Science.gov

Sample records for alginate microspheres prepared

  1. Preparation of regular sized Ca-alginate microspheres using membrane emulsification method.

    PubMed

    You, J O; Park, S B; Park, H Y; Haam, S; Chung, C H; Kim, W S

    2001-01-01

    Monodisperse Ca-alginate microspheres were prepared using the membrane emulsification method. Three ionic types of drugs (anionic, cationic and non-ionic) were incorporated into the microspheres, and the effects of sodium alginate concentration and the pressure applied during the dispersing process on the properties of the microspheres were examined. Monodisperse microspheres were obtained when the concentration of alginate solution was 2 wt% and the pressure applied was 0.4 x 10(5) Pa. The mean size of microspheres was approximately 4 microm. Lidocaine x HCl (cationic), sodium salicylate (anionic) and 4-acetamidophenol (non-ionic) were selected as ionic model drugs and included in the alginate microspheres. Lidocaine x HCl (cationic drug) release was more retarded than that of the anionic drug, because of the electrostatic attraction between the negative charge of the ionized carboxyl group in the alginate chain and the positive charge of the cationic drug. In acidic release medium, a slow release was observed due to the low swelling characteristic and the increased viscosity of alginate, regardless of ionic type of drug. PMID:11428680

  2. Sodium alginate/Na+-rectorite composite microspheres: preparation, characterization, and dye adsorption.

    PubMed

    Yang, Lianli; Ma, Xiaoyan; Guo, Naini

    2012-10-01

    Sodium alginate/Na(+)-rectorite (SA/Na(+)REC) intercalated nano-composite microspheres were prepared in an inverse suspension system. The effect of the preparation conditions of SA/Na(+)REC composite microspheres on adsorption capacity for Basic Blue 9 was investigated. The structure and morphology were analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed that the optimal condition was that the amount of Na(+)-rectorite was 2wt%, the amount of cross-linker was 0.384% and the amount of the initiator was 8%. SEM showed that it is porous products with spherical particulate surface. XRD showed that intercalation is formed between Na(+)-rectorite and sodium alginate. The adsorption capacity of SA/Na(+)REC was investigated in comparison with Na(+)-rectorite and sodium alginate using different cationic dyes. The SA/Na(+)REC composite microspheres showed the highest adsorption capacity. The reason lies in the existence of intercalated sodium alginate. It could enlarge the pore structure of microspheres, facilitating the penetration of macromolecular dyes. PMID:22840012

  3. Effects of aldehydes and methods of cross-linking on properties of calcium alginate microspheres prepared by emulsification.

    PubMed

    Chan, Lai Wah; Heng, Paul W S

    2002-03-01

    Calcium alginate microspheres were prepared by an emulsification method and cross-linked with various aldehydes using different methods. Methanal and pentanedial produced low aggregation of microspheres while octanal and octadecanal produced the opposite effect. The latter two aldehydes displaced very little calcium ions from the alginate microspheres, indicating that the aggregation was due to the tackiness imparted by the aldehydes to the microsphere surface. Higuchi's model was not applicable to the drug release from microspheres in this study. The microspheres treated with methanal or pentanedial showed comparable dissolution T75% values which were significantly higher than that of the control. In contrast, octanal and octadecanal produced microspheres with lower dissolution T75% values. The drug contents of the microspheres treated with aldehydes were significantly lower than that of the control. There was insignificant interaction between the aldehydes and the drug. However, the aldehydes were found to impart acidity to the aqueous solution to varying extents, resulting in varying drug loss from the microspheres. The properties of the microspheres were also markedly affected by the method of incorporating the aldehyde. Soaking the microspheres in methanal solution produced microspheres with marked aggregation and low drug content. PMID:11808537

  4. Oral Delivery of Exenatide via Microspheres Prepared by Cross-Linking of Alginate and Hyaluronate

    PubMed Central

    Zhang, Baojie; He, Dongyang; Fan, Yu; Liu, Nan; Chen, Yijun

    2014-01-01

    Exenatide is an FDA-approved glucose-lowering peptide drug for the treatment of type 2 diabetes by subcutaneous injection. To address the issues on the inconvenience for patient use and the difficulty of oral administration of peptide drugs, chemical cross-linking of two pH-responsive biomaterials, alginate and hyaluronate, was carried out to prepare a new material for the encapsulation of exenatide as a form of microspheres. The exenatide-loaded microspheres exhibited spherical structures with excellent loading and release behaviors in the simulated gastrointestinal tract environments. After oral administration of the microspheres in db/db mice, maximum plasma concentration of exenatide appeared at 4 hours, and blood glucose was effectively reduced to a normal level within 2 hours and maintained for another 4 hours. The bioavailability of the exenatide-loaded microspheres, relative to subcutaneous injection of exenatide, reached 10.2%. Collectively, the present study demonstrated the feasibility of orally delivering exenatide with the new cross-linked biomaterial and formulation, and showed therapeutic potential for clinical applications. PMID:24465870

  5. Oral delivery of exenatide via microspheres prepared by cross-linking of alginate and hyaluronate.

    PubMed

    Zhang, Baojie; He, Dongyang; Fan, Yu; Liu, Nan; Chen, Yijun

    2014-01-01

    Exenatide is an FDA-approved glucose-lowering peptide drug for the treatment of type 2 diabetes by subcutaneous injection. To address the issues on the inconvenience for patient use and the difficulty of oral administration of peptide drugs, chemical cross-linking of two pH-responsive biomaterials, alginate and hyaluronate, was carried out to prepare a new material for the encapsulation of exenatide as a form of microspheres. The exenatide-loaded microspheres exhibited spherical structures with excellent loading and release behaviors in the simulated gastrointestinal tract environments. After oral administration of the microspheres in db/db mice, maximum plasma concentration of exenatide appeared at 4 hours, and blood glucose was effectively reduced to a normal level within 2 hours and maintained for another 4 hours. The bioavailability of the exenatide-loaded microspheres, relative to subcutaneous injection of exenatide, reached 10.2%. Collectively, the present study demonstrated the feasibility of orally delivering exenatide with the new cross-linked biomaterial and formulation, and showed therapeutic potential for clinical applications. PMID:24465870

  6. Alginate/quaternized carboxymethyl chitosan/clay nanocomposite microspheres: preparation and drug-controlled release behavior.

    PubMed

    Liu, Bo; Luo, Jiwen; Wang, Xiaoying; Lu, Junxiang; Deng, Hongbing; Sun, Runcang

    2013-01-01

    Drug-delivery systems, using natural drug carriers, have become increasingly important because of their nontoxicity and biodegradability. In this study, firstly, quaternized carboxymethyl chitosan (QCMC) was intercalated into the interlayer of organic montmorillonite (OMMT) to obtain the QCMC/OMMT nanocomposites, their structure, morphology, and thermal stability were investigated. Next, crosslinked alginate/QCMC/OMMT (AQCOM) microsphere was obtained by crosslinking with CaCl2, and the drug-controlled release behavior was evaluated with bovine serum albumin (BSA) as model drug. The results suggested that, carboxyl groups in alginate and QCMC crosslinked with Ca(2+), quaternary ammonium groups in QCMC or OMMT electrostatically interacted with carboxyl groups in alginate, and there was stable three-dimensional network in AQCOM microsphere. The swelling ratio of AQCOM microspheres decreased with the increase of OMMT content, the lowest one was only about 45% compared to the microsphere without OMMT of 197%. Besides, the in vitro release results for BSA indicated that the AQCOM microsphere displayed more excellent encapsulation and controlled release capacities than the microsphere without OMMT. The in vitro active cutaneous anaphylaxis test was carried out on Guinea pigs, which revealed that AQCOM microsphere did not cause anaphylaxis. Therefore, QCMC/OMMT nanocomposites from natural materials are considerably suitable to apply as drug-controlled release carriers. PMID:23565870

  7. PLGA/alginate composite microspheres for hydrophilic protein delivery.

    PubMed

    Zhai, Peng; Chen, X B; Schreyer, David J

    2015-11-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. PMID:26249587

  8. In situ preparation and protein delivery of silicate–alginate composite microspheres with core-shell structure

    PubMed Central

    Wu, Chengtie; Fan, Wei; Gelinsky, Michael; Xiao, Yin; Chang, Jiang; Friis, Thor; Cuniberti, Gianaurelio

    2011-01-01

    The efficient loading and sustained release of proteins from bioactive microspheres remain a significant challenge. In this study, we have developed bioactive microspheres which can be loaded with protein and then have a controlled rate of protein release into a surrounding medium. This was achieved by preparing a bioactive microsphere system with core-shell structure, combining a calcium silicate (CS) shell with an alginate (A) core by a one-step in situ method. The result was to improve the microspheres' protein adsorption and release, which yielded a highly bioactive material with potential uses in bone repair applications. The composition and the core-shell structure, as well as the formation mechanism of the obtained CS–A microspheres, were investigated by X-ray diffraction, optical microscopy, scanning electron microscopy, energy dispersive spectrometer dot and line-scanning analysis. The protein loading efficiency reached 75 per cent in CS–A microspheres with a core-shell structure by the in situ method. This is significantly higher than that of pure A or CS–A microspheres prepared by non-in situ method, which lack a core-shell structure. CS–A microspheres with a core-shell structure showed a significant decrease in the burst release of proteins, maintaining sustained release profile in phosphate-buffered saline (PBS) at both pH 7.4 and 4.3, compared with the controls. The protein release from CS–A microspheres is predominantly controlled by a Fickian diffusion mechanism. The CS–A microspheres with a core-shell structure were shown to have improved apatite-mineralization in simulated body fluids compared with the controls, most probably owing to the existence of bioactive CS shell on the surface of the microspheres. Our results indicate that the core-shell structure of CS–A microspheres play an important role in enhancing protein delivery and mineralization, which makes these composite materials promising candidates for application in bone

  9. Redox-responsive alginate microsphere containing cystamine.

    PubMed

    Kwon, Kyeongnan; Kim, Jin-Chul

    2016-10-01

    Redox-responsive microspheres were prepared by solidifying the alginate- and cystamine-containing water droplets of O/W emulsion using calcium ion. Emulsions were prepared using alginate/cystamine mixture solution whose the carboxylic group/the amino group molar ratio was 1:1, 1:2, and 1:3, and whose the total concentration was kept to 2% (w/v). The microspheres on Scanning electron microscopy photographs were almost spherical and they were less than 1 μm in diameter. According to the energy-dispersive X-ray spectroscopy, the sulfur content of the microspheres was found to be 6.1, 11.4, and 14.8% (w/w), respectively, not markedly different from the calculated content. The release degree of blue dextran loaded in the microspheres was higher as the cystamine content was higher. Microspheres released almost the same amount of dye regardless of dithiothreitol (DTT, a reducing agent) concentration when the cystamine content was relatively low (e.g. 14.5% (w/w)), whereas they released dye in DTT concentration-dependent manner when the cystamine content was relatively high (e.g. 27.0 and 35.1% (w/w)). The light scattering intensity of alginate/cystamine mixture solution was stronger at a larger amount of cystamine, indicating that cystamine could cross-link alginate chains. The light scattering intensity decreased with increasing DTT concentration, possibly because of the breakdown of the disulfide bond of cystamine. The breakdown of the disulfide bond could account for why the DTT concentration-dependent release of dye loaded in the microspheres was observed. PMID:27484719

  10. Liquid phase coating to produce controlled-release alginate microspheres.

    PubMed

    Chan, Lai Wah; Liu, Xiaohua; Heng, Paul Wan Sia

    2005-12-01

    This study explored a liquid phase coating technique to produce polymethyl methacrylate (PMMA)-coated alginate microspheres. Alginate microspheres with a mean diameter of 85.6 microm were prepared using an emulsification method. The alginate microspheres, as cores, were then coated with different types of PMMA by a liquid phase coating technique. The release characteristics of these coated microspheres in simulated gastric (SGF) and intestinal (SIF) fluids and the influence of drug load on encapsulation efficiency were studied. The release of paracetamol, as a model hydrophilic drug, from the coated microspheres in SGF and SIF was greatly retarded. Release rates of Eudragit RS100-coated microspheres in SGF and SIF were similar as the rate-controlling polymer coat was insoluble in both media. Drug release from Eudragit S100-coated microspheres was more sustained in SGF than in SIF, due to the greater solubility of the coating polymer in media with pH greater than 7.0. The drug release rate was affected by the core:coat ratio. Drug release from the coated microspheres was best described by the Higuchi's square root model. The liquid phase coating technique developed offers an efficient method of coating small microspheres with markedly reduced drug loss and possible controlled drug release. PMID:16423760

  11. Preparation and characterization of Ganoderma lucidum spores-loaded alginate microspheres by electrospraying.

    PubMed

    Zhao, Ding; Li, Jing-Song; Suen, William; Chang, Ming-Wei; Huang, Jie

    2016-05-01

    Ganoderma lucidum spores (GLSs), popular functional food in preventive medicine, are susceptible to oxidative and acidic degradation during processing, storage and oral administration, resulting in the loss of sensory and nutritional qualities. The main objective of the study was to encapsulate the GLS in order to fully preserve the bioactivity of the ingredients as well as providing controlled and targeted delivery. Electrospraying was applied to prepare GLS-Alginate (GLS/A) micro beads in the current study. The size of GLS/A beads can be tailored by varying the applied voltage and drying processes. pH responsive release profiles of GLS/A beads were revealed from in vitro study in a simulated gastrointestinal environment: no release of GLS encapsulated beads in the simulated gastric fluid (pH of 1.8) was observed; while a rapid, size dependent release was found in the simulated intestinal solution (pH of 7.5). The release from smaller beads (e.g. 600 μm) was 1.5 times faster than that of larger beads (e.g. 2000 μm). In addition, the GLS release from freeze dried beads was almost 3 times faster than those of air and vacuum dried beads in the first 90 min. The present results illustrate the potential to protect GLS by encapsulation using electrospraying to achieve the controlled release of GLS ingredients. This will pave the way to develop effective GLS products with desirable bioactive components for healthcare applications. PMID:26952490

  12. Bioactive apatite incorporated alginate microspheres with sustained drug-delivery for bone regeneration application.

    PubMed

    Li, Haibin; Jiang, Fei; Ye, Song; Wu, Yingying; Zhu, Kaiping; Wang, Deping

    2016-05-01

    The strontium-substituted hydroxyapatite microspheres (SrHA) incorporated alginate composite microspheres (SrHA/Alginate) were prepared via adding SrHA/alginate suspension dropwise into calcium chloride solution, in which the gel beads were formed by means of crosslinking reaction. The structure, morphology and in vitro bioactivity of the composite microspheres were studied by using XRD, SEM and EDS methods. The biological behaviors were characterized and analyzed through inductively coupled plasma optical emission spectroscopy (ICP-OES), CCK-8, confocal laser microscope and ALP activity evaluations. The experimental results indicated that the synthetic SrHA/Alginate showed similar morphology to the well-known alginate microspheres (Alginate) and both of them possessed a great in vitro bioactivity. Compared with the control Alginate, the SrHA/Alginate enhanced MC3T3-E1 cell proliferation and ALP activity by releasing osteoinductive and osteogenic Sr ions. Furthermore, vancomycin was used as a model drug to investigate the drug release behaviors of the SrHA/Alginate, Alginate and SrHA. The results suggested that the SrHA/Alginate had a highest drug-loading efficiency and best controlled drug release properties. Additionally, the SrHA/Alginate was demonstrated to be pH-sensitive as well. The increase of the pH value in phosphate buffer solution (PBS) accelerated the vancomycin release. Accordingly, the multifunctional SrHA/Alginate can be applied in the field of bioactive drug carriers and bone filling materials. PMID:26952484

  13. A doxorubicin delivery system: Samarium/mesoporous bioactive glass/alginate composite microspheres.

    PubMed

    Zhang, Ying; Wang, Xiang; Su, Yanli; Chen, Dongya; Zhong, Wenxing

    2016-10-01

    Samarium (Sm) incorporated mesoporous bioactive glasses (MBG) microspheres have been prepared using the method of alginate cross-linking with Ca(2+) ions. The in vitro bioactivities of Sm/MBG/alginate microspheres were studied by immersing in simulated body fluid (SBF) for various periods. The results indicated that the Sm/MBG/alginate microspheres have a faster apatite formation rate on the surface. To investigate their delivery properties further, doxorubicin (DOX) was selected as a model drug. The results showed that the Sm/MBG/alginate microspheres exhibit sustained DOX delivery, and their release mechanism is controlled by Fickian diffusion according the Higuchi model. In addition, the delivery of DOX from Sm/MBG/alginate microspheres can be dominated by changing the doping concentration of Sm and the values of pH microenvironment. These all revealed that this material is a promising candidate for the therapy of bone cancer. PMID:27287115

  14. Alginate and alginate/gelatin microspheres for human adipose-derived stem cell encapsulation and differentiation.

    PubMed

    Yao, Rui; Zhang, Renji; Luan, Jie; Lin, Feng

    2012-06-01

    Human adipose-derived stem cells (hADSC) encapsulated in alginate and alginate/gelatin microspheres with adjustable properties were fabricated via an improved microsphere generating device. The mechanism of the device, porous property, swelling behavior of the microspheres and hADSC proliferation as well as adipogenic differentiation were studied extensively. Microspheres with high-ratio evenly distributed adipocytes could be obtained by utilizing the proper matrix material and manufacturing parameters. The adipocyte/hADSC microspheres were a sound in vitro mimicking of a natural fat lobule and therefore a good candidate for adipose tissue engineering and regenerative medicine. PMID:22556122

  15. In vivo evaluation of alginate microspheres of carvedilol for nasal delivery.

    PubMed

    Patil, Sanjay B; Kaul, Ankur; Babbar, Anil; Mathur, Rashi; Mishra, Anil; Sawant, Krutika K

    2012-01-01

    Mucoadhesive alginate microspheres of carvedilol (CRV) for nasal administration intended to avoid first pass metabolism and to improve bioavailability were prepared and evaluated. The microspheres were prepared by emulsification cross-linking method. Radiolabeling of CRV and its microspheres was performed by direct labeling with reduced technetium-99m ((99m) Tc). In vivo studies were performed on New Zealand white rabbits by administering the microspheres intranasally using monodose nasal insufflator. The radioactivity was measured in a well-type gamma scintillation counter. The noncompartmental pharmacokinetic analysis was performed. The pattern of deposition and clearance of the microspheres were evaluated using a radioactive tracer and the noninvasive technique of gamma scintigraphy. The clearance of alginate microsphere was compared with that of control lactose. The microspheres were nonaggregated, free flowing powders with spherical shape, and smooth surface. Pharmacokinetics study displayed an increase in area under the curve and hence in relative bioavailability when compared with intravenous administration of drug. The nasal bioavailability was 67.87% which indicates that nasal administration results in improved absorption of CRV. The results of gamma scintigraphy showed that the alginate microspheres had significantly reduced rates of clearance from the rabbit nasal cavity when compared with the control lactose. PMID:22113887

  16. Laser-assisted fabrication of highly viscous alginate microsphere

    NASA Astrophysics Data System (ADS)

    Lin, Yafu; Huang, Yong

    2011-04-01

    Encapsulated microspheres have been widely used in various biomedical applications. However, fabrication of encapsulated microspheres from highly viscous materials has always been a manufacturing challenge. The objective of this study is to explore a novel metallic foil-assisted laser-induced forward transfer (LIFT), a laser-assisted fabrication technique, to make encapsulated microspheres using high sodium alginate concentration solutions. The proposed four-layer approach includes a quartz disk, a sacrificial and adhesive layer, a metallic foil, and a transferred suspension layer. It is found that the proposed four-layer modified LIFT approach provides a promising fabrication technology for making of bead-encapsulated microspheres from highly viscous solutions. During the process, the microsphere only can be formed if the direct-writing height is larger than the critical direct-writing height; otherwise, tail structured droplets are formed; and the encapsulated microsphere diameter linearly increases with the laser fluence and decreases with the sodium alginate concentration.

  17. Kefiran-alginate gel microspheres for oral delivery of ciprofloxacin.

    PubMed

    Blandón, Lina M; Islan, German A; Castro, Guillermo R; Noseda, Miguel D; Thomaz-Soccol, Vanete; Soccol, Carlos R

    2016-09-01

    Ciprofloxacin is a broad-spectrum antibiotic associated with gastric and intestinal side effects after extended oral administration. Alginate is a biopolymer commonly employed in gel synthesis by ionotropic gelation, but unstable in the presence of biological metal-chelating compounds and/or under dried conditions. Kefiran is a microbial biopolymer able to form gels with the advantage of displaying antimicrobial activity. In the present study, kefiran-alginate gel microspheres were developed to encapsulate ciprofloxacin for antimicrobial controlled release and enhanced bactericidal effect against common pathogens. Scanning electron microscopy (SEM) analysis of the hybrid gel microspheres showed a spherical structure with a smoother surface compared to alginate gel matrices. In vitro release of ciprofloxacin from kefiran-alginate microspheres was less than 3.0% and 5.0% at pH 1.2 (stomach), and 5.0% and 25.0% at pH 7.4 (intestine) in 3 and 21h, respectively. Fourier transform infrared spectroscopy (FTIR) of ciprofloxacin-kefiran showed the displacement of typical bands of ciprofloxacin and kefiran, suggesting a cooperative interaction by hydrogen bridges between both molecules. Additionally, the thermal analysis of ciprofloxacin-kefiran showed a protective effect of the biopolymer against ciprofloxacin degradation at high temperatures. Finally, antimicrobial assays of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhymurium, and Staphylococcus aureus demonstrated the synergic effect between ciprofloxacin and kefiran against the tested microorganisms. PMID:27289312

  18. In-vivo evaluation of clindamycin release from glyceryl monooleate-alginate microspheres by NIR spectroscopy.

    PubMed

    Mohamed, Amir Ibrahim; Ahmed, Osama A A; Amin, Suzan; Elkadi, Omar Anwar; Kassem, Mohamed A

    2015-10-15

    The purpose of this study was to use near-infrared (NIR) transmission spectroscopic technique to determine clindamycin plasma concentration after oral administration of clindamycin loaded GMO-alginate microspheres using rabbits as animal models. Lyophilized clindamycin-plasma standard samples at a concentration range of 0.001-10 μg/ml were prepared and analyzed by NIR and HPLC as a reference method. NIR calibration model was developed with partial least square (PLS) regression analysis. Then, a single dose in-vivo evaluation was carried out and clindamycin-plasma concentration was estimated by NIR. Over 24 h time period, the pharmacokinetic parameters of clindamycin were calculated for the clindamycin loaded GMO-alginate microspheres (F3) and alginate microspheres (F2), and compared with the plain drug (F1). PLS calibration model with 7-principal components (PC), and 8000-9200 cm(-1) spectral range shows a good correlation between HPLC and NIR values with root mean square error of cross validation (RMSECV), root mean square error of prediction (RMSEP), and calibration coefficient (R(2)) values of 0.245, 1.164, and 0.9753, respectively, which suggests that NIR transmission technique can be used for drug-plasma analysis without any extraction procedure. F3 microspheres exhibited controlled and prolonged absorption Tmax of 4.0 vs. 1.0 and 0.5 h; Cmax of 2.37±0.3 vs. 3.81±0.8 and 5.43±0.7 μg/ml for F2 and F1, respectively. These results suggest that the combination of GMO and alginate (1:4 w/w) could be successfully employed for once daily clindamycin microspheres formulation which confirmed by low Cmax and high Tmax values. PMID:26276253

  19. Novel Alginate-Chitosan Composite Microspheres for Implant Delivery of Vancomycin and In Vivo Evaluation.

    PubMed

    Mao, Yimin; Zhao, Ming; Ge, Yongbiao; Fan, Jiang

    2016-09-01

    In this study, vancomycin loaded alginate-chitosan composite microspheres were developed by emulsion cross-linking method. The in vitro and vivo characterizations were done to evaluate the feasibility of application. Our experimental results showed that the emulsification cross-linking technique appeared to be a feasible method for the preparation of alginate-chitosan composite microspheres. The microspheres were spherical in shape and the mean particle size and drug loading were 25.3 ± 5.4 μm and 18.5 ± 2.3% respectively. A sustained vancomycin release was realized i.e. the amount of cumulative release increased in a time frame of 24 h to reach an amount i.e. ~68%. The model that fit best for vancomycin released from the microspheres was the Higuchi kinetic model with a correlation coefficient r = 0.9996. In vivo results showed that the application of microspheres not only reduced the toxicity, but also maintained effective drug concentration. In addition, no severe signs of epithelial necrosis and sloughing of epithelial cells were detected in histological studies. PMID:27085301

  20. Novel ionically crosslinked acrylamide-grafted poly(vinyl alcohol)/sodium alginate/sodium carboxymethyl cellulose pH-sensitive microspheres for delivery of Alzheimer's drug donepezil hydrochloride: Preparation and optimization of release conditions.

    PubMed

    Bulut, Emine; Şanlı, Oya

    2016-01-01

    In this work, the graft copolymer, poly(vinyl alcohol)-grafted polyacrylamide (PVA-g-PAAm), was synthesized and characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and elemental analysis. Microspheres of PVA-g-PAAm/sodium alginate (NaAlg)/sodium carboxymethyl cellulose (NaCMC) were prepared by the emulsion-crosslinking method and used for the delivery of an Alzheimer's drug, donepezil hydrochloride (DP). The release of DP increased with the increase in drug/polymer ratio (d/p) and PVA-g-PAAm/NaAlg/NaCMC ratio, while it decreased with the increase in the extent of crosslinking. The optimum DP release was obtained as 92.9% for a PVA-g-PAAm/NaAlg/NaCMC ratio of 1/2/1, d/p ratio of 1/8, and FeCl3 concentration of 7% (w/v). PMID:25301684

  1. Fabrication of inorganic hydroxyapatite nanoparticles and organic biomolecules-dual encapsulated alginate microspheres.

    PubMed

    Wang, Yu-Pu; Liao, Yu-Te; Liu, Chia-Hung; Yu, Jiashing; Chen, Jung-Chih; Wu, Kevin C-W

    2015-01-01

    Inorganic hydroxyapatite nanoparticles (HANPs) and two kinds of organic biomolecules (i.e., fluorescent dye rhodamine 6G and protein lysozyme) were coencapsulated into alginate microspheres through an air dynamical atomization with optimized operation conditions. The synthesized microspheres have several advantages: HANP provides osteoconductivity and mechanical strength, rhodamine 6G (R6G) and lysozyme act as model drugs, and alginate provides excellent biocompatibility and carboxylate functionality. The results of fluorescent microscopic images indicated the successful dual encapsulation of HANPs and lysozyme inside the alginate microspheres. Furthermore, the results of 3- (4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay showed that the fabricated alginate microspheres could be uptaken by HepG2 without apparent cytotoxicity. The dual encapsulated alginate microspheres fabricated in this study show great potential in many biomedical applications. PMID:25939572

  2. Holmium-lipiodol-alginate microspheres for fluoroscopy-guided embolotherapy and multimodality imaging.

    PubMed

    Oerlemans, Chris; Seevinck, Peter R; Smits, Maarten L; Hennink, Wim E; Bakker, Chris J G; van den Bosch, Maurice A A J; Nijsen, J Frank W

    2015-03-30

    Embolotherapy is a minimally invasive transcatheter technique aiming at reduction or complete obstruction of the blood flow by infusion of micro-sized particles in order to induce tumor regression. A major drawback of the current commercially available and clinically used microspheres is that they cannot be detected in vivo with medical imaging techniques, impeding intra- and post-procedural feedback. It can be expected that real-time monitoring of microsphere infusion and post-procedural imaging will result in better predictability and higher efficacy of the treatment. In this study, a novel microsphere formulation has been developed that can be visualized with fluoroscopy, X-ray computed tomography (CT) and magnetic resonance imaging (MRI). The microspheres were prepared with the JetCutter technique and consist of alginate (matrix-forming polymer), holmium (cross-linking and MRI contrast agent), lipiodol (radiopaque contrast agent) and Pluronic F-68 (surfactant). The mean size (±SEM) of the hydrated holmium-lipiodol-alginate microspheres (Ho-lip-ams) was 570±12 μm with a holmium content of 0.38±0.01% (w/w). Stability studies showed that the microspheres remained intact during incubation for two weeks in fetal calf serum (FCS) at 37 °C. The inclusion of lipiodol in the microspheres rendered excellent visualization capabilities for fluoroscopy and CT, whereas the holmium ions, which keep the alginate network together, also allow MR imaging. In this study it was shown that single sphere detection was possible by fluoroscopy, CT and MRI. The Ho-lip-ams were visualized in real-time, during infusion in a porcine kidney using fluoroscopy, and post-procedural, the deposition of the microspheres was examined with fluoroscopy, (cone beam rotational) CT and MRI. The different imaging modalities showed similar deposition patterns of the microspheres within the organ. The combination of intra-procedural visualization, multimodality imaging for patient follow-up and the

  3. Production of alginate microspheres by internal gelation using an emulsification method.

    PubMed

    Chan, L; Lee, H; Heng, P

    2002-08-21

    Alginate is a natural polysaccharide found in brown algae. Alginates are widely used in the food and pharmaceutical industries and have been employed as a matrix for the entrapment of drugs, macromolecules and biological cells. Alginate microspheres can be produced by the external or internal gelation method using calcium salts. The addition of calcium chloride solution in the final phase of production of microspheres by external gelation method using an emulsification technique causes the disruption of the equilibrium of the system being stirred, resulting in a significant degree of clumping of microspheres. Therefore, in this study, production of alginate microspheres by the internal gelation method using a modified emulsification technique was explored. The influence of calcium salt, added in varying amounts and at different stages, on the morphology of the microspheres was investigated. The effects of other hardening agents and different drying methods were also studied. PMID:12176259

  4. Metal ion-induced alginate-locust bean gum IPN microspheres for sustained oral delivery of aceclofenac.

    PubMed

    Jana, Sougata; Gandhi, Arijit; Sheet, Subrata; Sen, Kalyan Kumar

    2015-01-01

    The alginate microspheres represent a useful tool for sustained oral delivery of drugs but exhibit several problems associated with the stability and rapid release of drugs at higher pH values. To overcome these drawbacks, alginate-locust bean gum (LBG) interpenetrating microspheres were prepared by calcium ion (Ca(+2)) induced ionotropic gelation technique for prolonged release of aceclofenac. The drug entrapment efficiency of these microspheres was found to be 59-93%. The microspheres lied in the size range of 406-684μm. Scanning electron microscopy revealed spherical shape of the microspheres. No drug-polymer interaction was evident after infrared spectroscopy analysis. The microspheres provided sustained release of aceclofenac in phosphate buffer solution (pH 6.8) over a period of 8h. The drug release data were fitted into the Korsmeyer-Peppas model and the drug release was found to follow anomalous (non-Fickian) diffusion mechanism. Pharmacodynamic study of the microspheres showed a prolonged anti-inflammatory activity in carrageenan-induced rat paw model following oral administration. PMID:25111495

  5. Method for preparing hollow metal oxide microsphere

    DOEpatents

    Schmitt, C.R.

    1974-02-12

    Hollow refractory metal oxide microspheres are prepared by impregnating resinous microspheres with a metallic compound, drying the impregnated microspheres, heating the microspheres slowly to carbonize the resin, and igniting the microspheres to remove the carbon and to produce the metal oxide. Zirconium oxide is given as an example. (Official Gazette)

  6. Performance evaluation of bipolar and tripolar excitations during nozzle-jetting-based alginate microsphere fabrication

    NASA Astrophysics Data System (ADS)

    Herran, C. Leigh; Huang, Yong; Chai, Wenxuan

    2012-08-01

    Microspheres, small spherical (polymeric) particles with or without second phase materials embedded or encapsulated, are important for many biomedical applications such as drug delivery and organ printing. Scale-up fabrication with the ability to precisely control the microsphere size and morphology has always been of great manufacturing interest. The objective of this work is to experimentally study the performance differences of bipolar and tripolar excitation waveforms in using drop-on-demand (DOD)-based single nozzle jetting for alginate microsphere fabrication. The fabrication performance has been evaluated based on the formability of alginate microspheres as a function of materials properties (sodium alginate and calcium chloride concentrations) and operating conditions. The operating conditions for each excitation include voltage rise/fall times, dwell times and excitation voltage amplitudes. Overall, the bipolar excitation is more robust in making spherical, monodispersed alginate microspheres as good microspheres for its wide working range of material properties and operating conditions, especially during the fabrication of highly viscous materials such as the 2% sodium alginate solution. For both bipolar and tripolar excitations, the sodium alginate concentration and the voltage dwell times should be carefully selected to achieve good microsphere formability.

  7. Microspheres of carboxymethyl chitosan, sodium alginate and collagen for a novel hemostatic in vitro study.

    PubMed

    Shi, Xinyi; Fang, Qiang; Ding, Miao; Wu, Jing; Ye, Fei; Lv, Zhengbing; Jin, Jia

    2016-02-01

    To develop biocompatible composite microspheres for novel hemostatic use, we designed and prepared a novel biomaterial, composite microspheres consisting of carboxymethyl chitosan, sodium alginate, and collagen (CSCM). The ultra-structure of CSCM was investigated by scanning electron microscopy assay. In hemostatic function experiment, it was found that CSCM could facilitate platelet adherence, platelet aggregation, and platelet activation in vitro. Besides, the maximum swelling of CSCM submerged in PBS for 50 min was over 300% of that exhibited by commercial hemostatic compound microporous polysaccharide haemostatic powder (CMPHP). In addition, CSCM exhibited good biodegradability and non-cytotoxicity. These results demonstrated that CSCM may be useful in platelet plug formation, and this study would provide important information for further research on hemostasis experiment in vivo. PMID:26611230

  8. Synthesis and characterization of uranyl ion-imprinted microspheres based on amidoximated modified alginate.

    PubMed

    Monier, M; Abdel-Latif, D A; Mohammed, Hassan A

    2015-04-01

    Surface ion-imprinting technique was utilized for the preparation of surface ion-imprinted chelating microspheres based on amidoximated modified alginate (U-AOX) in presence of uranyl ions as a template and glutaraldehyde cross-linker. Different instrumental techniques such as elemental analysis, scanning electron microscope (SEM), FTIR, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction spectra were employed for full investigation of the manufactured materials. The synthesized microspheres displayed a higher ability for selective extraction of UO2(2+) when compared to the non-imprinted microspheres (NI-AOX). In addition, the essential parameters such as pH, temperature, time and initial uranyl ion concentration were evaluated in order to optimize the conditions of the adsorption process. The results indicated that pH 5 was the best for the UO2(2+) removal, also, the adsorption was endothermic in nature, follows the second-order kinetics and the adsorption isotherm showed the best fit with Langmuir model with maximum adsorption capacity of 155 ± 1 and 64 ± 1 mg/g for both U-AOX and NI-AOX respectively. Desorption and regeneration had been carried out using 0.5M HNO3 solution and the results indicated that the microspheres maintained about 96% of its original efficiency after five consecutive adsorption-desorption cycles. PMID:25592844

  9. Gelling process of sodium alginate with bivalent ions rich microsphere: Nature of bivalent ions

    NASA Astrophysics Data System (ADS)

    Mauri, Marco; Vicini, Silvia; Castellano, Maila

    2016-05-01

    In the paper we present a new approach for obtaining a controlled gelling process of sodium alginate, based on the quantity of bivalent ions rich alginate micro-beads added as crosslinkers. Typically, calcium ions are used in gelation of alginate solutions. In this study we present different gelling systems realized with alginate microspheres, made by electrospinning methodology, enriched with different bivalent ions (Ca2+, Ba2+ and Mg2+). The microspheres were characterized under the point of view of the morphology by OM and as the ions content. Realized gels were characterized in light of the amount of the ions added to the alginate solution, and in light of the different dimensions of the micro-beads, using rheological measurements to assess the variation in the storage modulus (G'), loss modulus (G″) and complex viscosity (η*).

  10. FITC-tagged macromolecule-based alginate microspheres for urea sensoring

    NASA Astrophysics Data System (ADS)

    Joshi, Abhijeet; Chaudhari, Rashmi; Srivastava, Rohit

    2014-04-01

    Urea is an important biomarker for identification of kidney diseases. Early urea detection using a specific and sensitive technique can significantly reduce the mortality of patients. The research aims at developing fluorescence-based FITCmediated pH and urea measurement. A system containing FITC-dextran in alginate microspheres was developed using air-driven atomization. pH/Urea biosensor was characterized using optical microscopy, SEM, and CLSM. Urea biosensing studies were performed by exposing different standard solutions of pH and urea standard solutions using fluorescence spectroscopy (λex=488 nm and λem=520 nm). FITC-dextran was entrapped using an encapsulation unit and alginate microspheres were formed. The microspheres were found to be uniform and spherical in nature with sizes (50±10μ). FITC-dextran was found to be uniformly distributed in the alginate microspheres as per the CLSM scans. Urea biosensing studies indicate that a linear correlation was observed with increasing urea concentrations. The said microspheres can be used to detect changes in pH from 4-8 units owing to its linear response in this range. FITC dextran loaded alginate microspheres showed an improved range of detection upto 7 mM in comparison to 1.5 mM when in solution phase in a study with urea concentrations from 0-50 mM. The pH and urea detection was accurate to an extent of interday variation of 5%. FITC-dextran loaded alginate microspheres show a great potential for usage as a pH and urea biosensor for early detection of kidney diseases.

  11. Alginate Microspheres Containing Temperature Sensitive Liposomes (TSL) for MR-Guided Embolization and Triggered Release of Doxorubicin

    PubMed Central

    van Elk, Merel; Ozbakir, Burcin; Barten-Rijbroek, Angelique D.; Storm, Gert; Nijsen, Frank; Hennink, Wim E.; Vermonden, Tina; Deckers, Roel

    2015-01-01

    Objective The objective of this study was to develop and characterize alginate microspheres suitable for embolization with on-demand triggered doxorubicin (DOX) release and whereby the microspheres as well as the drug releasing process can be visualized in vivo using MRI. Methods and Findings For this purpose, barium crosslinked alginate microspheres were loaded with temperature sensitive liposomes (TSL/TSL-Ba-ms), which release their payload upon mild hyperthermia. These TSL contained DOX and [Gd(HPDO3A)(H2O)], a T1 MRI contrast agent, for real time visualization of the release. Empty alginate microspheres crosslinked with holmium ions (T2* MRI contrast agent, Ho-ms) were mixed with TSL-Ba-ms to allow microsphere visualization. TSL-Ba-ms and Ho-ms were prepared with a homemade spray device and sized by sieving. Encapsulation of TSL in barium crosslinked microspheres changed the triggered release properties only slightly: 95% of the loaded DOX was released from free TSL vs. 86% release for TSL-Ba-ms within 30 seconds in 50% FBS at 42°C. TSL-Ba-ms (76 ± 41 μm) and Ho-ms (64 ± 29 μm) had a comparable size, which most likely will result in a similar in vivo tissue distribution after an i.v. co-injection and therefore Ho-ms can be used as tracer for the TSL-Ba-ms. MR imaging of a TSL-Ba-ms and Ho-ms mixture (ratio 95:5) before and after hyperthermia allowed in vitro and in vivo visualization of microsphere deposition (T2*-weighted images) as well as temperature-triggered release (T1-weighted images). The [Gd(HPDO3A)(H2O)] release and clusters of microspheres containing holmium ions were visualized in a VX2 tumor model in a rabbit using MRI. Conclusions In conclusion, these TSL-Ba-ms and Ho-ms are promising systems for real-time, MR-guided embolization and triggered release of drugs in vivo. PMID:26561370

  12. Modular Injectable Matrices Based on Alginate Solution/Microsphere Mixtures That Gel in situ and Co-Deliver Immunomodulatory Factors

    PubMed Central

    Hori, Yuki; Winans, Amy M.; Irvine, Darrell J.

    2011-01-01

    Biocompatible polymer solutions that can crosslink in situ following injection to form stable hydrogels are of interest as depots for sustained delivery of therapeutic factors or cells, and as scaffolds for regenerative medicine. Here, injectable self-gelling alginate formulations obtained by mixing alginate microspheres (as calcium reservoirs) with soluble alginate solutions were characterized for potential use in immunotherapy. Rapid redistribution of calcium ions from microspheres into the surrounding alginate solution led to rapid crosslinking and formation of stable hydrogels. The mechanical properties of the resulting gels correlated with the concentration of calcium reservoir microspheres added to the solution. Soluble factors such as the cytokine interleukin-2 were readily incorporated into self-gelling alginate matrices by simply mixing them with the formulation prior to gelation. Using alginate microspheres as modular components, strategies for binding immunostimulatory CpG oligonucleotides onto the surface of microspheres were also demonstrated. When injected subcutaneously in the flanks of mice, self-gelling alginate formed soft macroporous gels supporting cellular infiltration and allowing ready access to microspheres carrying therapeutic factors embedded in the matrix. This in-situ gelling formulation may thus be useful for stimulating immune cells at a desired locale such as solid tumors or infection sites as well as for other soft tissue regeneration applications. PMID:19117820

  13. Dual-Crosslinked Methacrylated Alginate Sub-Microspheres for Intracellular Chemotherapeutic Delivery

    PubMed Central

    Scherrer, Ryan M.; Oldinski, Rachael A.

    2016-01-01

    Intracellular delivery vehicles comprised of methacrylated alginate (Alg-MA) were developed for the internalization and release of doxorubicin hydrochloride (DOX). Alg-MA was synthesized via an anhydrous reaction, and a mixture of Alg-MA and DOX was formed into sub-microspheres using a water/oil emulsion. Covalently crosslinked sub-microspheres were formed via exposure to green light, in order to investigate effects of crosslinking on drug release and cell internalization, compared to traditional techniques such as ultra violet (UV) light. Crosslinking was performed using light exposure alone, or in combination with ionic crosslinking using calcium chloride (CaCl2). Alg-MA sub-microsphere diameters were between 88 – 617 nm, and zeta-potentials were between −20 and −37 mV. Using human lung epithelial carcinoma cells (A549s) as a model, cellular internalization was confirmed using flow cytometry; different sub-microsphere formulations varied the efficiency of internalization, with UV-crosslinked sub-microspheres achieving the highest internalization percentages. While blank (non-loaded) Alg-MA sub-microspheres were non-cytotoxic to A549s, DOX-loaded sub-microspheres significantly reduced mitochondrial activity after five days of culture. Photo-crosslinked Alg-MA sub-microspheres may be a potential chemotherapeutic delivery system for cancer treatment. PMID:27378419

  14. Development of alginate microspheres containing thyme essential oil using ionic gelation.

    PubMed

    Benavides, Sergio; Cortés, Pablo; Parada, Javier; Franco, Wendy

    2016-08-01

    Essential oils are a good antimicrobial and antioxidant agent alternative in human or animal feed. However, their direct use has several disadvantages such as volatilization or oxidation. The development of essential oil microspheres may help to avoid these problems. The objective of the present research was to microencapsulate thyme essential oil by generating emulsions with different dispersion degrees. The emulsions were encapsulated in calcium-alginate microspheres by ionic gelation. The microspheres were evaluated regarding size, shape, encapsulation efficiency, loading capacity and antimicrobial properties. The results indicate that encapsulation efficiency and loading capacity are dependent on concentration and degree of dispersion. The best encapsulation conditions were obtained at 2% v/v of thyme essential oil with a high dispersion degree (18,000rpm/5min), which was achieved with an efficiency of 85%. Finally, the microspheres obtained showed significant antimicrobial effect, especially in gram-positive bacteria. PMID:26988478

  15. Dual-Cross-Linked Methacrylated Alginate Sub-Microspheres for Intracellular Chemotherapeutic Delivery.

    PubMed

    Fenn, Spencer L; Miao, Tianxin; Scherrer, Ryan M; Oldinski, Rachael A

    2016-07-20

    Intracellular delivery vehicles comprised of methacrylated alginate (Alg-MA) were developed for the internalization and release of doxorubicin hydrochloride (DOX). Alg-MA was synthesized via an anhydrous reaction, and a mixture of Alg-MA and DOX was formed into sub-microspheres using a water/oil emulsion. Covalently cross-linked sub-microspheres were formed via exposure to green light, in order to investigate effects of cross-linking on drug release and cell internalization, compared to traditional techniques, such as ultraviolet (UV) light irradiation. Cross-linking was performed using light exposure alone or in combination with ionic cross-linking using calcium chloride (CaCl2). Alg-MA sub-microsphere diameters were between 88 and 617 nm, and ζ-potentials were between -20 and -37 mV. Using human lung epithelial carcinoma cells (A549) as a model, cellular internalization was confirmed using flow cytometry; different sub-microsphere formulations varied the efficiency of internalization, with UV-cross-linked sub-microspheres achieving the highest internalization percentages. While blank (nonloaded) Alg-MA submicrospheres were noncytotoxic to A549 cells, DOX-loaded sub-microspheres significantly reduced mitochondrial activity after 5 days of culture. Photo-cross-linked Alg-MA sub-microspheres may be a potential chemotherapeutic delivery system for cancer treatment. PMID:27378419

  16. Preparation of small bio-compatible microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1979-01-01

    Small, round, bio-compatible microspheres capable of covalently bonding proteins and having a uniform diameter below about 3500 A are prepared by substantially instantaneously initiating polymerization of an aqueous emulsion containing no more than 35% total monomer including an acrylic monomer substituted with a covalently bondable group such a hydroxyl, amino or carboxyl and a minor amount of a cross-linking agent.

  17. A simple method for encapsulating single cells in alginate microspheres allows for direct PCR and whole genome amplification.

    PubMed

    Bigdeli, Saharnaz; Dettloff, Roger O; Frank, Curtis W; Davis, Ronald W; Crosby, Laurel D

    2015-01-01

    Microdroplets are an effective platform for segregating individual cells and amplifying DNA. However, a key challenge is to recover the contents of individual droplets for downstream analysis. This paper offers a method for embedding cells in alginate microspheres and performing multiple serial operations on the isolated cells. Rhodobacter sphaeroides cells were diluted in alginate polymer and sprayed into microdroplets using a fingertip aerosol sprayer. The encapsulated cells were lysed and subjected either to conventional PCR, or whole genome amplification using either multiple displacement amplification (MDA) or a two-step PCR protocol. Microscopic examination after PCR showed that the lumen of the occupied microspheres contained fluorescently stained DNA product, but multiple displacement amplification with phi29 produced only a small number of polymerase colonies. The 2-step WGA protocol was successful in generating fluorescent material, and quantitative PCR from DNA extracted from aliquots of microspheres suggested that the copy number inside the microspheres was amplified up to 3 orders of magnitude. Microspheres containing fluorescent material were sorted by a dilution series and screened with a fluorescent plate reader to identify single microspheres. The DNA was extracted from individual isolates, re-amplified with full-length sequencing adapters, and then a single isolate was sequenced using the Illumina MiSeq platform. After filtering the reads, the only sequences that collectively matched a genome in the NCBI nucleotide database belonged to R. sphaeroides. This demonstrated that sequencing-ready DNA could be generated from the contents of a single microsphere without culturing. However, the 2-step WGA strategy showed limitations in terms of low genome coverage and an uneven frequency distribution of reads across the genome. This paper offers a simple method for embedding cells in alginate microspheres and performing PCR on isolated cells in common bulk

  18. Application of self-assembled ultra-thin film coatings to stabilize macromolecule encapsulation in alginate microspheres.

    PubMed

    Srivastava, R; McShane, M J

    2005-06-01

    Alginate-based hydrogels have several unique properties that have enabled them to be used as a matrix for the entrapment of a variety of enzymes, proteins and cells for applications in bioprocessing, drug delivery and chemical sensing. However, control over release rates or, in some cases, stable encapsulation remains a difficult goal, especially for small particles with high surface-area-to-volume ratios. In this work, the potential to limit diffusion of macromolecules embedded in alginate spheres with nanofilm coatings was assessed. Alginate microspheres were fabricated using an emulsification process with high surfactant concentration to form beads in the size range of 2-10 microm. Using calcium chloride for ionotropic gelation, dextran was encapsulated in the gel phase by mixing with the alginate in solution. The exterior surface was then modified with polyelectrolyte coatings using the layer-by-layer self assembly technique. Leaching studies to assess retention of dextran with varying molecular weights confirmed that the application of multi-layer thin films to the alginate microspheres was effective in reducing leaching rate and total loss of the encapsulated material from the microspheres. For the best case, the rate of release for dextran of 2,000,000 Dalton molecular weight decreased from 1% h(-1) in bare microspheres to 0.1% h(-1) in polyelectrolyte-coated microspheres. The effectiveness of nanofilms reducing loss of the encapsulated macromolecules was found to vary between different polycation materials used. These studies support the feasibility of using these microsystems for development of long-term stable encapsulated systems, such as implantable biosensors. PMID:16214787

  19. Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation.

    PubMed

    Falkeborg, Mia; Cheong, Ling-Zhi; Gianfico, Carlo; Sztukiel, Katarzyna Magdalena; Kristensen, Kasper; Glasius, Marianne; Xu, Xuebing; Guo, Zheng

    2014-12-01

    Alginate oligosaccharides (AOs) prepared from alginate, by alginate lyase-mediated depolymerization, were structurally characterized by mass spectrometry, infrared spectrometry and thin layer chromatography. Studies of their antioxidant activities revealed that AOs were able to completely (100%) inhibit lipid oxidation in emulsions, superiorly to ascorbic acid (89% inhibition). AOs showed radical scavenging activity towards ABTṠ, hydroxyl, and superoxide radicals, which might explain their excellent antioxidant activity. The radical scavenging activity is suggested to originate mainly from the presence of the conjugated alkene acid structure formed during enzymatic depolymerization. According to the resonance hybrid theory, the parent radicals of AOs are delocalized through allylic rearrangement, and as a consequence, the reactive intermediates are stabilized. AOs were weak ferrous ion chelators. This work demonstrated that AOs obtained from a facile enzymatic treatment of abundant alginate is an excellent natural antioxidant, which may find applications in the food industry. PMID:24996323

  20. Development of Alginate Microspheres Containing Chuanxiong for Oral Administration to Adult Zebrafish.

    PubMed

    Lin, Li-Jen; Chiang, Chung-Jen; Chao, Yun-Peng; Wang, Shulhn-Der; Chiou, Yu-Ting; Wang, Han-Yu; Kao, Shung-Te

    2016-01-01

    Oral administration of Traditional Chinese Medicine (TCM) by patients is the common way to treat health problems. Zebrafish emerges as an excellent animal model for the pharmacology investigation. However, the oral delivery system of TCM in zebrafish has not been established so far. This issue was addressed by development of alginate microparticles for oral delivery of chuanxiong, a TCM that displays antifibrotic and antiproliferative effects on hepatocytes. The delivery microparticles were prepared from gelification of alginate containing various levels of chuanxiong. The chuanxiong-encapsulated alginate microparticles were characterized for their solubility, structure, encapsulation efficiency, the cargo release profile, and digestion in gastrointestinal tract of zebrafish. Encapsulation of chuanxiong resulted in more compact structure and the smaller size of microparticles. The release rate of chuanxiong increased for alginate microparticles carrying more chuanxiong in simulated intestinal fluid. This remarkable feature ensures the controlled release of encapsulated cargos in the gastrointestinal tract of zebrafish. Moreover, chuanxiong-loaded alginate microparticles were moved to the end of gastrointestinal tract after oral administration for 6 hr and excreted from the body after 16 hr. Therefore, our developed method for oral administration of TCM in zebrafish is useful for easy and rapid evaluation of the drug effect on disease. PMID:27403425

  1. Development of Alginate Microspheres Containing Chuanxiong for Oral Administration to Adult Zebrafish

    PubMed Central

    Lin, Li-Jen; Chiang, Chung-Jen; Chao, Yun-Peng; Wang, Shulhn-Der; Chiou, Yu-Ting; Wang, Han-Yu; Kao, Shung-Te

    2016-01-01

    Oral administration of Traditional Chinese Medicine (TCM) by patients is the common way to treat health problems. Zebrafish emerges as an excellent animal model for the pharmacology investigation. However, the oral delivery system of TCM in zebrafish has not been established so far. This issue was addressed by development of alginate microparticles for oral delivery of chuanxiong, a TCM that displays antifibrotic and antiproliferative effects on hepatocytes. The delivery microparticles were prepared from gelification of alginate containing various levels of chuanxiong. The chuanxiong-encapsulated alginate microparticles were characterized for their solubility, structure, encapsulation efficiency, the cargo release profile, and digestion in gastrointestinal tract of zebrafish. Encapsulation of chuanxiong resulted in more compact structure and the smaller size of microparticles. The release rate of chuanxiong increased for alginate microparticles carrying more chuanxiong in simulated intestinal fluid. This remarkable feature ensures the controlled release of encapsulated cargos in the gastrointestinal tract of zebrafish. Moreover, chuanxiong-loaded alginate microparticles were moved to the end of gastrointestinal tract after oral administration for 6 hr and excreted from the body after 16 hr. Therefore, our developed method for oral administration of TCM in zebrafish is useful for easy and rapid evaluation of the drug effect on disease. PMID:27403425

  2. Preparation, drug releasing property and pharmacodynamics of soy isoflavone-loaded chitosan microspheres.

    PubMed

    Du, Zhongyan; Dou, Xiaobing; Huang, Chenyun; Gao, Jia; Hu, Linfeng; Zhu, Jiazhen; Qian, Ying; Dou, Minhua; Fan, Chunlei

    2013-01-01

    Soybean isoflavone (SIF) has anti-aging properties and many other biological functions; however, SIF is difficult to reach higher blood concentration due to its rapid metabolism. Therefore, it is of great value to design and produce a sustained-release formulation that is able to maintain a stable level of plasma concentrations. In this paper, soybean isoflavone sustained-release microsphere from chitosan and sodium alginate was prepared successfully. The important factors that determined the quality of the microspheres were the sodium alginate concentration in solution B, the ratio of soybean isoflavone to chitosan and the mixing speed. The relative yield, encapsulation efficiency and drug loading capability of SIF were much higher than the existing commercial formulations. In real gastrointestinal conditions, compared with the non-sustained release group, the release rate of SIF slowed down and the reaction time was prolonged. Animal experiments showed that sustained-release microspheres intensified the anti-aging potentials of SIF. Compared with the Non-sustained release (NSR) group mice, oral SIF/CHI microsphere treated mice were better in the Morris Water Maze Test (MWMT), the MDA level in the both plasma and brain of the sustained release (SR) group mice decreased, and SOD content was remarkably improved. PMID:24244544

  3. Removal of phosphate from aqueous solution using magnesium-alginate/chitosan modified biochar microspheres derived from Thalia dealbata.

    PubMed

    Cui, Xiaoqiang; Dai, Xi; Khan, Kiran Yasmin; Li, Tingqiang; Yang, Xiaoe; He, Zhenli

    2016-10-01

    The objective of this study was to determine the feasibility of using magnesium-alginate/chitosan modified biochar microspheres to enhance removal of phosphate from aqueous solution. The introduction of MgCl2 substantially increased surface area of biochar (116.2m(2)g(-1)), and both granulation with alginate/chitosan and modification with magnesium improved phosphate sorption on the biochars. Phosphate sorption on the biochars could be well described by a simple Langmuir model, and the MgCl2-alginate modified biochar microspheres exhibited the highest phosphate sorption capacity (up to 46.56mgg(-1)). The pseudo second order kinetic model better fitted the kinetic data, and both the Yoon-Nelson and Thomas models were superior to other models in describing phosphate dynamic sorption. Precipitation with minerals and ligand exchange were the possible mechanisms of phosphate sorption on the modified biochars. These results imply that MgCl2-alginate modified biochar microspheres have potential as a green cost-effective sorbent for remediating P contaminated water environment. PMID:27469093

  4. Smart designing of new hybrid materials based on brushite-alginate and monetite-alginate microspheres: bio-inspired for sequential nucleation and growth.

    PubMed

    Amer, Walid; Abdelouahdi, Karima; Ramananarivo, Hugo Ronald; Fihri, Aziz; El Achaby, Mounir; Zahouily, Mohamed; Barakat, Abdellatif; Djessas, Kamal; Clark, James; Solhy, Abderrahim

    2014-02-01

    In this report new hybrid materials based on brushite-alginate and monetite-alginate were prepared by self-assembling alginate chains and phosphate source ions via a gelation process with calcium ions. The alginate served as nanoreactor for nucleation and growth of brushite or/and monetite due to its gelling and swelling properties. The alginate gel framework, the crystalline phase and morphology of formed hybrid biomaterials were shown to be strongly dependent upon the concentration of the phosphate precursors. These materials were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDX). PMID:24411386

  5. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres

    PubMed Central

    Liao, Yu-Te; Liu, Chia-Hung; Yu, Jiashing; Wu, Kevin C-W

    2014-01-01

    A new microsphere consisting of inorganic mesoporous silica nanoparticles (MSNs) and organic alginate (denoted as MSN@Alg) was successfully synthesized by air-dynamic atomization and applied to the intracellular drug delivery systems (DDS) of liver cancer cells with sustained release and specific targeting properties. MSN@Alg microspheres have the advantages of MSN and alginate, where MSN provides a large surface area for high drug loading and alginate provides excellent biocompatibility and COOH functionality for specific targeting. Rhodamine 6G was used as a model drug, and the sustained release behavior of the rhodamine 6G-loaded MSN@Alg microspheres can be prolonged up to 20 days. For targeting therapy, the anticancer drug doxorubicin was loaded into MSN@Alg microspheres, and the (lysine)4-tyrosine-arginine-glycine-aspartic acid (K4YRGD) peptide was functionalized onto the surface of MSN@Alg for targeting liver cancer cells, hepatocellular carcinoma (HepG2). The results of the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and confocal laser scanning microscopy indicate that the MSN@Alg microspheres were successfully uptaken by HepG2 without apparent cytotoxicity. In addition, the intracellular drug delivery efficiency was greatly enhanced (ie, 3.5-fold) for the arginine-glycine-aspartic acid (RGD)-labeled, doxorubicin-loaded MSN@Alg drug delivery system compared with the non-RGD case. The synthesized MSN@Alg microspheres show great potential as drug vehicles with high biocompatibility, sustained release, and targeting features for future intracellular DDS. PMID:24940057

  6. Development of alginate microspheres as nystatin carriers for oral mucosa drug delivery.

    PubMed

    Martín, María J; Calpena, Ana C; Fernández, Francisco; Mallandrich, Mireia; Gálvez, Patricia; Clares, Beatriz

    2015-03-01

    To develop more effective antifungal mucoadhesive systems for the treatment of oral candidiasis, three types of microspheres, alginate (AM1), chitosan coated (CCM) and hydrogel (AM2) containing nystatin (Nys) were successfully elaborated by emulsification/internal gelation method. Physicochemical properties of microspheres resulted in 85-135 μm mean sizes, spherical shaped with narrow distribution. Optimal encapsulation efficiency and negative zeta potentials were observed. AM2 showed a consistent decrease in viscosity with increasing shear rate (Herschel-Bulkley). Optimal mucoadhesive properties and swelling behaviour where evidenced. Nys release from AM1 and CCM followed a concentration gradient pattern, contrary AM2 followed a complex release mechanism. All systems exhibited a marked fungicidal activity against Candida albicans strains. In vivo studies demonstrated that Nys was not found in systemic circulation assuring the safety of the treatment. Nys amounts retained in the mucosa were more than enough to ensure an effective fungicidal action without tissue damage. Based on the obtained results, AM2 could be proposed as the vehicle with the best properties for the buccal vehiculization of Nys. PMID:25498619

  7. Preparation of alginate beads containing a prodrug of diethylenetriaminepentaacetic acid

    PubMed Central

    Yang, Yu-Tsai; Di Pasqua, Anthony J.; He, Weiling; Tsai, Tsuimin; Sueda, Katsuhiko; Zhang, Yong; Jay, Michael

    2012-01-01

    A penta-ethyl ester prodrug of the radionuclide decorporation agent diethylenetriaminepentaacetic acid (DTPA), which exists as an oily liquid, was encapsulated in alginate beads by the ionotropic gelation method. An optimal formulation was found by varying initial concentrations of DTPA pentaethyl ester, alginate polymer, Tween 80 surfactant and calcium chloride. All prepared alginate beads were ~1.6 mm in diameter, and the optimal formulation had loading and encapsulation efficiencies of 91.0 ± 1.1 and 72.6 ± 2.2%, respectively, and only 3.2 ± 0.8% water absorption after storage at room temperature in ~80% relative humidity. Moreover, Fourier transform infrared spectroscopy showed that DTPA penta-ethyl ester did not react with excipients during formation of the DTPA penta-ethyl ester-containing alginate beads. Release of prodrug from alginate beads was via anomalous transport, and its stability enhanced by encapsulation. Collectively, these data suggest that this solid dosage form may be suitable for oral administration after radionuclide contamination. PMID:23399237

  8. PREPARATION OF REFRACTORY OXIDE MICROSPHERE

    DOEpatents

    Haws, C.C. Jr.

    1963-09-24

    A method is described of preparing thorium oxide in the form of fused spherical particles about 1 to 2 microns in diameter. A combustible organic solution of thorium nitrate containing additive metal values is dispersed into a reflected, oxygen-fed flame at a temperature above the melting point of the resulting oxide. The metal additive is aluminum at a proportion such as to provide 1 to 10 weight per cent aluminum oxide in the product, silicon at the same proportion, or beryllium at a proportion of 12 to 25 weight per cent beryllium oxide in the product. A minor proportion of uranium values may also be provided in the solution. The metal additive lowers the oxide melting point and allows fusion and sphere formation in conventional equipment. The product particles are suitable for use in thorium oxide slurries for nuclear reactors. (AEC)

  9. FABRICATION AND IN VITRO EVALUATION OF 5-FLOROURACIL LOADED CHONDROITIN SULFATE-SODIUM ALGINATE MICROSPHERES FOR COLON SPECIFIC DELIVERY.

    PubMed

    Raza, Hina; Ranjha, Nazar Muhammad; Razzaq, Rabia; Ansari, Mehvish; Mahmood, Asif; Rashid, Zermina

    2016-01-01

    Chondroitin sulfate and sodium alginate were incorporated in different ratios to prepare glutaraldehyde (GA) crosslinked microspheres by water-in-oil emulsion crosslinking method for delivery of 5-flurouracil (5-FU) to colon. Chemical interaction, surface morphology, thermal degradability, crystallinity evaluation, elemental analysis and drug release results were computed by using FTIR, SEM, DSC and TGA, PXRD, EXD and dissolution studies at pH 1.2, pH 6.8 and pH 7.4, respectively. Results revealed an acetal ring formation, non-porous surfaces, stability up to 450 degrees C with mass loss of 84.31%, variation in carbon and oxygen contents and targeted release at pH 7.4. Different kinetic models were applied on release studies i.e., zero order, first order, Higuchi and Korsmeyer-Peppas. Higuchi model was declared as best fit model based on r2 value (0.99) and mechanism of release was non-Fickian diffusion. A potential approach for colonic delivery of 5-FU was successfully developed. PMID:27180443

  10. Bioinspired preparation of alginate nanoparticles using microbubble bursting.

    PubMed

    Elsayed, Mohamed; Huang, Jie; Edirisinghe, Mohan

    2015-01-01

    Nanoparticles are considered to be one of the most advanced tools for drug delivery applications. In this research, alginate (a model hydrophilic polymer) nanoparticles 80 to 200 nm in diameter were obtained using microbubble bursting. The natural process of bubble bursting occurs through a number of stages, which consequently produce nano- and microsized droplets via two main production mechanisms, bubble shell disintegration and a jetting process. In this study, nano-sized droplets/particles were obtained by promoting the disintegrating mechanism and suppressing (limiting) the formation of larger microparticles resulting from the jetting mechanism. A T-junction microfluidic device was used to prepare alginate microbubbles with different sizes in a well-controlled manner. The size of the bubbles was varied by controlling two processing parameters, the solution flow rate and the bubbling pressure. Crucially, the bubble size was found to be the determining factor for inducing (or limiting) the bubble shell disintegration mechanism and the size needed to promote this process was influenced by the properties of the solution used for preparing the bubbles, particularly the viscosity. The size of alginate nanoparticles produced via the disintegration mechanism was found to be directly proportional to the viscosity of the alginate solution. PMID:25491969

  11. Preparation and properties of polyvinyl alcohol microspheres

    SciTech Connect

    Campbell, J.H.; Grens, J.Z.; Poco, J.F.; Ives, B.H.

    1986-06-01

    Polyvinyl alcohol (PVA) microspheres, having a size range of approx.150- to 250-..mu..m diameter with 1- to 5-..mu..m wall thickness, have been fabricated using a solution droplet technique. The spheres were developed for possible use on the Lawrence Livermore National Laboratory (LLNL) Inertial Confinement Fusion (ICF) Program. PVA, a polymer chosen based on earlier survey work carried out at KMS Fusion, Inc., has good strength, low hydrogen permeability, is optically transparent, and water soluble. The latter property makes it safe and easy to use in our droplet generator system. A unique dual-orifice droplet generator was used to prepare the spheres. The droplet generator operating conditions and the column processing parameters were chosen using results from our 1-D model calculations as a guide. The polymer microsphere model is an extension of the model we developed to support the glass sphere production. After preparation, the spheres were physically characterized for surface quality, sphericity, wall thickness (and uniformity), and size. We also determined the buckling pressure for both uncoated and CH-coated spheres. Radiation stability to beta decay (from tritium) was evaluated by exposing the spheres to a 7-keV electron beam. The results from these and other physical property measurements are presented in this report.

  12. Microencapsulated Aliivibrio fischeri in alginate microspheres for monitoring heavy metal toxicity in environmental waters.

    PubMed

    Futra, Dedi; Heng, Lee Yook; Surif, Salmijah; Ahmad, Asmat; Ling, Tan Ling

    2014-01-01

    In this article a luminescence fiber optic biosensor for the microdetection of heavy metal toxicity in waters based on the marine bacterium Aliivibrio fischeri (A. fischeri) encapsulated in alginate microspheres is described. Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(II) were selected as sample toxic heavy metal ions for evaluation of the performance of this toxicity microbiosensor. The loss of bioluminescence response from immobilized A. fischeri bacterial cells corresponds to changes in the toxicity levels. The inhibition of the luminescent biosensor response collected at excitation and emission wavelengths of 287 ± 2 nm and 487 ± 2 nm, respectively, was found to be reproducible and repeatable within the relative standard deviation (RSD) range of 2.4-5.7% (n = 8). The toxicity biosensor based on alginate micropsheres exhibited a lower limit of detection (LOD) for Cu(II) (6.40 μg/L), Cd(II) (1.56 μg/L), Pb(II) (47 μg/L), Ag(I) (18 μg/L) than Zn(II) (320 μg/L), Cr(VI) (1,000 μg/L), Co(II) (1700 μg/L), Ni(II) (2800 μg/L), and Fe(III) (3100 μg/L). Such LOD values are lower when compared with other previous reported whole cell toxicity biosensors using agar gel, agarose gel and cellulose membrane biomatrices used for the immobilization of bacterial cells. The A. fischeri bacteria microencapsulated in alginate biopolymer could maintain their metabolic activity for a prolonged period of up to six weeks without any noticeable changes in the bioluminescence response. The bioluminescent biosensor could also be used for the determination of antagonistic toxicity levels for toxicant mixtures. A comparison of the results obtained by atomic absorption spectroscopy (AAS) and using the proposed luminescent A. fischeri-based biosensor suggests that the optical toxicity biosensor can be used for quantitative microdetermination of heavy metal toxicity in environmental water samples. PMID:25490588

  13. Microencapsulated Aliivibrio fischeri in Alginate Microspheres for Monitoring Heavy Metal Toxicity in Environmental Waters

    PubMed Central

    Futra, Dedi; Heng, Lee Yook; Surif, Salmijah; Ahmad, Asmat; Ling, Tan Ling

    2014-01-01

    In this article a luminescence fiber optic biosensor for the microdetection of heavy metal toxicity in waters based on the marine bacterium Aliivibrio fischeri (A. fischeri) encapsulated in alginate microspheres is described. Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(II) were selected as sample toxic heavy metal ions for evaluation of the performance of this toxicity microbiosensor. The loss of bioluminescence response from immobilized A. fischeri bacterial cells corresponds to changes in the toxicity levels. The inhibition of the luminescent biosensor response collected at excitation and emission wavelengths of 287 ± 2 nm and 487 ± 2 nm, respectively, was found to be reproducible and repeatable within the relative standard deviation (RSD) range of 2.4–5.7% (n = 8). The toxicity biosensor based on alginate micropsheres exhibited a lower limit of detection (LOD) for Cu(II) (6.40 μg/L), Cd(II) (1.56 μg/L), Pb(II) (47 μg/L), Ag(I) (18 μg/L) than Zn(II) (320 μg/L), Cr(VI) (1,000 μg/L), Co(II) (1700 μg/L), Ni(II) (2800 μg/L), and Fe(III) (3100 μg/L). Such LOD values are lower when compared with other previous reported whole cell toxicity biosensors using agar gel, agarose gel and cellulose membrane biomatrices used for the immobilization of bacterial cells. The A. fischeri bacteria microencapsulated in alginate biopolymer could maintain their metabolic activity for a prolonged period of up to six weeks without any noticeable changes in the bioluminescence response. The bioluminescent biosensor could also be used for the determination of antagonistic toxicity levels for toxicant mixtures. A comparison of the results obtained by atomic absorption spectroscopy (AAS) and using the proposed luminescent A. fischeri-based biosensor suggests that the optical toxicity biosensor can be used for quantitative microdetermination of heavy metal toxicity in environmental water samples. PMID:25490588

  14. Alginate microsphere compositions dictate different mechanisms of complement activation with consequences for cytokine release and leukocyte activation.

    PubMed

    Ørning, Pontus; Hoem, Kine Samset; Coron, Abba Elizabeth; Skjåk-Bræk, Gudmund; Mollnes, Tom Eirik; Brekke, Ole-Lars; Espevik, Terje; Rokstad, Anne Mari

    2016-05-10

    The inflammatory potential of 12 types of alginate-based microspheres was assessed in a human whole blood model. The inflammatory potential could be categorized from low to high based on the four main alginate microsphere types; alginate microbeads, liquefied core poly-l-ornithine (PLO)-containing microcapsules, liquefied core poly-l-lysine (PLL)-containing microcapsules, and solid core PLL-containing microcapsules. No complement or inflammatory cytokine activation was detected for the Ca/Ba alginate microbeads. Liquefied core PLO- and PLL-containing microcapsules induced significant fluid phase complement activation (TCC), but with low complement surface deposition (anti-C3c), and a low proinflammatory cytokine secretion, with exception of an elevated MCP-1(CCL2) secretion. The solid core PLL-containing microcapsules generated lower TCC but a marked complement surface deposition and significant induction of the proinflammatory cytokines interleukin (IL-1)β, TNF, IL-6, the chemokines IL-8 (CXCL8), and MIP-1α (CCL3) and MCP-1(CCL2). Inhibition with compstatin (C3 inhibitor) completely abolished complement surface deposition, leukocyte adhesion and the proinflammatory cytokines. The C5 inhibitions partly lead to a reduction of the proinflammatory cytokines. The leukocyte adhesion was abolished by inhibitory antibodies against CD18 and partly reduced by CD11b, but not by CD11c. Anti-CD18 significantly reduced the (IL-1)β, TNF, IL-6 and MIP-1α and anti-CD11b significantly reduced the IL-6 and VEGF secretion. MCP-1 was strongly activated by anti-CD18 and anti-CD11b. In conclusion the initial proinflammatory cytokine responses are driven by the microspheres potential to trigger complement C3 (C3b/iC3b) deposition, leukocyte activation and binding through complement receptor CR3 (CD11b/CD18). MCP-1 is one exception dependent on the fluid phase complement activation mediated through CR3. PMID:26993426

  15. Microspheres and their methods of preparation

    DOEpatents

    Bose, Anima B; Yang, Junbing

    2015-03-24

    Carbon microspheres are doped with boron to enhance the electrical and physical properties of the microspheres. The boron-doped carbon microspheres are formed by a CVD process in which a catalyst, carbon source and boron source are evaporated, heated and deposited onto an inert substrate.

  16. Co-encapsulation of anti-BMP2 monoclonal antibody and mesenchymal stem cells in alginate microspheres for bone tissue engineering.

    PubMed

    Moshaverinia, Alireza; Ansari, Sahar; Chen, Chider; Xu, Xingtian; Akiyama, Kentaro; Snead, Malcolm L; Zadeh, Homayoun H; Shi, Songtao

    2013-09-01

    Recently, it has been shown that tethered anti-BMP2 monoclonal antibodies (mAbs) can trap BMP ligands and thus provide BMP inductive signals for osteo-differentiation of progenitor cells. The objectives of this study were to: (1) develop a co-delivery system based on murine anti-BMP2 mAb-loaded alginate microspheres encapsulating human bone marrow mesenchymal stem cells (hBMMSCs); and (2) investigate osteogenic differentiation of encapsulated stem cells in alginate microspheres in vitro and in vivo. Alginate microspheres of 1 ± 0.1 mm diameter were fabricated with 2 × 10(6) hBMMSCs per mL of alginate. Critical-size calvarial defects (5 mm diameter) were created in immune-compromised mice and alginate microspheres preloaded with anti-BMP mAb encapsulating hBMMSCs were transplanted into defect sites. Alginate microspheres pre-loaded with isotype-matched non-specific antibody were used as the negative control. After 8 weeks, micro CT and histologic analyses were used to analyze bone formation. In vitro analysis demonstrated that anti-BMP2 mAbs tethered BMP2 ligands that can activate the BMP receptors on hBMMSCs. The co-delivery system described herein, significantly enhanced hBMMSC-mediated osteogenesis, as confirmed by the presence of BMP signal pathway-activated osteoblast determinants Runx2 and ALP. Our results highlight the importance of engineering the microenvironment for stem cells, and particularly the value of presenting inductive signals for osteo-differentiation of hBMMSCs by tethering BMP ligands using mAbs. This strategy of engineering the microenvironment with captured BMP signals is a promising modality for repair and regeneration of craniofacial, axial and appendicular bone defects. PMID:23773817

  17. Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior.

    PubMed

    Liu, Yun; Zhang, Chuan-Jie; Zhao, Jin-Chao; Guo, Yi; Zhu, Ping; Wang, De-Yi

    2016-03-30

    A bio-based barium alginate film was prepared via a facile ionic exchange and casting approach. Its flammability, thermal degradation and pyrolysis behaviors, thermal degradation mechanism were studied systemically by limiting oxygen index (LOI), vertical burning (UL-94), microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) coupled with Fourier transform infrared analysis (FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). It showed that barium alginate film had much higher LOI value (52.0%) than that of sodium alginate film (24.5%). Moreover, barium alginate film passed the UL-94 V-0 rating, while the sodium alginate film showed no classification. Importantly, peak of heat release rate (PHRR) of barium alginate film in MCC test was much lower than that of sodium alginate film, suggested that introduction of barium ion into alginate film significantly decreased release of combustible gases. TG-FTIR and Py-GC-MS results indicated that barium alginate produced much less flammable products than that of sodium alginate in whole thermal degradation procedure. Finally, a possible degradation mechanism of barium alginate had been proposed. PMID:26794953

  18. Preparation of microspheres of water-soluble pharmaceuticals.

    PubMed

    Huang, H P; Ghebre-Sellassie, I

    1989-01-01

    An emulsion-solvent evaporation procedure involving the dispersion of an alcoholic solution of an active in liquid paraffin was used to prepare microspheres of water-soluble pharmaceuticals using ethylcellulose as a carrier. The effects of surfactant, plasticizer, drug loading, and agitation speed on drug release rate from the microspheres were evaluated. The release rates of water-soluble drugs from microspheres, ranging from 100 and 500 microns in diameter, were sustained over an extended time and were found to be related to the ratio of drug to polymer in the final product. PMID:2723966

  19. Preparation of microspheres by an emulsification-complexation method.

    PubMed

    Kim, Jin-Chul; Song, Myeong-Eun; Lee, Eun-Joo; Park, Seung-Kyu; Rang, Moon-Jeong; Ahn, Ho-Jeong

    2002-04-01

    Microspheres were prepared by complexation of a cationic polymer, polyquaternium-24, and an anionic surfactant, sodium lauryl sulfate (SLS). The cationic polymer solution was emulsified in dimethylsiloxane to give water in silicone emulsion (W/Si), and it was used as a template for the formation of microspheres. The emulsion was dispersed into the SLS solution. In this process, two kinds of droplets, silicone dropletes and microspheres composed of the cationic polymer and SLS, were formed, evidenced by X-ray energy dispersive spectra. The mean diameter of the microspheres was reduced from 105.7 to 64.8 mum as the stirring rate for W/Si preparation increased from 300 to 1000 rpm. It is believed that water droplets in W/Si emulsion, when exposed to SLS solution, could be solidified by the complexation of the cationic polymer and the anionic surfactant. PMID:16290495

  20. Preparation and characterization of superparamagnetic iron oxide nanoparticles stabilized by alginate.

    PubMed

    Ma, Hui-li; Qi, Xian-rong; Maitani, Yoshie; Nagai, Tsuneji

    2007-03-21

    SPION with appropriate surface chemistry have been widely used experimentally for numerous in vivo applications. In this study, SPION stabilized by alginate (SPION-alginate) were prepared by a modified coprecipitation method. The structure, size, morphology, magnetic property and relaxivity of the SPION-alginate were characterized systematically by means of XRD, TEM, ESEM, AFM, DLS, SQUID magnetometer and MRI, respectively, and the interaction between alginate and iron oxide (Fe(3)O(4)) was characterized by FT-IR and AFM. The results revealed that typical iron oxide nanoparticles were Fe(3)O(4) with a core diameter of 5-10 nm and SPION-alginate had a hydrodynamic diameter of 193.8-483.2 nm. From the magnetization curve, the Ms of a suspension of SPION-alginate was 40 emu/g, corresponding to 73% of that of solid SPION-alginate. This high Ms may be due to the binding of Fe(3)O(4) nanoparticles to alginate macromolecule strands as visually confirmed by AFM. SPION-alginate of several hundred nanometers was stable in size for 12 months at 4 degrees C. Moreover, T1 relaxivity and T2 relaxivity of SPION-alginate in saline (1.5 T, 20 degrees C) were 7.86+/-0.20 s(-1) mM(-1) and 281.2+/-26.4 s(-1) mM(-1), respectively. PMID:17074454

  1. Investigation of the strontium (Sr(II)) adsorption of an alginate microsphere as a low-cost adsorbent for removal and recovery from seawater.

    PubMed

    Hong, Hye-Jin; Ryu, Jungho; Park, In-Su; Ryu, Taegong; Chung, Kang-Sup; Kim, Byuong-Gyu

    2016-01-01

    In this paper, we investigated alginate microspheres as a low-cost adsorbent for strontium (Sr(II)) removal and recovery from seawater. Alginate microspheres have demonstrated a superior adsorption capacity for Sr(II) ions (≈110 mg/g). A Freundlich isotherm model fits well with the Sr(II) adsorption of an alginate microsphere. The mechanism of Sr(II) adsorption is inferred as an ion exchange reaction with Ca(II) ions. The effects of the solution pH and co-existing ions in seawater are also investigated. Except for a pH of 1-2, Sr(II) adsorption capacity is not affected by pH. However, increasing the seawater concentration of metal cations seriously decreases Sr(II) uptake. In particular, highly concentrated (15,000 mg/L) Na(I) ions significantly interfere with Sr(II) adsorption. Sr(II) desorption was performed using 0.1 M HCl and CaCl2. Both regenerants show an excellent desorption efficiency, but the FTIR spectrum reveals that the chemical structure of the microsphere is destroyed after repeated use of HCl. Conversely, CaCl2 successfully desorbed Sr(II) without damage, and the Sr(II) adsorption capacity does not decrease after three repeated uses. The alginate microsphere was also applied to the adsorption of Sr(II) in a real seawater medium. Because of inhibition by co-existing ions, the Sr(II) adsorption capacity was decreased and the adsorption rate was retarded compared with D.I. water. Although the Sr(II) adsorption capacity was decreased, the alginate microsphere still exhibited 17.8 mg/g of Sr(II) uptake in the seawater medium. Considering its excellent Sr(II) uptake in seawater and its reusability, an alginate microsphere is an appropriate cost-effective adsorbent for the removal and recovery of Sr(II) from seawater. PMID:26454070

  2. Preparation of alginate-chitosan fibers with potential biomedical applications.

    PubMed

    Sibaja, Bernal; Culbertson, Edward; Marshall, Patrick; Boy, Ramiz; Broughton, Roy M; Solano, Alejandro Aguilar; Esquivel, Marianelly; Parker, Jennifer; De La Fuente, Leonardo; Auad, Maria L

    2015-12-10

    The preparation of alginate-chitosan fibers, through wet spinning technique, as well as the study of their properties as a function of chitosan's molecular weight and retention time in the coagulation bath, is presented and discussed in this work. Scanning electron microscopy (SEM) revealed that the fibers presented irregular and rough surfaces, with a grooved and heavily striated morphology distributed throughout the structure. Dynamic mechanical analysis (DMA) showed that, with the exception of elongation at break, the incorporation of chitosan into the fibers improved their tensile properties. The in vitro release profile of sulfathiazole as a function of chitosan's molecular weight indicated that the fibers are viable carriers of drugs. Kinetic models showed that the release of the model drug is first-order, and the release mechanism is governed by the Korsmeyer-Peppas model. Likewise, fibers loaded with sulfathiazole showed excellent inhibition of Escherichia coli growth after an incubation time of 24h at 37 °C. PMID:26428163

  3. Preparation of tadpole-shaped calcium alginate microparticles with sphericity control.

    PubMed

    Dang, T D; Joo, S W

    2013-02-01

    Monosized sodium alginate microdroplets are prepared using a flow-focusing microdevice by adjusting the flow rate of the continuous phase (soybean oil) and the dispersed phase (sodium alginate solution). The gelation process of the semi-product, sodium alginate microdroplets, occurs outside the channel in a calcium chloride solution to form tadpole-shaped calcium alginate microparticles. The microparticles prepared are in the range of 100-250 μm in diameter, depending on the experimental conditions. The shape, size and size distribution of these calcium alginate microparticles depend strongly on the calcium solution concentration and the stirring mode. The shaping mechanism of the microparticles and the impact of the experimental conditions on particle shape and size are investigated. PMID:23107954

  4. Preparation of petaloid microspheres of basic magnesium carbonate.

    PubMed

    Ohkubo, Takahiro; Suzuki, Sei; Mitsuhashi, Kohei; Ogura, Taku; Iwanaga, Shinichi; Sakai, Hideki; Koishi, Masumi; Abe, Masahiko

    2007-05-22

    The synthesis of basic magnesium carbonate was examined under ultrasonic irradiation and was performed by the soda ash method using magnesium sulfate and sodium carbonate as starting materials. The particulate product was evaluated using SEM observations. Ultrasonic irradiation in the preparation of basic magnesium carbonate was found to give fine petaloid microspheres of about 3 mum in primary particle size. PMID:17458985

  5. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment.

    PubMed

    Amir Afshar, Hamideh; Ghaee, Azadeh

    2016-10-20

    The chemical nature of biomaterials play important role in cell attachment, proliferation and migration in tissue engineering. Chitosan and alginate are biodegradable and biocompatible polymers used as scaffolds for various medical and clinical applications. Amine groups of chitosan scaffolds play an important role in cell attachment and water adsorption but also associate with alginate carboxyl groups via electrostatic interactions and hydrogen bonding, consequently the activity of amine groups in the scaffold decreases. In this study, chitosan/alginate/halloysite nanotube (HNTs) composite scaffolds were prepared using a freeze-drying method. Amine treatment on the scaffold occurred through chemical methods, which in turn caused the hydroxyl groups to be replaced with carboxyl groups in chitosan and alginate, after which a reaction between ethylenediamine, 1-ethyl-3,(3-dimethylaminopropyl) carbodiimide (EDC) and scaffold triggered the amine groups to connect to the carboxyl groups of chitosan and alginate. The chemical structure, morphology and mechanical properties of the composite scaffolds were investigated by FTIR, CHNS, SEM/EDS and compression tests. The electrostatic attraction and hydrogen bonding between chitosan, alginate and halloysite was confirmed by FTIR spectroscopy. Chitosan/alginate/halloysite scaffolds exhibit significant enhancement in compressive strength compared with chitosan/alginate scaffolds. CHNS and EDS perfectly illustrate that amine groups were effectively introduced in the aminated scaffold. The growth and cell attachment of L929 cells as well as the cytotoxicity of the scaffolds were investigated by SEM and Alamar Blue (AB). The results indicated that the aminated chitosan/alginate/halloysite scaffold has better cell growth and cell adherence in comparison to that of chitosan/alginate/halloysite samples. Aminated chitosan/alginate/halloysite composite scaffolds exhibit great potential for applications in tissue engineering, ideally in

  6. Preparation of uniform magnetic recoverable catalyst microspheres with hierarchically mesoporous structure by using porous polymer microsphere template

    PubMed Central

    2014-01-01

    Merging nanoparticles with different functions into a single microsphere can exhibit profound impact on various applications. However, retaining the unique properties of each component after integration has proven to be a significant challenge. Our previous research demonstrated a facile method to incorporate magnetic nanoparticles into porous silica microspheres. Here, we report the fabrication of porous silica microspheres embedded with magnetic and gold nanoparticles as magnetic recoverable catalysts. The as-prepared multifunctional composite microspheres exhibit excellent magnetic and catalytic properties and a well-defined structure such as uniform size, high surface area, and large pore volume. As a result, the very little composite microspheres show high performance in catalytic reduction of 4-nitrophenol, special convenient magnetic separability, long life, and good reusability. The unique nanostructure makes the microspheres a novel stable and highly efficient catalyst system for various catalytic industry processes. PMID:24708885

  7. Preparation of alkaline earth phosphates with sol containing sodium alginate and sodium diphosphate.

    PubMed

    Sugiyama, Shigeru; Fujii, Minako; Fukuta, Kazuya; Seyama, Kazunori; Sotowa, Ken-Ichiro; Shigemoto, Naoya

    2006-03-01

    Magnesium hydrogen phosphate, calcium hydroxyapatite, and strontium hydroxyapatite were successfully prepared from sol consisting of sodium alginate and Na4P2O7 with Mg2+, Ca2+, and Sr2+ in the corresponding nitrates, respectively. It is revealed that the order of the addition of those substrates and the role of sodium alginate are important factors for the preparation of desired phosphate compounds. According to the previous paper on the preparation of calcium hydroxyapatite, sodium alginate was mixed with aqueous Na4P2O7, followed by the addition of the aqueous divalent cations, resulting in the poor formation of the target phosphates. However, as a revised sol-gel technique, sodium alginate was added to the mixture of Na4P2O7 and aqueous Mg2+ and Sr2+, resulting in a rather favorable formation of MgHPO4 and strontium hydroxyapatite, respectively, while the sol thus obtained was stable within a few days. However for aqueous Ca2+, calcium hydroxyapatite could not be obtained through the revised sol-gel technique. In the preparation of magnesium hydrogen phosphate, sodium alginate contributes mainly to the sol formation of the precursor. The ion exchange between Na+ in sodium alginate and aqueous Ca2+ was important for the preparation of calcium hydroxyapatite. In contrast, the reaction of sodium alginate with the mixture of Na4P2O7 and aqueous Sr2+ afforded strontium hydroxyapatite at the specific ratio of those three substrates. The structure of calcium and strontium phosphates prepared from the revised sol-gel process evidently depended on the amount of sodium alginate introduced into the mixture of Na4P2O7 and the corresponding divalent cations. PMID:16154579

  8. Alginate Hydrogel: A Shapeable and Versatile Platform for in Situ Preparation of Metal-Organic Framework-Polymer Composites.

    PubMed

    Zhu, He; Zhang, Qi; Zhu, Shiping

    2016-07-13

    This work reports a novel in situ growth approach for incorporating metal-organic framework (MOF) materials into an alginate substrate, which overcomes the challenges of processing MOF particles into specially shaped structures for real industrial applications. The MOF-alginate composites are prepared through the post-treatment of a metal ion cross-linked alginate hydrogel with a MOF ligand solution. MOF particles are well distributed and embedded in and on the surface of the composites. The macroscopic shape of the composite can be designed by controlling the shape of the corresponding hydrogel; thus MOF-alginate beads, fibers, and membranes are obtained. In addition, four different MOF-alginate composites, including HKUST-1-, ZIF-8-, MIL-100(Fe)-, and ZIF-67-alginate, were successfully prepared using different metal ion cross-linked alginate hydrogels. The mechanism of formation is revealed, and the composite is demonstrated to be an effective absorbent for water purification. PMID:27315047

  9. Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates.

    PubMed

    Hu, Yang; Ma, Shanshan; Yang, Zhuohong; Zhou, Wuyi; Du, Zhengshan; Huang, Jian; Yi, Huan; Wang, Chaoyang

    2016-04-01

    In this study, we develop a facile one-pot approach to the fabrication of poly(L-lactic acid) (PLLA) microsphere-incorporated calcium alginate (ALG-Ca)/hydroxyapatite (HAp) porous scaffolds based on HAp nanoparticle-stabilized oil-in-water Pickering emulsion templates, which contain alginate in the aqueous phase and PLLA in the oil phase. The emulsion aqueous phase is solidified by in situ gelation of alginate with Ca(2+) released from HAp by decreasing pH with slow hydrolysis of d-gluconic acid δ-lactone (GDL) to produce emulsion droplet-incorporated gels, followed by freeze-drying to form porous scaffolds containing microspheres. The pore structure of porous scaffolds can be adjusted by varying the HAp or GDL concentration. The compressive tests show that the increase of HAp or GDL concentration is beneficial to improve the compressive property of porous scaffolds, while the excessive HAp can lead to the decrease in compressive property. Moreover, the swelling behavior studies display that the swelling ratios of porous scaffolds reduce with increasing HAp or GDL concentration. Furthermore, hydrophobic drug ibuprofen (IBU) and hydrophilic drug bovine serum albumin (BSA) are loaded into the microspheres and scaffold matrix, respectively. In vitro drug release results indicate that BSA has a rapid release while IBU has a sustained release in the dual drug-loaded scaffolds. In vitro cell culture experiments verify that mouse bone mesenchymal stem cells can proliferate on the porous scaffolds well, indicating the good biocompatibility of porous scaffolds. All these results demonstrate that the PLLA microsphere-incorporated ALG-Ca/HAp porous scaffolds have a promising potential for tissue engineering and drug delivery applications. PMID:26774574

  10. Preparation and evaluation of sustained release calcium alginate beads and matrix tablets of acetazolamide.

    PubMed

    Barzegar-Jalali, M; Hanaee, J; Omidi, Y; Ghanbarzadeh, S; Ziaee, S; Bairami-Atashgah, R; Adibkia, K

    2013-02-01

    The aim of this study was to develop sustained release dosage forms of acetazolamide (ACZ) preparing its calcium alginate beads and matrix tablets. ACZ was incorporated into calcium alginate beads using microencapsulation method. Two methods were applied to prolong ACZ release rate. In the first method, the drug was incorporated into calcium alginate beads either alone or with various polymers in internal phase. The second method involved the preparation of matrix tablet from the beads benefiting direct compression method with or without various polymers in external phase. The release rate of these prepared formulations and an innovator's sustained-release capsule (Diamox®) were assessed. In-vitro dissolution studies revealed that the matrix tablets prepared by the second method containing NaCMC could sustain ACZ release properly and the drug released until 9 h. It was also found that several parameters such as concentration of sodium alginate, calcium chloride and ACZ; type and concentration of polymers; syringe needle size as well as distance between needle tip and surface of the calcium chloride could affect the properties of beads, matrix tablets and subsequently release profile. Preparation of polymer free beads, incorporation of polymers in internal phase of the beads and direct compression of the beads did not give sustained release property. Whereas, incorporation of NaCMC in the external phase of the beads in matrix tablets or in combination with alginate powder in directly compressed conventional tablets could produce dosage form with sustained release property similar to reference formulation. PMID:23447074

  11. A novel strategy for the preparation of porous microspheres and its application in peptide drug loading.

    PubMed

    Wei, Yi; Wang, Yuxia; Zhang, Huixia; Zhou, Weiqing; Ma, Guanghui

    2016-09-15

    A new strategy is developed to prepare porous microspheres with narrow size distribution for peptides controlled release, involving a fabrication of porous microspheres without any porogens followed by a pore closing process. Amphiphilic polymers with different hydrophobic segments (poly(monomethoxypolyethylene glycol-co-d,l-lactide) (mPEG-PLA), poly(monomethoxypolyethylene glycol-co-d,l-lactic-co-glycolic acid) (mPEG-PLGA)) are employed as microspheres matrix to prepare porous microspheres based on a double emulsion-premix membrane emulsification technique combined with a solvent evaporation method. Both microspheres possess narrow size distribution and porous surface, which are mainly caused by (a) hydrophilic polyethylene glycol (PEG) segments absorbing water molecules followed by a water evaporation process and (b) local explosion of microspheres due to fast evaporation of dichloromethane (MC). Importantly, mPEG-PLGA microspheres have a honeycomb like structure while mPEG-PLA microspheres have a solid structure internally, illustrating that the different hydrophobic segments could modulate the affinity between solvent and matrix polymer and influence the phase separation rate of microspheres matrix. Long term release patterns are demonstrated with pore-closed microspheres, which are prepared from mPEG-PLGA microspheres loading salmon calcitonin (SCT). These results suggest that it is potential to construct porous microspheres for drug sustained release using permanent geometric templates as new porogens. PMID:27285778

  12. Preparation of anti-CD40 antibody modified magnetic PCL-PEG-PCL microspheres.

    PubMed

    Gao, Xiang; Kan, Bing; Gou, MaLing; Zhang, Juan; Guo, Gang; Huang, Ning; Zhao, Xia; Qian, ZhiYong

    2011-04-01

    Antibody modified magnetic polymeric microspheres have potential biomedical application. In this paper, anti-CD40 antibody modified magnetic poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCL-PEG-PCL, PCEC) microspheres were prepared. First, PCL-PEG-PCL triblock copolymer was synthesized by ring-opening polymerization, followed by reaction with succinic anhydride, creating carboxylated PCL-PEG-PCL copolymer. Then, magnetite nanoparticles were encapsulated into carboxylated PCL-PEG-PCL microspheres, forming magnetic PCL-PEG-PCL microspheres with carboxyl group on their surface. Catalyzed by EDC/NHS, the anti-CD40 antibody was linked to these magnetic PCL-PEG-PCL microspheres, thus forming anti-CD40 modified PCL-PEG-PCL microspheres. These anti-CD40 antibody modified magnetic PCL-PEG-PCL microspheres may have potential application in cell separation. PMID:21702366

  13. Preparation and Characterization of Alginate and Psyllium Beads Containing Lactobacillus acidophilus

    PubMed Central

    Lotfipour, Farzaneh; Mirzaeei, Shahla; Maghsoodi, Maryam

    2012-01-01

    This paper describes preparation and characterization of beads of alginate and psyllium containing probiotic bacteria of Lactobacillus acidophilus DMSZ20079. Twelve different formulations containing alginate (ALG) and alginate-psyllium (ALG-PSL) were prepared using extrusion technique. The prepared beads were characterized in terms of size, morphology and surface properties, encapsulation efficiency, viabilities in acid (pH 1.8, 2 hours) and bile (0.5% w/v, 2 hours) conditions, and release in simulated colon pH conditions. The results showed that spherical beads with narrow size distribution ranging from 1.59 ± 0.04 to 1.67 ± 0.09 mm for ALG and from 1.61 ± 0.06 to 1.80 ± 0.07 mm for ALG-PSL with encapsulation efficiency higher than 98% were achieved. Furthermore, addition of PSL into ALG enhanced the integrity of prepared beads in comparison with ALG formulations. The results indicated that incorporation of PSL into alginate beads improved viability of the bacteria in acidic conditions as well as bile conditions. Also, stimulating effect of PSL on the probiotic bacteria was observed through 20-hour incubation in simulated colonic pH solution. According to our in vitro studies, PSL can be a suitable polymer candidate for partial substitution with ALG for probiotic coating. PMID:22649306

  14. Silk sericin loaded alginate nanoparticles: Preparation and anti-inflammatory efficacy.

    PubMed

    Khampieng, Thitikan; Aramwit, Pornanong; Supaphol, Pitt

    2015-09-01

    In this study, silk sericin loaded alginate nanoparticles were prepared by the emulsification method followed by internal crosslinking. The effects of various silk sericin loading concentration on particle size, shape, thermal properties, and release characteristics were investigated. The initial silk sericin loadings of 20, 40, and 80% w/w to polymer were incorporated into these alginate nanoparticles. SEM images showed a spherical shape and small particles of about 71.30-89.50 nm. TGA analysis showed that thermal stability slightly increased with increasing silk sericin loadings. FTIR analysis suggested interactions between alginate and silk sericin in the nanoparticles. The release study was performed in acetate buffer at normal skin conditions (pH 5.5; 32 °C). The release profiles of silk sericin exhibited initial rapid release, consequently with sustained release. These silk sericin loaded alginate nanoparticles were further incorporated into topical hydrogel and their anti-inflammatory properties were studied using carrageenan-induced paw edema assay. The current study confirms the hypothesis that the application of silk sericin loaded alginate nanoparticle gel can inhibit inflammation induced by carrageenan. PMID:26188300

  15. Influence of rheology of dispersion media in the preparation of polymeric microspheres through emulsification method.

    PubMed

    Khare, Piush; Jain, Sanjay K

    2009-01-01

    Chitosan microspheres as drug delivery system have attained importance and attracted the attention of researchers in last few years. This study was aimed toward the elucidation of the effect of viscosity of external oil phase on the properties of microspheres prepared by emulsification method. Chitosan microspheres were prepared utilizing oil phase of different viscosity viz. castor oil, heavy liquid paraffin, light liquid paraffin and mixture of light paraffin, and petroleum ether (1:1 v/v ratio). Microspheres prepared in highly viscous castor oil exhibited an average size of 11.52+/-0.57 microm with a percentage drug entrapment of 43.12+/-2.14. On the other hand, very small microspheres of 3.15+/-0.04 microm and 68.87+/-1.03% drug entrapment were obtained when mixture of liquid paraffin and petroleum ether was utilized as oil phase. Effect of viscosity on percent mucoadhesion, percent drug entrapment, zeta potential, percent process yield, etc. of microspheres has been observed. In vitro drug release in phosphate buffer pH 7.4 was determined for different batch of microspheres. The results revealed a difference in the drug release pattern of the different microspheres prepared as a function of viscosity of different oil phase. Use of low viscose oil resulted in the formulation of spherical and small size microspheres. This work was a part of our ongoing thrust and project to develop microparticulate drug delivery system. PMID:19882250

  16. Direct preparation of La2Zr2O7 microspheres by cathode plasma electrolysis.

    PubMed

    Liu, Chenxu; Zhang, Jin; Deng, Shunjie; Wang, Peng; He, Yedong

    2016-07-15

    La2Zr2O7 microspheres were directly prepared by cathode plasma electrolysis (CPE) in the electrolyte of Zr(NO3)4·5H2O and La(NO3)3·6H2O. Compared with high temperature sintering methods, the energy of plasma was completely used by CPE and made it possible to prepare the microspheres without calcining. The diameters of microspheres were mostly in the range of 0.5-5μm and the microspheres consisted of fluorite and pyrochlore structures of La2Zr2O7. Moreover, the microspheres possessed potential photocatalytic activity and fluorescence property, owing to the high crystallinity and large surface area of the microspheres. PMID:27124808

  17. Formulation design, preparation and characterization of multifunctional alginate stabilized nanodroplets.

    PubMed

    Baghbani, Fatemeh; Moztarzadeh, Fathollah; Mohandesi, Jamshid Aghazadeh; Yazdian, Fatemeh; Mokhtari-Dizaji, Manijhe; Hamedi, Sepideh

    2016-08-01

    In the present study the effect of process (homogenization speed) and formulation (polymer-alginate-concentration, surfactant concentration, drug amount, perfluorohexane volume fraction and co-surfactant inclusion) variables on particle size, entrapment efficiency, and drug release kinetics of doxorubicin-loaded alginate stabilized perfluorohexane nanodroplets were evaluated. Particle size and doxorubicin entrapment efficiency were highly affected by formulation and process variables. Increase in homogenization speed resulted in significant decrease in particle size and increase in entrapment efficiency. Polymer concentration and perfluorohexane amount both had similar effect on particle size. Particle size increased by an increase in the amount of both. Entrapment efficiency increased by increasing polymer concentration. In case of surfactant concentration and drug amount, particle size and entrapment efficiency had optimum values and an increase in concentration of both of them behind a certain limit resulted in increase in particle size and decrease in doxorubicin entrapment. In vitro release profile of doxorubicin was an apparently biphasic release process and 7%-13% of drug released after 24h incubation in PBS, pH=7.4, depending on the nanodroplets composition but ultrasound exposure for 10min resulted in triggered release of 85.95% of doxorubicin from optimal formulation (formulation E1 with 39.2nm diameter size and 92.2% entrapment efficiency). PMID:27177456

  18. Preparation of polymeric microspheres by the solvent evaporation method using sucrose stearate as a droplet stabilizer.

    PubMed

    Yüksel, N; Baykara, T

    1997-01-01

    Polymeric microspheres containing nicardipine hydrochloride (HCl) as a reference drug were prepared with the acrylic polymers Eudragit RS and L by the solvent evaporation method. Different concentrations of sucrose stearate as a droplet stabilizer were used. Sucrose stearate affected the diffusion rate of the solvent from the preliminary emulsion droplets to the outer phase for the formation of microspheres. Increasing concentrations of sucrose stearate in the formulations caused increasing porosity on the surface of the microspheres. However, a correlation between the concentrations of sucrose stearate and diameters of microspheres could not be assessed. From this point of view, during processing, applied stirring rate was important. PMID:9394253

  19. Microspheres

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Vital information on a person's physical condition can be obtained by identifying and counting the population of T-cells and B-cells, lymphocytes of the same shape and size that help the immune system protect the body from the invasion of disease. The late Dr. Alan Rembaum developed a method for identifying the cells. The method involved tagging the T-cells and B-cells with microspheres of different fluorescent color. Microspheres, which have fluorescent dye embedded in them, are chemically treated so that they can link with antibodies. With the help of a complex antibody/antigen reaction, the microspheres bind themselves to specific 'targets,' in this case the T-cells or B-cells. Each group of cells can then be analyzed by a photoelectronic instrument at different wavelengths emitted by the fluorescent dyes. Same concept was applied to the separation of cancer cells from normal cells. Microspheres were also used to conduct many other research projects. Under a patent license Magsphere, Inc. is producing a wide spectrum of microspheres on a large scale and selling them worldwide for various applications.

  20. Preparation and Evaluation of Mucoadhesive Beads/Discs of Alginate and Algino-Pectinate of Piroxicam for Colon-Specific Drug Delivery Via Oral Route

    PubMed Central

    Jelvehgari, Mitra; Mobaraki, Vajihe; Montazam, Seyed Hassan

    2014-01-01

    Background: Targeted drug delivery to colon would ensure direct treatment at the disease site, decrease in dose administration and reduction side effects improved drug utilization. Objective: The purpose of this research was to decrease gastric side effects of piroxicam by formulating microspheres of alginate and algino-pectinate beads of the drug. Materials and Methods: Ionotropic gelation was used to entrap piroxicam into alginate and algino-pectinate mucoadhesive microspheres as a potential drug carrier for oral delivery of piroxicam. Microparticles with different drug to polymers ratio were prepared and characterized by encapsulation efficiency, particle size, DSC (differential scanning calorimetric), mucoadhesive property, gastroretentive time and drug release studies. Results: The best drug to polymer ratio of microparticles was 1:2.5 (F1) with Na-Alg and 1:7.5 (F4) with Alg-Na with pectin, respectively. The microparticles F1 and F4 showed 28.80%, 50.01% loading efficiency, 82.57%, 82.31% production yield and 945.4, 899.91 µm mean particle size. DSC showed stable character of piroxicam in drug-loaded microparticles and revealed amorphous form. It was found that microparticles (Na-Alg) prepared had faster release and microparticles (Alg-Na and pectin mixture) prepared had slower release than untreated piroxicam (P < 0.05). Microparticles (mixture of Na-Alg and pectin) exhibited very good percentage of mucoadhesion and flowability properties. Mucoadhesion strength and retention time study showed better retention of piroxicam microparticles in intestine. Besides, there was a significant higher retention of mucoadhesive microparticles in upper GI tract. Conclusions: Algino-pectinate mucoadhesive formulations exhibited promising properties of a sustained release form for piroxicam and provided distinct tissue protection in stomach. PMID:25625047

  1. Ultrasonic atomization for spray drying: a versatile technique for the preparation of protein loaded biodegradable microspheres.

    PubMed

    Bittner, B; Kissel, T

    1999-01-01

    Bovine serum albumin (BDA) loaded microspheres with a spherical shape and smooth surface structure were successfully prepared from poly(lactide-co-glycolide) using an ultrasonic nozzle installed in a Niro laboratory spray dryer. Process and formulation parameters were investigated with respect to their influence on microsphere characteristics, such as particle size, loading capacity, and release properties. Preparation of microspheres in yields of more than 50% was achieved using an ultrasonic atomizer connected to a stream of carrier air. Microsphere characteristics could be modified by changing several technological parameters. An increased polymer concentration of the feed generated larger particles with a significantly reduced initial release of the protein. Moreover, microspheres with a smooth surface structure were obtained from the organic polymer solution with the highest viscosity. Microparticles with a low BSA loading showed a large central cavity surrounded by a thin polymer layer in scanning electron microspheres. A high protein loading led to an enlargement of the shell layer, or even to dense particles without any cavities. A continuous in vitro release pattern of BSA was obtained from the particles with low protein loading. Glass transition temperatures (Tg) of the microspheres before and after lyophilization did not differ from those of the BSA loaded particles prepared by spray drying with a rotary atomizer. Analysis of the polymer by gel permeation chromatography indicated that ultrasonication had no effect on polymer molecular weight. Molecular weight and polydispersity of the pure polymer, placebo microspheres prepared by spray drying, and placebo microspheres prepared using the ultrasonic nozzle were in the same range. In conclusion, ultrasonic atomization represents a versatile and reliable technique for the production of protein loaded biodegradable microspheres without inducing a degradation of the polymer matrix. Particle characteristics

  2. Preparation and evaluation of berberine alginate beads for stomach-specific delivery.

    PubMed

    Zhang, Zhen-Hai; Sun, Yong-Shun; Pang, Hui; Munyendo, Were L L; Lv, Hui-Xia; Zhu, Sheng-Liang

    2011-01-01

    The purpose of this research was to prepare floating calcium alginate beads of berberine for targeting the gastric mucosa and prolonging their gastric residence time. The floating beads were prepared by suspending octodecanol and berberine in sodium alginate (SA) solution. The suspension was then dripped into a solution of calcium chloride. The hydrophobic and low-density octodecanol enhanced the sustained-release properties and floating ability of the beads. The bead formulation was optimized for different weight ratios of octodecanol and SA and evaluated in terms of diameter, floating ability and drug loading, entrapment and release. In vitro release studies showed that the floating and sustained release time were effectively increased in gastric media by addition of octodecanol. In vivo studies with rats showed that a significant increase in gastric residence time of beads had been achieved. PMID:22169938

  3. Facile preparation of multifunctional superparamagnetic PHBV microspheres containing SPIONs for biomedical applications

    NASA Astrophysics Data System (ADS)

    Li, Wei; Jan Zaloga; Ding, Yaping; Liu, Yufang; Janko, Christina; Pischetsrieder, Monika; Alexiou, Christoph; Boccaccini, Aldo R.

    2016-03-01

    The promising potential of magnetic polymer microspheres in various biomedical applications has been frequently reported. However, the surface hydrophilicity of superparamagnetic iron oxide nanoparticles (SPIONs) usually leads to poor or even failed encapsulation of SPIONs in hydrophobic polymer microspheres using the emulsion method. In this study, the stability of SPIONs in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) solution was significantly increased after surface modification with lauric acid. As a result, magnetic PHBV microspheres with high encapsulation efficiencies (71.0–87.4%) were prepared using emulsion-solvent extraction/evaporation method. Magnetic resonance imaging (MRI) showed significant contrast for the magnetic PHBV microspheres. The toxicity of these magnetic PHBV microspheres towards human T-lymphoma suspension cells and adherent colon carcinoma HT-29 cells was investigated using flow cytometry, and they were shown to be non-toxic in a broad concentration range. A model drug, tetracycline hydrochloride, was used to demonstrate the drug delivery capability and to investigate the drug release behavior of the magnetic PHBV microspheres. The drug was successfully loaded into the microspheres using lauric acid-coated SPIONs as drug carrier, and was released from the microspheres in a diffusion controlled manner. The developed magnetic PHBV microspheres are promising candidates for biomedical applications such as targeted drug delivery and MRI.

  4. Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin

    NASA Astrophysics Data System (ADS)

    Li, Fengxia; Li, Xiaoli; Li, Bin

    2011-11-01

    In order to obtain a targeting drug carrier system, magnetic polylactic acid (PLA) microspheres loading curcumin were synthesized by the classical oil-in-water emulsion solvent-evaporation method. In the Fourier transform infrared spectra of microspheres, the present functional groups of PLA were all kept invariably. The morphology and size distribution of magnetic microspheres were observed with scanning electron microscopy and dynamic light scattering, respectively. The results showed that the microspheres were regularly spherical and the surface was smooth with a diameter of 0.55-0.75 μm. Magnetic Fe 3O 4 was loaded in PLA microspheres and the content of magnetic particles was 12 wt% through thermogravimetric analysis. The magnetic property of prepared microspheres was measured by vibrating sample magnetometer. The results showed that the magnetic microspheres exhibited typical superparamagnetic behavior and the saturated magnetization was 14.38 emu/g. Through analysis of differential scanning calorimetry, the curcumin was in an amorphous state in the magnetic microspheres. The drug loading, encapsulation efficiency and releasing properties of curcumin in vitro were also investigated by ultraviolet-visible spectrum analysis. The results showed that the drug loading and encapsulation efficiency were 8.0% and 24.2%, respectively. And curcumin was obviously slowly released because the cumulative release percentage of magnetic microspheres in the phosphate buffer (pH=7.4) solution was only 49.01% in 72 h, and the basic release of curcumin finished in 120 h.

  5. Facile preparation of multifunctional superparamagnetic PHBV microspheres containing SPIONs for biomedical applications

    PubMed Central

    Li, Wei; Jan Zaloga; Ding, Yaping; Liu, Yufang; Janko, Christina; Pischetsrieder, Monika; Alexiou, Christoph; Boccaccini, Aldo R.

    2016-01-01

    The promising potential of magnetic polymer microspheres in various biomedical applications has been frequently reported. However, the surface hydrophilicity of superparamagnetic iron oxide nanoparticles (SPIONs) usually leads to poor or even failed encapsulation of SPIONs in hydrophobic polymer microspheres using the emulsion method. In this study, the stability of SPIONs in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) solution was significantly increased after surface modification with lauric acid. As a result, magnetic PHBV microspheres with high encapsulation efficiencies (71.0–87.4%) were prepared using emulsion-solvent extraction/evaporation method. Magnetic resonance imaging (MRI) showed significant contrast for the magnetic PHBV microspheres. The toxicity of these magnetic PHBV microspheres towards human T-lymphoma suspension cells and adherent colon carcinoma HT-29 cells was investigated using flow cytometry, and they were shown to be non-toxic in a broad concentration range. A model drug, tetracycline hydrochloride, was used to demonstrate the drug delivery capability and to investigate the drug release behavior of the magnetic PHBV microspheres. The drug was successfully loaded into the microspheres using lauric acid-coated SPIONs as drug carrier, and was released from the microspheres in a diffusion controlled manner. The developed magnetic PHBV microspheres are promising candidates for biomedical applications such as targeted drug delivery and MRI. PMID:27005428

  6. Facile preparation of multifunctional superparamagnetic PHBV microspheres containing SPIONs for biomedical applications.

    PubMed

    Li, Wei; Jan Zaloga; Ding, Yaping; Liu, Yufang; Janko, Christina; Pischetsrieder, Monika; Alexiou, Christoph; Boccaccini, Aldo R

    2016-01-01

    The promising potential of magnetic polymer microspheres in various biomedical applications has been frequently reported. However, the surface hydrophilicity of superparamagnetic iron oxide nanoparticles (SPIONs) usually leads to poor or even failed encapsulation of SPIONs in hydrophobic polymer microspheres using the emulsion method. In this study, the stability of SPIONs in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) solution was significantly increased after surface modification with lauric acid. As a result, magnetic PHBV microspheres with high encapsulation efficiencies (71.0-87.4%) were prepared using emulsion-solvent extraction/evaporation method. Magnetic resonance imaging (MRI) showed significant contrast for the magnetic PHBV microspheres. The toxicity of these magnetic PHBV microspheres towards human T-lymphoma suspension cells and adherent colon carcinoma HT-29 cells was investigated using flow cytometry, and they were shown to be non-toxic in a broad concentration range. A model drug, tetracycline hydrochloride, was used to demonstrate the drug delivery capability and to investigate the drug release behavior of the magnetic PHBV microspheres. The drug was successfully loaded into the microspheres using lauric acid-coated SPIONs as drug carrier, and was released from the microspheres in a diffusion controlled manner. The developed magnetic PHBV microspheres are promising candidates for biomedical applications such as targeted drug delivery and MRI. PMID:27005428

  7. Poly-L-lactide/sodium alginate/chitosan microsphere hybrid scaffolds made with braiding manufacture and adhesion technique: Solution to the incongruence between porosity and compressive strength.

    PubMed

    Lin, Jia-Horng; Chen, Chih-Kuang; Wen, Shih-Peng; Lou, Ching-Wen

    2015-01-01

    Bone scaffolds require a three-dimensional structure, high porosity, interconnected pores, adequate mechanical strengths, and non-toxicity. A high porosity is incongruent with mechanical strengths. Therefore, this study combines a braiding method and microsphere solution to create bone scaffolds with a high porosity and sufficient mechanical strengths. First, poly-L-lactide (PLLA) plied yarns are braided into 5-, 10-, 15-, 20-, and 25-layer hollow braids, and then thermally treated at 165 °C for various durations. Next, sodium alginate (SA) microspheres, cross-linked with CaCl2 solution with various concentrations, are combined with PLLA porous braided bone scaffolds to form PLLA/SA/CS microsphere hybrid scaffolds, which are then observed for surface observation, and tested for porosity, water contact angle, compressive strength, MTT assay, bioactivity, alkaline phosphatase (ALP) assay, cell attachment, and statistical analyses. The test results show that the layer amount of the bone scaffold is proportional to the compressive strength. With the same number of layers, the compressive strength is inversely proportional to the concentration of the CaCl2 solution. The results of surface observation, porosity, and water contact angle tests show that PLLA/SA/CS microsphere hybrid scaffolds possess a high porosity and good hydrophilicity; as a result, the braiding manufacture and the bonding technique effectively solve the confliction between porosity and mechanical strength. The concentration of CaCl2 does not pertain to cell activity and ALP results, exemplified by good cell attachment on bone scaffolds for each specification. PMID:25953547

  8. Liraglutide-loaded poly(lactic-co-glycolic acid) microspheres: Preparation and in vivo evaluation.

    PubMed

    Wu, Junzi; Williams, Gareth R; Branford-White, Christopher; Li, Heyu; Li, Yan; Zhu, Li-Min

    2016-09-20

    In this work, we sought to generate sustained-release injectable microspheres loaded with the GLP-1 analogue liraglutide. Using water-in-oil-in-water double emulsion methods, poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with liraglutide were prepared. The microspheres gave sustained drug release over 30days, with cumulative release of up to 90% reached in vitro. The microspheres were further studied in a rat model of diabetes, and their performance compared with a group given daily liraglutide injections. Reduced blood sugar levels were seen in the microsphere treatment groups, with the results being similar to those obtained with conventional injections between 10 and 25days after the commencement of treatment. After 5 and 30days of treatment, the microspheres seem a little slower to act than the injections. The pathology of the rats' spleen, heart, kidney and lungs was probed after the 30-day treatment period, and the results indicated that the microspheres were safe and had beneficial effects on the liver, reducing the occurrence of fatty deposits seen in untreated diabetic rats. Moreover, in terms of liver, renal and cardiac functions, and blood lipid and antioxidant levels, the microspheres were as effective as the injections. The expression of several proteases linked to the metabolism of aliphatic acids and homocysteine was promoted by the microsphere formulations. Inflammatory markers in the microsphere treatment groups were somewhat higher than the injection group, however. The liraglutide/PLGA microspheres prepared in this work are overall shown to be efficacious in a rat model of diabetes, and we thus believe they have strong potential for clinical use. PMID:27343696

  9. Process and formulation variables in the preparation of injectable and biodegradable magnetic microspheres

    PubMed Central

    Zhao, Hong; Gagnon, Jeffrey; Häfeli, Urs O

    2007-01-01

    The aim of this study was to prepare biodegradable sustained release magnetite microspheres sized between 1 to 2 μm. The microspheres with or without magnetic materials were prepared by a W/O/W double emulsion solvent evaporation technique using poly(lactide-co-glycolide) (PLGA) as the biodegradable matrix forming polymer. Effects of manufacturing and formulation variables on particle size were investigated with non-magnetic microspheres. Microsphere size could be controlled by modification of homogenization speed, PLGA concentration in the oil phase, oil phase volume, solvent composition, and polyvinyl alcohol (PVA) concentration in the outer water phase. Most influential were the agitation velocity and all parameters that influence the kinematic viscosity of oil and outer water phase, specifically the type and concentration of the oil phase. The magnetic component yielding homogeneous magnetic microspheres consisted of magnetite nanoparticles of 8 nm diameter stabilized with a polyethylene glycole/polyacrylic acid (PEG/PAA) coating and a saturation magnetization of 47.8 emu/g. Non-magnetic and magnetic microspheres had very similar size, morphology, and size distribution, as shown by scanning electron microscopy. The optimized conditions yielded microspheres with 13.7 weight% of magnetite and an average diameter of 1.37 μm. Such biodegradable magnetic microspheres seem appropriate for vascular administration followed by magnetic drug targeting. PMID:17407608

  10. Preparation and adsorption properties of magnetic CoFe2O4-chitosan composite microspheres

    NASA Astrophysics Data System (ADS)

    Lian, Qi; Zheng, Xue-Fang; Hu, Tie-Feng

    2015-11-01

    Magnetic chitosan microspheres made from novel polymer materials show outstanding applied characteristics. Magnetic chitosan microspheres are rather cheap, non-toxic, tasteless, alkali resistant, corrosion resistant, easily degradable, easily recyclable, and so on. It can be widely used in many fields. In this paper, magnetic CoFe2O4/chitosan core-shell microspheres are prepared by means of emulsification cross-linking technique using CoFe2O4 as core and glutaric dialdehyde as crosslinking agent. The results demonstrated that the different calcining temperature of magnetic (CoFe2O4) particles, CoFe2O4/chitosan ratio and stirring time of the suspension medium are the most effective parameters that control the size, size distribution, morphology and magnetism of the described microspheres. Finally, the size, morphology and chemical structure of the prepared materials are studied by different methods. The results show that the optimal calcination temperature of magnetic particles is 700°C, the optimal ratio of CoFe2O4/chitosan is 1: 1, ultrasonic dispersion time is 30 min. The prepared chitosan magnetic microspheres have small size and are well dispersed when the stirring time is 3 h. The prepared magnetic chitosan microspheres are well shaped spheres with a diameter from 1 to 50 μm, in which CoFe2O4 particles are dispersed uniformly. The magnetic chitosan microspheres show excellent magnetic response and have good adsorption characteristics.

  11. Preparation and properties of hollow glass microspheres for use in laser fusion experiments

    SciTech Connect

    Campbell, J.H.; Grens, J.Z.; Poco, J.F.

    1983-11-01

    We review the preparation of high quality, hollow-glass microspheres for use in laser driven fusion experiments at LLNL. The primary focus of this paper is on the liquid-droplet method for making glass spheres, which has been in use at LLNL for over six years. We have combined the results from previous studies with our current results to present a detailed description of the preparation and the composition and physical properties of the glass microspheres. We also present a mathematical model that simulates the microsphere formation process. Examples are given of the application of the model to study the effects of various process parameters.

  12. A dry powder formulation from silk fibroin microspheres as a topical auto-gelling device.

    PubMed

    Faragò, Silvio; Lucconi, Giulia; Perteghella, Sara; Vigani, Barbara; Tripodo, Giuseppe; Sorrenti, Milena; Catenacci, Laura; Boschi, Alessandra; Faustini, Massimo; Vigo, Daniele; Chlapanidas, Theodora; Marazzi, Mario; Torre, Maria Luisa

    2016-06-01

    With the aim of establishing the formulation of a new hydrophilic auto-gelling medical device for biomedical applications, fibroin-based microspheres were prepared. The proposed microspheres were produced by a cost-effective and industrially scalable technique, such as the spray-drying. Spray-dried silk fibroin microspheres were obtained and the effects of different hydrophilic polymer on the process yield, microsphere morphology and conformation transition of fibroin were evaluated. The final auto-gelling formulations were obtained by adding calcium gluconate (as a calcium source for alginate crosslinking) to the prepared microspheres and tested by an in vitro gelling test. This study showed that the combination of fibroin with sodium alginate and poloxamer produced the most promising auto-gelling formulation for specific biomedical applications, such as the treatment of pressure ulcers. PMID:25757645

  13. Mucoadhesive microspheres containing anti-hypertensive agent: formulation and characterization.

    PubMed

    Patel, Ankita Sunilbhai; Saikat, Pande; Pravinbhai, Patel Ronakkumar

    2014-01-01

    The spherical microspheres consisting of Furosemide loaded sodium alginate and along with HPMC E50 or sodium CMC as mucoadhesive polymers in different ratios were prepared using ionic gelation technique. Calcium chloride was used as crosslinking, to retard the drug release from the mucoadhesive microspheres. The prepared mucoadhesive microspheres were subjected for evaluation of various parameters like production yield, particle size, encapsulation efficiency, mucoadhesion test and in vitro dissolution profile studies. Formulations were subjected to DSC study and SEM analysis. The in vitro release data were well fit into Higuchi and Korsmeyer-Peppas model and followed non-Fickian diffusion mechanism. PMID:24410197

  14. A new method for the preparation of monoporous hollow microspheres.

    PubMed

    Chang, Ming-Wei; Stride, Eleanor; Edirisinghe, Mohan

    2010-04-01

    The feasibility of producing a hollow microsphere with a single hole in its shell by coaxial electrohydrodynamic atomization (CEHDA) is demonstrated. Polymethylsilsesquioxane (PMSQ) was used as a model shell material encapsulating a core of a volatile liquid, perfluorohexane (PFH), which was subsequently evaporated to produce the hollow microspheres. The diameters of the microspheres and of the single surface pore were controlled by varying the flow rate of the components, the concentration of the PMSQ solution, and the applied voltage in the CEHDA process. The particles were characterized by scanning electron microscopy, and the ranges obtained were 275-860 nm for the microsphere diameter and 35-135 nm for the pore size. The process overcomes several of the key problems associated with existing methods of monoporous microsphere formation including removing the need for elevated temperatures, multiple processing steps, and the use of surfactants and other additives. PMID:20095539

  15. Preparations and characterization of alginate/silver composite films: Effect of types of silver particles.

    PubMed

    Shankar, Shiv; Wang, Long-Feng; Rhim, Jong-Whan

    2016-08-01

    Alginate-based films reinforced with different types of silver particles such as metallic silver (AgM), silver zeolite (AgZ), citrate reduced silver nanoparticles (AgNP(C)), laser ablated silver nanoparticles (AgNP(LA)), and silver nitrate (AgNO3) were prepared using a solvent casting method and the effect of silver particles on the optical, mechanical, water vapor barrier, and antimicrobial properties the composite films was evaluated. Size and shape of the silver particles were varied depending on the types of silver source and the preparation method. The alginate films incorporated with AgNP(C), AgNP(LA), and AgNO3 showed a characteristic surface plasmon resonance absorption peaks of AgNPs around 420nm. Film properties such as mechanical, optical, and water vapor barrier properties were greatly influenced by the types of AgNPs used. Alginate/AgNPs composite films except AgM and AgNP(LA) incorporated ones exhibited strong antimicrobial activity against two food-borne pathogenic bacteria, Escherichia coli and Listeria monocytogenes. The developed films have a high potential for the application as antimicrobial food packaging films. PMID:27112867

  16. Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies.

    PubMed

    Silva, Mariana dos Santos; Cocenza, Daniela Sgarbi; Grillo, Renato; de Melo, Nathalie Ferreira Silva; Tonello, Paulo Sérgio; de Oliveira, Luciana Camargo; Cassimiro, Douglas Lopes; Rosa, André Henrique; Fraceto, Leonardo Fernandes

    2011-06-15

    Agrochemicals are amongst the contaminants most widely encountered in surface and subterranean hydrological systems. They comprise a variety of molecules, with properties that confer differing degrees of persistence and mobility in the environment, as well as different toxic, carcinogenic, mutagenic and teratogenic potentials, which can affect non-target organisms including man. In this work, alginate/chitosan nanoparticles were prepared as a carrier system for the herbicide paraquat. The preparation and physico-chemical characterization of the nanoparticles was followed by evaluation of zeta potential, pH, size and polydispersion. The techniques employed included transmission electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy. The formulation presented a size distribution of 635 ± 12 nm, polydispersion of 0.518, zeta potential of -22.8 ± 2.3 mV and association efficiency of 74.2%. There were significant differences between the release profiles of free paraquat and the herbicide associated with the alginate/chitosan nanoparticles. Tests showed that soil sorption of paraquat, either free or associated with the nanoparticles, was dependent on the quantity of organic matter present. The results presented in this work show that association of paraquat with alginate/chitosan nanoparticles alters the release profile of the herbicide, as well as its interaction with the soil, indicating that this system could be an effective means of reducing negative impacts caused by paraquat. PMID:21493003

  17. Preparation of porous LaFeO3 microspheres and their gas-sensing property

    NASA Astrophysics Data System (ADS)

    Xiao, Hongxia; Xue, Cheng; Song, Peng; Li, Jia; Wang, Qi

    2015-05-01

    Porous micro-/nanostructures are of great interest in many current and emerging areas of technology. In this paper, porous microspheres composed of LaFeO3 nanoparticles were prepared by a convenient and effective method. The obtained microspheres have been structurally characterized by X-ray diffraction analysis (XRD), which confirms the single crystalline orthorhombic structure. By using scanning electron microscopy (SEM), it can be seen that porous LaFeO3 microspheres with rough surface were assembled from a large amount of interconnected nanoparticles. And transmission electron microscopy (TEM) image has also confirmed their porous feature. A subsequent plausible formation mechanism of porous LaFeO3 microspheres has been explained in accordance with the Ostwald ripening process. Moreover, gas sensing investigation showed that the sensor based on porous LaFeO3 microspheres exhibited potential applications in monitoring acetone gas due to their unique morphology and porous structure.

  18. Hollow and porous hydroxyapatite microspheres prepared with an O/W emulsion by spray freezing method.

    PubMed

    Xiao, Qiyao; Zhou, Kechao; Chen, Chao; Jiang, Mingxiang; Zhang, Yan; Luo, Hang; Zhang, Dou

    2016-12-01

    Microspheres with hollow and/or porous structures have been widely used in various applications. A new method of spraying and freezing emulsions was developed to prepare hollow HA (hydroxyapatite) microspheres with interconnected pores by using PVA (polyvinyl alcohol) as emulsifiers and binders. The relationships between viscosity and shear time or rates were tested and the dispersing stability of oil in water (O/W) emulsions was characterized with comparison to suspensions without the addition of oil phase. The effects of solid loadings of HA and the volume ratio between oil and water on the morphologies of microspheres were investigated. Hollow HA microspheres with particle diameter of ~20μm and pore size of ~0.6μm were successfully obtained by spray freezing method. Besides, drying and sintering processes were crucial to the formation of hollow and porous structures, respectively. The gentamicin loading and releasing of HA porous microspheres with different hollow volumes were tested. PMID:27612804

  19. Preparation and in vitro Characterization of Porous Carrier–Based Glipizide Floating Microspheres for Gastric Delivery

    PubMed Central

    Pandya, N; Pandya, M; Bhaskar, V H

    2011-01-01

    Floating microspheres have been utilized to obtain prolonged and uniform release of drug in the stomach for development of once-daily formulations. A controlled-release system designed to increase residence time in the stomach without contact with the mucosa was achieved through the preparation of floating microspheres by the emulsion solvent diffusion technique, using (i) calcium silicate (CS) as porous carrier; (ii) glipizide, an oral hypoglycemic agent; and (iii) Eudragit® S as polymer. The effects of various formulations and process variables on the internal and external particle morphology, micromeritic properties, in vitro floating behavior, drug loading, and in vitro drug release were studied. The microspheres were found to be regular in shape and highly porous. The prepared microspheres exhibited prolonged drug release (~8 h) and remained buoyant for >10 h. The mean particle size increased and the drug release rate decreased at higher polymer concentrations. No significant effect of the stirring rate during preparation on drug release was observed. In vitro studies demonstrated diffusion-controlled drug release from the microspheres. Microsphere formulation CS4, containing 200 mg calcium silicate, showed the best floating ability (88% buoyancy) in simulated gastric fluid. The release pattern of glipizide in simulated gastric fluid from all floating microspheres followed the Higuchi matrix model and the Peppas-Korsmeyer model. PMID:21731353

  20. Serum Albumin-Alginate Microparticles Prepared by Transacylation: Relationship between Physicochemical, Structural and Functional Properties.

    PubMed

    Hadef, Imane; Rogé, Barbara; Edwards-Lévy, Florence

    2015-08-10

    Our laboratory develops a method of microencapsulation using a transacylation reaction in a water-in-oil (W/O) emulsion. The method is based on the creation of amide bonds between free amine functions of a protein (human serum albumin (HSA)) and ester groups of propylene glycol alginate (PGA) in the inner aqueous phase after alkalization. The aim of this work is to study the influence of physicochemical properties of HSA-PGA mixtures on microparticle characteristics. Microparticles were prepared varying the concentrations of PGA and HSA, then characterized (inner structure, size, swelling rate, release kinetics). PGA and each polymer mixture used in the microencapsulation procedure were examined in order to elucidate the mechanism of microstructure formation. It was found that the morphology and functional properties of HSA-alginate microparticles were related to the two polymer concentrations in the aqueous solution. Actually, the polymer concentration variations led to physicochemical changes, which affected the microparticle structure and functional properties. PMID:26121308

  1. Streptomycin-loaded PLGA-alginate nanoparticles: preparation, characterization, and assessment

    NASA Astrophysics Data System (ADS)

    Asadi, Asadollah

    2014-04-01

    The aim of this study was to formulate and characterize streptomycin-loaded PLGA-alginate nanoparticles for their potential therapeutic use in Salmonella subsp. enterica ATCC 14028 infections. The streptomycin nanoparticle was prepared by solvent diffusion method, and the other properties such as size, zeta potential, loading efficacy, release kinetics, and antimicrobial strength were evaluated. The survey shows that nanoparticles may serve as a carrier of streptomycin and may provide localized antibacterial activity in the treatment of Salmonellosis. Electron microscopy showed spherical particles with indentations. The average size of the nanoparticles was 90 nm. At pH 7.2, the release kinetics of streptomycin from the nanoparticles was successfully illustrated as an initial burst defined by a first order equation that after this stage, it has a drastic tendency to obtain steady state. Nevertheless, nanoparticles showed loading efficacy nearly about 70-75 %. In addition, the tendency of concentration of streptomycin released from nanoparticles to reach antibacterial activity was similar to that of free streptomycin against PLGA-alginate, but it had threefold more antimicrobial strength in comparison with free streptomycin. This work shows the potential use of streptomycin-loaded PLGA-alginate nanoparticles and its capability.

  2. Streptomycin-loaded PLGA-alginate nanoparticles: preparation, characterization, and assessment

    NASA Astrophysics Data System (ADS)

    Asadi, Asadollah

    2013-04-01

    The aim of this study was to formulate and characterize streptomycin-loaded PLGA-alginate nanoparticles for their potential therapeutic use in Salmonella subsp. enterica ATCC 14028 infections. The streptomycin nanoparticle was prepared by solvent diffusion method, and the other properties such as size, zeta potential, loading efficacy, release kinetics, and antimicrobial strength were evaluated. The survey shows that nanoparticles may serve as a carrier of streptomycin and may provide localized antibacterial activity in the treatment of Salmonellosis. Electron microscopy showed spherical particles with indentations. The average size of the nanoparticles was 90 nm. At pH 7.2, the release kinetics of streptomycin from the nanoparticles was successfully illustrated as an initial burst defined by a first order equation that after this stage, it has a drastic tendency to obtain steady state. Nevertheless, nanoparticles showed loading efficacy nearly about 70-75 %. In addition, the tendency of concentration of streptomycin released from nanoparticles to reach antibacterial activity was similar to that of free streptomycin against PLGA-alginate, but it had threefold more antimicrobial strength in comparison with free streptomycin. This work shows the potential use of streptomycin-loaded PLGA-alginate nanoparticles and its capability.

  3. Sustained release of risperidone from biodegradable microspheres prepared by in-situ suspension-evaporation process.

    PubMed

    An, Taekun; Choi, Juhyuen; Kim, Aram; Lee, Jin Ho; Nam, Yoonjin; Park, Junsung; Sun, Bo Kyung; Suh, Hearan; Kim, Cherng-Ju; Hwang, Sung-Joo

    2016-04-30

    Risperidone-loaded poly (d,l-lactide-co-glycolide) (PLGA) microspheres were prepared with a suspension-evaporation process with an aqueous suspension containing an in situ-formed aluminum hydroxide inorganic gel (SEP-AL process) and evaluated for encapsulation efficiency, particle size, surface morphology, glass transition temperature, in vitro drug release profile, and in vivo behavior. The SEP-AL microspheres were compared with conventional oil-in-water (O/W) emulsion solvent evaporation method using polyvinylalcohol (PVA) as an emulsifier (CP-PVA process). The microspheres were spherical in shape. DSC measurements showed that risperidone crystallinity was greatly reduced due to the homogeneous distribution of risperidone in PLGA microspheres. In vitro drug release profile from the microspheres showed a sigmoidal pattern of negligible initial burst up to 24h and minimal release (time-lag) for 7days. After the lag phase, slow release took a place up to 25days and then rapid release occurred sharply for 1 week. In vivo rat pharmacokinetic profile from the microspheres showed very low blood concentration level at the initial phase (up to 24h) followed by the latent phase up to 21days. At the 3rd week, main phase started and the blood concentration of the drug increased up to the 5th week, and then gradually decreased. The risperidone-loaded PLGA microspheres produced by SEP-AL process showed excellent controlled release characteristics for the effective treatment of schizophrenia patients. PMID:26899975

  4. Preparation of hollow hydroxyapatite microspheres by the conversion of borate glass at near room temperature

    SciTech Connect

    Yao, Aihua; Ai, Fanrong; Liu, Xin; Wang, Deping; Huang, Wenhai; Xu, Wei

    2010-01-15

    Hollow hydroxyapatite microspheres, consisting of a hollow core and a porous shell, were prepared by converting Li{sub 2}O-CaO-B{sub 2}O{sub 3} glass microspheres in dilute phosphate solution at 37 {sup o}C. The results confirmed that Li{sub 2}O-CaO-B{sub 2}O{sub 3} glass was transformed to hydroxyapatite without changing the external shape and dimension of the original glass object. Scanning electron microscopy images showed the shell wall of the microsphere was built from hydroxyapatite particles, and these particles spontaneously align with one another to form a porous sphere with an interior cavity. Increase in phosphate concentration resulted in an increase in the reaction rate, which in turn had an effect on shell wall structure of the hollow hydroxyapatite microsphere. For the Li{sub 2}O-CaO-B{sub 2}O{sub 3} glass microspheres reacted in low-concentration K{sub 2}HPO{sub 4} solution, lower reaction rate and a multilayered microstructure were observed. On the other hand, the glass microspheres reacted in higher phosphate solution converted more rapidly and produced a single hydroxyapatite layer. Furthermore, the mechanism of forming hydroxyapatite hollow microsphere was described.

  5. Preparation and characterization of genipin-cross-linked silk fibroin/chitosan sustained-release microspheres

    PubMed Central

    Zeng, Shuguang; Ye, Manwen; Qiu, Junqi; Fang, Wei; Rong, Mingdeng; Guo, Zehong; Gao, Wenfen

    2015-01-01

    We report the effects of distinct concentrations of genipin and silk fibroin (SF):chitosan (CS) ratios on the formation of SF–CS composite microspheres. We selected microspheres featuring an SF:CS ratio of 1:1, encapsulated various concentrations of bovine serum albumin (BSA), and then compared their encapsulation efficiency and sustained-release rate with those of pure CS microspheres. We determined that the following five groups of microspheres were highly spherical and featured particle sizes ranging from 70 μm to 147 μm: mass ratio of CS:SF =1:0.5, 0.1 g or 0.5 g genipin; CS:SF =1:1, 0.05 g or 1 g genipin; and CS:SF =1:2, 0.5 g genipin. The microspheres prepared using 1:1 CS:SF ratio and 0.05 g genipin in the presence of 10 mg, 20 mg, and 50 mg of BSA exhibited encapsulation efficiencies of 50.16%±4.32%, 56.58%±3.58%, and 42.19%±7.47%, respectively. Fourier-transform infrared spectroscopy (FTIR) results showed that SF and CS were cross-linked and that the α-helices and random coils of SF were converted into β-sheets. BSA did not chemically react with CS or SF. Moreover, thermal gravimetric analysis (TGA) results showed that the melting point of BSA did not change, which confirmed the FTIR results, and X-ray diffraction results showed that BSA was entrapped in microspheres in a noncrystalline form, which further verified the TGA and FTIR data. The sustained-release microspheres prepared in the presence of 10 mg, 20 mg, and 50 mg of BSA burst release 30.79%±3.43%, 34.41%±4.46%, and 41.75%±0.96% of the entrapped BSA on the 1st day and cumulatively released 75.20%±2.52%, 79.16%±4.31%, and 89.04%±4.68% in 21 days, respectively. The pure CS microspheres prepared in the presence of 10 mg of BSA burst release 39.53%±1.76% of BSA on the 1st day and cumulatively released 83.57%±2.33% of the total encapsulated BSA in 21 days. The SF–CS composite microspheres exhibited higher sustained release than did the pure CS microspheres, and thus these composite

  6. Preparation and evaluation of microspheres of xyloglucan and its thiolated xyloglucan derivative.

    PubMed

    Sonawane, Savita; Bhalekar, Mangesh; Shimpi, Shamkant

    2014-08-01

    Xyloglucan is a natural polymer reported to possess mucoadhesive properties. To enhance the mucoadhesion potential, xyloglucan was thiolated with cysteine. The microspheres of xyloglucan were prepared using a biocompatible crosslinker sodium trimetaphosphate and it was optimized for formulation variables, namely polymer concentration, internal:external phase ratio and stirring speed using a Box-Behnken experimental design. The formulation was also optimized for performance parameters like entrapment, t80 and % mucoadhesion. The microspheres were characterized by Fourier transform infrared spectroscopy, DSC and SEM for the optimum formula and then were reproduced by replacing the xyloglucan with thiomer. The microspheres formed showed entrapment efficiency of about 80%, t80 of about 400min and % mucoadhesion of 60% while same for thiomer were 90%, 500min and 80% respectively. In oral glucose tolerance test protocol the thiomer microspheres showed significant reduction in blood glucose levels. Thus thiolated xyloglucan offers a better polymer for multiparticulate drug delivery. PMID:24942993

  7. The preparation and properties of monodisperse core-shell silica magnetic microspheres.

    PubMed

    Lou, Min-yi; Jia, Qiu-ling; Wang, De-ping; Liu, Bing; Huang, Wen-hai

    2008-01-01

    The monodisperse core-shell silica magnetic microspheres (MMS) were synthesized by sol-gel method gelling in the emulsion. Optical microscope (OM), field emission scanning electron microscope (FESEM), nitrogen adsorption and desorption Brunauer Emmett Teller Procedure (BET) isotherms and Barrett-Joyner-Halenda (BJH) pore size distribution measurements, X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and vibrating sample magnetometer (VSM) were used to characterize the appearance, size distribution, phase, specific surface area, chemical composition and magnetic property of silica MMS. The results showed that silica MMS prepared through sol-gel method with acid-alkali two-step catalyze and gelling in emulsion exhibited the superior core-shell structure and size distribution of the microspheres concentrated in about 20 mum. The main phase of microspheres was amorphous silica and spinel ferroferric oxide. Meanwhile, the microspheres remained the superparamagnetic behavior and could be used as biomaterials. PMID:17597357

  8. Preparation and Gas Sensing Properties of Hollow ZnS Microspheres.

    PubMed

    Xiao, Jingkun; Song, Chengwen; Song, Mingyan; Dong, Wei; Li, Chen; Yin, Yanyan

    2016-03-01

    Hollow ZnS microspheres are synthesized by a facile hydrothermal method. Morphology and structure of the ZnS microspheres are analyzed by SEM, TEM, XRD and N2 sorption technique, Gas sensing properties of the as-prepared ZnS sensor are also systematically investigated. The results show that the ZnS microspheres have well-developed porous and hollow nanostructure. The sensor based on the ZnS microspheres exhibits ultra-fast response (1-2 s) and fast recovery time (7-34 s) towards ethanol at the optimal operating temperature of 160 degrees C. Moreover, the ZnS sensor also demonstrates high selectivity to other gases such as methanol, benzene, dichloromethane and hexane, suggesting that it is a promising candidate for ethanol sensing applications. PMID:27455754

  9. Influence of clay particles on microfluidic-based preparation of hydrogel composite microsphere

    NASA Astrophysics Data System (ADS)

    Hong, Joung Sook

    2016-05-01

    For the successful fabrication of a hydrogel composite microsphere, this study aimed to investigate the influence of clay particles on microsphere formation in a microfluidic device which has flow focusing and a 4.5:1 contraction channel. A poly alginic acid solution (2.0 wt.%) with clay particles was used as the dispersed phase to generate drops in an oil medium, which then merged with drops of a CaCl2 solution for gelation. Drop generations were observed with different flow rates and particles types. When the flow rate increased, drop generation was enhanced and drop size decreased by the build-up of more favorable hydrodynamic flow conditions to detach the droplets. The addition of a small amount of particles insignificantly changed the drop generation behavior even though it reduced interfacial tension and increased the viscosity of the solution. Instead, clays particles significantly affected hydro-gelation depending on the hydrophobicity of particles, which produced further heterogeneity in the shape and size of microsphere.

  10. Facile large scale preparation and electromagnetic properties of silica-nickel-carbon composite shelly hollow microspheres.

    PubMed

    An, Zhenguo; Zhang, Jingjie

    2016-02-21

    Silica-nickel-carbon composite microspheres with shelly hollow structures and tunable electromagnetic properties were prepared in large scale through a three-step route. Micron-sized precursor microspheres were prepared firstly by spray drying of water glass. Then a subsequent acid leaching with diluted hydrochloric acid was carried out to eliminate the Na2O in the precursor microspheres to get single shell silica hollow microspheres (SHMs). Afterwards, Ni-C composite shells were assembled on the surface of the previously formed SHMs through a calcination route in an inert atmosphere to form silica-nickel-carbon composite shelly hollow microspheres (CSHMs) through decomposition of the reactants and carbon thermal reduction. By properly tuning the calcination conditions, silica-nickel CSHMs with gradients in composition can also be prepared. The electromagnetic properties of the CSHMs were studied and the results demonstrate that they present ferromagnetic and microwave absorbing properties related to the shell composition. The DSHPs thus obtained may have some promising applications in the fields of low-density magnetic materials and microwave absorbers. This work provides a new strategy to fabricate shelly hollow particles, which can be expected to be extended to the controlled preparation of similar structures with various compositions. PMID:26726765

  11. Preparation, characterization and biological evaluation of curcumin loaded alginate aldehyde-gelatin nanogels.

    PubMed

    P R, Sarika; James, Nirmala Rachel; P R, Anil Kumar; Raj, Deepa K

    2016-11-01

    Curcumin, a natural polyphenol exhibits chemopreventive and chemotherapeutic activities towards cancer. In order to improve the bioavailability and therapeutic efficacy, curcumin is encapsulated in alginate aldehyde-gelatin (Alg Ald-Gel) nanogels. Alginate aldehyde-gelatin nanogels are prepared by inverse miniemulsion technique. Physicochemical properties of the curcumin loaded nanogels are evaluated by, Dynamic light scattering (DLS), NMR spectroscopy and Scanning electron microscopy (SEM). Curcumin loaded nanogels show hydrodynamic diameter of 431±8nm and a zeta potential of -36±4mV. The prepared nanogels exhibit an encapsulation efficiency of 72±2%. In vitro drug release studies show a controlled release of curcumin from nanogels over a period of 48h. Hemocompatibility and cytocompatibility of the nanogels are evaluated. Bare nanogels are cytocompatible and curcumin loaded nanogels induce anticancer activity towards MCF-7 cells. In vitro cellular uptake of the curcumin loaded nanogels using confocal laser scanning microscopy (CLSM) confirms the uptake of nanogels in MCF-7 cells. Hence, the developed nanogel system can be a suitable candidate for curcumin delivery to cancer cells. PMID:27524019

  12. Preparation of silver-poly(acrylamide-co-methacrylic acid) composite microspheres with patterned surface structures.

    PubMed

    Xia, Huiyun; Zhang, Ying; Peng, Junxia; Fang, Yu; Gu, Zhongze

    2006-01-01

    Acrylamide (AM) and methacrylic acid (MAA) copolymer microgels were prepared by a reverse suspension polymerization technique. The microgels were used as templates for the preparation of silver-poly(acrylamide-co-methacrylic acid) [Ag-P(AM-co-MAA)] composite microspheres. The surface structures of the microspheres prepared in this way are characterized by zigzag-like structures. It was found that the composition of the microgels, the nature and dosage of surfactants, the quantity of the metal, and even the reduction methods employed have a significant effect upon the surface structures of the microspheres. X-ray diffraction analysis confirmed that Ag formed during the process is in a crystal state of a face-centered cubic structure. PMID:24058232

  13. Preparation and evaluation of chitosan microspheres containing nicorandil

    PubMed Central

    Patel, Keyur S; Patel, Mandev B

    2014-01-01

    Objectives: The objective of present study was to develop chitosan-based sustained release nicorandil microspheres to reduce the dosing frequency. Materials and Methods: The nicorandil-loaded chitosan microspheres were formulated by emulsion crosslinking method. A 32 factorial design was employed to study the influence of drug: Polymer ratio and volume of glutaraldehyde (GA) on percentage entrapment efficiency, particle size, and % drug release at 8 h. Results: The entrapment efficiency was found to be 41.67 ± 1.43-77.33 ± 1.97% and particle size range 65.67 ± 2.08-146.67 ± 2.18 μm. The batch CH5 showed 79.11 ± 2.23 and 96.21 ± 2.41% drug release at 8 and 12 h, respectively. Conclusions: Drug: Polymer ratio and volume of GA had significant effect on % entrapment efficiency, particle size, and % drug release. From the scanning electron microscopy (SEM) study observed that microspheres were spherical and fairly smooth surface. Fickian diffusion was the mode of drug release from nicorandil-loaded chitosan microspheres formulations. PMID:24678460

  14. Effect of preparation temperature in solvent evaporation process on Eudragit RS microsphere properties.

    PubMed

    Mateović-Rojnik, Tatjana; Frlan, Rok; Bogataj, Marija; Bukovec, Peter; Mrhar, Ales

    2005-01-01

    Eudragit RS 100 microspheres containing ketoprofen as a model drug were prepared by the solvent evaporation method using an acetone/liquid paraffin solvent system. The influence of various preparation temperatures: 10, 25, 35, and 40 degrees C, on particle size and morphology, drug content and release kinetics, and drug crystal state was evaluated. With increasing temperature, microsphere average size was found to increase and particle size distribution to widen significantly. At 10 degrees C particles of irregular shape are formed, whereas higher temperatures gradually improve the sphericity of microspheres. As can be seen from SEM photographs, particle surface roughness decreases as preparation temperature increases. It was found that temperature had no effect either on ketoprofen microencapsulation efficiency or on its crystal state, but it does influence emulsion-stabilizer incorporation. Ketoprofen forms solid solution in Eudragit matrix and maintains amorphous state for significant period of time. Drug release rates from microspheres correlated with microspheres' surface roughness and to a lesser extent with particle size. PMID:15635253

  15. Controlling the thickness of hollow polymeric microspheres prepared by electrohydrodynamic atomization.

    PubMed

    Chang, Ming-Wei; Stride, Eleanor; Edirisinghe, Mohan

    2010-08-01

    In this study, the ability to control the shell thickness of hollow polymeric microspheres prepared using electrohydrodynamic processing at ambient temperature was investigated. Polymethylsilsesquioxane (PMSQ) was used as a model material for the microsphere shell encapsulating a core of liquid perfluorohexane (PFH). The microspheres were characterized by Fourier transform infrared spectroscopy and optical and electron microscopy, and the effects of the processing parameters (flow-rate ratio, polymer concentration and applied voltage) on the mean microsphere diameter (D) and shell thickness (t) were determined. It was found that the mean diameters of the hollow microspheres could be controlled in the range from 310 to 1000 nm while the corresponding mean shell thickness varied from 40 to 95 nm. The results indicate that the ratio D : t varied with polymer concentration, with the largest value of approximately 10 achieved with a solution containing 18 wt% of the polymer, while the smallest value (6.6) was obtained at 36 wt%. For polymer concentrations above 63 wt%, hollow microspheres could not be generated, but instead PMSQ fibres encapsulating PFH liquid were obtained. PMID:20519216

  16. Preparation and evaluation of enrofloxacin microspheres and tissue distribution in rats

    PubMed Central

    Yang, Fan; Kang, Jijun; Yang, Fang; Zhao, Zhensheng; Kong, Tao

    2015-01-01

    New enrofloxacin microspheres were formulated, and their physical properties, lung-targeting ability, and tissue distribution in rats were examined. The microspheres had a regular and round shape. The mean diameter was 10.06 µm, and the diameter of 89.93% of all microspheres ranged from 7.0 µm to 30.0 µm. Tissue distribution of the microspheres was evaluated along with a conventional enrofloxacin preparation after a single intravenous injection (7.5 mg of enrofloxacin/kg bw). The results showed that the elimination half-life (t1/2β) of enrofloxacin from lung was prolonged from 7.94 h for the conventional enrofloxacin to 13.28 h for the microspheres. Area under the lung concentration versus time curve from 0 h to ∞ (AUC0-∞) was increased from 11.66 h·µg/g to 508.00 h·µg/g. The peak concentration (Cmax) in lung was increased from 5.95 µg/g to 93.36 µg/g. Three lung-targeting parameters were further assessed and showed that the microspheres had remarkable lung-targeting capabilities. PMID:25643802

  17. Preparation and characterization of negatively charged poly(lactic-co-glycolic acid) microspheres.

    PubMed

    Xu, Qingguo; Crossley, Alison; Czernuszka, Jan

    2009-07-01

    Negatively charged poly(lactic-co-glycolic acid) (PLGA) microspheres encapsulated with hydrophilic drugs have been successfully prepared by a solid-in-oil-in-water (s/o/w) solvent evaporation method in the presence of anionic surfactants, sodium dodecyl sulfate (SDS), and dioctyl sodium sulfosuccinate (DSS), and nonionic surfactant polyvinyl alcohol (PVA). The effects of microencapsulation methods, surfactants types, and surfactant concentrations on the properties of microspheres were studied. Amoxicillin (AMX) was chosen as a hydrophilic model drug, and its encapsulation efficiency (EE) and in vitro release profiles were measured. The s/o/w method achieved higher EE of 40% in PLGA microspheres using surfactant SDS compared with the conventional water-in-oil-in-water (w/o/w) method (about 2%). Triphasic release profiles were observed for all PLGA microspheres (s/o/w) with slight drug burst, a slow diffusion-controlled release within the period of about 7 days and followed by the degradation-controlled sustained release for further 30 days. Smaller particle size and surface charge were achieved for s/o/w method than w/o/w method using the same anionic surfactants, and smooth surface and less porous interior matrix. The s/o/w method effectively encapsulated AMX into anionic PLGA microspheres using anionic surfactants, and these negatively charged PLGA microspheres represented an attractive approach for the controlled release of hydrophilic drugs. PMID:19009589

  18. Controlling the thickness of hollow polymeric microspheres prepared by electrohydrodynamic atomization

    PubMed Central

    Chang, Ming-Wei; Stride, Eleanor; Edirisinghe, Mohan

    2010-01-01

    In this study, the ability to control the shell thickness of hollow polymeric microspheres prepared using electrohydrodynamic processing at ambient temperature was investigated. Polymethylsilsesquioxane (PMSQ) was used as a model material for the microsphere shell encapsulating a core of liquid perfluorohexane (PFH). The microspheres were characterized by Fourier transform infrared spectroscopy and optical and electron microscopy, and the effects of the processing parameters (flow-rate ratio, polymer concentration and applied voltage) on the mean microsphere diameter (D) and shell thickness (t) were determined. It was found that the mean diameters of the hollow microspheres could be controlled in the range from 310 to 1000 nm while the corresponding mean shell thickness varied from 40 to 95 nm. The results indicate that the ratio D : t varied with polymer concentration, with the largest value of approximately 10 achieved with a solution containing 18 wt% of the polymer, while the smallest value (6.6) was obtained at 36 wt%. For polymer concentrations above 63 wt%, hollow microspheres could not be generated, but instead PMSQ fibres encapsulating PFH liquid were obtained. PMID:20519216

  19. A New and Environmentally Friendly Route for Preparation of Carbon Microspheres from Wheat Straw

    PubMed Central

    Leishan, Chen; Yu, Miao; Gairong, Chen

    2013-01-01

    The reactions were performed to synthesize carbon materials using wheat straw powder as raw material. The wheat straw powder was first hydrolyzed at the absence of a catalyst at 190°C for 1 h, then the hydrolyzate solution was used as carbon source to prepare carbon materials via hydrothermal carbonization at 180°C in the absence of a catalyst for 8 h. The influence of solid-liquid-ratio of wheat straw to water on the morphology of the product was investigated. The samples were examined by a scanning electron microscope and Fourier transform infrared spectroscopy. The results show that the product was carbon microspheres with a large number of O–H, CHO, and other functional groups, and the diameters of carbon microspheres noticeably depended on the solid-liquid ratio. When the solid-liquid ratio was 1 : 60, the diameters of carbon microspheres were in the range of 100 to 300 nm when the solid-liquid ratio was 1 : 40, carbon microspheres with larger and more uniform diameters mostly about 250 nm were obtained, and when the solid-liquid-ratio was 1 : 20, there were more larger carbon microspheres with diameters about 800 nm in the product and the surface of these carbon microspheres is smoother, whereas; the uniformity of the product deteriorates. PMID:24288457

  20. Preparation and detection of calcium alginate/bone powder hybrid microbeads for in vitro culture of ADSCs.

    PubMed

    Song, Kedong; Yan, Xinyu; Li, Shixiao; Zhang, Yu; Wang, Hong; Wang, Ling; Lim, Mayasari; Liu, Tianqing

    2015-01-01

    Calcium alginate microbeads have been widely used in tissue engineering application, due to their excellent biocompatibility, biodegradability, enhanced mechanical strength and toughness. Bone powder containing abundant hydroxylapatite, type I collagen and growth factors such as BMP2 and BMP4, possesses good osteoinductive activity. Herein, a hybrid calcium alginate/bone powder microbead was therefore prepared. Afterwards, different seeding density of adipose-derived stem cells (ADSCs) in these hybrid microbeads was discussed systematically for further in vitro expansion. Optimised microbeads suitable for in vitro expansion and differentiation of ADSCs were prepared using the droplet method under overall considering suitable concentrations of calcium alginate and calcium chloride as well as the density of bone powder through an orthogonal experiment. The results showed that the concentration of sodium alginate had the most influence on inside mass transfer and mechanical strength of the hybrid microbeads, secondly the calcium chloride, then the density of bone powder. The hybrid microbeads could be optimally performed while the concentrations of sodium alginate and calcium chloride were 2.5% and 4.5%, as well as 5.0 mg/mL bone powder, respectively. Live/Dead assay showed that the expanded ADSCs differentiated well with an initial embedding density of 5 × 10(6) cells/mL. PMID:26480963

  1. Preparation, characterization, and in vitro release studies of insulin-loaded double-walled poly(lactide-co-glycolide) microspheres.

    PubMed

    Ansary, Rezaul H; Rahman, Mokhlesur M; Awang, Mohamed B; Katas, Haliza; Hadi, Hazrina; Doolaanea, Abd Almonen

    2016-06-01

    The purpose of this study was to fabricate insulin-loaded double-walled and single-polymer poly(lactide-co-glycolide) (PLGA) microspheres using a fast degrading glucose core, hydroxyl-terminated poly(lactide-co-glycolide) (Glu-PLGA), and a moderate degrading carboxyl-terminated PLGA polymers. A modified water-in-oil-in-oil-in-water (w/o/o/w) emulsion solvent evaporation technique was employed to prepare double-walled microspheres, whereas single-polymer microspheres were fabricated by a conventional water-in-oil-in-water (w/o/w) emulsion solvent evaporation method. The effect of fabrication techniques and polymer characteristics on microspheres size, morphology, encapsulation efficiency, in vitro release, and insulin stability was evaluated. The prepared double-walled microspheres were essentially non-porous, smooth surfaced, and spherical in shape, whereas single-polymer microspheres were highly porous. Double-walled microspheres exhibited a significantly reduced initial burst followed by sustained and almost complete release of insulin compared to single-polymer microspheres. Initial burst release was further suppressed from double-walled microspheres when the mass ratio of the component polymers was increased. In conclusion, double-walled microspheres made of Glu-PLGA and PLGA can be a potential delivery system of therapeutic insulin. PMID:26817478

  2. Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery

    PubMed Central

    Chen, Xingtao; Lv, Guoyu; Zhang, Jue; Tang, Songchao; Yan, Yonggang; Wu, Zhaoying; Su, Jiacan; Wei, Jie

    2014-01-01

    A multi-(amino acid) copolymer (MAC) based on ω-aminocaproic acid, γ-aminobutyric acid, L-alanine, L-lysine, L-glutamate, and hydroxyproline was synthetized, and MAC microspheres encapsulating bovine serum albumin (BSA) were prepared by a double-emulsion solvent extraction method. The experimental results show that various preparation parameters including surfactant ratio of Tween 80 to Span 80, surfactant concentration, benzyl alcohol in the external water phase, and polymer concentration had obvious effects on the particle size, morphology, and encapsulation efficiency of the BSA-loaded microspheres. The sizes of BSA-loaded microspheres ranged from 60.2 μm to 79.7 μm, showing different degrees of porous structure. The encapsulation efficiency of BSA-loaded microspheres also ranged from 38.8% to 50.8%. BSA release from microspheres showed the classic biphasic profile, which was governed by diffusion and polymer erosion. The initial burst release of BSA from microspheres at the first week followed by constant slow release for the next 7 weeks were observed. BSA-loaded microspheres could degrade gradually in phosphate buffered saline buffer with pH value maintained at around 7.1 during 8 weeks incubation, suggesting that microsphere degradation did not cause a dramatic pH drop in phosphate buffered saline buffer because no acidic degradation products were released from the microspheres. Therefore, the MAC microspheres might have great potential as carriers for protein delivery. PMID:24855351

  3. PREPARATION AND CHARACTERIZATION OF POROUS WALLED HOLLOW GLASS MICROSPHERES

    SciTech Connect

    Raszewski, F; Erich Hansen, E; Ray Schumacher, R; David Peeler, D

    2008-04-21

    Porous-walled hollow glass microspheres (PWHGMs) of a modified alkali borosilicate composition have been successfully fabricated by combining the technology of producing hollow glass microspheres (HGMs) with the knowledge associated with porous glasses. HGMs are first formed by a powder glass--flame process, which are then transformed to PWHGMs by heat treatment and subsequent treatment in acid. Pore diameter and pore volume are most influenced by heat treatment temperature. Pore diameter is increased by a factor of 10 when samples are heat treated prior to acid leaching; 100 {angstrom} in non-heat treated samples to 1000 {angstrom} in samples heat treated at 600 C for 8 hours. As heat treatment time is increased from 8 hours to 24 hours there is a slight shift increase in pore diameter and little or no change in pore volume.

  4. Preparation of polystyrene microspheres for laser velocimetry in wind tunnels

    NASA Technical Reports Server (NTRS)

    Nichols, Cecil E., Jr.

    1987-01-01

    Laser Velocimetry (L/V) had made great strides in replacing intrusive devices for wind tunnel flow measurements. The weakness of the L/V has not been the L/V itself, but proper size seeding particles having known drag characteristics. For many Langley Wind Tunnel applications commercial polystyrene latex microspheres suspended in ethanol, injected through a fluid nozzle provides excellent seeding but was not used due to the high cost. This paper provides the instructions, procedures, and formulations for producing polystyrene latex monodisperse microspheres of 0.6, 1.0, 1.7, 2.0, and 2.7 micron diameters. These are presently being used at Langley Research Center as L/V seeding particles.

  5. A novel method for the preparation of biodegradable microspheres for protein drug delivery

    PubMed Central

    Pareta, R; Edirisinghe, M.J

    2006-01-01

    Microspheres are potential candidates for the protein drug delivery. In this work, we prepared polymer-coated starch/bovine serum albumin (BSA) microspheres using co-axial electrohydrodynamic atomization (CEHDA). First, starch solution in dimethyl sulphoxide (DMSO) was prepared and then an aqueous solution of BSA was added to it to make a starch–BSA solution. Subsequently, this solution was made to flow through the inner capillary, while the polymer, polydimethylsiloxane (PDMS), flowed through the outer capillary. On collection, filtration and subsequent drying, near-monodisperse microspheres of 5–6 μm in size were obtained. The microspheres were characterized by Fourier-transform infrared (FT-IR) spectroscopy and scanning electron microscopy. Cumulative BSA release was investigated by UV spectroscopy. BSA structure and activity was preserved in the microspheres and its release in 0.01 M phosphate buffered saline (PBS) was studied over a period of 8 days. There was an initial burst with 32 wt% of total BSA released in 2 h. Overall 75 wt% of BSA was released over a 7 day period. PMID:16849253

  6. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium alginate. 184.1187 Section 184.1187 Food... GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Calcium alginate is prepared...

  7. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Sodium alginate is prepared by...

  8. Preparation of microfibrillated cellulose/chitosan-benzalkonium chloride biocomposite for enhancing antibacterium and strength of sodium alginate films.

    PubMed

    Liu, Kai; Lin, Xinxing; Chen, Lihui; Huang, Liulian; Cao, Shilin; Wang, Huangwei

    2013-07-01

    The nonantibacterial and low strength properties of sodium alginate films negatively impact their application for food packaging. In order to improve these properties, a novel chitosan-benzalkonium chloride (C-BC) complex was prepared by ionic gelation using tripolyphosphate (TPP) as a coagulant, and a biocomposite obtained through the adsorption of C-BC complex on microfibrillated cellulose, MFC/C-BC, was then incorporated into a sodium alginate film. The TEM image showed that the C-BC nanoparticles were spherical in shape with a diameter of about 30 nm, and the adsorption equilibrium time of these nanoparticles on the surface of MFC was estimated to be 6 min under the driving forces of hydrogen bonds and electrostatic interactions. According to the disc diffusion method, the MFC/C-BC biocomposite-incorporated sodium alginate film exhibited remarkable antibacterial activity against Staphylococcus aureus and certain antibacterial activity against Escherichia coli . The strength tests indicated that the tensile strength of the composite sodium alginate film increased about 225% when the loading of MFC/C-BC biocomposite was 10 wt %. These results suggested that the MFC/C-BC biocomposite-incorporated sodium alginate film with excellent antibacterial and strength properties would be a promising material for food packaging, and the MFC/C-BC may also be a potential multifunctional biocomposite for other biodegradable materials. PMID:23750871

  9. Preparation of metal sulfide-polymer composite microspheres with patterned surface structures.

    PubMed

    Fang, Yu; Bai, Chaoliang; Zhang, Ying

    2004-04-01

    CuS-poly(N-isopropylacrylamide), CuS-poly(N-isopropylacrylamide-co-methacrylic acid), Ag(2)S-poly(N-isopropylacrylamide) and Ag(2)S-poly(N-isopropylacrylamide-co-methacrylic acid) composite microspheres exhibiting complex surface morphologies were prepared by employing the minigel template method. PMID:15045072

  10. The Preparation of Chitosan Oligosaccharide/Alginate Sodium/Gelatin Nanofibers by Spiral-Electrospinning.

    PubMed

    Lu, Weipeng; Xu, Haitao; Zhang, Bing; Ma, Ming; Guo, Yanchuan

    2016-03-01

    A spiral-electrospinning was used to mass-produce gelatin nanofibers with a content of chitosan oligosaccharide (COS) and alginate sodium (AS). Multiple jets were observed to form on the edges of the helix slice-spinneret simultaneously. Important electrospinning parameters, such as concentration of COS/gelatin aqueous solution, rotational velocity of spinneret and spinning distance, were examined to investigate the electrospinnability of COS/gelatin solution and the morphology of COS/gelatin nanofiber membranes. Due to the poor miscibility between COS and AS, COS/AS/gelatin nanofiber membranes were obtained from COS/gelatin solution and AS/gelatin solution by mixing electrospinning with multi-spinnerets. The novel needleless electrospinning not only avoided the possibility of nozzle-clogging, but also prepared COS/AS/gelatin nanofibers on a large scale for a wide variety of applications. PMID:27455641

  11. Preparation of monodisperse poly(divinylbenzene-co-4-vinylpyridine) microspheres by distillation-precipitation polymerization and precipitation polymerization

    NASA Astrophysics Data System (ADS)

    Yin, Yong; Zhang, J. Mei; Dai, Zhao; Sun, Xiu X.; Xu, Shi C.; Wang, Long; Zheng, Guo

    2010-07-01

    Polymer microspheres with functional groups are attractive for a wide number of applications, including supporting phases for separation science, biomedical devices, casting additives and controlled release reservoirs. In this paper, Poly(divinylbenzene-co-4-vinylpyridine)(Ploy(DVB-co-4-Vpy)) microspheres with functional pyridyl was prepared by distillation-precipitation polymerization and precipitation polymerization separately when 2,2'-Azobisisobutyronitrile (AIBN) as initiator in net acetonitrile. The feature of microspheres was characterized by TEM while the loading capacity of nitrogen on microspheres' surface and the hydrophilicity were measured by back titration and contact angle measurement. Under the same crosslinking degree, the microspheres prepared by distillation-precipitation polymerization had better feature, smoother surface, more functional groups and better hydrophilicity but lower yields than the ones prepared by precipitation polymerization.

  12. Preparation of P(DVB-co-MPS) inorganic-organic hybrid polymer microspheres

    NASA Astrophysics Data System (ADS)

    Wu, Chunrong; Zhang, Jimei; Dai, Zhao; Chen, Xiaoyu

    2010-07-01

    A novel inorganic-organic hybrid polymer microspheres were facilely synthesised by distillation-precipitation polymerization in absence of any stabilizer or surfcant. The process were conducted with [3-(Methacryloyloxy) propyl] trimethoxysilan (MPS) as monomer, divinyl benzene (DVB) as cross linking agent and azobisisobutyronitrile (AIBN) as initator in acetonitrile. A series of silica nanoparticles were prepared in accordance with the volume ratio of MPS, which was varied in the range of 10% to 50%. However, there is no microspheres obtained while the ratio up to 50%. Products were charactered by transmission electron micrograph (TEM) and fourier transform infrared spectroscopy (FTIR). We may infer it from the constructional formular and FTIR graph that there were silicon hydroxyl remained in the microsphere surface.

  13. Room temperature preparation of cuprous oxide hollow microspheres by a facile wet-chemical approach

    NASA Astrophysics Data System (ADS)

    Wang, Ning; He, Hongcai; Han, Li

    2010-09-01

    Cuprous oxide hollow spheres have potential applications in drug-delivery carriers, biomedical diagnosis agents, and cell imaging. From a commercial point of view, the low-temperature, template-free, facile method is widely popular synthetic method for the synthesis of cuprous oxide hollow spheres. In this letter, we describe a novel facile template-free wet-chemical route to prepare crystallized cuprous oxide microspheres at room temperature. XRD patterns and SEM images revealed that pure crystallized cuprous oxide hollow microspheres were successfully obtained at room temperature. The diameter of cuprous oxide hollow sphere can be adjusted (0.7-7 μm) by concentration control of hydrazine hydrate. Generated N 2 gas bubbles in the aqueous solution, serving as "soft" templates, play a key role in the formation of hollow microspheres.

  14. Preparation and characterization of polystyrene microspheres in the presence of beta-cyclodextrin.

    PubMed

    Wang, Wei; Deng, Yan; Zhang, Liming; Fu, Juan; Lu, Zhuoxuan; Xu, Lijian

    2012-09-01

    Using styrene as raw material, potassium persulfate as an initiator, beta-cyclodextrin as a stabilizer, polystyrene microspheres were successfully prepared with nice monodisperse feature by means of soap-free emulsion polymerization method. Experimental studies were performed in detail to check the effect of the synthesis process of the microspheres, the stabilizer dosage, monomer concentration, and initiator dosage on the particle size and distribution, the microstructures were characterized with SEM, TEM, infrared (IR) and the particle size distribution investigation. The results show that the appropriate changes in amount of stabilizer and monomer concentration and dosage of initiator can result in a different particle size and polystyrene microspheres with good monodispersity were finally obtained. PMID:23035453

  15. Preparation and characterization of monodispersed PS/Ag composite microspheres through modified electroless plating

    NASA Astrophysics Data System (ADS)

    Ma, Yuehui; Zhang, Qinghua

    2012-07-01

    A modified electroless silver-plating process has been devised for the preparation of monodispersed, polystyrene/silver (PS/Ag) composite microspheres with tunable shell thickness. Tailoring was achieved by altering the concentration of the silver precursor in the plating bath. PS/Ag composite microspheres were characterized by field-emission scanning electron microscopy, ultraviolet-visible absorption, X-ray diffraction and thermogravimetric analysis. The results showed that a dense, stable and uniform silver nanoshell was formed on the surface of PS microspheres in the presence of poly(vinylpyrrolidone) and glucose. The bulk conductivity of the PS/Ag composites increased from 1.16 S/m to 3.57 × 104 S/m, corresponding to a shell thickness of 35-198 nm. The PS/Ag composite microspheres with diameters of ca. 3 μm might have great potential to be used as fillers in anisotropic conductive films because of the uniform diameter, low density and good conductivity of the microspheres.

  16. Preparation of uniform sized chitosan microspheres by membrane emulsification technique and application as a carrier of protein drug.

    PubMed

    Wang, Lian-Yan; Ma, Guang-Hui; Su, Zhi-Guo

    2005-08-18

    The control of size and size distribution of microspheres is necessary for obtaining repeatable controlled release behavior. The chitosan microspheres were prepared by a membrane emulsification technique in this study. Chitosan was dissolved in 1 wt.% aqueous acetic acid containing 0.9 wt.% sodium chloride, which was used as a water phase. A mixture of liquid paraffin and petroleum ether 7:5 (v/v) containing PO-500 emulsifier was used as an oil phase. The water phase was permeated through the uniform pores of a porous glass membrane into the oil phase by the pressure of nitrogen gas to form W/O emulsion. Then GST (Glutaraldehyde Saturated Toluene) as crosslinking agent was slowly dropped into the W/O emulsion to solidify the chitosan droplets. The preparation condition for obtaining uniform-sized microspheres was optimized. The microspheres with different size were prepared by using the membranes with different pore size, and there was a linear relationship between the diameter of microspheres and pore size of the membranes when the microspheres were in the range of micron size. The smallest chitosan microspheres obtained was 0.4 mum in diameter. This is the first report for preparing the uniform-sized chitosan microspheres by membrane emulsification technique. Uniform chitosan microspheres were further used as a carrier of protein drug. Bovine serum albumin (BSA) as a model drug was loaded in the microspheres and released in vitro. The effects of pH value, diameter and crosslinking degree of microspheres, and BSA concentration on loading efficiency and release behavior were discussed. PMID:15922472

  17. Effect of different dispersing agents on the characteristics of Eudragit microspheres prepared by a solvent evaporation method.

    PubMed

    Horoz, B B; Kiliçarslan, M; Yüksel, N; Baykara, T

    2004-03-01

    Eudragit RS microspheres containing verapamil HCl for oral use were prepared using three different dispersing agents: aluminium tristearate, magnesium stearate and sucrose stearate, by a solvent evaporation method. The effects of the type and concentration of the dispersing agents and the inner phase polymer concentration on the size and T63.2%, (the time at which 63.2% of the drug is released) of microspheres were determined by multiple linear regression analysis. The morphology of microspheres was characterized by scanning electron microscopy. The surface of microspheres prepared with sucrose stearate was smoother and non-porous and the drug release from these microspheres was the fastest. When aluminium tristearate or magnesium stearate were used as dispersing agents, the particle size of microspheres became smaller. Increasing amounts of these two dispersing agents led to the accumulation of their free particles onto the surfaces of the microspheres. The drug release from the microspheres was slower than that of the microspheres from sucrose stearate depending on their hydrophobic structures. According to the results of the multiple linear regression analysis among the dispersing agents used, aluminium tristearate showed the best correlation between the examined input (dispersing agent and polymer concentrations) and output (T63.2%. and particle size) variables. PMID:15198430

  18. Preparation and in vitro evaluation of xanthan gum facilitated superabsorbent polymeric microspheres.

    PubMed

    Bhattacharya, Shiv Sankar; Mazahir, Farhan; Banerjee, Subham; Verma, Anurag; Ghosh, Amitava

    2013-10-15

    Interpenetrating polymer network (IPN) hydrogel microspheres of xanthan gum (XG) based superabsorbent polymer (SAP) and poly(vinyl alcohol) (PVA) were prepared by water-in-oil (w/o) emulsion crosslinking method for sustained release of ciprofloxacin hydrochloride (CIPRO). The microspheres were prepared with various ratios of hydrolyzed SAP to PVA and extent of crosslinking density. The prepared microspheres with loose and rigid surfaces were evidenced by scanning electron microscope (SEM). Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis confirmed the IPN formation. Differential scanning calorimetry (DSC) study was performed to understand the dispersion nature of drug after encapsulation. The in vitro drug release study was extensively evaluated depending on the process variables in both acidic and alkaline media. All the formulations exhibited satisfactory physicochemical and in vitro release characteristics. Release data indicated a non-Fickian trend of drug release from the formulations. Based on the results, this study suggest that CIPRO loaded IPN microspheres were suitable for sustained release application. PMID:23987317

  19. Bioresorbable microspheres by spinning disk atomization as injectable cell carrier: from preparation to in vitro evaluation.

    PubMed

    Senuma, Y; Franceschin, S; Hilborn, J G; Tissières, P; Bisson, I; Frey, P

    2000-06-01

    Vesico-ureteral reflux, a common pathology in children, can be treated cystoscopically by injection of a bulking material underneath the most distal, intramural ureter, which forces the latter to do a detour, increasing its submucosal path. This increase of the length of the submucosal path of the ureter within the bladder is directly responsible for the anti-reflux effect. So far Teflon and collagen paste have been commonly used as bulking materials. We suggest replacing these materials by living tissue consisting of bladder smooth muscle, normally present at this location. The aim of this work is to provide a long-term effective treatment by producing bioresorbable microspheres which can act as a support matrix and an entrapment substance for bladder smooth muscle cells, with the goal of an in vivo transfer of the in vitro cultured cells with a minimal surgical procedure. By the use of Spinning Disk Atomization, which has specifically been developed for this purpose, we have shown two methods for the preparation of porous poly(lactic acid) microspheres with tunable sizes from 160 to 320 microm. The controlled solvent burst method has shown the advantage over the crystal leaching method in the direct creation of microspheres with large closed pores, by atomizing the polymer solution in controlled temperature conditions. Microspheres with various closed pore structures have thus been prepared. The innovation of this work is in the direct and rapid formation of porous microspheres with a pore morphology which is designed to create cavities suitable for adherence and growth of cells by adapting the temperature conditions of atomization. Injection tests have shown promising results in using these cell-loaded microspheres for future non-invasive tissue engineering. PMID:10817266

  20. Formulation and in vitro evaluation of metformin hydrochloride loaded microspheres prepared with polysaccharide extracted from natural sources.

    PubMed

    Sharma, Hemanta Kumar; Lahkar, Sunita; Kanta Nath, Lila

    2013-06-01

    The present work envisages utilisation of biodegradable and biocompatible material from natural sources for the development of controlled release microspheres of metformin hydrochloride (MetH). Natural polysaccharides extracted from Dillenia indica L. (DI), Abelmoschus esculentus L. (AE) and Bora rice flour were used in fabricating controlled release microspheres. The microspheres were prepared by the emulsion solvent diffusion technique with different proportions of natural materials and were studied for entrapment efficiency, particle size, particle shape, surface morphology, drug excipient compatibility, mucoadhesivity and in vitro release properties. The prepared microspheres showed mucoadhesive properties and controlled release of metformin hydrochloride. The study has revealed that natural materials can be used for formulation of controlled release microspheres and will provide ample opportunities for further study. PMID:23846143

  1. Preparation, characterization and pharmacokinetics evaluation of clarithromycin-loaded Eudragit(®) L-100 microspheres.

    PubMed

    Xu, Jinghua; Li, Wei; Liu, Zhuo; Li, Jinghan; Zhao, Xiaoyun; Li, DongYang; Guo, Shuang; Zhang, Xiangrong

    2016-06-01

    The aim of this work was to prepare pH-dependent clarithromycin microsphere formulation by emulsion solvent evaporation method, employing Eudragit(®) L-100. Prepared microspheres were evaluated by carrying out in vitro release and in vivo pharmacokinetics studies. Drug-polymer interactions were studied by differential scanning calorimetry, X-ray diffractometry analyses and results showed that clarithromycin was molecularly dispersed in the polymer. The particle size distribution of microspheres was found over the range of 10~50 μm. The drug is hardly released in the HCl solution pH 1.2 in the first 2 h, but is rapidly released in phosphate buffer pH 7.2, and the cumulated release reached 98.1 % at 8 h. The pharmacokinetic profiles were conducted open, randomized, two-period crossover design with a 7-day interval between doses in healthy beagle dogs. The results indicated that the extent of absorption of the clarithromycin-load microspheres was the same as pure drug, but different in the rate of drug absorption in vivo. PMID:25652786

  2. Preparation and in vitro evaluation of ethyl cellulose microspheres containing stavudine by the double emulsion method.

    PubMed

    Sahoo, S K; Mallick, A A; Barik, B B; Senapati, P C

    2007-02-01

    The aim of this study was to formulate and evaluate microspheres of stavudine by water-in-oil-in-oil (w/o/o) double emulsion solvent diffusion method using ethyl cellulose and ethyl cellulose in combination with polyvinyl pyrrolidone. A mixed solvent system consisting of acetonitrile and dichloromethane in an 1: 1 ratio and light liquid paraffin was chosen as primary and secondary oil phase, respectively. Span 80 was used as surfactant for stabilizing the secondary oil phase. The influence of formulation factors like stirring speed, surfactant concentration on particle size and polymer:drug ratio and combination of polymers on drug release characteristics of the microspheres was investigated. The prepared microspheres characterized by micrometric properties, drug loading, Fourier transform infrared spectroscopy, X-ray powder difractometry and scanning electron microscopy. The prepared microspheres were white, free flowing and spherical in shape, stable in nature, with 41-65% of drug entrapment efficiency. The best-fit release kinetics was achieved with Higuchi plot followed by first order and zero order. The release of stavudine was influenced by the drug to polymer ratio, particle size and polymer combination. PMID:17341031

  3. Preparation and In Vitro Characterization of Mucoadhesive Hydroxypropyl Guar Microspheres Containing Amlodipine Besylate for Nasal Administration

    PubMed Central

    Swamy, N. G. N.; Abbas, Z.

    2011-01-01

    Amlodipine besylate microspheres for intranasal administration were prepared with an aim to avoid first-pass metabolism, to achieve controlled blood level profiles and to improve therapeutic efficacy. Hydroxypropyl Guar, a biodegradable polymer, was used in the preparation of microspheres by employing water in oil emulsification solvent evaporation technique. The formulation variables were drug concentration, emulsifier concentration, temperature, agitation speed and polymer concentration. All the formulations were evaluated for particle size, particle shape and surface morphology by scanning electron microscopy, percentage yield, drug entrapment efficiency, in vitro mucoadhesion test, degree of swelling and in vitro drug diffusion through sheep nasal mucosa. The microspheres obtained were free flowing, spherical and the particles ranged in size from 13.4±2.38 μm to 43.4±1.92 μm very much suitable for nasal delivery. Increasing polymer concentration resulted in increased drug entrapment efficiency and increased particle size. Amlodipine besylate was entrapped into the microspheres with an efficiency of 67.2±1.18 % to 81.8±0.64 %. The prepared microspheres showed good mucoadhesion properties, swellability and sustained the release of the drug over a period of 8 h. The data obtained were analysed by fitment into various kinetic models; it was observed that the drug release was matrix diffusion controlled and the release mechanism was found to be non-Fickian. Stability studies were carried out on selected formulations at 5±3°, 25±2°/60±5% RH and 40±2°/75±5% RH for 90 days. The drug content was observed to be within permissible limits and there were no significant deviations in the in vitro mucoadhesion and in vitro drug diffusion characteristics. PMID:23112393

  4. Preparation and in vitro characterization of mucoadhesive hydroxypropyl guar microspheres containing amlodipine besylate for nasal administration.

    PubMed

    Swamy, N G N; Abbas, Z

    2011-11-01

    Amlodipine besylate microspheres for intranasal administration were prepared with an aim to avoid first-pass metabolism, to achieve controlled blood level profiles and to improve therapeutic efficacy. Hydroxypropyl Guar, a biodegradable polymer, was used in the preparation of microspheres by employing water in oil emulsification solvent evaporation technique. The formulation variables were drug concentration, emulsifier concentration, temperature, agitation speed and polymer concentration. All the formulations were evaluated for particle size, particle shape and surface morphology by scanning electron microscopy, percentage yield, drug entrapment efficiency, in vitro mucoadhesion test, degree of swelling and in vitro drug diffusion through sheep nasal mucosa. The microspheres obtained were free flowing, spherical and the particles ranged in size from 13.4±2.38 μm to 43.4±1.92 μm very much suitable for nasal delivery. Increasing polymer concentration resulted in increased drug entrapment efficiency and increased particle size. Amlodipine besylate was entrapped into the microspheres with an efficiency of 67.2±1.18 % to 81.8±0.64 %. The prepared microspheres showed good mucoadhesion properties, swellability and sustained the release of the drug over a period of 8 h. The data obtained were analysed by fitment into various kinetic models; it was observed that the drug release was matrix diffusion controlled and the release mechanism was found to be non-Fickian. Stability studies were carried out on selected formulations at 5±3°, 25±2°/60±5% RH and 40±2°/75±5% RH for 90 days. The drug content was observed to be within permissible limits and there were no significant deviations in the in vitro mucoadhesion and in vitro drug diffusion characteristics. PMID:23112393

  5. Studies on the preparation, characterization and pharmacological evaluation of tolterodine PLGA microspheres.

    PubMed

    Sun, Fengying; Sui, Cheng; Teng, Lesheng; Liu, Ximing; Teng, Lirong; Meng, Qingfan; Li, Youxin

    2010-09-15

    In this study, poly(d,l-lactide-co-glycolide) (PLGA) microspheres of tolterodine depot formulation were prepared using oil in water (o/w) method to investigate their potential pharmacokinetic and pharmacodynamic advantages over tolterodine l-tartrate tablets. Morphological studies of the microspheres showed a spherical shape and smooth surface with mean size of 50.69-83.01 microm, and the encapsulation efficiency was improved from 62.55 to 79.10% when the polymer concentration increased from 180 to 230 mg/ml. The addition of stearic or palmitic acids could significantly raise the drug entrapment efficiency but only slightly affected the in vitro release. A low initial burst followed by a proximately constant release of tolterodine was noticed in the in vitro release profiles. The in vivo study was carried out by intramuscular (i.m.) administration of tolterodine-loaded microspheres on beagle dogs, and a sustained release of drug from the PLGA microspheres was achieved until the 18th day with a low initial burst. Since the absence of hepatic first pass metabolism, only a single active compound-tolterodine was detected in the plasma. This avoided the coexistence of two active compounds in plasma in the case of oral administration of tolterodine, which may lead to a difficulty in dose control due to the different metabolic capacity of patients. In the pharmacodynamic study, the influence of tolterodine PLGA microspheres on the inhibition of carbachol-induced rat urinary bladder contraction was more significant than that of tolterodine l-tartrate tablets. There were invisible changes in rat bladder slices between tolterodine-loaded PLGA microspheres group and tolterodine l-tartrate tablets group. These results indicate that the continuous inhibition of muscarinic receptor may offer an alternative therapy of urge incontinence. PMID:20600717

  6. Preparation, characterization, and in vitro testing of poly(lactide-co-glycolide) and dextran magnetic microspheres for in vivo applications

    NASA Astrophysics Data System (ADS)

    Leamy, Patrick J.

    Many research groups are investigating degradable magnetic particles for magnetic resonance imaging (MRI) contrast agents and as carriers for magnetic drug guidance. These particles are composite materials with a degradable polymer matrix and iron oxide nanoparticles for magnetic properties. The degradable polymer matrix acts to provide colloidal stability and, for drug delivery applications, provides a reservoir for the storage and release of drugs. Natural polymers, like albumin and dextran, which degrade by the action of enzymes; have been used for the polymer matrix. Iron oxide nanoparticles are used for magnetic properties since they can be digested in vivo and have low toxicities. Polylactic acid (PLA) and its copolymers with polyglycolic acid (PLGA) are versatile polymers that degrade by simple hydrolysis without the aid of enzymes. Microspheres are easily formed using the solvent extraction/evaporation method and a wide range of drugs can be encapsulated in them. Magnetic PLGA microspheres suitable for applications were synthesized for the first time in this dissertation. This was accomplished by coating iron oxide nanoparticles with oleic acid to make them dispersible in the organic solvents used in the extraction/evaporation microsphere preparation method. In addition to the magnetic PLGA microspheres, a novel all-aqueous method for preparing crosslinked dextran magnetic microspheres was developed in this dissertation. This method uses free radical polymerization for crosslinking and does not require the use of flammable and harmful solvents. For efficient MRI contrast and magnetic drug guidance, maximized iron oxide content of microspheres is desirable. The two different microsphere preparation methods were optimized for iron oxide content. The effect of iron oxide content on microsphere size and morphology was studied. In addition, an in vitro circulation model was used to evaluate the ability of magnetic microspheres to be guided at physiologic blood

  7. Preparation and evaluation of multi particulates drug delivery system using natural polymers.

    PubMed

    Baig, Tariq; Sheikh, Hammad; Srivastava, Ankur; Tripathi, Pushpendra K; Tripathi, Shalini

    2015-01-01

    Simvastatin potassium is a hypolipidemic drug used with exercise, diet, and weight-loss to control elevated cholesterol, or hypercholesterolemia. It is a member of the statin class of pharmaceuticals. Okra mucilage is used to reduce the cholesterol level since microspheres has formulated by using okra mucilage to developed a synergistic effect. Calcium chloride act as a cross linking agent, when react with sodium alginate form a calcium alginate, since develope a gel like microbeads (microspheres). The half life of simvastatin is 2h for simvastatin acid. Simvastatin microspheres were prepared by using sodium alginate in combination with Abelmoschus esculentus (Okra), as drug release modifiers in various proportions to overcome the drug related adverse effects. The drug entrapment efficiency increased progressively with increasing concentration of both sodium alginate and okra mucilage resulting in the formation of larger microspheres entrapping greater amounts of the drug. The prepared microspheres were subjected to various evaluation and in vitro release studies. The particle sizes of the prepared microspheres were determined by optical microscopy and Scanning Electron Microscopy (SEM) analysis. The prepared microspheres had good spherical geometry with smooth surface as evidence by SEM. Study the capability of the formulation to withstand the physiological environment of the stomach and small intestine. PMID:25488418

  8. The use of aqueous PEG/dextran phase separation for the preparation of dextran microspheres.

    PubMed

    Stenekes, R J; Franssen, O; van Bommel, E M; Crommelin, D J; Hennink, W E

    1999-06-10

    A novel procedure to prepare dextran microspheres, without the use of organic solvents was developed. The method is based on phase separation which occurs in aqueous solutions of PEG and methacrylated dextran (dexMA). After stirring this two phase system a water-in-water emulsion is formed. When dexMA forms the discontinuous phase, dextran microspheres can be obtained by polymerization of the methacryloyl groups attached to dextran. The aim of this study was to gain insight into the formulation parameters that affect the particle characteristics. Therefore, it was necessary to establish dexMA/PEG/water phase diagrams. Lower polymer molecular weights and higher degrees of MA substitution resulted in less pronounced phase separation (binodal shifts to higher concentrations). The volume weight mean microsphere diameter varied between 2.5 and 20 microm, depending on the viscosities of both phases and the PEG/dexMA volume ratio. A more viscous continuous phase and/or a less viscous discontinuous phase resulted in smaller microspheres. Furthermore, the particle size increased with decreasing PEG/dexMA volume ratios. The particle characteristics, like cross-link density, initial water content and size can be tailored by adjusting the formulation parameters. PMID:10361149

  9. Preparation, characterization and oxygen sensing properties of luminescent carbon dots assembled mesoporous silica microspheres.

    PubMed

    Wang, Li; Zhang, Haoran; Zhou, Xiaohua; Liu, Yingliang; Lei, Bingfu

    2016-09-15

    In this paper, our effort was focused on preparation and oxygen sensing of luminescence carbon dots (CDs) assembled hollow mesoporous silica microspheres (HMSMs) and mesoporous silica microspheres (MSMs). MSMs doped with CDs showed shorter response time and recovery time comparing with HMSMs doped with CDs. This feature can be attributed to ordered channel structure of mesoporous carrier which can promote the gas diffusion effectively. While HMSMs doped with CDs shows a higher oxygen quenching response and the degree of quenching reach 80.35%. The response time was determined to be about 7s and the emission intensities of the samples were effectively reduced as the concentration of oxygen increased. These results indicate that the system we have developed can be used for oxygen detection in wide concentration range and is especially accurate for very low oxygen concentrations. The obtained CDs grafted hollow mesoporous silica microspheres (HMSMs) and mesoporous silica microspheres (MSMs) samples appears to be a promising sensing material for environmental detection application and would also find applications in catalyst, electrode, or related fields. PMID:27309945

  10. [Preparation and application of solid phase extraction packing of zirconia microsphere coated with sulfonated crosslinked polystyrene].

    PubMed

    Shen, Shuchang; Liu, Yuhui; Xiao, Xiaoxing

    2013-08-01

    Zirconia microsphere was prepared by polymerization-induced colloid aggregation (PICA) method and carbon-carbon double bond was grafted onto its surface by titanic acid ester coupling reagent. Poly(styrene-divinylbenzene) was synthesized by free radical polymerization by using styrene, divinylbenzene and carbon-carbon double bond on the microsphere surface in solution system, so the polymer was coated on the microsphere surface. After the benzene ring of the polymer was sulfonated, the cation exchange packing for solid phase extraction (SPE) was obtained. The material was characterized by Fourier transform infrared spectroscopy, scanning electron microscope and X-ray energy dispersive spectroscopy. Three herbicides of mesotrione, atrazine and acetochlor in water were determined by the SPE cartridge coupled with high performance liquid chromatography (HPLC). In the range of 0.5 - 3.0 mg/L, the relationships between the peak areas and mass concentrations of mesotrione, atrazine and acetochlor were linear with the correlation coefficients of 0.9936, 0.9925, 0.9919, respectively. The limits of detection were 5.41, 6.72 and 13.4 microg/L for mesotrione, atrazine and acetochlor, respectively. The results showed that the zirconium dioxide microspheres coated with polymer have diameters in the range of about 6 to 8 microm, the SPE cartridges of which have high adsorption rate for the targets. PMID:24369611

  11. Preparation and electromagnetic properties of core/shell polystyrene@polypyrrole@nickel composite microspheres.

    PubMed

    Li, Wenzhe; Qiu, Teng; Wang, Leilei; Ren, Shanshan; Zhang, Jiangru; He, Lifan; Li, Xiaoyu

    2013-02-01

    Through a novel method, we successfully synthesized electromagnetic (EM) functional polystyrene@polypyrrole@nickel (PS@PPy@Ni) composite microspheres. The PS@PPy spheres with well-defined core/shell structure have been synthesized via an in situ chemical oxidative copolymerization of pyrrole (Py) and N-2-carboxyethylpyrrole (PyCOOH) templated by PS microspheres. The reaction was carried out under heterophase conditions using the mixture of ethanol and water as the continuous phase. Tailored by the carboxyl groups on the surface of microspheres, magnetic nickel layer has been steady deposited onto the P(Py-PyCOOH) layer of the microspheres through an activation-electroless plating technology. The fine PS@P(Py-PyCOOH)@Ni core/shell structures could be obtained with the PyCOOH content up to 50 wt % in the P(Py-PyCOOH) layer. Moreover, the as-prepared PS@P(Py-PyCOOH)@Ni composites are ferromagnetic materials and behave as a good electromagnetic (EM) absorption material due to the coating of Ni layer around the PS@P(Py-PyCOOH) spheres. The PS@P(Py-PyCOOH)@Ni composite spheres show the remarkable EM wave absorption property with the maximum reflection loss (around -20.06 dB) at 10.69 GHz. The EM wave absorption can retained lower than -10 dB within a broad frequency range from 9.16 to 13.75 GHz. PMID:23277287

  12. Polylactide-based microspheres prepared using solid-state copolymerized chitosan and d,l-lactide.

    PubMed

    Demina, T S; Akopova, T A; Vladimirov, L V; Zelenetskii, A N; Markvicheva, E A; Grandfils, Ch

    2016-02-01

    Amphiphilic chitosan-g-poly(d,l-lactide) copolymers have been manufactured via solid-state mechanochemical copolymerization and tailored to design polyester-based microspheres for tissue engineering. A single-step solid-state reactive blending (SSRB) using low-temperature co-extrusion has been used to prepare these copolymers. These materials have been valorized to stabilize microspheres processed by an oil/water emulsion evaporation technique. Introduction of the copolymers either in water or in the oil phase of the emulsion allowed to replace a non-degradable emulsifier typically used for microparticle preparation. To enhance cell adhesion, these copolymers were also tailored to bring amino-saccharide positively charged segments to the microbead surface. Size distribution, surface morphology, and total microparticle yield have been studied and optimized as a function of the copolymer composition. PMID:26652381

  13. Mechanistic studies for monodisperse exenatide-loaded PLGA microspheres prepared by different methods based on SPG membrane emulsification.

    PubMed

    Qi, Feng; Wu, Jie; Yang, Tingyuan; Ma, Guanghui; Su, Zhiguo

    2014-10-01

    Poly(DL-lactic-co-glycolic acid) (PLGA) microspheres have been widely prepared by many methods, including solvent evaporation, solvent extraction and the co-solvent method. However, very few studies have compared the properties of microspheres fabricated by these methods. This is partly because the broad size distribution of the resultant particles severely complicates the analysis and affects the reliability of the comparison. To this end, uniform-sized PLGA microspheres have been prepared by Shirasu porous glass premix membrane emulsification and used to encapsulate exenatide, a drug for treating Type 2 diabetes. Based on this technique, the influences on the properties of microspheres fabricated by the aforementioned three methods were intensively investigated, including in vitro release, degradation and pharmacology. We found that these microspheres presented totally different release behaviors in vitro and in vivo, but exhibited a similar trend of PLGA degradation. Moreover, the internal structural evolution visually demonstrated these release behaviors. We selected for further examination the microsphere prepared by solvent evaporation because of its constant release rate, and explored its pharmacodynamics, histology, etc., in more detail. This microsphere when injected once showed equivalent efficacy to that of twice-daily injections of exenatide with no inflammatory response. PMID:24952071

  14. Preparation and characterization of polystyrene/Ag core-shell microspheres--a bio-inspired poly(dopamine) approach.

    PubMed

    Wang, Wencai; Jiang, Yi; Wen, Shipeng; Liu, Li; Zhang, Liqun

    2012-02-15

    A facile and versatile method using a biopolymer as a chelating agent for silver ions and as a reducing agent for the formation of catalytic sites is proposed to prepare polystyrene (PS)/Ag core-shell microspheres. More specifically, the core-shell microspheres were fabricated by electroless plating after the formation of poly(dopamine) (PDA) on the surface of PS microspheres through insitu spontaneous oxidative polymerization of dopamine. The PS-PDA microspheres were characterized by SEM, XPS, and TGA. The results showed that a uniform PDA layer was formed on the PS microsphere surface and the thickness of the PDA layer could be well controlled by varying the concentration of dopamine solution. The PDA layer was used as a chelating agent for silver ions, as a reducing agent for the formation of catalytic sites by reducing the silver ions into silver nanoparticles, and as an adhesion layer between the PS microspheres and silver layer. SEM and XRD results indicate that the diameter of the silver nanoparticles decreased with the increase in the thickness of the PDA layer. The silver nanoparticles could form a continuous and compact silver layer on the surface of the PS microspheres. Furthermore, the PS-PDA/Ag core-shell microspheres showed a good conductivity of 10S/cm and a low effective density of 1.8 g/cm(3), much lower than the corresponding values for block silver. Finally, hollow silver microspheres could be prepared by removing the PS core through calcination. SEM images showed that the hollow Ag microspheres remained unbroken and retained the spherical shape. PMID:22104278

  15. [Preparation and immunogenicity of silk fibroin/chitosan microspheres for DNA vaccine delivery against infectious bursal disease virus].

    PubMed

    Liu, Yan; Lv, Zhiqiang; Zhang, Cun; Zhu, Xingrong; Shi, Tuanyuan; Zhong, Shi; Meng, Zhiqi

    2014-03-01

    To evaluate the immunities of biodegradable microsphere as a release delivery system for DNA vaccine against Infectious Bursal Disease Virus, in our study, silk fibroin/chitosan microsphere adjuvant was prepared with a precipitation/coacervation method. Both glutaraldehyde and Na2SO4 solution were used in cross-linking. No immune chicken were intramuscularly inoculated at 14 day-old and boosted 2 weeks later. The results show that glutaraldehyde destroyed the DNA activity of the vaccine whereas Na2SO4 solution did not. Factors of the chitosan concentration 0.5% (pH 5.0), silk fibroin concentration 0.6%, plasmid DNA (500 microg/mL) dissolved in 2% Na2SO4 solution were optimized to produce microsphere, with a loading capacity of 89.14%. The average particle size of SF-CS/pCI-VP2/4/3 microsphere is 1.98 microm, and it can protect the loading DNA vaccine from DNase I digestion. Data from anti IBDV ELISA antibodies in the serum show that immunization activity of the microsphere groups were generally higher than plasmid vaccine group (P < 0.05), and the SF/CS compound microspheres group was better than that of sole CS microsphere group. The developed SF/CS microspheres are a very promising vaccine delivery system. PMID:25007575

  16. Preparation and characterization of PHBV microsphere/45S5 bioactive glass composite scaffolds with vancomycin releasing function.

    PubMed

    Li, Wei; Ding, Yaping; Rai, Ranjana; Roether, Judith A; Schubert, Dirk W; Boccaccini, Aldo R

    2014-08-01

    PHBV microsphere/45S5 bioactive glass (BG) composite scaffolds with drug release function were developed for bone tissue engineering. BG-based glass-ceramic scaffolds with high porosity (94%) and interconnected pore structure prepared by foam replication method were coated with PHBV microspheres (nominal diameter=3.5 μm) produced by water-in-oil-in-water double emulsion solvent evaporation method. A homogeneous microsphere coating throughout the porous structure of scaffolds was obtained by a simple dip coating method, using the slurry of PHBV microspheres in hexane. Compressive strength tests showed that the microsphere coating slightly improved the mechanical properties of the scaffolds. It was confirmed that the microsphere coating did not inhibit the bioactivity of the scaffolds in SBF. Hydroxyapatite crystals homogeneously grew not only on the struts of the scaffolds but also on the surface of microspheres within 7 days of immersion in SBF. Vancomycin was successfully encapsulated into the PHBV microspheres. The encapsulated vancomycin was released with a dual release profile involving a relatively low initial burst release (21%) and a sustained release (1 month), which is favorable compared to the high initial burst release (77%) and short release period (4 days) measured on uncoated scaffolds. The developed bioactive composite scaffold with drug delivery function has thus the potential to be used advantageously in bone tissue engineering. PMID:24907766

  17. Control of drug loading efficiency and drug release behavior in preparation of hydrophilic-drug-containing monodisperse PLGA microspheres.

    PubMed

    Ito, Fuminori; Fujimori, Hiroyuki; Honnami, Hiroyuki; Kawakami, Hiroyoshi; Kanamura, Kiyoshi; Makino, Kimiko

    2010-05-01

    We prepared monodisperse poly(lactide-co-glycolide) (PLGA) microspheres containing blue dextran (BLD)--a hydrophilic drug--by membrane emulsification technique. The effects of electrolyte addition to the w(2) phase and significance of the droplet size ratio between primary (w(1)/o) and secondary (w(1)/o/w(2)) emulsions during the preparation of these microspheres was examined. The droplet size ratio was evaluated from the effect of stirring rate of the homogenizer when preparing the primary emulsion. The drug loading efficiency of BLD in these microspheres increased with stirring rate. It increased to approximately 90% when 2.0% NaCl was added to the w(2) phase. Drug release from these microspheres was slower than that when they were prepared without electrolyte addition. Despite the very high efficiency drug release was gradual because BLD was distributed at the microspheres core. Relatively monodisperse hydrophilic-drug-containing PLGA microspheres with controlled drug loading efficiency and drug release behavior were prepared. PMID:20221788

  18. Development and characterisation of metformin loaded spray dried Bora rice microspheres.

    PubMed

    Sharma, Hemanta Kumar; Mohapatra, Jadavesh; Nath, Lila Kanta

    2013-01-01

    Bora rice, a glutinous rice, is grown in Assam (a north eastern state of India) and is used traditionally for various purposes. The rationale of this study was to prepare and to assess Metformin loaded mucoadhesive spray dried microspheres using locally grown Bora rice powder. Metformin loaded microspheres were prepared using Bora rice and sodium alginate by spray drying method. For the study of the consequence of parameters of spray drier on the properties of microspheres, parameters such as aspirator flow rate, temperature, feed flow rate and concentration of the spray solution were changed. The in-vitro release properties were also studied. Almost spherical microspheres were obtained with significant swelling and mucoadhesivity. Dissolution study was carried out in phosphate buffer (pH 7.4) for 7 hrs. It was also noted to possess good mucoadhesive in such a way that about 90% of microspheres remained adherent on the surface of intestinal mucosa of pig skin. The total amount of drug released from microspheres after 7 hr. was 80%. The release of drug was not affected by the changes in parameters but was affected when sodium alginate concentration was changed. It was observed that microsphere properties changed as the parameters were changed. Smaller particles were obtained when the concentration of the spray solution, aspirator flow rate, the temperature difference between inlet and outlet and feed flow rate were lower. PMID:23261723

  19. Preparation and characteristics of sodium alginate/Na(+)rectorite-g-itaconic acid/acrylamide hydrogel films.

    PubMed

    Yang, Lianli; Ma, Xiaoyan; Guo, Naini; Zhang, Yang

    2014-05-25

    Sodium alginate/Na(+)rectorite-graft-itaconic acid/acrylamide (SA/Na(+)REC-g-IA/AM) hydrogel film was prepared via solution polymerization. The effect of Na(+)REC, KPS, and NMBA content and the ratio of IA to AM on graft ratio, graft efficiency and absorption of liquids were investigated. The structure and morphology were analyzed by FTIR, XRD, TEM and SEM. Results revealed that the optimal Na(+)REC, KPS, and NMBA content and the ratio of IA to AM were 2wt%, 0.8wt%, 0.38wt% and 4, respectively. The hydrogel film was found to exhibit an intercalative structure and coarse surface. The mechanism of graft copolymerization was discussed. A slower and more continuous release of salicylic acid for SA/Na(+)REC-g-IA/AM composite hydrogel film was shown in vitro drug-controlled release studies, in comparison with SA film. The salicylic acid release mechanism of SA/Na(+)REC-g-IA/AM hydrogel film followed Fickian diffusion. PMID:24708990

  20. Preparation and evaluation of Bacillus megaterium-alginate microcapsules for control of rice sheath blight disease.

    PubMed

    Wiwattanapatapee, R; Chumthong, A; Pengnoo, A; Kanjanamaneesathian, M

    2013-08-01

    Bacillus megaterium encapsulated in calcium alginate microcapsules was prepared and tested for its efficacy against sheath blight disease of rice. In laboratory conditions, the aqueous suspension (1:100, v/v in potato dextrose agar) of the bacterial microcapsules (10(10) spores/ml) inhibited mycelial growth of Rhizoctonia solani (>99 %) after the microcapsules were produced and stored for 12 months at room temperature (28 ± 2 °C). The survival of the bacterium in the microcapsules in response to ultraviolet (u.v.) irradiation and high temperature was investigated. The survivability of the bacterium in the encapsulated form was greater than that of the fresh cells when it was subjected to u.v. (20-W General electric u.v. lamp from a 25 cm distance for 48 h) and a high temperature treatment (80 °C for 48 h). Cells of the bacterium were detected by scanning electron microscope on both the leaf sheath and the leaf blade (in pot tests in a greenhouse) after spraying encapsulated product. The number of bacteria on the surface of both rice tissues (5 Log. number/g of plant) after spraying with encapsulated product was not significantly different from that after spraying with fresh cells onto the rice seedlings. Spraying the encapsulated B. megaterium on rice plants in the greenhouse was as effective as spraying a chemical fungicide for suppressing rice sheath blight disease. PMID:23508397

  1. Preparation, characterization and pharmacokinetics of fluorescence labeled propylene glycol alginate sodium sulfate

    NASA Astrophysics Data System (ADS)

    Li, Pengli; Li, Chunxia; Xue, Yiting; Zhang, Yang; Liu, Hongbing; Zhao, Xia; Yu, Guangli; Guan, Huashi

    2014-08-01

    A rapid and sensitive fluorescence labeling method was developed and validated for the microanalysis of a sulfated polysaccharide drug,namely propylene glycol alginate sodium sulfate (PSS), in rat plasma. Fluorescein isothiocyanate (FITC) was selected to label PSS, and 1, 6-diaminohexane was used to link PSS and FITC in order to prepare FITC-labeled PSS (F-PSS) through a reductive amination reaction. F-PSS was identified by UV-Vis, FT-IR and 1H-NMR spectrum. The cell stability and cytotoxicity of F-PSS were tested in Madin-Darby canine kidney (MDCK) cells. The results indicated that the labeling efficiency of F-PSS was 0.522% ± 0.0248% and the absolute bioavailability was 8.39%. F-PSS was stable in MDCK cells without obvious cytotoxicity. The method was sensitive and reliable; it showed a good linearity, precision, recovery and stability. The FITC labeling method can be applied to investigating the absorption and metabolism of PSS and other polysaccharides in biological samples.

  2. Image analysis of lutrol/gelucire/olanzapine microspheres prepared by ultrasound-assisted spray congealing.

    PubMed

    Cavallari, Cristina; Gonzalez-Rodriguez, Marisa; Tarterini, Fabrizio; Fini, Adamo

    2014-11-01

    Nine systems were prepared containing Gelucire 50/13 and various amounts (9-18-36-45% w/w) of Lutrol F68 and F127 in the presence and in the absence of 10% w/w of olanzapine and formulated as a solid dispersion in the form of microspheres by ultrasound (US)-assisted spray congealing. Thermal analysis, using differential scanning calorimetry (DSC) and thermomicroscopy (HSM), suggested the presence of particles of reduced size of olanzapine precipitated inside the microspheres. The microspheres were also studied by means of electron microscopy (SEM) for their shape and aspect, by some image analysis parameters (fractal dimension) and using Energy-dispersive X-ray (X-EDS) and micro-Raman spectroscopy to qualitatively evaluate the composition of different points of the surface. The surface of the microspheres displayed a non-homogeneous distribution of the drug by the presence of wart-like protuberances, whose number increases as the Lutrol content of the systems increases. The same systems in the absence of US, obtained after cooling the molten mixtures, lack these structures and only a very few of them can be found. The blooming of the surface was hypothesized as related to crystallization or phase de-mixing or lipid component diffusion of the carrier mixture inside the cooling mass subjected to ultrasound vibration. Ultrasounds accelerate the physical changes concerning carriers and drug, outlining the importance of ultrasound to achieve stability for formulations of this type. The microspheres de-aggregate on contact with the dissolution medium and release the drug with a bimodal mode according to the Lutrol content. PMID:25218318

  3. Formulation and in vitro evaluation of nateglinide microspheres using HPMC and carbopol-940 polymers by ionic gelation method.

    PubMed

    Bashir, Sajid; Nazir, Imran; Khan, Hafeezullah; Alamgeer; Asad, Muhammad; ul Hassnain, Fakhar; Qamar, Sumbul

    2013-11-01

    This study involves the design and characterization of Nateglinide (NAT) microspheres to enhance patient compliance. Ionic gelation technique was used to prepare Nateglinide Microspheres by using rate controlling polymers Carbopol-940 and Hydroxypropylmethyl cellulose (HPMC). Shape and surface were evaluated with Scanning electron microscopy (SEM). Percentage Yield, Particle size analysis, Encapsulating Efficiency, Micromeritic analysis, Fourier Transform Infra-Red Spectroscopy (FTIR), Differential Scanning Colorimetry (DSC) were done for characterization of Microspheres. Drug release studies were performed at pH 1.2 and 7.2 using USP dissolution type-II apparatus and release rates were analyzed by the application of different pharmacokinetic models. The size of microspheres was found to be varied from 781μm to 853μm. Rheological studies proved excellent flow behavior while percentage yield was found to be varied from 72% to 79%. Absence of drug-polymers interactions was confirmed from FTIR and DSC results. The microspheres prepared with sodium alginate showed cracks while microspheres obtained from blend of Carbopol-940 plus sodium alginate were smooth and spherical. Maximum entrapment efficiency (71.4%) was achieved for Microspheres with Carbopol-940. The greater retardation in drug release was observed for microspheres containing Carbopol-940 and release pattern followed Higuchi kinetics model and negligible drug release was observed at pH 1.2. PMID:24191331

  4. Determination of Ideal Broth Formulations Needed to Prepare Hydrous Aluminum Oxide Microspheres via the Internal Gelation Process

    SciTech Connect

    Collins, Jack Lee; Pye, S. L.

    2009-02-01

    A simple test-tube methodology was used to determine optimum process parameters for preparing hydrous aluminum oxide microspheres by the internal gelation process. Broth formulations of aluminum, hexamethylenetetramine, and urea were found that can be used to prepare hydrous aluminum oxide gel spheres in the temperature range of 60-90 C. A few gel-forming runs were made in which microspheres were prepared with some of these formulations in order to equate the test-tube gelation times with actual gelation times. These preparations confirmed that the test-tube methodology is reliable for determining the ideal broths.

  5. Determination of Ideal Broth Formulations Needed to Prepare Hydrous Hafnium Oxide Microspheres via the Internal Gelation Process

    SciTech Connect

    Collins, Jack Lee; Hunt, Rodney Dale; Simmerman, S. G.

    2009-02-01

    A simple test-tube methodology was used to determine optimum process parameters for preparing hydrous hafnium oxide microspheres by the internal gelation process. Broth formulations of hafnyl chloride [HfOCl{sub 2}], hexamethylenetetramine, and urea were found that can be used to prepare hydrous hafnium oxide gel spheres in the temperature range of 70-90 C. A few gel-forming runs were made in which microspheres were prepared with some of these formulations in order to equate the test-tube gelation times with actual gelation times. These preparations confirmed that the test-tube methodology is reliable for determining the ideal broths.

  6. Characterization of smart auto-degradative hydrogel matrix containing alginate lyase to enhance levofloxacin delivery against bacterial biofilms.

    PubMed

    Islan, German A; Dini, Cecilia; Bartel, Laura C; Bolzán, Alejandro D; Castro, Guillermo R

    2015-12-30

    The aim of the present work is the characterization of smart auto-degradable microspheres composed of calcium alginate/high methoxylated pectin containing an alginate lyase (AL) from Sphingobacterium multivorum and levofloxacin. Microspheres were prepared by ionotropic gelation containing AL in its inactive form at pH 4.0. Incubation of microspheres in Tris-HCl and PBS buffers at pH 7.40 allowed to establish the effect of ion-chelating phosphate on matrix erodability and suggested an intrinsically activation of AL by turning the pH close to neutrality. Scanning electron and optical microscopies revealed the presence of holes and surface changes in AL containing microspheres. Furthermore, texturometric parameters, DSC profiles and swelling properties were showing strong changes in microspheres properties. Encapsulation of levofloxacin into microspheres containing AL showed 70% efficiency and 35% enhancement of antimicrobial activity against Pseudomonas aeruginosa biofilm. Levofloxacin release from microspheres was not changed at acidic pH, but was modified at neutral pH in presence of AL. Advantageously, only gel matrix debris were detectable after overnight incubation, indicating an autodegradative gel process activated by the pH. Absence of matrix cytotoxicity and a reduction of the levofloxacin toxicity after encapsulation were observed in mammalian CHO-K1 cell cultures. These properties make the system a potent and versatile tool for antibiotic oral delivery targeted to intestine, enhancing the drug bioavailability to eradicate bacterial biofilm and avoiding possible intestinal obstructions. PMID:26505149

  7. Modelling of the solvent evaporation method for the preparation of controlled release acrylic microspheres using neural networks.

    PubMed

    Yüksel, N; Türkoglu, M; Baykara, T

    2000-01-01

    The purpose of the present study was to model the solvent evaporation procedure for the preparation of acrylic microspheres by using artificial neural networks (ANNs) to obtain an understanding of the selected preparative variables. Three preparative variables, the concentration of the dispersing agent (sucrose stearate), the stirring rate of emulsion system, and the ratio of polymers (Eudragit RS-L) were studied, each at different levels, as input variables. The response (output) variables examined to characterize microspheres and drug release were the size of the microspheres and T63.2%, the time at which 63.2% of drug is released. The results were also analysed by the multiple linear regression (MLR) to provide a comparison with the ANN methodology. Although both ANN and MLR methods were found to be similar in characterizing the process studied, the results showed that an ANN method gave a better prediction than the MLR method. For the size values of the microspheres, the predictability of the ANN model was quite high (R2 = 0.9602) based on the input variables. A relationship between these variables and size values of microspheres was also obtained by the MLR model (R2 = 0.9050). The performances of both models for the release data from microspheres based on the same input variables were at the level of 53%. According to the results, the ANN methodology can provide an alternative to the traditional regression methods, as a flexible and accurate method to study process and formulation factors. PMID:11038114

  8. Characterization of Raoultella planticola Rs-2 microcapsule prepared with a blend of alginate and starch and its release behavior.

    PubMed

    Wu, Zhansheng; He, Yanhui; Chen, Lijun; Han, Yajie; Li, Chun

    2014-09-22

    To judiciously use Raoultella planticola Rs-2 and develop its biodegradable and controlled-release formulations, Rs-2 was encapsulated with various combinations of sodium alginate (NaAlg) and starch. Sodium alginate, soluble starch, and CaCl2 showed good biocompatibility with Rs-2 for preparing microcapsules. These microcapsules were spherical in shape and their particle size, embedding rate, swelling ratio of Rs-2 microcapsules and release numbers of viable Rs-2 cells increased with the increasing of starch and NaAlg concentrations. Meanwhile, the biodegradability of the microcapsules constantly increases when the wt% of starch increased, but decreased when the amount of NaAlg increased. In addition, the release mechanism of microcapsules was consistent with that of the Ritger-Peppas model, which involves the Case II diffusion mechanism. In summary, the desired properties of the microcapsules can be modulated by varying the starch and alginate amounts of capsule materials. This process has broad application prospects to meet the needs of agricultural production. PMID:24906754

  9. Budesonide-loaded guar gum microspheres for colon delivery: preparation, characterization and in vitro/in vivo evaluation.

    PubMed

    Liu, Ye; Zhou, Hong

    2015-01-01

    A novel budesonide (BUD) colon delivery release system was developed by using a natural polysaccharide, guar gum. The rigidity of the microspheres was induced by a chemical cross-linking method utilizing glutaraldehyde as the cross-linker. The mean particle size of the microspheres prepared was found to be 15.21 ± 1.32 µm. The drug loading and entrapment efficiency of the formulation were 17.78% ± 2.31% and 81.6% ± 5.42%, respectively. The microspheres were spherical in shape with a smooth surface, and the size was uniform. The in vitro release profiles indicated that the release of BUD from the microspheres exhibited a sustained release behavior. The model that fitted best for BUD released from the microspheres was the Higuchi kinetic model with a correlation coefficient r = 0.9993. A similar phenomenon was also observed in a pharmacokinetic study. The prolongation of the half-life (t1/2), enhanced residence time (mean residence time, MRT) and decreased total clearance (CL) indicated that BUD microspheres could prolong the acting time of BUD in vivo. In addition, BUD guar gum microspheres are thought to have the potential to maintain BUD concentration within target ranges for a long time, decreasing the side effects caused by concentration fluctuation, ensuring the efficiency of treatment and improving patient compliance by reducing dosing frequency. None of the severe signs, like the appearance of epithelial necrosis and the sloughing of epithelial cells, were detected. PMID:25629228

  10. Budesonide-Loaded Guar Gum Microspheres for Colon Delivery: Preparation, Characterization and in Vitro/in Vivo Evaluation

    PubMed Central

    Liu, Ye; Zhou, Hong

    2015-01-01

    A novel budesonide (BUD) colon delivery release system was developed by using a natural polysaccharide, guar gum. The rigidity of the microspheres was induced by a chemical cross-linking method utilizing glutaraldehyde as the cross-linker. The mean particle size of the microspheres prepared was found to be 15.21 ± 1.32 µm. The drug loading and entrapment efficiency of the formulation were 17.78% ± 2.31% and 81.6% ± 5.42%, respectively. The microspheres were spherical in shape with a smooth surface, and the size was uniform. The in vitro release profiles indicated that the release of BUD from the microspheres exhibited a sustained release behavior. The model that fitted best for BUD released from the microspheres was the Higuchi kinetic model with a correlation coefficient r = 0.9993. A similar phenomenon was also observed in a pharmacokinetic study. The prolongation of the half-life (t1/2), enhanced residence time (mean residence time, MRT) and decreased total clearance (CL) indicated that BUD microspheres could prolong the acting time of BUD in vivo. In addition, BUD guar gum microspheres are thought to have the potential to maintain BUD concentration within target ranges for a long time, decreasing the side effects caused by concentration fluctuation, ensuring the efficiency of treatment and improving patient compliance by reducing dosing frequency. None of the severe signs, like the appearance of epithelial necrosis and the sloughing of epithelial cells, were detected. PMID:25629228

  11. Preparation and application of agar/alginate/collagen ternary blend functional food packaging films.

    PubMed

    Wang, Long-Feng; Rhim, Jong-Whan

    2015-09-01

    Ternary blend agar/alginate/collagen (A/A/C) hydrogel films with silver nanoparticles (AgNPs) and grapefruit seed extract (GSE) were prepared. Their performance properties, transparency, tensile strength (TS), water vapor permeability (WVP), water contact angle (CA), water swelling ratio (SR), water solubility (WS), and antimicrobial activity were determined. The A/A/C film was highly transparent, and both AgNPs and GSE incorporated blend films (A/A/C(AgNPs) and A/A/C(GSE)) exhibited UV-screening effect, especially, the A/A/C(GSE) film had high UV-screening effect without sacrificing the transmittance. In addition, the A/A/C blend films formed efficient hydrogel film with the water holding capacity of 23.6 times of their weight. Both A/A/C(AgNPs) and A/A/C(GSE) composite films exhibited strong antimicrobial activity against both Gram-positive (Listeria monocytogenes) and Gram-negative (Escherichia coli) food-borne pathogenic bacteria. The test results of fresh potatoes packaging revealed that all the A/A/C ternary blend films prevented forming of condensed water on the packaged film surface, both A/A/C(AgNPs) and A/A/C(GSE) composite films prevented greening of potatoes during storage. The results indicate that the ternary blend hydrogel films incorporated with AgNPs or GSE can be used not only as antifogging packaging films for highly respiring fresh agriculture produce, but also as an active food packaging system utilizing their strong antimicrobial activity. PMID:26187189

  12. Preparation of core-shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization.

    PubMed

    Hou, Chen; Qi, Zhigang; Zhu, Hao

    2015-04-01

    A flexible, biocompatible and bioadhesive enzyme immobilizing material, which was synthesized based on the covalent assembly of biomimetic polymer and oxidized polysaccharide on magnetic nanoparticles (NPs), has been developed in this feasibility study. In this work, the bio-inspired polymer, polydopamine (PDA), was used to modify the well-monodispersed Fe3O4 NPs (mPDA NPs) with a controllable thickness via a dip-coating process, then the alginate di-aldehyde (ADA) was covalently assembled on the mPDA NPs and employed as a naturally occurring linking agent for Candida rugosa lipase (CRL) immobilization. The resulting support material was characterized by means of the transmission electron microscope (TEM), Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), thermogravimetry (TG) analyser, and vibrating sample magnetometer (VSM). It was verified that the prepared mPDA NPs possessed distinct core-shell structure with uniform size and high saturation magnetization. For further application, the mPDA NPs was utilized in CRL immobilizing procedures and demonstrated can facilitate improving the enzyme activities. The optimum amount of lipase was 200 mg g(-1) support, the optimal pH and temperature for the catalyse condition of the immobilized CRL was 7.0 and 40°C, respectively. Moreover, the immobilized CRL kept the high activity at 77% after 12 times of recycling for batch hydrolysis of olive oil emulsion. This magnetic bioadhesive composite with functionalized properties and adhesion strength presents a general strategy for the immobilization of macromolecules. PMID:25784302

  13. Microspheres for protein delivery prepared from amphiphilic multiblock copolymers. 2. Modulation of release rate.

    PubMed

    Bezemer, J M; Radersma, R; Grijpma, D W; Dijkstra, P J; van Blitterswijk, C A; Feijen, J

    2000-07-01

    Amphiphilic multiblock copolymers, based on hydrophilic poly(ethylene glycol) (PEG) blocks and hydrophobic poly(butylene terephthalate) (PBT) blocks were used as matrix material for protein-loaded microspheres. The efficiency of lysozyme entrapment by a double emulsion method was found to depend on the swelling behavior of the polymers in water and decreased from 100% for polymers with a degree of swelling of less than 1.8 to 11% for PEG-PBT copolymers with a degree of swelling of 3.6. The particle size could be controlled by varying the concentration of the polymer solution used in the microsphere preparation. An increase in the polymer concentration resulted in a proportional increase in the particle size. The in vitro release profiles of the encapsulated model protein lysozyme could be precisely tailored by variation of the copolymer composition and the size of the microspheres. Both a slow continuous release of lysozyme, and a fast release which was completed within a few days could be obtained. The release behavior, attributed to a combination of diffusion and polymer degradation, could be described by a previously developed model. PMID:10825558

  14. Preparation and characterization of. beta. -D-glucosidase immobilized in calcium alginate

    SciTech Connect

    Krasniak, S. R.; Smith, R. D.

    1982-01-01

    Enzymatic hydrolysis of biomass to produce glucose may become feasible if an inexpensive method to reuse the enzyme can be found. This study investigated one such method whereby ..beta..-D-glucosidase (E.C. 3.2.1.21) was immobilized in calcium alginate gel spheres, which were shown to catalyze the hydrolysis of cellobiose to glucose. There was a loss of 49% of the enzyme from the alginate slurry during gelation. After gelation, in the stable gel spheres, there was a 37% retention of the enzyme activity that was actually immobilized. The reason for the loss in activity was investigated and may be caused by inhibition of the enzyme within the sphere by the calcium cations and the alginate anions also present. Mass transfer effects were minimal in this system and were not responsible for the activity loss.

  15. Preparation of novel biodegradable ropivacaine microspheres and evaluation of their efficacy in sciatic nerve block in mice.

    PubMed

    Ni, Qiang; Chen, Wurong; Tong, Lei; Cao, Jue; Ji, Chao

    2016-01-01

    In this study, ropivacaine chitosan-loaded microspheres for subcutaneous administration were developed. The systems were characterized in terms of surface morphology, particle size, encapsulation efficiency, and in vitro release behavior. Results showed that the microspheres had drug loading rate of 7.3% and encapsulation efficiency of 91.2%, and their average diameter was 2.62±0.76 µm. The morphology study revealed that the microspheres are uniform monodispersed spheres and did not form aggregates in aqueous solution. It was clearly observed that the release profile of ropivacaine microspheres exhibited a biphasic pattern: the initial burst release within the first 2 hours and a following slower and sustained release over a long time. In vivo, a greater area under the plasma concentration-time curve from 0 to t (AUC0- t ) was obtained from the microspheres (4.27-fold), than from the injection group, which indicated that there was a significantly improved systemic exposure to ropivacaine. Pharmacodynamics result showed that preparing ropivacaine as microsphere preparation could not only extend the drug effect time but also decrease the administration dosage. PMID:27536071

  16. Preparation of novel biodegradable ropivacaine microspheres and evaluation of their efficacy in sciatic nerve block in mice

    PubMed Central

    Ni, Qiang; Chen, Wurong; Tong, Lei; Cao, Jue; Ji, Chao

    2016-01-01

    In this study, ropivacaine chitosan-loaded microspheres for subcutaneous administration were developed. The systems were characterized in terms of surface morphology, particle size, encapsulation efficiency, and in vitro release behavior. Results showed that the microspheres had drug loading rate of 7.3% and encapsulation efficiency of 91.2%, and their average diameter was 2.62±0.76 µm. The morphology study revealed that the microspheres are uniform monodispersed spheres and did not form aggregates in aqueous solution. It was clearly observed that the release profile of ropivacaine microspheres exhibited a biphasic pattern: the initial burst release within the first 2 hours and a following slower and sustained release over a long time. In vivo, a greater area under the plasma concentration–time curve from 0 to t (AUC0–t) was obtained from the microspheres (4.27-fold), than from the injection group, which indicated that there was a significantly improved systemic exposure to ropivacaine. Pharmacodynamics result showed that preparing ropivacaine as microsphere preparation could not only extend the drug effect time but also decrease the administration dosage. PMID:27536071

  17. Ultrasonic preparation of hierarchical graphene-oxide/TiO2 composite microspheres for efficient photocatalytic hydrogen production.

    PubMed

    Gao, Peng; Sun, Darren Delai

    2013-11-01

    Hierarchical graphene oxide (GO)-TiO2 composite microspheres with different GO/TiO2 mass ratios were successfully prepared by mixing GO and TiO2 microspheres under ultrasonic conditions. Ultrasonication helped the GO and TiO2 microsphere to uniformly mix on the microscale. The results showed that the GO-TiO2 composites that were prepared by ultrasonic mixing exhibited significantly higher hydrogen-evolution rates than those that were synthesized by simple mechanical grinding, owing to synergetic effects, including enhanced light absorption and scattering, as well as improved interfacial charge transfer because of the excellent contact between the GO sheets and TiO2 microspheres. In addition, GO-TiO2-3 (3 wt.% GO) showed the highest hydrogen-generation rate (305.6 μmol h(-)), which was about 13 and 3.3-times higher than those of TiO2 microsphere and GO-P25 (with 3 wt.% GO), respectively. Finally, a tentative mechanism for hydrogen production is proposed and supported by photoluminescence and transient photocurrent measurements. This work highlights the potential applications of GO-TiO2 composite microspheres in the field of clean-energy production. PMID:23913441

  18. A comparison of the efficacy of the alginate preparation, Gaviscon Advance, with placebo in the treatment of gastro-oesophageal reflux disease.

    PubMed

    Chatfield, S

    1999-01-01

    The aim of this study was to compare the efficacy of the sodium alginate preparation, Gaviscon Advance, with placebo in the relief of symptoms of reflux oesophagitis. This was a randomised, double-blind, parallel-group, multicentre study conducted at 13 GP centres in the UK. Patients aged between 18 and 70 years, who had experienced symptoms of reflux oesophagitis within the previous 24 h, and on two other occasions within the previous week, were recruited into the study. Patients were evaluated at baseline, and then reassessed after two and four weeks of treatment with sodium alginate or placebo, for symptoms of reflux oesophagitis in the previous 24 h. Patients were required to fill out a diary card twice daily, from which frequency and severity of symptoms were assessed, and the percentage of symptom-free days and nights calculated. Of the 100 patients recruited into the study, 98 received medication (safety population; placebo, n = 50; sodium alginate, n = 48) and 94 were eligible for inclusion in the intention-to-treat (ITT) population (placebo, n = 48; sodium alginate, n = 46). For this population, sodium alginate was assessed as significantly superior by both investigators and patients at week two (p < 0.001 and p = 0.004, respectively) and at week four (p = 0.001 and p < 0.001, respectively). Significantly more patients in the safety population on placebo withdrew from the study (40%) compared with sodium alginate (21%; p = 0.04), due primarily to lack of effect and adverse events. The sodium alginate preparation demonstrated a superior efficacy compared with placebo, which was achieved in a more acceptable volume of medication than a previous standard preparation, Liquid Gaviscon. The reduced dosage volume of the 'new' preparation (Gaviscon Advance) may be expected to improve patient compliance, and thereby increase treatment efficacy. PMID:10621921

  19. Preparation and properties of PLGA microspheres containing hydrophilic drugs by the SPG (shirasu porous glass) membrane emulsification technique.

    PubMed

    Ito, Fuminori; Honnami, Hiroyuki; Kawakami, Hiroyoshi; Kanamura, Kiyoshi; Makino, Kimiko

    2008-11-15

    In the present paper, monodisperse poly (lactide-co-glycolide) (PLGA) microspheres containing the hydrophilic model drug, blue dextran (BLD), were manufactured by the solvent evaporation method and the shirasu porous glass (SPG) membrane emulsification technique. In order to prepare PLGA microspheres with a higher drug loading efficiency by the membrane emulsification technique, the test of stability and productivity of the primary emulsion (w(1)/o emulsion) was preliminary examined by change species or concentration of the oil-soluble surfactant and the ratio of water and organic solvent. The primary emulsion (w(1)/o) composed of the BLD aqueous solution and dichloromethane (DCM) dissolved PLGA was prepared with the micro homogenizer. The secondary emulsion (w(1)/o/w(2)) was prepared by the SPG membrane emulsification technique. BLD/PLGA microspheres of various micro level sizes of 2.0-10 microm prepared by variation of pore size of the using SPG membrane. The highly monodisperse BLD/PLGA microspheres were also manufactured by added polyethylene glycol (PEG) into the water phase, as reported in a previous paper. The initial release rate of the drug from such microspheres controlled than the sample manufactured without an additive. PMID:18774278

  20. Preparation and optical property of anatase hollow microsphere with mesoporosity

    SciTech Connect

    Li Guohua Zhu Jingtao; Tian Wei; Ma Chunan

    2009-02-04

    Anatase hollow sphere with mesoporosity was prepared by sol pyrogenation used TiCl{sub 4} as precursor only. The samples were characterized by X-ray diffraction and scan electron microscopy, their specific surface area was measured by N{sub 2} adsorption. The results show that the sample calcined at 500 deg. C for 2 h is phase pure anatase, the morphology of the particle of the sample is hollow sphere, and the wall of the hollow sphere is constituted of anatase nanoparticle and mesoporosity. The crystallinity, the crystal size, the pore width, the specific surface area and the crystal phase of the sample are changing along with the calcined temperature. The optical property was measured by ultraviolet radiation vis absorption spectra of the suspension of the samples. The results show that the optical property of the sample is better than that of nanoanatase particle, and the optical property of hollow sphere titania with mesoporosity is related to its crystal phase, specific surface area, crystal size, porosity size and crystallinity.

  1. Development and in vitro evaluation of diclofenac sodium loaded mucoadhesive microsphere with natural gum for sustained delivery.

    PubMed

    Amin, Md Lutful; Jesmeen, Tasbira; Sutradhar, Kumar Bishwajit; Mannan, Md Abdul

    2013-12-01

    The objective of this study was to develop and evaluate mucoadhesive microsphere of diclofenac sodium with natural gums for sustained delivery. Guar gum and tragacanth were used along with sodium alginate as mucoadhesive polymers. Microspheres were formulated using orifice-ionic gelation method. Particle size, surface morphology, swelling study and drug entrapment efficiency of the prepared microspheres were determined. In vitro evaluation was carried out comprising of mucoadhesion and drug release study. The prepared microspheres were discrete and free flowing. Sodium alginate and natural gum, at a ratio of 1:0.25, showed good mucoadhesive property and they had high drug entrapment efficiencies. They also exhibited the best rate retarding effect among all the formulations. Drug entrapment efficiency of all the microspheres ranged from 80.42% to 91.67%. An inverse relationship was found between extent of crosslinking and drug release rate. Release rate was slow and extended in case of the formulations of 1:0.25 ratio (F1 and F3), releasing 68.36% and 70.56% drug respectively after 8 hours. Tragacanth-containing microspheres of F1 showed superiority over other formulations, with best mucoadhesive and rate retarding profile. The correlation value (r(2)) indicated that the drug release of all the formulations followed Higuchi's model. Overall, the results indicated that mucoadhesive microspheres containing natural gum can be promising in terms of prolonged delivery with good mucoadhesive action, targeting the absorption site to thrive oral drug delivery. PMID:23937160

  2. Preparation and characterization of hydroxyapatite/sodium alginate biocomposites for bone implant application

    NASA Astrophysics Data System (ADS)

    Kanasan, Nanthini; Adzila, Sharifah; Suid, Mohd Syafiq; Gurubaran, P.

    2016-07-01

    In biomedical fields, synthetic scaffolds are being improved by using the ceramics, polymers and composites materials to avoid the limitations of allograft. Ceramic-polymer composites are appearing to be the most successful bone graft substitute in human body. The natural bones itself are well-known as composite of collagen and hydroxyapatite. In this research, precipitation method was used to synthesis hydroxyapatite (HA)/sodium alginate (SA) in various parameters. This paper describes the hydroxyapatite/sodium alginate biocomposite which suitable for use in bone defects or regeneration of bone through the characterizations which include FTIR, FESEM, EDS and DTA. In FTIR, the characteristi peaks of PO4-3 and OH- groups which corresponding to hydroxyapatite are existed in the mixing powders. The needle-size particle of hydroxyapatite/ alginate (HA/SA) are observed in FESEM in the range of 15.8nm-38.2nm.EDS confirmed the existence of HA/SA composition in the mixing powders. There is an endothermic peak which corresponds to the dehydration and the loss of physically adsorbed water molecules of the hydroxyapatite (HA)/sodium alginate (SA) powder which are described in DTA.

  3. Preparation and Analysis of Co-precipitated, Biodegradable Poly-(Lactide-co-Glycolide) and Polyethylene Glycol Microspheres Prepared by Spray Drying

    NASA Astrophysics Data System (ADS)

    Javiya, Curie

    Biodegradable poly-(d,l-lactide-co-glycolide) (PLGA) based microspheres are commonly used for numerous clinical applications. PEG is a widely used polymer due to its hydrophilic, biocompatible, and nontoxic nature. In this study, different blends of PLGA/PEG microspheres were prepared using a spray drying technique. The microspheres were spherical with maximum yield found to be 60.3% and average particle size in the range of 2.4 to 3.1 microm. Under the spray drying processing conditions, the polymers showed full miscibility slightly below 15% w/w and partial miscibility up to 20% w/w of PEG in the blended microspheres. At higher temperatures, PLGA and PEG were miscible in all proportions used for the blended microspheres. Blending 10% w/w PEG in PLGA membranes showed significant reduction in attachment of macrophages compared to PLGA membranes. The in-vitro response of macrophage towards the miscible blends of PLGA/PEG microspheres was further characterized. Results showed some reduction in macrophage viability and activation, however, significant effects with PLGA/PEG microspheres were not observed.

  4. The antioxidant properties of oligo sodium alginates prepared by radiation-induced degradation in aqueous and hydrogen peroxide solutions

    NASA Astrophysics Data System (ADS)

    Şen, Murat; Atik, Hanife

    2012-07-01

    In this study, the radiation-induced degradation of sodium alginates (NaAlg), having different guluronic acids (G) and mannuronic acid (M) ratios, (G/M), in aqueous and hydrogen peroxide solutions were investigated first; after that, the antioxidative properties of the oligo sodium alginates prepared were identified. Radiation degradation yield values, G(S), were determined for each irradiation condition and compared with those of the dry-state-irradiated NaAlg. The results showed that the oligo sodium alginates with M from 1000 to 3750 Da could be easily prepared by γ-irradiation of NaAlg solution in the presence of small amount of hydrogen peroxide at low doses (below 5.0 kGy) and by controlling the G/M. The antioxidant properties of the fractions with various molecular weight and G/M were evaluated by determining the scavenging ability of 1,1-diphenyl-2-picrylhydrazyl free radical (DPPHrad ), and 50% inhibition concentrations of LF120 NaAlg, which was irradiated in aqueous solution and H2O2 solution at a dose of 2.5 kGy and having number average molecular weights of 10.2 and 3.75 kDa were found to be 10.0 and 2.5 mg/ml, respectively. The results demonstrated that its molecular weight was an important factor in controlling the antioxidant properties of NaAlg, and due to the sharp decrease in molecular weight in the case of aqueous media irradiation the effect of G/M of initial polymer became unimportant whereas the dry-state-irradiated NaAlgs behaved conversely.

  5. Preparation of Chitosan and Water-Soluble Chitosan Microspheres via Spray-Drying Method to Lower Blood Lipids in Rats Fed with High-Fat Diets

    PubMed Central

    Tao, Yi; Zhang, Hong-Liang; Hu, Yin-Ming; Wan, Shuo; Su, Zheng-Quan

    2013-01-01

    This experiment aimed to investigate the effects of the chitosan (CTS) and water-soluble chitosan (WSC) microspheres on plasma lipids in male Sprague-Dawley rats fed with high-fat diets. CTS microspheres and WSC microspheres were prepared by the spray-drying technique. Scanning electron microscopy (SEM) micrographs showed that the microspheres were nearly spherical in shape. The mean size of CTS microspheres was 4.07 μm (varying from 1.50 to 7.21 μm) and of WSC microspheres was 2.00 μm (varying from 0.85 to 3.58 μm). The rats were classified into eight groups (n = 8) and were fed with high-fat diets for two weeks to establish the hyperlipidemic condition and were then treated with CTS microspheres and WSC microspheres, CTS and WSC for four weeks. The results showed that CTS and WSC microspheres reduced blood lipids and plasma viscosity and increased the serum superoxide dismutase (SOD) levels significantly. This study is the first report of the lipid-lowering effects of CTS and WSC microspheres. CTS and WSC microspheres were found to be more effective in improving hyperlipidemia in rats than common CTS and WSC. PMID:23429200

  6. Preparation of Chitosan and Water-Soluble Chitosan Microspheres via Spray-Drying Method to Lower Blood Lipids in Rats Fed with High-Fat Diets.

    PubMed

    Tao, Yi; Zhang, Hong-Liang; Hu, Yin-Ming; Wan, Shuo; Su, Zheng-Quan

    2013-01-01

    This experiment aimed to investigate the effects of the chitosan (CTS) and water-soluble chitosan (WSC) microspheres on plasma lipids in male Sprague-Dawley rats fed with high-fat diets. CTS microspheres and WSC microspheres were prepared by the spray-drying technique. Scanning electron microscopy (SEM) micrographs showed that the microspheres were nearly spherical in shape. The mean size of CTS microspheres was 4.07 μm (varying from 1.50 to 7.21 μm) and of WSC microspheres was 2.00 μm (varying from 0.85 to 3.58 μm). The rats were classified into eight groups (n = 8) and were fed with high-fat diets for two weeks to establish the hyperlipidemic condition and were then treated with CTS microspheres and WSC microspheres, CTS and WSC for four weeks. The results showed that CTS and WSC microspheres reduced blood lipids and plasma viscosity and increased the serum superoxide dismutase (SOD) levels significantly. This study is the first report of the lipid-lowering effects of CTS and WSC microspheres. CTS and WSC microspheres were found to be more effective in improving hyperlipidemia in rats than common CTS and WSC. PMID:23429200

  7. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1986-01-01

    Microspheres of acrolein homopolymers and copolymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  8. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1983-01-01

    Microspheres of acrolein homopolymers and co-polymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  9. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1987-01-01

    Microspheres of acrolein homopolymers and copolymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  10. Formulation, characterization and in vitro evaluation of theophylline-loaded Eudragit RS 100 microspheres prepared by an emulsion-solvent diffusion/evaporation technique.

    PubMed

    Jelvehgari, Mitra; Barar, Jaleh; Valizadeh, Hadi; Shadrou, Sanam; Nokhodchi, Ali

    2011-01-01

    The aim was to prepare theophylline-loaded Eudragit RS 100 microsphere to achieve sustained release pattern with relatively high production yield. To this end, microspheres were prepared by oil/oil solvent evaporation method using an acetone-methanol mixture and liquid paraffin system containing aluminum tristearate. Drug release profiles were determined at pH 1.2 and 7.4. Morphology and solid state of microspheres were examined using SEM, DSC, X-ray powder diffraction (XRPD), and FT-IR. As the ratio of acetone/methanol increased during the preparation of microspheres the size of microsphere was reduced. The highest drug loading efficiency (87.21%) was obtained for the microsphere containing a high ratio of polymer to drug (6:1) and high volume of acetone. SEM studies showed that the microspheres are almost spherical with a few pores and cracks at surfaces. The FT-IR, XRPD and DSC results ruled out any chemical interaction between theophylline and Eudragit. The microspheres prepared with low ratio of polymer to drug (1:2) showed faster dissolution rate than those with high polymer to drug ratio. The ratio of polymer to drug and the volume of polymer solvent were found to be the key factors affecting the release profile which could lead to microspheres with desired release behavior. PMID:20722498

  11. Preparation of AgCl-polyacrylamide composite microspheres via combination of a polymer microgel template method and a reverse micelle technique.

    PubMed

    Zhang, Ying; Fang, Yu; Xia, Huiyun; Xie, Yuxia; Wang, Ruifang; Li, Xuejun

    2006-08-01

    A new route was created for the preparation of AgCl-polyacrylamide (AgCl-PAM) composite microspheres with patterned surface structures. The route is a combination of a polymer microgel template method and a reverse micelle technique. The size of the AgCl nanoparticles existing on the surfaces of the composite microspheres and the clearness of the surface patterns of the composite microspheres can be altered by simply adjusting the amount of precipitated AgCl and the rate of the deposition reaction. The route can be also used for the preparation of other water-insoluble salt-polymer composite microspheres, such as BaSO(4)-PAM. It is expected that the composite microspheres with patterned surface structures may not only combine the advantages of polymers and those of inorganic compounds, but also combine the advantages of microspheres in the micrometer size range and those in the nanometer size range. PMID:16678839

  12. Preparation of lithium-rich layered oxide micro-spheres using a slurry spray-drying process

    NASA Astrophysics Data System (ADS)

    Hou, Mengyan; Guo, Shaoshuai; Liu, Jinlong; Yang, Jun; Wang, Yonggang; Wang, Congxiao; Xia, Yongyao

    2015-08-01

    0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2 microspheres are prepared by a slurry spray-drying process (SD-LLO) with subsequent heat treatment. SEM images show that the SD-LLO microspheres are composed of nano-size primary particles. These particles are quite different from conventional LLO microspheres, which are composed of micron-scale plate-like primary particles prepared by a co-precipitation method (CP-LLO). The SD-LLO material experiences a smaller voltage drop during cycling than CP-LLO when used as cathode material in lithium-ion batteries. High-resolution transmission electron microscopy (HR-TEM) and energy dispersive spectroscopy (EDS) indicate that the smaller voltage drop of SD-LLO can be attributed to a more homogeneous distribution of transition metals.

  13. Preparation and activity of bubbling-immobilized cellobiase within chitosan-alginate composite.

    PubMed

    Wang, Fang; Su, Rong-Xin; Qi, Wei; Zhang, Ming-Jia; He, Zhi-Min

    2010-01-01

    Cellobiase can hydrolyze cellobiose into glucose; it plays a key role in the process of cellulose hydrolysis by reducing the product inhibition. To reuse the enzyme and improve the economic value of cellulosic ethanol, cellobiase was immobilized using sodium alginate and chitosan as carriers by the bubbling method. The immobilization conditions were optimized as follows: enzyme loading of 100 U cellobiase/g carrier, 30 min immobilization, 3.5 wt% sodium alginate, 0.25 wt% chitosan, and 2 wt% calcium chloride. Compared to free enzyme, the immobilized cellobiase had a decreased apparent K(m) and the maximum activity at a lower pH, indicating its higher acidic and thermal stability. The immobilized cellobiase was further tested in the hydrolysis of cellobiose and various cellulosic substrates (microcrystalline cellulose, filter paper, and ammonia-pretreated corn cobs). Together with cellulases, the immobilized cellobiase converted the cellulosic substrates into glucose with the rate and extent similar to the free enzyme. PMID:20024795

  14. Comparison of selected physico-chemical properties of calcium alginate films prepared by two different methods.

    PubMed

    Crossingham, Yazmin J; Kerr, Philip G; Kennedy, Ross A

    2014-10-01

    Sodium alginate (SA) is a naturally occurring, non-toxic, polysaccharide that is able to form gels after exposure to calcium. These gels have been used in food and biomedical industries. This is the first direct comparison of two different methods of calcium alginate film production, namely interfacial gelation (IFG) and dry cast gelation (DCG). IFG films were significantly thicker than DCG films, and were more extensively rehydrated in water and 0.1M HCl than the DCG films. During rehydration in 0.1M HCl almost all calcium ions were lost. Under scanning electron microscopy, IFG films appeared less dense than DCG films. IFG films were mechanically weaker than DCG films, and both types of film were weaker after rehydration in 0.1M HCl compared with deionized water. Permeation of theophylline (TPL) was evaluated in-vitro; the diffusion coefficient (D) of the TPL was almost 90 times lower in DCG films than IFG films when both were rehydrated in water. Although the 0.1M HCl rendered both gels more permeable to TPL, D of TPL was still about five times lower in DCG compared to IFG films. The evaluation of selected physico-chemical properties of films is important, since this information may inform the choice of gelation technique used to produce calcium alginate coatings on pharmaceutical products. PMID:24974988

  15. The simple preparation of birnessite-type manganese oxide with flower-like microsphere morphology and its remarkable capacity retention

    SciTech Connect

    Zhu, Gang; Deng, Lingjuan; Wang, Jianfang; Kang, Liping; Liu, Zong-Huai

    2012-11-15

    Graphical abstract: Flower-like birnessite-type manganese oxide microspheres with large specific surface area and excellent electrochemical properties have been prepared by a facile hydrothermal method. Highlights: ► Birnessite-type manganese oxide with flower-like microsphere morphology and large specific surface area. ► A facile low-temperature hydrothermal method. ► Novel flower-like microsphere consists of the thin nano-platelets. ► Birnessite-type manganese oxide exhibits an ideal capacitive behavior and excellent cycling stability. -- Abstract: Birnessite-type manganese oxide with flower-like microsphere morphology and large specific surface area has been prepared by hydrothermal treating a mixture solution of KMnO{sub 4} and (NH{sub 4}){sub 2}SO{sub 4} at 90 °C for 24 h. The obtained material is characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and N{sub 2} adsorption–desorption. Results indicate that the birnessite-type manganese oxide shows novel flower-like microsphere morphology and a specific surface area of 280 m{sup 2} g{sup −1}, and the flower-like microsphere consists of the thin nano-platelets. Electrochemical characterization indicates that the prepared material exhibits an ideal capacitive behavior with a capacitance value of 278 F g{sup −1} in 1 mol L{sup −1} Na{sub 2}SO{sub 4} aqueous solution at a scan rate of 5 mV s{sup −1}. Moreover, the prepared manganese oxide electrode shows excellent cycle stability, and the specific capacitance can maintain 98.6% of the initial one after 5000 cycles.

  16. Preparation and characterization of NaClO4 doped poly(vinyl alcohol)/sodium alginate composite electrolyte

    NASA Astrophysics Data System (ADS)

    Sheela, T.; Bhajantri, R. F.; Ravindrachary, V.; Pujari, P. K.; Rathod, Sunil G.

    2013-02-01

    The 60:40 wt% poly(vinyl alcohol) (PVA)/sodium alginate blend doped with different concentrations of NaClO4 composite films were prepared by solution casting method. The prepared samples were characterized by FTIR, UV-Vis, DC and AC conductivity. The FTIR spectra confirms the complexation of NaClO4 with host polymer blend. From the UV-Vis spectra, the calculated optical band gap decreases from 5.2eV to 4.6eV. The frequency dependent dielectric constant decreases, and hence the dielectric loss and ac conductivity increases with doping level. The mechanical study shows the Young's modulus, tensile strength, stiffness were increases with the NaClO4 concentrations.

  17. Pitch carbon microsphere composite

    NASA Technical Reports Server (NTRS)

    Price, H. L.; Nelson, J. B.

    1977-01-01

    Petroleum pitch carbon microspheres were prepared by flash heating emulsified pitch and carbonizing the resulting microspheres in an inert atmosphere. Microsphere composites were obtained from a mixture of microspheres and tetraester precursor pyrrone powder. Scanning electron micrographs of the composite showed that it was an aggregate of microspheres bonded together by the pyrrone at the sphere contact points, with voids in and among the microspheres. Physical, thermal, and sorption properties of the composite are described. Composite applications could include use as a honeycomb filler in elevated-temperature load-bearing sandwich boards or in patient-treatment tables for radiation treatment of tumors.

  18. Preparation and evaluation of hydrogel-composites from methacrylated hyaluronic acid, alginate, and gelatin for tissue engineering.

    PubMed

    Möller, Lena; Krause, Andreas; Dahlmann, Julia; Gruh, Ina; Kirschning, Andreas; Dräger, Gerald

    2011-02-01

    Hydrogels are three-dimensional water-insoluble hydrophilic natural or synthetic polymer networks made up of crosslinked water-soluble polymers. The purpose of this study was to develop and directly compare photo crosslinked hydrogels on the basis of pure gelatin, alginate and hyaluronic acid as well as their blends. The functionalization of starting materials with methacrylate moieties was evaluated by 1H-NMR spectroscopy. Hydrogels were prepared from methacrylates by photo cross-linking using UV light. The effect of changing the hydrogel composition was quantified through examination of hydrogel swelling behavior and rheological properties. In addition, the viability and adhesion of neonatal rat cardiomyocytes (NRCM) seeded onto the hydrogels was examined by in vivo imaging of NRCM-mediated scaffold contraction as well as by histological evaluation after immunostaining. Biological testing showed good biocompatibility and cell survival in the presence of all materials discussed. Adhesion of cells could only be observed in the presence of gelatin. Blends of gelatin, alginate and hyaluronic acid are promising candidates for the generation of non-toxic, biocompatible hydrogel scaffolds for tissue engineering. Variation of individual compound ratios in the blends can be used for a precise control of mechanical properties and may allow wide-ranging uses in various tissue engineering applications with different mechanical requirements. PMID:21374568

  19. Prediction of dexamethasone release from PLGA microspheres prepared with polymer blends using a design of experiment approach.

    PubMed

    Gu, Bing; Burgess, Diane J

    2015-11-10

    Hydrophobic drug release from poly (lactic-co-glycolic acid) (PLGA) microspheres typically exhibits a tri-phasic profile with a burst release phase followed by a lag phase and a secondary release phase. High burst release can be associated with adverse effects and the efficacy of the formulation cannot be ensured during a long lag phase. Accordingly, the development of a long-acting microsphere product requires optimization of all drug release phases. The purpose of the current study was to investigate whether a blend of low and high molecular weight polymers can be used to reduce the burst release and eliminate/minimize the lag phase. A single emulsion solvent evaporation method was used to prepare microspheres using blends of two PLGA polymers (PLGA5050 (25 kDa) and PLGA9010 (113 kDa)). A central composite design approach was applied to investigate the effect of formulation composition on dexamethasone release from these microspheres. Mathematical models obtained from this design of experiments study were utilized to generate a design space with maximized microsphere drug loading and reduced burst release. Specifically, a drug loading close to 15% can be achieved and a burst release less than 10% when a composition of 80% PLGA9010 and 90 mg of dexamethasone is used. In order to better describe the lag phase, a heat map was generated based on dexamethasone release from the PLGA microsphere/PVA hydrogel composite coatings. Using the heat map an optimized formulation with minimum lag phase was selected. The microspheres were also characterized for particle size/size distribution, thermal properties and morphology. The particle size was demonstrated to be related to the polymer concentration and the ratio of the two polymers but not to the dexamethasone concentration. PMID:26325309

  20. The Preparation of Capsaicin-Chitosan Microspheres (CCMS) Enteric Coated Tablets

    PubMed Central

    Chen, Jian; Huang, Gui-Dong; Tan, Si-Rong; Guo, Jiao; Su, Zheng-Quan

    2013-01-01

    This study aimed to research the preparation and content determination of capsaicin-chitosan microspheres (CCMS) enteric coated tablets. The core tablets were prepared with the method of wet granulation. Nine formulae were designed to determine the optimal formula of the core tablet. Eudragit L100 was used to prepare the CCMS enteric-coated tablets. The effect of enteric coated formulation variables such as content of talc (10%, 25% and 40%), plasticisers (TEC and DBS), dosage of plasticiser (10%, 20% and 30%) and coating weight (2%, 3% and 5%) were evaluated for drug release characteristics. The in vitro release was studied using 0.1 N HCl and pH 6.8 phosphate buffer. Enteric coated tablets without ruptures or swelling behaviour over 2 h in 0.1 N HCl indicated that these tablets showed acid resistance. The accumulated release rate in phosphate buffer (pH 6.8) revealed that the prepared tablets were able to sustain drug release into the intestine and a first-order release was obtained for capsaicin. This research is the first report of the preparation and content determination of CCMS enteric coated tablets. The sustained release behavior of enteric coated formulations in pH 6.8 phosphate buffer demonstrated that it would be a potential drug delivery platform for sustained delivery of gastric irritant drugs. PMID:24351818

  1. The preparation of capsaicin-chitosan microspheres (CCMS) enteric coated tablets.

    PubMed

    Chen, Jian; Huang, Gui-Dong; Tan, Si-Rong; Guo, Jiao; Su, Zheng-Quan

    2013-01-01

    This study aimed to research the preparation and content determination of capsaicin-chitosan microspheres (CCMS) enteric coated tablets. The core tablets were prepared with the method of wet granulation. Nine formulae were designed to determine the optimal formula of the core tablet. Eudragit L100 was used to prepare the CCMS enteric-coated tablets. The effect of enteric coated formulation variables such as content of talc (10%, 25% and 40%), plasticisers (TEC and DBS), dosage of plasticiser (10%, 20% and 30%) and coating weight (2%, 3% and 5%) were evaluated for drug release characteristics. The in vitro release was studied using 0.1 N HCl and pH 6.8 phosphate buffer. Enteric coated tablets without ruptures or swelling behaviour over 2 h in 0.1 N HCl indicated that these tablets showed acid resistance. The accumulated release rate in phosphate buffer (pH 6.8) revealed that the prepared tablets were able to sustain drug release into the intestine and a first-order release was obtained for capsaicin. This research is the first report of the preparation and content determination of CCMS enteric coated tablets. The sustained release behavior of enteric coated formulations in pH 6.8 phosphate buffer demonstrated that it would be a potential drug delivery platform for sustained delivery of gastric irritant drugs. PMID:24351818

  2. Biomass Vanillin-Derived Polymeric Microspheres Containing Functional Aldehyde Groups: Preparation, Characterization, and Application as Adsorbent.

    PubMed

    Zhang, Huanyu; Yong, Xueyong; Zhou, Jinyong; Deng, Jianping; Wu, Youping

    2016-02-01

    The contribution reports the first polymeric microspheres derived from a biomass, vanillin. It reacted with methacryloyl chloride, providing monomer vanillin methacrylate (VMA), which underwent suspension polymerization in aqueous media and yielded microspheres in high yield (>90 wt %). By controlling the N2 bubbling mode and by optimizing the cosolvent for dissolving the solid monomer, the microspheres were endowed with surface pores, demonstrated by SEM images and mercury intrusion porosimetry measurement. Taking advantage of the reactive aldehyde groups, the microspheres further reacted with glycine, thereby leading to a novel type of Schiff-base chelating material. The functionalized microspheres demonstrated remarkable adsorption toward Cu(2+) (maximum, 135 mg/g) which was taken as representative for metal ions. The present study provides an unprecedented class of biobased polymeric microspheres showing large potentials as adsorbents in wastewater treatment. Also importantly, the reactive aldehyde groups may enable the microspheres to be used as novel materials for immobilizing biomacromolecules, e.g. enzymes. PMID:26752344

  3. PREPARATION OF FLOWER-LIKE Co3O4/Fe3O4 MAGNETIC MICROSPHERES FOR PHOTODEGRADATION OF RhB UNDER UV LIGHT

    NASA Astrophysics Data System (ADS)

    Zhang, Baoliang; Zhang, Hepeng; Zhou, Lunwei; Ali, Nisar; Geng, Wangchang; Zhang, Qiuyu

    2013-12-01

    Flower-like Co3O4/Fe3O4 magnetic microspheres were prepared by coprecipitation of Fe2+ and Fe3+ in presence of flower-like Co3O4 microspheres as template. The preparation process included three steps: preparation of flower-like Co3O4 microspheres by hydrothermal method; immersion of Fe2+ and Fe3+ ions; coprecipitation in the presence of OH-. Rhodamine B (RhB) was chosen as model pollutants to investigate the photodegradation capacities of Co3O4/Fe3O4 magnetic microspheres. The results showed that the microspheres exhibited excellent degradation property and can be recycled to use again. After four times use the degradation efficiency was still above 90%.

  4. Sustained release of isoniazid from polylactide microspheres prepared using solid/oil drug loading method for tuberculosis treatment.

    PubMed

    Zhang, Limei; Li, Ying; Zhang, Yun; Zhu, Chunyan

    2016-07-01

    Polylactide (PLA) microspheres were prepared using the solid-in-oil (S/O) spray-drying method to achieve the sustained release of a hydrophilic drug for the treatment of tuberculosis, via intratracheal instillation. Isoniazid (IN), a low-molecular-weight hydrophilic drug, was used as a model drug. The effects of various sizes of micronized IN powder, different drug/polymer ratios, spray-drying process parameters, and drug-release characteristics were studied to optimize the manufacturing parameters. A high entrapment efficiency (87.3%) was obtained using this method; furthermore, the microspheres were spherical and smooth. They were individually and homogenously distributed, with a mean diameter of 5.6 μm; furthermore, they showed a satisfactory extended sustained-release phase. After administration of the microspheres to rats, pulmonary drug concentrations were maintained at a relatively stable level for up to 4 weeks. PMID:27278371

  5. Multi-hollow polymer microspheres with enclosed surfaces and compartmentalized voids prepared by seeded swelling polymerization method.

    PubMed

    Tian, Qiong; Yu, Demei; Zhu, Kaiming; Hu, Guohe; Zhang, Lifeng; Liu, Yuhang

    2016-07-01

    Multi-hollow particles have drawn extensive research interest due to their high specific areas and abundant inner voids, whereas their convenient synthesis still remains challenging. In this paper, we report a simple and convenient method based on seeded swelling polymerization to prepare the multi-hollow microspheres with enclosed surfaces and compartmentalized voids using monodisperse poly (styrene-co-sodium 4-vinylbenzenesulfonate) microspheres as seed particles. A formation mechanism of the multi-hollow structure was proposed involving the processes of water absorption, coalescence and stabilization of water domains, immobilization of multi-hollow structure, and coverage of surface dimples. The influencing parameters on the morphology of the microspheres, including weight ratio of sodium 4-vinylbenzenesulfonate to styrene in the seed particles, dosage of the swelling monomer and the crosslinking agent were systematically investigated. The internal structure of the resultant microspheres could be tuned from solid to multi-hollow by controlling over these parameters. Multi-hollow microspheres with compartmentalized chambers, smooth surfaces and narrow size distributions were obtained as a result. PMID:27046772

  6. (90)Y microspheres prepared by sol-gel method, promising medical material for radioembolization of liver malignancies.

    PubMed

    Łada, Wiesława; Iller, Edward; Wawszczak, Danuta; Konior, Marcin; Dziel, Tomasz

    2016-10-01

    A new technology for the production of radiopharmaceutical (90)Y microspheres in the form of spherical yttrium oxide grains obtained by sol-gel method has been described. The authors present and discuss the results of investigations performed in the development of new production technology of yttrium microspheres and determination of their physic-chemical properties. The final product has the structure of spherical yttrium oxide grains with a diameter 25-100μm, is stable and free from contaminants. Irradiation of 20mg samples of grains with diameter of 20-50μm in the thermal neutron flux of 1.7×10(14)cm(-2)s(-1) at the core of MARIA research nuclear reactor allowed to obtain microspheres labelled with the (90)Y isotope on the way of the nuclear reaction (89)Y(n, ɤ)(90)Y. Specific activity of irradiated microspheres has been determined by application of absolute triple to double coincidence ratio method (TDCR) and has been evaluated at 190MBq/mg Y. (90)Y microspheres prepared by the proposed technique can be regarded as a promising medical material for radioembolization of liver malignancies. PMID:27287162

  7. Preparation and cytotoxicity of N,N,N-trimethyl chitosan/alginate beads containing gold nanoparticles.

    PubMed

    Martins, Alessandro F; Facchi, Suelen P; Monteiro, Johny P; Nocchi, Samara R; Silva, Cleiser T P; Nakamura, Celso V; Girotto, Emerson M; Rubira, Adley F; Muniz, Edvani C

    2015-01-01

    Polyelectrolyte complex beads based on N,N,N-trimethyl chitosan (TMC) and sodium alginate (ALG) were obtained. This biomaterial was characterised by FTIR, TGA/DTG, DSC and SEM analysis. The good properties of polyelectrolyte complex hydrogel beads were associated, for the first time, with gold nanoparticles (AuNPs). Through a straightforward methodology, AuNPs were encapsulated into the beads. The in vitro cytotoxicity assays on the Caco-2 colon cancer cells and healthy VERO cells showed that the beads presented good biocompatibility on both cell lines, whereas the beads loaded with gold nanoparticles (beads/AuNPs) was slightly cytotoxic on the Caco-2 and VERO cells. PMID:25159881

  8. Determination of Ideal Broth Formulations Needed to Prepare Hydrous Cerium Oxide Microspheres via the Internal Gelation Process

    SciTech Connect

    Collins, Jack Lee; Chi, Anthony

    2009-02-01

    A simple test tube methodology was used to determine optimum process parameters for preparing hydrous cerium oxide microspheres via the internal gelation process.1 Broth formulations of cerium ammonium nitrate [(NH4)2Ce(NO3)6], hexamethylenetetramine, and urea were found that can be used to prepare hydrous cerium oxide gel spheres in the temperature range of 60 to 90 C. A few gel-forming runs were made in which microspheres were prepared with some of these formulations to be able to equate the test-tube gelation times to actual gelation times. These preparations confirmed that the test-tube methodology is reliable for determining the ideal broth formulations.

  9. Facile approach to prepare hollow core–shell NiO microspherers for supercapacitor electrodes

    SciTech Connect

    Han, Dandan; Xu, Pengcheng; Jing, Xiaoyan; Wang, Jun; Song, Dalei; Liu, Jingyuan; Zhang, Milin

    2013-07-15

    A facile lamellar template method (see image) has been developed for the preparation of uniform hollow core–shell structure NiO (HCS–NiO) with a nanoarchitectured wall structure. The prepared NiO was found to be highly crystalline in uniform microstructures with high specific surface area and pore volume. The results indicated that ethanol interacted with trisodium citrate played an important role for the formation of hollow core–shell spheres. On the basis of the analysis of the composition and the morphology, a possible formation mechanism was investigated. NiO microspheres with hollow core–shell showed excellent capacitive properties. The exceptional cyclic, structural and electrochemical stability with ∼95% coulombic efficiency, and very low ESR value from impedance measurements promised good utility value of hollow core–shell NiO material in fabricating a wide range of high-performance electrochemical supercapacitors. - The hollow core–shell NiO was prepared with a facile lamellar template method. The prepared NiO show higher capacitance, lower ion diffusion resistance and better electroactive surface utilization for Faradaic reactions. - Highlights: • Formation of hollow core–shell NiO via a novel and facile precipitation route. • Exhibited uniform feature sizes and high surface area of hollow core–shell NiO. • Synthesized NiO has high specific capacitance ( 448 F g{sup 1}) and very low ESR value. • Increased 20% of long life cycles capability after 500 charge–discharge cycles.

  10. [Molecularly imprinted polymeric microspheres prepared by seed swelling and suspension polymerization].

    PubMed

    Cheng, Guo-Xiang; Zhang, Li-Yong; Fu, Cong

    2002-03-01

    A series of molecularly imprinted polymeric microspheres(MIPMs) were prepared by seed swelling and suspension polymerization method in aqueous system using tyrosine as printing molecules, methacrylic acid as functional monomers and trimethylolpropane trimethacrylate (TRIM) as cross-linkers. The morphology including the size, size distribution, pore and pore distribution of the polymer beads was analyzed by scanning electron microscope(SEM). The major factors that influence these properties of the beads are discussed. The molecule selecting property of the MIPMs was detected through liquid chromatography. The results showed that uniform-sized spherical MIPMs had been prepared in aqueous system by seed swelling and suspension polymerization method, and its surface was distributed with pores between 1 micron to 10 microns. The average bead size was adjusted from about 50 microns to 400 microns by changing the stirring speed and the amount of seeds used during the preparation. The prepared MIPMs exhibited a considerable tendency to adsorb tyrosine, the printing molecules selectively, and the separation factor was up to 1.82 when phenylalanine was chosen as the competitive molecules. PMID:12541962

  11. Preparation and characterization of gatifloxacin-loaded alginate/poly (vinyl alcohol) electrospun nanofibers.

    PubMed

    Arthanari, Saravanakumar; Mani, Ganesh; Jang, Jun Ho; Choi, Je O; Cho, Yun Ho; Lee, Jung Ho; Cha, Seung Eun; Oh, Han Seok; Kwon, Deok Han; Jang, Hyun Tae

    2016-05-01

    The aim of this study was to develop novel biomedicated electrospun nanofibers for controlled release. Pre-formulation studies were carried out for nanofibers of sodium alginate (SA) (2 wt %)/polyvinyl alcohol (PVA) (10 wt %) composites (2/8, 3/7 and 4/6), by an electrospinning technique. The morphology and average diameter of the nanofibers were investigated by scanning electron microscopy (SEM). The optimum ratio (3/7) was used to load gatifloxacin hydrochloride (GH) (1wt %), found to form smooth fibers with uniform structures. The drug entrapment in the composite nanofibers was confirmed by SEM, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), and swelling behavior. The drug release behavior was investigated using phosphate-buffered saline (PBS) (pH 7.4) at 37°C for 24 h. The XRD and FTIR data demonstrate that there are good interactions between PVA and SA, possibly caused by hydrogen bonds. As much as 90% of the GH was released from the electrospun fibers within 6 h of incubation. Beyond this, the release was sustained for 24 h. The thickness of nanofibers greatly influenced the initial release and rate of drug release. Moreover, GH-loaded sodium alginate/PVA composite nanofibers exhibited a useful and convenient method for electrospinning in order to control the rate and period of drug release in wound-healing applications. PMID:25510448

  12. Photochemical preparation of CdS hollow microspheres at room temperature and their use in visible-light photocatalysis

    SciTech Connect

    Huang Yuying; Sun Fengqiang; Wu Tianxing; Wu Qingsong; Huang Zhong; Su Heng; Zhang Zihe

    2011-03-15

    CdS hollow microspheres have been successfully prepared by a photochemical preparation technology at room temperature, using polystyrene latex particles as templates, CdSO{sub 4} as cadmium source and Na{sub 2}S{sub 2}O{sub 3} as both sulphur source and photo-initiator. The process involved the deposition of CdS nanoparticles on the surface of polystyrene latex particles under the irradiation of an 8 W UV lamp and the subsequent removal of the latex particles by dispersing in dichloromethane. Photochemical reactions at the sphere/solution interface should be responsible for the formation of hollow spheres. The as-prepared products were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Such hollow spheres could be used in photocatalysis and showed high photocatalytic activities in photodegradation of methyl blue (MB) in the presence of H{sub 2}O{sub 2}. The method is green, simple, universal and can be extended to prepare other sulphide and oxide hollow spheres. -- Graphical abstract: Taking polystyrene spheres dispersed in a precursor solution as templates, CdS hollow microspheres composed of nanoparticles were successfully prepared via a new photochemical route at room temperature. Display Omitted Research highlights: {yields} Photochemical method was first employed to prepare hollow microspheres. {yields} CdS hollow spheres were first prepared at room temperature using latex spheres. {yields} The polystyrene spheres used as templates were not modified with special groups. {yields}The CdS hollow microspheres showed high visible-light photocatalytic activities.

  13. Preparation of monodisperse PEG hydrogel composite microspheres via microfluidic chip with rounded channels

    NASA Astrophysics Data System (ADS)

    Yu, Bing; Cong, Hailin; Liu, Xuesong; Ren, Yumin; Wang, Jilei; Zhang, Lixin; Tang, Jianguo; Ma, Yurong; Akasaka, Takeshi

    2013-09-01

    An effective microfluidic method to fabricate monodisperse polyethylene glycol (PEG) hydrogel composite microspheres with tunable dimensions and properties is reported in this paper. A T-junction microfluidic chip equipped with rounded channels and online photopolymerization system is applied for the microsphere microfabrication. The shape and size of the microspheres are well controlled by the rounded channels and PEG prepolymer/silicon oil flow rate ratios. The obtained PEG/aspirin composite microspheres exhibit a sustained release of aspirin for a wide time range; the obtained PEG/Fe3O4 nanocomposite microspheres exhibit excellent magnetic properties; and the obtained binary PEG/dye composite microspheres show the ability to synchronously load two functional components in the same peanut-shaped or Janus hydrogel particles.

  14. Preparation and properties of calcium sulfate bone cement incorporated with silk fibroin and Sema3A-loaded chitosan microspheres

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Pi, Bin; Wang, Jin-Ning; Zhu, Xue-Song; Yang, Hui-Lin

    2015-03-01

    To search for new bioactive materials which can be used as the substitute of bone repairing and drug carriers, Sema3A-loaded chitosan microspheres (SLCM) and silk fibroin (SF) were mixed with calcium sulfate cement (CSC). SEM, particle size analysis and swelling rate determination were performed to study properties of the microspheres. The drug loading, encapsulation efficiency and drug release rate were determined by ELISA. Microspheres with different SLCM weight contents (0.5%, 1% and 5%) were prepared to determine which one has the strongest mechanical properties and the appropriate setting time. It was revealed that CSC/SF/0.5SLCM has satisfactory mechanical properties, and its in vitro biocompatibility was assessed by MTS. Chitosan microspheres (5-18 μm) were globular, the surface was smooth, and the swelling rate is (77.02 ± 5.57)%. With this formula, the setting time was increased with the addition of SLCM in CSC/SF, and the cumulative drug release rate is 44.62% in 28 d. XRD results demonstrate that the main component is calcium sulfate. Also it was found that CSC/SF/0.5SLCM supports the growth of MC3T3 cells. Thus the preparation of CSC/SF/0.5SLCM was reliable, and the products had good structures, physical properties and biocompatibility, appearing to be a promising bone substitute material.

  15. Polysaccharide-based aerogel microspheres for oral drug delivery.

    PubMed

    García-González, C A; Jin, M; Gerth, J; Alvarez-Lorenzo, C; Smirnova, I

    2015-03-01

    Polysaccharide-based aerogels in the form of microspheres were investigated as carriers of poorly water soluble drugs for oral administration. These bio-based carriers may combine the biocompatibility of polysaccharides and the enhanced drug loading capacity of dry aerogels. Aerogel microspheres from starch, pectin and alginate were loaded with ketoprofen (anti-inflammatory drug) and benzoic acid (used in the management of urea cycle disorders) via supercritical CO2-assisted adsorption. Amount of drug loaded depended on the aerogel matrix structure and composition and reached values up to 1.0×10(-3) and 1.7×10(-3) g/m(2) for ketoprofen and benzoic acid in starch microspheres. After impregnation, drugs were in the amorphous state in the aerogel microspheres. Release behavior was evaluated in different pH media (pH 1.2 and 6.8). Controlled drug release from pectin and alginate aerogel microspheres fitted Gallagher-Corrigan release model (R(2)>0.99 in both cases), with different relative contribution of erosion and diffusion mechanisms depending on the matrix composition. Release from starch aerogel microspheres was driven by dissolution, fitting the first-order kinetics due to the rigid starch aerogel structure, and showed different release rate constant (k1) depending on the drug (0.075 and 0.160 min(-1) for ketoprofen and benzoic acid, respectively). Overall, the results point out the possibilities of tuning drug loading and release by carefully choosing the polysaccharide used to prepare the aerogels. PMID:25498702

  16. Novel zinc alginate hydrogels prepared by internal setting method with intrinsic antibacterial activity.

    PubMed

    Straccia, Maria Cristina; d'Ayala, Giovanna Gomez; Romano, Ida; Laurienzo, Paola

    2015-07-10

    In this paper, a controlled gelation of alginate was performed for the first time using ZnCO3 and GDL. Uniform and transparent gels were obtained and investigated as potential wound dressings. Homogeneity, water content, swelling capability, water evaporation rate, stability in normal saline solution, mechanical properties and antibacterial activity were assessed as a function of zinc concentration. Gelation rate increased at increasing zinc content, while a decrease in water uptake and an improvement of stability were found. Release of zinc in physiological environments showed that concentration of zinc released in solution lies below the cytotoxicity level. Hydrogels showed antimicrobial activity against Escherichia coli. The hydrogel with highest zinc content was stabilized with calcium by immersion in a calcium chloride solution. The resulting hydrogel preserved homogeneity and antibacterial activity. Furthermore, it showed even an improvement of stability and mechanical properties, which makes it suitable as long-lasting wound dressing. PMID:25857965

  17. Preparation and effect of Ca 2+ on water solubility, particle release and swelling properties of magnetic alginate films

    NASA Astrophysics Data System (ADS)

    Roger, S.; Talbot, D.; Bee, A.

    2006-10-01

    Magnetic natural films composed of alginate and maghemite nanoparticles are studied. A surface treatment by citrate ions of the magnetic nanoparticles is first required to limit interactions with carboxylate functions of alginate and to stabilize them in neutral pH. Sodium alginate films, with or without nanoparticles, are immersed in a calcium chloride bath to convert them into mixed sodium/calcium alginate films. The ion exchange process is quantified by the degree of substitution (DS) deduced from sodium and calcium content obtained by atomic absorption spectroscopy. The magnetic nanoparticles content is also analysed to correlate the release of the particles to the amount of calcium present in the film. Nanoparticles do not significantly change the ion exchange process. Water insoluble films, which do not release magnetic nanoparticles, are obtained for a complete conversion of sodium alginate into calcium alginate (DS value is thus close to the stoechiometric ratio equal to 0.5). Such increase in water resistance of alginate films is caused by the formation of a dense network by crosslinking of the alginate polymer with Ca ions which prevents the alginate from going out of the film. Swelling properties of the mixed films are then investigated as a function of calcium concentration and nanoparticles content. It is found that the swelling ability in water of the films decreases by increasing the immersion time in CaCl 2 bath, the swelling ratio is thus a measure of the extent of crosslinking

  18. Preparation and in vitro release performance of sustained-release captopril/Chitosan-gelatin net-polymer microspheres

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Xu, Junming; Song, Yimin; Gao, Yuanyuan; Chen, Xiguang

    2007-07-01

    The captopril/Chitosan-gelatin net-polymer microspheres (CTP/CGNPMs) were prepared using Chitosan (CTS) and gelatin (GT) by the methods of emulsification, cross-linked reagent alone or in combination and microcrystalline cellulose (MCC) added in the process of preparation of microspheres, which aimed to eliminate dose dumping and burst phenomenon of microspheres for the improvement of the therapeutic efficiency and the decrease of the side effects of captopril (CTP). The results indicated that CTP/CGNPMs had a spherical shape, smooth surface and integral structure inside but no adhesive phenomena in the preparation. The size distribution ranged from 220 μm to 280 μm. The CTP release test in vitro demonstrated that CTP/CGNPMs played the role of retarding the release of CTP compared with ordinary CTP tablets. The release behaviors of CGNPMS were influenced by preparation conditions such as experimental material ratio (EMR) and composition of cross linking reagents. Among these factors, the EMR (1/4), CLR (FA+SPP) and 0.75% microcrystalline cellulose (MCC) added to the microspheres constituted the optimal scheme for the preparation of CTP/CGNPMs. The ER, DL and SR of CTP/CGNPMs prepared according to the optimal scheme were 46.23±4.51%, 9.95±0.77% and 261±42%, respectively. The CTP/CGNPMs had the good characteristics of sustained release of drug and the process of emulsification and cross-linking were simple and stable. The CGNPMs are likely to be an ideal sustained release formulation for water-soluble drugs.

  19. Preparation and characterization of poly(lactic-co-glycolic acid) microspheres loaded with a labile antiparkinson prodrug.

    PubMed

    D'Aurizio, E; van Nostrum, C F; van Steenbergen, M J; Sozio, P; Siepmann, F; Siepmann, J; Hennink, W E; Di Stefano, A

    2011-05-16

    L-dopa-α-lipoic acid (LD-LA) is a new multifunctional prodrug for the treatment of Parkinson's disease. In human plasma, LD-LA catechol esters and amide bonds are chemically and enzymatically cleaved, respectively, resulting in a half-life time of about fifty minutes. In the present work, the unstable LD-LA was entrapped into biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres designed as depot systems to protect this prodrug against degradation and to obtain a sustained release of the intact compound. The microspheres were prepared by an oil-in-water emulsion/solvent evaporation technique and the effect of formulation and processing parameters (polymer concentration in the organic solvent, volumes ratio of the phases, rate of the organic solvent evaporation) on microspheres characteristics (size, loading, morphology, release) was investigated. Also emphasis was given on the stability of the drug before and after release as well as on the underlying mass transport mechanisms controlling LD-LA release. Interestingly, when encapsulated in appropriate conditions into PLGA microspheres, the labile prodrug was stabilized and released via Fickian diffusion up to more than one week. PMID:21356295

  20. [Preparation of nicosulfuron molecularly imprinted microspheres and research of adsorption characteristics].

    PubMed

    Xia, Ying; Zhang, Lan; Zhao, Ercheng; Jia, Chunhong; Zhu, Xiaodan

    2014-02-01

    Molecularly imprinted microspheres (MIPMs) for binding and recognition of nicosulfuron (NS) (NS-MIPMs) were prepared by precipitation polymerization. Methacrylic acid (MAA) was used as the functional monomer, trimethylolpropane trimethacrylate (TRIM) as the linking agent, 2,2-azobisisobutyronitrile (AIBN) as the initiator and chloroform as the porogenic solvent. The preparation conditions were optimized, and MIPMs exhibited the best adsorption capacity when the molar ratio of NS/MAA/TRIM/AIBN was 1:4:4:1 and the volume of the porogenic solvent was 90 mL. An ultraviolet-visible (UV-Vis) spectrophotometer was employed to study the mechanism of the interaction between NS and MAA, and the results showed that the NS-MAA complexes of 1:1 molar ratio were obtained in the pre-polymerization phase. The rebinding capacity of MIPMs was evaluated according to adsorption kinetics and adsorption isotherm of the imprinted microspheres. The Scatchard plot revealed that the template polymer system has a two-site binding behavior and the MIPMs exhibited the maximum rebinding to NS at 11,370.5 microg/g. The MIPMs were then used as adsorbents in a solid phase extraction (SPE) column and the optimum loading, washing and eluting conditions for the MIPMs were established. Additionally, a rapid method for the determination of NS residues in soil was developed using an NS-MIPMs SPE column. The analyte was extracted using acetonitrile and phosphate buffer, cleaned-up by an NS-MIPMs SPE column and analyzed by HPLC. The results showed that good linearity was observed in the range of 0.01-1 mg/L for NS, with a correlation coefficient of 0. 998 6. The recovery tests were performed at the spiked levels of 0.02-1 mg/kg, and the recoveries were in the range of 82.2%-86.3% with the relative standard deviations of 1.9%-4.3%. The advantages of the proposed method are that it is easy to operate, reliable and applicable to analyze the NS residues in soil samples. PMID:24822444

  1. Will the use of double barrier result in sustained release of vancomycin? Optimization of parameters for preparation of a new antibacterial alginate-based modern dressing.

    PubMed

    Kurczewska, Joanna; Sawicka, Paulina; Ratajczak, Magdalena; Gajęcka, Marzena; Schroeder, Grzegorz

    2015-12-30

    The aim of this research was to prepare and characterize an alginate-based wound dressing containing vancomycin immobilized at the silica surface. The silica samples functionalized with amine, diol and carboxylic acid groups were loaded with 7.8, 5.7 and 7.1wt.% of the antibiotic respectively. The immobilized drug was encapsulated in alginate or gelatin/alginate gels and the average concentration of vancomycin was about 10mg per g of the dried gel. The effect of functional organic groups at the silica surface on the release rate of the drug was investigated. Only the drug immobilized at Si-amine in alginate matrix was found to demonstrate slower release from the proposed wound dressing. The in vitro release profiles for other silica carriers did not show significant differences in relation to the free loaded drug. The presence of gelatin had a favourable impact on the slowing down of the drug release from the dressing with a double barrier. All the gels studied with vancomycin immobilized at the silica surface demonstrated antimicrobial activity against various bacteria. A reduction of the drug dose to a half had no effect on changing microbiological activity of gels. PMID:26541298

  2. Preparation and characterization of hollow glass microspheres coated by CoFe{sub 2}O{sub 4} nanoparticles using urea as precipitator via coprecipitation method

    SciTech Connect

    Pang Xiaofen; Fu Wuyou; Yang Haibin Zhu Hongyang; Xu Jing; Li Xiang; Zou Guangtian

    2009-02-04

    The composite of hollow glass microspheres coated by CoFe{sub 2}O{sub 4} nanoparticles has been successfully prepared using urea as precipitator via coprecipitation method. The resultant composites were characterized by X-ray diffraction, field emission scanning electron microscope and vibrating sample magnetometer. The results showed that the slow decomposition of urea could be beneficial to form uniform and entire cobalt ferrite coating layer on the surface of hollow glass microspheres. The smoothest morphology was obtained for the sample prepared from 0.7 M urea, while the sample prepared from 1.0 M urea had the thickest shell. This indicated that there was a competition between the morphology and thickness of the coated microspheres. A possible formation mechanism of hollow glass microspheres coated with cobalt ferrite was proposed. The magnetic properties of the samples were also investigated.

  3. A novel strategy for preparing mechanically robust ionically cross-linked alginate hydrogels.

    PubMed

    Jejurikar, Aparna; Lawrie, Gwen; Martin, Darren; Grøndahl, Lisbeth

    2011-04-01

    The properties of alginate films modified using two cross-linker ions (Ca(2+) and Ba(2+)), comparing two separate cross-linking techniques (the traditional immersion (IM) method and a new strategy in a pressure-assisted diffusion (PD) method), are evaluated. This was achieved through measuring metal ion content, water uptake and film stability in an ionic solution ([Ca(2+)] = 2 mM). Characterization of the internal structure and mechanical properties of hydrated films were established by cryogenic scanning electron microscopy and tensile testing, respectively. It was found that gels formed by the PD technique possessed greater stability and did not exhibit any delamination after 21 day immersion as compared to gels formed by the IM technique. The Ba(2+) cross-linked gels possessed significantly higher cross-linking density as reflected in lower water content, a more dense internal structure and higher Young's modulus compared to Ca(2+) cross-linked gels. For the Ca(2+) cross-linked gels, a large improvement in the mechanical properties was observed in gels produced by the PD technique and this was attributed to thicker pore walls observed within the hydrogel structure. In contrast, for the Ba(2+) cross-linked gels, the PD technique resulted in gels that had lower tensile strength and strain energy density and this was attributed to phase separation and larger macropores in this gel. PMID:21436510

  4. Preparation of Ag-coated hollow microspheres via electroless plating for application in lightweight microwave absorbers

    NASA Astrophysics Data System (ADS)

    Kim, Wook-Joong; Kim, Sung-Soo

    2015-02-01

    Highly conductive Ag film is coated on hollow silica microspheres via electroless plating for application in lightweight microwave absorbers. The Ag plating is conducted using a two-step process of sensitizing and subsequent plating. The complex permeability and permittivity are determined using the reflection/transmission technique in the composite specimens of Ag-coated microspheres and silicone rubber matrix. Due to the large surface area of the microspheres, a relatively high concentration of AgNO3 is required in order to achieve a uniform Ag coating. In addition, a low concentration of fructose reducing agent is recommended for slow plating. The apparent electrical resistance of the Ag-coated microspheres is strongly dependent on the grain morphology. The thin and uniform Ag-coated particles are characterized by their low electrical resistance, which is as low as 0.1 Ω. The lower the electrical resistance of the microspheres, the higher the dielectric constant of the composite specimens, which results from the enhanced space-charge polarization between the conductive microspheres. The microwave absorbance is enhanced with decreases in the electrical resistance of microspheres due to the increased dielectric loss.

  5. Composite chitosan/alginate hydrogel for controlled release of deferoxamine: A system to potentially treat iron dysregulation diseases.

    PubMed

    Rassu, Giovanna; Salis, Andrea; Porcu, Elena Piera; Giunchedi, Paolo; Roldo, Marta; Gavini, Elisabetta

    2016-01-20

    Recently, the potential application of deferoxamine (DFO) in several iron dysregulation diseases has been highlighted. However, DFO presents significant limitations in clinical use due to its poor absorption in the gut and very short plasma half-life. To overcome these problems, the feasibility of chitosan/alginate hydrogels as prolonged delivery systems of DFO was investigated. Hydrogel alone or co-formulated with poly(D,L-lactide-co-glycolide) microspheres were prepared and studied in vitro. The influence of the preparation methods on the performance of composite hydrogels on controlled DFO release was explored. Spray-dried microspheres based on poly(D,L-lactide-co-glycolide) were able to encapsulate DFO, a highly water soluble drug. Nevertheless, only the composite hydrogels managed to provide sustained drug release. The inclusion of microspheres into pre-formed chitosan/alginate hydrogel provided the most efficient delivery system; the drug released from microspheres is strongly entrapped in the hydrogel network and slowly released by diffusion. PMID:26572479

  6. Evaluation of zidovudine encapsulated ethylcellulose microspheres prepared by water-in-oil-in-oil (w/o/o) double emulsion solvent diffusion technique.

    PubMed

    Das, Malay Kumar; Rao, Kalakuntala Rama

    2006-01-01

    The preparation of zidovudine-loaded ethylcellulose microspheres by w/o/o double emulsion solvent diffusion method with high entrapment capacity and sustained release is described. A mixed solvent system (MSS) consisting of acetonitrile and dichloromethane in a 1:1 ratio and light liquid paraffin was selected as primary and secondary oil phases, respectively. Span 80 was used as the secondary surfactant for stabilizing the external oil phase. Spherical free flowing microspheres were obtained. The prepared microspheres were characterized by entrapment efficiency, in vitro release behavior, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The drug-loaded microspheres showed 32 - 55% entrapment capacity. The in vitro release profile could be altered significantly by changing various processing and formulation parameters to give sustained release of drug from the microspheres. The DSC thermograms confirmed the absence of any drug-polymer interaction. SEM studies showed that the microspheres were spherical and porous in nature. The in vitro release profiles from microspheres of different polymer-drug ratios were best fitted to Higuchi model with high correlation coefficient and the n value obtained from Korsmeyer-Peppas model was ranged between 0.23 - 0.54. The drug release was found to be diffusion controlled mechanism. PMID:17514878

  7. Reactive carbon microspheres prepared by surface-grafting 4-(chloromethyl)phenyltrimethoxysilane for preparing molecularly imprinted polymer

    NASA Astrophysics Data System (ADS)

    Liu, Weifeng; Zhao, Huijun; Yang, Yongzhen; Liu, Xuguang; Xu, Bingshe

    2013-07-01

    Carbon microspheres (CMSs) were oxidized by a mixture of concentrated sulfuric and nitric acids, and modified by 4-(chloromethyl)phenyltrimethoxysilane to give reactive surface. Then, by adopting the surface molecular imprinting technique, dibenzothiophene (DBT) molecule-imprinted material MIP-DBT/CMSs was prepared with methacrylic acid as functional monomer and ethylene glycol dimethacrylate as crosslinking agent. The binding character of MIP-DBT/CMSs toward DBT was investigated with static method by gas chromatography, using fluorene and biphenyl as the reference substances which are similar to DBT in chemical structure to a certain extent. The effects of reaction time, temperature, and coupling agent concentration during silanization were investigated. The results show that the optimized conditions of silanization were 0.3 g oxidized-CMSs, 5% of CMTMS, 80 °C and 4 h. On the basis of silanized-CMSs, MIP-DBT/CMSs was synthesized. The adsorption results show that MIP-DBT/CMSs possessed strong adsorption ability for DBT. The maximal adsorption amount reached up 88.83 mg/g, in comparison with 44.51 mg/g of the non-imprinted polymer. In addition, MIP-DBT/CMSs exhibited a good selective adsorption capacity for DBT than fluorene (19.86 mg/g) and biphenyl (15.33 mg/g). The adsorption behavior followed the pseudo second order kinetic model. And the Freundlich isotherm was found to describe well the equilibrium adsorption data.

  8. Polymeric microspheres

    DOEpatents

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.

    2004-04-13

    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  9. Facile preparation of superparamagnetic surface-imprinted microspheres using amino acid as template for specific capture of thymopentin

    NASA Astrophysics Data System (ADS)

    Guo, Longxia; Hu, Xiaoling; Guan, Ping; Du, Chunbao; Wang, Dan; Song, Dongmen; Gao, Xumian; Song, Renyuan

    2015-12-01

    Novel superparamagnetic surface-imprinted microspheres (SIMs) with molecularly imprinted shell layer were controllably synthesized via fragment imprinting and surface imprinting technique. The SIMs-Arg and SIMs-Lys microspheres were prepared by using L-arginine (L-Arg) and L-lysine (L-Lys) as pseudo-template molecule for specific rebinding to thymopentin (TP5), respectively. The characterization results revealed that both SIMs-Arg and SIMs-Lys were successfully prepared and possessed a high magnetic sensitivity. The rebinding-isotherm analyses of SIMs-Arg and SIMs-Lys showed that the Langmuir isotherm model was well fitted to the equilibrium data, indicating that only one kind of rebinding site was present in SIMs-Arg and SIMs-Lys. Besides, the kinetic properties of SIMs-Arg and SIMs-Lys both were well described by the pseudo-second-order kinetics model, which indicated that a chemical process may be the rate-limiting step in the rebinding process. Moreover, the magnetic imprinted microspheres were found to have a higher specificity for TP5 than that for immunostimulating peptide human (IPH). What is more, SIMs-Arg and SIMs-Lys were successfully applied for TP5 determination in urine. According to the maximum adsorption capacity, the imprinting factor and real sample experiment, it was noted that SIMs-Arg had better specific adsorption property for TP5 than SIMs-Lys.

  10. [Impact of formulation and process parameters on the properties of chitosan-based microspheres prepared by external ionic gelation].

    PubMed

    Kubánková, Romana; Vysloužil, Jakub; Kejdušová, Martina; Vetchý, David; Dvořáčková, Kateřina

    2014-06-01

    The aim of this experimental study was to optimize a preparation of microspheres from high viscosity chitosan by external ion gelation and to evaluate selected aspects of their preparation. For drug-free microparticles, the concentration of chitosan dispersions was chosen as a formulation variable; the position of instrument for a dispersion extrusion (horizontal vs. vertical) was evaluated as a process variable. On the basis of sphericity and equivalent diameter results, three different concentrations of chitosan dispersions were used for 5-aminosalicylic acid (5-ASA) encapsulation with the extrusion instrument in horizontal position, which was considered as the optimal. In consequent drug-loaded microparticle preparation, the influence of the concentration of chitosan dispersions and composition of hardening solution (10% sodium tripolyphosphate (TPP) vs. 10% TPP containing drug) was evaluated. In prepared 5-ASA microspheres it was found that the equivalent diameter increased with increasing chitosan concentration. In the case of sphericity, significant differences were not found. Samples prepared with the drug in both chitosan dispersion and hardening solution had a higher drug content, a smaller equivalent diameter and they showed a faster in vitro drug release in comparison with the samples prepared with the drug in chitosan dispersion only. PMID:25115666

  11. One pot preparation of silver nanoparticles decorated TiO2 mesoporous microspheres with enhanced antibacterial activity.

    PubMed

    Chen, Yuemei; Deng, Yuanming; Pu, Yitao; Tang, Bijun; Su, Yikun; Tang, Jiaoning

    2016-08-01

    We report a simple "one-pot" solvothermal preparation of silver nanoparticles (Ag NPs) decorated mesoporous titania (TiO2) microspheres as an effective antibacterial agent. TBOT as Ti source was hydrolyzed and crystallized in media composed of acetic acid and ethanol, in which esterification catalyzed by TBOT occurred for in-situ "controlled water release". AgNO3 as Ag source was reduced by ethanol to form Ag NPs embedded in the TiO2 microspheres. The effect of AgNO3 and HAc on the morphology of Ag/TiO2 was investigated. The Ag/TiO2 with various Ag content showed excellent antibacterial activities with extremely low minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Escherichia coli and Staphylococcus aureus when compared with colloidal Ag NPs. PMID:27157724

  12. Recycling of chemicals from alkaline waste generated during preparation of UO 3 microspheres by sol-gel process

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Vittal Rao, T. V.; Mukerjee, S. K.; Vaidya, V. N.

    2006-05-01

    Internal gelation process, one of the sol-gel processes for nuclear fuel fabrication, offers many advantages over conventional powder pellet route. However, one of the limitation of the process is generation of large volume of alkaline liquid waste containing hexamethylenetetramine, urea, ammonium nitrate, ammonium hydroxide etc. Presence of ammonium nitrate with hexamethylenetetramine and urea presents a fire hazard which prevents direct disposal of the waste as well as its recycle by evaporation. The paper describes the studies carried out to suitably process the waste. Nitrate was removed from the waste by passing through Dowex 1 × 4 anion exchange resin in OH - form. 1.0 M NaOH was used to regenerate the resin. The nitrate-free waste was further treated to recover and recycle hexamethylenetetramine, urea and ammonium hydroxide for preparation of UO 3 microspheres. The quality of the microspheres obtained was satisfactory. An optimized flow sheet for processing of the waste solution has been suggested.

  13. Silver Nanoparticles in SiO2 Microspheres - Preparation by Spray Drying and Use as Antimicrobial Agent.

    PubMed

    Mahltig, Boris; Haufe, Helfried; Muschter, Kerstin; Fischer, Anja; Kim, Young Hwan; Gutmann, Emanuel; Reibold, Marianne; Meyer, Dirk Carl; Textor, Torsten; Kim, Chang Woo; Kang, Young Soo

    2010-06-01

    Silver nanoparticles embedded in SiO2 particles of micrometer size are prepared using spray drying. The spray drying is performed with a SiO2 sol (solvent water:ethanol 4: 1) containing SiO2 and silver particles of nanometer size. During spray drying the SiO2 nanoparticles aggregate to SiO2 microspheres whereas the silver particles exhibit only a small tendency of aggregation and keep their nanometer size. However under special conditions also the formation of crystalline silver rods is observed. The antibacterial activity of the resulting Ag/SiO2 powders is determined against the bacteria Escherichia coli and Bacillus subtilis. Because of this antibacterial acitivity and the fact that the powder of SiO2 microspheres exhibits a good dispersibility, such materials have an immense potential to be used as antimicrobial additive in processes like master batch or fiber production. PMID:24061743

  14. Preparation of hollow core/shell microspheres of hematite and its adsorption ability for samarium.

    PubMed

    Yu, Sheng-Hui; Yao, Qi-Zhi; Zhou, Gen-Tao; Fu, Sheng-Quan

    2014-07-01

    Hollow core/shell hematite microspheres with diameter of ca. 1-2 μm have been successfully achieved by calcining the precursor composite microspheres of pyrite and polyvinylpyrrolidone (PVP) in air. The synthesized products were characterized by a wide range of techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), and Brunauer-Emmett-Teller (BET) gas sorptometry. Temperature- and time-dependent experiments unveil that the precursor pyrite-PVP composite microspheres finally transform into hollow core/shell hematite microspheres in air through a multistep process including the oxidation and sulfation of pyrite, combustion of PVP occluded in the precursor, desulfation, aggregation, and fusion of nanosized hematite as well as mass transportation from the interior to the exterior of the microspheres. The formation of the hollow core/shell microspheres dominantly depends on the calcination temperature under current experimental conditions, and the aggregation of hematite nanocrystals and the core shrinking during the oxidation of pyrite are responsible for the formation of the hollow structures. Moreover, the adsorption ability of the hematite for Sm(III) was also tested. The results exhibit that the hematite microspheres have good adsorption activity for trivalent samarium, and that its adsorption capacity strongly depends on the pH of the solution, and the maximum adsorption capacity for Sm(III) is 14.48 mg/g at neutral pH. As samarium is a typical member of the lanthanide series, our results suggest that the hollow hematite microspheres have potential application in removal of rare earth elements (REEs) entering the water environment. PMID:24892188

  15. Preparation of porous microsphere-scaffolds by electrohydrodynamic forming and thermally induced phase separation.

    PubMed

    Ghanbar, Hanif; Luo, C J; Bakhshi, Poonam; Day, Richard; Edirisinghe, Mohan

    2013-07-01

    The availability of forming technologies able to mass produce porous polymeric microspheres with diameters ranging from 150 to 300 μm is significant for some biomedical applications where tissue augmentation is required. Moreover, appropriate assembly of microspheres into scaffolds is an important challenge to enable direct usage of the as-formed structures in treatments. This work reports the production of poly (glycolic-co-lactic acid) and poly (ε-caprolactone) microspheres under ambient conditions using one-step electrohydrodynamic jetting (traditionally known as atomisation) and thermally induced phase separation (TIPS). To ensure robust production for practical uses, this work presents 12 comprehensive parametric mode mappings of the diameter distribution profiles of the microspheres obtained over a broad range of key processing parameters and correlating of this with the material parameters of 5 different polymer solutions of various concentrations. Poly (glycolic-co-lactic acid) (PLGA) in Dimethyl carbonate (DMC), a low toxicity solvent with moderate conductivity and low dielectric constant, generated microspheres within the targeted diameter range of 150-300 μm. The fabrication of the microspheres suitable for formation of the scaffold structure is achieved by changing the collection method from distilled water to liquid nitrogen and lyophilisation in a freeze dryer. PMID:23623059

  16. Preparation and drug release properties of norisoboldine-loaded chitosan microspheres.

    PubMed

    He, Miao; Wang, Haiyan; Dou, Wei; Chou, Guixin; Wei, Xiaohui; Wang, Zhengtao

    2016-10-01

    This study aimed to develop injectable norisoboldine (NOR) chitosan microspheres formulated through the emulsion cross-linking method. The formulation was optimized using response surface methodology (RSM) with a three-level, three-factor Box-Behnken design (BBD). The morphology, size, physicochemical characterization and in vitro release behavior of the optimized formulation were evaluated. Scanning electron micrographs (SEM) indicated that the microspheres were spherical with a smooth surface. The encapsulation efficiency and drug loading content of the microspheres were 38.89%±1.72% and 4.25%±0.15%, respectively, with an average size of 105μm. Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) revealed the absence of a drug-polymer interaction and the amorphous nature of an entrapped drug. Analysis results of drug release in vitro show the burst release of the microsphere in 2h and a slow progression afterward. In vivo studies using Sprague-Dawley rats revealed that the NOR-loaded chitosan microspheres were biocompatible. This study suggests that the BBD with desired formulation could provide a suitable drug delivery system of chitosan microspheres. PMID:27344949

  17. Modified release and antioxidant stable Lagenaria siceraria extract microspheres using co-precipitated starch.

    PubMed

    Kulkarni, Sameer D; Sinha, Barij N; Kumar, K Jayaram

    2014-05-01

    Ca-alginate hydrogel beads of Lagenaria siceraria (LS) fruit extract using co-precipitates of LS seed starch and colloidal silicon dioxide (SSD) as filler was studied. Effect of different concentrations of SSD on the encapsulation efficiency, size of microspheres, moisture content and antioxidant potential of the microspheres comprising extract was determined. The chemical composition of ethanolic extract was analysed by LC-MS. The prepared microspheres were characterized by SEM, FTIR and XRD. The incorporation of filler in hydrogel beads modified the micromeritic properties and release profile of LS fruit extract. It is observed that fillers have improved the stability of antioxidant potential of the extract. The application of this technology would improve the stability of LS fruit extract in pharmaceutical and food products. PMID:24556118

  18. Preparation of uniform rhodamine B-doped SiO{sub 2}/TiO{sub 2} composite microspheres

    SciTech Connect

    Yang Fuyong; Chu Ying . E-mail: chuying@nenu.edu.cn; Huo Lei; Yang Yang; Liu Yang; Liu Jinglin

    2006-02-15

    Uniform rhodamine B (RB)-doped SiO{sub 2}/TiO{sub 2} composite microspheres with catalytic and fluorescent properties were prepared by an easy and economical method in this paper. The composite microspheres were built up with well-dispersed silica particles as the cores, RB as both the doped agent and stabilizer, and the TiO{sub 2} shells were obtained through the hydrolysis of TiCl{sub 4} in water bath. The morphology and structure of the particles were characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). The characterization results indicate that composite particles are all in spherical shape and have a narrow size distribution. The composite particles calcined above 500 deg. C reveal clear crystalline reflection peaks of the rutile TiO{sub 2} which exhibits well catalytic property. The photocatalytic experiment was carried out in order to examine the catalytic property of composite microspheres. The fluorescent property of particles was also investigated. Dye-leakage test indicates that RB molecules entrapped in the composite particles by this method are stable inside the particles.

  19. Preparation of chitosan-graft-polyacrylamide magnetic composite microspheres for enhanced selective removal of mercury ions from water.

    PubMed

    Li, Kun; Wang, Yawen; Huang, Mu; Yan, Han; Yang, Hu; Xiao, Shoujun; Li, Aimin

    2015-10-01

    A novel magnetic composite microsphere based on polyacrylamide (PAM)-grafted chitosan and silica-coated Fe3O4 nanoparticles (CS-PAM-MCM) was successfully synthesized by a simple method. The molecular structure, surface morphology, and magnetic characteristics of the composite microsphere were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating-sample magnetometer (VSM), and scanning electron microscopy (SEM). The prepared CS-PAM-MCM was applied as an efficient adsorbent for the removal of copper(II), lead(II), and mercury(II) ions from aqueous solutions in respective single, binary, and ternary metal systems. Compared with chitosan magnetic composite microsphere (CS-MCM) without modification, CS-PAM-MCM showed improved adsorption capacity for each metal ion and highly selective adsorption for Hg from Pb and Cu. This improvement is attributed to the formation of stronger interactions between Hg and the amide groups of PAM branches for chelating effects. The adsorption isotherms of Hg/Cu and Hg/Pb binary metal systems onto CS-PAM-MCM are both well-described by extended and modified Langmuir models, indicating that the removal of the three aforementioned metal ions may follow a similar adsorption manner; that is, through a homogeneous monolayer chemisorption process. Furthermore, these magnetic adsorbents could be easily regenerated in EDTA aqueous solution and reused virtually without any adsorption capacity loss. PMID:26073848

  20. Preparation of three-dimensional macroporous chitosan-gelatin B microspheres and HepG2-cell culture.

    PubMed

    Huang, Fang; Cui, Long; Peng, Cheng-Hong; Wu, Xu-Bo; Han, Bao-San; Dong, Ya-Dong

    2014-04-14

    Chitosan-gelatin B microspheres with an open, interconnected, highly macroporous (100-200 µm) structure were prepared via a three-step protocol combining freeze-drying with an electrostatic and ionic cross-linking method. Saturated tripolyphosphate ethanol solution (85% ethanol) was chosen as the crosslinking agent to prevent destruction of the porous structure and to improve the biostability of the chitosan-gelatin B microspheres, with N-(3-dimethylaminopropyl)-N'-ethyl-carbodiimide/N-hydroxysuccinimide as a second crosslinking agent to react with gelatin A and fixed chitosan-gelatin B microspheres to attain improved biocompatibility. Water absorption of the three-dimensional macroporous chitosan-gelatin B microspheres (3D-P-CGMs) was 12.84, with a porosity of 85.45%. In vitro lysozyme degradation after 1, 3, 5, 7, 10, 14, and 21 days showed improved biodegradation in the 3D-P-CGMs. The morphology of human hepatoma cell lines (HepG2 cells) cultured on the 3D-P-CGMs was spherical, unlike that of cells cultured under traditional two-dimensional conditions. Scanning electron microscopy and paraffin sections were used to confirm the porous structure of the 3D-P-CGMs. HepG2 cells were able to migrate inside through the pore. Cell proliferation and levels of albumin and lactate dehydrogenase suggested that the 3D-P-CGMs could provide a larger specific surface area and an appropriate microenvironment for cell growth and survival. Hence, the 3D-P-CGMs are eminently suitable as macroporous scaffolds for cell cultures in tissue engineering and cell carrier studies. Copyright © 2014 John Wiley & Sons, Ltd. PMID:24729421

  1. Monodisperse α-Fe2O3 Mesoporous Microspheres: One-Step NaCl-Assisted Microwave-Solvothermal Preparation, Size Control and Photocatalytic Property

    NASA Astrophysics Data System (ADS)

    Cao, Shao-Wen; Zhu, Ying-Jie

    2011-12-01

    A simple one-step NaCl-assisted microwave-solvothermal method has been developed for the preparation of monodisperse α-Fe2O3 mesoporous microspheres. In this approach, Fe(NO3)3 · 9H2O is used as the iron source, and polyvinylpyrrolidone (PVP) acts as a surfactant in the presence of NaCl in mixed solvents of H2O and ethanol. Under the present experimental conditions, monodisperse α-Fe2O3 mesoporous microspheres can form via oriented attachment of α-Fe2O3 nanocrystals. One of the advantages of this method is that the size of α-Fe2O3 mesoporous microspheres can be adjusted in the range from ca. 170 to ca. 260 nm by changing the experimental parameters. High photocatalytic activities in the degradation of salicylic acid are observed for α-Fe2O3 mesoporous microspheres with different specific surface areas.

  2. Preparation of polystyrene/SiO2 microsphere via Pickering emulsion polymerization: Synergistic effect of SiO2 concentrations and initiator sorts

    NASA Astrophysics Data System (ADS)

    Zhou, Haiou; Shi, Tiejun; Zhou, Xun

    2013-02-01

    In this paper, polystyrene (PS)/SiO2 microspheres were successfully prepared via Pickering emulsion polymerization stabilized solely by ethacryloxypropyltrimethoxysilane (MPTMS) modified SiO2 nanoparticles. The formation mechanisms of PS/SiO2 microspheres with different morphology were investigated under various Pickering emulsion polymerization conditions. The results showed that SiO2 concentrations and initiator sorts would synergistically impact on the morphology of products corresponding to distinct formation mechanisms. When SiO2 concentrations was low and water-solute initiator potassium persulfate (KPS) was used, aqueous nucleation was dominant, which was deduced to the formation of dispersive microspheres sparsely anchored by SiO2 particles. When SiO2 concentrations was increased and oil-solute initiator azobisisobutyronitrile (AIBN) was applied, nucleation in oil phase prevailed which lead to the formation of microspheres densely packed by SiO2 particles.

  3. Carbon xerogel microspheres and monoliths from resorcinol-formaldehyde mixtures with varying dilution ratios: preparation, surface characteristics, and electrochemical double-layer capacitances.

    PubMed

    Zapata-Benabithe, Zulamita; Carrasco-Marín, Francisco; de Vicente, Juan; Moreno-Castilla, Carlos

    2013-05-21

    Carbon xerogels in the form of microspheres and monoliths were obtained from the sol-gel polymerization of resorcinol and formaldehyde in the presence of potassium carbonate as catalyst, using water as solvent and two different molar dilution ratios. The objectives of this study were as follows: to investigate the effect of the dilution ratio, polymerization reaction time, and temperature on the rheological properties of the sols used to prepare the carbon xerogel microspheres and monoliths; and to determine the influence of their preparation methods and shapes on their surface characteristics and electrochemical double-layer (EDL) capacitance. An increase in the molar dilution ratio produced a decrease in the apparent activation energy of the sol-gel transition. Carbon xerogel microspheres were steam-activated at different burnoff percentages. The morphology, surface area, porosity, and surface chemistry of samples were determined. The main difference between the carbon xerogel microspheres and monoliths was that the latter are largely mesoporous. Better electrochemical behavior was shown by carbon xerogels in monolith than in microsphere form, but higher gravimetric and volumetric capacitances were found in activated carbon xerogel microspheres than in carbon xerogel monoliths. PMID:23617279

  4. Preparation and Characterization of SnO2/Ag Hollow Microsphere via a Convenient Hydrothermal Route.

    PubMed

    Qiao, Xiuqing; Hu, Fuchao; Hou, Dongfang; Li, Dongsheng

    2016-04-01

    SnO2/Ag hollow microsphere, assembled form SnO2 and Ag nanoparticles, was synthesized via a facile one-step hydrothermal synthesis method using Na2SnO3.3H2O, CO(NH2)2 and AgNO3 as raw materials. XRD, SEM, and TEM results revealed that the obtained SnO2/Ag hollow microsphere with diameters of ca.3-5 µm was built from uniformly distributed rutile SnO2 and cubic Ag nanoparticles. Moreover, XPS results indicate the existence of strong interaction between Ag and SnO2 nanoparticles, rather than simply physical contact, endowing the SnO2/Ag hollow microspheres with excellent photocatalytic performance in the degradation of RhB solution under visible light irradiation. PMID:27451773

  5. Process for preparing metal-carbide-containing microspheres from metal-loaded resin beads

    DOEpatents

    Beatty, Ronald L.

    1976-01-01

    An improved method for treating metal-loaded resin microspheres is described which comprises heating a metal-loaded resin charge in an inert atmosphere at a pre-carbide-forming temperature under such conditions as to produce a microsphere composition having sufficient carbon as to create a substantially continuous carbon matrix and a metal-carbide or an oxide-carbide mixture as a dispersed phase(s) during carbide-forming conditions, and then heating the thus treated charge to a carbide-forming temperature.

  6. The preparation of core/shell structured microsphere of multi first-line anti-tuberculosis drugs and evaluation of biological safety

    PubMed Central

    Zeng, Hao; Pang, Xiaoyang; Wang, Shuo; Xu, Zhengquan; Peng, Wei; Zhang, Penghui; Zhang, Yupeng; Liu, Zheng; Luo, Chengke; Wang, Xiyang; Nie, Hemin

    2015-01-01

    To introduce a modified method, namely coaxial electrohydrodynamic atomization for the fabrication of distinct core/shell structured microspheres of four first-line ant-tuberculosis drugs with different characteristics in hydrophilic properties in one single step. In group B, we prepared microspheres in which the core and the shell contain hydrophobic and hydrophilic drugs, respectively. In contrast, in group C, the opposite is prepared. The detection of encapsulation efficiency and in vitro release test were performed to confirm the feasibility of the drug-loaded core/shell structured microspheres. Moreover, cell culture experiments and animal experiments have been carried out to evaluate the biological safety of different microspheres in cell growth, cell viability, osteogenesis and migration of BMSCs in vitro and the bone fusion in a bone deficits model in SD rat. Meanwhile, the distribution of drugs and liver and kidney toxicity were monitored. The release patterns of the two groups are significantly different. The release of drugs from Group B microspheres is rather sequential, whereas group C microspheres release drugs in a parallel (co-release) manner. And various concentrations of carrier materials produces core/shell structured microspheres with different appearance. Moreover, the biological safety of core/shell structured microspheres was testified to be satisfactory. These findings present the advantages and possible application of this kind of multi-drug release system in treating skeletal tuberculosis. Moreover, the characteristic sequential release of multi-drugs can be controlled and adjusted based on treatment need and used in treating other disorders. PMID:26309493

  7. Preparation of Eleutherine americana-alginate complex microcapsules and application in Bifidobacterium longum.

    PubMed

    Phoem, Atchara N; Chanthachum, Suphitchaya; Voravuthikunchai, Supayang P

    2015-01-01

    Microencapsulation using extrusion and emulsion techniques was prepared for Bifidobacterium longum protection against sequential exposure to simulated gastric and intestinal juices, refrigeration storage and heat treatment. Eleutherine americana was used as the co-encapsulating agent. Hydrolysis of E. americana by gastric and intestinal juices was also determined. E. americana and its oligosaccharide extract demonstrated their resistance to low pH and partial tolerance to human α-amylase. Microencapsulated B. longum with E. americana and oligosaccharide extract prepared by the extrusion technique survived better than that by the emulsion technique under adverse conditions. Survival of microencapsulated cells after exposure to the juices and refrigeration storage was higher than free cells at Weeks 2 and 4. In addition, the viability of microencapsulated cells was better than free cells at 65 °C for 15 min. This work suggested that microencapsulated B. longum with E. americana offers the effective delivery of probiotics to colon and maintains their survival in food products. PMID:25629556

  8. Preparation, characterization and taste-masking properties of polyvinylacetal diethylaminoacetate microspheres containing trimebutine.

    PubMed

    Hashimoto, Yoshimi; Tanaka, Masami; Kishimoto, Hideyuki; Shiozawa, Hiroyoshi; Hasegawa, Kazumasa; Matsuyama, Kenji; Uchida, Takahiro

    2002-10-01

    The objectives of this study were to produce acid soluble, polyvinylacetal diethylaminoacetate (AEA) microspheres containing trimebutine (as maleate), using a water-in-oil-in-water (w/o/w) emulsion solvent evaporation method, to characterize their in-vitro release properties, and to evaluate the taste-masking potential of this formulation in human volunteers. The pH of the external aqueous phase was the critical factor in achieving a high loading efficiency for trimebutine in the microencapsulation process; nearly 90% (w/w) loading efficiency was obtained at above pH 10. Trimebutine was completely released from AEA microspheres within 10 min in a dissolution test at pH 1.2, simulating conditions in the stomach, whereas at pH 6.8, the pH in the mouth, only small quantities of trimebutine were released in the initial 1-2 min. The results of a gustatory sensation test in healthy volunteers confirmed the taste-masking effects of the AEA microspheres. Finally, an attempt was made to encapsulate the salts of other basic drugs (lidocaine, imipramine, desipramine, amitriptyline, promethazine and chlorpheniramine) into AEA microspheres using the w/o/w emulsion evaporation method. The loading efficiencies were ranked in almost inverse proportion with the solubility of the drugs in the external aqueous phase. This study demonstrated the possibility of masking the taste of salts of basic drugs by microencapsulation with AEA using a w/o/w emulsion solvent evaporation method. PMID:12396292

  9. Preparation and characterization of gelatin-hydroxyapatite composite microspheres for hard tissue repair.

    PubMed

    Chao, Shao Ching; Wang, Ming-Jia; Pai, Nai-Su; Yen, Shiow-Kang

    2015-12-01

    Gelatin-hydroxyapatite composite microspheres composed of 21% gelatin (G) and 79% hydroxyapatite (HA) with uniform morphology and controllable size were synthesized from a mixed solution of Ca(NO3)2, NH4H2PO4 and gelatin by a wet-chemical method. Material analyses such as X-ray diffraction (XRD), scanning/transmission electron microscopy examination (SEM/TEM) and inductively coupled plasma-mass spectroscopy (ICP-MS) were used to characterize G-HA microspheres by analyzing their crystalline phase, microstructure, morphology and composition. HA crystals precipitate along G fibers to form nano-rods with diameters of 6-10nm and tangle into porous microspheres after blending. The cell culture indicates that G-HA composite microspheres without any toxicity could enhance the proliferation and differentiation of osteoblast-like cells. In a rat calvarial defect model, G-HA bioactive scaffolds were compared with fibrin glue (F) and Osteoset® Bone Graft Substitute (OS) for their capacity of regenerating bone. Four weeks post-implantation, new bone, mineralization, and expanded blood vessel area were found in G-HA scaffolds, indicating greater osteoconductivity and bioactivity than F and OS. PMID:26354246

  10. Preparation of magnetite-loaded silica microspheres for solid-phase extraction of genomic DNA from soy-based foodstuffs.

    PubMed

    Shi, Ruobing; Wang, Yucong; Hu, Yunli; Chen, Lei; Wan, Qian-Hong

    2009-09-01

    Solid-phase extraction has been widely employed for the preparation of DNA templates for polymerase chain reaction (PCR)-based analytical methods. Among the variety of adsorbents studied, magnetically responsive silica particles are particularly attractive due to their potential to simplify, expedite, and automate the extraction process. Here we report a facile method for the preparation of such magnetic particles, which entails impregnation of porous silica microspheres with iron salts, followed by calcination and reduction treatments. The samples were characterized using powder X-ray diffractometry (XRD), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherms, and vibrating sample magnetometry (VSM). XRD data show that magnetite nanocrystals of about 27.2 nm are produced within the pore channels of the silica support after reduction. SEM images show that the as-synthesized particles exhibit spherical shape and uniform particle size of about 3 microm as determined by the silica support. Nitrogen sorption data confirm that the magnetite-loaded silica particles possess typical mesopore structure with BET surface area of about 183 m(2)/g. VSM data show that the particles display paramagnetic behavior with saturation magnetization of 11.37 emu/g. The magnetic silica microspheres coated with silica shells were tested as adsorbents for rapid extraction of genomic DNA from soybean-derived products. The purified DNA templates were amplified by PCR for screening of genetically modified organisms (GMOs). The preliminary results confirm that the DNA extraction protocols using magnetite-loaded silica microspheres are capable of producing DNA templates which are inhibitor-free and ready for downstream analysis. PMID:19632684

  11. Preparation and characterization of a novel pH-sensitive coated microsphere for duodenum-specific drug delivery.

    PubMed

    Zhou, Dan; Zhu, Xi; Wang, Yang; Jin, Yun; Xu, Xuefan; Fan, Tingting; Liu, Yan; Zhang, Zhirong; Huang, Yuan

    2012-05-01

    The aim of this study is to develop a duodenum-specific drug delivery system on the basis of a pH-sensitive coating and a mucoadhesive inner core for eradication of Helicobacter pylori (H. pylori) in the ulcer duodenum. Hydroxypropyl methylcellulose acetate maleate (HPMCAM) was used as the pH-sensitive material, which dissolves around pH 3.0. The mucoadhesive microspheres loaded with furazolidone (FZD-ad-MS) were prepared by the emulsification-solvent evaporation method using Carbopol 971NP as the mucoadhesive polymer. The prepared pH-sensitive coated mucoadhesive microspheres (AM-coated-MS) were characterized in regards to particle size, drug loading efficiency, morphological change, drug stability, drug release and in vitro anti-H. pylori activity. The particle size was 160.97 ± 47.24 μm and 336.44 ± 129.34 μm, and the drug content was 42.33 ± 3.43% and 10.96 ± 1.29% for FZD-ad-MS and AM-coated-MS, respectively. The morphological changes in different pH media were characterized by scanning electron microscopy (SEM). HPMCAM coating improved the stability of the FZD-ad-MS and these particles were expected to remain intact until their arrival in the duodenum. The drug release was extremely suppressed at pH 1.2 for AM-coated-MS, but increased at pH 4.0 after regeneration of FZD-ad-MS. In addition, FZD-ad-MS exhibited excellent anti-H. pylori activity in vitro. Thus, the HPMCAM-coated microspheres developed in this study hold great promise for use as a duodenum-specific drug delivery system for H. pylori clearance. PMID:22644851

  12. Facile preparation of black Nb4+ self-doped K4Nb6O17 microspheres with high solar absorption and enhanced photocatalytic activity.

    PubMed

    Zhou, Chao; Zhao, Yufei; Shang, Lu; Cao, Yinhu; Wu, Li-Zhu; Tung, Chen-Ho; Zhang, Tierui

    2014-08-28

    Black Nb(4+) self-doped K4Nb6O17 microspheres were prepared for the first time through a facile UV light photoreduction method. By the introduction of Nb(4+), the defective K4Nb6O17 can harvest the full spectrum of visible light as well as near-infrared light. The black K4Nb6O17 microspheres showed improved visible-light-driven photocatalytic H2 production activity. Importantly, the present synthetic approach is also applicable to the preparation of other Nb(4+) self-doped niobates. PMID:25011611

  13. Propagation of human iPS cells in alginate-based microcapsules prepared using reactions catalyzed by horseradish peroxidase and catalase.

    PubMed

    Ashida, Tomoaki; Sakai, Shinji; Taya, Masahito

    2016-09-01

    Cell encapsulation has been investigated as a bioproduction system in the biomedical and pharmaceutical fields. We encaps-ulated human induced pluripotent stem (hiPS) cells in duplex microcapsules prepared from an alginate derivative possessing phenolic hydroxyl moieties, in a single-step procedure based on two competing enzymatic reactions catalyzed by horseradish peroxidase (HRP) and catalase. The encapsulated cells maintained 91.4% viability and proliferated to fill the microcapsules following 19 days of culture. Encapsulated hiPS cells showed pluripotency comparable to that of unencapsulated cells during the cultures, as demonstrated by the expression of the SSEA-4 marker. PMID:26148179

  14. An investigation and characterization on alginate hydogel dressing loaded with metronidazole prepared by combined inotropic gelation and freeze-thawing cycles for controlled release.

    PubMed

    Sarheed, Omar; Rasool, Bazigha K Abdul; Abu-Gharbieh, Eman; Aziz, Uday Sajad

    2015-06-01

    The purpose of this study was to investigate the effect of combined Ca(2+) cross-linking and freeze-thawing cycle method on metronidazole (model drug) drug release and prepare a wound film dressing with improved swelling property. The hydrogel films were prepared with sodium alginate (SA) using the freeze-thawing method alone or in combination with ionotropic gelation with CaCl2. The gel properties such as morphology, swelling, film thickness, and content uniformity and in vitro dissolution profiles using Franz diffusion cell were investigated. The cross-linking process was confirmed by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. In vitro protein adsorption test, in vivo wound-healing test, and histopathology were also performed. The hydrogel (F2) composed of 6% sodium alginate and 1% metronidazole prepared by combined Ca(2+) cross-linking and freeze-thawing cycles showed good swelling. This will help to provide moist environment at the wound site. With the in vivo wound-healing and histological studies, F2 was found to improve the wound-healing effect compared with the hydrogel without the drug, and the conventional product. PMID:25425388

  15. Preparation of Hydroxyapatite Coating on the Surface of Hollow Glass Microspheres Using a Biomimetic Process

    NASA Astrophysics Data System (ADS)

    Jiao, Yan; Yang, Hai-Ying; Zhang, Ying-Long; Duan, Rong-Shuai; Lu, Yu-Peng

    2014-07-01

    Microcarrier culture technology has attached more attention, especially for scale-up cell culture in the filed of tissue engineering. The present work introduces a microcarrier with hydroxyapatite (HA) on hollow glass microsphere. Hollow glass microspheres with a main composition of SiO2 (55-65 wt.%), Al2O3 (26-35 wt.%), were pretreated by NaOH, on which hydroxyapatite coating was deposited by biomimetic process. The phase composition and morphology were characterized by X-ray diffractometer (XRD), Fourier transform infrared (FTIR) spectroscope, field emission scanning electron microscope (FE-SEM) and high resolution transmission electron microscope (HRTEM), respectively. The results showed that after immersion for 15 days in 1.5 SBF, the uniform and dense HA coating was formed and it has porous surface and low crystallinity.

  16. Preparation and evaluation of MRI detectable poly (acrylic acid) microspheres loaded with superparamagnetic iron oxide nanoparticles for transcatheter arterial embolization.

    PubMed

    Wang, Huan; Qin, Xiao-Ya; Li, Zi-Yuan; Guo, Li-Ying; Zheng, Zhuo-Zhao; Liu, Li-Si; Fan, Tian-Yuan

    2016-09-25

    To monitor the spatial distribution of embolic particles inside the target tissues during and after embolization, blank poly (acrylic acid) microspheres (PMs) were initially prepared by inverse suspension polymerization method and then loaded with superparamagnetic iron oxide (SPIO) nanoparticles by in situ precipitation method to obtain magnetic resonance imaging (MRI) detectable SPIO-loaded poly (acrylic acid) microspheres (SPMs). The loading of SPIO nanoparticles in SPMs was confirmed by vibrating sample magnetometer, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and infrared spectrum, respectively. The results showed that SPMs exhibited excellent superparamagnetism and the SPIO embedded in SPMs were proved to be inverse spinel magnetite. The content of SPIO loaded in wet SPMs of subgroups of 100-300, 300-500, 500-700 and 700-900μm was measured to be 11.84±0.07, 10.20±0.05, 9.98±0.00 and 8.79±0.01mg/ml, corresponding to the weight percentage in freeze-dried SPMs to be 18.07±0.28%, 18.54±0.13%, 18.66±0.01% and 18.50±0.07%, respectively. The SPMs were spherical in shape, had smooth surface, and were within the size range of clinical demands for embolization. The compression tests indicated that SPMs were more rigid than PMs and commercially used Embospheres (P<0.01). The MRI detectability of SPMs was evaluated with the SPMs embedded in gel phantom in vitro and injected subcutaneously into the back of mice in vivo. Both the results demonstrated that the SPMs could provide distinct negative contrast enhancement and be sensitively detected by T2-weighted MR imaging. All the results show that SPMs are potential MRI detectable embolic microspheres for the future embolotherapy. PMID:27426106

  17. Preparation and in vitro release behaviour of 5-fluorouracil-loaded microspheres based on poly (L-lactide) and its carbonate copolymers.

    PubMed

    Zhu, K J; Zhang, J X; Wang, C; Yasuda, H; Ichimaru, A; Yamamoto, K

    2003-01-01

    A modified oil-in-oil (o/o) emulsion solvent evaporation technique was adopted to prepare 5-fluorouracil (5-Fu)-loaded poly (L-lactide) (PLLA) or its carbonate copolymer microspheres. The disperse phase was a drug:polymer solution using a solvent mixture of N,N-dimethylformamide (DMF) and acetonitrile and the continuous phase was liquid paraffin containing 1-10% (w/v) Span 80(R). The effects of preparative parameters, such as the composition of the inner oil phase, drug:polymer ratio, polymer concentration and agitation rate, on 5-Fu entrapment efficiency and microsphere characteristics were investigated. By introducing 25% (v/v) DMF into the inner oil phase, microspheres with high drug entrapment efficiency and an ameliorated burst effect were achieved. Using this modified method, microspheres with various particle sizes could be produced with a high 5-Fu entrapment efficiency (about 80%). In vitro drug release tests showed a burst release of 5-Fu from PLLA microspheres, followed by a sustained release over 50 days. In the case of poly (L-lactide-co-1,3-trimethylene carbonate) (PLTMC) and poly (L-lactide-co-2,2-dimethyl-1,3-trimethylene carbonate) (PLDTMC), the drug release could be continued for over 60 days. PMID:14594662

  18. [Studies on preparation by SPG membrane emulsification method and in vitro characterization of tetradrine-tashionone II(A)-PLGA composite microspheres].

    PubMed

    Lu, Jin; Zhang, Meng; Zhu, Hua-xu; Guo, Li-wei; Pan, Lin-mei; Fu, Ting-ming

    2015-03-01

    Tetradrine-tashionone II(A)-PLGA composite microspheres were prepared by the SPG membrane emulsification method, and the characterization of tetradrine-tashionone II(A) -PLGA composite microspheres were studied in this experiment. The results of IR, DSC and XRD showed that teradrine and tashionone II(A) in composite microspheres were highly dispersed in the PLGA with amorphous form. The results of tetradrine-tashionone II(A) -PLGA composite microspheres in vitro release experiment showed that the cumulative release amounts of tetradrine and tashionone II(A) were 6.44% and 3.60% in 24 h, and the cumulative release amounts of tetradrine and tashionone II(A) were 89.02% and 21.24% in 17 d. The process of drug in vitro release accorded with the model of Riger-Peppas. Tetradrine-tashionone II(A) -PLGA composite microspheres had slow-release effect, and it could significantly reduce the burst release, prolong the therapeutic time, decrease the dosage of drugs and provide a new idea and method to prepare traditional Chinese medicine compound. PMID:26226751

  19. Preparation and Characterization of SiO 2/TiO 2 composite microspheres with microporous SiO 2 core/mesoporous TiO 2 shell

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Yu, Jiaguo; Cheng, Bei

    2005-06-01

    SiO 2/TiO 2 composite microspheres with microporous SiO 2 core/mesoporous TiO 2 shell structures were prepared by hydrolysis of titanium tetrabutylorthotitanate (TTBT) in the presence of microporous silica microspheres using hydroxypropyl cellulose (HPC) as a surface esterification agent and porous template, and then dried and calcined at different temperatures. The as-prepared products were characterized with differential thermal analysis and thermogravimetric (DTA/TG), scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption. The results showed that composite particles were about 1.8 μm in diameter, and had a spherical morphology and a narrow size distribution. Uniform mesoporous titania coatings on the surfaces of microporous silica microspheres could be obtained by adjusting the HPC concentration to an optimal concentration of about 3.2 mmol L -1. The anatase and rutile phase in the SiO 2/TiO 2 composite microspheres began to form at 700 and 900 °C, respectively. At 700 °C, the specific surface area and pore volume of the SiO 2/TiO 2 composite microspheres were 552 and 0.652 mL g -1, respectively. However, at 900 °C, the specific surface area and pore volume significantly decreased due to the phase transformation from anatase to rutile.

  20. In-vitro and in-vivo evaluation of repaglinide loaded floating microspheres prepared from different viscosity grades of HPMC polymer

    PubMed Central

    Sharma, Megha; Kohli, Seema; Dinda, Agnimitra

    2015-01-01

    During the study repaglinide encapsulated floating microspheres were formulated and characterized for enhancing residence time of drug in git and thereby increasing its bioavailability. Floating microspheres of ethylcellulose (EC) and hydroxypropyl methyl cellulose (HPMC) (5 and 100 cps) were prepared by emulsion solvent diffusion technique. During process optimization various parameters were studied such as: drug: polymer ratio, polymer ratio, concentration of emulsifier and stirring speed. Selected optimized formulations were studied for SEM, entrapment, floating behavior, drug release and kinetics. In-vivo floating ability (X-ray) study and in-vivo antidiabetic activity were performed on alloxan induced diabetic rats. Microspheres prepared with different viscosity grade HPMC were spherical shaped with smooth surface. Size of microspheres was in the range of 181.1–248 μm. Good entrapment and buoyancy were observed for 12 h. X-ray image showed that optimized formulation remained buoyant for more than 6 h. Optimized formulation treated group shows significant (p < 0.01) reduction in blood glucose level as compared to pure drug treated group. Repaglinide loaded floating microspheres expected to give new choice for safe, economical and increased bioavailable formulation for effective management of NIDDM. PMID:26702263

  1. In-vitro and in-vivo evaluation of repaglinide loaded floating microspheres prepared from different viscosity grades of HPMC polymer.

    PubMed

    Sharma, Megha; Kohli, Seema; Dinda, Agnimitra

    2015-11-01

    During the study repaglinide encapsulated floating microspheres were formulated and characterized for enhancing residence time of drug in git and thereby increasing its bioavailability. Floating microspheres of ethylcellulose (EC) and hydroxypropyl methyl cellulose (HPMC) (5 and 100 cps) were prepared by emulsion solvent diffusion technique. During process optimization various parameters were studied such as: drug: polymer ratio, polymer ratio, concentration of emulsifier and stirring speed. Selected optimized formulations were studied for SEM, entrapment, floating behavior, drug release and kinetics. In-vivo floating ability (X-ray) study and in-vivo antidiabetic activity were performed on alloxan induced diabetic rats. Microspheres prepared with different viscosity grade HPMC were spherical shaped with smooth surface. Size of microspheres was in the range of 181.1-248 μm. Good entrapment and buoyancy were observed for 12 h. X-ray image showed that optimized formulation remained buoyant for more than 6 h. Optimized formulation treated group shows significant (p < 0.01) reduction in blood glucose level as compared to pure drug treated group. Repaglinide loaded floating microspheres expected to give new choice for safe, economical and increased bioavailable formulation for effective management of NIDDM. PMID:26702263

  2. A novel and simple preparative method for uniform-sized PLGA microspheres: Preliminary application in antitubercular drug delivery.

    PubMed

    Liu, Zhiqiang; Li, Xia; Xiu, Bingshui; Duan, Cuimi; Li, Jiangxue; Zhang, Xuhui; Yang, Xiqin; Dai, Wenhao; Johnson, Heather; Zhang, Heqiu; Feng, Xiaoyan

    2016-09-01

    Particle size has been demonstrated as a key parameter influencing the phagocytosis of drug-loaded PLGA microspheres (MS) by the target cells. However, the current preparative methods were either insufficient in controlling the homogeneity of the produced MS, or requires sophisticated and costly equipment. This study aimed to explore a simple and economical method for uniform PLGA MS preparation. Based on the heterogeneous emulsification of routine mechanical stirring, we designed an adjuvant strategy to enhance the homogeneity of MS. By using glass beads as adjutant, the dispersion produced during mechanical stirring was much more homogeneous in the solution. The particles produced were much smaller and the size distribution was much narrower as compared with those produced using the routine mechanical stirring method under the same condition. After enrichment by selective centrifugation, about 60% of the particles of similar size were obtained, providing further evidence for the efficiency of the novel method in controlling particle homogeneity. Further, the method was applied to prepare rifampicin-loaded PLGA MS of the optimized size for macrophage uptake. The functional evaluation showed that the prepared PLGA MS could efficiently deliver an antitubercular drug into macrophages and maintain a higher intracellular concentration by controlled release, suggesting the potential application of the method in PLGA MS-based drug delivery. Collectively, the study provided a simple and economical method for preparing uniform-sized PLGA MS with potential of widespread applications. PMID:27289309

  3. Preparation of Novel Poly(hydroxyethyl methacrylate-coglycidyl methacrylate)-Grafted Core-Shell Magnetic Chitosan Microspheres and Immobilization of Lactase

    PubMed Central

    Zhao, Wei; Yang, Rui-Jin; Qian, Ting-Ting; Hua, Xiao; Zhang, Wen-Bin; Katiyo, Wendy

    2013-01-01

    Poly(hydroxyethyl methacrylate-co-glycidyl methacrylate)-grafted magnetic chitosan microspheres (HG-MCM) were prepared using reversed-phase suspension polymerization method. The HG-MCM presented a core-shell structure and regular spherical shape with poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) grafted onto the chitosan layer coating the Fe3O4 cores. The average diameter of the magnetic microspheres was 10.67 μm, within a narrow size distribution of 6.6–17.4 μm. The saturation magnetization and retentivity of the magnetic microspheres were 7.0033 emu/g and 0.6273 emu/g, respectively. The application of HG-MCM in immobilization of lactase showed that the immobilized enzyme presented higher storage, pH and thermal stability compared to the free enzyme. This indicates that HG-MCM have potential applications in bio-macromolecule immobilization. PMID:23743822

  4. Controlled delivery of the popular nonsteroidal anti-inflammatory drug, paracetamol, from chitosan-g-polyacrylamide microspheres prepared by the emulsion crosslinking technique.

    PubMed

    Bulut, Emine

    2016-09-01

    In this paper, chitosan-graft-polyacrylamide (CS-g-PAAm) microspheres as drug delivery matrices of paracetamol were prepared by the emulsion crosslinking technique, using glutaraldehyde (GA) as a crosslinker. Graft copolymer of chitosan with acrylamide was synthesized using cerium (IV) ammonium nitrate (CAN). The microspheres formed had average particle sizes in the range of 78-252 μm. Paracetamol entrapment efficiency was found to vary between 31.89% and 72.61%, as determined by UV spectroscopy. Drug release in acidic and phosphate buffer solutions (pH 1.2 and 7.4) of the CS-g-PAAm microspheres was influenced by formulation factors such as the concentration of CS-g-PAAm, the paracetamol/polymer ratio (w/w), and the amount of crosslinker. PMID:25985724

  5. Preparation and characterization of mesoporous LiFePO 4/C microsphere by spray drying assisted template method

    NASA Astrophysics Data System (ADS)

    Yu, Feng; Zhang, Jingjie; Yang, Yanfeng; Song, Guangzhi

    Mesoporous LiFePO 4/C microsphere was successfully prepared by spray drying assisted template method (SDATM) with citric acid as a template. This material has an average pore size of 50 nm and gives large specific surface area (32.2 m 2 g -1) with evenly distributed carbon (4.3 wt.%). It is also easy to bring into contact with electrolyte, facilitate the electric and lithium ion diffusion. It presents large reversible capacity of 158.8 mAh g -1 at C/10, even high rate capacity of 59.7 mAh g -1 at 20 C, and excellent capacity retention rate closed to 95.5% after various current densities.

  6. Development of Floating-Mucoadhesive Microsphere for Site Specific Release of Metronidazole

    PubMed Central

    Amin, Md. Lutful; Ahmed, Tajnin; Mannan, Md. Abdul

    2016-01-01

    Purpose: The purpose of this study was to develop and evaluate metronidazole loaded floating-mucoadhesive microsphere for sustained drug release at the gastric mucosa. Methods: Alginate gastroretentive microspheres containing metronidazole were prepared by ionic gelation method using sodium bicarbonate as gas forming agent, guar gum as mucoadhesive polymer, and Eudragit L100 as drug release modifier. Carbopol was used for increasing the bead strength. The microspheres were characterized by scanning electron microscopy and evaluated by means of drug entrapment efficiency, in vitro buoyancy, and swelling studies. In vitro mucoadhesion and drug release studies were carried out in order to evaluate site specific sustained drug release. Results: All formulations showed 100% buoyancy in vitro for a prolonged period of time. Amount of guar gum influenced the properties of different formulations. The formulation containing drug and guar gum at a ratio of 1:0.5 showed the best results with 76.3% drug entrapment efficiency, 61.21% mucoadhesion, and sustained drug release. Carbopol was found to increase surface smoothness of the microspheres. Conclusion: Metronidazole mucoadhesive-floating microspheres can be effectively used for sustained drug release to the gastric mucosa in treatment of upper GIT infection. PMID:27478781

  7. Novel pH-sensitive blend microspheres for controlled release of nifedipine--an antihypertensive drug.

    PubMed

    Phadke, Keerti V; Manjeshwar, Lata S; Aminabhavi, Tejraj M

    2015-04-01

    Water-soluble acrylamide (AAm)-grafted-chitosan (CS) copolymer (AAm-g-CS) was synthesized using potassium persulfate (PPS) initiator from which interpenetrating polymer network (IPN) microspheres were prepared by water-in-oil (w/o) emulsion that are cross-linked with glutaraldehyde (GA) and used for encapsulating nifedipine (NFD). Microspheres were coated with sodium alginate (NaAlg) to enhance their pH-sensitivity for extending the release time of NFD up to 14 h, releasing with 93% of NFD. The coated and uncoated microspheres were characterized by Fourier transform infrared spectra (FTIR) and differential scanning calorimetry (DSC) to understand chemical interactions and blend compatibility. Morphology and particle size of the microspheres were assessed by scanning electron microscopy (SEM) and particle zeta analyzer, respectively. Swelling and in vitro release experiments were performed in pH 1.2 and 7.4 buffer media, which showed a dependence on IPN blend composition, extent of cross-linking and amount of AAm used. Empirical analysis of drug patterns suggested the differences between NaAlg coated and uncoated microspheres. PMID:25647620

  8. Process and formulation variables of pregabalin microspheres prepared by w/o/o double emulsion solvent diffusion method and their clinical application by animal modeling studies.

    PubMed

    Aydogan, Ebru; Comoglu, Tansel; Pehlivanoglu, Bilge; Dogan, Murat; Comoglu, Selcuk; Dogan, Aysegul; Basci, Nursabah

    2015-01-01

    Pregabalin is an anticonvulsant drug used for neuropathic pain and as an adjunct therapy for partial seizures with or without secondary generalization in adults. In conventional therapy recommended dose for pregabalin is 75 mg twice daily or 50 mg three times a day, with maximum dosage of 600 mg/d. To achieve maximum therapeutic effect with a low risk of adverse effects and to reduce often drug dosing, modified release preparations; such as microspheres might be helpful. However, most of the microencapsulation techniques have been used for lipophilic drugs, since hydrophilic drugs like pregabalin, showed low-loading efficiency and rapid dissolution of compounds into the aqueous continous phase. The purpose of this study was to improve loading efficiency of a water-soluble drug and modulate release profiles, and to test the efficiency of the prepared microspheres with the help of animal modeling studies. Pregabalin is a water soluble drug, and it was encapsulated within anionic acrylic resin (Eudragit S 100) microspheres by water in oil in oil (w/o/o) double emulsion solvent diffusion method. Dichloromethane and corn oil were chosen primary and secondary oil phases, respectively. The presence of internal water phase was necessary to form stable emulsion droplets and it accelerated the hardening of microspheres. Tween 80 and Span 80 were used as surfactants to stabilize the water and corn oil phases, respectively. The optimum concentration of Tween 80 was 0.25% (v/v) and Span 80 was 0.02% (v/v). The volume of the continous phase was affected the size of the microspheres. As the volume of the continous phase increased, the size of microspheres decreased. All microsphere formulations were evaluated with the help of in vitro characterization parameters. Microsphere formulations (P1-P5) exhibited entrapment efficiency ranged between 57.00 ± 0.72 and 69.70 ± 0.49%; yield ranged between 80.95 ± 1.21 and 93.05 ± 1.42%; and mean particle size were

  9. Photochemical preparation of CdS hollow microspheres at room temperature and their use in visible-light photocatalysis

    NASA Astrophysics Data System (ADS)

    Huang, Yuying; Sun, Fengqiang; Wu, Tianxing; Wu, Qingsong; Huang, Zhong; Su, Heng; Zhang, Zihe

    2011-03-01

    CdS hollow microspheres have been successfully prepared by a photochemical preparation technology at room temperature, using polystyrene latex particles as templates, CdSO 4 as cadmium source and Na 2S 2O 3 as both sulphur source and photo-initiator. The process involved the deposition of CdS nanoparticles on the surface of polystyrene latex particles under the irradiation of an 8 W UV lamp and the subsequent removal of the latex particles by dispersing in dichloromethane. Photochemical reactions at the sphere/solution interface should be responsible for the formation of hollow spheres. The as-prepared products were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Such hollow spheres could be used in photocatalysis and showed high photocatalytic activities in photodegradation of methyl blue (MB) in the presence of H 2O 2. The method is green, simple, universal and can be extended to prepare other sulphide and oxide hollow spheres.

  10. Engineering alginate as bioink for bioprinting.

    PubMed

    Jia, Jia; Richards, Dylan J; Pollard, Samuel; Tan, Yu; Rodriguez, Joshua; Visconti, Richard P; Trusk, Thomas C; Yost, Michael J; Yao, Hai; Markwald, Roger R; Mei, Ying

    2014-10-01

    Recent advances in three-dimensional (3-D) printing offer an excellent opportunity to address critical challenges faced by current tissue engineering approaches. Alginate hydrogels have been used extensively as bioinks for 3-D bioprinting. However, most previous research has focused on native alginates with limited degradation. The application of oxidized alginates with controlled degradation in bioprinting has not been explored. Here, a collection of 30 different alginate hydrogels with varied oxidation percentages and concentrations was prepared to develop a bioink platform that can be applied to a multitude of tissue engineering applications. The authors systematically investigated the effects of two key material properties (i.e. viscosity and density) of alginate solutions on their printabilities to identify a suitable range of material properties of alginates to be applied to bioprinting. Further, four alginate solutions with varied biodegradability were printed with human adipose-derived stem cells (hADSCs) into lattice-structured, cell-laden hydrogels with high accuracy. Notably, these alginate-based bioinks were shown to be capable of modulating proliferation and spreading of hADSCs without affecting the structure integrity of the lattice structures (except the highly degradable one) after 8days in culture. This research lays a foundation for the development of alginate-based bioink for tissue-specific tissue engineering applications. PMID:24998183

  11. Engineering alginate as bioink for bioprinting

    PubMed Central

    Jia, Jia; Richards, Dylan J.; Pollard, Samuel; Tan, Yu; Rodriguez, Joshua; Visconti, Richard P.; Trusk, Thomas C.; Yost, Michael J.; Yao, Hai; Markwald, Roger R.; Mei, Ying

    2015-01-01

    Recent advances in 3D printing offer an excellent opportunity to address critical challenges faced by current tissue engineering approaches. Alginate hydrogels have been extensively utilized as bioinks for 3D bioprinting. However, most previous research has focused on native alginates with limited degradation. The application of oxidized alginates with controlled degradation in bioprinting has not been explored. Here, we prepared a collection of 30 different alginate hydrogels with varied oxidation percentages and concentrations to develop a bioink platform that can be applied to a multitude of tissue engineering applications. We systematically investigated the effects of two key material properties (i.e. viscosity and density) of alginate solutions on their printabilities to identify a suitable range of material properties of alginates to be applied to bioprinting. Further, four alginate solutions with varied biodegradability were printed with human adipose-derived stem cells (hADSCs) into lattice-structured, cell-laden hydrogels with high accuracy. Notably, these alginate-based bioinks were shown to be capable of modulating proliferation and spreading of hADSCs without affecting structure integrity of the lattice structures (except the highly degradable one) after 8 days in culture. This research lays a foundation for the development of alginate-based bioink for tissue-specific tissue engineering applications. PMID:24998183

  12. Controlled microfluidic production of alginate beads for in situ encapsulation of microbes

    SciTech Connect

    Kalyanaraman, Meenaa; Retterer, Scott T; McKnight, Timothy E; Ericson, Milton Nance; Allman, Steve L; Elkins, James G; Palumbo, Anthony Vito; Keller, Martin; Doktycz, Mitchel John

    2009-01-01

    The development and refinement of a microfluidic-based alginate bead generator system for bacterial encapsulation is presented. The resulting microgels have application for the encapsulation of single cells, and can allow for small scale, clonal expansion of thousands of isolated cells in parallel. PDMS based microfluidic chips were fabricated using conventional lithography techniques to produce both externally gelled and directly gelled alginate microspheres using a controlled, water-in-oil emulsion system. The production of directly gelled beads, formed by the in-chip mixing of aqueous alginate and calcium chloride solutions dispersed within an organic carrier flowstream is qualitatively compared to a system, which produces beads and relies on diffusion of a crosslinking agent from the carrier fluid to cause gelation (external gelation). While the direct gelation scheme allows the use of biocompatible oils as the organic carrier, it also has a detrimental effect on device stability often resulting in clogging and gel-streaming at the microfluidic interface of these solutions. A design for the continuous production of directly gelled beads was evaluated in terms of the threshold flow conditions and reagent concentrations that did not result in clogging or streaming. Monodisperse alginate microgels of 30 mum diameter were produced at frequencies of over 500 beads per second. The beads could be completely dispersed into aqueous media using an off-chip washing protocol to remove the organic phase. The microgels effectively encapsulated individual or small numbers of GFP-expressing Escherichia. coli, which could be subsequently clonally expanded. The described microfluidic platform is a robust front-end sample preparation technology that shows strong potential for use in drug delivery systems, biosensors, and other cell-based microcompartmentalization applications. The co-culturing of microbial colonies in a large population of alginate beads will allow for functional

  13. An Approach to the Design of a Particulate System for Oral Protein Delivery .II. Preparation and Stability Study of rhGH-Loaded Microspheres in Simulated Gastrointestinal Fluids

    PubMed Central

    Nafissi Varcheh, Nastaran; Aboofazeli, Reza

    2011-01-01

    The delivery of therapeutic proteins has gained momentum with development of biotechnology. However, large molecular weight, hydrophilic nature and susceptibility to harsh environment of gastrointestinal tract (GIT) resulted in low absorption. The main objective of this work was the design of a particulate system for oral delivery of recombinant human growth hormone (rhGH) on the basis of particle uptake mechanism in GIT. Biodegradable protein-loaded microspheres were prepared using Resomers (RG207, RG756 and RG505) by double emulsion methods. Aqueous solution of protein and freshly prepared rhGH-zinc complex were used for loading process. Various analytical methods, including fluorescence spectroscopy, SDS-PAGE electrophoresis and reversed-phase chromatography, were set up for the quantification and qualification of rhGH before and after the formulation and fabrication procedures. At the optimum conditions, microspheres were mostly below 10 μm with relatively high protein loading (> 50%). Obtained data showed that the stability of protein did not change during the formulation and microencapsulation processes. Results also showed that the encapsulation process in the presence of zinc caused no detectable change in the protein chemical stability. In-vitro stability study of microspheres in different simulated GI media indicated that the entrapped protein was physically stable. Less than 20% of rhGH was released from the microspheres incubated in both simulated stomach and intestine fluids for 3 and 6 h, respectively. PMID:24250342

  14. Zinc oxide nanorod growth on gold islands prepared by microsphere lithography on silicon and quartz.

    PubMed

    Blackledge, Charles W; Szarko, Jodi M; Dupont, Aurélie; Chan, George H; Read, Elizabeth L; Leone, Stephen R

    2007-09-01

    Gold islands, vapor deposited on silicon and quartz by microsphere lithography patterning, are used to nucleate arrays of ZnO nanorods. ZnO is grown on approximately 0.32 microm2 Au islands by carbothermal reduction in a tube furnace. Scanning electron microscopy (SEM) and energy dispersive atomic X-ray spectroscopy (EDS) confirm that the gold effectively controls the sites of nucleation of ZnO. Atomic force microscopy (AFM) shows that approximately 30 nm diameter nanorods grow horizontally, along the surface. Alloy droplets that are characteristic of the vapor-liquid-solid (VLS) mechanism are observed at the tips of the nanorods. The spatial growth direction of VLS catalyzed ZnO nanorods is along the substrate when they nucleate from gold islands on silicon and quartz. The energy of adhesion of the VLS droplet to the surface can account for the horizontal growth. PMID:18019171

  15. Preparation, characterization, and infrared emissivity property of optically active polyurethane/TiO{sub 2}/SiO{sub 2} multilayered microspheres

    SciTech Connect

    Yang Yong; Zhou Yuming; Ge Jianhua; Wang Yongjuan; Zhu Yunxia

    2011-10-15

    Optically active polyurethane/titania/silica (LPU/TiO{sub 2}/SiO{sub 2}) multilayered core-shell composite microspheres were prepared by the combination of titania deposition on the surface of silica spheres and subsequent polymer grafting. LPU/TiO{sub 2}/SiO{sub 2} was characterized by FT-IR, UV-vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), SEM and TEM, and the infrared emissivity value (8-14 {mu}m) was investigated in addition. The results indicated that titania and polyurethane had been successfully coated onto the surfaces of silica microspheres. LPU/TiO{sub 2}/SiO{sub 2} exhibited clearly multilayered core-shell construction. The infrared emissivity values reduced along with the increase of covering layers thus proved that the interfacial interactions had direct influence on the infrared emissivity. Besides, LPU/TiO{sub 2}/SiO{sub 2} multilayered microspheres based on the optically active polyurethane took advantages of the orderly secondary structure and strengthened interfacial synergistic actions. Consequently, it possessed the lowest infrared emissivity value. - Graphical Abstract: Optically active polyurethane/titania/silica (LPU/TiO{sub 2}/SiO{sub 2}) multilayered core-shell composite microspheres were prepared by the combination of titania deposition on the surface of silica spheres and subsequent polymer grafting. Highlights: > Optically active polyurethane based on tyrosine was used for the modification of nanoparticles. > LPU/TiO{sub 2}/SiO{sub 2} multilayered core-shell microspheres were prepared and characterized. > Interfacial interactions and secondary structure affected the infrared emissivity of composite.

  16. Preparation and in vitro evaluation of primaquine-conjugated gum arabic microspheres.

    PubMed

    Nishi, K K; Jayakrishnan, A

    2004-01-01

    Gum arabic, a branched polysaccharide, was oxidized using periodate to generate reactive aldehyde groups on the biopolymer. Primaquine, an 8-aminoquinoline, was covalently coupled onto oxidized gum arabic via an imine bond and simultaneously fabricated into microspheres of less than 2 microm in size by heat denaturation in a reverse emulsion of 1:1 light paraffin oil and toluene stabilized by sorbitan sesquioleate as the surfactant. The covalent binding of primaquine to the polysaccharide using the clinically used water-soluble form of the drug primaquine phosphate was achieved in the presence of borate buffer of pH 11. Up to 35% of the drug could be bound to the polymer backbone depending on the concentration of the drug employed initially and the degree of oxidation of the polysaccharide. Interestingly, both the aliphatic and the hindered aromatic amino groups of primaquine were found to react with the aldehyde functions through Schiff base formation leading to cross-linking of the polysaccharide with the drug itself. In vitro release of the drug from microspheres into phosphate buffered saline (PBS, pH 7.4, 0.1 M) at 37 degrees C showed that the release of primaquine from the matrix was slow, although gradually increased with time. The maximum released was below 50% of the drug payload even after 10 days. Release into simulated gastric and intestinal fluids was faster compared to the release in PBS due to rapid hydrolysis of the Schiff's linkage in the gastric fluid. A possible reason for the poor hydrolytic susceptibility of the Schiff's linkage is suggested based on the unequal reactivity of the amino groups on primaquine and its relevance in possible therapeutic application of this polymer-drug conjugate discussed. PMID:15244469

  17. Economic Evaluation for the Production of Sorbents and Catalysts Derived from Hydrous Titanium Oxide Microspheres Prepared by the HMTA Internal Gelation Process

    SciTech Connect

    Collins, J.L.

    2001-01-11

    Hydrous metal oxides of Zr, Ti, Hf, Fe, Al, etc. are inorganic ion exchangers that have high selectivities and efficiencies for separating and removing fission products, actinides, and other undesirable elements from aqueous waste streams. In most cases, these ion exchangers are commercially available only as fine powders or as unstable granular particles that are not readily adaptable to continuous processing techniques such as column chromatography. Hydrous metal oxides can be prepared as microspheres by the internal gelation process. This process is unique in that it provides a means of making a usable engineered form of inorganic ion exchanger that can be used in large-scale column separations. With such material, the flow dynamics in column operations would be greatly enhanced. In addition, the microspheres are in a stable form that has little or no tendency to degrade under dynamic conditions. Another advantage of the process is that the gelation time and size of the microspheres can be controlled. Also, microspheres can be reproducibly prepared on either a small or a large scale-which is not always true for batch preparation of the powdered or granular forms. The use of these materials can be expanded in a number of ways. The process allows for the microspheres to be homogeneously embedded with fine particles of other selective ion exchangers, and for the microspheres (undried) to be chemically converted to microspheres of other ion-exchanger materials such as phosphates, silicophosphates, hexacyanoferrates, tungstates, and molybdates. This report presents an economic evaluation of the preparation of hydrous titanium oxide (HTiO) microspheres by an internal gelation process for use in making ion exchangers, catalysts, and getters. It also examines the estimated costs for a company to produce the material but does not discuss the price to be charged since that value would take into account company policy-matters that cannot be covered here. Since the volume

  18. Preparation, modification, and characterization of alginate hydrogel with nano-/microfibers: a new perspective for tissue engineering.

    PubMed

    Santana, Bianca Palma; Nedel, Fernanda; Piva, Evandro; de Carvalho, Rodrigo Varella; Demarco, Flávio Fernando; Carreño, Neftali Lenin Villarreal

    2013-01-01

    We aimed to develop an alginate hydrogel (AH) modified with nano-/microfibers of titanium dioxide (nfTD) and hydroxyapatite (nfHY) and evaluated its biological and chemical properties. Nano-/microfibers of nfTD and nfHY were combined with AH, and its chemical properties were evaluated by FTIR spectroscopy, X-ray diffraction, energy dispersive X-Ray analysis, and the cytocompatibility by the WST-1 assay. The results demonstrate that the association of nfTD and nfHY nano-/microfibers to AH did not modified the chemical characteristics of the scaffold and that the association was not cytotoxic. In the first 3 h of culture with NIH/3T3 cells nfHY AH scaffolds showed a slight increase in cell viability when compared to AH alone or associated with nfTD. However, an increase in cell viability was observed in 24 h when nfTD was associated with AH scaffold. In conclusion our study demonstrates that the combination of nfHY and nfTD nano-/microfibers in AH scaffold maintains the chemical characteristics of alginate and that this association is cytocompatible. Additionally the combination of nfHY with AH favored cell viability in a short term, and the addition of nfTD increased cell viability in a long term. PMID:23862142

  19. Nonflammable Alginate Nanocomposite Aerogels Prepared by a Simple Freeze-Drying and Post-Cross-Linking Method.

    PubMed

    Shang, Ke; Liao, Wang; Wang, Juan; Wang, Yu-Tao; Wang, Yu-Zhong; Schiraldi, David A

    2016-01-13

    Nonflammable materials based on renewable ammonium alginate and nano fillers (nanoscale magnesium hydroxide, nanoscale aluminum hydroxide, layered double hydroxide, sodium montmorillonite, and Kaolin) were fabricated through a simple, environmentally friendly freeze-drying process, in which water was used as a solvent. A simple and economic post-cross-linking method was used to obtain homogeneous samples. The microstructure of the cross-linked alginate aerogels show three-dimensional networks. These materials exhibit low densities (0.064-0.116 g cm(-3)), low thermal conductivities (0.024-0.046 W/m K), and useful mechanical strengths (0.7-3.5 MPa). The aerogels also exhibit high thermal stabilities and achieve inherent nonflammability with limiting oxygen indexes (LOI) higher than 60. Related properties were conducted and analyzed by cone calorimeter (CC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). These results combine to suggest promising prospects for use of these aerogel nanocomposites in a range of applications. PMID:26675804

  20. Preparation of complex nano-particles based on alginic acid/poly[(2-dimethylamino) ethyl methacrylate] and a drug vehicle for doxorubicin release controlled by ionic strength.

    PubMed

    Cai, Hong; Ni, Caihua; Zhang, Liping

    2012-01-23

    Monodispersed complex nano-particles were synthesized simply by mixing alginic acid (ALG-H) with poly[(2-dimethylamino) ethyl methacrylate] (PDEMA) in pure water without any surfactants or additives. The structure and properties of the nano-particles were extensively studied. The surface charges and average sizes of the nano-particles were varied with the composition of ALG-H and PDEMA. The nano-particles were formed through electrostatic attraction force, and they were very stable in pure water, but dissociated in salt solutions. An anticancer drug (doxorubicin) was loaded in the nano-particles and released in different saline solutions. The release profiles revealed that the drug release could be controlled by adjusting the pH and salt concentrations. The nano-particles displayed apparent advantages such as simple preparation process, low cost, free of organic solvents, size controllable, biodegradable and biocompatible. PMID:22079138

  1. Tetracycline-HCl-loaded poly(DL-lactide-co-glycolide) microspheres prepared by a spray drying technique: influence of gamma-irradiation on radical formation and polymer degradation.

    PubMed

    Bittner, B; Mäder, K; Kroll, C; Borchert, H H; Kissel, T

    1999-05-01

    Tetracycline-HCl (TCH)-loaded microspheres were prepared from poly(lactide-co-glycolide) (PLGA) by spray drying. The drug was incorporated in the polymer matrix either in solid state or as w/o emulsion. The spin probe 4-hydroxy-2,2,6, 6-tetramethyl-piperidine-1-oxyl (TEMPOL) and the spin trap tert-butyl-phenyl-nitrone (PBN) were co-encapsulated into the TCH-loaded and placebo particles. We investigated the effects of gamma-irradiation on the formation of free radicals in polymer and drug and the mechanism of chain scission after sterilization. Gamma-Irradiation was performed at 26.9 and 54.9 kGy using a 60Co source. The microspheres were characterized especially with respect to the formation of radicals and in vitro polymer degradation. Electron paramagnetic resonance (EPR) spectroscopy, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), high-performance liquid chromatography (HPLC), gas chromatography-mass spectroscopy (GC-MS), and scanning electron microscopy (SEM) were used for characterization of the microspheres. Using EPR spectroscopy, we successfully detected gamma-irradiation induced free radicals within the TCH-loaded microspheres, while unloaded PLGA did not contain radicals under the same conditions. The relatively low glass transition temperature of the poly(dl-lactide-co-glycolide) (37-39 degrees C) seems to favor subsequent reactions of free radicals due to the high mobility of the polymeric chains. Because of the high melting point of TCH (214 degrees C), the radicals can only be stabilized in drug loaded microspheres. In order to determine the mechanism of polymer degradation after exposure to gamma-rays, the spin trap PBN and the spin probe TEMPOL were encapsulated in the microspheres. gamma-Irradiation of microspheres containing PBN resulted in the formation of a lipophilic spin adduct, indicating that a polymeric radical was generated by random chain scission. Polymer degradation by an unzipping mechanism would have

  2. Porous microsphere and its applications

    PubMed Central

    Cai, Yunpeng; Chen, Yinghui; Hong, Xiaoyun; Liu, Zhenguo; Yuan, Weien

    2013-01-01

    Porous microspheres have drawn great attention in the last two decades for their potential applications in many fields, such as carriers for drugs, absorption and desorption of substances, pulmonary drug delivery, and tissue regeneration. The application of porous microspheres has become a feasible way to address existing problems. In this essay, we give a brief introduction of the porous microsphere, its characteristics, preparation methods, applications, and a brief summary of existing problems and research tendencies. PMID:23515359

  3. Studies on the preparation and plasma spherodization of yttrium aluminosilicate glass microspheres for their potential application in liver brachytherapy

    NASA Astrophysics Data System (ADS)

    Sreekumar, K. P.; Saxena, S. K.; Kumar, Yogendra; Thiyagarajan, T. K.; Dash, Ashutosh; Ananthapadmanabhan, P. V.; Venkatesh, Meera

    2010-02-01

    Plasma spheroidization exploits the high temperature and high enthalpy available in the thermal plasma jet to melt irregularly shaped powder particles and quench them to get dense spherical particles. Plasma spheroidization is a versatile process and can be applied to metals, ceramics, alloys and composites to obtain fine spherical powders. Radioactive microspheres incorporated with high energetic beta emitting radioisotopes have been reported to be useful in the palliative treatment of liver cancer. These powders are to be prepared in closer range of near spherical morphology in the size range 20-35 microns. Inactive glass samples were prepared by heating the pre-calculated amount of glass forming ingredients in a recrystallized alumina crucible. The glass was formed by keeping the glass forming ingredients at 1700°C for a period of three hours to form a homogeneous melt. After cooling, the glass was recovered from the crucible by crushing and was subsequently powdered mechanically with the help of mortar and pestle. This powder was used as the feed stock for plasma spheroidization using an indigenously developed 40 kW plasma spray system. Experiments were carried out at various operating parameters. The operating parameters were optimised to get spheroidised particles. The powder was sieved to get the required size range before irradiation.

  4. Preparation of magnetic core-shell iron oxide@silica@nickel-ethylene glycol microspheres for highly efficient sorption of uranium(VI).

    PubMed

    Tan, Lichao; Zhang, Xiaofei; Liu, Qi; Wang, Jun; Sun, Yanbo; Jing, Xiaoyan; Liu, Jingyuan; Song, Dalei; Liu, Lianhe

    2015-04-21

    We report a facile approach for the formation of magnetic core-shell iron oxide@silica@nickel-ethylene glycol (Fe3O4@SiO2@Ni-L) microspheres. The structure and morphology of Fe3O4@SiO2@Ni-L are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen sorption isotherm. The composite possesses a high specific surface area of 382 m(2) g(-1). The obtained core/shell structure is composed of a superparamagnetic core with a strong response to external fields, which are recovered readily from aqueous solutions by magnetic separation. When used as the adsorbent for uranium(vi) in water, the as-prepared Fe3O4@SiO2@Ni-L multi-structural microspheres exhibit a high adsorption capacity, which is mainly attributed to the large specific surface area and typical mesoporous characteristics of Fe3O4@SiO2@Ni-L microspheres. This work provides a promising approach for the design and synthesis of multifunctional microspheres, which can be used for water treatment, as well as having other potential applications in a variety of biomedical fields including drug delivery and biosensors. PMID:25773512

  5. Large-scale preparation of strawberry-like, AgNP-doped SiO2 microspheres using the electrospraying method

    NASA Astrophysics Data System (ADS)

    Ma, Zhijun; Ji, Huijiao; Tan, Dezhi; Dong, Guoping; Teng, Yu; Zhou, Jiajia; Guan, Miaojia; Qiu, Jianrong; Zhang, Ming

    2011-07-01

    In this paper, we report on a novel strategy for the preparation of silver nanoparticle-doped SiO2 microspheres (Ag-SMSs) with an interesting strawberry-like morphology using a simple and efficient electrospraying method. SEM (scanning electron microscopy), TEM (transmission electron microscopy), XRD (x-ray diffraction), EDS (energy-dispersive spectroscopy) and UV-vis spectra (ultraviolet-visible spectra) were applied to investigate the morphology, structure, composition and optical properties of the hybrid microspheres, and E. coli (Escherichia coli) was used as a model microbe to evaluate their antibacterial ability. The results showed that the Ag-SMSs were environmentally stable and washing resistant. The Ag-SMSs exhibited effective inhibition against proliferation of E. coli, and their antibacterial ability could be well preserved for a long time. The environmental stability, washing resistance, efficient antibacterial ability and simple but productive preparation method endowed the Ag-SMSs with great potential for practical biomedical applications.

  6. Preparation and characterization of uniform-sized chitosan microspheres containing insulin by membrane emulsification and a two-step solidification process.

    PubMed

    Wang, Lian-Yan; Gu, Yong-Hong; Zhou, Qing-Zhu; Ma, Guang-Hui; Wan, Yin-Hua; Su, Zhi-Guo

    2006-07-01

    Chitosan microsphere has important application in controlled release of protein and peptide drug, because it shows excellent mucoadhesive and permeation enhancing effect across the biological surfaces. In the conventional preparation methods of chitosan microsphere, the W/O emulsion was usually prepared by mechanical stirring method, and then the droplets were solidified by glutaraldehyde. There existed limitation and shortage such as broad size distribution, de-activity of bio-drug and difficulty in drug release because protein and peptide drug have the same amino group as chitosan. In this study, we established a method to prepare uniform-sized microsphere, and solve above problems by combining a special membrane emulsification technique and a step-wise crosslinking method. That is, the chitosan/acetic acid aqueous solution was pressed through the uniform pores of a porous glass membrane into a paraffin/petroleum ether mixture containing PO-500 emulsifier, to form a W/O emulsion with uniform droplet size. Then, the uniform droplets were solidified by a two-step crosslinking method. At the first step, tripolyphosphate (TPP) solution was dropped gradually in the emulsion, TPP diffused into the droplet to crosslink chitosan by an ionic linkage, generating a microgel. At the second step, an adequate amount of glutaraldehyde was added. The solidification conditions of the two-step process were optimized by investigating the effects of solidification conditions on morphology of microspheres, encapsulation efficiency (EE), drug activity and release profile in vitro. The suitable preparative conditions were determined as follows: pH value of aqueous phase and TPP solution was 3.5-4.0, the molar ratio of amino group of chitosan to aldehyde group of glutaraldehyde was 1:1 and the crosslinking time of glutaraldehyde was 60 min. PMID:16787743

  7. In vitro Evaluation of Novel Sustained Release Microspheres of Glipizide Prepared by the Emulsion Solvent Diffusion-Evaporation Method

    PubMed Central

    Phutane, P; Shidhaye, S; Lotlikar, V; Ghule, A; Sutar, S; Kadam, V

    2010-01-01

    The objective of the current investigation is to reduce dosing frequency and improve patient compliance by designing and systematically evaluating sustained release microspheres of Glipizide. An anti-diabetic drug, Glipizide, is delivered through the microparticulate system using ethyl cellulose as the controlled release polymer. Microspheres were developed by the emulsion solvent diffusion-evaporation technique by using the modified ethanol,-dichloromethane co-solvent system. The polymer mixture of ethyl cellulose and Eudragit® S100 was used in different ratios (1:0, 1:1, 2:3, 1:4 and 0:1) to formulate batches F1 to F5. The resulting microspheres were evaluated for particle size, densities, flow properties, morphology, recovery yield, drug content, and in vitro drug release behavior. The formulated microspheres were discrete, spherical with relatively smooth surface, and with good flow properties. Among different formulations, the fabricated microspheres of batch F3 had shown the optimum percent drug encapsulation of microspheres and the sustained release of the Glipizide for about 12 h. Release pattern of Glipizide from microspheres of batch F3 followed Korsmeyers-peppas model and zero-order release kinetic model. The value of ‘n’ was found to be 0.960, which indicates that the drug release was followed by anomalous (non-fickian) diffusion. The data obtained thus suggest that a microparticulate system can be successfully designed for sustained delivery of Glipizide and to improve dosage form characteristics for easy formulation. PMID:21331188

  8. Preparation of luminescent and mesoporous Eu3+/Tb3+ doped calcium silicate microspheres as drug carriers via a template route.

    PubMed

    Kang, Xiaojiao; Huang, Shanshan; Yang, Piaoping; Ma, Ping'an; Yang, Dongmei; Lin, Jun

    2011-03-01

    Luminescent and mesoporous Eu(3+)/Tb(3+) doped calcium silicate microspheres (LMCS) were synthesized by using mesoporous silica spheres as the templates. The LMCS and drug-loaded samples were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), N(2) adsorption/desorption, and photoluminescence (PL) spectra. The results reveal that the LMCS have uniform spherical morphology with a diameter around 400 nm and the mesopore size of 6 nm. The prepared samples exhibit little cytotoxicity at concentrations below 5 mg mL(-1) via MTT assay. In addition, drug storage/release properties of the LMCS were demonstrated for ibuprofen (IBU). The obtained LMCS can be used to encapsulate drugs and release them. Under excitation by UV light, the IBU-loaded samples still show the characteristic (5)D(0)-(7)F(1-3) emission lines of Eu(3+) and the characteristic (5)D(4)-(7)F(3-6) emission lines of Tb(3+). The PL intensity of Eu(3+) in the drug carrier system increases with the cumulative released amount of IBU, making the drug release able to be tracked or monitored by the change of luminescence of Eu(3+). The LMCS reported here with mesoporous structure, good biocompatibility and luminescent property can be a promising drug delivery carrier. PMID:21183970

  9. Comparison of the efficacy and safety of a new aluminium-free paediatric alginate preparation and placebo in infants with recurrent gastro-oesophageal reflux.

    PubMed

    Miller, S

    1999-01-01

    The aim of the present study was to compare the efficacy and safety of a new aluminium-free formulation of alginate with placebo in infants with recurrent gastro-oesophageal reflux. This was a double-blind, randomised, parallel-group study conducted at 25 centres in the UK. Of the 90 paediatric patients recruited in a general practice setting, 42 were randomised to receive alginate and 48 to receive placebo. Infants were assessed before treatment and again after seven and 14 days of treatment. Analyses were based on the last, valid, non-missing observation for each variable for the intent-to-treat (ITT) population of 42 alginate and 46 placebo patients. For the primary efficacy measure (number of vomitting/regurgitation episodes), alginate was significantly superior to placebo (p = 0.009). For the secondary efficacy measure (severity of vomiting), a trend in favour of alginate was observed (p = 0.061). Patients receiving alginate achieved superior assessments of treatment outcome by both investigators (p = 0.008) and parent/guardians (p = 0.002) alike. In addition, alginate achieved a significantly greater reduction in the mean severity of vomiting episodes recorded in a daily diary compared with placebo (p = 0.027) and resulted in more patients having at least 10% symptom-free days (p = 0.027). For none of the variables measured did placebo have a superior effect. More than one-half of all patients experienced some adverse event, although no statistically significant differences were observed between the two treatment groups (p > 0.1), and adverse events accounted for withdrawal in only 12.5% of the patients (alginate, n = 4; placebo, n = 7). Aluminium-free alginate demonstrated superior efficacy over placebo in treating recurrent gastro-oesophageal reflux in paediatric patients. The safety profile of alginate was similar to that of placebo. PMID:10621922

  10. Preparing non-volatile resistive switching memories by tuning the content of Au@air@TiO2-h yolk-shell microspheres in a poly(3-hexylthiophene) layer

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Liu, Quan; Zhang, Chun-Yu; Jiang, Jun; Wang, Li-Hua; Chen, Dong-Yun; Xu, Qing-Feng; Lu, Jian-Mei

    2015-11-01

    Crystalline hybrid microspheres, encapsulating a Au nanocore in the hollow cavity of a hairy semiconductor TiO2 shell (Au@air@TiO2-h microspheres) were prepared using template-assisted synthesis methods. The as-prepared microspheres are dispersed into a poly(3-hexylthiophene) (P3HT) matrix and used as a memory active layer. The electrical rewritable memory effects of Al/[Au@air@TiO2-h + P3HT]/ITO sandwich devices can be effectively and exactly controlled by tuning the microsphere content in the electroactive layer. To clarify the switching mechanism, different components in the device, such as P3HT and the microspheres, have been investigated. And it was determined that the switching mechanism can be attributed to the formation and rupture of oxygen vacancy filaments. These results suggest that the Au@air@TiO2-h microspheres are potentially capable of high density data storage. In addition, this finding could provide important guidelines for the reproducibility of nanocomposite-based memory devices and is helpful to demonstrate the switching mechanism of these devices.Crystalline hybrid microspheres, encapsulating a Au nanocore in the hollow cavity of a hairy semiconductor TiO2 shell (Au@air@TiO2-h microspheres) were prepared using template-assisted synthesis methods. The as-prepared microspheres are dispersed into a poly(3-hexylthiophene) (P3HT) matrix and used as a memory active layer. The electrical rewritable memory effects of Al/[Au@air@TiO2-h + P3HT]/ITO sandwich devices can be effectively and exactly controlled by tuning the microsphere content in the electroactive layer. To clarify the switching mechanism, different components in the device, such as P3HT and the microspheres, have been investigated. And it was determined that the switching mechanism can be attributed to the formation and rupture of oxygen vacancy filaments. These results suggest that the Au@air@TiO2-h microspheres are potentially capable of high density data storage. In addition, this

  11. Preparation and characterization of a novel sodium alginate incorporated self-assembled Fmoc-FF composite hydrogel.

    PubMed

    Gong, Xiao; Branford-White, Christopher; Tao, Lei; Li, Shubai; Quan, Jing; Nie, Huali; Zhu, Limin

    2016-01-01

    Dipeptides and their derivatives have attracted tremendous attention owning to their excellent abilities of self-assemble assembling into various structures which have great potentials for applications in biology and/or nanotechnology. In the present study, we dedicate to fabricate a rigid and structure controllable Fmoc-FF/SA composite hydrogel. We found that the modified dipeptide, fluorenyl-9-methoxycarbonyl (Fmoc)-diphenylalanine (Phe-Phe) can self-assemble into rigid hydrogels with structures of nanowires, layered thin films or honeycombs as the change of sodium alginate (SA) concentration. Meanwhile, CD-spectroscopy demonstrated that SA appeared to control the process, but it did not change the arrangement of the Fmoc-FF peptide. Our results demonstrated that the formed hydrogel showed physical and chemical stability as well as possessing good biocompatibility. Rheological measurements showed that the addition of SA could improve the stability of the hydrogel. Cell viability assay revealed that the Fmoc-FF and Fmoc-FF/SA hydrogels are both beneficial for cell proliferation in-vitro. Our results indicated that the fabricated Fmoc-FF/SA composite hydrogels could be used in tissue engineering and drug delivery in the future. PMID:26478335

  12. Preparation and swelling behavior of a novel self-assembled β-cyclodextrin/acrylic acid/sodium alginate hydrogel.

    PubMed

    Huang, Zhanhua; Liu, Shouxin; Zhang, Bin; Wu, Qinglin

    2014-11-26

    A novel biodegradable β-cyclodextrin/acrylic acid/sodium alginate (CSA) hydrogel with a three-dimensional network structure was self-assembled by inverse suspension copolymerization. The CSA resin was pH sensitive and had good water absorption properties in pH 6-8 buffer solutions. At a β-CD:AA:SA mass ratio of 1:9:3 the CSA water absorbency was found to be 1403 g/g and the CSA hydrogel strength was 4.968 N. In 0.005-0.1 mol/L chloride salt and sulfate salt solutions the CSA water absorbencies increased as follows: NaCl>KCl>MgCl2>CaCl2>FeCl3, and Na2SO4>K2SO4>FeSO4>Al2(SO4)3, respectively. The release of water from the CSA hydrogel occurred slowly over 120 h. The biodegradation efficiency of the resin reached 85.3% for Lentinula edodes. The super water absorbency, good salt resistance and excellent water retention properties of CSA make it suitable for application as an agricultural water retention agent in saline soils. PMID:25256504

  13. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering.

    PubMed

    Kim, Hye-Lee; Jung, Gil-Yong; Yoon, Jun-Ho; Han, Jung-Suk; Park, Yoon-Jeong; Kim, Do-Gyoon; Zhang, Miqin; Kim, Dae-Joon

    2015-09-01

    The aim of this study was to develop chitosan composite scaffolds with high strength and controlled pore structures by homogenously dispersed nano-sized hydroxyapatite (nano-HAp) powders. In the fabrication of composite scaffolds, nano-HAp powders distributed in an alginate (AG) solution with a pH higher than 10 were mixed with a chitosan (CS) solution and then freeze dried. While the HAp content increased up to 70 wt.%, the compressive strength and the elastic modulus of the composite scaffolds significantly increased from 0.27 MPa and 4.42 MPa to 0.68 MPa and 13.35 MPa, respectively. Higher content of the HAp also helped develop more differentiation and mineralization of the MC3T3-E1 cells on the composite scaffolds. The uniform pore structure and the excellent mechanical properties of the HAp/CS composite scaffolds likely resulted from the use of the AG solution at pH 10 as a dispersant for the nano-HAp powders. PMID:26046263

  14. Preparation and In Vitro Biological Evaluation of Octacalcium Phosphate/Bioactive Glass-Chitosan/ Alginate Composite Membranes Potential for Bone Guided Regeneration.

    PubMed

    Xu, Sanzhong; Chen, Xiaoyi; Yang, Xianyan; Zhang, Lei; Yang, Guojing; Shao, Huifeng; He, Yong; Gou, Zhongru

    2016-06-01

    The chitosan/alginate-trace element-codoped octacalcium phosphate/nano-sized bioactive glass (CS/ALG-teOCP/nBG) composite membranes were prepared by a layer-by-layer coating method for the functional requirement of guided bone regeneration (GBR). The morphology, mechanical properties and moisture content of the membranes was studied by scanning electron microscopy (SEM) observation, mechanical and swelling test. The results showed that the teOCP/nBG distributed uniformly in the composite membranes, and such as-prepared composite membrane exhibited an excellent tensile strength, accompanying with mechanical decay with immersion in aqueous medium. Cell culture and MTT assays showed that the surface microstructure and the ion dissolution products from teOCP/nBG components could enhance the cell proliferation, and especially the composite membranes was suitable for supporting the adhesion and growth behavior of human bone marrow mesenchymal stem cells (hBMSCs) in comparison with the CS/ALG pure polymer membranes. These results suggest that the new CS/ALG-teOCP/nBG composite membrane is highly bioactive and biodegradable, and favorable for guiding bone regeneration. PMID:27427599

  15. Preparation of nano/macroporous polycaprolactone microspheres for an injectable cell delivery system using room temperature ionic liquid and camphene.

    PubMed

    Kim, Seong Yeol; Hwang, Ji-Young; Shin, Ueon Sang

    2016-03-01

    The nano/macroporous polycaprolactone (PCL) microspheres with cell active surfaces were developed as an injectable cell delivery system. Room temperature ionic liquid (RTIL) and camphene were used as a liquid mold and a porogen, respectively. Various-sized spheres of 244-601μm with pores of various size and shape of 0.02-100μm, were formed depending on the camphene/RTIL ratio (0.8-2.6). To give cell activity, the surface of porous microspheres were further modified with nerve growth factors (NGF) containing gelatin to give a thin NGF/gelatin layer, to which the neural progenitor cells (PC-12) attached and extended their neurites on to the surface layers of the microspheres. The developed microspheres may be potentially applicable as a neuronal cell delivery scaffold for neuron tissue engineering. PMID:26641560

  16. Alginate composites for bone tissue engineering: a review.

    PubMed

    Venkatesan, Jayachandran; Bhatnagar, Ira; Manivasagan, Panchanathan; Kang, Kyong-Hwa; Kim, Se-Kwon

    2015-01-01

    Bone is a complex and hierarchical tissue consisting of nano hydroxyapatite and collagen as major portion. Several attempts have been made to prepare the artificial bone so as to replace the autograft and allograft treatment. Tissue engineering is a promising approach to solve the several issues and is also useful in the construction of artificial bone with materials including polymer, ceramics, metals, cells and growth factors. Composites consisting of polymer-ceramics, best mimic the natural functions of bone. Alginate, an anionic polymer owing enormous biomedical applications, is gaining importance particularly in bone tissue engineering due to its biocompatibility and gel forming properties. Several composites such as alginate-polymer (PLGA, PEG and chitosan), alginate-protein (collagen and gelatin), alginate-ceramic, alginate-bioglass, alginate-biosilica, alginate-bone morphogenetic protein-2 and RGD peptides composite have been investigated till date. These alginate composites show enhanced biochemical significance in terms of porosity, mechanical strength, cell adhesion, biocompatibility, cell proliferation, alkaline phosphatase increase, excellent mineralization and osteogenic differentiation. Hence, alginate based composite biomaterials will be promising for bone tissue regeneration. This review will provide a broad overview of alginate preparation and its applications towards bone tissue engineering. PMID:25020082

  17. Microfluidic Fabrication of MEAN-Eluting Magnetic Microspheres

    PubMed Central

    Kim, Dong-Hyun; Choy, Terence; Huang, Sui; Green, Richard M; Omary, Reed A.; Larson, Andrew C.

    2014-01-01

    Recently, 6-methoxyethylamino numonafide (MEAN) exhibited potent inhibition of hepatocellular carcinoma (HCC) cell growth and less systemic toxicity than amonafide. MEAN may serve as an ideal candidate for the treatment of HCC; however, liver-directed, selective infusion methods may be critical to maximize MEAN dose delivered to the targeted tumors. Our study describes the microfluidic fabrication of MEAN-eluting ultrasmall superparamagnetic iron oxide (USPIO) nanocluster-containing alginate microspheres (MEAN-magnetic microspheres) intended for selective transcatheter delivery to hepatocellular carcinoma. The resulting drug delivery platform was mono-disperse, microsphere sizes were readily controlled based upon channel flow rates during synthesis procedures, and drug release rates from the microspheres could be readily controlled with the introduction of USPIO nanoclusters. The MR relaxivity properties of the microspheres suggest the feasibility of in vivo imaging after administration and these microspheres exhibited potent therapeutic effects significantly inhibiting cell growth inducing apoptosis in hepatoma cells. PMID:24161384

  18. Evaluation of sodium alginate as drug release modifier in matrix tablets.

    PubMed

    Liew, Celine Valeria; Chan, Lai Wah; Ching, Ai Ling; Heng, Paul Wan Sia

    2006-02-17

    Alginates are useful natural polymers suitable for use in the design of pharmaceutical dosage forms. However, the effects of particle size, viscosity and chemical composition of alginates on drug release from alginate matrix tablets are not clearly understood. Hence, 17 grades of sodium alginate with different particle size distributions, viscosities and chemical compositions were used to prepare matrix tablets at various concentrations to screen the factors influencing drug release from such matrices. Particle size was found to have an influence on drug release from these matrices. Sodium alginate was subsequently classified into several size fractions and also cryogenically milled to produce smaller particle size samples. Cryogenic milling could be successfully applied to pulverize coarse alginate particles without changing the quality through degradation or segregation. This study showed the significance of each alginate property in modulating drug release: particle size is important in initial alginic acid gel barrier formation as it affected the extent of burst release; higher alginate viscosity slowed down drug release rate in the buffer phase but enhanced release rate in the acid phase; high M-alginate might be more advantageous than high-G-alginate in sustaining drug release; and, the effect of increasing alginate concentration was greater with larger alginate particles. This can serve as a framework for formulators working with alginates. Furthermore, the results showed that sodium alginate matrices can sustain drug release for at least 8 h, even for a highly water-soluble drug in the presence of a water-soluble excipient. PMID:16364576

  19. MRI Visible Drug Eluting Magnetic Microspheres for Transcatheter Intra-Arterial Delivery to Liver Tumors

    PubMed Central

    Kim, Dong-Hyun; Chen, Jeane; Omary, Reed A.; Larson, Andrew C.

    2015-01-01

    Magnetic resonance imaging (MRI)-visible amonafide-eluting alginate microspheres were developed for targeted arterial-infusion chemotherapy. These alginate microspheres were synthesized using a highly efficient microfluidic gelation process. The microspheres included magnetic clusters formed by USPIO nanoparticles to permit MRI and a sustained drug-release profile. The biocompatibility, MR imaging properties and amonafide release kinetics of these microspheres were investigated during in vitro studies. A xenograft rodent model was used to demonstrate the feasibility to deliver these microspheres to liver tumors using hepatic transcatheter intra-arterial infusions and potential to visualize the intra-hepatic delivery of these microspheres to both liver tumor and normal tissues with MRI immediately after infusion. This approach offer the potential for catheter-directed drug delivery to liver tumors for reduced systemic toxicity and superior therapeutic outcomes. PMID:25767615

  20. Freeze-thaw induced gelation of alginates.

    PubMed

    Zhao, Ying; Shen, Wei; Chen, Zhigang; Wu, Tao

    2016-09-01

    Adding divalent ions or lowering pH below the pKa values of alginate monomers are common ways in preparing alginate gels. Herein a new way of preparing alginate gels using freeze-thaw technique is described. Solvent crystallization during freezing drove the polymers to associate into certain structures that became the junction zones of hydrogels after thawing. It enabled the preparation of alginate gels at pH 4.0 and 3.5, two pH at which the gel could not be formed previously. At pH 3.0 where alginate gel could be formed initially, applying freeze-thaw treatment increased the gel storage modulus almost 100 times. The formation of hydrogels and the resulting gel properties, such as dynamic moduli and gel syneresis were influenced by the pH values, number of freeze-thaw cycles, alginate concentrations, and ionic strengths. The obtained hydrogels were soft and demonstrated a melting behavior upon storage, which may find novel applications in the biomedical industry. PMID:27185114

  1. Electrochemical properties of tungsten sulfide-carbon composite microspheres prepared by spray pyrolysis.

    PubMed

    Choi, Seung Ho; Boo, Sung Jin; Lee, Jong-Heun; Kang, Yun Chan

    2014-01-01

    Tungsten sulfide (WS2)-carbon composite powders with superior electrochemical properties are prepared by a two-step process. WO3-carbon composite powders were first prepared by conventional spray pyrolysis, and they were then sulfidated to form WS2-carbon powders. Bare WS2 powders are also prepared by sulfidation of bare WO3 powders obtained by spray pyrolysis. Stacked graphitic layers could not be found in the bare WS2 and WS2-carbon composite powders. The amorphous bare WS2 and WS2-carbon composite powders have Brunauer-Emmett-Teller (BET) surface areas of 2.8 and 4 m(2) g(-1), respectively. The initial discharge and charge capacities of the WS2-carbon composite powders at a current density of 100 mA g(-1) are 1055 and 714 mA h g(-1), respectively, and the corresponding initial Coulombic efficiency is 68%. On the other hand, the initial discharge and charge capacities of the bare WS2 powders are 514 and 346 mA h g(-1), respectively. The discharge capacities of the WS2-carbon composite powders for the 2(nd) and 50(th) cycles are 716 and 555 mA h g(-1), respectively, and the corresponding capacity retention measured after first cycle is 78%. PMID:25169439

  2. Electrochemical properties of tungsten sulfide–carbon composite microspheres prepared by spray pyrolysis

    PubMed Central

    Choi, Seung Ho; Boo, Sung Jin; Lee, Jong-Heun; Kang, Yun Chan

    2014-01-01

    Tungsten sulfide (WS2)–carbon composite powders with superior electrochemical properties are prepared by a two-step process. WO3-carbon composite powders were first prepared by conventional spray pyrolysis, and they were then sulfidated to form WS2-carbon powders. Bare WS2 powders are also prepared by sulfidation of bare WO3 powders obtained by spray pyrolysis. Stacked graphitic layers could not be found in the bare WS2 and WS2–carbon composite powders. The amorphous bare WS2 and WS2–carbon composite powders have Brunauer–Emmett–Teller (BET) surface areas of 2.8 and 4 m2 g−1, respectively. The initial discharge and charge capacities of the WS2–carbon composite powders at a current density of 100 mA g−1 are 1055 and 714 mA h g−1, respectively, and the corresponding initial Coulombic efficiency is 68%. On the other hand, the initial discharge and charge capacities of the bare WS2 powders are 514 and 346 mA h g−1, respectively. The discharge capacities of the WS2–carbon composite powders for the 2nd and 50th cycles are 716 and 555 mA h g−1, respectively, and the corresponding capacity retention measured after first cycle is 78%. PMID:25169439

  3. Electrochemical properties of tungsten sulfide-carbon composite microspheres prepared by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Choi, Seung Ho; Boo, Sung Jin; Lee, Jong-Heun; Kang, Yun Chan

    2014-08-01

    Tungsten sulfide (WS2)-carbon composite powders with superior electrochemical properties are prepared by a two-step process. WO3-carbon composite powders were first prepared by conventional spray pyrolysis, and they were then sulfidated to form WS2-carbon powders. Bare WS2 powders are also prepared by sulfidation of bare WO3 powders obtained by spray pyrolysis. Stacked graphitic layers could not be found in the bare WS2 and WS2-carbon composite powders. The amorphous bare WS2 and WS2-carbon composite powders have Brunauer-Emmett-Teller (BET) surface areas of 2.8 and 4 m2 g-1, respectively. The initial discharge and charge capacities of the WS2-carbon composite powders at a current density of 100 mA g-1 are 1055 and 714 mA h g-1, respectively, and the corresponding initial Coulombic efficiency is 68%. On the other hand, the initial discharge and charge capacities of the bare WS2 powders are 514 and 346 mA h g-1, respectively. The discharge capacities of the WS2-carbon composite powders for the 2nd and 50th cycles are 716 and 555 mA h g-1, respectively, and the corresponding capacity retention measured after first cycle is 78%.

  4. Magneto-responsive alginate capsules

    NASA Astrophysics Data System (ADS)

    Degen, Patrick; Zwar, Elena; Schulz, Imke; Rehage, Heinz

    2015-05-01

    Upon incorporation of magnetic nanoparticles (mNPs) into gels, composite materials called ferrogels are obtained. These magneto-responsive systems have a wide range of potential applications including switches and sensors as well as drug delivery systems. In this article, we focus on the properties of calcium alginate capsules, which are widely used as carrier systems in medicine and technology. We studied the incorporation of different kinds of mNPs in matrix capsules and in the core and the shell of hollow particles. We found out that not all particle-alginate or particle-CaCl2 solution combinations were suitable for a successful capsule preparation on grounds of a destabilization of the nanoparticles or the polymer. For those systems allowing the preparation of switchable beads or capsules, we systematically studied the size and microscopic structure of the capsules, their magnetic behavior and mechanical resistance.

  5. Preparing non-volatile resistive switching memories by tuning the content of Au@air@TiO2-h yolk-shell microspheres in a poly(3-hexylthiophene) layer.

    PubMed

    Wang, Peng; Liu, Quan; Zhang, Chun-Yu; Jiang, Jun; Wang, Li-Hua; Chen, Dong-Yun; Xu, Qing-Feng; Lu, Jian-Mei

    2015-12-14

    Crystalline hybrid microspheres, encapsulating a Au nanocore in the hollow cavity of a hairy semiconductor TiO2 shell (Au@air@TiO2-h microspheres) were prepared using template-assisted synthesis methods. The as-prepared microspheres are dispersed into a poly(3-hexylthiophene) (P3HT) matrix and used as a memory active layer. The electrical rewritable memory effects of Al/[Au@air@TiO2-h + P3HT]/ITO sandwich devices can be effectively and exactly controlled by tuning the microsphere content in the electroactive layer. To clarify the switching mechanism, different components in the device, such as P3HT and the microspheres, have been investigated. And it was determined that the switching mechanism can be attributed to the formation and rupture of oxygen vacancy filaments. These results suggest that the Au@air@TiO2-h microspheres are potentially capable of high density data storage. In addition, this finding could provide important guidelines for the reproducibility of nanocomposite-based memory devices and is helpful to demonstrate the switching mechanism of these devices. PMID:26541116

  6. Ag/α-Fe2O3 hollow microspheres: Preparation and application for hydrogen peroxide detection

    NASA Astrophysics Data System (ADS)

    Kang, Xinyuan; Wu, Zhiping; Liao, Fang; Zhang, Tingting; Guo, Tingting

    2015-09-01

    In this paper, we demonstrated a simple approach for preparing α-Fe2O3 hollow spheres by mixing ferric nitrate aqueous and glucose in 180 °C. The glucose was found to act as a soft template in the process of α-Fe2O3 hollow spheres formation. Ag/α-Fe2O3 hollow nanocomposite was obtained under UV irradiation without additional reducing agents or initiators. Synthesized Ag/α-Fe2O3 hollow composites exhibited remarkable catalytic performance toward H2O2 reduction. The electrocatalytic activity mechanism of Ag/α-Fe2O3/GCE were discussed toward the reduction of H2O2 in this paper.

  7. Facile one-pot preparation and functionalization of luminescent chitosan-poly(methacrylic acid) microspheres based on polymer monomer pairs

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Wang, Changchun; Mao, Weiyong; Yang, Wuli; Liu, Changjia; Chen, Jiyao

    2008-08-01

    In this paper, we present a facile and robust approach to synthesize multifunctional organic/inorganic composite microspheres with chitosan-poly(methacrylic acid) (CS-PMAA) shells and cadmium tellurium/iron oxide nanoparticle cores. Due to the strong electrostatic interaction between the negatively charged nanoparticles and the protonated CS polymers, the CS/nanoparticle complexes were utilized as templates for the subsequent polymerization of methacrylic acid. The resulting composite microspheres with luminescence and magnetic properties have regular morphologies and narrow size distributions. In contrast to previous reports, this route was based on a one-pot strategy without the aid of surfactants, organic solvent, or polymerizable ligands in aqueous solution. The encapsulated CdTe semiconductor nanocrystals inside the microspheres exhibited strong and stable photoluminescence properties in the pH range 5.0-11.0. When the pH was adjusted below 4, the photoluminescence decreased sharply and even quenched completely. However, the weakened fluorescence emission could be recovered to some degree upon an increase of pH above 5. Additionally, when both Fe3O4 and CdTe nanoparticles were encapsulated within CS-PMAA microspheres, the magnetic content of the microspheres could be efficiently controlled by tuning the feeding molar ratio of MAA monomers and glucosamine units of CS. From the preliminary attempts, it was found that the multifunctional microspheres as imaging agents could improve the rate and extent of cellular uptake under short-term exposure to an applied magnetic field, and so exhibit a great potential as bioactive molecule carriers.

  8. Trading polymeric microspheres: exchanging DNA molecules via microsphere interaction.

    PubMed

    Morimoto, Nobuyuki; Muramatsu, Kanna; Nomura, Shin-ichiro M; Suzuki, Makoto

    2015-04-01

    A new class of artificial molecular transport system is constructed by polymeric microspheres. The microspheres are prepared by self-assembly of poly(ethylene glycol)-block-poly(3-dimethyl(methacryloyloxyethyl)ammonium propane sulfonate), PEG-b-PDMAPS, by intermolecular dipole-dipole interaction of sulfobetaine side chains in water. Below the upper critical solution temperature (UCST) of PEG-b-PDMAPS, the microspheres (∼1μm) interact with other microspheres by partial and transit fusion. In order to apply the interaction between microspheres, a 3'-TAMRA-labeled single-stranded DNA oligomer (ssDNA) is encapsulated into a PEG-b-PDMAPS microsphere by thermal treatment. The exchange of ssDNA between microspheres is confirmed by fluorescence resonance energy transfer (FRET) quenching derived from double-stranded formation with complementary 5'-BHQ-2-labeled ssDNA encapsulated in PEG-b-PDMAPS microspheres. The exchange rate of ssDNA is controllable by tuning the composition of the polymer. The contact-dependent transport of molecules can be applied in the areas of microreactors, sensor devices, etc. PMID:25731098

  9. Preparation of hollow microsphere@onion-like solid nanosphere MoS2 coated by a carbon shell as a stable anode for optimized lithium storage

    NASA Astrophysics Data System (ADS)

    Guo, Bangjun; Yu, Ke; Song, Haili; Li, Honglin; Tan, Yinghua; Fu, Hao; Li, Chao; Lei, Xiang; Zhu, Ziqiang

    2015-12-01

    A one-step hydrothermal method was successfully used to fabricate hollow microsphere@onion-like solid nanosphere MoS2. Then the as-prepared sS-MoS2 was decorated with a carbon shell using dopamine as a carbon source by a facile route, resulting in hollow microsphere@onion-like solid nanosphere MoS2 decorated with carbon shell (sS-MoS2@C). A synergistic effect was observed for the two-component material, leading to new electrochemical processes for lithium storage, with improved electroconductivity and structural soundness, triggering an ascending capacity upon cycling. The as-prepared sS-MoS2@C exhibits optimized electrochemical behaviour with high specific capacity (1107 mA h g-1 at 100 mA g-1), superior high-rate capability (805 mA h g-1 at 5000 mA g-1) and good cycling stability (91.5% of capacity retained after 100 cycles), suggesting its potential application in high-energy lithium-ion batteries.A one-step hydrothermal method was successfully used to fabricate hollow microsphere@onion-like solid nanosphere MoS2. Then the as-prepared sS-MoS2 was decorated with a carbon shell using dopamine as a carbon source by a facile route, resulting in hollow microsphere@onion-like solid nanosphere MoS2 decorated with carbon shell (sS-MoS2@C). A synergistic effect was observed for the two-component material, leading to new electrochemical processes for lithium storage, with improved electroconductivity and structural soundness, triggering an ascending capacity upon cycling. The as-prepared sS-MoS2@C exhibits optimized electrochemical behaviour with high specific capacity (1107 mA h g-1 at 100 mA g-1), superior high-rate capability (805 mA h g-1 at 5000 mA g-1) and good cycling stability (91.5% of capacity retained after 100 cycles), suggesting its potential application in high-energy lithium-ion batteries. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05595d

  10. The Study of Release of Chlorhexidine from Preparations with Modified Thermosensitive Poly-N-isopropylacrylamide Microspheres

    PubMed Central

    Musial, Witold; Voncina, Bojana; Pluta, Janusz; Kokol, Vanja

    2012-01-01

    The aim of this study was to investigate and compare the release rates of chlorhexidine (CX) base entrapped in the polymeric beads of modified poly-N-isopropylacrylamides (pNIPAMs) at temperatures below and over the volume phase transition temperature (VPTT) of synthesized polymers: pNIPAM-A with terminal anionic groups resulting from potassium persulfate initiator, pNIPAM-B with cationic amidine terminal groups, and pNIPAM-C comprising anionic terminals, but with increased hydrophobicity maintained by the N-tert-butyl functional groups. The preparations, assessed in vitro below the VPTT, release an initial burst of CX at different time periods between 120 and 240 min, followed by a period of 24 h, when the rate of release remains approximately constant, approaching the zero-order kinetics; the release rates for the polymers beads are as follows: pNIPAM-C>pNIPAM-B>pNIPAM-A. The pattern of release rates at temperature over the VPTT is as follows: pNIPAM-C>pNIPAM-A>pNIPAM-B. In the presence of pNIPAM-C, the duration between the start of the release and the attained minimal inhibitory concentration (MIC) for most of the microbes, in conditions over the VPTT, increased from 60 to 90 min. The release prolongation could be ascribed to some interactions between the practically insoluble CX particle and the hydrophobic functional groups of the polymer. PMID:22629123

  11. Controlled release system for ametryn using polymer microspheres: preparation, characterization and release kinetics in water.

    PubMed

    Grillo, Renato; Pereira, Anderson do Espirito Santo; de Melo, Nathalie Ferreira Silva; Porto, Raquel Martins; Feitosa, Leandro Oliveira; Tonello, Paulo Sergio; Dias Filho, Newton L; Rosa, André Henrique; Lima, Renata; Fraceto, Leonardo Fernandes

    2011-02-28

    The purpose of this work was to develop a modified release system for the herbicide ametryn by encapsulating the active substance in biodegradable polymer microparticles produced using the polymers poly(hydroxybutyrate) (PHB) or poly(hydroxybutyrate-valerate) (PHBV), in order to both improve the herbicidal action and reduce environmental toxicity. PHB or PHBV microparticles containing ametryn were prepared and the efficiencies of herbicide association and loading were evaluated, presenting similar values of approximately 40%. The microparticles were characterized by scanning electron microscopy (SEM), which showed that the average sizes of the PHB and PHBV microparticles were 5.92±0.74 μm and 5.63±0.68 μm, respectively. The ametryn release profile was modified when it was encapsulated in the microparticles, with slower and more sustained release compared to the release profile of pure ametryn. When ametryn was associated with the PHB and PHBV microparticles, the amount of herbicide released in the same period of time was significantly reduced, declining to 75% and 87%, respectively. For both types of microparticle (PHB and PHBV) the release of ametryn was by diffusion processes due to anomalous transport (governed by diffusion and relaxation of the polymer chains), which did not follow Fick's laws of diffusion. The results presented in this paper are promising, in view of the successful encapsulation of ametryn in PHB or PHBV polymer microparticles, and indications that this system may help reduce the impacts caused by the herbicide, making it an environmentally safer alternative. PMID:21215514

  12. Optimization of preparation method for ketoprofen-loaded microspheres consisting polymeric blends using simplex lattice mixture design.

    PubMed

    Das, Sanjoy Kumar; Khanam, Jasmina; Nanda, Arunabha

    2016-12-01

    In the present investigation, simplex lattice mixture design was applied for formulation development and optimization of a controlled release dosage form of ketoprofen microspheres consisting polymers like ethylcellulose and Eudragit(®)RL 100; when those were formed by oil-in-oil emulsion solvent evaporation method. The investigation was carried out to observe the effects of polymer amount, stirring speed and emulsifier concentration (% w/w) on percentage yield, average particle size, drug entrapment efficiency and in vitro drug release in 8h from the microspheres. Analysis of variance (ANOVA) was used to estimate the significance of the models. Based on the desirability function approach numerical optimization was carried out. Optimized formulation (KTF-O) showed close match between actual and predicted responses with desirability factor 0.811. No adverse reaction between drug and polymers were observed on the basis of Fourier transform infrared (FTIR) spectroscopy and Differential scanning calorimetric (DSC) analysis. Scanning electron microscopy (SEM) was carried out to show discreteness of microspheres (149.2±1.25μm) and their surface conditions during pre and post dissolution operations. The drug release pattern from KTF-O was best explained by Korsmeyer-Peppas and Higuchi models. The batch of optimized microspheres were found with maximum entrapment (~90%), minimum loss (~10%) and prolonged drug release for 8h (91.25%) which may be considered as favourable criteria of controlled release dosage form. PMID:27612752

  13. Preparation of core-shell structure Fe3 O4 @SiO2 superparamagnetic microspheres immoblized with iminodiacetic acid as immobilized metal ion affinity adsorbents for His-tag protein purification.

    PubMed

    Ni, Qian; Chen, Bing; Dong, Shaohua; Tian, Lei; Bai, Quan

    2016-04-01

    The core-shell structure Fe3 O4 /SiO2 magnetic microspheres were prepared by a sol-gel method, and immobiled with iminodiacetic acid (IDA) as metal ion affinity ligands for protein adsorption. The size, morphology, magnetic properties and surface modification of magnetic silica nanospheres were characterized by various modern analytical instruments. It was shown that the magnetic silica nanospheres exhibited superparamagnetism with saturation magnetization values of up to 58.1 emu/g. Three divalent metal ions, Cu(2+) , Ni(2+) and Zn(2+) , were chelated on the Fe3 O4 @SiO2 -IDA magnetic microspheres to adsorb lysozyme. The results indicated that Ni(2+) -chelating magnetic microspheres had the maximum adsorption capacity for lysozyme of 51.0 mg/g, adsorption equilibrium could be achieved within 60 min and the adsorbed protein could be easily eluted. Furthermore, the synthesized Fe3 O4 @SiO2 -IDA-Ni(2+) magnetic microspheres were successfully applied for selective enrichment lysozyme from egg white and His-tag recombinant Homer 1a from the inclusion extraction expressed in Escherichia coli. The result indicated that the magnetic microspheres showed unique characteristics of high selective separation behavior of protein mixture, low nonspecific adsorption, and easy handling. This demonstrates that the magnetic silica microspheres can be used efficiently in protein separation or purification and show great potential in the pretreatment of the biological sample. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26268650

  14. microsphere assemblies

    NASA Astrophysics Data System (ADS)

    Peña-Flores, Jesús I.; Palomec-Garfias, Abraham F.; Márquez-Beltrán, César; Sánchez-Mora, Enrique; Gómez-Barojas, Estela; Pérez-Rodríguez, Felipe

    2014-09-01

    The effect of Fe ion concentration on the morphological, structural, and optical properties of TiO2 films supported on silica (SiO2) opals has been studied. TiO2:Fe2O3 films were prepared by the sol-gel method in combination with a vertical dip coating procedure; precursor solutions of Ti and Fe were deposited on a monolayer of SiO2 opals previously deposited on a glass substrate by the same procedure. After the dip coating process has been carried out, the samples were thermally treated to obtain the TiO2:Fe2O3/SiO2 composites at the Fe ion concentrations of 1, 3, and 5 wt%. Scanning electron microscopy (SEM) micrographs show the formation of colloidal silica microspheres of about 50 nm diameter autoensembled in a hexagonal close-packed fashion. Although the X-ray diffractograms show no significant effect of Fe ion concentration on the crystal structure of TiO2, the μ-Raman and reflectance spectra do show that the intensity of a phonon vibration mode and the energy bandgap of TiO2 decrease as the Fe+3 ion concentration increases.

  15. Preparation and characterization of gatifloxacin-loaded sodium alginate hydrogel membranes supplemented with hydroxypropyl methylcellulose and hydroxypropyl cellulose polymers for wound dressing

    PubMed Central

    Prabu, Durai; Majdalawieh, Amin F.; Abu-Yousef, Imad A.; Inbasekaran, Kadambari; Balasubramaniam, Tharani; Nallaperumal, Narayanan; Gunasekar, Conjeevaram J.

    2016-01-01

    Introduction: The aim of this study is to evaluate gatifloxacin-loaded sodium alginate hydrogel membranes, supplemented with glycerol (a plasticizer), glutaraldehyde (a cross-linking agent), and hydroxypropyl methylcellulose (HPMC) or hydroxypropyl cellulose (HPC) polymers, as potential wound dressing materials based on their physicochemical properties and the sustain-release phenomenon. Materials and Methods: The physicochemical properties of the prepared hydrogel membranes were evaluated by several methods including Fourier transform infrared and differential scanning calorimetry. Different techniques were used to assess the swelling behavior, tensile strength and elongation, % moisture absorption, % moisture loss, water vapor transmission rate (WVTR), and microbial penetration for the hydrogel membranes. In vitro gatifloxacin release from the hydrogel membranes was examined using the United States Pharmacopeia XXIII dissolution apparatus. Four kinetics models (zero-order, first-order, Higuchi equation, and Korsmeyer-Peppas equation) were applied to study drug release kinetics. Results: The addition of glycerol, glutaraldehyde, HPMC, and HPC polymers resulted in a considerable increase in the tensile strength and flexibility/elasticity of the hydrogel membranes. WVTR results suggest that hydrated hydrogel membranes can facilitate water vapor transfer. None of the hydrogel membranes supported microbial growth. HPMC-treated and HPC-treated hydrogel membranes allow slow, but sustained, release of gatifloxacin for 48 h. Drug release kinetics revealed that both diffusion and dissolution play an important role in gatifloxacin release. Conclusions: Given their physicochemical properties and gatifloxacin release pattern, HPMC-treated and HPC-treated hydrogel membranes exhibit effective and sustained drug release. Furthermore, HPMC-treated and HPC-treated hydrogel membranes possess physiochemical properties that make them effective and safe wound dressing materials. PMID

  16. Preparation of ellagic acid molecularly imprinted polymeric microspheres based on distillation-precipitation polymerization for the efficient purification of a crude extract.

    PubMed

    Zhang, Hua; Zhao, Shangge; Zhang, Lu; Han, Bo; Yao, Xincheng; Chen, Wen; Hu, Yanli

    2016-08-01

    Molecularly imprinted polymeric microspheres with a high recognition ability toward the template molecule, ellagic acid, were synthesized based on distillation-precipitation polymerization. The as-obtained polymers were characterized by scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. Static, dynamic, and selective binding tests were adopted to study the binding properties and the molecular recognition ability of the prepared polymers for ellagic acid. The results indicated that the maximum static adsorption capacity of the prepared polymers toward ellagic acid was 37.07 mg/g and the adsorption equilibrium time was about 100 min when the concentration of ellagic acid was 40 mg/mL. Molecularly imprinted polymeric microspheres were also highly selective toward ellagic acid compared with its analogue quercetin. It was found that the content of ellagic acid in the pomegranate peel extract was enhanced from 23 to 86% after such molecularly imprinted solid-phase extraction process. This work provides an efficient way for effective separation and enrichment of ellagic acid from complex matrix, which is especially valuable in industrial production. PMID:27311588

  17. Preparation of hollow microsphere@onion-like solid nanosphere MoS2 coated by a carbon shell as a stable anode for optimized lithium storage.

    PubMed

    Guo, Bangjun; Yu, Ke; Song, Haili; Li, Honglin; Tan, Yinghua; Fu, Hao; Li, Chao; Lei, Xiang; Zhu, Ziqiang

    2016-01-01

    A one-step hydrothermal method was successfully used to fabricate hollow microsphere@onion-like solid nanosphere MoS2. Then the as-prepared sS-MoS2 was decorated with a carbon shell using dopamine as a carbon source by a facile route, resulting in hollow microsphere@onion-like solid nanosphere MoS2 decorated with carbon shell (sS-MoS2@C). A synergistic effect was observed for the two-component material, leading to new electrochemical processes for lithium storage, with improved electroconductivity and structural soundness, triggering an ascending capacity upon cycling. The as-prepared sS-MoS2@C exhibits optimized electrochemical behaviour with high specific capacity (1107 mA h g(-1) at 100 mA g(-1)), superior high-rate capability (805 mA h g(-1) at 5000 mA g(-1)) and good cycling stability (91.5% of capacity retained after 100 cycles), suggesting its potential application in high-energy lithium-ion batteries. PMID:26620104

  18. In situ one-pot preparation of superparamagnetic hydrophilic porous microspheres for covalently immobilizing penicillin G acylase to synthesize amoxicillin

    NASA Astrophysics Data System (ADS)

    Xue, Ping; Gu, Yaohua; Su, Weiguang; Shuai, Huihui; Wang, Julan

    2016-01-01

    Magnetic hydrophilic porous microspheres were successfully one-pot synthesized for the first time via in situ inverse suspension polymerization of glycidyl methacrylate, N,N‧-methylene bisacrylamide and 2-hydroxyethyl methacrylate in the presence of Fe3+ and Fe2+ dispersed in formamide, which were denoted as magnetic Fe3O4-GMH microspheres. The morphology and properties of magnetic Fe3O4-GMH microspheres were characterized by SEM, VSM, XRD, FTIR, and so on. The formamide content had an important influence on the morphology of Fe3O4-GMH, and nearly perfectly spherical Fe3O4-GMH particles were formed when the amount of formamide was 15 ml. The diameters of the microspheres were in the range of 100-200 μm and Fe3O4-GMH exhibited superparamagnetic behavior with the saturation magnetization of 5.44 emu/g. The specific surface area of microspheres was 138.7 m2/g, the average pore diameter and pore volume were 15.1 nm and 0.60 cm3/g, respectively. The content of oxirane groups on Fe3O4-GMH was 0.40 mmol/g. After penicillin G acylase (PGA) was covalently immobilized on Fe3O4-GMH microspheres, the catalytic performance for amoxicillin synthesis by 6-aminopenicillanic acid and D-hydroxyphenylglycine methyl ester was largely improved. As a result, 90.1% amoxicillin yield and 1.18 of the synthesis/hydrolysis (S/H) ratio were achieved on PGA/Fe3O4-GMH with ethylene glycol as solvent, but only 62.6% amoxicillin yield and 0.37 of the S/H ratio were obtained on free PGA under the same reaction conditions. Furthermore, the amoxicillin yield and S/H ratio were still kept at 88.2% and 1.06, respectively after the immobilized PGA was magnetically separated and recycled for 10 times, indicating that PGA/Fe3O4-GMH had a very good reusability.

  19. Facile preparation of multifunctional uniform magnetic microspheres for T1-T2 dual modal magnetic resonance and optical imaging.

    PubMed

    Zhang, Li; Liang, Shuang; Liu, Ruiqing; Yuan, Tianmeng; Zhang, Shulai; Xu, Zushun; Xu, Haibo

    2016-08-01

    Molecular imaging is of significant importance for early detection and diagnosis of cancer. Herein, a novel core-shell magnetic microsphere for dual modal magnetic resonance imaging (MRI) and optical imaging was produced by one-pot emulsifier-free emulsion polymerization, which could provide high resolution rate of histologic structure information and realize high sensitive detection at the same time. The synthesized magnetic microspheres composed of cores containing oleic acid (OA) and sodium undecylenate (NaUA) modified Fe3O4 nanoparticles and styrene (St), Glycidyl methacrylate (GMA), and polymerizable lanthanide complexes (Gd(AA)3Phen and Eu(AA)3Phen) polymerized on the surface for outer shells. Fluorescence spectra show characteristic emission peaks from Eu(3+) at 590nm and 615nm and vivid red fluorescence luminescence can be observed by 2-photon confocal scanning laser microscopy (CLSM). In vitro cytotoxicity tests based on the MTT assay demonstrate good cytocompatibility, the composites have longitudinal relaxivity value (r1) of 8.39mM(-1)s(-1) and also have transverse relaxivity value (r2) of 71.18mM(-1)s(-1) at clinical 3.0 T MR scanner. In vitro and in vivo MRI studies exhibit high signal enhancement on both T1- and T2-weighted MR images. These fascinating multifunctional properties suggest that the polymer microspheres have large clinical potential as multi-modal MRI/optical probes. PMID:27110910

  20. Synthesis of hierarchically porous SnO(2) microspheres and performance evaluation as li-ion battery anode by using different binders.

    PubMed

    Gurunathan, P; Ette, Pedda Masthanaiah; Ramesha, K

    2014-10-01

    We have prepared nanoporous SnO2 hollow microspheres (HMS) by employing the resorcinol-formaldehyde (RF) gel method. Further, we have investigated the electrochemical property of SnO2-HMS as negative electrode material in rechargeable Li-ion batteries by employing three different binders-polyvinylidene difluoride (PVDF), Na salt of carboxy methyl cellulose (Na-CMC), and Na-alginate. At 1C rate, SnO2 electrode with Na-alginate binder exhibits discharge capacity of 800 mA h g(-1), higher than when Na-CMC (605 mA h g(-1)) and PVDF (571 mA h g(-1)) are used as binders. After 50 cycles, observed discharge capacities were 725 mA h g(-1), 495 mA h g(-1), and 47 mA h g(-1), respectively, for electrodes with Na-alginate, Na-CMC, and PVDF binders that amounts to a capacity retention of 92%, 82%, and 8% . Electrochemical impedance spectroscopy (EIS) results confirm that the SnO2 electrode with Na-alginate as binder had much lower charge transfer resistance than the electrode with Na-CMC and PVDF binders. The superior electrochemical property of the SnO2 electrode containing Na-alginate can be attributed to the cumulative effects arising from integration of nanoarchitecture with a suitable binder; the hierarchical porous structure would accommodate large volume changes during the Li interaclation-deintercalation process, and the Na-alginate binder provides a stronger adhesion betweeen electrode film and current collector. PMID:25203752

  1. Alginate cryogel based glucose biosensor

    NASA Astrophysics Data System (ADS)

    Fatoni, Amin; Windy Dwiasi, Dian; Hermawan, Dadan

    2016-02-01

    Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under sub-zero temperature. This porous structure was growth in a 100 μL micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μm. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R2 of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.

  2. Drug carrier systems based on collagen-alginate composite structures for improving the performance of GDNF-secreting HEK293 cells.

    PubMed

    Lee, M; Lo, A C; Cheung, P T; Wong, D; Chan, B P

    2009-02-01

    Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor. Development of drug delivery technologies facilitating controlled release of GDNF is critical to applying GDNF in treating neurodegenerative diseases. We previously developed 3D collagen microspheres and demonstrated enhanced GDNF secretion after encapsulation of HEK293 cells, which were transduced to overexpress GDNF in these microspheres. However, the entrapped HEK293 cells were able to migrate out of the collagen microspheres, making it undesirable for clinical applications. In this report, we investigate two new carrier designs, namely collagen-alginate composite gel and collagen microspheres embedded in alginate gel in preventing cell leakage, maintaining cell growth and controlling GDNF secretion in the HEK293 cells. We demonstrated that inclusion of alginate gel in both designs is efficient in preventing cell leakage to the surrounding yet permitting the GDNF secretion, although the cellular growth rate is reduced in an alginate concentration dependent manner. Differential patterns of GDNF secretion in the two designs were demonstrated. The collagen-alginate composite gel maintains a more or less constant GDNF secretion over time while the collagen microspheres embedded in alginate gel continue to increase the secretion level of GDNF over time. This study contributes towards the development of cell-based GDNF delivery devices for the future therapeutics of neurodegenerative diseases. PMID:19059641

  3. SiO2/TiO2/Ag multilayered microspheres: Preparation, characterization, and enhanced infrared radiation property

    NASA Astrophysics Data System (ADS)

    Ye, Xiaoyun; Cai, Shuguang; Zheng, Chan; Xiao, Xueqing; Hua, Nengbin; Huang, Yanyi

    2015-08-01

    SiO2/TiO2/Ag core-shell multilayered microspheres were successfully synthesized by the combination of anatase of TiO2 modification on the surfaces of SiO2 spheres and subsequent Ag nanoparticles deposition and Ag shell growth with face-centered cubic (fcc) Ag. The composites were characterized by TEM, FT-IR, UV-vis, Raman spectroscopy and XRD, respectively. The infrared emissivity values during 8-14 μm wavelengths of the composites were measured. The results revealed that TiO2 thin layers with the thickness of ∼10 nm were coated onto the SiO2 spheres of ∼220 nm in diameter. The thickness of the TiO2 layers was controlled by varying the amount of TBOT precursor. Homogeneous Ag nanoparticles of ∼20 nm in size were successfully deposited by ultrasound on the surfaces of SiO2/TiO2 composites, followed by complete covering of Ag shell. The infrared emissivity value of the SiO2/TiO2 composites was decreased than that of pure SiO2. Moreover, the introduction of the Ag brought the remarkably lower infrared emissivity value of the SiO2/TiO2/Ag multilayered microspheres with the lowest value down to 0.424. Strong chemical effects in the interface of SiO2/TiO2 core-shell composites and high reflection performance of the metal Ag are two decisive factors for the improved infrared radiation performance of the SiO2/TiO2/Ag multilayered microspheres.

  4. Nasal administration of ondansetron using a novel microspheres delivery system.

    PubMed

    Mahajan, Hitendra S; Gattani, Surendra G

    2009-01-01

    Gellan gum microspheres of ondansetron hydrochloride, for intranasal delivery, were prepared to avoid the first pass metabolism as an alternative therapy to parentral, and to improve therapeutic efficiency in treatment of nausea and vomiting. The microspheres were prepared using conventional spray-drying method. The microspheres were evaluated for characteristics like particle size, incorporation efficiency, swelling ability, zeta potential, in-vitro mucoadhesion, thermal analysis, XRD study and in-vitro drug release. Treatment of in-vitro data to different kinetic equations indicated diffusion controlled drug delivery from gellan gum microspheres. The results of DSC and XRD studies revealed molecular amorphous dispersion of ondansetron into the gellan gum microspheres. PMID:19519195

  5. Alginate gel-coated oil-entrapped alginate-tamarind gum-magnesium stearate buoyant beads of risperidone.

    PubMed

    Bera, Hriday; Boddupalli, Shashank; Nandikonda, Sridhar; Kumar, Sanoj; Nayak, Amit Kumar

    2015-01-01

    A novel alginate gel-coated oil-entrapped calcium-alginate-tamarind gum (TG)-magnesium stearate (MS) composite floating beads was developed for intragastric risperidone delivery with a view to improving its oral bioavailability. The TG-blended alginate core beads containing olive oil and MS as low-density materials were accomplished by ionotropic gelation technique. Effects of polymer-blend ratio (sodium alginate:TG) and crosslinker (CaCl2) concentration on drug entrapment efficiency (DEE, %) and cumulative drug release after 8 h (Q8h, %) were studied to optimize the core beads by a 3(2) factorial design. The optimized beads (F-O) exhibited DEE of 75.19±0.75% and Q8h of 78.04±0.38% with minimum errors in prediction. The alginate gel-coated optimized beads displayed superior buoyancy and sustained drug release property. The drug release profiles of the drug-loaded uncoated and coated beads were best fitted in Higuchi kinetic model with Fickian and anomalous diffusion driven mechanisms, respectively. The optimized beads yielded a notable sustained drug release profile as compared to marketed immediate release preparation. The uncoated and coated Ca-alginate-TG-MS beads were also characterized by SEM, FTIR and P-XRD analyses. Thus, the newly developed alginate-gel coated oil-entrapped alginate-TG-MS composite beads are suitable for intragastric delivery of risperidone over a prolonged period of time. PMID:25861741

  6. Polymer microspheres carrying fluorescent DNA probes

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoyu; Dai, Zhao; Zhang, Jimei; Xu, Shichao; Wu, Chunrong; Zheng, Guo

    2010-07-01

    A polymer microspheres carried DNA probe, which was based on resonance energy transfer, was presented in this paper when CdTe quantum dots(QDs) were as energy donors, Au nanoparticles were as energy accepters and poly(4- vinylpyrindine-co-ethylene glycol dimethacrylate) microspheres were as carriers. Polymer microspheres with functional group on surfaces were prepared by distillation-precipitation polymerization when ethylene glycol dimethacrylate was as crosslinker in acetonitrile. CdTe QDs were prepared when 3-mercaptopropionic acid(MPA) was as the stabilizer in aqueous solution. Because of the hydrogen-bonding between the carboxyl groups of MPA on QDs and the pyrindine groups on the microspheres, the QDs were self-assembled onto the surfaces of microspheres. Then, the other parts of DNA probe were finished according to the classic method. The DNA detection results indicated that this novel fluorescent DNA probe system could recognize the existence of complementary target DNA or not.

  7. Microspheres prepared with different co-polymers of poly(lactic-glycolic acid) (PLGA) or with chitosan cause distinct effects on macrophages.

    PubMed

    Bitencourt, Claudia da Silva; Silva, Letícia Bueno da; Pereira, Priscilla Aparecida Tartari; Gelfuso, Guilherme Martins; Faccioli, Lúcia Helena

    2015-12-01

    Microencapsulation of bioactive molecules for modulating the immune response during infectious or inflammatory events is a promising approach, since microspheres (MS) protect these labile biomolecules against fast degradation, prolong the delivery over longer periods of time and, in many situations, target their delivery to site of action, avoiding toxic side effects. Little is known, however, about the influence of different polymers used to prepare MS on macrophages. This paper aims to address this issue by evaluating in vitro cytotoxicity, phagocytosis profile and cytokines release from alveolar macrophages (J-774.1) treated with MS prepared with chitosan, and four different co-polymers of PLGA [poly (lactic-co-glycolic acid)]. The five MS prepared presented similar diameter and zeta potential each other. Chitosan-MS showed to be cytotoxic to J-774.1 cells, in contrast to PLGA-MS, which were all innocuous to this cell linage. PLGA 5000-MS was more efficiently phagocytized by macrophages compared to the other MS tested. PLGA 5000-MS and 5002-MS induced significant production of TNF-α, while 5000-MS, 5004-MS and 7502-MS decreased spontaneous IL-6 release. Nevertheless, only PLGA 5002-MS induced significant NFkB/SEAP activation. These findings together show that MS prepared with distinct PLGA co-polymers are differently recognized by macrophages, depending on proportion of lactic and glycolic acid in polymeric chain, and on molecular weight of the co-polymer used. Selection of the most adequate polymer to prepare a microparticulate drug delivery system to modulate immunologic system may take into account, therefore, which kind of immunomodulatory response is more adequate for the required treatment. PMID:26497115

  8. Effects of added oligoguluronate on mechanical properties of Ca - alginate - oligoguluronate hydrogels depend on chain length of the alginate.

    PubMed

    Padoł, Anna Maria; Draget, Kurt Ingar; Stokke, Bjørn Torger

    2016-08-20

    The effect of adding shorter alginate fragments highly enriched in α-l-guluronic acid (oligoG) on the Young's modulus of the Ca-induced alginate hydrogels were determined using nanoindentation. Ca-alginate gels using two low and one high molecular weight alginate, with increasing amount of added oligoG, were prepared at constant 20mM total Ca(2+) by in situ release of the cation. Differences in the effect on the mechanical properties of increasing amount of oligoG to the various alginate samples were attributed to their different capability to support network connectivity by junction zone formation. Upon decreasing the fractional Ca-saturation of all the α-l-guluronic acid residues (G) present, Fsat, by increasing the oligoG concentration, the lower molecular weight alginates displayed the largest reduction in Young's modulus. This was suggested to be due to the few sequences of α-l-guluronic acid residues making up potential zones engaging in network connectivity of this alginate. Similar trends were observed for a low molecular weight alginate with larger fraction of G. The higher molecular weight sample displayed less reduction of Young's modulus associated with increasing concentration of oligoG. The consequences of reduction in effective, mean junction zone functionality and associated increase in sol fraction with added oligoG on the elastic properties thus depend on the chain length of the alginates. These finding suggest that effects of added oligoG on Ca-induced alginate gelation should connect the effect on junction zone formation to those mediating network connectivity. PMID:27178929

  9. Solvothermal synthesis of three-dimensional microspherical bismuth oxychloride self-assembled by microspheres

    NASA Astrophysics Data System (ADS)

    Li, Tengfei; Lin, Liyang; Wei, Hongmei; Liang, Guoqiang; Kuang, Xinliang; Liu, Tianmo

    2016-02-01

    Uniform BiOCl microspheres have been synthesized via a facile solvothermal route. The structural features of the as-prepared BiOCl samples were systematically characterized by the X-ray powder diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The SEM characterization results indicated that BiOCl microspheres possessed a superstructure composed of several hierarchical microspheres, which were assembled by numerous two dimensional nanosheets. This kind of special BiOCl 3D microstructure exhibited a large BET surface area of about 14.24 m2 g-1. Besides, the photocatalytic properties of BiOCl hollow microsphere sample and sheet-like sample were investigated in detail. Significantly, BiOCl hollow microsphere sample presented faster degradation rate toward RhB even under visible light, which should be attributed to the unique BiOCl nanosheets self-assembled hollow microspheres.

  10. Facile preparation of well-dispersed CeO2-ZnO composite hollow microspheres with enhanced catalytic activity for CO oxidation.

    PubMed

    Xie, Qingshui; Zhao, Yue; Guo, Huizhang; Lu, Aolin; Zhang, Xiangxin; Wang, Laisen; Chen, Ming-Shu; Peng, Dong-Liang

    2014-01-01

    In this article, well-dispersed CeO2-ZnO composite hollow microspheres have been fabricated through a simple chemical reaction followed by annealing treatment. Amorphous zinc-cerium citrate hollow microspheres were first synthesized by dispersing zinc citrate hollow microspheres into cerium nitrate solution and then aging at room temperature for 1 h. By calcining the as-produced zinc-cerium citrate hollow microspheres at 500 °C for 2 h, CeO2-ZnO composite hollow microspheres with homogeneous composition distribution could be harvested for the first time. The resulting CeO2-ZnO composite hollow microspheres exhibit enhanced activity for CO oxidation compared with CeO2 and ZnO, which is due to well-dispersed small CeO2 particles on the surface of ZnO hollow microspheres and strong interaction between CeO2 and ZnO. Moreover, when Au nanoparticles are deposited on the surface of the CeO2-ZnO composite hollow microspheres, the full CO conversion temperature of the as-produced 1.0 wt % Au-CeO2-ZnO composites reduces from 300 to 60 °C in comparison with CeO2-ZnO composites. The significantly improved catalytic activity may be ascribed to the strong synergistic interplay between Au nanoparticles and CeO2-ZnO composites. PMID:24303982

  11. Impact of alginate concentration on the viability, cryostorage, and angiogenic activity of encapsulated fibroblasts.

    PubMed

    Mohanty, Swetaparna; Wu, Yang; Chakraborty, Nilay; Mohanty, Pravansu; Ghosh, Gargi

    2016-08-01

    Cryopreservation or cryostorage of tissue engineered constructs can enhance the off-the shelf availability of these products and thus can potentially facilitate the commercialization or clinical translation of tissue engineered products. Encapsulation of cells within hydrogel matrices, in particular alginate, is widely used for fabrication of tissue engineered constructs. While previous studies have explored the cryopreservation response of cells encapsulated within alginate matrices, systematic investigation of the impact of alginate concentration on the metabolic activity and functionality of cryopreserved cells is lacking. The objective of the present work is to determine the metabolic and angiogenic activity of cryopreserved human dermal fibroblasts encapsulated within 1.0%, 1.5% and 2.0% (w/v) alginate matrices. In addition, the goal is to compare the efficacy of dimethyl sulfoxide (DMSO) and trehalose as cryoprotectant. Our study revealed that the concentration of alginate plays a significant role in the cryopreservation response of encapsulated cells. The lowest metabolic activity of the cryopreserved cells was observed in 1% alginate microspheres. When higher concentration of alginate was utilized for cell encapsulation, the metabolic and angiogenic activity of the cells frozen in the absence of cryoprotectants was comparable to that observed in the presence of DMSO or trehalose. PMID:27157752

  12. Preparation and properties of calcium phosphate cements incorporated gelatin microspheres and calcium sulfate dihydrate as controlled local drug delivery system.

    PubMed

    Cai, Shu; Zhai, Yujia; Xu, Guohua; Lu, Shanshan; Zhou, Wei; Ye, Xiaojian

    2011-11-01

    To develop high macroporous and degradable bone cements which can be used as the substitute of bone repairing and drug carriers, cross-linked gelatin microspheres (GMs) and calcium sulfate dihydrate (CSD) powder were incorporated into calcium phosphate bone cement (CPC) to induce macropores, adjust drug release and control setting time of α-TCP-liquid mixtures after degradation of GMs and dissolution of CSD. In this study, CSD was introduced into CPC/10GMs composites to offset the prolonged setting time caused by the incorporation of GMs, and gentamicin sulphate (GS) was chosen as the model drug entrapped within the GMs. The effects of CSD amount on the cement properties, drug release ability and final macroporosity after GMs degradation were studied in comparison with CPC/GMs cements. The resulting cements presented reduced setting time and increased compressive strength as the content of CSD below 5 wt%. Sustained release of GS was obtained on at least 21 days, and release rates were found to be chiefly controlled by the GMs degradation rate. After 4 weeks of degradation study, the resulting composite cements appeared macroporous, degradable and suitable compressive strength, suggesting that they have potential as controlled local drug delivery system and for cancellous bone applications. PMID:21894539

  13. Microradiographic microsphere manipulator

    DOEpatents

    Singleton, Russell M.

    1980-01-01

    A method and apparatus for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated to relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres.

  14. Microradiographic microsphere manipulator

    DOEpatents

    Singleton, R.M.

    A method and apparatus is disclosed for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres.

  15. Preparation, characterization and in vitro drug release of poly-epsilon-caprolactone and hydroxypropyl methylcellulose phthalate ketoprofen loaded microspheres.

    PubMed

    Guzman, M; Molpeceres, J; Garcia, F; Aberturas, M R

    1996-01-01

    Ketoprofen was encapsulated within poly-epsilon-caprolactone (PCL) and hydroxypropyl methylcellulose phthalate 50 (HPMCP50) microspheres (MS). Scanning electron microscopy (SEM) studies showed spherical particles without surface crystal formation and differential scanning calorimetry (DSC) supported these results. MS of PCL or HPMCP50 had a mean particle size of 10.7 +/- 2.2 and 10.9 +/- 2.0 mu m respectively, whereas a mixture of these polymers increased the MS particle size to 30 mu m. Greater incorporation efficiencies were found for HPMCP50 MS (98.1 +/- 0.7). MS of PCL and HPMCP50 mixtures showed a decreased drug entrapment as the amount of PCL was increased (96.0 +/- 0.2 for 25% PCL, 95.6 +/- 1.8 for 50% PCL, 80.2 +/- 0.7 for 75% PCL and 78.9 +/- 9.0 for 100% PCL). Size exclusion chromatography (SEC) studies revealed a weak interaction between ketoprofen and PCL and some polymer degradation was found during HPMCP50 MS storage, probably by breaking of the phthalic anhydride bond to be anyhydroglucose backbone. Four types of cryoprotectors (glucose, trehalose, mannitol and sorbitol, at 5 and 10% W/V) and two freezing conditions (-196 and -20 degrees C) were evaluated in freeze-drying studies. For HPMCP50, the sizes of MS after reconstitution of liophylizates were nearly the same as the initial ones. For PCL MS only, those formulations with sorbitol or glucose at 10% and frozen at -196 degrees C showed acceptable results. In contrast to the rapid release rate of ketoprofen from PCL MS as a result of carrier porosity (80% released within 15 min), the release from HPMCP50 MS could be controlled by means of pH (40% released in the first 15 min in simulated gastric fluid and nearly 100% ketoprofen delivered in the same time in simulated intestinal fluid). PMID:8903783

  16. Preparation with a facile template-free method of uniform-sized mesoporous microspheres of rare earth (La, Ce, Pr, Nd) oxides

    SciTech Connect

    Ji, Pengfei; Xing, Mingyang; Bagwasi, Segomotso; Tian, Baozhu; Chen, Feng; Zhang, Jinlong

    2011-11-15

    Highlights: {yields} Mesoporous microspheres of light rare earth hydroxycarbonates and oxides were fabricated. {yields} The supersaturated urea has important effect on formation of mesoporous microspheres. {yields} The influences of [cation]/[urea] ratio and amount of water on the formation of spherical crystallites were discussed. -- Abstract: Mesoporous microspheres of light rare earth (La, Ce, Pr, Nd) hydroxycarbonates and oxides were successfully fabricated by a facile surfactant free hydrothermal method in supersaturated aqueous urea solution. The techniques of XRD, TEM, SEM, TG/DTA and N{sub 2} adsorption-desorption were employed to investigate the structure and formation process of mesoporous microspheres. It was revealed that supersaturated urea not only serve as a reactant and pH modifier in the reaction system but also guide the oriented assembly of hydroxycarbonate crystallites into microspheres by acting as a structure-directing agent. The microspheres of rare earth oxides could easily be obtained by simple calcination of corresponding hydroxycarbonates precursors without undergoing morphology changes. In addition, the influences of rare earth precursor and urea concentrations on the formation of microspheres were also investigated.

  17. Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration.

    PubMed

    Moshaverinia, Alireza; Xu, Xingtian; Chen, Chider; Akiyama, Kentaro; Snead, Malcolm L; Shi, Songtao

    2013-12-01

    Dental-derived mesenchymal stem cells (MSCs) are promising candidates for cartilage regeneration, with a high capacity for chondrogenic differentiation. This property helps make dental MSCs an advantageous therapeutic option compared to current treatment modalities. The MSC delivery vehicle is the principal determinant for the success of MSC-mediated cartilage regeneration therapies. The objectives of this study were to: (1) develop a novel co-delivery system based on TGF-β1 loaded RGD-coupled alginate microspheres encapsulating periodontal ligament stem cells (PDLSCs) or gingival mesenchymal stem cells (GMSCs); and (2) investigate dental MSC viability and chondrogenic differentiation in alginate microspheres. The results revealed the sustained release of TGF-β1 from the alginate microspheres. After 4 weeks of chondrogenic differentiation in vitro, PDLSCs and GMSCs as well as human bone marrow mesenchymal stem cells (hBMMSCs) (as positive control) revealed chondrogenic gene expression markers (Col II and Sox-9) via qPCR, as well as matrix positively stained by Toluidine Blue and Safranin-O. In animal studies, ectopic cartilage tissue regeneration was observed inside and around the transplanted microspheres, confirmed by histochemical and immunofluorescent staining. Interestingly, PDLSCs showed more chondrogenesis than GMSCs and hBMMSCs (p<0.05). Taken together, these results suggest that RGD-modified alginate microencapsulating dental MSCs make a promising candidate for cartilage regeneration. Our results highlight the vital role played by the microenvironment, as well as value of presenting inductive signals for viability and differentiation of MSCs. PMID:23891740

  18. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Potassium alginate...

  19. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium alginate. 184.1724 Section 184.1724 Food and... Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Sodium alginate...

  20. Metabolic microspheres

    NASA Astrophysics Data System (ADS)

    Fox, Sidney W.

    1980-08-01

    A systematic review of catalytic activities in thermal proteinoids and microspheres aggregated therefrom yields some new inferences on the origins and evolution of metabolism. Experiments suggest that, instead of being inert, protocells were already biochemically and cytophysically competent. The emergence and refinement of metabolism ab initio is thus partly traced conceptually. When the principle of molecular self-instruction, as of amino acids in peptide synthesis, is taken into account as a concomitant of natural selection, an expanded theory of organismic evolution, including saltations, emerges.

  1. Hybrid microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Richard C. K. (Inventor)

    1985-01-01

    Substrates, particularly inert synthetic organic resin beads (10) or sheet (12) such as polystyrene are coated with a covalently bound layer (24) of polyacrolein by irradiation a solution (14) of acrolein or other aldehyde with high intensity radiation. Individual microspheres (22) are formed which attach to the surface to form the aldehyde containing layer (24). The aldehyde groups can be converted to other functional groups by reaction with materials such as hydroxylamine. Adducts of proteins such as antibodies or enzymes can be formed by direct reaction with the surface aldehyde groups.

  2. Preparation of photonic-magnetic responsive molecularly imprinted microspheres and their application to fast and selective extraction of 17β-estradiol.

    PubMed

    Peng, Hailong; Luo, Mei; Xiong, Hua; Yu, Ningxiang; Ning, Fangjian; Fan, Jieping; Zeng, Zheling; Li, Jinhua; Chen, Lingxin

    2016-04-15

    Photonic-magnetic responsive molecularly imprinted microspheres (PM-MIMs) were prepared by seed polymerization, through suitable functionalization of magnetic nanoparticles for further coating with photoresponsive functional monomer and imprinted layers, and then were successfully applied to the fast and selective extraction of 17β-estradiol (17β-E2) from real samples. The PM-MIMs possessed a sandwich micro-spherical structure containing Fe3O4 core, SiO2 middle layer, and MIPs shell with thickness of 25 nm. The PM-MIMs displayed excellent photoresponsive properties and could be rapidly separated from solutions under an external magnet. The PM-MIMs had specific affinity towards 17β-E2 with high adsorption capacity (Qmax=0.84 mg g(-1)) and fast binding kinetics (Kd=26.08 mg L(-1)). The PM-MIMs proved to be an ideal photoswitch with the ability of reversible uptake and release of 17β-E2 upon alternate 365 and 440 nm irradiation: 45.0% of 17β-E2 released from the PM-MIMs upon 365 nm irradiation, and 94.0% of the released 17β-E2 was rebound to the PM-MIMs at 440 nm. Accordingly, the PM-MIMs were applied for fast separation and extraction of 17β-E2 followed by HPLC-UV determination, presenting the low limit of detection (LOD, S/N=3) and quantification (LOQ, S/N=10) of 0.18 and 0.62 μmol L(-1), respectively. The high recoveries for spiked milk powder and drinking water samples were in the range of 97.5-113.0% with relative standard deviations less than 4.4%. This study reasonably combined photonic response, magnetic separation and surface imprinting, which endowed the PM-MIMs with significant advantages of high adsorption capacity and fast binding kinetics, convenient separation and recycled use, and simple rapid eco-benign adsorption/elution processes for template molecules. Thus, the PM-MIMs based method may be a simple, rapid, convenient, cost-effective and environmentally-friendly way for simultaneous separation, enrichment and detection of trace 17β-E2 in

  3. Seeing is believing, PLGA microsphere degradation revealed in PLGA microsphere/PVA hydrogel composites.

    PubMed

    Gu, Bing; Sun, Xuanhao; Papadimitrakopoulos, Fotios; Burgess, Diane J

    2016-04-28

    The aim of this study was to understand the polymer degradation and drug release mechanism from PLGA microspheres embedded in a PVA hydrogel. Two types of microspheres were prepared with different molecular weight PLGA polymers (approximately 25 and 7kDa) to achieve different drug release profiles, with a 9-day lag phase and without a lag phase, respectively. The kinetics of water uptake into the microspheres coincided with the drug release profiles for both formulations. For the 25kDa microspheres, minimal water uptake was observed in the early part of the lag phase followed by substantial water uptake at the later stages and in the drug release phase. For the 7kDa microspheres, water uptake occurred simultaneously with drug release. Water uptake was approximately 2-3 times that of the initial microsphere weight for both formulations. The internal structure of the PLGA microspheres was evaluated using low temperature scanning electron microscopy (cryo-SEM). Burst drug release occurred followed by pore forming from the exterior to the core of both microspheres. A well-defined hydrogel/microsphere interface was observed. For the 25kDa microspheres, internal pore formation and swelling occurred before the second drug release phase. The surface layer of the microspheres remained intact whereas swelling, and degradation of the core continued throughout the drug release period. In addition, microsphere swelling reduced glucose transport through the coatings in PBS media and this was considered to be a as a consequence of the increased thickness of the coatings. The combination of the swelling and microdialysis results provides a fresh understanding on the competing processes affecting molecular transport of bioanalytes (i.e. glucose) through these composite coatings during prolonged exposure in PBS. PMID:26965956

  4. Feasibility of using alginate to absorb dissolved copper from aqueous media

    SciTech Connect

    Jang, L.K.; Brand, W.; Resong, M.; Mainieri, W.; Geesey, G.G. )

    1990-11-01

    Alginate (a biopolymer from kelp and some bacterial strains) is known to absorb copper favorably in the presence of other cations. In this work, the feasibility of using a 2-liter batch three-phase (air/liquid/alginate gel) loop fluidized bed reactor to polish water containing 10-150 ppm dissolved copper was investigated. Three methods were tested: (1) calcium alginate spheres, prepared by dispensing sodium alginate (3.2 wt. % in water) into a 0.05 M calcium nitrate solution, were used as the absorbent, (2) the alginate spheres were formed in situ by dispensing the sodium alginate solution directly into the reactor fluid, and (3) same as (2) except that a trace amount of EDTA was added to the alginate solution. Batch absorption data showed that Method 3 yielded the best result; the concentration of dissolved copper was successfully reduced from 140 ppm to 10 ppm with 3.2 g sodium alginate and 0.2 g EDTA used. However, when the initial concentration was below 40 ppm, both Method 2 and Method 3 are not recommended because the concentration of dissolved copper was too low to allow in situ formation of alginate spheres. Method 1 was found to be useful for treating water containing 10 ppm dissolved copper. But the competition from calcium seriously affected the effective capacity of the alginate for copper. The application of the classical shell progressive model to describe the absorption kinetics was discussed.

  5. Preparation and characterization of cross-linked microspheres C(Dex-g-PSSS) and their drug-carrying and colon-specific drug delivery properties.

    PubMed

    Jianping, Zhang; Jianfeng, Guo; Yao, Zhang; Jiao, Yang

    2014-01-01

    The graft polymer Dex-g-PSSS was obtained through poly(sodium 4-styrene sulfonate) (PSSS) grafted on dextran(Dex) by using the cerium salt-hydroxyl group redox initiation system. The cross-linked microspheres C(Dex-g-PSSS) were synthesized by suspension polymerization with epichlorohydrin as the cross-linking agent. The chemical structure and physicochemical characteristics of C(Dex-g-PSSS) microspheres were represented by infrared spectroscopy (FTIR), optical microscope, and zeta potential analysis. The aim of the study is to constitute a colon-specific drug delivery system via molecular design, using C(Dex-g-PSSS) microspheres as the drug-carrying material and taking 5-fluorouracil (5-FU) as the model drug. The drug-carrying ability and mechanism of the cross-linked microspheres C(Dex-g-PSSS) for 5-FU were investigated. Finally, in vitro release tests for the drug-carrying microspheres were conducted. The experimental results show that in the medium with pH 2, the cross-linked microspheres C(Dex-g-PSSS) exhibit a strong adsorption ability for 5-FU because of strong electrostatic interactions and have an adsorption capacity of 154 ± 7.5 mg/g, displaying high drug-carrying efficiency. The in vitro release behavior of the drug-carrying microspheres is highly dependent on pH and dextranase. In the medium with pH 2, the drug-carrying microspheres do not release the drug and in the medium with pH 1, they release a little, whereas in the medium with pH 7.4, a sudden delivery phenomenon of the drug will occur, and in the presence of dextranase, a more sudden delivery phenomenon of the drug will occur, displaying an excellent colon-specific drug delivery behavior. PMID:25162633

  6. Preparation of C60-functionalized magnetic silica microspheres for the enrichment of low-concentration peptides and proteins for MALDI-TOF MS analysis.

    PubMed

    Chen, Hemei; Qi, Dawei; Deng, Chunhui; Yang, Penyuan; Zhang, Xiangmin

    2009-01-01

    In this work, for the first time, a novel C60-functionalized magnetic silica microsphere (designated C60-f-MS) was synthesized by radical polymerization of C60 molecules on the surface of magnetic silica microspheres. The resulting C60-f-MS microsphere has magnetite core and thin C60 modified silica shell, which endow them with useful magnetic responsivity and surface affinity toward low-concentration peptides and proteins. As a result of their excellent magnetic property, the synthesized C60-f-MS microspheres can be easily separated from sample solution without ultracentrifuge. The C60-f-MS microspheres were successfully applied to the enrichment of low-concentration peptides in tryptic protein digest and human urine via a MALDI-TOF MS analysis. Moreover, they were demonstrated to have enrichment efficiency for low-concentration proteins. Due to the novel materials maintaining excellent magnetic properties and admirable adsorption, the process of enrichment and desalting is very fast (only 5 min), convenient and efficient. As it has been demonstrated in the study, newly developed fullerene-derivatized magnetic silica materials are superior to those already available in the market. The facile and low-cost synthesis as well as the convenient and efficient enrichment process of the novel C60-f-MS microspheres makes it a promising candidate for isolation of low-concentration peptides and proteins even in complex biological samples such as serum, plasma, and urine or cell lysate. PMID:19086100

  7. Development of Risperidone PLGA Microspheres

    PubMed Central

    D'Souza, Susan; Faraj, Jabar A.; Giovagnoli, Stefano; DeLuca, Patrick P.

    2014-01-01

    The aim of this study was to design and evaluate biodegradable PLGA microspheres for sustained delivery of Risperidone, with an eventual goal of avoiding combination therapy for the treatment of schizophrenia. Two PLGA copolymers (50 : 50 and 75 : 25) were used to prepare four microsphere formulations of Risperidone. The microspheres were characterized by several in vitro techniques. In vivo studies in male Sprague-Dawley rats at 20 and 40 mg/kg doses revealed that all formulations exhibited an initial burst followed by sustained release of the active moiety. Additionally, formulations prepared with 50 : 50 PLGA had a shorter duration of action and lower cumulative AUC levels than the 75 : 25 PLGA microspheres. A simulation of multiple dosing at weekly or 15-day regimen revealed pulsatile behavior for all formulations with steady state being achieved by the second dose. Overall, the clinical use of Formulations A, B, C, or D will eliminate the need for combination oral therapy and reduce time to achieve steady state, with a smaller washout period upon cessation of therapy. Results of this study prove the suitability of using PLGA copolymers of varying composition and molecular weight to develop sustained release formulations that can tailor in vivo behavior and enhance pharmacological effectiveness of the drug. PMID:24616812

  8. Carbon microsphere-filled Pyrrone foams.

    NASA Technical Reports Server (NTRS)

    Kimmel, B. G.

    1973-01-01

    Syntactic foam formulations were prepared from mixtures of Pyrrone prepolymers and hollow carbon microspheres. Very low curing shrinkages were obtained for high volume loadings of microspheres. The resulting syntactic foams were found to be remarkably stable over a wide range in temperature. A technique was developed for the emplacement of these foam formulations in polyimide-fiberglass, titanium alloy and stainless steel honeycomb without sacrificing low curing shrinkage or thermal stability.

  9. Silk fibroin/sodium alginate composite nano-fibrous scaffold prepared through thermally induced phase-separation (TIPS) method for biomedical applications.

    PubMed

    Zhang, Haiping; Liu, Xiaotian; Yang, Mingying; Zhu, Liangjun

    2015-10-01

    To mimic the natural fibrous structure of the tissue extracellular matrix, a nano-fibrous silk fibroin (SF)/sodium alginate (SA) composite scaffold was fabricated by a thermally-induced phase-separation method. The effects of SF/SA ratio on the structure and the porosity of the composite scaffolds were examined. Scanning electron microscopy and porosity results showed that the 5SF/1SA and 3SF/1SA scaffolds possessed an excellent nano-fibrous structure and a porosity of more than 90%. Fourier transform infrared, X-ray diffraction, and differential scanning calorimetry results indicated the physical interaction between SF and SA molecules and their good compatibility in the 5SF/1SA and 3SF/1SA scaffolds, whereas they showed less compatibility in the 1SF/1SA scaffold. Cell culture results showed that MG-63 cells can attach and grow well on the surface of the SF/SA scaffolds. The nano-fibrous SF/SA scaffold can be potentially used in tissue engineering. PMID:26117733

  10. (D, L) polylactide microspheres as embolic agent. A preliminary study.

    PubMed

    Flandroy, P; Grandfils, C; Collignon, J; Thibaut, A; Nihant, N; Barbette, S; Jerome, R; Teyssie, P

    1990-01-01

    Owing to their shape, accurately calibrated microspheres appear to be very suitable material for distal embolization. Moreover, the biocompatible (D, L) polyactide (PLA) microspheres possess two other valuable advantages: easy adjustment of their biodegradation rate, and incorporation of chemotherapeutic agents during their production. The authors describe the preparation of these (D, L) PLA microspheres and their clinical applications as a preliminary step to arterial chemoembolization. PMID:2234391

  11. Bisphosphonate release profiles from magnetite microspheres.

    PubMed

    Miyazaki, Toshiki; Inoue, Tatsuya; Shirosaki, Yuki; Kawashita, Masakazu; Matsubara, Takao; Matsumine, Akihiko

    2014-10-01

    Hyperthermia has been suggested as a novel, minimally invasive cancer treatment method. After implantation of magnetic nano- or microparticles around a tumour through blood vessels, irradiation with alternating magnetic fields facilitates the efficient in situ hyperthermia even for deep-seated tumours. On the basis of this idea, if the microspheres are capable of delivering drugs, they could be promising multifunctional biomaterials effective for chemotherapy as well as hyperthermia. In the present study, magnetite microspheres were prepared by aggregation of the iron oxide colloid in water-in-oil (W/O) emulsion. The release behaviour of alendronate, a typical bisphosphonate, from the microspheres was examined in vitro as a model of the bone tumour prevention and treatment system. The alendronate was successfully incorporated onto the porous magnetite microspheres in vacuum conditions. The drug-loaded microspheres maintained their original spherical shapes even after shaking in ultrapure water for 3 days, suggesting that they have sufficient mechanical integrity for clinical use. It was attributed to high aggregation capability of the magnetite nanoparticles through van der Waals and weak magnetic attractions. The microspheres showed slow release of the alendronate in vitro, resulting from tight covalent or ionic interaction between the magnetite and the alendronate. The release rate was diffusion-controlled type and well controlled by the alendronate concentration in drug incorporation to the microspheres. PMID:24854985

  12. Preparation and characterization of starch/cyclodextrin bioadhesive microspheres as platform for nasal administration of Gabexate Mesylate (Foy) in allergic rhinitis treatment.

    PubMed

    Fundueanu, Gheorghe; Constantin, Marieta; Dalpiaz, Alessandro; Bortolotti, Fabrizio; Cortesi, Rita; Ascenzi, Paolo; Menegatti, Enea

    2004-01-01

    Bioadhesive and biodegradable microspheres were obtained by chemical cross-linking with epichlorohydrin of an alkaline solution of a mixture of starch and alpha-, beta-, or gamma-cyclodextrin (CyD). Microspheres were characterized by scanning electron microscopy, swelling degree, and water retention. The percentage of the effective CyD in microspheres was estimated by measuring the amount of iodine and typical organic compounds (TOCs) retained in the hydrophobic cavity of CyD. Gabexate Mesylate (trade name Foy); GM), an antiallergic drug, was included in microspheres by soaking in an aqueous solution containing the drug, followed by solvent evaporation or lyophilization. UV, IR, and DSC data indicated that despite the fact that GM is a hydrophilic drug, its hydrophobic moiety close to the benzene ring is able to penetrate the CyD cavity and to form stable inclusion complexes. Values of the association equilibrium constant for GM binding to CyD, obtained by UV differential spectroscopy, indicated that the affinity of the drug for alpha- and gamma-CyD is higher than that for beta-CyD. In vitro, GM was gradually released during 1h. Even if the release rate of the drug is relatively fast, the microspheres might actually provide the best platform since the material adheres to the nasal mucosa which was proved by adhesion tests. The GM integrity was checked by comparing its anti-trypsin activity before and after release. PMID:14580919

  13. Understanding Alginate Gel Development for Bioclogging and Biogeophysical Experiments

    NASA Astrophysics Data System (ADS)

    Brown, I.; Atekwana, E. A.; Abdel Aal, G. Z.; Atekwana, E. A.; Sarkisova, S.; Patrauchan, M.

    2012-12-01

    Bioremediation strategies to mitigate the transport of heavy metals and radionuclides in subsurface sediments have largely targeted to increase the mobility and/or solubility of these compounds by the stimulation of biogeochemical activity of the metal- and sulfate-reducing bacteria. The latter secrete and/or release out diverse biochemical molecule including, first of all, organic acids and biopolymers such as alginic acid, proteins and DNA. Alginate gel is one of the major components determining the structure of biofilm which causes clogging in porous media. Biopolymers composing biofilm having, at least, two main functions: to be a scaffold for a microbial biofilm, and to regulate the exchange of metabolites and ions between an environment and bacterial cells. Additionally, the accumulation of biopolymers and a matured biofilm within porous media was shown to contribute to a detectable biogeophysical signal, spectral induced polarization (SIP), in particular. Our objective is to understand the role of different biofilm components on the SIP response as the latter has been proposed as a non-invasive tool to monitor biofilm development and rate of clogging in the subsurface. Understanding the process of alginate gel development may aid in the understanding of the fate and transport of mineralized heavy metals and radionuclides in contaminated soils. Here we describe the reciprocal relationship between environmental chemistry and alginate gel development. Commercial (Sigma) alginic acid (AA) was used as a substratum for the preparation of a model gel. AA was solubilized by adjusting solutions with pH up to 4 with 0.1 NaOH. Both Ca(OH)2 or CaCl2 were used to initiate the gelation of alginate. pH, fluid conductivity, soluble Ca2+ concentration, and a yield of gelated alginate were monitored in both liquid and porous media after the interaction of calcium compounds with alginate. This study confirms the critical role of Ca2+ for alginate gelation, biofilm development

  14. Photocatalytic Activities of Copper Doped Cadmium Sulfide Microspheres Prepared by a Facile Ultrasonic Spray-Pyrolysis Method.

    PubMed

    Su, Jinzhan; Zhang, Tao; Li, Yufeng; Chen, Yubin; Liu, Maochang

    2016-01-01

    Ultrasonic spray pyrolysis is a superior method for preparing and synthesizing spherical particles of metal oxide or sulfide semiconductors. Cadmium sulfide (CdS) photocatalysts with different sizes and doped-CdS with different dopants and doping levels have been synthesized to study their properties of photocatalytic hydrogen production from water. The CdS photocatalysts were characterized with scanning electron microscopy (SEM), X-ray fluorescence-spectrometry (XRF), UV-Vis absorption spectra and X-ray diffraction (XRD) to study their morphological and optical properties. The sizes of the prepared CdS particles were found to be proportional to the concentration of the metal nitrates in the solution. The CdS photocatalyst with smaller size showed a better photocatalytic activity. In addition, Cu doped CdS were also deposited and their photocatalytic activities were also investigated. Decreased bandgaps of CdS synthesized with this method were found and could be due to high density surface defects originated from Cd vacancies. Incorporating the Cu elements increased the bandgap by taking the position of Cd vacancies and reducing the surface defect states. The optimal Cu-doped level was found to be 0.5 mol % toward hydrogen evolution from aqueous media in the presence of sacrificial electron donors (Na₂S and Na₂SO₃) at a pH of 13.2. This study demonstrated that ultrasonic spray pyrolysis is a feasible approach for large-scale photocatalyst synthesis and corresponding doping modification. PMID:27314320

  15. Preparation methods for monodispersed garlic oil microspheres in water using the microemulsion technique and their potential as antimicrobials.

    PubMed

    Zheng, Hua Ming; Li, Hou Bin; Wang, Da Wei; Liu, Dun

    2013-08-01

    Garlic oil is considered as a natural broad-spectrum antibiotic because of its well-known antimicrobial activity. However, the characteristics of easy volatility and poor aqueous solubility limit the application of garlic oil in industry. The purpose of the present work is to develop and evaluate an oil-free microemulsion by loading garlic oil in microemulsion system. Microemulsions were prepared with ethoxylated hydrogenated castor (Cremophor RH40) as surfactant, n-butanol (or ethanol) as cosurfactant, oleic acid-containing garlic oil as oil phase, and ultrapure water as water phase. The effects of the ratio of surfactant to cosurfactant and different oil concentration on the area of oil-in-water (O/W) microemulsion region in pseudoternary phase diagrams were investigated. The particle size and garlic oil encapsulation efficiency of the formed microemulsions with different formulations were also investigated. In addition, the antimicrobial activity in vitro against Escherichia coli and Staphylococcus aureus was assessed. The experimental results show that a stable microemulsion region can be obtained when the mass ratio of surfactant to cosurfactant is, respectively, 1:1, 2:1, and 3:1. Especially, when the mixture surfactants of RH40/n-butanol 2/1 (w/w) is used in the microemulsion formulation, the area of O/W microemulsion region is 0.089 with the particle size 13.29 to 13.85 nm and garlic oil encapsulation efficiency 99.5%. The prepared microemulsion solution exhibits remarkable antibacterial activity against S. aureus. PMID:23957416

  16. Preparation of magnetic core mesoporous shell microspheres with C18-modified interior pore-walls for fast extraction and analysis of phthalates in water samples.

    PubMed

    Li, Zhongbo; Huang, Danni; Fu, Chinfai; Wei, Biwen; Yu, Wenjia; Deng, Chunhui; Zhang, Xiangmin

    2011-09-16

    In this study, core-shell magnetic mesoporous microspheres with C18-functionalized interior pore-walls were synthesized through coating Fe(3)O(4) microspheres with a mesoporous inorganic-organic hybrid layer with a n-octadecyltriethoxysilane (C18TES) and tetraethyl orthosilicate (TEOS) as the silica source and cetyltrimethylammonia bromide (CTAB) as a template. The obtained C18-functionalized Fe(3)O(4)@mSiO(2) microspheres possess numerous C18 groups anchored in the interior pore-walls, large surface area (274.7 m(2)/g, high magnetization (40.8 emu/g) and superparamagnetism, uniform mesopores (4.1 nm), which makes them ideal absorbents for simple, fast, and efficient extraction and enrichment of hydrophobic organic compounds in water samples. Several kinds of phthalates were used as the model hydrophobic organic compounds to systematically evaluate the performance of the C18-functionalized Fe(3)O(4)@mSiO(2) microspheres in extracting hydrophobic molecules by using a gas chromatography-mass spectrometry. Various parameters, including eluting solvent, the amounts of absorbents, extraction time and elution time were optimized. Hydrophobic extraction was performed in the interior pore of magnetic mesoporous microspheres, and the materials had the anti-interference ability to macromolecular proteins, which was also investigated in the work. Under the optimized conditions, C18-functionalized Fe(3)O(4)@mSiO(2) microspheres were successfully used to analyze the real water samples. The results indicated that this novel method was fast, convenient and efficient for the target compounds and could avoid being interfered by macromolecules. PMID:21794868

  17. Mesoporous Ta(3)N(5) microspheres prepared from a high-surface-area, microporous, amorphous precursor and their visible-light-driven photocatalytic activity.

    PubMed

    Cao, Jing; Ren, Ling; Li, Na; Hu, Changwen; Cao, Minhua

    2013-09-16

    A light Ta3N5: Mesoporous Ta3N5 microspheres were synthesized by thermally nitriding a high-surface-area, microporous, amorphous Ta2O5 precursor at 750 °C, which is lower than the 900 °C needed for the complete nitridation of micrometer-sized Ta2O5 powder. The mesoporous Ta3N5 microspheres show significantly enhanced visible-light photoactivity in the degradation of methylene blue (MB) compared with similar photocatalysts reported under similar conditions. PMID:24175337

  18. Stabilization of layer-by-layer engineered multilayered hollow microspheres.

    PubMed

    Liu, Peng

    2014-05-01

    Polymer multilayered hollow microspheres prepared by layer-by-layer (LbL) self-assembly attract more and more interest due to their unique application, especially as drug delivery system (DDS). Unfortunately, the multilayered hollow microspheres assembled via weak linkages could fuse and/or aggregate in high ionic strength media or strong acidic or basic media. This severely restricts the practical applications of the multilayered hollow microspheres as DDS in human physiological medium. In the present work, the progress in stabilization of the multilayered hollow microspheres is reviewed, with emphasis on the assembling process and their crosslinking mechanism. PMID:24321861

  19. Controlled release of diclofenac sodium through acrylamide grafted hydroxyethyl cellulose and sodium alginate.

    PubMed

    Al-Kahtani, Ahmed A; Sherigara, B S

    2014-04-15

    To reinforce the hydroxyethyl cellulose for using it in biomedical and pharmaceutical applications as a drug delivery systems, the grafting of acrylamide onto hydroxyethyl cellulose (AAm-g-HEC) was achieved by Ce(IV) induced free radical polymerization. The AAm-g-HEC was then blended with sodium alginate (NaAlg) to prepare pH-sensitive interpenetrating network (IPN) microspheres (MPs) by emulsion-crosslinking method using glutaraldehyde (GA) as a crosslinking agent. The produced MPs are almost spherical in nature with smooth surfaces. Diclofenac sodium (DS), an anti-inflammatory drug, was successfully encapsulated into the MPs. The % encapsulation efficiency was found to vary between 54 and 67. The MPs were characterized by DSC, SEM and FTIR spectroscopy. In vitro release studies were carried out in simulated gastric fluid of pH 1.2 for 2h followed by simulated intestinal fluid of pH 7.4 at 37°C. The release data have been fitted to an empirical equation to investigate the diffusional exponent (n), which indicated that the release mechanism shifted from anomalous to the super Case-II transport. PMID:24607172

  20. Rheological evaluations and in vitro studies of injectable bioactive glass-polycaprolactone-sodium alginate composites.

    PubMed

    Borhan, Shokoufeh; Hesaraki, Saeed; Behnamghader, Ali-Asghar; Ghasemi, Ebrahim

    2016-09-01

    Composite pastes composed of various amounts of melt-derived bioactive glass 52S4 (MG5) and polycaprolactone (PCL) microspheres in sodium alginate solution were prepared. Rheological properties in both rotatory and oscillatory modes were evaluated. Injectability was measured as injection force versus piston displacement. In vitro calcium phosphate precipitation was also studied in simulated body fluid (SBF) and tracked using scanning electron microscopy, X-ray diffraction and FTIR analyses. All composite pastes were thixotropic in nature and exhibited shear thinning behavior. The magnitude of thixotropy decreased by adding 10-30 wt% PCL, while further amounts of PCL increased it again. Moreover, the composites were viscoelastic materials in which the elastic modulus was higher than viscous term. The pastes which were just made of MG5 or PCL had poor injectability, whereas the composites containing both of these constituents exhibited reasonable injectability. All pastes revealed adequate structural stability in contact with SBF solution. In vitro calcium phosphate precipitation was well observed on the paste made of MG5 and somewhat on the pastes with 10-40 wt% PCL, however the precipitated layer was amorphous in nature. Overall, the produced composites may be appropriate as injectable biomaterials for non-invasive surgeries but more biological evaluations are essential. PMID:27432416

  1. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium alginate. 184.1187 Section 184.1187 Food... Specific Substances Affirmed as GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown...

  2. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  3. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  4. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  5. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  6. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown...

  7. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown...

  8. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown...

  9. Pectin/zein microspheres as a sustained drug delivery system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of microspheres were prepared from pectins and corn proteins from various sources in the presence of the divalent ions calcium or zinc. The results showed that the yield of microsphere and the efficiency of drug incorporation were dependent on the type and ratio of biopolymers, the size of ...

  10. Ag/α-Fe{sub 2}O{sub 3} hollow microspheres: Preparation and application for hydrogen peroxide detection

    SciTech Connect

    Kang, Xinyuan; Wu, Zhiping; Liao, Fang Zhang, Tingting; Guo, Tingting

    2015-09-15

    In this paper, we demonstrated a simple approach for preparing α-Fe{sub 2}O{sub 3} hollow spheres by mixing ferric nitrate aqueous and glucose in 180 °C. The glucose was found to act as a soft template in the process of α-Fe{sub 2}O{sub 3} hollow spheres formation. Ag/α-Fe{sub 2}O{sub 3} hollow nanocomposite was obtained under UV irradiation without additional reducing agents or initiators. Synthesized Ag/α-Fe{sub 2}O{sub 3} hollow composites exhibited remarkable catalytic performance toward H{sub 2}O{sub 2} reduction. The electrocatalytic activity mechanism of Ag/α-Fe{sub 2}O{sub 3}/GCE were discussed toward the reduction of H{sub 2}O{sub 2} in this paper. - Graphical abstract: Glucose is carbonized as carbon balls in the 180 °C hydrothermal carbonization process, which plays a role of a soft template. Carbon spherical shell is rich in many hydroxyls, which have good hydrophilicity and surface reactivity. When Fe(NO{sub 3}){sub 3} is added to the aqueous solution of Glucose, the hydrophilic -OH will adsorb Fe{sup 3+} to form coordination compound by coordination bond. α-FeOOH is formed on the surface of carbon balls by hydrothermal reaction. After calcination at 500 °C, carbon spheres react with oxygen to form carbon dioxide, which disappears in the air. Meanwhile α-FeOOH is calcined to form α-Fe{sub 2}O{sub 3} hollow spheres.

  11. Microbial alginate production, modification and its applications

    PubMed Central

    Hay, Iain D; Rehman, Zahid Ur; Moradali, M Fata; Wang, Yajie; Rehm, Bernd H A

    2013-01-01

    Alginate is an important polysaccharide used widely in the food, textile, printing and pharmaceutical industries for its viscosifying, and gelling properties. All commercially produced alginates are isolated from farmed brown seaweeds. These algal alginates suffer from heterogeneity in composition and material properties. Here, we will discuss alginates produced by bacteria; the molecular mechanisms involved in their biosynthesis; and the potential to utilize these bacterially produced or modified alginates for high-value applications where defined material properties are required. PMID:24034361

  12. Microspheres and nanoparticles from ultrasound

    NASA Astrophysics Data System (ADS)

    Suh, Won Hyuk

    Improved preparations of various examples of monodispersed, porous, hollow, and core-shell metal and semiconductor nanoparticles or nanowires have been developed. Now titania microspheres and nanoparticles and silica microspheres can be synthesized using an inexpensive high frequency (1.7 MHz) ultrasonic generator (household humidifier; ultrasonic spray pyrolysis; USP). Morphology and pore size of titania microspheres were controlled by the silica to Ti(IV) ratio and silica particle size. Fine tuning the precursor ratio affords sub-50 nm titania nanoparticles as well. In terms of silica microspheres, morphology was controlled by the silica to organic monomer ratio. In liquids irradiated with high intensity ultrasound (20 kHz; HIUS), acoustic cavitation produces high energy chemistry through intense local heating inside the gas phase of collapsing bubbles in the liquid. HIUS and USP confine the chemical reactions to isolated sub-micron reaction zones, but sonochemistry does so in a heated gas phase within a liquid, while USP uses a hot liquid droplet carried by a gas flow. Thus, USP can be viewed as a method of phase-separated synthesis using submicron-sized droplets as isolated chemical reactors for nanomaterial synthesis. While USP has been used to create both titania and silica spheres separately, there are no prior reports of titania-silica composites. Such nanocomposites of metal oxides have been produced, and by further manipulation, various porous structures with fascinating morphologies were generated. Briefly, a precursor solution was nebulized using a commercially available household ultrasonic humidifier (1.7 MHz ultrasound generator), and the resulting mist was carried in a gas stream of air through a quartz glass tube in a hot furnace. After exiting the hot zone, these microspheres are porous or hollow and in certain cases magnetically responsive. In the case of titania microspheres, they are rapidly taken up into the cytoplasm of mammalian cells and

  13. Natural mucoadhesive microspheres of Abelmoschus esculentus polysaccharide as a new carrier for nasal drug delivery.

    PubMed

    Sharma, Nitin; Kulkarni, Giriraj T; Sharma, Anjana; Bhatnagar, Aseem; Kumar, Neeraj

    2013-01-01

    This work describes the preparation and evaluation of mucoadhesive microspheres, using Abelmoschus esculentus polysaccharide as a novel carrier for safe and effective delivery of rizatriptan benzoate into nasal cavity. The polysaccharide was extracted from the fruit of A. esculentus and mucoadhesive microspheres were prepared by emulsification, followed by crosslinking using epichlorohydrin. Prepared microspheres were evaluated for size, morphology, swelling properties, mucoadhesive strength, encapsulation efficiency and drug release. Microspheres were found to release 50% of drug within 15 min and rest of the drug was released within 60 min. The drug release was found to decrease with increasing concentration of polysaccharide. To determine the retention time of the microspheres in the nasal cavity of rabbits, the microspheres were radiolabelled with (99m)Tc and subjected to gamma scintigraphy. The results showed a significant improvement in the nasal retention of the microspheres as compared to the aqueous solution of radiolabelled free-drug. PMID:23379506

  14. Effect of gamma radiation on the physico-chemical properties of alginate-based films and beads

    NASA Astrophysics Data System (ADS)

    Huq, Tanzina; Khan, Avik; Dussault, Dominic; Salmieri, Stephane; Khan, Ruhul A.; Lacroix, Monique

    2012-08-01

    Alginate solution (3%, w/v) was prepared using deionized water from its powder. Then the solution was exposed to gamma radiation (0.1-25 kGy). The alginate films were prepared by solution casting. It was found that gamma radiation has strong effect on alginate solution. At low doses, mechanical strength of the alginate films improved but after 5 kGy dose, the strength started to decrease. The mechanism of alginate radiolysis in aqueous solution is discussed. Film formation was not possible from alginate solution at doses >5 kGy. The mechanical properties such as puncture strength (PS), puncture deformation (PD), viscoelasticity (Y) coefficient of the un-irradiated films were investigated. The values of PS, PD and Y coefficient of the films were 333 N/mm, 3.20 mm and 27%, respectively. Alginate beads were prepared from 3% alginate solution (w/v) by ionotropic gelation method in 5% CaCl2 solution. The rate of gel swelling improved in irradiated alginate-based beads at low doses (up to 0.5 kGy).

  15. Optimization of sustained release aceclofenac microspheres using response surface methodology.

    PubMed

    Deshmukh, Rameshwar K; Naik, Jitendra B

    2015-03-01

    Polymeric microspheres containing aceclofenac were prepared by single emulsion (oil-in-water) solvent evaporation method using response surface methodology (RSM). Microspheres were prepared by changing formulation variables such as the amount of Eudragit® RS100 and the amount of polyvinyl alcohol (PVA) by statistical experimental design in order to enhance the encapsulation efficiency (E.E.) of the microspheres. The resultant microspheres were evaluated for their size, morphology, E.E., and in vitro drug release. The amount of Eudragit® RS100 and the amount of PVA were found to be significant factors respectively for determining the E.E. of the microspheres. A linear mathematical model equation fitted to the data was used to predict the E.E. in the optimal region. Optimized formulation of microspheres was prepared using optimal process variables setting in order to evaluate the optimization capability of the models generated according to IV-optimal design. The microspheres showed high E.E. (74.14±0.015% to 85.34±0.011%) and suitably sustained drug release (minimum; 40% to 60%; maximum) over a period of 12h. The optimized microspheres formulation showed E.E. of 84.87±0.005 with small error value (1.39). The low magnitudes of error and the significant value of R(2) in the present investigation prove the high prognostic ability of the design. The absence of interactions between drug and polymers was confirmed by Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) revealed the dispersion of drug within microspheres formulation. The microspheres were found to be discrete, spherical with smooth surface. The results demonstrate that these microspheres could be promising delivery system to sustain the drug release and improve the E.E. thus prolong drug action and achieve the highest healing effect with minimal gastrointestinal side effects. PMID:25579914

  16. Alginate: properties and biomedical applications

    PubMed Central

    Lee, Kuen Yong; Mooney, David J.

    2011-01-01

    Alginate is a biomaterial that has found numerous applications in biomedical science and engineering due to its favorable properties, including biocompatibility and ease of gelation. Alginate hydrogels have been particularly attractive in wound healing, drug delivery, and tissue engineering applications to date, as these gels retain structural similarity to the extracellular matrices in tissues and can be manipulated to play several critical roles. This review will provide a comprehensive overview of general properties of alginate and its hydrogels, their biomedical applications, and suggest new perspectives for future studies with these polymers. PMID:22125349

  17. Albumin microspheres for oral delivery of iron.

    PubMed

    Shivakumar, H N; Vaka, Siva Ram Kiran; Murthy, S Narasimha

    2010-01-01

    Bovine serum albumin (BSA) microspheres of ferric pyrophosphate (FPP) intended for passive targeting to the Peyer's patches has been proposed for oral iron supplementation. Microspheres prepared by emulsification chemical cross linking method were characterized for surface topography, entrapment efficiency, particle size, particle charge and in vitro drug release. Microspheres of batch C with FPP to BSA ratio of 1:5 were found to be most suitable for targeting as they exhibited high entrapment (83.88 +/- 4.31), high monodispersity (span = 1.24 +/- 0.01), and least particle size (d(vm) = 4.40 +/- 0.01). In addition the amount of iron retained in these microspheres despite exposure to simulated gastrointestinal conditions for 5 h was found to be 83.72 +/- 4.22%, the highest in the three batches. The in vivo serum iron profiles in normal rats following oral administration displayed a reduced T(max) (2 h), elevated C(max) (106.06 +/- 12.18 mug/dL) and increased AUC (0-16 h) (647.44 +/- 52.33 mug.h/dL) for these microspheres which significantly differed (P <0.05) from FPP solution indicating a higher iron repletion potential of the BSA microspheres. PMID:19635031

  18. Superabsorbent nanocomposite (alginate-g-PAMPS/MMT): synthesis, characterization and swelling behavior.

    PubMed

    Yadav, Mithilesh; Rhee, Kyong Yop

    2012-09-01

    A superabsorbent composite (alginate-g-PAMPS/MMT) was prepared by graft copolymerization from alginate, 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and Na+ montmorillonite (MMT) in an inert atmosphere. Effects of polymerization variables on water absorbency, including the content of Na+ montmorillonite, sodium alginate, N,N'-methylenebisacrylamide and AMPS, were studied. The introduced montmorillonite formed a loose and porous surface and improved the water absorbency of the alginate-g-PAMPS/MMT superabsorbent composite. Swelling behaviors of the superabsorbent composites in various cationic salt solutions (NaCl, CaCl2 and FeCl3) and anionic salt solutions (NaCl and Na2SO4) were also systematically investigated. The superabsorbent composite was further characterized using Fourier transform infrared spectroscopy (FTIR), rheology, thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) taking alginate-g-PAMPS as a reference. PMID:24751026

  19. Synthesis and characterization of magnetic poly(glycidyl methacrylate) microspheres

    NASA Astrophysics Data System (ADS)

    Horák, Daniel; Petrovský, Eduard; Kapička, Aleš; Frederichs, Theodor

    2007-04-01

    Magnetic nanoparticles encapsulated in poly(glycidyl methacrylate) microspheres were prepared and their detailed structural and magnetic characteristics given. Iron oxide nanoparticles were obtained by chemical coprecipitation of Fe(II) and Fe(III) salts and stabilized with dextran, (carboxymethyl)dextran or tetramethylammonium hydroxide. The microspheres were prepared by emulsion or dispersion polymerization of glycidyl methacrylate in the presence of ferrofluid. The microspheres were uniform both in shape and usually also in size; their size distribution was narrow. All the magnetic parameters confirm superparamagnetic nature of the microspheres. Blocking temperature was not observed, suggesting the absence of magnetic interactions at low temperatures. This is most probably caused by complete encapsulation and the absence of agglomeration. Such microspheres can be used in biomedical applications.

  20. Optimization of alpha-amylase immobilization in calcium alginate beads.

    PubMed

    Ertan, Figen; Yagar, Hulya; Balkan, Bilal

    2007-01-01

    alpha-Amylase enzyme was produced by Aspergillus sclerotiorum under SSF conditions, and immobilized in calcium alginate beads. Effects of immobilization conditions, such as alginate concentration, CaCl(2) concentration, amount of loading enzyme, bead size, and amount of beads, on enzymatic activity were investigated. Optimum alginate and CaCl(2) concentration were found to be 3% (w/v). Using a loading enzyme concentration of 140 U mL(-1), and bead (diameter 3 mm) amount of 0.5 g, maximum enzyme activity was observed. Beads prepared at optimum immobilization conditions were suitable for up to 7 repeated uses, losing only 35% of their initial activity. Among the various starches tested, the highest enzyme activity (96.2%) was determined in soluble potato starch hydrolysis for 120 min at 40 degrees C. PMID:17516249

  1. Chitosan microspheres as a delivery system for nasal insufflation.

    PubMed

    Patil, Sanjay B; Sawant, Krutika K

    2011-06-01

    The aim of the present study was to develop and characterize chitosan mucoadhesive microspheres for nasal delivery. The microspheres were prepared by emulsification-crosslinking method and evaluated for morphology, particle size, swelling index, in vitro mucoadhesion and delivery properties from Miat(®) nasal insufflator. The results showed that the microspheres were spherical in shape with smooth surfaces. The particle size of microspheres was found to be dependent on the concentration of the chitosan. The mean particle size was significantly increased when high concentration of chitosan was used. Aqueous to oil phase ratio, stirring rate and dioctyl sodium sulfosuccinate (DOSS) concentration also influenced the particle size distribution of the microspheres. It was found that, as stirring rate was increased, the size of the microspheres was decreased. The volume of glutaraldehyde and crosslinking time had very slight effect on particle size distribution. The % equilibrium water uptake of the microspheres was ranged from 124% to 232% and the mucoadhesive strength from 70.64±2.14 to 86.32±3.96%. The results of powder delivery from the device showed that, almost entire amount was delivered after three puffs. The images of the delivery sequences of microsphere powder clouds demonstrated that microspheres were delivered forming an elongated puff. The core of the clouds was homogeneous which can be expected to provide effective distribution pattern. PMID:21320767

  2. Synthesis of thiolated alginate and evaluation of mucoadhesiveness, cytotoxicity and release retardant properties.

    PubMed

    Jindal, A B; Wasnik, M N; Nair, Hema A

    2010-11-01

    Modification of polymers by covalent attachment of thiol bearing pendant groups is reported to impart many beneficial properties to them. Hence in the present study, sodium alginate-cysteine conjugate was synthesized by carbodiimide mediated coupling under varying reaction conditions and the derivatives characterized for thiol content. The thiolated alginate species synthesized had bound thiol content ranging from 247.8±11.03-324.54±10.107 ΅mol/g of polymer depending on the reaction conditions. Matrix tablets based on sodium alginate-cysteine conjugate and native sodium alginate containing tramadol hydrochloride as a model drug were prepared and mucoadhesive strength and in vitro drug release from the tablets were compared. Tablets containing 75 mg sodium alginate-cysteine conjugate could sustain release of 10 mg of model drug for 3 h, whereas 90% of the drug was released within 1 h from corresponding tablets prepared using native sodium alginate. An approximately 2-fold increase in the minimal detachment force of the tablets from an artificial mucin film was observed for sodium alginate-cysteine conjugate as compared to native sodium alginate. In vitro cytotoxicity studies in L-929 mouse fibroblast cells studied using an MTT assay revealed that at low concentrations of polymer, sodium alginate-cysteine conjugate was less toxic to L-929 mouse fibroblast cell line when compared to native sodium alginate. Hence, thiolation is found to be a simple route to improving polymer performance. The combination of improved controlled drug release and mucoadhesive properties coupled with the low toxicity of these new excipients builds up immense scope for the use of thiolated polymers in mucoadhesive drug delivery systems. PMID:21969750

  3. Coatless alginate pellets as sustained-release drug carrier for inflammatory bowel disease treatment.

    PubMed

    Md Ramli, Siti Hajar; Wong, Tin Wui; Naharudin, Idanawati; Bose, Anirbandeep

    2016-11-01

    Conventional alginate pellets underwent rapid drug dissolution and failed to exert colon targeting unless subjected to complex coating. This study designed coatless delayed-release oral colon-specific alginate pellets for ulcerative colitis treatment. Alginate pellets, formulated with water-insoluble ethylcellulose and various calcium salts, were prepared using solvent-free melt pelletization technique which prevented reaction between processing materials during agglomeration and allowed reaction to initiate only in dissolution. Combination of acid-soluble calcium carbonate and highly water-soluble calcium acetate did not impart colon-specific characteristics to pellets due to pore formation in fragmented matrices. Combination of moderately water-soluble calcium phosphate and calcium acetate delayed drug release due to rapid alginate crosslinking by soluble calcium from acetate salt followed by sustaining alginate crosslinking by calcium phosphate. The use of 1:3 ethylcellulose-to-alginate enhanced the sustained drug release attribute. The ethylcellulose was able to maintain the pellet integrity without calcium acetate. Using hydrophobic prednisolone as therapeutic, hydrophilic alginate pellets formulated with hydrophobic ethylcellulose and moderately polar calcium phosphate exhibited colon-specific in vitro drug release and in vivo anti-inflammatory action. Coatless oral colon-specific alginate pellets can be designed through optimal formulation with melt pelletization as the processing technology. PMID:27516284

  4. Alginate based hydrogel as a potential biopolymeric carrier for drug delivery and cell delivery systems: present status and applications.

    PubMed

    Giri, Tapan Kumar; Thakur, Deepa; Alexander, Amit; Ajazuddin; Badwaik, Hemant; Tripathi, Dulal Krishna

    2012-11-01

    Alginate is a non-toxic, biocompatible and biodegradable natural polymer with a number of peculiar physicochemical properties for which it has wide applications in drug delivery and cell delivery systems. Hydrogel formation can be obtained by interactions of anionic alginates with multivalent inorganic cations by simple ionotropic gelation method. Hydrophilic polymeric network of three dimensional cross linked structures of hydrogels absorb substantial amount of water or biological fluids. Among the numerous biomaterials used for hydrogel formation alginate has been and will continue to be one of the most important biomaterial. Therefore, in view of the vast literature support, we focus in this review on alginate - based hydrogel as drug delivery and cell delivery carriers for biomedical applications. Various properties of alginates, their hydrogels and also various techniques used for preparing alginate hydrogels have been reviewed. PMID:22998675

  5. Metallic coating of microspheres

    SciTech Connect

    Meyer, S.F.

    1980-08-15

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates.

  6. Preparation and property of a novel bone graft composite consisting of rhBMP-2 loaded PLGA microspheres and calcium phosphate cement.

    PubMed

    Fei, Zhengqi; Hu, Yunyu; Wu, Daocheng; Wu, Hong; Lu, Rong; Bai, Jianping; Song, Hongxun

    2008-03-01

    Calcium phosphate cement (CPC) is a highly promising bone substitute and an excellent carrier for delivering growth factors. Yet, the lack of macro-porosity and osteoinductive ability, limit its use. This study is aimed at developing a novel biodegradable biomaterial for bone repair with both highly osteoconductive and osteoinductive properties. RhBMP-2 loaded PLGA microspheres were incorporated into rhBMP-2/CPC for macropores for bone ingrowth. The compressive strength, crystallinity, microscopic structure, and bioactivity of the composites were investigated. The results showed that with the incorporation of rhBMP-2 loaded PLGA microspheres, the compressive strength was decreased from (29.48+/-6.42) MPa to (8.26+/-3.58) MPa. X-ray diffraction revealed that the crystallinity pattern of HA formed by CPC had no significant change. Inside the composite, the microspheres distributed homogeneously and contacted intimately with the HA matrix, as observed by scanning electron microscopy (SEM). When the PLGA microspheres dissolved after having been emerged in PBS for 56 days, macropores were created within the CPC. The rhBMP-2/PLGA/CPC composite, showing a 4.9% initial release of rhBMP-2 in 24 h, followed by a prolonged release for 28 days, should have a greater amount of rhBMP-2 released compared to the CPC delivery system. When rabbit marrow stromal cells were cocultured with the composite, the alkaline phosphatase (ALP) and osteocalcin (OC) showed a dose response to the rhBMP-2 released from the composite, indicating that the activity of rhBMP-2 was retained. This study shows that the new composite reveals more rhBMP-2 release and osteogenic activity. This novel BMP/PLGA/CPC composite could be a promising synthetic bone graft in craniofacial and orthopedic repairs. PMID:17701313

  7. Chitosan and alginate scaffolds for bone tissue regeneration.

    PubMed

    Olmez, S S; Korkusuz, P; Bilgili, H; Senel, S

    2007-06-01

    Polymeric scaffold for tissue regeneration was developed for veterinary applications. Oxytetracycline hydrochloride (OTC), which is a widely used antibiotic in veterinary medicine was chosen as the model compound. Gel formulations using chitosan and alginate were prepared in distilled water or in 1% (v/v) acetic acid solution. Sponges were also prepared by a freeze-drying process. Tripolyphosphate was used for cross-linking. Viscosity was decreased in the presence of OTC in chitosan gels whereas no difference was found with alginate gels. All gels showed pseudoplastic behaviour. Water absorption capacity was highest with chitosan/alginate sponges. The solvent used for preparation of the chitosan gels was found to affect the release of OTC. The release of OTC from the sponges was increased by cross-linking. Chitosan/alginate sponges showed the slowest and lowest drug release among the developed sponge formulations in this study. The formulations were found to be biocompatible, inducing no adverse reaction in vivo on surgically formed bone defects of radius of rabbits. The level of organization of the remodelled new bone in the treatment groups was better than that of control. Incorporation of OTC into formulations did not show any considerable enhancing effect. PMID:17663189

  8. Synthesis and Characterization of Sodium Alginate Conjugate and Study of Effect of Conjugation on Drug Release from Matrix Tablet.

    PubMed

    Satheeshababu, B K; Mohamed, I

    2015-01-01

    The aim of the present research work to study the effect of conjugation of the polymer on drug release from the matrix tablets. Sodium alginate L-cysteine conjugate was achieved by covalent attachment of thiol group of L-cysteine with the primary amino group of sodium alginate through the amide bonds formed by primary amino groups of the sodium alginate and the carboxylic acid group of L-cysteine. The synthesised sodium alginate L-cysteine conjugate was characterised by determining of charring point, Fourier transmission-infrared and differential scanning calorimetric analysis. To study the effect of conjugation on drug release pattern, the matrix tablets were prepared using various proportions of sodium alginate and sodium alginate L-cysteine conjugate along with atorvastatin calcium as model drug. The wet granulation technique was adopted and prepared matrix tablets were evaluated for various physical parameters. The in vitro drug release study results suggested that tablet formulated in combination of sodium alginate and sodium alginate L-cysteine conjugate S4 showed 100% after 8 h drug release whereas formulated with only sodium alginate S0 released 40% in 8 h. PMID:26798173

  9. Synthesis and Characterization of Sodium Alginate Conjugate and Study of Effect of Conjugation on Drug Release from Matrix Tablet

    PubMed Central

    Satheeshababu, B. K.; Mohamed, I.

    2015-01-01

    The aim of the present research work to study the effect of conjugation of the polymer on drug release from the matrix tablets. Sodium alginate L-cysteine conjugate was achieved by covalent attachment of thiol group of L-cysteine with the primary amino group of sodium alginate through the amide bonds formed by primary amino groups of the sodium alginate and the carboxylic acid group of L-cysteine. The synthesised sodium alginate L-cysteine conjugate was characterised by determining of charring point, Fourier transmission-infrared and differential scanning calorimetric analysis. To study the effect of conjugation on drug release pattern, the matrix tablets were prepared using various proportions of sodium alginate and sodium alginate L-cysteine conjugate along with atorvastatin calcium as model drug. The wet granulation technique was adopted and prepared matrix tablets were evaluated for various physical parameters. The in vitro drug release study results suggested that tablet formulated in combination of sodium alginate and sodium alginate L-cysteine conjugate S4 showed 100% after 8 h drug release whereas formulated with only sodium alginate S0 released 40% in 8 h. PMID:26798173

  10. Facile preparation of novel dandelion-like Fe-doped NiCo2O4 microspheres@nanomeshes for excellent capacitive property in asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Li; Zhang, Huijuan; Fang, Ling; Mu, Yanping; Wang, Yu

    2016-09-01

    In this work, we successfully synthesized the dandelion-like Fe-doped NiCo2O4 microspheres@nanomeshes (Fe-NCO-M@N-1h) using a facile hydrothermal method, followed by calcinations. In the unique structure, numerous nanoneedles radially grow on the surface of microsphere and some porous nanomeshes orderly develop in the inside of microsphere, therefore dandelion-like Fe-NCO-M@N-1h displays large specific surface area (101.15 m2 g-1) and more active sites. Electrochemical properties of the Fe-NCO-M@N-1h have been tested for symmetric supercapacitors (SCs) and asymmetric supercapacitors (ASCs). Benefiting from the structural advantages, Fe-NCO-M@N-1h electrode exhibits outstanding capacitive behaviors, such as the desirable specific capacitance and eminent rate performance (2237 and 1810 F g-1 at the current densities of 1 and 20 A g-1, respectively) and remarkable cycling performance (95.8% retention after 4500 cycles). Besides, a Fe-NCO-M@N-1h//AC-ASCs device has been constructed successfully, presenting the highest energy density of 46.68 Wh kg-1. The results indicate that the Fe-NCO-M@N-1h is a potential material for SCs.

  11. Entrapment of cross-linked cellulase colloids in alginate beads for hydrolysis of cellulose.

    PubMed

    Nguyen, Le Truc; Lau, Yun Song; Yang, Kun-Lin

    2016-09-01

    Entrapment of enzymes in calcium alginate beads is a popular enzyme immobilization method. However, leaching of immobilized enzymes from the alginate beads is a common problem because enzyme molecules are much smaller than the pore size of alginate beads (∼200nm). To address this issue, we employ a millifluidic reactor to prepare cross-linked cellulase aggregate (XCA) colloids with a uniform size (∼300nm). Subsequently, these colloids are immobilized in calcium alginate beads as biocatalysts to hydrolyze cellulose substrates. By using fluorescent microscopy, we conclude that the immobilized XCA colloids distribute uniformly inside the beads and do not leach out from the beads after long-term incubation. Meanwhile, the pore size of the alginate beads is big enough for the cellulose substrates and fibers to diffuse into the beads for hydrolysis. For example, palm oil fiber and microcrystalline cellulose can be hydrolyzed within 48h and release reducing sugar concentrations up to 2.48±0.08g/l and 4.99±0.09g/l, respectively. Moreover, after 10 cycles of hydrolysis, 96.4% of the XCA colloids remain inside the alginate beads and retain 67% of the original activity. In contrast, free cellulase immobilized in the alginate beads loses its activity completely after 10 cycles. The strategy can also be used to prepare other types of cross-linked enzyme aggregates with high uniformity. PMID:27318817

  12. Structural Characterization of Sodium Alginate and Calcium Alginate.

    PubMed

    Hecht, Hadas; Srebnik, Simcha

    2016-06-13

    Alginate readily aggregates and forms a physical gel in the presence of cations. The association of the chains, and ultimately gel structure and mechanics, depends not only on ion type, but also on the sequence and composition of the alginate chain that ultimately determines its stiffness. Chain flexibility is generally believed to decrease with guluronic residue content, but it is also known that both polymannuronate and polyguluronate blocks are stiffer than heteropolymeric blocks. In this work, we use atomistic molecular dynamics simulation to primarily explore the association and aggregate structure of different alginate chains under various Ca(2+) concentrations and for different alginate chain composition. We show that Ca(2+) ions in general facilitate chain aggregation and gelation. However, aggregation is predominantly affected by alginate monomer composition, which is found to correlate with chain stiffness under certain solution conditions. In general, greater fractions of mannuronic monomers are found to increase chain flexibility of heteropolymer chains. Furthermore, differences in chain guluronic acid content are shown to lead to different interchain association mechanisms, such as lateral association, zipper mechanism, and entanglement, where the mannuronic residues are shown to operate as an elasticity moderator and therefore promote chain association. PMID:27177209

  13. Production of hollow aerogel microspheres

    SciTech Connect

    Upadhye, R.S.; Henning, S.A.

    1990-12-31

    A method is described for making hollow aerogel microspheres of 800--1200{mu} diameter and 100--300{mu} wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  14. Production of hollow aerogel microspheres

    DOEpatents

    Upadhye, Ravindra S.; Henning, Sten A.

    1993-01-01

    A method is described for making hollow aerogel microspheres of 800-1200 .mu. diameter and 100-300 .mu. wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  15. Metabolism of proteinoid microspheres

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W. (Principal Investigator)

    1987-01-01

    The literature of metabolism in proteinoids and proteinoid microspheres is reviewed and criticized from a biochemical and experimental point of view. Closely related literature is also reviewed in order to understand the function of proteinoids and proteinoid microspheres. Proteinoids or proteinoid microspheres have many activities. Esterolysis, decarboxylation, amination, deamination, and oxidoreduction are catabolic enzyme activities. The formation of ATP, peptides or oligonucleotides is synthetic enzyme activities. Additional activities are hormonal and inhibitory. Selective formation of peptides is an activity of nucleoproteinoid microspheres; these are a model for ribosomes. Mechanisms of peptide and oligonucleotide syntheses from amino acids and nucleotide triphosphate by proteinoid microspheres are tentatively proposed as an integrative consequence of reviewing the literature.

  16. Metabolism of proteinoid microspheres

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W. (Principal Investigator)

    1987-01-01

    The literature of metabolism in proteinoids and proteinoid microspheres is reviewed and criticized from a biochemical and experimental point of view. Closely related literature is also reviewed in order to understand the function of proteinoids and proteinoid microspheres. Proteinoids or proteinoid microspheres have many activities. Esterolyis, decarboxylation, amination, deamination, and oxidoreduction are catabolic enzyme activities. The formation of ATP, peptides or oligonucleotides is synthetic enzyme activities. Additional activities are hormonal and inhibitory. Selective formation of peptides is an activity of nucleoproteinoid microspheres; these are a model for ribosomes. Mechanisms of peptide and oligonucleotide syntheses from amino acids and nucleotide triphosphate by proteinoid microspheres are tentatively proposed as an integrative consequence of reviewing the literature.

  17. Electrophoretic cell separation by means of microspheres

    NASA Technical Reports Server (NTRS)

    Smolka, A. J. K.; Nerren, B. H.; Margel, S.; Rembaum, A.

    1979-01-01

    The electrophoretic mobility of fixed human erythrocytes immunologically labeled with poly(vinylpyridine) or poly(glutaraldehyde) microspheres was reduced by approximately 40%. This observation was utilized in preparative scale electrophoretic separations of fixed human and turkey erythrocytes, the mobilities of which under normal physiological conditions do not differ sufficiently to allow their separation by continuous flow electrophoresis. We suggest that resolution in the electrophoretic separation of cell subpopulations, currently limited by finite and often overlapping mobility distributions, may be significantly enhanced by immunospecific labeling of target populations using microspheres.

  18. Quantum Magnetomechanics with Levitating Superconducting Microspheres

    NASA Astrophysics Data System (ADS)

    Romero-Isart, O.; Clemente, L.; Navau, C.; Sanchez, A.; Cirac, J. I.

    2012-10-01

    We show that by magnetically trapping a superconducting microsphere close to a quantum circuit, it is possible to perform ground-state cooling and prepare quantum superpositions of the center-of-mass motion of the microsphere. Due to the absence of clamping losses and time-dependent electromagnetic fields, the mechanical motion of micrometer-sized metallic spheres in the Meissner state is predicted to be very well isolated from the environment. Hence, we propose to combine the technology of magnetic microtraps and superconducting qubits to bring relatively large objects to the quantum regime.

  19. Characterization of an extracellular biofunctional alginate lyase from marine Microbulbifer sp. ALW1 and antioxidant activity of enzymatic hydrolysates.

    PubMed

    Zhu, Yanbing; Wu, Liyun; Chen, Yanhong; Ni, Hui; Xiao, Anfeng; Cai, Huinong

    2016-01-01

    A novel alginate-degrading marine bacterium Microbulbifer sp. ALW1 was isolated from rotten brown alga. An extracellular alginate lyase was purified to electrophoretic homogeneity and had a molecular mass of about 26.0 kDa determined by SDS-PAGE and size exclusion chromatography. This enzyme showed activities towards both polyguluronate and polymannuronate indicating its bifunctionality while with preference for the former substrate. Using sodium alginate as a substrate, strain ALW1 alginate lyase was optimally active at 45 °C and pH 7.0. It was stable at 25 °C, 30 °C, 35 °C and 40 °C, but not stable at 50 °C. This alginate lyase showed good stability over a broad pH range (5.0-9.0). The enzyme activity was increased to 5.1 times by adding NaCl to a final concentration of 0.5M. Strain ALW1 alginate lyase produced disaccharide (majority) and trisaccharide from alginate indicating that this enzyme could be a good tool for preparation of alginate oligosaccharides with low degree of polymerization (DP). The alginate oligosaccharides displayed the scavenging abilities towards radicals (DPPH, ABTS(+) and hydroxyl) and the reducing power. Therefore, the hydrolysates exhibited the antioxidant activity and had potential as a natural antioxidant. PMID:26686613

  20. 21 CFR 582.7187 - Calcium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium alginate. 582.7187 Section 582.7187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium alginate. (a) Product. Calcium alginate. (b) Conditions of use. This substance is...

  1. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  2. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  3. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  4. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  5. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  6. 21 CFR 184.1011 - Alginic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Alginic acid. 184.1011 Section 184.1011 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1011 Alginic acid. (a) Alginic acid is a colloidal,...

  7. 21 CFR 184.1011 - Alginic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Alginic acid. 184.1011 Section 184.1011 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1011 Alginic acid. (a) Alginic acid is a colloidal, hydrophilic polysaccharide obtained from...

  8. 21 CFR 184.1011 - Alginic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Alginic acid. 184.1011 Section 184.1011 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1011 Alginic acid. (a) Alginic acid is a colloidal,...

  9. 21 CFR 184.1011 - Alginic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Alginic acid. 184.1011 Section 184.1011 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1011 Alginic acid. (a) Alginic acid is a colloidal,...

  10. 21 CFR 184.1011 - Alginic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Alginic acid. 184.1011 Section 184.1011 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1011 Alginic acid. (a) Alginic acid is a colloidal,...

  11. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized...

  12. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized...

  13. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized...

  14. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized...

  15. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized...

  16. Nonlinear elasticity of alginate gels

    NASA Astrophysics Data System (ADS)

    Hashemnejad, Seyed Meysam; Kundu, Santanu

    Alginate is a naturally occurring anionic polysaccharide extracted from brown algae. Because of biocompatibility, low toxicity, and simple gelation process, alginate gels are used in biomedical and food applications. Here, we report the rheological behavior of ionically crosslinked alginate gels, which are obtained by in situ gelation of alginates with calcium salts, in between two parallel plates of a rheometer. Strain stiffening behavior was captured using large amplitude oscillatory shear (LAOS) experiments. In addition, negative normal stress was observed for these gels, which has not been reported earlier for any polysaccharide networks. The magnitude of negative normal stress increases with applied strain and can exceed that of the shear stress at large strain. Rheological results fitted with a constitutive model that considers both stretching and bending of chains indicate that nonlinearity is likely related to the stretching of the chains between the crosslink junctions. The results provide an improved understanding of the deformation mechanism of ionically crosslinked alginate gel and the results will be important in developing synthetic extracellular matrix (ECM) from these materials.

  17. Oxygen sensing glucose biosensors based on alginate nano-micro systems

    NASA Astrophysics Data System (ADS)

    Chaudhari, Rashmi; Joshi, Abhijeet; Srivastava, Rohit

    2014-04-01

    Clinically glucose monitoring in diabetes management is done by point-measurement. However, an accurate, continuous glucose monitoring, and minimally invasive method is desirable. The research aims at developing fluorescence-mediated glucose detecting biosensors based on near-infrared radiation (NIR) oxygen sensitive dyes. Biosensors based on Glucose oxidase (GOx)-Rudpp loaded alginate microspheres (GRAM) and GOx-Platinum-octaethylporphyrin (PtOEP)-PLAalginate microsphere system (GPAM) were developed using air-driven atomization and characterized using optical microscopy, CLSM, fluorescence spectro-photometry etc. Biosensing studies were performed by exposing standard solutions of glucose. Uniform sized GRAM and GPAM with size 50+/-10μm were formed using atomization. CLSM imaging of biosensors suggests that Rudpp and PtOEP nanoparticles are uniformly distributed in alginate microspheres. The GRAM and GPAM showed a good regression constant of 0.974 and of 0.9648 over a range of 0-10 mM of glucose with a high sensitivity of 3.349%/mM (625 nm) and 2.38%/mM (645 nm) at 10 mM of glucose for GRAM and GPAM biosensor. GRAM and GPAM biosensors show great potential in development of an accurate and minimally invasive glucose biosensor. NIR dye based assays can aid sensitive, minimally-invasive and interference-free detection of glucose in diabetic patients.

  18. Improving photoprotection: 4-methylbenzylidene camphor microspheres.

    PubMed

    Centini, Marisanna; Miraglia, Giovanna; Quaranta, Valeria; Buonocore, Anna; Anselmi, Cecilia

    2014-05-22

    Abstract We propose a new approach for photoprotection. 4-Methylbenzylidene camphor (4-MBC), one of the most widely used UV filters, was encapsulated in microspheres, with a view to overcoming problems (percutaneous absorption, photodegradation and lack of lasting effect) arising with organic sunscreens, and to achieve safe photoprotection. We focused on this filter in the light of the Cosmetics Europe opinion concerning its possible effects on the thyroid gland. Microspheres were prepared by emulsification-solvent evaporation, using different amounts of 4-MBC and characterized for morphology, encapsulation efficiency and particle size. The particles were then mixed in O/W emulsions. The in vitro sun protection factors, in vitro release and photostability were investigated and compared with emulsions containing the free sunscreen. The new microspheres offer good morphology and loading (up to 40%), and the same photoprotection as the free filter while at the same time protecting it from photodegradation. The systems also give a slower release from the emulsions. PMID:24854342

  19. Colorimetric magnetic microspheres as chemosensor for Cu(2+) prepared from adamantane-modified rhodamine and β-cyclodextrin-modified Fe3O4@SiO2 via host-guest interaction.

    PubMed

    Zhang, Yue; Wang, Wei; Li, Qiang; Yang, Qingbiao; Li, Yaoxian; Du, Jianshi

    2015-08-15

    Adamantane-modified salicylrhodamine B and β-cyclodextrin-modified Fe3O4@SiO2 were assemblied by host-guest interactions which induced novel inclusion complex magnetic nanoparticles (SFIC MNPs) colorimetric sensitive for Cu(2+) being prepared. The MNPs exhibit a clear color change from colorless to pink selectively and sensitively with the addition of Cu(2+) in the experiments of UV-visible spectra, and the detection limit measures up to 5.99×10(-6)M in solutions of CH3CN-H2O =1:10. The SFIC magnetic nanoparticles are superparamagnetic according to magnetic measurements and can be separated and collected easily with a commercial magnet in nine seconds. In addition, the microspheres have also showed good ability of separating for other ions from aqueous solutions due to a large number of hydroxyl groups on the surface. PMID:25966377

  20. Bone blood flow in the femora of anesthetized and conscious dogs in a chronic preparation, using the radioactive tracer microsphere method

    SciTech Connect

    Jones, L.C.; Niv, A.I.; Davis, R.F.; Hungerford, D.S.

    1982-10-01

    The radioactive tracer microsphere method is applicable to the study of the hemodynamics of bone. As observed previously by others, areas of predominantly cancellous bone produce higher blood flow measurements than do areas of predominantly cortical bone. Bone containing fatty marrow has lower blood flow rates than does bone containing hematopoietic marrow. Blood flow to the femoral neck was the greatest measured (26.74 +/- 1.95 ml/min/100 gm), while the diaphyseal region was the area with the lowest flow (4.67 +/- 0.46 ml/min/100 gm). There was no significant difference between consecutive measurements using up to five differently labeled radioactive microspheres. This enabled observations of the effects of an experimental procedure on bone blood flow in the same animal. Additionally, there was no statistically significant differences between regional blood flows measured 40 days apart in the same animal. Bone blood flow measurements were slightly lower in anesthetized than in conscious dogs. The RTM method is the one most suitable for the estimation of bone blood flow under either acute or chronic conditions.

  1. Modified composite microspheres of hydroxyapatite and poly(lactide-co-glycolide) as an injectable scaffold

    NASA Astrophysics Data System (ADS)

    Hu, Xixue; Shen, Hong; Yang, Fei; Liang, Xinjie; Wang, Shenguo; Wu, Decheng

    2014-02-01

    The compound of hydroxyapatite-poly(lactide-co-glycolide) (HA-PLGA) was prepared by ionic bond between HA and PLGA. HA-PLGA was more stable than the simple physical blend of hydroxyapatite and poly(lactide-co-glycolide) (HA/PLGA). The surface of HA-PLGA microsphere fabricated by an emulsion-solvent evaporation method was rougher than that of HA/PLGA microspheres. Moreover, surface HA content of HA-PLGA microspheres was more than that of HA/PLGA microspheres. In vitro mouse OCT-1 osteoblast-like cell culture results showed that the HA-PLGA microspheres clearly promoted osteoblast attachment, proliferation and alkaline phosphatase activity. It was considered that surface rich HA component and rough surface of HA-PLGA microsphere enhanced cell growth and differentiation. The good cell affinity of the HA-PLGA microspheres indicated that they could be used as an injectable scaffold for bone tissue engineering.

  2. The effect of omeprazole pre-treatment on rafts formed by reflux suppressant tablets containing alginate.

    PubMed

    Dettmar, P W; Little, S L; Baxter, T

    2005-01-01

    Alginate-based reflux suppressant preparations provide symptom relief by forming a physical barrier on top of the stomach contents in the form of a neutral floating gel or raft. This study investigated whether reduced acidity in the stomach brought about by omeprazole pre-treatment affected the formation and gastric residence time of alginate rafts. It was a balanced, cross-over study in 12 healthy non-patient volunteers following a single dose of two indium-111-labelled alginate tablets in the presence or absence of 3 days' pre-treatment with omeprazole. Raft formation and gastric residence, in the presence of a technetium-99m-labelled meal, were assessed by gamma scintigraphy for 3 h after alginate tablet administration. The relative raft-forming ability of alginate tablets after omeprazole compared with alginate tablets alone was 0.950 with 95% confidence intervals of 0.882 and 1.018. Pre-treatment and co-administration with omeprazole has no significant effect on the raft-forming ability of alginate tablets. PMID:15938591

  3. Novel copper (II) alginate hydrogels and their potential for use as anti-bacterial wound dressings.

    PubMed

    Klinkajon, Wimonwan; Supaphol, Pitt

    2014-08-01

    The incorporation of a metal ion, with antimicrobial activity, into an alginate dressing is an attractive approach to minimize infection in a wound. In this work, copper (II) cross-linked alginate hydrogels were successfully prepared using a two-step cross-linking procedure. In the first step, solid alginate films were prepared using a solvent-casting method from soft gels of alginate solutions that had been lightly cross-linked using a copper (II) (Cu(2+)) sulfate solution. In the second step, the films were further cross-linked in a corresponding Cu(2+) sulfate solution using a dipping method to further improve their dimensional stability. Alginate solution (at 2%w/v) and Cu(2+) sulfate solution (at 2%w/v) in acetate buffer at a low pH provided soft films with excellent swelling behavior. An increase in either Cu(2+) ion concentration or cross-linking time led to hydrogels with more densely-cross-linked networks that limited water absorption. The hydrogels clearly showed antibacterial activity against Escherichia coli, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis and Streptococcus pyogenes, which was proportional to the Cu(2+) ion concentration. Blood coagulation studies showed that the tested copper (II) cross-linked alginate hydrogels had a tendency to coagulate fibrin, and possibly had an effect on pro-thrombotic coagulation and platelet activation. Conclusively, the prepared films are likely candidates as antibacterial wound dressings. PMID:25029588

  4. Microsphere Insulation Panels

    NASA Technical Reports Server (NTRS)

    Mohling, R.; Allen, M.; Baumgartner, R.

    2006-01-01

    Microsphere insulation panels (MIPs) have been developed as lightweight, longlasting replacements for the foam and vacuum-jacketed systems heretofore used for thermally insulating cryogenic vessels and transfer ducts. The microsphere core material of a typical MIP consists of hollow glass bubbles, which have a combination of advantageous mechanical, chemical, and thermal-insulation properties heretofore available only separately in different materials. In particular, a core filling of glass microspheres has high crush strength and low density, is noncombustible, and performs well in soft vacuum.

  5. Using a CD-like microfluidic platform for uniform calcium alginate drug carrier generation

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Kai; Huang, Keng-Shiang; Chang, Jia-Yaw; Wu, Chun-Han; Lin, Yu-Cheng

    2007-01-01

    In this paper the manipulation of monodisperse Ca-alginate microparticles using a polymer-based CD-like microfluidic platform and a reaction of external gelation is presented. Our strategy was based on associating the rapid injection molding process for cross-junction microchannel with the sheath focusing effect to form uniform water-in-oil (w/o) emulsions. These fine emulsions, consisting of 1.5% w/v Na-alginate, were then dripped into an oil solution containing 20% w/v calcium chloride (CaCl II) to accomplish Ca-alginate microspheres in an efficient manner. We have demonstrated that one can control the size of Ca-alginate microparticles from 20 µm to 50 µm in diameter (with a variation less than 10%) by altering the relative sheath/sample flow rate ratio. Experimental data showed that for a given fixed dispersed phase flow (sample flow), the emulsion size decreased as the average velocity of the continuous phase (oil flow) increased. The proposed CD-like microfluidic platform is capable of generating relatively uniform microdroplets and has the advantages of active control of droplet diameter, simple and low cost process, and high throughput.

  6. 3D Cell Culture in Alginate Hydrogels

    PubMed Central

    Andersen, Therese; Auk-Emblem, Pia; Dornish, Michael

    2015-01-01

    This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent), and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue. PMID:27600217

  7. Gingival Mesenchymal Stem Cell (GMSC) Delivery System Based on RGD-Coupled Alginate Hydrogel with Antimicrobial Properties: A Novel Treatment Modality for Peri-Implantitis

    PubMed Central

    Diniz, Ivana M. A.; Chen, Chider; Ansari, Sahar; Zadeh, Homayoun H.; Moshaverinia, Maryam; Chee, Daniel; Marques, Márcia M.; Shi, Songtao; Moshaverinia, Alireza

    2015-01-01

    Purpose Peri-implantitis is one of the most common inflammatory complications in dental implantology. Similar to periodontitis, in peri-implantitis, destructive inflammatory changes take place in the tissues surrounding a dental implant. Bacterial flora at the failing implant sites resemble the pathogens in periodontal disease and consist of Gram-negative anaerobic bacteria including Aggregatibacter actinomycetemcomitans (Aa). Here we demonstrate the effectiveness of a silver lactate (SL)-containing RGD-coupled alginate hydrogel scaffold as a promising stem cell delivery vehicle with antimicrobial properties. Materials and Methods Gingival mesenchymal stem cells (GMSCs) or human bone marrow mesenchymal stem cells (hBMMSCs) were encapsulated in SL-loaded alginate hydrogel microspheres. Stem cell viability, proliferation, and osteo-differentiation capacity were analyzed. Results Our results showed that SL exhibited antimicrobial properties against Aa in a dose-dependent manner, with 0.50 mg/ml showing the greatest antimicrobial properties while still maintaining cell viability. At this concentration, SL-containing alginate hydrogel was able to inhibit Aa on the surface of Ti discs and significantly reduce the bacterial load in Aa suspensions. Silver ions were effectively released from the SL-loaded alginate microspheres for up to 2 weeks. Osteogenic differentiation of GMSCs and hBMMSCs encapsulated in the SL-loaded alginate microspheres were confirmed by the intense mineral matrix deposition and high expression of osteogenesis-related genes. Conclusion Taken together, our findings confirm that GMSCs encapsulated in RGD-modified alginate hydrogel containing SL show promise for bone tissue engineering with antimicrobial properties against Aa bacteria in vitro. PMID:26216081

  8. Alginate Hydrogels Coated with Chitosan for Wound Dressing

    PubMed Central

    Straccia, Maria Cristina; Gomez d’Ayala, Giovanna; Romano, Ida; Oliva, Adriana; Laurienzo, Paola

    2015-01-01

    In this work, a coating of chitosan onto alginate hydrogels was realized using the water-soluble hydrochloride form of chitosan (CH-Cl), with the dual purpose of imparting antibacterial activity and delaying the release of hydrophilic molecules from the alginate matrix. Alginate hydrogels with different calcium contents were prepared by the internal setting method and coated by immersion in a CH-Cl solution. Structural analysis by cryo-scanning electron microscopy was carried out to highlight morphological alterations due to the coating layer. Tests in vitro with human mesenchymal stromal cells (MSC) were assessed to check the absence of toxicity of CH-Cl. Swelling, stability in physiological solution and release characteristics using rhodamine B as the hydrophilic model drug were compared to those of relative uncoated hydrogels. Finally, antibacterial activity against Escherichia coli was tested. Results show that alginate hydrogels coated with chitosan hydrochloride described here can be proposed as a novel medicated dressing by associating intrinsic antimicrobial activity with improved sustained release characteristics. PMID:25969981

  9. Insulin-loaded alginic acid nanoparticles for sublingual delivery.

    PubMed

    Patil, Nilam H; Devarajan, Padma V

    2016-01-01

    Alginic acid nanoparticles (NPs) containing insulin, with nicotinamide as permeation enhancer were developed for sublingual delivery. The lower concentration of proteolytic enzymes, lower thickness and enhanced retention due to bioadhesive property, were relied on for enhanced insulin absorption. Insulin-loaded NPs were prepared by mild and aqueous based nanoprecipitation process. NPs were negatively charged and had a mean size of ∼200 nm with low dispersity index. Insulin loading capacities of >95% suggested a high association of insulin with alginic acid. Fourier Transform Infra-Red Spectroscopy (FTIR) spectra and DSC (Differential Scanning Calorimetry) thermogram of insulin-loaded NPs revealed the association of insulin with alginic acid. Circular dichroism (CD) spectra confirmed conformational stability, while HPLC analysis confirmed chemical stability of insulin in the NPs. Sublingually delivered NPs with nicotinamide exhibited high pharmacological availability (>100%) and bioavailability (>80%) at a dose of 5 IU/kg. The high absolute pharmacological availability of 20.2% and bioavailability of 24.1% in comparison with subcutaneous injection at 1 IU/kg, in the streptozotocin-induced diabetic rat model, suggest the insulin-loaded alginic acid NPs as a promising sublingual delivery system of insulin. PMID:24901208

  10. Reinforcement of porous alginate scaffolds by incorporating electrospun fibres.

    PubMed

    Sakai, Shinji; Takagi, Yousuke; Yamada, Yusuke; Yamaguchi, Tetsu; Kawakami, Koei

    2008-09-01

    The mechanical properties of scaffolds play a vital role in transmitting input mechanical signals to the cells within them. We aimed to modify mechanical properties of porous scaffolds by incorporating electrospun fibres into their frameworks. Porous constructs containing electrospun silicate fibres were prepared from Na-alginate aqueous solutions suspending the silicate fibres with (ASF) or without amino groups (NASF) via an all-aqueous method based on a freeze-drying technique. The repulsion forces of constructs containing ASF towards compression increased as the fibre content increased. In contrast, constructs containing NASF showed no such increases in repulsion forces. Cells seeded onto constructs containing ASF exhibited suppressed growth, similar to cells seeded onto alginate scaffolds without fibres. In contrast, cells seeded onto scaffolds containing NASF showed about two-fold faster growth than cells seeded onto scaffolds containing ASF. The differences in the mechanical properties and cell growth profiles between the scaffolds containing ASF and NASF can be explained by the formation and non-formation of electrostatic bonds between the fibres and alginate, respectively. The results obtained in the present study demonstrate the feasibility of incorporating electrospun fibres for reinforcement of alginate scaffolds and enhancement of cell growth. PMID:18689918

  11. Inhibition of tobramycin diffusion by binding to alginate.

    PubMed Central

    Nichols, W W; Dorrington, S M; Slack, M P; Walmsley, H L

    1988-01-01

    [3H]tobramycin bound to sodium alginate and to exopolysaccharide prepared from two mucoid strains of Pseudomonas aeruginosa. Binding to sodium alginate was similar to binding to exopolysaccharide, both in the dependence on tobramycin concentration and in the maximum binding observed at saturation. Incorporation of sodium alginate into agar plates reduced the zone sizes of growth inhibition caused by tobramycin. The reductions in zone sizes were quantitatively accounted for by the binding of tobramycin to sodium alginate during diffusion of the antibiotic away from the well in which it had been placed at the start of the experiment. However, the binding of tobramycin to the exopolysaccharide of P. aeruginosa, and the resulting inhibition of diffusion of the antibiotic, did not significantly increase the penetration time of a spherical microcolony with a radius of 125 micron, such as might be found in the respiratory tract of a patient with cystic fibrosis (from a 90% penetration time of 12 s in the absence of exopolysaccharide to one of 35 s with an exopolysaccharide concentration of 1.0% [wt/vol]). PMID:3132093

  12. Inhibition of tobramycin diffusion by binding to alginate

    SciTech Connect

    Nichols, W.W.; Dorrington, S.M.; Slack, M.P.; Walmsley, H.L.

    1988-04-01

    (/sup 3/H)tobramycin bound to sodium alginate and to exopolysaccharide prepared from two mucoid strains of Pseudomonas aeruginosa. Binding to sodium alginate was similar to binding to exopolysaccharide, both in the dependence on tobramycin concentration and in the maximum binding observed at saturation. Incorporation of sodium alginate into agar plates reduced the zone sizes of growth inhibition caused by tobramycin. The reductions in zone sizes were quantitatively accounted for by the binding of tobramycin to sodium alginate during diffusion of the antibiotic away from the well in which it had been placed at the start of the experiment. However, the binding of tobramycin to the exopolysaccharide of P. aeruginosa, and the resulting inhibition of diffusion of the antibiotic, did not significantly increase the penetration time of a spherical microcolony with a radius of 125 micron, such as might be found in the respiratory tract of a patient with cystic fibrosis (from a 90% penetration time of 12 s in the absence of exopolysaccharide to one of 35 s with an exopolysaccharide concentration of 1.0% (wt/vol)).

  13. Facile synthesis of vanadium oxide microspheres for lithium-ion battery cathodes

    NASA Astrophysics Data System (ADS)

    Fei, Hailong; Feng, Wenjing; Lin, Yunsheng

    2016-05-01

    A simple and versatile method for preparation of non-solid and solid V2O5 microspheres is developed. Non-solid and solid V2O5 microspheres can be controllably prepared via adjusting the mixed solvent volume ratio and reaction time at low temperature. Solid V2O5 microspheres display higher discharge capacity and better cycling performance than non-solid V2O5 microspheres as a cathode material for lithium-ion batteries, which is ascribed to smaller charge transfer and diffusion resistance.

  14. Development of nanocomposites based on hydroxyapatite/sodium alginate: Synthesis and characterisation

    SciTech Connect

    Rajkumar, M.; Meenakshisundaram, N.; Rajendran, V.

    2011-05-15

    In this study, a novel method was used to produce a nanostructured composite consisting of hydroxyapatite and sodium alginate by varying the composition of sodium alginate. The structure, morphology, simulated body fluid response and mechanical properties of the synthesised nanocomposites were characterised. From X-ray diffraction analysis, an increase in crystallite size and degree of crystallinity with an increase in the composition of sodium alginate up to 1.5 wt.% was observed. Further, it was found to decrease with an increase in the composition of sodium alginate. A notable peak shift from 1635 to 1607 cm{sup -1} and 1456 to 1418 cm{sup -1} in the Fourier transform infrared spectra of the nanocomposite was observed towards the lower wave number side when compared with pure hydroxyapatite. It reveals a strong interaction between the positively charged calcium (Ca{sup 2+}) and the negatively charged carboxyl group (COO{sup -}) in sodium alginate. Transmission electron microscopy images of pure hydroxyapatite showed a short nanorod-like morphology with an average particle size of 13 nm. Bioresorbability of the samples was observed by immersing them in simulated body fluid medium for 14 days to evaluate the changes in pH and Ca{sup 2+} ion strength. Microhardness shows an increasing trend with an increase in the composition of sodium alginate from 1.5 to 3.0 wt.%, which is similar to that in the density. - Research Highlights: {yields} We have prepared nanohydroxyapatite/sodium alginate as a composite. {yields} Effect of sodium alginate on the properties of nanohydrroxyapatite has been studied. {yields} The sodium alginate ranges from 0 to 3.75 wt.% has been used. {yields} Composites show improved biological and mechanical properties.

  15. Amorphous and nanostructured silica and aluminosilicate spray-dried microspheres

    NASA Astrophysics Data System (ADS)

    Todea, M.; Turcu, R. V. F.; Frentiu, B.; Tamasan, M.; Mocuta, H.; Ponta, O.; Simon, S.

    2011-08-01

    Amorphous silica and aluminosilicate microspheres with diameters in the 0.1-20 μm range were produced by spray drying method. SEM, TEM and AFM images showed the spherical shape of the obtained particles. Based on thermal analysis data, several heat treatments have been applied on the as-prepared samples in order to check the amorphous state stability of the microspheres and to develop nanosized crystalline phases. As-prepared microspheres remain amorphous up to 1400 °C. By calcination at 1400 °C, cristobalite type nanocrystals are developed on silica sample, while in aluminosilicate sample first are developed mullite type nanocrystals and only after prolonged treatment are developed also cristobalite type nanocrystals. 29Si and 27Al MAS NMR results show that the local order around aluminum and silicon atoms strongly depend on the thermal history of the microspheres.

  16. Organic aerogel microspheres

    DOEpatents

    Mayer, Steven T.; Kong, Fung-Ming; Pekala, Richard W.; Kaschmitter, James L.

    1999-01-01

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  17. Organic aerogel microspheres

    DOEpatents

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1999-06-01

    Organic aerogel microspheres are disclosed which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonstick gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  18. POROUS WALL, HOLLOW GLASS MICROSPHERES

    SciTech Connect

    Sexton, W.

    2012-06-30

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to 'normal glasses of a 1 to 2 order of

  19. Isolation of protoplasts from undaria pinnatifida by alginate lyase digestion

    NASA Astrophysics Data System (ADS)

    Xiaoke, Hu; Xiaolu, Jiang; Huashi, Guan

    2003-04-01

    The aim of this study is to isolate protoplasts from Undaria pinnatifida. Protoplasts of the alga were isolated enzymatically by using alginate lyase, which was prepared by fermenting culture of a strain Vibrio sp. 510. Monofacterial method was applied for optimizing digestion condition. The optimum condition for protoplast preparation is enzymatic digestion at 28°C for 2h using alginate lyase at the concentration of 213.36 U (8 mL) every 0.5g fresh thalline with NaCl 50 and at the shaking speed of 150 r min-1 during digestion. The protoplast yield can reach 2.62±0.09 million per 0.5 g fresh leave under the optimum condition. The enzyme activity is inhibited by Ca2+ and slightly enhanced by Fe2+ and Mn2+ at concentrations of 0.05, 0.08 and 0.10 mol L-1.

  20. The influence of magnesium stearate on the characteristics of mucoadhesive microspheres.

    PubMed

    Bogataj, M; Mrhar, A; Grabnar, I; Rajtman, Z; Bukovec, P; Srcic, S; Urleb, U

    2000-01-01

    Microspheres containing the mucoadhesive polymer chitosan hydrochloride, with matrix polymer Eudragit RS, pipemidic acid as a model drug and agglomeration preventing agent magnesium stearate were prepared by the solvent evaporation method. The amount of magnesium stearate was varied and the following methods were used for microsphere evaluation: sieve analysis, drug content and dissolution determination, scanning electron microscopy, x-ray diffractometry, DSC and FTIR spectroscopy. The results showed that average particle size decreased with increasing amount of magnesium stearate used for microsphere preparation. This is probably a consequence of stabilization of the emulsion droplets with magnesium stearate. Higher pipemidic acid content in the microspheres was observed in larger particle size fractions and when higher amounts of magnesium stearate were used. It was also found that these two parameters significantly influenced the dissolution rate. The important reason for the differences in drug content in microspheres of different particle sizes is the diffusion of pipemidic acid from the acetone droplets in liquid paraffin during the preparation procedure. The physical state of pipemidic acid changed from crystalline to mostly amorphous with its incorporation in microspheres, as shown by x-ray diffractometry and differential scanning calorimetry. No differences were observed in the physical state of pipemidic acid and in microsphere shape and surface between different size fractions of microspheres, prepared with different amounts of magnesium stearate. Additionally, no correlation between the physical state of the drug in different microspheres and their biopharmaceutical properties was found. PMID:10898089

  1. Nanogels based on alginic aldehyde and gelatin by inverse miniemulsion technique: synthesis and characterization.

    PubMed

    Sarika, P R; Anil Kumar, P R; Raj, Deepa K; James, Nirmala Rachel

    2015-03-30

    Nanogels were developed from alginic aldehyde and gelatin by an inverse miniemulsion technique. Stable inverse miniemulsions were prepared by sonication of noncontinuous aqueous phase (mixture of alginic aldehyde and gelatin) in a continuous organic phase (Span 20 dissolved in cyclohexane). Cross-linking occurred between alginic aldehyde (AA) and gelatin (gel) in the presence of borax by Schiff's base reaction during the formation of inverse miniemulsion. The effects of surfactant (Span 20) concentration, volume of the aqueous phase and AA/gel weight ratio on the size of the alginic aldehyde-gelatin (AA-gel) nanoparticles were studied. Nanogels were characterized by DLS, FT-IR spectroscopy, TGA, SEM and TEM. DLS, TEM and SEM studies demonstrated nanosize and spherical morphology of the nanogels. Hemocompatibility and in vitro cytocompatibility analyses of the nanogels proved their nontoxicity. The results indicated the potential of the present nanogel system as a candidate for drug- and gene-delivery applications. PMID:25563951

  2. Removal of chloroform from biodegradable therapeutic microspheres by radiolysis.

    PubMed

    Zielhuis, S W; Nijsen, J F W; Dorland, L; Krijger, G C; van Het Schip, A D; Hennink, W E

    2006-06-01

    Radioactive holmium-166 loaded poly(l-lactic acid) microspheres are promising systems for the treatment of liver malignancies. These microspheres are loaded with holmium acetylacetonate (HoAcAc) and prepared by a solvent evaporation method using chloroform. After preparation the microspheres (Ho-PLLA-MS) are activated by neutron irradiation in a nuclear reactor. It was observed that relatively large amounts of residual chloroform (1000-6000 ppm) remained in the microspheres before neutron irradiation. Since it is known that chloroform is susceptible for high-energy radiation, we investigated whether neutron and gamma irradiation could result in the removal of residual chloroform in HoAcAc-loaded and placebo PLLA-MS by radiolysis. To investigate this, microspheres with relatively high and low amounts of residual chloroform were subjected to irradiation. The effect of irradiation on the residual chloroform levels as well as other microsphere characteristics (morphology, size, crystallinity, molecular weight of PLLA and degradation products) were evaluated. No chloroform in the microspheres could be detected after neutron irradiation. This was also seen for gamma irradiation at a dose of 200 kGy phosgene, which can be formed as the result of radiolysis of chloroform, was not detected with gas chromatography-mass spectrometry (GC-MS). A precipitation titration showed that radiolysis of chloroform resulted in the formation of chloride. Gel permeation chromatography and differential scanning calorimetry showed a decrease in molecular weight of PLLA and crystallinity, respectively. However, no differences were observed between irradiated microsphere samples with high and low initial amounts of chloroform. In conclusion, this study demonstrates that neutron and gamma irradiation results in the removal of residual chloroform in PLLA-microspheres. PMID:16549282

  3. Mucoadhesivity Characterization of Isabgol Husk Mucilage Microspheres Crosslinked by Glutaraldehyde.

    PubMed

    Sharma, Vipin Kumar; Sharma, Prince Prashant; Mazumder, Bhasker; Bhatnagar, Aseem; Singh, Thakuri

    2015-01-01

    The microspheres of Isabgol husk were prepared by emulsification-crosslinking technique and the gastrointestinal transition behavior of the formulation was studied by gamma scintigraphy. The impact of different process variables such as amount of glutaraldehyde, concentration of Isabgol husk and temperature was studied on surface morphology and mucoadhesion. In vitro mucoadhesive testing of formulations was performed by determination of zeta potential, mucus glycoprotein assay and mucus adsorption isotherms. The effect of feeding on retention of microspheres in the gastrointestinal track (GIT) was studied in albino rabbits by gamma scintigraphy study. The results indicated the formation of microspheres as observed by scanning electron microscopy. The smooth and round surfaces of microspheres were obtained on increasing Isabgol husk and glutaraldehyde amount. The positive zeta potential of all formulations indicated the electrostatic interaction as a mechanism of mucoadhesion between the mucus of GIT membranes and the microspheres surfaces. The influence of electrostatic interaction on mucoadhesion of microspheres was again ascertained when the mucin equilibrium adsorption on preparations indicated well fitness in Langmuir and Freundlich adsorption isotherms. During gamma scintigraphy, the stability of (99m)Tc-sodium pertechnetate was found 98.82% at pH 6.8 and 96.78% at pH 7.2, respectively. It indicated the minimal leaching of bound radionuclide from microspheres during gastrointestinal transition as observed in gamma scintigraphic images of the rabbits. The microspheres retained in GIT even after 24 hrs of oral administration. The results indicated the applicability of Isabgol husk mucilage in the development of mucoadhesive microspheres. PMID:25675337

  4. Alginate beads of Captopril using galactomannan containing Senna tora gum, guar gum and locust bean gum.

    PubMed

    Pawar, Harshal A; Lalitha, K G; Ruckmani, K

    2015-05-01

    Gastro-retentive Captopril loaded alginate beads were prepared by an ionotropic gelation method using sodium alginate in combination with natural gums containing galactomannans (Senna tora seed gum, guar gum and locust bean gum) in the presence of calcium chloride. The process variables such as concentration of sodium alginate/natural polymer, concentration of calcium chloride, curing time, stirring speed and drying condition were optimized. Prepared beads were evaluated for various parameters such as flow property, drug content and entrapment efficiency, size and shape, and swelling index. Surface morphology of the beads was studied using scanning electron microscopy. In vitro mucoadhesion and in vitro drug release studies were carried out on the prepared beads. From the entrapment efficiency and dissolution study, it was concluded that galactomannans in combination with sodium alginate show sustained release property. The bead formulation F4 prepared using combination of sodium alginate and guar gums in the ratio 2:1 showed satisfactory sustained release for 12h. The release of Captopril from the prepared beads was found to be controlled by the swelling of the polymer followed by drug diffusion through the swelled polymer and slow erosion of the beads. PMID:25720832

  5. Hydrothermal synthesis and photocatalytic performance of hierarchical Bi{sub 2}MoO{sub 6} microspheres using BiOI microspheres as self-sacrificing templates

    SciTech Connect

    Xu, Ming; Zhang, Wei-De

    2015-07-15

    Bi{sub 2}MoO{sub 6} hierarchical microspheres were successfully prepared through phase transformation from BiOI microspheres with the assistance of sodium citrate under hydrothermal condition. The possible formation mechanism for the conversion of BiOI to Bi{sub 2}MoO{sub 6} is discussed here. After being annealed at 300 °C for 2 h, the obtained Bi{sub 2}MoO{sub 6} microspheres exhibited remarkably enhanced photocatalytic activity towards the degradation of rhodamine B and phenol. The superior catalytic performance can be attributed to its larger surface area and higher crystallinity. In addition, Bi{sub 2}MoO{sub 6} microspheres are stable during the degradation reaction and can be used repeatedly. - Graphical abstract: Bi{sub 2}MoO{sub 6} hierarchical microspheres were successfully prepared through a facile partial anion exchange strategy using BiOI microspheres as self-sacrificing templates. The Bi{sub 2}MoO{sub 6} microspheres show high visible light photocatalytic activity. - Highlights: • Bi{sub 2}MoO{sub 6} microspheres were prepared via self-sacrificing template anion exchange. • Sodium citrate-assisted anion exchange for preparation of Bi{sub 2}MoO{sub 6} photocatalyst. • Bi{sub 2}MoO{sub 6} catalysts show high visible light photocatalytic activity.

  6. Nanocellulose-alginate hydrogel for cell encapsulation.

    PubMed

    Park, Minsung; Lee, Dajung; Hyun, Jinho

    2015-02-13

    TEMPO-oxidized bacterial cellulose (TOBC)-sodium alginate (SA) composites were prepared to improve the properties of hydrogel for cell encapsulation. TOBC fibers were obtained using a TEMPO/NaBr/NaClO system at pH 10 and room temperature. The fibrillated TOBCs mixed with SA were cross-linked in the presence of Ca(2+) solution to form hydrogel composites. The compression strength and chemical stability of the TOBC/SA composites were increased compared with the SA hydrogel, which indicated that TOBC performed an important function in enhancing the structural, mechanical and chemical stability of the composites. Cells were successfully encapsulated in the TOBC/SA composites, and the viability of cells was investigated. TOBC/SA composites can be a potential candidate for cell encapsulation engineering. PMID:25458293

  7. Fabrication of uranium dioxide ceramic pellets with controlled porosity from oxide microspheres

    NASA Astrophysics Data System (ADS)

    Remy, E.; Picart, S.; Delahaye, T.; Jobelin, I.; Dugne, O.; Bisel, I.; Blanchart, P.; Ayral, A.

    2014-05-01

    This study concerns the fabrication of uranium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP). Details are given about oxide microsphere synthesis and particularly about loading operation and heat treatments. The fabrication of ceramic pellets is also described and discussed. Results showed that this process allows the preparation of either dense or porous pellets by mixing U3O8 and UO2-like microspheres before pressing and sintering.

  8. Influence of hydrophobic modification in alginate-based hydrogels for biomedical applications

    NASA Astrophysics Data System (ADS)

    Choudhary, Soumitra

    Alginate has been exploited commercially for decades in foods, textiles, paper, pharmaceutical industries, and also as a detoxifier for removing heavy metals. Alginate is also popular in cell encapsulation because of its relatively mild gelation protocol and simple chemistry with which biological active entities can be immobilized. Surface modification of alginate gels has been explored to induce desired cell interactions with the gel matrix. These modifications alter the bulk properties, which strongly determine on how cells feel and response to the three-dimensional microenvironment. However, there is a need to develop strategies to engineer functionalities into bulk alginate hydrogels that not only preserve their inherent qualities but are also less toxic. In this thesis, our main focus was to optimize the mechanical properties of alginate-based hydrogels, and by doing so control the performance of the biomaterials. In the first scheme, we used alginate and hydrophobically modified ethyl hydroxy ethyl cellulose as components in interpenetrating polymer network (IPN) gels. The second network was used to control gelation time and rheological properties. We believe these experiments also may provide insight into the mechanical and structural properties of more complex biopolymer gels and naturally-occurring IPNs. Next, we worked on incorporating a hydrophobic moiety directly into the alginate chain, resulting in materials for extended release of hydrophobic drugs. We successfully synthesized hydrophobically modified alginate (HMA) by attaching octylamine groups onto the alginate backbone by standard carbodiimide based amide coupling reaction. Solubility of several model hydrophobic drugs in dilute HMA solutions was found to be increased by more than an order of magnitude. HMA hydrogels, prepared by crosslinking the alginate chains with calcium ions, were found to exhibit excellent mechanical properties (modulus ˜100 kPa) with release extended upto 5 days. Ability

  9. Novel chitosan-spotted alginate fibers from wet-spinning of alginate solutions containing emulsified chitosan-citrate complex and their characterization.

    PubMed

    Watthanaphanit, Anyarat; Supaphol, Pitt; Furuike, Tetsuya; Tokura, Seiichi; Tamura, Hiroshi; Rujiravanit, Ratana

    2009-02-01

    The major problem associated with the production of alginate/chitosan hybridized fibers by wet spinning is the formation of gels due to ionic interactions of the oppositely charged molecules of alginate and chitosan when these two polymers are directly mixed. Here, we proposed a novel method of using chitosan in the form of an emulsion. The emulsion was prepared by adding a primary emulsion of olive oil in a sodium dodecyl sulfate (SDS) aqueous solution into a chitosan-citrate complex. The complexation of chitosan with citric acid is the key of this method. The citrate ions neutralize the positive charges of chitosan, rendering the chitosan-citrate complex to readily penetrate into the core of the SDS/olive oil micelles. The obtained emulsified chitosan-citrate complex (hereafter, the chitosan-citrate emulsion) of varying amount was then added into an alginate aqueous solution to prepare the alginate/chitosan spinning dope suspensions. The alginate/chitosan hybridized fibers showed spotty features of the emulsified chitosan-citrate complex particles locating close to the surface and the inside of the hybridized fibers. At the lowest content of incorporated chitosan (i.e., 0.5% w/w chitosan), both the tenacity and the elongation at break of the obtained chitosan-spotted alginate fibers were the greatest. Further increase in the chitosan content resulted in a monotonous decrease in the property values. Lastly, preliminary studies demonstrated that the obtained chitosan-spotted alginate fibers showed great promises as carriers for drug delivery. PMID:19072144

  10. Method for sizing hollow microspheres

    DOEpatents

    Farnum, E.H.; Fries, R.J.

    1975-10-29

    Hollow Microspheres may be effectively sized by placing them beneath a screen stack completely immersed in an ultrasonic bath containing a liquid having a density at which the microspheres float and ultrasonically agitating the bath.

  11. Improving the controlled delivery formulations of caffeine in alginate hydrogel beads combined with pectin, carrageenan, chitosan and psyllium.

    PubMed

    Belščak-Cvitanović, Ana; Komes, Draženka; Karlović, Sven; Djaković, Senka; Spoljarić, Igor; Mršić, Gordan; Ježek, Damir

    2015-01-15

    Alginate-based blends consisting of carrageenan, pectin, chitosan or psyllium husk powder were prepared for assessment of the best formulation aimed at encapsulation of caffeine. Alginate-pectin blend exhibited the lowest viscosity and provided the smallest beads. Alginate-psyllium husk blend was characterised with higher viscosity, yielding the largest bead size and the highest caffeine encapsulation efficiency (83.6%). The release kinetics of caffeine indicated that the porosity of alginate hydrogel was not reduced sufficiently to retard the diffusion of caffeine from the beads. Chitosan coated alginate beads provided the most retarded release of caffeine in water. Morphological characteristics of beads encapsulating caffeine were adversely affected by freeze drying. Bitterness intensity of caffeine-containing beads in water was the lowest for alginate-psyllium beads and chitosan coated alginate beads. Higher sodium alginate concentration (3%) for production of hydrogel beads in combination with psyllium or chitosan coating would present the most favourable carrier systems for immobilization of caffeine. PMID:25149001

  12. Effect of various polymers concentrations on physicochemical properties of floating microspheres.

    PubMed

    Jagtap, Y M; Bhujbal, R K; Ranade, A N; Ranpise, N S

    2012-11-01

    Floating microspheres have emerged as a potential candidate for gastroretentive drug delivery system. For developing a desired intragastric floatation system employing these microspheres, it is necessary to select an appropriate balance between buoyancy and drug releasing rate. These properties mainly depend on the polymers used in the formulation of the microspheres. Hence it is necessory to study the effect of these polymer concentrations on the various physicochemical properties of the microspheres. Floating microspheres were prepared by emulsion solvent evaporation technique utilising different polymers such as ethyl cellulose, Eudragit(®) RS and Eudragit(®) RL by dissolving them in a mixture of dichloromethane and methanol. Release modifiers studied were hydroxypropyl methylcellulose K4M, hydroxypropyl methylcellulose E50 LV and Eudragit(®) EPO. Prepared microspheres were analysed for particle size, surface morphology, entrapment efficiency, buoyancy, differential scanning calorimetry and in-vitro drug release. Ethyl cellulose and Eudragit(®) EPO resulted microspheres with high percentage yield, excellent spherical shape but had very less buoyancies with a high cumulative drug release. Ethyl cellulose microspheres prepared using hydroxypropyl methylcellulose K4M showed more sustained drug release and high buoyancies than that of the microspheres formulated with the hydroxypropyl methylcellulose E50 LV. Amongst these hydroxypropyl methylcellulose E50 LV showed good balance between buoyancy and the drug release. PMID:23798776

  13. Production of glass microspheres comprising 90Y and (177)Lu for treating of hepatic tumors with SPECT imaging capabilities.

    PubMed

    Poorbaygi, Hosein; Reza Aghamiri, Seyed Mahmoud; Sheibani, Shahab; Kamali-Asl, Alireza; Mohagheghpoor, Elham

    2011-10-01

    Our objective was to determine if glass microspheres impregnated with two radionuclides, (90)Y as source of therapeutic beta emissions and (177)Lu as source of diagnostic gamma emissions can be useful for SPECT imaging during or after application of the (90)Y microspheres for treating of hepatic tumors. The glass-based microspheres labeled with (89)Y and lutetium (YAS (Lu)) or (89)Y and ytterbium (YAS (Yb)) were prepared by the sol-gel process where sol droplets directly were formed to gel microspheres. Results of the neutron activation indicate that such a combination of glass, microspheres allow bio-distribution studies by SPECT imaging with high resolution. PMID:21723135

  14. Imaging Contrast Effects in Alginate Microbeads

    NASA Astrophysics Data System (ADS)

    Shapley, Nina; Hester-Reilly, Holly

    2007-03-01

    We have investigated the use of alginate gel microbeads as contrast agents for the study of suspension flows in complex geometries using nuclear magnetic resonance (NMR) imaging. These deformable particles can provide imaging contrast to rigid polymer particles in a bimodal suspension (two particle sizes). Microbeads were formed of crosslinked alginate gel, with or without trapped oil droplets. Crosslinking of the aqueous sodium alginate solution or the continuous phase of an oil-in-water emulsion occurred rapidly at gentle processing conditions. The alginate microbeads exhibit both spin-spin relaxation time (T2) contrast and diffusion contrast relative to both the suspending fluid and rigid polystyrene particles. Large alginate emulsion microbeads flowing in the abrupt, axisymmetric expansion geometry can be clearly distinguished from the suspending fluid and from rigid polymer particles in both spin-echo and diffusion weighted imaging. The alginate microbeads, particularly those containing trapped emulsion droplets, offer potential as a positive contrast agent in multiple NMR imaging applications.

  15. Preparation of molecular imprinted microspheres based on inorganic-organic co-functional monomer for miniaturized solid-phase extraction of fluoroquinolones in milk.

    PubMed

    Wang, Hui; Wang, Ruiling; Han, Yehong

    2014-02-15

    An inorganic-organic co-functional monomer, methacrylic acid-vinyltriethoxysilan (MAA-VTES) was designed for the synthesis of molecularly imprinted microspheres (MIMs). By virtue of the aqueous suspension polymerization and dummy template (pazufloxacin), the obtained MAA-VTES based MIMs exhibited good recognition and selectivity to fluoroquinolones (FQs), and were successfully applied as selective sorbents of a miniaturized home-made solid phase extraction device for the determination of ofloxacin (OFL), lomefloxacin (LOM) and ciprofloxacin (CIP) in milk samples. Under the optimum conditions of the miniaturized molecularly imprinted solid phase extraction (mini-MISPE) coupled with liquid chromatography-ultraviolet detector (LC-UV), good linearities were obtained for three FQs in a range of 0.2-20.0μgmL(-1) and the average recoveries at three spiked levels were ranged from 87.2% to 106.1% with the relative standard deviation (RSD) less than 5.4%. The presented co-functional monomer based mini-MISPE-LC-UV protocol introduced the rigidity and flexibility of inorganic silicon materials, exhibited excellent extraction performance towards targets, and could be potentially applied to the determination of FQs in milk samples. PMID:24448515

  16. Facile large-scale preparation of mesoporous silica microspheres with the assistance of sucrose and their drug loading and releasing properties.

    PubMed

    Bi, Yanping; Wu, Chaonan; Xin, Ming; Bi, Shuyan; Yan, Chengxin; Hao, Jifu; Li, Fei; Li, Shou

    2016-03-16

    Mesoporous silica microspheres (MSMs) with a pore-size larger than 10nm and a large pore-volume have attracted considerable attention for their application in delivering poorly water-soluble drugs. Here we developed a simple method for large-scale synthesis of MSMs using sodium silicate as silica precursor. The novelty of this approach lies in the use of sucrose solution to achieve large size and volume of nanopores. The highest values of pore size and pore volume are 13.2 nm and 1.97 cm(3)/g, respectively. Importantly, the method is reliable and easily upscalable. The blank and drug-loaded MSMs were characterized by differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). Ibuprofen and resveratrol were successfully loaded into the nanopores of MSMs in amorphous and nanocrystalline form and showed high drug-loadings and enhanced dissolution rates. This kind of MSMs appears to be a promising candidate as a new oral drug delivery vehicle providing a rapid drug release. PMID:26784977

  17. [Alginates in therapy for gastroesophageal reflux disease].

    PubMed

    Avdeev, V G

    2015-01-01

    This article presents evidence of the prevalence of gastroesophageal reflux disease (GERD) and highlights its main treatment options. Among its medications, particular emphasis is laid on alginates and their main mechanisms of action are described. There is information on the efficacy of alginates, including the alginate-antacid Gaviscon Double Action, in treating GERD. Recommendations for how to administer these drugs are given. PMID:26155630

  18. Engineered magnetic core-shell SiO2/Fe microspheres and "medusa-like" microspheres of SiO2/iron oxide/carbon nanofibers or nanotubes.

    PubMed

    Mero, On; Sougrati, Moulay-Tahar; Jumas, Jean-Claude; Margel, Shlomo

    2014-08-19

    Iron oxide (IO) thin coatings of controlled thickness on SiO2 microspheres of narrow size distribution were prepared by decomposition at 160 °C of triiron dodecacarbonyl onto silica microspheres dispersed in diethylene glycol diethyl ether free of surfactant or stabilizer. The dried washed SiO2/IO core-shell microspheres were annealed at different temperatures and time periods under inert (Ar) or reducing (H2) atmosphere. The effect of temperature on the chemical composition, morphology, crystallinity, and magnetic properties of the IO and the elemental Fe nanoparticles type coatings onto the SiO2 core microspheres has been elucidated. "Medusa-like" SiO2/IO/carbon nanofibers and tubes particles were prepared by CVD of ethylene on the surface of the SiO2/IO microspheres at different temperatures. The morphology change of the grafted carbon nanofibers and tubes as a function of the CVD temperature was also elucidated. PMID:25089849

  19. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    SciTech Connect

    Farquar, G; Leif, R

    2009-07-15

    Biocompatible polymers with hydrolyzable chemical bonds have been used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres were produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  20. Magnetite-Alginate-AOT nanoparticles based drug delivery platform

    NASA Astrophysics Data System (ADS)

    Regmi, R.; Sudakar, C.; Dixit, A.; Naik, R.; Lawes, G.; Toti, U.; Panyam, J.; Vaishnava, P. P.

    2008-03-01

    Iron oxide having the magnetite structure is a widely used biomaterial, having applications ranging from cell separation and drug delivery to hyperthermia. In order to increase the efficacy of drug treatments, magnetite nanoparticles can be incorporated into a composite system with a surfactant-polymer nanoparticle, which can act as a platform for sustained and enhanced cellular delivery of water-soluble molecules. Here we report a composite formulation based on magnetite and Alginate-aerosol OT (AOT) nanoparticles formulated using an emulsion-cross-linking process loaded with Rhodamine 6G [1]. We prepared two set of nanoparticles by using Ca^2+ or Fe^2+ to cross-link the alginate polymer. Additionally, we added ˜8 nm diameter Fe3O4 magnetic nanoparticles prepared by a soft chemical method to these alginate-AOT nanoparticles. The resulting composites were superparamagnetic at room temperature, with a saturation magnetization of approximately 0.006 emu/g of solution. We will present detailed studies on the structural and magnetic properties of these samples. We will also discuss HPLC measurements on Rhodamine uploading in these composites. [1] M.D.Chavanpatil, Pharmaceutical Research, vol.24, (2007) 803.

  1. Controlled delivery of VEGF via modulation of alginate microparticle ionic crosslinking

    PubMed Central

    Jay, Steven M.; Saltzman, W. Mark

    2009-01-01

    Clinical application of therapeutic angiogenesis is hampered by a lack of viable systems that demonstrate controlled, sustained release of vascular endothelial growth factor (VEGF). Alginate has emerged as a popular material for VEGF delivery; however most alginate-based systems offer limited means to control the rate of VEGF release beyond reducing the VEGF:alginate ratio to suboptimal efficiency. This study describes methods to control the release of VEGF from small (<10 μm mean diameter) alginate microparticles via the use of different ionic crosslinkers. Crosslinking with Zn2+ versus Ca2+ reduced VEGF diffusional release and the combination of discrete populations of either Zn2+- or Ca2+-crosslinked particles allowed for control over the sustained release profiles for VEGF. The particle preparations were non-toxic and VEGF was bioactive after release. These results demonstrate that ionic modulation of alginate crosslinking is a viable strategy for controlling release of VEGF while retaining the high protein:polymer ratio that makes alginate an attractive carrier for delivery of protein therapeutics. PMID:19027807

  2. Preparation, Evaluation and Optimization of Multiparticulate System of Mebendazole for Colon Targeted Drug Delivery by Using Natural Polysaccharides

    PubMed Central

    Hemraj Ramteke, Kuldeep; Balaji Jadhav, Varsha; Kulkarni, Nilesh Shrikant; Kharat, Amol Rameshrao; Diwate, Sonali Bhima

    2015-01-01

    Purpose: A Multiparticulate system of Mebendazole was developed for colon targeted drug delivery by using natural polysaccharides like Chitosan and Sodium-alginate beads. Methods: Chitosan microspheres were formulated by using Emulsion crosslinking method using Glutaraldehyde as crosslinking agent. Sodium-alginate beads were formulated by using Calcium chloride as gelling agent. Optimization for Chitosan microspheres was carried out by using 23 full factorial design. 32 full factorial design was used for the optimization of Sodium-alginate beads. The formulated batches were evaluated for percentage yield, particle size measurement, flow properties, percent entrapment efficiency, Swelling studies. The formulations were subjected to Stability studies and In-vitro release study (with and without rat caecal content). Release kinetics data was subjected to different dissolution models. Results: The formulated batches showed acceptable particle size range as well as excellent flow properties. Entrapment efficiency for optimized batches of Chitosan microspheres and sodium alginate beads was found to be 74.18% and 88.48% respectively. In-vitro release of drug for the optimized batches was found to be increased in presence of rat caecal content. The best-fit models were koresmeyer-peppas for Chitosan microspheres and zero order for sodium-alginate beads. Conclusion: Chitosan and Sodium-alginate was used successfully for the formulation of Colon targeted Multiparticulate system. PMID:26504758

  3. Photonic monitoring of chitosan nanostructured alginate microcapsules for drug release

    NASA Astrophysics Data System (ADS)

    Khajuria, Deepak Kumar; Konnur, Manish C.; Vasireddi, Ramakrishna; Roy Mahapatra, D.

    2015-02-01

    By using a novel microfluidic set-up for drug screening applications, this study examines delivery of a novel risedronate based drug formulation for treatment of osteoporosis that was developed to overcome the usual shortcomings of risedronate, such as its low bioavailability and adverse gastric effects. Risedronate nanoparticles were prepared using muco-adhesive polymers such as chitosan as matrix for improving the intestinal cellular absorption of risedronate and also using a gastric-resistant polymer such as sodium alginate for reducing the gastric inflammation of risedronate. The in-vitro characteristics of the alginate encapsulated chitosan nanoparticles are investigated, including their stability, muco-adhesiveness, and Caco-2 cell permeability. Fluorescent markers are tagged with the polymers and their morphology within the microcapsules is imaged at various stages of drug release.

  4. Fabrication of cationic chitin nanofiber/alginate composite materials.

    PubMed

    Sato, Koki; Tanaka, Kohei; Takata, Yusei; Yamamoto, Kazuya; Kadokawa, Jun-Ichi

    2016-10-01

    We have already found that an amidinated chitin, which was prepared by the reaction of a partially deacetylated chitin with N,N-dimethylacetamide dimethyl acetal, was converted into an amidinium chitin bicarbonate with nanofiber morphology by CO2 gas bubbling and ultrasonic treatments in water. In this study, we performed the fabrication of composite materials of such cationic chitin nanofibers with an anionic polysaccharide, sodium alginate, by ion exchange. When the amidinium chitin bicarbonate nanofiber aqueous dispersion was added to an aqueous solution of sodium alginate, the composite material was agglomerated, which was isolated by centrifugation, filtration, and lyophilization, to form a manipulatable sheet. The morphology of the resulting sheet at nano-scale was evaluated by SEM measurement. PMID:27288700

  5. INVESTIGATION OF DRUG RELEASE FROM BIODEGRADABLE PLG MICROSPHERES: EXPERIMENT AND THEORY

    SciTech Connect

    ANDREWS, MALCOLM J.; BERCHANE, NADER S.; CARSON, KENNETH H.; RICE-FICHT, ALLISON C.

    2007-01-30

    Piroxicam containing PLG microspheres having different size distributions were fabricated, and in vitro release kinetics were determined for each preparation. Based on the experimental results, a suitable mathematical theory has been developed that incorporates the effect of microsphere size distribution and polymer degradation on drug release. We show from in vitro release experiments that microsphere size has a significant effect on drug release rate. The initial release rate decreased with an increase in microsphere size. In addition, the release profile changed from first order to concave-upward (sigmoidal) as the system size was increased. The mathematical model gave a good fit to the experimental release data.

  6. Facile fabrication of various zinc-nickel citrate microspheres and their transformation to ZnO-NiO hybrid microspheres with excellent lithium storage properties

    NASA Astrophysics Data System (ADS)

    Xie, Qingshui; Ma, Yating; Zeng, Deqian; Wang, Laisen; Yue, Guanghui; Peng, Dong-Liang

    2015-02-01

    Zinc-nickel citrate microspheres are prepared by a simple aging process of zinc citrate solid microspheres in nickel nitrate solution. As the concentration of nickel nitrate solution increases, the morphology of the produced zinc-nickel citrate evolves from solid, yolk-shell to hollow microspheres. The formation mechanism of different zinc-nickel citrate microspheres is discussed. After annealing treatment of the corresponding zinc-nickel citrate microspheres in air, three different ZnO-NiO hybrid architectures including solid, yolk-shell and hollow microspheres can be successfully fabricated. When applied as the anode materials for lithium ion batteries, ZnO-NiO hybrid yolk-shell microspheres demonstrate the best electrochemical properties than solid and hollow counterparts. After 200th cycles, ZnO-NiO hybrid yolk-shell microspheres deliver a high reversible capacity of 1176 mA h g-1. The unique yolk-shell configuration, the synergetic effect between ZnO and NiO and the catalytic effect of metal Ni generated by the reduction of NiO during discharging process are responsible for the excellent lithium storage properties of ZnO-NiO hybrid yolk-shell microspheres.

  7. Facile fabrication of various zinc-nickel citrate microspheres and their transformation to ZnO-NiO hybrid microspheres with excellent lithium storage properties.

    PubMed

    Xie, Qingshui; Ma, Yating; Zeng, Deqian; Wang, Laisen; Yue, Guanghui; Peng, Dong-Liang

    2015-01-01

    Zinc-nickel citrate microspheres are prepared by a simple aging process of zinc citrate solid microspheres in nickel nitrate solution. As the concentration of nickel nitrate solution increases, the morphology of the produced zinc-nickel citrate evolves from solid, yolk-shell to hollow microspheres. The formation mechanism of different zinc-nickel citrate microspheres is discussed. After annealing treatment of the corresponding zinc-nickel citrate microspheres in air, three different ZnO-NiO hybrid architectures including solid, yolk-shell and hollow microspheres can be successfully fabricated. When applied as the anode materials for lithium ion batteries, ZnO-NiO hybrid yolk-shell microspheres demonstrate the best electrochemical properties than solid and hollow counterparts. After 200th cycles, ZnO-NiO hybrid yolk-shell microspheres deliver a high reversible capacity of 1176 mA h g(-1). The unique yolk-shell configuration, the synergetic effect between ZnO and NiO and the catalytic effect of metal Ni generated by the reduction of NiO during discharging process are responsible for the excellent lithium storage properties of ZnO-NiO hybrid yolk-shell microspheres. PMID:25684436

  8. Raspberry-like PS/CdTe/Silica Microspheres for Fluorescent Superhydrophobic Materials.

    PubMed

    Chang, Jinghui; Zang, Linlin; Wang, Cheng; Sun, Liguo; Chang, Qing

    2016-12-01

    Superhydrophobic particulate films were fabricated via deposition of raspberry-like fluorescent PS/CdTe/silica microspheres on clean glass substrates and surface modification. Particularly, the fluorescent microspheres were prepared by a kind of modified strategy, namely introducing poly (acrylic acid)-functionalized polystyrene microspheres and thiol-stabilized CdTe quantum dots into a hydrolysis reaction of tetraethoxysilane simultaneously. And through adjusting the reaction parameters, the polystyrene spheres with two particle sizes and three colors of CdTe quantum dots aqueous solution were obtained. Consequently, raspberry-like microspheres consist of polystyrene cores and the composite shells of CdTe quantum dots and silica. These microspheres possess a fluorescent characteristic and form a hierarchical dual roughness which was conductive to superhydrophobicity, and the hydrophobic tests also showed the contact angles of water droplets on the surface of the raspberry-like microspheres which were over 160° at room temperature. PMID:26925862

  9. Raspberry-like PS/CdTe/Silica Microspheres for Fluorescent Superhydrophobic Materials

    NASA Astrophysics Data System (ADS)

    Chang, Jinghui; Zang, Linlin; Wang, Cheng; Sun, Liguo; Chang, Qing

    2016-02-01

    Superhydrophobic particulate films were fabricated via deposition of raspberry-like fluorescent PS/CdTe/silica microspheres on clean glass substrates and surface modification. Particularly, the fluorescent microspheres were prepared by a kind of modified strategy, namely introducing poly (acrylic acid)-functionalized polystyrene microspheres and thiol-stabilized CdTe quantum dots into a hydrolysis reaction of tetraethoxysilane simultaneously. And through adjusting the reaction parameters, the polystyrene spheres with two particle sizes and three colors of CdTe quantum dots aqueous solution were obtained. Consequently, raspberry-like microspheres consist of polystyrene cores and the composite shells of CdTe quantum dots and silica. These microspheres possess a fluorescent characteristic and form a hierarchical dual roughness which was conductive to superhydrophobicity, and the hydrophobic tests also showed the contact angles of water droplets on the surface of the raspberry-like microspheres which were over 160° at room temperature.

  10. Influence of mechanical properties of alginate-based substrates on the performance of Schwann cells in culture.

    PubMed

    Ning, Liqun; Xu, Yitong; Chen, Xiongbiao; Schreyer, David J

    2016-06-01

    In tissue engineering, artificial tissue scaffolds containing living cells have been studied for tissue repair and regeneration. Notably, the performance of these encapsulated-in-scaffolds cells in terms of cell viability, proliferation, and expression of function during and after the scaffold fabrication process, has not been well documented because of the influence of mechanical, chemical, and physical properties of the scaffold substrate materials. This paper presents our study on the influence of mechanical properties of alginate-based substrates on the performance of Schwann cells, which are the major glial cells of peripheral nervous system. Given the fact that alginate polysaccharide hydrogel has poor cell adhesion properties, in this study, we examined several types of cell-adhesion supplements and found that alginate covalently modified with RGD peptide provided improved cell proliferation and adhesion. We prepared alginate-based substrates for cell culture using varying alginate concentrations for altering their mechanical properties, which were confirmed by compression testing. Then, we examined the viability, proliferation, morphology, and expression of the extracellular matrix protein laminin of Schwann cells that were seeded on the surface of alginate-based substrates (or 2D culture) or encapsulated within alginate-based substrates (3D cultures), and correlated the examined cell performance to the alginate concentration (or mechanical properties) of hydrogel substrates. Our findings suggest that covalent attachment of RGD peptide can improve the success of Schwann cell encapsulation within alginate-based scaffolds, and provide guidance for regulating the mechanical properties of alginate-based scaffolds containing Schwann cells for applications in peripheral nervous system regeneration and repair. PMID:27012482

  11. Characterization of alginate lyase activity on liquid, gelled, and complexed states of alginate.

    PubMed

    Breguet, Véronique; von Stockar, Urs; Marison, Ian W

    2007-01-01

    A study of alginate lyase was carried out to determine if this enzyme could be used to remove alginate present in the core of alginate/poly-L-lysine (AG/PLL) microcapsules in order to maximize cell growth and colonization. A complete kinetic study was undertaken, which indicated an optimal activity of the enzyme at pH 7-8, 50 degrees C, in the presence of Ca2+. The buffer, not the ionic strength, influenced the alginate degradation rate. Alginate lyase was also shown to be active on gelled forms of alginate, as well as on the AG/PLL complex constituting the membrane of microcapsules. Batch cultures of CHO cells in the presence of alginate showed a decrease of the growth rate by a factor of 2, although the main metabolic flux rates were not modified. The addition of alginate lyase to cell culture medium increased the doubling time 5-7-fold and decreased the protein production rate, although cell viability was not affected. The addition of enzyme to medium containing alginate did not improve growth conditions. This suggests that alginate lyase is probably not suitable for hydrolysis of microcapsules in the presence of cells, in order to achieve high cell density and high productivity. However, the high activity may be useful for releasing cells from alginate beads or AG/PLL microcapsules. PMID:17691813

  12. Alginate Biosynthesis Factories in Pseudomonas fluorescens: Localization and Correlation with Alginate Production Level.

    PubMed

    Maleki, Susan; Almaas, Eivind; Zotchev, Sergey; Valla, Svein; Ertesvåg, Helga

    2016-02-01

    Pseudomonas fluorescens is able to produce the medically and industrially important exopolysaccharide alginate. The proteins involved in alginate biosynthesis and secretion form a multiprotein complex spanning the inner and outer membranes. In the present study, we developed a method by which the porin AlgE was detected by immunogold labeling and transmission electron microscopy. Localization of the AlgE protein was found to depend on the presence of other proteins in the multiprotein complex. No correlation was found between the number of alginate factories and the alginate production level, nor were the numbers of these factories affected in an algC mutant that is unable to produce the precursor needed for alginate biosynthesis. Precursor availability and growth phase thus seem to be the main determinants for the alginate production rate in our strain. Clustering analysis demonstrated that the alginate multiprotein complexes were not distributed randomly over the entire outer cell membrane surface. PMID:26655760

  13. Alginate Biosynthesis Factories in Pseudomonas fluorescens: Localization and Correlation with Alginate Production Level

    PubMed Central

    Maleki, Susan; Almaas, Eivind; Zotchev, Sergey; Valla, Svein

    2015-01-01

    Pseudomonas fluorescens is able to produce the medically and industrially important exopolysaccharide alginate. The proteins involved in alginate biosynthesis and secretion form a multiprotein complex spanning the inner and outer membranes. In the present study, we developed a method by which the porin AlgE was detected by immunogold labeling and transmission electron microscopy. Localization of the AlgE protein was found to depend on the presence of other proteins in the multiprotein complex. No correlation was found between the number of alginate factories and the alginate production level, nor were the numbers of these factories affected in an algC mutant that is unable to produce the precursor needed for alginate biosynthesis. Precursor availability and growth phase thus seem to be the main determinants for the alginate production rate in our strain. Clustering analysis demonstrated that the alginate multiprotein complexes were not distributed randomly over the entire outer cell membrane surface. PMID:26655760

  14. The in vitro and in vivo anti-tumor effects of MTX-Fe3O 4-PLLA-PEG-PLLA microspheres prepared by suspension-enhanced dispersion by supercritical CO2.

    PubMed

    Chen, AiZheng; Dang, TingTing; Wang, ShiBin; Tang, Na; Liu, YuanGang; Wu, WenGuo

    2014-07-01

    The in vitro and in vivo anti-tumor efficacy of methotrexate-loaded Fe3O4-poly-L-lactide-poly(ethylene glycol)-poly-L-lactide magnetic composite microspheres (MTX-Fe3O4-PLLA-PEG-PLLA MCMs, MMCMs), which were produced by co-precipitation (C) and microencapsulation (M) in a supercritical process, was evaluated at various levels: cellular, molecular, and integrated. The results at the cellular level indicate that MMCMs (M) show a better anti-proliferation activity than raw MTX and could induce morphological changes of cells undergoing apoptosis. At the molecular level, MMCMs (M) lead to a significantly higher relative mRNA expression of bax/bcl-2 and caspase-3 than MMCMs (C) at 10 μg mL(-1) (P<0.01); and the pro-caspase-3 protein expression measured by Western blot analysis also demonstrates that MMCMs (M) can effectively activate pro-caspase-3. At the integrated level, mice bearing a sarcoma-180 tumor are used; in vivo anti-tumor activity tests reveal that MMCMs (M) with magnetic induction display a much higher tumor suppression rate and lower toxicity than raw MTX. Pharmacokinetic studies show that MMCMs (M) with magnetic induction significantly increase the accumulation of MTX in the tumor tissue compared with the other treatments. These results suggest that the MMCMs (M) prepared by the SpEDS process have great potential to play a positive role in the magnetic targeted therapy field. PMID:24935781

  15. Preparation of magnetic Fe{sub 3}O{sub 4}/SiO{sub 2}/Bi{sub 2}WO{sub 6} microspheres and their application in photocatalysis

    SciTech Connect

    Chen, Su-Hua; Yin, Zhen; Luo, Sheng-Lian; Au, Chak-Tong; Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong ; Li, Xue-Jun

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► We described the preparation and characterization of the Fe{sub 3}O{sub 4}/SiO{sub 2}/Bi{sub 2}WO{sub 6} magnetic microspheres composites. ► The photocatalytic activities of the composites were also investigated. ► With the combination of photocatalysts and Fe{sub 3}O{sub 4}/SiO{sub 2}, good stability and magnetic separability can be achieved. ► And to the best of our knowledge, this is the first report concerning Bi{sub 2}WO{sub 6} nanoparticles loaded on Fe{sub 3}O{sub 4}/SiO{sub 2} particles. -- Abstract: Magnetic Fe{sub 3}O{sub 4}/SiO{sub 2}/Bi{sub 2}WO{sub 6} microspheres with photocatalytic properties have been synthesized using a silica layer for “bonding” (adhering Bi{sub 2}WO{sub 6} to Fe{sub 3}O{sub 4}). The morphology, composition and magnetic properties of the Fe{sub 3}O{sub 4}/SiO{sub 2}/Bi{sub 2}WO{sub 6} composites were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, vibrating sample magnetometry, and BET surface area analysis. The activity of the material in photocatalytic decoloration of aqueous rhodamine B (RhB) solution under visible light was evaluated. The results showed that Bi{sub 2}WO{sub 6} combined well with the magnetic Fe{sub 3}O{sub 4}/SiO{sub 2} nanoparticles. The Fe{sub 3}O{sub 4}/SiO{sub 2}/Bi{sub 2}WO{sub 6} composites were spherical in shape, having a mean size of 2 μm. The spent catalyst could be recycled with only slight decline in catalytic activity. It is envisaged that the stability, reusability, and magnetic nature of the Fe{sub 3}O{sub 4}/SiO{sub 2}/Bi{sub 2}WO{sub 6} catalyst warrants its application in photocatalysis.

  16. Polyvinyl pyridine microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)

    1980-01-01

    Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.

  17. Doped zinc oxide microspheres

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  18. Doped zinc oxide microspheres

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-12-14

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel. 4 figures.

  19. Fusion microsphere targets

    SciTech Connect

    Koo, J.C.

    1980-07-28

    It was shown that a microsphere within the structure limitations is hydrodynamically stable. To insure its perfect formation, the initial chemical compositions must have a blowing capability, more important, the resultant liquid compositions must also have sufficient surface tension and low viscosity.

  20. Microsphere insulation systems

    NASA Technical Reports Server (NTRS)

    Allen, Mark S. (Inventor); Willen, Gary S. (Inventor); Mohling, Robert A. (Inventor)

    2005-01-01

    A new insulation system is provided that contains microspheres. This insulation system can be used to provide insulated panels and clamshells, and to insulate annular spaces around objects used to transfer, store, or transport cryogens and other temperature-sensitive materials. This insulation system provides better performance with reduced maintenance than current insulation systems.

  1. Polyvinyl pyridine microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)

    1979-01-01

    Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.

  2. Ionically gelled alginate foams: physical properties controlled by type, amount and source of gelling ions.

    PubMed

    Andersen, Therese; Melvik, Jan Egil; Gåserød, Olav; Alsberg, Eben; Christensen, Bjørn E

    2014-01-01

    A new and flexible method for preparation of dry macroporous alginate foams with the capability of absorbing physiological solutions has been developed, which may find use within areas such as wound healing, cell culture, drug delivery and tissue engineering. The present study demonstrates how the gelation rate of the alginate and degree of ionic crosslinking can be utilized to control the physical foam properties. The rate of released Ca(2+)/Sr(2+) gelling ions available for interaction with the alginate was influenced by the concentration and physical characteristics of CaCO₃/SrCO₃ particles. The method of preparation of such foams allows, as described herein, tailoring of the pore structure, hydration properties and mechanical integrity in a manner not possible by other techniques. PMID:24274503

  3. Development of new reverse micellar microencapsulation technique to load water-soluble drug into PLGA microspheres.

    PubMed

    Kim, Hyunjoo; Cho, Mihyun; Sah, Hongkee

    2005-03-01

    The objective of this study was to develop a new reverse micelle-based microencapsulation technique to load tetracycline hydrochloride into PLGA microspheres. To do so, a reverse micellar system was formulated to dissolve tetracycline hydrochloride and water in ethyl formate with the aid of cetyltrimethylammonium bromide. The resultant micellar solution was used to dissolve 0.3 to 0.75 g of PLGA, and microspheres were prepared following a modified solvent quenching technique. As a control experiment, the drug was encapsulated into PLGA microspheres via a conventional methylene chloride-based emulsion procedure. The microspheres were then characterized with regard to drug loading efficiency, their size distribution and morphology. The reverse micellar procedure led to the formation of free-flowing, spherical microspheres with the size mode of 88 microm. When PLGA microspheres were prepared following the conventional methylene chloride-based procedure, most of tetracycline hydrochloride leached to the aqueous external phase: A maximal loading efficiency observed our experimental conditions was below 5%. Their surfaces had numerous pores, while their internal architecture was honey-combed. In sharp contrast, the new reverse micellar encapsulation technique permitted the attainment of a maximal loading efficiency of 63.19 +/- 0.64%. Also, the microspheres had smooth and pore-free surfaces, and hollow cavities were absent from their internal matrices. The results of this study demonstrated that PLGA microspheres could be successfully prepared following the new reverse micellar encapsulation technique. PMID:15832828

  4. Enzymatically cross-linked alginic-hyaluronic acid composite hydrogels as cell delivery vehicles.

    PubMed

    Ganesh, Nitya; Hanna, Craig; Nair, Shantikumar V; Nair, Lakshmi S

    2013-04-01

    An injectable composite gel was developed from alginic and hyaluronic acid. The enzymatically cross-linked injectable gels were prepared via the oxidative coupling of tyramine modified sodium algiante and sodium hyaluronate in the presence of horse radish peroxidase (HRP) and hydrogen peroxide (H2O2). The composite gels were prepared by mixing equal parts of the two tyraminated polymer solutions in 10U HRP and treating with 1.0% H2O2. The properties of the alginate gels were significantly affected by the addition of hyaluronic acid. The percentage water absorption and storage modulus of the composite gels were found to be lower than the alginate gels. The alginate and composite gels showed lower protein release compared to hyaluronate gels in the absence of hyaluronidase. Even hyaluronate gels showed only approximately 10% protein release after 14 days incubation in phosphate buffer solution. ATDC-5 cells encapsulated in the injectable gels showed high cell viability. The composite gels showed the presence of enlarged spherical cells with significantly higher metabolic activity compared to cells in hyaluronic and alginic acid gels. The results suggest the potential of the composite approach to develop covalently cross-linked hydrogels with tuneable physical, mechanical, and biological properties. PMID:23357799

  5. Free-standing polyelectrolyte membranes made of chitosan and alginate

    PubMed Central

    Caridade, Sofia G.; Monge, Claire; Gilde, Flora; Boudou, Thomas; Mano, João F.; Picart, Catherine

    2014-01-01

    Free-standing films have increasing applications in the biomedical field as drug delivery systems, for wound healing and tissue engineering. Here, we prepared free-standing membranes by the layer-by-layer assembly of chitosan and alginate, two widely used biomaterials. Our aim was to produce thick membrane, to study the permeation of model drugs and the adhesion of muscle cells. We first defined the optimal growth conditions in terms of pH and alginate concentration. The membranes could be easily detached from polystyrene or polypropylene substrate without any post-processing step. They dry thickness was varied over a large range from 4 to 35 μm. A two-fold swelling was observed by confocal microscopy when they were immersed in PBS. In addition, we quantified the permeation of model drugs (fluorescent dextrans) through the free standing membrane, which depended on the dextran molecular weight. Finally, we showed that myoblast cells exhibited a preferential adhesion on the alginate-ending membrane as compared to the chitosan-ending membrane or to the substrate side. PMID:23590116

  6. A honeycomb composite of mollusca shell matrix and calcium alginate.

    PubMed

    You, Hua-jian; Li, Jin; Zhou, Chan; Liu, Bin; Zhang, Yao-guang

    2016-03-01

    A honeycomb composite is useful to carry cells for application in bone, cartilage, skin, and soft tissue regenerative therapies. To fabricate a composite, and expand the application of mollusca shells as well as improve preparing methods of calcium alginate in tissue engineering research, Anodonta woodiana shell powder was mixed with sodium alginate at varying mass ratios to obtain a gel mixture. The mixture was frozen and treated with dilute hydrochloric acid to generate a shell matrix/calcium alginate composite. Calcium carbonate served as the control. The composite was transplanted subcutaneously into rats. At 7, 14, 42, and 70 days after transplantation, frozen sections were stained with hematoxylin and eosin, followed by DAPI, β-actin, and collagen type-I immunofluorescence staining, and observed using laser confocal microscopy. The composite featured a honeycomb structure. The control and composite samples displayed significantly different mechanical properties. The water absorption rate of the composite and control group were respectively 205-496% and 417-586%. The composite (mass ratio of 5:5) showed good biological safety over a 70-day period; the subcutaneous structure of the samples was maintained and the degradation rate was lower than that of the control samples. Freezing the gel mixture afforded control over chemical reaction rates. Given these results, the composite is a promising honeycomb scaffold for tissue engineering. PMID:26700239

  7. Vesicle-Templated Supramolecular Assembly of Alginate Nanogels

    NASA Astrophysics Data System (ADS)

    Hong, Jennifer; Vreeland, Wyatt; Raghavan, Srinivasa; Locascio, Laurie; Gaitan, Michael

    2006-03-01

    In this work, large uni- and multilamellar dipalmitoyl phosphatidylcholine (DPPC) liposomes (800-900 nm in diameter) were used as templates for the formation of alginate gels. DPPC liposomes encapsulating sodium alginate were prepared in a 15 mM NaCl buffer solution by the solvent injection method, followed by several freeze/thaw cycles to achieve higher encapsulation efficiency and larger vesicle size. Purified liposomes were placed in a 10 mM CaCl2 buffer solution and permeabilized by heating and cooling over the phase transition temperature (Tm) of DPPC. The increased membrane permeability at the Tm allowed calcium ions from the surrounding buffer solution to traverse the membrane to the interior region and subsequently crosslink the encapsulated alginate. Removal of the lipid by detergent resulted in nanogels that were similar in size (800-900 nm in diameter) to the template liposome, as characterized by multi-angle and dynamic light scattering techniques. In the future these nanogels may be useful for single-molecule encapsulation or controlled release applications.

  8. Magnetic alginate-layered double hydroxide composites for phosphate removal.

    PubMed

    Lee, Chang-Gu; Kim, Song-Bae

    2013-01-01

    The objective of this study was to investigate phosphate removal using magnetic alginate-layered double hydroxide (LDH) composites. The magnetic composites were prepared by entrapping synthetic magnetic iron oxide and calcined Mg-Al LDH in polymer matrix (alginate). Results showed that the magnetic composites (2% magnetic iron oxide and 6% calcined Mg-Al LDH) were effective in the removal of phosphate with the sorption capacity of 5.0 +/- 0.1 mgP/g under given experimental conditions (adsorbent dose = 0.05 g in 30 ml solution; initial phosphate concentration = 10 mgP/l; reaction time = 24 h). Both magnetic iron oxide and calcined Mg-Al LDH have the ability to adsorb phosphate, with the latter having much higher sorption capacity. In the magnetic composites, calcined Mg-Al LDH functions as a phosphate adsorbent while magnetic iron oxide provides both magnetic and sorption properties. Results also demonstrated that phosphate sorption to the magnetic composites reached equilibrium at 24 h. The maximum phosphate sorption capacity was determined to be 39.1 mgP/g. In addition, phosphate removal was not sensitive to initial solution pH between 4.1 and 10.2. Only 9% of the phosphate sorption capacity was reduced as the solution pH increased from 4.1 to 10.2. This study demonstrated that magnetic alginate-LDH composites could be used for phosphate removal in combination with magnetic separation. PMID:24527638

  9. Optimization of polyphenol oxidase immobilization in copper alginate beads.

    PubMed

    Kocaturk, Selin; Yagar, Hulya

    2010-05-01

    Polyphenol oxidase (PPO, EC 1.14.18.1) was isolated from artichoke head (Cynara scolymus L.) by using 0.1 M Tris-HCl buffer (pH 7.0), concentrated by (NH4)2SO4 precipitation, and immobilized in copper-alginate beads. Immobilization yield was determined to be 70%. The cresolase and catecholase activities of enzyme immobilized at optimum immobilization conditions were found to be 13.3 and 670 U g beads min(-1), respectively. Effects of immobilization conditions such as alginate concentration, CaCl2 concentration, amount of loading enzyme, bead size, and amount of beads on enzymatic activity were investigated. Optimum alginate and CuCl2 concentration were found to be 2 % and 3 % (w/v), respectively. Using bead (diameter 3 mm) amount of 0.25 g maximum enzyme activities were observed for both polyphenol activities. The initial concentrations of loading free enzyme were 6.5 U mL(-1) and 5815 U mL(-1) for cresolase activity and catecholase activities, respectively. Beads prepared at optimum immobilization conditions were suitable for up to 8 repeated uses. PMID:20429683

  10. Fluorescence dynamics of microsphere-adsorbed sunscreens

    NASA Astrophysics Data System (ADS)

    Krishnan, R.

    2005-03-01

    Sunscreens are generally oily substances which are prepared in organic solvents, emulsions or dispersions with micro- or nanoparticles. These molecules adsorb to and integrate into skin cells. In order to understand the photophysical properties of the sunscreen, we compare steady-state and time-resolved fluorescence in organic solvent of varying dielectric constant ɛ and adsorbed to polystyrene microspheres and dispersed in water. Steady-state fluorescence is highest and average fluorescence lifetime longest in toluene, the solvent of lowest ɛ. However, there is no uniform dependence on ɛ. Sunscreens PABA and padimate-O show complex emission spectra. Microsphere-adsorbed sunscreens exhibit highly non-exponential decay, illustrative of multiple environments of the adsorbed molecule. The heterogeneous fluorescence dynamics likely characterizes sunscreen adsorbed to cells.

  11. Magnetic hydrophilic methacrylate-based polymer microspheres designed for polymerase chain reactions applications.

    PubMed

    Spanová, Alena; Horák, Daniel; Soudková, Eva; Rittich, Bohuslav

    2004-02-01

    Magnetic hydrophilic non-porous P(HEMA-co-EDMA), P(HEMA-co-GMA) and PGMA microspheres were prepared by dispersion (co)polymerization of 2-hydroxyethyl methacrylate (HEMA) and ethylene dimethacrylate (EDMA) or glycidyl methacrylate (GMA) in the presence of several kinds of magnetite. It was found that some components used in the preparation of magnetic carriers interfered with polymerase chain reaction (PCR). Influence of non-magnetic and magnetic microspheres, including magnetite nanoparticles and various components used in their synthesis, on the PCR course was thus investigated. DNA isolated from bacterial cells of Bifidobacterium longum was used in PCR evaluation of non-interfering magnetic microspheres. The method enabled verification of the incorporation of magnetite nanoparticles in the particular methacrylate-based polymer microspheres and evaluation of suitability of their application in PCR. Preferably, electrostatically stabilized colloidal magnetite (ferrofluid) should be used in the design of new magnetic methacrylate-based microspheres by dispersion polymerization. PMID:14698232

  12. Calcium Alginate and Calcium Alginate-Chitosan Beads Containing Celecoxib Solubilized in a Self-Emulsifying Phase.

    PubMed

    Segale, Lorena; Giovannelli, Lorella; Mannina, Paolo; Pattarino, Franco

    2016-01-01

    In this work alginate and alginate-chitosan beads containing celecoxib solubilized into a self-emulsifying phase were developed in order to obtain a drug delivery system for oral administration, able to delay the drug release in acidic environment and to promote it in the intestinal compartment. The rationale of this work was linked to the desire to improve celecoxib therapeutic effectiveness reducing its gastric adverse effects and to favor its use in the prophylaxis of colon cancer and as adjuvant in the therapy of familial polyposis. The systems were prepared by ionotropic gelation using needles with different diameters (400 and 600 μm). Morphology, particle size, swelling behavior, and in vitro drug release performance of the beads in aqueous media with different pH were investigated. The experimental results demonstrated that the presence of chitosan in the formulation caused an increase of the mechanical resistance of the bead structure and, as a consequence, a limitation of the bead swelling ability and a decrease of the drug release rate at neutral pH. Alginate-chitosan beads could be a good tool to guarantee a celecoxib colon delivery. PMID:27127680

  13. Calcium Alginate and Calcium Alginate-Chitosan Beads Containing Celecoxib Solubilized in a Self-Emulsifying Phase

    PubMed Central

    Segale, Lorena; Giovannelli, Lorella; Mannina, Paolo; Pattarino, Franco

    2016-01-01

    In this work alginate and alginate-chitosan beads containing celecoxib solubilized into a self-emulsifying phase were developed in order to obtain a drug delivery system for oral administration, able to delay the drug release in acidic environment and to promote it in the intestinal compartment. The rationale of this work was linked to the desire to improve celecoxib therapeutic effectiveness reducing its gastric adverse effects and to favor its use in the prophylaxis of colon cancer and as adjuvant in the therapy of familial polyposis. The systems were prepared by ionotropic gelation using needles with different diameters (400 and 600 μm). Morphology, particle size, swelling behavior, and in vitro drug release performance of the beads in aqueous media with different pH were investigated. The experimental results demonstrated that the presence of chitosan in the formulation caused an increase of the mechanical resistance of the bead structure and, as a consequence, a limitation of the bead swelling ability and a decrease of the drug release rate at neutral pH. Alginate-chitosan beads could be a good tool to guarantee a celecoxib colon delivery. PMID:27127680

  14. [Relation between drug release and the drug status within curcumin-loaded microsphere].

    PubMed

    Chen, De; Liu, Yi; Fan, Kai-yan; Xie, Yi-qiao; Yu, An-an; Xia, Zi-hua; Yang, Fan

    2016-01-01

    To study the relation between drug release and the drug status within curcumin-loaded microsphere, SPG (shirasu porous glass) membrane emulsification was used to prepare the curcumin-PLGA (polylactic-co-glycolic acid) microspheres with three levels of drug loading respectively, and the in vitro release was studied with high-performance liquid chromatography (HPLC). The morphology of microspheres was observed with scanning electron microscopy (SEM), and the drug status was studied with X-ray diffraction (XRD), differential scanning calorimetry (DSC) and infrared analysis (IR). The drug loading of microspheres was (5.85 ± 0.21)%, (11.71 ± 0.39)%, (15.41 ± 0.40)%, respectively. No chemical connection was found between curcumin and PLGA. According to the results of XRD, curcumin dispersed in PLGA as amorphous form within the microspheres of the lowest drug loading, while (2.12 ± 0.64)% and (5.66 ± 0.07)% curcumin crystals was detected in the other two kinds of microspheres, respectively, indicating that the drug status was different within three kinds of microspheres. In the data analysis, we found that PLGA had a limited capacity of dissolving curcumin. When the drug loading exceeded the limit, the excess curcumin would exist in the form of crystals in microspheres independently. Meanwhile, this factor contributes to the difference in drug release behavior of the three groups of microspheres. PMID:27405176

  15. Controllable growth and photocatalytic activity of Cu{sub 2}O solid microspheres

    SciTech Connect

    Gao, Hong; Zhang, Junying Wang, Mei

    2013-09-01

    Graphical abstract: - Highlights: • 3 μm uniform Cu{sub 2}O solid microspheres with abundant nanopores are achieved. • NH{sub 2}OH·HCl and SDS are main factors that manipulate morphologies of Cu{sub 2}O particles. • Surface features of microspheres influenced the photocatalytic activity of Cu{sub 2}O. • Microspheres are transforming to polyhedrons with extended holding time. - Abstract: A series of Cu{sub 2}O solid microspheres with different surface features were prepared and their photocatalytic activities were studied. The experiment conditions were investigated and the formation mechanism was explored systematically. It was found that varying the amounts of NH{sub 2}OH·HCl reductant in alkaline solutions changed the reaction process and thus altered the surface features of Cu{sub 2}O microspheres. Sodium dodecyl sulfate (SDS) surfactant, introduced as a morphology directing agent, caused the nuclei aggregation and growth process of Cu{sub 2}O solid microspheres by precisely realizing the opposite charges’ directional attraction. This SDS-mediated method can be readily extended to synthesizing solid microspheres of other metal oxides. Meanwhile, it was found that Cu{sub 2}O solid microspheres with abundant nanopores on the surface showed much higher efficient catalytic activity for decoloring methyl orange (MO) aqueous solution than with other surface features under visible light irradiation. Furthermore, we found that prolonging the holding time made Cu{sub 2}O microspheres transform to polyhedrons.

  16. Alginate-modifying enzymes: biological roles and biotechnological uses

    PubMed Central

    Ertesvåg, Helga

    2015-01-01

    Alginate denotes a group of industrially important 1-4-linked biopolymers composed of the C-5-epimers β-D-mannuronic acid (M) and α-L-guluronic acid (G). The polysaccharide is manufactured from brown algae where it constitutes the main structural cell wall polymer. The physical properties of a given alginate molecule, e.g., gel-strength, water-binding capacity, viscosity and biocompatibility, are determined by polymer length, the relative amount and distribution of G residues and the acetyl content, all of which are controlled by alginate modifying enzymes. Alginate has also been isolated from some bacteria belonging to the genera Pseudomonas and Azotobacter, and bacterially synthesized alginate may be O-acetylated at O-2 and/or O-3. Initially, alginate is synthesized as polymannuronic acid, and some M residues are subsequently epimerized to G residues. In bacteria a mannuronan C-5-epimerase (AlgG) and an alginate acetylase (AlgX) are integral parts of the protein complex necessary for alginate polymerization and export. All alginate-producing bacteria use periplasmic alginate lyases to remove alginate molecules aberrantly released to the periplasm. Alginate lyases are also produced by organisms that utilize alginate as carbon source. Most alginate-producing organisms encode more than one mannuronan C-5 epimerase, each introducing its specific pattern of G residues. Acetylation protects against further epimerization and from most alginate lyases. An enzyme from Pseudomonas syringae with alginate deacetylase activity has been reported. Functional and structural studies reveal that alginate lyases and epimerases have related enzyme mechanisms and catalytic sites. Alginate lyases are now utilized as tools for alginate characterization. Secreted epimerases have been shown to function well in vitro, and have been engineered further in order to obtain enzymes that can provide alginates with new and desired properties for use in medical and pharmaceutical applications

  17. A facile method to fabricate porous Co{sub 3}O{sub 4} hierarchical microspheres

    SciTech Connect

    Cheng, J.P. Chen, X.; Ma, R.; Liu, F.; Zhang, X.B.

    2011-08-15

    Flower-like Co{sub 3}O{sub 4} hierarchical microspheres composed of self-assembled porous nanoplates have been prepared by a two-step method without employing templates. The first step involves the synthesis of flower-like Co(OH){sub 2} microspheres by a solution route at low temperatures. The second step includes the calcination of the as-prepared Co(OH){sub 2} microspheres at 200 deg. C for 1 h, causing their decomposition to form porous Co{sub 3}O{sub 4} microspheres without destruction of their original morphology. The samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffractormeter and Fourier transform infrared spectroscope. Some experimental factors including solution temperature and surfactant on the morphologies of the final products have been investigated. The magnetic properties of Co{sub 3}O{sub 4} microspheres were also investigated. - Graphical Abstract: Flower-like Co{sub 3}O{sub 4} microspheres are composed of self-assembled nanoplates and these nanoplates appear to be closely packed in the microspheres. These nanoplates consist of a large number of nanocrystallites less than 5 nm in size with a porous structure, in which the connection between nanocrystallites is random. Research Highlights: {yields} Flower-like Co{sub 3}O{sub 4} hierarchical microspheres composed of self-assembled porous nanoplates have been prepared by a two-step method without employing templates. {yields} Layered Co(OH){sub 2} microspheres were prepared with an appropriate approach under low temperatures for 1 h reaction. {yields} Calcination caused Co(OH){sub 2} decomposition to form porous Co{sub 3}O{sub 4} microspheres without destruction of their original morphology.

  18. Release mechanisms of tacrolimus-loaded PLGA and PLA microspheres and immunosuppressive effects of the microspheres in a rat heart transplantation model.

    PubMed

    Kojima, Ryo; Yoshida, Takatsune; Tasaki, Hiroaki; Umejima, Hiroyuki; Maeda, Masashi; Higashi, Yasuyuki; Watanabe, Shunsuke; Oku, Naoto

    2015-08-15

    The objective of this study was to elucidate the release and absorption mechanisms of tacrolimus loaded into microspheres composed of poly(lactic-co-glycolic acid) (PLGA) and/or polylactic acid (PLA). Tacrolimus-loaded microspheres were prepared by the o/w emulsion solvent evaporation method. The entrapment efficiency correlated with the molecular weight of PLGA, and the glass transition temperature of PLGA microspheres was not decreased by the addition of tacrolimus. These results indicate that intermolecular interaction between tacrolimus and the polymer would affect the entrapment of tacrolimus in the microspheres. Tacrolimus was released with weight loss of the microspheres, and the dominant release mechanism of tacrolimus was considered to be erosion of the polymer rather than diffusion of the drug. The whole-blood concentration of tacrolimus in rats was maintained for at least 2 weeks after a single subcutaneous administration of the microspheres. The pharmacokinetic profile of tacrolimus following subcutaneous administration was similar to that following intramuscular administration, suggesting that the release and dissolution of tacrolimus, rather than the absorption of the dissolved tacrolimus, were rate-limiting steps. Graft-survival time in a heart transplantation rat model was prolonged by the administration of tacrolimus-loaded microspheres. The microsphere formulation of tacrolimus would be expected to precisely control the blood concentration while maintaining the immunosuppressive effect of the drug. PMID:26160668

  19. Alginic Acid Accelerates Calcite Dissolution

    NASA Astrophysics Data System (ADS)

    Perry, T. D.; Duckworth, O. W.; McNamara, C. J.; Martin, S. T.; Mitchell, R.

    2003-12-01

    Accelerated carbonate weathering through biological activity affects both geochemical cycling and the local pH and alkalinity of terrestrial and marine waters. Microbes affect carbonate dissolution through metabolic activity, production of acidic or chelating exudates, and cation binding by cell walls. Dissolution occurs within microbial biofilms - communities of microorganisms attached to stone in an exopolymer matrix. We investigated the effect of alginic acid, a common biological polymer produced by bacteria and algae, on calcite dissolution using a paired atomic force microscopy/flow-through reactor apparatus. The alginic acid caused up to an order of magnitude increase in dissolution rate at 3 < pH < 12. Additionally, the polymer preferentially binds to the obtuse pit steps and increases step velocity. We propose that the polymer is actively chelating surficial cations reducing the activation energy and increasing dissolution rate. The role of biologically produced polymers in mineral weathering is important in the protection of cultural heritage materials and understanding of marine and terrestrial systems.

  20. Ondansetron-loaded biodegradable microspheres as a nasal sustained delivery system: in vitro/in vivo studies.

    PubMed

    Gungor, Sevgi; Okyar, Alper; Erturk-Toker, Sidika; Baktir, Gul; Ozsoy, Yildiz

    2010-06-01

    The aim of this study was to prepare ondansetron-loaded biodegradable microspheres as a nasal delivery system. Microspheres were prepared with emulsification/spray-drying technique using poly(d,l-lactide) (PLA) and two different types of poly(d,l-lactide-co-glycolide) (PLGA). The effect of the type of organic solvent (dichloromethane (DCM) or a mixture of DCM and ethyl acetate) on the microsphere characteristics was also examined. The prepared microspheres were evaluated with respect to the morphological properties, particle size, zeta potential, drug loading efficiency, and in vitro drug release. The mean particle size (d(50)) of microsphere formulations was ranged from 11.67-25.54 μm, indicating suitable particle size for nasal administration. All microspheres had low drug loading efficiency in the range of 12.28-21.04%. The results indicated that particle size of microspheres were affected by both type of polymer and organic solvent, however drug loading efficiency of microspheres were affected by only the type of organic solvent used. All microspheres were negatively charged due to the polymers (PLA or PLGA) used. A prolonged in vitro drug release profile was observed for 96 h. Based on in vitro data, the selected microsphere formulation has been applied via nasal route to rats in vivo. Following nasal administration of ondansetron-loaded microsphere to rats, ondansetron plasma levels were within a range of 30-48 ng/mL during 96 h, indicating a sustained drug delivery pattern and relatively a constant plasma drug concentration level. The results suggested that biodegradable microspheres prepared with emulsification/spray-drying technique could be considered to deliver ondansetron via nasal route to obtain a prolonged release. PMID:22716466