the range between 17 and 22wt% whereas quercetin demonstrated loadings of 3.1-5.4wt%. Both the drugs were present in amorphous state. Loading procedure allowed the preservation of antioxidant activity of quercetin. Release of both drugs from alginate/κ-carrageenan aerogel was slightly faster compared to alginate/pectin. The results indicate that alginate-based aerogel microparticles can be viewed as promising matrices for mucosal drug delivery applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Photonic monitoring of chitosan nanostructured alginate microcapsules for drug release

    NASA Astrophysics Data System (ADS)

    Khajuria, Deepak Kumar; Konnur, Manish C.; Vasireddi, Ramakrishna; Roy Mahapatra, D.

    2015-02-01

    By using a novel microfluidic set-up for drug screening applications, this study examines delivery of a novel risedronate based drug formulation for treatment of osteoporosis that was developed to overcome the usual shortcomings of risedronate, such as its low bioavailability and adverse gastric effects. Risedronate nanoparticles were prepared using muco-adhesive polymers such as chitosan as matrix for improving the intestinal cellular absorption of risedronate and also using a gastric-resistant polymer such as sodium alginate for reducing the gastric inflammation of risedronate. The in-vitro characteristics of the alginate encapsulated chitosan nanoparticles are investigated, including their stability, muco-adhesiveness, and Caco-2 cell permeability. Fluorescent markers are tagged with the polymers and their morphology within the microcapsules is imaged at various stages of drug release.

  5. Characterization of free and alginate-polylysine-alginate microencapsulated Erwinia herbicola for the conversion of ammonia, pyruvate, and phenol into L-tyrosine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lloyd-George, I.; Chang, T.M.S.

    1995-12-20

    The whole cell tyrosine phenol-lyase activity of Erwinia herbicola was microencapsulated. The authors studied the use of this for the conversion of ammonia and pyruvate along with phenol or catechol, respectively, into L-tyrosine or dihydroxyphenyl-L-alanine (L-dopa). The reactions are relevant to the development of new methods for the production of L-tyrosine and L-dopa. The growth of E. herbicola at temperatures from 22 C to 32 C is stable, since at these temperatures the cells grow up to the stationary phase and remain there for at least 10 h. At 37 C the cells grow rapidly, but they also enter themore » death phase rapidly. There is only limited growth of E. herbicola at 42 C. Whole cells of E. herbicola were encapsulated within alginate-polylysine-alginate microcapsules (916 {+-} 100 {micro}m, mean {+-} std. dev.). The TPL activity of the cells catalyzed the production of L-tyrosine or dihydroxyphenol-L-alanine (L-dopa) from ammonia, pyruvate, and phenol or catechol, respectively. In the production of tyrosine, an integrated equation based on an ordered ter-uni rapid equilibrium mechanism can be used to find the kinetic parameters of TPL. In an adequately stirred system, the apparent values of the kinetic parameters of whole cell TPL are equal whether the cells are free or encapsulated. The apparent K{sub M} of tyrosine varies with the amount of whole cells in the system, ranging from 0.2 to 0.3 mM. The apparent K{sub M} for phenol is 0.5 mM. The apparent K{sub M} values for pyruvate and ammonia are an order of magnitude greater for whole cells than they are for the cell free enzyme.« less

  6. Antimicrobial activity of immobilized lactoferrin and lactoferricin.

    PubMed

    Chen, Renxun; Cole, Nerida; Dutta, Debarun; Kumar, Naresh; Willcox, Mark D P

    2017-11-01

    Lactoferrin and lactoferricin were immobilized on glass surfaces via two linkers, 4-azidobenzoic acid (ABA) or 4-fluoro-3-nitrophenyl azide (FNA). The resulting surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The antimicrobial activity of the surfaces was determined using Pseudomonas aeruginosa and Staphylococcus aureus strains by fluorescence microscopy. Lactoferrin and lactoferricin immobilization was confirmed by XPS showing significant increases (p < 0.05) in nitrogen on the glass surface. The immobilization of both proteins slightly increased the overall hydrophobicity of the glass. Both lactoferrin and lactoferricin immobilized on glass significantly (p < 0.05) reduced the numbers of viable bacterial cells adherent to the glass. For P. aeruginosa, the immobilized proteins consistently increased the percentage of dead cells compared to the total cells adherent to the glass surfaces (p < 0.03). Lactoferrin and lactoferricin were successfully immobilized on glass surfaces and showed promising antimicrobial activity against pathogenic bacteria. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2612-2617, 2017. © 2016 Wiley Periodicals, Inc.

  7. Effect of hydrogel elasticity and ephrinB2-immobilized manner on Runx2 expression of human mesenchymal stem cells.

    PubMed

    Toda, Hiroyuki; Yamamoto, Masaya; Uyama, Hiroshi; Tabata, Yasuhiko

    2017-08-01

    The objective of this study is to design the manner of ephrinB2 immobilized onto polyacrylamide (PAAm) hydrogels with varied elasticity and evaluate the effect of hydrogels elasticity and the immobilized manner of ephrinB2 on the Runx2 expression of human mesenchymal stem cells (hMSC). The PAAm hydrogels were prepared by the radical polymerization of acrylamide (AAm), and N,N'-methylenebisacrylamide (BIS). By changing the BIS concentration, the elasticity of PAAm hydrogels changed from 1 to 70kPa. For the bio-specific immobilization of ephrinB2, a chimeric protein of ephrinB2 and Fc domain was immobilized onto protein A-conjugated PAAm hydrogels by making use of the bio-specific interaction between the Fc domain and protein A. When hMSC were cultured on the ephrinB2-immobilized PAAm hydrogels with varied elasticity, the morphology of hMSC was of cuboidal shape on the PAAm hydrogels immobilized with ephrinB2 compared with non-conjugated ones, irrespective of the hydrogels elasticity. The bio-specific immobilization of ephrinB2 enhanced the level of Runx2 expression. The expression level was significantly high for the hydrogels of 3.6 and 5.9kPa elasticity with bio-specific immobilization of ephrinB2 compared with other hydrogels with the same elasticity. The hydrogels showed a significantly down-regulated RhoA activity. It is concluded that the Runx2 expression of hMSC is synergistically influenced by the hydrogels elasticity and their immobilized manner of ephrinB2 immobilized. Differentiation fate of mesenchymal stem cells (MSC) is modified by biochemical and biophysical factors, such as elasticity and signal proteins. However, there are few experiments about combinations of them. In this study, to evaluate the synergistic effect of them on cell properties of MSC, we established to design the manner of Eph signal ligand, ephrinB2, immobilized onto polyacrylamide hydrogels with varied elasticity. The gene expression level of an osteogenic maker, Runx2, was enhanced

  8. Effect of gamma-irradiation on degradation of alginate.

    PubMed

    Lee, Dong Wook; Choi, Won Seok; Byun, Myung Woo; Park, Hyun Jin; Yu, Yong-Man; Lee, Chong M

    2003-07-30

    The aqueous solution of alginate was irradiated by 60Co gamma-rays in the dose range of 10-500 kGy. To assess the effect of irradiation on the degradation of alginate, the irradiation-induced changes in the viscosity, molecular weight, color, monomer composition, and sequence were measured. The molecular weight of raw alginate was reduced from 300000 to 25000 when irradiated at 100 kGy. The degradation rate decreased and the chain breaks per molecule increased with increasing irradiation dose. The viscosity of irradiated alginate solution reached a near minimum as low as at 10 kGy. No appreciable color changes were observed in the samples irradiated at up to 100 kGy, but intense browning occurred beyond 200 kGy. The 13C NMR spectra showed that homopolymeric blocks, MM and GG, increased and the M/G ratio decreased with irradiation. Considering both the level of degradation and the color change of alginate, the optimum irradiation dose was found to be 100 kGy.

  9. Extending hepatocyte functionality for drug-testing applications using high-viscosity alginate-encapsulated three-dimensional cultures in bioreactors.

    PubMed

    Miranda, Joana P; Rodrigues, Armanda; Tostões, Rui M; Leite, Sofia; Zimmerman, Heiko; Carrondo, Manuel J T; Alves, Paula M

    2010-12-01

    The maintenance of differentiated hepatocyte phenotype in vitro depends on several factors-in particular, on extracellular matrix interactions, for example, with three-dimensional (3D) matrices. Alginate hydrogel provides the cells with a good extracellular matrix due to the formation of a massive capsule with semi-permeable properties that allows for diffusion of the medium components into the cells as well as efficient waste product elimination. Simultaneously, alginate protects the cells from shear stress caused by the hydrodynamics when cultured in stirred systems such as bioreactors. We have previously developed a hepatocyte aggregate 3D culture system in a bioreactor where improved hepatocyte functionality could be maintained over longer periods (21 days). In this work, ultra-high-viscosity alginate was used for hepatocyte aggregates entrapment. Hepatocyte biotransformation (phase I and II enzymes), CYP450 inducibility, and secretory capacity (albumin and urea production) were monitored. The analyses were performed in both spinner vessels and bioreactors to test the effect of the pO(2) control, unavailable in the spinners. Performance of alginate-encapsulated hepatocyte aggregates in culture was compared with nonencapsulated aggregate cultures in both bioreactor (controlled environment) and spinner vessels. For both culture systems, hepatocytes' metabolic and biotransformation capacities were maintained for up to 1 month, and encapsulated cells in bioreactors showed the best performance. In particular, albumin production rate increased 2- and 1.5-fold in encapsulated aggregates compared with nonencapsulated aggregates in bioreactor and spinner vessels, respectively. Urea production rate increased twofold in encapsulated cultures compared with nonencapsulated cells, in both bioreactor and spinner vessels. Similarly, in both the bioreactor and the spinner system, cell encapsulation resulted in a 1.5- and 2.8-fold improvement of hepatocyte 7-ethoxycoumarin and

  10. Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior.

    PubMed

    Liu, Yun; Zhang, Chuan-Jie; Zhao, Jin-Chao; Guo, Yi; Zhu, Ping; Wang, De-Yi

    2016-03-30

    A bio-based barium alginate film was prepared via a facile ionic exchange and casting approach. Its flammability, thermal degradation and pyrolysis behaviors, thermal degradation mechanism were studied systemically by limiting oxygen index (LOI), vertical burning (UL-94), microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) coupled with Fourier transform infrared analysis (FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). It showed that barium alginate film had much higher LOI value (52.0%) than that of sodium alginate film (24.5%). Moreover, barium alginate film passed the UL-94 V-0 rating, while the sodium alginate film showed no classification. Importantly, peak of heat release rate (PHRR) of barium alginate film in MCC test was much lower than that of sodium alginate film, suggested that introduction of barium ion into alginate film significantly decreased release of combustible gases. TG-FTIR and Py-GC-MS results indicated that barium alginate produced much less flammable products than that of sodium alginate in whole thermal degradation procedure. Finally, a possible degradation mechanism of barium alginate had been proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Influence of processing parameters on pore structure of 3D porous chitosan-alginate polyelectrolyte complex scaffolds.

    PubMed

    Florczyk, Stephen J; Kim, Dae-Joon; Wood, David L; Zhang, Miqin

    2011-09-15

    Fabrication of porous polymeric scaffolds with controlled structure can be challenging. In this study, we investigated the influence of key experimental parameters on the structures and mechanical properties of resultant porous chitosan-alginate (CA) polyelectrolyte complex (PEC) scaffolds, and on proliferation of MG-63 osteoblast-like cells, targeted at bone tissue engineering. We demonstrated that the porous structure is largely affected by the solution viscosity, which can be regulated by the acetic acid and alginate concentrations. We found that the CA PEC solutions with viscosity below 300 Pa.s yielded scaffolds of uniform pore structure and that more neutral pH promoted more complete complexation of chitosan and alginate, yielding stiffer scaffolds. CA PEC scaffolds produced from solutions with viscosities below 300 Pa.s also showed enhanced cell proliferation compared with other samples. By controlling the key experimental parameters identified in this study, CA PEC scaffolds of different structures can be made to suit various tissue engineering applications. Copyright © 2011 Wiley Periodicals, Inc.

  12. Antibody immobilization using pneumatic spray: comparison with the avidin-biotin bridge immobilization method.

    PubMed

    Figueroa, Jhon; Magaña, Sonia; Lim, Daniel V; Schlaf, Rudy

    2012-12-14

    The formation of a thin antibody film on a glass surface using pneumatic spray was investigated as a potential immobilization technique for capturing pathogenic targets. Goat-Escherichia coli O157:H7 IgG films were made by pneumatic spray and compared against the avidin-biotin bridge immobilized films by assaying with green fluorescent protein (GFP) transformed E. coli O157:H7 cells and fluorescent reporter antibodies. Functionality, stability, and immobilization of the films were tested. The pneumatic spray films had lower fluorescence intensity values than the avidin-biotin bridge films but resulted in similar detection for E. coli O157:H7 at 10(5)-10(7)cells/ml sample concentrations with no detection of non-E. coli O157:H7 strains. Both methods also resulted in similar percent capture efficiencies. The results demonstrated that immobilization of antibody via pneumatic spray did not render the antibody non-functional and produced stable antibody films. The amount of time necessary for immobilization of the antibody was reduced significantly from 24h for the avidin-biotin bridge to 7 min using the pneumatic spray technique, with additional benefits of greatly reduced use of materials and chemicals. The pneumatic spray technique promises to be an alternative for the immobilization of antibodies on glass slides for capturing pathogenic targets and use in biosensor type devices. Copyright © 2012. Published by Elsevier B.V.

  13. The biofilm matrix polysaccharides cellulose and alginate both protect Pseudomonas putida mt-2 against reactive oxygen species generated under matric stress and copper exposure.

    PubMed

    Svenningsen, Nanna B; Martínez-García, Esteban; Nicolaisen, Mette H; de Lorenzo, Victor; Nybroe, Ole

    2018-06-01

    In natural environments most bacteria live in biofilms embedded in complex matrices of extracellular polymeric substances (EPS). This lifestyle is known to increase protection against environmental stress. Pseudomonas putida mt-2 harbours genes for the production of at least four different EPS polysaccharides, including alginate and cellulose. Little is known about the functional properties of cellulose, while alginate attenuates the accumulation of reactive oxygen species (ROS) caused by matric stress. By using mutants that are deficient in either alginate or cellulose production we show that even cellulose attenuates the accumulation of matric stress-induced ROS for cells in biofilms. Further, both cellulose and alginate attenuate ROS generated through exposure to copper. Interestingly, the two EPS polysaccharides protect cells in both liquid culture and in biofilms against ROS caused by matric stress, indicating that cellulose and alginate do not need to be produced as an integral part of the biofilm lifestyle to provide tolerance towards environmental stressors.

  14. Acetone-butanol-ethanol (ABE) fermentation in an immobilized cell trickle bed reactor.

    PubMed

    Park, C H; Okos, M R; Wankat, P C

    1989-06-05

    Acetone-butanol-ethanol (ABE) fermentation was successfully carried out in an immobilized cell trickle bed reactor. The reactor was composed of two serial columns packed with Clostridium acetobutylicum ATCC 824 entrapped on the surface of natural sponge segments at a cell loading in the range of 2.03-5.56 g dry cells/g sponge. The average cell loading was 3.58 g dry cells/g sponge. Batch experiments indicated that a critical pH above 4.2 is necessary for the initiation of cell growth. One of the media used during continuous experiments consisted of a salt mixture alone and the other a nutrient medium containing a salt mixture with yeast extract and peptone. Effluent pH was controlled by supplying various fractions of the two different types of media. A nutrient medium fraction above 0.6 was crucial for successful fermentation in a trickle bed reactor. The nutrient medium fraction is the ratio of the volume of the nutrient medium to the total volume of nutrient plus salt medium. Supplying nutrient medium to both columns continuously was an effective way to meet both pH and nutrient requirement. A 257-mL reactor could ferment 45 g/L glucose from an initial concentration of 60 g/L glucose at a rate of 70 mL/h. Butanol, acetone, and ethanol concentrations were 8.82, 5.22, and 1.45 g/L, respectively, with a butanol and total solvent yield of 19.4 and 34.1 wt %. Solvent productivity in an immobilized cell trickle bed reactor was 4.2 g/L h, which was 10 times higher than that obtained in a batch fermentation using free cells and 2.76 times higher than that of an immobilized CSTR. If the nutrient medium fraction was below 0.6 and the pH was below 4.2, the system degenerated. Oxygen also contributed to the system degeneration. Upon degeneration, glucose consumption and solvent yield decreased to 30.9 g/L and 23.0 wt %, respectively. The yield of total liquid product (40.0 wt %) and butanol selectivity (60.0 wt %) remained almost constant. Once the cells were degenerated

  15. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering.

    PubMed

    Lee, Gil-Su; Park, Jeong-Hui; Shin, Ueon Sang; Kim, Hae-Won

    2011-08-01

    This study reports the preparation of novel porous scaffolds of calcium phosphate cement (CPC) combined with alginate, and their potential usefulness as a three-dimensional (3-D) matrix for drug delivery and tissue engineering of bone. An α-tricalcium phosphate-based powder was mixed with sodium alginate solution and then directly injected into a fibrous structure in a Ca-containing bath. A rapid hardening reaction of the alginate with Ca(2+) helps to shape the composite into a fibrous form with diameters of hundreds of micrometers, and subsequent pressing in a mold allows the formation of 3-D porous scaffolds with different porosity levels. After transformation of the CPC into a calcium-deficient hydroxyapatite phase in simulated biological fluid the scaffold was shown to retain its mechanical stability. During the process biological proteins, such as bovine serum albumin and lysozyme, used as model proteins, were observed to be effectively loaded onto and released from the scaffolds for up to more than a month, proving the efficacy of the scaffolds as a drug delivering matrix. Mesenchymal stem cells (MSCs) were isolated from rat bone marrow and then cultured on the CPC-alginate porous scaffolds to investigate the ability to support proliferation of cells and their subsequent differentiation along the osteogenic lineage. It was shown that MSCs increasingly actively populated and also permeated into the porous network with time of culture. In particular, cells cultured within a scaffold with a relatively high porosity level showed favorable proliferation and osteogenic differentiation. An in vivo pilot study of the CPC-alginate porous scaffolds after implantation into the rat calvarium for 6 weeks revealed the formation of new bone tissue within the scaffold, closing the defect almost completely. Based on these results, the newly developed CPC-alginate porous scaffolds could be potentially useful as a 3-D matrix for drug delivery and tissue engineering of bone

  16. Effect of Ethanol Stress on Fermentation Performance of Saccharomyces cerevisiae Cells Immobilized on Nypa fruticans Leaf Sheath Pieces

    PubMed Central

    Nguyen, Hoang Phong; Du Le, Hoang

    2015-01-01

    Summary The yeast cells of Saccharomyces cerevisiae immobilized on Nypa fruticans leaf sheath pieces were tested for ethanol tolerance (0, 23.7, 47.4, 71.0 and 94.7 g/L). Increase in the initial ethanol concentration from 23.7 to 94.7 g/L decreased the average growth rate and concentration of ethanol produced by the immobilized yeast by 5.2 and 4.1 times, respectively. However, in the medium with initial ethanol concentration of 94.7 g/L, the average growth rate, glucose uptake rate and ethanol formation rate of the immobilized yeast were 3.7, 2.5 and 3.5 times, respectively, higher than those of the free yeast. The ethanol stress inhibited ethanol formation by Saccharomyces cerevisiae cells and the yeast responded to the stress by changing the fatty acid composition of cellular membrane. The adsorption of yeast cells on Nypa fruticans leaf sheath pieces of the growth medium increased the saturated fatty acid (C16:0 and C18:0) mass fraction in the cellular membrane and that improved alcoholic fermentation performance of the immobilized yeast. PMID:27904338

  17. Multienzyme decorated polysaccharide amplified electrogenerated chemiluminescence biosensor for cytosensing and cell surface carbohydrate profiling.

    PubMed

    Zhang, Ling; Wang, Yangzhong; Tian, Qianqian; Liu, Yang; Li, Jinghong

    2017-03-15

    A novel ECL biosensor for cytosensing and cell surface carbohydrate expression evaluation was developed, by the integration of the peptide modified interface for highly specific carbohydrate recognition and sodium alginate loaded glucose oxidase as the signal probe with high signal amplification efficiency. A cysteine-terminated peptide self-assembled on the electrode through Au-S bond to construct a functional interface for cell capture, with decent biocompatibility and high affinity for the human breast cancer cell MCF-7. Concanavalin A lectin modified gold nanoparticles specifically recognized the cell surface carbohydrates and were absorbed on the electrode, followed by the immobilization of multiple glucose oxidase conjugated sodium alginate, which could remarkably increase the sensitivity of the biosensor with enhanced catalysis. The as-proposed ECL cytosensor was successfully applied for the detection of the MCF-7 tumor cells, whose glycans on the cell membranes are over-expressed. A low detection limit of 150cellsmL -1 was obtained, with a wide dynamic linear range from 5.0×10 2 to 5.0×10 5 cellsmL -1 . Due to the excellent sensitivity, stability and biocompatibility, the ECL biosensor would be promising in reliable diagnostics of glycan relevant biomarkers for cancer and other diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Albumin-coated monodisperse magnetic poly(glycidyl methacrylate) microspheres with immobilized antibodies: application to the capture of epithelial cancer cells.

    PubMed

    Horák, Daniel; Svobodová, Zuzana; Autebert, Julien; Coudert, Benoit; Plichta, Zdeněk; Královec, Karel; Bílková, Zuzana; Viovy, Jean-Louis

    2013-01-01

    Monodisperse (4 μm) macroporous crosslinked poly(glycidyl methacrylate) (PGMA) microspheres for use in microfluidic immunomagnetic cell sorting, with a specific application to the capture of circulating tumor cells (CTCs), were prepared by multistep swelling polymerization in the presence of cyclohexyl acetate porogen and hydrolyzed and ammonolyzed. Iron oxide was then precipitated in the microspheres to render them magnetic. Repeated precipitation made possible to raise the iron oxide content to more than 30 wt %. To minimize nonspecific adsorption of the microspheres in a microchannel and of cells on the microspheres, they were coated with albumin crosslinked with glutaraldehyde. Antibodies of epithelial cell adhesion molecule (anti-EpCAM) were then immobilized on the albumin-coated magnetic microspheres using the carbodiimide method. Capture of breast cancer MCF7 cells as a model of CTCs by the microspheres with immobilized anti-EpCAM IgG was performed in a batch experiment. Finally, MCF7 cells were captured by the anti-EpCAM-immobilized albumin-coated magnetic microspheres in an Ephesia chip. A very good rejection of lymphocytes was achieved. Thus, albumin-coated monodisperse magnetic PGMA microspheres with immobilized anti-EpCAM seem to be promising for capture of CTCs in a microfluidic device. Copyright © 2012 Wiley Periodicals, Inc.

  19. [The effect of long-term preservation of microbial cells immobilized in poly(vinyl alcohol) cryogel on their viability and biosynthesis of target metabolites].

    PubMed

    Efremenko, E N; Tatarinova, N Iu

    2007-01-01

    The effect of cell storage at -18 degrees C for 18-24 months on reproductive capacity was investigated for various microorganisms (gram-positive and gram-negative bacteria, yeasts, and filamentous fungi) immobilized in poly(vinyl alcohol) cryogel. To examine the viability of immobilized cells after defrosting, the bioluminescent method of intracellular ATP determination was used. A high level of metabolic activity of immobilized cells after various periods of storage was recorded for Streptomyces anulatus, Rhizopus orvzae, and Escherichia coli, which are producers of the antibiotic aurantin, L(+)-lactic acid, and the recombinant enzyme organophosphate hydrolase, respectively. It was shown that the initial concentration of immobilized cells in cryogel granules plays an important role in the survival of Str. anulatus and Pseudomonas putida after 1.5 years of storage. It was found that, after slow defrosting in the storage medium at 50C for 18 h of immobilized cells of the yeast Saccharomvces cerevisiae that had been stored for nine months, the number of reproductive cells increased due to the formation of ascospores.

  20. Sodium alginate/gelatin with silica nanoparticles a novel hydrogel for 3D printing

    NASA Astrophysics Data System (ADS)

    Soni, Raghav; Roopavath, Uday Kiran; Mahanta, Urbashi; Deshpande, A. S.; Rath, S. N.

    2018-05-01

    Sodium alginate/gelatin hydrogels are promising materials for 3D bio-printing due to its good biocompatibility and biodegradability. Gelatin is used for thermal crosslinking and its cell adhesion properties. Hence patient specific sodium alginate/gelatin hydrogel scaffolds can be bio-fabricated in a temperature range of 4-14 oC. In this study we made an attempt to introduce silica (SiO2) nanoparticles in the polymer network of sodium alginate (2.5%)/gelatin (8%) hydrogel at different concentrations (w/v) as 0%, 1.25%, 2.5%, 5%, and 7.5%. The effect of silica nanoparticles on viscosity, swelling behavior, and degradation rate are analyzed. Hydrogels with 5% silica nanoparticles show significantly less swelling and degradation when compared to other concentrations. The viscosity of the hydrogels gradually increases up to 5% addition of silica nanoparticles enhancing the stability of 3D printed structures.

  1. The role of alginates in regulation of food intake and glycemia: a gastroenterological perspective.

    PubMed

    El Khoury, D; Goff, H D; Anderson, G H

    2015-01-01

    Regulation of food intake through modulation of gastrointestinal responses to ingested foods is an ever-growing component of the therapeutic approaches targeting the obesity epidemic. Alginates, viscous and gel-forming soluble fibers isolated from the cell wall of brown seaweeds and some bacteria, are recently receiving considerable attention because of their potential role in satiation, satiety, and food intake regulation in the short term. Enhancement of gastric distension, delay of gastric emptying, and attenuation of postprandial glucose responses may constitute the basis of their physiological benefits. Offering physical, chemical, sensorial, and physiological advantages over other viscous and gel-forming fibers, alginates constitute promising functional food ingredients for the food industry. Therefore, the current review explores the role of alginates in food intake and glycemic regulation, their underlying modes of action and their potential in food applications.

  2. Immobilization of Trametes versicolor cultures for improving laccase production in bubble column reactor intensified by sonication.

    PubMed

    Wang, Feng; Guo, Chen; Liu, Chun-Zhao

    2013-01-01

    The mycelia of Trametes versicolor immobilized in alginate beads provided higher laccase production than that in pelleted form. An efficient ultrasonic treatment enhanced laccase production from the immobilized T. versicolor cultures. The optimized treatment process consisted of exposing 36-h-old bead cultures to 7-min ultrasonic treatments twice with a 12-h interval using a fixed ultrasonic power and frequency (120 W, 40 kHz). Using the intensification strategy with sonication, laccase production increased by more than 2.1-fold greater than the untreated control in both flasks and bubble column reactors. The enhancement of laccase production by ultrasonic treatment is related to the improved mass transfer of nutrients and product between the liquid medium and the gel matrix. These results provide a basis for the large-scale and highly-efficient production of laccase using sonobioreactors.

  3. Properties of Lactobacillus reuteri chitosan-calcium-alginate encapsulation under simulated gastrointestinal conditions.

    PubMed

    Huang, Hui-Ying; Tang, Yi-Ju; King, V An-Erl; Chou, Jen-Wei; Tsen, Jen-Horng

    2015-03-01

    The protective effects of encapsulation on the survival of Lactobacillus reuteri and the retention of the bacterium's probiotic properties under simulated gastrointestinal conditions were investigated. Viable counts and the remaining probiotic properties of calcium (Ca)-alginate encapsulated (A group), chitosan-Ca-alginate encapsulated (CA group), and unencapsulated, free L. reuteri (F group) were determined. Encapsulation improved the survival of L. reuteri subjected to simulated gastrointestinal conditions, with the greatest protective effect achieved in the CA group. The degree of cell membrane injury increased with increasing bile salt concentrations at constant pH, but the extent of injury was less in the encapsulated than in the free cells. Adherence rates were, in descending order: CA (0.524%)>A (0.360%)>F (0.275%). Lactobacillus reuteri cells retained their antagonistic activity toward Listeria monocytogenes even after incubation of the lactobacilli under simulated gastrointestinal conditions. Displacement of the pathogen by cells released from either of the encapsulation matrices was higher than that by free cells. The safety of L. reuteri was demonstrated in an in vitro invasion assay. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  4. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.

    PubMed

    Bendtsen, Stephanie T; Quinnell, Sean P; Wei, Mei

    2017-05-01

    Three-dimensional printed biomaterials used as personalized tissue substitutes have the ability to promote and enhance regeneration in areas of defected tissue. The challenge with 3D printing for bone tissue engineering remains the selection of a material with optimal rheological properties for printing in addition to biocompatibility and capacity for uniform cell incorporation. Hydrogel biomaterials may provide sufficient printability to allow cell encapsulation and bioprinting of scaffolds with uniform cell distribution. In this study, a novel alginate-polyvinyl alcohol (PVA)-hydroxyapatite (HA) hydrogel formulation with optimal rheological properties for 3D bioprinting of mouse calvaria 3T3-E1 (MC3T3) cells into scaffolds of high shape fidelity has been developed. A systematic investigation was conducted to determine the effect of varying concentrations of alginate, phosphate, calcium, and the PVA-HA suspension in the formulation on the resulting viscosity and thus printability of the hydrogel. HA, the main mineral component in natural bone, was incorporated into the hydrogel formulation to create a favorable bone-forming environment due to its excellent osteoconductivity. Degradation studies in α-MEM cell culture media showed that the 3D printed alginate-PVA-HA scaffolds remained in-tact for 14 days. MC3T3 cells were well distributed and encapsulated throughout the optimal hydrogel formulation and expressed high viability through the completion of the 3D printing process. Thus, the development of this novel, osteoconductive, biodegradable, alginate-PVA-HA formulation and its ability to 3D bioprint tissue engineered scaffolds make it a promising candidate for treating personalized bone defects. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1457-1468, 2017. © 2017 Wiley Periodicals, Inc.

  5. Raspberry wine fermentation with suspended and immobilized yeast cells of two strains of Saccharomyces cerevisiae.

    PubMed

    Djordjević, Radovan; Gibson, Brian; Sandell, Mari; de Billerbeck, Gustavo M; Bugarski, Branko; Leskošek-Čukalović, Ida; Vunduk, Jovana; Nikićević, Ninoslav; Nedović, Viktor

    2015-01-01

    The objectives of this study were to assess the differences in fermentative behaviour of two different strains of Saccharomyces cerevisiae (EC1118 and RC212) and to determine the differences in composition and sensory properties of raspberry wines fermented with immobilized and suspended yeast cells of both strains at 15 °C. Analyses of aroma compounds, glycerol, acetic acid and ethanol, as well as the kinetics of fermentation and a sensory evaluation of the wines, were performed. All fermentations with immobilized yeast cells had a shorter lag phase and faster utilization of sugars and ethanol production than those fermented with suspended cells. Slower fermentation kinetics were observed in all the samples that were fermented with strain RC212 (suspended and immobilized) than in samples fermented with strain EC1118. Significantly higher amounts of acetic acid were detected in all samples fermented with strain RC212 than in those fermented with strain EC1118 (0.282 and 0.602 g/l, respectively). Slightly higher amounts of glycerol were observed in samples fermented with strain EC1118 than in those fermented with strain RC212. Copyright © 2014 John Wiley & Sons, Ltd.

  6. CRYOPRESERVATION EFFECTS ON RECOMBINANT MYOBLASTS ENCAPSULATED IN ADHESIVE ALGINATE HYDROGELS

    PubMed Central

    Ahmad, Hajira F.; Sambanis, Athanassios

    2013-01-01

    Cell encapsulation in hydrogels is widely used in tissue engineering applications, including encapsulation of islets or other insulin-secreting cells in pancreatic substitutes. Use of adhesive, bio-functionalized hydrogels is receiving increasing attention, as cell-matrix interactions in 3-D can be important for various cell processes. With pancreatic substitutes, studies have indicated benefits of 3-D adhesion on the viability and/or function of insulin-secreting cells. As long-term storage of microencapsulated cells is critical for their clinical translation, cryopreservation of cells in hydrogels is actively being investigated. Previous studies have examined the cryopreservation response of cells encapsulated in non-adhesive hydrogels using conventional freezing and/or vitrification (ice-free cryopreservation), however, none have systematically compared the two cryopreservation methods with cells encapsulated within an adhesive 3-D environment. The latter would be significant, as evidence suggests adhesion influences cellular response to cryopreservation. Thus, the objective of this study was to determine the response to conventional freezing and vitrification of insulin-secreting cells encapsulated in an adhesive biomimetic hydrogel. Recombinant insulin-secreting C2C12 myoblasts were encapsulated in oxidized RGD-alginate and cultured 1 or 4 days post-encapsulation, cryopreserved, and assessed up to 3 days post-warming for metabolic activity and insulin secretion, and one day post-warming for cell morphology. Besides certain transient differences of the vitrified group relative to the Fresh control, both conventional freezing and vitrification maintained metabolism, secretion and morphology of the recombinant C2C12 cells. Thus, due to a simpler procedure and slightly superior results, conventional freezing is recommended over vitrification for the cryopreservation of C2C12 cells in oxidized RGD-modified alginate. PMID:23499987

  7. Magnesium Oxide Nanoparticles Reinforced Electrospun Alginate-Based Nanofibrous Scaffolds with Improved Physical Properties

    PubMed Central

    Mantilaka, M. M. M. G. P. G.; Goh, K. L.; Ratnayake, S. P.; Amaratunga, G. A. J.; de Silva, K. M. Nalin

    2017-01-01

    Mechanically robust alginate-based nanofibrous scaffolds were successfully fabricated by electrospinning method to mimic the natural extracellular matrix structure which benefits development and regeneration of tissues. Alginate-based nanofibres were electrospun from an alginate/poly(vinyl alcohol) (PVA) polyelectrolyte complex. SEM images revealed the spinnability of the complex composite nanofibrous scaffolds, showing randomly oriented, ultrafine, and virtually defects-free alginate-based/MgO nanofibrous scaffolds. Here, it is shown that an alginate/PVA complex scaffold, blended with near-spherical MgO nanoparticles (⌀ 45 nm) at a predetermined concentration (10% (w/w)), is electrospinnable to produce a complex composite nanofibrous scaffold with enhanced mechanical stability. For the comparison purpose, chemically cross-linked electrospun alginate-based scaffolds were also fabricated. Tensile test to rupture revealed the significant differences in the tensile strength and elastic modulus among the alginate scaffolds, alginate/MgO scaffolds, and cross-linked alginate scaffolds (P < 0.05). In contrast to cross-linked alginate scaffolds, alginate/MgO scaffolds yielded the highest tensile strength and elastic modulus while preserving the interfibre porosity of the scaffolds. According to the thermogravimetric analysis, MgO reinforced alginate nanofibrous scaffolds exhibited improved thermal stability. These novel alginate-based/MgO scaffolds are economical and versatile and may be further optimised for use as extracellular matrix substitutes for repair and regeneration of tissues. PMID:28694826

  8. Continuous conversion of sweet sorghum juice to ethanol using immobilized yeast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohite, U.; SivaRaman, H.

    1984-01-01

    While extensive work has been reported on sugarcane and sugarcane molasses for ethanol production, relatively few reports are available on ethanol production from sweet sorghum juice. With the advent of immobilized cell technology, an attempt has been made to utilize this technology for the production of ethanol from sweet sorghum juice. The species was Sorghum bicolar (Moench). The maximum productivity obtained at 30/sup 0/C with Saccharomyces uvarum cells immobilized in gelatin was 168 g/L h at an ethanol concentration of 2.4 g (w/v) using sweet sorghum juice having 11.5% fermentable sugars. The calculated value for full conversion was 86 g/Lmore » at an ethanol concentration of 5.5 g (w/v). The low concentration of total sugars in the juice, however, would make ethanol recovery expensive unless a uniformly high concentration of 16% or more of total sugars can be obtained.« less

  9. Polyelectrolyte capsules preloaded with interconnected alginate matrix: An effective capsule system for encapsulation and release of macromolecules.

    PubMed

    Sundaramurthy, Anandhakumar; Sundramoorthy, Ashok K

    2018-02-01

    In recent years, the design of stimuli-responsive hollow polymeric capsules is of tremendous interest for the scientific community because of the broad application of these capsules in the biomedical field. The use of weak polyelectrolytes as layer components for capsule fabrication is especially interesting as it results in hollow capsules that show unique release characteristics under physiological conditions. In this work, a methodology to prepare sub-micron sized alginate doped calcium carbonate (CaCO 3 ) particles through controlled precipitation in the presence of alginate is reported. Hollow capsules obtained by Layer-by-Layer (LbL) assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) are showing an interconnected alginate matrix in the interior of the capsules. Investigations showed that the presence of alginate matrix enhances the encapsulation of cationic molecules (e.g. doxorubicin hydrochloride) manifold by charge controlled attraction mechanism. Capsule permeability investigated by confocal laser scanning microscopy revealed that the transformation from an open state to closed state is accompanied by an intermediate state where capsules are neither open nor closed. Furthermore, time dependent study indicated that the encapsulation process is linear as a function of time. The cell viability experiments demonstrated excellent biocompatibility of hollow capsules with mouse embryonic fibroblast cells. Anticancer investigations showed that DOX loaded capsules have significant anti-proliferative characteristics against HeLa cells. Such capsules have high potential for use as drug carrier for cationic drugs in cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Direct Electrochemical Addressing of Immobilized Alcohol Dehydrogenase for the Heterogeneous Bioelectrocatalytic Reduction of Butyraldehyde to Butanol.

    PubMed

    Schlager, S; Neugebauer, H; Haberbauer, M; Hinterberger, G; Sariciftci, N S

    2015-03-01

    Modified electrodes using immobilized alcohol dehydrogenase enzymes for the efficient electroreduction of butyraldehyde to butanol are presented as an important step for the utilization of CO 2 -reduction products. Alcohol dehydrogenase was immobilized, embedded in an alginate-silicate hybrid gel, on a carbon felt (CF) electrode. The application of this enzyme to the reduction of an aldehyde to an alcohol with the aid of the coenzyme nicotinamide adenine dinucleotide (NADH), in analogy to the final step in the natural reduction cascade of CO 2 to alcohol, has been already reported. However, the use of such enzymatic reductions is limited because of the necessity of providing expensive NADH as a sacrificial electron and proton donor. Immobilization of such dehydrogenase enzymes on electrodes and direct pumping of electrons into the biocatalysts offers an easy and efficient way for the biochemical recycling of CO 2 to valuable chemicals or alternative synthetic fuels. We report the direct electrochemical addressing of immobilized alcohol dehydrogenase for the reduction of butyraldehyde to butanol without consumption of NADH. The selective reduction of butyraldehyde to butanol occurs at room temperature, ambient pressure and neutral pH. Production of butanol was detected by using liquid-injection gas chromatography and was estimated to occur with Faradaic efficiencies of around 40 %.

  11. Biodesulfurization of gas oil using inorganic supports biomodified with metabolically active cells immobilized by adsorption.

    PubMed

    Dinamarca, M Alejandro; Ibacache-Quiroga, C; Baeza, P; Galvez, S; Villarroel, M; Olivero, P; Ojeda, J

    2010-04-01

    The immobilization of Pseudomonas stutzeri using adsorption on different inorganic supports was studied in relation to the number of adsorbed cells, metabolic activity and biodesulfurization (BDS). The electrophoretic migration (EM) measurements and Tetrazolioum (TTC) method were used to evaluate adsorption and metabolic activity. Results indicate that maximal immobilization was obtained with an initial load of 14 x 10(8) cells mL(-1) for Al and Sep, whereas Ti requires 20 x 10(8) cells mL(-1). The highest interaction was observed in the P. stutzeri/Si and P. stutzeri/Sep biocatalysts. The IEP values and metabolic activities indicate that P. stutzeri change the surface of supports and maintains metabolic activity. A direct relation between BDS activity and the adsorption capacity of the bacterial cells was observed at the adsorption/desorption equilibrium level. The biomodification of inorganic supports by the adsorption process increases the bioavailability of sulphur substrates for bacterial cells, improving BDS activity. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Electrochemical Reduction of Carbon Dioxide to Methanol by Direct Injection of Electrons into Immobilized Enzymes on a Modified Electrode.

    PubMed

    Schlager, Stefanie; Dumitru, Liviu Mihai; Haberbauer, Marianne; Fuchsbauer, Anita; Neugebauer, Helmut; Hiemetsberger, Daniela; Wagner, Annika; Portenkirchner, Engelbert; Sariciftci, Niyazi Serdar

    2016-03-21

    We present results for direct bio-electrocatalytic reduction of CO2 to C1 products using electrodes with immobilized enzymes. Enzymatic reduction reactions are well known from biological systems where CO2 is selectively reduced to formate, formaldehyde, or methanol at room temperature and ambient pressure. In the past, the use of such enzymatic reductions for CO2 was limited due to the necessity of a sacrificial co-enzyme, such as nicotinamide adenine dinucleotide (NADH), to supply electrons and the hydrogen equivalent. The method reported here in this paper operates without the co-enzyme NADH by directly injecting electrons from electrodes into immobilized enzymes. We demonstrate the immobilization of formate, formaldehyde, and alcohol dehydrogenases on one-and-the-same electrode for direct CO2 reduction. Carbon felt is used as working electrode material. An alginate-silicate hybrid gel matrix is used for the immobilization of the enzymes on the electrode. Generation of methanol is observed for the six-electron reduction with Faradaic efficiencies of around 10%. This method of immobilization of enzymes on electrodes offers the opportunity for electrochemical application of enzymatic electrodes to many reactions in which a substitution of the expensive sacrificial co-enzyme NADH is desired. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Engineering Microvascularized 3D Tissue Using Alginate-Chitosan Microcapsules.

    PubMed

    Zhang, Wujie; Choi, Jung K; He, Xiaoming

    2017-02-01

    Construction of vascularized tissues is one of the major challenges of tissue engineering. The goal of this study was to engineer 3D microvascular tissues by incorporating the HUVEC-CS cells with a collagen/alginate-chitosan (AC) microcapsule scaffold. In the presence of AC microcapsules, a 3D vascular-like network was clearly observable. The results indicated the importance of AC microcapsules in engineering microvascular tissues -- providing support and guiding alignment of HUVEC-CS cells. This approach provides an alternative and promising method for constructing vascularized tissues.

  14. Preparation and release characteristics of polymer-coated and blended alginate microspheres.

    PubMed

    Lee, D W; Hwang, S J; Park, J B; Park, H J

    2003-01-01

    To prevent a rapid drug release from alginate microspheres in simulated intestinal media, alginate microspheres were coated or blended with polymers. Three polymers were selected and evaluated such as HPMC, Eudragit RS 30D and chitosan, as both coating materials and additive polymers for controlling the drug release. This study focused on the release characteristics of polymer-coated and blended alginate microspheres, varying the type of polymer and its concentration. The alginate microspheres were prepared by dropping the mixture of drug and sodium alginate into CaCl(2) solution using a spray-gun. Polymer-coated microspheres were prepared by adding alginate microspheres into polymer solution with mild stirring. Polymer-blended microspheres were prepared by dropping the mixture of drug, sodium alginate and additive polymer with plasticizer into CaCl(2) solution. In vitro release test was carried out to investigate the release profiles in 500 ml of phosphate buffered saline (PBS, pH 7.4). As the amount of polymer in sodium alginate or coating solution increase, the drug release generally decreased. HPMC-blended microspheres swelled but withstood the disintegration, showing an ideal linear release profiles. Chitosan-coated microspheres showed smooth and round surface and extended the release of drug. In comparison with chitosan-coated microspheres, HPMC-blended alginate microspheres can be easily made and used for controlled drug delivery systems due to convenient process and controlled drug release.

  15. The Experimental Study of the Performance of Nano-Thin Polyelectrolyte Shell for Dental Pulp Stem Cells Immobilization.

    PubMed

    Grzeczkowicz, A; Granicka, L H; Maciejewska, I; Strawski, M; Szklarczyk, M; Borkowska, M

    2015-12-01

    Carious is the most frequent disease of mineralized dental tissues which might result in dental pulp inflammation and mortality. In such cases an endodontic treatment is the only option to prolong tooth functioning in the oral cavity; however, in the cases of severe pulpitis, especially when complicated with periodontal tissue inflammation, the endodontic treatment might not be enough to protect against tooth loss. Thus, keeping the dental pulp viable and/or possibility of the reconstruction of a viable dental pulp complex, appears to become a critical factor for carious and/or pulp inflammation treatment. The nowadays technologies, which allow handling dental pulp stem cells (DPSC), seem to bring us closer to the usage of dental stem cells for tooth tissues reconstruction. Thus, DPSC immobilized within nano-thin polymeric shells, allowing for a diffusion of produced factors and separation from bacteria, may be considered as a cover system supporting technology of dental pulp reconstruction. The DPSC were immobilized using a layer-by-layer technique within nano-thin polymeric shells constructed and modified by nanostructure involvement to ensure the layers stability and integrity as well as separation from bacterial cells. The cytotoxity of the material used for membrane production was assessed on the model of adherent cells. The performance of DPSC nano-coating was assessed in vitro. Membrane coatings showed no cytotoxicity on the immobilized cells. The presence of coating shell was confirmed with flow cytometry, atomic force microscopy and visualized with fluorescent microscopy. The transfer of immobilized DPSC within the membrane system ensuring cells integrity, viability and protection from bacteria should be considered as an alternative method for dental tissues transportation and regeneration.

  16. Cell-Free Expression and In Situ Immobilization of Parasite Proteins from Clonorchis sinensis for Rapid Identification of Antigenic Candidates

    PubMed Central

    Ju, Jung Won; Kim, Ho-Cheol; Shin, Hyun-Il; Kim, Yu Jung; Kim, Dong-Myung

    2015-01-01

    Progress towards genetic sequencing of human parasites has provided the groundwork for a post-genomic approach to develop novel antigens for the diagnosis and treatment of parasite infections. To fully utilize the genomic data, however, high-throughput methodologies are required for functional analysis of the proteins encoded in the genomic sequences. In this study, we investigated cell-free expression and in situ immobilization of parasite proteins as a novel platform for the discovery of antigenic proteins. PCR-amplified parasite DNA was immobilized on microbeads that were also functionalized to capture synthesized proteins. When the microbeads were incubated in a reaction mixture for cell-free synthesis, proteins expressed from the microbead-immobilized DNA were instantly immobilized on the same microbeads, providing a physical linkage between the genetic information and encoded proteins. This approach of in situ expression and isolation enables streamlined recovery and analysis of cell-free synthesized proteins and also allows facile identification of the genes coding antigenic proteins through direct PCR of the microbead-bound DNA. PMID:26599101

  17. Controlled release of Lactobacillus rhamnosus biofilm probiotics from alginate-locust bean gum microcapsules.

    PubMed

    Cheow, Wean Sin; Kiew, Tie Yi; Hadinoto, Kunn

    2014-03-15

    Chitosan-coated alginate microcapsules containing high-density biofilm Lactobacillus rhamnosus have been previously shown to exhibit higher freeze drying- and thermal-tolerance than their planktonic counterparts. However, their cell release profile remains poor due to the capsules' susceptibility to the gastric environment. Herein the effects of adding locust bean (LB) and xanthan (XT) gums to alginate (AGN) capsules on the stress tolerance and cell release profiles in simulated gastrointestinal fluids are investigated. Compared to the AGN-only capsules, the AGN-LB capsules exhibit improved stress tolerance (i.e. ≈ 6x for freeze drying, 100x for thermotolerance, 10x for acid), whereas the AGN-XT capsules only improve the acid tolerance. Importantly, the AGN-LB capsules possess the optimal cell release profile with a majority of cells released in the simulated intestinal juice than in the gastric juice. The AGN-LB capsules' superiority is attributed to their stronger interaction with the chitosan coating and high swelling capacity, thus delaying their bulk dissolution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Alginate and DNA Gels Are Suitable Delivery Systems for Diabetic Wound Healing.

    PubMed

    Tellechea, Ana; Silva, Eduardo A; Min, Jianghong; Leal, Ermelindo C; Auster, Michael E; Pradhan-Nabzdyk, Leena; Shih, William; Mooney, David J; Veves, Aristidis

    2015-06-01

    Diabetic foot ulcers (DFU) represent a severe health problem and an unmet clinical challenge. In this study, we tested the efficacy of novel biomaterials in improving wound healing in mouse models of diabetes mellitus (DM). The biomaterials are composed of alginate- and deoxyribonucleic acid (DNA)-based gels that allow incorporation of effector cells, such as outgrowth endothelial cells (OEC), and provide sustained release of bioactive factors, such as neuropeptides and growth factors, which have been previously validated in experimental models of DM wound healing or hind limb ischemia. We tested these biomaterials in mice and demonstrate that they are biocompatible and can be injected into the wound margins without major adverse effects. In addition, we show that the combination of OEC and the neuropeptide Substance P has a better healing outcome than the delivery of OEC alone, while subtherapeutic doses of vascular endothelial growth factor (VEGF) are required for the transplanted cells to exert their beneficial effects in wound healing. In summary, alginate and DNA scaffolds could serve as potential delivery systems for the next-generation DFU therapies. © The Author(s) 2015.

  19. 21 CFR 172.858 - Propylene glycol alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Propylene glycol alginate. 172.858 Section 172.858... CONSUMPTION Multipurpose Additives § 172.858 Propylene glycol alginate. The food additive propylene glycol... information required by the act: (1) The name of the additive, “propylene glycol alginate” or “propylene...

  20. 21 CFR 172.858 - Propylene glycol alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Propylene glycol alginate. 172.858 Section 172.858... CONSUMPTION Multipurpose Additives § 172.858 Propylene glycol alginate. The food additive propylene glycol... information required by the act: (1) The name of the additive, “propylene glycol alginate” or “propylene...

  1. Applications of Alginate-Based Bioinks in 3D Bioprinting.

    PubMed

    Axpe, Eneko; Oyen, Michelle L

    2016-11-25

    Three-dimensional (3D) bioprinting is on the cusp of permitting the direct fabrication of artificial living tissue. Multicellular building blocks (bioinks) are dispensed layer by layer and scaled for the target construct. However, only a few materials are able to fulfill the considerable requirements for suitable bioink formulation, a critical component of efficient 3D bioprinting. Alginate, a naturally occurring polysaccharide, is clearly the most commonly employed material in current bioinks. Here, we discuss the benefits and disadvantages of the use of alginate in 3D bioprinting by summarizing the most recent studies that used alginate for printing vascular tissue, bone and cartilage. In addition, other breakthroughs in the use of alginate in bioprinting are discussed, including strategies to improve its structural and degradation characteristics. In this review, we organize the available literature in order to inspire and accelerate novel alginate-based bioink formulations with enhanced properties for future applications in basic research, drug screening and regenerative medicine.

  2. Applications of Alginate-Based Bioinks in 3D Bioprinting

    PubMed Central

    Axpe, Eneko; Oyen, Michelle L.

    2016-01-01

    Three-dimensional (3D) bioprinting is on the cusp of permitting the direct fabrication of artificial living tissue. Multicellular building blocks (bioinks) are dispensed layer by layer and scaled for the target construct. However, only a few materials are able to fulfill the considerable requirements for suitable bioink formulation, a critical component of efficient 3D bioprinting. Alginate, a naturally occurring polysaccharide, is clearly the most commonly employed material in current bioinks. Here, we discuss the benefits and disadvantages of the use of alginate in 3D bioprinting by summarizing the most recent studies that used alginate for printing vascular tissue, bone and cartilage. In addition, other breakthroughs in the use of alginate in bioprinting are discussed, including strategies to improve its structural and degradation characteristics. In this review, we organize the available literature in order to inspire and accelerate novel alginate-based bioink formulations with enhanced properties for future applications in basic research, drug screening and regenerative medicine. PMID:27898010

  3. Crystallization and preliminary X-ray analysis of alginate lyases A1-II and A1-II′ from Sphingomonas sp. A1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamasaki, Masayuki; Ogura, Kohei; Moriwaki, Satoko

    The crystallization and preliminary characterization of the family PL-7 alginate lyases A1-II and A1-II′ from Sphingomonas sp. A1 are presented. Alginate lyases depolymerize alginate, a heteropolysaccharide consisting of α-l-guluronate and β-d-mannuronate, through a β-elimination reaction. The alginate lyases A1-II (25 kDa) and A1-II′ (25 kDa) from Sphingomonas sp. A1, which belong to polysaccharide lyase family PL-7, exhibit 68% homology in primary structure but have different substrate specificities. To determine clearly the structural basis for substrate recognition in the depolymerization mechanism by alginate lyases, both proteins were crystallized at 293 K using the vapour-diffusion method. A crystal of A1-II belonged tomore » space group P2{sub 1} and diffracted to 2.2 Å resolution, with unit-cell parameters a = 51.3, b = 30.1, c = 101.6 Å, β = 100.2°, while a crystal of A1-II′ belonged to space group P2{sub 1}2{sub 1}2{sub 1} and diffracted to 1.0 Å resolution, with unit-cell parameters a = 34.6, b = 68.5, c = 80.3 Å.« less

  4. Effects of cryopreservation and hypothermic storage on cell viability and enzyme activity in recombinant encapsulated cells overexpressing alpha-L-iduronidase.

    PubMed

    Mayer, Fabiana Quoos; Baldo, Guilherme; de Carvalho, Talita Giacomet; Lagranha, Valeska Lizzi; Giugliani, Roberto; Matte, Ursula

    2010-05-01

    Here, we show the effects of cryopreservation and hypothermic storage upon cell viability and enzyme release in alginate beads containing baby hamster kidney cells overexpressing alpha-L-iduronidase (IDUA), the enzyme deficient in mucopolysaccharidosis type I. In addition, we compared two different concentrations of alginate gel (1% and 1.5%) in respect to enzyme release from the beads and their shape and integrity. Our results indicate that in both alginate concentrations, the enzyme is released in lower amounts compared with nonencapsulated cells. Alginate 1% beads presented increased levels of IDUA release, although this group presented more deformities when compared with alginate 1.5% beads. Importantly, both encapsulated groups presented higher cell viability after long cryopreservation period and hypothermic storage. In addition, alginate 1.5% beads presented higher enzyme release after freezing protocols. Taken together, our findings suggest a benefic effect of alginate upon cell viability and functionality. These results may have important application for treatment of both genetic and nongenetic diseases using microencapsulation-based artificial organs.

  5. Long-term Efficacy and Biocompatibility of Encapsulated Islet Transplantation With Chitosan-Coated Alginate Capsules in Mice and Canine Models of Diabetes.

    PubMed

    Yang, Hae Kyung; Ham, Dong-Sik; Park, Heon-Seok; Rhee, Marie; You, Young Hye; Kim, Min Jung; Shin, Juyoung; Kim, On-You; Khang, Gilson; Hong, Tae Ho; Kim, Ji-Won; Lee, Seung-Hwan; Cho, Jae-Hyoung; Yoon, Kun-Ho

    2016-02-01

    Clinical application of encapsulated islet transplantation is hindered by low biocompatibility of capsules leading to pericapsular fibrosis and decreased islet viability. To improve biocompatibility, we designed a novel chitosan-coated alginate capsules and compared them to uncoated alginate capsules. Alginate capsules were formed by crosslinking with BaCl2, then they were suspended in chitosan solution for 10 minutes at pH 4.5. Xenogeneic islet transplantation, using encapsulated porcine islets in 1,3-galactosyltransferase knockout mice, and allogeneic islet transplantation, using encapsulated canine islets in beagles, were performed without immunosuppressants. The chitosan-alginate capsules showed similar pore size, islet viability, and insulin secretory function compared to alginate capsules, in vitro. Xenogeneic transplantation of chitosan-alginate capsules demonstrated a trend toward superior graft survival (P = 0.07) with significantly less pericapsular fibrosis (cell adhesion score: 3.77 ± 0.41 vs 8.08 ± 0.05; P < 0.001) compared to that of alginate capsules up to 1 year after transplantation. Allogeneic transplantation of chitosan-alginate capsules normalized the blood glucose level up to 1 year with little evidence of pericapsular fibrotic overgrowth on graft explantation. The efficacy and biocompatibility of chitosan-alginate capsules were demonstrated in xenogeneic and allogeneic islet transplantations using small and large animal models of diabetes. This capsule might be a potential candidate applicable in the treatment of type 1 diabetes mellitus patients, and further studies in nonhuman primates are required.

  6. Spontaneous gene transfection of human bone cells using 3D mineralized alginate-chitosan macrocapsules.

    PubMed

    Green, David W; Kim, Eun-Jung; Jung, Han-Sung

    2015-09-01

    The effectiveness of nonviral gene therapy remains uncertain because of low transfection efficiencies and high toxicities compared with viral-based strategies. We describe a simple system for transient transfection of continuous human cell lines, with low toxicity, using mineral-coated chitosan and alginate capsules. As proof-of-concept, we demonstrate transfection of Saos-2 and MG63 human osteosarcoma continuous cell lines with gfp, LacZ reporter genes, and a Sox-9 carrying plasmid, to illustrate expression of a functional gene with therapeutic relevance. We show that continuous cell lines transfect with significant efficiency of up to 65% possibly through the interplay between chitosan and DNA complexation and calcium/phosphate-induced translocation into cells entrapped within the 3D polysaccharide based environment, as evidenced by an absence of transfection in unmineralized and chitosan-free capsules. We demonstrated that our transfection system was equally effective at transfection of primary human bone marrow stromal cells. To illustrate, the Sox-9, DNA plasmid was spontaneously expressed in primary human bone marrow stromal cells at 7 days with up to 90% efficiency in two repeats. Mineralized polysaccharide macrocapsules are gene delivery vehicles with a number of biological and practical advantages. They are highly efficient at self-transfecting primary bone cells, with programmable spatial and temporal delivery prospects, premineralized bone-like environments, and have no cytotoxic effects, as compared with many other nonviral systems. © 2015 Wiley Periodicals, Inc.

  7. Cell immobilization for production of lactic acid biofilms do it naturally.

    PubMed

    Dagher, Suzanne F; Ragout, Alicia L; Siñeriz, Faustino; Bruno-Bárcena, José M

    2010-01-01

    Interest in natural cell immobilization or biofilms for lactic acid fermentation has developed considerably over the last few decades. Many studies report the benefits associated with biofilms as industrial methods for food production and for wastewater treatment, since the formation represents a protective means of microbial growth offering survival advantages to cells in toxic environments. The formation of biofilms is a natural process in which microbial cells adsorb to a support without chemicals or polymers that entrap the cells and is dependent on the reactor environment, microorganism, and characteristics of the support. These unique characteristics enable biofilms to cause chronic infections, disease, food spoilage, and devastating effects as in microbial corrosion. Their distinct resistance to toxicity, high biomass potential, and improved stability over cells in suspension make biofilms a good tool for improving the industrial economics of biological lactic acid production. Lactic acid bacteria and specific filamentous fungi are the main sources of biological lactic acid. Over the past two decades, studies have focused on improving the lactic acid volumetric productivity through reactor design development, new support materials, and improvements in microbial production strains. To illustrate the operational designs applied to the natural immobilization of lactic acid producing microorganisms, this chapter presents the results of a search for optimum parameters and how they are affected by the physical, chemical, and biological variables of the process. We will place particular emphasis upon the relationship between lactic acid productivity attained by various types of reactors, supports, media formulations, and lactic acid producing microorganisms. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  8. Alginate: A Versatile Biomaterial to Encapsulate Isolated Ovarian Follicles.

    PubMed

    Vanacker, Julie; Amorim, Christiani A

    2017-07-01

    In vitro culture of ovarian follicles isolated or enclosed in ovarian tissue fragments and grafting of isolated ovarian follicles represent a potential alternative to restore fertility in cancer patients who cannot undergo cryopreservation of embryos or oocytes or transplantation of frozen-thawed ovarian tissue. In this regard, respecting the three-dimensional (3D) architecture of isolated follicles is crucial to maintaining their proper follicular physiology. To this end, alginate hydrogel has been widely investigated using follicles from numerous animal species, yielding promising results. The goal of this review is therefore to provide an overview of alginate applications utilizing the biomaterial as a scaffold for 3D encapsulation of isolated ovarian follicles. Different methods of isolated follicle encapsulation in alginate are discussed in this review, as its use of 3D alginate culture systems as a tool for in vitro follicle analysis. Possible improvements of this matrix, namely modification with arginine-glycine-aspartic acid peptide or combination with fibrin, are also summarized. Encouraging results have been obtained in different animal models, and particularly with isolated follicles encapsulated in alginate matrices and grafted to mice. This summary is designed to guide the reader towards development of next-generation alginate scaffolds, with enhanced properties for follicle encapsulation.

  9. Soymilk residue (okara) as a natural immobilization carrier for Lactobacillus plantarum cells enhances soymilk fermentation, glucosidic isoflavone bioconversion, and cell survival under simulated gastric and intestinal conditions

    PubMed Central

    Xiudong, Xia; Ying, Wang; Xiaoli, Liu; Ying, Li

    2016-01-01

    Cell immobilization is an alternative to microencapsulation for the maintenance of cells in a liquid medium. However, artificial immobilization carriers are expensive and pose a high safety risk. Okara, a food-grade byproduct from soymilk production, is rich in prebiotics. Lactobacilli could provide health enhancing effects to the host. This study aimed to evaluate the potential of okara as a natural immobilizer for L. plantarum 70810 cells. The study also aimed to evaluate the effects of okara-immobilized L. plantarum 70810 cells (IL) on soymilk fermentation, glucosidic isoflavone bioconversion, and cell resistance to simulated gastric and intestinal stresses. Scanning electron microscopy (SEM) was used to show cells adherence to the surface of okara. Lactic acid, acetic acid and isoflavone analyses in unfermented and fermented soymilk were performed by HPLC with UV detection. Viability and growth kinetics of immobilized and free L. plantarum 70810 cells (FL) were followed during soymilk fermentation. Moreover, changes in pH, titrable acidity and viscosity were measured by conventional methods. For in vitro testing of simulated gastrointestinal resistance, fermented soymilk was inoculated with FL or IL and an aliquot incubated into acidic MRS broth which was conveniently prepared to simulate gastric, pancreatic juices and bile salts. Survival to simulated gastric and intestinal stresses was evaluated by plate count of colony forming units on MRS agar. SEM revealed that the lactobacilli cells attached and bound to the surface of okara. Compared with FL, IL exhibited a significantly higher specific growth rate, shorter lag phase of growth, higher productions of lactic and acetic acids, a faster decrease in pH and increase in titrable acidity, and a higher soymilk viscosity. Similarly, IL in soymilk showed higher productions of daizein and genistein compared with the control. Compared with FL, IL showed reinforced resistance to simulatedgastric and intestinal

  10. Soymilk residue (okara) as a natural immobilization carrier for Lactobacillus plantarum cells enhances soymilk fermentation, glucosidic isoflavone bioconversion, and cell survival under simulated gastric and intestinal conditions.

    PubMed

    Xiudong, Xia; Ying, Wang; Xiaoli, Liu; Ying, Li; Jianzhong, Zhou

    2016-01-01

    Cell immobilization is an alternative to microencapsulation for the maintenance of cells in a liquid medium. However, artificial immobilization carriers are expensive and pose a high safety risk. Okara, a food-grade byproduct from soymilk production, is rich in prebiotics. Lactobacilli could provide health enhancing effects to the host. This study aimed to evaluate the potential of okara as a natural immobilizer for L. plantarum 70810 cells. The study also aimed to evaluate the effects of okara-immobilized L. plantarum 70810 cells (IL) on soymilk fermentation, glucosidic isoflavone bioconversion, and cell resistance to simulated gastric and intestinal stresses. Scanning electron microscopy (SEM) was used to show cells adherence to the surface of okara. Lactic acid, acetic acid and isoflavone analyses in unfermented and fermented soymilk were performed by HPLC with UV detection. Viability and growth kinetics of immobilized and free L. plantarum 70810 cells (FL) were followed during soymilk fermentation. Moreover, changes in pH, titrable acidity and viscosity were measured by conventional methods. For in vitro testing of simulated gastrointestinal resistance, fermented soymilk was inoculated with FL or IL and an aliquot incubated into acidic MRS broth which was conveniently prepared to simulate gastric, pancreatic juices and bile salts. Survival to simulated gastric and intestinal stresses was evaluated by plate count of colony forming units on MRS agar. SEM revealed that the lactobacilli cells attached and bound to the surface of okara. Compared with FL, IL exhibited a significantly higher specific growth rate, shorter lag phase of growth, higher productions of lactic and acetic acids, a faster decrease in pH and increase in titrable acidity, and a higher soymilk viscosity. Similarly, IL in soymilk showed higher productions of daizein and genistein compared with the control. Compared with FL, IL showed reinforced resistance to simulatedgastric and intestinal

  11. Guluronic acid content as a factor affecting turbidity removal potential of alginate.

    PubMed

    Kıvılcımdan Moral, Çiğdem; Ertesvåg, Helga; Sanin, F Dilek

    2016-11-01

    Alginates are natural polymers composed of mannuronic and guluronic acid residues. They are currently extracted from brown algae; however, alginate can also be synthesized by some species of Azotobacter and Pseudomonas. Alginates with different proportion of mannuronic and guluronic acids are known to have different characteristics and form gels at different extents in the presence of calcium ions. The aim of this work was to investigate the usefulness of alginate as a non-toxic coagulant used in purification of drinking water. This study utilized alginates from Azotobacter vinelandii having different guluronic acid levels. These were obtained partly by changing the cultivation parameters, partly by epimerizing a purified alginate sample in vitro using the A. vinelandii mannuronan C-5 epimerase AlgE1. The different alginates were then used for coagulation together with calcium. The results showed that turbidity removal capability was dependent on the content of guluronic acid residues. For the best performing samples, the turbidity decreased from 10 NTU to 1 NTU by the use of only 2 mg/L of alginate and 1.5 mM of calcium chloride.

  12. Methyl Red Decolorization Efficiency of a Korea Strain of Aspergillus sp. Immobilized into Different Polymeric Matrices.

    PubMed

    Kim, Beom-Su; Blaghen, Mohamed; Lee, Kang-Min

    2017-07-01

      Intensive research studies have revealed that fungal decolorization of dye wastewater is a promising replacement for the current process of dye wastewater decolorization. The authors isolated an Aspergillus sp. from the effluent of a textile industry area in Korea and assessed the effects of a variety of operational parameters on the decolorization of methyl red (MR) by this strain of Aspergillus sp. This Aspergillus sp. was then immobilized by entrapment in several polymeric matrices and the effects of operational conditions on MR decolorization were investigated again. The optimal decolorization activity of this Aspergillus sp. was observed in 1% glucose at a temperature of 37 °C and pH of 6.0. Furthermore, stable decolorization efficiency was observed when fungal biomass was immobilized into alginate gel during repeated batch experiment. These results suggest that the Aspergillus sp. isolated in Korea could be used to treat industrial wastewaters containing MR dye.

  13. Bioconversion of Airborne Methylamine by Immobilized Recombinant Amine Oxidase from the Thermotolerant Yeast Hansenula polymorpha

    PubMed Central

    Sigawi, Sasi; Nitzan, Yeshayahu

    2014-01-01

    Aliphatic amines, including methylamine, are air-pollutants, due to their intensive use in industry and the natural degradation of proteins, amino acids, and other nitrogen-containing compounds in biological samples. It is necessary to develop systems for removal of methylamine from the air, since airborne methylamine has a negative effect on human health. The primary amine oxidase (primary amine : oxygen oxidoreductase (deaminating) or amine oxidase, AMO; EC 1.4.3.21), a copper-containing enzyme from the thermotolerant yeast Hansenula polymorpha which was overexpressed in baker's yeast Saccharomyces cerevisiae, was tested for its ability to oxidize airborne methylamine. A continuous fluidized bed bioreactor (CFBR) was designed to enable bioconversion of airborne methylamine by AMO immobilized in calcium alginate (CA) beads. The results demonstrated that the bioreactor with immobilized AMO eliminates nearly 97% of the airborne methylamine. However, the enzymatic activity of AMO causes formation of formaldehyde. A two-step bioconversion process was therefore proposed. In the first step, airborne methylamine was fed into a CFBR which contained immobilized AMO. In the second step, the gas flow was passed through another CFBR, with alcohol oxidase from the yeast H. polymorpha immobilized in CA, in order to decompose the formaldehyde formed in the first step. The proposed system provided almost total elimination of the airborne methylamine and the formaldehyde. PMID:24672387

  14. Tagatose production with pH control in a stirred tank reactor containing immobilized L-arabinose rom Thermotoga neapolitana.

    PubMed

    Lim, Byung-Chul; Kim, Hye-Jung; Oh, Deok-Kun

    2008-06-01

    Chitopearl beads were used as immobilization supports for D-tagatose production from D-galactose by L-arabinose isomerase from Thermotoga neapolitana because chitopearl beads were more stable than alginate beads at temperatures above 60 degrees C. The pH and temperature for the maximum isomerization of galactose were 7.5 and 90 degrees C, respectively. In thermostability experiments, the half-lives of the immobilized enzyme at 70, 75, 80, 85, and 90 degrees C were 388, 106, 54, 36, and 22 h, respectively. The reaction temperature was determined to be 70 degrees C because the enzyme is highly stable up to 70 degrees C during the reaction. When the reaction time, galactose concentration, and temperature were increased, the pH of a mixture containing enzyme and galactose decreased by the Maillard reaction, resulting in decreased tagatose production. With pH control at 7.5, tagatose production (138 g/L) at 70 degrees C in a stirred tank reactor containing immobilized enzyme and 300 g/L galactose increased two times higher, comparing that without pH control.

  15. Preparation and characterization of electrospun alginate/PLA nanofibers as tissue engineering material by emulsion eletrospinning.

    PubMed

    Xu, Weihong; Shen, Renzhe; Yan, Yurong; Gao, Jie

    2017-01-01

    Scaffolds made by biomaterials offer favorite environment for cell grow and show a wide potential application in tissue engineering. Novel biocompatibility materials polylatic acid (PLA) nanofiber membranes with favorable biocompatibility and good mechanical strength could serve as an innovative tissue engineering scaffold. Sodium alginate (SA) could be used in biomedical areas because of its anti-bacterial property, hydrophilicity and biocompatibility. In this article, we chose PLA as continuous phase and SA as dispersion phase to prepare a W/O emulsion and then electrospun it to get a SA/PLA composite nanofiber membranes. The CLSM images illustrated that the existence of SA was located on the surface of composite fibers and the FTIR results confirmed the result. A calcium ion replacement step was used as an after-treatment for SA/PLA nanofiber membranes in order to anchor the alginic ion in a form of gelated calcium alginate (CA). The single fiber tensile test shows a good mechanical property of CA/PLA nanofiber membranes, and the nanofiber membranes are beneficial for cell proliferation and differentiation owing to MTT array as well as Alizarin red S (ARS) staining test. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. [Growth inhibition effect of immobilized pectinase on Microcystis aeruginosa].

    PubMed

    Shen, Qing-Qing; Peng, Qian; Lai, Yong-Hong; Ji, Kai-Yan; Han, Xiu-Lin

    2012-12-01

    To confirm the growth inhibition effect of immobilized pectinase on algae, co-cultivation method was used to investigate the effect of immobilized pectinase on the growth of Microcystis aeruginosa. After co-cultivation, the damage status of the algae was observed through electron microscope, and the effect of immobilized pectase on the physiological and biochemical characteristics of the algae was also measured. The results showed that the algae and immobilized pectase co-cultivated solution etiolated distinctly on the third day and there was a significantly positive correlation between the extent of etiolation and the dosage as well as the treating time of the immobilized pectinase. Under electron microscope, plasmolysis was found in the slightly damaged cells, and the cell surface of these cells was rough, uneven and irregular; the severely damaged cells were collapsed or disintegrated completely. The algal yield and the chlorophyll a content decreased significantly with the increase of the treating time. The measurement of the malondiadehyde (MDA) value showed that the antioxidation system of the treated algal cells was destroyed, and their membrane lipid was severely peroxidated. The study indicated that the immobilized pectinase could efficiently inhibit the growth of M. aeruginosa, and the inhibitory rate reached up to 96%.

  17. Enrichment of cancer cells using aptamers immobilized on a microfluidic channel

    PubMed Central

    Phillips, Joseph A.; Xu, Ye; Xia, Zheng

    2009-01-01

    This work describes the development and investigation of an aptamer modified microfluidic device that captures rare cells to achieve a rapid assay without pre-treatment of cells. To accomplish this, aptamers are first immobilized on the surface of a poly (dimethylsiloxane) microchannel, followed by pumping a mixture of cells through the device. This process permits the use of optical microscopy to measure the cell-surface density from which we calculate the percentage of cells captured as a function of cell and aptamer concentration, flow velocity, and incubation time. This aptamer-based device was demonstrated to capture target cells with > 97% purity and > 80% efficiency. Since the cell capture assay is completed within minutes and requires no pre-treatment of cells, the device promises to play a key role in the early detection and diagnosis of cancer where rare diseased cells can first be enriched and then captured for detection. PMID:19115856

  18. Simultaneous fermentation and separation in an immobilized cell trickle bed reactor: Acetone-butanol-ethane (ABE) and ethanol fermentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, C.H.

    1989-01-01

    A novel process employing immobilized cells and in-situ product removal was studied for acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum and ethanol fermentation by Saccharomyces cerevisiae. Experimental studies of ABE fermentation in a trickle bed reactor without product separation showed that solvent production could be improved by one order of magnitude compared to conventional batch fermentation. Control of effluent pH near 4.3 and feed glucose concentrations higher than 10 g/L were the necessary conditions for cell growth and solvent production. A mathematical model using an equilibrium staged model predicted efficient separation of butanol from the fermentation broth. Activity coefficients of multicomponentmore » system were estimated by Wilson's equation or the ASOG method. Inhibition by butanol and organic acids was incorporated into the kinetic expression. Experimental performance of simultaneous fermentation and separation in an immobilized cell trickle bed reactor showed that glucose conversion was improved as predicted by mathematical modeling and analysis. The effect of pH and temperature on ethanol fermentation by Saccharomyces cerevisiae was studied in free and immobilized cell reactors. Conditions for the highest glucose conversion, cell viability and least glycerol yield were determined.« less

  19. Role of alginate in antibacterial finishing of textiles.

    PubMed

    Li, Jiwei; He, Jinmei; Huang, Yudong

    2017-01-01

    Antibacterial finishing of textiles has been introduced as a necessary process for various purposes especially creating a fabric with antimicrobial activities. Currently, the textile industry continues to look for textiles antimicrobial finishing process based on sustainable biopolymers from the viewpoints of environmental friendliness, industrialization, and economic concerns. This paper reviews the role of alginate, a sustainable biopolymer, in the development of antimicrobial textiles, including both basic physicochemical properties of alginate such as preparation, chemical structure, molecular weight, solubility, viscosity, and sol-gel transformation property. Then different processing routes (e.g. nanocomposite coating, ionic cross-linking coating, and Layer-by-Layer coating) for the antibacterial finishing of textiles by using alginate are revised in some detail. The achievements in this area have increased our knowledge of alginate application in the field of textile industry and promoted the development of green textile finishing. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Identification of IL-1β and LPS as optimal activators of monolayer and alginate-encapsulated mesenchymal stromal cell immunomodulation using design of experiments and statistical methods.

    PubMed

    Gray, Andrea; Maguire, Timothy; Schloss, Rene; Yarmush, Martin L

    2015-01-01

    Induction of therapeutic mesenchymal stromal cell (MSC) function is dependent upon activating factors present in diseased or injured tissue microenvironments. These functions include modulation of macrophage phenotype via secreted molecules including prostaglandin E2 (PGE2). Many approaches aim to optimize MSC-based therapies, including preconditioning using soluble factors and cell immobilization in biomaterials. However, optimization of MSC function is usually inefficient as only a few factors are manipulated in parallel. We utilized fractional factorial design of experiments to screen a panel of 6 molecules (lipopolysaccharide [LPS], polyinosinic-polycytidylic acid [poly(I:C)], interleukin [IL]-6, IL-1β, interferon [IFN]-β, and IFN-γ), individually and in combinations, for the upregulation of MSC PGE2 secretion and attenuation of macrophage secretion of tumor necrosis factor (TNF)-α, a pro-inflammatory molecule, by activated-MSC conditioned medium (CM). We used multivariable linear regression (MLR) and analysis of covariance to determine differences in functions of optimal factors on monolayer MSCs and alginate-encapsulated MSCs (eMSCs). The screen revealed that LPS and IL-1β potently activated monolayer MSCs to enhance PGE2 production and attenuate macrophage TNF-α. Activation by LPS and IL-1β together synergistically increased MSC PGE2, but did not synergistically reduce macrophage TNF-α. MLR and covariate analysis revealed that macrophage TNF-α was strongly dependent on the MSC activation factor, PGE2 level, and macrophage donor but not MSC culture format (monolayer versus encapsulated). The results demonstrate the feasibility and utility of using statistical approaches for higher throughput cell analysis. This approach can be extended to develop activation schemes to maximize MSC and MSC-biomaterial functions prior to transplantation to improve MSC therapies. © 2015 American Institute of Chemical Engineers.

  1. Cell-secreted extracellular matrix formation and differentiation of adipose-derived stem cells in 3D alginate scaffolds with tunable properties.

    PubMed

    Guneta, Vipra; Loh, Qiu Li; Choong, Cleo

    2016-05-01

    Three dimensional (3D) alginate scaffolds with tunable mechanical and structural properties are explored for investigating the effect of the scaffold properties on stem cell behavior and extracellular matrix (ECM) formation. Varying concentrations of crosslinker (20 - 60%) are used to tune the stiffness, porosity, and the pore sizes of the scaffolds post-fabrication. Enhanced cell proliferation and adipogenesis occur in scaffolds with 3.52 ± 0.59 kPa stiffness, 87.54 ± 18.33% porosity and 68.33 ± 0.88 μm pore size. On the other hand, cells in scaffolds with stiffness greater than 11.61 ± 1.74 kPa, porosity less than 71.98 ± 6.25%, and pore size less than 64.15 ± 4.34 μm preferentially undergo osteogenesis. When cultured in differentiation media, adipose-derived stem cells (ASCs) undergoing terminal adipogenesis in 20% firming buffer (FB) scaffolds and osteogenesis in 40% and 60% FB scaffolds show the highest secretion of collagen as compared to other groups of scaffolds. Overall, this study demonstrates the three-way relationship between 3D scaffolds, ECM composition, and stem cell differentiation. © 2016 Wiley Periodicals, Inc.

  2. A novel cell weighing method based on the minimum immobilization pressure for biological applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Qili; Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300071; Shirinzadeh, Bijan

    2015-07-28

    A novel weighing method for cells with spherical and other regular shapes is proposed in this paper. In this method, the relationship between the cell mass and the minimum aspiration pressure to immobilize the cell (referred to as minimum immobilization pressure) is derived for the first time according to static theory. Based on this relationship, a robotic cell weighing process is established using a traditional micro-injection system. Experimental results on porcine oocytes demonstrate that the proposed method is able to weigh cells at an average speed of 16.3 s/cell and with a success rate of more than 90%. The derived cellmore » mass and density are in accordance with those reported in other published results. The experimental results also demonstrated that this method is able to detect less than 1% variation of the porcine oocyte mass quantitatively. It can be conducted by a pair of traditional micropipettes and a commercial pneumatic micro-injection system, and is expected to perform robotic operation on batch cells. At present, the minimum resolution of the proposed method for measuring the cell mass can be 1.25 × 10{sup −15 }kg. Above advantages make it very appropriate for quantifying the amount of the materials injected into or moved out of the cells in the biological applications, such as nuclear enucleations and embryo microinjections.« less

  3. Impact of immobilizing of low molecular weight hyaluronic acid within gelatin-based hydrogel through enzymatic reaction on behavior of enclosed endothelial cells.

    PubMed

    Khanmohammadi, Mehdi; Sakai, Shinji; Taya, Masahito

    2017-04-01

    The hydrogels having the ability to promote migration and morphogenesis of endothelial cells (ECs) are useful for fabricating vascularized dense tissues in vitro. The present study explores the immobilization of low molecular weight hyaluronic acid (LMWHA) derivative within gelatin-based hydrogel to stimulate migration of ECs. The LMWHA derivative possessing phenolic hydroxyl moieties (LMWHA-Ph) was bound to gelatin-based derivative hydrogel through the horseradish peroxidase-catalyzed reaction. The motility of ECs was analyzed by scratch migration assay and microparticle-based cell migration assay. The incorporated LMWHA-Ph molecules within hydrogel was found to be preserved stably through covalent bonds during incubation. The free and immobilized LMWHA-Ph did not lose an inherent stimulatory effect on human umbilical vein endothelial cells (HUVECs). The immobilized LMWHA-Ph within gelatin-based hydrogel induced the high motility of HUVECs, accompanied by robust cytoskeleton extension, and cell subpopulation expressing CD44 cell receptor. In the presence of immobilized LMWHA-Ph, the migration distance and the number of existing HUVECs were demonstrated to be encouraged in dose-dependent and time-dependent manners. Based on the results obtained in this work, it was concluded that the enzymatic immobilization of LMWHA-Ph within gelatin-based hydrogel represents a promising approach to promote ECs' motility and further exploitation for vascular tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Purification and characterization of tannase from Paecilomyces variotii: hydrolysis of tannic acid using immobilized tannase.

    PubMed

    Mahendran, B; Raman, N; Kim, D-J

    2006-04-01

    An extracellular tannase (tannin acyl hydrolase) was isolated from Paecilomyces variotii and purified from cell-free culture filtrate using ammonium sulfate precipitation followed by ion exchange and gel filtration chromatography. Fractional precipitation of the culture filtrate with ammonium sulfate yielded 78.7% with 13.6-folds purification, and diethylaminoethyl-cellulose column chromatography and gel filtration showed 19.4-folds and 30.5-folds purifications, respectively. Molecular mass of tannase was found 149.8 kDa through native polyacrylamide gel electrophoresis (PAGE) analysis. Sodium dodecyl sulphate-PAGE revealed that the purified tannase was a monomeric enzyme with a molecular mass of 45 kDa. Temperature of 30 to 50 degrees C and pH of 5.0 to 7.0 were optimum for tannase activity and stability. Tannase immobilized on alginate beads could hydrolyze tannic acid even after extensive reuse and retained about 85% of the initial activity. Thin layer chromatography, high performance liquid chromatography, and (1)H-nuclear magnetic resonance spectral analysis confirmed that gallic acid was formed as a byproduct during hydrolysis of tannic acid.

  5. Encapsulation of Mesenchymal Stem Cells Improves Vascularization of Alginate-Based Scaffolds.

    PubMed

    Steiner, Dominik; Lingens, Lara; Fischer, Laura; Köhn, Katrin; Detsch, Rainer; Boccaccini, Aldo R; Fey, Tobias; Greil, Peter; Weis, Christian; Beier, Justus P; Horch, Raymund E; Arkudas, Andreas

    2018-05-09

    Vascularization of bioartificial tissues can be significantly enhanced by the generation of an arteriovenous (AV) loop. Besides the surgical vascularization, the choice of the scaffold and the applied cells are indispensable cofactors. The combination of alginate dialdehyde and gelatin (ADA-GEL) and mesenchymal stem cells (MSCs) is a promising approach with regard to biocompatibility, biodegradation, as well as de novo tissue formation. In this study, we targeted the investigation of the vascularization of ADA-GEL with and in the absence of encapsulated MSCs in the AV loop model. A Teflon chamber filled with ADA-GEL microcapsules was placed in the groin of Lewis rats and an AV loop was placed into the chamber. Group A encompassed the ADA-GEL without MSCs, whereas group B contained 2 × 10 6 DiI-labeled MSCs/mL ADA-GEL. Four weeks postoperatively, tissue formation and vascularization were investigated by histology and microcomputed tomography. We were able to prove vascularization originating from the AV loop in both groups with statistically significant more vessels in group B containing MSCs. Moreover, encapsulated MSCs promoted biodegradation of the ADA-GEL microcapsules. In the present study, we were able to demonstrate for the first time, the successful vascularization of ADA-GEL microcapsules by means of the AV loop. Furthermore, ADA-GEL displayed a good biocompatibility and encapsulation of MSCs into ADA-GEL microcapsule-enhanced vascularization as well as biodegradation.

  6. Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration.

    PubMed

    Sapir, Yulia; Kryukov, Olga; Cohen, Smadar

    2011-03-01

    Cardiac tissue engineering aims to repair damaged myocardial tissues by applying heart patches created in vitro. Herein, we explored the possible role of a combination of two matrix-attached peptides, the adhesion peptide G(4)RGDY and heparin-binding peptide G(4)SPPRRARVTY (HBP) in cardiac tissue regeneration. Neonatal rat cardiac cells were seeded into unmodified, single peptide or double peptide-attached alginate scaffolds, all having the same physical features of porosity, hydrogel forming and matrix stiffness. The cardiac tissue developed in the HBP/RGD-attached scaffolds revealed the best features of a functional muscle tissue, as judged by all studied parameters, i.e., immunostaining of cardiac cell markers, histology, western blot of protein expressions and metabolic activity. By day 7, well-developed myocardial fibers were observed in these cell constructs. At 14 days the HBP/RGD-attached constructs presented an isotropic myofiber arrangement, while no such arrangement was seen in the other constructs. The expression levels of α-actinin, N-cadherin and Connexin-43, showing preservation and an increase in Connexin-43 expression (Cx-43) with time, further supported the formation a contractile muscle tissue in the HBP/RGD-attached scaffolds. Collectively, the attachment of combinatorial peptides representing different signaling in ECM-cell interactions proved to play a key role, contributing to the formation of a functional cardiac muscle tissue, in vitro. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Three-dimensional prostate tumor model based on a hyaluronic acid-alginate hydrogel for evaluation of anti-cancer drug efficacy.

    PubMed

    Tang, Yadong; Huang, Boxin; Dong, Yuqin; Wang, Wenlong; Zheng, Xi; Zhou, Wei; Zhang, Kun; Du, Zhiyun

    2017-10-01

    In vitro cell-based assays are widely applied to evaluate anti-cancer drug efficacy. However, the conventional approaches are mostly based on two-dimensional (2D) culture systems, making it difficult to recapitulate the in vivo tumor scenario because of spatial limitations. Here, we develop an in vitro three-dimensional (3D) prostate tumor model based on a hyaluronic acid (HA)-alginate hybrid hydrogel to bridge the gap between in vitro and in vivo anticancer drug evaluations. In situ encapsulation of PCa cells was achieved by mixing HA and alginate aqueous solutions in the presence of cells and then crosslinking with calcium ions. Unlike in 2D culture, cells were found to aggregate into spheroids in a 3D matrix. The expression of epithelial to mesenchyme transition (EMT) biomarkers was found to be largely enhanced, indicating an increased invasion and metastasis potential in the hydrogel matrix. A significant up-regulation of proangiogenic growth factors (IL-8, VEGF) and matrix metalloproteinases (MMPs) was observed in 3D-cultured PCa cells. The results of anti-cancer drug evaluation suggested a higher drug tolerance within the 3D tumor model compared to conventional 2D-cultured cells. Finally, we found that the drug effect within the in vitro 3D cancer model based on HA-alginate matrix exhibited better predictability for in vivo drug efficacy.

  8. First transplantation of isolated murine follicles in alginate.

    PubMed

    Vanacker, Julie; Dolmans, Marie-Madeleine; Luyckx, Valérie; Donnez, Jacques; Amorim, Christiani A

    2014-01-01

    Our aim is to develop an artificial ovary allowing survival and growth of isolated follicles and ovarian cells, to restore fertility in women diagnosed with pathologies at high risk of ovarian involvement. For this, alginate beads containing isolated preantral follicles and ovarian cells were autografted to immunocompetent mice. One week after grafting, the beads were invaded by proliferating murine cells (12.1%) and capillaries. The recovery rate of follicles per graft ranged from 0% to 35.5%. Of the analyzed follicles, 77% were Ki67-positive and 81%, TUNEL-negative. Three antral follicles were also identified, evidencing their ability to grow in the matrix. Our results suggest that an artificial ovary is now conceivable, opening new perspectives to restore fertility in women.

  9. Immobilization of microorganisms for detection by solid-phase immunoassays.

    PubMed Central

    Ibrahim, G F; Lyons, M J; Walker, R A; Fleet, G H

    1985-01-01

    Several cultures of gram-negative and gram-positive bacteria were successfully immobilized with titanous hydroxide. The immobilization efficiency for the microorganisms investigated in saline and broth media ranged from 80.2 to 99.9%. The immobilization of salmonellae was effective over a wide pH range. The presence of buffers, particularly phosphate buffer, drastically reduced the immobilization rate. However, buffers may be added to immunoassay systems after immobilization of microorganisms. The immobilization process involved only one step, i.e., shaking 100 microliter of culture with 50 microliter of titanous hydroxide suspension in polystyrene tubes for only 10 min. The immobilized cells were so tenaciously bound that vigorous agitation for 24 h did not result in cell dissociation. The nonspecific binding of 125I-labeled antibody from rabbits and 125I-labeled protein A by titanous hydroxide was inhibited in the presence of 2% gelatin and amounted to only 5.6 and 3.9%, respectively. We conclude that this immobilization procedure is a potentially powerful tool which could be utilized in solid-phase immunoassays concerned with the diagnosis of microorganisms. PMID:3900128

  10. Efficient treatment of phenolic wastewater with high salinity using a novel integrated system of magnetically immobilized cells coupling with electrodes.

    PubMed

    Jiang, Bei; Shi, Shengnan; Song, Lun; Tan, Liang; Li, Meidi; Liu, Jiaxin; Xue, Lanlan

    2016-10-01

    A novel integrated system in which magnetically immobilized cells coupled with a pair of stainless iron meshes-graphite plate electrodes has been designed and operated to enhance the treatment performance of phenolic wastewater under high salinity. With NaCl concentration increased, phenol, o-cresol, m-cresol, p-cresol and COD removal rates by integrated system increased significantly, which were obviously higher than the sum of removal rates by single magnetically immobilized cells and electrode reaction. This integrated system exhibited higher removal rates for all the compounds than that by single magnetically immobilized cells during six cycles for reuse, and it still performed better, even when the voltage was cut off. These results indicated that there was a coupling effect between biodegradation and electrode reaction. The investigation of phenol hydroxylase activity and cells concentration confirmed that electrode reaction played an important role in this coupling effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Biodegradable Nanocomposite Films Based on Sodium Alginate and Cellulose Nanofibrils

    PubMed Central

    Deepa, B.; Abraham, Eldho; Pothan, Laly A.; Cordeiro, Nereida; Faria, Marisa; Thomas, Sabu

    2016-01-01

    Biodegradable nanocomposite films were prepared by incorporation of cellulose nanofibrils (CNF) into alginate biopolymer using the solution casting method. The effects of CNF content (2.5, 5, 7.5, 10 and 15 wt %) on mechanical, biodegradability and swelling behavior of the nanocomposite films were determined. The results showed that the tensile modulus value of the nanocomposite films increased from 308 to 1403 MPa with increasing CNF content from 0% to 10%; however, it decreased with further increase of the filler content. Incorporation of CNF also significantly reduced the swelling percentage and water solubility of alginate-based films, with the lower values found for 10 wt % in CNF. Biodegradation studies of the films in soil confirmed that the biodegradation time of alginate/CNF films greatly depends on the CNF content. The results evidence that the stronger intermolecular interaction and molecular compatibility between alginate and CNF components was at 10 wt % in CNF alginate films. PMID:28787850

  12. Immobilization of metals in contaminated soils using natural polymer-based stabilizers.

    PubMed

    Tao, Xue; Li, Aimin; Yang, Hu

    2017-03-01

    Three low-cost natural polymer materials, namely, lignin (Ln), carboxymethyl cellulose, and sodium alginate, were used for soil amendment to immobilize lead and cadmium in two contaminated soil samples collected from a mining area in Nanjing, China. The remediation effects of the aforementioned natural polymers were evaluated by toxicity characteristic leaching procedure (TCLP) and sequential extractions. The stabilizers could lower the bioavailability of Pb and Cd in the contaminated soils, and the amount of the exchangeable forms of the aforementioned two metals were reduced evidently. TCLP results showed that the leaching concentrations of Pb and Cd were decreased by 5.46%-71.1% and 4.25%-49.6%, respectively, in the treated soils. The contents of the organic forms of the two metals both increased with the increase in stabilizer dose on the basis of the redistribution of metal forms by sequential extractions. These findings were due to the fact that the abundant oxygen-containing groups on the polymeric amendments were effective in chelating and immobilizing Pb and Cd, which have been further confirmed from the metal adsorptions in aqueous solutions. Moreover, Ln achieved the greatest effect among the three polymers under study because of the former's distinct three-dimensional molecular structure, showing the preferential immobilization of Pb over Cd in soils also. Thus, the above-mentioned natural polymers hold great application potentials for reducing metal ion entry into the food chain at a field scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Screening of alginate lyase-excreting microorganisms from the surface of brown algae.

    PubMed

    Wang, Mingpeng; Chen, Lei; Zhang, Zhaojie; Wang, Xuejiang; Qin, Song; Yan, Peisheng

    2017-12-01

    Alginate lyase is a biocatalyst that degrades alginate to produce oligosaccharides, which have many bioactive functions and could be used as renewable biofuels. Here we report a simple and sensitive plate assay for screening alginate lyase-excreting microorganisms from brown algae. Brown algae Laminaria japonica, Sargassum horneri and Sargassum siliquatrum were cultured in sterile water. Bacteria growing on the surface of seaweeds were identified and their capacity of excreting alginate lyase was analyzed. A total of 196 strains were recovered from the three different algae samples and 12 different bacterial strains were identified capable of excreting alginate lyases. Sequence analysis of the 16S rRNA gene revealed that these alginate lyase-excreting strains belong to eight genera: Paenibacillus (4/12), Bacillus (2/12), Leclercia (1/12), Isoptericola (1/12), Planomicrobium (1/12), Pseudomonas (1/12), Lysinibacillus (1/12) and Sphingomonas (1/12). Further analysis showed that the LJ-3 strain (Bacillus halosaccharovorans) had the highest enzyme activity. To our best knowledge, this is the first report regarding alginate lyase-excreting strains in Paenibacillus, Planomicrobium and Leclercia. We believe that our method used in this study is relatively easy and reliable for large-scale screening of alginate lyase-excreting microorganisms.

  14. Quantification of alginate by aggregation induced by calcium ions and fluorescent polycations.

    PubMed

    Zheng, Hewen; Korendovych, Ivan V; Luk, Yan-Yeung

    2016-01-01

    For quantification of polysaccharides, including heparins and alginates, the commonly used carbazole assay involves hydrolysis of the polysaccharide to form a mixture of UV-active dye conjugate products. Here, we describe two efficient detection and quantification methods that make use of the negative charges of the alginate polymer and do not involve degradation of the targeted polysaccharide. The first method utilizes calcium ions to induce formation of hydrogel-like aggregates with alginate polymer; the aggregates can be quantified readily by staining with a crystal violet dye. This method does not require purification of alginate from the culture medium and can measure the large amount of alginate that is produced by a mucoid Pseudomonas aeruginosa culture. The second method employs polycations tethering a fluorescent dye to form suspension aggregates with the alginate polyanion. Encasing the fluorescent dye in the aggregates provides an increased scattering intensity with a sensitivity comparable to that of the conventional carbazole assay. Both approaches provide efficient methods for monitoring alginate production by mucoid P. aeruginosa. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Development of nanocomposites based on hydroxyapatite/sodium alginate: Synthesis and characterisation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajkumar, M.; Meenakshisundaram, N.; Rajendran, V., E-mail: veerajendran@gmail.com

    2011-05-15

    In this study, a novel method was used to produce a nanostructured composite consisting of hydroxyapatite and sodium alginate by varying the composition of sodium alginate. The structure, morphology, simulated body fluid response and mechanical properties of the synthesised nanocomposites were characterised. From X-ray diffraction analysis, an increase in crystallite size and degree of crystallinity with an increase in the composition of sodium alginate up to 1.5 wt.% was observed. Further, it was found to decrease with an increase in the composition of sodium alginate. A notable peak shift from 1635 to 1607 cm{sup -1} and 1456 to 1418 cm{supmore » -1} in the Fourier transform infrared spectra of the nanocomposite was observed towards the lower wave number side when compared with pure hydroxyapatite. It reveals a strong interaction between the positively charged calcium (Ca{sup 2+}) and the negatively charged carboxyl group (COO{sup -}) in sodium alginate. Transmission electron microscopy images of pure hydroxyapatite showed a short nanorod-like morphology with an average particle size of 13 nm. Bioresorbability of the samples was observed by immersing them in simulated body fluid medium for 14 days to evaluate the changes in pH and Ca{sup 2+} ion strength. Microhardness shows an increasing trend with an increase in the composition of sodium alginate from 1.5 to 3.0 wt.%, which is similar to that in the density. - Research Highlights: {yields} We have prepared nanohydroxyapatite/sodium alginate as a composite. {yields} Effect of sodium alginate on the properties of nanohydrroxyapatite has been studied. {yields} The sodium alginate ranges from 0 to 3.75 wt.% has been used. {yields} Composites show improved biological and mechanical properties.« less

  16. Evolution of Sulfobacillus thermosulfidooxidans secreting alginate during bioleaching of chalcopyrite concentrate.

    PubMed

    Yu, R-L; Liu, A; Liu, Y; Yu, Z; Peng, T; Wu, X; Shen, L; Liu, Y; Li, J; Liu, X; Qiu, G; Chen, M; Zeng, W

    2017-06-01

    To explore the distribution disciplinarian of alginate on the chalcopyrite concentrate surface during bioleaching. The evolution of Sulfobacillus thermosulfidooxidans secreting alginate during bioleaching of chalcopyrite concentrate was investigated through gas chromatography coupled with mass spectrometry (GC-MS) and confocal laser scanning microscope (CLSM), and the critical synthetic genes (algA, algC, algD) of alginate were analysed by real-time polymerase chain reaction (RT-PCR). The GC-MS analysis results indicated that there was a little amount of alginate formed on the mineral surface at the early stage, while increasing largely to the maximum value at the intermediate stage, and then kept a stable value at the end stage. The CLSM analysis of chalcopyrite slice showed the same variation trend of alginate content on the mineral surface. Furthermore, the RT-PCR results showed that during the early stage of bioleaching, the expressions of the algA, algC and the algD genes were all overexpressed. However, at the final stage, the algD gene expression decreased in a large scale, and the algA and algC decreased slightly. This expression pattern was attributed to the fact that algA and algC genes were involved in several biosynthesis reactions, but the algD gene only participated in the alginate biosynthesis and this was considered as the key gene to control alginate synthesis. The content of alginate on the mineral surface increased largely at the beginning of bioleaching, and remained stable at the end of bioleaching due to the restriction of algD gene expression. Our findings provide valuable information to explore the relationship between alginate formation and bioleaching of chalcopyrite. © 2017 The Society for Applied Microbiology.

  17. A Controlled Drug-Delivery Experiment Using Alginate Beads

    ERIC Educational Resources Information Center

    Farrell, Stephanie; Vernengo, Jennifer

    2012-01-01

    This paper describes a simple, cost-effective experiment which introduces students to drug delivery and modeling using alginate beads. Students produce calcium alginate beads loaded with drug and measure the rate of release from the beads for systems having different stir rates, geometries, extents of cross-linking, and drug molecular weight.…

  18. Magnetic alginate microspheres: system for the position controlled delivery of nerve growth factor.

    PubMed

    Ciofani, Gianni; Raffa, Vittoria; Menciassi, Arianna; Cuschieri, Alfred; Micera, Silvestro

    2009-04-01

    The use of polymeric carriers containing dispersed magnetic nanocrystalline particles for targeted delivery of drugs in clinical practice has attracted the interest of the scientific community. In this paper a system comprised of alginate microparticles with a core of magnetite and carrying nerve growth factor (NGF) is described. The magnetic properties of these microspheres, typical of superparamagnetic materials, allow precise and controlled delivery to the intended tissue environment. Experiments carried out on PC12 cells with magnetic alginate microspheres loaded with NGF have confirmed the induction of cell differentiation which is strongly dependent on the distance from the microsphere cluster. In addition, finite element modelling (FEM) of the release profile from the microspheres in culture, indicated the possibility of creating defined and predictable NGF gradients from the loaded microspheres. These observations on the carriage and release of growth factors by the proposed microparticles open new therapeutic options for both neuronal regeneration and of the development of effective neuronal interfaces.

  19. Empirical study of alginate impression materials by customized proportioning system

    PubMed Central

    2016-01-01

    PURPOSE Alginate mixers available in the market do not have the automatic proportioning unit. In this study, an automatic proportioning unit for the alginate mixer and controller software were designed and produced for a new automatic proportioning unit. With this device, it was ensured that proportioning operation could arrange weight-based alginate impression materials. MATERIALS AND METHODS The variation of coefficient in the tested groups was compared with the manual proportioning. Compression tension and tear tests were conducted to determine the mechanical properties of alginate impression materials. The experimental data were statistically analyzed using one way ANOVA and Tukey test at the 0.05 level of significance. RESULTS No statistically significant differences in modulus of elastisity (P>0.3), tensional/compresional strength (P>0.3), resilience (P>0.2), strain in failure (P>0.4), and tear energy (P>0.7) of alginate impression materials were seen. However, a decrease in the standard deviation of tested groups was observed when the customized machine was used. To verify the efficiency of the system, powder and powder/water mixing were weighed and significant decrease was observed. CONCLUSION It was possible to obtain more mechanically stable alginate impression materials by using the custom-made proportioning unit. PMID:27826387

  20. Droplet Microfluidics for Compartmentalized Cell Lysis and Extension of DNA from Single-Cells

    NASA Astrophysics Data System (ADS)

    Zimny, Philip; Juncker, David; Reisner, Walter

    Current single cell DNA analysis methods suffer from (i) bias introduced by the need for molecular amplification and (ii) limited ability to sequence repetitive elements, resulting in (iii) an inability to obtain information regarding long range genomic features. Recent efforts to circumvent these limitations rely on techniques for sensing single molecules of DNA extracted from single-cells. Here we demonstrate a droplet microfluidic approach for encapsulation and biochemical processing of single-cells inside alginate microparticles. In our approach, single-cells are first packaged inside the alginate microparticles followed by cell lysis, DNA purification, and labeling steps performed off-chip inside this microparticle system. The alginate microparticles are then introduced inside a micro/nanofluidic system where the alginate is broken down via a chelating buffer, releasing long DNA molecules which are then extended inside nanofluidic channels for analysis via standard mapping protocols.