Science.gov

Sample records for alginate microspheres prepared

  1. Effects of aldehydes and methods of cross-linking on properties of calcium alginate microspheres prepared by emulsification.

    PubMed

    Chan, Lai Wah; Heng, Paul W S

    2002-03-01

    Calcium alginate microspheres were prepared by an emulsification method and cross-linked with various aldehydes using different methods. Methanal and pentanedial produced low aggregation of microspheres while octanal and octadecanal produced the opposite effect. The latter two aldehydes displaced very little calcium ions from the alginate microspheres, indicating that the aggregation was due to the tackiness imparted by the aldehydes to the microsphere surface. Higuchi's model was not applicable to the drug release from microspheres in this study. The microspheres treated with methanal or pentanedial showed comparable dissolution T75% values which were significantly higher than that of the control. In contrast, octanal and octadecanal produced microspheres with lower dissolution T75% values. The drug contents of the microspheres treated with aldehydes were significantly lower than that of the control. There was insignificant interaction between the aldehydes and the drug. However, the aldehydes were found to impart acidity to the aqueous solution to varying extents, resulting in varying drug loss from the microspheres. The properties of the microspheres were also markedly affected by the method of incorporating the aldehyde. Soaking the microspheres in methanal solution produced microspheres with marked aggregation and low drug content. PMID:11808537

  2. Effects of aldehydes and methods of cross-linking on properties of calcium alginate microspheres prepared by emulsification.

    PubMed

    Chan, Lai Wah; Heng, Paul W S

    2002-03-01

    Calcium alginate microspheres were prepared by an emulsification method and cross-linked with various aldehydes using different methods. Methanal and pentanedial produced low aggregation of microspheres while octanal and octadecanal produced the opposite effect. The latter two aldehydes displaced very little calcium ions from the alginate microspheres, indicating that the aggregation was due to the tackiness imparted by the aldehydes to the microsphere surface. Higuchi's model was not applicable to the drug release from microspheres in this study. The microspheres treated with methanal or pentanedial showed comparable dissolution T75% values which were significantly higher than that of the control. In contrast, octanal and octadecanal produced microspheres with lower dissolution T75% values. The drug contents of the microspheres treated with aldehydes were significantly lower than that of the control. There was insignificant interaction between the aldehydes and the drug. However, the aldehydes were found to impart acidity to the aqueous solution to varying extents, resulting in varying drug loss from the microspheres. The properties of the microspheres were also markedly affected by the method of incorporating the aldehyde. Soaking the microspheres in methanal solution produced microspheres with marked aggregation and low drug content.

  3. Oral Delivery of Exenatide via Microspheres Prepared by Cross-Linking of Alginate and Hyaluronate

    PubMed Central

    Zhang, Baojie; He, Dongyang; Fan, Yu; Liu, Nan; Chen, Yijun

    2014-01-01

    Exenatide is an FDA-approved glucose-lowering peptide drug for the treatment of type 2 diabetes by subcutaneous injection. To address the issues on the inconvenience for patient use and the difficulty of oral administration of peptide drugs, chemical cross-linking of two pH-responsive biomaterials, alginate and hyaluronate, was carried out to prepare a new material for the encapsulation of exenatide as a form of microspheres. The exenatide-loaded microspheres exhibited spherical structures with excellent loading and release behaviors in the simulated gastrointestinal tract environments. After oral administration of the microspheres in db/db mice, maximum plasma concentration of exenatide appeared at 4 hours, and blood glucose was effectively reduced to a normal level within 2 hours and maintained for another 4 hours. The bioavailability of the exenatide-loaded microspheres, relative to subcutaneous injection of exenatide, reached 10.2%. Collectively, the present study demonstrated the feasibility of orally delivering exenatide with the new cross-linked biomaterial and formulation, and showed therapeutic potential for clinical applications. PMID:24465870

  4. PLGA/alginate composite microspheres for hydrophilic protein delivery.

    PubMed

    Zhai, Peng; Chen, X B; Schreyer, David J

    2015-11-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate.

  5. Redox-responsive alginate microsphere containing cystamine.

    PubMed

    Kwon, Kyeongnan; Kim, Jin-Chul

    2016-10-01

    Redox-responsive microspheres were prepared by solidifying the alginate- and cystamine-containing water droplets of O/W emulsion using calcium ion. Emulsions were prepared using alginate/cystamine mixture solution whose the carboxylic group/the amino group molar ratio was 1:1, 1:2, and 1:3, and whose the total concentration was kept to 2% (w/v). The microspheres on Scanning electron microscopy photographs were almost spherical and they were less than 1 μm in diameter. According to the energy-dispersive X-ray spectroscopy, the sulfur content of the microspheres was found to be 6.1, 11.4, and 14.8% (w/w), respectively, not markedly different from the calculated content. The release degree of blue dextran loaded in the microspheres was higher as the cystamine content was higher. Microspheres released almost the same amount of dye regardless of dithiothreitol (DTT, a reducing agent) concentration when the cystamine content was relatively low (e.g. 14.5% (w/w)), whereas they released dye in DTT concentration-dependent manner when the cystamine content was relatively high (e.g. 27.0 and 35.1% (w/w)). The light scattering intensity of alginate/cystamine mixture solution was stronger at a larger amount of cystamine, indicating that cystamine could cross-link alginate chains. The light scattering intensity decreased with increasing DTT concentration, possibly because of the breakdown of the disulfide bond of cystamine. The breakdown of the disulfide bond could account for why the DTT concentration-dependent release of dye loaded in the microspheres was observed. PMID:27484719

  6. Calcium phosphate-alginate microspheres as enzyme delivery matrices.

    PubMed

    Ribeiro, C C; Barrias, C C; Barbosa, M A

    2004-08-01

    The present study concerns the preparation and initial characterisation of novel calcium titanium phosphate-alginate (CTP-alginate) and hydroxyapatite-alginate (HAp-alginate) microspheres, which are intended to be used as enzyme delivery matrices and bone regeneration templates. Microspheres were prepared using different concentrations of polymer solution (1% and 3% w/v) and different ceramic-to-polymer solution ratios (0.1, 0.2 and 0.4 w/w). Ceramic powders were characterised using X-ray diffraction, laser granulometry, Brunauer, Emmel and Teller (BET) method for the determination of surface area, zeta potential and Fourier transform infrared spectroscopy (FT-IR). Alginate was characterised using high performance size exclusion chromatography. The methodology followed in this investigation enabled the preparation of homogeneous microspheres with a uniform size. Studies on the immobilisation and release of the therapeutic enzyme glucocerebrosidase, employed in the treatment of Gaucher disease, were also performed. The enzyme was incorporated into the ceramic-alginate matrix before gel formation in two different ways: pre-adsorbed onto the ceramic particles or dispersed in the polymeric matrix. The two strategies resulted in distinct release profiles. Slow release was obtained after adsorption of the enzyme to the ceramic powders, prior to preparation of the microspheres. An initial fast release was achieved when the enzyme and the ceramic particles were dispersed in the alginate solution before producing the microspheres. The latter profile is very similar to that of alginate microspheres. The different patterns of enzyme release increase the range of possible applications of the system investigated in this work.

  7. Preparation and characterization of Ganoderma lucidum spores-loaded alginate microspheres by electrospraying.

    PubMed

    Zhao, Ding; Li, Jing-Song; Suen, William; Chang, Ming-Wei; Huang, Jie

    2016-05-01

    Ganoderma lucidum spores (GLSs), popular functional food in preventive medicine, are susceptible to oxidative and acidic degradation during processing, storage and oral administration, resulting in the loss of sensory and nutritional qualities. The main objective of the study was to encapsulate the GLS in order to fully preserve the bioactivity of the ingredients as well as providing controlled and targeted delivery. Electrospraying was applied to prepare GLS-Alginate (GLS/A) micro beads in the current study. The size of GLS/A beads can be tailored by varying the applied voltage and drying processes. pH responsive release profiles of GLS/A beads were revealed from in vitro study in a simulated gastrointestinal environment: no release of GLS encapsulated beads in the simulated gastric fluid (pH of 1.8) was observed; while a rapid, size dependent release was found in the simulated intestinal solution (pH of 7.5). The release from smaller beads (e.g. 600 μm) was 1.5 times faster than that of larger beads (e.g. 2000 μm). In addition, the GLS release from freeze dried beads was almost 3 times faster than those of air and vacuum dried beads in the first 90 min. The present results illustrate the potential to protect GLS by encapsulation using electrospraying to achieve the controlled release of GLS ingredients. This will pave the way to develop effective GLS products with desirable bioactive components for healthcare applications. PMID:26952490

  8. Preparation and characterization of Ganoderma lucidum spores-loaded alginate microspheres by electrospraying.

    PubMed

    Zhao, Ding; Li, Jing-Song; Suen, William; Chang, Ming-Wei; Huang, Jie

    2016-05-01

    Ganoderma lucidum spores (GLSs), popular functional food in preventive medicine, are susceptible to oxidative and acidic degradation during processing, storage and oral administration, resulting in the loss of sensory and nutritional qualities. The main objective of the study was to encapsulate the GLS in order to fully preserve the bioactivity of the ingredients as well as providing controlled and targeted delivery. Electrospraying was applied to prepare GLS-Alginate (GLS/A) micro beads in the current study. The size of GLS/A beads can be tailored by varying the applied voltage and drying processes. pH responsive release profiles of GLS/A beads were revealed from in vitro study in a simulated gastrointestinal environment: no release of GLS encapsulated beads in the simulated gastric fluid (pH of 1.8) was observed; while a rapid, size dependent release was found in the simulated intestinal solution (pH of 7.5). The release from smaller beads (e.g. 600 μm) was 1.5 times faster than that of larger beads (e.g. 2000 μm). In addition, the GLS release from freeze dried beads was almost 3 times faster than those of air and vacuum dried beads in the first 90 min. The present results illustrate the potential to protect GLS by encapsulation using electrospraying to achieve the controlled release of GLS ingredients. This will pave the way to develop effective GLS products with desirable bioactive components for healthcare applications.

  9. Preparation of ferric ion crosslinked acrylamide grafted poly (vinyl alcohol)/sodium alginate microspheres and application in controlled release of anticancer drug 5-fluorouracil.

    PubMed

    Şanlı, Oya; Olukman, Merve

    2014-05-01

    Ionically crosslinked microspheres of acrylamide (AAm) grafted poly (vinyl alcohol) (PVA)/sodium alginate (NaAlg) were prepared by crosslinking with FeCl3 and 5-fluorouracil (5-FU), which is an anticancer drug and was successfully encapsulated into the microspheres. The graft copolymer (PVA-g-PAAm) was characterized by using Fourier transform infrared spectroscopy (FTIR) and elemental analysis. The prepared microspheres were characterized by FTIR and scanning electron microscopy (SEM). Microspheres were also characterized by particle diameter, equilibrium swelling values and release profiles. The release studies were carried out at three pH values 1.2, 6.8 and 7.4, respectively, each for 2 h. The effects of preparation conditions as PVA-g-PAAm/NaAlg ratio, drug/polymer ratio, crosslinker concentration and exposure time to FeCl3 on the release of 5-FU were investigated for 6 h at 37 °C. The highest 5-FU release was found to be as 99.57% (w/w) at the end of 6 h for PVA-g-PAAm/NaAlg ratio of 1:4 (w/w), drug/polymer ratio of 1:8 (w/w), crosslinker concentration of 0.05 M and exposure time of 10 min. The release results were also supported by the swelling measurements of the microspheres. Release kinetics was described by Fickian and non-Fickian approaches.

  10. Bioactive apatite incorporated alginate microspheres with sustained drug-delivery for bone regeneration application.

    PubMed

    Li, Haibin; Jiang, Fei; Ye, Song; Wu, Yingying; Zhu, Kaiping; Wang, Deping

    2016-05-01

    The strontium-substituted hydroxyapatite microspheres (SrHA) incorporated alginate composite microspheres (SrHA/Alginate) were prepared via adding SrHA/alginate suspension dropwise into calcium chloride solution, in which the gel beads were formed by means of crosslinking reaction. The structure, morphology and in vitro bioactivity of the composite microspheres were studied by using XRD, SEM and EDS methods. The biological behaviors were characterized and analyzed through inductively coupled plasma optical emission spectroscopy (ICP-OES), CCK-8, confocal laser microscope and ALP activity evaluations. The experimental results indicated that the synthetic SrHA/Alginate showed similar morphology to the well-known alginate microspheres (Alginate) and both of them possessed a great in vitro bioactivity. Compared with the control Alginate, the SrHA/Alginate enhanced MC3T3-E1 cell proliferation and ALP activity by releasing osteoinductive and osteogenic Sr ions. Furthermore, vancomycin was used as a model drug to investigate the drug release behaviors of the SrHA/Alginate, Alginate and SrHA. The results suggested that the SrHA/Alginate had a highest drug-loading efficiency and best controlled drug release properties. Additionally, the SrHA/Alginate was demonstrated to be pH-sensitive as well. The increase of the pH value in phosphate buffer solution (PBS) accelerated the vancomycin release. Accordingly, the multifunctional SrHA/Alginate can be applied in the field of bioactive drug carriers and bone filling materials. PMID:26952484

  11. A doxorubicin delivery system: Samarium/mesoporous bioactive glass/alginate composite microspheres.

    PubMed

    Zhang, Ying; Wang, Xiang; Su, Yanli; Chen, Dongya; Zhong, Wenxing

    2016-10-01

    Samarium (Sm) incorporated mesoporous bioactive glasses (MBG) microspheres have been prepared using the method of alginate cross-linking with Ca(2+) ions. The in vitro bioactivities of Sm/MBG/alginate microspheres were studied by immersing in simulated body fluid (SBF) for various periods. The results indicated that the Sm/MBG/alginate microspheres have a faster apatite formation rate on the surface. To investigate their delivery properties further, doxorubicin (DOX) was selected as a model drug. The results showed that the Sm/MBG/alginate microspheres exhibit sustained DOX delivery, and their release mechanism is controlled by Fickian diffusion according the Higuchi model. In addition, the delivery of DOX from Sm/MBG/alginate microspheres can be dominated by changing the doping concentration of Sm and the values of pH microenvironment. These all revealed that this material is a promising candidate for the therapy of bone cancer.

  12. Characterization of holmium loaded alginate microspheres for multimodality imaging and therapeutic applications.

    PubMed

    Zielhuis, S W; Seppenwoolde, J H; Bakker, C J G; Jahnz, U; Zonnenberg, B A; van het Schip, A D; Hennink, W E; Nijsen, J F W

    2007-09-15

    In this paper the preparation and characterization of holmium-loaded alginate microspheres is described. The rapid development of medical imaging techniques offers new opportunities for the visualisation of (drug-loaded) microparticles. Therefore, suitable imaging agents have to be incorporated into these particles. For this reason, the element holmium was used in this study in order to utilize its unique imaging characteristics. The paramagnetic behaviour of this element allows visualisation with MRI and holmium can also be neutron-activated resulting in the emission of gamma-radiation, allowing visualisation with gamma cameras, and beta-radiation, suitable for therapeutic applications. Almost monodisperse alginate microspheres were obtained by JetCutter technology where alginate droplets of a uniform size were hardened in an aqueous holmium chloride solution. Ho(3+) binds via electrostatic interactions to the carboxylate groups of the alginate polymer and as a result alginate microspheres loaded with holmium were obtained. The microspheres had a mean size of 159 microm and a holmium loading of 1.3 +/- 0.1% (w/w) (corresponding with a holmium content based on dry alginate of 18.3 +/- 0.3% (w/w)). The binding capacity of the alginate polymer for Ho(3+) (expressed in molar amounts) is equal to that for Ca(2+), which is commonly used for the hardening of alginate. This indicates that Ho(3+) has the same binding affinity as Ca(2+). In line herewith, dynamic mechanical analyses demonstrated that alginate gels hardened with Ca(2+) or Ho(3+) had similar viscoelastic properties. The MRI relaxation properties of the microspheres were determined by a MRI phantom experiment, demonstrating a strong R(2)* effect of the particles. Alginate microspheres could also be labelled with radioactive holmium by adding holmium-166 to alginate microspheres, previously hardened with calcium (labelling efficiency 96%). The labelled microspheres had a high radiochemical stability (94% after

  13. In vivo evaluation of alginate microspheres of carvedilol for nasal delivery.

    PubMed

    Patil, Sanjay B; Kaul, Ankur; Babbar, Anil; Mathur, Rashi; Mishra, Anil; Sawant, Krutika K

    2012-01-01

    Mucoadhesive alginate microspheres of carvedilol (CRV) for nasal administration intended to avoid first pass metabolism and to improve bioavailability were prepared and evaluated. The microspheres were prepared by emulsification cross-linking method. Radiolabeling of CRV and its microspheres was performed by direct labeling with reduced technetium-99m ((99m) Tc). In vivo studies were performed on New Zealand white rabbits by administering the microspheres intranasally using monodose nasal insufflator. The radioactivity was measured in a well-type gamma scintillation counter. The noncompartmental pharmacokinetic analysis was performed. The pattern of deposition and clearance of the microspheres were evaluated using a radioactive tracer and the noninvasive technique of gamma scintigraphy. The clearance of alginate microsphere was compared with that of control lactose. The microspheres were nonaggregated, free flowing powders with spherical shape, and smooth surface. Pharmacokinetics study displayed an increase in area under the curve and hence in relative bioavailability when compared with intravenous administration of drug. The nasal bioavailability was 67.87% which indicates that nasal administration results in improved absorption of CRV. The results of gamma scintigraphy showed that the alginate microspheres had significantly reduced rates of clearance from the rabbit nasal cavity when compared with the control lactose.

  14. Laser-assisted fabrication of highly viscous alginate microsphere

    NASA Astrophysics Data System (ADS)

    Lin, Yafu; Huang, Yong

    2011-04-01

    Encapsulated microspheres have been widely used in various biomedical applications. However, fabrication of encapsulated microspheres from highly viscous materials has always been a manufacturing challenge. The objective of this study is to explore a novel metallic foil-assisted laser-induced forward transfer (LIFT), a laser-assisted fabrication technique, to make encapsulated microspheres using high sodium alginate concentration solutions. The proposed four-layer approach includes a quartz disk, a sacrificial and adhesive layer, a metallic foil, and a transferred suspension layer. It is found that the proposed four-layer modified LIFT approach provides a promising fabrication technology for making of bead-encapsulated microspheres from highly viscous solutions. During the process, the microsphere only can be formed if the direct-writing height is larger than the critical direct-writing height; otherwise, tail structured droplets are formed; and the encapsulated microsphere diameter linearly increases with the laser fluence and decreases with the sodium alginate concentration.

  15. Design and characterization of chitosan-alginate microspheres for ocular delivery of azelastine.

    PubMed

    Shinde, Ujwala A; Shete, Jaykumar N; Nair, Hema A; Singh, Kavita H

    2014-11-01

    The use of mucoadhesive biopolymers is one of the best approaches to prolong the drug residence inside the cul-de-sac, consequently increasing the bioavailability. Thus, the focus of this work was to develop mucoadhesive microspheres to overcome the limitations of ocular drug delivery. The chitosan-sodium alginate microspheres of azelastine hydrochloride were fabricated using modified ionotropic gelation technique. The particle size, zeta potential, entrapment efficiency and drug release kinetics were evaluated and characterized by SEM, FT-IR, DSC, in vitro mucoadhesion and in vivo study. The microspheres had average particle size in the range of 3.55 to 6.70 µm and zeta potential +24.55 to +49.56 mV. The fabricated microspheres possess maximum drug entrapment of 73.05% with 65% mucin binding efficiency and revealed a controlled release over the 8-h period following a non-Fickian diffusion. SEM showed that microspheres were distinct solid with irregular shape. FT-IR and DSC results concluded the drug entrapment into microspheres. In vivo studies on ocular rat model revealed that azelastine microspheres had better efficacy. Chitosan sodium alginate microspheres prepared were in particle size range suitable for ocular purpose. In vitro release and in vivo efficacy studies revealed that the microspheres were effective in prolonging the drug's presence in cul de sac with improved therapeutic efficacy. PMID:24032373

  16. Fabrication of distilled water-soluble chitosan/alginate functional multilayer composite microspheres.

    PubMed

    Xiao, Congming; Sun, Fei

    2013-11-01

    Polysaccharides-based functional microspheres were fabricated under mild conditions. Firstly, magnetic alginate microspheres were prepared by emulsification/internal gelation and acted as substrates. Then the multilayer composite microspheres (MCM) were obtained through the layer-by-layer assembly of the distilled water-soluble chitosan and alginate. The components, morphology, and size distribution of the microspheres were characterized by element analysis (EA), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and laser particle size analyzer (LPSA). Both EA and XPS analysis results indicated that alternate immersion was an effective method for preparing MCM. Vibrating sample magnetometer, SEM and LPSA results showed that the microspheres had good dispersion, uniform particle size and were superparamagnetic. In addition, in vitro drug release behaviors of the microspheres were investigated by using hemoglobin (HB) and Coomassie brilliant blue G250 (CBB) as model drugs. It was found that the release rates of both HB and CBB from the composite microspheres were slower than those from the substrates.

  17. Novel tamarind seed polysaccharide-alginate mucoadhesive microspheres for oral gliclazide delivery: in vitro-in vivo evaluation.

    PubMed

    Pal, Dilipkumar; Nayak, Amit Kumar

    2012-04-01

    Novel tamarind seed polysaccharide (TSP)-alginate mucoadhesive microspheres were prepared using TSP and alginate as blend in different ratios with different calcium chloride (CaCl(2)) concentration as a cross linker by ionotropic gelation. The prepared microspheres were of spherical shape having rough surfaces, and average particle sizes within the range of 752.12 ± 6.42 to 948.49 ± 20.92 µm. The drug entrapment efficiency of these microspheres were within the range between 58.12 ± 2.42 to 82.78 ± 3.43% w/w. Fourier transform infrared (FTIR) studies indicated that there were no reactions between gliclazide, and polymers (TSP, and sodium alginate) used. Different formulations of gliclazide loaded TSP-alginate microspheres showed prolonged in vitro release profiles of gliclazide over 12 hours in both stomach pH (pH 1.2), and intestinal pH (pH 7.4). It was found that the gliclazide release in gastric pH was comparatively slow and sustained than intestinal pH. These TSP-alginate microspheres also exhibited good mucoadhesivity. The in vivo studies on alloxan-induced diabetic rats (Animal Ethical Committee registration number: IFTM/837ac/0160) demonstrated the significant hypoglycemic effect of selected formulation of TSP-alginate mucoadhesive microspheres containing gliclazide on oral administration. This developed gliclazide loaded new TSP-alginate mucoadhesive microspheres may be very much useful for prolonged systemic absorption of gliclazide for proper maintaining blood glucose level and advanced patient compliance.

  18. Novel tamarind seed polysaccharide-alginate mucoadhesive microspheres for oral gliclazide delivery: in vitro-in vivo evaluation.

    PubMed

    Pal, Dilipkumar; Nayak, Amit Kumar

    2012-04-01

    Novel tamarind seed polysaccharide (TSP)-alginate mucoadhesive microspheres were prepared using TSP and alginate as blend in different ratios with different calcium chloride (CaCl(2)) concentration as a cross linker by ionotropic gelation. The prepared microspheres were of spherical shape having rough surfaces, and average particle sizes within the range of 752.12 ± 6.42 to 948.49 ± 20.92 µm. The drug entrapment efficiency of these microspheres were within the range between 58.12 ± 2.42 to 82.78 ± 3.43% w/w. Fourier transform infrared (FTIR) studies indicated that there were no reactions between gliclazide, and polymers (TSP, and sodium alginate) used. Different formulations of gliclazide loaded TSP-alginate microspheres showed prolonged in vitro release profiles of gliclazide over 12 hours in both stomach pH (pH 1.2), and intestinal pH (pH 7.4). It was found that the gliclazide release in gastric pH was comparatively slow and sustained than intestinal pH. These TSP-alginate microspheres also exhibited good mucoadhesivity. The in vivo studies on alloxan-induced diabetic rats (Animal Ethical Committee registration number: IFTM/837ac/0160) demonstrated the significant hypoglycemic effect of selected formulation of TSP-alginate mucoadhesive microspheres containing gliclazide on oral administration. This developed gliclazide loaded new TSP-alginate mucoadhesive microspheres may be very much useful for prolonged systemic absorption of gliclazide for proper maintaining blood glucose level and advanced patient compliance. PMID:22352984

  19. [Comparison of rheologic properties between Ca-alginate hydrogel microspheres suspension and whole blood].

    PubMed

    Xu, Pei; Wang, Xiang; Li, Yaojin; Wang, Feifei; Duan, Ming; Yang, Li

    2013-02-01

    Starting from the form of red blood cells and the hematocrit (Hct, about 45 vol% of whole blood), we tried to prepare a kind of microspheres suspension to imitate non-Newtonian fluid property of whole blood, exploring its potentiality to be applied in blood viscosity quality control substance. In our study, we produced Ca-alginate hydrogel microspheres using emulsion polymerization, then we suspended the microspheres in 0.9 wt% NaCl solution to obtain a kind of liquid sample with the microspheres taking 45% volume. Then we used two types of viscometers to measure and analyse the changes of sample viscosity at different shear rate. We observed the forms of Ca-alginate hydrogel microspheres with microscope, and found them to be relatively complete, and their diameters to be normally distributed. Diameters of about 90% of the microspheres were distributed in a range from 6 to 22 micron. The samples were examined with viscometer FASCO-3010 and LG-R-80c respectively, both of which have shown a shear-thinning effect. After 5-week stability test, the CV of viscosity results corresponding to the two instruments were 7.3% to 13.8% and 8.9% to 14.2%, respectively. Although some differences existed among the results under the same shear rate, the general variation trends of the corresponding results were consistent, so the sample had the potentiality to be widely used in calibrating a different type of blood viscometer. PMID:23488147

  20. Kefiran-alginate gel microspheres for oral delivery of ciprofloxacin.

    PubMed

    Blandón, Lina M; Islan, German A; Castro, Guillermo R; Noseda, Miguel D; Thomaz-Soccol, Vanete; Soccol, Carlos R

    2016-09-01

    Ciprofloxacin is a broad-spectrum antibiotic associated with gastric and intestinal side effects after extended oral administration. Alginate is a biopolymer commonly employed in gel synthesis by ionotropic gelation, but unstable in the presence of biological metal-chelating compounds and/or under dried conditions. Kefiran is a microbial biopolymer able to form gels with the advantage of displaying antimicrobial activity. In the present study, kefiran-alginate gel microspheres were developed to encapsulate ciprofloxacin for antimicrobial controlled release and enhanced bactericidal effect against common pathogens. Scanning electron microscopy (SEM) analysis of the hybrid gel microspheres showed a spherical structure with a smoother surface compared to alginate gel matrices. In vitro release of ciprofloxacin from kefiran-alginate microspheres was less than 3.0% and 5.0% at pH 1.2 (stomach), and 5.0% and 25.0% at pH 7.4 (intestine) in 3 and 21h, respectively. Fourier transform infrared spectroscopy (FTIR) of ciprofloxacin-kefiran showed the displacement of typical bands of ciprofloxacin and kefiran, suggesting a cooperative interaction by hydrogen bridges between both molecules. Additionally, the thermal analysis of ciprofloxacin-kefiran showed a protective effect of the biopolymer against ciprofloxacin degradation at high temperatures. Finally, antimicrobial assays of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhymurium, and Staphylococcus aureus demonstrated the synergic effect between ciprofloxacin and kefiran against the tested microorganisms.

  1. In-vivo evaluation of clindamycin release from glyceryl monooleate-alginate microspheres by NIR spectroscopy.

    PubMed

    Mohamed, Amir Ibrahim; Ahmed, Osama A A; Amin, Suzan; Elkadi, Omar Anwar; Kassem, Mohamed A

    2015-10-15

    The purpose of this study was to use near-infrared (NIR) transmission spectroscopic technique to determine clindamycin plasma concentration after oral administration of clindamycin loaded GMO-alginate microspheres using rabbits as animal models. Lyophilized clindamycin-plasma standard samples at a concentration range of 0.001-10 μg/ml were prepared and analyzed by NIR and HPLC as a reference method. NIR calibration model was developed with partial least square (PLS) regression analysis. Then, a single dose in-vivo evaluation was carried out and clindamycin-plasma concentration was estimated by NIR. Over 24 h time period, the pharmacokinetic parameters of clindamycin were calculated for the clindamycin loaded GMO-alginate microspheres (F3) and alginate microspheres (F2), and compared with the plain drug (F1). PLS calibration model with 7-principal components (PC), and 8000-9200 cm(-1) spectral range shows a good correlation between HPLC and NIR values with root mean square error of cross validation (RMSECV), root mean square error of prediction (RMSEP), and calibration coefficient (R(2)) values of 0.245, 1.164, and 0.9753, respectively, which suggests that NIR transmission technique can be used for drug-plasma analysis without any extraction procedure. F3 microspheres exhibited controlled and prolonged absorption Tmax of 4.0 vs. 1.0 and 0.5 h; Cmax of 2.37±0.3 vs. 3.81±0.8 and 5.43±0.7 μg/ml for F2 and F1, respectively. These results suggest that the combination of GMO and alginate (1:4 w/w) could be successfully employed for once daily clindamycin microspheres formulation which confirmed by low Cmax and high Tmax values.

  2. Holmium-lipiodol-alginate microspheres for fluoroscopy-guided embolotherapy and multimodality imaging.

    PubMed

    Oerlemans, Chris; Seevinck, Peter R; Smits, Maarten L; Hennink, Wim E; Bakker, Chris J G; van den Bosch, Maurice A A J; Nijsen, J Frank W

    2015-03-30

    Embolotherapy is a minimally invasive transcatheter technique aiming at reduction or complete obstruction of the blood flow by infusion of micro-sized particles in order to induce tumor regression. A major drawback of the current commercially available and clinically used microspheres is that they cannot be detected in vivo with medical imaging techniques, impeding intra- and post-procedural feedback. It can be expected that real-time monitoring of microsphere infusion and post-procedural imaging will result in better predictability and higher efficacy of the treatment. In this study, a novel microsphere formulation has been developed that can be visualized with fluoroscopy, X-ray computed tomography (CT) and magnetic resonance imaging (MRI). The microspheres were prepared with the JetCutter technique and consist of alginate (matrix-forming polymer), holmium (cross-linking and MRI contrast agent), lipiodol (radiopaque contrast agent) and Pluronic F-68 (surfactant). The mean size (±SEM) of the hydrated holmium-lipiodol-alginate microspheres (Ho-lip-ams) was 570±12 μm with a holmium content of 0.38±0.01% (w/w). Stability studies showed that the microspheres remained intact during incubation for two weeks in fetal calf serum (FCS) at 37 °C. The inclusion of lipiodol in the microspheres rendered excellent visualization capabilities for fluoroscopy and CT, whereas the holmium ions, which keep the alginate network together, also allow MR imaging. In this study it was shown that single sphere detection was possible by fluoroscopy, CT and MRI. The Ho-lip-ams were visualized in real-time, during infusion in a porcine kidney using fluoroscopy, and post-procedural, the deposition of the microspheres was examined with fluoroscopy, (cone beam rotational) CT and MRI. The different imaging modalities showed similar deposition patterns of the microspheres within the organ. The combination of intra-procedural visualization, multimodality imaging for patient follow-up and the

  3. Immunization Against Cutaneous Leishmaniasis by Alginate Microspheres Loaded With Autoclaved Leishmania Major (ALM) and Quillaja Saponins.

    PubMed

    Tafaghodi, Mohsen; Eskandari, Maryam; Khamesipour, Ali; Jaafari, Mahmoud Reza

    2016-01-01

    Leishmania antigens are weak immunogens and need to be potentiated by various adjuvants and delivery systems. Alginate microspheres as antigen delivery system and Quillaja saponins (QS) as immunoadjuvant have been used to enhance the immune response against Autoclaved Leishmania major (ALM). Microspheres were prepared by an emulsification technique and characterized for size, encapsulation efficiency and release profile of encapsulates. BALB/c mice were immunized three times in 3-weeks intervals using ALM plus QS loaded microspheres [(ALM+QS)ALG], ALM encapsulated with alginate microspheres [(ALM)ALG], (ALM)ALG + QS, ALM + QS, ALM alone or PBS. The intensity of infection induced by L. major challenge was assessed by measuring size of footpad swelling. The strongest protection, showed by significantly (P < 0.05) smaller footpad, were observed in mice immunized with (ALM)ALG+QS. The (ALM+QS)ALG, ALM and PBS groups showed the least protection and highest swelling, while the (ALM)ALG and ALM+QS showed an intermediate protection with no significant difference. The mice immunized with (ALM+QS)ALG showed the highest IgG2a/IgG1 ratio (P<0.05). The highest IFN-γ and IL-4 production was seen in ALM+QS (P<0.01). It is concluded that QS adjuvant has a mixed Th1/Th2 effect and has increased both humoral and cellular immune responses. PMID:27642328

  4. Immunization Against Cutaneous Leishmaniasis by Alginate Microspheres Loaded With Autoclaved Leishmania Major (ALM) and Quillaja Saponins

    PubMed Central

    Tafaghodi, Mohsen; Eskandari, Maryam; Khamesipour, Ali; Jaafari, Mahmoud Reza

    2016-01-01

    Leishmania antigens are weak immunogens and need to be potentiated by various adjuvants and delivery systems. Alginate microspheres as antigen delivery system and Quillaja saponins (QS) as immunoadjuvant have been used to enhance the immune response against Autoclaved Leishmania major (ALM). Microspheres were prepared by an emulsification technique and characterized for size, encapsulation efficiency and release profile of encapsulates. BALB/c mice were immunized three times in 3-weeks intervals using ALM plus QS loaded microspheres [(ALM+QS)ALG], ALM encapsulated with alginate microspheres [(ALM)ALG], (ALM)ALG + QS, ALM + QS, ALM alone or PBS. The intensity of infection induced by L. major challenge was assessed by measuring size of footpad swelling. The strongest protection, showed by significantly (P < 0.05) smaller footpad, were observed in mice immunized with (ALM)ALG+QS. The (ALM+QS)ALG, ALM and PBS groups showed the least protection and highest swelling, while the (ALM)ALG and ALM+QS showed an intermediate protection with no significant difference. The mice immunized with (ALM+QS)ALG showed the highest IgG2a/IgG1 ratio (P<0.05). The highest IFN-γ and IL-4 production was seen in ALM+QS (P<0.01). It is concluded that QS adjuvant has a mixed Th1/Th2 effect and has increased both humoral and cellular immune responses. PMID:27642328

  5. Method for preparing hollow metal oxide microsphere

    DOEpatents

    Schmitt, C.R.

    1974-02-12

    Hollow refractory metal oxide microspheres are prepared by impregnating resinous microspheres with a metallic compound, drying the impregnated microspheres, heating the microspheres slowly to carbonize the resin, and igniting the microspheres to remove the carbon and to produce the metal oxide. Zirconium oxide is given as an example. (Official Gazette)

  6. Bioactive inorganic-materials/alginate composite microspheres with controllable drug-delivery ability.

    PubMed

    Wu, Chengtie; Zhu, Yufang; Chang, Jiang; Zhang, Yufeng; Xiao, Yin

    2010-07-01

    Alginate microspheres are considered a promising material as a drug carrier in bone repair because of excellent biocompatibility, but their main disadvantage is low drug entrapment efficiency and noncontrollable release. The aim of this study was to investigate the effect of incorporating mesoporous bioglass (MBG), nonmesoporous bioglass (BG), or hydroxyapatite (HAp) into alginate microspheres on their drug-loading and release properties. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and atomic emission spectroscopy (AES) were used to analyze the composition, structure, and dissolution of bioactive inorganic materials and their microspheres. Dexamethasone (DEX)-loading and release ability of four microspheres were tested in phosphate buffered saline with varying pH. Results showed that the drug-loading capacity was enhanced with the incorporation of bioactive inorganic materials into alginate microspheres. The MBG/alginate microspheres had the highest drug loading ability. DEX release from alginate microspheres correlated to the dissolution of MBG, BG, and HAp in PBS, and that the pH was an efficient factor in controlling the DEX release; a high pH resulted in greater DEX release, whereas a low pH delayed DEX release. In addition, MBG/alginate, BG/alginate, and HAp/alginate microspheres had varying apatite-formation and dissolution abilities, which indicate that the composites would behave differently with respect to bioactivity. The study suggests that microspheres made of a composite of bioactive inorganic materials and alginate have a bioactivity and degradation profile which greatly improves their drug delivery capacity, thus enhancing their potential applications as bioactive filler materials for bone tissue regeneration. PMID:20225253

  7. Metal ion-induced alginate-locust bean gum IPN microspheres for sustained oral delivery of aceclofenac.

    PubMed

    Jana, Sougata; Gandhi, Arijit; Sheet, Subrata; Sen, Kalyan Kumar

    2015-01-01

    The alginate microspheres represent a useful tool for sustained oral delivery of drugs but exhibit several problems associated with the stability and rapid release of drugs at higher pH values. To overcome these drawbacks, alginate-locust bean gum (LBG) interpenetrating microspheres were prepared by calcium ion (Ca(+2)) induced ionotropic gelation technique for prolonged release of aceclofenac. The drug entrapment efficiency of these microspheres was found to be 59-93%. The microspheres lied in the size range of 406-684μm. Scanning electron microscopy revealed spherical shape of the microspheres. No drug-polymer interaction was evident after infrared spectroscopy analysis. The microspheres provided sustained release of aceclofenac in phosphate buffer solution (pH 6.8) over a period of 8h. The drug release data were fitted into the Korsmeyer-Peppas model and the drug release was found to follow anomalous (non-Fickian) diffusion mechanism. Pharmacodynamic study of the microspheres showed a prolonged anti-inflammatory activity in carrageenan-induced rat paw model following oral administration.

  8. Metal ion-induced alginate-locust bean gum IPN microspheres for sustained oral delivery of aceclofenac.

    PubMed

    Jana, Sougata; Gandhi, Arijit; Sheet, Subrata; Sen, Kalyan Kumar

    2015-01-01

    The alginate microspheres represent a useful tool for sustained oral delivery of drugs but exhibit several problems associated with the stability and rapid release of drugs at higher pH values. To overcome these drawbacks, alginate-locust bean gum (LBG) interpenetrating microspheres were prepared by calcium ion (Ca(+2)) induced ionotropic gelation technique for prolonged release of aceclofenac. The drug entrapment efficiency of these microspheres was found to be 59-93%. The microspheres lied in the size range of 406-684μm. Scanning electron microscopy revealed spherical shape of the microspheres. No drug-polymer interaction was evident after infrared spectroscopy analysis. The microspheres provided sustained release of aceclofenac in phosphate buffer solution (pH 6.8) over a period of 8h. The drug release data were fitted into the Korsmeyer-Peppas model and the drug release was found to follow anomalous (non-Fickian) diffusion mechanism. Pharmacodynamic study of the microspheres showed a prolonged anti-inflammatory activity in carrageenan-induced rat paw model following oral administration. PMID:25111495

  9. Alginate-whey protein granular microspheres as oral delivery vehicles for bioactive compounds.

    PubMed

    Chen, Lingyun; Subirade, Muriel

    2006-09-01

    Alginate (AL)-whey protein isolate (WPI) microspheres of varied WPI/AL ratio, particle diameter and concentration of polymer bead forming solution (C(AL+WPI)) were prepared in order to develop a biocompatible vehicle for oral administration of bioactive compounds. Microscopy revealed a special matrix/granular structure for microspheres with a WPI/AL ratio of 8:2, 100 microm diameter and C(AL+WPI) of 5% (AL-WPI A2), featuring WPI granules 3-10 microm in diameter homogeneously distributed within an AL spherical matrix. The compound release properties of these microspheres were investigated in simulated gastric and intestinal fluids (SGF and SIF). They demonstrated the desirable property of retarding riboflavin release in SGF and underwent alginate matrix erosion together with liberation of WPI granules in SIF, followed by complete release of the riboflavin. Riboflavin release in SGF and in SIF without pancreatin followed the Higuchi diffusion model while release in SIF in the presence of pancreatin was attributed to WPI granule degradation.

  10. Performance evaluation of bipolar and tripolar excitations during nozzle-jetting-based alginate microsphere fabrication

    NASA Astrophysics Data System (ADS)

    Herran, C. Leigh; Huang, Yong; Chai, Wenxuan

    2012-08-01

    Microspheres, small spherical (polymeric) particles with or without second phase materials embedded or encapsulated, are important for many biomedical applications such as drug delivery and organ printing. Scale-up fabrication with the ability to precisely control the microsphere size and morphology has always been of great manufacturing interest. The objective of this work is to experimentally study the performance differences of bipolar and tripolar excitation waveforms in using drop-on-demand (DOD)-based single nozzle jetting for alginate microsphere fabrication. The fabrication performance has been evaluated based on the formability of alginate microspheres as a function of materials properties (sodium alginate and calcium chloride concentrations) and operating conditions. The operating conditions for each excitation include voltage rise/fall times, dwell times and excitation voltage amplitudes. Overall, the bipolar excitation is more robust in making spherical, monodispersed alginate microspheres as good microspheres for its wide working range of material properties and operating conditions, especially during the fabrication of highly viscous materials such as the 2% sodium alginate solution. For both bipolar and tripolar excitations, the sodium alginate concentration and the voltage dwell times should be carefully selected to achieve good microsphere formability.

  11. Microfluidic one-step synthesis of alginate microspheres immobilized with antibodies

    PubMed Central

    Chen, Wanyu; Kim, Jong-Hoon; Zhang, Di; Lee, Kyong-Hoon; Cangelosi, G. A.; Soelberg, S. D.; Furlong, C. E.; Chung, Jae-Hyun; Shen, Amy Q.

    2013-01-01

    Micrometre- and submicrometre-size functionalized beads are frequently used to capture targets of interest from a biological sample for biological characterizations and disease diagnosis. The main challenge of the microbead-based assay is in the immobilization of probe molecules onto the microbead surfaces. In this paper, we report a versatile droplet microfluidics method to fabricate alginate microspheres while simultaneously immobilizing anti-Mycobacterium tuberculosis complex IgY and anti-Escherichia coli IgG antibodies primarily on the porous alginate carriers for specific binding and binding affinity tests. The binding affinity of antibodies is directly measured by fluorescence intensity of stained target bacteria on the microspheres. We demonstrate that the functionalized alginate microspheres yield specificity comparable with an enzyme-linked immunosorbent assay. The high surface area-to-volume ratio of the functionalized porous alginate microspheres improves the detection limit. By using the droplet microfluidics, we can easily modify the size and shape of alginate microspheres, and increase the concentration of functionalized alginate microspheres to further enhance binding kinetics and enable multiplexing. PMID:23966617

  12. Microfluidic one-step synthesis of alginate microspheres immobilized with antibodies.

    PubMed

    Chen, Wanyu; Kim, Jong-Hoon; Zhang, Di; Lee, Kyong-Hoon; Cangelosi, G A; Soelberg, S D; Furlong, C E; Chung, Jae-Hyun; Shen, Amy Q

    2013-11-01

    Micrometre- and submicrometre-size functionalized beads are frequently used to capture targets of interest from a biological sample for biological characterizations and disease diagnosis. The main challenge of the microbead-based assay is in the immobilization of probe molecules onto the microbead surfaces. In this paper, we report a versatile droplet microfluidics method to fabricate alginate microspheres while simultaneously immobilizing anti-Mycobacterium tuberculosis complex IgY and anti-Escherichia coli IgG antibodies primarily on the porous alginate carriers for specific binding and binding affinity tests. The binding affinity of antibodies is directly measured by fluorescence intensity of stained target bacteria on the microspheres. We demonstrate that the functionalized alginate microspheres yield specificity comparable with an enzyme-linked immunosorbent assay. The high surface area-to-volume ratio of the functionalized porous alginate microspheres improves the detection limit. By using the droplet microfluidics, we can easily modify the size and shape of alginate microspheres, and increase the concentration of functionalized alginate microspheres to further enhance binding kinetics and enable multiplexing.

  13. Gelling process of sodium alginate with bivalent ions rich microsphere: Nature of bivalent ions

    NASA Astrophysics Data System (ADS)

    Mauri, Marco; Vicini, Silvia; Castellano, Maila

    2016-05-01

    In the paper we present a new approach for obtaining a controlled gelling process of sodium alginate, based on the quantity of bivalent ions rich alginate micro-beads added as crosslinkers. Typically, calcium ions are used in gelation of alginate solutions. In this study we present different gelling systems realized with alginate microspheres, made by electrospinning methodology, enriched with different bivalent ions (Ca2+, Ba2+ and Mg2+). The microspheres were characterized under the point of view of the morphology by OM and as the ions content. Realized gels were characterized in light of the amount of the ions added to the alginate solution, and in light of the different dimensions of the micro-beads, using rheological measurements to assess the variation in the storage modulus (G'), loss modulus (G″) and complex viscosity (η*).

  14. FITC-tagged macromolecule-based alginate microspheres for urea sensoring

    NASA Astrophysics Data System (ADS)

    Joshi, Abhijeet; Chaudhari, Rashmi; Srivastava, Rohit

    2014-04-01

    Urea is an important biomarker for identification of kidney diseases. Early urea detection using a specific and sensitive technique can significantly reduce the mortality of patients. The research aims at developing fluorescence-based FITCmediated pH and urea measurement. A system containing FITC-dextran in alginate microspheres was developed using air-driven atomization. pH/Urea biosensor was characterized using optical microscopy, SEM, and CLSM. Urea biosensing studies were performed by exposing different standard solutions of pH and urea standard solutions using fluorescence spectroscopy (λex=488 nm and λem=520 nm). FITC-dextran was entrapped using an encapsulation unit and alginate microspheres were formed. The microspheres were found to be uniform and spherical in nature with sizes (50±10μ). FITC-dextran was found to be uniformly distributed in the alginate microspheres as per the CLSM scans. Urea biosensing studies indicate that a linear correlation was observed with increasing urea concentrations. The said microspheres can be used to detect changes in pH from 4-8 units owing to its linear response in this range. FITC dextran loaded alginate microspheres showed an improved range of detection upto 7 mM in comparison to 1.5 mM when in solution phase in a study with urea concentrations from 0-50 mM. The pH and urea detection was accurate to an extent of interday variation of 5%. FITC-dextran loaded alginate microspheres show a great potential for usage as a pH and urea biosensor for early detection of kidney diseases.

  15. Alginate Microspheres Containing Temperature Sensitive Liposomes (TSL) for MR-Guided Embolization and Triggered Release of Doxorubicin

    PubMed Central

    van Elk, Merel; Ozbakir, Burcin; Barten-Rijbroek, Angelique D.; Storm, Gert; Nijsen, Frank; Hennink, Wim E.; Vermonden, Tina; Deckers, Roel

    2015-01-01

    Objective The objective of this study was to develop and characterize alginate microspheres suitable for embolization with on-demand triggered doxorubicin (DOX) release and whereby the microspheres as well as the drug releasing process can be visualized in vivo using MRI. Methods and Findings For this purpose, barium crosslinked alginate microspheres were loaded with temperature sensitive liposomes (TSL/TSL-Ba-ms), which release their payload upon mild hyperthermia. These TSL contained DOX and [Gd(HPDO3A)(H2O)], a T1 MRI contrast agent, for real time visualization of the release. Empty alginate microspheres crosslinked with holmium ions (T2* MRI contrast agent, Ho-ms) were mixed with TSL-Ba-ms to allow microsphere visualization. TSL-Ba-ms and Ho-ms were prepared with a homemade spray device and sized by sieving. Encapsulation of TSL in barium crosslinked microspheres changed the triggered release properties only slightly: 95% of the loaded DOX was released from free TSL vs. 86% release for TSL-Ba-ms within 30 seconds in 50% FBS at 42°C. TSL-Ba-ms (76 ± 41 μm) and Ho-ms (64 ± 29 μm) had a comparable size, which most likely will result in a similar in vivo tissue distribution after an i.v. co-injection and therefore Ho-ms can be used as tracer for the TSL-Ba-ms. MR imaging of a TSL-Ba-ms and Ho-ms mixture (ratio 95:5) before and after hyperthermia allowed in vitro and in vivo visualization of microsphere deposition (T2*-weighted images) as well as temperature-triggered release (T1-weighted images). The [Gd(HPDO3A)(H2O)] release and clusters of microspheres containing holmium ions were visualized in a VX2 tumor model in a rabbit using MRI. Conclusions In conclusion, these TSL-Ba-ms and Ho-ms are promising systems for real-time, MR-guided embolization and triggered release of drugs in vivo. PMID:26561370

  16. Alginate-calcium microsphere loaded with thrombin: a new composite biomaterial for hemostatic embolization.

    PubMed

    Rong, Jing-jing; Liang, Ming; Xuan, Feng-qi; Sun, Jing-yang; Zhao, Li-jun; Zhen, Hui-zhen; Tian, Xiao-xiang; Liu, Dan; Zhang, Quan-yu; Peng, Cheng-fei; Yao, Tian-ming; Li, Fei; Wang, Xiao-zeng; Han, Ya-ling; Yu, Wei-ting

    2015-04-01

    To date, transcatheter arterial embolization (TAE) has become a standard treatment to control intracavitary bleeding as an alternative to surgery. Due to excellent biocompatibility and no residual in vivo, biodegradable materials are preferred in TAE. However, gelfoam is the only commercially available biodegradable embolic material used to treat blunt trauma of solid abdominal viscera until now, and controversial on its stability and reliability never stopped in the past five decades. In this study, a new biodegradable macromolecule material (thrombin-loaded alginate-calcium microspheres, TACMs) was prepared using electrostatic droplet techniques and a special method was developed for hemostatic embolization. Thrombin was successfully loaded into microspheres with high encapsulation efficiency and drug loading capacity. A burst release of TACMs was observed at early stage and sustained release later on, with the activity of thrombin preserved well. The strength of TACMs mixed thrombus, which was used as embolic agent, increased in a dose-dependent manner after TACMs were added. In addition, the TACMs were verified to be of no cytotoxicity and systemic toxicity, and biodegradable in vivo. Finally, the results of preliminary applications revealed that the TACMs could serve as an effective and promising embolic material for blunt trauma and hemorrhage of solid abdominal viscera. PMID:25583022

  17. Psychrotrophic Streptomyces spp. cells immobilisation in alginate microspheres produced by emulsification-internal gelation.

    PubMed

    Cotârleţ, Mihaela; Dima, Stefan; Bahrim, Gabriela

    2014-01-01

    The objective of the investigations was the optimisation of the parameters for cold-adapted Streptomyces MIUG 4 Alga strain cells immobilisation using emulsification-internal gelation technique in calcium alginate microspheres and testing their ability to produce cold-active β-amylase. By Box-Behnken design and response surface methodology, the effects of independent variables were established, which included sodium alginate concentration (A), sodium alginate:living cell ratio (B) and the Span 80 concentration (C) upon microspheres formation and their functionality. Mean diameter of formed microspheres with immobilised biomass and cold-active β-amylase production were chosen as dependent variables in order to increase the yield of starch hydrolysis. Diameters of microspheres <25.5 μm provided large yield of cold-active β-amylase comparing with microspheres with bigger diameter. A 1.5-fold increase in the substrate hydrolysis yield was achieved using the immobilised biocatalyst compared with the crude enzyme extract, after 96 h of substrate bioconversion.

  18. Dual-Crosslinked Methacrylated Alginate Sub-Microspheres for Intracellular Chemotherapeutic Delivery

    PubMed Central

    Scherrer, Ryan M.; Oldinski, Rachael A.

    2016-01-01

    Intracellular delivery vehicles comprised of methacrylated alginate (Alg-MA) were developed for the internalization and release of doxorubicin hydrochloride (DOX). Alg-MA was synthesized via an anhydrous reaction, and a mixture of Alg-MA and DOX was formed into sub-microspheres using a water/oil emulsion. Covalently crosslinked sub-microspheres were formed via exposure to green light, in order to investigate effects of crosslinking on drug release and cell internalization, compared to traditional techniques such as ultra violet (UV) light. Crosslinking was performed using light exposure alone, or in combination with ionic crosslinking using calcium chloride (CaCl2). Alg-MA sub-microsphere diameters were between 88 – 617 nm, and zeta-potentials were between −20 and −37 mV. Using human lung epithelial carcinoma cells (A549s) as a model, cellular internalization was confirmed using flow cytometry; different sub-microsphere formulations varied the efficiency of internalization, with UV-crosslinked sub-microspheres achieving the highest internalization percentages. While blank (non-loaded) Alg-MA sub-microspheres were non-cytotoxic to A549s, DOX-loaded sub-microspheres significantly reduced mitochondrial activity after five days of culture. Photo-crosslinked Alg-MA sub-microspheres may be a potential chemotherapeutic delivery system for cancer treatment. PMID:27378419

  19. Carboxymethyl starch/alginate microspheres containing diamine oxidase for intestinal targeting

    PubMed Central

    Blemur, Lindsay; Le, Tien Canh; Marcocci, Lucia; Pietrangeli, Paola

    2015-01-01

    Abstract The association of carboxymethyl starch (CMS) and alginate is proposed as a novel matrix for the entrapment of bioactive agents in microspheres affording their protection against gastrointestinal degradation. In this study, the enzyme diamine oxidase (DAO) from white pea (Lathyrus sativus) was immobilized by inclusion in microspheres formed by ionotropic gelation of CMS/alginate by complexation with Ca2+. The association of CMS to alginate generated a more compact structure presenting a lesser porosity, thus decreasing the access of gastric fluid inside the microspheres and preventing the loss of entrapped enzyme. Moreover, the immobilized enzyme remained active and was able to oxidize the polyamine substrates even in the presence of degrading proteases of pancreatin. The inclusion yield in terms of entrapped protein was of about 82%–95%. The DAO entrapped in calcium CMS/alginate beads retained up to 70% of its initial activity in simulated gastric fluid (pH 2.0). In simulated intestinal fluid (pH 7.2) with pancreatin, an overall retention of 65% of activity for the immobilized DAO was observed over 24 H, whereas in similar conditions the free enzyme was totally inactivated. Our project proposes the vegetal DAO as an antihistaminic agent orally administered to treat food histaminosis and colon inflammation. PMID:25779356

  20. Development of alginate microspheres containing thyme essential oil using ionic gelation.

    PubMed

    Benavides, Sergio; Cortés, Pablo; Parada, Javier; Franco, Wendy

    2016-08-01

    Essential oils are a good antimicrobial and antioxidant agent alternative in human or animal feed. However, their direct use has several disadvantages such as volatilization or oxidation. The development of essential oil microspheres may help to avoid these problems. The objective of the present research was to microencapsulate thyme essential oil by generating emulsions with different dispersion degrees. The emulsions were encapsulated in calcium-alginate microspheres by ionic gelation. The microspheres were evaluated regarding size, shape, encapsulation efficiency, loading capacity and antimicrobial properties. The results indicate that encapsulation efficiency and loading capacity are dependent on concentration and degree of dispersion. The best encapsulation conditions were obtained at 2% v/v of thyme essential oil with a high dispersion degree (18,000rpm/5min), which was achieved with an efficiency of 85%. Finally, the microspheres obtained showed significant antimicrobial effect, especially in gram-positive bacteria.

  1. Development of alginate microspheres containing thyme essential oil using ionic gelation.

    PubMed

    Benavides, Sergio; Cortés, Pablo; Parada, Javier; Franco, Wendy

    2016-08-01

    Essential oils are a good antimicrobial and antioxidant agent alternative in human or animal feed. However, their direct use has several disadvantages such as volatilization or oxidation. The development of essential oil microspheres may help to avoid these problems. The objective of the present research was to microencapsulate thyme essential oil by generating emulsions with different dispersion degrees. The emulsions were encapsulated in calcium-alginate microspheres by ionic gelation. The microspheres were evaluated regarding size, shape, encapsulation efficiency, loading capacity and antimicrobial properties. The results indicate that encapsulation efficiency and loading capacity are dependent on concentration and degree of dispersion. The best encapsulation conditions were obtained at 2% v/v of thyme essential oil with a high dispersion degree (18,000rpm/5min), which was achieved with an efficiency of 85%. Finally, the microspheres obtained showed significant antimicrobial effect, especially in gram-positive bacteria. PMID:26988478

  2. Alginate microspheres obtained by the spray drying technique as mucoadhesive carriers of ranitidine.

    PubMed

    Szekalska, Marta; Amelian, Aleksandra; Winnicka, Katarzyna

    2015-03-01

    The present study is aimed at formulation of alginate (ALG) microspheres with ranitidine (RNT) by the spray drying method. Obtained microspheres were characterized for particle size, surface morphology, entrapment efficiency, drug loading, in vitro drug release and zeta potential. Mucoadhesive properties were examined by a texture analyser and three types of adhesive layers--gelatine discs, mucin gel and porcine stomach mucosa. Microspheres showed a smooth surface with narrow particle size distribution and RNT loading of up to 70.9%. All formulations possessed mucoadhesive properties and exhibited prolonged drug release according to the first-order kinetics. DSC reports showed that there was no interaction between RNT and ALG. Designed microspheres can be considered potential carriers of ranitidine with prolonged residence time in the stomach. PMID:25781701

  3. Biomimetic injectable HUVEC-adipocytes/collagen/alginate microsphere co-cultures for adipose tissue engineering.

    PubMed

    Yao, Rui; Zhang, Renji; Lin, Feng; Luan, Jie

    2013-05-01

    Engineering adipose tissue that has the ability to engraft and establish a vascular supply is a laudable goal that has broad clinical relevance, particularly for tissue reconstruction. In this article, we developed novel microtissues from surface-coated adipocyte/collagen/alginate microspheres and human umbilical vein endothelial cells (HUVECs) co-cultures that resembled the components and structure of natural adipose tissue. Firstly, collagen/alginate hydrogel microspheres embedded with viable adipocytes were obtained to mimic fat lobules. Secondly, collagen fibrils were allowed to self-assemble on the surface of the microspheres to mimic collagen fibrils surrounding the fat lobules in the natural adipose tissue and facilitate HUVEC attachment and co-cultures formation. Thirdly, the channels formed by the gap among the microspheres served as the room for in vitro prevascularization and in vivo blood vessel development. The endothelial cell layer outside the microspheres was a starting point of rapid vascular ingrowth. Adipose tissue formation was analyzed for 12 weeks at 4-week intervals by subcutaneous injection into the head of node mice. The vasculature in the regenerated tissue showed functional anastomosis with host blood vessels. Long-term stability of volume and weight of the injection was observed, indicating that the vasculature formed within the constructs benefited the formation, maturity, and maintenance of adipose tissue. This study provides a microsurgical method for adipose regeneration and construction of biomimetic model for drug screening studies.

  4. Preparation of floating microspheres for fish farming.

    PubMed

    Nepal, Pushp R; Chun, Myung-Kwan; Choi, Hoo-Kyun

    2007-08-16

    The aim of this study was to develop floating microspheres with practical applications to fish farming. Each microsphere with a central hollow cavity was prepared using a solvent diffusion and evaporation method with Eudragit E100. Various manufacturing parameters were investigated by single factor method. The macrolide antibiotic josamycin was selected as a model drug. The loading efficiency of the drug in the microspheres was 64.7%. In the release study, virtually none of the drug was released into the fresh water whereas the entire drug was released from the josamycin-loaded microspheres into the simulated gastric fluid of rainbow trout (pH 2.7). The buoyancy was excellent with approximately 90% of the microspheres still floating after 24h.

  5. Dual-Cross-Linked Methacrylated Alginate Sub-Microspheres for Intracellular Chemotherapeutic Delivery.

    PubMed

    Fenn, Spencer L; Miao, Tianxin; Scherrer, Ryan M; Oldinski, Rachael A

    2016-07-20

    Intracellular delivery vehicles comprised of methacrylated alginate (Alg-MA) were developed for the internalization and release of doxorubicin hydrochloride (DOX). Alg-MA was synthesized via an anhydrous reaction, and a mixture of Alg-MA and DOX was formed into sub-microspheres using a water/oil emulsion. Covalently cross-linked sub-microspheres were formed via exposure to green light, in order to investigate effects of cross-linking on drug release and cell internalization, compared to traditional techniques, such as ultraviolet (UV) light irradiation. Cross-linking was performed using light exposure alone or in combination with ionic cross-linking using calcium chloride (CaCl2). Alg-MA sub-microsphere diameters were between 88 and 617 nm, and ζ-potentials were between -20 and -37 mV. Using human lung epithelial carcinoma cells (A549) as a model, cellular internalization was confirmed using flow cytometry; different sub-microsphere formulations varied the efficiency of internalization, with UV-cross-linked sub-microspheres achieving the highest internalization percentages. While blank (nonloaded) Alg-MA submicrospheres were noncytotoxic to A549 cells, DOX-loaded sub-microspheres significantly reduced mitochondrial activity after 5 days of culture. Photo-cross-linked Alg-MA sub-microspheres may be a potential chemotherapeutic delivery system for cancer treatment.

  6. Combined physical and chemical immobilization of glucose oxidase in alginate microspheres improves stability of encapsulation and activity.

    PubMed

    Zhu, Huiguang; Srivastava, Rohit; Brown, J Quincy; McShane, Michael J

    2005-01-01

    Chemical sensors utilizing immobilized enzymes and proteins are important for monitoring chemical processes and biological systems. In this study, calcium-cross-linked alginate hydrogel microspheres were fabricated as enzyme carriers by an emulsification technique. Glucose oxidase (GOx) was encapsulated in alginate microspheres using three different methods: physical entrapment (emulsion), chemical conjugation (conjugation), and a combination of physical entrapment and chemical conjugation (emulsion-conjugation). Nano-organized coatings were applied on alginate/GOx microspheres using the layer-by-layer self-assembly technique in order to stabilize the hydrogel/enzyme system under biological environment. The encapsulation of GOx and formation of nanofilm coating on alginate microspheres were verified with FTIR spectral analysis, zeta-potential analysis, and confocal laser scanning microscopy. To compare both the immobilization properties of enzyme encapsulation techniques and the influence of nanofilms with uncoated microspheres, the relationship between enzyme loading, release, and effective GOx activity (enzyme activity per unit protein loading) were studied over a period of four weeks. The results produced four key findings: (1) the emulsion-conjugation technique improved the stability of GOx in alginate microspheres compared to the emulsion technique, reducing the GOx leaching from microsphere from 50% to 17%; (2) the polyelectrolyte nanofilm coatings increased the GOx stability over time, but also reduced the effective GOx activity; (3) the effective GOx activity for the emulsion-conjugation technique (about 3.5 x 10(-)(5) AU microg(-)(1) s(-)(1)) was higher than that for other methods, and did not change significantly over four weeks; and (4) the GOx concentration, when compared after one week for microspheres with three bilayers of poly(allylamine hydrochloride)/sodium poly(styrene sulfonate) ({PAH/PSS}) coating, was highest for the emulsion

  7. [Preparation of cinnamomi cortex oil microspheres based on porous silicon dioxide and its property characterizations].

    PubMed

    Zhu, Chun-Xia; Jiang, Yan-Rong; Zhang, Zhen-Hai; Ding, Dong-Mei; Jia, Xiao-Bin

    2013-10-01

    To determine the optimum process for preparing Cinnamomi Cortex oil microspheres based on porous silicon dioxide. After porous silica dioxide adsorbed Cinnamomi Cortex oil, Cinnamomi Cortex oil microspheres were prepared by the dropping method, with sodium alginate as the skeleton materials. The preparation process was optimized through the L(9) (3(4)) orthogonal test design, with microspheres diameter, distribution, drug loading capacity and entrapment efficiency as the indexes. The cinnamon volatile oil microspheres were characterized by scanning election microscope (SEM), thermogravimetric analysis (TGA), and infrared (IR) spectroscopy. An in vitro drug release experiment was conducted. The results showed that the microspheres prepared with the optimal process parameters were in good shape, even in size and good in dispersibility, with an average diameter of 1.61 mm, an average drug loading capacity of 32.85%, an entrapment efficiency of 94.79%. The maximum drug release capacity reached 72.6%, 95.0%, 97.4%, respectively, under pH 4.0, 6.8, 7.4 in 6 hours. Meanwhile, microsphere generation was tested by IR, TGA and other methods. The established optimum process for preparing Cinnamomi Cortex oil microspheres was proved to be stable and practical.

  8. Synthesis and characterisation of multifunctional alginate microspheres via the in situ formation of ZnO quantum dots and the graft of 4-(1-pyrenyl) butyric acid to sodium alginate.

    PubMed

    Luo, Guilin; Wang, Jianxin; Wang, Yingying; Feng, Bo; Weng, Jie

    2015-01-01

    Growth factor-loaded fluorescent alginate microspheres, which can realise sustained growth factor release and fluorescence imaging, were synthesised by in situ formation of ZnO quantum dots (QDs) and covalent graft of 4-(1-pyrenyl) butyric acid (PBA). BSA was chosen as a growth factor model protein to study the release kinetic of growth factors from alginate microspheres. The microsphere size and fluorescent properties were also investigated. Investigations of cell culture were used for evaluating biocompatibility of BSA-loaded fluorescent microspheres and fluorescence imaging property of ZnO QDs and PBA-grafted sodium alginate from the microspheres. The results show that they have good fluorescent property either to microspheres or to cells and fluorescent microspheres have good biocompatibility and property in sustained release of growth factors. The obtained microspheres will be expected to realise the imaging of cells and materials and also the release of growth factor in tissue engineering or in cell culture. PMID:25265058

  9. Synthesis and characterisation of multifunctional alginate microspheres via the in situ formation of ZnO quantum dots and the graft of 4-(1-pyrenyl) butyric acid to sodium alginate.

    PubMed

    Luo, Guilin; Wang, Jianxin; Wang, Yingying; Feng, Bo; Weng, Jie

    2015-01-01

    Growth factor-loaded fluorescent alginate microspheres, which can realise sustained growth factor release and fluorescence imaging, were synthesised by in situ formation of ZnO quantum dots (QDs) and covalent graft of 4-(1-pyrenyl) butyric acid (PBA). BSA was chosen as a growth factor model protein to study the release kinetic of growth factors from alginate microspheres. The microsphere size and fluorescent properties were also investigated. Investigations of cell culture were used for evaluating biocompatibility of BSA-loaded fluorescent microspheres and fluorescence imaging property of ZnO QDs and PBA-grafted sodium alginate from the microspheres. The results show that they have good fluorescent property either to microspheres or to cells and fluorescent microspheres have good biocompatibility and property in sustained release of growth factors. The obtained microspheres will be expected to realise the imaging of cells and materials and also the release of growth factor in tissue engineering or in cell culture.

  10. Preparation of in situ hardening composite microcarriers: calcium phosphate cement combined with alginate for bone regeneration.

    PubMed

    Park, Jung-Hui; Lee, Eun-Jung; Knowles, Jonathan C; Kim, Hae-Won

    2014-03-01

    Novel microcarriers consisting of calcium phosphate cement and alginate were prepared for use as three-dimensional scaffolds for the culture and expansion of cells that are effective for bone tissue engineering. The calcium phosphate cement-alginate composite microcarriers were produced by an emulsification of the composite aqueous solutions mixed at varying ratios (calcium phosphate cement powder/alginate solution = 0.8-1.2) in an oil bath and the subsequent in situ hardening of the compositions during spherodization. Moreover, a porous structure could be easily created in the solid microcarriers by soaking the produced microcarriers in water and a subsequent freeze-drying process. Bone mineral-like apatite nanocrystallites were shown to rapidly develop on the calcium phosphate cement-alginate microcarriers under moist conditions due to the conversion of the α-tricalcium phosphate phase in the calcium phosphate cement into a carbonate-hydroxyapatite. Osteoblastic cells cultured on the microspherical scaffolds were proven to be viable, with an active proliferative potential during 14 days of culture, and their osteogenic differentiation was confirmed by the determination of alkaline phosphatase activity. The in situ hardening calcium phosphate cement-alginate microcarriers developed herein may be used as potential three-dimensional scaffolds for cell delivery and tissue engineering of bone.

  11. Electrophoretic deposition of antibiotic loaded PHBV microsphere-alginate composite coating with controlled delivery potential.

    PubMed

    Chen, Qiang; Li, Wei; Goudouri, Ourania-Menti; Ding, Yaping; Cabanas-Polo, Sandra; Boccaccini, Aldo R

    2015-06-01

    Electrophoretic deposition (EPD) technique has been developed for the fabrication of antibiotic-loaded PHBV microsphere (MS)-alginate antibacterial coatings. The composite coatings deposited from suspensions with different MS concentrations were produced in order to demonstrate the versatility of the proposed method for achieving functional coatings with tailored drug loading and release profiles. Linearly increased deposit mass with increasing MS concentrations was obtained, and MS were found to be homogeneously stabilized in the alginate matrix. Chemical composition, surface roughness and wettability of the deposited coatings were measured by Fourier transform infrared (FTIR) spectroscopy, laser profilometer and water contact angle instruments, respectively. The co-deposition mechanism was described by two separate processes according to the results of relevant measurements: (i) the deposition of alginate-adsorbed MS and (ii) the non-adsorbed alginate. Qualitative antibacterial tests indicated that MS containing coatings exhibit excellent inhibition effects against E. coli (gram-negative bacteria) after 1h of incubation. The proposed coating system combined with the simplicity of the EPD technique can be considered a promising surface modification approach for the controlled in situ delivery of drug or other biomolecules.

  12. Electrophoretic deposition of antibiotic loaded PHBV microsphere-alginate composite coating with controlled delivery potential.

    PubMed

    Chen, Qiang; Li, Wei; Goudouri, Ourania-Menti; Ding, Yaping; Cabanas-Polo, Sandra; Boccaccini, Aldo R

    2015-06-01

    Electrophoretic deposition (EPD) technique has been developed for the fabrication of antibiotic-loaded PHBV microsphere (MS)-alginate antibacterial coatings. The composite coatings deposited from suspensions with different MS concentrations were produced in order to demonstrate the versatility of the proposed method for achieving functional coatings with tailored drug loading and release profiles. Linearly increased deposit mass with increasing MS concentrations was obtained, and MS were found to be homogeneously stabilized in the alginate matrix. Chemical composition, surface roughness and wettability of the deposited coatings were measured by Fourier transform infrared (FTIR) spectroscopy, laser profilometer and water contact angle instruments, respectively. The co-deposition mechanism was described by two separate processes according to the results of relevant measurements: (i) the deposition of alginate-adsorbed MS and (ii) the non-adsorbed alginate. Qualitative antibacterial tests indicated that MS containing coatings exhibit excellent inhibition effects against E. coli (gram-negative bacteria) after 1h of incubation. The proposed coating system combined with the simplicity of the EPD technique can be considered a promising surface modification approach for the controlled in situ delivery of drug or other biomolecules. PMID:25921640

  13. Preparation of small bio-compatible microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1979-01-01

    Small, round, bio-compatible microspheres capable of covalently bonding proteins and having a uniform diameter below about 3500 A are prepared by substantially instantaneously initiating polymerization of an aqueous emulsion containing no more than 35% total monomer including an acrylic monomer substituted with a covalently bondable group such a hydroxyl, amino or carboxyl and a minor amount of a cross-linking agent.

  14. A simple method for encapsulating single cells in alginate microspheres allows for direct PCR and whole genome amplification.

    PubMed

    Bigdeli, Saharnaz; Dettloff, Roger O; Frank, Curtis W; Davis, Ronald W; Crosby, Laurel D

    2015-01-01

    Microdroplets are an effective platform for segregating individual cells and amplifying DNA. However, a key challenge is to recover the contents of individual droplets for downstream analysis. This paper offers a method for embedding cells in alginate microspheres and performing multiple serial operations on the isolated cells. Rhodobacter sphaeroides cells were diluted in alginate polymer and sprayed into microdroplets using a fingertip aerosol sprayer. The encapsulated cells were lysed and subjected either to conventional PCR, or whole genome amplification using either multiple displacement amplification (MDA) or a two-step PCR protocol. Microscopic examination after PCR showed that the lumen of the occupied microspheres contained fluorescently stained DNA product, but multiple displacement amplification with phi29 produced only a small number of polymerase colonies. The 2-step WGA protocol was successful in generating fluorescent material, and quantitative PCR from DNA extracted from aliquots of microspheres suggested that the copy number inside the microspheres was amplified up to 3 orders of magnitude. Microspheres containing fluorescent material were sorted by a dilution series and screened with a fluorescent plate reader to identify single microspheres. The DNA was extracted from individual isolates, re-amplified with full-length sequencing adapters, and then a single isolate was sequenced using the Illumina MiSeq platform. After filtering the reads, the only sequences that collectively matched a genome in the NCBI nucleotide database belonged to R. sphaeroides. This demonstrated that sequencing-ready DNA could be generated from the contents of a single microsphere without culturing. However, the 2-step WGA strategy showed limitations in terms of low genome coverage and an uneven frequency distribution of reads across the genome. This paper offers a simple method for embedding cells in alginate microspheres and performing PCR on isolated cells in common bulk

  15. A simple method for encapsulating single cells in alginate microspheres allows for direct PCR and whole genome amplification.

    PubMed

    Bigdeli, Saharnaz; Dettloff, Roger O; Frank, Curtis W; Davis, Ronald W; Crosby, Laurel D

    2015-01-01

    Microdroplets are an effective platform for segregating individual cells and amplifying DNA. However, a key challenge is to recover the contents of individual droplets for downstream analysis. This paper offers a method for embedding cells in alginate microspheres and performing multiple serial operations on the isolated cells. Rhodobacter sphaeroides cells were diluted in alginate polymer and sprayed into microdroplets using a fingertip aerosol sprayer. The encapsulated cells were lysed and subjected either to conventional PCR, or whole genome amplification using either multiple displacement amplification (MDA) or a two-step PCR protocol. Microscopic examination after PCR showed that the lumen of the occupied microspheres contained fluorescently stained DNA product, but multiple displacement amplification with phi29 produced only a small number of polymerase colonies. The 2-step WGA protocol was successful in generating fluorescent material, and quantitative PCR from DNA extracted from aliquots of microspheres suggested that the copy number inside the microspheres was amplified up to 3 orders of magnitude. Microspheres containing fluorescent material were sorted by a dilution series and screened with a fluorescent plate reader to identify single microspheres. The DNA was extracted from individual isolates, re-amplified with full-length sequencing adapters, and then a single isolate was sequenced using the Illumina MiSeq platform. After filtering the reads, the only sequences that collectively matched a genome in the NCBI nucleotide database belonged to R. sphaeroides. This demonstrated that sequencing-ready DNA could be generated from the contents of a single microsphere without culturing. However, the 2-step WGA strategy showed limitations in terms of low genome coverage and an uneven frequency distribution of reads across the genome. This paper offers a simple method for embedding cells in alginate microspheres and performing PCR on isolated cells in common bulk

  16. A Simple Method for Encapsulating Single Cells in Alginate Microspheres Allows for Direct PCR and Whole Genome Amplification

    PubMed Central

    Bigdeli, Saharnaz; Dettloff, Roger O.; Frank, Curtis W.; Davis, Ronald W.; Crosby, Laurel D.

    2015-01-01

    Microdroplets are an effective platform for segregating individual cells and amplifying DNA. However, a key challenge is to recover the contents of individual droplets for downstream analysis. This paper offers a method for embedding cells in alginate microspheres and performing multiple serial operations on the isolated cells. Rhodobacter sphaeroides cells were diluted in alginate polymer and sprayed into microdroplets using a fingertip aerosol sprayer. The encapsulated cells were lysed and subjected either to conventional PCR, or whole genome amplification using either multiple displacement amplification (MDA) or a two-step PCR protocol. Microscopic examination after PCR showed that the lumen of the occupied microspheres contained fluorescently stained DNA product, but multiple displacement amplification with phi29 produced only a small number of polymerase colonies. The 2-step WGA protocol was successful in generating fluorescent material, and quantitative PCR from DNA extracted from aliquots of microspheres suggested that the copy number inside the microspheres was amplified up to 3 orders of magnitude. Microspheres containing fluorescent material were sorted by a dilution series and screened with a fluorescent plate reader to identify single microspheres. The DNA was extracted from individual isolates, re-amplified with full-length sequencing adapters, and then a single isolate was sequenced using the Illumina MiSeq platform. After filtering the reads, the only sequences that collectively matched a genome in the NCBI nucleotide database belonged to R. sphaeroides. This demonstrated that sequencing-ready DNA could be generated from the contents of a single microsphere without culturing. However, the 2-step WGA strategy showed limitations in terms of low genome coverage and an uneven frequency distribution of reads across the genome. This paper offers a simple method for embedding cells in alginate microspheres and performing PCR on isolated cells in common bulk

  17. Preparation, drug releasing property and pharmacodynamics of soy isoflavone-loaded chitosan microspheres.

    PubMed

    Du, Zhongyan; Dou, Xiaobing; Huang, Chenyun; Gao, Jia; Hu, Linfeng; Zhu, Jiazhen; Qian, Ying; Dou, Minhua; Fan, Chunlei

    2013-01-01

    Soybean isoflavone (SIF) has anti-aging properties and many other biological functions; however, SIF is difficult to reach higher blood concentration due to its rapid metabolism. Therefore, it is of great value to design and produce a sustained-release formulation that is able to maintain a stable level of plasma concentrations. In this paper, soybean isoflavone sustained-release microsphere from chitosan and sodium alginate was prepared successfully. The important factors that determined the quality of the microspheres were the sodium alginate concentration in solution B, the ratio of soybean isoflavone to chitosan and the mixing speed. The relative yield, encapsulation efficiency and drug loading capability of SIF were much higher than the existing commercial formulations. In real gastrointestinal conditions, compared with the non-sustained release group, the release rate of SIF slowed down and the reaction time was prolonged. Animal experiments showed that sustained-release microspheres intensified the anti-aging potentials of SIF. Compared with the Non-sustained release (NSR) group mice, oral SIF/CHI microsphere treated mice were better in the Morris Water Maze Test (MWMT), the MDA level in the both plasma and brain of the sustained release (SR) group mice decreased, and SOD content was remarkably improved.

  18. Development of Alginate Microspheres Containing Chuanxiong for Oral Administration to Adult Zebrafish

    PubMed Central

    Lin, Li-Jen; Chiang, Chung-Jen; Chao, Yun-Peng; Wang, Shulhn-Der; Chiou, Yu-Ting; Wang, Han-Yu; Kao, Shung-Te

    2016-01-01

    Oral administration of Traditional Chinese Medicine (TCM) by patients is the common way to treat health problems. Zebrafish emerges as an excellent animal model for the pharmacology investigation. However, the oral delivery system of TCM in zebrafish has not been established so far. This issue was addressed by development of alginate microparticles for oral delivery of chuanxiong, a TCM that displays antifibrotic and antiproliferative effects on hepatocytes. The delivery microparticles were prepared from gelification of alginate containing various levels of chuanxiong. The chuanxiong-encapsulated alginate microparticles were characterized for their solubility, structure, encapsulation efficiency, the cargo release profile, and digestion in gastrointestinal tract of zebrafish. Encapsulation of chuanxiong resulted in more compact structure and the smaller size of microparticles. The release rate of chuanxiong increased for alginate microparticles carrying more chuanxiong in simulated intestinal fluid. This remarkable feature ensures the controlled release of encapsulated cargos in the gastrointestinal tract of zebrafish. Moreover, chuanxiong-loaded alginate microparticles were moved to the end of gastrointestinal tract after oral administration for 6 hr and excreted from the body after 16 hr. Therefore, our developed method for oral administration of TCM in zebrafish is useful for easy and rapid evaluation of the drug effect on disease. PMID:27403425

  19. Development of Alginate Microspheres Containing Chuanxiong for Oral Administration to Adult Zebrafish.

    PubMed

    Lin, Li-Jen; Chiang, Chung-Jen; Chao, Yun-Peng; Wang, Shulhn-Der; Chiou, Yu-Ting; Wang, Han-Yu; Kao, Shung-Te

    2016-01-01

    Oral administration of Traditional Chinese Medicine (TCM) by patients is the common way to treat health problems. Zebrafish emerges as an excellent animal model for the pharmacology investigation. However, the oral delivery system of TCM in zebrafish has not been established so far. This issue was addressed by development of alginate microparticles for oral delivery of chuanxiong, a TCM that displays antifibrotic and antiproliferative effects on hepatocytes. The delivery microparticles were prepared from gelification of alginate containing various levels of chuanxiong. The chuanxiong-encapsulated alginate microparticles were characterized for their solubility, structure, encapsulation efficiency, the cargo release profile, and digestion in gastrointestinal tract of zebrafish. Encapsulation of chuanxiong resulted in more compact structure and the smaller size of microparticles. The release rate of chuanxiong increased for alginate microparticles carrying more chuanxiong in simulated intestinal fluid. This remarkable feature ensures the controlled release of encapsulated cargos in the gastrointestinal tract of zebrafish. Moreover, chuanxiong-loaded alginate microparticles were moved to the end of gastrointestinal tract after oral administration for 6 hr and excreted from the body after 16 hr. Therefore, our developed method for oral administration of TCM in zebrafish is useful for easy and rapid evaluation of the drug effect on disease. PMID:27403425

  20. Smart designing of new hybrid materials based on brushite-alginate and monetite-alginate microspheres: bio-inspired for sequential nucleation and growth.

    PubMed

    Amer, Walid; Abdelouahdi, Karima; Ramananarivo, Hugo Ronald; Fihri, Aziz; El Achaby, Mounir; Zahouily, Mohamed; Barakat, Abdellatif; Djessas, Kamal; Clark, James; Solhy, Abderrahim

    2014-02-01

    In this report new hybrid materials based on brushite-alginate and monetite-alginate were prepared by self-assembling alginate chains and phosphate source ions via a gelation process with calcium ions. The alginate served as nanoreactor for nucleation and growth of brushite or/and monetite due to its gelling and swelling properties. The alginate gel framework, the crystalline phase and morphology of formed hybrid biomaterials were shown to be strongly dependent upon the concentration of the phosphate precursors. These materials were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDX). PMID:24411386

  1. PREPARATION OF REFRACTORY OXIDE MICROSPHERE

    DOEpatents

    Haws, C.C. Jr.

    1963-09-24

    A method is described of preparing thorium oxide in the form of fused spherical particles about 1 to 2 microns in diameter. A combustible organic solution of thorium nitrate containing additive metal values is dispersed into a reflected, oxygen-fed flame at a temperature above the melting point of the resulting oxide. The metal additive is aluminum at a proportion such as to provide 1 to 10 weight per cent aluminum oxide in the product, silicon at the same proportion, or beryllium at a proportion of 12 to 25 weight per cent beryllium oxide in the product. A minor proportion of uranium values may also be provided in the solution. The metal additive lowers the oxide melting point and allows fusion and sphere formation in conventional equipment. The product particles are suitable for use in thorium oxide slurries for nuclear reactors. (AEC)

  2. Preparation of monodisperse aqueous microspheres containing high concentration of l-ascorbic acid by microchannel emulsification.

    PubMed

    Khalid, Nauman; Kobayashi, Isao; Neves, Marcos A; Uemura, Kunihiko; Nakajima, Mitsutoshi; Nabetani, Hiroshi

    2015-01-01

    Monodisperse aqueous microspheres containing high concentrations of l-ascorbic acid with different concentrations of sodium alginate (Na-ALG) and magnesium sulfate (MgSO4) were prepared by using microchannel emulsification (MCE). The continuous phase was water-saturated decane containing a 5% (w/w) hydrophobic emulsifier. The flow rate of the continuous phase was maintained at 10 mL h(-1), whereas the pressure applied to the disperse phase was varied between 3 and 25 kPa. The disperse phase optimized for successfully generating aqueous microspheres included 2% (w/w) Na-ALG and 1% (w/w) MgSO4. At a higher MgSO4 concentration, the generated microspheres resulted in coalescence and subsequent bursting. At a lower MgSO4 concentration, unstable and polydisperse microspheres were obtained. The aqueous microspheres generated from the MCs under optimized conditions had a mean particle diameter (dav) of 14-16 µm and a coefficient of variation (CV) of less than 8% at the disperse phase pressures of 5-15 kPa.

  3. Microencapsulation of bacteriophage felix O1 into chitosan-alginate microspheres for oral delivery.

    PubMed

    Ma, Yongsheng; Pacan, Jennifer C; Wang, Qi; Xu, Yongping; Huang, Xiaoqing; Korenevsky, Anton; Sabour, Parviz M

    2008-08-01

    This paper reports the development of microencapsulated bacteriophage Felix O1 for oral delivery using a chitosan-alginate-CaCl(2) system. In vitro studies were used to determine the effects of simulated gastric fluid (SGF) and bile salts on the viability of free and encapsulated phage. Free phage Felix O1 was found to be extremely sensitive to acidic environments and was not detectable after a 5-min exposure to pHs below 3.7. In contrast, the number of microencapsulated phage decreased by 0.67 log units only, even at pH 2.4, for the same period of incubation. The viable count of microencapsulated phage decreased only 2.58 log units during a 1-h exposure to SGF with pepsin at pH 2.4. After 3 h of incubation in 1 and 2% bile solutions, the free phage count decreased by 1.29 and 1.67 log units, respectively, while the viability of encapsulated phage was fully maintained. Encapsulated phage was completely released from the microspheres upon exposure to simulated intestinal fluid (pH 6.8) within 6 h. The encapsulated phage in wet microspheres retained full viability when stored at 4 degrees C for the duration of the testing period (6 weeks). With the use of trehalose as a stabilizing agent, the microencapsulated phage in dried form had a 12.6% survival rate after storage for 6 weeks. The current encapsulation technique enables a large proportion of bacteriophage Felix O1 to remain bioactive in a simulated gastrointestinal tract environment, which indicates that these microspheres may facilitate delivery of therapeutic phage to the gut. PMID:18515488

  4. Preparation and properties of polyvinyl alcohol microspheres

    SciTech Connect

    Campbell, J.H.; Grens, J.Z.; Poco, J.F.; Ives, B.H.

    1986-06-01

    Polyvinyl alcohol (PVA) microspheres, having a size range of approx.150- to 250-..mu..m diameter with 1- to 5-..mu..m wall thickness, have been fabricated using a solution droplet technique. The spheres were developed for possible use on the Lawrence Livermore National Laboratory (LLNL) Inertial Confinement Fusion (ICF) Program. PVA, a polymer chosen based on earlier survey work carried out at KMS Fusion, Inc., has good strength, low hydrogen permeability, is optically transparent, and water soluble. The latter property makes it safe and easy to use in our droplet generator system. A unique dual-orifice droplet generator was used to prepare the spheres. The droplet generator operating conditions and the column processing parameters were chosen using results from our 1-D model calculations as a guide. The polymer microsphere model is an extension of the model we developed to support the glass sphere production. After preparation, the spheres were physically characterized for surface quality, sphericity, wall thickness (and uniformity), and size. We also determined the buckling pressure for both uncoated and CH-coated spheres. Radiation stability to beta decay (from tritium) was evaluated by exposing the spheres to a 7-keV electron beam. The results from these and other physical property measurements are presented in this report.

  5. Preparation and evaluation of sustained release loxoprofen loaded microspheres

    PubMed Central

    Venkatesan, P.; Manavalan, R.; Valliappan, K.

    2011-01-01

    The aim of present study was to formulate and evaluate the loxoprofen loaded Sustained release microspheres by emulsion solvent evaporation technique. Ethylcellulose, a biocompatible polymer is used as the retardant material. The effects of process conditions such as drug loading, polymer type and solvent type on the characteristics of microspheres were investigated. The prepared microspheres were characterized for their particle size and drug loading and drug release. The in-vitro release studies were carried out in phosphate buffer at pH 7.4. The prepared microspheres were white, free flowing and spherical in shape. The drug-loaded microspheres showed 71.2% of entrapment and the in-vitro release studies showed that Loxoprofen microspheres of 1:3 ratios showed better sustained effect over a period of 8 hours PMID:24826017

  6. Preparation and characterization of alginate and alginate-resistant starch microparticles containing nisin.

    PubMed

    Hosseini, Seyede Marzieh; Hosseini, Hedayat; Mohammadifar, Mohammad Amin; German, J Bruce; Mortazavian, Amir Mohammad; Mohammadi, Abdorreza; Khosravi-Darani, Kianoosh; Shojaee-Aliabadi, Saeedeh; Khaksar, Ramin

    2014-03-15

    Delivery systems with sustained release of nisin have been proposed to improve stability and long-term effectiveness of this bacteriocin in foods. In this study, nisin was encapsulated in alginate (Alg) and alginate-resistant starch (Alg-RS) microparticles and its release was investigated. Studies found that the nisin concentration has significant influence on encapsulation efficiency (EE), loading capacity (LC) and size of both microparticles. Furthermore, encapsulation efficiency and loading capacity values were more increased by the addition of resistant starch to the alginate formulation. The highest encapsulation efficiency was obtained with Alg-RS microparticles prepared using initial nisin to alginate weight ratio of 25% w/w (59.77 ± 2.26%). Fourier transform-infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) results confirmed the presence of nisin in the microparticles. The in vitro nisin release from these microparticles followed a controlled-release pattern consistent with a Fickian diffusion mechanism. The release rate from Alg-RS microparticles was less than that from the Alg microparticles.

  7. Preparation of alginate beads containing a prodrug of diethylenetriaminepentaacetic acid

    PubMed Central

    Yang, Yu-Tsai; Di Pasqua, Anthony J.; He, Weiling; Tsai, Tsuimin; Sueda, Katsuhiko; Zhang, Yong; Jay, Michael

    2012-01-01

    A penta-ethyl ester prodrug of the radionuclide decorporation agent diethylenetriaminepentaacetic acid (DTPA), which exists as an oily liquid, was encapsulated in alginate beads by the ionotropic gelation method. An optimal formulation was found by varying initial concentrations of DTPA pentaethyl ester, alginate polymer, Tween 80 surfactant and calcium chloride. All prepared alginate beads were ~1.6 mm in diameter, and the optimal formulation had loading and encapsulation efficiencies of 91.0 ± 1.1 and 72.6 ± 2.2%, respectively, and only 3.2 ± 0.8% water absorption after storage at room temperature in ~80% relative humidity. Moreover, Fourier transform infrared spectroscopy showed that DTPA penta-ethyl ester did not react with excipients during formation of the DTPA penta-ethyl ester-containing alginate beads. Release of prodrug from alginate beads was via anomalous transport, and its stability enhanced by encapsulation. Collectively, these data suggest that this solid dosage form may be suitable for oral administration after radionuclide contamination. PMID:23399237

  8. FABRICATION AND IN VITRO EVALUATION OF 5-FLOROURACIL LOADED CHONDROITIN SULFATE-SODIUM ALGINATE MICROSPHERES FOR COLON SPECIFIC DELIVERY.

    PubMed

    Raza, Hina; Ranjha, Nazar Muhammad; Razzaq, Rabia; Ansari, Mehvish; Mahmood, Asif; Rashid, Zermina

    2016-01-01

    Chondroitin sulfate and sodium alginate were incorporated in different ratios to prepare glutaraldehyde (GA) crosslinked microspheres by water-in-oil emulsion crosslinking method for delivery of 5-flurouracil (5-FU) to colon. Chemical interaction, surface morphology, thermal degradability, crystallinity evaluation, elemental analysis and drug release results were computed by using FTIR, SEM, DSC and TGA, PXRD, EXD and dissolution studies at pH 1.2, pH 6.8 and pH 7.4, respectively. Results revealed an acetal ring formation, non-porous surfaces, stability up to 450 degrees C with mass loss of 84.31%, variation in carbon and oxygen contents and targeted release at pH 7.4. Different kinetic models were applied on release studies i.e., zero order, first order, Higuchi and Korsmeyer-Peppas. Higuchi model was declared as best fit model based on r2 value (0.99) and mechanism of release was non-Fickian diffusion. A potential approach for colonic delivery of 5-FU was successfully developed.

  9. FABRICATION AND IN VITRO EVALUATION OF 5-FLOROURACIL LOADED CHONDROITIN SULFATE-SODIUM ALGINATE MICROSPHERES FOR COLON SPECIFIC DELIVERY.

    PubMed

    Raza, Hina; Ranjha, Nazar Muhammad; Razzaq, Rabia; Ansari, Mehvish; Mahmood, Asif; Rashid, Zermina

    2016-01-01

    Chondroitin sulfate and sodium alginate were incorporated in different ratios to prepare glutaraldehyde (GA) crosslinked microspheres by water-in-oil emulsion crosslinking method for delivery of 5-flurouracil (5-FU) to colon. Chemical interaction, surface morphology, thermal degradability, crystallinity evaluation, elemental analysis and drug release results were computed by using FTIR, SEM, DSC and TGA, PXRD, EXD and dissolution studies at pH 1.2, pH 6.8 and pH 7.4, respectively. Results revealed an acetal ring formation, non-porous surfaces, stability up to 450 degrees C with mass loss of 84.31%, variation in carbon and oxygen contents and targeted release at pH 7.4. Different kinetic models were applied on release studies i.e., zero order, first order, Higuchi and Korsmeyer-Peppas. Higuchi model was declared as best fit model based on r2 value (0.99) and mechanism of release was non-Fickian diffusion. A potential approach for colonic delivery of 5-FU was successfully developed. PMID:27180443

  10. Microspheres and their methods of preparation

    DOEpatents

    Bose, Anima B; Yang, Junbing

    2015-03-24

    Carbon microspheres are doped with boron to enhance the electrical and physical properties of the microspheres. The boron-doped carbon microspheres are formed by a CVD process in which a catalyst, carbon source and boron source are evaporated, heated and deposited onto an inert substrate.

  11. Preparation of porous zirconia microspheres by internal gelation method

    SciTech Connect

    Pathak, Sachin S.; Pius, I.C. Bhanushali, R.D.; Rao, T.V. Vittal; Mukerjee, S.K.

    2008-11-03

    A modified internal gelation process for the preparation of porous zirconia microspheres has been developed. The conventional method has been modified by adding a surfactant in the feed broth. The effects of variation of surfactant concentration, washing techniques and temperature of calcination on the pore volume and the surface area of the microspheres have been studied. The conditions were optimized to obtain porous stable microspheres suitable for various applications. The microspheres were characterized by surface area analysis, pore volume analysis, thermogravimetric analysis and X-ray diffraction. The ion exchange behavior was studied using pH titration.

  12. Bioinspired preparation of alginate nanoparticles using microbubble bursting.

    PubMed

    Elsayed, Mohamed; Huang, Jie; Edirisinghe, Mohan

    2015-01-01

    Nanoparticles are considered to be one of the most advanced tools for drug delivery applications. In this research, alginate (a model hydrophilic polymer) nanoparticles 80 to 200 nm in diameter were obtained using microbubble bursting. The natural process of bubble bursting occurs through a number of stages, which consequently produce nano- and microsized droplets via two main production mechanisms, bubble shell disintegration and a jetting process. In this study, nano-sized droplets/particles were obtained by promoting the disintegrating mechanism and suppressing (limiting) the formation of larger microparticles resulting from the jetting mechanism. A T-junction microfluidic device was used to prepare alginate microbubbles with different sizes in a well-controlled manner. The size of the bubbles was varied by controlling two processing parameters, the solution flow rate and the bubbling pressure. Crucially, the bubble size was found to be the determining factor for inducing (or limiting) the bubble shell disintegration mechanism and the size needed to promote this process was influenced by the properties of the solution used for preparing the bubbles, particularly the viscosity. The size of alginate nanoparticles produced via the disintegration mechanism was found to be directly proportional to the viscosity of the alginate solution.

  13. Preparation of novel silica-coated alginate gel beads for efficient encapsulation of yeast alcohol dehydrogenase.

    PubMed

    Xu, Song-Wei; Lu, Yang; Li, Jian; Zhang, Yu-Fei; Jiang, Zhong-Yi

    2007-01-01

    Biomimetic formation has undoubtedly inspired the preparation of novel organic-inorganic hybrid composites. In this study, silica-coated alginate gel beads were prepared by coating the surface of alginate gel beads with silica film derived from tetramethoxysilane (TMOS). The composition and structure of the silica film were characterized by FT-IR and SEM equipped with EDX. The swelling behavior of silica-coated alginate gel beads was studied to be more stable against swelling than that of alginate gel beads. The results showed that silica-coated alginate gel beads exhibited appropriate diffusion property. The effective diffusion coefficient (D(e)) of NADH in silica-coated alginate beads was 1.76 x 10(-10) m2/s, while the effective diffusion coefficient in alginate beads was 1.84 x 10(-10) m2/s. The model enzyme yeast alcohol dehydrogenase (YADH) was encapsulated in silica-coated alginate and pure alginate beads, respectively. Enzyme leakage of YADH in alginate gel beads was determined to be 32%, while the enzyme leakage in silica-coated alginate gel beads was as low as 11%. Furthermore, the relative activity of YADH in alginate gel beads decreased almost to zero after 10 recycles, while the relative activity of YADH in silica-coated alginate gel beads was 81.3%. The recycling stability of YADH in silica-coated alginate gel beads was found to be increased significantly mainly due to the effective inhibition of enzyme leakage by compact silica film.

  14. Novel pH- and temperature-responsive blend hydrogel microspheres of sodium alginate and PNIPAAm-g-GG for controlled release of isoniazid.

    PubMed

    Kajjari, Praveen B; Manjeshwar, Lata S; Aminabhavi, Tejraj M

    2012-12-01

    This paper reports the preparation and characterization of novel pH- and thermo-responsive blend hydrogel microspheres of sodium alginate (NaAlg) and poly(N-isopropylacrylamide)(PNIPAAm)-grafted-guar gum (GG) i.e., PNIPAAm-g-GG by emulsion cross-linking method using glutaraldehyde (GA) as a cross-linker. Isoniazid (INZ) was chosen as the model antituberculosis drug to achieve encapsulation up to 62%. INZ has a plasma half-life of 1.5 h, whose release was extended up to 12 h. Fourier transform infrared spectroscopy was used to confirm the grafting reaction and chemical stability of INZ during the encapsulation. Differential scanning calorimetry was used to investigate the drug's physical state, while powder X-ray diffraction confirmed the molecular level dispersion of INZ in the matrix. Scanning electron microscopy confirmed varying surface morphologies of the drug-loaded microspheres. Temperature- and pH-responsive nature of the blend hydrogel microspheres were investigated by equilibrium swelling, and in vitro release experiments were performed in pH 1.2 and pH 7.4 buffer media at 37°C as well as at 25°C. Kinetics of INZ release was analyzed by Ritger-Peppas empirical equation to compute the diffusional exponent parameter (n), whose value ranged between 0.27 and 0.58, indicating the release of INZ follows a diffusion swelling controlled release mechanism. PMID:22956057

  15. Alginate microsphere compositions dictate different mechanisms of complement activation with consequences for cytokine release and leukocyte activation.

    PubMed

    Ørning, Pontus; Hoem, Kine Samset; Coron, Abba Elizabeth; Skjåk-Bræk, Gudmund; Mollnes, Tom Eirik; Brekke, Ole-Lars; Espevik, Terje; Rokstad, Anne Mari

    2016-05-10

    The inflammatory potential of 12 types of alginate-based microspheres was assessed in a human whole blood model. The inflammatory potential could be categorized from low to high based on the four main alginate microsphere types; alginate microbeads, liquefied core poly-l-ornithine (PLO)-containing microcapsules, liquefied core poly-l-lysine (PLL)-containing microcapsules, and solid core PLL-containing microcapsules. No complement or inflammatory cytokine activation was detected for the Ca/Ba alginate microbeads. Liquefied core PLO- and PLL-containing microcapsules induced significant fluid phase complement activation (TCC), but with low complement surface deposition (anti-C3c), and a low proinflammatory cytokine secretion, with exception of an elevated MCP-1(CCL2) secretion. The solid core PLL-containing microcapsules generated lower TCC but a marked complement surface deposition and significant induction of the proinflammatory cytokines interleukin (IL-1)β, TNF, IL-6, the chemokines IL-8 (CXCL8), and MIP-1α (CCL3) and MCP-1(CCL2). Inhibition with compstatin (C3 inhibitor) completely abolished complement surface deposition, leukocyte adhesion and the proinflammatory cytokines. The C5 inhibitions partly lead to a reduction of the proinflammatory cytokines. The leukocyte adhesion was abolished by inhibitory antibodies against CD18 and partly reduced by CD11b, but not by CD11c. Anti-CD18 significantly reduced the (IL-1)β, TNF, IL-6 and MIP-1α and anti-CD11b significantly reduced the IL-6 and VEGF secretion. MCP-1 was strongly activated by anti-CD18 and anti-CD11b. In conclusion the initial proinflammatory cytokine responses are driven by the microspheres potential to trigger complement C3 (C3b/iC3b) deposition, leukocyte activation and binding through complement receptor CR3 (CD11b/CD18). MCP-1 is one exception dependent on the fluid phase complement activation mediated through CR3. PMID:26993426

  16. Microencapsulated Aliivibrio fischeri in Alginate Microspheres for Monitoring Heavy Metal Toxicity in Environmental Waters

    PubMed Central

    Futra, Dedi; Heng, Lee Yook; Surif, Salmijah; Ahmad, Asmat; Ling, Tan Ling

    2014-01-01

    In this article a luminescence fiber optic biosensor for the microdetection of heavy metal toxicity in waters based on the marine bacterium Aliivibrio fischeri (A. fischeri) encapsulated in alginate microspheres is described. Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(II) were selected as sample toxic heavy metal ions for evaluation of the performance of this toxicity microbiosensor. The loss of bioluminescence response from immobilized A. fischeri bacterial cells corresponds to changes in the toxicity levels. The inhibition of the luminescent biosensor response collected at excitation and emission wavelengths of 287 ± 2 nm and 487 ± 2 nm, respectively, was found to be reproducible and repeatable within the relative standard deviation (RSD) range of 2.4–5.7% (n = 8). The toxicity biosensor based on alginate micropsheres exhibited a lower limit of detection (LOD) for Cu(II) (6.40 μg/L), Cd(II) (1.56 μg/L), Pb(II) (47 μg/L), Ag(I) (18 μg/L) than Zn(II) (320 μg/L), Cr(VI) (1,000 μg/L), Co(II) (1700 μg/L), Ni(II) (2800 μg/L), and Fe(III) (3100 μg/L). Such LOD values are lower when compared with other previous reported whole cell toxicity biosensors using agar gel, agarose gel and cellulose membrane biomatrices used for the immobilization of bacterial cells. The A. fischeri bacteria microencapsulated in alginate biopolymer could maintain their metabolic activity for a prolonged period of up to six weeks without any noticeable changes in the bioluminescence response. The bioluminescent biosensor could also be used for the determination of antagonistic toxicity levels for toxicant mixtures. A comparison of the results obtained by atomic absorption spectroscopy (AAS) and using the proposed luminescent A. fischeri-based biosensor suggests that the optical toxicity biosensor can be used for quantitative microdetermination of heavy metal toxicity in environmental water samples. PMID:25490588

  17. Microencapsulated Aliivibrio fischeri in alginate microspheres for monitoring heavy metal toxicity in environmental waters.

    PubMed

    Futra, Dedi; Heng, Lee Yook; Surif, Salmijah; Ahmad, Asmat; Ling, Tan Ling

    2014-12-05

    In this article a luminescence fiber optic biosensor for the microdetection of heavy metal toxicity in waters based on the marine bacterium Aliivibrio fischeri (A. fischeri) encapsulated in alginate microspheres is described. Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(II) were selected as sample toxic heavy metal ions for evaluation of the performance of this toxicity microbiosensor. The loss of bioluminescence response from immobilized A. fischeri bacterial cells corresponds to changes in the toxicity levels. The inhibition of the luminescent biosensor response collected at excitation and emission wavelengths of 287 ± 2 nm and 487 ± 2 nm, respectively, was found to be reproducible and repeatable within the relative standard deviation (RSD) range of 2.4-5.7% (n = 8). The toxicity biosensor based on alginate micropsheres exhibited a lower limit of detection (LOD) for Cu(II) (6.40 μg/L), Cd(II) (1.56 μg/L), Pb(II) (47 μg/L), Ag(I) (18 μg/L) than Zn(II) (320 μg/L), Cr(VI) (1,000 μg/L), Co(II) (1700 μg/L), Ni(II) (2800 μg/L), and Fe(III) (3100 μg/L). Such LOD values are lower when compared with other previous reported whole cell toxicity biosensors using agar gel, agarose gel and cellulose membrane biomatrices used for the immobilization of bacterial cells. The A. fischeri bacteria microencapsulated in alginate biopolymer could maintain their metabolic activity for a prolonged period of up to six weeks without any noticeable changes in the bioluminescence response. The bioluminescent biosensor could also be used for the determination of antagonistic toxicity levels for toxicant mixtures. A comparison of the results obtained by atomic absorption spectroscopy (AAS) and using the proposed luminescent A. fischeri-based biosensor suggests that the optical toxicity biosensor can be used for quantitative microdetermination of heavy metal toxicity in environmental water samples.

  18. Microencapsulated Aliivibrio fischeri in alginate microspheres for monitoring heavy metal toxicity in environmental waters.

    PubMed

    Futra, Dedi; Heng, Lee Yook; Surif, Salmijah; Ahmad, Asmat; Ling, Tan Ling

    2014-01-01

    In this article a luminescence fiber optic biosensor for the microdetection of heavy metal toxicity in waters based on the marine bacterium Aliivibrio fischeri (A. fischeri) encapsulated in alginate microspheres is described. Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(II) were selected as sample toxic heavy metal ions for evaluation of the performance of this toxicity microbiosensor. The loss of bioluminescence response from immobilized A. fischeri bacterial cells corresponds to changes in the toxicity levels. The inhibition of the luminescent biosensor response collected at excitation and emission wavelengths of 287 ± 2 nm and 487 ± 2 nm, respectively, was found to be reproducible and repeatable within the relative standard deviation (RSD) range of 2.4-5.7% (n = 8). The toxicity biosensor based on alginate micropsheres exhibited a lower limit of detection (LOD) for Cu(II) (6.40 μg/L), Cd(II) (1.56 μg/L), Pb(II) (47 μg/L), Ag(I) (18 μg/L) than Zn(II) (320 μg/L), Cr(VI) (1,000 μg/L), Co(II) (1700 μg/L), Ni(II) (2800 μg/L), and Fe(III) (3100 μg/L). Such LOD values are lower when compared with other previous reported whole cell toxicity biosensors using agar gel, agarose gel and cellulose membrane biomatrices used for the immobilization of bacterial cells. The A. fischeri bacteria microencapsulated in alginate biopolymer could maintain their metabolic activity for a prolonged period of up to six weeks without any noticeable changes in the bioluminescence response. The bioluminescent biosensor could also be used for the determination of antagonistic toxicity levels for toxicant mixtures. A comparison of the results obtained by atomic absorption spectroscopy (AAS) and using the proposed luminescent A. fischeri-based biosensor suggests that the optical toxicity biosensor can be used for quantitative microdetermination of heavy metal toxicity in environmental water samples. PMID:25490588

  19. Investigation of the strontium (Sr(II)) adsorption of an alginate microsphere as a low-cost adsorbent for removal and recovery from seawater.

    PubMed

    Hong, Hye-Jin; Ryu, Jungho; Park, In-Su; Ryu, Taegong; Chung, Kang-Sup; Kim, Byuong-Gyu

    2016-01-01

    In this paper, we investigated alginate microspheres as a low-cost adsorbent for strontium (Sr(II)) removal and recovery from seawater. Alginate microspheres have demonstrated a superior adsorption capacity for Sr(II) ions (≈110 mg/g). A Freundlich isotherm model fits well with the Sr(II) adsorption of an alginate microsphere. The mechanism of Sr(II) adsorption is inferred as an ion exchange reaction with Ca(II) ions. The effects of the solution pH and co-existing ions in seawater are also investigated. Except for a pH of 1-2, Sr(II) adsorption capacity is not affected by pH. However, increasing the seawater concentration of metal cations seriously decreases Sr(II) uptake. In particular, highly concentrated (15,000 mg/L) Na(I) ions significantly interfere with Sr(II) adsorption. Sr(II) desorption was performed using 0.1 M HCl and CaCl2. Both regenerants show an excellent desorption efficiency, but the FTIR spectrum reveals that the chemical structure of the microsphere is destroyed after repeated use of HCl. Conversely, CaCl2 successfully desorbed Sr(II) without damage, and the Sr(II) adsorption capacity does not decrease after three repeated uses. The alginate microsphere was also applied to the adsorption of Sr(II) in a real seawater medium. Because of inhibition by co-existing ions, the Sr(II) adsorption capacity was decreased and the adsorption rate was retarded compared with D.I. water. Although the Sr(II) adsorption capacity was decreased, the alginate microsphere still exhibited 17.8 mg/g of Sr(II) uptake in the seawater medium. Considering its excellent Sr(II) uptake in seawater and its reusability, an alginate microsphere is an appropriate cost-effective adsorbent for the removal and recovery of Sr(II) from seawater.

  20. Stabilization of Glucose Oxidase in Alginate Microspheres With Photoreactive Diazoresin Nanofilm Coatings

    PubMed Central

    Srivastava, Rohit; Brown, J. Quincy; Zhu, Huiguang; McShane, Michael J.

    2015-01-01

    The nanoassembly and photo-crosslinking of diazo-resin (DAR) coatings on small alginate microspheres for stable enzyme entrapment is described. Multilayer nanofilms of DAR with poly(styrene sulfonate) (PSS) were used in an effort to stabilize the encapsulation of glucose oxidase enzyme for biosensor applications. The activity and physical encapsulation of the trapped enzyme were measured over 24 weeks to compare the effectiveness of nanofilm coatings and crosslinking for stabilization. Uncoated spheres exhibited rapid loss of activity, retaining only 20% of initial activity after one week, and a dramatic reduction in effective activity over 24 weeks, whereas the uncrosslinked and crosslinked {DAR/PSS}-coated spheres retained more than 50% of their initial activity after 4 weeks, which remained stable even after 24 weeks for the two and three bilayer films. Nanofilms comprising more polyelectrolyte layers maintained higher overall activity compared to films of the same composition but fewer layers, and crosslinking the films increased retention of activity over uncrosslinked films after 24 weeks. These findings demonstrate that enzyme immobilization and stabilization can be achieved by using simple modifications to the layer-by-layer self-assembly technique. PMID:15849694

  1. X-ray visible and uniform alginate microspheres loaded with in situ synthesized BaSO4 nanoparticles for in vivo transcatheter arterial embolization.

    PubMed

    Wang, Qin; Qian, Kun; Liu, Shanshan; Yang, Yajiang; Liang, Bin; Zheng, Chuansheng; Yang, Xiangliang; Xu, Huibi; Shen, Amy Q

    2015-04-13

    The lack of noninvasive tracking and mapping the fate of embolic agents has restricted the development and further applications of the transcatheter arterial embolization (TAE) therapy. In this work, inherent radiopaque embolic material, barium alginate (ALG) microspheres loaded with in situ synthesized BaSO4 (denoted as BaSO4/ALG microspheres), have been synthesized by a one-step droplet microfluidic technique. One of the advantages of our microfluidic approach is that radiopaque BaSO4 is in the form of nanoparticles and well dispersed inside ALG microspheres, thereby greatly enhancing the imaging quality. The crystal structure of in situ synthesized BaSO4 nanoparticles in ALG microspheres is confirmed by X-ray diffraction analysis. Results of in vitro and in vivo assays from digital subtraction angiography and computed tomography scans demonstrate that BaSO4/ALG microspheres possess excellent visibility under X-ray. Histopathological analysis verifies that the embolic efficacy of BaSO4/ALG microspheres is similar to that of commercially available alginate microsphere embolic agents. Furthermore, the visibility of radiopaque BaSO4/ALG microspheres under X-ray promises the direct detection of the embolic efficiency and position of embolic microspheres after embolism, which offers great promises in direct real-time in vivo investigations for TAE.

  2. Preparation of microspheres by an emulsification-complexation method.

    PubMed

    Kim, Jin-Chul; Song, Myeong-Eun; Lee, Eun-Joo; Park, Seung-Kyu; Rang, Moon-Jeong; Ahn, Ho-Jeong

    2002-04-01

    Microspheres were prepared by complexation of a cationic polymer, polyquaternium-24, and an anionic surfactant, sodium lauryl sulfate (SLS). The cationic polymer solution was emulsified in dimethylsiloxane to give water in silicone emulsion (W/Si), and it was used as a template for the formation of microspheres. The emulsion was dispersed into the SLS solution. In this process, two kinds of droplets, silicone dropletes and microspheres composed of the cationic polymer and SLS, were formed, evidenced by X-ray energy dispersive spectra. The mean diameter of the microspheres was reduced from 105.7 to 64.8 mum as the stirring rate for W/Si preparation increased from 300 to 1000 rpm. It is believed that water droplets in W/Si emulsion, when exposed to SLS solution, could be solidified by the complexation of the cationic polymer and the anionic surfactant.

  3. Preparation of microspheres by an emulsification-complexation method.

    PubMed

    Kim, Jin-Chul; Song, Myeong-Eun; Lee, Eun-Joo; Park, Seung-Kyu; Rang, Moon-Jeong; Ahn, Ho-Jeong

    2002-04-01

    Microspheres were prepared by complexation of a cationic polymer, polyquaternium-24, and an anionic surfactant, sodium lauryl sulfate (SLS). The cationic polymer solution was emulsified in dimethylsiloxane to give water in silicone emulsion (W/Si), and it was used as a template for the formation of microspheres. The emulsion was dispersed into the SLS solution. In this process, two kinds of droplets, silicone dropletes and microspheres composed of the cationic polymer and SLS, were formed, evidenced by X-ray energy dispersive spectra. The mean diameter of the microspheres was reduced from 105.7 to 64.8 mum as the stirring rate for W/Si preparation increased from 300 to 1000 rpm. It is believed that water droplets in W/Si emulsion, when exposed to SLS solution, could be solidified by the complexation of the cationic polymer and the anionic surfactant. PMID:16290495

  4. Crystal phase of fibrous calcium phosphates prepared with sodium alginate.

    PubMed

    Hayashizaki, J; Ban, S; Arimoto, N; Kato, N; Kimura, Y; Hasegawa, J

    1995-12-01

    This study investigated the effects of preparation conditions on the crystal phase of the fired fiber prepared with sodium alginate. Hydroxyapatite, Ca10(PO4)6(OH)2, hereafter referred to as HA, was only formed in fiber fired at 900 degrees C under proper conditions. There was no significant difference in the crystal phase of the fired fibers prepared using different sodium alginate concentrations and syringe nozzle diameter, although fiber diameters were enlarged with increasing in either. No effects of phosphate type on the crystal phase of the fired fiber were found, but the aging time and the rinsing time had great effects. Sodium calcium phosphate, NaCaPO4, and HA were formed when the aging time was shorter than 5 min. Chlorapatite, Ca5Cl(PO4)3, and HA were formed when the rinsing time was shorter than 3 sec, and HA was formed when the rinsing time was 5 min to 1 hour, beta-TCP, beta-Ca3 (PO4)2, and HA were formed when the rinsing time exceeded 2 weeks.

  5. Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior.

    PubMed

    Liu, Yun; Zhang, Chuan-Jie; Zhao, Jin-Chao; Guo, Yi; Zhu, Ping; Wang, De-Yi

    2016-03-30

    A bio-based barium alginate film was prepared via a facile ionic exchange and casting approach. Its flammability, thermal degradation and pyrolysis behaviors, thermal degradation mechanism were studied systemically by limiting oxygen index (LOI), vertical burning (UL-94), microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) coupled with Fourier transform infrared analysis (FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). It showed that barium alginate film had much higher LOI value (52.0%) than that of sodium alginate film (24.5%). Moreover, barium alginate film passed the UL-94 V-0 rating, while the sodium alginate film showed no classification. Importantly, peak of heat release rate (PHRR) of barium alginate film in MCC test was much lower than that of sodium alginate film, suggested that introduction of barium ion into alginate film significantly decreased release of combustible gases. TG-FTIR and Py-GC-MS results indicated that barium alginate produced much less flammable products than that of sodium alginate in whole thermal degradation procedure. Finally, a possible degradation mechanism of barium alginate had been proposed.

  6. Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior.

    PubMed

    Liu, Yun; Zhang, Chuan-Jie; Zhao, Jin-Chao; Guo, Yi; Zhu, Ping; Wang, De-Yi

    2016-03-30

    A bio-based barium alginate film was prepared via a facile ionic exchange and casting approach. Its flammability, thermal degradation and pyrolysis behaviors, thermal degradation mechanism were studied systemically by limiting oxygen index (LOI), vertical burning (UL-94), microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) coupled with Fourier transform infrared analysis (FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). It showed that barium alginate film had much higher LOI value (52.0%) than that of sodium alginate film (24.5%). Moreover, barium alginate film passed the UL-94 V-0 rating, while the sodium alginate film showed no classification. Importantly, peak of heat release rate (PHRR) of barium alginate film in MCC test was much lower than that of sodium alginate film, suggested that introduction of barium ion into alginate film significantly decreased release of combustible gases. TG-FTIR and Py-GC-MS results indicated that barium alginate produced much less flammable products than that of sodium alginate in whole thermal degradation procedure. Finally, a possible degradation mechanism of barium alginate had been proposed. PMID:26794953

  7. [Study on preparation process of artesunate polylactic acid microspheres].

    PubMed

    Pan, Xu-Wang; Wang, Wei; Fang, Hong-Ying; Wang, Fu-Gen; Cai, Zhao-Bin

    2013-12-01

    This study aims to investigate the preparation process and in vitro release behavior of artesunate polylactic acid microspheres, in order to prepare an artesunate polylactic acid (PLA) administration method suitable for hepatic arterial embolization. With PLA as the material and polyvinyl alcohol (PVA) as the emulsifier, O/W emulsion/solvent evaporation method was adopted to prepare artesunate polylactic acid microspheres, and optimize the preparation process. With drug loading capacity, encapsulation efficiency and particle size as indexes, a single factor analysis was made on PLA concentration, PVA concentration, drug loading ratio and stirring velocity. Through an orthogonal experiment, the optimal processing conditions were determined as follows: PLA concentration was 9. 0% , PVA concentration was 0. 9% , drug loading ratio was 1:2 and stirring velocity was 1 000 r x min(-1). According to the verification of the optimal process, microsphere size, drug loading and entrapment rate of artesunate polylactic acid microspheres were (101.7 +/- 0.37) microm, (30.8 +/- 0.84)%, (53.6 +/- 0.62)%, respectively. The results showed that the optimal process was so reasonable and stable that it could lay foundation for further studies.

  8. Preparation of petaloid microspheres of basic magnesium carbonate.

    PubMed

    Ohkubo, Takahiro; Suzuki, Sei; Mitsuhashi, Kohei; Ogura, Taku; Iwanaga, Shinichi; Sakai, Hideki; Koishi, Masumi; Abe, Masahiko

    2007-05-22

    The synthesis of basic magnesium carbonate was examined under ultrasonic irradiation and was performed by the soda ash method using magnesium sulfate and sodium carbonate as starting materials. The particulate product was evaluated using SEM observations. Ultrasonic irradiation in the preparation of basic magnesium carbonate was found to give fine petaloid microspheres of about 3 mum in primary particle size. PMID:17458985

  9. Preparation of uniform magnetic recoverable catalyst microspheres with hierarchically mesoporous structure by using porous polymer microsphere template

    PubMed Central

    2014-01-01

    Merging nanoparticles with different functions into a single microsphere can exhibit profound impact on various applications. However, retaining the unique properties of each component after integration has proven to be a significant challenge. Our previous research demonstrated a facile method to incorporate magnetic nanoparticles into porous silica microspheres. Here, we report the fabrication of porous silica microspheres embedded with magnetic and gold nanoparticles as magnetic recoverable catalysts. The as-prepared multifunctional composite microspheres exhibit excellent magnetic and catalytic properties and a well-defined structure such as uniform size, high surface area, and large pore volume. As a result, the very little composite microspheres show high performance in catalytic reduction of 4-nitrophenol, special convenient magnetic separability, long life, and good reusability. The unique nanostructure makes the microspheres a novel stable and highly efficient catalyst system for various catalytic industry processes. PMID:24708885

  10. Preparation of polysulfone hollow microspheres encapsulating DNA and their functional utilization.

    PubMed

    Zhao, C; Liu, X D; Nomizu, M; Nishi, N

    2004-05-01

    Polysulfone hollow microspheres encapsulating DNA were prepared using a liquid-liquid phase separation technique. The microspheres were then used to absorb a DNA-binding intercalating material--ethidium bromide. The amount of DNA encapsulated in the microspheres depended on the concentration of the DNA solution used to prepare the microspheres, and the microsphere morphology depended on both the polymer concentration and the preparation conditions. The amount of ethidium bromide in the microspheres depended mainly on the amount of encapsulated DNA, and the microsphere morphology also affected the removal of the ethidium bromide. The new method of DNA encapsulation is proposed, and the microspheres encapsulating the DNA have the potential to be used in environmental applications.

  11. Gelling process for sodium alginate: New technical approach by using calcium rich micro-spheres.

    PubMed

    Vicini, Silvia; Castellano, Maila; Mauri, Marco; Marsano, Enrico

    2015-12-10

    Alginate based materials have become an important class of products in many fields from the pharmaceutical industry to tissue engineering, because of their ability to create stimuli responsive hydrogels. We present a new technical approach for obtaining a controlled gelling process, based on the quantities of Ca(2+) rich alginate micro-beads added as crosslinkers. The gels have been evaluated in light of the amount of Ca(2+) added to the alginate solution, and in light of the different dimensions of the micro-beads, using rheological measurements to assess the variation in the storage modulus (G'), loss modulus (G'') and complex viscosity (η(*)) as well as swelling and deswelling tests. The methodology was developed to obtain a material with specific characteristics for application in the field of conservation. The material had to be able to create a stable gel after being applied on the artwork surface and to confine the solvent action at the interface during cleaning operations.

  12. Drug release behavior of poly (lactic-glycolic acid) grafting from sodium alginate (ALG-g-PLGA) prepared by direct polycondensation.

    PubMed

    Shi, Gang; Ding, Yuanyuan; Zhang, Xin; Wu, Luyan; He, Fei; Ni, Caihua

    2015-01-01

    Hydrophobically modified sodium alginate, poly (lactic-glycolic acid) grafting from sodium alginate (ALG-g-PLGA), was successfully synthesized through direct one-step polymerization of sodium alginate, glycolic acid, and lactic acid. ALG-g-PLGA self-assembled to colloidal nanoparticles and subsequently hydrogel microspheres were obtained by crosslinking ALG-g-PLGA nanoparticles in the solution of calcium chloride. The modified hydrogel microspheres could be used as the drug delivery vehicles for a hydrophobic ibuprofen. Compared with sodium alginate, ALG-g-PLGA demonstrated an improved drug loading rate, encapsulation efficiency, and prolonged release speed. The products, as novel and highly promising biomaterials, have potential applications.

  13. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment.

    PubMed

    Amir Afshar, Hamideh; Ghaee, Azadeh

    2016-10-20

    The chemical nature of biomaterials play important role in cell attachment, proliferation and migration in tissue engineering. Chitosan and alginate are biodegradable and biocompatible polymers used as scaffolds for various medical and clinical applications. Amine groups of chitosan scaffolds play an important role in cell attachment and water adsorption but also associate with alginate carboxyl groups via electrostatic interactions and hydrogen bonding, consequently the activity of amine groups in the scaffold decreases. In this study, chitosan/alginate/halloysite nanotube (HNTs) composite scaffolds were prepared using a freeze-drying method. Amine treatment on the scaffold occurred through chemical methods, which in turn caused the hydroxyl groups to be replaced with carboxyl groups in chitosan and alginate, after which a reaction between ethylenediamine, 1-ethyl-3,(3-dimethylaminopropyl) carbodiimide (EDC) and scaffold triggered the amine groups to connect to the carboxyl groups of chitosan and alginate. The chemical structure, morphology and mechanical properties of the composite scaffolds were investigated by FTIR, CHNS, SEM/EDS and compression tests. The electrostatic attraction and hydrogen bonding between chitosan, alginate and halloysite was confirmed by FTIR spectroscopy. Chitosan/alginate/halloysite scaffolds exhibit significant enhancement in compressive strength compared with chitosan/alginate scaffolds. CHNS and EDS perfectly illustrate that amine groups were effectively introduced in the aminated scaffold. The growth and cell attachment of L929 cells as well as the cytotoxicity of the scaffolds were investigated by SEM and Alamar Blue (AB). The results indicated that the aminated chitosan/alginate/halloysite scaffold has better cell growth and cell adherence in comparison to that of chitosan/alginate/halloysite samples. Aminated chitosan/alginate/halloysite composite scaffolds exhibit great potential for applications in tissue engineering, ideally in

  14. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment.

    PubMed

    Amir Afshar, Hamideh; Ghaee, Azadeh

    2016-10-20

    The chemical nature of biomaterials play important role in cell attachment, proliferation and migration in tissue engineering. Chitosan and alginate are biodegradable and biocompatible polymers used as scaffolds for various medical and clinical applications. Amine groups of chitosan scaffolds play an important role in cell attachment and water adsorption but also associate with alginate carboxyl groups via electrostatic interactions and hydrogen bonding, consequently the activity of amine groups in the scaffold decreases. In this study, chitosan/alginate/halloysite nanotube (HNTs) composite scaffolds were prepared using a freeze-drying method. Amine treatment on the scaffold occurred through chemical methods, which in turn caused the hydroxyl groups to be replaced with carboxyl groups in chitosan and alginate, after which a reaction between ethylenediamine, 1-ethyl-3,(3-dimethylaminopropyl) carbodiimide (EDC) and scaffold triggered the amine groups to connect to the carboxyl groups of chitosan and alginate. The chemical structure, morphology and mechanical properties of the composite scaffolds were investigated by FTIR, CHNS, SEM/EDS and compression tests. The electrostatic attraction and hydrogen bonding between chitosan, alginate and halloysite was confirmed by FTIR spectroscopy. Chitosan/alginate/halloysite scaffolds exhibit significant enhancement in compressive strength compared with chitosan/alginate scaffolds. CHNS and EDS perfectly illustrate that amine groups were effectively introduced in the aminated scaffold. The growth and cell attachment of L929 cells as well as the cytotoxicity of the scaffolds were investigated by SEM and Alamar Blue (AB). The results indicated that the aminated chitosan/alginate/halloysite scaffold has better cell growth and cell adherence in comparison to that of chitosan/alginate/halloysite samples. Aminated chitosan/alginate/halloysite composite scaffolds exhibit great potential for applications in tissue engineering, ideally in

  15. A novel strategy for the preparation of porous microspheres and its application in peptide drug loading.

    PubMed

    Wei, Yi; Wang, Yuxia; Zhang, Huixia; Zhou, Weiqing; Ma, Guanghui

    2016-09-15

    A new strategy is developed to prepare porous microspheres with narrow size distribution for peptides controlled release, involving a fabrication of porous microspheres without any porogens followed by a pore closing process. Amphiphilic polymers with different hydrophobic segments (poly(monomethoxypolyethylene glycol-co-d,l-lactide) (mPEG-PLA), poly(monomethoxypolyethylene glycol-co-d,l-lactic-co-glycolic acid) (mPEG-PLGA)) are employed as microspheres matrix to prepare porous microspheres based on a double emulsion-premix membrane emulsification technique combined with a solvent evaporation method. Both microspheres possess narrow size distribution and porous surface, which are mainly caused by (a) hydrophilic polyethylene glycol (PEG) segments absorbing water molecules followed by a water evaporation process and (b) local explosion of microspheres due to fast evaporation of dichloromethane (MC). Importantly, mPEG-PLGA microspheres have a honeycomb like structure while mPEG-PLA microspheres have a solid structure internally, illustrating that the different hydrophobic segments could modulate the affinity between solvent and matrix polymer and influence the phase separation rate of microspheres matrix. Long term release patterns are demonstrated with pore-closed microspheres, which are prepared from mPEG-PLGA microspheres loading salmon calcitonin (SCT). These results suggest that it is potential to construct porous microspheres for drug sustained release using permanent geometric templates as new porogens. PMID:27285778

  16. A novel strategy for the preparation of porous microspheres and its application in peptide drug loading.

    PubMed

    Wei, Yi; Wang, Yuxia; Zhang, Huixia; Zhou, Weiqing; Ma, Guanghui

    2016-09-15

    A new strategy is developed to prepare porous microspheres with narrow size distribution for peptides controlled release, involving a fabrication of porous microspheres without any porogens followed by a pore closing process. Amphiphilic polymers with different hydrophobic segments (poly(monomethoxypolyethylene glycol-co-d,l-lactide) (mPEG-PLA), poly(monomethoxypolyethylene glycol-co-d,l-lactic-co-glycolic acid) (mPEG-PLGA)) are employed as microspheres matrix to prepare porous microspheres based on a double emulsion-premix membrane emulsification technique combined with a solvent evaporation method. Both microspheres possess narrow size distribution and porous surface, which are mainly caused by (a) hydrophilic polyethylene glycol (PEG) segments absorbing water molecules followed by a water evaporation process and (b) local explosion of microspheres due to fast evaporation of dichloromethane (MC). Importantly, mPEG-PLGA microspheres have a honeycomb like structure while mPEG-PLA microspheres have a solid structure internally, illustrating that the different hydrophobic segments could modulate the affinity between solvent and matrix polymer and influence the phase separation rate of microspheres matrix. Long term release patterns are demonstrated with pore-closed microspheres, which are prepared from mPEG-PLGA microspheres loading salmon calcitonin (SCT). These results suggest that it is potential to construct porous microspheres for drug sustained release using permanent geometric templates as new porogens.

  17. Designing improved poly lactic-co-glycolic acid microspheres for a malarial vaccine: incorporation of alginate and polyinosinic-polycytidilic acid.

    PubMed

    Salvador, Aiala; Igartua, Manoli; Hernández, Rosa María; Pedraz, José Luis

    2014-01-01

    Vaccination using proteins and peptides is currently gaining importance. One of the major drawbacks of this approach is the lack of an efficient immune response when the antigens are administered without adjuvants. In this study, we have taken the advantage of a combined adjuvant system in order to improve the immunogenicity of the SPf66 malarial antigen. For that purpose, we have combined poly (lactic-co-glycolic) acid microspheres, alginate, and polyinosinic polycytidilic acid. Our results show that microspheres can enhance the IgG production obtained with Freund's complete adjuvant. We have attributed this improvement to the presence of polyinosinic polycytidilic acid, since formulations comprising this adjuvant overcame the immune response from the others. In addition, our microspheres produced both IgG1 and IgG2a, leading to mixed Th1/Th2 activation, optimal for malaria vaccination. In conclusion, we have designed a preliminary formulation with a high potential for the treatment of malaria.

  18. Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering.

    PubMed

    Yan, Jingxuan; Miao, Yuting; Tan, Huaping; Zhou, Tianle; Ling, Zhonghua; Chen, Yong; Xing, Xiaodong; Hu, Xiaohong

    2016-06-01

    Injectable and biodegradable alginate-based composite gel scaffolds doubly integrated with hydroxyapatite (HAp) and gelatin microspheres (GMs) were cross-linked via in situ release of calcium cations. As triggers of calcium cations, CaCO3 and glucono-D-lactone (GDL) were fixed as a mass ratio of 1:1 to control pH value ranging from 6.8 to 7.2 during gelation. Synchronously, tetracycline hydrochloride (TH) was encapsulated into GMs to enhance bioactivity of composite gel scaffolds. The effects of HAp and GMs on characteristics of gel scaffolds, including pH value, gelation time, mechanical properties, swelling ratio, degradation behavior and drug release, were investigated. The results showed that HAp and GMs successfully improved mechanical properties of gel scaffolds at strain from 0.1 to 0.5, which stabilized the gel network and decreased weight loss, as well as swelling ratio and gelation time. TH could be released from this composite gel scaffold into the local microenvironment in a controlled fashion by the organic/inorganic hybrid of hydrogel network. Our results demonstrate that the HAp and GMs doubly integrated alginate-based gel scaffolds, especially the one with 6% (w/v) HAp and 5% (w/v) GMs, have suitable physical performance and bioactive properties, thus provide a potential opportunity to be used for bone tissue engineering. The potential application of this gel scaffold in bone tissue engineering was confirmed by encapsulation behavior of osteoblasts. In combination with TH, the gel scaffold exhibited beneficial effects on osteoblast activity, which suggested a promising future for local treatment of pathologies involving bone loss.

  19. Preparation and Characterization of Azadirachtin Alginate-Biosorbent Based Formulations: Water Release Kinetics and Photodegradation Study.

    PubMed

    Flores-Céspedes, Francisco; Martínez-Domínguez, Gerardo P; Villafranca-Sánchez, Matilde; Fernández-Pérez, Manuel

    2015-09-30

    The botanical insecticide azadirachtin was incorporated in alginate-based granules to obtain controlled release formulations (CRFs). The basic formulation [sodium alginate (1.47%) - azadirachtin (0.28%) - water] was modified by the addition of biosorbents, obtaining homogeneous hybrid hydrogels with high azadirachtin entrapment efficiency. The effect on azadirachtin release rate caused by the incorporation of biosorbents such as lignin, humic acid, and olive pomace in alginate formulation was studied by immersion of the granules in water under static conditions. The addition of the biosorbents to the basic alginate formulation reduces the rate of release because the lignin-based formulation produces a slower release. Photodegradation experiments showed the potential of the prepared formulations in protecting azadirachtin against simulated sunlight, thus improving its stability. The results showed that formulation prepared with lignin provided extended protection. Therefore, this study provides a new procedure to encapsulate the botanical insecticide azadirachtin, improving its delivery and photostability. PMID:26345112

  20. Preparation and evaluation of sustained release calcium alginate beads and matrix tablets of acetazolamide.

    PubMed

    Barzegar-Jalali, M; Hanaee, J; Omidi, Y; Ghanbarzadeh, S; Ziaee, S; Bairami-Atashgah, R; Adibkia, K

    2013-02-01

    The aim of this study was to develop sustained release dosage forms of acetazolamide (ACZ) preparing its calcium alginate beads and matrix tablets. ACZ was incorporated into calcium alginate beads using microencapsulation method. Two methods were applied to prolong ACZ release rate. In the first method, the drug was incorporated into calcium alginate beads either alone or with various polymers in internal phase. The second method involved the preparation of matrix tablet from the beads benefiting direct compression method with or without various polymers in external phase. The release rate of these prepared formulations and an innovator's sustained-release capsule (Diamox®) were assessed. In-vitro dissolution studies revealed that the matrix tablets prepared by the second method containing NaCMC could sustain ACZ release properly and the drug released until 9 h. It was also found that several parameters such as concentration of sodium alginate, calcium chloride and ACZ; type and concentration of polymers; syringe needle size as well as distance between needle tip and surface of the calcium chloride could affect the properties of beads, matrix tablets and subsequently release profile. Preparation of polymer free beads, incorporation of polymers in internal phase of the beads and direct compression of the beads did not give sustained release property. Whereas, incorporation of NaCMC in the external phase of the beads in matrix tablets or in combination with alginate powder in directly compressed conventional tablets could produce dosage form with sustained release property similar to reference formulation. PMID:23447074

  1. Preparation of anti-CD40 antibody modified magnetic PCL-PEG-PCL microspheres.

    PubMed

    Gao, Xiang; Kan, Bing; Gou, MaLing; Zhang, Juan; Guo, Gang; Huang, Ning; Zhao, Xia; Qian, ZhiYong

    2011-04-01

    Antibody modified magnetic polymeric microspheres have potential biomedical application. In this paper, anti-CD40 antibody modified magnetic poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCL-PEG-PCL, PCEC) microspheres were prepared. First, PCL-PEG-PCL triblock copolymer was synthesized by ring-opening polymerization, followed by reaction with succinic anhydride, creating carboxylated PCL-PEG-PCL copolymer. Then, magnetite nanoparticles were encapsulated into carboxylated PCL-PEG-PCL microspheres, forming magnetic PCL-PEG-PCL microspheres with carboxyl group on their surface. Catalyzed by EDC/NHS, the anti-CD40 antibody was linked to these magnetic PCL-PEG-PCL microspheres, thus forming anti-CD40 modified PCL-PEG-PCL microspheres. These anti-CD40 antibody modified magnetic PCL-PEG-PCL microspheres may have potential application in cell separation. PMID:21702366

  2. Preparation of monodisperse porous silica particles using poly(glycidyl methacrylate) microspheres as a template.

    PubMed

    Grama, S; Horák, D

    2015-01-01

    Monodisperse macroporous poly(glycidyl methacrylate) (PGMA) microspheres were used as a template for preparing porous silica particles. The starting polymer microspheres that were 9.3 microm in size were synthesized by multistep swelling polymerization using a modified Ugelstad technique. Subsequently, silica (SiO2) was deposited on the surface and inside the PGMA microspheres to produce poly(glycidyl methacrylate)-silica hybrid particles (PGMA-SiO2). Upon calcination of the PGMA-SiO2 microspheres, porous silica particles were formed. The morphology, particle size, polydispersity and inner structure of the silica microspheres were investigated by scanning and transmission electron microscopy. Thermogravimetric analysis and dynamic adsorption of nitrogen determined the amount of silica formed and its specific surface area. Compared with the starting PGMA microspheres, the size of the porous silica particles decreased by up to 30%. These porous silica microspheres are promising for chromatography and biomedical applications. PMID:26447591

  3. Preparation and structure of drug-carrying biodegradable microspheres designed for transarterial chemoembolization therapy.

    PubMed

    Wang, Yujing; Benzina, Abderazak; Molin, Daniel G M; Akker, Nynke van den; Gagliardi, Mick; Koole, Leo H

    2015-01-01

    Biodegradable poly(D,L-lactic acid) drug-eluting microspheres containing anti-tumor drugs, cisplatin, and sorafenib tosylate have been prepared by the emulsion solvent evaporation method with diameter between 200 and 400 μm. Scanning electron microscopy showed that cisplatin microspheres had smooth surfaces, while sorafenib tosylate microspheres and cisplatin + sorafenib tosylate microspheres were porous at the surface and the pits of the latter were larger than those of the former. Notably, cisplatin + sorafenib tosylate microspheres had a fast drug release rate compared with microspheres containing one drug alone. In vitro cytotoxicity experiments and classical matrigel endothelial tube assay certificated the maintaining bioactivity of cisplatin and sorafenib tosylate released from the microspheres, respectively. This work provides a useful approach for the fabrication of drug-eluting beads used in transarterial chemoembolization.

  4. Preparation of monodisperse porous silica particles using poly(glycidyl methacrylate) microspheres as a template.

    PubMed

    Grama, S; Horák, D

    2015-01-01

    Monodisperse macroporous poly(glycidyl methacrylate) (PGMA) microspheres were used as a template for preparing porous silica particles. The starting polymer microspheres that were 9.3 microm in size were synthesized by multistep swelling polymerization using a modified Ugelstad technique. Subsequently, silica (SiO2) was deposited on the surface and inside the PGMA microspheres to produce poly(glycidyl methacrylate)-silica hybrid particles (PGMA-SiO2). Upon calcination of the PGMA-SiO2 microspheres, porous silica particles were formed. The morphology, particle size, polydispersity and inner structure of the silica microspheres were investigated by scanning and transmission electron microscopy. Thermogravimetric analysis and dynamic adsorption of nitrogen determined the amount of silica formed and its specific surface area. Compared with the starting PGMA microspheres, the size of the porous silica particles decreased by up to 30%. These porous silica microspheres are promising for chromatography and biomedical applications.

  5. Preparation and drug controlled release of porous octyl-dextran microspheres.

    PubMed

    Hou, Xin; Liu, Yanfei

    2015-01-01

    In this work, porous octyl-dextran microspheres with excellent properties were prepared by two steps. Firstly, dextran microspheres were synthesized by reversed-phase suspension polymerization. Secondly, octyl-dextran microspheres were prepared by the reaction between dextran microspheres and ethylhexyl glycidyl ether and freezing-drying method. Porous structure of microspheres was formed through the interaction between octyl groups and organic solvents. The structure, morphology, dry density, porosity and equilibrium water content of porous octyl-dextran microspheres were systematically investigated. The octyl content affected the properties of microspheres. The results showed that the dry density of microspheres decreased from 2.35 to 1.21 g/ml, porosity increased from 80.68 to 95.05% with the octyl content increasing from 0.49 to 2.28 mmol/g. Meanwhile, the equilibrium water content presented a peak value (90.18%) when the octyl content was 2.25 mmol/g. Octyl-dextran microspheres showed high capacity. Naturally drug carriers play an important role in drug-delivery systems for their biodegradability, wide raw materials sources and nontoxicity. Doxorubicin (DOX) was used as a drug model to examine the drug-loading capacity of porous octyl-dextran microspheres. The drug-loading efficiency increased with the increase in microspheres/drug ratio, while the encapsulation efficiency decreased. When microspheres/drug mass ratio was 4/1, the drug-loading efficiency and encapsulation efficiency were 10.20 and 51.00%, respectively. The release rate of DOX increased as drug content and porosity increased. In conclusion, porous octyl-dextran microspheres were synthesized successfully and have the potential to serve as an effective delivery system in drug controlled release.

  6. Preparation of PLLA/bpV(pic) microspheres and their effect on nerve cells.

    PubMed

    Lin, Qiang; Chen, Hai-yun; Li, Hao-shen; Cai, Yang-ting

    2014-02-01

    In this study, we prepared PLLA/bpV(pic) microspheres, a bpV(pic) controlled release system and examined their ability to protect nerve cells and promote axonal growth. PLLA microspheres were prepared by employing the o/w single emulsification-evaporation technique. Neural stem cells and dorsal root ganglia were divided into 3 groups in terms of the treatment they received: a routine medium group (cultured in DMEM), a PLLA microsphere group (DMEM containing PLLA microspheres alone) and a PLLA/bpV(pic) group [DMEM containing PLLA/bpV(pic) microspheres]. The effects of PLLA/bpV(pic) microspheres were evaluated by the live-dead test and measurement of axonal length. Our results showed that PLLA/bpV(pic) granulation rate was (88.2±5.6)%; particle size was (16.8±3.1)%, drug loading was (4.05±0.3)%; encapsulation efficiency was (48.5±1.8)%. The release time lasted for 30 days. In PLLA/bpV(pic) microsphere group, the cell survival rate was (95.2 ±4.77)%, and the length of dorsal root ganglion (DRG) was 718±95 μm, which were all significantly greater than those in ordinary routine medium group and PLLA microsphere group. This preliminary test results showed the PLLA/bpV(pic) microspheres were successfully prepared and they could promote the survival and growth of neural cells in DRG.

  7. Monodisperse aqueous microspheres encapsulating high concentration of l-ascorbic acid: insights of preparation and stability evaluation from straight-through microchannel emulsification.

    PubMed

    Khalid, Nauman; Kobayashi, Isao; Neves, Marcos A; Uemura, Kunihiko; Nakajima, Mitsutoshi; Nabetani, Hiroshi

    2015-01-01

    Stabilization of l-ascorbic acid (l-AA) is a challenging task for food and pharmaceutical industries. The study was conducted to prepare monodisperse aqueous microspheres containing enhanced concentrations of l-AA by using microchannel emulsification (MCE). The asymmetric straight-through microchannel (MC) array used here constitutes 11 × 104 μm microslots connected to a 10 μm circular microholes. 5-30% (w/w) l-AA was added to a Milli-Q water solution containing 2% (w/w) sodium alginate and 1% (w/w) magnesium sulfate, while the continuous phase constitutes 5% (w/w) tetraglycerol condensed ricinoleate in water-saturated decane. Monodisperse aqueous microspheres with average diameters (dav) of 18.7-20.7 μm and coefficients of variation (CVs) below 6% were successfully prepared via MCE regardless of the l-AA concentrations applied. The collected microspheres were physically stable in terms of their dav and CV for >10 days of storage at 40°C. The aqueous microspheres exhibited l-AA encapsulation efficiency exceeding 70% during the storage.

  8. Polyaniline nanofibers assembled on alginate microsphere for Cu2+ and Pb2+ uptake.

    PubMed

    Jiang, Nina; Xu, Yiting; Dai, Yuqiong; Luo, Weiang; Dai, Lizong

    2012-05-15

    Polyaniline (PANI) nanofibers were assembled on the micro- or millimeter-scale calcium alginate (CA) beads by "competitive adsorption-restricted polymerization" approach. The CA beads made the dimensional expansion of PANI nanofibers evident, which overcame the serious aggregation of PANI nanofibers and benefited the practical operation of PANI nanofibers. Batch adsorption results showed that the millimeter-scale CA beads decorated by PANI nanofibers had high affinity to Cu(2+) and Pb(2+) in aqueous solutions. The removal percentages of Cu(2+) and Pb(2+) in aqueous solutions by this PANI/CA composite with milli/nano hierarchical structure surpassed 90% in a wide pH range from 3 to 7. Sorption of the two kinds of ions to PANI/CA composite sorbent agreed well with the Freundlich adsorption model. The adsorption kinetic results of Cu(2+) and Pb(2+) showed that the adsorption reached equilibrium within 120min and 40min, respectively. And their adsorption rates could be described by pseudo-second-order kinetics. The desorption percentages of Pb(2+) and Cu(2+) from this PANI/CA composite are 62% and 75%, respectively. The Pb(2+) and Cu(2+) removal capacity of the sorbent could be further reinforced when the diameter of CA beads turned from millimeter to micrometer.

  9. Preparation and characterization of alginate-gelatin microencapsulated Bacillus subtilis SL-13 by emulsification/internal gelation.

    PubMed

    Tu, Liang; He, Yanhui; Yang, Hongbing; Wu, Zhansheng; Yi, Lijuan

    2015-01-01

    Gelatin was blended with sodium alginate (NaALG) to obtain a novel microbial fungicide, and dispersed micron Bacillus subtilis SL-13 microspheres prepared by emulsification/internal gelation method. Microscopic examination revealed that microcapsules were nearly spherical in shape. Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction confirmed that the electrostatic interaction was occurred when gelatin added into NaALG. The maximum encapsulation efficiency was 93.44% at a gelatin concentration of 1.5%. Particle size, swelling, and biodegradation of beads increased with gelatin content increase. Furthermore, the viability of encapsulated SL-13 could be preserved at more than 10(8) CFU/mL after 120 d storage at 25 °C. The number of viable cells released from microcapsules presented an initial rapid increase followed by a gradual increase, and reached the maximum as 10(10) CFU/mL on day 35. Thus, it is feasible to prepare uniform, rounded shape, and well-dispersed micron microcapsules of SL-13 via emulsification/internal gelation using NaALG and gelatin composites. This encapsulation strategy could be considered as a potential alternative to future applications in the agricultural industry.

  10. Preparation, structure, and in vitro chemical durability of yttrium phosphate microspheres for intra-arterial radiotherapy.

    PubMed

    Kawashita, Masakazu; Matsui, Naoko; Li, Zhixia; Miyazaki, Toshiki; Kanetaka, Hiroyasu

    2011-10-01

    Chemically durable microspheres containing yttrium and/or phosphorus are useful for intra-arterial radiotherapy. In this study, we attempted to prepare yttrium phosphate (YPO₄) microspheres with high chemical durability. YPO₄ microspheres with smooth surfaces and diameters of around 25 μm were successfully obtained when gelatin droplets containing yttrium and phosphate ions were cooled and solidified in a water-in-oil emulsion and then heat-treated at 1100°C. The chemical durability of the heat-treated microspheres in a simulated body fluid at pH = 6 and 7 was high enough for clinical application of intra-arterial radiotherapy.

  11. Preparation and evaluation of glyceryl monooleate-coated hollow-bioadhesive microspheres for gastroretentive drug delivery.

    PubMed

    Liu, Yuanfen; Zhang, Jianjun; Gao, Yuan; Zhu, Jiabi

    2011-07-15

    The purpose of this study was to produce hollow and bioadhesive microspheres to lengthen drug retention time in the stomach. In these microspheres, ethylcellulose was used as the matrix, Eudragit EPO was employed to modulate the release rate, and glyceryl monooleate (GMO) was the bioadhesive polymer in situ. The morphological characteristics of the microspheres were defined using scanning electron microscopy. The in vitro release test showed that the release rate of drug from the microspheres was pH-dependent, and was not influenced by the GMO coating film. The prepared microspheres demonstrated strong mucoadhesive properties with good buoyancy both in vitro and in vivo. Pharmacokinetic analysis indicated that the elimination half-life time of the hollow-bioadhesive microspheres was prolonged, and that the elimination rate was decreased. In conclusion, the hollow-bioadhesive synergic drug delivery system may be advantageous in the treatment of stomach diseases.

  12. Microspheres

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Vital information on a person's physical condition can be obtained by identifying and counting the population of T-cells and B-cells, lymphocytes of the same shape and size that help the immune system protect the body from the invasion of disease. The late Dr. Alan Rembaum developed a method for identifying the cells. The method involved tagging the T-cells and B-cells with microspheres of different fluorescent color. Microspheres, which have fluorescent dye embedded in them, are chemically treated so that they can link with antibodies. With the help of a complex antibody/antigen reaction, the microspheres bind themselves to specific 'targets,' in this case the T-cells or B-cells. Each group of cells can then be analyzed by a photoelectronic instrument at different wavelengths emitted by the fluorescent dyes. Same concept was applied to the separation of cancer cells from normal cells. Microspheres were also used to conduct many other research projects. Under a patent license Magsphere, Inc. is producing a wide spectrum of microspheres on a large scale and selling them worldwide for various applications.

  13. Facile preparation of multifunctional superparamagnetic PHBV microspheres containing SPIONs for biomedical applications.

    PubMed

    Li, Wei; Jan Zaloga; Ding, Yaping; Liu, Yufang; Janko, Christina; Pischetsrieder, Monika; Alexiou, Christoph; Boccaccini, Aldo R

    2016-03-23

    The promising potential of magnetic polymer microspheres in various biomedical applications has been frequently reported. However, the surface hydrophilicity of superparamagnetic iron oxide nanoparticles (SPIONs) usually leads to poor or even failed encapsulation of SPIONs in hydrophobic polymer microspheres using the emulsion method. In this study, the stability of SPIONs in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) solution was significantly increased after surface modification with lauric acid. As a result, magnetic PHBV microspheres with high encapsulation efficiencies (71.0-87.4%) were prepared using emulsion-solvent extraction/evaporation method. Magnetic resonance imaging (MRI) showed significant contrast for the magnetic PHBV microspheres. The toxicity of these magnetic PHBV microspheres towards human T-lymphoma suspension cells and adherent colon carcinoma HT-29 cells was investigated using flow cytometry, and they were shown to be non-toxic in a broad concentration range. A model drug, tetracycline hydrochloride, was used to demonstrate the drug delivery capability and to investigate the drug release behavior of the magnetic PHBV microspheres. The drug was successfully loaded into the microspheres using lauric acid-coated SPIONs as drug carrier, and was released from the microspheres in a diffusion controlled manner. The developed magnetic PHBV microspheres are promising candidates for biomedical applications such as targeted drug delivery and MRI.

  14. Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin

    NASA Astrophysics Data System (ADS)

    Li, Fengxia; Li, Xiaoli; Li, Bin

    2011-11-01

    In order to obtain a targeting drug carrier system, magnetic polylactic acid (PLA) microspheres loading curcumin were synthesized by the classical oil-in-water emulsion solvent-evaporation method. In the Fourier transform infrared spectra of microspheres, the present functional groups of PLA were all kept invariably. The morphology and size distribution of magnetic microspheres were observed with scanning electron microscopy and dynamic light scattering, respectively. The results showed that the microspheres were regularly spherical and the surface was smooth with a diameter of 0.55-0.75 μm. Magnetic Fe 3O 4 was loaded in PLA microspheres and the content of magnetic particles was 12 wt% through thermogravimetric analysis. The magnetic property of prepared microspheres was measured by vibrating sample magnetometer. The results showed that the magnetic microspheres exhibited typical superparamagnetic behavior and the saturated magnetization was 14.38 emu/g. Through analysis of differential scanning calorimetry, the curcumin was in an amorphous state in the magnetic microspheres. The drug loading, encapsulation efficiency and releasing properties of curcumin in vitro were also investigated by ultraviolet-visible spectrum analysis. The results showed that the drug loading and encapsulation efficiency were 8.0% and 24.2%, respectively. And curcumin was obviously slowly released because the cumulative release percentage of magnetic microspheres in the phosphate buffer (pH=7.4) solution was only 49.01% in 72 h, and the basic release of curcumin finished in 120 h.

  15. Facile preparation of multifunctional superparamagnetic PHBV microspheres containing SPIONs for biomedical applications

    PubMed Central

    Li, Wei; Jan Zaloga; Ding, Yaping; Liu, Yufang; Janko, Christina; Pischetsrieder, Monika; Alexiou, Christoph; Boccaccini, Aldo R.

    2016-01-01

    The promising potential of magnetic polymer microspheres in various biomedical applications has been frequently reported. However, the surface hydrophilicity of superparamagnetic iron oxide nanoparticles (SPIONs) usually leads to poor or even failed encapsulation of SPIONs in hydrophobic polymer microspheres using the emulsion method. In this study, the stability of SPIONs in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) solution was significantly increased after surface modification with lauric acid. As a result, magnetic PHBV microspheres with high encapsulation efficiencies (71.0–87.4%) were prepared using emulsion-solvent extraction/evaporation method. Magnetic resonance imaging (MRI) showed significant contrast for the magnetic PHBV microspheres. The toxicity of these magnetic PHBV microspheres towards human T-lymphoma suspension cells and adherent colon carcinoma HT-29 cells was investigated using flow cytometry, and they were shown to be non-toxic in a broad concentration range. A model drug, tetracycline hydrochloride, was used to demonstrate the drug delivery capability and to investigate the drug release behavior of the magnetic PHBV microspheres. The drug was successfully loaded into the microspheres using lauric acid-coated SPIONs as drug carrier, and was released from the microspheres in a diffusion controlled manner. The developed magnetic PHBV microspheres are promising candidates for biomedical applications such as targeted drug delivery and MRI. PMID:27005428

  16. Facile preparation of multifunctional superparamagnetic PHBV microspheres containing SPIONs for biomedical applications

    NASA Astrophysics Data System (ADS)

    Li, Wei; Jan Zaloga; Ding, Yaping; Liu, Yufang; Janko, Christina; Pischetsrieder, Monika; Alexiou, Christoph; Boccaccini, Aldo R.

    2016-03-01

    The promising potential of magnetic polymer microspheres in various biomedical applications has been frequently reported. However, the surface hydrophilicity of superparamagnetic iron oxide nanoparticles (SPIONs) usually leads to poor or even failed encapsulation of SPIONs in hydrophobic polymer microspheres using the emulsion method. In this study, the stability of SPIONs in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) solution was significantly increased after surface modification with lauric acid. As a result, magnetic PHBV microspheres with high encapsulation efficiencies (71.0–87.4%) were prepared using emulsion-solvent extraction/evaporation method. Magnetic resonance imaging (MRI) showed significant contrast for the magnetic PHBV microspheres. The toxicity of these magnetic PHBV microspheres towards human T-lymphoma suspension cells and adherent colon carcinoma HT-29 cells was investigated using flow cytometry, and they were shown to be non-toxic in a broad concentration range. A model drug, tetracycline hydrochloride, was used to demonstrate the drug delivery capability and to investigate the drug release behavior of the magnetic PHBV microspheres. The drug was successfully loaded into the microspheres using lauric acid-coated SPIONs as drug carrier, and was released from the microspheres in a diffusion controlled manner. The developed magnetic PHBV microspheres are promising candidates for biomedical applications such as targeted drug delivery and MRI.

  17. Facile preparation of multifunctional superparamagnetic PHBV microspheres containing SPIONs for biomedical applications.

    PubMed

    Li, Wei; Jan Zaloga; Ding, Yaping; Liu, Yufang; Janko, Christina; Pischetsrieder, Monika; Alexiou, Christoph; Boccaccini, Aldo R

    2016-01-01

    The promising potential of magnetic polymer microspheres in various biomedical applications has been frequently reported. However, the surface hydrophilicity of superparamagnetic iron oxide nanoparticles (SPIONs) usually leads to poor or even failed encapsulation of SPIONs in hydrophobic polymer microspheres using the emulsion method. In this study, the stability of SPIONs in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) solution was significantly increased after surface modification with lauric acid. As a result, magnetic PHBV microspheres with high encapsulation efficiencies (71.0-87.4%) were prepared using emulsion-solvent extraction/evaporation method. Magnetic resonance imaging (MRI) showed significant contrast for the magnetic PHBV microspheres. The toxicity of these magnetic PHBV microspheres towards human T-lymphoma suspension cells and adherent colon carcinoma HT-29 cells was investigated using flow cytometry, and they were shown to be non-toxic in a broad concentration range. A model drug, tetracycline hydrochloride, was used to demonstrate the drug delivery capability and to investigate the drug release behavior of the magnetic PHBV microspheres. The drug was successfully loaded into the microspheres using lauric acid-coated SPIONs as drug carrier, and was released from the microspheres in a diffusion controlled manner. The developed magnetic PHBV microspheres are promising candidates for biomedical applications such as targeted drug delivery and MRI. PMID:27005428

  18. Preparation and Evaluation of Mucoadhesive Beads/Discs of Alginate and Algino-Pectinate of Piroxicam for Colon-Specific Drug Delivery Via Oral Route

    PubMed Central

    Jelvehgari, Mitra; Mobaraki, Vajihe; Montazam, Seyed Hassan

    2014-01-01

    Background: Targeted drug delivery to colon would ensure direct treatment at the disease site, decrease in dose administration and reduction side effects improved drug utilization. Objective: The purpose of this research was to decrease gastric side effects of piroxicam by formulating microspheres of alginate and algino-pectinate beads of the drug. Materials and Methods: Ionotropic gelation was used to entrap piroxicam into alginate and algino-pectinate mucoadhesive microspheres as a potential drug carrier for oral delivery of piroxicam. Microparticles with different drug to polymers ratio were prepared and characterized by encapsulation efficiency, particle size, DSC (differential scanning calorimetric), mucoadhesive property, gastroretentive time and drug release studies. Results: The best drug to polymer ratio of microparticles was 1:2.5 (F1) with Na-Alg and 1:7.5 (F4) with Alg-Na with pectin, respectively. The microparticles F1 and F4 showed 28.80%, 50.01% loading efficiency, 82.57%, 82.31% production yield and 945.4, 899.91 µm mean particle size. DSC showed stable character of piroxicam in drug-loaded microparticles and revealed amorphous form. It was found that microparticles (Na-Alg) prepared had faster release and microparticles (Alg-Na and pectin mixture) prepared had slower release than untreated piroxicam (P < 0.05). Microparticles (mixture of Na-Alg and pectin) exhibited very good percentage of mucoadhesion and flowability properties. Mucoadhesion strength and retention time study showed better retention of piroxicam microparticles in intestine. Besides, there was a significant higher retention of mucoadhesive microparticles in upper GI tract. Conclusions: Algino-pectinate mucoadhesive formulations exhibited promising properties of a sustained release form for piroxicam and provided distinct tissue protection in stomach. PMID:25625047

  19. Liraglutide-loaded poly(lactic-co-glycolic acid) microspheres: Preparation and in vivo evaluation.

    PubMed

    Wu, Junzi; Williams, Gareth R; Branford-White, Christopher; Li, Heyu; Li, Yan; Zhu, Li-Min

    2016-09-20

    In this work, we sought to generate sustained-release injectable microspheres loaded with the GLP-1 analogue liraglutide. Using water-in-oil-in-water double emulsion methods, poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with liraglutide were prepared. The microspheres gave sustained drug release over 30days, with cumulative release of up to 90% reached in vitro. The microspheres were further studied in a rat model of diabetes, and their performance compared with a group given daily liraglutide injections. Reduced blood sugar levels were seen in the microsphere treatment groups, with the results being similar to those obtained with conventional injections between 10 and 25days after the commencement of treatment. After 5 and 30days of treatment, the microspheres seem a little slower to act than the injections. The pathology of the rats' spleen, heart, kidney and lungs was probed after the 30-day treatment period, and the results indicated that the microspheres were safe and had beneficial effects on the liver, reducing the occurrence of fatty deposits seen in untreated diabetic rats. Moreover, in terms of liver, renal and cardiac functions, and blood lipid and antioxidant levels, the microspheres were as effective as the injections. The expression of several proteases linked to the metabolism of aliphatic acids and homocysteine was promoted by the microsphere formulations. Inflammatory markers in the microsphere treatment groups were somewhat higher than the injection group, however. The liraglutide/PLGA microspheres prepared in this work are overall shown to be efficacious in a rat model of diabetes, and we thus believe they have strong potential for clinical use.

  20. Process and formulation variables in the preparation of injectable and biodegradable magnetic microspheres

    PubMed Central

    Zhao, Hong; Gagnon, Jeffrey; Häfeli, Urs O

    2007-01-01

    The aim of this study was to prepare biodegradable sustained release magnetite microspheres sized between 1 to 2 μm. The microspheres with or without magnetic materials were prepared by a W/O/W double emulsion solvent evaporation technique using poly(lactide-co-glycolide) (PLGA) as the biodegradable matrix forming polymer. Effects of manufacturing and formulation variables on particle size were investigated with non-magnetic microspheres. Microsphere size could be controlled by modification of homogenization speed, PLGA concentration in the oil phase, oil phase volume, solvent composition, and polyvinyl alcohol (PVA) concentration in the outer water phase. Most influential were the agitation velocity and all parameters that influence the kinematic viscosity of oil and outer water phase, specifically the type and concentration of the oil phase. The magnetic component yielding homogeneous magnetic microspheres consisted of magnetite nanoparticles of 8 nm diameter stabilized with a polyethylene glycole/polyacrylic acid (PEG/PAA) coating and a saturation magnetization of 47.8 emu/g. Non-magnetic and magnetic microspheres had very similar size, morphology, and size distribution, as shown by scanning electron microscopy. The optimized conditions yielded microspheres with 13.7 weight% of magnetite and an average diameter of 1.37 μm. Such biodegradable magnetic microspheres seem appropriate for vascular administration followed by magnetic drug targeting. PMID:17407608

  1. Preparation, evaluation and bioavailability studies of indomethacin-bees wax microspheres.

    PubMed

    Gowda, D V; Ravi, Valluru; Shivakumar, H G; Hatna, Siddaramaiah

    2009-07-01

    The present study envisages the preparation of microspheres containing indomethacin (IM) as model drug and bees wax as carrier, and to compare the in vitro release and pharmacokinetics of prepared IM formulation with commercially available oral formulation MicrocidSR. The microsphere formulations were prepared by meltable emulsified dispersion and cooling induced solidification. Surface morphology of microspheres has been evaluated using scanning electron microscopy (SEM). The SEM images revealed the spherical shape of microspheres and more than 98.0% of the isolated microspheres were in the size range 115-855 mum. Differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy studies indicated that the drug after encapsulation with bees wax was stable and compatible. A single dose randomized complete cross over study of IM (75 mg) microspheres was carried out on 8 healthy Albino sheeps. Plasma IM concentrations and other pharmacokinetic parameters obtained were statistically analyzed. The T (max), C (max), AUC(O-24) and T (1/2) values of MicrocidSR and optimized formulation were 3.0 h, 2038 +/- 51.31 ng/ml, 9528 +/- 129.65 ng/ml h(-1), and 2.59 +/- 0.02 h(-1); and 3.2 h, 1940 +/- 22.61 ng/ml, 8751 +/- 41.32 ng/ml h(-1), and 2.68 +/- 0.02 h(-1), respectively. Beeswax microspheres showed controlled release and it can be concluded that both the prepared formulation and MicrocidSR are bioequivalent.

  2. Hollow and porous hydroxyapatite microspheres prepared with an O/W emulsion by spray freezing method.

    PubMed

    Xiao, Qiyao; Zhou, Kechao; Chen, Chao; Jiang, Mingxiang; Zhang, Yan; Luo, Hang; Zhang, Dou

    2016-12-01

    Microspheres with hollow and/or porous structures have been widely used in various applications. A new method of spraying and freezing emulsions was developed to prepare hollow HA (hydroxyapatite) microspheres with interconnected pores by using PVA (polyvinyl alcohol) as emulsifiers and binders. The relationships between viscosity and shear time or rates were tested and the dispersing stability of oil in water (O/W) emulsions was characterized with comparison to suspensions without the addition of oil phase. The effects of solid loadings of HA and the volume ratio between oil and water on the morphologies of microspheres were investigated. Hollow HA microspheres with particle diameter of ~20μm and pore size of ~0.6μm were successfully obtained by spray freezing method. Besides, drying and sintering processes were crucial to the formation of hollow and porous structures, respectively. The gentamicin loading and releasing of HA porous microspheres with different hollow volumes were tested.

  3. Preparation and investigation the release behaviour of wax microspheres loaded with salicylic acid.

    PubMed

    Gifani, Aida; Taghizadeh, Mojtaba; Seifkordi, Ali A; Ardjmand, Mehdi

    2009-09-01

    Salicylic acid-beeswax microspheres were prepared by melt dispersion technique. The effects of formulation parameters on the microscopic characteristic, drug loading and cumulative amount of released drug were investigated by experimental design. Results showed that all of the microparticles were spherical with porous surfaces. The average size of microspheres was 24-48 microm, the drug content was in the range of 22-45% and the encapsulation efficiency was 46-93%. Drug loading was influenced by emulsification speed as a main factor. All the microspheres had a burst release initially. The emulsifier concentration did not have a significant effect on drug release. The release behaviour of microspheres conformed best to Korsmeyer-Peppas semi-empirical model and the release of SA from beeswax microspheres was Fickian (n < 0.45).

  4. Hollow and porous hydroxyapatite microspheres prepared with an O/W emulsion by spray freezing method.

    PubMed

    Xiao, Qiyao; Zhou, Kechao; Chen, Chao; Jiang, Mingxiang; Zhang, Yan; Luo, Hang; Zhang, Dou

    2016-12-01

    Microspheres with hollow and/or porous structures have been widely used in various applications. A new method of spraying and freezing emulsions was developed to prepare hollow HA (hydroxyapatite) microspheres with interconnected pores by using PVA (polyvinyl alcohol) as emulsifiers and binders. The relationships between viscosity and shear time or rates were tested and the dispersing stability of oil in water (O/W) emulsions was characterized with comparison to suspensions without the addition of oil phase. The effects of solid loadings of HA and the volume ratio between oil and water on the morphologies of microspheres were investigated. Hollow HA microspheres with particle diameter of ~20μm and pore size of ~0.6μm were successfully obtained by spray freezing method. Besides, drying and sintering processes were crucial to the formation of hollow and porous structures, respectively. The gentamicin loading and releasing of HA porous microspheres with different hollow volumes were tested. PMID:27612804

  5. Preparation and in vitro Characterization of Porous Carrier–Based Glipizide Floating Microspheres for Gastric Delivery

    PubMed Central

    Pandya, N; Pandya, M; Bhaskar, V H

    2011-01-01

    Floating microspheres have been utilized to obtain prolonged and uniform release of drug in the stomach for development of once-daily formulations. A controlled-release system designed to increase residence time in the stomach without contact with the mucosa was achieved through the preparation of floating microspheres by the emulsion solvent diffusion technique, using (i) calcium silicate (CS) as porous carrier; (ii) glipizide, an oral hypoglycemic agent; and (iii) Eudragit® S as polymer. The effects of various formulations and process variables on the internal and external particle morphology, micromeritic properties, in vitro floating behavior, drug loading, and in vitro drug release were studied. The microspheres were found to be regular in shape and highly porous. The prepared microspheres exhibited prolonged drug release (~8 h) and remained buoyant for >10 h. The mean particle size increased and the drug release rate decreased at higher polymer concentrations. No significant effect of the stirring rate during preparation on drug release was observed. In vitro studies demonstrated diffusion-controlled drug release from the microspheres. Microsphere formulation CS4, containing 200 mg calcium silicate, showed the best floating ability (88% buoyancy) in simulated gastric fluid. The release pattern of glipizide in simulated gastric fluid from all floating microspheres followed the Higuchi matrix model and the Peppas-Korsmeyer model. PMID:21731353

  6. Poly-L-lactide/sodium alginate/chitosan microsphere hybrid scaffolds made with braiding manufacture and adhesion technique: Solution to the incongruence between porosity and compressive strength.

    PubMed

    Lin, Jia-Horng; Chen, Chih-Kuang; Wen, Shih-Peng; Lou, Ching-Wen

    2015-01-01

    Bone scaffolds require a three-dimensional structure, high porosity, interconnected pores, adequate mechanical strengths, and non-toxicity. A high porosity is incongruent with mechanical strengths. Therefore, this study combines a braiding method and microsphere solution to create bone scaffolds with a high porosity and sufficient mechanical strengths. First, poly-L-lactide (PLLA) plied yarns are braided into 5-, 10-, 15-, 20-, and 25-layer hollow braids, and then thermally treated at 165 °C for various durations. Next, sodium alginate (SA) microspheres, cross-linked with CaCl2 solution with various concentrations, are combined with PLLA porous braided bone scaffolds to form PLLA/SA/CS microsphere hybrid scaffolds, which are then observed for surface observation, and tested for porosity, water contact angle, compressive strength, MTT assay, bioactivity, alkaline phosphatase (ALP) assay, cell attachment, and statistical analyses. The test results show that the layer amount of the bone scaffold is proportional to the compressive strength. With the same number of layers, the compressive strength is inversely proportional to the concentration of the CaCl2 solution. The results of surface observation, porosity, and water contact angle tests show that PLLA/SA/CS microsphere hybrid scaffolds possess a high porosity and good hydrophilicity; as a result, the braiding manufacture and the bonding technique effectively solve the confliction between porosity and mechanical strength. The concentration of CaCl2 does not pertain to cell activity and ALP results, exemplified by good cell attachment on bone scaffolds for each specification. PMID:25953547

  7. Preparation of microspheres containing low solubility drug compound by electrohydrodynamic spraying.

    PubMed

    Bohr, Adam; Kristensen, Jakob; Stride, Eleanor; Dyas, Mark; Edirisinghe, Mohan

    2011-06-30

    Micro- and nanoparticle formulations are widely used to improve the bioavailability of low solubility drugs. In this study, electrospraying is introduced as a method for producing drug-loaded microspheres at ambient conditions. PLGA microspheres containing celecoxib, a low solubility drug, were prepared with the objective of producing near-monodisperse microspheres with the drug in a stable amorphous form. We found that it is possible to produce near-monodisperse celecoxib-loaded PLGA microspheres at different polymer:drug ratios. The microspheres produced were in the size range 1-5 μm depending on the polymer:drug ratio and had smooth surfaces. Thermal analysis further indicates that celecoxib is present in an amorphous form inside the microspheres. Drug dissolution studies showed an initial burst release followed by a period of sustained release with the dissolution curve depending on the polymer:drug ratio. Electrospraying is thus a promising method for producing amorphous microspheres of low solubility drugs such as celecoxib. The microsphere properties may be further optimized to achieve an appropriate dissolution profile with the aim of increasing oral bioavailability of low solubility drugs.

  8. Preparation of calcium alginate microgel beads in an electrodispersion reactor using an internal source of calcium carbonate nanoparticles.

    PubMed

    Zhao, Yinyan; Carvajal, M Teresa; Won, You-Yeon; Harris, Michael T

    2007-12-01

    An electrodispersion reactor has been used to prepare calcium alginate (Ca-alginate) microgel beads in this study. In the electrodispersion reactor, pulsed electric fields are utilized to atomize aqueous mixtures of sodium alginate and CaCO3 nanoparticles (dispersed phase) from a nozzle into an immiscible, insulating second liquid (continuous phase) containing a soluble organic acid. This technique combines the features of the electrohydrodynamic force driven emulsion processes and externally triggered gelations in microreactors (the droplets) ultimately to yield soft gel beads. The average particle size of the Ca-alginate gels generated by this method changed from 412 +/- 90 to 10 +/- 3 microm as the applied peak voltage was increased. A diagram depicting structural information for the Ca-alginate was constructed as a function of the concentrations of sodium alginate and CaCO3 nanoparticles. From this diagram, a critical concentration of sodium alginate required for sol-gel transformation was observed. The characteristic highly porous structure of Ca-alginate particles made by this technique appears suitable for microencapsulation applications. Finally, time scale analysis was performed for the electrodispersion processes that include reactions in the microreactor droplets to provide guidelines for the future employment of this technique. This electrodispersion reactor can be used potentially in the formation of many reaction-based microencapsulation systems.

  9. In vitro and in vivo evaluation of mucoadhesive microspheres prepared for the gastrointestinal tract using polyglycerol esters of fatty acids and a poly(acrylic acid) derivative.

    PubMed

    Akiyama, Y; Nagahara, N; Kashihara, T; Hirai, S; Toguchi, H

    1995-03-01

    Two types of polyglycerol ester of fatty acid (PGEF)-based microspheres were prepared: Carbopol 934P (CP)-coated microspheres (CPC-microspheres) and CP-dispersion microspheres (CPD-microspheres). Comparative studies on mucoadhesion were done with these microspheres and PGEF-based microspheres without CP (PGEF-microspheres). In an in vitro adhesion test, the CPD-microspheres adhered strongly to mucosa prepared from rat stomach and small intestine because each CP particle in the CPD-microsphere was hydrated and swelled with part of it remaining within the microsphere and part extending to the surface serving to anchor the microsphere to the mucus layer. The gastrointestinal transit patterns after administration of the CPD-microspheres and PGEF-microspheres to fasted rats were fitted to a model in which the microspheres are emptied from the stomach monoexponentially with a lag time and then transit through the small intestine at zero-order. Parameters obtained by curve fitting confirmed that the gastrointestinal transit time of the CPD-microspheres was prolonged compared with that of the PGEF-microspheres. MRT in the gastrointestinal tract was also prolonged after administration of the CPD-microspheres compared with that following the administration of the PGEF-microspheres.

  10. Agarose- and alginate-based biopolymers for sample preparation: Excellent green extraction tools for this century.

    PubMed

    Sanagi, Mohd Marsin; Loh, Saw Hong; Wan Ibrahim, Wan Nazihah; Pourmand, Neda; Salisu, Ahmed; Wan Ibrahim, Wan Aini; Ali, Imran

    2016-03-01

    Recently, there has been considerable interest in the use of miniaturized sample preparation techniques before the chromatographic monitoring of the analytes in unknown complex compositions. The use of biopolymer-based sorbents in solid-phase microextraction techniques has achieved a good reputation. A great variety of polysaccharides can be extracted from marine plants or microorganisms. Seaweeds are the major sources of polysaccharides such as alginate, agar, agarose, as well as carrageenans. Agarose and alginate (green biopolymers) have been manipulated for different microextraction approaches. The present review is focused on the classification of biopolymer and their applications in multidisciplinary research. Besides, efforts have been made to discuss the state-of-the-art of the new microextraction techniques that utilize commercial biopolymer interfaces such as agarose in liquid-phase microextraction and solid-phase microextraction.

  11. Sustained release of risperidone from biodegradable microspheres prepared by in-situ suspension-evaporation process.

    PubMed

    An, Taekun; Choi, Juhyuen; Kim, Aram; Lee, Jin Ho; Nam, Yoonjin; Park, Junsung; Sun, Bo kyung; Suh, Hearan; Kim, Cherng-ju; Hwang, Sung-Joo

    2016-04-30

    Risperidone-loaded poly (D,L-lactide-co-glycolide) (PLGA) microspheres were prepared with a suspension-evaporation process with an aqueous suspension containing an in situ-formed aluminum hydroxide inorganic gel (SEP-AL process) and evaluated for encapsulation efficiency, particle size, surface morphology, glass transition temperature, in vitro drug release profile, and in vivo behavior. The SEP-AL microspheres were compared with conventional oil-in-water (O/W) emulsion solvent evaporation method using polyvinylalcohol (PVA) as an emulsifier (CP-PVA process). The microspheres were spherical in shape. DSC measurements showed that risperidone crystallinity was greatly reduced due to the homogeneous distribution of risperidone in PLGA microspheres. In vitro drug release profile from the microspheres showed a sigmoidal pattern of negligible initial burst up to 24h and minimal release (time-lag) for 7 days. After the lag phase, slow release took a place up to 25 days and then rapid release occurred sharply for 1 week. In vivo rat pharmacokinetic profile from the microspheres showed very low blood concentration level at the initial phase (up to 24h) followed by the latent phase up to 21 days. At the 3rd week, main phase started and the blood concentration of the drug increased up to the 5th week, and then gradually decreased. The risperidone-loaded PLGA microspheres produced by SEP-AL process showed excellent controlled release characteristics for the effective treatment of schizophrenia patients. PMID:26899975

  12. An oral DNA vaccine against infectious haematopoietic necrosis virus (IHNV) encapsulated in alginate microspheres induces dose-dependent immune responses and significant protection in rainbow trout (Oncorrhynchus mykiss).

    PubMed

    Ballesteros, Natalia A; Alonso, Marta; Saint-Jean, Sylvia Rodríguez; Perez-Prieto, Sara I

    2015-08-01

    Administered by intramuscular injection, a DNA vaccine (pIRF1A-G) containing the promoter regions upstream of the rainbow trout interferon regulatory factor 1A gene (IRF1A) driven the expression of the infectious hematopoietic necrosis virus (IHNV) glycoprotein (G) elicited protective immune responses in rainbow trout (Oncorhynchus mykiss). However, less laborious and cost-effective routes of DNA vaccine delivery are required to vaccinate large numbers of susceptible farmed fish. In this study, the pIRF1A-G vaccine was encapsulated into alginate microspheres and orally administered to rainbow trout. At 1, 3, 5, and 7 d post-vaccination, IHNV G transcripts were detected by quantitative real-time PCR in gills, spleen, kidney and intestinal tissues of vaccinated fish. This result suggested that the encapsulation of pIRF1A-G in alginate microparticles protected the DNA vaccine from degradation in the fish stomach and ensured vaccine early delivery to the hindgut, vaccine passage through the intestinal mucosa and its distribution thought internal and external organs of vaccinated fish. We also observed that the oral route required approximately 20-fold more plasmid DNA than the injection route to induce the expression of significant levels of IHNV G transcripts in kidney and spleen of vaccinated fish. Despite this limitation, increased IFN-1, TLR-7 and IgM gene expression was detected by qRT-PCR in kidney of vaccinated fish when a 10 μg dose of the oral pIRF1A-G vaccine was administered. In contrast, significant Mx-1, Vig-1, Vig-2, TLR-3 and TLR-8 gene expression was only detected when higher doses of pIRF1A-G (50 and 100 μg) were orally administered. The pIRF1A-G vaccine also induced the expression of several markers of the adaptive immune response (CD4, CD8, IgM and IgT) in kidney and spleen of immunized fish in a dose-dependent manner. When vaccinated fish were challenged by immersion with live IHNV, evidence of a dose-response effect of the oral vaccine could also

  13. Preparation and characterization of genipin-cross-linked silk fibroin/chitosan sustained-release microspheres

    PubMed Central

    Zeng, Shuguang; Ye, Manwen; Qiu, Junqi; Fang, Wei; Rong, Mingdeng; Guo, Zehong; Gao, Wenfen

    2015-01-01

    We report the effects of distinct concentrations of genipin and silk fibroin (SF):chitosan (CS) ratios on the formation of SF–CS composite microspheres. We selected microspheres featuring an SF:CS ratio of 1:1, encapsulated various concentrations of bovine serum albumin (BSA), and then compared their encapsulation efficiency and sustained-release rate with those of pure CS microspheres. We determined that the following five groups of microspheres were highly spherical and featured particle sizes ranging from 70 μm to 147 μm: mass ratio of CS:SF =1:0.5, 0.1 g or 0.5 g genipin; CS:SF =1:1, 0.05 g or 1 g genipin; and CS:SF =1:2, 0.5 g genipin. The microspheres prepared using 1:1 CS:SF ratio and 0.05 g genipin in the presence of 10 mg, 20 mg, and 50 mg of BSA exhibited encapsulation efficiencies of 50.16%±4.32%, 56.58%±3.58%, and 42.19%±7.47%, respectively. Fourier-transform infrared spectroscopy (FTIR) results showed that SF and CS were cross-linked and that the α-helices and random coils of SF were converted into β-sheets. BSA did not chemically react with CS or SF. Moreover, thermal gravimetric analysis (TGA) results showed that the melting point of BSA did not change, which confirmed the FTIR results, and X-ray diffraction results showed that BSA was entrapped in microspheres in a noncrystalline form, which further verified the TGA and FTIR data. The sustained-release microspheres prepared in the presence of 10 mg, 20 mg, and 50 mg of BSA burst release 30.79%±3.43%, 34.41%±4.46%, and 41.75%±0.96% of the entrapped BSA on the 1st day and cumulatively released 75.20%±2.52%, 79.16%±4.31%, and 89.04%±4.68% in 21 days, respectively. The pure CS microspheres prepared in the presence of 10 mg of BSA burst release 39.53%±1.76% of BSA on the 1st day and cumulatively released 83.57%±2.33% of the total encapsulated BSA in 21 days. The SF–CS composite microspheres exhibited higher sustained release than did the pure CS microspheres, and thus these composite

  14. Preparation and characterization of genipin-cross-linked silk fibroin/chitosan sustained-release microspheres.

    PubMed

    Zeng, Shuguang; Ye, Manwen; Qiu, Junqi; Fang, Wei; Rong, Mingdeng; Guo, Zehong; Gao, Wenfen

    2015-01-01

    We report the effects of distinct concentrations of genipin and silk fibroin (SF):chitosan (CS) ratios on the formation of SF-CS composite microspheres. We selected microspheres featuring an SF:CS ratio of 1:1, encapsulated various concentrations of bovine serum albumin (BSA), and then compared their encapsulation efficiency and sustained-release rate with those of pure CS microspheres. We determined that the following five groups of microspheres were highly spherical and featured particle sizes ranging from 70 μm to 147 μm: mass ratio of CS:SF =1:0.5, 0.1 g or 0.5 g genipin; CS:SF =1:1, 0.05 g or 1 g genipin; and CS:SF =1:2, 0.5 g genipin. The microspheres prepared using 1:1 CS:SF ratio and 0.05 g genipin in the presence of 10 mg, 20 mg, and 50 mg of BSA exhibited encapsulation efficiencies of 50.16%±4.32%, 56.58%±3.58%, and 42.19%±7.47%, respectively. Fourier-transform infrared spectroscopy (FTIR) results showed that SF and CS were cross-linked and that the α-helices and random coils of SF were converted into β-sheets. BSA did not chemically react with CS or SF. Moreover, thermal gravimetric analysis (TGA) results showed that the melting point of BSA did not change, which confirmed the FTIR results, and X-ray diffraction results showed that BSA was entrapped in microspheres in a noncrystalline form, which further verified the TGA and FTIR data. The sustained-release microspheres prepared in the presence of 10 mg, 20 mg, and 50 mg of BSA burst release 30.79%±3.43%, 34.41%±4.46%, and 41.75%±0.96% of the entrapped BSA on the 1st day and cumulatively released 75.20%±2.52%, 79.16%±4.31%, and 89.04%±4.68% in 21 days, respectively. The pure CS microspheres prepared in the presence of 10 mg of BSA burst release 39.53%±1.76% of BSA on the 1st day and cumulatively released 83.57%±2.33% of the total encapsulated BSA in 21 days. The SF-CS composite microspheres exhibited higher sustained release than did the pure CS microspheres, and thus these composite

  15. Preparation and Gas Sensing Properties of Hollow ZnS Microspheres.

    PubMed

    Xiao, Jingkun; Song, Chengwen; Song, Mingyan; Dong, Wei; Li, Chen; Yin, Yanyan

    2016-03-01

    Hollow ZnS microspheres are synthesized by a facile hydrothermal method. Morphology and structure of the ZnS microspheres are analyzed by SEM, TEM, XRD and N2 sorption technique, Gas sensing properties of the as-prepared ZnS sensor are also systematically investigated. The results show that the ZnS microspheres have well-developed porous and hollow nanostructure. The sensor based on the ZnS microspheres exhibits ultra-fast response (1-2 s) and fast recovery time (7-34 s) towards ethanol at the optimal operating temperature of 160 degrees C. Moreover, the ZnS sensor also demonstrates high selectivity to other gases such as methanol, benzene, dichloromethane and hexane, suggesting that it is a promising candidate for ethanol sensing applications. PMID:27455754

  16. [Preparation and clinical application of polyvinyl alcohol/drug-loaded chitosan microsphere composite wound dressing].

    PubMed

    Zhang, Xiuju; Lin, Zhidan; Chen, Wenbin; Song, Ying; Li, Zhizhong

    2011-04-01

    In order to prepare and apply the polyvinyl alcohol/drug-loaded chitosan microspheres composite wound dressing, we first prepared chitosan microspheres by emulsion cross-linking method, and then added chitosan microspheres into the reactants during the acetalization of polyvinyl alcohol and formaldehyde. We further studied the morphology, water absorption, swelling degree, mechanical properties and in vitro release of the sponge with different amount of chitosan microspheres. The results showed that polyvinyl alcohol/drug-loaded chitosan composite sponge has porous structure with connectionism. Increasing the amount of chitosan microspheres would make the apertures smaller, so that the water absorption and the swelling of sponge decreased, but the tensile strength and compressive strength increased. With the increase of the amount of chitosan microspheres, the drug absorption of cefradine and the release rate increase, and the release time become longer. With the results of toxicity grade of 0 to 1, this type of composite sponge is non-toxic and meets the requirement of biocompatibility. The observation of rabbit nasal cavity after surgical operation suggested that polyvinyl acetal sponge modified with the chitosan has antiphlogistic, hemostatic and non-adherent characteristic, and can promote the healing and recovering of the nasalmucosa. After using this composite material, best growing surroundings for patients' granulation tissue were provided. Exposed bone and tendon were covered well with granulation tissue.

  17. Preparation and in vivo evaluation of PCADK/PLGA microspheres for improving stability and efficacy of rhGH.

    PubMed

    Wang, Chenhui; Yu, Changhui; Liu, Jiaxin; Teng, Lesheng; Sun, Fengying; Li, Youxin

    2015-11-30

    The goal of this research is to prepare poly(cyclohexane-1,4 diyl acetone dimethylene ketal) (PCADK)/poly(D,L-lactide-co-glycolide) (PLGA) blend microspheres loaded with recombinant human growth hormone (rhGH). The effect of PCADK degradation products on the structural integrity, secondary and tertiary structure and pharmacodynamics of rhGH was evaluated by native-polyacrylamide gel electrophoresis (Native-PAGE), size-exclusion high performance liquid chromatography (SEC-HPLC), circular dichroism (CD), fluorescence spectroscopy and in hypophysectomized rat models. Compared with PLGA degradation products, rhGH was found to be more stable in the presence of PCADK degradation products. PCADK/PLGA blend microspheres were then prepared and the morphology, encapsulation efficiency, release behavior and rhGH stability were investigated. PCADK/PLGA microspheres had regular shapes and smooth surfaces when the proportion of PCADK was less than 50%. The late-releasable amount of rhGH in PCADK/PLGA microspheres was greater than that in PLGA microspheres. In addition, the PCADK/PLGA microspheres showed larger AUC and improved therapeutic effects on rats than PLGA microspheres. Furthermore, the pH inside the microspheres was detected by CLSM to explain the improved rhGH stability in the PCADK/PLGA microspheres. In conclusion, PCADK/PLGA blend microspheres showed potential to improve rhGH stability and the efficacy of sustained-release of rhGH compared with PLGA microspheres.

  18. Preparation and characterization of. beta. -D-glucosidase immobilized in calcium alginate

    SciTech Connect

    Woodward, J.; Krasniak, S.R.; Smith, R.D.; Spielberg, F.; Zachry, G.S.

    1982-01-01

    This study investigated the immobilization of ..beta..-D-glucosidase (E.C. 3.2.1.21) in calcium alginate gel spheres. The immobilized enzyme catalyzed the hydrolysis of cellobiose to glucose. During preparation of the enzyme-containing spheres, 49% of the initial activity was lost from the alginate slurry. There was a 37% retention of the enzyme activity that was actually immobilized within the spheres. This loss of activity upon immobilization may be caused by inhibition of the enzyme by calcium cations and alginate anions present in the gel. Mass transfer effects were apparently minimal in this system and were not responsible for the activity loss. Leakage of the enzyme from the spheres occurred during storage of the spheres occurred during storage of the spheres at 4/sup 0/C and during their incubation with stirring at 23/sup 0/C. Leakage was severe at pH 5.0 but could be prevented if the enzyme was treated with glutaraldehyde prior to immobilization.

  19. Streptomycin-loaded PLGA-alginate nanoparticles: preparation, characterization, and assessment

    NASA Astrophysics Data System (ADS)

    Asadi, Asadollah

    2013-04-01

    The aim of this study was to formulate and characterize streptomycin-loaded PLGA-alginate nanoparticles for their potential therapeutic use in Salmonella subsp. enterica ATCC 14028 infections. The streptomycin nanoparticle was prepared by solvent diffusion method, and the other properties such as size, zeta potential, loading efficacy, release kinetics, and antimicrobial strength were evaluated. The survey shows that nanoparticles may serve as a carrier of streptomycin and may provide localized antibacterial activity in the treatment of Salmonellosis. Electron microscopy showed spherical particles with indentations. The average size of the nanoparticles was 90 nm. At pH 7.2, the release kinetics of streptomycin from the nanoparticles was successfully illustrated as an initial burst defined by a first order equation that after this stage, it has a drastic tendency to obtain steady state. Nevertheless, nanoparticles showed loading efficacy nearly about 70-75 %. In addition, the tendency of concentration of streptomycin released from nanoparticles to reach antibacterial activity was similar to that of free streptomycin against PLGA-alginate, but it had threefold more antimicrobial strength in comparison with free streptomycin. This work shows the potential use of streptomycin-loaded PLGA-alginate nanoparticles and its capability.

  20. Streptomycin-loaded PLGA-alginate nanoparticles: preparation, characterization, and assessment

    NASA Astrophysics Data System (ADS)

    Asadi, Asadollah

    2014-04-01

    The aim of this study was to formulate and characterize streptomycin-loaded PLGA-alginate nanoparticles for their potential therapeutic use in Salmonella subsp. enterica ATCC 14028 infections. The streptomycin nanoparticle was prepared by solvent diffusion method, and the other properties such as size, zeta potential, loading efficacy, release kinetics, and antimicrobial strength were evaluated. The survey shows that nanoparticles may serve as a carrier of streptomycin and may provide localized antibacterial activity in the treatment of Salmonellosis. Electron microscopy showed spherical particles with indentations. The average size of the nanoparticles was 90 nm. At pH 7.2, the release kinetics of streptomycin from the nanoparticles was successfully illustrated as an initial burst defined by a first order equation that after this stage, it has a drastic tendency to obtain steady state. Nevertheless, nanoparticles showed loading efficacy nearly about 70-75 %. In addition, the tendency of concentration of streptomycin released from nanoparticles to reach antibacterial activity was similar to that of free streptomycin against PLGA-alginate, but it had threefold more antimicrobial strength in comparison with free streptomycin. This work shows the potential use of streptomycin-loaded PLGA-alginate nanoparticles and its capability.

  1. Facile large scale preparation and electromagnetic properties of silica-nickel-carbon composite shelly hollow microspheres.

    PubMed

    An, Zhenguo; Zhang, Jingjie

    2016-02-21

    Silica-nickel-carbon composite microspheres with shelly hollow structures and tunable electromagnetic properties were prepared in large scale through a three-step route. Micron-sized precursor microspheres were prepared firstly by spray drying of water glass. Then a subsequent acid leaching with diluted hydrochloric acid was carried out to eliminate the Na2O in the precursor microspheres to get single shell silica hollow microspheres (SHMs). Afterwards, Ni-C composite shells were assembled on the surface of the previously formed SHMs through a calcination route in an inert atmosphere to form silica-nickel-carbon composite shelly hollow microspheres (CSHMs) through decomposition of the reactants and carbon thermal reduction. By properly tuning the calcination conditions, silica-nickel CSHMs with gradients in composition can also be prepared. The electromagnetic properties of the CSHMs were studied and the results demonstrate that they present ferromagnetic and microwave absorbing properties related to the shell composition. The DSHPs thus obtained may have some promising applications in the fields of low-density magnetic materials and microwave absorbers. This work provides a new strategy to fabricate shelly hollow particles, which can be expected to be extended to the controlled preparation of similar structures with various compositions. PMID:26726765

  2. Influence of clay particles on microfluidic-based preparation of hydrogel composite microsphere

    NASA Astrophysics Data System (ADS)

    Hong, Joung Sook

    2016-05-01

    For the successful fabrication of a hydrogel composite microsphere, this study aimed to investigate the influence of clay particles on microsphere formation in a microfluidic device which has flow focusing and a 4.5:1 contraction channel. A poly alginic acid solution (2.0 wt.%) with clay particles was used as the dispersed phase to generate drops in an oil medium, which then merged with drops of a CaCl2 solution for gelation. Drop generations were observed with different flow rates and particles types. When the flow rate increased, drop generation was enhanced and drop size decreased by the build-up of more favorable hydrodynamic flow conditions to detach the droplets. The addition of a small amount of particles insignificantly changed the drop generation behavior even though it reduced interfacial tension and increased the viscosity of the solution. Instead, clays particles significantly affected hydro-gelation depending on the hydrophobicity of particles, which produced further heterogeneity in the shape and size of microsphere.

  3. Sustained release liquid preparation using sodium alginate for eradication of Helicobacter pyroli.

    PubMed

    Katayama, H; Nishimura, T; Ochi, S; Tsuruta, Y; Yamazaki, Y; Shibata, K; Yoshitomi, H

    1999-01-01

    We prepared a new liquid preparation for eradication of Helicobacter pylori (HP), and examined drug release in vitro and in vivo. The liquid preparation mainly consisted of a sodium alginate (AG) aqueous solution containing ampicillin (ABPC), an antibiotic drug, or methylene blue, a dye. Drug release was retarded by Ca pre-treatment (0.10 M, 20 s) of the AG preparation in in vitro drug release studies due to gel-formation at the liquid surface. In in vivo experiments, the AG preparations were administered orally to rats. The rats were divided into two groups, with or without pre-administration of ranitidine hydrochloride (RH, an H2-blocker). The total remaining % of ABPC in the stomach was high in the rats administered the AG preparation compared to the ABPC solution. The AG preparation might float in the stomach without adhering to the gastric wall in the rats without pre-administration of RH. The total remaining % of ABPC at 30 min was almost 100% in the RH pre-administration rats administered the AG preparation, and about 80% of the drug existed in fraction 2 (implying adhesion of the preparation on the gastric mucus). At 60 min, the total remaining % in the AG preparation plus Ca (mean 87%) increased about 2-fold compared to that in the AG preparation alone (mean 44%). In this case, a large portion of the remaining ABPC also existed in fraction 2. This preparation may be useful for eradication of HP. PMID:9989662

  4. Preparation and evaluation of chitosan microspheres containing nicorandil

    PubMed Central

    Patel, Keyur S; Patel, Mandev B

    2014-01-01

    Objectives: The objective of present study was to develop chitosan-based sustained release nicorandil microspheres to reduce the dosing frequency. Materials and Methods: The nicorandil-loaded chitosan microspheres were formulated by emulsion crosslinking method. A 32 factorial design was employed to study the influence of drug: Polymer ratio and volume of glutaraldehyde (GA) on percentage entrapment efficiency, particle size, and % drug release at 8 h. Results: The entrapment efficiency was found to be 41.67 ± 1.43-77.33 ± 1.97% and particle size range 65.67 ± 2.08-146.67 ± 2.18 μm. The batch CH5 showed 79.11 ± 2.23 and 96.21 ± 2.41% drug release at 8 and 12 h, respectively. Conclusions: Drug: Polymer ratio and volume of GA had significant effect on % entrapment efficiency, particle size, and % drug release. From the scanning electron microscopy (SEM) study observed that microspheres were spherical and fairly smooth surface. Fickian diffusion was the mode of drug release from nicorandil-loaded chitosan microspheres formulations. PMID:24678460

  5. Preparation and evaluation of enrofloxacin microspheres and tissue distribution in rats

    PubMed Central

    Yang, Fan; Kang, Jijun; Yang, Fang; Zhao, Zhensheng; Kong, Tao

    2015-01-01

    New enrofloxacin microspheres were formulated, and their physical properties, lung-targeting ability, and tissue distribution in rats were examined. The microspheres had a regular and round shape. The mean diameter was 10.06 µm, and the diameter of 89.93% of all microspheres ranged from 7.0 µm to 30.0 µm. Tissue distribution of the microspheres was evaluated along with a conventional enrofloxacin preparation after a single intravenous injection (7.5 mg of enrofloxacin/kg bw). The results showed that the elimination half-life (t1/2β) of enrofloxacin from lung was prolonged from 7.94 h for the conventional enrofloxacin to 13.28 h for the microspheres. Area under the lung concentration versus time curve from 0 h to ∞ (AUC0-∞) was increased from 11.66 h·µg/g to 508.00 h·µg/g. The peak concentration (Cmax) in lung was increased from 5.95 µg/g to 93.36 µg/g. Three lung-targeting parameters were further assessed and showed that the microspheres had remarkable lung-targeting capabilities. PMID:25643802

  6. Preparation of novel pirfenidone microspheres for lung-targeted delivery: in vitro and in vivo study

    PubMed Central

    Li, Dianbo; Gong, Liping

    2016-01-01

    The aim of this study was to develop and characterize pirfenidone (PF)-loaded chitosan microspheres for lung targeting. The microspheres were prepared using the emulsion-solvent evaporation method and characterized by assessing morphology, particle size, and zeta potential. The microspheres had a spherical nature with highly smooth and integrated surfaces. The particle size of microspheres was 4.6±0.3 µm, and the zeta potential was 20.3±1.4 mV. The in vitro release results indicated that the obtained formulation of PF could reach the state of sustained release with a biphasic drug release pattern. It was observed that there was no significant difference in both the percentage of entrapment efficiency and that of drug release before and after the stability study. In vivo, the calculated relative bioavailability indicated greater pulmonary absorption of PF when it was encapsulated in microspheres. According to histopathological studies, no histological change occurred to the rat lung after the administration of PF-loaded chitosan microspheres.

  7. Preparation of novel pirfenidone microspheres for lung-targeted delivery: in vitro and in vivo study

    PubMed Central

    Li, Dianbo; Gong, Liping

    2016-01-01

    The aim of this study was to develop and characterize pirfenidone (PF)-loaded chitosan microspheres for lung targeting. The microspheres were prepared using the emulsion-solvent evaporation method and characterized by assessing morphology, particle size, and zeta potential. The microspheres had a spherical nature with highly smooth and integrated surfaces. The particle size of microspheres was 4.6±0.3 µm, and the zeta potential was 20.3±1.4 mV. The in vitro release results indicated that the obtained formulation of PF could reach the state of sustained release with a biphasic drug release pattern. It was observed that there was no significant difference in both the percentage of entrapment efficiency and that of drug release before and after the stability study. In vivo, the calculated relative bioavailability indicated greater pulmonary absorption of PF when it was encapsulated in microspheres. According to histopathological studies, no histological change occurred to the rat lung after the administration of PF-loaded chitosan microspheres. PMID:27660413

  8. Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery.

    PubMed

    Chen, Xingtao; Lv, Guoyu; Zhang, Jue; Tang, Songchao; Yan, Yonggang; Wu, Zhaoying; Su, Jiacan; Wei, Jie

    2014-01-01

    A multi-(amino acid) copolymer (MAC) based on ω-aminocaproic acid, γ-aminobutyric acid, L-alanine, L-lysine, L-glutamate, and hydroxyproline was synthetized, and MAC microspheres encapsulating bovine serum albumin (BSA) were prepared by a double-emulsion solvent extraction method. The experimental results show that various preparation parameters including surfactant ratio of Tween 80 to Span 80, surfactant concentration, benzyl alcohol in the external water phase, and polymer concentration had obvious effects on the particle size, morphology, and encapsulation efficiency of the BSA-loaded microspheres. The sizes of BSA-loaded microspheres ranged from 60.2 μm to 79.7 μm, showing different degrees of porous structure. The encapsulation efficiency of BSA-loaded microspheres also ranged from 38.8% to 50.8%. BSA release from microspheres showed the classic biphasic profile, which was governed by diffusion and polymer erosion. The initial burst release of BSA from microspheres at the first week followed by constant slow release for the next 7 weeks were observed. BSA-loaded microspheres could degrade gradually in phosphate buffered saline buffer with pH value maintained at around 7.1 during 8 weeks incubation, suggesting that microsphere degradation did not cause a dramatic pH drop in phosphate buffered saline buffer because no acidic degradation products were released from the microspheres. Therefore, the MAC microspheres might have great potential as carriers for protein delivery.

  9. Preparation, characterization, and in vitro release studies of insulin-loaded double-walled poly(lactide-co-glycolide) microspheres.

    PubMed

    Ansary, Rezaul H; Rahman, Mokhlesur M; Awang, Mohamed B; Katas, Haliza; Hadi, Hazrina; Doolaanea, Abd Almonen

    2016-06-01

    The purpose of this study was to fabricate insulin-loaded double-walled and single-polymer poly(lactide-co-glycolide) (PLGA) microspheres using a fast degrading glucose core, hydroxyl-terminated poly(lactide-co-glycolide) (Glu-PLGA), and a moderate degrading carboxyl-terminated PLGA polymers. A modified water-in-oil-in-oil-in-water (w/o/o/w) emulsion solvent evaporation technique was employed to prepare double-walled microspheres, whereas single-polymer microspheres were fabricated by a conventional water-in-oil-in-water (w/o/w) emulsion solvent evaporation method. The effect of fabrication techniques and polymer characteristics on microspheres size, morphology, encapsulation efficiency, in vitro release, and insulin stability was evaluated. The prepared double-walled microspheres were essentially non-porous, smooth surfaced, and spherical in shape, whereas single-polymer microspheres were highly porous. Double-walled microspheres exhibited a significantly reduced initial burst followed by sustained and almost complete release of insulin compared to single-polymer microspheres. Initial burst release was further suppressed from double-walled microspheres when the mass ratio of the component polymers was increased. In conclusion, double-walled microspheres made of Glu-PLGA and PLGA can be a potential delivery system of therapeutic insulin.

  10. Preparation, characterization, and in vitro release studies of insulin-loaded double-walled poly(lactide-co-glycolide) microspheres.

    PubMed

    Ansary, Rezaul H; Rahman, Mokhlesur M; Awang, Mohamed B; Katas, Haliza; Hadi, Hazrina; Doolaanea, Abd Almonen

    2016-06-01

    The purpose of this study was to fabricate insulin-loaded double-walled and single-polymer poly(lactide-co-glycolide) (PLGA) microspheres using a fast degrading glucose core, hydroxyl-terminated poly(lactide-co-glycolide) (Glu-PLGA), and a moderate degrading carboxyl-terminated PLGA polymers. A modified water-in-oil-in-oil-in-water (w/o/o/w) emulsion solvent evaporation technique was employed to prepare double-walled microspheres, whereas single-polymer microspheres were fabricated by a conventional water-in-oil-in-water (w/o/w) emulsion solvent evaporation method. The effect of fabrication techniques and polymer characteristics on microspheres size, morphology, encapsulation efficiency, in vitro release, and insulin stability was evaluated. The prepared double-walled microspheres were essentially non-porous, smooth surfaced, and spherical in shape, whereas single-polymer microspheres were highly porous. Double-walled microspheres exhibited a significantly reduced initial burst followed by sustained and almost complete release of insulin compared to single-polymer microspheres. Initial burst release was further suppressed from double-walled microspheres when the mass ratio of the component polymers was increased. In conclusion, double-walled microspheres made of Glu-PLGA and PLGA can be a potential delivery system of therapeutic insulin. PMID:26817478

  11. Preparation of Syndiotactic Poly(vinyl alcohol)/Poly(vinyl pivalate/vinyl acetate) Microspheres with Radiopacity Using Suspension Copolymerization and Saponification

    NASA Astrophysics Data System (ADS)

    Seok Lyoo, Won; Wook Cha, Jin; Young Kwak, Kun; Jae Lee, Young; Yong Jeon, Han; Sik Chung, Yong; Kyun Noh, Seok

    2010-06-01

    To prepare Poly(vinyl pivalate/vinyl acetate) [P(VPi/VAc)] microspheres with radiopacity, the suspension copolymerization approach in the presence of aqueous radiopaque nanoparticles was used. After, The P(VPi/VAc) microspheres with radiopacity were saponified in heterogeneous system, and then P(VPi/VAc) microspheres without aggregates were converted to s-PVA/P(VPi/VAc) microspheres of skin/core structure through the heterogeneous surface saponification. Radiopacity of microspheres was confirmed with Computed tomography (CT).

  12. Preparation, in vitro and in vivo evaluation of algino-pectinate bioadhesive microspheres: An investigation of the effects of polymers using multiple comparison analysis.

    PubMed

    Chakraborty, Santanu; Khandai, Madhusmruti; Sharma, Anuradha; Khanam, Nazia; Patra, Ch Niranjan; Dinda, Subas Chandra; Sen, Kalyan Kumar

    2010-09-01

    Ionotropic gelation was used to entrap aceclofenac into algino-pectinate bioadhesive microspheres as a potential drug carrier for the oral delivery of this anti-inflammatory drug. Microspheres were investigated in vitro for possible sustained drug release and their use in vivo as a gastroprotective system for aceclofenac. Polymer concentration and polymer/drug ratio were analyzed for their influence on microsphere properties. The microspheres exhibited good bioadhesive property and showed high drug entrapment efficiency. Drug release profiles exhibited faster release of aceclofenac from alginate microspheres whereas algino-pectinate microspheres showed prolonged release. Dunnet's multiple comparison analysis suggested a significant difference in percent inhibition of paw edema when the optimized formulation was compared to pure drug. It was concluded that the algino-pectinate bioadhesive formulations exhibit promising properties of a sustained release form for aceclofenac and that they provide distinct tissue protection in the stomach.

  13. PREPARATION AND CHARACTERIZATION OF POROUS WALLED HOLLOW GLASS MICROSPHERES

    SciTech Connect

    Raszewski, F; Erich Hansen, E; Ray Schumacher, R; David Peeler, D

    2008-04-21

    Porous-walled hollow glass microspheres (PWHGMs) of a modified alkali borosilicate composition have been successfully fabricated by combining the technology of producing hollow glass microspheres (HGMs) with the knowledge associated with porous glasses. HGMs are first formed by a powder glass--flame process, which are then transformed to PWHGMs by heat treatment and subsequent treatment in acid. Pore diameter and pore volume are most influenced by heat treatment temperature. Pore diameter is increased by a factor of 10 when samples are heat treated prior to acid leaching; 100 {angstrom} in non-heat treated samples to 1000 {angstrom} in samples heat treated at 600 C for 8 hours. As heat treatment time is increased from 8 hours to 24 hours there is a slight shift increase in pore diameter and little or no change in pore volume.

  14. Preparation of polystyrene microspheres for laser velocimetry in wind tunnels

    NASA Technical Reports Server (NTRS)

    Nichols, Cecil E., Jr.

    1987-01-01

    Laser Velocimetry (L/V) had made great strides in replacing intrusive devices for wind tunnel flow measurements. The weakness of the L/V has not been the L/V itself, but proper size seeding particles having known drag characteristics. For many Langley Wind Tunnel applications commercial polystyrene latex microspheres suspended in ethanol, injected through a fluid nozzle provides excellent seeding but was not used due to the high cost. This paper provides the instructions, procedures, and formulations for producing polystyrene latex monodisperse microspheres of 0.6, 1.0, 1.7, 2.0, and 2.7 micron diameters. These are presently being used at Langley Research Center as L/V seeding particles.

  15. Preparation, characterization and biological evaluation of curcumin loaded alginate aldehyde-gelatin nanogels.

    PubMed

    P R, Sarika; James, Nirmala Rachel; P R, Anil Kumar; Raj, Deepa K

    2016-11-01

    Curcumin, a natural polyphenol exhibits chemopreventive and chemotherapeutic activities towards cancer. In order to improve the bioavailability and therapeutic efficacy, curcumin is encapsulated in alginate aldehyde-gelatin (Alg Ald-Gel) nanogels. Alginate aldehyde-gelatin nanogels are prepared by inverse miniemulsion technique. Physicochemical properties of the curcumin loaded nanogels are evaluated by, Dynamic light scattering (DLS), NMR spectroscopy and Scanning electron microscopy (SEM). Curcumin loaded nanogels show hydrodynamic diameter of 431±8nm and a zeta potential of -36±4mV. The prepared nanogels exhibit an encapsulation efficiency of 72±2%. In vitro drug release studies show a controlled release of curcumin from nanogels over a period of 48h. Hemocompatibility and cytocompatibility of the nanogels are evaluated. Bare nanogels are cytocompatible and curcumin loaded nanogels induce anticancer activity towards MCF-7 cells. In vitro cellular uptake of the curcumin loaded nanogels using confocal laser scanning microscopy (CLSM) confirms the uptake of nanogels in MCF-7 cells. Hence, the developed nanogel system can be a suitable candidate for curcumin delivery to cancer cells. PMID:27524019

  16. Preparation of monodisperse poly(divinylbenzene-co-4-vinylpyridine) microspheres by distillation-precipitation polymerization and precipitation polymerization

    NASA Astrophysics Data System (ADS)

    Yin, Yong; Zhang, J. Mei; Dai, Zhao; Sun, Xiu X.; Xu, Shi C.; Wang, Long; Zheng, Guo

    2010-07-01

    Polymer microspheres with functional groups are attractive for a wide number of applications, including supporting phases for separation science, biomedical devices, casting additives and controlled release reservoirs. In this paper, Poly(divinylbenzene-co-4-vinylpyridine)(Ploy(DVB-co-4-Vpy)) microspheres with functional pyridyl was prepared by distillation-precipitation polymerization and precipitation polymerization separately when 2,2'-Azobisisobutyronitrile (AIBN) as initiator in net acetonitrile. The feature of microspheres was characterized by TEM while the loading capacity of nitrogen on microspheres' surface and the hydrophilicity were measured by back titration and contact angle measurement. Under the same crosslinking degree, the microspheres prepared by distillation-precipitation polymerization had better feature, smoother surface, more functional groups and better hydrophilicity but lower yields than the ones prepared by precipitation polymerization.

  17. Preparation and detection of calcium alginate/bone powder hybrid microbeads for in vitro culture of ADSCs.

    PubMed

    Song, Kedong; Yan, Xinyu; Li, Shixiao; Zhang, Yu; Wang, Hong; Wang, Ling; Lim, Mayasari; Liu, Tianqing

    2015-01-01

    Calcium alginate microbeads have been widely used in tissue engineering application, due to their excellent biocompatibility, biodegradability, enhanced mechanical strength and toughness. Bone powder containing abundant hydroxylapatite, type I collagen and growth factors such as BMP2 and BMP4, possesses good osteoinductive activity. Herein, a hybrid calcium alginate/bone powder microbead was therefore prepared. Afterwards, different seeding density of adipose-derived stem cells (ADSCs) in these hybrid microbeads was discussed systematically for further in vitro expansion. Optimised microbeads suitable for in vitro expansion and differentiation of ADSCs were prepared using the droplet method under overall considering suitable concentrations of calcium alginate and calcium chloride as well as the density of bone powder through an orthogonal experiment. The results showed that the concentration of sodium alginate had the most influence on inside mass transfer and mechanical strength of the hybrid microbeads, secondly the calcium chloride, then the density of bone powder. The hybrid microbeads could be optimally performed while the concentrations of sodium alginate and calcium chloride were 2.5% and 4.5%, as well as 5.0 mg/mL bone powder, respectively. Live/Dead assay showed that the expanded ADSCs differentiated well with an initial embedding density of 5 × 10(6) cells/mL.

  18. Room temperature preparation of cuprous oxide hollow microspheres by a facile wet-chemical approach

    NASA Astrophysics Data System (ADS)

    Wang, Ning; He, Hongcai; Han, Li

    2010-09-01

    Cuprous oxide hollow spheres have potential applications in drug-delivery carriers, biomedical diagnosis agents, and cell imaging. From a commercial point of view, the low-temperature, template-free, facile method is widely popular synthetic method for the synthesis of cuprous oxide hollow spheres. In this letter, we describe a novel facile template-free wet-chemical route to prepare crystallized cuprous oxide microspheres at room temperature. XRD patterns and SEM images revealed that pure crystallized cuprous oxide hollow microspheres were successfully obtained at room temperature. The diameter of cuprous oxide hollow sphere can be adjusted (0.7-7 μm) by concentration control of hydrazine hydrate. Generated N 2 gas bubbles in the aqueous solution, serving as "soft" templates, play a key role in the formation of hollow microspheres.

  19. Preparation and in vitro evaluation of xanthan gum facilitated superabsorbent polymeric microspheres.

    PubMed

    Bhattacharya, Shiv Sankar; Mazahir, Farhan; Banerjee, Subham; Verma, Anurag; Ghosh, Amitava

    2013-10-15

    Interpenetrating polymer network (IPN) hydrogel microspheres of xanthan gum (XG) based superabsorbent polymer (SAP) and poly(vinyl alcohol) (PVA) were prepared by water-in-oil (w/o) emulsion crosslinking method for sustained release of ciprofloxacin hydrochloride (CIPRO). The microspheres were prepared with various ratios of hydrolyzed SAP to PVA and extent of crosslinking density. The prepared microspheres with loose and rigid surfaces were evidenced by scanning electron microscope (SEM). Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis confirmed the IPN formation. Differential scanning calorimetry (DSC) study was performed to understand the dispersion nature of drug after encapsulation. The in vitro drug release study was extensively evaluated depending on the process variables in both acidic and alkaline media. All the formulations exhibited satisfactory physicochemical and in vitro release characteristics. Release data indicated a non-Fickian trend of drug release from the formulations. Based on the results, this study suggest that CIPRO loaded IPN microspheres were suitable for sustained release application. PMID:23987317

  20. Preparation and in vitro evaluation of xanthan gum facilitated superabsorbent polymeric microspheres.

    PubMed

    Bhattacharya, Shiv Sankar; Mazahir, Farhan; Banerjee, Subham; Verma, Anurag; Ghosh, Amitava

    2013-10-15

    Interpenetrating polymer network (IPN) hydrogel microspheres of xanthan gum (XG) based superabsorbent polymer (SAP) and poly(vinyl alcohol) (PVA) were prepared by water-in-oil (w/o) emulsion crosslinking method for sustained release of ciprofloxacin hydrochloride (CIPRO). The microspheres were prepared with various ratios of hydrolyzed SAP to PVA and extent of crosslinking density. The prepared microspheres with loose and rigid surfaces were evidenced by scanning electron microscope (SEM). Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis confirmed the IPN formation. Differential scanning calorimetry (DSC) study was performed to understand the dispersion nature of drug after encapsulation. The in vitro drug release study was extensively evaluated depending on the process variables in both acidic and alkaline media. All the formulations exhibited satisfactory physicochemical and in vitro release characteristics. Release data indicated a non-Fickian trend of drug release from the formulations. Based on the results, this study suggest that CIPRO loaded IPN microspheres were suitable for sustained release application.

  1. Drug-nanoencapsulated PLGA microspheres prepared by emulsion electrospray with controlled release behavior

    PubMed Central

    Yao, Shenglian; Liu, Huiying; Yu, Shukui; Li, Yuanyuan; Wang, Xiumei; Wang, Luning

    2016-01-01

    The development of modern therapeutics has raised the requirement for controlled drug delivery system which is able to efficiently encapsulate bioactive agents and achieve their release at a desired rate satisfying the need of the practical system. In this study, two kind of aqueous model drugs with different molecule weight, Congo red and albumin from bovine serum (BSA) were nano-encapsulated in poly (dl-lactic-co-glycolic acid) (PLGA) microspheres by emulsion electrospray. In the preparation process, the aqueous phase of drugs was added into the PLGA chloroform solution to form the emulsion solution. The emulsion was then electrosprayed to fabricate drug-nanoencapsulated PLGA microspheres. The morphology of the PLGA microspheres was affected by the volume ratio of aqueous drug phase and organic PLGA phase (Vw/Vo) and the molecule weight of model drugs. Confocal laser scanning microcopy showed the nanodroplets of drug phase were scattered in the PLGA microspheres homogenously with different distribution patterns related to Vw/Vo. With the increase of the volume ratio of aqueous drug phase, the number of nanodroplets increased forming continuous phase gradually that could accelerate drug release rate. Moreover, BSA showed a slower release rate from PLGA microspheres comparing to Congo red, which indicated the drug release rate could be affected by not only Vw/Vo but also the molecule weight of model drug. In brief, the PLGA microspheres prepared using emulsion electrospray provided an efficient and simple system to achieve controlled drug release at a desired rate satisfying the need of the practices.

  2. Bioresorbable microspheres by spinning disk atomization as injectable cell carrier: from preparation to in vitro evaluation.

    PubMed

    Senuma, Y; Franceschin, S; Hilborn, J G; Tissières, P; Bisson, I; Frey, P

    2000-06-01

    Vesico-ureteral reflux, a common pathology in children, can be treated cystoscopically by injection of a bulking material underneath the most distal, intramural ureter, which forces the latter to do a detour, increasing its submucosal path. This increase of the length of the submucosal path of the ureter within the bladder is directly responsible for the anti-reflux effect. So far Teflon and collagen paste have been commonly used as bulking materials. We suggest replacing these materials by living tissue consisting of bladder smooth muscle, normally present at this location. The aim of this work is to provide a long-term effective treatment by producing bioresorbable microspheres which can act as a support matrix and an entrapment substance for bladder smooth muscle cells, with the goal of an in vivo transfer of the in vitro cultured cells with a minimal surgical procedure. By the use of Spinning Disk Atomization, which has specifically been developed for this purpose, we have shown two methods for the preparation of porous poly(lactic acid) microspheres with tunable sizes from 160 to 320 microm. The controlled solvent burst method has shown the advantage over the crystal leaching method in the direct creation of microspheres with large closed pores, by atomizing the polymer solution in controlled temperature conditions. Microspheres with various closed pore structures have thus been prepared. The innovation of this work is in the direct and rapid formation of porous microspheres with a pore morphology which is designed to create cavities suitable for adherence and growth of cells by adapting the temperature conditions of atomization. Injection tests have shown promising results in using these cell-loaded microspheres for future non-invasive tissue engineering. PMID:10817266

  3. Drug-nanoencapsulated PLGA microspheres prepared by emulsion electrospray with controlled release behavior

    PubMed Central

    Yao, Shenglian; Liu, Huiying; Yu, Shukui; Li, Yuanyuan; Wang, Xiumei; Wang, Luning

    2016-01-01

    The development of modern therapeutics has raised the requirement for controlled drug delivery system which is able to efficiently encapsulate bioactive agents and achieve their release at a desired rate satisfying the need of the practical system. In this study, two kind of aqueous model drugs with different molecule weight, Congo red and albumin from bovine serum (BSA) were nano-encapsulated in poly (dl-lactic-co-glycolic acid) (PLGA) microspheres by emulsion electrospray. In the preparation process, the aqueous phase of drugs was added into the PLGA chloroform solution to form the emulsion solution. The emulsion was then electrosprayed to fabricate drug-nanoencapsulated PLGA microspheres. The morphology of the PLGA microspheres was affected by the volume ratio of aqueous drug phase and organic PLGA phase (Vw/Vo) and the molecule weight of model drugs. Confocal laser scanning microcopy showed the nanodroplets of drug phase were scattered in the PLGA microspheres homogenously with different distribution patterns related to Vw/Vo. With the increase of the volume ratio of aqueous drug phase, the number of nanodroplets increased forming continuous phase gradually that could accelerate drug release rate. Moreover, BSA showed a slower release rate from PLGA microspheres comparing to Congo red, which indicated the drug release rate could be affected by not only Vw/Vo but also the molecule weight of model drug. In brief, the PLGA microspheres prepared using emulsion electrospray provided an efficient and simple system to achieve controlled drug release at a desired rate satisfying the need of the practices. PMID:27699061

  4. Formulation and in vitro evaluation of metformin hydrochloride loaded microspheres prepared with polysaccharide extracted from natural sources.

    PubMed

    Sharma, Hemanta Kumar; Lahkar, Sunita; Kanta Nath, Lila

    2013-06-01

    The present work envisages utilisation of biodegradable and biocompatible material from natural sources for the development of controlled release microspheres of metformin hydrochloride (MetH). Natural polysaccharides extracted from Dillenia indica L. (DI), Abelmoschus esculentus L. (AE) and Bora rice flour were used in fabricating controlled release microspheres. The microspheres were prepared by the emulsion solvent diffusion technique with different proportions of natural materials and were studied for entrapment efficiency, particle size, particle shape, surface morphology, drug excipient compatibility, mucoadhesivity and in vitro release properties. The prepared microspheres showed mucoadhesive properties and controlled release of metformin hydrochloride. The study has revealed that natural materials can be used for formulation of controlled release microspheres and will provide ample opportunities for further study. PMID:23846143

  5. Preparation of microfibrillated cellulose/chitosan-benzalkonium chloride biocomposite for enhancing antibacterium and strength of sodium alginate films.

    PubMed

    Liu, Kai; Lin, Xinxing; Chen, Lihui; Huang, Liulian; Cao, Shilin; Wang, Huangwei

    2013-07-01

    The nonantibacterial and low strength properties of sodium alginate films negatively impact their application for food packaging. In order to improve these properties, a novel chitosan-benzalkonium chloride (C-BC) complex was prepared by ionic gelation using tripolyphosphate (TPP) as a coagulant, and a biocomposite obtained through the adsorption of C-BC complex on microfibrillated cellulose, MFC/C-BC, was then incorporated into a sodium alginate film. The TEM image showed that the C-BC nanoparticles were spherical in shape with a diameter of about 30 nm, and the adsorption equilibrium time of these nanoparticles on the surface of MFC was estimated to be 6 min under the driving forces of hydrogen bonds and electrostatic interactions. According to the disc diffusion method, the MFC/C-BC biocomposite-incorporated sodium alginate film exhibited remarkable antibacterial activity against Staphylococcus aureus and certain antibacterial activity against Escherichia coli . The strength tests indicated that the tensile strength of the composite sodium alginate film increased about 225% when the loading of MFC/C-BC biocomposite was 10 wt %. These results suggested that the MFC/C-BC biocomposite-incorporated sodium alginate film with excellent antibacterial and strength properties would be a promising material for food packaging, and the MFC/C-BC may also be a potential multifunctional biocomposite for other biodegradable materials.

  6. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Sodium alginate is prepared by...

  7. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium alginate. 184.1187 Section 184.1187 Food... GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Calcium alginate is prepared...

  8. Preparation and in vitro characterization of mucoadhesive hydroxypropyl guar microspheres containing amlodipine besylate for nasal administration.

    PubMed

    Swamy, N G N; Abbas, Z

    2011-11-01

    Amlodipine besylate microspheres for intranasal administration were prepared with an aim to avoid first-pass metabolism, to achieve controlled blood level profiles and to improve therapeutic efficacy. Hydroxypropyl Guar, a biodegradable polymer, was used in the preparation of microspheres by employing water in oil emulsification solvent evaporation technique. The formulation variables were drug concentration, emulsifier concentration, temperature, agitation speed and polymer concentration. All the formulations were evaluated for particle size, particle shape and surface morphology by scanning electron microscopy, percentage yield, drug entrapment efficiency, in vitro mucoadhesion test, degree of swelling and in vitro drug diffusion through sheep nasal mucosa. The microspheres obtained were free flowing, spherical and the particles ranged in size from 13.4±2.38 μm to 43.4±1.92 μm very much suitable for nasal delivery. Increasing polymer concentration resulted in increased drug entrapment efficiency and increased particle size. Amlodipine besylate was entrapped into the microspheres with an efficiency of 67.2±1.18 % to 81.8±0.64 %. The prepared microspheres showed good mucoadhesion properties, swellability and sustained the release of the drug over a period of 8 h. The data obtained were analysed by fitment into various kinetic models; it was observed that the drug release was matrix diffusion controlled and the release mechanism was found to be non-Fickian. Stability studies were carried out on selected formulations at 5±3°, 25±2°/60±5% RH and 40±2°/75±5% RH for 90 days. The drug content was observed to be within permissible limits and there were no significant deviations in the in vitro mucoadhesion and in vitro drug diffusion characteristics. PMID:23112393

  9. The Preparation of Chitosan Oligosaccharide/Alginate Sodium/Gelatin Nanofibers by Spiral-Electrospinning.

    PubMed

    Lu, Weipeng; Xu, Haitao; Zhang, Bing; Ma, Ming; Guo, Yanchuan

    2016-03-01

    A spiral-electrospinning was used to mass-produce gelatin nanofibers with a content of chitosan oligosaccharide (COS) and alginate sodium (AS). Multiple jets were observed to form on the edges of the helix slice-spinneret simultaneously. Important electrospinning parameters, such as concentration of COS/gelatin aqueous solution, rotational velocity of spinneret and spinning distance, were examined to investigate the electrospinnability of COS/gelatin solution and the morphology of COS/gelatin nanofiber membranes. Due to the poor miscibility between COS and AS, COS/AS/gelatin nanofiber membranes were obtained from COS/gelatin solution and AS/gelatin solution by mixing electrospinning with multi-spinnerets. The novel needleless electrospinning not only avoided the possibility of nozzle-clogging, but also prepared COS/AS/gelatin nanofibers on a large scale for a wide variety of applications. PMID:27455641

  10. Preparation of chitosan/silk fibroin blending membrane fixed with alginate dialdehyde for wound dressing.

    PubMed

    Gu, Zhipeng; Xie, HuiXu; Huang, Chengcheng; Li, Li; Yu, Xixun

    2013-07-01

    The objective of this work was to prepare chitosan/silk fibroin (CS/SF) blending membranes crosslinked with alginate dialdehyde (ADA) as wound dressings and to evaluate the physical properties and biocompatibility of the membranes. The morphology of membrane was observed by scanning electron microscopy (SEM) which showed that the well consistency of these two compositions. Further, the stability, water absorption and water vapor permeability of the ADA fixed CS/SF membranes could meet the needs of wound dressing. Furthermore, the biocompatibility of ADA fixed membranes was investigated by MTT assays and SEM in vitro, and the membranes were found to promote the cell attachment and proliferation. These results suggest that ADA fixed CS/SF blending membranes with a suitable ratio could be a promising candidate for wound healing applications.

  11. The Preparation of Chitosan Oligosaccharide/Alginate Sodium/Gelatin Nanofibers by Spiral-Electrospinning.

    PubMed

    Lu, Weipeng; Xu, Haitao; Zhang, Bing; Ma, Ming; Guo, Yanchuan

    2016-03-01

    A spiral-electrospinning was used to mass-produce gelatin nanofibers with a content of chitosan oligosaccharide (COS) and alginate sodium (AS). Multiple jets were observed to form on the edges of the helix slice-spinneret simultaneously. Important electrospinning parameters, such as concentration of COS/gelatin aqueous solution, rotational velocity of spinneret and spinning distance, were examined to investigate the electrospinnability of COS/gelatin solution and the morphology of COS/gelatin nanofiber membranes. Due to the poor miscibility between COS and AS, COS/AS/gelatin nanofiber membranes were obtained from COS/gelatin solution and AS/gelatin solution by mixing electrospinning with multi-spinnerets. The novel needleless electrospinning not only avoided the possibility of nozzle-clogging, but also prepared COS/AS/gelatin nanofibers on a large scale for a wide variety of applications.

  12. Preparation and characterization of galactosylated alginate-chitosan oligomer microcapsule for hepatocytes microencapsulation.

    PubMed

    Tian, Meng; Han, Bo; Tan, Hong; You, Chao

    2014-11-01

    Galactosylated alginate (GA)-chitosan oligomer microcapsule was prepared to provide a sufficient mechanical stability, a selective permeability and an appropriate three-dimensional (3D) microenvironment for hepatocytes microencapsulation. The microcapsule has a unique asymmetric membrane structure, with a dense layer located in the inner surface and gradually decreasing toward the outside surface. The stable microcapsule was obtained when GA lower than 50%, while the permeability was increased with increasing of GA. A balance between mechanical stability and permeability was achieved through modulating membrane porosity and thickness. The optimal microcapsule displays a selective permeability allowing efficient transport of human serum albumin while effectively blocking immunoglobulin G. Hepatocytes exhibited high and long term viability (>92%), proliferability, multicellular spheroid morphology, and enhancement of liver-specific functions in the microcapsule wherein galactose moieties present chemical cues to support cell-matrix interactions while the 3D structure of the microcapsule behaves physical cues to facilitate cell-cell interactions.

  13. Preparation, characterisation and viability of encapsulated Trichoderma harzianum UPM40 in alginate-montmorillonite clay.

    PubMed

    Adzmi, Fariz; Meon, Sariah; Musa, Mohamed Hanafi; Yusuf, Nor Azah

    2012-01-01

    Microencapsulation is a process by which tiny parcels of an active ingredient are packaged within a second material for the purpose of shielding the active ingredient from the surrounding environment. This study aims to determine the ability of the microencapsulation technique to improve the viability of Trichoderma harzianum UPM40 originally isolated from healthy groundnut roots as effective biological control agents (BCAs). Alginate was used as the carrier for controlled release, and montmorillonite clay (MMT) served as the filler. The encapsulated Ca-alginate-MMT beads were characterised using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The FTIR results showed the interaction between the functional groups of alginate and MMT in the Ca-alginate-MMT beads. Peaks at 1595, 1420 and 1020 cm(-1) characterised alginate, and peaks at 1028 and 453 cm(-1) characterised MMT; both sets of peaks appeared in the Ca-alginate-MMT FTIR spectrum. The TGA analysis showed an improvement in the thermal stability of the Ca-alginate-MMT beads compared with the alginate beads alone. SEM analysis revealed a homogeneous distribution of the MMT particles throughout the alginate matrix. T. harzianum UPM40 was successfully encapsulated in the Ca-alginate-MMT beads. Storage analysis of the encapsulated T. harzianum UPM40 showed that the low storage temperature of 5°C resulted in significantly (p < 0.05) better storage compared with room temperature (30°C). PMID:22309479

  14. Preparation, characterization, and in vitro testing of poly(lactide-co-glycolide) and dextran magnetic microspheres for in vivo applications

    NASA Astrophysics Data System (ADS)

    Leamy, Patrick J.

    Many research groups are investigating degradable magnetic particles for magnetic resonance imaging (MRI) contrast agents and as carriers for magnetic drug guidance. These particles are composite materials with a degradable polymer matrix and iron oxide nanoparticles for magnetic properties. The degradable polymer matrix acts to provide colloidal stability and, for drug delivery applications, provides a reservoir for the storage and release of drugs. Natural polymers, like albumin and dextran, which degrade by the action of enzymes; have been used for the polymer matrix. Iron oxide nanoparticles are used for magnetic properties since they can be digested in vivo and have low toxicities. Polylactic acid (PLA) and its copolymers with polyglycolic acid (PLGA) are versatile polymers that degrade by simple hydrolysis without the aid of enzymes. Microspheres are easily formed using the solvent extraction/evaporation method and a wide range of drugs can be encapsulated in them. Magnetic PLGA microspheres suitable for applications were synthesized for the first time in this dissertation. This was accomplished by coating iron oxide nanoparticles with oleic acid to make them dispersible in the organic solvents used in the extraction/evaporation microsphere preparation method. In addition to the magnetic PLGA microspheres, a novel all-aqueous method for preparing crosslinked dextran magnetic microspheres was developed in this dissertation. This method uses free radical polymerization for crosslinking and does not require the use of flammable and harmful solvents. For efficient MRI contrast and magnetic drug guidance, maximized iron oxide content of microspheres is desirable. The two different microsphere preparation methods were optimized for iron oxide content. The effect of iron oxide content on microsphere size and morphology was studied. In addition, an in vitro circulation model was used to evaluate the ability of magnetic microspheres to be guided at physiologic blood

  15. Tabletted microspheres containing Cynara scolymus (var. Spinoso sardo) extract for the preparation of controlled release nutraceutical matrices.

    PubMed

    Gavini, E; Alamanni, M C; Cossu, M; Giunchedi, P

    2005-08-01

    Controlled release dosage forms based on tabletted microspheres containing fresh artichoke Cynara scolymus extract were performed for the oral administration of a nutritional supplement. Microspheres were prepared using a spray-drying technique; lactose or hypromellose have been chosen as excipients. Microspheres were characterized in terms of encapsulated extract content, size and morphology. Qualitative and quantitative composition of the extract before and after the spray process was determined. Compressed matrices (tablets) were prepared by direct compression of the spray-dried microspheres. In vitro release tests of microparticles and tablets prepared were carried out in both acidic and neutral media. Spray-drying is a good method to prepare microspheres containing the artichoke extract. The microspheres encapsulate an amount of extract close to the theoretical value. Particle size analyses indicate that the microparticles have dvs of approximately 6-7 microm. Electronic microscopy observations reveal that particles based on lactose have spherical shape and particles containing hypromellose are almost collapsed. The hydroalcoholic extract is stable to the microsphere production process: its polyphenolic composition (qualitative and quantitative) did not change after spraying. In vitro release studies show that microparticles characterized by a quick polyphenolic release both in acidic and neutral media due to the high water solubility of the carrier lactose. On the contrary, microspheres based hypromellose release only 20% of the loaded extract at pH 1.2 in 2 h and the total amount of polyphenols is released only after about further 6 h at pH 6.8. Matrices prepared tabletting lactose microspheres and hypromellose microparticles in the weight ratio 1:1 show a slow release rate, that lasts approximately 24 h. This one-a-day sustained release formulation containing Cynara scolymus extract could be proposed as a nutraceutical controlled release dosage form for

  16. Polylactide-based microspheres prepared using solid-state copolymerized chitosan and d,l-lactide.

    PubMed

    Demina, T S; Akopova, T A; Vladimirov, L V; Zelenetskii, A N; Markvicheva, E A; Grandfils, Ch

    2016-02-01

    Amphiphilic chitosan-g-poly(d,l-lactide) copolymers have been manufactured via solid-state mechanochemical copolymerization and tailored to design polyester-based microspheres for tissue engineering. A single-step solid-state reactive blending (SSRB) using low-temperature co-extrusion has been used to prepare these copolymers. These materials have been valorized to stabilize microspheres processed by an oil/water emulsion evaporation technique. Introduction of the copolymers either in water or in the oil phase of the emulsion allowed to replace a non-degradable emulsifier typically used for microparticle preparation. To enhance cell adhesion, these copolymers were also tailored to bring amino-saccharide positively charged segments to the microbead surface. Size distribution, surface morphology, and total microparticle yield have been studied and optimized as a function of the copolymer composition. PMID:26652381

  17. Polylactide-based microspheres prepared using solid-state copolymerized chitosan and d,l-lactide.

    PubMed

    Demina, T S; Akopova, T A; Vladimirov, L V; Zelenetskii, A N; Markvicheva, E A; Grandfils, Ch

    2016-02-01

    Amphiphilic chitosan-g-poly(d,l-lactide) copolymers have been manufactured via solid-state mechanochemical copolymerization and tailored to design polyester-based microspheres for tissue engineering. A single-step solid-state reactive blending (SSRB) using low-temperature co-extrusion has been used to prepare these copolymers. These materials have been valorized to stabilize microspheres processed by an oil/water emulsion evaporation technique. Introduction of the copolymers either in water or in the oil phase of the emulsion allowed to replace a non-degradable emulsifier typically used for microparticle preparation. To enhance cell adhesion, these copolymers were also tailored to bring amino-saccharide positively charged segments to the microbead surface. Size distribution, surface morphology, and total microparticle yield have been studied and optimized as a function of the copolymer composition.

  18. Preparation and evaluation of multi particulates drug delivery system using natural polymers.

    PubMed

    Baig, Tariq; Sheikh, Hammad; Srivastava, Ankur; Tripathi, Pushpendra K; Tripathi, Shalini

    2015-01-01

    Simvastatin potassium is a hypolipidemic drug used with exercise, diet, and weight-loss to control elevated cholesterol, or hypercholesterolemia. It is a member of the statin class of pharmaceuticals. Okra mucilage is used to reduce the cholesterol level since microspheres has formulated by using okra mucilage to developed a synergistic effect. Calcium chloride act as a cross linking agent, when react with sodium alginate form a calcium alginate, since develope a gel like microbeads (microspheres). The half life of simvastatin is 2h for simvastatin acid. Simvastatin microspheres were prepared by using sodium alginate in combination with Abelmoschus esculentus (Okra), as drug release modifiers in various proportions to overcome the drug related adverse effects. The drug entrapment efficiency increased progressively with increasing concentration of both sodium alginate and okra mucilage resulting in the formation of larger microspheres entrapping greater amounts of the drug. The prepared microspheres were subjected to various evaluation and in vitro release studies. The particle sizes of the prepared microspheres were determined by optical microscopy and Scanning Electron Microscopy (SEM) analysis. The prepared microspheres had good spherical geometry with smooth surface as evidence by SEM. Study the capability of the formulation to withstand the physiological environment of the stomach and small intestine.

  19. Preparation and evaluation of multi particulates drug delivery system using natural polymers.

    PubMed

    Baig, Tariq; Sheikh, Hammad; Srivastava, Ankur; Tripathi, Pushpendra K; Tripathi, Shalini

    2015-01-01

    Simvastatin potassium is a hypolipidemic drug used with exercise, diet, and weight-loss to control elevated cholesterol, or hypercholesterolemia. It is a member of the statin class of pharmaceuticals. Okra mucilage is used to reduce the cholesterol level since microspheres has formulated by using okra mucilage to developed a synergistic effect. Calcium chloride act as a cross linking agent, when react with sodium alginate form a calcium alginate, since develope a gel like microbeads (microspheres). The half life of simvastatin is 2h for simvastatin acid. Simvastatin microspheres were prepared by using sodium alginate in combination with Abelmoschus esculentus (Okra), as drug release modifiers in various proportions to overcome the drug related adverse effects. The drug entrapment efficiency increased progressively with increasing concentration of both sodium alginate and okra mucilage resulting in the formation of larger microspheres entrapping greater amounts of the drug. The prepared microspheres were subjected to various evaluation and in vitro release studies. The particle sizes of the prepared microspheres were determined by optical microscopy and Scanning Electron Microscopy (SEM) analysis. The prepared microspheres had good spherical geometry with smooth surface as evidence by SEM. Study the capability of the formulation to withstand the physiological environment of the stomach and small intestine. PMID:25488418

  20. Optimization of the preparation of nalmefene-loaded sustained-release microspheres using central composite design.

    PubMed

    Wu, Xiang-Gen; Li, Gao; Gao, Yong-Liang

    2006-07-01

    Nalmefene-loaded poly(lactic-co-glycolic acid) microspheres were prepared by O/O emulsification/solvent evaporation method. The central composite design-response surface methodology was used to optimize and predict the preparation microspheres. Effects of three independent variable variables i.e., Span80 concentration in outer phase, poly(lactic-co-glycolic acid) concentration in inner phase and theoretical drug content were evaluated on a number of response variables. Response variables selected in this study were drug content, encapsulation efficiency, mean diameter, diameter span and the cumulative percentage of the drug released in the first day after incubation (marked as F1d, and it was also calculated as the initial burst). Multiple linear regression and second-order polynomial model were fitted to the data, and the resulting equations were used to produce five dimensional response graphs, by which optimal experimental conditions were selected. The results showed that all response variables were greatly dependent on three independent variables, and the optimal conditions were Span80 concentration 1.5%, poly(lactic-co-glycolic acid) concentration 17.5%, and theoretical drug content 6%. According to the optimal conditions, the drug content, encapsulation efficiency, mean diameter, diameter span and F1d of prepared microspheres were 4.37%, 72.8%, 64.1 microm, 1.36 and 8.93%, respectively.

  1. Preparation and characterization of PHBV microsphere/45S5 bioactive glass composite scaffolds with vancomycin releasing function.

    PubMed

    Li, Wei; Ding, Yaping; Rai, Ranjana; Roether, Judith A; Schubert, Dirk W; Boccaccini, Aldo R

    2014-08-01

    PHBV microsphere/45S5 bioactive glass (BG) composite scaffolds with drug release function were developed for bone tissue engineering. BG-based glass-ceramic scaffolds with high porosity (94%) and interconnected pore structure prepared by foam replication method were coated with PHBV microspheres (nominal diameter=3.5 μm) produced by water-in-oil-in-water double emulsion solvent evaporation method. A homogeneous microsphere coating throughout the porous structure of scaffolds was obtained by a simple dip coating method, using the slurry of PHBV microspheres in hexane. Compressive strength tests showed that the microsphere coating slightly improved the mechanical properties of the scaffolds. It was confirmed that the microsphere coating did not inhibit the bioactivity of the scaffolds in SBF. Hydroxyapatite crystals homogeneously grew not only on the struts of the scaffolds but also on the surface of microspheres within 7 days of immersion in SBF. Vancomycin was successfully encapsulated into the PHBV microspheres. The encapsulated vancomycin was released with a dual release profile involving a relatively low initial burst release (21%) and a sustained release (1 month), which is favorable compared to the high initial burst release (77%) and short release period (4 days) measured on uncoated scaffolds. The developed bioactive composite scaffold with drug delivery function has thus the potential to be used advantageously in bone tissue engineering.

  2. Preparation and characterization of. beta. -D-glucosidase immobilized in calcium alginate

    SciTech Connect

    Woodward, J.; Krasniak, S.R.; Smith, R.D.; Spielberg, F.; Zachry, G.S.

    1982-01-01

    The immobilization of enzymes, organelles, and microbial cells within calcium alginate gel spheres has been reported. Few reports exist, however, on the use of these spheres for enzyme immobilization. The study reported here describes the immobilization of ..beta..-D-glucosidase within calcium alginate gel spheres and addresses the problems of loss of enzyme activity in the spheres via inhibition and leakage.

  3. Development and characterisation of metformin loaded spray dried Bora rice microspheres.

    PubMed

    Sharma, Hemanta Kumar; Mohapatra, Jadavesh; Nath, Lila Kanta

    2013-01-01

    Bora rice, a glutinous rice, is grown in Assam (a north eastern state of India) and is used traditionally for various purposes. The rationale of this study was to prepare and to assess Metformin loaded mucoadhesive spray dried microspheres using locally grown Bora rice powder. Metformin loaded microspheres were prepared using Bora rice and sodium alginate by spray drying method. For the study of the consequence of parameters of spray drier on the properties of microspheres, parameters such as aspirator flow rate, temperature, feed flow rate and concentration of the spray solution were changed. The in-vitro release properties were also studied. Almost spherical microspheres were obtained with significant swelling and mucoadhesivity. Dissolution study was carried out in phosphate buffer (pH 7.4) for 7 hrs. It was also noted to possess good mucoadhesive in such a way that about 90% of microspheres remained adherent on the surface of intestinal mucosa of pig skin. The total amount of drug released from microspheres after 7 hr. was 80%. The release of drug was not affected by the changes in parameters but was affected when sodium alginate concentration was changed. It was observed that microsphere properties changed as the parameters were changed. Smaller particles were obtained when the concentration of the spray solution, aspirator flow rate, the temperature difference between inlet and outlet and feed flow rate were lower.

  4. Formulation and in vitro evaluation of nateglinide microspheres using HPMC and carbopol-940 polymers by ionic gelation method.

    PubMed

    Bashir, Sajid; Nazir, Imran; Khan, Hafeezullah; Alamgeer; Asad, Muhammad; ul Hassnain, Fakhar; Qamar, Sumbul

    2013-11-01

    This study involves the design and characterization of Nateglinide (NAT) microspheres to enhance patient compliance. Ionic gelation technique was used to prepare Nateglinide Microspheres by using rate controlling polymers Carbopol-940 and Hydroxypropylmethyl cellulose (HPMC). Shape and surface were evaluated with Scanning electron microscopy (SEM). Percentage Yield, Particle size analysis, Encapsulating Efficiency, Micromeritic analysis, Fourier Transform Infra-Red Spectroscopy (FTIR), Differential Scanning Colorimetry (DSC) were done for characterization of Microspheres. Drug release studies were performed at pH 1.2 and 7.2 using USP dissolution type-II apparatus and release rates were analyzed by the application of different pharmacokinetic models. The size of microspheres was found to be varied from 781μm to 853μm. Rheological studies proved excellent flow behavior while percentage yield was found to be varied from 72% to 79%. Absence of drug-polymers interactions was confirmed from FTIR and DSC results. The microspheres prepared with sodium alginate showed cracks while microspheres obtained from blend of Carbopol-940 plus sodium alginate were smooth and spherical. Maximum entrapment efficiency (71.4%) was achieved for Microspheres with Carbopol-940. The greater retardation in drug release was observed for microspheres containing Carbopol-940 and release pattern followed Higuchi kinetics model and negligible drug release was observed at pH 1.2.

  5. β-Cyclodextrin-based oil-absorbent microspheres: preparation and high oil absorbency.

    PubMed

    Song, Ci; Ding, Lei; Yao, Fei; Deng, Jianping; Yang, Wantai

    2013-01-01

    This article reports the preparation and evaluation of polymeric microspheres as a new class of oil-absorbent (POAMs). Based on our earlier oil-absorbents, the present microspheres contained β-cyclodextrin (β-CD) moieties as both cross-linking agent and porogen agent, and showed exciting high oil absorbency, fast oil absorption speed and good reusability. Such microspheres were prepared via suspension polymerization with octadecyl acrylate and butyl acrylate as co-monomers, β-CD derivative as cross-linking agent, 2,2'-azoisobutyronitrile as initiator and polyvinylalcohol as stabilizer. Oil absorbency of the POAMs was, for CCl(4), 83.4; CHCl(3), 75.1; xylene, 48.7; toluene, 42.8; gasoline, 30.0; kerosene 27.1; and diesel, 18.2 g/g (oil/POAMs). Saturation oil absorption reached within 3h in CCl(4). The POAMs exhibited high oil retention percentage (>90%), and can be reused for at least 10 times while keeping oil absorbency almost unchanged. PMID:23044125

  6. Scalable preparation of alginate templated-layered double hydroxide mesoporous composites with enhanced surface areas and surface acidities.

    PubMed

    Zhao, Lina; Xu, Ting; Lei, Xiaodong; Xu, Sailong; Zhang, Fazhi

    2011-04-01

    Layered double hydroxides (LDHs), also known as hydrotalcite-like layered clays, have previously been investigated as a potential solid alkaline catalyst. A necessary calcinations/rehydration procedure, however, is utilized to enhance surface area and catalytic activity of LDHs involved. Here we report on a scalable preparation of sodium alginate-templated MgAI-LDH (LDH/SA) mesoporous composites with high surface area and surface acidity. The powdery LDH/SA mesoporous composites are prepared using alginate as template by a scalable method of separate nucleation and aging steps (SNAS). Comparison with the pristine MgAl-LDH shows that the obtained LDH/SA composites exhibit the greatly enhanced surface area and surface activity of surface acid sites at the elevated high temperatures which have scarcely been reported previously. Our results may allow designing a variety of mesoporous LDH-containing composites with potential applications in specific catalysis and purification processes.

  7. Determination of Ideal Broth Formulations Needed to Prepare Hydrous Hafnium Oxide Microspheres via the Internal Gelation Process

    SciTech Connect

    Collins, Jack Lee; Hunt, Rodney Dale; Simmerman, S. G.

    2009-02-01

    A simple test-tube methodology was used to determine optimum process parameters for preparing hydrous hafnium oxide microspheres by the internal gelation process. Broth formulations of hafnyl chloride [HfOCl{sub 2}], hexamethylenetetramine, and urea were found that can be used to prepare hydrous hafnium oxide gel spheres in the temperature range of 70-90 C. A few gel-forming runs were made in which microspheres were prepared with some of these formulations in order to equate the test-tube gelation times with actual gelation times. These preparations confirmed that the test-tube methodology is reliable for determining the ideal broths.

  8. Determination of Ideal Broth Formulations Needed to Prepare Hydrous Aluminum Oxide Microspheres via the Internal Gelation Process

    SciTech Connect

    Collins, Jack Lee; Pye, S. L.

    2009-02-01

    A simple test-tube methodology was used to determine optimum process parameters for preparing hydrous aluminum oxide microspheres by the internal gelation process. Broth formulations of aluminum, hexamethylenetetramine, and urea were found that can be used to prepare hydrous aluminum oxide gel spheres in the temperature range of 60-90 C. A few gel-forming runs were made in which microspheres were prepared with some of these formulations in order to equate the test-tube gelation times with actual gelation times. These preparations confirmed that the test-tube methodology is reliable for determining the ideal broths.

  9. Effect of adding non-volatile oil as a core material for the floating microspheres prepared by emulsion solvent diffusion method.

    PubMed

    Lee, J H; Park, T G; Lee, Y B; Shin, S C; Choi, H K

    2001-01-01

    Eudragit microspheres, to float in the gastrointestinal tract, were prepared to prolong a gastrointestinal transit time. To enhance their buoyancy, non-volatile oil was added to the dispersed phase. When an oil component was not miscible with water, over 90% was entrapped within the microspheres and prolonged the floating time of the microspheres. Depending on the solvent ratio, the morphologies of the microspheres were different and the best result was obtained when the ratio of dichloromethane:ethanol:isopropanol was 5:6:4. As the isopropanol portion increased, the time to form microspheres was delayed and the amount of fibre-like substance produced was decreased, due to the slow diffusion rate of the solvent. Compared with microspheres prepared without non-volatile oil, the release rate of the drug from microspheres was faster in all cases tested, except the microspheres containing mineral oil. The solubility of the drug in the non-volatile oil affected the release profiles of the drugs. The non-volatile oil tends to decrease the glass transition temperature of prepared microspheres and change the release profile. The internal morphology of the microspheres was slightly different depending on the entrapped oil phase used. Tiny spherical objects were present at the inner surface of microspheres and the inside of the shell.

  10. Budesonide-loaded guar gum microspheres for colon delivery: preparation, characterization and in vitro/in vivo evaluation.

    PubMed

    Liu, Ye; Zhou, Hong

    2015-01-26

    A novel budesonide (BUD) colon delivery release system was developed by using a natural polysaccharide, guar gum. The rigidity of the microspheres was induced by a chemical cross-linking method utilizing glutaraldehyde as the cross-linker. The mean particle size of the microspheres prepared was found to be 15.21 ± 1.32 µm. The drug loading and entrapment efficiency of the formulation were 17.78% ± 2.31% and 81.6% ± 5.42%, respectively. The microspheres were spherical in shape with a smooth surface, and the size was uniform. The in vitro release profiles indicated that the release of BUD from the microspheres exhibited a sustained release behavior. The model that fitted best for BUD released from the microspheres was the Higuchi kinetic model with a correlation coefficient r = 0.9993. A similar phenomenon was also observed in a pharmacokinetic study. The prolongation of the half-life (t1/2), enhanced residence time (mean residence time, MRT) and decreased total clearance (CL) indicated that BUD microspheres could prolong the acting time of BUD in vivo. In addition, BUD guar gum microspheres are thought to have the potential to maintain BUD concentration within target ranges for a long time, decreasing the side effects caused by concentration fluctuation, ensuring the efficiency of treatment and improving patient compliance by reducing dosing frequency. None of the severe signs, like the appearance of epithelial necrosis and the sloughing of epithelial cells, were detected.

  11. Preparation of sustained-release composite coating formed by dexamethasone and oxidated sodium alginate.

    PubMed

    Gao, Wenqing; Li, Tong; Yu, Meili; Hu, Xiaomin; Duan, Dawei; Lin, Tingting

    2014-01-01

    Inflammatory reaction and thrombosis are the unsolved main problems of non-coated biomaterials applied in cardiac surgery. In the present study, a series of sustained composite coating was prepared and characterized, such as in the chemical modification of polyvinyl chloride (PVC) for applications in cardiac surgery and the assessment of the biological property of modified PVC. The composite coatings were mainly formed by dexamethasone (DXM) and oxidated sodium alginate (OSA) through ionic and covalent bond methods. The biocompatibility and hemocompatibility of the coating surface were evaluated. Scanning electron microscopy analysis of the surface morphologies of the thrombus and platelets revealed that DXM-OSA coating improved the antithrombogenicity and biocompatibility of PVC circuits, which were essential for cardiac pulmonary bypass surgery. Evaluation of in vitro release revealed that the DXM on group PPC was gradually released in 8 h. Thus, DXM that covalently combined on the PVC surface showed sustained release. By contrast, DXM on groups PPI and PPD was quickly or shortly released, suggesting that groups PPI and PPD did not have sustained-release property. Overall, results indicated that the DXM-OSA composite coating may be a promising coating for the sustained delivery of DXM.

  12. Preparation, characterization and pharmacokinetics of fluorescence labeled propylene glycol alginate sodium sulfate

    NASA Astrophysics Data System (ADS)

    Li, Pengli; Li, Chunxia; Xue, Yiting; Zhang, Yang; Liu, Hongbing; Zhao, Xia; Yu, Guangli; Guan, Huashi

    2014-08-01

    A rapid and sensitive fluorescence labeling method was developed and validated for the microanalysis of a sulfated polysaccharide drug,namely propylene glycol alginate sodium sulfate (PSS), in rat plasma. Fluorescein isothiocyanate (FITC) was selected to label PSS, and 1, 6-diaminohexane was used to link PSS and FITC in order to prepare FITC-labeled PSS (F-PSS) through a reductive amination reaction. F-PSS was identified by UV-Vis, FT-IR and 1H-NMR spectrum. The cell stability and cytotoxicity of F-PSS were tested in Madin-Darby canine kidney (MDCK) cells. The results indicated that the labeling efficiency of F-PSS was 0.522% ± 0.0248% and the absolute bioavailability was 8.39%. F-PSS was stable in MDCK cells without obvious cytotoxicity. The method was sensitive and reliable; it showed a good linearity, precision, recovery and stability. The FITC labeling method can be applied to investigating the absorption and metabolism of PSS and other polysaccharides in biological samples.

  13. Preparation of core-shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization.

    PubMed

    Hou, Chen; Qi, Zhigang; Zhu, Hao

    2015-04-01

    A flexible, biocompatible and bioadhesive enzyme immobilizing material, which was synthesized based on the covalent assembly of biomimetic polymer and oxidized polysaccharide on magnetic nanoparticles (NPs), has been developed in this feasibility study. In this work, the bio-inspired polymer, polydopamine (PDA), was used to modify the well-monodispersed Fe3O4 NPs (mPDA NPs) with a controllable thickness via a dip-coating process, then the alginate di-aldehyde (ADA) was covalently assembled on the mPDA NPs and employed as a naturally occurring linking agent for Candida rugosa lipase (CRL) immobilization. The resulting support material was characterized by means of the transmission electron microscope (TEM), Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), thermogravimetry (TG) analyser, and vibrating sample magnetometer (VSM). It was verified that the prepared mPDA NPs possessed distinct core-shell structure with uniform size and high saturation magnetization. For further application, the mPDA NPs was utilized in CRL immobilizing procedures and demonstrated can facilitate improving the enzyme activities. The optimum amount of lipase was 200 mg g(-1) support, the optimal pH and temperature for the catalyse condition of the immobilized CRL was 7.0 and 40°C, respectively. Moreover, the immobilized CRL kept the high activity at 77% after 12 times of recycling for batch hydrolysis of olive oil emulsion. This magnetic bioadhesive composite with functionalized properties and adhesion strength presents a general strategy for the immobilization of macromolecules.

  14. Preparation and evaluation of Bacillus megaterium-alginate microcapsules for control of rice sheath blight disease.

    PubMed

    Wiwattanapatapee, R; Chumthong, A; Pengnoo, A; Kanjanamaneesathian, M

    2013-08-01

    Bacillus megaterium encapsulated in calcium alginate microcapsules was prepared and tested for its efficacy against sheath blight disease of rice. In laboratory conditions, the aqueous suspension (1:100, v/v in potato dextrose agar) of the bacterial microcapsules (10(10) spores/ml) inhibited mycelial growth of Rhizoctonia solani (>99 %) after the microcapsules were produced and stored for 12 months at room temperature (28 ± 2 °C). The survival of the bacterium in the microcapsules in response to ultraviolet (u.v.) irradiation and high temperature was investigated. The survivability of the bacterium in the encapsulated form was greater than that of the fresh cells when it was subjected to u.v. (20-W General electric u.v. lamp from a 25 cm distance for 48 h) and a high temperature treatment (80 °C for 48 h). Cells of the bacterium were detected by scanning electron microscope on both the leaf sheath and the leaf blade (in pot tests in a greenhouse) after spraying encapsulated product. The number of bacteria on the surface of both rice tissues (5 Log. number/g of plant) after spraying with encapsulated product was not significantly different from that after spraying with fresh cells onto the rice seedlings. Spraying the encapsulated B. megaterium on rice plants in the greenhouse was as effective as spraying a chemical fungicide for suppressing rice sheath blight disease.

  15. Microspheres for protein delivery prepared from amphiphilic multiblock copolymers. 2. Modulation of release rate.

    PubMed

    Bezemer, J M; Radersma, R; Grijpma, D W; Dijkstra, P J; van Blitterswijk, C A; Feijen, J

    2000-07-01

    Amphiphilic multiblock copolymers, based on hydrophilic poly(ethylene glycol) (PEG) blocks and hydrophobic poly(butylene terephthalate) (PBT) blocks were used as matrix material for protein-loaded microspheres. The efficiency of lysozyme entrapment by a double emulsion method was found to depend on the swelling behavior of the polymers in water and decreased from 100% for polymers with a degree of swelling of less than 1.8 to 11% for PEG-PBT copolymers with a degree of swelling of 3.6. The particle size could be controlled by varying the concentration of the polymer solution used in the microsphere preparation. An increase in the polymer concentration resulted in a proportional increase in the particle size. The in vitro release profiles of the encapsulated model protein lysozyme could be precisely tailored by variation of the copolymer composition and the size of the microspheres. Both a slow continuous release of lysozyme, and a fast release which was completed within a few days could be obtained. The release behavior, attributed to a combination of diffusion and polymer degradation, could be described by a previously developed model. PMID:10825558

  16. Characterization of smart auto-degradative hydrogel matrix containing alginate lyase to enhance levofloxacin delivery against bacterial biofilms.

    PubMed

    Islan, German A; Dini, Cecilia; Bartel, Laura C; Bolzán, Alejandro D; Castro, Guillermo R

    2015-12-30

    The aim of the present work is the characterization of smart auto-degradable microspheres composed of calcium alginate/high methoxylated pectin containing an alginate lyase (AL) from Sphingobacterium multivorum and levofloxacin. Microspheres were prepared by ionotropic gelation containing AL in its inactive form at pH 4.0. Incubation of microspheres in Tris-HCl and PBS buffers at pH 7.40 allowed to establish the effect of ion-chelating phosphate on matrix erodability and suggested an intrinsically activation of AL by turning the pH close to neutrality. Scanning electron and optical microscopies revealed the presence of holes and surface changes in AL containing microspheres. Furthermore, texturometric parameters, DSC profiles and swelling properties were showing strong changes in microspheres properties. Encapsulation of levofloxacin into microspheres containing AL showed 70% efficiency and 35% enhancement of antimicrobial activity against Pseudomonas aeruginosa biofilm. Levofloxacin release from microspheres was not changed at acidic pH, but was modified at neutral pH in presence of AL. Advantageously, only gel matrix debris were detectable after overnight incubation, indicating an autodegradative gel process activated by the pH. Absence of matrix cytotoxicity and a reduction of the levofloxacin toxicity after encapsulation were observed in mammalian CHO-K1 cell cultures. These properties make the system a potent and versatile tool for antibiotic oral delivery targeted to intestine, enhancing the drug bioavailability to eradicate bacterial biofilm and avoiding possible intestinal obstructions.

  17. Preparation of novel biodegradable ropivacaine microspheres and evaluation of their efficacy in sciatic nerve block in mice

    PubMed Central

    Ni, Qiang; Chen, Wurong; Tong, Lei; Cao, Jue; Ji, Chao

    2016-01-01

    In this study, ropivacaine chitosan-loaded microspheres for subcutaneous administration were developed. The systems were characterized in terms of surface morphology, particle size, encapsulation efficiency, and in vitro release behavior. Results showed that the microspheres had drug loading rate of 7.3% and encapsulation efficiency of 91.2%, and their average diameter was 2.62±0.76 µm. The morphology study revealed that the microspheres are uniform monodispersed spheres and did not form aggregates in aqueous solution. It was clearly observed that the release profile of ropivacaine microspheres exhibited a biphasic pattern: the initial burst release within the first 2 hours and a following slower and sustained release over a long time. In vivo, a greater area under the plasma concentration–time curve from 0 to t (AUC0–t) was obtained from the microspheres (4.27-fold), than from the injection group, which indicated that there was a significantly improved systemic exposure to ropivacaine. Pharmacodynamics result showed that preparing ropivacaine as microsphere preparation could not only extend the drug effect time but also decrease the administration dosage. PMID:27536071

  18. Preparation of novel biodegradable ropivacaine microspheres and evaluation of their efficacy in sciatic nerve block in mice.

    PubMed

    Ni, Qiang; Chen, Wurong; Tong, Lei; Cao, Jue; Ji, Chao

    2016-01-01

    In this study, ropivacaine chitosan-loaded microspheres for subcutaneous administration were developed. The systems were characterized in terms of surface morphology, particle size, encapsulation efficiency, and in vitro release behavior. Results showed that the microspheres had drug loading rate of 7.3% and encapsulation efficiency of 91.2%, and their average diameter was 2.62±0.76 µm. The morphology study revealed that the microspheres are uniform monodispersed spheres and did not form aggregates in aqueous solution. It was clearly observed that the release profile of ropivacaine microspheres exhibited a biphasic pattern: the initial burst release within the first 2 hours and a following slower and sustained release over a long time. In vivo, a greater area under the plasma concentration-time curve from 0 to t (AUC0- t ) was obtained from the microspheres (4.27-fold), than from the injection group, which indicated that there was a significantly improved systemic exposure to ropivacaine. Pharmacodynamics result showed that preparing ropivacaine as microsphere preparation could not only extend the drug effect time but also decrease the administration dosage. PMID:27536071

  19. Novel preparation method for sustained-release PLGA microspheres using water-in-oil-in-hydrophilic-oil-in-water emulsion

    PubMed Central

    Hong, Xiaoyun; Wei, Liangming; Ma, Liuqing; Chen, Yinghui; Liu, Zhenguo; Yuan, Weien

    2013-01-01

    An increasing number of drugs are needing improved formulations to optimize patient compliance because of their short half-lives in blood. Sustained-release formulations of drugs are often required for long-term efficacy, and microspheres are among the most popular ones. When drugs are encapsulated into microsphere formulations, different methods of preparation need to be used according to specific clinical requirements and the differing physicochemical characteristics of individual drugs. In this work, we developed a novel method for sustained-release drug delivery using a water-in-oil-in-hydrophilic oil-in-water (w/o/oh/w) emulsion to encapsulate a drug into poly(lactic-co-glycolic acid) (PLGA) microspheres. Different effects were achieved by varying the proportions and concentrations of hydrophilic oil and PLGA. Scanning electron and optical microscopic images showed the surfaces of the microspheres to be smooth and that their morphology was spherical. Microspheres prepared using the w/o/oh/w emulsion were able to load protein efficiently and had sustained-release properties. These results indicate that the above-mentioned method might be useful for developing sustained-release microsphere formulations in the future. PMID:23882140

  20. Novel preparation method for sustained-release PLGA microspheres using water-in-oil-in-hydrophilic-oil-in-water emulsion.

    PubMed

    Hong, Xiaoyun; Wei, Liangming; Ma, Liuqing; Chen, Yinghui; Liu, Zhenguo; Yuan, Weien

    2013-01-01

    An increasing number of drugs are needing improved formulations to optimize patient compliance because of their short half-lives in blood. Sustained-release formulations of drugs are often required for long-term efficacy, and microspheres are among the most popular ones. When drugs are encapsulated into microsphere formulations, different methods of preparation need to be used according to specific clinical requirements and the differing physicochemical characteristics of individual drugs. In this work, we developed a novel method for sustained-release drug delivery using a water-in-oil-in-hydrophilic oil-in-water (w/o/oh/w) emulsion to encapsulate a drug into poly(lactic-co-glycolic acid) (PLGA) microspheres. Different effects were achieved by varying the proportions and concentrations of hydrophilic oil and PLGA. Scanning electron and optical microscopic images showed the surfaces of the microspheres to be smooth and that their morphology was spherical. Microspheres prepared using the w/o/oh/w emulsion were able to load protein efficiently and had sustained-release properties. These results indicate that the above-mentioned method might be useful for developing sustained-release microsphere formulations in the future.

  1. Preparation and Analysis of Co-precipitated, Biodegradable Poly-(Lactide-co-Glycolide) and Polyethylene Glycol Microspheres Prepared by Spray Drying

    NASA Astrophysics Data System (ADS)

    Javiya, Curie

    Biodegradable poly-(d,l-lactide-co-glycolide) (PLGA) based microspheres are commonly used for numerous clinical applications. PEG is a widely used polymer due to its hydrophilic, biocompatible, and nontoxic nature. In this study, different blends of PLGA/PEG microspheres were prepared using a spray drying technique. The microspheres were spherical with maximum yield found to be 60.3% and average particle size in the range of 2.4 to 3.1 microm. Under the spray drying processing conditions, the polymers showed full miscibility slightly below 15% w/w and partial miscibility up to 20% w/w of PEG in the blended microspheres. At higher temperatures, PLGA and PEG were miscible in all proportions used for the blended microspheres. Blending 10% w/w PEG in PLGA membranes showed significant reduction in attachment of macrophages compared to PLGA membranes. The in-vitro response of macrophage towards the miscible blends of PLGA/PEG microspheres was further characterized. Results showed some reduction in macrophage viability and activation, however, significant effects with PLGA/PEG microspheres were not observed.

  2. Preparation, characterization and in vitro release study of BSA-loaded double-walled glucose-poly(lactide-co-glycolide) microspheres.

    PubMed

    Ansary, Rezaul H; Rahman, Mokhlesur M; Awang, Mohamed B; Katas, Haliza; Hadi, Hazrina; Mohamed, Farahidah; Doolaanea, Abd Almonem; Kamaruzzaman, Yunus B

    2016-09-01

    The aim of this study was to prepare a model protein, bovine serum albumin (BSA) loaded double-walled microspheres using a fast degrading glucose core, hydroxyl-terminated poly(lactide-co-glycolide) (Glu-PLGA) and a moderate-degrading carboxyl-terminated PLGA polymers to reduce the initial burst release and to eliminate the lag phase from the release profile of PLGA microspheres. The double-walled microspheres were prepared using a modified water-in-oil-in-oil-in-water (w/o/o/w) method and single-polymer microspheres were prepared using a conventional water-in-oil-in-water (w/o/w) emulsion solvent evaporation method. The particle size, morphology, encapsulation efficiency, thermal properties, in vitro drug release and structural integrity of BSA were evaluated in this study. Double-walled microspheres prepared with Glu-PLGA and PLGA polymers with a mass ratio of 1:1 were non-porous, smooth-surfaced, and spherical in shape. A significant reduction of initial burst release was achieved for the double-walled microspheres compared to single-polymer microspheres. In addition, microspheres prepared using Glu-PLGA and PLGA polymers in a mass ratio of 1:1 exhibited continuous BSA release after the small initial burst without any lag phase. It can be concluded that the double-walled microspheres made of Glu-PLGA and PLGA polymers in a mass ratio of 1:1 can be a potential delivery system for pharmaceutical proteins.

  3. Development and in vitro evaluation of diclofenac sodium loaded mucoadhesive microsphere with natural gum for sustained delivery.

    PubMed

    Amin, Md Lutful; Jesmeen, Tasbira; Sutradhar, Kumar Bishwajit; Mannan, Md Abdul

    2013-12-01

    The objective of this study was to develop and evaluate mucoadhesive microsphere of diclofenac sodium with natural gums for sustained delivery. Guar gum and tragacanth were used along with sodium alginate as mucoadhesive polymers. Microspheres were formulated using orifice-ionic gelation method. Particle size, surface morphology, swelling study and drug entrapment efficiency of the prepared microspheres were determined. In vitro evaluation was carried out comprising of mucoadhesion and drug release study. The prepared microspheres were discrete and free flowing. Sodium alginate and natural gum, at a ratio of 1:0.25, showed good mucoadhesive property and they had high drug entrapment efficiencies. They also exhibited the best rate retarding effect among all the formulations. Drug entrapment efficiency of all the microspheres ranged from 80.42% to 91.67%. An inverse relationship was found between extent of crosslinking and drug release rate. Release rate was slow and extended in case of the formulations of 1:0.25 ratio (F1 and F3), releasing 68.36% and 70.56% drug respectively after 8 hours. Tragacanth-containing microspheres of F1 showed superiority over other formulations, with best mucoadhesive and rate retarding profile. The correlation value (r(2)) indicated that the drug release of all the formulations followed Higuchi's model. Overall, the results indicated that mucoadhesive microspheres containing natural gum can be promising in terms of prolonged delivery with good mucoadhesive action, targeting the absorption site to thrive oral drug delivery.

  4. Characterization of Raoultella planticola Rs-2 microcapsule prepared with a blend of alginate and starch and its release behavior.

    PubMed

    Wu, Zhansheng; He, Yanhui; Chen, Lijun; Han, Yajie; Li, Chun

    2014-09-22

    To judiciously use Raoultella planticola Rs-2 and develop its biodegradable and controlled-release formulations, Rs-2 was encapsulated with various combinations of sodium alginate (NaAlg) and starch. Sodium alginate, soluble starch, and CaCl2 showed good biocompatibility with Rs-2 for preparing microcapsules. These microcapsules were spherical in shape and their particle size, embedding rate, swelling ratio of Rs-2 microcapsules and release numbers of viable Rs-2 cells increased with the increasing of starch and NaAlg concentrations. Meanwhile, the biodegradability of the microcapsules constantly increases when the wt% of starch increased, but decreased when the amount of NaAlg increased. In addition, the release mechanism of microcapsules was consistent with that of the Ritger-Peppas model, which involves the Case II diffusion mechanism. In summary, the desired properties of the microcapsules can be modulated by varying the starch and alginate amounts of capsule materials. This process has broad application prospects to meet the needs of agricultural production.

  5. Preparation and application of agar/alginate/collagen ternary blend functional food packaging films.

    PubMed

    Wang, Long-Feng; Rhim, Jong-Whan

    2015-09-01

    Ternary blend agar/alginate/collagen (A/A/C) hydrogel films with silver nanoparticles (AgNPs) and grapefruit seed extract (GSE) were prepared. Their performance properties, transparency, tensile strength (TS), water vapor permeability (WVP), water contact angle (CA), water swelling ratio (SR), water solubility (WS), and antimicrobial activity were determined. The A/A/C film was highly transparent, and both AgNPs and GSE incorporated blend films (A/A/C(AgNPs) and A/A/C(GSE)) exhibited UV-screening effect, especially, the A/A/C(GSE) film had high UV-screening effect without sacrificing the transmittance. In addition, the A/A/C blend films formed efficient hydrogel film with the water holding capacity of 23.6 times of their weight. Both A/A/C(AgNPs) and A/A/C(GSE) composite films exhibited strong antimicrobial activity against both Gram-positive (Listeria monocytogenes) and Gram-negative (Escherichia coli) food-borne pathogenic bacteria. The test results of fresh potatoes packaging revealed that all the A/A/C ternary blend films prevented forming of condensed water on the packaged film surface, both A/A/C(AgNPs) and A/A/C(GSE) composite films prevented greening of potatoes during storage. The results indicate that the ternary blend hydrogel films incorporated with AgNPs or GSE can be used not only as antifogging packaging films for highly respiring fresh agriculture produce, but also as an active food packaging system utilizing their strong antimicrobial activity. PMID:26187189

  6. Preparation of core-shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization.

    PubMed

    Hou, Chen; Qi, Zhigang; Zhu, Hao

    2015-04-01

    A flexible, biocompatible and bioadhesive enzyme immobilizing material, which was synthesized based on the covalent assembly of biomimetic polymer and oxidized polysaccharide on magnetic nanoparticles (NPs), has been developed in this feasibility study. In this work, the bio-inspired polymer, polydopamine (PDA), was used to modify the well-monodispersed Fe3O4 NPs (mPDA NPs) with a controllable thickness via a dip-coating process, then the alginate di-aldehyde (ADA) was covalently assembled on the mPDA NPs and employed as a naturally occurring linking agent for Candida rugosa lipase (CRL) immobilization. The resulting support material was characterized by means of the transmission electron microscope (TEM), Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), thermogravimetry (TG) analyser, and vibrating sample magnetometer (VSM). It was verified that the prepared mPDA NPs possessed distinct core-shell structure with uniform size and high saturation magnetization. For further application, the mPDA NPs was utilized in CRL immobilizing procedures and demonstrated can facilitate improving the enzyme activities. The optimum amount of lipase was 200 mg g(-1) support, the optimal pH and temperature for the catalyse condition of the immobilized CRL was 7.0 and 40°C, respectively. Moreover, the immobilized CRL kept the high activity at 77% after 12 times of recycling for batch hydrolysis of olive oil emulsion. This magnetic bioadhesive composite with functionalized properties and adhesion strength presents a general strategy for the immobilization of macromolecules. PMID:25784302

  7. Preparation of Lung-Targeting, Emodin-Loaded Polylactic Acid Microspheres and Their Properties

    PubMed Central

    Chen, Xiaohong; Yang, Zifeng; Sun, Renshan; Mo, Ziyao; Jin, Guangyao; Wei, Fenghuan; Hu, Jianmin; Guan, Wenda; Zhong, Nanshan

    2014-01-01

    Emodin (1,3,8-trihydroxy-6-methylanthraquinone) has been identified to have the potential to improve lung fibrosis and lung cancer. To avoid the liver and kidney toxicities and the fast metabolism of emodin, emodin-loaded polylactic acid microspheres (ED-PLA-MS) were prepared and their characteristics were studied. ED-PLA-MS were prepared by the organic phase dispersion-solvent diffusion method. By applying an orthogonal design, our results indicated that the optimal formulation was 12 mg/mL PLA, 0.5% gelatin, and an organic phase:glycerol ratio of 1:20. Using the optimal experimental conditions, the drug loading and encapsulation efficiencies were (19.0 ± 1.8)% and (62.2 ± 2.6)%, respectively. The average particle size was 9.7 ± 0.7 μm. In vitro studies indicated that the ED-PLA-MS demonstrated a well-sustained release efficacy. The microspheres delivered emodin, primarily to the lungs of mice, upon intravenous injection. It was also detected by microscopy that partial lung inflammation was observed in lung tissues and no pathological changes were found in other tissues of the ED-PLA-MS-treated animals. These results suggested that ED-PLA-MS are of potential value in treating lung diseases in animals. PMID:24733070

  8. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1987-01-01

    Microspheres of acrolein homopolymers and copolymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  9. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1986-01-01

    Microspheres of acrolein homopolymers and copolymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  10. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1983-01-01

    Microspheres of acrolein homopolymers and co-polymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  11. Preparation and characterization of. beta. -D-glucosidase immobilized in calcium alginate

    SciTech Connect

    Krasniak, S. R.; Smith, R. D.

    1982-01-01

    Enzymatic hydrolysis of biomass to produce glucose may become feasible if an inexpensive method to reuse the enzyme can be found. This study investigated one such method whereby ..beta..-D-glucosidase (E.C. 3.2.1.21) was immobilized in calcium alginate gel spheres, which were shown to catalyze the hydrolysis of cellobiose to glucose. There was a loss of 49% of the enzyme from the alginate slurry during gelation. After gelation, in the stable gel spheres, there was a 37% retention of the enzyme activity that was actually immobilized. The reason for the loss in activity was investigated and may be caused by inhibition of the enzyme within the sphere by the calcium cations and the alginate anions also present. Mass transfer effects were minimal in this system and were not responsible for the activity loss.

  12. The simple preparation of birnessite-type manganese oxide with flower-like microsphere morphology and its remarkable capacity retention

    SciTech Connect

    Zhu, Gang; Deng, Lingjuan; Wang, Jianfang; Kang, Liping; Liu, Zong-Huai

    2012-11-15

    Graphical abstract: Flower-like birnessite-type manganese oxide microspheres with large specific surface area and excellent electrochemical properties have been prepared by a facile hydrothermal method. Highlights: ► Birnessite-type manganese oxide with flower-like microsphere morphology and large specific surface area. ► A facile low-temperature hydrothermal method. ► Novel flower-like microsphere consists of the thin nano-platelets. ► Birnessite-type manganese oxide exhibits an ideal capacitive behavior and excellent cycling stability. -- Abstract: Birnessite-type manganese oxide with flower-like microsphere morphology and large specific surface area has been prepared by hydrothermal treating a mixture solution of KMnO{sub 4} and (NH{sub 4}){sub 2}SO{sub 4} at 90 °C for 24 h. The obtained material is characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and N{sub 2} adsorption–desorption. Results indicate that the birnessite-type manganese oxide shows novel flower-like microsphere morphology and a specific surface area of 280 m{sup 2} g{sup −1}, and the flower-like microsphere consists of the thin nano-platelets. Electrochemical characterization indicates that the prepared material exhibits an ideal capacitive behavior with a capacitance value of 278 F g{sup −1} in 1 mol L{sup −1} Na{sub 2}SO{sub 4} aqueous solution at a scan rate of 5 mV s{sup −1}. Moreover, the prepared manganese oxide electrode shows excellent cycle stability, and the specific capacitance can maintain 98.6% of the initial one after 5000 cycles.

  13. Preparation and characterization of hydroxyapatite/sodium alginate biocomposites for bone implant application

    NASA Astrophysics Data System (ADS)

    Kanasan, Nanthini; Adzila, Sharifah; Suid, Mohd Syafiq; Gurubaran, P.

    2016-07-01

    In biomedical fields, synthetic scaffolds are being improved by using the ceramics, polymers and composites materials to avoid the limitations of allograft. Ceramic-polymer composites are appearing to be the most successful bone graft substitute in human body. The natural bones itself are well-known as composite of collagen and hydroxyapatite. In this research, precipitation method was used to synthesis hydroxyapatite (HA)/sodium alginate (SA) in various parameters. This paper describes the hydroxyapatite/sodium alginate biocomposite which suitable for use in bone defects or regeneration of bone through the characterizations which include FTIR, FESEM, EDS and DTA. In FTIR, the characteristi peaks of PO4-3 and OH- groups which corresponding to hydroxyapatite are existed in the mixing powders. The needle-size particle of hydroxyapatite/ alginate (HA/SA) are observed in FESEM in the range of 15.8nm-38.2nm.EDS confirmed the existence of HA/SA composition in the mixing powders. There is an endothermic peak which corresponds to the dehydration and the loss of physically adsorbed water molecules of the hydroxyapatite (HA)/sodium alginate (SA) powder which are described in DTA.

  14. Ring-opening polymerization of L-lactide and preparation of its microsphere in supercritical fluids.

    PubMed

    Pack, Ji Won; Kim, Soo Hyun; Park, Soo Young; Lee, Youn-Woo; Kim, Young Ha

    2004-03-15

    The ring-opening polymerization of L-lactide initiated by stannous octoate was carried out in supercritical chlorodifluoromethane (scR22) at various reaction conditions (time and temperature) and reactant concentrations (initiator, monomer, and solvent). The monomer conversion increased to ca. 70% on increasing the reaction time to 1 h. The molecular weight of the poly(L-lactide) (PLLA) product also increased to ca. 160,000 g x mol(-1) over the same period. Increasing reaction temperature from 90 to 130 degrees C resulted in increased monomer conversion and PLLA molecular weight. A series of polymerizations conducted at various 1-dodecanol and stannous octoate concentrations suggested that stannous octoate does not act as an initiator by itself, and that the tin-alkoxide formed from 1-dodecanol and stannous octoate serves as the initiating species in scR22. While enhancements of the monomer conversion and PLLA molecular weight were observed with increasing monomer concentration, the chlorodifluoromethane concentration had the opposite on both. After the polymerization, PLLA microspheres were prepared in situ by using a continuous supercritical antisolvent process without residual organic solvent and monomer to yield highly purified microspheres for environmental and biomedical applications.

  15. Preparation of sodium fluoride-loaded gelatin microspheres, characterization and cariostatic studies.

    PubMed

    Wu, H; Zhang, Z X; Zhao, H P; Wu, D C; Wu, B L; Cong, R

    2004-12-01

    Sodium fluoride-loaded gelatin microspheres (NaF-GMS) were prepared using double-phase emulsified condensation polymerization. The average diameter of microspheres was (11.33+/-5.56) microm. The drug content and encapsulation efficiency were 8.80% and 76.73%, respectively. The fluoride releasing profiles of NaF-GMS in physiological saline and artificial saliva (pH 4.5, pH 6.8) showed that NaF-GMS had a sustained-release property and fluoride release rate was increased in pH 4.5 artificial saliva. Experiments conducted in rabbits' oral cavity using NaF-GMS and NaF solution as control revealed NaF-GMS could maintain oral fluoride retention longer than NaF solution. Cariostatic abilities of NaF-GMS including demineralization prohibition in vitro, fluoride deposition in artificial dental plaque and the ability of targeting to cariogenic bacteria were investigated in artificial dental plaque. The results indicated NaF-GMS with lower fluoride concentrations could achieve equivalent cariostatic effect to the concentrated NaF solution, at the same time, could prolong fluoride retention in dental plaque. Microscopic observation showed that NaF-GMS carrying fusion protein of glucan-binding domain could adhere more bacteria than NaF-GMS and this might indicate the possibility of targeting to cariogenic bacteria when NaF-GMS were properly modified.

  16. Prediction of dexamethasone release from PLGA microspheres prepared with polymer blends using a design of experiment approach.

    PubMed

    Gu, Bing; Burgess, Diane J

    2015-11-10

    Hydrophobic drug release from poly (lactic-co-glycolic acid) (PLGA) microspheres typically exhibits a tri-phasic profile with a burst release phase followed by a lag phase and a secondary release phase. High burst release can be associated with adverse effects and the efficacy of the formulation cannot be ensured during a long lag phase. Accordingly, the development of a long-acting microsphere product requires optimization of all drug release phases. The purpose of the current study was to investigate whether a blend of low and high molecular weight polymers can be used to reduce the burst release and eliminate/minimize the lag phase. A single emulsion solvent evaporation method was used to prepare microspheres using blends of two PLGA polymers (PLGA5050 (25 kDa) and PLGA9010 (113 kDa)). A central composite design approach was applied to investigate the effect of formulation composition on dexamethasone release from these microspheres. Mathematical models obtained from this design of experiments study were utilized to generate a design space with maximized microsphere drug loading and reduced burst release. Specifically, a drug loading close to 15% can be achieved and a burst release less than 10% when a composition of 80% PLGA9010 and 90 mg of dexamethasone is used. In order to better describe the lag phase, a heat map was generated based on dexamethasone release from the PLGA microsphere/PVA hydrogel composite coatings. Using the heat map an optimized formulation with minimum lag phase was selected. The microspheres were also characterized for particle size/size distribution, thermal properties and morphology. The particle size was demonstrated to be related to the polymer concentration and the ratio of the two polymers but not to the dexamethasone concentration.

  17. Prediction of dexamethasone release from PLGA microspheres prepared with polymer blends using a design of experiment approach.

    PubMed

    Gu, Bing; Burgess, Diane J

    2015-11-10

    Hydrophobic drug release from poly (lactic-co-glycolic acid) (PLGA) microspheres typically exhibits a tri-phasic profile with a burst release phase followed by a lag phase and a secondary release phase. High burst release can be associated with adverse effects and the efficacy of the formulation cannot be ensured during a long lag phase. Accordingly, the development of a long-acting microsphere product requires optimization of all drug release phases. The purpose of the current study was to investigate whether a blend of low and high molecular weight polymers can be used to reduce the burst release and eliminate/minimize the lag phase. A single emulsion solvent evaporation method was used to prepare microspheres using blends of two PLGA polymers (PLGA5050 (25 kDa) and PLGA9010 (113 kDa)). A central composite design approach was applied to investigate the effect of formulation composition on dexamethasone release from these microspheres. Mathematical models obtained from this design of experiments study were utilized to generate a design space with maximized microsphere drug loading and reduced burst release. Specifically, a drug loading close to 15% can be achieved and a burst release less than 10% when a composition of 80% PLGA9010 and 90 mg of dexamethasone is used. In order to better describe the lag phase, a heat map was generated based on dexamethasone release from the PLGA microsphere/PVA hydrogel composite coatings. Using the heat map an optimized formulation with minimum lag phase was selected. The microspheres were also characterized for particle size/size distribution, thermal properties and morphology. The particle size was demonstrated to be related to the polymer concentration and the ratio of the two polymers but not to the dexamethasone concentration. PMID:26325309

  18. PREPARATION OF FLOWER-LIKE Co3O4/Fe3O4 MAGNETIC MICROSPHERES FOR PHOTODEGRADATION OF RhB UNDER UV LIGHT

    NASA Astrophysics Data System (ADS)

    Zhang, Baoliang; Zhang, Hepeng; Zhou, Lunwei; Ali, Nisar; Geng, Wangchang; Zhang, Qiuyu

    2013-12-01

    Flower-like Co3O4/Fe3O4 magnetic microspheres were prepared by coprecipitation of Fe2+ and Fe3+ in presence of flower-like Co3O4 microspheres as template. The preparation process included three steps: preparation of flower-like Co3O4 microspheres by hydrothermal method; immersion of Fe2+ and Fe3+ ions; coprecipitation in the presence of OH-. Rhodamine B (RhB) was chosen as model pollutants to investigate the photodegradation capacities of Co3O4/Fe3O4 magnetic microspheres. The results showed that the microspheres exhibited excellent degradation property and can be recycled to use again. After four times use the degradation efficiency was still above 90%.

  19. The Preparation of Capsaicin-Chitosan Microspheres (CCMS) Enteric Coated Tablets

    PubMed Central

    Chen, Jian; Huang, Gui-Dong; Tan, Si-Rong; Guo, Jiao; Su, Zheng-Quan

    2013-01-01

    This study aimed to research the preparation and content determination of capsaicin-chitosan microspheres (CCMS) enteric coated tablets. The core tablets were prepared with the method of wet granulation. Nine formulae were designed to determine the optimal formula of the core tablet. Eudragit L100 was used to prepare the CCMS enteric-coated tablets. The effect of enteric coated formulation variables such as content of talc (10%, 25% and 40%), plasticisers (TEC and DBS), dosage of plasticiser (10%, 20% and 30%) and coating weight (2%, 3% and 5%) were evaluated for drug release characteristics. The in vitro release was studied using 0.1 N HCl and pH 6.8 phosphate buffer. Enteric coated tablets without ruptures or swelling behaviour over 2 h in 0.1 N HCl indicated that these tablets showed acid resistance. The accumulated release rate in phosphate buffer (pH 6.8) revealed that the prepared tablets were able to sustain drug release into the intestine and a first-order release was obtained for capsaicin. This research is the first report of the preparation and content determination of CCMS enteric coated tablets. The sustained release behavior of enteric coated formulations in pH 6.8 phosphate buffer demonstrated that it would be a potential drug delivery platform for sustained delivery of gastric irritant drugs. PMID:24351818

  20. The preparation of capsaicin-chitosan microspheres (CCMS) enteric coated tablets.

    PubMed

    Chen, Jian; Huang, Gui-Dong; Tan, Si-Rong; Guo, Jiao; Su, Zheng-Quan

    2013-01-01

    This study aimed to research the preparation and content determination of capsaicin-chitosan microspheres (CCMS) enteric coated tablets. The core tablets were prepared with the method of wet granulation. Nine formulae were designed to determine the optimal formula of the core tablet. Eudragit L100 was used to prepare the CCMS enteric-coated tablets. The effect of enteric coated formulation variables such as content of talc (10%, 25% and 40%), plasticisers (TEC and DBS), dosage of plasticiser (10%, 20% and 30%) and coating weight (2%, 3% and 5%) were evaluated for drug release characteristics. The in vitro release was studied using 0.1 N HCl and pH 6.8 phosphate buffer. Enteric coated tablets without ruptures or swelling behaviour over 2 h in 0.1 N HCl indicated that these tablets showed acid resistance. The accumulated release rate in phosphate buffer (pH 6.8) revealed that the prepared tablets were able to sustain drug release into the intestine and a first-order release was obtained for capsaicin. This research is the first report of the preparation and content determination of CCMS enteric coated tablets. The sustained release behavior of enteric coated formulations in pH 6.8 phosphate buffer demonstrated that it would be a potential drug delivery platform for sustained delivery of gastric irritant drugs. PMID:24351818

  1. Biomass Vanillin-Derived Polymeric Microspheres Containing Functional Aldehyde Groups: Preparation, Characterization, and Application as Adsorbent.

    PubMed

    Zhang, Huanyu; Yong, Xueyong; Zhou, Jinyong; Deng, Jianping; Wu, Youping

    2016-02-01

    The contribution reports the first polymeric microspheres derived from a biomass, vanillin. It reacted with methacryloyl chloride, providing monomer vanillin methacrylate (VMA), which underwent suspension polymerization in aqueous media and yielded microspheres in high yield (>90 wt %). By controlling the N2 bubbling mode and by optimizing the cosolvent for dissolving the solid monomer, the microspheres were endowed with surface pores, demonstrated by SEM images and mercury intrusion porosimetry measurement. Taking advantage of the reactive aldehyde groups, the microspheres further reacted with glycine, thereby leading to a novel type of Schiff-base chelating material. The functionalized microspheres demonstrated remarkable adsorption toward Cu(2+) (maximum, 135 mg/g) which was taken as representative for metal ions. The present study provides an unprecedented class of biobased polymeric microspheres showing large potentials as adsorbents in wastewater treatment. Also importantly, the reactive aldehyde groups may enable the microspheres to be used as novel materials for immobilizing biomacromolecules, e.g. enzymes. PMID:26752344

  2. Biomass Vanillin-Derived Polymeric Microspheres Containing Functional Aldehyde Groups: Preparation, Characterization, and Application as Adsorbent.

    PubMed

    Zhang, Huanyu; Yong, Xueyong; Zhou, Jinyong; Deng, Jianping; Wu, Youping

    2016-02-01

    The contribution reports the first polymeric microspheres derived from a biomass, vanillin. It reacted with methacryloyl chloride, providing monomer vanillin methacrylate (VMA), which underwent suspension polymerization in aqueous media and yielded microspheres in high yield (>90 wt %). By controlling the N2 bubbling mode and by optimizing the cosolvent for dissolving the solid monomer, the microspheres were endowed with surface pores, demonstrated by SEM images and mercury intrusion porosimetry measurement. Taking advantage of the reactive aldehyde groups, the microspheres further reacted with glycine, thereby leading to a novel type of Schiff-base chelating material. The functionalized microspheres demonstrated remarkable adsorption toward Cu(2+) (maximum, 135 mg/g) which was taken as representative for metal ions. The present study provides an unprecedented class of biobased polymeric microspheres showing large potentials as adsorbents in wastewater treatment. Also importantly, the reactive aldehyde groups may enable the microspheres to be used as novel materials for immobilizing biomacromolecules, e.g. enzymes.

  3. Sustained release of isoniazid from polylactide microspheres prepared using solid/oil drug loading method for tuberculosis treatment.

    PubMed

    Zhang, Limei; Li, Ying; Zhang, Yun; Zhu, Chunyan

    2016-07-01

    Polylactide (PLA) microspheres were prepared using the solid-in-oil (S/O) spray-drying method to achieve the sustained release of a hydrophilic drug for the treatment of tuberculosis, via intratracheal instillation. Isoniazid (IN), a low-molecular-weight hydrophilic drug, was used as a model drug. The effects of various sizes of micronized IN powder, different drug/polymer ratios, spray-drying process parameters, and drug-release characteristics were studied to optimize the manufacturing parameters. A high entrapment efficiency (87.3%) was obtained using this method; furthermore, the microspheres were spherical and smooth. They were individually and homogenously distributed, with a mean diameter of 5.6 μm; furthermore, they showed a satisfactory extended sustained-release phase. After administration of the microspheres to rats, pulmonary drug concentrations were maintained at a relatively stable level for up to 4 weeks. PMID:27278371

  4. Protein-loaded microspheres prepared by sequential adsorption of dextran sulphate and protamine on melamine formaldehyde core.

    PubMed

    Balabushevich, Nadezda G; Larionova, Natalia I

    2009-11-01

    Polyelectrolyte multilayer microspheres were fabricated by layer-by-layer self-assembly of a dextran sulphate and a protamine on melamine formaldehyde cores, followed by the partial decomposition of the core. Effects of pH on the encapsulation of proteins and enzymes with different physico-chemical properties (insulin, aprotinin, peroxidase, glucose oxidase (GOD), catalase (Cat)) in the prepared microspheres were then studied. This method of protein encapsulation demonstrated a high loading capacity and efficiency. The protein incorporation and release was regulated by the pH of the solution. Encapsulated enzymes retained a high specific activity depending on the amount of protein incorporated. Bienzyme system GOD/Cat immobilized in the microspheres was suitable for the glucose content assay.

  5. Multi-hollow polymer microspheres with enclosed surfaces and compartmentalized voids prepared by seeded swelling polymerization method.

    PubMed

    Tian, Qiong; Yu, Demei; Zhu, Kaiming; Hu, Guohe; Zhang, Lifeng; Liu, Yuhang

    2016-07-01

    Multi-hollow particles have drawn extensive research interest due to their high specific areas and abundant inner voids, whereas their convenient synthesis still remains challenging. In this paper, we report a simple and convenient method based on seeded swelling polymerization to prepare the multi-hollow microspheres with enclosed surfaces and compartmentalized voids using monodisperse poly (styrene-co-sodium 4-vinylbenzenesulfonate) microspheres as seed particles. A formation mechanism of the multi-hollow structure was proposed involving the processes of water absorption, coalescence and stabilization of water domains, immobilization of multi-hollow structure, and coverage of surface dimples. The influencing parameters on the morphology of the microspheres, including weight ratio of sodium 4-vinylbenzenesulfonate to styrene in the seed particles, dosage of the swelling monomer and the crosslinking agent were systematically investigated. The internal structure of the resultant microspheres could be tuned from solid to multi-hollow by controlling over these parameters. Multi-hollow microspheres with compartmentalized chambers, smooth surfaces and narrow size distributions were obtained as a result.

  6. (90)Y microspheres prepared by sol-gel method, promising medical material for radioembolization of liver malignancies.

    PubMed

    Łada, Wiesława; Iller, Edward; Wawszczak, Danuta; Konior, Marcin; Dziel, Tomasz

    2016-10-01

    A new technology for the production of radiopharmaceutical (90)Y microspheres in the form of spherical yttrium oxide grains obtained by sol-gel method has been described. The authors present and discuss the results of investigations performed in the development of new production technology of yttrium microspheres and determination of their physic-chemical properties. The final product has the structure of spherical yttrium oxide grains with a diameter 25-100μm, is stable and free from contaminants. Irradiation of 20mg samples of grains with diameter of 20-50μm in the thermal neutron flux of 1.7×10(14)cm(-2)s(-1) at the core of MARIA research nuclear reactor allowed to obtain microspheres labelled with the (90)Y isotope on the way of the nuclear reaction (89)Y(n, ɤ)(90)Y. Specific activity of irradiated microspheres has been determined by application of absolute triple to double coincidence ratio method (TDCR) and has been evaluated at 190MBq/mg Y. (90)Y microspheres prepared by the proposed technique can be regarded as a promising medical material for radioembolization of liver malignancies.

  7. (90)Y microspheres prepared by sol-gel method, promising medical material for radioembolization of liver malignancies.

    PubMed

    Łada, Wiesława; Iller, Edward; Wawszczak, Danuta; Konior, Marcin; Dziel, Tomasz

    2016-10-01

    A new technology for the production of radiopharmaceutical (90)Y microspheres in the form of spherical yttrium oxide grains obtained by sol-gel method has been described. The authors present and discuss the results of investigations performed in the development of new production technology of yttrium microspheres and determination of their physic-chemical properties. The final product has the structure of spherical yttrium oxide grains with a diameter 25-100μm, is stable and free from contaminants. Irradiation of 20mg samples of grains with diameter of 20-50μm in the thermal neutron flux of 1.7×10(14)cm(-2)s(-1) at the core of MARIA research nuclear reactor allowed to obtain microspheres labelled with the (90)Y isotope on the way of the nuclear reaction (89)Y(n, ɤ)(90)Y. Specific activity of irradiated microspheres has been determined by application of absolute triple to double coincidence ratio method (TDCR) and has been evaluated at 190MBq/mg Y. (90)Y microspheres prepared by the proposed technique can be regarded as a promising medical material for radioembolization of liver malignancies. PMID:27287162

  8. Multi-hollow polymer microspheres with enclosed surfaces and compartmentalized voids prepared by seeded swelling polymerization method.

    PubMed

    Tian, Qiong; Yu, Demei; Zhu, Kaiming; Hu, Guohe; Zhang, Lifeng; Liu, Yuhang

    2016-07-01

    Multi-hollow particles have drawn extensive research interest due to their high specific areas and abundant inner voids, whereas their convenient synthesis still remains challenging. In this paper, we report a simple and convenient method based on seeded swelling polymerization to prepare the multi-hollow microspheres with enclosed surfaces and compartmentalized voids using monodisperse poly (styrene-co-sodium 4-vinylbenzenesulfonate) microspheres as seed particles. A formation mechanism of the multi-hollow structure was proposed involving the processes of water absorption, coalescence and stabilization of water domains, immobilization of multi-hollow structure, and coverage of surface dimples. The influencing parameters on the morphology of the microspheres, including weight ratio of sodium 4-vinylbenzenesulfonate to styrene in the seed particles, dosage of the swelling monomer and the crosslinking agent were systematically investigated. The internal structure of the resultant microspheres could be tuned from solid to multi-hollow by controlling over these parameters. Multi-hollow microspheres with compartmentalized chambers, smooth surfaces and narrow size distributions were obtained as a result. PMID:27046772

  9. Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads: Preparation, characterization, and adsorption mechanism.

    PubMed

    Ren, Huixue; Gao, Zhimin; Wu, Daoji; Jiang, Jiahui; Sun, Youmin; Luo, Congwei

    2016-02-10

    Alginate-carboxymethyl cellulose (CMC) gel beads were prepared in this study using sodium alginate (SA) and sodium CMC through blending and cross-linking. The specific surface area and aperture of the prepared SA-CMC gel beads were tested. The SA-CMC structure was characterized and analyzed via infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Static adsorption experiment demonstrated that Pb(II) adsorption of SA-CMC exceeded 99% under the optimized conditions. In addition, experiments conducted under the same experimental conditions showed that the lead ion removal efficiency of SA-CMC was significantly higher than that of conventional adsorbents. The Pb(II) adsorption process of SA-CMC followed the Langmuir adsorption isotherm, and the dynamic adsorption model could be described through a pseudo-second-order rate equation. Pb(II) removal mechanisms of SA-CMC, including physical, chemical, and electrostatic adsorptions, were discussed based on microstructure analysis and adsorption kinetics. Chemical adsorption was the main adsorption method among these mechanisms. PMID:26686144

  10. Determination of Ideal Broth Formulations Needed to Prepare Hydrous Cerium Oxide Microspheres via the Internal Gelation Process

    SciTech Connect

    Collins, Jack Lee; Chi, Anthony

    2009-02-01

    A simple test tube methodology was used to determine optimum process parameters for preparing hydrous cerium oxide microspheres via the internal gelation process.1 Broth formulations of cerium ammonium nitrate [(NH4)2Ce(NO3)6], hexamethylenetetramine, and urea were found that can be used to prepare hydrous cerium oxide gel spheres in the temperature range of 60 to 90 C. A few gel-forming runs were made in which microspheres were prepared with some of these formulations to be able to equate the test-tube gelation times to actual gelation times. These preparations confirmed that the test-tube methodology is reliable for determining the ideal broth formulations.

  11. Preparation of porous nitrogen-doped titanium dioxide microspheres and a study of their photocatalytic, antibacterial and electrochemical activities

    SciTech Connect

    Chen, S.; Chu, W.; Huang, Y.Y.; Liu, X.; Tong, D.G.

    2012-12-15

    Graphical abstract: Porous N-doped TiO{sub 2} microspheres were prepared for the first time via plasma technique. The sample exhibited better photocatalytic activity, photoinduced inactivation activity and better electrochemical activity than those of TiO{sub 2} microspheres and P25. Display Omitted Highlights: ► Porous N-doped TiO{sub 2} microspheres were prepared via nitrogen plasma technique. ► Plasma treatment did not affect the porous structure of the TiO{sub 2} microspheres. ► With the plasma treatment, the N contents in the samples increased. ► Their photocatalytic, antibacterial and electrochemical activities were studied. -- Abstract: Nitrogen-doped titanium dioxide (N-doped TiO{sub 2}) microspheres with porous structure were prepared via the nitrogen-assisted glow discharge plasma technique at room temperature for the first time. The samples were characterized by X-ray diffraction, scanning electron microscopy, nitrogen adsorption–desorption measurement, UV–Vis diffuse reflectance spectra, photoluminescence spectroscopy and X-ray photoelectron spectroscopy. The results indicated that the plasma treatment did not affect the porous structure of the TiO{sub 2} microspheres. With the plasma treatment, the N contents in the samples increased. During the photocatalytic degradation of methylene blue under simulative sunlight irradiation, the sample after plasma treatment for 60 min (N-TiO{sub 2}-60) exhibited higher photocatalytic activity than those of the TiO{sub 2} microspheres, P25 and other N-doped TiO{sub 2} microspheres. Furthermore, the N-TiO{sub 2}-60 showed excellent antibacterial activities towards Escherichia coli under visible irradiation. These should be attributed to the enhancement of the visible light region absorption for TiO{sub 2} after N-doping. Electrochemical data demonstrated that the N-doping not only enhanced the electrochemical activity of TiO{sub 2}, but also improved the reversibility of Li insertion/extraction reactions

  12. Preparation and activity of bubbling-immobilized cellobiase within chitosan-alginate composite.

    PubMed

    Wang, Fang; Su, Rong-Xin; Qi, Wei; Zhang, Ming-Jia; He, Zhi-Min

    2010-01-01

    Cellobiase can hydrolyze cellobiose into glucose; it plays a key role in the process of cellulose hydrolysis by reducing the product inhibition. To reuse the enzyme and improve the economic value of cellulosic ethanol, cellobiase was immobilized using sodium alginate and chitosan as carriers by the bubbling method. The immobilization conditions were optimized as follows: enzyme loading of 100 U cellobiase/g carrier, 30 min immobilization, 3.5 wt% sodium alginate, 0.25 wt% chitosan, and 2 wt% calcium chloride. Compared to free enzyme, the immobilized cellobiase had a decreased apparent K(m) and the maximum activity at a lower pH, indicating its higher acidic and thermal stability. The immobilized cellobiase was further tested in the hydrolysis of cellobiose and various cellulosic substrates (microcrystalline cellulose, filter paper, and ammonia-pretreated corn cobs). Together with cellulases, the immobilized cellobiase converted the cellulosic substrates into glucose with the rate and extent similar to the free enzyme.

  13. Facile approach to prepare hollow core–shell NiO microspherers for supercapacitor electrodes

    SciTech Connect

    Han, Dandan; Xu, Pengcheng; Jing, Xiaoyan; Wang, Jun; Song, Dalei; Liu, Jingyuan; Zhang, Milin

    2013-07-15

    A facile lamellar template method (see image) has been developed for the preparation of uniform hollow core–shell structure NiO (HCS–NiO) with a nanoarchitectured wall structure. The prepared NiO was found to be highly crystalline in uniform microstructures with high specific surface area and pore volume. The results indicated that ethanol interacted with trisodium citrate played an important role for the formation of hollow core–shell spheres. On the basis of the analysis of the composition and the morphology, a possible formation mechanism was investigated. NiO microspheres with hollow core–shell showed excellent capacitive properties. The exceptional cyclic, structural and electrochemical stability with ∼95% coulombic efficiency, and very low ESR value from impedance measurements promised good utility value of hollow core–shell NiO material in fabricating a wide range of high-performance electrochemical supercapacitors. - The hollow core–shell NiO was prepared with a facile lamellar template method. The prepared NiO show higher capacitance, lower ion diffusion resistance and better electroactive surface utilization for Faradaic reactions. - Highlights: • Formation of hollow core–shell NiO via a novel and facile precipitation route. • Exhibited uniform feature sizes and high surface area of hollow core–shell NiO. • Synthesized NiO has high specific capacitance ( 448 F g{sup 1}) and very low ESR value. • Increased 20% of long life cycles capability after 500 charge–discharge cycles.

  14. [Use of ionizing radiation for sterilizing alginate dressings containing various antibacterial preparations].

    PubMed

    Moroz, A F; Kataev, S V; Samoĭlenko, I I; Komissarova, A L; Iakubovich, V S

    1981-02-01

    The effect of various doses of ionizing radiation on activity of antibacterial drugs contained in polymer alginate coatings was studied. Sensitivity of P. aeruginosa, E. coli, Staph. aureus, Proteus and B. subtilis used as the test organisms to the drugs and their combinations after radiation sterilization was determined on liquid nutrient media with the method of serial dilutions and agar diffusion and the use of the respective reference antibiotics. The coatings were irradiated in an isotope unit with 60Co at a dose of 7 Krad/min. The data are indicative of the possible use of ionizing radiation for sterilization of pharmaceutical alginate coatings in trade packings. Combined effect of antimicrobial substances and ionizing radiation plays an important role in the efficiency of radiation sterilization. Sterility of the majority of the drugs was achieved after irradiation in doses of 0.5-1 Mrad. The bactericidal activity of gentamicin, mafenid, polymyxin M and neomycin contained in the alginate coatings sterilized with gamma-radiation in doses of 1-2.5 Mrad did not decrease immediately and 1 year after irradiation.

  15. Preparation and characterization of NaClO4 doped poly(vinyl alcohol)/sodium alginate composite electrolyte

    NASA Astrophysics Data System (ADS)

    Sheela, T.; Bhajantri, R. F.; Ravindrachary, V.; Pujari, P. K.; Rathod, Sunil G.

    2013-02-01

    The 60:40 wt% poly(vinyl alcohol) (PVA)/sodium alginate blend doped with different concentrations of NaClO4 composite films were prepared by solution casting method. The prepared samples were characterized by FTIR, UV-Vis, DC and AC conductivity. The FTIR spectra confirms the complexation of NaClO4 with host polymer blend. From the UV-Vis spectra, the calculated optical band gap decreases from 5.2eV to 4.6eV. The frequency dependent dielectric constant decreases, and hence the dielectric loss and ac conductivity increases with doping level. The mechanical study shows the Young's modulus, tensile strength, stiffness were increases with the NaClO4 concentrations.

  16. Photochemical preparation of CdS hollow microspheres at room temperature and their use in visible-light photocatalysis

    SciTech Connect

    Huang Yuying; Sun Fengqiang; Wu Tianxing; Wu Qingsong; Huang Zhong; Su Heng; Zhang Zihe

    2011-03-15

    CdS hollow microspheres have been successfully prepared by a photochemical preparation technology at room temperature, using polystyrene latex particles as templates, CdSO{sub 4} as cadmium source and Na{sub 2}S{sub 2}O{sub 3} as both sulphur source and photo-initiator. The process involved the deposition of CdS nanoparticles on the surface of polystyrene latex particles under the irradiation of an 8 W UV lamp and the subsequent removal of the latex particles by dispersing in dichloromethane. Photochemical reactions at the sphere/solution interface should be responsible for the formation of hollow spheres. The as-prepared products were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Such hollow spheres could be used in photocatalysis and showed high photocatalytic activities in photodegradation of methyl blue (MB) in the presence of H{sub 2}O{sub 2}. The method is green, simple, universal and can be extended to prepare other sulphide and oxide hollow spheres. -- Graphical abstract: Taking polystyrene spheres dispersed in a precursor solution as templates, CdS hollow microspheres composed of nanoparticles were successfully prepared via a new photochemical route at room temperature. Display Omitted Research highlights: {yields} Photochemical method was first employed to prepare hollow microspheres. {yields} CdS hollow spheres were first prepared at room temperature using latex spheres. {yields} The polystyrene spheres used as templates were not modified with special groups. {yields}The CdS hollow microspheres showed high visible-light photocatalytic activities.

  17. Preparing Poly (Lactic-co-Glycolic Acid) (PLGA) Microspheres Containing Lysozyme-Zinc Precipitate Using a Modified Double Emulsion Method

    PubMed Central

    Nafissi Varcheh, Nastaran; Luginbuehl, Vera; Aboofazeli, Reza; Peter Merkle, Hans

    2011-01-01

    Lysozyme, as a model protein, was precipitated through the formation of protein-Zn complex to micronize for subsequent encapsulation within poly (lactic-co-glycolic acid) (PLGA) microspheres. Various parameters, including pH, type and concentration of added salts and protein concentration, were modified to optimize the yield of protein complexation and precipitation. The resulting protein particles (lysozyme-Zn complex as a freshly prepared suspension or a freeze-dried solid) were then loaded into PLGA (Resomer® 503H) microspheres, using a double emulsion technique and microspheres encapsulation efficiency and their sizes were determined. It was observed that salt type could significantly influence the magnitude of protein complexation. At the same conditions, zinc chloride was found to be more successful in producing pelletizable lysozyme. Generally, higher concentrations of protein solution led also to the higher yields of complexation and at the optimum conditions, the percentage of pelletizable lysozyme reached to 80%. Taking advantage of this procedure, a modified technique for preparation of protein-loaded PLGA microspheres was established, although it is also expected that this technique increases the protein drugs stabilization during the encapsulation process. PMID:24250344

  18. Preparation of monodisperse PEG hydrogel composite microspheres via microfluidic chip with rounded channels

    NASA Astrophysics Data System (ADS)

    Yu, Bing; Cong, Hailin; Liu, Xuesong; Ren, Yumin; Wang, Jilei; Zhang, Lixin; Tang, Jianguo; Ma, Yurong; Akasaka, Takeshi

    2013-09-01

    An effective microfluidic method to fabricate monodisperse polyethylene glycol (PEG) hydrogel composite microspheres with tunable dimensions and properties is reported in this paper. A T-junction microfluidic chip equipped with rounded channels and online photopolymerization system is applied for the microsphere microfabrication. The shape and size of the microspheres are well controlled by the rounded channels and PEG prepolymer/silicon oil flow rate ratios. The obtained PEG/aspirin composite microspheres exhibit a sustained release of aspirin for a wide time range; the obtained PEG/Fe3O4 nanocomposite microspheres exhibit excellent magnetic properties; and the obtained binary PEG/dye composite microspheres show the ability to synchronously load two functional components in the same peanut-shaped or Janus hydrogel particles.

  19. On-chip preparation of calcium alginate particles based on droplet templates formed by using a centrifugal microfluidic technique.

    PubMed

    Liu, Mei; Sun, Xiao-Ting; Yang, Chun-Guang; Xu, Zhang-Run

    2016-03-15

    A novel chip-based approach for the fabrication of oblate spheriodal calcium alginate particles was developed by combining the droplet template method and the centrifugal microfluidic strategy. Circular chips with multiple radial channels were designed. Sodium alginate solutions in radial channels were flung into CaCl2 solutions in the form of droplets under centrifugal force, and the droplets transformed into particles through cross-linking reaction. The size and morphology of particles could be controlled by regulating the centrifugal force, the channel geometry and the distance between the channel outlet and the CaCl2 solution. The throughput of particle production was evidently enhanced by increasing the number of radial channels to 48 and 64. The coefficients of variation of particle sizes were in the range of 5.2-5.6%, which indicated the monodisperse particles could be prepared by using the present method. With the chip configuration readily modified, the same platform could be used to produce Janus particles. The Janus particles showed clear interfaces owing to the high flight speed and the rapid gelling process of the droplets. This method would be capable of generating particles with complicated morphology and multifunction from diverse polymeric materials.

  20. Ultra-high ordered, centimeter scale preparation of microsphere Langmuir films.

    PubMed

    Kallepalli, L N Deepak; Constantinescu, C; Delaporte, P; Utéza, O; Grojo, D

    2015-05-15

    Controlling the preparation of nano/microsphere monolayers on large areas remains a difficult task but is crucial for several fabrication methods of highly-ordered periodic nanostructures. We demonstrate the preparation of ordered monolayers of few square centimeters with an extremely high coverage ratio (>98%) by implementing a modified protocol (MP) Langmuir Blodgett (LB) technique. We use octadecyl type hydrocarbon (C18) functionalized spherical particles (polystyrene and silica) with diameters in the range 1-5 μm, and a selected mixture of solvents for accurate control of the surface tension and particles' mobility at the water surface. This leads to a delicate growth of crystal-like monolayers which are subsequently transferred to glass or silicon substrates. While operating the Langmuir-Blodgett trough, a key enabling the quality enhancement resides not only on surface tension measurements but also on simple visual inspections of the water surface supporting the monolayer. The protocol yields a strong reduction of sensitivity to thermodynamical and mechanical disturbances leading to a robust method that could be automated by adding a feedback on the operated system based real-time image processing. A simple analytical approach is used to explain why this MP-LB technique is more appropriate in growing micrometric-sized objects in comparison to standard protocols optimized for the preparation of molecular films.

  1. Preparation and in vitro release performance of sustained-release captopril/Chitosan-gelatin net-polymer microspheres

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Xu, Junming; Song, Yimin; Gao, Yuanyuan; Chen, Xiguang

    2007-07-01

    The captopril/Chitosan-gelatin net-polymer microspheres (CTP/CGNPMs) were prepared using Chitosan (CTS) and gelatin (GT) by the methods of emulsification, cross-linked reagent alone or in combination and microcrystalline cellulose (MCC) added in the process of preparation of microspheres, which aimed to eliminate dose dumping and burst phenomenon of microspheres for the improvement of the therapeutic efficiency and the decrease of the side effects of captopril (CTP). The results indicated that CTP/CGNPMs had a spherical shape, smooth surface and integral structure inside but no adhesive phenomena in the preparation. The size distribution ranged from 220 μm to 280 μm. The CTP release test in vitro demonstrated that CTP/CGNPMs played the role of retarding the release of CTP compared with ordinary CTP tablets. The release behaviors of CGNPMS were influenced by preparation conditions such as experimental material ratio (EMR) and composition of cross linking reagents. Among these factors, the EMR (1/4), CLR (FA+SPP) and 0.75% microcrystalline cellulose (MCC) added to the microspheres constituted the optimal scheme for the preparation of CTP/CGNPMs. The ER, DL and SR of CTP/CGNPMs prepared according to the optimal scheme were 46.23±4.51%, 9.95±0.77% and 261±42%, respectively. The CTP/CGNPMs had the good characteristics of sustained release of drug and the process of emulsification and cross-linking were simple and stable. The CGNPMs are likely to be an ideal sustained release formulation for water-soluble drugs.

  2. Preparation of chitosan/nano hydroxyapatite organic-inorganic hybrid microspheres for bone repair.

    PubMed

    Chen, Jingdi; Pan, Panpan; Zhang, Yujue; Zhong, Shengnan; Zhang, Qiqing

    2015-10-01

    In this work, we encapsulated icariin (ICA) into chitosan (CS)/nano hydroxyapatite (nHAP) composite microspheres to form organic-inorganic hybrid microspheres for drug delivery carrier. The composition and morphology of composite microspheres were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and differential scanning calorimetry- thermogravimetric analysis (DSC-TGA). Moreover, we further studied the performance of swelling properties, degradation properties and drug release behavior of the microspheres. ICA, the extract of traditional Chinese medicine-epimedium, was combined to study drug release properties of the microspheres. ICA loaded microspheres take on a sustained release behavior, which can be not only ascribed to electrostatic interaction between reactive negative hydroxyl (OH) of ICA and positive amine groups (NH₂) of CS, but also depended on the homogeneous dispersion of HAP nanoparticles inside CS organic matrix. In addition, the adhesion and morphology of osteoblasts were detected by inverted fluorescence microscopy. The biocompatibility of CS/nHAP/ICA microspheres was evaluated by the MTT cytotoxicity assay, Hoechst 33258 and PI fluorescence staining. These studies demonstrate that composite microspheres provide a suitable microenvironment for osteoblast attachment and proliferation. It can be speculated that the ICA loaded CS-based organic-inorganic hybrid microspheres might have potential applications in drug delivery systems.

  3. Polysaccharide-based aerogel microspheres for oral drug delivery.

    PubMed

    García-González, C A; Jin, M; Gerth, J; Alvarez-Lorenzo, C; Smirnova, I

    2015-03-01

    Polysaccharide-based aerogels in the form of microspheres were investigated as carriers of poorly water soluble drugs for oral administration. These bio-based carriers may combine the biocompatibility of polysaccharides and the enhanced drug loading capacity of dry aerogels. Aerogel microspheres from starch, pectin and alginate were loaded with ketoprofen (anti-inflammatory drug) and benzoic acid (used in the management of urea cycle disorders) via supercritical CO2-assisted adsorption. Amount of drug loaded depended on the aerogel matrix structure and composition and reached values up to 1.0×10(-3) and 1.7×10(-3) g/m(2) for ketoprofen and benzoic acid in starch microspheres. After impregnation, drugs were in the amorphous state in the aerogel microspheres. Release behavior was evaluated in different pH media (pH 1.2 and 6.8). Controlled drug release from pectin and alginate aerogel microspheres fitted Gallagher-Corrigan release model (R(2)>0.99 in both cases), with different relative contribution of erosion and diffusion mechanisms depending on the matrix composition. Release from starch aerogel microspheres was driven by dissolution, fitting the first-order kinetics due to the rigid starch aerogel structure, and showed different release rate constant (k1) depending on the drug (0.075 and 0.160 min(-1) for ketoprofen and benzoic acid, respectively). Overall, the results point out the possibilities of tuning drug loading and release by carefully choosing the polysaccharide used to prepare the aerogels.

  4. Preparation of uniform-sized exenatide-loaded PLGA microspheres as long-effective release system with high encapsulation efficiency and bio-stability.

    PubMed

    Qi, Feng; Wu, Jie; Fan, Qingze; He, Fan; Tian, Guifang; Yang, Tingyuan; Ma, Guanghui; Su, Zhiguo

    2013-12-01

    Exenatide-loaded poly(d,l-lactic-co-glycolic acid) (PLGA) microspheres hold great potential as a drug delivery system to treat type 2 diabetes mellitus (T2DM) because they can overcome the shortcoming of exenatide's short half-life and realize sustained efficacy. However, conventional preparation methods often lead to microspheres with a broad size distribution, which in turn would cause poor preparation repeatability, drug efficacy and so forth. In this study, we used Shirasu Porous Glass (SPG) premix membrane emulsification technique characterized with high trans-membrane flux and size controllability to prepare uniform-sized PLGA microspheres. By optimizing trans-membrane pressure and PVA concentration in external aqueous phase, uniform-sized PLGA microspheres with large size (around 20μm) were successfully obtained. To achieve high encapsulation efficiency (EE) and improve in vitro release behavior, we have carefully examined the process parameters. Our results show that using ultrasonication to form primary emulsion, microspheres with high EE were easily obtained, but the rate of in vitro release was very slow. Instead, high EE and appropriate in vitro release were achieved when homogenization with optimized time and speed were employed. Besides, we also systematically investigated the effect of formulations on loading efficiency (LE) as well as the relationship between the resultant size of the microspheres and pore size of the membrane. Finally, through RP-HPLC and CD spectra analysis, we have demonstrated that the bio-stability of exenatide in microspheres was preserved during the preparation process.

  5. Preparation and cytotoxicity of N,N,N-trimethyl chitosan/alginate beads containing gold nanoparticles.

    PubMed

    Martins, Alessandro F; Facchi, Suelen P; Monteiro, Johny P; Nocchi, Samara R; Silva, Cleiser T P; Nakamura, Celso V; Girotto, Emerson M; Rubira, Adley F; Muniz, Edvani C

    2015-01-01

    Polyelectrolyte complex beads based on N,N,N-trimethyl chitosan (TMC) and sodium alginate (ALG) were obtained. This biomaterial was characterised by FTIR, TGA/DTG, DSC and SEM analysis. The good properties of polyelectrolyte complex hydrogel beads were associated, for the first time, with gold nanoparticles (AuNPs). Through a straightforward methodology, AuNPs were encapsulated into the beads. The in vitro cytotoxicity assays on the Caco-2 colon cancer cells and healthy VERO cells showed that the beads presented good biocompatibility on both cell lines, whereas the beads loaded with gold nanoparticles (beads/AuNPs) was slightly cytotoxic on the Caco-2 and VERO cells.

  6. Preparation of methotrexate-loaded, large, highly-porous PLLA microspheres by a high-voltage electrostatic antisolvent process.

    PubMed

    Chen, Ai-Zheng; Yang, Yue-Mei; Wang, Shi-Bin; Wang, Guang-Ya; Liu, Yuan-Gang; Sun, Qing-Qing

    2013-08-01

    A high-voltage (10 kV) electrostatic antisolvent process was used to prepare methotrexate (MTX)-loaded, large, highly-porous poly-L-lactide (PLLA) microspheres. MTX solution in dimethyl sulfoxide (DMSO) and PLLA solution in dichloromethane (DCM) were homogeneously mixed, and then ammonium bicarbonate (AB) aqueous solution was added. The mixed solution was emulsified by ultrasonication with Pluronic F127 (PF127) as an emulsion stabilizer. The emulsion was electrosprayed by the specific high-voltage apparatus and dropped into a 100 mL of ethanol, which acted as an antisolvent for the solute and extracted DMSO and DCM, causing the co-precipitation of PLLA and MTX, thus forming microspheres with AB aqueous micro-droplets uniformly inlaid. The obtained MTX-PLLA microspheres were subsequently lyophilized to obtain large, highly-porous MTX-PLLA microspheres, which exhibited an identifiable spherical shape and a rough surface furnished with open pores, with a mean particle size of 25.0 μm, mass median aerodynamic diameter of 3.1 ± 0.2 μm, fine-particle fraction of 57.1 ± 1.6 %, and porosity of 81.8 %; furthermore, they offered a sustained release of MTX. X-ray diffraction and Fourier transform-infrared spectra revealed that no crystallinity or alteration of chemical structure occurred during the high-voltage electrostatic antisolvent process, which in this study was proved to have great potential for preparing highly-porous drug-loaded polymer microspheres for use in pulmonary drug delivery.

  7. Preparation and CO{sub 2} adsorption properties of aminopropyl-functionalized mesoporous silica microspheres

    SciTech Connect

    Araki, S.; Doi, H.; Sano, Y.; Tanaka, S.; Miyake, Y.

    2009-11-15

    Aminopropyl-functionalized mesoporous silica microspheres (AF-MSM) were synthesized by a simple one-step modified Stober method. Dodecylamine (DDA) was used as the catalyst for the hydrolysis and condensation of the silica source and as the molecular template to prepare the ordered mesopores. The mesoporous silica surfaces were modified to aminopropyl groups by the co-condensation of tetraethoxysilane (TEOS) with 3-aminopropyltriethoxysilane (APTES), up to a maximum of 20 mol.% APTES content in the silica source. The particle size, Brunauer-Emmet-Teller (BET) specific surface area, and mesoporous regularity decreased with increasing APTES content. It is believed that this result is caused by a decreasing amount of DDA incorporated into AF-MSM with increasing APTES content. It was also confirmed that the spherical shape and the mesostructure were maintained even if 20 mol.% of APTES was added to the silica source. Moreover, AF-MSM was applied to the CO{sub 2} adsorbent. The breakthrough time of the CO{sub 2} and CO{sub 2} adsorption capacities increased with increasing APTES content. The adsorption capacity of CO{sub 2} for AF-MSM, prepared at 20 mol.% APTES, was 0.54 mmol g{sup -1}. Carbon dioxide adsorbed onto AF-MSM was completely desorbed by heating in a N{sub 2} purge at 423 K for 30 min.

  8. Supercapacitive performance of hierarchical porous carbon microspheres prepared by simple one-pot method

    NASA Astrophysics Data System (ADS)

    Zhao, Qinglan; Wang, Xianyou; Wu, Chun; Liu, Jing; Wang, Hao; Gao, Jiao; Zhang, Youwei; Shu, Hongbo

    2014-05-01

    The hierarchical porous carbon microspheres (HPCMSs) using furfuryl alcohol as carbon resource have been prepared by a simple one-pot method. The HPCMSs are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption/desorption isotherm at 77 K, cyclic voltammetry (CV), galvanostatic charge/discharge tests, electrochemical impedance spectroscopy (EIS) and cycle life measurements in 6 M KOH. The results show that all the HPCMSs samples, which can be fabricated by adjusting the ratio of furfuryl alcohol/tetraethyl orthosilicate, possess three-dimensionally tailored pore structures with unique micro-, meso- and macroporous systems. Particularly, the HPCMS-2 prepared at the mole ratio of 2/1 (furfuryl alcohol/tetraethyl orthosilicate) shows the largest specific surface area of 709 m2 g-1, and the HPCMS-2 electrode owns specific capacitance as high as 221 F g-1 at the current density of 1 A g-1. The supercapacitor using HPCMS-2 as the active material shows high specific capacitance and excellent cycle stability, which exhibits a specific capacitance of 56 F g-1 at the charge/discharge current density of 0.5 A g-1. Furthermore, the HPCMS-2 supercapacitor delivers high energy densities of 6.1 Wh kg-1 at the power density of 5000 W kg-1, revealing a promising application in supercapacitors.

  9. Preparation, Characterization, and In Vivo Evaluation of Olanzapine Poly(D,L-lactide-co-glycolide) Microspheres

    PubMed Central

    D'Souza, Susan; Faraj, Jabar A.; Giovagnoli, Stefano; DeLuca, Patrick P.

    2013-01-01

    The aim of this study was to prepare injectable depot formulations of Olanzapine using four poly(D,L-lactide-co-glycolide) (PLGA) polymers of varying molecular weight and copolymer composition, and evaluate in vivo performance in rats. In vivo release profiles from the formulations were governed chiefly by polymer molecular weight and to a lesser extent, copolymer composition. Formulations A and B, manufactured using low molecular weight PLGA and administered at 10 mg/kg dose, released drug within 15 days. Formulation C, prepared from intermediate molecular weight PLGA and administered at 20 mg/kg dose, released drug in 30 days, while Formulation D, manufactured using a high molecular weight polymer and administered at 20 mg/kg dose, released drug in 45 days. A simulation of multiple dosing at 7- and 10-day intervals for Formulations A and B revealed that steady state was achieved within 7–21 days and 10–30 days, respectively. Similarly, simulations at 15-day intervals for Formulations C and D indicated that steady state levels were reached during days 15–45. Overall, steady state levels for 7-, 10-, or 15-day dosing ranged between 45 and 65 ng/mL for all the formulations, implying that Olanzapine PLGA microspheres can be tailored to treat patients with varying clinical needs. PMID:26555996

  10. Facile preparation of magnetic 2-hydroxypropyltrimethyl ammonium chloride chitosan/Fe3O4/halloysite nanotubes microspheres for the controlled release of ofloxacin.

    PubMed

    Wang, Qin; Zhang, Junping; Mu, Bin; Fan, Ling; Wang, Aiqin

    2014-02-15

    Magnetic microspheres, 2-hydroxypropyltrimethyl ammonium chloride chitosan/Fe3O4/halloysite nanotubes/ofloxacin (HACC/Fe3O4/HNTs/OFL), for the controlled release of OFL were prepared by in situ crosslinking with glutaraldehyde in the spray-drying process. The magnetic microspheres were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis and a magnetometer. Various parameters influencing the encapsulation efficiency, drug loading and in vitro controlled release properties of the magnetic microspheres for OFL were also studied. Many stripes were formed and some tubular HNTs could be seen at higher magnification on the surface of the HACC/Fe3O4/HNTs/OFL magnetic microspheres. The magnetic microspheres show superparamagnetic property and fast magnetic response. The encapsulation efficiency and the cumulative release of OFL are closely related to HACC concentration, HNTs contents and crosslinking density. The release of OFL follows the first-order kinetics.

  11. [Preparation of nicosulfuron molecularly imprinted microspheres and research of adsorption characteristics].

    PubMed

    Xia, Ying; Zhang, Lan; Zhao, Ercheng; Jia, Chunhong; Zhu, Xiaodan

    2014-02-01

    Molecularly imprinted microspheres (MIPMs) for binding and recognition of nicosulfuron (NS) (NS-MIPMs) were prepared by precipitation polymerization. Methacrylic acid (MAA) was used as the functional monomer, trimethylolpropane trimethacrylate (TRIM) as the linking agent, 2,2-azobisisobutyronitrile (AIBN) as the initiator and chloroform as the porogenic solvent. The preparation conditions were optimized, and MIPMs exhibited the best adsorption capacity when the molar ratio of NS/MAA/TRIM/AIBN was 1:4:4:1 and the volume of the porogenic solvent was 90 mL. An ultraviolet-visible (UV-Vis) spectrophotometer was employed to study the mechanism of the interaction between NS and MAA, and the results showed that the NS-MAA complexes of 1:1 molar ratio were obtained in the pre-polymerization phase. The rebinding capacity of MIPMs was evaluated according to adsorption kinetics and adsorption isotherm of the imprinted microspheres. The Scatchard plot revealed that the template polymer system has a two-site binding behavior and the MIPMs exhibited the maximum rebinding to NS at 11,370.5 microg/g. The MIPMs were then used as adsorbents in a solid phase extraction (SPE) column and the optimum loading, washing and eluting conditions for the MIPMs were established. Additionally, a rapid method for the determination of NS residues in soil was developed using an NS-MIPMs SPE column. The analyte was extracted using acetonitrile and phosphate buffer, cleaned-up by an NS-MIPMs SPE column and analyzed by HPLC. The results showed that good linearity was observed in the range of 0.01-1 mg/L for NS, with a correlation coefficient of 0. 998 6. The recovery tests were performed at the spiked levels of 0.02-1 mg/kg, and the recoveries were in the range of 82.2%-86.3% with the relative standard deviations of 1.9%-4.3%. The advantages of the proposed method are that it is easy to operate, reliable and applicable to analyze the NS residues in soil samples. PMID:24822444

  12. Preparation and characterization of hollow glass microspheres coated by CoFe{sub 2}O{sub 4} nanoparticles using urea as precipitator via coprecipitation method

    SciTech Connect

    Pang Xiaofen; Fu Wuyou; Yang Haibin Zhu Hongyang; Xu Jing; Li Xiang; Zou Guangtian

    2009-02-04

    The composite of hollow glass microspheres coated by CoFe{sub 2}O{sub 4} nanoparticles has been successfully prepared using urea as precipitator via coprecipitation method. The resultant composites were characterized by X-ray diffraction, field emission scanning electron microscope and vibrating sample magnetometer. The results showed that the slow decomposition of urea could be beneficial to form uniform and entire cobalt ferrite coating layer on the surface of hollow glass microspheres. The smoothest morphology was obtained for the sample prepared from 0.7 M urea, while the sample prepared from 1.0 M urea had the thickest shell. This indicated that there was a competition between the morphology and thickness of the coated microspheres. A possible formation mechanism of hollow glass microspheres coated with cobalt ferrite was proposed. The magnetic properties of the samples were also investigated.

  13. Novel zinc alginate hydrogels prepared by internal setting method with intrinsic antibacterial activity.

    PubMed

    Straccia, Maria Cristina; d'Ayala, Giovanna Gomez; Romano, Ida; Laurienzo, Paola

    2015-07-10

    In this paper, a controlled gelation of alginate was performed for the first time using ZnCO3 and GDL. Uniform and transparent gels were obtained and investigated as potential wound dressings. Homogeneity, water content, swelling capability, water evaporation rate, stability in normal saline solution, mechanical properties and antibacterial activity were assessed as a function of zinc concentration. Gelation rate increased at increasing zinc content, while a decrease in water uptake and an improvement of stability were found. Release of zinc in physiological environments showed that concentration of zinc released in solution lies below the cytotoxicity level. Hydrogels showed antimicrobial activity against Escherichia coli. The hydrogel with highest zinc content was stabilized with calcium by immersion in a calcium chloride solution. The resulting hydrogel preserved homogeneity and antibacterial activity. Furthermore, it showed even an improvement of stability and mechanical properties, which makes it suitable as long-lasting wound dressing.

  14. Preparation of Ag-coated hollow microspheres via electroless plating for application in lightweight microwave absorbers

    NASA Astrophysics Data System (ADS)

    Kim, Wook-Joong; Kim, Sung-Soo

    2015-02-01

    Highly conductive Ag film is coated on hollow silica microspheres via electroless plating for application in lightweight microwave absorbers. The Ag plating is conducted using a two-step process of sensitizing and subsequent plating. The complex permeability and permittivity are determined using the reflection/transmission technique in the composite specimens of Ag-coated microspheres and silicone rubber matrix. Due to the large surface area of the microspheres, a relatively high concentration of AgNO3 is required in order to achieve a uniform Ag coating. In addition, a low concentration of fructose reducing agent is recommended for slow plating. The apparent electrical resistance of the Ag-coated microspheres is strongly dependent on the grain morphology. The thin and uniform Ag-coated particles are characterized by their low electrical resistance, which is as low as 0.1 Ω. The lower the electrical resistance of the microspheres, the higher the dielectric constant of the composite specimens, which results from the enhanced space-charge polarization between the conductive microspheres. The microwave absorbance is enhanced with decreases in the electrical resistance of microspheres due to the increased dielectric loss.

  15. Preparation, Characterization, In Vitro Release and Degradation of Cathelicidin-BF-30-PLGA Microspheres

    PubMed Central

    Li, Hongli; Yuan, Mingwei; Yuan, Minglong

    2014-01-01

    Cathelicidin-BF-30 (BF-30), a water-soluble peptide isolated from the snake venom of Bungarus fasciatus containing 30 amino acid residues, was incorporated in poly(D,L-lactide-co-glycolide) (PLGA) 75∶25 microspheres (MS) prepared by a water in oil in water W/O/W emulsification solvent extraction method. The aim of this work was to investigate the stability of BF-30 after encapsulation. D-trehalose was used as an excipient to stabilize the peptide. The MS obtained were mostly under 2 µm in size and the encapsulation efficiency was 88.50±1.29%. The secondary structure of the peptide released in vitro was determined to be nearly the same as the native peptide using Circular Dichroism (CD). The ability of BF-30 to inhibit the growth of Escherichia coli was also maintained. The cellular relative growth and hemolysis rates were 92.16±3.55% and 3.52±0.45% respectively. PMID:24963652

  16. Preparation, characterization, in vitro release and degradation of cathelicidin-BF-30-PLGA microspheres.

    PubMed

    Li, Lili; Wang, Qifeng; Li, Hongli; Yuan, Mingwei; Yuan, Minglong

    2014-01-01

    Cathelicidin-BF-30 (BF-30), a water-soluble peptide isolated from the snake venom of Bungarus fasciatus containing 30 amino acid residues, was incorporated in poly(D,L-lactide-co-glycolide) (PLGA) 75∶25 microspheres (MS) prepared by a water in oil in water W/O/W emulsification solvent extraction method. The aim of this work was to investigate the stability of BF-30 after encapsulation. D-trehalose was used as an excipient to stabilize the peptide. The MS obtained were mostly under 2 µm in size and the encapsulation efficiency was 88.50±1.29%. The secondary structure of the peptide released in vitro was determined to be nearly the same as the native peptide using Circular Dichroism (CD). The ability of BF-30 to inhibit the growth of Escherichia coli was also maintained. The cellular relative growth and hemolysis rates were 92.16±3.55% and 3.52±0.45% respectively. PMID:24963652

  17. Polymeric microspheres

    DOEpatents

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.

    2004-04-13

    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  18. Reactive carbon microspheres prepared by surface-grafting 4-(chloromethyl)phenyltrimethoxysilane for preparing molecularly imprinted polymer

    NASA Astrophysics Data System (ADS)

    Liu, Weifeng; Zhao, Huijun; Yang, Yongzhen; Liu, Xuguang; Xu, Bingshe

    2013-07-01

    Carbon microspheres (CMSs) were oxidized by a mixture of concentrated sulfuric and nitric acids, and modified by 4-(chloromethyl)phenyltrimethoxysilane to give reactive surface. Then, by adopting the surface molecular imprinting technique, dibenzothiophene (DBT) molecule-imprinted material MIP-DBT/CMSs was prepared with methacrylic acid as functional monomer and ethylene glycol dimethacrylate as crosslinking agent. The binding character of MIP-DBT/CMSs toward DBT was investigated with static method by gas chromatography, using fluorene and biphenyl as the reference substances which are similar to DBT in chemical structure to a certain extent. The effects of reaction time, temperature, and coupling agent concentration during silanization were investigated. The results show that the optimized conditions of silanization were 0.3 g oxidized-CMSs, 5% of CMTMS, 80 °C and 4 h. On the basis of silanized-CMSs, MIP-DBT/CMSs was synthesized. The adsorption results show that MIP-DBT/CMSs possessed strong adsorption ability for DBT. The maximal adsorption amount reached up 88.83 mg/g, in comparison with 44.51 mg/g of the non-imprinted polymer. In addition, MIP-DBT/CMSs exhibited a good selective adsorption capacity for DBT than fluorene (19.86 mg/g) and biphenyl (15.33 mg/g). The adsorption behavior followed the pseudo second order kinetic model. And the Freundlich isotherm was found to describe well the equilibrium adsorption data.

  19. Silver Nanoparticles in SiO2 Microspheres - Preparation by Spray Drying and Use as Antimicrobial Agent.

    PubMed

    Mahltig, Boris; Haufe, Helfried; Muschter, Kerstin; Fischer, Anja; Kim, Young Hwan; Gutmann, Emanuel; Reibold, Marianne; Meyer, Dirk Carl; Textor, Torsten; Kim, Chang Woo; Kang, Young Soo

    2010-06-01

    Silver nanoparticles embedded in SiO2 particles of micrometer size are prepared using spray drying. The spray drying is performed with a SiO2 sol (solvent water:ethanol 4: 1) containing SiO2 and silver particles of nanometer size. During spray drying the SiO2 nanoparticles aggregate to SiO2 microspheres whereas the silver particles exhibit only a small tendency of aggregation and keep their nanometer size. However under special conditions also the formation of crystalline silver rods is observed. The antibacterial activity of the resulting Ag/SiO2 powders is determined against the bacteria Escherichia coli and Bacillus subtilis. Because of this antibacterial acitivity and the fact that the powder of SiO2 microspheres exhibits a good dispersibility, such materials have an immense potential to be used as antimicrobial additive in processes like master batch or fiber production. PMID:24061743

  20. Recycling of chemicals from alkaline waste generated during preparation of UO 3 microspheres by sol-gel process

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Vittal Rao, T. V.; Mukerjee, S. K.; Vaidya, V. N.

    2006-05-01

    Internal gelation process, one of the sol-gel processes for nuclear fuel fabrication, offers many advantages over conventional powder pellet route. However, one of the limitation of the process is generation of large volume of alkaline liquid waste containing hexamethylenetetramine, urea, ammonium nitrate, ammonium hydroxide etc. Presence of ammonium nitrate with hexamethylenetetramine and urea presents a fire hazard which prevents direct disposal of the waste as well as its recycle by evaporation. The paper describes the studies carried out to suitably process the waste. Nitrate was removed from the waste by passing through Dowex 1 × 4 anion exchange resin in OH - form. 1.0 M NaOH was used to regenerate the resin. The nitrate-free waste was further treated to recover and recycle hexamethylenetetramine, urea and ammonium hydroxide for preparation of UO 3 microspheres. The quality of the microspheres obtained was satisfactory. An optimized flow sheet for processing of the waste solution has been suggested.

  1. One pot preparation of silver nanoparticles decorated TiO2 mesoporous microspheres with enhanced antibacterial activity.

    PubMed

    Chen, Yuemei; Deng, Yuanming; Pu, Yitao; Tang, Bijun; Su, Yikun; Tang, Jiaoning

    2016-08-01

    We report a simple "one-pot" solvothermal preparation of silver nanoparticles (Ag NPs) decorated mesoporous titania (TiO2) microspheres as an effective antibacterial agent. TBOT as Ti source was hydrolyzed and crystallized in media composed of acetic acid and ethanol, in which esterification catalyzed by TBOT occurred for in-situ "controlled water release". AgNO3 as Ag source was reduced by ethanol to form Ag NPs embedded in the TiO2 microspheres. The effect of AgNO3 and HAc on the morphology of Ag/TiO2 was investigated. The Ag/TiO2 with various Ag content showed excellent antibacterial activities with extremely low minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Escherichia coli and Staphylococcus aureus when compared with colloidal Ag NPs. PMID:27157724

  2. Preparation of hollow core/shell microspheres of hematite and its adsorption ability for samarium.

    PubMed

    Yu, Sheng-Hui; Yao, Qi-Zhi; Zhou, Gen-Tao; Fu, Sheng-Quan

    2014-07-01

    Hollow core/shell hematite microspheres with diameter of ca. 1-2 μm have been successfully achieved by calcining the precursor composite microspheres of pyrite and polyvinylpyrrolidone (PVP) in air. The synthesized products were characterized by a wide range of techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), and Brunauer-Emmett-Teller (BET) gas sorptometry. Temperature- and time-dependent experiments unveil that the precursor pyrite-PVP composite microspheres finally transform into hollow core/shell hematite microspheres in air through a multistep process including the oxidation and sulfation of pyrite, combustion of PVP occluded in the precursor, desulfation, aggregation, and fusion of nanosized hematite as well as mass transportation from the interior to the exterior of the microspheres. The formation of the hollow core/shell microspheres dominantly depends on the calcination temperature under current experimental conditions, and the aggregation of hematite nanocrystals and the core shrinking during the oxidation of pyrite are responsible for the formation of the hollow structures. Moreover, the adsorption ability of the hematite for Sm(III) was also tested. The results exhibit that the hematite microspheres have good adsorption activity for trivalent samarium, and that its adsorption capacity strongly depends on the pH of the solution, and the maximum adsorption capacity for Sm(III) is 14.48 mg/g at neutral pH. As samarium is a typical member of the lanthanide series, our results suggest that the hollow hematite microspheres have potential application in removal of rare earth elements (REEs) entering the water environment.

  3. Preparation of porous microsphere-scaffolds by electrohydrodynamic forming and thermally induced phase separation.

    PubMed

    Ghanbar, Hanif; Luo, C J; Bakhshi, Poonam; Day, Richard; Edirisinghe, Mohan

    2013-07-01

    The availability of forming technologies able to mass produce porous polymeric microspheres with diameters ranging from 150 to 300 μm is significant for some biomedical applications where tissue augmentation is required. Moreover, appropriate assembly of microspheres into scaffolds is an important challenge to enable direct usage of the as-formed structures in treatments. This work reports the production of poly (glycolic-co-lactic acid) and poly (ε-caprolactone) microspheres under ambient conditions using one-step electrohydrodynamic jetting (traditionally known as atomisation) and thermally induced phase separation (TIPS). To ensure robust production for practical uses, this work presents 12 comprehensive parametric mode mappings of the diameter distribution profiles of the microspheres obtained over a broad range of key processing parameters and correlating of this with the material parameters of 5 different polymer solutions of various concentrations. Poly (glycolic-co-lactic acid) (PLGA) in Dimethyl carbonate (DMC), a low toxicity solvent with moderate conductivity and low dielectric constant, generated microspheres within the targeted diameter range of 150-300 μm. The fabrication of the microspheres suitable for formation of the scaffold structure is achieved by changing the collection method from distilled water to liquid nitrogen and lyophilisation in a freeze dryer. PMID:23623059

  4. Preparation of phosphorus-containing silica glass microspheres for radiotherapy of cancer by ion implantation.

    PubMed

    Kawashita, M; Miyaji, F; Kokubo, T; Suzuki, Y; Kajiyama, K

    1999-08-01

    A chemically durable glass microsphere containing a large amount of phosphorus is useful for in situ irradiation of cancers, since they can be activated to be a beta-emitter with a half-life of 14.3 d by neutron bombardment. When the activated microspheres are injected to the tumors, they can irradiate the tumors directly with beta-rays without irradiating neighboring normal tissues. In the present study, P+ ion was implanted into silica glass microspheres of 25 microm in average diameter at 50 keV with nominal doses of 2.5 x 10(16) and 3.35 x 10(1)6 cm(-2). The glass microspheres were put into a stainless container and the container was continuously shaken during the ion implantation so that P+ ion was implanted into them uniformly. The implanted phosphorus was localized in deep regions of the glass microsphere with the maximum concentration at about 50 nm depth without distributing up to the surface even for a nominal dose of 3.35 x 10(16) cm(-2). Both samples released phosphorus and silicon into water at 95 degrees C for 7 d. On the basis of the previous study on P+-implanted silica glass plates, the silica glass microspheres containing more phosphorus which is desired for actual treatment could be obtained, without losing high chemical durability, if P+ ion would be implanted at higher energy than 50 keV to be localized in deeper region.

  5. Preparation and drug release properties of norisoboldine-loaded chitosan microspheres.

    PubMed

    He, Miao; Wang, Haiyan; Dou, Wei; Chou, Guixin; Wei, Xiaohui; Wang, Zhengtao

    2016-10-01

    This study aimed to develop injectable norisoboldine (NOR) chitosan microspheres formulated through the emulsion cross-linking method. The formulation was optimized using response surface methodology (RSM) with a three-level, three-factor Box-Behnken design (BBD). The morphology, size, physicochemical characterization and in vitro release behavior of the optimized formulation were evaluated. Scanning electron micrographs (SEM) indicated that the microspheres were spherical with a smooth surface. The encapsulation efficiency and drug loading content of the microspheres were 38.89%±1.72% and 4.25%±0.15%, respectively, with an average size of 105μm. Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) revealed the absence of a drug-polymer interaction and the amorphous nature of an entrapped drug. Analysis results of drug release in vitro show the burst release of the microsphere in 2h and a slow progression afterward. In vivo studies using Sprague-Dawley rats revealed that the NOR-loaded chitosan microspheres were biocompatible. This study suggests that the BBD with desired formulation could provide a suitable drug delivery system of chitosan microspheres.

  6. Preparation, characterization and in vitro gentamicin release of porous HA microspheres.

    PubMed

    Yu, Min; Zhou, Kechao; Li, Zhiyou; Zhang, Dou

    2014-12-01

    Hydroxyapatite (HA) microspheres with high porosities were successfully obtained using an improved ice-templated spray drying (ITSD) technique for drug delivery applications. Pore structures and pore sizes of microspheres have great impact on drug loading and release kinetics. Therefore, solvent types, polyvinyl alcohol (PVA) contents and solid loadings of suspensions were adjusted to control the pore structures and pore sizes. Microspheres with interconnected pore networks and aligned pore structures were obtained using camphene-based and tert-butyl alcohol (TBA)-based suspensions, respectively. With the increase of PVA contents in suspensions, the growth of sintering neck became more obvious and the surface of HA particles became smoother. The inner pore structures of microspheres transformed from uniformly distributed cellular pores to three-dimensional interconnected pore networks, with the increase of solid loadings in suspensions. Gentamicin was successfully loaded into porous HA microspheres. The drug loading percentage increased from 40.59 to 49.82% with the increase of porosity of HA microspheres. The release percentage during the initial 18 h increased from 48.72 to 65.68% with the transformation of pore structures from independent cellular pores (main diameter~3 μm) to three-dimensional interconnected pore networks (main diameter>3 μm).

  7. Preparation, characterization and in vitro gentamicin release of porous HA microspheres.

    PubMed

    Yu, Min; Zhou, Kechao; Li, Zhiyou; Zhang, Dou

    2014-12-01

    Hydroxyapatite (HA) microspheres with high porosities were successfully obtained using an improved ice-templated spray drying (ITSD) technique for drug delivery applications. Pore structures and pore sizes of microspheres have great impact on drug loading and release kinetics. Therefore, solvent types, polyvinyl alcohol (PVA) contents and solid loadings of suspensions were adjusted to control the pore structures and pore sizes. Microspheres with interconnected pore networks and aligned pore structures were obtained using camphene-based and tert-butyl alcohol (TBA)-based suspensions, respectively. With the increase of PVA contents in suspensions, the growth of sintering neck became more obvious and the surface of HA particles became smoother. The inner pore structures of microspheres transformed from uniformly distributed cellular pores to three-dimensional interconnected pore networks, with the increase of solid loadings in suspensions. Gentamicin was successfully loaded into porous HA microspheres. The drug loading percentage increased from 40.59 to 49.82% with the increase of porosity of HA microspheres. The release percentage during the initial 18 h increased from 48.72 to 65.68% with the transformation of pore structures from independent cellular pores (main diameter~3 μm) to three-dimensional interconnected pore networks (main diameter>3 μm). PMID:25491833

  8. Preparation and drug release properties of norisoboldine-loaded chitosan microspheres.

    PubMed

    He, Miao; Wang, Haiyan; Dou, Wei; Chou, Guixin; Wei, Xiaohui; Wang, Zhengtao

    2016-10-01

    This study aimed to develop injectable norisoboldine (NOR) chitosan microspheres formulated through the emulsion cross-linking method. The formulation was optimized using response surface methodology (RSM) with a three-level, three-factor Box-Behnken design (BBD). The morphology, size, physicochemical characterization and in vitro release behavior of the optimized formulation were evaluated. Scanning electron micrographs (SEM) indicated that the microspheres were spherical with a smooth surface. The encapsulation efficiency and drug loading content of the microspheres were 38.89%±1.72% and 4.25%±0.15%, respectively, with an average size of 105μm. Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) revealed the absence of a drug-polymer interaction and the amorphous nature of an entrapped drug. Analysis results of drug release in vitro show the burst release of the microsphere in 2h and a slow progression afterward. In vivo studies using Sprague-Dawley rats revealed that the NOR-loaded chitosan microspheres were biocompatible. This study suggests that the BBD with desired formulation could provide a suitable drug delivery system of chitosan microspheres. PMID:27344949

  9. Will the use of double barrier result in sustained release of vancomycin? Optimization of parameters for preparation of a new antibacterial alginate-based modern dressing.

    PubMed

    Kurczewska, Joanna; Sawicka, Paulina; Ratajczak, Magdalena; Gajęcka, Marzena; Schroeder, Grzegorz

    2015-12-30

    The aim of this research was to prepare and characterize an alginate-based wound dressing containing vancomycin immobilized at the silica surface. The silica samples functionalized with amine, diol and carboxylic acid groups were loaded with 7.8, 5.7 and 7.1wt.% of the antibiotic respectively. The immobilized drug was encapsulated in alginate or gelatin/alginate gels and the average concentration of vancomycin was about 10mg per g of the dried gel. The effect of functional organic groups at the silica surface on the release rate of the drug was investigated. Only the drug immobilized at Si-amine in alginate matrix was found to demonstrate slower release from the proposed wound dressing. The in vitro release profiles for other silica carriers did not show significant differences in relation to the free loaded drug. The presence of gelatin had a favourable impact on the slowing down of the drug release from the dressing with a double barrier. All the gels studied with vancomycin immobilized at the silica surface demonstrated antimicrobial activity against various bacteria. A reduction of the drug dose to a half had no effect on changing microbiological activity of gels.

  10. Preparation of chitosan-graft-polyacrylamide magnetic composite microspheres for enhanced selective removal of mercury ions from water.

    PubMed

    Li, Kun; Wang, Yawen; Huang, Mu; Yan, Han; Yang, Hu; Xiao, Shoujun; Li, Aimin

    2015-10-01

    A novel magnetic composite microsphere based on polyacrylamide (PAM)-grafted chitosan and silica-coated Fe3O4 nanoparticles (CS-PAM-MCM) was successfully synthesized by a simple method. The molecular structure, surface morphology, and magnetic characteristics of the composite microsphere were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating-sample magnetometer (VSM), and scanning electron microscopy (SEM). The prepared CS-PAM-MCM was applied as an efficient adsorbent for the removal of copper(II), lead(II), and mercury(II) ions from aqueous solutions in respective single, binary, and ternary metal systems. Compared with chitosan magnetic composite microsphere (CS-MCM) without modification, CS-PAM-MCM showed improved adsorption capacity for each metal ion and highly selective adsorption for Hg from Pb and Cu. This improvement is attributed to the formation of stronger interactions between Hg and the amide groups of PAM branches for chelating effects. The adsorption isotherms of Hg/Cu and Hg/Pb binary metal systems onto CS-PAM-MCM are both well-described by extended and modified Langmuir models, indicating that the removal of the three aforementioned metal ions may follow a similar adsorption manner; that is, through a homogeneous monolayer chemisorption process. Furthermore, these magnetic adsorbents could be easily regenerated in EDTA aqueous solution and reused virtually without any adsorption capacity loss. PMID:26073848

  11. Preparation and characterization of magnetic porous carbon microspheres for removal of methylene blue by a heterogeneous Fenton reaction.

    PubMed

    Zhou, Lincheng; Shao, Yanming; Liu, Junrui; Ye, Zhengfang; Zhang, He; Ma, Junjun; Jia, Yan; Gao, Weijie; Li, Yanfeng

    2014-05-28

    High-specific-surface-area magnetic porous carbon microspheres (MPCMSs) were fabricated by annealing Fe(2+)-treated porous polystyrene (PS) microspheres, which were prepared using a two-step seed emulsion polymerization process. The resulting porous microspheres were then sulfonated, and Fe(2+) was loaded by ion exchange, followed by annealing at 250 °C for 1 h under an ambient atmosphere to obtain the PS-250 composite. The MPCMS-500 and MPCMS-800 composites were obtained by annealing PS-250 at 500 and 800 °C for 1 h, respectively. The iron oxide in MPCMS-500 mainly existed in the form of Fe3O4, which was concluded by characterization. The MPCMS-500 carbon microspheres were used as catalysts in heterogeneous Fenton reactions to remove methylene blue (MB) from wastewater with the help of H2O2 and NH2OH. The results indicated that this catalytic system has a good performance in terms of removal of MB; it could remove 40 mg L(-1) of MB within 40 min. After the reaction, the catalyst was conveniently separated from the media within several seconds using an external magnetic field, and the catalytic activity was still viable even after 10 removal cycles. The good catalytic performance of the composites could be attributed to synergy between the functions of the porous carbon support and the Fe3O4 nanoparticles embedded in the carrier. This work indicates that porous carbon spheres provide good support for the development of a highly efficient heterogeneous Fenton catalyst useful for environmental pollution cleanup. PMID:24731240

  12. Preparation of polystyrene/SiO2 microsphere via Pickering emulsion polymerization: Synergistic effect of SiO2 concentrations and initiator sorts

    NASA Astrophysics Data System (ADS)

    Zhou, Haiou; Shi, Tiejun; Zhou, Xun

    2013-02-01

    In this paper, polystyrene (PS)/SiO2 microspheres were successfully prepared via Pickering emulsion polymerization stabilized solely by ethacryloxypropyltrimethoxysilane (MPTMS) modified SiO2 nanoparticles. The formation mechanisms of PS/SiO2 microspheres with different morphology were investigated under various Pickering emulsion polymerization conditions. The results showed that SiO2 concentrations and initiator sorts would synergistically impact on the morphology of products corresponding to distinct formation mechanisms. When SiO2 concentrations was low and water-solute initiator potassium persulfate (KPS) was used, aqueous nucleation was dominant, which was deduced to the formation of dispersive microspheres sparsely anchored by SiO2 particles. When SiO2 concentrations was increased and oil-solute initiator azobisisobutyronitrile (AIBN) was applied, nucleation in oil phase prevailed which lead to the formation of microspheres densely packed by SiO2 particles.

  13. Monodisperse α-Fe2O3 Mesoporous Microspheres: One-Step NaCl-Assisted Microwave-Solvothermal Preparation, Size Control and Photocatalytic Property

    NASA Astrophysics Data System (ADS)

    Cao, Shao-Wen; Zhu, Ying-Jie

    2011-12-01

    A simple one-step NaCl-assisted microwave-solvothermal method has been developed for the preparation of monodisperse α-Fe2O3 mesoporous microspheres. In this approach, Fe(NO3)3 · 9H2O is used as the iron source, and polyvinylpyrrolidone (PVP) acts as a surfactant in the presence of NaCl in mixed solvents of H2O and ethanol. Under the present experimental conditions, monodisperse α-Fe2O3 mesoporous microspheres can form via oriented attachment of α-Fe2O3 nanocrystals. One of the advantages of this method is that the size of α-Fe2O3 mesoporous microspheres can be adjusted in the range from ca. 170 to ca. 260 nm by changing the experimental parameters. High photocatalytic activities in the degradation of salicylic acid are observed for α-Fe2O3 mesoporous microspheres with different specific surface areas.

  14. Preparation of biodegradable microspheres of testosterone with poly(D,L-lactide-co-glycolide) and test of drug release in vitro.

    PubMed

    Shen, Z R; Zhu, J H; Ma, Z; Wang, F; Wang, Z Y

    2000-01-01

    Biodegradable microspheres formulation of testosterone (T) can be used as a new physiological approach for androgen replacement in hypogonadal men. In this study, poly(D,L-lactide-co-glycolide) (PLGA) microspheres containing T were prepared by a solvent-evaporation/solvent-diffusion process and the drug release tests of the microspheres were carried out in vitro. T/PLGA microspheres with good yield, desired size and satisfied drug loading were obtained. A significant testosterone sustained release was shown in the drug release tests in vitro. Since PLGA microspheres preparations are normally sterilized by colbat-60 irradiation, the effects of 25 kGy colbat-60 irradiation on physicochemical properties and in vitro drug release profile of T/PLGA microsphere were investigated. The results showed that the irradiation didn't have any effects on the physicochemical properties of T. Though about one-third decrease in molecular weight of PLGA was caused by the irradiation, no significant changes were observed on the drug release profile in vitro. PMID:10676577

  15. Preparation and Characterization of SnO2/Ag Hollow Microsphere via a Convenient Hydrothermal Route.

    PubMed

    Qiao, Xiuqing; Hu, Fuchao; Hou, Dongfang; Li, Dongsheng

    2016-04-01

    SnO2/Ag hollow microsphere, assembled form SnO2 and Ag nanoparticles, was synthesized via a facile one-step hydrothermal synthesis method using Na2SnO3.3H2O, CO(NH2)2 and AgNO3 as raw materials. XRD, SEM, and TEM results revealed that the obtained SnO2/Ag hollow microsphere with diameters of ca.3-5 µm was built from uniformly distributed rutile SnO2 and cubic Ag nanoparticles. Moreover, XPS results indicate the existence of strong interaction between Ag and SnO2 nanoparticles, rather than simply physical contact, endowing the SnO2/Ag hollow microspheres with excellent photocatalytic performance in the degradation of RhB solution under visible light irradiation. PMID:27451773

  16. The preparation of core/shell structured microsphere of multi first-line anti-tuberculosis drugs and evaluation of biological safety

    PubMed Central

    Zeng, Hao; Pang, Xiaoyang; Wang, Shuo; Xu, Zhengquan; Peng, Wei; Zhang, Penghui; Zhang, Yupeng; Liu, Zheng; Luo, Chengke; Wang, Xiyang; Nie, Hemin

    2015-01-01

    To introduce a modified method, namely coaxial electrohydrodynamic atomization for the fabrication of distinct core/shell structured microspheres of four first-line ant-tuberculosis drugs with different characteristics in hydrophilic properties in one single step. In group B, we prepared microspheres in which the core and the shell contain hydrophobic and hydrophilic drugs, respectively. In contrast, in group C, the opposite is prepared. The detection of encapsulation efficiency and in vitro release test were performed to confirm the feasibility of the drug-loaded core/shell structured microspheres. Moreover, cell culture experiments and animal experiments have been carried out to evaluate the biological safety of different microspheres in cell growth, cell viability, osteogenesis and migration of BMSCs in vitro and the bone fusion in a bone deficits model in SD rat. Meanwhile, the distribution of drugs and liver and kidney toxicity were monitored. The release patterns of the two groups are significantly different. The release of drugs from Group B microspheres is rather sequential, whereas group C microspheres release drugs in a parallel (co-release) manner. And various concentrations of carrier materials produces core/shell structured microspheres with different appearance. Moreover, the biological safety of core/shell structured microspheres was testified to be satisfactory. These findings present the advantages and possible application of this kind of multi-drug release system in treating skeletal tuberculosis. Moreover, the characteristic sequential release of multi-drugs can be controlled and adjusted based on treatment need and used in treating other disorders. PMID:26309493

  17. Magnetic/pH-sensitive κ-carrageenan/sodium alginate hydrogel nanocomposite beads: preparation, swelling behavior, and drug delivery.

    PubMed

    Mahdavinia, Gholam Reza; Rahmani, Zeinab; Karami, Shiva; Pourjavadi, Ali

    2014-01-01

    This work describes the preparation of magnetic and pH-sensitive beads based on κ-carrageenan and sodium alginate for use as drug-targeting carriers. Physical cross-linking using K(+)/Ca(2+) ions was applied to obtain ionic cross-linked magnetic hydrogel beads. The produced magnetite beads were thoroughly characterized by TEM, SEM/EDS, XRD, FTIR, and VSM techniques. While the water absorbency (WA) of magnetic beads was enhanced by increasing the weight ratio of κ-carrageenan, introducing magnetic nanoparticles caused a decrease in WA capacity from 15.4 to 6.3 g/g. Investigation on the swelling of the hydrogel beads in NaCl, KCl, and CaCl2 solutions revealed the disintegration of beads depending on the composition of hydrogel beads and the type of metal cations in swelling media. The swelling ratio of beads indicated pH-dependent properties with maximum water absorbing at pH 7.4. Also, it was found that the strength of pH-sensitivity of magnetic beads was low for beads with the high content of carrageenan component. The in vitro drug release studies from hydrogels exhibited significant behaviors on the subject of physiological-simulated pH values and external magnetic fields. The maximum cumulative releases obtained were 98 and 43% at pH values 7.4 and 1.2, respectively. The Introducing magnetite nanoparticles influenced the cumulative release of drug. PMID:25197770

  18. Process for preparing metal-carbide-containing microspheres from metal-loaded resin beads

    DOEpatents

    Beatty, Ronald L.

    1976-01-01

    An improved method for treating metal-loaded resin microspheres is described which comprises heating a metal-loaded resin charge in an inert atmosphere at a pre-carbide-forming temperature under such conditions as to produce a microsphere composition having sufficient carbon as to create a substantially continuous carbon matrix and a metal-carbide or an oxide-carbide mixture as a dispersed phase(s) during carbide-forming conditions, and then heating the thus treated charge to a carbide-forming temperature.

  19. Preparation of magnetic Fe3O4/TiO2/Ag composite microspheres with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Wu, Zheng; Chen, Liangwei; Zhang, Lianjie; Li, Xuelian; Xu, Haifeng; Wang, Hongyan; Zhu, Guang

    2016-02-01

    The novel three-component Fe3O4/TiO2/Ag composite mircospheres were prepared via a facile chemical deposition route. The Fe3O4/TiO2 mircospheres were first prepared by the solvothermal method, and then Ag nanoparticles were anchored onto the out-layer of TiO2 by the tyrosine-reduced method. The as-prepared magnetic Fe3O4/TiO2/Ag composite mircospheres were applied as photocatalysis for the photocatalytic degradation of methylene blue. The results indicate that the photocatalytic activity of Fe3O4/TiO2/Ag composite microspheres is superior to that of Fe3O4/TiO2 due to the dual effects of the enhanced light absorption and reduction of photoelectron-hole pair recombination in TiO2 with the introduction of Ag NPs. Moreover, these magnetic Fe3O4/TiO2/Ag composite microspheres can be completely removed from the dispersion with the help of magnetic separation and reused with little or no loss of catalytic activity.

  20. Preparation and characterization of gelatin-hydroxyapatite composite microspheres for hard tissue repair.

    PubMed

    Chao, Shao Ching; Wang, Ming-Jia; Pai, Nai-Su; Yen, Shiow-Kang

    2015-12-01

    Gelatin-hydroxyapatite composite microspheres composed of 21% gelatin (G) and 79% hydroxyapatite (HA) with uniform morphology and controllable size were synthesized from a mixed solution of Ca(NO3)2, NH4H2PO4 and gelatin by a wet-chemical method. Material analyses such as X-ray diffraction (XRD), scanning/transmission electron microscopy examination (SEM/TEM) and inductively coupled plasma-mass spectroscopy (ICP-MS) were used to characterize G-HA microspheres by analyzing their crystalline phase, microstructure, morphology and composition. HA crystals precipitate along G fibers to form nano-rods with diameters of 6-10nm and tangle into porous microspheres after blending. The cell culture indicates that G-HA composite microspheres without any toxicity could enhance the proliferation and differentiation of osteoblast-like cells. In a rat calvarial defect model, G-HA bioactive scaffolds were compared with fibrin glue (F) and Osteoset® Bone Graft Substitute (OS) for their capacity of regenerating bone. Four weeks post-implantation, new bone, mineralization, and expanded blood vessel area were found in G-HA scaffolds, indicating greater osteoconductivity and bioactivity than F and OS. PMID:26354246

  1. Process for preparing metal-carbide-containing microspheres from metal-loaded resin beads

    DOEpatents

    Beatty, Ronald L.

    1977-01-01

    An improved process for producing porous spheroidal particles consisting of a metal carbide phase dispersed within a carbon matrix is described. According to the invention metal-loaded ion-exchange resin microspheres which have been carbonized are coated with a buffer carbon layer prior to conversion of the oxide to carbide in order to maintain porosity and avoid other adverse sintering effects.

  2. Preparation and characterization of gelatin-hydroxyapatite composite microspheres for hard tissue repair.

    PubMed

    Chao, Shao Ching; Wang, Ming-Jia; Pai, Nai-Su; Yen, Shiow-Kang

    2015-12-01

    Gelatin-hydroxyapatite composite microspheres composed of 21% gelatin (G) and 79% hydroxyapatite (HA) with uniform morphology and controllable size were synthesized from a mixed solution of Ca(NO3)2, NH4H2PO4 and gelatin by a wet-chemical method. Material analyses such as X-ray diffraction (XRD), scanning/transmission electron microscopy examination (SEM/TEM) and inductively coupled plasma-mass spectroscopy (ICP-MS) were used to characterize G-HA microspheres by analyzing their crystalline phase, microstructure, morphology and composition. HA crystals precipitate along G fibers to form nano-rods with diameters of 6-10nm and tangle into porous microspheres after blending. The cell culture indicates that G-HA composite microspheres without any toxicity could enhance the proliferation and differentiation of osteoblast-like cells. In a rat calvarial defect model, G-HA bioactive scaffolds were compared with fibrin glue (F) and Osteoset® Bone Graft Substitute (OS) for their capacity of regenerating bone. Four weeks post-implantation, new bone, mineralization, and expanded blood vessel area were found in G-HA scaffolds, indicating greater osteoconductivity and bioactivity than F and OS.

  3. Facile preparation and ultra-microporous structure of melamine-resorcinol-formaldehyde polymeric microspheres.

    PubMed

    Zhou, Huanhuan; Xu, Sheng; Su, Haiping; Wang, Mei; Qiao, Wenming; Ling, Licheng; Long, Donghui

    2013-05-01

    A facile hydrothermal method was developed to synthesize nitrogen-rich phenolic microspheres with a tunable ultra-microporous structure for CO(2) adsorption. The results highlighted that chemical composition and ultramicroporous size, much more than surface area, dictated the CO(2) uptake in a microporous organic polymer.

  4. Preparation, characterization and taste-masking properties of polyvinylacetal diethylaminoacetate microspheres containing trimebutine.

    PubMed

    Hashimoto, Yoshimi; Tanaka, Masami; Kishimoto, Hideyuki; Shiozawa, Hiroyoshi; Hasegawa, Kazumasa; Matsuyama, Kenji; Uchida, Takahiro

    2002-10-01

    The objectives of this study were to produce acid soluble, polyvinylacetal diethylaminoacetate (AEA) microspheres containing trimebutine (as maleate), using a water-in-oil-in-water (w/o/w) emulsion solvent evaporation method, to characterize their in-vitro release properties, and to evaluate the taste-masking potential of this formulation in human volunteers. The pH of the external aqueous phase was the critical factor in achieving a high loading efficiency for trimebutine in the microencapsulation process; nearly 90% (w/w) loading efficiency was obtained at above pH 10. Trimebutine was completely released from AEA microspheres within 10 min in a dissolution test at pH 1.2, simulating conditions in the stomach, whereas at pH 6.8, the pH in the mouth, only small quantities of trimebutine were released in the initial 1-2 min. The results of a gustatory sensation test in healthy volunteers confirmed the taste-masking effects of the AEA microspheres. Finally, an attempt was made to encapsulate the salts of other basic drugs (lidocaine, imipramine, desipramine, amitriptyline, promethazine and chlorpheniramine) into AEA microspheres using the w/o/w emulsion evaporation method. The loading efficiencies were ranked in almost inverse proportion with the solubility of the drugs in the external aqueous phase. This study demonstrated the possibility of masking the taste of salts of basic drugs by microencapsulation with AEA using a w/o/w emulsion solvent evaporation method. PMID:12396292

  5. Effect of Alginate Concentration on Alginate-TiO2 Hydrogel for Lead Ion Removal

    NASA Astrophysics Data System (ADS)

    Teoh, W. T.; Saito, N.; Sato, K.

    2011-03-01

    Alginate-TiO2 hydrogel was investigated for lead ion (Pb(II)) removal. By immobilizing TiO2 powder onto an alginate biopolymer, it is possible to utilize the ion exchange properties of the alginate and the photoreducibility of TiO2 to recover Pb(II). However, these photocatalytic activities degrade the alginate biopolymer in addition to removing Pb(II). This study examines photolytic degradation of alginate-TiO2 hydrogels prepared with alginate concentrations of 1, 1.5, 2, and 2.5%w/v; the same amount (0.4%w/v) of TiO2 was added to each alginate solution. The alginate-TiO2 hydrogels were formed by dripping the alginate-TiO2 suspension into a 0.2 M calcium chloride solution. The samples were washed and dried and then photoirradiated. The samples with alginate concentrations of 1 and 1.5%w/v were depolymerized, whereas the surface morphology of the sample that prepared from the 2%w/v alginate solution remained unchanged. The samples prepared from 1.5, 2, and 2.5%w/v alginate solutions had Pb(II) uptakes of 24.0, 39.8, and 39.7 mg/g, respectively.

  6. Preparation and characterization of polylactic acid microspheres containing water-soluble dyes using a novel w/o/w emulsion solvent evaporation method.

    PubMed

    Uchida, T; Yoshida, K; Goto, S

    1996-01-01

    Polylactic acid (PLA) microspheres containing soluble dyes as water-soluble model compounds were prepared using the water-in-oil-in-water (w/o/w) emulsion solvent evaporation method. Addition of electrolytes such as NaCl or CaCl2 into the external aqueous phase significantly improved brilliant blue (BB) entrapment efficiency compared to the case of no additives. NaCl was the most effective for obtaining high entrapment efficiency (80-90% of theoretical BB content). The average diameter of the obtained microspheres was in the region of 10-20 microns in all cases. PLA microspheres containing 5 and 10% (w/w) BB exhibited the so-called burst release. The release rate decreased with decrease in the internal aqueous droplet volume in the preparation process. In particular, with PLA microspheres containing 5% (w/w) BB, those prepared with the smallest internal droplet volume (63 microliter), the initial burst release was reduced significantly, and 50% (w/w) of the loaded BB remained in the microspheres for 7 days. PMID:8999126

  7. Preparation and evaluation of MRI detectable poly (acrylic acid) microspheres loaded with superparamagnetic iron oxide nanoparticles for transcatheter arterial embolization.

    PubMed

    Wang, Huan; Qin, Xiao-Ya; Li, Zi-Yuan; Guo, Li-Ying; Zheng, Zhuo-Zhao; Liu, Li-Si; Fan, Tian-Yuan

    2016-09-25

    To monitor the spatial distribution of embolic particles inside the target tissues during and after embolization, blank poly (acrylic acid) microspheres (PMs) were initially prepared by inverse suspension polymerization method and then loaded with superparamagnetic iron oxide (SPIO) nanoparticles by in situ precipitation method to obtain magnetic resonance imaging (MRI) detectable SPIO-loaded poly (acrylic acid) microspheres (SPMs). The loading of SPIO nanoparticles in SPMs was confirmed by vibrating sample magnetometer, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and infrared spectrum, respectively. The results showed that SPMs exhibited excellent superparamagnetism and the SPIO embedded in SPMs were proved to be inverse spinel magnetite. The content of SPIO loaded in wet SPMs of subgroups of 100-300, 300-500, 500-700 and 700-900μm was measured to be 11.84±0.07, 10.20±0.05, 9.98±0.00 and 8.79±0.01mg/ml, corresponding to the weight percentage in freeze-dried SPMs to be 18.07±0.28%, 18.54±0.13%, 18.66±0.01% and 18.50±0.07%, respectively. The SPMs were spherical in shape, had smooth surface, and were within the size range of clinical demands for embolization. The compression tests indicated that SPMs were more rigid than PMs and commercially used Embospheres (P<0.01). The MRI detectability of SPMs was evaluated with the SPMs embedded in gel phantom in vitro and injected subcutaneously into the back of mice in vivo. Both the results demonstrated that the SPMs could provide distinct negative contrast enhancement and be sensitively detected by T2-weighted MR imaging. All the results show that SPMs are potential MRI detectable embolic microspheres for the future embolotherapy. PMID:27426106

  8. Erythropoietin loaded microspheres prepared from biodegradable LPLG-PEO-LPLG triblock copolymers: protein stabilization and in-vitro release properties.

    PubMed

    Morlock, M; Kissel, T; Li, Y X; Koll, H; Winter, G

    1998-12-01

    Biodegradable microspheres containing recombinant human Erythropoietin (EPO) were prepared from ABA triblock copolymers, consisting of hydrophobic poly(l-lactic-co-glycolic acid) A blocks and hydrophilic polyethylenoxide (PEO) B blocks. Different polymer compositions were studied for the microencapsulation of EPO using a modified double-emulsion process (W/O/W). The encapsulation efficiency for EPO, ranging from 72% to 99% was quite acceptable. The formation of high molecular weight EPO aggregates, however, was higher than in poly(d,l-lactide-co-glycolide) (PLG) microparticles. Using different excipients with known protein stabilizing properties, such as Bovine Serum Albumin (BSA), Poly-l-Histidine (PH), Poly-l-Arginine (PA) or a combination of PA with Dextran 40 (D40), the EPO aggregate content was significantly reduced to <5% of the encapsulated EPO. In contrast to PLG, ABA triblockcopolymers containing >7 mol % PEO, allowed a continuous release of EPO from microspheres for up to 2 weeks under in-vitro conditions. The release profile was comparable to FITC-Dextran 40 kDa (FD 40) loaded microspheres in the initial release phase, while EPO release was leveling off at later time points. BSA additionally prolonged the EPO release, while blends of PLG and PEO did not generate continuous EPO release profiles. LPLG-PEO-LPLG triblock-copolymers (35 mol % PEO; 30 kDa) in combination with 5% BSA yielded both an acceptable level of EPO aggregates and a continuous release profile under in-vitro conditions for up to 2 weeks. The formation of EPO aggregates at later time points is probably induced by acidic cleavage products of the biodegradable polymer and requires further optimization of the ABA polymer composition.

  9. Preparation and characterization of luminescent CdS nanoparticles immobilized on poly(St-co-GMA-IDA) polymer microspheres

    NASA Astrophysics Data System (ADS)

    Chu, Yuan-Chih; Wang, Cheng-Chien; Huang, Yao-Hui; Chen, Chuh-Yung

    2005-04-01

    Luminescent CdS nanoparticles immobilized on copolymer microspheres were produced by the chemical precipitation of poly(St-co-GMA-IDA)-Cd2+ (PSG-Cd2+) complexes. PSG latex was prepared by the soap-free emulsion copolymerization of styrene (St) and 2-methacrylic acid 3-(bis-carboxymethylamino)-2-hydroxy-propyl ester (GMA-IDA). GMA-IDA chelating groups within copolymer latex have coordination sites for chelating metal ions, at which CdS particles were grown. The presence of ethanol as a cosolvent improved both the particle monodispersity and the surface charge. Fourier transform infrared (FT-IR) spectroscopy spectra were obtained to elucidate the characteristics of GMA-IDA in the PSG latex. The size distribution, morphology and structure of CdS nanoparticles were measured by transmission electron microscope (TEM) and x-ray diffraction (XRD) analysis. The growth kinetics of CdS nanoparticles were studied by TEM and obtaining photoluminescence (PL) spectra. The size and morphology of CdS particles were influenced by the amount of the chelating, iminodiacetic acid group on the surface of the copolymer microsphere, the concentration of Cd2+ ions and the pH. The PSG-A3-CdS sample with [Cd2+]/[GMA-IDA] = 1/6, pH = 3.5, which was formed from ultrafine CdS particles with mean diameters below 5 nm immobilized on the surface of copolymer microspheres, emitted photons with a higher energy than other samples in this investigation.

  10. [Preparation and evaluation of risperidone-loaded microsphere/sucrose acetate isobutyrate in situ forming complex depot with double diffusion barriers].

    PubMed

    Lin, Xia; Tang, Xing; Xu, Yu-hong; Zhang, Yu; Zhang, Yan; He, Hai-bing

    2015-06-01

    In the present study, a risperidone loaded microsphere/sucrose acetate isobutyrate (SAIB) in situ forming complex depot was designed to reduce the burst release of SAIB in situ forming depot and to continuously release risperidone for a long-term period without lagime. The model drug risperidone (Ris) was first encapsulated into microspheres and then the Ris-microspheres were embedded into SAIB depot to reduce the amount of dissolved drug in the depot. The effects of different types of microsphere matrix, including chitosan and poly(lactide-coglycolide) (PLGA), matrix/Ris ratios in microspheres and morphology of microspheres on the drug release behavior of complex depot were investigated. In comparison with the Ris-loaded SAIB depot (Ris-SAIB), the complex depot containing chitosan microspheres (in which chitosan/Ris = 1 : 1, w/w) (Ris-Cm-SAIB) decreased the burst release from 12.16% to 5.80%. However, increased drug release rate after 4 days was observed in Ris-Cm-SAIB, which was caused by the high penetration of the medium to Ris-Cm-SAIB due to the hydrophilie of chitosan. By encapsulation of risperidone in PLGA microspheres, most drugs can be prevented from dissolving in the depot and meanwhile the hydrophobic PLGA can reduce the media penetration effect on the depot. The complex depot containing PLGA microspheres (in which PLGA/ drug=4 : 2, w/w) (Ris-Pm-SAIB) showed a significant effectiveness on reducing the burst release both in vitro and in vivo whereby only 0.64% drug was released on the first day in vitro and a low AUC0-4d value [(105.2± 24.4) ng.mL-1.d] was detected over the first 4 days in vivo. In addition, drug release from Ris-Pm-SAIB can be modified by varying the morphology of microspheres. The porous PLGA microspheres could be prepared by adding medium chain triglyceride (MCT) in the organic phase which served as pore agents during the preparation of PLGA microspheres. The complex depot containing porous PLGA microspheres (which were prepared by

  11. In-vitro and in-vivo evaluation of repaglinide loaded floating microspheres prepared from different viscosity grades of HPMC polymer

    PubMed Central

    Sharma, Megha; Kohli, Seema; Dinda, Agnimitra

    2015-01-01

    During the study repaglinide encapsulated floating microspheres were formulated and characterized for enhancing residence time of drug in git and thereby increasing its bioavailability. Floating microspheres of ethylcellulose (EC) and hydroxypropyl methyl cellulose (HPMC) (5 and 100 cps) were prepared by emulsion solvent diffusion technique. During process optimization various parameters were studied such as: drug: polymer ratio, polymer ratio, concentration of emulsifier and stirring speed. Selected optimized formulations were studied for SEM, entrapment, floating behavior, drug release and kinetics. In-vivo floating ability (X-ray) study and in-vivo antidiabetic activity were performed on alloxan induced diabetic rats. Microspheres prepared with different viscosity grade HPMC were spherical shaped with smooth surface. Size of microspheres was in the range of 181.1–248 μm. Good entrapment and buoyancy were observed for 12 h. X-ray image showed that optimized formulation remained buoyant for more than 6 h. Optimized formulation treated group shows significant (p < 0.01) reduction in blood glucose level as compared to pure drug treated group. Repaglinide loaded floating microspheres expected to give new choice for safe, economical and increased bioavailable formulation for effective management of NIDDM. PMID:26702263

  12. In-vitro and in-vivo evaluation of repaglinide loaded floating microspheres prepared from different viscosity grades of HPMC polymer.

    PubMed

    Sharma, Megha; Kohli, Seema; Dinda, Agnimitra

    2015-11-01

    During the study repaglinide encapsulated floating microspheres were formulated and characterized for enhancing residence time of drug in git and thereby increasing its bioavailability. Floating microspheres of ethylcellulose (EC) and hydroxypropyl methyl cellulose (HPMC) (5 and 100 cps) were prepared by emulsion solvent diffusion technique. During process optimization various parameters were studied such as: drug: polymer ratio, polymer ratio, concentration of emulsifier and stirring speed. Selected optimized formulations were studied for SEM, entrapment, floating behavior, drug release and kinetics. In-vivo floating ability (X-ray) study and in-vivo antidiabetic activity were performed on alloxan induced diabetic rats. Microspheres prepared with different viscosity grade HPMC were spherical shaped with smooth surface. Size of microspheres was in the range of 181.1-248 μm. Good entrapment and buoyancy were observed for 12 h. X-ray image showed that optimized formulation remained buoyant for more than 6 h. Optimized formulation treated group shows significant (p < 0.01) reduction in blood glucose level as compared to pure drug treated group. Repaglinide loaded floating microspheres expected to give new choice for safe, economical and increased bioavailable formulation for effective management of NIDDM. PMID:26702263

  13. [Studies on preparation by SPG membrane emulsification method and in vitro characterization of tetradrine-tashionone II(A)-PLGA composite microspheres].

    PubMed

    Lu, Jin; Zhang, Meng; Zhu, Hua-xu; Guo, Li-wei; Pan, Lin-mei; Fu, Ting-ming

    2015-03-01

    Tetradrine-tashionone II(A)-PLGA composite microspheres were prepared by the SPG membrane emulsification method, and the characterization of tetradrine-tashionone II(A) -PLGA composite microspheres were studied in this experiment. The results of IR, DSC and XRD showed that teradrine and tashionone II(A) in composite microspheres were highly dispersed in the PLGA with amorphous form. The results of tetradrine-tashionone II(A) -PLGA composite microspheres in vitro release experiment showed that the cumulative release amounts of tetradrine and tashionone II(A) were 6.44% and 3.60% in 24 h, and the cumulative release amounts of tetradrine and tashionone II(A) were 89.02% and 21.24% in 17 d. The process of drug in vitro release accorded with the model of Riger-Peppas. Tetradrine-tashionone II(A) -PLGA composite microspheres had slow-release effect, and it could significantly reduce the burst release, prolong the therapeutic time, decrease the dosage of drugs and provide a new idea and method to prepare traditional Chinese medicine compound. PMID:26226751

  14. Activation of the Solid Silica Layer of Aerosol-Based C/SiO₂ Particles for Preparation of Various Functional Multishelled Hollow Microspheres.

    PubMed

    Li, Xiangcun; Luo, Fan; He, Gaohong

    2015-05-12

    Double-shelled C/SiO2 hollow microspheres with an outer nanosheet-like silica shell and an inner carbon shell were reported. C/SiO2 aerosol particles were synthesized first by a one-step rapid aerosol process. Then the solid silica layer of the aerosol particles was dissolved and regrown on the carbon surface to obtain novel C/SiO2 double-shelled hollow microspheres. The new microspheres prepared by the facile approach possess high surface area and pore volume (226.3 m(2) g(-1), 0.51 cm(3) g(-1)) compared with the original aerosol particles (64.3 m(2) g(-1), 0.176 cm(3) g(-1)), providing its enhanced enzyme loading capacity. The nanosheet-like silica shell of the hollow microspheres favors the fixation of Au NPs (C/SiO2/Au) and prevents them from growing and migrating at 500 °C. Novel C/C and C/Au/C (C/Pt/C) hollow microspheres were also prepared based on the hollow nanostructure. C/C microspheres (482.0 m(2) g(-1), 0.92 cm(3) g(-1)) were ideal electrode materials. In particular, the Au NPs embedded into the two carbon layers (C/Au/C, 431.2 m(2) g(-1), 0.774 cm(3) g(-1)) show a high catalytic activity and extremely chemical stability even at 850 °C. Moreover, C/SiO2/Au, C/Au/C microspheres can be easily recycled and reused by an external magnetic field because of the presence of Fe3O4 species in the inner carbon shell. The synthetic route reported here is expected to simplify the fabrication process of double-shelled or yolk-shell microspheres, which usually entails multiple steps and a previously synthesized hard template. Such a capability can facilitate the preparation of various functional hollow microspheres by interfacial design.

  15. Preparation of Eleutherine americana-Alginate Complex Microcapsules and Application in Bifidobacterium longum

    PubMed Central

    Phoem, Atchara N; Chanthachum, Suphitchaya; Voravuthikunchai, Supayang P

    2015-01-01

    Microencapsulation using extrusion and emulsion techniques was prepared for Bifidobacterium longum protection against sequential exposure to simulated gastric and intestinal juices, refrigeration storage and heat treatment. Eleutherine americana was used as the co-encapsulating agent. Hydrolysis of E. americana by gastric and intestinal juices was also determined. E. americana and its oligosaccharide extract demonstrated their resistance to low pH and partial tolerance to human α-amylase. Microencapsulated B. longum with E. americana and oligosaccharide extract prepared by the extrusion technique survived better than that by the emulsion technique under adverse conditions. Survival of microencapsulated cells after exposure to the juices and refrigeration storage was higher than free cells at Weeks 2 and 4. In addition, the viability of microencapsulated cells was better than free cells at 65 °C for 15 min. This work suggested that microencapsulated B. longum with E. americana offers the effective delivery of probiotics to colon and maintains their survival in food products. PMID:25629556

  16. Preparation of porous nano-calcium titanate microspheres and its adsorption behavior for heavy metal ion in water.

    PubMed

    Zhang, Dong; Zhang, Chun-li; Zhou, Pin

    2011-02-28

    Using D311 resin as a template, porous nano-calcium titanate microspheres (PCTOM) were prepared by a citric acid complex sol-gel method and characterized by X-ray diffraction (XRD), SEM and FTIR. The method's adsorption capabilities for heavy metal ions such as lead, cadmium and zinc were studied and adsorption and elution conditions were investigated. Moreover, taking the cadmium ion as an example, the thermodynamics and kinetics of the adsorption were studied. The results show that the microspheres were porous and were made of perovskite nano-calcium titanate. The lead, cadmium and zinc ions studied could be quantitatively retained at a pH value range of 5-8. The adsorption capacities of PCTOM for lead, cadmium and zinc were found to be 141.8 mg g(-1), 18.0 mg g(-1) and 24.4 mg g(-1) respectively. The adsorption behavior followed a Langmuir adsorption isotherm and a pseudo-second-order kinetic model, where adsorption was an endothermic and spontaneous physical process. The adsorbed metal ions could be completely eluted using 2 mol L(-1) HNO(3) with preconcentration factors over 100 for all studied heavy metal ions. The method has also been applied to the preconcentration and FAAS determination of trace lead, cadmium and zinc ion in water samples with satisfactory results.

  17. Lipid-polymer composite microspheres for colon-specific drug delivery prepared using an ultrasonic spray freeze-drying technique.

    PubMed

    Gao, Yiping; Zhu, Chun-Liu; Zhang, Xin-Xin; Gan, Li; Gan, Yong

    2011-01-01

    Lipid-polymer composite microspheres (LP-MS) for colon-specific drug delivery were prepared using an ultrasonic spray freeze-drying technique. These microspheres, which consist of the pH-sensitive polymer Eudragit S100 and the non-polar lipid Compritol 888 ATO, were characterized by morphological and physicochemical properties. It was found that the LP-MS have a spherical lipid porous matrix with a smooth pH-sensitive polymer film on both internal and external surfaces, and the insoluble drug 10-hydroxycamptothecin was dispersed in an amorphous state in the carrier. Morphological changes of microparticles under different pH conditions were observed by confocal laser scanning microscopy, which showed that the lipid matrix in LP-MS restricted the swelling property of the polymer at pH 6.8. In drug release studies, less than 15% of the drug was released below pH 6.8, whereas more than 30% was released with a sustained-release model at pH 7.4. The LP-MS could provide a promising vehicle for colon drug delivery.

  18. Preparation and characterization of bovine serum albumin surface-imprinted thermosensitive magnetic polymer microsphere and its application for protein recognition.

    PubMed

    Li, Xiangjie; Zhang, Baoliang; Li, Wei; Lei, Xingfeng; Fan, Xinlong; Tian, Lei; Zhang, Hepeng; Zhang, Qiuyu

    2014-01-15

    A novel bovine serum albumin surface-imprinted thermosensitive magnetic composite microsphere was successfully prepared by the surface grafting copolymerization method in the presence of temperature-sensitive monomer N-isopropylacrylamide (NIPAM), functional monomer methacrylic acid (MAA) and cross-linking agent N,N'-methylenebisacrylamide (MBA). The structure and component of the thermosensitive magnetic molecularly imprinted microsphere were investigated by transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), vibrating sample magnetometer (VSM) and thermogravimetric analysis (TGA). The results of thermosensitivity, adsorption capacity, selectivity and reusability showed the formation of a thermosensitivity grafting polymer layer P(NIPAM-MAA-MBA) on the surface of Fe3O4@SiO2 and the good adsorption capacity and specific recognition for template protein. When the adsorption temperature was higher than the lower critical solution temperature (LCST) of poly(N-isopropylacrylamide) (PNIPAM), shape memory effect of imprinted cavities would be more effective. In other words, it was more conducive to capture template molecules under this condition and the imprinting factor would be higher. On the other hand, when the desorption temperature was lower than LCST of PNIPAM, the decrease of shape memory effect between imprinted cavities and template molecules would facilitate the release of template molecules from the imprinted cavities. Based on this property, the adsorption and desorption of template molecules could be regulated by system temperature indirectly which benefited from the existence of thermosensitivity imprinting layer.

  19. Propagation of human iPS cells in alginate-based microcapsules prepared using reactions catalyzed by horseradish peroxidase and catalase.

    PubMed

    Ashida, Tomoaki; Sakai, Shinji; Taya, Masahito

    2016-09-01

    Cell encapsulation has been investigated as a bioproduction system in the biomedical and pharmaceutical fields. We encaps-ulated human induced pluripotent stem (hiPS) cells in duplex microcapsules prepared from an alginate derivative possessing phenolic hydroxyl moieties, in a single-step procedure based on two competing enzymatic reactions catalyzed by horseradish peroxidase (HRP) and catalase. The encapsulated cells maintained 91.4% viability and proliferated to fill the microcapsules following 19 days of culture. Encapsulated hiPS cells showed pluripotency comparable to that of unencapsulated cells during the cultures, as demonstrated by the expression of the SSEA-4 marker. PMID:26148179

  20. A novel and simple preparative method for uniform-sized PLGA microspheres: Preliminary application in antitubercular drug delivery.

    PubMed

    Liu, Zhiqiang; Li, Xia; Xiu, Bingshui; Duan, Cuimi; Li, Jiangxue; Zhang, Xuhui; Yang, Xiqin; Dai, Wenhao; Johnson, Heather; Zhang, Heqiu; Feng, Xiaoyan

    2016-09-01

    Particle size has been demonstrated as a key parameter influencing the phagocytosis of drug-loaded PLGA microspheres (MS) by the target cells. However, the current preparative methods were either insufficient in controlling the homogeneity of the produced MS, or requires sophisticated and costly equipment. This study aimed to explore a simple and economical method for uniform PLGA MS preparation. Based on the heterogeneous emulsification of routine mechanical stirring, we designed an adjuvant strategy to enhance the homogeneity of MS. By using glass beads as adjutant, the dispersion produced during mechanical stirring was much more homogeneous in the solution. The particles produced were much smaller and the size distribution was much narrower as compared with those produced using the routine mechanical stirring method under the same condition. After enrichment by selective centrifugation, about 60% of the particles of similar size were obtained, providing further evidence for the efficiency of the novel method in controlling particle homogeneity. Further, the method was applied to prepare rifampicin-loaded PLGA MS of the optimized size for macrophage uptake. The functional evaluation showed that the prepared PLGA MS could efficiently deliver an antitubercular drug into macrophages and maintain a higher intracellular concentration by controlled release, suggesting the potential application of the method in PLGA MS-based drug delivery. Collectively, the study provided a simple and economical method for preparing uniform-sized PLGA MS with potential of widespread applications. PMID:27289309

  1. An investigation and characterization on alginate hydogel dressing loaded with metronidazole prepared by combined inotropic gelation and freeze-thawing cycles for controlled release.

    PubMed

    Sarheed, Omar; Rasool, Bazigha K Abdul; Abu-Gharbieh, Eman; Aziz, Uday Sajad

    2015-06-01

    The purpose of this study was to investigate the effect of combined Ca(2+) cross-linking and freeze-thawing cycle method on metronidazole (model drug) drug release and prepare a wound film dressing with improved swelling property. The hydrogel films were prepared with sodium alginate (SA) using the freeze-thawing method alone or in combination with ionotropic gelation with CaCl2. The gel properties such as morphology, swelling, film thickness, and content uniformity and in vitro dissolution profiles using Franz diffusion cell were investigated. The cross-linking process was confirmed by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. In vitro protein adsorption test, in vivo wound-healing test, and histopathology were also performed. The hydrogel (F2) composed of 6% sodium alginate and 1% metronidazole prepared by combined Ca(2+) cross-linking and freeze-thawing cycles showed good swelling. This will help to provide moist environment at the wound site. With the in vivo wound-healing and histological studies, F2 was found to improve the wound-healing effect compared with the hydrogel without the drug, and the conventional product.

  2. Preparation of novel poly(hydroxyethyl methacrylate-co-glycidyl methacrylate)-grafted core-shell magnetic chitosan microspheres and immobilization of lactase.

    PubMed

    Zhao, Wei; Yang, Rui-Jin; Qian, Ting-Ting; Hua, Xiao; Zhang, Wen-Bin; Katiyo, Wendy

    2013-06-06

    Poly(hydroxyethyl methacrylate-co-glycidyl methacrylate)-grafted magnetic chitosan microspheres (HG-MCM) were prepared using reversed-phase suspension polymerization method. The HG-MCM presented a core-shell structure and regular spherical shape with poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) grafted onto the chitosan layer coating the Fe3O4 cores. The average diameter of the magnetic microspheres was 10.67 μm, within a narrow size distribution of 6.6-17.4 μm. The saturation magnetization and retentivity of the magnetic microspheres were 7.0033 emu/g and 0.6273 emu/g, respectively. The application of HG-MCM in immobilization of lactase showed that the immobilized enzyme presented higher storage, pH and thermal stability compared to the free enzyme. This indicates that HG-MCM have potential applications in bio-macromolecule immobilization.

  3. Preparation of resorbable carbonate-substituted hollow hydroxyapatite microspheres and their evaluation in osseous defects in vivo.

    PubMed

    Xiao, Wei; Bal, B Sonny; Rahaman, Mohamed N

    2016-03-01

    Hollow hydroxyapatite (HA) microspheres, with a high-surface-area mesoporous shell, can provide a unique bioactive and osteoconductive carrier for proteins to stimulate bone regeneration. However, synthetic HA has a slow resorption rate and a limited ability to remodel into bone. In the present study, hollow HA microspheres with controllable amounts of carbonate substitution (0-12 wt.%) were created using a novel glass conversion route and evaluated in vitro and in vivo. Hollow HA microspheres with ~12 wt.% of carbonate (designated CHA12) showed a higher surface area (236 m(2) g(-1)) than conventional hollow HA microspheres (179 m(2)g(-1)) and a faster degradation rate in a potassium acetate buffer solution. When implanted for 12 weeks in rat calvarial defects, the CHA12 and HA microspheres showed a limited capacity to regenerate bone but the CHA12 microspheres resorbed faster than the HA microspheres. Loading the microspheres with bone morphogenetic protein-2 (BMP2) (1 μg per defect) stimulated bone regeneration and accelerated resorption of the CHA12 microspheres. At 12 weeks, the amount of new bone in the defects implanted with the CHA12 microspheres (73±8%) was significantly higher than the HA microspheres (59±2%) while the amount of residual CHA12 microspheres (7±2% of the total defect area) was significantly lower than the HA microspheres (21±3%). The combination of these carbonate-substituted HA microspheres with clinically safe doses of BMP2 could provide promising implants for healing non-loaded bone defects.

  4. High-strength lightweight concrete mixtures based on hollow microspheres: technological features and industrial experience of preparation

    NASA Astrophysics Data System (ADS)

    Inozemtcev, A. S.

    2015-01-01

    The research results concerning dependencies between technological parameters and physical properties of structural lightweight concrete are presented in the article. High-strength lightweight concrete has unique performance characteristics: low average density (less than 1500 kg/m3) and high compressive strength (more than 70 MPa). Hollow alumina-silicate microspheres with nanoscale modifier are used for obtaining these properties. It is shown in the article that the preparation of high-strength lightweight concrete in industrial conditions must be implemented using a turbine mixer having six paddles and engine power more than 39.2 kW. Oscillation frequency of more than 3000 rpm, vibro-compacting time less than 15 seconds, heat-humid treatment temperature approximately 60-65 °C and heat-humid treatment time 6-7 hours are optimal for production. The results of industrial mixing-test are presented.

  5. Process and formulation variables of pregabalin microspheres prepared by w/o/o double emulsion solvent diffusion method and their clinical application by animal modeling studies.

    PubMed

    Aydogan, Ebru; Comoglu, Tansel; Pehlivanoglu, Bilge; Dogan, Murat; Comoglu, Selcuk; Dogan, Aysegul; Basci, Nursabah

    2015-01-01

    Pregabalin is an anticonvulsant drug used for neuropathic pain and as an adjunct therapy for partial seizures with or without secondary generalization in adults. In conventional therapy recommended dose for pregabalin is 75 mg twice daily or 50 mg three times a day, with maximum dosage of 600 mg/d. To achieve maximum therapeutic effect with a low risk of adverse effects and to reduce often drug dosing, modified release preparations; such as microspheres might be helpful. However, most of the microencapsulation techniques have been used for lipophilic drugs, since hydrophilic drugs like pregabalin, showed low-loading efficiency and rapid dissolution of compounds into the aqueous continous phase. The purpose of this study was to improve loading efficiency of a water-soluble drug and modulate release profiles, and to test the efficiency of the prepared microspheres with the help of animal modeling studies. Pregabalin is a water soluble drug, and it was encapsulated within anionic acrylic resin (Eudragit S 100) microspheres by water in oil in oil (w/o/o) double emulsion solvent diffusion method. Dichloromethane and corn oil were chosen primary and secondary oil phases, respectively. The presence of internal water phase was necessary to form stable emulsion droplets and it accelerated the hardening of microspheres. Tween 80 and Span 80 were used as surfactants to stabilize the water and corn oil phases, respectively. The optimum concentration of Tween 80 was 0.25% (v/v) and Span 80 was 0.02% (v/v). The volume of the continous phase was affected the size of the microspheres. As the volume of the continous phase increased, the size of microspheres decreased. All microsphere formulations were evaluated with the help of in vitro characterization parameters. Microsphere formulations (P1-P5) exhibited entrapment efficiency ranged between 57.00 ± 0.72 and 69.70 ± 0.49%; yield ranged between 80.95 ± 1.21 and 93.05 ± 1.42%; and mean particle size were

  6. Development of Floating-Mucoadhesive Microsphere for Site Specific Release of Metronidazole

    PubMed Central

    Amin, Md. Lutful; Ahmed, Tajnin; Mannan, Md. Abdul

    2016-01-01

    Purpose: The purpose of this study was to develop and evaluate metronidazole loaded floating-mucoadhesive microsphere for sustained drug release at the gastric mucosa. Methods: Alginate gastroretentive microspheres containing metronidazole were prepared by ionic gelation method using sodium bicarbonate as gas forming agent, guar gum as mucoadhesive polymer, and Eudragit L100 as drug release modifier. Carbopol was used for increasing the bead strength. The microspheres were characterized by scanning electron microscopy and evaluated by means of drug entrapment efficiency, in vitro buoyancy, and swelling studies. In vitro mucoadhesion and drug release studies were carried out in order to evaluate site specific sustained drug release. Results: All formulations showed 100% buoyancy in vitro for a prolonged period of time. Amount of guar gum influenced the properties of different formulations. The formulation containing drug and guar gum at a ratio of 1:0.5 showed the best results with 76.3% drug entrapment efficiency, 61.21% mucoadhesion, and sustained drug release. Carbopol was found to increase surface smoothness of the microspheres. Conclusion: Metronidazole mucoadhesive-floating microspheres can be effectively used for sustained drug release to the gastric mucosa in treatment of upper GIT infection. PMID:27478781

  7. Novel pH-sensitive blend microspheres for controlled release of nifedipine--an antihypertensive drug.

    PubMed

    Phadke, Keerti V; Manjeshwar, Lata S; Aminabhavi, Tejraj M

    2015-04-01

    Water-soluble acrylamide (AAm)-grafted-chitosan (CS) copolymer (AAm-g-CS) was synthesized using potassium persulfate (PPS) initiator from which interpenetrating polymer network (IPN) microspheres were prepared by water-in-oil (w/o) emulsion that are cross-linked with glutaraldehyde (GA) and used for encapsulating nifedipine (NFD). Microspheres were coated with sodium alginate (NaAlg) to enhance their pH-sensitivity for extending the release time of NFD up to 14 h, releasing with 93% of NFD. The coated and uncoated microspheres were characterized by Fourier transform infrared spectra (FTIR) and differential scanning calorimetry (DSC) to understand chemical interactions and blend compatibility. Morphology and particle size of the microspheres were assessed by scanning electron microscopy (SEM) and particle zeta analyzer, respectively. Swelling and in vitro release experiments were performed in pH 1.2 and 7.4 buffer media, which showed a dependence on IPN blend composition, extent of cross-linking and amount of AAm used. Empirical analysis of drug patterns suggested the differences between NaAlg coated and uncoated microspheres.

  8. Preparation, characterization, and infrared emissivity property of optically active polyurethane/TiO{sub 2}/SiO{sub 2} multilayered microspheres

    SciTech Connect

    Yang Yong; Zhou Yuming; Ge Jianhua; Wang Yongjuan; Zhu Yunxia

    2011-10-15

    Optically active polyurethane/titania/silica (LPU/TiO{sub 2}/SiO{sub 2}) multilayered core-shell composite microspheres were prepared by the combination of titania deposition on the surface of silica spheres and subsequent polymer grafting. LPU/TiO{sub 2}/SiO{sub 2} was characterized by FT-IR, UV-vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), SEM and TEM, and the infrared emissivity value (8-14 {mu}m) was investigated in addition. The results indicated that titania and polyurethane had been successfully coated onto the surfaces of silica microspheres. LPU/TiO{sub 2}/SiO{sub 2} exhibited clearly multilayered core-shell construction. The infrared emissivity values reduced along with the increase of covering layers thus proved that the interfacial interactions had direct influence on the infrared emissivity. Besides, LPU/TiO{sub 2}/SiO{sub 2} multilayered microspheres based on the optically active polyurethane took advantages of the orderly secondary structure and strengthened interfacial synergistic actions. Consequently, it possessed the lowest infrared emissivity value. - Graphical Abstract: Optically active polyurethane/titania/silica (LPU/TiO{sub 2}/SiO{sub 2}) multilayered core-shell composite microspheres were prepared by the combination of titania deposition on the surface of silica spheres and subsequent polymer grafting. Highlights: > Optically active polyurethane based on tyrosine was used for the modification of nanoparticles. > LPU/TiO{sub 2}/SiO{sub 2} multilayered core-shell microspheres were prepared and characterized. > Interfacial interactions and secondary structure affected the infrared emissivity of composite.

  9. Zinc oxide nanorod growth on gold islands prepared by microsphere lithography on silicon and quartz.

    PubMed

    Blackledge, Charles W; Szarko, Jodi M; Dupont, Aurélie; Chan, George H; Read, Elizabeth L; Leone, Stephen R

    2007-09-01

    Gold islands, vapor deposited on silicon and quartz by microsphere lithography patterning, are used to nucleate arrays of ZnO nanorods. ZnO is grown on approximately 0.32 microm2 Au islands by carbothermal reduction in a tube furnace. Scanning electron microscopy (SEM) and energy dispersive atomic X-ray spectroscopy (EDS) confirm that the gold effectively controls the sites of nucleation of ZnO. Atomic force microscopy (AFM) shows that approximately 30 nm diameter nanorods grow horizontally, along the surface. Alloy droplets that are characteristic of the vapor-liquid-solid (VLS) mechanism are observed at the tips of the nanorods. The spatial growth direction of VLS catalyzed ZnO nanorods is along the substrate when they nucleate from gold islands on silicon and quartz. The energy of adhesion of the VLS droplet to the surface can account for the horizontal growth. PMID:18019171

  10. Economic Evaluation for the Production of Sorbents and Catalysts Derived from Hydrous Titanium Oxide Microspheres Prepared by the HMTA Internal Gelation Process

    SciTech Connect

    Collins, J.L.

    2001-01-11

    Hydrous metal oxides of Zr, Ti, Hf, Fe, Al, etc. are inorganic ion exchangers that have high selectivities and efficiencies for separating and removing fission products, actinides, and other undesirable elements from aqueous waste streams. In most cases, these ion exchangers are commercially available only as fine powders or as unstable granular particles that are not readily adaptable to continuous processing techniques such as column chromatography. Hydrous metal oxides can be prepared as microspheres by the internal gelation process. This process is unique in that it provides a means of making a usable engineered form of inorganic ion exchanger that can be used in large-scale column separations. With such material, the flow dynamics in column operations would be greatly enhanced. In addition, the microspheres are in a stable form that has little or no tendency to degrade under dynamic conditions. Another advantage of the process is that the gelation time and size of the microspheres can be controlled. Also, microspheres can be reproducibly prepared on either a small or a large scale-which is not always true for batch preparation of the powdered or granular forms. The use of these materials can be expanded in a number of ways. The process allows for the microspheres to be homogeneously embedded with fine particles of other selective ion exchangers, and for the microspheres (undried) to be chemically converted to microspheres of other ion-exchanger materials such as phosphates, silicophosphates, hexacyanoferrates, tungstates, and molybdates. This report presents an economic evaluation of the preparation of hydrous titanium oxide (HTiO) microspheres by an internal gelation process for use in making ion exchangers, catalysts, and getters. It also examines the estimated costs for a company to produce the material but does not discuss the price to be charged since that value would take into account company policy-matters that cannot be covered here. Since the volume

  11. A study of factors affecting properties of AM/AMPS/NVP terpolymeric microspheres prepared by inverse suspension polymerization

    NASA Astrophysics Data System (ADS)

    Jiang, J. F.; Zhao, Q.; Lin, M. Q.; Wang, Y. F.; Dang, S. M.; Sun, F. F.

    2015-12-01

    Terpolymeric microspheres were synthesized by the inverse suspension polymerization of functional monomers including AMPS, NVP, and AM. The morphology and size of the obtained microspheres were measured by scanning electron microscopy (SEM) and optical microscopy. Furthermore, the swelling performances of the obtained microspheres were measured with alaser particle analyzer (LPA), and the thermal stability of the microspheres obtained was measured by differential thermal analysis (DSC-TG) and high temperature experiments involving microsphere/water dispersion. The results revealed that the extreme value of the microsphere size distribution decreased from 280 μm to 20 μm as the stirring rate increased from 175 rpm to 500 rpm. At temperatures below 25°C, the maximum achieved swelling ratio of the microspheres was 21, and the thermal stability of the terpolymer microspheres was significantly higher than that of the dipolymer microspheres. The terpolymer/water dispersions were kept at 120°C for 19d before any damage was observed.

  12. Porous microsphere and its applications

    PubMed Central

    Cai, Yunpeng; Chen, Yinghui; Hong, Xiaoyun; Liu, Zhenguo; Yuan, Weien

    2013-01-01

    Porous microspheres have drawn great attention in the last two decades for their potential applications in many fields, such as carriers for drugs, absorption and desorption of substances, pulmonary drug delivery, and tissue regeneration. The application of porous microspheres has become a feasible way to address existing problems. In this essay, we give a brief introduction of the porous microsphere, its characteristics, preparation methods, applications, and a brief summary of existing problems and research tendencies. PMID:23515359

  13. Tetracycline-HCl-loaded poly(DL-lactide-co-glycolide) microspheres prepared by a spray drying technique: influence of gamma-irradiation on radical formation and polymer degradation.

    PubMed

    Bittner, B; Mäder, K; Kroll, C; Borchert, H H; Kissel, T

    1999-05-01

    Tetracycline-HCl (TCH)-loaded microspheres were prepared from poly(lactide-co-glycolide) (PLGA) by spray drying. The drug was incorporated in the polymer matrix either in solid state or as w/o emulsion. The spin probe 4-hydroxy-2,2,6, 6-tetramethyl-piperidine-1-oxyl (TEMPOL) and the spin trap tert-butyl-phenyl-nitrone (PBN) were co-encapsulated into the TCH-loaded and placebo particles. We investigated the effects of gamma-irradiation on the formation of free radicals in polymer and drug and the mechanism of chain scission after sterilization. Gamma-Irradiation was performed at 26.9 and 54.9 kGy using a 60Co source. The microspheres were characterized especially with respect to the formation of radicals and in vitro polymer degradation. Electron paramagnetic resonance (EPR) spectroscopy, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), high-performance liquid chromatography (HPLC), gas chromatography-mass spectroscopy (GC-MS), and scanning electron microscopy (SEM) were used for characterization of the microspheres. Using EPR spectroscopy, we successfully detected gamma-irradiation induced free radicals within the TCH-loaded microspheres, while unloaded PLGA did not contain radicals under the same conditions. The relatively low glass transition temperature of the poly(dl-lactide-co-glycolide) (37-39 degrees C) seems to favor subsequent reactions of free radicals due to the high mobility of the polymeric chains. Because of the high melting point of TCH (214 degrees C), the radicals can only be stabilized in drug loaded microspheres. In order to determine the mechanism of polymer degradation after exposure to gamma-rays, the spin trap PBN and the spin probe TEMPOL were encapsulated in the microspheres. gamma-Irradiation of microspheres containing PBN resulted in the formation of a lipophilic spin adduct, indicating that a polymeric radical was generated by random chain scission. Polymer degradation by an unzipping mechanism would have

  14. Characterization of structure, physico-chemical properties and diffusion behavior of Ca-Alginate gel beads prepared by different gelation methods.

    PubMed

    Puguan, John Marc C; Yu, Xiaohong; Kim, Hern

    2014-10-15

    Ca-Alginate beads were prepared with either external or internal calcium sources by dripping technique. It was found that beads synthesized with internal calcium source had a looser structure and bigger pore size than those produced with external calcium source. Consequently, a faster diffusion rate of Vitamin B12 (VB12) within the beads with an internal calcium source was observed. Furthermore, the concentration of calcium ion, ionic strength and pH of the external gel beads formation solution were investigated. Results showed that (a) the concentration of the calcium ion was found to be the determining factor in the gel formation phenomenon; (b) the weight and volume losses are in effect due to water removal; (c) NaCl acts as a competitor with calcium and a screen in the electrostatic repulsion; and (d) the pH controls the gel formation process by regulating the dissociation of alginate and the complexation of the calcium cations. These results are keys to understanding the behavior and performance of beads in their utilization medium.

  15. Large-scale preparation of strawberry-like, AgNP-doped SiO2 microspheres using the electrospraying method

    NASA Astrophysics Data System (ADS)

    Ma, Zhijun; Ji, Huijiao; Tan, Dezhi; Dong, Guoping; Teng, Yu; Zhou, Jiajia; Guan, Miaojia; Qiu, Jianrong; Zhang, Ming

    2011-07-01

    In this paper, we report on a novel strategy for the preparation of silver nanoparticle-doped SiO2 microspheres (Ag-SMSs) with an interesting strawberry-like morphology using a simple and efficient electrospraying method. SEM (scanning electron microscopy), TEM (transmission electron microscopy), XRD (x-ray diffraction), EDS (energy-dispersive spectroscopy) and UV-vis spectra (ultraviolet-visible spectra) were applied to investigate the morphology, structure, composition and optical properties of the hybrid microspheres, and E. coli (Escherichia coli) was used as a model microbe to evaluate their antibacterial ability. The results showed that the Ag-SMSs were environmentally stable and washing resistant. The Ag-SMSs exhibited effective inhibition against proliferation of E. coli, and their antibacterial ability could be well preserved for a long time. The environmental stability, washing resistance, efficient antibacterial ability and simple but productive preparation method endowed the Ag-SMSs with great potential for practical biomedical applications.

  16. Engineering alginate as bioink for bioprinting.

    PubMed

    Jia, Jia; Richards, Dylan J; Pollard, Samuel; Tan, Yu; Rodriguez, Joshua; Visconti, Richard P; Trusk, Thomas C; Yost, Michael J; Yao, Hai; Markwald, Roger R; Mei, Ying

    2014-10-01

    Recent advances in three-dimensional (3-D) printing offer an excellent opportunity to address critical challenges faced by current tissue engineering approaches. Alginate hydrogels have been used extensively as bioinks for 3-D bioprinting. However, most previous research has focused on native alginates with limited degradation. The application of oxidized alginates with controlled degradation in bioprinting has not been explored. Here, a collection of 30 different alginate hydrogels with varied oxidation percentages and concentrations was prepared to develop a bioink platform that can be applied to a multitude of tissue engineering applications. The authors systematically investigated the effects of two key material properties (i.e. viscosity and density) of alginate solutions on their printabilities to identify a suitable range of material properties of alginates to be applied to bioprinting. Further, four alginate solutions with varied biodegradability were printed with human adipose-derived stem cells (hADSCs) into lattice-structured, cell-laden hydrogels with high accuracy. Notably, these alginate-based bioinks were shown to be capable of modulating proliferation and spreading of hADSCs without affecting the structure integrity of the lattice structures (except the highly degradable one) after 8days in culture. This research lays a foundation for the development of alginate-based bioink for tissue-specific tissue engineering applications. PMID:24998183

  17. Engineering alginate as bioink for bioprinting

    PubMed Central

    Jia, Jia; Richards, Dylan J.; Pollard, Samuel; Tan, Yu; Rodriguez, Joshua; Visconti, Richard P.; Trusk, Thomas C.; Yost, Michael J.; Yao, Hai; Markwald, Roger R.; Mei, Ying

    2015-01-01

    Recent advances in 3D printing offer an excellent opportunity to address critical challenges faced by current tissue engineering approaches. Alginate hydrogels have been extensively utilized as bioinks for 3D bioprinting. However, most previous research has focused on native alginates with limited degradation. The application of oxidized alginates with controlled degradation in bioprinting has not been explored. Here, we prepared a collection of 30 different alginate hydrogels with varied oxidation percentages and concentrations to develop a bioink platform that can be applied to a multitude of tissue engineering applications. We systematically investigated the effects of two key material properties (i.e. viscosity and density) of alginate solutions on their printabilities to identify a suitable range of material properties of alginates to be applied to bioprinting. Further, four alginate solutions with varied biodegradability were printed with human adipose-derived stem cells (hADSCs) into lattice-structured, cell-laden hydrogels with high accuracy. Notably, these alginate-based bioinks were shown to be capable of modulating proliferation and spreading of hADSCs without affecting structure integrity of the lattice structures (except the highly degradable one) after 8 days in culture. This research lays a foundation for the development of alginate-based bioink for tissue-specific tissue engineering applications. PMID:24998183

  18. Controlled microfluidic production of alginate beads for in situ encapsulation of microbes

    SciTech Connect

    Kalyanaraman, Meenaa; Retterer, Scott T; McKnight, Timothy E; Ericson, Milton Nance; Allman, Steve L; Elkins, James G; Palumbo, Anthony Vito; Keller, Martin; Doktycz, Mitchel John

    2009-01-01

    The development and refinement of a microfluidic-based alginate bead generator system for bacterial encapsulation is presented. The resulting microgels have application for the encapsulation of single cells, and can allow for small scale, clonal expansion of thousands of isolated cells in parallel. PDMS based microfluidic chips were fabricated using conventional lithography techniques to produce both externally gelled and directly gelled alginate microspheres using a controlled, water-in-oil emulsion system. The production of directly gelled beads, formed by the in-chip mixing of aqueous alginate and calcium chloride solutions dispersed within an organic carrier flowstream is qualitatively compared to a system, which produces beads and relies on diffusion of a crosslinking agent from the carrier fluid to cause gelation (external gelation). While the direct gelation scheme allows the use of biocompatible oils as the organic carrier, it also has a detrimental effect on device stability often resulting in clogging and gel-streaming at the microfluidic interface of these solutions. A design for the continuous production of directly gelled beads was evaluated in terms of the threshold flow conditions and reagent concentrations that did not result in clogging or streaming. Monodisperse alginate microgels of 30 mum diameter were produced at frequencies of over 500 beads per second. The beads could be completely dispersed into aqueous media using an off-chip washing protocol to remove the organic phase. The microgels effectively encapsulated individual or small numbers of GFP-expressing Escherichia. coli, which could be subsequently clonally expanded. The described microfluidic platform is a robust front-end sample preparation technology that shows strong potential for use in drug delivery systems, biosensors, and other cell-based microcompartmentalization applications. The co-culturing of microbial colonies in a large population of alginate beads will allow for functional

  19. Application of lipid microspheres to prepare a thromboxane A2 receptor antagonist aerosol for inhalation.

    PubMed

    Takenaga, M; Nakagawa, T; Igarashi, R; Mizushima, Y

    1993-01-01

    The methyl ester of a new thromboxane A2 receptor antagonist, (+)S-145, i.e. (1R,2S,3S,4S)-(5Z)-7-(3-phenyl-sulfonyl-aminobicyclo[2,2,1]he pt-2-yl)heptenoic acid, was incorporated into lipid microspheres (lipo S-145-Me) and its pharmacological effect and tissue distribution were examined in guinea pigs following aerosol delivery. Bronchoconstrictive responses induced by intravenous injection of U46619 or the inhalation of ovalbumin were suppressed in a dose-dependent manner by aerosol inhalation of lipo S-145-Me, which was 3-10 times more potent that the unencapsulated calcium dihydrate of the original drug (S-1452). There was no significant difference in the airway tissue distribution of labelled lipo S-145-Me versus S-1452 after 2 or 5 min of inhalation, but the encapsulated drug showed marked accumulation in the lungs after 30 min of inhalation. The in vitro uptake of lipo [14C] S-145-Me by fresh human neutrophils and an eosinophil cell line was respectively 7 times and 3.5 times higher than that of [14C] S-1452. These results suggest that lipo S-145-Me has the potential to be used as an inhalational antiasthma agent, and that its effect may be partly attributable to a for inflammatory cells which are responsible for allergic airway inflammation.

  20. A facile and cheap coating method to prepare SiO2/melamine-formaldehyde and SiO2/urea-formaldehyde composite microspheres

    NASA Astrophysics Data System (ADS)

    Mou, Shaoyan; Lu, Yao; Jiang, Yong

    2016-10-01

    A facile and cheap coating route has been explored to prepare SiO2/melamine formaldehyde hybrid particles. In this process, SiO2 microspheres act as seeds, and a polycondensation reaction occurs on the surface of melamine-formaldehyde pre-polymers. Formaldehyde is essential in this coating process because it acts as a novel and cheap surface modification agent instead of a traditional silane coupling agent. Ultrasonic method is used in the synthesis to avoid aggregation of nano- and micro-particles. Most of the traditional methods preparing composite microspheres were implemented under difficult conditions and at high costs. The improved coating method is much more able to provide a convenient path for researchers and engineers to more easily and economically perform experiments and engage in manufacturing. To verify this convenient method, SiO2/urea-formaldehyde composite microspheres were also prepared. SEM images show that the surfaces of all the products are smooth and well-shaped.

  1. Nonflammable Alginate Nanocomposite Aerogels Prepared by a Simple Freeze-Drying and Post-Cross-Linking Method.

    PubMed

    Shang, Ke; Liao, Wang; Wang, Juan; Wang, Yu-Tao; Wang, Yu-Zhong; Schiraldi, David A

    2016-01-13

    Nonflammable materials based on renewable ammonium alginate and nano fillers (nanoscale magnesium hydroxide, nanoscale aluminum hydroxide, layered double hydroxide, sodium montmorillonite, and Kaolin) were fabricated through a simple, environmentally friendly freeze-drying process, in which water was used as a solvent. A simple and economic post-cross-linking method was used to obtain homogeneous samples. The microstructure of the cross-linked alginate aerogels show three-dimensional networks. These materials exhibit low densities (0.064-0.116 g cm(-3)), low thermal conductivities (0.024-0.046 W/m K), and useful mechanical strengths (0.7-3.5 MPa). The aerogels also exhibit high thermal stabilities and achieve inherent nonflammability with limiting oxygen indexes (LOI) higher than 60. Related properties were conducted and analyzed by cone calorimeter (CC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). These results combine to suggest promising prospects for use of these aerogel nanocomposites in a range of applications. PMID:26675804

  2. Protective effects of alginate-chitosan microspheres loaded with alkaloids from Coptis chinensis Franch. and Evodia rutaecarpa (Juss.) Benth. (Zuojin Pill) against ethanol-induced acute gastric mucosal injury in rats.

    PubMed

    Wang, Qiang-Song; Zhu, Xiao-Ning; Jiang, Heng-Li; Wang, Gui-Fang; Cui, Yuan-Lu

    2015-01-01

    Zuojin Pill (ZJP), a traditional Chinese medicine formula, consists of Coptis chinensis Franch. and Evodia rutaecarpa (Juss.) Benth. in a ratio of 6:1 (w/w) and was first recorded in "Danxi's experiential therapy" for treating gastrointestinal disorders in the 15th century. However, the poor solubility of alkaloids from ZJP restricted the protective effect in treating gastritis and gastric ulcer. The aim of the study was to investigate the protective mechanism of mucoadhesive microspheres loaded with alkaloids from C. chinensis Franch. and E. rutaecarpa (Juss.) Benth. on ethanol-induced acute gastric mucosal injury in rats. Surface morphology, particle size, drug loading, encapsulation efficiency, in vitro drug release, mucoadhesiveness, and fluorescent imaging of the microspheres in gastrointestinal tract were studied. The results showed that the mucoadhesive microspheres loaded with alkaloids could sustain the release of drugs beyond 12 hours and had gastric mucoadhesive property with 82.63% retention rate in vitro. The fluorescence tracer indicated high retention of mucoadhesive microspheres within 12 hours in vivo. The mucoadhesive microspheres loaded with alkaloids could reduce the gastric injury by decreasing the mucosal lesion index, increasing the percentage of inhibition and increasing the amount of mucus in the gastric mucosa in an ethanol-induced gastric mucosal injury rat model. Moreover, the mucoadhesive microspheres loaded with alkaloids reduce the inflammatory response by decreasing the levels of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), downregulating the mRNA expression of inducible nitric oxide synthase, TNF-α, and IL-1β in gastric mucosa. All the results indicate that mucoadhesive microspheres loaded with alkaloids could not only increase the residence time of alkaloids in rat stomach, but also exert gastroprotective effects through reducing the inflammatory response on ethanol-induced gastric mucosal damage. Thus, these

  3. Preparation of carbon microspheres decorated with silver nanoparticles and their ability to remove dyes from aqueous solution.

    PubMed

    Chen, Qingchun; Wu, Qingsheng

    2015-01-01

    Solid, but not hollow or porous, carbon microspheres decorated with silver nanoparticles (AgNP-CMSs) were prepared from silver nitrate and CMSs by a redox reaction at room temperature. The CMSs and AgNP-CMSs were characterized using X-ray diffraction, scanning electron microscopy, field emission scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and UV-vis spectrophotometry. Though with non-high specific surface area, the AgNP-CMSs exhibited a high adsorption capacity toward methylene blue (MB) in an aqueous solution. The AgNP-CMSs were able to remove all the MB from a solution of 30 mg/L MB in water within 1 min when the adsorbent concentration was 0.12 g/L. The AgNP-CMSs also exhibited good adsorption and photocatalytic activity in the decomposition of aqueous Rhodamine B as well as MB under visible light. FTIR was used to examine the interaction between AgNP-CMSs and MB, and the spectrum and more extra experiments suggest ionic interactions between cationic dyes and the negatively charged groups can be formed but not the presence of abundant π-π conjugations between dye molecules and the aromatic rings. The origin of the photocatalytic activity of AgNP-CMSs was attributed to a surface plasmon resonance (SPR) effect of the silver nanoparticles on the CMSs.

  4. Role of Calcium Alginate and Mannitol in Protecting Bifidobacterium

    PubMed Central

    Dianawati, Dianawati; Mishra, Vijay

    2012-01-01

    Fourier transform infrared (FTIR) spectroscopy was carried out to ascertain the mechanism of Ca-alginate and mannitol protection of cell envelope components and secondary proteins of Bifidobacterium animalis subsp. lactis Bb12 after freeze-drying and after 10 weeks of storage at room temperature (25°C) at low water activities (aw) of 0.07, 0.1, and 0.2. Preparation of Ca-alginate and Ca-alginate-mannitol as microencapsulants was carried out by dropping an alginate or alginate-mannitol emulsion containing bacteria using a burette into CaCl2 solution to obtain Ca-alginate beads and Ca-alginate-mannitol beads, respectively. The wet beads were then freeze-dried. The aw of freeze-dried beads was then adjusted to 0.07, 0.1, and 0.2 using saturated salt solutions; controls were prepared by keeping Ca-alginate and Ca-alginate-mannitol in aluminum foil without aw adjustment. Mannitol in the Ca-alginate system interacted with cell envelopes during freeze-drying and during storage at low aws. In contrast, Ca-alginate protected cell envelopes after freeze-drying but not during 10-week storage. Unlike Ca-alginate, Ca-alginate-mannitol was effective in retarding the changes in secondary proteins during freeze-drying and during 10 weeks of storage at low aws. It appears that Ca-alginate-mannitol is more effective than Ca-alginate in preserving cell envelopes and proteins after freeze-drying and after 10 weeks of storage at room temperature (25°C). PMID:22843535

  5. Role of calcium alginate and mannitol in protecting Bifidobacterium.

    PubMed

    Dianawati, Dianawati; Mishra, Vijay; Shah, Nagendra P

    2012-10-01

    Fourier transform infrared (FTIR) spectroscopy was carried out to ascertain the mechanism of Ca-alginate and mannitol protection of cell envelope components and secondary proteins of Bifidobacterium animalis subsp. lactis Bb12 after freeze-drying and after 10 weeks of storage at room temperature (25°C) at low water activities (a(w)) of 0.07, 0.1, and 0.2. Preparation of Ca-alginate and Ca-alginate-mannitol as microencapsulants was carried out by dropping an alginate or alginate-mannitol emulsion containing bacteria using a burette into CaCl(2) solution to obtain Ca-alginate beads and Ca-alginate-mannitol beads, respectively. The wet beads were then freeze-dried. The a(w) of freeze-dried beads was then adjusted to 0.07, 0.1, and 0.2 using saturated salt solutions; controls were prepared by keeping Ca-alginate and Ca-alginate-mannitol in aluminum foil without a(w) adjustment. Mannitol in the Ca-alginate system interacted with cell envelopes during freeze-drying and during storage at low a(w)s. In contrast, Ca-alginate protected cell envelopes after freeze-drying but not during 10-week storage. Unlike Ca-alginate, Ca-alginate-mannitol was effective in retarding the changes in secondary proteins during freeze-drying and during 10 weeks of storage at low a(w)s. It appears that Ca-alginate-mannitol is more effective than Ca-alginate in preserving cell envelopes and proteins after freeze-drying and after 10 weeks of storage at room temperature (25°C). PMID:22843535

  6. Encapsulation of probiotic Bifidobacterium longum BIOMA 5920 with alginate-human-like collagen and evaluation of survival in simulated gastrointestinal conditions.

    PubMed

    Su, Ran; Zhu, Xiao-Li; Fan, Dai-Di; Mi, Yu; Yang, Chan-Yuan; Jia, Xin

    2011-12-01

    Alginate (ALg)-human-like collagen (HLC) microspheres were prepared by the technology of electrostatic droplet generation in order to develop a biocompatible vehicle for probiotic bacteria. Microparticles were spherical with mean particle size of 400μm. The encapsulation efficiency (EE) of ALg-HLC microspheres could reach 92-99.2%. Water-soluble and fibrous human-like collagen is combined with sodium alginate through intermolecular hydrogen bonding and electrostatic force which were investigated by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC), thus the matrix of ALg-HLC was very stable. Bifidobacterium longum BIOMA 5920, as a kind of probiotic bacteria, was encapsulated with alginate-human-like collagen to survive and function in simulated gastrointestinal juice. Microparticles were very easy to degradation in simulated intestinal juices. After incubation in simulated gastric (pH 2.0, 2h), the encapsulated B. longum BIOMA 5920 numbers were 4.81 ± 0.38 log cfu/g.

  7. MRI visible drug eluting magnetic microspheres for transcatheter intra-arterial delivery to liver tumors.

    PubMed

    Kim, Dong-Hyun; Chen, Jeane; Omary, Reed A; Larson, Andrew C

    2015-01-01

    Magnetic resonance imaging (MRI)-visible amonafide-eluting alginate microspheres were developed for targeted arterial-infusion chemotherapy. These alginate microspheres were synthesized using a highly efficient microfluidic gelation process. The microspheres included magnetic clusters formed by USPIO nanoparticles to permit MRI and a sustained drug-release profile. The biocompatibility, MR imaging properties and amonafide release kinetics of these microspheres were investigated during in vitro studies. A xenograft rodent model was used to demonstrate the feasibility to deliver these microspheres to liver tumors using hepatic transcatheter intra-arterial infusions and potential to visualize the intra-hepatic delivery of these microspheres to both liver tumor and normal tissues with MRI immediately after infusion. This approach offer the potential for catheter-directed drug delivery to liver tumors for reduced systemic toxicity and superior therapeutic outcomes.

  8. Electrochemical properties of tungsten sulfide-carbon composite microspheres prepared by spray pyrolysis.

    PubMed

    Choi, Seung Ho; Boo, Sung Jin; Lee, Jong-Heun; Kang, Yun Chan

    2014-01-01

    Tungsten sulfide (WS2)-carbon composite powders with superior electrochemical properties are prepared by a two-step process. WO3-carbon composite powders were first prepared by conventional spray pyrolysis, and they were then sulfidated to form WS2-carbon powders. Bare WS2 powders are also prepared by sulfidation of bare WO3 powders obtained by spray pyrolysis. Stacked graphitic layers could not be found in the bare WS2 and WS2-carbon composite powders. The amorphous bare WS2 and WS2-carbon composite powders have Brunauer-Emmett-Teller (BET) surface areas of 2.8 and 4 m(2) g(-1), respectively. The initial discharge and charge capacities of the WS2-carbon composite powders at a current density of 100 mA g(-1) are 1055 and 714 mA h g(-1), respectively, and the corresponding initial Coulombic efficiency is 68%. On the other hand, the initial discharge and charge capacities of the bare WS2 powders are 514 and 346 mA h g(-1), respectively. The discharge capacities of the WS2-carbon composite powders for the 2(nd) and 50(th) cycles are 716 and 555 mA h g(-1), respectively, and the corresponding capacity retention measured after first cycle is 78%.

  9. Electrochemical properties of tungsten sulfide–carbon composite microspheres prepared by spray pyrolysis

    PubMed Central

    Choi, Seung Ho; Boo, Sung Jin; Lee, Jong-Heun; Kang, Yun Chan

    2014-01-01

    Tungsten sulfide (WS2)–carbon composite powders with superior electrochemical properties are prepared by a two-step process. WO3-carbon composite powders were first prepared by conventional spray pyrolysis, and they were then sulfidated to form WS2-carbon powders. Bare WS2 powders are also prepared by sulfidation of bare WO3 powders obtained by spray pyrolysis. Stacked graphitic layers could not be found in the bare WS2 and WS2–carbon composite powders. The amorphous bare WS2 and WS2–carbon composite powders have Brunauer–Emmett–Teller (BET) surface areas of 2.8 and 4 m2 g−1, respectively. The initial discharge and charge capacities of the WS2–carbon composite powders at a current density of 100 mA g−1 are 1055 and 714 mA h g−1, respectively, and the corresponding initial Coulombic efficiency is 68%. On the other hand, the initial discharge and charge capacities of the bare WS2 powders are 514 and 346 mA h g−1, respectively. The discharge capacities of the WS2–carbon composite powders for the 2nd and 50th cycles are 716 and 555 mA h g−1, respectively, and the corresponding capacity retention measured after first cycle is 78%. PMID:25169439

  10. Preparation of C₁₈-functionalized magnetic polydopamine microspheres for the enrichment and analysis of alkylphenols in water samples.

    PubMed

    Wang, Xianying; Deng, Chunhui

    2016-02-01

    In this work, C18-functionalized magnetic polydopamine microspheres (Fe3O4@PDA@C18) were successfully synthesized and applied to the analysis of alkylphenols in water samples. The magnetic Fe3O4 particles coated with hydrophilic surface were synthesized via a solvothermal reaction and the self-polymerization of dopamine. And then the C18 groups were fabricated by a silylanization method. Benefit from the merits of Fe3O4 particles, polydopamine coating and C18 groups, the Fe3O4@PDA@C18 material possessed several properties of super magnetic responsiviness, good water dispersibility, π-electron system and hydrophobic C18 groups. Thus, the materials had great potential to be developed as the adsorbent for the magnetic solid-phase extraction (MSPE) technique. Here, we selected three kinds of alkylphenols (4-tert-octylphenol, 4-n-nonylphenol, 4-n-octylphenol) to be the target analyst for evaluating the performance of the prepared material. In this study, various extraction parameters were investigated and optimized, such as pH values of water sample solution, amount of adsorbents, adsorption and desorption time, the species of desorption solution. Meanwhile, the method validations were studied, including linearity, limit of detection and method precision. From the results, Fe3O4@PDA@C18 composites were successfully applied as the adsorbents for the extraction of alkylphenols in water samples. The proposed material provided an approach for a simple, rapid magnetic solid-phase extraction for hydrophobic compounds in environmental samples.

  11. Preparation and in vitro characterization of vascular endothelial growth factor (VEGF)-loaded poly(D,L-lactic-co-glycolic acid) microspheres using a double emulsion/solvent evaporation technique.

    PubMed

    Karal-Yılmaz, Okşan; Serhatlı, Müge; Baysal, Kemal; Baysal, Bahattin M

    2011-01-01

    Biodegradable Poly(lactic-co-glycolic acid; PLGA), microspheres encapsulating the angiogenic protein recombinant human vascular endothelial growth factor (rhVEGF) were formed to achieve VEGF release in a sustained manner. These microspheres are a promising delivery system which can be used for therapeutic angiogenesis. The PLGA microspheres incorporating two different initial loading amounts of rhVEGF have been prepared by a modified water-in-oil-in-water (w/o/w) double emulsion/solvent evaporation technique. The microspheres have been characterized by particle size distribution, environmental scanning electron microscopy (ESEM), light microscopy, encapsulation efficiency and their degradation was studied in vitro. The rhVEGF released from microspheres was quantified by the competitive enzyme-linked immunosorbent assay (ELISA) and human umbilical vein endothelial cell (HUVEC) proliferation assay was used to assess biological activity of the released VEGF. The microspheres were spherical with diameters of 10-60 µm and the encapsulation efficiency was between 46% and 60%. The release kinetics of rhVEGF was studied for two different amounts: 5 µg VEGF (V5) and 50 µg VEGF (V50) per 500 mg starting polymer. The total protein (VEGF:BSA) release increased up to 4 weeks for two rhVEGF concentrations. The ELISA results showed that the burst release for V5 and V50 microspheres were 4 and 27 ng/mL, respectively. For V5, the microspheres showed an initial burst release, followed by a higher steady-state release until 14 days. VEGF release increased up to 2 weeks for V50 microsphere. HUVEC proliferation assay showed that endothelial cells responded to bioactive VEGF by proliferating and migrating.

  12. Preparation and In Vitro Biological Evaluation of Octacalcium Phosphate/Bioactive Glass-Chitosan/ Alginate Composite Membranes Potential for Bone Guided Regeneration.

    PubMed

    Xu, Sanzhong; Chen, Xiaoyi; Yang, Xianyan; Zhang, Lei; Yang, Guojing; Shao, Huifeng; He, Yong; Gou, Zhongru

    2016-06-01

    The chitosan/alginate-trace element-codoped octacalcium phosphate/nano-sized bioactive glass (CS/ALG-teOCP/nBG) composite membranes were prepared by a layer-by-layer coating method for the functional requirement of guided bone regeneration (GBR). The morphology, mechanical properties and moisture content of the membranes was studied by scanning electron microscopy (SEM) observation, mechanical and swelling test. The results showed that the teOCP/nBG distributed uniformly in the composite membranes, and such as-prepared composite membrane exhibited an excellent tensile strength, accompanying with mechanical decay with immersion in aqueous medium. Cell culture and MTT assays showed that the surface microstructure and the ion dissolution products from teOCP/nBG components could enhance the cell proliferation, and especially the composite membranes was suitable for supporting the adhesion and growth behavior of human bone marrow mesenchymal stem cells (hBMSCs) in comparison with the CS/ALG pure polymer membranes. These results suggest that the new CS/ALG-teOCP/nBG composite membrane is highly bioactive and biodegradable, and favorable for guiding bone regeneration. PMID:27427599

  13. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering.

    PubMed

    Kim, Hye-Lee; Jung, Gil-Yong; Yoon, Jun-Ho; Han, Jung-Suk; Park, Yoon-Jeong; Kim, Do-Gyoon; Zhang, Miqin; Kim, Dae-Joon

    2015-09-01

    The aim of this study was to develop chitosan composite scaffolds with high strength and controlled pore structures by homogenously dispersed nano-sized hydroxyapatite (nano-HAp) powders. In the fabrication of composite scaffolds, nano-HAp powders distributed in an alginate (AG) solution with a pH higher than 10 were mixed with a chitosan (CS) solution and then freeze dried. While the HAp content increased up to 70 wt.%, the compressive strength and the elastic modulus of the composite scaffolds significantly increased from 0.27 MPa and 4.42 MPa to 0.68 MPa and 13.35 MPa, respectively. Higher content of the HAp also helped develop more differentiation and mineralization of the MC3T3-E1 cells on the composite scaffolds. The uniform pore structure and the excellent mechanical properties of the HAp/CS composite scaffolds likely resulted from the use of the AG solution at pH 10 as a dispersant for the nano-HAp powders. PMID:26046263

  14. Preparation and characterization of a novel sodium alginate incorporated self-assembled Fmoc-FF composite hydrogel.

    PubMed

    Gong, Xiao; Branford-White, Christopher; Tao, Lei; Li, Shubai; Quan, Jing; Nie, Huali; Zhu, Limin

    2016-01-01

    Dipeptides and their derivatives have attracted tremendous attention owning to their excellent abilities of self-assemble assembling into various structures which have great potentials for applications in biology and/or nanotechnology. In the present study, we dedicate to fabricate a rigid and structure controllable Fmoc-FF/SA composite hydrogel. We found that the modified dipeptide, fluorenyl-9-methoxycarbonyl (Fmoc)-diphenylalanine (Phe-Phe) can self-assemble into rigid hydrogels with structures of nanowires, layered thin films or honeycombs as the change of sodium alginate (SA) concentration. Meanwhile, CD-spectroscopy demonstrated that SA appeared to control the process, but it did not change the arrangement of the Fmoc-FF peptide. Our results demonstrated that the formed hydrogel showed physical and chemical stability as well as possessing good biocompatibility. Rheological measurements showed that the addition of SA could improve the stability of the hydrogel. Cell viability assay revealed that the Fmoc-FF and Fmoc-FF/SA hydrogels are both beneficial for cell proliferation in-vitro. Our results indicated that the fabricated Fmoc-FF/SA composite hydrogels could be used in tissue engineering and drug delivery in the future. PMID:26478335

  15. Preparation and swelling behavior of a novel self-assembled β-cyclodextrin/acrylic acid/sodium alginate hydrogel.

    PubMed

    Huang, Zhanhua; Liu, Shouxin; Zhang, Bin; Wu, Qinglin

    2014-11-26

    A novel biodegradable β-cyclodextrin/acrylic acid/sodium alginate (CSA) hydrogel with a three-dimensional network structure was self-assembled by inverse suspension copolymerization. The CSA resin was pH sensitive and had good water absorption properties in pH 6-8 buffer solutions. At a β-CD:AA:SA mass ratio of 1:9:3 the CSA water absorbency was found to be 1403 g/g and the CSA hydrogel strength was 4.968 N. In 0.005-0.1 mol/L chloride salt and sulfate salt solutions the CSA water absorbencies increased as follows: NaCl>KCl>MgCl2>CaCl2>FeCl3, and Na2SO4>K2SO4>FeSO4>Al2(SO4)3, respectively. The release of water from the CSA hydrogel occurred slowly over 120 h. The biodegradation efficiency of the resin reached 85.3% for Lentinula edodes. The super water absorbency, good salt resistance and excellent water retention properties of CSA make it suitable for application as an agricultural water retention agent in saline soils. PMID:25256504

  16. Preparation and characterization of a novel sodium alginate incorporated self-assembled Fmoc-FF composite hydrogel.

    PubMed

    Gong, Xiao; Branford-White, Christopher; Tao, Lei; Li, Shubai; Quan, Jing; Nie, Huali; Zhu, Limin

    2016-01-01

    Dipeptides and their derivatives have attracted tremendous attention owning to their excellent abilities of self-assemble assembling into various structures which have great potentials for applications in biology and/or nanotechnology. In the present study, we dedicate to fabricate a rigid and structure controllable Fmoc-FF/SA composite hydrogel. We found that the modified dipeptide, fluorenyl-9-methoxycarbonyl (Fmoc)-diphenylalanine (Phe-Phe) can self-assemble into rigid hydrogels with structures of nanowires, layered thin films or honeycombs as the change of sodium alginate (SA) concentration. Meanwhile, CD-spectroscopy demonstrated that SA appeared to control the process, but it did not change the arrangement of the Fmoc-FF peptide. Our results demonstrated that the formed hydrogel showed physical and chemical stability as well as possessing good biocompatibility. Rheological measurements showed that the addition of SA could improve the stability of the hydrogel. Cell viability assay revealed that the Fmoc-FF and Fmoc-FF/SA hydrogels are both beneficial for cell proliferation in-vitro. Our results indicated that the fabricated Fmoc-FF/SA composite hydrogels could be used in tissue engineering and drug delivery in the future.

  17. Trading polymeric microspheres: exchanging DNA molecules via microsphere interaction.

    PubMed

    Morimoto, Nobuyuki; Muramatsu, Kanna; Nomura, Shin-ichiro M; Suzuki, Makoto

    2015-04-01

    A new class of artificial molecular transport system is constructed by polymeric microspheres. The microspheres are prepared by self-assembly of poly(ethylene glycol)-block-poly(3-dimethyl(methacryloyloxyethyl)ammonium propane sulfonate), PEG-b-PDMAPS, by intermolecular dipole-dipole interaction of sulfobetaine side chains in water. Below the upper critical solution temperature (UCST) of PEG-b-PDMAPS, the microspheres (∼1μm) interact with other microspheres by partial and transit fusion. In order to apply the interaction between microspheres, a 3'-TAMRA-labeled single-stranded DNA oligomer (ssDNA) is encapsulated into a PEG-b-PDMAPS microsphere by thermal treatment. The exchange of ssDNA between microspheres is confirmed by fluorescence resonance energy transfer (FRET) quenching derived from double-stranded formation with complementary 5'-BHQ-2-labeled ssDNA encapsulated in PEG-b-PDMAPS microspheres. The exchange rate of ssDNA is controllable by tuning the composition of the polymer. The contact-dependent transport of molecules can be applied in the areas of microreactors, sensor devices, etc. PMID:25731098

  18. Trading polymeric microspheres: exchanging DNA molecules via microsphere interaction.

    PubMed

    Morimoto, Nobuyuki; Muramatsu, Kanna; Nomura, Shin-ichiro M; Suzuki, Makoto

    2015-04-01

    A new class of artificial molecular transport system is constructed by polymeric microspheres. The microspheres are prepared by self-assembly of poly(ethylene glycol)-block-poly(3-dimethyl(methacryloyloxyethyl)ammonium propane sulfonate), PEG-b-PDMAPS, by intermolecular dipole-dipole interaction of sulfobetaine side chains in water. Below the upper critical solution temperature (UCST) of PEG-b-PDMAPS, the microspheres (∼1μm) interact with other microspheres by partial and transit fusion. In order to apply the interaction between microspheres, a 3'-TAMRA-labeled single-stranded DNA oligomer (ssDNA) is encapsulated into a PEG-b-PDMAPS microsphere by thermal treatment. The exchange of ssDNA between microspheres is confirmed by fluorescence resonance energy transfer (FRET) quenching derived from double-stranded formation with complementary 5'-BHQ-2-labeled ssDNA encapsulated in PEG-b-PDMAPS microspheres. The exchange rate of ssDNA is controllable by tuning the composition of the polymer. The contact-dependent transport of molecules can be applied in the areas of microreactors, sensor devices, etc.

  19. Ag/α-Fe2O3 hollow microspheres: Preparation and application for hydrogen peroxide detection

    NASA Astrophysics Data System (ADS)

    Kang, Xinyuan; Wu, Zhiping; Liao, Fang; Zhang, Tingting; Guo, Tingting

    2015-09-01

    In this paper, we demonstrated a simple approach for preparing α-Fe2O3 hollow spheres by mixing ferric nitrate aqueous and glucose in 180 °C. The glucose was found to act as a soft template in the process of α-Fe2O3 hollow spheres formation. Ag/α-Fe2O3 hollow nanocomposite was obtained under UV irradiation without additional reducing agents or initiators. Synthesized Ag/α-Fe2O3 hollow composites exhibited remarkable catalytic performance toward H2O2 reduction. The electrocatalytic activity mechanism of Ag/α-Fe2O3/GCE were discussed toward the reduction of H2O2 in this paper.

  20. Facile one-pot preparation and functionalization of luminescent chitosan-poly(methacrylic acid) microspheres based on polymer monomer pairs

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Wang, Changchun; Mao, Weiyong; Yang, Wuli; Liu, Changjia; Chen, Jiyao

    2008-08-01

    In this paper, we present a facile and robust approach to synthesize multifunctional organic/inorganic composite microspheres with chitosan-poly(methacrylic acid) (CS-PMAA) shells and cadmium tellurium/iron oxide nanoparticle cores. Due to the strong electrostatic interaction between the negatively charged nanoparticles and the protonated CS polymers, the CS/nanoparticle complexes were utilized as templates for the subsequent polymerization of methacrylic acid. The resulting composite microspheres with luminescence and magnetic properties have regular morphologies and narrow size distributions. In contrast to previous reports, this route was based on a one-pot strategy without the aid of surfactants, organic solvent, or polymerizable ligands in aqueous solution. The encapsulated CdTe semiconductor nanocrystals inside the microspheres exhibited strong and stable photoluminescence properties in the pH range 5.0-11.0. When the pH was adjusted below 4, the photoluminescence decreased sharply and even quenched completely. However, the weakened fluorescence emission could be recovered to some degree upon an increase of pH above 5. Additionally, when both Fe3O4 and CdTe nanoparticles were encapsulated within CS-PMAA microspheres, the magnetic content of the microspheres could be efficiently controlled by tuning the feeding molar ratio of MAA monomers and glucosamine units of CS. From the preliminary attempts, it was found that the multifunctional microspheres as imaging agents could improve the rate and extent of cellular uptake under short-term exposure to an applied magnetic field, and so exhibit a great potential as bioactive molecule carriers.

  1. Preparation of hollow microsphere@onion-like solid nanosphere MoS2 coated by a carbon shell as a stable anode for optimized lithium storage

    NASA Astrophysics Data System (ADS)

    Guo, Bangjun; Yu, Ke; Song, Haili; Li, Honglin; Tan, Yinghua; Fu, Hao; Li, Chao; Lei, Xiang; Zhu, Ziqiang

    2015-12-01

    A one-step hydrothermal method was successfully used to fabricate hollow microsphere@onion-like solid nanosphere MoS2. Then the as-prepared sS-MoS2 was decorated with a carbon shell using dopamine as a carbon source by a facile route, resulting in hollow microsphere@onion-like solid nanosphere MoS2 decorated with carbon shell (sS-MoS2@C). A synergistic effect was observed for the two-component material, leading to new electrochemical processes for lithium storage, with improved electroconductivity and structural soundness, triggering an ascending capacity upon cycling. The as-prepared sS-MoS2@C exhibits optimized electrochemical behaviour with high specific capacity (1107 mA h g-1 at 100 mA g-1), superior high-rate capability (805 mA h g-1 at 5000 mA g-1) and good cycling stability (91.5% of capacity retained after 100 cycles), suggesting its potential application in high-energy lithium-ion batteries.A one-step hydrothermal method was successfully used to fabricate hollow microsphere@onion-like solid nanosphere MoS2. Then the as-prepared sS-MoS2 was decorated with a carbon shell using dopamine as a carbon source by a facile route, resulting in hollow microsphere@onion-like solid nanosphere MoS2 decorated with carbon shell (sS-MoS2@C). A synergistic effect was observed for the two-component material, leading to new electrochemical processes for lithium storage, with improved electroconductivity and structural soundness, triggering an ascending capacity upon cycling. The as-prepared sS-MoS2@C exhibits optimized electrochemical behaviour with high specific capacity (1107 mA h g-1 at 100 mA g-1), superior high-rate capability (805 mA h g-1 at 5000 mA g-1) and good cycling stability (91.5% of capacity retained after 100 cycles), suggesting its potential application in high-energy lithium-ion batteries. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05595d

  2. Preparation of High-Payload, Prolonged-Release Biodegradable Poly(lactic-co-glycolic acid)-Based Tacrolimus Microspheres Using the Single-Jet Electrospray Method.

    PubMed

    Pathak, Shiva; Gupta, Biki; Poudel, Bijay Kumar; Tran, Tuan Hiep; Regmi, Shobha; Pham, Tung Thanh; Thapa, Raj Kumar; Kim, Min-Soo; Yong, Chul Soon; Kim, Jong Oh; Jeong, Jee-Heon

    2016-01-01

    Tacrolimus-loaded poly(lactic-co-glycolic acid) microspheres (TAC-PLGA-M) can be administered for the long-term survival of transplanted organs due to their immunosuppressive activity. The purpose of our study was to optimize the parameters of the electrospray method, and to prepare TAC-PLGA-M with a high payload and desirable release properties. TAC-PLGA-M were prepared using the electrospray method. In vitro characterization and evaluation were performed using scanning electron microscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy. Drug-loading efficiency was greater than 80% in all formulations with a maximum loading capacity of 16.81±0.37%. XRD and DSC studies suggested that the drug was incorporated in an amorphous state or was molecularly dispersed in the microspheres. The in vitro release study showed prolonged release patterns. TAC-PLGA-M with enhanced drug loading and prolonged-release patterns were successfully prepared using the electrospray method. PMID:26833445

  3. The study of release of chlorhexidine from preparations with modified thermosensitive poly-N-isopropylacrylamide microspheres.

    PubMed

    Musial, Witold; Voncina, Bojana; Pluta, Janusz; Kokol, Vanja

    2012-01-01

    The aim of this study was to investigate and compare the release rates of chlorhexidine (CX) base entrapped in the polymeric beads of modified poly-N-isopropylacrylamides (pNIPAMs) at temperatures below and over the volume phase transition temperature (VPTT) of synthesized polymers: pNIPAM-A with terminal anionic groups resulting from potassium persulfate initiator, pNIPAM-B with cationic amidine terminal groups, and pNIPAM-C comprising anionic terminals, but with increased hydrophobicity maintained by the N-tert-butyl functional groups. The preparations, assessed in vitro below the VPTT, release an initial burst of CX at different time periods between 120 and 240 min, followed by a period of 24 h, when the rate of release remains approximately constant, approaching the zero-order kinetics; the release rates for the polymers beads are as follows: pNIPAM-C>pNIPAM-B>pNIPAM-A. The pattern of release rates at temperature over the VPTT is as follows: pNIPAM-C>pNIPAM-A>pNIPAM-B. In the presence of pNIPAM-C, the duration between the start of the release and the attained minimal inhibitory concentration (MIC) for most of the microbes, in conditions over the VPTT, increased from 60 to 90 min. The release prolongation could be ascribed to some interactions between the practically insoluble CX particle and the hydrophobic functional groups of the polymer. PMID:22629123

  4. Alginate composites for bone tissue engineering: a review.

    PubMed

    Venkatesan, Jayachandran; Bhatnagar, Ira; Manivasagan, Panchanathan; Kang, Kyong-Hwa; Kim, Se-Kwon

    2015-01-01

    Bone is a complex and hierarchical tissue consisting of nano hydroxyapatite and collagen as major portion. Several attempts have been made to prepare the artificial bone so as to replace the autograft and allograft treatment. Tissue engineering is a promising approach to solve the several issues and is also useful in the construction of artificial bone with materials including polymer, ceramics, metals, cells and growth factors. Composites consisting of polymer-ceramics, best mimic the natural functions of bone. Alginate, an anionic polymer owing enormous biomedical applications, is gaining importance particularly in bone tissue engineering due to its biocompatibility and gel forming properties. Several composites such as alginate-polymer (PLGA, PEG and chitosan), alginate-protein (collagen and gelatin), alginate-ceramic, alginate-bioglass, alginate-biosilica, alginate-bone morphogenetic protein-2 and RGD peptides composite have been investigated till date. These alginate composites show enhanced biochemical significance in terms of porosity, mechanical strength, cell adhesion, biocompatibility, cell proliferation, alkaline phosphatase increase, excellent mineralization and osteogenic differentiation. Hence, alginate based composite biomaterials will be promising for bone tissue regeneration. This review will provide a broad overview of alginate preparation and its applications towards bone tissue engineering.

  5. Evaluation of sodium alginate as drug release modifier in matrix tablets.

    PubMed

    Liew, Celine Valeria; Chan, Lai Wah; Ching, Ai Ling; Heng, Paul Wan Sia

    2006-02-17

    Alginates are useful natural polymers suitable for use in the design of pharmaceutical dosage forms. However, the effects of particle size, viscosity and chemical composition of alginates on drug release from alginate matrix tablets are not clearly understood. Hence, 17 grades of sodium alginate with different particle size distributions, viscosities and chemical compositions were used to prepare matrix tablets at various concentrations to screen the factors influencing drug release from such matrices. Particle size was found to have an influence on drug release from these matrices. Sodium alginate was subsequently classified into several size fractions and also cryogenically milled to produce smaller particle size samples. Cryogenic milling could be successfully applied to pulverize coarse alginate particles without changing the quality through degradation or segregation. This study showed the significance of each alginate property in modulating drug release: particle size is important in initial alginic acid gel barrier formation as it affected the extent of burst release; higher alginate viscosity slowed down drug release rate in the buffer phase but enhanced release rate in the acid phase; high M-alginate might be more advantageous than high-G-alginate in sustaining drug release; and, the effect of increasing alginate concentration was greater with larger alginate particles. This can serve as a framework for formulators working with alginates. Furthermore, the results showed that sodium alginate matrices can sustain drug release for at least 8 h, even for a highly water-soluble drug in the presence of a water-soluble excipient. PMID:16364576

  6. Freeze-thaw induced gelation of alginates.

    PubMed

    Zhao, Ying; Shen, Wei; Chen, Zhigang; Wu, Tao

    2016-09-01

    Adding divalent ions or lowering pH below the pKa values of alginate monomers are common ways in preparing alginate gels. Herein a new way of preparing alginate gels using freeze-thaw technique is described. Solvent crystallization during freezing drove the polymers to associate into certain structures that became the junction zones of hydrogels after thawing. It enabled the preparation of alginate gels at pH 4.0 and 3.5, two pH at which the gel could not be formed previously. At pH 3.0 where alginate gel could be formed initially, applying freeze-thaw treatment increased the gel storage modulus almost 100 times. The formation of hydrogels and the resulting gel properties, such as dynamic moduli and gel syneresis were influenced by the pH values, number of freeze-thaw cycles, alginate concentrations, and ionic strengths. The obtained hydrogels were soft and demonstrated a melting behavior upon storage, which may find novel applications in the biomedical industry.

  7. Optimization of preparation method for ketoprofen-loaded microspheres consisting polymeric blends using simplex lattice mixture design.

    PubMed

    Das, Sanjoy Kumar; Khanam, Jasmina; Nanda, Arunabha

    2016-12-01

    In the present investigation, simplex lattice mixture design was applied for formulation development and optimization of a controlled release dosage form of ketoprofen microspheres consisting polymers like ethylcellulose and Eudragit(®)RL 100; when those were formed by oil-in-oil emulsion solvent evaporation method. The investigation was carried out to observe the effects of polymer amount, stirring speed and emulsifier concentration (% w/w) on percentage yield, average particle size, drug entrapment efficiency and in vitro drug release in 8h from the microspheres. Analysis of variance (ANOVA) was used to estimate the significance of the models. Based on the desirability function approach numerical optimization was carried out. Optimized formulation (KTF-O) showed close match between actual and predicted responses with desirability factor 0.811. No adverse reaction between drug and polymers were observed on the basis of Fourier transform infrared (FTIR) spectroscopy and Differential scanning calorimetric (DSC) analysis. Scanning electron microscopy (SEM) was carried out to show discreteness of microspheres (149.2±1.25μm) and their surface conditions during pre and post dissolution operations. The drug release pattern from KTF-O was best explained by Korsmeyer-Peppas and Higuchi models. The batch of optimized microspheres were found with maximum entrapment (~90%), minimum loss (~10%) and prolonged drug release for 8h (91.25%) which may be considered as favourable criteria of controlled release dosage form.

  8. Optimization of preparation method for ketoprofen-loaded microspheres consisting polymeric blends using simplex lattice mixture design.

    PubMed

    Das, Sanjoy Kumar; Khanam, Jasmina; Nanda, Arunabha

    2016-12-01

    In the present investigation, simplex lattice mixture design was applied for formulation development and optimization of a controlled release dosage form of ketoprofen microspheres consisting polymers like ethylcellulose and Eudragit(®)RL 100; when those were formed by oil-in-oil emulsion solvent evaporation method. The investigation was carried out to observe the effects of polymer amount, stirring speed and emulsifier concentration (% w/w) on percentage yield, average particle size, drug entrapment efficiency and in vitro drug release in 8h from the microspheres. Analysis of variance (ANOVA) was used to estimate the significance of the models. Based on the desirability function approach numerical optimization was carried out. Optimized formulation (KTF-O) showed close match between actual and predicted responses with desirability factor 0.811. No adverse reaction between drug and polymers were observed on the basis of Fourier transform infrared (FTIR) spectroscopy and Differential scanning calorimetric (DSC) analysis. Scanning electron microscopy (SEM) was carried out to show discreteness of microspheres (149.2±1.25μm) and their surface conditions during pre and post dissolution operations. The drug release pattern from KTF-O was best explained by Korsmeyer-Peppas and Higuchi models. The batch of optimized microspheres were found with maximum entrapment (~90%), minimum loss (~10%) and prolonged drug release for 8h (91.25%) which may be considered as favourable criteria of controlled release dosage form. PMID:27612752

  9. microsphere assemblies

    NASA Astrophysics Data System (ADS)

    Peña-Flores, Jesús I.; Palomec-Garfias, Abraham F.; Márquez-Beltrán, César; Sánchez-Mora, Enrique; Gómez-Barojas, Estela; Pérez-Rodríguez, Felipe

    2014-09-01

    The effect of Fe ion concentration on the morphological, structural, and optical properties of TiO2 films supported on silica (SiO2) opals has been studied. TiO2:Fe2O3 films were prepared by the sol-gel method in combination with a vertical dip coating procedure; precursor solutions of Ti and Fe were deposited on a monolayer of SiO2 opals previously deposited on a glass substrate by the same procedure. After the dip coating process has been carried out, the samples were thermally treated to obtain the TiO2:Fe2O3/SiO2 composites at the Fe ion concentrations of 1, 3, and 5 wt%. Scanning electron microscopy (SEM) micrographs show the formation of colloidal silica microspheres of about 50 nm diameter autoensembled in a hexagonal close-packed fashion. Although the X-ray diffractograms show no significant effect of Fe ion concentration on the crystal structure of TiO2, the μ-Raman and reflectance spectra do show that the intensity of a phonon vibration mode and the energy bandgap of TiO2 decrease as the Fe+3 ion concentration increases.

  10. Preparation of ellagic acid molecularly imprinted polymeric microspheres based on distillation-precipitation polymerization for the efficient purification of a crude extract.

    PubMed

    Zhang, Hua; Zhao, Shangge; Zhang, Lu; Han, Bo; Yao, Xincheng; Chen, Wen; Hu, Yanli

    2016-08-01

    Molecularly imprinted polymeric microspheres with a high recognition ability toward the template molecule, ellagic acid, were synthesized based on distillation-precipitation polymerization. The as-obtained polymers were characterized by scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. Static, dynamic, and selective binding tests were adopted to study the binding properties and the molecular recognition ability of the prepared polymers for ellagic acid. The results indicated that the maximum static adsorption capacity of the prepared polymers toward ellagic acid was 37.07 mg/g and the adsorption equilibrium time was about 100 min when the concentration of ellagic acid was 40 mg/mL. Molecularly imprinted polymeric microspheres were also highly selective toward ellagic acid compared with its analogue quercetin. It was found that the content of ellagic acid in the pomegranate peel extract was enhanced from 23 to 86% after such molecularly imprinted solid-phase extraction process. This work provides an efficient way for effective separation and enrichment of ellagic acid from complex matrix, which is especially valuable in industrial production. PMID:27311588

  11. Preparation of ellagic acid molecularly imprinted polymeric microspheres based on distillation-precipitation polymerization for the efficient purification of a crude extract.

    PubMed

    Zhang, Hua; Zhao, Shangge; Zhang, Lu; Han, Bo; Yao, Xincheng; Chen, Wen; Hu, Yanli

    2016-08-01

    Molecularly imprinted polymeric microspheres with a high recognition ability toward the template molecule, ellagic acid, were synthesized based on distillation-precipitation polymerization. The as-obtained polymers were characterized by scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. Static, dynamic, and selective binding tests were adopted to study the binding properties and the molecular recognition ability of the prepared polymers for ellagic acid. The results indicated that the maximum static adsorption capacity of the prepared polymers toward ellagic acid was 37.07 mg/g and the adsorption equilibrium time was about 100 min when the concentration of ellagic acid was 40 mg/mL. Molecularly imprinted polymeric microspheres were also highly selective toward ellagic acid compared with its analogue quercetin. It was found that the content of ellagic acid in the pomegranate peel extract was enhanced from 23 to 86% after such molecularly imprinted solid-phase extraction process. This work provides an efficient way for effective separation and enrichment of ellagic acid from complex matrix, which is especially valuable in industrial production.

  12. Preparation of hollow microsphere@onion-like solid nanosphere MoS2 coated by a carbon shell as a stable anode for optimized lithium storage.

    PubMed

    Guo, Bangjun; Yu, Ke; Song, Haili; Li, Honglin; Tan, Yinghua; Fu, Hao; Li, Chao; Lei, Xiang; Zhu, Ziqiang

    2016-01-01

    A one-step hydrothermal method was successfully used to fabricate hollow microsphere@onion-like solid nanosphere MoS2. Then the as-prepared sS-MoS2 was decorated with a carbon shell using dopamine as a carbon source by a facile route, resulting in hollow microsphere@onion-like solid nanosphere MoS2 decorated with carbon shell (sS-MoS2@C). A synergistic effect was observed for the two-component material, leading to new electrochemical processes for lithium storage, with improved electroconductivity and structural soundness, triggering an ascending capacity upon cycling. The as-prepared sS-MoS2@C exhibits optimized electrochemical behaviour with high specific capacity (1107 mA h g(-1) at 100 mA g(-1)), superior high-rate capability (805 mA h g(-1) at 5000 mA g(-1)) and good cycling stability (91.5% of capacity retained after 100 cycles), suggesting its potential application in high-energy lithium-ion batteries. PMID:26620104

  13. In situ one-pot preparation of superparamagnetic hydrophilic porous microspheres for covalently immobilizing penicillin G acylase to synthesize amoxicillin

    NASA Astrophysics Data System (ADS)

    Xue, Ping; Gu, Yaohua; Su, Weiguang; Shuai, Huihui; Wang, Julan

    2016-01-01

    Magnetic hydrophilic porous microspheres were successfully one-pot synthesized for the first time via in situ inverse suspension polymerization of glycidyl methacrylate, N,N‧-methylene bisacrylamide and 2-hydroxyethyl methacrylate in the presence of Fe3+ and Fe2+ dispersed in formamide, which were denoted as magnetic Fe3O4-GMH microspheres. The morphology and properties of magnetic Fe3O4-GMH microspheres were characterized by SEM, VSM, XRD, FTIR, and so on. The formamide content had an important influence on the morphology of Fe3O4-GMH, and nearly perfectly spherical Fe3O4-GMH particles were formed when the amount of formamide was 15 ml. The diameters of the microspheres were in the range of 100-200 μm and Fe3O4-GMH exhibited superparamagnetic behavior with the saturation magnetization of 5.44 emu/g. The specific surface area of microspheres was 138.7 m2/g, the average pore diameter and pore volume were 15.1 nm and 0.60 cm3/g, respectively. The content of oxirane groups on Fe3O4-GMH was 0.40 mmol/g. After penicillin G acylase (PGA) was covalently immobilized on Fe3O4-GMH microspheres, the catalytic performance for amoxicillin synthesis by 6-aminopenicillanic acid and D-hydroxyphenylglycine methyl ester was largely improved. As a result, 90.1% amoxicillin yield and 1.18 of the synthesis/hydrolysis (S/H) ratio were achieved on PGA/Fe3O4-GMH with ethylene glycol as solvent, but only 62.6% amoxicillin yield and 0.37 of the S/H ratio were obtained on free PGA under the same reaction conditions. Furthermore, the amoxicillin yield and S/H ratio were still kept at 88.2% and 1.06, respectively after the immobilized PGA was magnetically separated and recycled for 10 times, indicating that PGA/Fe3O4-GMH had a very good reusability.

  14. Preparation and characterization of SiO{sub 2}/TiO{sub 2} composite microspheres with microporous SiO{sub 2} core/mesoporous TiO{sub 2} shell

    SciTech Connect

    Zhao Li; Yu Jiaguo . E-mail: jiaguoyu@yahoo.com; Cheng Bei

    2005-06-15

    SiO{sub 2}/TiO{sub 2} composite microspheres with microporous SiO{sub 2} core/mesoporous TiO{sub 2} shell structures were prepared by hydrolysis of titanium tetrabutylorthotitanate (TTBT) in the presence of microporous silica microspheres using hydroxypropyl cellulose (HPC) as a surface esterification agent and porous template, and then dried and calcined at different temperatures. The as-prepared products were characterized with differential thermal analysis and thermogravimetric (DTA/TG), scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption. The results showed that composite particles were about 1.8{mu}m in diameter, and had a spherical morphology and a narrow size distribution. Uniform mesoporous titania coatings on the surfaces of microporous silica microspheres could be obtained by adjusting the HPC concentration to an optimal concentration of about 3.2mmolL{sup -1}. The anatase and rutile phase in the SiO{sub 2}/TiO{sub 2} composite microspheres began to form at 700 and 900 deg. C, respectively. At 700 deg. C, the specific surface area and pore volume of the SiO{sub 2}/TiO{sub 2} composite microspheres were 552 and 0.652mLg{sup -1}, respectively. However, at 900 deg. C, the specific surface area and pore volume significantly decreased due to the phase transformation from anatase to rutile.

  15. Filling Porous Microspheres With Magnetic Material

    NASA Technical Reports Server (NTRS)

    Chang, Manchium; Colvin, Michael S.

    1990-01-01

    New process produces magnetic microspheres with controllable sizes, compositions, and properties for use in medical diagnostic tests, biological research, and chemical processes. Paramagnetic microspheres also made with process. Porous plastic microspheres prepared by polymerization of monomer in diluent by cross-linking agent. When diluent removed, it leaves tiny pores throughout polymerized spheres. Size and distribution of pores determined by amount and type of diluent and cross-linking agent.

  16. Coacervate microspheres as carriers of recombinant adenoviruses.

    PubMed

    Kalyanasundaram, S; Feinstein, S; Nicholson, J P; Leong, K W; Garver, R I

    1999-01-01

    The therapeutic utility of recombinant adenoviruses (rAds) is limited in part by difficulties in directing the viruses to specific sites and by the requirement for bolus administration, both of which limit the efficiency of target tissue infection. As a first step toward overcoming these limitations, rAds were encapsulated in coacervate microspheres comprised of gelatin and alginate followed by stabilization with calcium ions. Ultrastructural evaluation showed that the microspheres formed in this manner were 0.8-10 microM in diameter, with viruses evenly distributed. The microspheres achieved a sustained release of adenovirus with a nominal loss of bioactivity. The pattern of release and the total amount of virus released was modified by changes in microsphere formulation. Administration of the adenovirus-containing microspheres to human tumor nodules engrafted in mice showed that the viral transgene was transferred to the tumor cells. It is concluded that coacervate microspheres can be used to encapsulate bioactive rAd and release it in a time-dependent manner.

  17. Molecularly imprinted polymer microspheres prepared by Pickering emulsion polymerization for selective solid-phase extraction of eight bisphenols from human urine samples.

    PubMed

    Yang, Jiajia; Li, Yun; Wang, Jincheng; Sun, Xiaoli; Cao, Rong; Sun, Hao; Huang, Chaonan; Chen, Jiping

    2015-05-01

    The bisphenol A (BPA) imprinted polymer microspheres were prepared by simple Pickering emulsion polymerization. Compared to traditional bulk polymerization, both high yields of polymer and good control of particle sizes were achieved. The characterization results of scanning electron microscopy and nitrogen adsorption-desorption measurements showed that the obtained molecularly imprinted polymer microsphere (MIPMS) particles possessed regular spherical shape, narrow diameter distribution (30-60 μm), a specific surface area (S(BET)) of 281.26 m(2) g(-1) and a total pore volume (V(t)) of 0.459 cm(3) g(-1). Good specific adsorption capacity for BPA was obtained in the sorption experiment and good class selectivity for BPA and its seven structural analogs (bisphenol F, bisphenol B, bisphenol E, bisphenol AF, bisphenol S, bisphenol AP and bisphenol Z) was demonstrated by the chromatographic evaluation experiment. The MIPMS as solid-phase extraction (SPE) packing material was then evaluated for extraction and clean-up of these bisphenols (BPs) from human urine samples. An accurate and sensitive analytical method based on the MIPMS-SPE coupled with HPLC-DAD has been successfully established for simultaneous determination of eight BPs from human urine samples with detection limits of 1.2-2.2 ng mL(-1). The recoveries of BPs for urine samples at two spiking levels (100 and 500 ng mL(-1) for each BP) were in the range of 81.3-106.7% with RSD values below 8.3%.

  18. Preparation and characterization of gatifloxacin-loaded sodium alginate hydrogel membranes supplemented with hydroxypropyl methylcellulose and hydroxypropyl cellulose polymers for wound dressing

    PubMed Central

    Prabu, Durai; Majdalawieh, Amin F.; Abu-Yousef, Imad A.; Inbasekaran, Kadambari; Balasubramaniam, Tharani; Nallaperumal, Narayanan; Gunasekar, Conjeevaram J.

    2016-01-01

    Introduction: The aim of this study is to evaluate gatifloxacin-loaded sodium alginate hydrogel membranes, supplemented with glycerol (a plasticizer), glutaraldehyde (a cross-linking agent), and hydroxypropyl methylcellulose (HPMC) or hydroxypropyl cellulose (HPC) polymers, as potential wound dressing materials based on their physicochemical properties and the sustain-release phenomenon. Materials and Methods: The physicochemical properties of the prepared hydrogel membranes were evaluated by several methods including Fourier transform infrared and differential scanning calorimetry. Different techniques were used to assess the swelling behavior, tensile strength and elongation, % moisture absorption, % moisture loss, water vapor transmission rate (WVTR), and microbial penetration for the hydrogel membranes. In vitro gatifloxacin release from the hydrogel membranes was examined using the United States Pharmacopeia XXIII dissolution apparatus. Four kinetics models (zero-order, first-order, Higuchi equation, and Korsmeyer-Peppas equation) were applied to study drug release kinetics. Results: The addition of glycerol, glutaraldehyde, HPMC, and HPC polymers resulted in a considerable increase in the tensile strength and flexibility/elasticity of the hydrogel membranes. WVTR results suggest that hydrated hydrogel membranes can facilitate water vapor transfer. None of the hydrogel membranes supported microbial growth. HPMC-treated and HPC-treated hydrogel membranes allow slow, but sustained, release of gatifloxacin for 48 h. Drug release kinetics revealed that both diffusion and dissolution play an important role in gatifloxacin release. Conclusions: Given their physicochemical properties and gatifloxacin release pattern, HPMC-treated and HPC-treated hydrogel membranes exhibit effective and sustained drug release. Furthermore, HPMC-treated and HPC-treated hydrogel membranes possess physiochemical properties that make them effective and safe wound dressing materials. PMID

  19. Immobilization of Candida krusei cells producing phytase in alginate gel beads: an application of the preparation of myo-inositol phosphates.

    PubMed

    Quan, C S; Fan, S D; Ohta, Y

    2003-07-01

    Cells of Candida krusei capable of producing phytase were immobilized in Ca-alginate gel beads and used for the preparation of myo-inositol phosphates. The immobilization yield was increased about 5-fold after the beads were treated for 96 h at pH 4.0, 4 degrees C. The increased yield was retained, even after 1 month, when the cells were kept at this temperature and pH. No shift in the pH optima of phytase of the immobilized cells was observed, compared with that of free cells. However, the optimum temperature for the enzyme of the immobilized cells was 55 degrees C, which was 15 degrees C higher than that of free cells. The degradation characteristics of the phytate in immobilized cells packed in a glass column (i.d. 1.2 cm, length 20 cm) were investigated. The variation in the composition of the products results from a change in the flow rate of phytate solution (5 mM). At a flow rate of 1.30 ml/min, a mixture of myo-inositol-2-monophosphate, myo-inositol-1,2,5-triphosphate and myo-inositol-1,2,5,6-tetrakisphosphate was produced, in which the latter two were physiologically active. Also, it was found by NMR analysis that the enzyme of this strain produced only one isomer of each of the inositol phosphates, with the exception of myo-inositol pentakisphosphate. Therefore, the pure isomers were easily isolated using ion-exchange chromatography.

  20. Synthesis of hierarchically porous SnO(2) microspheres and performance evaluation as li-ion battery anode by using different binders.

    PubMed

    Gurunathan, P; Ette, Pedda Masthanaiah; Ramesha, K

    2014-10-01

    We have prepared nanoporous SnO2 hollow microspheres (HMS) by employing the resorcinol-formaldehyde (RF) gel method. Further, we have investigated the electrochemical property of SnO2-HMS as negative electrode material in rechargeable Li-ion batteries by employing three different binders-polyvinylidene difluoride (PVDF), Na salt of carboxy methyl cellulose (Na-CMC), and Na-alginate. At 1C rate, SnO2 electrode with Na-alginate binder exhibits discharge capacity of 800 mA h g(-1), higher than when Na-CMC (605 mA h g(-1)) and PVDF (571 mA h g(-1)) are used as binders. After 50 cycles, observed discharge capacities were 725 mA h g(-1), 495 mA h g(-1), and 47 mA h g(-1), respectively, for electrodes with Na-alginate, Na-CMC, and PVDF binders that amounts to a capacity retention of 92%, 82%, and 8% . Electrochemical impedance spectroscopy (EIS) results confirm that the SnO2 electrode with Na-alginate as binder had much lower charge transfer resistance than the electrode with Na-CMC and PVDF binders. The superior electrochemical property of the SnO2 electrode containing Na-alginate can be attributed to the cumulative effects arising from integration of nanoarchitecture with a suitable binder; the hierarchical porous structure would accommodate large volume changes during the Li interaclation-deintercalation process, and the Na-alginate binder provides a stronger adhesion betweeen electrode film and current collector. PMID:25203752

  1. Alginate cryogel based glucose biosensor

    NASA Astrophysics Data System (ADS)

    Fatoni, Amin; Windy Dwiasi, Dian; Hermawan, Dadan

    2016-02-01

    Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under sub-zero temperature. This porous structure was growth in a 100 μL micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μm. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R2 of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.

  2. 21 CFR 184.1133 - Ammonium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... prepared by the neutralization of purified alginic acid with appropriate pH control agents. (b) The ingredient meets the specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 18, which is incorporated... food Maximum level of use in food (as served) (percent) Functional use Confections, frostings, §...

  3. Microspheres prepared with different co-polymers of poly(lactic-glycolic acid) (PLGA) or with chitosan cause distinct effects on macrophages.

    PubMed

    Bitencourt, Claudia da Silva; Silva, Letícia Bueno da; Pereira, Priscilla Aparecida Tartari; Gelfuso, Guilherme Martins; Faccioli, Lúcia Helena

    2015-12-01

    Microencapsulation of bioactive molecules for modulating the immune response during infectious or inflammatory events is a promising approach, since microspheres (MS) protect these labile biomolecules against fast degradation, prolong the delivery over longer periods of time and, in many situations, target their delivery to site of action, avoiding toxic side effects. Little is known, however, about the influence of different polymers used to prepare MS on macrophages. This paper aims to address this issue by evaluating in vitro cytotoxicity, phagocytosis profile and cytokines release from alveolar macrophages (J-774.1) treated with MS prepared with chitosan, and four different co-polymers of PLGA [poly (lactic-co-glycolic acid)]. The five MS prepared presented similar diameter and zeta potential each other. Chitosan-MS showed to be cytotoxic to J-774.1 cells, in contrast to PLGA-MS, which were all innocuous to this cell linage. PLGA 5000-MS was more efficiently phagocytized by macrophages compared to the other MS tested. PLGA 5000-MS and 5002-MS induced significant production of TNF-α, while 5000-MS, 5004-MS and 7502-MS decreased spontaneous IL-6 release. Nevertheless, only PLGA 5002-MS induced significant NFkB/SEAP activation. These findings together show that MS prepared with distinct PLGA co-polymers are differently recognized by macrophages, depending on proportion of lactic and glycolic acid in polymeric chain, and on molecular weight of the co-polymer used. Selection of the most adequate polymer to prepare a microparticulate drug delivery system to modulate immunologic system may take into account, therefore, which kind of immunomodulatory response is more adequate for the required treatment.

  4. The efficacy of oral vaccination of mice with alginate encapsulated outer membrane proteins of Pasteurella haemolytica and One-Shot.

    PubMed

    Kidane, A; Guimond, P; Ju, T R; Sanchez, M; Gibson, J; Bowersock, T L

    2001-03-21

    The goal of this study was to examine the efficacy of oral delivery of alginate encapsulated outer membrane proteins (OMP) of Pasteurella haemolytica and a commercial One-Shot vaccine in inducing protection in mice against lethal challenge with virulent P. haemolytica. We examined two alginate microsphere formulations and compared them with oral unencapsulated and subcutaneously administered vaccines. Alginate microspheres were made by the emulsion-cross-linking technique. They were examined for size, hydrophobicity, and antigen loading efficiency before they were used in the study. Mice were vaccinated by administering 200 microg of antigens in 200 microl of microspheres suspension orally or subcutaneously. One group of mice received blank microspheres and a second group was given unencapsulated antigen orally. A third and a fourth group received different formulations of alginate encapsulated antigens by oral administration. Three groups received subcutaneous inoculations (alginate encapsulated, non-adjuvanted and unencapsulated antigens, and adjuvanted One-Shot), and one group received water (naïve group). Mice were vaccinated orally for four consecutive days and challenged with P. haemolytica 5 weeks after the first vaccination. Weekly serum and feces samples were assayed for antigen specific antibodies. The number of dead mice in each group 4 days post challenge was used to compare the efficacy of the various vaccination groups. The mean volume sizes of blank alginate microsphere formulations A, and AA were 15.9, 16 and 9.2 microm, respectively. Hydrophobicity of the microspheres was evaluated by measuring contact angle on a glass slide coated with the microspheres. The contact angles on A and AA were 37.8 and 74.3 degrees, respectively. Antigen concentration in a 1:1 w/w suspension of microspheres in water was 0.9 mg/ml. Rate of death for the blank group was 42.8% whereas for groups vaccinated with antigens encapsulated in A and AA the death rates were 40

  5. Glass microspheres

    SciTech Connect

    Day, D.E.; Ehrhardt, G.J.

    1988-12-06

    This patent describes a glass microsphere having a diameter of about 54 micrometers or less and adapted for radiation therapy of a mammal. The glass consists of essentially an yttrium oxide-aluminosilicate glass composition lying substantially within a quadrilateral region of the ternary composition diagram of the yttria-alumina-silica system, the quadrilateral region being defined by its four corners having the following combination of weight proportions of the components: 20% silica, 10% alumina, 70% yttria; 70% silica, 10% alumina, 20% yttria; 70% silica, 20% alumina, 10% yttria; and 20% silica, 45% alumina, 35% yttria, the glass having a chemical durability such that subsequent to irradiation and administration of the microsphere to the mammal, the mircosphere will not release a significant amount of yttrium-90 into the mammal's system.

  6. Localized drugs delivery hydroxyapatite microspheres for osteoporosis therapy

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Ko, I. H.; Jeon, S.-H.; Chae, J. H.; Lee, E. J.; Chang, J. H.

    2011-10-01

    This study describes the preparation of hydroxyapatite microspheres for local drugs delivery. The formation of the hydroxyapatite microspheres was initiated by enzymatic decomposition of urea and accomplished by emulsification process (water-in-oil). The microspheres obtained were sintered at 500°C. Scanning electron microscope (SEM) indicated that the microspheres have various porous with random size, which maximizes the surface area. Cytotoxicity was not observed after sintering. Osteoporosis drugs, alendronate and BMP-2, were loaded into HAp microspheres and the releases of both molecules showed sustained releasing profiles.

  7. Facile preparation of well-dispersed CeO2-ZnO composite hollow microspheres with enhanced catalytic activity for CO oxidation.

    PubMed

    Xie, Qingshui; Zhao, Yue; Guo, Huizhang; Lu, Aolin; Zhang, Xiangxin; Wang, Laisen; Chen, Ming-Shu; Peng, Dong-Liang

    2014-01-01

    In this article, well-dispersed CeO2-ZnO composite hollow microspheres have been fabricated through a simple chemical reaction followed by annealing treatment. Amorphous zinc-cerium citrate hollow microspheres were first synthesized by dispersing zinc citrate hollow microspheres into cerium nitrate solution and then aging at room temperature for 1 h. By calcining the as-produced zinc-cerium citrate hollow microspheres at 500 °C for 2 h, CeO2-ZnO composite hollow microspheres with homogeneous composition distribution could be harvested for the first time. The resulting CeO2-ZnO composite hollow microspheres exhibit enhanced activity for CO oxidation compared with CeO2 and ZnO, which is due to well-dispersed small CeO2 particles on the surface of ZnO hollow microspheres and strong interaction between CeO2 and ZnO. Moreover, when Au nanoparticles are deposited on the surface of the CeO2-ZnO composite hollow microspheres, the full CO conversion temperature of the as-produced 1.0 wt % Au-CeO2-ZnO composites reduces from 300 to 60 °C in comparison with CeO2-ZnO composites. The significantly improved catalytic activity may be ascribed to the strong synergistic interplay between Au nanoparticles and CeO2-ZnO composites.

  8. Preparation and evaluation of biocompatible long-term radiopaque microspheres based on polyvinyl alcohol and lipiodol for embolization.

    PubMed

    Meng, Wen-Jing; Lu, Xiao-Jing; Wang, Huan; Fan, Tian-Yuan; Cui, Dai-Chao; Zhang, Shui-Sheng; Zheng, Zhuo-Zhao; Guan, Hai-Tao; Song, Li; Zou, Ying-Hua

    2015-08-01

    The aim of this work was to develop long-term radiopaque microspheres (LRMs) by entrapping lipiodol in biocompatible polyvinyl alcohol with multiple emulsions chemical crosslinking method. The high content of lipiodol (0.366 g/mL) was hardly released from LRMs in vitro and the radiopacity could maintain at least 3 months after subcutaneous injection in mice without weakening. A series of tests was performed to evaluate the feasibility of LRMs for embolization. LRMs were proved to be smooth, spherical, and well dispersed with diameter range of 100-1200 μm. Young's modulus of LRMs was 55.39 ± 9.10 kPa and LRMs could be easily delivered through catheter without aggregating or clogging. No toxicity of LRMs was found to mouse L929 fibroblasts cells and only moderate inflammatory in surrounding tissue of mice was found after subcutaneous injection of LRMs. After LRMs were embolized in renal artery of a rabbit, the distribution and radiopacity of LRMs in vivo were easily detectable by X-ray fluoroscopy and computed tomography (CT) imaging, respectively. More accurate distribution of LRMs in embolized kidney and vessels could be detected by high-revolution visualization of micro-CT ex vivo. In conclusion, the LRMs were proved to be biocompatible and provide long-term radiopacity with good physical and mechanical properties for embolization.

  9. Preparation and microwave absorbing property of Ni-Zn ferrite-coated hollow glass microspheres with polythiophene

    NASA Astrophysics Data System (ADS)

    Li, Lindong; Chen, Xingliang; Qi, Shuhua

    2016-11-01

    The composite of hollow glass microspheres (HMG) coated by Ni0.7Zn0.3Fe2O4 particles was fabricated via sol-gel method, and then the ternary composite (HMG/Ni0.7Zn0.3Fe2O4/PT) was synthesized by in situ polymerization. The electrical property, magnetic performance and reflection loss of the composites were measured, and the results suggest that the conductivity and the saturation magnetization (Ms) of HMG/Ni0.7Zn0.3Fe2O4/PT reach 6.87×10-5 S/cm and 11.627 emu/g, respectively. The ternary composite has good microwave absorbing properties (Rmin=-13.79 dB at 10.51 GHz) and the bandwidth less than -10 dB can reach 2.6 GHz (from 9.4 to 12.0 GHz) in X band (8.2-12.4 GHz). The morphology and chemical structure of the samples were measured through scanning electron microscopy (SEM), X-Ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). This paper also analyzes the relationship between the reflection loss of the absorber and its thickness.

  10. Biotechnologically produced microbial alginate dressings show enhanced gel forming capacity compared to commercial alginate dressings of marine origin.

    PubMed

    Hoefer, Dirk; Schnepf, Julia K; Hammer, Timo R; Fischer, Melissa; Marquardt, Christoph

    2015-04-01

    Marine alginate fibre dressings are well established in wound management. Alginate fibres can absorb plenty of wound exudate due to their gel forming abilities and ion exchange. Alginates from bacteria have never been studied for medical applications so far, although the microbial polymer raises expectations for improved gelling capacity due to its unique O-acetylation. To prove the gelling capacity of bacterial alginate, we extracted the co-polymer from fermentation of the soil bacterium Azotobacter vinelandii ATCC 9046, cultivated on crude glycerol as an alternative carbon source. Bacterial alginate was isolated in high purity and extruded by a wet spinning method. Fibre structure and properties were characterised by infrared spectroscopy, NMR, GPC, scanning electron microscopy and tensile testing. The fibres could be processed into biocompatible needle web dressings, which showed more than twice the gel formation in saline compared to commercial dressings made of marine alginates. Gelled dressings of bacterial alginate formed stable hydrogels of sufficient shape and strength for wound healing applications. This work suggests that the increased gel formation of bacterial alginate from A. vinelandii may be optimal for the preparation of novel wound dressings.

  11. Bioacetylation of Seaweed Alginate

    PubMed Central

    Lee, J. W.; Day, D. F.

    1995-01-01

    Seaweed alginate was acetylated by intact, resting cells of Pseudomonas syringae ATCC 19304. Maximum acetylation of this polymer occurred at a pH of 6.0 and a temperature of 25 deg C. Aeration and gluconic acid were required for an optimal reaction. A reactor which contained carbon-immobilized cells was constructed to continuously acetylate alginate. The maximal yield of acetylation was about 90%, and the half-life of this system was 6.5 days. PMID:16534934

  12. Microstructured microspheres of hydroxyapatite bioceramic.

    PubMed

    Sunny, M C; Ramesh, P; Varma, H K

    2002-07-01

    Hydroxyapatite (HAP) particles having spherical geometry and 125-1000 microm in size range were prepared using a solid-in-water-in-oil (S/W/O) emulsion, cross-linking technique. An aqueous solution of chitosan containing different loading of HAP was dispersed as droplet in liquid paraffin using a stabilizing agent. Cross-linking of chitosan was induced by adding appropriate amount of glutaraldehyde saturated toluene. Chitosan microspheres containing HAP were sintered at 1150 degrees C to obtain pure HAP microspheres. The spheres thus produced were examined by scanning electron microscopy. The percentage yield and size distributions of the spheres were also determined.

  13. Preparation and characterization of immobilized [A336][MTBA] in PVA-alginate gel beads as novel solid-phase extractants for an efficient recovery of Hg (II) from aqueous solutions.

    PubMed

    Zhang, Yun; Kogelnig, Daniel; Morgenbesser, Cornelia; Stojanovic, Anja; Jirsa, Franz; Lichtscheidl-Schultz, Irene; Krachler, Regina; Li, Yanfeng; Keppler, Bernhard K

    2011-11-30

    The coarse PVA-alginate matrix gel beads entrapping the micro-droplets of the ionic liquid tricaprylylmethylammonium 2-(methylthio) benzoate ([A336][MTBA]) as novel solid-phase extractants were prepared for the removal of mercury (II) from aqueous media. The ionic liquid [A336][MTBA] immobilized PVA-alginate beads (PVA/IL) have been characterized by FTIR, SEM and TGA. The influence of the uptake conditions was investigated including aqueous pH, PVA/IL dosage, the content of [A336][MTBA] and initial Hg (II) concentration; maximum Hg (II) ion adsorption capacity obtained was 49.89 (± 0.11)mgg(-1) at pH 5.8 with adsorptive removal of approximately 99.98%. The selectivity of the PVA/IL beads towards Hg (II), Pb (II) and Cu (II) ions tested was Hg>Pb>Cu. The rate kinetic study was found to follow second-order and the applicability of Langmuir, Freundlich and Tempkin adsorption isotherm model were tested as well. The results of the study showed that PVA/IL beads could be efficiently used as novel extractants for the removal of divalent mercury from aqueous solutions under comparatively easy operation conditions.

  14. Hydrophobic modification of sodium alginate and its application in drug controlled release.

    PubMed

    Yao, Bolong; Ni, Caihua; Xiong, Cheng; Zhu, Changping; Huang, Bo

    2010-05-01

    Sodium alginate was hydrophobically modified by coupling of polybutyl methacrylate onto the alginate. The polybutyl methacrylate was previously prepared through polymerization of butyl methacrylate in the presence of 2-amino-ethanethiol as a chain transfer agent. The structure of the product was characterized by Fourier-transformed infrared spectrometry, nuclear magnetic resonance ((1)HNMR) and thermogravimetry. The result of fluorescence analysis showed that the hydrophobicity of the modified alginate was obviously increased. The modified alginate conjugate was used for immobilization of bovine serum albumin in the presence of calcium chloride. In addition, the release behavior of the drug-loaded alginate in deionized water and Tris-HCl buffer solution (pH 7.2) was investigated. It was found that the modified sodium alginate possessed prolonged release behavior compared to unmodified sodium alginate, and it had potential application in controlled release as a drug carrier.

  15. Microradiographic microsphere manipulator

    DOEpatents

    Singleton, R.M.

    A method and apparatus is disclosed for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres.

  16. Microradiographic microsphere manipulator

    DOEpatents

    Singleton, Russell M.

    1980-01-01

    A method and apparatus for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated to relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres.

  17. Preparation with a facile template-free method of uniform-sized mesoporous microspheres of rare earth (La, Ce, Pr, Nd) oxides

    SciTech Connect

    Ji, Pengfei; Xing, Mingyang; Bagwasi, Segomotso; Tian, Baozhu; Chen, Feng; Zhang, Jinlong

    2011-11-15

    Highlights: {yields} Mesoporous microspheres of light rare earth hydroxycarbonates and oxides were fabricated. {yields} The supersaturated urea has important effect on formation of mesoporous microspheres. {yields} The influences of [cation]/[urea] ratio and amount of water on the formation of spherical crystallites were discussed. -- Abstract: Mesoporous microspheres of light rare earth (La, Ce, Pr, Nd) hydroxycarbonates and oxides were successfully fabricated by a facile surfactant free hydrothermal method in supersaturated aqueous urea solution. The techniques of XRD, TEM, SEM, TG/DTA and N{sub 2} adsorption-desorption were employed to investigate the structure and formation process of mesoporous microspheres. It was revealed that supersaturated urea not only serve as a reactant and pH modifier in the reaction system but also guide the oriented assembly of hydroxycarbonate crystallites into microspheres by acting as a structure-directing agent. The microspheres of rare earth oxides could easily be obtained by simple calcination of corresponding hydroxycarbonates precursors without undergoing morphology changes. In addition, the influences of rare earth precursor and urea concentrations on the formation of microspheres were also investigated.

  18. Preparation of grafted microspheres CPVA-g-PSSS and studies on their drug-carrying and colon-specific drug delivery properties.

    PubMed

    Gao, Baojiao; Fang, Li; Men, Jiying; Zhang, Yanyan

    2013-04-01

    Sodium 4-styrene sulfonate (SSS) was graft-polymerized on the surfaces of crosslinked polyvinyl alcohol (CPVA) microspheres in a manner of surface-initiated graft-polymerization by using cerium salt-hydroxyl group redox initiation system, obtaining the grafted microspheres CPVA-g-PSSS. The chemical structure and physicochemical characters of CPVA-g-PSSS microspheres were fully characterized with infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and zeta potential determination. The aim of this work is to constitute a novel colon-specific drug delivery system via molecular design by using CPVA-g-PSSS microspheres as the drug-carrying material and by taking metronidazole (MTZ) as the model drug. The drug-carrying ability and mechanism of the grafted microspheres CPVA-g-PSSS for MTZ were investigated. Finally, in-vitro release tests for the drug-carrying microspheres were conducted. The experimental results show that in an acidic medium, the grafted microspheres CPVA-g-PSSS exhibit strong adsorption ability for MTZ by driving of electrostatic interaction, and have an adsorption capacity of 112 mg/g, displaying the high efficiency of drug-carrying. The in-vitro release behavior of the drug-carried microspheres is highly pH-sensitive. In the medium of pH=1, the drug-carrying microspheres do not release the drug, whereas in the medium of pH=7.4, a sudden delivery phenomenon of the drug will occur, displaying an excellent colon-specific drug delivery behavior.

  19. Hybrid microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Richard C. K. (Inventor)

    1985-01-01

    Substrates, particularly inert synthetic organic resin beads (10) or sheet (12) such as polystyrene are coated with a covalently bound layer (24) of polyacrolein by irradiation a solution (14) of acrolein or other aldehyde with high intensity radiation. Individual microspheres (22) are formed which attach to the surface to form the aldehyde containing layer (24). The aldehyde groups can be converted to other functional groups by reaction with materials such as hydroxylamine. Adducts of proteins such as antibodies or enzymes can be formed by direct reaction with the surface aldehyde groups.

  20. Seeing is believing, PLGA microsphere degradation revealed in PLGA microsphere/PVA hydrogel composites.

    PubMed

    Gu, Bing; Sun, Xuanhao; Papadimitrakopoulos, Fotios; Burgess, Diane J

    2016-04-28

    The aim of this study was to understand the polymer degradation and drug release mechanism from PLGA microspheres embedded in a PVA hydrogel. Two types of microspheres were prepared with different molecular weight PLGA polymers (approximately 25 and 7 kDa) to achieve different drug release profiles, with a 9-day lag phase and without a lag phase, respectively. The kinetics of water uptake into the microspheres coincided with the drug release profiles for both formulations. For the 25 kDa microspheres, minimal water uptake was observed in the early part of the lag phase followed by substantial water uptake at the later stages and in the drug release phase. For the 7 kDa microspheres, water uptake occurred simultaneously with drug release. Water uptake was approximately 2-3 times that of the initial microsphere weight for both formulations. The internal structure of the PLGA microspheres was evaluated using low temperature scanning electron microscopy (cryo-SEM). Burst drug release occurred followed by pore forming from the exterior to the core of both microspheres. A well-defined hydrogel/microsphere interface was observed. For the 25 kDa microspheres, internal pore formation and swelling occurred before the second drug release phase. The surface layer of the microspheres remained intact whereas swelling, and degradation of the core continued throughout the drug release period. In addition, microsphere swelling reduced glucose transport through the coatings in PBS media and this was considered to be a as a consequence of the increased thickness of the coatings. The combination of the swelling and microdialysis results provides a fresh understanding on the competing processes affecting molecular transport of bioanalytes (i.e. glucose) through these composite coatings during prolonged exposure in PBS. PMID:26965956

  1. Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of copper(II) ions from aqueous solutions.

    PubMed

    Yan, Han; Yang, Lingyun; Yang, Zhen; Yang, Hu; Li, Aimin; Cheng, Rongshi

    2012-08-30

    In this current work, the magnetic composite microspheres (MCM), consisting of Fe(3)O(4) nanoparticles and poly(acrylic acid) (PAA) blended chitosan (CS), were prepared successfully by a simple method, co-precipitation of the compounds in alkaline solution. SEM, FTIR and TG techniques have been applied to investigate the structures of the MCM materials. The vibrating-sample magnetometer (VSM) measurement illustrated a paramagnetic property as well as a fast magnetic response, which indicated the significant separability of the MCM in the aqueous suspensions. Then, the MCM materials were employed as absorbents for removal of copper(II) (Cu(II)) ions from aqueous solutions. The fundamental adsorption behaviors of MCM were studied also. Experimental results revealed that the CS/PAA-MCM had greater adsorption capacity than CS-MCM, and PAA played an important role for the adsorption of Cu(II) ions. Moreover, the adsorption isotherms were all well described by the Langmuir model, while the adsorption kinetics followed the pseudo-second order equation. Furthermore, the adsorbent could be easily regenerated at lower pH and reused almost without any loss of adsorption capacity. On the contrary, the Cu(II) ions loaded CS-MCM and CS/PAA-MCM were stable enough at pH higher than 4.0, and both exhibited efficient phosphate removal with maximal uptakes around 63.0 and 108.0 mg Pg(-1), respectively. PMID:22749139

  2. Preparation of photonic-magnetic responsive molecularly imprinted microspheres and their application to fast and selective extraction of 17β-estradiol.

    PubMed

    Peng, Hailong; Luo, Mei; Xiong, Hua; Yu, Ningxiang; Ning, Fangjian; Fan, Jieping; Zeng, Zheling; Li, Jinhua; Chen, Lingxin

    2016-04-15

    Photonic-magnetic responsive molecularly imprinted microspheres (PM-MIMs) were prepared by seed polymerization, through suitable functionalization of magnetic nanoparticles for further coating with photoresponsive functional monomer and imprinted layers, and then were successfully applied to the fast and selective extraction of 17β-estradiol (17β-E2) from real samples. The PM-MIMs possessed a sandwich micro-spherical structure containing Fe3O4 core, SiO2 middle layer, and MIPs shell with thickness of 25 nm. The PM-MIMs displayed excellent photoresponsive properties and could be rapidly separated from solutions under an external magnet. The PM-MIMs had specific affinity towards 17β-E2 with high adsorption capacity (Qmax=0.84 mg g(-1)) and fast binding kinetics (Kd=26.08 mg L(-1)). The PM-MIMs proved to be an ideal photoswitch with the ability of reversible uptake and release of 17β-E2 upon alternate 365 and 440 nm irradiation: 45.0% of 17β-E2 released from the PM-MIMs upon 365 nm irradiation, and 94.0% of the released 17β-E2 was rebound to the PM-MIMs at 440 nm. Accordingly, the PM-MIMs were applied for fast separation and extraction of 17β-E2 followed by HPLC-UV determination, presenting the low limit of detection (LOD, S/N=3) and quantification (LOQ, S/N=10) of 0.18 and 0.62 μmol L(-1), respectively. The high recoveries for spiked milk powder and drinking water samples were in the range of 97.5-113.0% with relative standard deviations less than 4.4%. This study reasonably combined photonic response, magnetic separation and surface imprinting, which endowed the PM-MIMs with significant advantages of high adsorption capacity and fast binding kinetics, convenient separation and recycled use, and simple rapid eco-benign adsorption/elution processes for template molecules. Thus, the PM-MIMs based method may be a simple, rapid, convenient, cost-effective and environmentally-friendly way for simultaneous separation, enrichment and detection of trace 17β-E2 in

  3. Preparation of photonic-magnetic responsive molecularly imprinted microspheres and their application to fast and selective extraction of 17β-estradiol.

    PubMed

    Peng, Hailong; Luo, Mei; Xiong, Hua; Yu, Ningxiang; Ning, Fangjian; Fan, Jieping; Zeng, Zheling; Li, Jinhua; Chen, Lingxin

    2016-04-15

    Photonic-magnetic responsive molecularly imprinted microspheres (PM-MIMs) were prepared by seed polymerization, through suitable functionalization of magnetic nanoparticles for further coating with photoresponsive functional monomer and imprinted layers, and then were successfully applied to the fast and selective extraction of 17β-estradiol (17β-E2) from real samples. The PM-MIMs possessed a sandwich micro-spherical structure containing Fe3O4 core, SiO2 middle layer, and MIPs shell with thickness of 25 nm. The PM-MIMs displayed excellent photoresponsive properties and could be rapidly separated from solutions under an external magnet. The PM-MIMs had specific affinity towards 17β-E2 with high adsorption capacity (Qmax=0.84 mg g(-1)) and fast binding kinetics (Kd=26.08 mg L(-1)). The PM-MIMs proved to be an ideal photoswitch with the ability of reversible uptake and release of 17β-E2 upon alternate 365 and 440 nm irradiation: 45.0% of 17β-E2 released from the PM-MIMs upon 365 nm irradiation, and 94.0% of the released 17β-E2 was rebound to the PM-MIMs at 440 nm. Accordingly, the PM-MIMs were applied for fast separation and extraction of 17β-E2 followed by HPLC-UV determination, presenting the low limit of detection (LOD, S/N=3) and quantification (LOQ, S/N=10) of 0.18 and 0.62 μmol L(-1), respectively. The high recoveries for spiked milk powder and drinking water samples were in the range of 97.5-113.0% with relative standard deviations less than 4.4%. This study reasonably combined photonic response, magnetic separation and surface imprinting, which endowed the PM-MIMs with significant advantages of high adsorption capacity and fast binding kinetics, convenient separation and recycled use, and simple rapid eco-benign adsorption/elution processes for template molecules. Thus, the PM-MIMs based method may be a simple, rapid, convenient, cost-effective and environmentally-friendly way for simultaneous separation, enrichment and detection of trace 17β-E2 in

  4. Chitosan and alginate biopolymer membranes for remediation of contaminated water with herbicides.

    PubMed

    Agostini de Moraes, Mariana; Cocenza, Daniela Sgarbi; da Cruz Vasconcellos, Fernando; Fraceto, Leonardo Fernandes; Beppu, Marisa Masumi

    2013-12-15

    This study investigated the adsorption behavior of the herbicides diquat, difenzoquat and clomazone on biopolymer membranes prepared with alginate and chitosan (pristine and multi-layer model) for contaminated water remediation applications. Herbicides, at concentrations ranging from 5 μM to 200 μM, were adsorbed in either pure alginate, pure chitosan or a bilayer membrane composed of chitosan/alginate. No adsorption of clomazone was observed on any of the membranes, probably due to lack of electrostatic interactions between the herbicide and the membranes. Diquat and difenzoquat were only adsorbed on the alginate and chitosan/alginate membranes, indicating that this adsorption takes place in the alginate layer. At a concentration of 50 μM, diquat adsorption reaches ca. 95% after 120 min on both the alginate and chitosan/alginate membranes. The adsorption of difenzoquat, at the same concentration, reaches ca. 62% after 120 min on pure alginate membranes and ca. 12% on chitosan/alginate bilayer membranes. The adsorption isotherms for diquat and difenzoquat were further evaluated using the isotherm models proposed by Langmuir and by Freundlich, where the latter represented the best-fit model. Results indicate that adsorption occurs via coulombic interactions between the herbicides and alginate and is strongly related to the electrostatic charge, partition coefficients and dissociation constants of the herbicides. Biopolymer based membranes present novel systems for the removal of herbicides from contaminated water sources and hold great promise in the field of environmental science and engineering.

  5. Improving the controlled delivery formulations of caffeine in alginate hydrogel beads combined with pectin, carrageenan, chitosan and psyllium.

    PubMed

    Belščak-Cvitanović, Ana; Komes, Draženka; Karlović, Sven; Djaković, Senka; Spoljarić, Igor; Mršić, Gordan; Ježek, Damir

    2015-01-15

    Alginate-based blends consisting of carrageenan, pectin, chitosan or psyllium husk powder were prepared for assessment of the best formulation aimed at encapsulation of caffeine. Alginate-pectin blend exhibited the lowest viscosity and provided the smallest beads. Alginate-psyllium husk blend was characterised with higher viscosity, yielding the largest bead size and the highest caffeine encapsulation efficiency (83.6%). The release kinetics of caffeine indicated that the porosity of alginate hydrogel was not reduced sufficiently to retard the diffusion of caffeine from the beads. Chitosan coated alginate beads provided the most retarded release of caffeine in water. Morphological characteristics of beads encapsulating caffeine were adversely affected by freeze drying. Bitterness intensity of caffeine-containing beads in water was the lowest for alginate-psyllium beads and chitosan coated alginate beads. Higher sodium alginate concentration (3%) for production of hydrogel beads in combination with psyllium or chitosan coating would present the most favourable carrier systems for immobilization of caffeine.

  6. Factors influencing alginate gel biocompatibility.

    PubMed

    Tam, Susan K; Dusseault, Julie; Bilodeau, Stéphanie; Langlois, Geneviève; Hallé, Jean-Pierre; Yahia, L'Hocine

    2011-07-01

    Alginate remains the most popular polymer used for cell encapsulation, yet its biocompatibility is inconsistent. Two commercially available alginates were compared, one with 71% guluronate (HiG), and the other with 44% (IntG). Both alginates were purified, and their purities were verified. After 2 days in the peritoneal cavity of C57BL/6J mice, barium (Ba)-gel and calcium (Ca)-gel beads of IntG alginate were clean, while host cells were adhered to beads of HiG alginate. IntG gel beads, however, showed fragmentation in vivo while HiG gel beads stayed firm. The physicochemical properties of the sodium alginates and their gels were thoroughly characterized. The intrinsic viscosity of IntG alginate was 2.5-fold higher than that of HiG alginate, suggesting a greater molecular mass. X-ray photoelectron spectroscopy indicated that both alginates were similar in elemental composition, including low levels of counterions in all gels. The wettabilities of the alginates and gels were also identical, as measured by contact angles of water on dry films. Ba-gel beads of HiG alginate resisted swelling and degradation when immersed in water, much more than the other gel beads. These results suggest that the main factors contributing to the biocompatibility of gels of purified alginate are the mannuronate/guluronate content and/or intrinsic viscosity.

  7. Preparation, in vitro characterization, pharmacokinetic, and pharmacodynamic evaluation of chitosan-based plumbagin microspheres in mice bearing B16F1 melanoma.

    PubMed

    Mandala Rayabandla, Sunil Kumar; Aithal, Kiran; Anandam, Aravind; Shavi, Gopal; Nayanabhirama, Udupa; Arumugam, Karthik; Musmade, Prashant; Bhat, Krishnamoorthy; Bola Sadashiva, Satish Rao

    2010-04-01

    The present study was aimed to evaluate the anti-tumor efficacy and systemic toxicity of chitosan-based plumbagin microspheres in comparison to free plumbagin. The optimized formulation had a mean particle size of 106.35 mum with an encapsulation efficiency of 80.12%. Pharmacokinetic studies showed a 22.2-fold increase in elimination half-life (t(1/2)) of plumbagin from chitosan microspheres as compared to free plumbagin. Administration of plumbagin microspheres resulted in a significant tumor growth inhibition and reduced systemic toxicity. These results suggest that chitosan-based microspheres could be a promising strategy for the systemic delivery of anti-cancer agents like plumbagin. PMID:20100068

  8. Preparation and characterization of cross-linked microspheres C(Dex-g-PSSS) and their drug-carrying and colon-specific drug delivery properties.

    PubMed

    Jianping, Zhang; Jianfeng, Guo; Yao, Zhang; Jiao, Yang

    2014-01-01

    The graft polymer Dex-g-PSSS was obtained through poly(sodium 4-styrene sulfonate) (PSSS) grafted on dextran(Dex) by using the cerium salt-hydroxyl group redox initiation system. The cross-linked microspheres C(Dex-g-PSSS) were synthesized by suspension polymerization with epichlorohydrin as the cross-linking agent. The chemical structure and physicochemical characteristics of C(Dex-g-PSSS) microspheres were represented by infrared spectroscopy (FTIR), optical microscope, and zeta potential analysis. The aim of the study is to constitute a colon-specific drug delivery system via molecular design, using C(Dex-g-PSSS) microspheres as the drug-carrying material and taking 5-fluorouracil (5-FU) as the model drug. The drug-carrying ability and mechanism of the cross-linked microspheres C(Dex-g-PSSS) for 5-FU were investigated. Finally, in vitro release tests for the drug-carrying microspheres were conducted. The experimental results show that in the medium with pH 2, the cross-linked microspheres C(Dex-g-PSSS) exhibit a strong adsorption ability for 5-FU because of strong electrostatic interactions and have an adsorption capacity of 154 ± 7.5 mg/g, displaying high drug-carrying efficiency. The in vitro release behavior of the drug-carrying microspheres is highly dependent on pH and dextranase. In the medium with pH 2, the drug-carrying microspheres do not release the drug and in the medium with pH 1, they release a little, whereas in the medium with pH 7.4, a sudden delivery phenomenon of the drug will occur, and in the presence of dextranase, a more sudden delivery phenomenon of the drug will occur, displaying an excellent colon-specific drug delivery behavior.

  9. Preparation and characterization of cross-linked microspheres C(Dex-g-PSSS) and their drug-carrying and colon-specific drug delivery properties.

    PubMed

    Jianping, Zhang; Jianfeng, Guo; Yao, Zhang; Jiao, Yang

    2014-01-01

    The graft polymer Dex-g-PSSS was obtained through poly(sodium 4-styrene sulfonate) (PSSS) grafted on dextran(Dex) by using the cerium salt-hydroxyl group redox initiation system. The cross-linked microspheres C(Dex-g-PSSS) were synthesized by suspension polymerization with epichlorohydrin as the cross-linking agent. The chemical structure and physicochemical characteristics of C(Dex-g-PSSS) microspheres were represented by infrared spectroscopy (FTIR), optical microscope, and zeta potential analysis. The aim of the study is to constitute a colon-specific drug delivery system via molecular design, using C(Dex-g-PSSS) microspheres as the drug-carrying material and taking 5-fluorouracil (5-FU) as the model drug. The drug-carrying ability and mechanism of the cross-linked microspheres C(Dex-g-PSSS) for 5-FU were investigated. Finally, in vitro release tests for the drug-carrying microspheres were conducted. The experimental results show that in the medium with pH 2, the cross-linked microspheres C(Dex-g-PSSS) exhibit a strong adsorption ability for 5-FU because of strong electrostatic interactions and have an adsorption capacity of 154 ± 7.5 mg/g, displaying high drug-carrying efficiency. The in vitro release behavior of the drug-carrying microspheres is highly dependent on pH and dextranase. In the medium with pH 2, the drug-carrying microspheres do not release the drug and in the medium with pH 1, they release a little, whereas in the medium with pH 7.4, a sudden delivery phenomenon of the drug will occur, and in the presence of dextranase, a more sudden delivery phenomenon of the drug will occur, displaying an excellent colon-specific drug delivery behavior. PMID:25162633

  10. Preparation of C60-functionalized magnetic silica microspheres for the enrichment of low-concentration peptides and proteins for MALDI-TOF MS analysis.

    PubMed

    Chen, Hemei; Qi, Dawei; Deng, Chunhui; Yang, Penyuan; Zhang, Xiangmin

    2009-01-01

    In this work, for the first time, a novel C60-functionalized magnetic silica microsphere (designated C60-f-MS) was synthesized by radical polymerization of C60 molecules on the surface of magnetic silica microspheres. The resulting C60-f-MS microsphere has magnetite core and thin C60 modified silica shell, which endow them with useful magnetic responsivity and surface affinity toward low-concentration peptides and proteins. As a result of their excellent magnetic property, the synthesized C60-f-MS microspheres can be easily separated from sample solution without ultracentrifuge. The C60-f-MS microspheres were successfully applied to the enrichment of low-concentration peptides in tryptic protein digest and human urine via a MALDI-TOF MS analysis. Moreover, they were demonstrated to have enrichment efficiency for low-concentration proteins. Due to the novel materials maintaining excellent magnetic properties and admirable adsorption, the process of enrichment and desalting is very fast (only 5 min), convenient and efficient. As it has been demonstrated in the study, newly developed fullerene-derivatized magnetic silica materials are superior to those already available in the market. The facile and low-cost synthesis as well as the convenient and efficient enrichment process of the novel C60-f-MS microspheres makes it a promising candidate for isolation of low-concentration peptides and proteins even in complex biological samples such as serum, plasma, and urine or cell lysate. PMID:19086100

  11. Porous ZnS/ZnO microspheres prepared through the spontaneous organization of nanoparticles and their application as supports of holding CdTe quantum dots

    SciTech Connect

    Cao Xuebo Lan Xianmei; Zhao Cui; Shen Wenjun; Yao Dan

    2008-05-06

    This manuscript describes a self-organization method for the large-scale production of porous ZnS/ZnO composite microspheres and their application as supports of CdTe quantum dots. Through the reaction of Zn{sup 2+} and urea and thioacetamide at 85 deg. C for 10 min, nanoparticles of cubic ZnS and amorphous ZnO were formed and they present a strong tendency to organize into regular microspheres. The formation of nanopores within the microspheres is related to Ostwald ripening: some small nanoparticles within the microspheres were merged by the larger ones, and as a result, numerous nanopores were generated. Furthermore, when a solvothermal ripening is applied for the porous microspheres, the components within them can be transformed into hexagonal ZnS and ZnO. CdTe quantum dots were introduced into the nanopores to achieve luminescent microspheres through in situ nucleation and growth. And it is expected that, besides semiconducting quantum dots, other functional units, such as magnetic and catalytically activated nanoparticles, can also be introduced into them.

  12. Development of Risperidone PLGA Microspheres

    PubMed Central

    D'Souza, Susan; Faraj, Jabar A.; Giovagnoli, Stefano; DeLuca, Patrick P.

    2014-01-01

    The aim of this study was to design and evaluate biodegradable PLGA microspheres for sustained delivery of Risperidone, with an eventual goal of avoiding combination therapy for the treatment of schizophrenia. Two PLGA copolymers (50 : 50 and 75 : 25) were used to prepare four microsphere formulations of Risperidone. The microspheres were characterized by several in vitro techniques. In vivo studies in male Sprague-Dawley rats at 20 and 40 mg/kg doses revealed that all formulations exhibited an initial burst followed by sustained release of the active moiety. Additionally, formulations prepared with 50 : 50 PLGA had a shorter duration of action and lower cumulative AUC levels than the 75 : 25 PLGA microspheres. A simulation of multiple dosing at weekly or 15-day regimen revealed pulsatile behavior for all formulations with steady state being achieved by the second dose. Overall, the clinical use of Formulations A, B, C, or D will eliminate the need for combination oral therapy and reduce time to achieve steady state, with a smaller washout period upon cessation of therapy. Results of this study prove the suitability of using PLGA copolymers of varying composition and molecular weight to develop sustained release formulations that can tailor in vivo behavior and enhance pharmacological effectiveness of the drug. PMID:24616812

  13. Preparation and characterization of coacervate microcapsules for the delivery of antimicrobial oyster peptides.

    PubMed

    Zhang, Li; Liu, Yezhou; Wu, Zhongchen; Chen, Haixu

    2009-03-01

    Oyster peptides-loaded alginate/chitosan/starch microcapsules were prepared using external gelation method and internal emulsion gelation method. The solution of oyster peptides complexes was encapsulated into the microcapsules, which endowed the microcapsules with intestine passive targeting properties. The swelling behavior, encapsulation efficiency, and release behavior of oyster peptides from the microcapsules at different pH values were investigated. The microcapsules exhibited sustained release of the peptides in intestinal medium, and the release rate could be regulated by the pH value: in simulated gastric fluid, the release rate was greatly decreased, and in simulated body fluid and intestinal fluid, the microcapsules exhibited a sustained release in 24 h with different release rates. The microspheres were characterized by Fourier transform infrared. The results suggested that the alginate/chitosan/starch microcapsules could be a suitable copolymeric carrier system for intestinal protein or peptides delivery in the intestine.

  14. Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration.

    PubMed

    Moshaverinia, Alireza; Xu, Xingtian; Chen, Chider; Akiyama, Kentaro; Snead, Malcolm L; Shi, Songtao

    2013-12-01

    Dental-derived mesenchymal stem cells (MSCs) are promising candidates for cartilage regeneration, with a high capacity for chondrogenic differentiation. This property helps make dental MSCs an advantageous therapeutic option compared to current treatment modalities. The MSC delivery vehicle is the principal determinant for the success of MSC-mediated cartilage regeneration therapies. The objectives of this study were to: (1) develop a novel co-delivery system based on TGF-β1 loaded RGD-coupled alginate microspheres encapsulating periodontal ligament stem cells (PDLSCs) or gingival mesenchymal stem cells (GMSCs); and (2) investigate dental MSC viability and chondrogenic differentiation in alginate microspheres. The results revealed the sustained release of TGF-β1 from the alginate microspheres. After 4 weeks of chondrogenic differentiation in vitro, PDLSCs and GMSCs as well as human bone marrow mesenchymal stem cells (hBMMSCs) (as positive control) revealed chondrogenic gene expression markers (Col II and Sox-9) via qPCR, as well as matrix positively stained by Toluidine Blue and Safranin-O. In animal studies, ectopic cartilage tissue regeneration was observed inside and around the transplanted microspheres, confirmed by histochemical and immunofluorescent staining. Interestingly, PDLSCs showed more chondrogenesis than GMSCs and hBMMSCs (p<0.05). Taken together, these results suggest that RGD-modified alginate microencapsulating dental MSCs make a promising candidate for cartilage regeneration. Our results highlight the vital role played by the microenvironment, as well as value of presenting inductive signals for viability and differentiation of MSCs. PMID:23891740

  15. Aceclofenac microspheres: quality by design approach.

    PubMed

    Deshmukh, Rameshwar K; Naik, Jitendra B

    2014-03-01

    The purpose of this study was to prepare polymeric microspheres containing aceclofenac by single emulsion [oil-in-water (o/w)] solvent evaporation method. Two biocompatible polymers, ethylcellulose, and Eudragit® RS100 were used in combination. Seven processing factors were investigated by Plackett-Burman design (PBD) in order to enhance the encapsulation efficiency of the microspheres. A Plackett-Burman design was employed by using the Design-Expert® software (Version-8.0.7.1). The resultant microspheres were characterized for their size, morphology, encapsulation efficiency, and drug release. Imaging of particles was performed by field emission scanning electron microscopy. Interaction between the drug and polymers were investigated by Fourier transform infrared (FTIR) spectroscopy, and X-ray powder diffractometry (XRPD). Graphical and mathematical analyses of the design showed that Eudragit® RS100, and polyvinyl alcohol (PVA) were significant negative effect on the encapsulation efficiency and identified as the significant factor determining the encapsulation efficiency of the microspheres. The low magnitudes of error and the significant values of R(2) in the present investigation prove the high prognostic ability of the design. The microspheres showed high encapsulation efficiency (70.15% to 83.82%). The microspheres were found to be discrete, oval with smooth surface. The FTIR analysis confirmed the compatibility of aceclofenac with the polymers. The XRPD revealed the dispersion of drug within microspheres formulation. Perfect prolonged drug release profile over 12h was achieved by a combination of ethylcellulose, and Eudragit® RS100 polymers. In conclusion, polymeric microspheres containing aceclofenac can be successfully prepared using the technique of experimental design, and these results helped in finding the optimum formulation variables for encapsulation efficiency of microspheres. PMID:24433918

  16. (D, L) polylactide microspheres as embolic agent. A preliminary study.

    PubMed

    Flandroy, P; Grandfils, C; Collignon, J; Thibaut, A; Nihant, N; Barbette, S; Jerome, R; Teyssie, P

    1990-01-01

    Owing to their shape, accurately calibrated microspheres appear to be very suitable material for distal embolization. Moreover, the biocompatible (D, L) polyactide (PLA) microspheres possess two other valuable advantages: easy adjustment of their biodegradation rate, and incorporation of chemotherapeutic agents during their production. The authors describe the preparation of these (D, L) PLA microspheres and their clinical applications as a preliminary step to arterial chemoembolization. PMID:2234391

  17. Bisphosphonate release profiles from magnetite microspheres.

    PubMed

    Miyazaki, Toshiki; Inoue, Tatsuya; Shirosaki, Yuki; Kawashita, Masakazu; Matsubara, Takao; Matsumine, Akihiko

    2014-10-01

    Hyperthermia has been suggested as a novel, minimally invasive cancer treatment method. After implantation of magnetic nano- or microparticles around a tumour through blood vessels, irradiation with alternating magnetic fields facilitates the efficient in situ hyperthermia even for deep-seated tumours. On the basis of this idea, if the microspheres are capable of delivering drugs, they could be promising multifunctional biomaterials effective for chemotherapy as well as hyperthermia. In the present study, magnetite microspheres were prepared by aggregation of the iron oxide colloid in water-in-oil (W/O) emulsion. The release behaviour of alendronate, a typical bisphosphonate, from the microspheres was examined in vitro as a model of the bone tumour prevention and treatment system. The alendronate was successfully incorporated onto the porous magnetite microspheres in vacuum conditions. The drug-loaded microspheres maintained their original spherical shapes even after shaking in ultrapure water for 3 days, suggesting that they have sufficient mechanical integrity for clinical use. It was attributed to high aggregation capability of the magnetite nanoparticles through van der Waals and weak magnetic attractions. The microspheres showed slow release of the alendronate in vitro, resulting from tight covalent or ionic interaction between the magnetite and the alendronate. The release rate was diffusion-controlled type and well controlled by the alendronate concentration in drug incorporation to the microspheres.

  18. Bisphosphonate release profiles from magnetite microspheres.

    PubMed

    Miyazaki, Toshiki; Inoue, Tatsuya; Shirosaki, Yuki; Kawashita, Masakazu; Matsubara, Takao; Matsumine, Akihiko

    2014-10-01

    Hyperthermia has been suggested as a novel, minimally invasive cancer treatment method. After implantation of magnetic nano- or microparticles around a tumour through blood vessels, irradiation with alternating magnetic fields facilitates the efficient in situ hyperthermia even for deep-seated tumours. On the basis of this idea, if the microspheres are capable of delivering drugs, they could be promising multifunctional biomaterials effective for chemotherapy as well as hyperthermia. In the present study, magnetite microspheres were prepared by aggregation of the iron oxide colloid in water-in-oil (W/O) emulsion. The release behaviour of alendronate, a typical bisphosphonate, from the microspheres was examined in vitro as a model of the bone tumour prevention and treatment system. The alendronate was successfully incorporated onto the porous magnetite microspheres in vacuum conditions. The drug-loaded microspheres maintained their original spherical shapes even after shaking in ultrapure water for 3 days, suggesting that they have sufficient mechanical integrity for clinical use. It was attributed to high aggregation capability of the magnetite nanoparticles through van der Waals and weak magnetic attractions. The microspheres showed slow release of the alendronate in vitro, resulting from tight covalent or ionic interaction between the magnetite and the alendronate. The release rate was diffusion-controlled type and well controlled by the alendronate concentration in drug incorporation to the microspheres. PMID:24854985

  19. Preparation of Janus Graphene Oxide (GO) Nanosheets Based on Electrostatic Assembly of GO Nanosheets and Polystyrene Microspheres.

    PubMed

    Yang, Yongfang; Zhang, Lei; Ji, Xiaotian; Zhang, Lixin; Wang, Hefang; Zhao, Hanying

    2016-09-01

    A facile and versatile method for the synthesis of Janus graphene oxide (GO) nanosheets with different structures is reported. Based on electrostatic assembly, Janus GO nanosheets can be easily functionalized with a template polymer or be defunctionalized by altering the ionic strength. By using this approach, Janus GO nanosheets are prepared successfully with hydrophobic polystyrene chains on one side and hydrophilic poly(2-(dimethylamino)ethyl methacrylate) chains on the other side. PMID:27448248

  20. Preparation of Janus Graphene Oxide (GO) Nanosheets Based on Electrostatic Assembly of GO Nanosheets and Polystyrene Microspheres.

    PubMed

    Yang, Yongfang; Zhang, Lei; Ji, Xiaotian; Zhang, Lixin; Wang, Hefang; Zhao, Hanying

    2016-09-01

    A facile and versatile method for the synthesis of Janus graphene oxide (GO) nanosheets with different structures is reported. Based on electrostatic assembly, Janus GO nanosheets can be easily functionalized with a template polymer or be defunctionalized by altering the ionic strength. By using this approach, Janus GO nanosheets are prepared successfully with hydrophobic polystyrene chains on one side and hydrophilic poly(2-(dimethylamino)ethyl methacrylate) chains on the other side.

  1. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium alginate. 184.1724 Section 184.1724 Food and... Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Sodium alginate...

  2. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Potassium alginate...

  3. Doxorubicin-loaded poly(lactic-co-glycolic acid) microspheres prepared using the solid-in-oil-in-water method for the transarterial chemoembolization of a liver tumor.

    PubMed

    Choi, Jin Woo; Park, Ju-Hwan; Baek, Song Yi; Kim, Dae-Duk; Kim, Hyo-Cheol; Cho, Hyun-Jong

    2015-08-01

    Doxorubicin (DOX)-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres (MSs) were fabricated using the solid-in-oil-in-water (S/O/W) emulsification method for transarterial chemoembolization (TACE) of a liver tumor. DOX-loaded PLGA MSs with a mean diameter of 26 μm and a spherical shape were prepared. The biodegradation of PLGA MSs was observed in serum using a scanning electron microscope (SEM). Drug release from the PLGA MSs was accelerated at an acidic pH (pH 5.5) compared to a normal physiological pH (pH 7.4). According to the results of a pharmacokinetic study in rats, the area under the curve (AUC) value of a drug, which indicates the systemic exposure extent of the drug, of the PLGA MSs group was 29.9% of that of a hepatic arterial injection (HAI) group. The DOX concentration ratio for liver tumors compared to normal livers was significantly higher in the PLGA MSs group than that of the HAI group (p<0.05). After the TACE procedure was performed with DOX-PLGA MSs in a rat hepatoma model, the mean size increment of tumor in DOX-PLGA MSs group was found to be lower than that of the HAI group, and the viable portion of the DOX-PLGA MSs group was less than the other groups (p<0.05). All these findings suggested that the developed DOX-loaded PLGA MSs fabricated with the S/O/W method can be used as a promising drug delivery system in TACE for liver tumors.

  4. Alginate-pectin microcapsules as a potential for folic acid delivery in foods.

    PubMed

    Madziva, H; Kailasapathy, K; Phillips, M

    2005-06-01

    Most naturally occurring folate derivatives in foods are highly sensitive to temperature, oxygen, light and their stability is affected by processing conditions. Folic acid incorporated microcapsules using alginate and combinations of alginate and pectin polymers were prepared to improve stability. Folic acid stability was evaluated with reference to encapsulation efficiency, gelling and hardening of capsules, capsular retention during drying and storage. Use of alginate in combination with pectin produced more robust capsules and contributed to greater encapsulation efficiency. The capsules lost their spherical shape as a consequence of increased pectin. The high alginate capsules, A100:P0 (100% alginate: 0% pectin) and A80:P20 (80% alginate: 20% pectin) were of regular spherical shape, while those with more pectin, A70:P30 (70% alginate: 30% pectin) and A60:P40 (60% alginate: 40% pectin) formed irregular spheres. The loading efficiency, expressed as a percentage of the actual loading to theoretical loading, varied from 55-89% with the composition of the mixed polymers. After 11 weeks of storage at 4 degrees C, folic acid retention in freeze-dried capsules was 100% (A70:P30 and A60:P40), 80% (A80:P20) and 30% (A100:P0). The blended alginate and pectin polymer matrix increased folic acid encapsulation efficiency and reduced the leakage from the capsules compared to those made with alginate alone and showed higher folic acid retention after freeze drying and storage.

  5. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering.

    PubMed

    Liu, Mingxian; Dai, Libing; Shi, Huizhe; Xiong, Sheng; Zhou, Changren

    2015-04-01

    In this study, a series of alginate/halloysite nanotube (HNTs) composite scaffolds were prepared by solution-mixing and freeze-drying method. HNTs are incorporated into alginate to improve both the mechanical and cell-attachment properties of the scaffolds. The interfacial interactions between alginate and HNTs were confirmed by the atomic force microscope (AFM), transmission electron microscope (TEM) and FTIR spectroscopy. The mechanical, morphological, and physico-chemical properties of the composite scaffolds were investigated. The composite scaffolds exhibit significant enhancement in compressive strength and compressive modulus compared with pure alginate scaffold both in dry and wet states. A well-interconnected porous structure with size in the range of 100-200μm and over 96% porosity is found in the composite scaffolds. X-ray diffraction (XRD) result shows that HNTs are uniformly dispersed and partly oriented in the composite scaffolds. The incorporation of HNTs leads to increase in the scaffold density and decrease in the water swelling ratio of alginate. HNTs improve the stability of alginate scaffolds against enzymatic degradation in PBS solution. Thermogravimetrica analysis (TGA) shows that HNTs can improve the thermal stability of the alginate. The mouse fibroblast cells display better attachment to the alginate/HNT composite than those to the pure alginate, suggesting the good cytocompatibility of the composite scaffolds. Alginate/HNT composite scaffolds exhibit great potential for applications in tissue engineering. PMID:25686999

  6. Photocatalytic Activities of Copper Doped Cadmium Sulfide Microspheres Prepared by a Facile Ultrasonic Spray-Pyrolysis Method.

    PubMed

    Su, Jinzhan; Zhang, Tao; Li, Yufeng; Chen, Yubin; Liu, Maochang

    2016-01-01

    Ultrasonic spray pyrolysis is a superior method for preparing and synthesizing spherical particles of metal oxide or sulfide semiconductors. Cadmium sulfide (CdS) photocatalysts with different sizes and doped-CdS with different dopants and doping levels have been synthesized to study their properties of photocatalytic hydrogen production from water. The CdS photocatalysts were characterized with scanning electron microscopy (SEM), X-ray fluorescence-spectrometry (XRF), UV-Vis absorption spectra and X-ray diffraction (XRD) to study their morphological and optical properties. The sizes of the prepared CdS particles were found to be proportional to the concentration of the metal nitrates in the solution. The CdS photocatalyst with smaller size showed a better photocatalytic activity. In addition, Cu doped CdS were also deposited and their photocatalytic activities were also investigated. Decreased bandgaps of CdS synthesized with this method were found and could be due to high density surface defects originated from Cd vacancies. Incorporating the Cu elements increased the bandgap by taking the position of Cd vacancies and reducing the surface defect states. The optimal Cu-doped level was found to be 0.5 mol % toward hydrogen evolution from aqueous media in the presence of sacrificial electron donors (Na₂S and Na₂SO₃) at a pH of 13.2. This study demonstrated that ultrasonic spray pyrolysis is a feasible approach for large-scale photocatalyst synthesis and corresponding doping modification. PMID:27314320

  7. Towards Monodispersed Polymer Microspheres

    NASA Astrophysics Data System (ADS)

    Senuma, Yoshinori; Hilborn, Jons

    1998-03-01

    Uniform polymer microspheres prepared by Spinning Disk Atomization Our spinning disk atomization (SDA) can, relative to other existing techniques, produce micron-sized particles of very narrow size distribution. Around the edge of the disk, small teeth channel the flow into identical droplets that are flung off over the disk rim. These solidify during flight to form spherical particles. Applications for spheres produced by SDA can be found in areas such as adhesives, powder coatings, food, biomedical use, drug delivery systems, etc. We have atomized polyethyleneglycol into very narrowly dispersed microspheres ranging from 50 to 500 =B5m. The aim of this work is to model the droplet formation occurring at the rim of the spinning disk in order to better understand the experimental results. The viscosity contribution in the fluid breakup is qualitatively analyzed and is adapted to the theoretical model to show how it affects the droplet size. We have used the pendant drop model (Ramesh Babu, S. Journal of Colloid and Interface Science 116, 350-372 (1987).) for spinning disk atomization to describe the drop-shape evolution during growth.

  8. Preparation of magnetic core mesoporous shell microspheres with C18-modified interior pore-walls for fast extraction and analysis of phthalates in water samples.

    PubMed

    Li, Zhongbo; Huang, Danni; Fu, Chinfai; Wei, Biwen; Yu, Wenjia; Deng, Chunhui; Zhang, Xiangmin

    2011-09-16

    In this study, core-shell magnetic mesoporous microspheres with C18-functionalized interior pore-walls were synthesized through coating Fe(3)O(4) microspheres with a mesoporous inorganic-organic hybrid layer with a n-octadecyltriethoxysilane (C18TES) and tetraethyl orthosilicate (TEOS) as the silica source and cetyltrimethylammonia bromide (CTAB) as a template. The obtained C18-functionalized Fe(3)O(4)@mSiO(2) microspheres possess numerous C18 groups anchored in the interior pore-walls, large surface area (274.7 m(2)/g, high magnetization (40.8 emu/g) and superparamagnetism, uniform mesopores (4.1 nm), which makes them ideal absorbents for simple, fast, and efficient extraction and enrichment of hydrophobic organic compounds in water samples. Several kinds of phthalates were used as the model hydrophobic organic compounds to systematically evaluate the performance of the C18-functionalized Fe(3)O(4)@mSiO(2) microspheres in extracting hydrophobic molecules by using a gas chromatography-mass spectrometry. Various parameters, including eluting solvent, the amounts of absorbents, extraction time and elution time were optimized. Hydrophobic extraction was performed in the interior pore of magnetic mesoporous microspheres, and the materials had the anti-interference ability to macromolecular proteins, which was also investigated in the work. Under the optimized conditions, C18-functionalized Fe(3)O(4)@mSiO(2) microspheres were successfully used to analyze the real water samples. The results indicated that this novel method was fast, convenient and efficient for the target compounds and could avoid being interfered by macromolecules.

  9. Preparation methods for monodispersed garlic oil microspheres in water using the microemulsion technique and their potential as antimicrobials.

    PubMed

    Zheng, Hua Ming; Li, Hou Bin; Wang, Da Wei; Liu, Dun

    2013-08-01

    Garlic oil is considered as a natural broad-spectrum antibiotic because of its well-known antimicrobial activity. However, the characteristics of easy volatility and poor aqueous solubility limit the application of garlic oil in industry. The purpose of the present work is to develop and evaluate an oil-free microemulsion by loading garlic oil in microemulsion system. Microemulsions were prepared with ethoxylated hydrogenated castor (Cremophor RH40) as surfactant, n-butanol (or ethanol) as cosurfactant, oleic acid-containing garlic oil as oil phase, and ultrapure water as water phase. The effects of the ratio of surfactant to cosurfactant and different oil concentration on the area of oil-in-water (O/W) microemulsion region in pseudoternary phase diagrams were investigated. The particle size and garlic oil encapsulation efficiency of the formed microemulsions with different formulations were also investigated. In addition, the antimicrobial activity in vitro against Escherichia coli and Staphylococcus aureus was assessed. The experimental results show that a stable microemulsion region can be obtained when the mass ratio of surfactant to cosurfactant is, respectively, 1:1, 2:1, and 3:1. Especially, when the mixture surfactants of RH40/n-butanol 2/1 (w/w) is used in the microemulsion formulation, the area of O/W microemulsion region is 0.089 with the particle size 13.29 to 13.85 nm and garlic oil encapsulation efficiency 99.5%. The prepared microemulsion solution exhibits remarkable antibacterial activity against S. aureus. PMID:23957416

  10. Preparation methods for monodispersed garlic oil microspheres in water using the microemulsion technique and their potential as antimicrobials.

    PubMed

    Zheng, Hua Ming; Li, Hou Bin; Wang, Da Wei; Liu, Dun

    2013-08-01

    Garlic oil is considered as a natural broad-spectrum antibiotic because of its well-known antimicrobial activity. However, the characteristics of easy volatility and poor aqueous solubility limit the application of garlic oil in industry. The purpose of the present work is to develop and evaluate an oil-free microemulsion by loading garlic oil in microemulsion system. Microemulsions were prepared with ethoxylated hydrogenated castor (Cremophor RH40) as surfactant, n-butanol (or ethanol) as cosurfactant, oleic acid-containing garlic oil as oil phase, and ultrapure water as water phase. The effects of the ratio of surfactant to cosurfactant and different oil concentration on the area of oil-in-water (O/W) microemulsion region in pseudoternary phase diagrams were investigated. The particle size and garlic oil encapsulation efficiency of the formed microemulsions with different formulations were also investigated. In addition, the antimicrobial activity in vitro against Escherichia coli and Staphylococcus aureus was assessed. The experimental results show that a stable microemulsion region can be obtained when the mass ratio of surfactant to cosurfactant is, respectively, 1:1, 2:1, and 3:1. Especially, when the mixture surfactants of RH40/n-butanol 2/1 (w/w) is used in the microemulsion formulation, the area of O/W microemulsion region is 0.089 with the particle size 13.29 to 13.85 nm and garlic oil encapsulation efficiency 99.5%. The prepared microemulsion solution exhibits remarkable antibacterial activity against S. aureus.

  11. Fiber optic chemical microsensors employing optically active silica microspheres

    NASA Astrophysics Data System (ADS)

    Pope, Edward J. A.

    1995-05-01

    Dye-doped porous silica microspheres can be prepared from liquid solution at temperatures near ambient. Microsphere diameter can be controlled between approximately 5.0 microns to in excess of a millimeter. The resulting microspheres can be attached to the distal end of an optical fiber in which the proximal end is attached to a spectrophotometer. Depending upon the organic species doped into the microsphere, a wide variety of sensing functions are possible. In this paper, the use of microsensors for measuring pH, temperature, and solvent content of aqueous solutions is demonstrated. Potential utility of this type of sensor to heavy metals detection and biomedical diagnostics is also discussed.

  12. Pectin/zein microspheres as a sustained drug delivery system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of microspheres were prepared from pectins and corn proteins from various sources in the presence of the divalent ions calcium or zinc. The results showed that the yield of microsphere and the efficiency of drug incorporation were dependent on the type and ratio of biopolymers, the size of ...

  13. Surface molecularly imprinted magnetic microspheres for the recognition of albumin.

    PubMed

    Kartal, Fatma; Denizli, Adil

    2014-08-01

    A new approach, combining metal coordination with the molecular imprinting technique, was developed to prepare affinity materials. Magnetic poly(glycidyl methacrylate) microspheres in monosize form were used for specific recognition toward the target protein. The magnetic poly(glycidyl methacrylate) microspheres were prepared by dispersion polymerization in the presence of magnetite nanopowder. Surface imprinted magnetic poly(glycidyl methacrylate) microspheres based on metal coordination were prepared and used for the selective recognition of human serum albumin. Iminodiacetic acid was used as the metal coordinating agent and human serum albumin was anchored by Cu(2+) ions on the surface of magnetic poly(glycidyl methacrylate) microspheres by metal coordination. The magnetic poly(glycidyl methacrylate) microspheres were coated with a polymer formed by condensation of tetraethyl orthosilicate and 3-aminopropyltrimethoxysilane. The human serum albumin imprinted magnetic poly(glycidyl methacrylate) microspheres were characterized by scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy and particle size analysis. The maximum adsorption capacity of human serum albumin imprinted magnetic poly(glycidyl methacrylate) microspheres was 37.7 mg/g polymer at pH 6.0. The selectivity experiments of human serum albumin imprinted magnetic poly(glycidyl methacrylate) microspheres prepared with different concentrations in the presence of lysozyme, bovine serum albumin and cytochrome C were performed in order to determine the relative selectivity coefficients.

  14. Ag/α-Fe{sub 2}O{sub 3} hollow microspheres: Preparation and application for hydrogen peroxide detection

    SciTech Connect

    Kang, Xinyuan; Wu, Zhiping; Liao, Fang Zhang, Tingting; Guo, Tingting

    2015-09-15

    In this paper, we demonstrated a simple approach for preparing α-Fe{sub 2}O{sub 3} hollow spheres by mixing ferric nitrate aqueous and glucose in 180 °C. The glucose was found to act as a soft template in the process of α-Fe{sub 2}O{sub 3} hollow spheres formation. Ag/α-Fe{sub 2}O{sub 3} hollow nanocomposite was obtained under UV irradiation without additional reducing agents or initiators. Synthesized Ag/α-Fe{sub 2}O{sub 3} hollow composites exhibited remarkable catalytic performance toward H{sub 2}O{sub 2} reduction. The electrocatalytic activity mechanism of Ag/α-Fe{sub 2}O{sub 3}/GCE were discussed toward the reduction of H{sub 2}O{sub 2} in this paper. - Graphical abstract: Glucose is carbonized as carbon balls in the 180 °C hydrothermal carbonization process, which plays a role of a soft template. Carbon spherical shell is rich in many hydroxyls, which have good hydrophilicity and surface reactivity. When Fe(NO{sub 3}){sub 3} is added to the aqueous solution of Glucose, the hydrophilic -OH will adsorb Fe{sup 3+} to form coordination compound by coordination bond. α-FeOOH is formed on the surface of carbon balls by hydrothermal reaction. After calcination at 500 °C, carbon spheres react with oxygen to form carbon dioxide, which disappears in the air. Meanwhile α-FeOOH is calcined to form α-Fe{sub 2}O{sub 3} hollow spheres.

  15. Aging and microwave effects on alginate/chitosan matrices.

    PubMed

    Wong, Tin Wui; Chan, Lai Wah; Kho, Shyan Bin; Heng, Paul Wan Sia

    2005-06-01

    The influence of microwave irradiation on the drug release properties of freshly prepared and aged alginate, alginate-chitosan and chitosan beads was investigated. The beads were prepared by extrusion method with sulphathiazole as a model drug. The dried beads were subjected to microwave irradiation at 80 W for 10 min, 20 min or three consecutive cycles of 10 and 20 min, respectively. The profiles of drug dissolution, drug content, drug stability, drug polymorphism, drug-polymer interaction, polymer crosslinkage and complexation were determined by dissolution testing, drug content assay, differential scanning calorimetry and Fourier transform infra-red spectroscopy. The chemical stability of drug embedded in beads was unaffected by microwave conditions and length of storage time. The release property of drug was mainly governed by the extent of polymer interaction in beads. The aged alginate beads required intermittent cycles of microwave irradiation to induce drug release retarding effect in contrast to their freshly prepared samples. Unlike the alginate beads, the level of polymer interaction was higher in aged alginate-chitosan beads than the corresponding fresh beads. The drug release retarding property of aged alginate-chitosan beads could be significantly enhanced through subjecting the beads to microwave irradiation for 10 min. No further change in drug release from these beads was observed beyond 30 min of microwave irradiation. Unlike beads containing alginate, the rate and extent of drug released from the aged chitosan beads were higher upon treatment by microwave in spite of the higher degree of polymer interaction shown by the latter on prolonged storage. The observation suggested that the response of polymer matrix to microwave irradiation in induction of drug release retarding property was largely affected by the molecular arrangement of the polymer chains.

  16. Microspheres and nanoparticles from ultrasound

    NASA Astrophysics Data System (ADS)

    Suh, Won Hyuk

    Improved preparations of various examples of monodispersed, porous, hollow, and core-shell metal and semiconductor nanoparticles or nanowires have been developed. Now titania microspheres and nanoparticles and silica microspheres can be synthesized using an inexpensive high frequency (1.7 MHz) ultrasonic generator (household humidifier; ultrasonic spray pyrolysis; USP). Morphology and pore size of titania microspheres were controlled by the silica to Ti(IV) ratio and silica particle size. Fine tuning the precursor ratio affords sub-50 nm titania nanoparticles as well. In terms of silica microspheres, morphology was controlled by the silica to organic monomer ratio. In liquids irradiated with high intensity ultrasound (20 kHz; HIUS), acoustic cavitation produces high energy chemistry through intense local heating inside the gas phase of collapsing bubbles in the liquid. HIUS and USP confine the chemical reactions to isolated sub-micron reaction zones, but sonochemistry does so in a heated gas phase within a liquid, while USP uses a hot liquid droplet carried by a gas flow. Thus, USP can be viewed as a method of phase-separated synthesis using submicron-sized droplets as isolated chemical reactors for nanomaterial synthesis. While USP has been used to create both titania and silica spheres separately, there are no prior reports of titania-silica composites. Such nanocomposites of metal oxides have been produced, and by further manipulation, various porous structures with fascinating morphologies were generated. Briefly, a precursor solution was nebulized using a commercially available household ultrasonic humidifier (1.7 MHz ultrasound generator), and the resulting mist was carried in a gas stream of air through a quartz glass tube in a hot furnace. After exiting the hot zone, these microspheres are porous or hollow and in certain cases magnetically responsive. In the case of titania microspheres, they are rapidly taken up into the cytoplasm of mammalian cells and

  17. Natural mucoadhesive microspheres of Abelmoschus esculentus polysaccharide as a new carrier for nasal drug delivery.

    PubMed

    Sharma, Nitin; Kulkarni, Giriraj T; Sharma, Anjana; Bhatnagar, Aseem; Kumar, Neeraj

    2013-01-01

    This work describes the preparation and evaluation of mucoadhesive microspheres, using Abelmoschus esculentus polysaccharide as a novel carrier for safe and effective delivery of rizatriptan benzoate into nasal cavity. The polysaccharide was extracted from the fruit of A. esculentus and mucoadhesive microspheres were prepared by emulsification, followed by crosslinking using epichlorohydrin. Prepared microspheres were evaluated for size, morphology, swelling properties, mucoadhesive strength, encapsulation efficiency and drug release. Microspheres were found to release 50% of drug within 15 min and rest of the drug was released within 60 min. The drug release was found to decrease with increasing concentration of polysaccharide. To determine the retention time of the microspheres in the nasal cavity of rabbits, the microspheres were radiolabelled with (99m)Tc and subjected to gamma scintigraphy. The results showed a significant improvement in the nasal retention of the microspheres as compared to the aqueous solution of radiolabelled free-drug. PMID:23379506

  18. Optimization of sustained release aceclofenac microspheres using response surface methodology.

    PubMed

    Deshmukh, Rameshwar K; Naik, Jitendra B

    2015-03-01

    Polymeric microspheres containing aceclofenac were prepared by single emulsion (oil-in-water) solvent evaporation method using response surface methodology (RSM). Microspheres were prepared by changing formulation variables such as the amount of Eudragit® RS100 and the amount of polyvinyl alcohol (PVA) by statistical experimental design in order to enhance the encapsulation efficiency (E.E.) of the microspheres. The resultant microspheres were evaluated for their size, morphology, E.E., and in vitro drug release. The amount of Eudragit® RS100 and the amount of PVA were found to be significant factors respectively for determining the E.E. of the microspheres. A linear mathematical model equation fitted to the data was used to predict the E.E. in the optimal region. Optimized formulation of microspheres was prepared using optimal process variables setting in order to evaluate the optimization capability of the models generated according to IV-optimal design. The microspheres showed high E.E. (74.14±0.015% to 85.34±0.011%) and suitably sustained drug release (minimum; 40% to 60%; maximum) over a period of 12h. The optimized microspheres formulation showed E.E. of 84.87±0.005 with small error value (1.39). The low magnitudes of error and the significant value of R(2) in the present investigation prove the high prognostic ability of the design. The absence of interactions between drug and polymers was confirmed by Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) revealed the dispersion of drug within microspheres formulation. The microspheres were found to be discrete, spherical with smooth surface. The results demonstrate that these microspheres could be promising delivery system to sustain the drug release and improve the E.E. thus prolong drug action and achieve the highest healing effect with minimal gastrointestinal side effects.

  19. Understanding Alginate Gel Development for Bioclogging and Biogeophysical Experiments

    NASA Astrophysics Data System (ADS)

    Brown, I.; Atekwana, E. A.; Abdel Aal, G. Z.; Atekwana, E. A.; Sarkisova, S.; Patrauchan, M.

    2012-12-01

    Bioremediation strategies to mitigate the transport of heavy metals and radionuclides in subsurface sediments have largely targeted to increase the mobility and/or solubility of these compounds by the stimulation of biogeochemical activity of the metal- and sulfate-reducing bacteria. The latter secrete and/or release out diverse biochemical molecule including, first of all, organic acids and biopolymers such as alginic acid, proteins and DNA. Alginate gel is one of the major components determining the structure of biofilm which causes clogging in porous media. Biopolymers composing biofilm having, at least, two main functions: to be a scaffold for a microbial biofilm, and to regulate the exchange of metabolites and ions between an environment and bacterial cells. Additionally, the accumulation of biopolymers and a matured biofilm within porous media was shown to contribute to a detectable biogeophysical signal, spectral induced polarization (SIP), in particular. Our objective is to understand the role of different biofilm components on the SIP response as the latter has been proposed as a non-invasive tool to monitor biofilm development and rate of clogging in the subsurface. Understanding the process of alginate gel development may aid in the understanding of the fate and transport of mineralized heavy metals and radionuclides in contaminated soils. Here we describe the reciprocal relationship between environmental chemistry and alginate gel development. Commercial (Sigma) alginic acid (AA) was used as a substratum for the preparation of a model gel. AA was solubilized by adjusting solutions with pH up to 4 with 0.1 NaOH. Both Ca(OH)2 or CaCl2 were used to initiate the gelation of alginate. pH, fluid conductivity, soluble Ca2+ concentration, and a yield of gelated alginate were monitored in both liquid and porous media after the interaction of calcium compounds with alginate. This study confirms the critical role of Ca2+ for alginate gelation, biofilm development

  20. Rheological evaluations and in vitro studies of injectable bioactive glass-polycaprolactone-sodium alginate composites.

    PubMed

    Borhan, Shokoufeh; Hesaraki, Saeed; Behnamghader, Ali-Asghar; Ghasemi, Ebrahim

    2016-09-01

    Composite pastes composed of various amounts of melt-derived bioactive glass 52S4 (MG5) and polycaprolactone (PCL) microspheres in sodium alginate solution were prepared. Rheological properties in both rotatory and oscillatory modes were evaluated. Injectability was measured as injection force versus piston displacement. In vitro calcium phosphate precipitation was also studied in simulated body fluid (SBF) and tracked using scanning electron microscopy, X-ray diffraction and FTIR analyses. All composite pastes were thixotropic in nature and exhibited shear thinning behavior. The magnitude of thixotropy decreased by adding 10-30 wt% PCL, while further amounts of PCL increased it again. Moreover, the composites were viscoelastic materials in which the elastic modulus was higher than viscous term. The pastes which were just made of MG5 or PCL had poor injectability, whereas the composites containing both of these constituents exhibited reasonable injectability. All pastes revealed adequate structural stability in contact with SBF solution. In vitro calcium phosphate precipitation was well observed on the paste made of MG5 and somewhat on the pastes with 10-40 wt% PCL, however the precipitated layer was amorphous in nature. Overall, the produced composites may be appropriate as injectable biomaterials for non-invasive surgeries but more biological evaluations are essential. PMID:27432416

  1. Synthesis and characterization of magnetic poly(glycidyl methacrylate) microspheres

    NASA Astrophysics Data System (ADS)

    Horák, Daniel; Petrovský, Eduard; Kapička, Aleš; Frederichs, Theodor

    2007-04-01

    Magnetic nanoparticles encapsulated in poly(glycidyl methacrylate) microspheres were prepared and their detailed structural and magnetic characteristics given. Iron oxide nanoparticles were obtained by chemical coprecipitation of Fe(II) and Fe(III) salts and stabilized with dextran, (carboxymethyl)dextran or tetramethylammonium hydroxide. The microspheres were prepared by emulsion or dispersion polymerization of glycidyl methacrylate in the presence of ferrofluid. The microspheres were uniform both in shape and usually also in size; their size distribution was narrow. All the magnetic parameters confirm superparamagnetic nature of the microspheres. Blocking temperature was not observed, suggesting the absence of magnetic interactions at low temperatures. This is most probably caused by complete encapsulation and the absence of agglomeration. Such microspheres can be used in biomedical applications.

  2. Membranes for specific adsorption: immobilizing molecularly imprinted polymer microspheres using electrospun nanofibers.

    PubMed

    Büttiker, Roman; Ebert, Jürgen; Hinderling, Christian; Adlhart, Christian

    2011-01-01

    Molecularly imprinted polymer microspheres were immobilized within a polymer nanofiber membrane by electrospinning. Such membranes simplify the handling of functional microspheres and provide specific recognition capabilities for solid-phase extraction and filtration applications. In this study, microspheres were prepared by precipitation polymerization of methacrylic acid and divinylbenzene as a cross-linker with the target molecule (-)-cinchonidine and then, they were electrospun into a non-woven polyacrylonitrile nanofiber membrane. The composite membrane showed specific affinity for (-)-cinchonidine which was attributed to the functional microspheres as confirmed by Raman microscopy. The target molecule capturing capacity of the composite membrane was 5 mg/g or 25 mg/g immobilized functional microsphere. No difference in target affinity was observed between the immobilized microspheres and the free microspheres. These results reveal that electrospun composite membranes are a feasible approach to immobilizing functional microspheres.

  3. Membranes for specific adsorption: immobilizing molecularly imprinted polymer microspheres using electrospun nanofibers.

    PubMed

    Büttiker, Roman; Ebert, Jürgen; Hinderling, Christian; Adlhart, Christian

    2011-01-01

    Molecularly imprinted polymer microspheres were immobilized within a polymer nanofiber membrane by electrospinning. Such membranes simplify the handling of functional microspheres and provide specific recognition capabilities for solid-phase extraction and filtration applications. In this study, microspheres were prepared by precipitation polymerization of methacrylic acid and divinylbenzene as a cross-linker with the target molecule (-)-cinchonidine and then, they were electrospun into a non-woven polyacrylonitrile nanofiber membrane. The composite membrane showed specific affinity for (-)-cinchonidine which was attributed to the functional microspheres as confirmed by Raman microscopy. The target molecule capturing capacity of the composite membrane was 5 mg/g or 25 mg/g immobilized functional microsphere. No difference in target affinity was observed between the immobilized microspheres and the free microspheres. These results reveal that electrospun composite membranes are a feasible approach to immobilizing functional microspheres. PMID:21528654

  4. Con-A conjugated mucoadhesive microspheres for the colonic delivery of diloxanide furoate.

    PubMed

    Anande, Nalini M; Jain, Sunil K; Jain, Narendra K

    2008-07-01

    The aim of the research work was to develop cyst-targeted novel concanavalin-A (Con-A) conjugated mucoadhesive microspheres of diloxanide furoate (DF) for the effective treatment of amoebiasis. Eudragit microspheres of DF were prepared using emulsification-solvent evaporation method. Formulations were characterized for particle size and size distribution, % drug entrapment, surface morphology and in vitro drug release in simulated gastrointestinal (GI) fluids. Eudragit microspheres of DF were conjugated with Con-A. IR spectroscopy and DSC were used to confirm successful conjugation of Con-A to Eudragit microspheres while Con-A conjugated microspheres were further characterized using the parameters of zeta potential, mucoadhesiveness to colonic mucosa and Con-A conjugation efficiency with microspheres. IR studies confirmed the attachment of Con-A with Eudragit microspheres. All the microsphere formulations showed good % drug entrapment (78+/-5%). Zeta potential of Eudragit microspheres and Con-A conjugated Eudragit microspheres were found to be 3.12+/-0.7mV and 16.12+/-0.5mV, respectively. Attachment of lectin to the Eudragit microspheres significantly increases the mucoadhesiveness and also controls the release of DF in simulated GI fluids. Gamma scintigraphy study suggested that Eudragit S100 coated gelatin capsule retarded the release of Con-A conjugated microspheres at low pH and released microspheres slowly at pH 7.4 in the colon.

  5. Enzyme immobilization in novel alginate-chitosan core-shell microcapsules.

    PubMed

    Taqieddin, Ehab; Amiji, Mansoor

    2004-05-01

    Alginate-chitosan core-shell microcapsules were prepared in order to develop a biocompatible matrix for enzyme immobilization, where the protein is retained either in a liquid or solid core and the shell allows permeability control over substrates and products. The permeability coefficients of different molecular weight compounds (vitamin B2, vitamin B12, and myoglobin) were determined through sodium tripolyphosphate (Na-TPP)-crosslinked chitosan membrane. The microcapsule core was formed by crosslinking sodium alginate with either calcium or barium ions. The crosslinked alginate core was uniformly coated with a chitosan layer and crosslinked with Na-TPP. In the case of calcium alginate, the phosphate ions of Na-TPP were able to extract the calcium ions from alginate and liquefy the core. A model enzyme, beta-galactosidase, was immobilized in the alginate core and the catalytic activity was measured with o-nitrophenyl-beta-D-galactopyranoside (ONPG). Change in the activity of free and immobilized enzyme was determined at three different temperatures. Na-TPP crosslinked chitosan membranes were found to be permeable to solutes of up to 17,000Da molecular weight. The enzyme loading efficiency was higher in the barium alginate core (100%) as compared to the calcium alginate core (60%). The rate of ONPG conversion to o-nitrophenol was faster in the case of calcium alginate-chitosan microcapsules as compared to barium alginate-chitosan microcapsules. Barium alginate-chitosan microcapsules, however, did improve the stability of the enzyme at 37 degrees C relative to calcium alginate-chitosan microcapsules or free enzyme. This study illustrates a new method of enzyme immobilization for biotechnology applications using liquid or solid core and shell microcapsule technology.

  6. Chitosan microspheres as a delivery system for nasal insufflation.

    PubMed

    Patil, Sanjay B; Sawant, Krutika K

    2011-06-01

    The aim of the present study was to develop and characterize chitosan mucoadhesive microspheres for nasal delivery. The microspheres were prepared by emulsification-crosslinking method and evaluated for morphology, particle size, swelling index, in vitro mucoadhesion and delivery properties from Miat(®) nasal insufflator. The results showed that the microspheres were spherical in shape with smooth surfaces. The particle size of microspheres was found to be dependent on the concentration of the chitosan. The mean particle size was significantly increased when high concentration of chitosan was used. Aqueous to oil phase ratio, stirring rate and dioctyl sodium sulfosuccinate (DOSS) concentration also influenced the particle size distribution of the microspheres. It was found that, as stirring rate was increased, the size of the microspheres was decreased. The volume of glutaraldehyde and crosslinking time had very slight effect on particle size distribution. The % equilibrium water uptake of the microspheres was ranged from 124% to 232% and the mucoadhesive strength from 70.64±2.14 to 86.32±3.96%. The results of powder delivery from the device showed that, almost entire amount was delivered after three puffs. The images of the delivery sequences of microsphere powder clouds demonstrated that microspheres were delivered forming an elongated puff. The core of the clouds was homogeneous which can be expected to provide effective distribution pattern.

  7. Encapsulation in alginate and alginate coated-chitosan improved the survival of newly probiotic in oxgall and gastric juice.

    PubMed

    Trabelsi, Imen; Bejar, Wacim; Ayadi, Dorra; Chouayekh, Hichem; Kammoun, Radhouane; Bejar, Samir; Ben Salah, Riadh

    2013-10-01

    This study was undertaken to develop an optimum composition model for the microencapsulation of a newly probiotic on sodium alginate using response surface methodology. The individual and interactive effects of three independent variables, namely sodium alginate concentration, biomass concentration, and hardening time, were investigated using Box-Behnken design experiments. A second ordered polynomial model was fitted and optimum conditions were estimated. The optimal conditions identified were 2% for sodium alginate, 10(10)UFC/ml for biomass, and 30 min for hardening time. The experimental value obtained for immobilized cells under these conditions was about 80.98%, which was in close agreement with the predicted value of 82.6%. Viability of microspheres (96%) was enhanced with chitosan as coating materials. The survival rates of free and microencapsulated Lactobacillus plantarum TN8 during exposure to artificial gastrointestinal conditions were compared. The results revealed that the encapsulated cells exhibited significantly higher resistances to artificial intestinal juice (AIJ) and artificial gastric juice (AGJ). Microencapsulation was also noted to effectively protect the strain from heating at 65 °C and refrigerating at 4 °C. Taken together, the findings indicated that microencapsulation conferred important protective effects to L. plantarum against the gastrointestinal conditions encountered during the transit of food.

  8. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown...

  9. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown...

  10. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown...

  11. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  12. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  13. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  14. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium alginate. 184.1187 Section 184.1187 Food... Specific Substances Affirmed as GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown...

  15. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium alginate. 184.1187 Section 184.1187 Food... Specific Substances Affirmed as GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown...

  16. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium alginate. 184.1187 Section 184.1187 Food... Specific Substances Affirmed as GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown...

  17. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium alginate. 184.1187 Section 184.1187 Food... Specific Substances Affirmed as GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown...

  18. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  19. Fluoride Release from Hollow Silica Microsphere-Containing Dental Restorative Acrylate Resin.

    PubMed

    Ji, Yuqin; Gao, Jun; Yin, Hengbo; Wang, Aili; Jiang, Tingshun; Wu, Gang; Wu, Zhanao

    2015-05-01

    Hollow silica microspheres with mesoporous shells were prepared by the sacrificial template method. Hollow silica microsphere-containing acrylate resin-based dental restoration materials were prepared by using hollow silica microspheres as NaF reservoirs. Fluoride release performances from naked hollow silica microspheres, acrylate resin, and hollow silica microsphere-containing acrylate resin-based dental restorative materials in an artificial saliva were investigated. The results showed that hollow silica microsphere-containing acrylate resin-based dental restorative materials had higher cumulative fluoride release quantities and sustained fluoride release rates than traditional acrylate resin-based dental restorative materials. Fluoride release could be tuned by changing the mesoporous shell thickness of hollow silica microsphere.

  20. Facile preparation of novel dandelion-like Fe-doped NiCo2O4 microspheres@nanomeshes for excellent capacitive property in asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Li; Zhang, Huijuan; Fang, Ling; Mu, Yanping; Wang, Yu

    2016-09-01

    In this work, we successfully synthesized the dandelion-like Fe-doped NiCo2O4 microspheres@nanomeshes (Fe-NCO-M@N-1h) using a facile hydrothermal method, followed by calcinations. In the unique structure, numerous nanoneedles radially grow on the surface of microsphere and some porous nanomeshes orderly develop in the inside of microsphere, therefore dandelion-like Fe-NCO-M@N-1h displays large specific surface area (101.15 m2 g-1) and more active sites. Electrochemical properties of the Fe-NCO-M@N-1h have been tested for symmetric supercapacitors (SCs) and asymmetric supercapacitors (ASCs). Benefiting from the structural advantages, Fe-NCO-M@N-1h electrode exhibits outstanding capacitive behaviors, such as the desirable specific capacitance and eminent rate performance (2237 and 1810 F g-1 at the current densities of 1 and 20 A g-1, respectively) and remarkable cycling performance (95.8% retention after 4500 cycles). Besides, a Fe-NCO-M@N-1h//AC-ASCs device has been constructed successfully, presenting the highest energy density of 46.68 Wh kg-1. The results indicate that the Fe-NCO-M@N-1h is a potential material for SCs.

  1. Microbial alginate production, modification and its applications

    PubMed Central

    Hay, Iain D; Rehman, Zahid Ur; Moradali, M Fata; Wang, Yajie; Rehm, Bernd H A

    2013-01-01

    Alginate is an important polysaccharide used widely in the food, textile, printing and pharmaceutical industries for its viscosifying, and gelling properties. All commercially produced alginates are isolated from farmed brown seaweeds. These algal alginates suffer from heterogeneity in composition and material properties. Here, we will discuss alginates produced by bacteria; the molecular mechanisms involved in their biosynthesis; and the potential to utilize these bacterially produced or modified alginates for high-value applications where defined material properties are required. PMID:24034361

  2. Biocompatible Double-Membrane Hydrogels from Cationic Cellulose Nanocrystals and Anionic Alginate as Complexing Drugs Codelivery.

    PubMed

    Lin, Ning; Gèze, Annabelle; Wouessidjewe, Denis; Huang, Jin; Dufresne, Alain

    2016-03-23

    A biocompatible hydrogel with a double-membrane structure is developed from cationic cellulose nanocrystals (CNC) and anionic alginate. The architecture of the double-membrane hydrogel involves an external membrane composed of neat alginate, and an internal composite hydrogel consolidates by electrostatic interactions between cationic CNC and anionic alginate. The thickness of the outer layer can be regulated by the adsorption duration of neat alginate, and the shape of the inner layer can directly determine the morphology and dimensions of the double-membrane hydrogel (microsphere, capsule, and filmlike shapes). Two drugs are introduced into the different membranes of the hydrogel, which will ensure the complexing drugs codelivery and the varied drugs release behaviors from two membranes (rapid drug release of the outer hydrogel, and prolonged drug release of the inner hydrogel). The double-membrane hydrogel containing the chemically modified cellulose nanocrystals (CCNC) in the inner membrane hydrogel can provide the sustained drug release ascribed to the "nano-obstruction effect" and "nanolocking effect" induced by the presence of CCNC components in the hydrogels. Derived from natural polysaccharides (cellulose and alginate), the novel double-membrane structure hydrogel material developed in this study is biocompatible and can realize the complexing drugs release with the first quick release of one drug and the successively slow release of another drug, which is expected to achieve the synergistic release effects or potentially provide the solution to drug resistance in biomedical application.

  3. Production of hollow aerogel microspheres

    DOEpatents

    Upadhye, Ravindra S.; Henning, Sten A.

    1993-01-01

    A method is described for making hollow aerogel microspheres of 800-1200 .mu. diameter and 100-300 .mu. wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  4. Production of hollow aerogel microspheres

    SciTech Connect

    Upadhye, R.S.; Henning, S.A.

    1990-12-31

    A method is described for making hollow aerogel microspheres of 800--1200{mu} diameter and 100--300{mu} wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  5. Optical cavity modes of a single crystalline zinc oxide microsphere.

    PubMed

    Moirangthem, Rakesh Singh; Cheng, Pi-Ju; Chien, Paul Ching-Hang; Ngo, Buu Trong Huynh; Chang, Shu-Wei; Tien, Chung-Hao; Chang, Yia-Chung

    2013-02-11

    A detailed study on the optical cavity modes of zinc oxide microspheres under the optical excitation is presented. The zinc oxide microspheres with diameters ranging from 1.5 to 3.0 µm are prepared using hydrothermal growth technique. The photoluminescence measurement of a single microsphere shows prominent resonances of whispering gallery modes at room temperature. The experimentally observed whispering gallery modes in the photoluminescence spectrum are compared with theoretical calculations using analytical and finite element methods in order to clarify resonance properties of these modes. The comparison between theoretical analysis and experiment suggests that the dielectric constant of the ZnO microsphere is somewhat different from that for bulk ZnO. The sharp resonances of whispering gallery modes in zinc oxide microspheres cover the entire visible window. They may be utilized in realizations of optical resonators, light emitting devices, and lasers for future chip integrations with micro/nano optoelectronic circuits, and developments of optical biosensors. PMID:23481759

  6. Development and physicochemical characterization of alginate composite film loaded with simvastatin as a potential wound dressing.

    PubMed

    Rezvanian, Masoud; Amin, Mohd Cairul Iqbal Mohd; Ng, Shiow-Fern

    2016-02-10

    Previously, studies have demonstrated that topical application of simvastatin can promote wound healing in diabetic mice via augmentation of angiogenesis and lymphangiogenesis. This study aimed to formulate and characterize simvastatin in alginate-based composite film wound dressings. Biopolymers used for composite films were sodium alginate blended with pectin or gelatin. The films were prepared and characterized based on their physical properties, surface morphology, mechanical strength and rheology. Then, in vitro drug releases from the films were investigated and, finally, the cell viability assay was performed to assess the cytotoxicity profile. From the pre-formulation studies, alginate/pectin composite film showed to possess desirable wound dressing properties and superior mechanical properties. The in vitro drug release profile revealed that alginate/pectin film produced a controlled release drug profile, and cell viability assay showed that the film was non-toxic. In summary, alginate/pectin composite film is suitable to be formulated with simvastatin as a potential wound dressing.

  7. Superabsorbent nanocomposite (alginate-g-PAMPS/MMT): synthesis, characterization and swelling behavior.

    PubMed

    Yadav, Mithilesh; Rhee, Kyong Yop

    2012-09-01

    A superabsorbent composite (alginate-g-PAMPS/MMT) was prepared by graft copolymerization from alginate, 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and Na+ montmorillonite (MMT) in an inert atmosphere. Effects of polymerization variables on water absorbency, including the content of Na+ montmorillonite, sodium alginate, N,N'-methylenebisacrylamide and AMPS, were studied. The introduced montmorillonite formed a loose and porous surface and improved the water absorbency of the alginate-g-PAMPS/MMT superabsorbent composite. Swelling behaviors of the superabsorbent composites in various cationic salt solutions (NaCl, CaCl2 and FeCl3) and anionic salt solutions (NaCl and Na2SO4) were also systematically investigated. The superabsorbent composite was further characterized using Fourier transform infrared spectroscopy (FTIR), rheology, thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) taking alginate-g-PAMPS as a reference. PMID:24751026

  8. Alginate: properties and biomedical applications

    PubMed Central

    Lee, Kuen Yong; Mooney, David J.

    2011-01-01

    Alginate is a biomaterial that has found numerous applications in biomedical science and engineering due to its favorable properties, including biocompatibility and ease of gelation. Alginate hydrogels have been particularly attractive in wound healing, drug delivery, and tissue engineering applications to date, as these gels retain structural similarity to the extracellular matrices in tissues and can be manipulated to play several critical roles. This review will provide a comprehensive overview of general properties of alginate and its hydrogels, their biomedical applications, and suggest new perspectives for future studies with these polymers. PMID:22125349

  9. Metabolism of proteinoid microspheres

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W. (Principal Investigator)

    1987-01-01

    The literature of metabolism in proteinoids and proteinoid microspheres is reviewed and criticized from a biochemical and experimental point of view. Closely related literature is also reviewed in order to understand the function of proteinoids and proteinoid microspheres. Proteinoids or proteinoid microspheres have many activities. Esterolysis, decarboxylation, amination, deamination, and oxidoreduction are catabolic enzyme activities. The formation of ATP, peptides or oligonucleotides is synthetic enzyme activities. Additional activities are hormonal and inhibitory. Selective formation of peptides is an activity of nucleoproteinoid microspheres; these are a model for ribosomes. Mechanisms of peptide and oligonucleotide syntheses from amino acids and nucleotide triphosphate by proteinoid microspheres are tentatively proposed as an integrative consequence of reviewing the literature.

  10. Metabolism of proteinoid microspheres

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W. (Principal Investigator)

    1987-01-01

    The literature of metabolism in proteinoids and proteinoid microspheres is reviewed and criticized from a biochemical and experimental point of view. Closely related literature is also reviewed in order to understand the function of proteinoids and proteinoid microspheres. Proteinoids or proteinoid microspheres have many activities. Esterolyis, decarboxylation, amination, deamination, and oxidoreduction are catabolic enzyme activities. The formation of ATP, peptides or oligonucleotides is synthetic enzyme activities. Additional activities are hormonal and inhibitory. Selective formation of peptides is an activity of nucleoproteinoid microspheres; these are a model for ribosomes. Mechanisms of peptide and oligonucleotide syntheses from amino acids and nucleotide triphosphate by proteinoid microspheres are tentatively proposed as an integrative consequence of reviewing the literature.

  11. Quantum Magnetomechanics with Levitating Superconducting Microspheres

    NASA Astrophysics Data System (ADS)

    Romero-Isart, O.; Clemente, L.; Navau, C.; Sanchez, A.; Cirac, J. I.

    2012-10-01

    We show that by magnetically trapping a superconducting microsphere close to a quantum circuit, it is possible to perform ground-state cooling and prepare quantum superpositions of the center-of-mass motion of the microsphere. Due to the absence of clamping losses and time-dependent electromagnetic fields, the mechanical motion of micrometer-sized metallic spheres in the Meissner state is predicted to be very well isolated from the environment. Hence, we propose to combine the technology of magnetic microtraps and superconducting qubits to bring relatively large objects to the quantum regime.

  12. Combining submerged electrospray and UV photopolymerization for production of synthetic hydrogel microspheres for cell encapsulation.

    PubMed

    Young, Cara J; Poole-Warren, Laura A; Martens, Penny J

    2012-06-01

    Microencapsulation within hydrogel microspheres holds much promise for drug and cell delivery applications. Synthetic hydrogels have many advantages over more commonly used natural materials such as alginate, however their use has been limited due to a lack of appropriate methods for manufacturing these microspheres under conditions compatible with sensitive proteins or cells. This study investigated the effect of flow rate and voltage on size and uniformity of the hydrogel microspheres produced via submerged electrospray combined with UV photopolymerization. In addition, the mechanical properties and cell survival within microspheres was studied. A poly(vinyl alcohol) (PVA) macromer solution was sprayed in sunflower oil under flow rates between 1-100 µL/min and voltages 0-10 kV. The modes of spraying observed were similar to those previously reported for electrospraying in air. Spheres produced were smaller for lower flow rates and higher voltages and mean size could be tailored from 50 to 1,500 µm. The microspheres exhibited a smooth, spherical morphology, did not aggregate and the compressive modulus of the spheres (350 kPa) was equivalent to bulk PVA (312 kPa). Finally, L929 fibroblasts were encapsulated within PVA microspheres and showed viability >90% after 24 h. This process shows great promise for the production of synthetic hydrogel microspheres, and specifically supports encapsulation of cells.

  13. Alginate Nanoparticles as a Promising Adjuvant and Vaccine Delivery System

    PubMed Central

    Sarei, F.; Dounighi, N. Mohammadpour; Zolfagharian, H.; Khaki, P.; Bidhendi, S. Moradi

    2013-01-01

    During last decades, diphtheria has remained as a serious disease that still outbreaks and can occur worldwide. Recently, new vaccine delivery systems have been developed by using the biodegradable and biocompatible polymers such as alginate. Alginate nanoparticles as a carrier with adjuvant and prolong release properties that enhance the immunogenicity of vaccines. In this study diphtheria toxoid loaded nanoparticles were prepared by ionic gelation technique and characterized with respect to size, zeta potential, morphology, encapsulation efficiency, release profile, and immunogenicity. Appropriate parameters (calcium chloride and sodium alginate concentration, homogenization rate and homogenization time) redounded to the formation of suitable nanoparticles with a mean diameter of 70±0.5 nm. The loading studies of the nanoparticles resulted in high loading capacities (>90%) and subsequent release studies showed prolong profile. The stability and antigenicity of toxoid were evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and ouchterlony test and proved that the encapsulation process did not affect the antigenic integrity and activity. Guinea pigs immunized with the diphtheria toxoid-loaded alginate nanoparticles showed highest humoral immune response than conventional vaccine. It is concluded that, with regard to the desirable properties of nanoparticles and high immunogenicity, alginate nanoparticles could be considered as a new promising vaccine delivery and adjuvant system. PMID:24302799

  14. Methylene blue adsorption on graphene oxide/calcium alginate composites.

    PubMed

    Li, Yanhui; Du, Qiuju; Liu, Tonghao; Sun, Jiankun; Wang, Yonghao; Wu, Shaoling; Wang, Zonghua; Xia, Yanzhi; Xia, Linhua

    2013-06-01

    Graphene oxide has been used as an adsorbent in wastewater treatment. However, the dispersibility in aqueous solution and the biotoxicity to human cells of graphene oxide limits its practical application in environmental protection. In this research, a novel environmental friendly adsorbent, calcium alginate immobilized graphene oxide composites was prepared. The effects of pH, contact time, temperature and dosage on the adsorption properties of methylene blue onto calcium alginate immobilized graphene oxide composites were investigated. The equilibrium adsorption data were described by the Langmuir and Freundlich isotherms. The maximum adsorption capacity obtained from Langmuir isotherm equation was 181.81 mg/g. The pseudo-first order, pseudo-second order, and intraparticle diffusion equation were used to evaluate the kinetic data. Thermodynamic analysis of equilibriums indicated that the adsorption reaction of methylene blue onto calcium alginate immobilized graphene oxide composites was exothermic and spontaneous in nature.

  15. Optimization of alpha-amylase immobilization in calcium alginate beads.

    PubMed

    Ertan, Figen; Yagar, Hulya; Balkan, Bilal

    2007-01-01

    alpha-Amylase enzyme was produced by Aspergillus sclerotiorum under SSF conditions, and immobilized in calcium alginate beads. Effects of immobilization conditions, such as alginate concentration, CaCl(2) concentration, amount of loading enzyme, bead size, and amount of beads, on enzymatic activity were investigated. Optimum alginate and CaCl(2) concentration were found to be 3% (w/v). Using a loading enzyme concentration of 140 U mL(-1), and bead (diameter 3 mm) amount of 0.5 g, maximum enzyme activity was observed. Beads prepared at optimum immobilization conditions were suitable for up to 7 repeated uses, losing only 35% of their initial activity. Among the various starches tested, the highest enzyme activity (96.2%) was determined in soluble potato starch hydrolysis for 120 min at 40 degrees C.

  16. Synthesis of thiolated alginate and evaluation of mucoadhesiveness, cytotoxicity and release retardant properties.

    PubMed

    Jindal, A B; Wasnik, M N; Nair, Hema A

    2010-11-01

    Modification of polymers by covalent attachment of thiol bearing pendant groups is reported to impart many beneficial properties to them. Hence in the present study, sodium alginate-cysteine conjugate was synthesized by carbodiimide mediated coupling under varying reaction conditions and the derivatives characterized for thiol content. The thiolated alginate species synthesized had bound thiol content ranging from 247.8±11.03-324.54±10.107 ΅mol/g of polymer depending on the reaction conditions. Matrix tablets based on sodium alginate-cysteine conjugate and native sodium alginate containing tramadol hydrochloride as a model drug were prepared and mucoadhesive strength and in vitro drug release from the tablets were compared. Tablets containing 75 mg sodium alginate-cysteine conjugate could sustain release of 10 mg of model drug for 3 h, whereas 90% of the drug was released within 1 h from corresponding tablets prepared using native sodium alginate. An approximately 2-fold increase in the minimal detachment force of the tablets from an artificial mucin film was observed for sodium alginate-cysteine conjugate as compared to native sodium alginate. In vitro cytotoxicity studies in L-929 mouse fibroblast cells studied using an MTT assay revealed that at low concentrations of polymer, sodium alginate-cysteine conjugate was less toxic to L-929 mouse fibroblast cell line when compared to native sodium alginate. Hence, thiolation is found to be a simple route to improving polymer performance. The combination of improved controlled drug release and mucoadhesive properties coupled with the low toxicity of these new excipients builds up immense scope for the use of thiolated polymers in mucoadhesive drug delivery systems. PMID:21969750

  17. Optimizing safety of selective internal radiation therapy (SIRT) of hepatic tumors with 90Y resin microspheres: a systematic approach to preparation and radiometric procedures.

    PubMed

    Schleipman, A Robert; Gallagher, Patrick W; Gerbaudo, Victor H

    2009-02-01

    Arterial administration of 90Y microspheres is used for salvage therapy in patients with primary or metastasized tumors within the liver. The clinical use of high-yield beta emitters presents unique calibration, dosage measurement, and exposure monitoring tasks. This report illustrates the following issues: determination of container and volume-specific correction factors in a standard dose calibrator for various receipt and dispensing vial geometries using a U.S. National Institute of Standards and Technology-traceable 90Y standard solution; documentation of delivery and localization of the radionuclide; statistically-verified ion chamber measurements of residual (non infused) radioactivity; and measurement of occupational radiation exposures.

  18. Coatless alginate pellets as sustained-release drug carrier for inflammatory bowel disease treatment.

    PubMed

    Md Ramli, Siti Hajar; Wong, Tin Wui; Naharudin, Idanawati; Bose, Anirbandeep

    2016-11-01

    Conventional alginate pellets underwent rapid drug dissolution and failed to exert colon targeting unless subjected to complex coating. This study designed coatless delayed-release oral colon-specific alginate pellets for ulcerative colitis treatment. Alginate pellets, formulated with water-insoluble ethylcellulose and various calcium salts, were prepared using solvent-free melt pelletization technique which prevented reaction between processing materials during agglomeration and allowed reaction to initiate only in dissolution. Combination of acid-soluble calcium carbonate and highly water-soluble calcium acetate did not impart colon-specific characteristics to pellets due to pore formation in fragmented matrices. Combination of moderately water-soluble calcium phosphate and calcium acetate delayed drug release due to rapid alginate crosslinking by soluble calcium from acetate salt followed by sustaining alginate crosslinking by calcium phosphate. The use of 1:3 ethylcellulose-to-alginate enhanced the sustained drug release attribute. The ethylcellulose was able to maintain the pellet integrity without calcium acetate. Using hydrophobic prednisolone as therapeutic, hydrophilic alginate pellets formulated with hydrophobic ethylcellulose and moderately polar calcium phosphate exhibited colon-specific in vitro drug release and in vivo anti-inflammatory action. Coatless oral colon-specific alginate pellets can be designed through optimal formulation with melt pelletization as the processing technology. PMID:27516284

  19. Mucoadhesive Microspheres Containing Amoxicillin for Clearance of Helicobacter pylori

    PubMed Central

    Nagahara, Naoki; Akiyama, Yohko; Nakao, Masafumi; Tada, Mayumi; Kitano, Megumi; Ogawa, Yasuyuki

    1998-01-01

    In an effort to augment the anti-Helicobacter pylori effect of amoxicillin, mucoadhesive microspheres, which have the ability to reside in the gastrointestinal tract for an extended period, were prepared. The microspheres contained the antimicrobial agent and an adhesive polymer (carboxyvinyl polymer) powder dispersed in waxy hydrogenated castor oil. The percentage of amoxicillin remaining in the stomach both 2 and 4 h after oral administration of the mucoadhesive microspheres to Mongolian gerbils under fed conditions was about three times higher than that after administration in the form of a 0.5% methylcellulose suspension. The in vivo clearance of H. pylori following oral administration of the mucoadhesive microspheres and the 0.5% methylcellulose suspension to infected Mongolian gerbils was examined under fed conditions. The mucoadhesive microspheres and the 0.5% methylcellulose suspension both showed anti-H. pylori effects in this experimental model of infection, but the required dose of amoxicillin was effectively reduced by a factor of 10 when the mucoadhesive microspheres were used. In conclusion, the mucoadhesive microspheres more effectively cleared H. pylori from the gastrointestinal tract than the 0.5% methylcellulose suspension due to the prolonged gastrointestinal residence time resulting from mucoadhesion. A dosage form consisting of mucoadhesive microspheres containing an appropriate antimicrobial agent should be useful for the eradication of H. pylori. PMID:9756746

  20. Characterization of carbon cryogel microspheres as adsorbents for VOC.

    PubMed

    Yamamoto, Takuji; Kataoka, Sho; Ohmori, Takao

    2010-05-15

    Adsorption characteristics of carbon cryogel microspheres (CC microspheres) with controlled porous structure composed of mesopores (2 nmmicrospheres could be changed by varying either the size of the mesopores or the volume of the micropores. The peak temperature of the temperature-programmed desorption profiles of toluene from the CC microspheres was higher than that from granular activated carbon (GAC) with numerous micropores, indicating that toluene is adsorbed more strongly on CC microspheres than on GAC. To permit the practical use of CC microspheres, the adsorption characteristic of moisture on CC microspheres and GAC were evaluated. The effect of adsorption of moisture on the gas permeation property of an adsorption module prepared from the CC microspheres was also examined. PMID:20042276

  1. Serum albumin-alginate coated beads: mechanical properties and stability.

    PubMed

    Edwards-Lévy, F; Lévy, M C

    1999-11-01

    According to a previously described method, alginate beads were prepared from a Na-alginate solution containing propylene glycol alginate (PGA) and human serum albumin (HSA). The solution was added dropwise to a CaCl2 solution. The beads were treated with NaOH, which started the formation of amide bonds between HSA and PGA at the periphery, giving a membrane. Batches of beads with increasingly thick membranes were prepared using growing concentrations of NaOH, and studied with a texture analyser. When raising NaOH concentration, the rupture strength progressively increased, and the resistance strength to a deformation of 50% of total height also increased before slightly decreasing for the highest NaOH concentration. Variations of bead elasticity were also observed. When the beads were prepared with saline reducing gelation time from 10 to 5 min, and reaction time from 15 to 5 min, mechanical properties varied more progressively with the NaOH concentration, while the results became more reproducible. A series of assays conducted with 0.01 M NaOH confirmed the importance of using a short gelation time, and saline rather than water. Stability assays were also performed. The results were compared to those of alginate-polylysine coated beads and showed the interest of the transacylation method. PMID:10535819

  2. Synthesis and Characterization of Sodium Alginate Conjugate and Study of Effect of Conjugation on Drug Release from Matrix Tablet.

    PubMed

    Satheeshababu, B K; Mohamed, I

    2015-01-01

    The aim of the present research work to study the effect of conjugation of the polymer on drug release from the matrix tablets. Sodium alginate L-cysteine conjugate was achieved by covalent attachment of thiol group of L-cysteine with the primary amino group of sodium alginate through the amide bonds formed by primary amino groups of the sodium alginate and the carboxylic acid group of L-cysteine. The synthesised sodium alginate L-cysteine conjugate was characterised by determining of charring point, Fourier transmission-infrared and differential scanning calorimetric analysis. To study the effect of conjugation on drug release pattern, the matrix tablets were prepared using various proportions of sodium alginate and sodium alginate L-cysteine conjugate along with atorvastatin calcium as model drug. The wet granulation technique was adopted and prepared matrix tablets were evaluated for various physical parameters. The in vitro drug release study results suggested that tablet formulated in combination of sodium alginate and sodium alginate L-cysteine conjugate S4 showed 100% after 8 h drug release whereas formulated with only sodium alginate S0 released 40% in 8 h. PMID:26798173

  3. Synthesis and Characterization of Sodium Alginate Conjugate and Study of Effect of Conjugation on Drug Release from Matrix Tablet

    PubMed Central

    Satheeshababu, B. K.; Mohamed, I.

    2015-01-01

    The aim of the present research work to study the effect of conjugation of the polymer on drug release from the matrix tablets. Sodium alginate L-cysteine conjugate was achieved by covalent attachment of thiol group of L-cysteine with the primary amino group of sodium alginate through the amide bonds formed by primary amino groups of the sodium alginate and the carboxylic acid group of L-cysteine. The synthesised sodium alginate L-cysteine conjugate was characterised by determining of charring point, Fourier transmission-infrared and differential scanning calorimetric analysis. To study the effect of conjugation on drug release pattern, the matrix tablets were prepared using various proportions of sodium alginate and sodium alginate L-cysteine conjugate along with atorvastatin calcium as model drug. The wet granulation technique was adopted and prepared matrix tablets were evaluated for various physical parameters. The in vitro drug release study results suggested that tablet formulated in combination of sodium alginate and sodium alginate L-cysteine conjugate S4 showed 100% after 8 h drug release whereas formulated with only sodium alginate S0 released 40% in 8 h. PMID:26798173

  4. In Vitro and In Vivo Suppression of Cellular Activity by Guanidinoethyl Disulfide Released from Hydrogel Microspheres Composed of Partially Oxidized Hyaluronan and Gelatin

    PubMed Central

    Weng, Lihui; Ivanova, Natalia D.; Zakhaleva, Julia; Chen, Weiliam

    2008-01-01

    This paper describes the preparation of oxidized hyaluronan crosslinked gelatin microspheres for drug delivery. Microspheres were prepared by a modified water-in-oil-emulsion crosslinking method, where 3-dimensional crosslinked hydrogel microspheres formed in the absence of any extraneous crosslinker. SEM analyses of the microspheres showed rough surfaces in their dried state with an average diameter of 90 µm. Lyophilization of fully-swollen microspheres revealed a highly porous structure. Guanidinoethyl disulfide (GED) was used as a model drug for incorporation into the microspheres; encapsulation of GED was confirmed by HPLC. There was an inverse correlation between the diameters of the microspheres with their GED loading. Macrophage was used as a model cell to evaluate the in vitro efficacy of GED release from the microspheres. The in vivo efficacy of the microspheres was further validated in a mouse full-thickness transcutaneous dermal wound model through suppression of cell infiltration. PMID:18678403

  5. Modified composite microspheres of hydroxyapatite and poly(lactide-co-glycolide) as an injectable scaffold

    NASA Astrophysics Data System (ADS)

    Hu, Xixue; Shen, Hong; Yang, Fei; Liang, Xinjie; Wang, Shenguo; Wu, Decheng

    2014-02-01

    The compound of hydroxyapatite-poly(lactide-co-glycolide) (HA-PLGA) was prepared by ionic bond between HA and PLGA. HA-PLGA was more stable than the simple physical blend of hydroxyapatite and poly(lactide-co-glycolide) (HA/PLGA). The surface of HA-PLGA microsphere fabricated by an emulsion-solvent evaporation method was rougher than that of HA/PLGA microspheres. Moreover, surface HA content of HA-PLGA microspheres was more than that of HA/PLGA microspheres. In vitro mouse OCT-1 osteoblast-like cell culture results showed that the HA-PLGA microspheres clearly promoted osteoblast attachment, proliferation and alkaline phosphatase activity. It was considered that surface rich HA component and rough surface of HA-PLGA microsphere enhanced cell growth and differentiation. The good cell affinity of the HA-PLGA microspheres indicated that they could be used as an injectable scaffold for bone tissue engineering.

  6. Entrapment of cross-linked cellulase colloids in alginate beads for hydrolysis of cellulose.

    PubMed

    Nguyen, Le Truc; Lau, Yun Song; Yang, Kun-Lin

    2016-09-01

    Entrapment of enzymes in calcium alginate beads is a popular enzyme immobilization method. However, leaching of immobilized enzymes from the alginate beads is a common problem because enzyme molecules are much smaller than the pore size of alginate beads (∼200nm). To address this issue, we employ a millifluidic reactor to prepare cross-linked cellulase aggregate (XCA) colloids with a uniform size (∼300nm). Subsequently, these colloids are immobilized in calcium alginate beads as biocatalysts to hydrolyze cellulose substrates. By using fluorescent microscopy, we conclude that the immobilized XCA colloids distribute uniformly inside the beads and do not leach out from the beads after long-term incubation. Meanwhile, the pore size of the alginate beads is big enough for the cellulose substrates and fibers to diffuse into the beads for hydrolysis. For example, palm oil fiber and microcrystalline cellulose can be hydrolyzed within 48h and release reducing sugar concentrations up to 2.48±0.08g/l and 4.99±0.09g/l, respectively. Moreover, after 10 cycles of hydrolysis, 96.4% of the XCA colloids remain inside the alginate beads and retain 67% of the original activity. In contrast, free cellulase immobilized in the alginate beads loses its activity completely after 10 cycles. The strategy can also be used to prepare other types of cross-linked enzyme aggregates with high uniformity.

  7. Entrapment of cross-linked cellulase colloids in alginate beads for hydrolysis of cellulose.

    PubMed

    Nguyen, Le Truc; Lau, Yun Song; Yang, Kun-Lin

    2016-09-01

    Entrapment of enzymes in calcium alginate beads is a popular enzyme immobilization method. However, leaching of immobilized enzymes from the alginate beads is a common problem because enzyme molecules are much smaller than the pore size of alginate beads (∼200nm). To address this issue, we employ a millifluidic reactor to prepare cross-linked cellulase aggregate (XCA) colloids with a uniform size (∼300nm). Subsequently, these colloids are immobilized in calcium alginate beads as biocatalysts to hydrolyze cellulose substrates. By using fluorescent microscopy, we conclude that the immobilized XCA colloids distribute uniformly inside the beads and do not leach out from the beads after long-term incubation. Meanwhile, the pore size of the alginate beads is big enough for the cellulose substrates and fibers to diffuse into the beads for hydrolysis. For example, palm oil fiber and microcrystalline cellulose can be hydrolyzed within 48h and release reducing sugar concentrations up to 2.48±0.08g/l and 4.99±0.09g/l, respectively. Moreover, after 10 cycles of hydrolysis, 96.4% of the XCA colloids remain inside the alginate beads and retain 67% of the original activity. In contrast, free cellulase immobilized in the alginate beads loses its activity completely after 10 cycles. The strategy can also be used to prepare other types of cross-linked enzyme aggregates with high uniformity. PMID:27318817

  8. Facile synthesis of vanadium oxide microspheres for lithium-ion battery cathodes

    NASA Astrophysics Data System (ADS)

    Fei, Hailong; Feng, Wenjing; Lin, Yunsheng

    2016-05-01

    A simple and versatile method for preparation of non-solid and solid V2O5 microspheres is developed. Non-solid and solid V2O5 microspheres can be controllably prepared via adjusting the mixed solvent volume ratio and reaction time at low temperature. Solid V2O5 microspheres display higher discharge capacity and better cycling performance than non-solid V2O5 microspheres as a cathode material for lithium-ion batteries, which is ascribed to smaller charge transfer and diffusion resistance.

  9. Optical constants of a sodium alginate polymer in the UV-vis range

    NASA Astrophysics Data System (ADS)

    Esteban, Ó.; Marvá, F.; Martínez-Antón, J. C.

    2009-02-01

    The dispersive refractive index and the thickness of alginate polymer films have been obtained by using the envelope-extremes location technique. The uncertainty in the determination of the refractive index is of the order of 0.01. The alginate polymer has been prepared with a solution of sodium alginate with a concentration of 0.7% in weight, mixed with a 0.03 M solution of CaCl 2. Since the main application of this kind of polymers is the immobilization of living organism for biosensors, especially those based on fluorescence measurements, we focus the analysis in the ultra-violet-visible (UV-vis) spectral range.

  10. Oxygen sensing glucose biosensors based on alginate nano-micro systems

    NASA Astrophysics Data System (ADS)

    Chaudhari, Rashmi; Joshi, Abhijeet; Srivastava, Rohit

    2014-04-01

    Clinically glucose monitoring in diabetes management is done by point-measurement. However, an accurate, continuous glucose monitoring, and minimally invasive method is desirable. The research aims at developing fluorescence-mediated glucose detecting biosensors based on near-infrared radiation (NIR) oxygen sensitive dyes. Biosensors based on Glucose oxidase (GOx)-Rudpp loaded alginate microspheres (GRAM) and GOx-Platinum-octaethylporphyrin (PtOEP)-PLAalginate microsphere system (GPAM) were developed using air-driven atomization and characterized using optical microscopy, CLSM, fluorescence spectro-photometry etc. Biosensing studies were performed by exposing standard solutions of glucose. Uniform sized GRAM and GPAM with size 50+/-10μm were formed using atomization. CLSM imaging of biosensors suggests that Rudpp and PtOEP nanoparticles are uniformly distributed in alginate microspheres. The GRAM and GPAM showed a good regression constant of 0.974 and of 0.9648 over a range of 0-10 mM of glucose with a high sensitivity of 3.349%/mM (625 nm) and 2.38%/mM (645 nm) at 10 mM of glucose for GRAM and GPAM biosensor. GRAM and GPAM biosensors show great potential in development of an accurate and minimally invasive glucose biosensor. NIR dye based assays can aid sensitive, minimally-invasive and interference-free detection of glucose in diabetic patients.

  11. POROUS WALL, HOLLOW GLASS MICROSPHERES

    SciTech Connect

    Sexton, W.

    2012-06-30

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to 'normal glasses of a 1 to 2 order of

  12. Organic aerogel microspheres

    DOEpatents

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1999-06-01

    Organic aerogel microspheres are disclosed which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonstick gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  13. Organic aerogel microspheres

    DOEpatents

    Mayer, Steven T.; Kong, Fung-Ming; Pekala, Richard W.; Kaschmitter, James L.

    1999-01-01

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  14. Injectable hydrogels derived from phosphorylated alginic acid calcium complexes.

    PubMed

    Kim, Han-Sem; Song, Minsoo; Lee, Eun-Jung; Shin, Ueon Sang

    2015-06-01

    Phosphorylation of sodium alginate salt (NaAlg) was carried out using H3PO4/P2O5/Et3PO4 followed by acid-base reaction with Ca(OAc)2 to give phosphorylated alginic acid calcium complexes (CaPAlg), as a water dispersible alginic acid derivative. The modified alginate derivatives including phosphorylated alginic acid (PAlg) and CaPAlg were characterized by nuclear magnetic resonance spectroscopy for (1)H, and (31)P nuclei, high resolution inductively coupled plasma optical emission spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. CaPAlg hydrogels were prepared simply by mixing CaPAlg solution (2w/v%) with NaAlg solution (2w/v%) in various ratios (2:8, 4:6, 6:4, 8:2) of volume. No additional calcium salts such as CaSO4 or CaCl2 were added externally. The gelation was completed within about 3-40min indicating a high potential of hydrogel delivery by injection in vivo. Their mechanical properties were tested to be ≤6.7kPa for compressive strength at break and about 8.4kPa/mm for elastic modulus. SEM analysis of the CaPAlg hydrogels showed highly porous morphology with interconnected pores of width in the range of 100-800μm. Cell culture results showed that the injectable hydrogels exhibited comparable properties to the pure alginate hydrogel in terms of cytotoxicity and 3D encapsulation of cells for a short time period. The developed injectable hydrogels showed suitable physicochemical and mechanical properties for injection in vivo, and could therefore be beneficial for the field of soft tissue engineering. PMID:25842118

  15. Evidence of direct crystal growth and presence of hollow microspheres in magnetite particles prepared by oxidation of Fe(OH)2.

    PubMed

    Vereda, Fernando; Rodríguez-González, Benito; de Vicente, Juan; Hidalgo-Alvarez, Roque

    2008-02-15

    We provide new information relevant to the crystallinity and growth mechanism of magnetite particles that were fabricated following the method of Sugimoto and Matijević [J. Colloid Interface Sci. 74 (1980) 227]. These authors observed that in a small excess of Fe(2+), particles grew by aggregation and recrystallization of smaller units, so that until now the resulting particles were thought to be polycrystalline. With the help of transmission electron microscopy (TEM) and selected area electron diffraction (SAED), we also detected the presence of monocrystalline particles, which are strong evidence of the occurrence of direct crystal growth. This growth mechanism seems to coexist with that of the aggregation of primary units proposed by Sugimoto and Matijević. Careful examination of electron microscopy micrographs also revealed the presence of many hollow polycrystalline microspheres. PMID:18061607

  16. Alginate electrodeposition onto three-dimensional porous Co-Ni films as drug delivery platforms.

    PubMed

    García-Torres, J; Gispert, C; Gómez, E; Vallés, E

    2015-01-21

    Three-dimensional porous Co-Ni films/alginate hybrid materials have been successfully prepared by electrodeposition to be used as a steerable magnetic device for drug delivery. Firstly, 3D porous Co-Ni films were prepared as substrates for the subsequent electrodeposition of the alginate biopolymer. Cyclic voltammetry, galvanostatic and potentiostatic studies were performed to establish the best conditions to obtain porous Co-Ni films. The electrochemical experiments were carried out in an electrolyte containing the metal salts and ammonium chloride at low pHs. In a second stage, the electrochemical deposition of alginate as a biocompatible polymer drug delivery carrier was performed. The characteristics of the alginate matrix were investigated in terms of electrochemical properties, morphology and drug release. The hybrid material obtained showed soft-magnetic behavior and drug release indicating its suitability to be used as a steerable magnetic drug delivery device.

  17. Combination of immune stimulating adjuvants with poly(lactide-co-glycolide) microspheres enhances the immune response of vaccines.

    PubMed

    Salvador, Aiala; Igartua, Manoli; Hernández, Rosa M; Pedraz, José Luis

    2012-01-11

    The development of vaccines that generate mixed humoral and cellular immune responses is a challenge in vaccinology. Poly(lactide-co-glycolide) microspheres are vaccine adjuvants which possess the advantage of allowing the coencapsulation of other adjuvants in addition to the antigen. Thus, we can stimulate the immune system from different ways and resemble the effects of a natural infection. In this study, we have coencapsulated BSA with monophosphoryl lipid A, polyinosinic-polycytidylic acid, α-galactosylceramide and alginate into PLGA microspheres. All the microspheres have developed a higher humoral immune response, in terms of release of total IgG, in comparison to the administration of soluble antigen. In addition, they triggered a more balanced IgG1/IgG2a response. The combination of MPLA and α-galactosylceramide within the microspheres developed the higher cellular response, confirming that combination of adjuvants with different action mechanisms is a good strategy to increase vaccines' immunogenicity.

  18. Hydrothermal synthesis and photocatalytic performance of hierarchical Bi{sub 2}MoO{sub 6} microspheres using BiOI microspheres as self-sacrificing templates

    SciTech Connect

    Xu, Ming; Zhang, Wei-De

    2015-07-15

    Bi{sub 2}MoO{sub 6} hierarchical microspheres were successfully prepared through phase transformation from BiOI microspheres with the assistance of sodium citrate under hydrothermal condition. The possible formation mechanism for the conversion of BiOI to Bi{sub 2}MoO{sub 6} is discussed here. After being annealed at 300 °C for 2 h, the obtained Bi{sub 2}MoO{sub 6} microspheres exhibited remarkably enhanced photocatalytic activity towards the degradation of rhodamine B and phenol. The superior catalytic performance can be attributed to its larger surface area and higher crystallinity. In addition, Bi{sub 2}MoO{sub 6} microspheres are stable during the degradation reaction and can be used repeatedly. - Graphical abstract: Bi{sub 2}MoO{sub 6} hierarchical microspheres were successfully prepared through a facile partial anion exchange strategy using BiOI microspheres as self-sacrificing templates. The Bi{sub 2}MoO{sub 6} microspheres show high visible light photocatalytic activity. - Highlights: • Bi{sub 2}MoO{sub 6} microspheres were prepared via self-sacrificing template anion exchange. • Sodium citrate-assisted anion exchange for preparation of Bi{sub 2}MoO{sub 6} photocatalyst. • Bi{sub 2}MoO{sub 6} catalysts show high visible light photocatalytic activity.

  19. Facile synthesis of monodisperse porous Co3O4 microspheres with superior ethanol sensing properties.

    PubMed

    Sun, Chunwen; Rajasekhara, Shreyas; Chen, Yujin; Goodenough, John B

    2011-12-28

    A solvothermal method was developed to prepare on a large scale monodisperse porous β-Co(OH)(2) microspheres consisting of nanoplatelets. Co(3)O(4) microspheres with porous platelets were obtained via subsequent thermal decomposition. These Co(3)O(4) microspheres show much higher ethanol sensitivity and selectivity at a relatively low temperature (135 °C) compared with those of commercial Co(3)O(4) nanoparticles.

  20. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized...

  1. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized...

  2. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized...

  3. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized...

  4. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized...

  5. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  6. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  7. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  8. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  9. 21 CFR 582.7187 - Calcium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium alginate. 582.7187 Section 582.7187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium alginate. (a) Product. Calcium alginate. (b) Conditions of use. This substance is...

  10. 21 CFR 582.7187 - Calcium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium alginate. 582.7187 Section 582.7187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium alginate. (a) Product. Calcium alginate. (b) Conditions of use. This substance is...

  11. 21 CFR 582.7187 - Calcium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium alginate. 582.7187 Section 582.7187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium alginate. (a) Product. Calcium alginate. (b) Conditions of use. This substance is...

  12. 21 CFR 582.7187 - Calcium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium alginate. 582.7187 Section 582.7187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium alginate. (a) Product. Calcium alginate. (b) Conditions of use. This substance is...

  13. 21 CFR 582.7187 - Calcium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium alginate. 582.7187 Section 582.7187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium alginate. (a) Product. Calcium alginate. (b) Conditions of use. This substance is...

  14. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  15. 21 CFR 184.1011 - Alginic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Alginic acid. 184.1011 Section 184.1011 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1011 Alginic acid. (a) Alginic acid is a colloidal, hydrophilic polysaccharide obtained from...

  16. 21 CFR 184.1011 - Alginic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Alginic acid. 184.1011 Section 184.1011 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1011 Alginic acid. (a) Alginic acid is a colloidal,...

  17. 21 CFR 184.1011 - Alginic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Alginic acid. 184.1011 Section 184.1011 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1011 Alginic acid. (a) Alginic acid is a colloidal,...

  18. 21 CFR 184.1011 - Alginic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Alginic acid. 184.1011 Section 184.1011 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1011 Alginic acid. (a) Alginic acid is a colloidal,...

  19. 21 CFR 184.1011 - Alginic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Alginic acid. 184.1011 Section 184.1011 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1011 Alginic acid. (a) Alginic acid is a colloidal,...

  20. 21 CFR 582.7133 - Ammonium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium alginate. 582.7133 Section 582.7133 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Ammonium alginate. (a) Product. Ammonium alginate. (b) Conditions of use. This substance is...