Science.gov

Sample records for alginic acid nanoparticles

  1. Insulin-loaded alginic acid nanoparticles for sublingual delivery.

    PubMed

    Patil, Nilam H; Devarajan, Padma V

    2016-01-01

    Alginic acid nanoparticles (NPs) containing insulin, with nicotinamide as permeation enhancer were developed for sublingual delivery. The lower concentration of proteolytic enzymes, lower thickness and enhanced retention due to bioadhesive property, were relied on for enhanced insulin absorption. Insulin-loaded NPs were prepared by mild and aqueous based nanoprecipitation process. NPs were negatively charged and had a mean size of ∼200 nm with low dispersity index. Insulin loading capacities of >95% suggested a high association of insulin with alginic acid. Fourier Transform Infra-Red Spectroscopy (FTIR) spectra and DSC (Differential Scanning Calorimetry) thermogram of insulin-loaded NPs revealed the association of insulin with alginic acid. Circular dichroism (CD) spectra confirmed conformational stability, while HPLC analysis confirmed chemical stability of insulin in the NPs. Sublingually delivered NPs with nicotinamide exhibited high pharmacological availability (>100%) and bioavailability (>80%) at a dose of 5 IU/kg. The high absolute pharmacological availability of 20.2% and bioavailability of 24.1% in comparison with subcutaneous injection at 1 IU/kg, in the streptozotocin-induced diabetic rat model, suggest the insulin-loaded alginic acid NPs as a promising sublingual delivery system of insulin. PMID:24901208

  2. Ca(2+) cross-linked alginic acid nanoparticles for solubilization of lipophilic natural colorants.

    PubMed

    Astete, Carlos E; Sabliov, Cristina M; Watanabe, Fumiya; Biris, Alexandru

    2009-08-26

    The increased tendency toward healthy lifestyles has promoted natural food ingredients to the detriment of synthetic components of food products. The trend followed into the colorant arena, with consumers worried about potential health problems associated with synthetic colorants and demanding food products that use natural pigments. The goal of this study was to entrap a lipophilic natural pigment (beta-carotene) in a water-soluble matrix made of Ca(2+) cross-linked alginic acid, to allow its use as a colorant in water-based foods. The effects of different synthesis parameters such as type of solvent, alginic acid concentration, and calcium chloride concentration on nanoparticle characteristics (i.e., size, zeta potential, and morphology) were evaluated. The particle stability was assessed by measuring aggregation against pH, oxidation, and particle precipitation as a function of time. The particle synthesized measured 120-180 nm when formed with chloroform and 500-950 nm when synthesized with ethyl acetate. The particles were negatively charged (-70 to -80 mV zeta potential) and were stable at pH values ranging from 3 to 7. The presence of calcium was prevalent on the particles, indicating that the divalent ions were responsible for cross-linking lecithin with alginic acid and forming the matrix around the beta-carotene pockets. The addition of calcium increased nanoparticle density and improved beta-carotene protection against oxidation. It is concluded that the method proposed herein was capable of forming water-soluble nanoparticles with entrapped beta-carotene of controlled functionality, as a result of the type of solvent and the amounts of alginate and Ca(2+) used. PMID:19645512

  3. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability.

    PubMed

    Loosli, Frédéric; Le Coustumer, Philippe; Stoll, Serge

    2013-10-15

    The behavior of manufactured TiO2 nanoparticles is studied in a systematic way in presence of alginate and Suwannee River humic acids at variable concentrations. TiO2 nanoparticles aggregation, disaggregation and stabilization are investigated using dynamic light scattering and electrophoretic experiments allowing the measurement of z-average hydrodynamic diameters and zeta potential values. Stability of the TiO2 nanoparticles is discussed by considering three pH-dependent electrostatic scenarios. In the first scenario, when pH is below the TiO2 nanoparticle point of zero charge, nanoparticles exhibit a positively charged surface whereas alginate and Suwannee River humic acids are negatively charged. Fast adsorption at the TiO2 nanoparticles occurs, promotes surface charge neutralization and aggregation. By increasing further alginate and Suwannee River humic acids concentrations charge inversion and stabilization of TiO2 nanoparticles are obtained. In the second electrostatic scenario, at the surface charge neutralization pH, TiO2 nanoparticles are rapidly forming aggregates. Adsorption of alginate and Suwannee River humic acids on aggregates leads to their partial fragmentation. In the third electrostatic scenario, when nanoparticles, alginate and Suwannee River humic acids are negatively charged, only a small amount of Suwannee River humic acids is adsorbed on TiO2 nanoparticles surface. It is found that the fate and behavior of individual and aggregated TiO2 nanoparticles in presence of environmental compounds are mainly driven by the complex interplay between electrostatic attractive and repulsive interactions, steric and van der Waals interactions, as well as concentration ratio. Results also suggest that environmental aquatic concentration ranges of humic acids and biopolymers largely modify the stability of aggregated or dispersed TiO2 nanoparticles. PMID:23969399

  4. 21 CFR 184.1011 - Alginic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Alginic acid. 184.1011 Section 184.1011 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1011 Alginic acid. (a) Alginic acid is a colloidal,...

  5. 21 CFR 184.1011 - Alginic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Alginic acid. 184.1011 Section 184.1011 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1011 Alginic acid. (a) Alginic acid is a colloidal, hydrophilic polysaccharide obtained from...

  6. 21 CFR 184.1011 - Alginic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Alginic acid. 184.1011 Section 184.1011 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1011 Alginic acid. (a) Alginic acid is a colloidal,...

  7. 21 CFR 184.1011 - Alginic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Alginic acid. 184.1011 Section 184.1011 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1011 Alginic acid. (a) Alginic acid is a colloidal,...

  8. 21 CFR 184.1011 - Alginic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Alginic acid. 184.1011 Section 184.1011 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1011 Alginic acid. (a) Alginic acid is a colloidal,...

  9. Preparation of complex nano-particles based on alginic acid/poly[(2-dimethylamino) ethyl methacrylate] and a drug vehicle for doxorubicin release controlled by ionic strength.

    PubMed

    Cai, Hong; Ni, Caihua; Zhang, Liping

    2012-01-23

    Monodispersed complex nano-particles were synthesized simply by mixing alginic acid (ALG-H) with poly[(2-dimethylamino) ethyl methacrylate] (PDEMA) in pure water without any surfactants or additives. The structure and properties of the nano-particles were extensively studied. The surface charges and average sizes of the nano-particles were varied with the composition of ALG-H and PDEMA. The nano-particles were formed through electrostatic attraction force, and they were very stable in pure water, but dissociated in salt solutions. An anticancer drug (doxorubicin) was loaded in the nano-particles and released in different saline solutions. The release profiles revealed that the drug release could be controlled by adjusting the pH and salt concentrations. The nano-particles displayed apparent advantages such as simple preparation process, low cost, free of organic solvents, size controllable, biodegradable and biocompatible. PMID:22079138

  10. Development of acid-resistant alginate/trimethyl chitosan nanoparticles containing cationic β-cyclodextrin polymers for insulin oral delivery.

    PubMed

    Mansourpour, Maryam; Mahjub, Reza; Amini, Mohsen; Ostad, Seyed Naser; Shamsa, Elnaz Sadat; Rafiee-Tehrani, Morteza; Dorkoosh, Farid Abedin

    2015-08-01

    In this study, the use of trimethylchitosan (TMC), by higher solubility in comparison with chitosan, in alginate/chitosan nanoparticles containing cationic β-cyclodextrin polymers (CPβCDs) has been studied, with the aim of increasing insulin uptake by nanoparticles. Firstly, TMCs were synthesized by iodomethane, and CPβCDs were synthesized within a one-step polycondensation reaction using choline chloride (CC) and epichlorohydrine (EP). Insulin-CβCDPs complex was prepared by mixing 1:1 portion of insulin and CPβCDs solutions. Then, nanoparticles prepared in a three-step procedure based on the iono-tropic pregelation method. Nanoparticles screened using experimental design and Placket Burman methodology to obtain minimum size and polydispercity index (pdI) and the highest entrapment efficiency (EE). CPβCDs and TMC solution concentration and pH and alginate and calcium chloride solution concentrations are found as the significant parameters on size, PdI, and EE. The nanoparticles with proper physicochemical properties were obtained; the size, PdI, and EE% of optimized nanoparticles were reported as 150.82 ± 21 nm, 0.362 ± 0.036, and 93.2% ± 4.1, respectively. The cumulative insulin release in intestinal condition achieved was 50.2% during 6 h. By SEM imaging, separate, spherical, and nonaggregated nanoparticles were found. In the cytotoxicity studies on Caco-2 cell culture, no significant cytotoxicity was observed in 5 h of incubation, but after 24 h of incubation, viability was decreased to 50% in 0.5 mμ of TMC concentration. Permeability studies across Caco-2 cells had been carried out, and permeability achieved in 240 min was 8.41 ± 0.39%, which shows noticeable increase in comparison with chitosan nanoparticles. Thus, according to the results, the optimized nanoparticles can be used as a new insulin oral delivery system. PMID:25604700

  11. Alginic Acid Accelerates Calcite Dissolution

    NASA Astrophysics Data System (ADS)

    Perry, T. D.; Duckworth, O. W.; McNamara, C. J.; Martin, S. T.; Mitchell, R.

    2003-12-01

    Accelerated carbonate weathering through biological activity affects both geochemical cycling and the local pH and alkalinity of terrestrial and marine waters. Microbes affect carbonate dissolution through metabolic activity, production of acidic or chelating exudates, and cation binding by cell walls. Dissolution occurs within microbial biofilms - communities of microorganisms attached to stone in an exopolymer matrix. We investigated the effect of alginic acid, a common biological polymer produced by bacteria and algae, on calcite dissolution using a paired atomic force microscopy/flow-through reactor apparatus. The alginic acid caused up to an order of magnitude increase in dissolution rate at 3 < pH < 12. Additionally, the polymer preferentially binds to the obtuse pit steps and increases step velocity. We propose that the polymer is actively chelating surficial cations reducing the activation energy and increasing dissolution rate. The role of biologically produced polymers in mineral weathering is important in the protection of cultural heritage materials and understanding of marine and terrestrial systems.

  12. Alginate and Chitosan Gel Nanoparticles for Efficient Protein Entrapment

    NASA Astrophysics Data System (ADS)

    Masalova, O.; Kulikouskaya, V.; Shutava, T.; Agabekov, V.

    Alginate and chitosan nanoparticles were synthesized by ionic gelation of the polymers in the presence of stabilizers (PEG 1500, PEG 6000, TWEEN 80). The stability of 210-240 nm Ca-alginate colloids is affected by nanoparticles ageing and by the presence of a stabilizer. The diameter of chitosan nanoparticles is in the range of 180 to 260 nm and depends on polymer concentration in the reaction mixture, its molecular weight, and stabilizer type. The nanoparticles efficiently entrap a model protein, bovine serum albumin, in the amount up to 0.24 mg per 1 mg of polysaccharide.

  13. Polymeric alginate nanoparticles containing the local anesthetic bupivacaine.

    PubMed

    Grillo, Renato; de Melo, Nathalie F S; de Araújo, Daniele Ribeiro; de Paula, Eneida; Rosa, André Henrique; Fraceto, Leonardo Fernandes

    2010-11-01

    Bupivacaine (BVC; S75–R25, NovaBupi® is an amide-type local anesthetic. Sodium alginate is a water-soluble linear polysaccharide. The present study reports the development of alginate/bis(2-ethylhexyl) sulfosuccinate (AOT) and alginate/chitosan nanoparticle formulations containing BVC (0.5%). The amounts of BVC associated in the alginate/AOT and alginate/chitosan nanoparticles were 87 ± 1.5 and 76 ± 0.9%, respectively. The average diameters and zeta potentials of the nanoparticles were measured for 30 days, and the results demonstrated the good stability of these particles in solution. The in vitro release kinetics showed a different behavior for the release profile of BVC in solution, compared with BVC-loaded alginate nanoparticles. In vitro and in vivo assays showed that alginate–chitosan BVC (BVC(ALG–CHIT)) and alginate–AOT BVC (BVC(ALG–AOT)) presented low cytotoxicity in 3T3-fibroblasts, enhanced the intensity, and prolonged the duration of motor and sensory blockades in a sciatic nerve blockade model. PMID:20196632

  14. Antibacterial Performance of Alginic Acid Coating on Polyethylene Film

    PubMed Central

    Karbassi, Elika; Asadinezhad, Ahmad; Lehocký, Marian; Humpolíček, Petr; Vesel, Alenka; Novák, Igor; Sáha, Petr

    2014-01-01

    Alginic acid coated polyethylene films were examined in terms of surface properties and bacteriostatic performance against two most representative bacterial strains, that is, Escherichia coli and Staphylococcus aureus. Microwave plasma treatment followed by brush formation in vapor state from three distinguished precursors (allylalcohol, allylamine, hydroxyethyl methacrylate) was carried out to deposit alginic acid on the substrate. Surface analyses via various techniques established that alginic acid was immobilized onto the surface where grafting (brush) chemistry influenced the amount of alginic acid coated. Moreover, alginic acid was found to be capable of bacterial growth inhibition which itself was significantly affected by the brush type. The polyanionic character of alginic acid as a carbohydrate polymer was assumed to play the pivotal role in antibacterial activity. The cell wall composition of two bacterial strains along with the substrates physicochemical properties accounted for different levels of bacteriostatic performance. PMID:25196604

  15. Novel alginate based nanocomposite hydrogels with incorporated silver nanoparticles.

    PubMed

    Obradovic, Bojana; Stojkovska, Jasmina; Jovanovic, Zeljka; Miskovic-Stankovic, Vesna

    2012-01-01

    Alginate colloid solution containing electrochemically synthesized silver nanoparticles (AgNPs) was investigated regarding the nanoparticle stabilization and possibilities for production of alginate based nanocomposite hydrogels in different forms. AgNPs were shown to continue to grow in alginate solutions for additional 3 days after the synthesis by aggregative mechanism and Ostwald ripening. Thereafter, the colloid solution remains stable for 30 days and could be used alone or in mixtures with aqueous solutions of poly(vinyl alcohol) (PVA) and poly(N-vinyl-2-pyrrolidone) (PVP) while preserving AgNPs as verified by UV-Vis spectroscopy studies. We have optimized techniques for production of Ag/alginate microbeads and Ag/alginate/PVA beads, which were shown to efficiently release AgNPs decreasing the Escherichia coli concentration in suspensions for 99.9% over 24 h. Furthermore, Ag/hydrogel discs based on alginate, PVA and PVP were produced by freezing-thawing technique allowing adjustments of hydrogel composition and mechanical properties as demonstrated in compression studies performed in a biomimetic bioreactor. PMID:22203513

  16. Control of Alginate Core Size in Alginate-Poly (Lactic-Co-Glycolic) Acid Microparticles.

    PubMed

    Lio, Daniel; Yeo, David; Xu, Chenjie

    2016-12-01

    Core-shell alginate-poly (lactic-co-glycolic) acid (PLGA) microparticles are potential candidates to improve hydrophilic drug loading while facilitating controlled release. This report studies the influence of the alginate core size on the drug release profile of alginate-PLGA microparticles and its size. Microparticles are synthesized through double-emulsion fabrication via a concurrent ionotropic gelation and solvent extraction. The size of alginate core ranges from approximately 10, 50, to 100 μm when the emulsification method at the first step is homogenization, vortexing, or magnetic stirring, respectively. The second step emulsification for all three conditions is performed with magnetic stirring. Interestingly, although the alginate core has different sizes, alginate-PLGA microparticle diameter does not change. However, drug release profiles are dramatically different for microparticles comprising different-sized alginate cores. Specifically, taking calcein as a model drug, microparticles containing the smallest alginate core (10 μm) show the slowest release over a period of 26 days with burst release less than 1 %. PMID:26745977

  17. Control of Alginate Core Size in Alginate-Poly (Lactic-Co-Glycolic) Acid Microparticles

    NASA Astrophysics Data System (ADS)

    Lio, Daniel; Yeo, David; Xu, Chenjie

    2016-01-01

    Core-shell alginate-poly (lactic-co-glycolic) acid (PLGA) microparticles are potential candidates to improve hydrophilic drug loading while facilitating controlled release. This report studies the influence of the alginate core size on the drug release profile of alginate-PLGA microparticles and its size. Microparticles are synthesized through double-emulsion fabrication via a concurrent ionotropic gelation and solvent extraction. The size of alginate core ranges from approximately 10, 50, to 100 μm when the emulsification method at the first step is homogenization, vortexing, or magnetic stirring, respectively. The second step emulsification for all three conditions is performed with magnetic stirring. Interestingly, although the alginate core has different sizes, alginate-PLGA microparticle diameter does not change. However, drug release profiles are dramatically different for microparticles comprising different-sized alginate cores. Specifically, taking calcein as a model drug, microparticles containing the smallest alginate core (10 μm) show the slowest release over a period of 26 days with burst release less than 1 %.

  18. Magnetite-Alginate-AOT nanoparticles based drug delivery platform

    NASA Astrophysics Data System (ADS)

    Regmi, R.; Sudakar, C.; Dixit, A.; Naik, R.; Lawes, G.; Toti, U.; Panyam, J.; Vaishnava, P. P.

    2008-03-01

    Iron oxide having the magnetite structure is a widely used biomaterial, having applications ranging from cell separation and drug delivery to hyperthermia. In order to increase the efficacy of drug treatments, magnetite nanoparticles can be incorporated into a composite system with a surfactant-polymer nanoparticle, which can act as a platform for sustained and enhanced cellular delivery of water-soluble molecules. Here we report a composite formulation based on magnetite and Alginate-aerosol OT (AOT) nanoparticles formulated using an emulsion-cross-linking process loaded with Rhodamine 6G [1]. We prepared two set of nanoparticles by using Ca^2+ or Fe^2+ to cross-link the alginate polymer. Additionally, we added ˜8 nm diameter Fe3O4 magnetic nanoparticles prepared by a soft chemical method to these alginate-AOT nanoparticles. The resulting composites were superparamagnetic at room temperature, with a saturation magnetization of approximately 0.006 emu/g of solution. We will present detailed studies on the structural and magnetic properties of these samples. We will also discuss HPLC measurements on Rhodamine uploading in these composites. [1] M.D.Chavanpatil, Pharmaceutical Research, vol.24, (2007) 803.

  19. Bioinspired preparation of alginate nanoparticles using microbubble bursting.

    PubMed

    Elsayed, Mohamed; Huang, Jie; Edirisinghe, Mohan

    2015-01-01

    Nanoparticles are considered to be one of the most advanced tools for drug delivery applications. In this research, alginate (a model hydrophilic polymer) nanoparticles 80 to 200 nm in diameter were obtained using microbubble bursting. The natural process of bubble bursting occurs through a number of stages, which consequently produce nano- and microsized droplets via two main production mechanisms, bubble shell disintegration and a jetting process. In this study, nano-sized droplets/particles were obtained by promoting the disintegrating mechanism and suppressing (limiting) the formation of larger microparticles resulting from the jetting mechanism. A T-junction microfluidic device was used to prepare alginate microbubbles with different sizes in a well-controlled manner. The size of the bubbles was varied by controlling two processing parameters, the solution flow rate and the bubbling pressure. Crucially, the bubble size was found to be the determining factor for inducing (or limiting) the bubble shell disintegration mechanism and the size needed to promote this process was influenced by the properties of the solution used for preparing the bubbles, particularly the viscosity. The size of alginate nanoparticles produced via the disintegration mechanism was found to be directly proportional to the viscosity of the alginate solution. PMID:25491969

  20. Preparation and characterization of superparamagnetic iron oxide nanoparticles stabilized by alginate.

    PubMed

    Ma, Hui-li; Qi, Xian-rong; Maitani, Yoshie; Nagai, Tsuneji

    2007-03-21

    SPION with appropriate surface chemistry have been widely used experimentally for numerous in vivo applications. In this study, SPION stabilized by alginate (SPION-alginate) were prepared by a modified coprecipitation method. The structure, size, morphology, magnetic property and relaxivity of the SPION-alginate were characterized systematically by means of XRD, TEM, ESEM, AFM, DLS, SQUID magnetometer and MRI, respectively, and the interaction between alginate and iron oxide (Fe(3)O(4)) was characterized by FT-IR and AFM. The results revealed that typical iron oxide nanoparticles were Fe(3)O(4) with a core diameter of 5-10 nm and SPION-alginate had a hydrodynamic diameter of 193.8-483.2 nm. From the magnetization curve, the Ms of a suspension of SPION-alginate was 40 emu/g, corresponding to 73% of that of solid SPION-alginate. This high Ms may be due to the binding of Fe(3)O(4) nanoparticles to alginate macromolecule strands as visually confirmed by AFM. SPION-alginate of several hundred nanometers was stable in size for 12 months at 4 degrees C. Moreover, T1 relaxivity and T2 relaxivity of SPION-alginate in saline (1.5 T, 20 degrees C) were 7.86+/-0.20 s(-1) mM(-1) and 281.2+/-26.4 s(-1) mM(-1), respectively. PMID:17074454

  1. Preparation of alginate beads containing a prodrug of diethylenetriaminepentaacetic acid

    PubMed Central

    Yang, Yu-Tsai; Di Pasqua, Anthony J.; He, Weiling; Tsai, Tsuimin; Sueda, Katsuhiko; Zhang, Yong; Jay, Michael

    2012-01-01

    A penta-ethyl ester prodrug of the radionuclide decorporation agent diethylenetriaminepentaacetic acid (DTPA), which exists as an oily liquid, was encapsulated in alginate beads by the ionotropic gelation method. An optimal formulation was found by varying initial concentrations of DTPA pentaethyl ester, alginate polymer, Tween 80 surfactant and calcium chloride. All prepared alginate beads were ~1.6 mm in diameter, and the optimal formulation had loading and encapsulation efficiencies of 91.0 ± 1.1 and 72.6 ± 2.2%, respectively, and only 3.2 ± 0.8% water absorption after storage at room temperature in ~80% relative humidity. Moreover, Fourier transform infrared spectroscopy showed that DTPA penta-ethyl ester did not react with excipients during formation of the DTPA penta-ethyl ester-containing alginate beads. Release of prodrug from alginate beads was via anomalous transport, and its stability enhanced by encapsulation. Collectively, these data suggest that this solid dosage form may be suitable for oral administration after radionuclide contamination. PMID:23399237

  2. Deterioration of polyamino acid-coated alginate microcapsules in vivo.

    PubMed

    van Raamsdonk, J M; Cornelius, R M; Brash, J L; Chang, P L

    2002-01-01

    The implantation of immuno-isolated recombinant cell lines secreting a therapeutic protein in alginate microcapsules presents an alternative approach to gene therapy. Its clinical efficacy has recently been demonstrated in treating several genetic diseases in murine models. However, its application to humans will depend on the long-term structural stability of the microcapsules. Based on previous implantations in canines, it appears that survival of alginate-poly-L-lysine-alginate microcapsules in such large animals is short-lived. This article reports on the biological factors that may have contributed to the degradation of these microcapsules after implantation in dogs. Alginate microcapsules coated with poly-L-lysine or poly-L-arginine were implanted in subcutaneous or intraperitoneal sites. The retrieved microcapsules showed a loss of mechanical stability, as measured by resistance to osmotic stress. The polyamino acid coats were rendered fragile and easily lost, particularly when poly-L-lysine was used for coating and the intraperitoneal site was used for implantation. Various plasma proteins were associated with the retrieved microcapsules and identified with western blotting to include Factor XI, Factor XII, prekallikrein, HMWK, fibrinogen, plasminogen, ATIII, transferrin, alpha-1-antitrypsin, fibronectin, IgG, alpha-2-macroglobulin, vitronectin, prothrombin, apolipoprotein A1, and particularly albumin, a major Ca-transporting plasma protein. Complement proteins (C3, Factor B, Factor H, Factor I) and C3 activation fragments were detected. Release of the amino acids from the microcapsule polyamino acid coats was observed after incubation with plasma. indicating the occurrence of proteolytic degradation. Hence, the loss of long-term stability of the polyamino acid-coated alginate microcapsules is associated with activation of the complement system, degradation of the polyamino acid coating, and destabilization of the alginate core matrix, probably through loss

  3. Immobilization of enzymes on alginic acid-polyacrylamide copolymers

    SciTech Connect

    Kumaraswamy, M.D.K.; Panduranga R.K.; Thomas J.K.; Santappa, M.

    1981-08-01

    In this report, the authors present initial results and limitations of a polymeric system for the immobilization of enzymes. Enzymes attached to insoluble polymers of natural and synthetic origin are gaining importance in many industrial and biomedical applications. Graft copolymers are used as enzyme supports and in this study a novel polymeric system of alginic acid-polyacrylamide graft copolymer is described which was used for immobilizing enzymes. (Refs. 4).

  4. Fabrication of inorganic hydroxyapatite nanoparticles and organic biomolecules-dual encapsulated alginate microspheres.

    PubMed

    Wang, Yu-Pu; Liao, Yu-Te; Liu, Chia-Hung; Yu, Jiashing; Chen, Jung-Chih; Wu, Kevin C-W

    2015-01-01

    Inorganic hydroxyapatite nanoparticles (HANPs) and two kinds of organic biomolecules (i.e., fluorescent dye rhodamine 6G and protein lysozyme) were coencapsulated into alginate microspheres through an air dynamical atomization with optimized operation conditions. The synthesized microspheres have several advantages: HANP provides osteoconductivity and mechanical strength, rhodamine 6G (R6G) and lysozyme act as model drugs, and alginate provides excellent biocompatibility and carboxylate functionality. The results of fluorescent microscopic images indicated the successful dual encapsulation of HANPs and lysozyme inside the alginate microspheres. Furthermore, the results of 3- (4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay showed that the fabricated alginate microspheres could be uptaken by HepG2 without apparent cytotoxicity. The dual encapsulated alginate microspheres fabricated in this study show great potential in many biomedical applications. PMID:25939572

  5. Antibacterial silver nanoparticles in polyvinyl alcohol/sodium alginate blend produced by gamma irradiation.

    PubMed

    Eghbalifam, Naeimeh; Frounchi, Masoud; Dadbin, Susan

    2015-09-01

    Polyvinyl alcohol/sodium alginate/nano silver (PVA/SA/Ag) composite films were made by solution casting method. Gamma irradiation was used to synthesize silver nanoparticles in situ via reduction of silver nitrate without using harmful chemical agents for biomedical applications. UV-vis and XRD results demonstrated that spherical silver nanoparticles were produced even at low irradiation dose of 5 kGy. By increasing irradiation dose, more nanoparticles were synthesized while no PVA hydrogel was formed up to 15 kGy. Also the size of nanoparticles was reduced with increasing gamma dose evidenced by higher release rate of silver nanoparticles in lukewarm water and SEM images. Comparing SEM images with DLS results indicated good performance of PVA/SA as an efficient stabilizer in preventing agglomeration of the silver nanoparticles. Good miscibility of polyvinyl alcohol and sodium alginate observed on the SEM images was supported with FTIR spectroscopy. Upon addition of sodium alginate to polyvinyl alcohol and increasing silver nanoparticles, the melting peak shifted to lower temperature and crystallinity percent was decreased. Addition of sodium alginate led to remarkable increase in rigidity of PVA. The composites exhibited strong antibacterial activity against Staphylococcus aureus and Escherichia coli even at very low level of silver nanoparticles. PMID:26123816

  6. Silk sericin loaded alginate nanoparticles: Preparation and anti-inflammatory efficacy.

    PubMed

    Khampieng, Thitikan; Aramwit, Pornanong; Supaphol, Pitt

    2015-09-01

    In this study, silk sericin loaded alginate nanoparticles were prepared by the emulsification method followed by internal crosslinking. The effects of various silk sericin loading concentration on particle size, shape, thermal properties, and release characteristics were investigated. The initial silk sericin loadings of 20, 40, and 80% w/w to polymer were incorporated into these alginate nanoparticles. SEM images showed a spherical shape and small particles of about 71.30-89.50 nm. TGA analysis showed that thermal stability slightly increased with increasing silk sericin loadings. FTIR analysis suggested interactions between alginate and silk sericin in the nanoparticles. The release study was performed in acetate buffer at normal skin conditions (pH 5.5; 32 °C). The release profiles of silk sericin exhibited initial rapid release, consequently with sustained release. These silk sericin loaded alginate nanoparticles were further incorporated into topical hydrogel and their anti-inflammatory properties were studied using carrageenan-induced paw edema assay. The current study confirms the hypothesis that the application of silk sericin loaded alginate nanoparticle gel can inhibit inflammation induced by carrageenan. PMID:26188300

  7. Streptomycin-loaded PLGA-alginate nanoparticles: preparation, characterization, and assessment

    NASA Astrophysics Data System (ADS)

    Asadi, Asadollah

    2014-04-01

    The aim of this study was to formulate and characterize streptomycin-loaded PLGA-alginate nanoparticles for their potential therapeutic use in Salmonella subsp. enterica ATCC 14028 infections. The streptomycin nanoparticle was prepared by solvent diffusion method, and the other properties such as size, zeta potential, loading efficacy, release kinetics, and antimicrobial strength were evaluated. The survey shows that nanoparticles may serve as a carrier of streptomycin and may provide localized antibacterial activity in the treatment of Salmonellosis. Electron microscopy showed spherical particles with indentations. The average size of the nanoparticles was 90 nm. At pH 7.2, the release kinetics of streptomycin from the nanoparticles was successfully illustrated as an initial burst defined by a first order equation that after this stage, it has a drastic tendency to obtain steady state. Nevertheless, nanoparticles showed loading efficacy nearly about 70-75 %. In addition, the tendency of concentration of streptomycin released from nanoparticles to reach antibacterial activity was similar to that of free streptomycin against PLGA-alginate, but it had threefold more antimicrobial strength in comparison with free streptomycin. This work shows the potential use of streptomycin-loaded PLGA-alginate nanoparticles and its capability.

  8. Streptomycin-loaded PLGA-alginate nanoparticles: preparation, characterization, and assessment

    NASA Astrophysics Data System (ADS)

    Asadi, Asadollah

    2013-04-01

    The aim of this study was to formulate and characterize streptomycin-loaded PLGA-alginate nanoparticles for their potential therapeutic use in Salmonella subsp. enterica ATCC 14028 infections. The streptomycin nanoparticle was prepared by solvent diffusion method, and the other properties such as size, zeta potential, loading efficacy, release kinetics, and antimicrobial strength were evaluated. The survey shows that nanoparticles may serve as a carrier of streptomycin and may provide localized antibacterial activity in the treatment of Salmonellosis. Electron microscopy showed spherical particles with indentations. The average size of the nanoparticles was 90 nm. At pH 7.2, the release kinetics of streptomycin from the nanoparticles was successfully illustrated as an initial burst defined by a first order equation that after this stage, it has a drastic tendency to obtain steady state. Nevertheless, nanoparticles showed loading efficacy nearly about 70-75 %. In addition, the tendency of concentration of streptomycin released from nanoparticles to reach antibacterial activity was similar to that of free streptomycin against PLGA-alginate, but it had threefold more antimicrobial strength in comparison with free streptomycin. This work shows the potential use of streptomycin-loaded PLGA-alginate nanoparticles and its capability.

  9. Floatable, macroporous structured alginate sphere supporting iron nanoparticles used for emergent Cr(VI) spill treatment.

    PubMed

    Huang, Jian-Fei; Li, Yong-Tao; Wu, Jin-Hua; Cao, Piao-Yang; Liu, Yong-Lin; Jiang, Gang-Biao

    2016-08-01

    Treatment of hexavalent chromium (Cr(VI)) spill accident is a great challenge due to its high toxicity, sudden and extensiveness. In this study, we designed and fabricated a hierarchical, ordered and macroporous structured alginate sphere to support in-situ synthesized zero-valent iron nanoparticle (the alginate-nZVI sphere). Field emission scanning electron microscope (FESEM) and energy-dispersive X-ray spectroscopy (EDS) images showed well dispersion of nZVI on the composite. This alginate-nZVI sphere exhibited good separability in effective removal of Cr(VI). The result from Cr(VI) removal experiment demonstrated a Cr(VI) removal efficiency of 98.2% at equilibrium time, which can be ascribed to the well dispersion of the nZVI. In addition, the alginate-nZVI sphere was effective in Cr(VI) removal in a wide range of pH from 3.0 to 11.0, by the merit of alginate substrate. Hence, the alginate-nZVI sphere might be a promising agent for an emergent Cr(VI) spill treatment by enhancing the dispersion, stabilization and separation properties of nZVI. PMID:27112857

  10. Sequestration of biogenic amines by alginic and fulvic acids.

    PubMed

    De Stefano, Concetta; Gianguzza, Antonio; Piazzese, Daniela; Porcino, Nunziatina; Sammartano, Silvio

    2006-08-01

    The interaction of natural (alginic and fulvic acids) and synthetic (polyacrylic acid 2.0 kDa) polyelectrolytes with some protonated polyamines [diamines: ethylendiamine, 1,4-diaminobutane (or putrescine), 1,5-diaminopentane (or cadaverine); triamines: N-(3-aminopropyl)-1,4-diaminobutane (or spermidine), diethylenetriamine; tetramine: N,N'-bis(3-aminopropyl)-1,4-diaminobutane (or spermine); pentamine: tetraethylene-pentamine; hexamine: pentaethylenehexamine] was studied at T=25 degrees C by potentiometry and calorimetry. Measurements were performed without supporting electrolyte, in order to avoid interference, and results were reported at I=0 mol L(-)(1). For all the systems, the formation of (am)L(2)H(i) species was found (am=amine; L=polyelectrolyte; i=1...4, depending on the amine considered). The stability of polyanion-polyammonium cation complexes is always significant, and for high-charged polycations, we observe a stability comparable to that of strong metal complexes. For example, by considering the formation reaction (am)H(i)+2L=(am)L(2)H(i) we found log K(i)=6.0, 6.5 and 10.8 for i=1, 2 and 3, respectively, in the system alginate-spermidine. Low and positive formation DeltaH(degrees) values indicate that the main contribution to the stability is entropic in nature. The sequestering ability of polyelectrolytes toward amines was modelled by a sigmoid Boltzman type equation. Some empirical relationships between stability, charges and DeltaG(degrees) and TDeltaS(degrees) are reported. Mean values per salt bridge of formation thermodynamic parameters (DeltaX(degrees) (n)) are DeltaG(degrees) (n)=-5.8+/-0.4, DeltaH degrees (n)=0.7+/-0.5 and TDeltaS(degrees) (n)=6.5+/-0.5 kJmol(-)(1) for all the systems studied in this work. PMID:16690202

  11. Alginic acid decreases postprandial upright gastroesophageal reflux. Comparison with equal-strength antacid.

    PubMed

    Castell, D O; Dalton, C B; Becker, D; Sinclair, J; Castell, J A

    1992-04-01

    This study tested the hypothesis that (alginic) acid may have a preferential effect on reflux in the upright position. We evaluated the effect of a compound containing alginic acid plus antacid (extra-strength Gaviscon) versus active control antacid with equal acid-neutralizing capacity on intraesophageal acid exposure following a high-fat meal (61% fat: sausage, egg, and biscuit). In random sequence, each of the 10 volunteers received either alginic acid-antacid or control antacid immediately following and 1, 2, and 3 hr after the meal. The sequence was repeated for both test drugs in the supine and upright positions with constant pH monitoring. Alginic acid-antacid significantly decreased postprandial reflux in the upright position compared to an equal amount of antacid. This effect did not occur in the supine position. These findings support the hypothesis that alginic acid is primarily effective in the upright position and the clinical observations of the effectiveness of alginic acid on daytime reflux symptoms. PMID:1551350

  12. Glutathione and S-nitrosoglutathione in alginate/chitosan nanoparticles: Cytotoxicity

    NASA Astrophysics Data System (ADS)

    Marcato, P. D.; Adami, L. F.; Melo, P. S.; de Paula, L. B.; Durán, N.; Seabra, A. B.

    2011-07-01

    Nitric oxide (NO) is involved in several physiological processes, such as the control of vascular tone, the immune response and the wound healing process. Thus, there is a great interest in the development of NO-releasing drugs and in matrices which are able to stabilize and release NO locally in different tissues. Thiols, such as glutathione (GSH), are ready nitrosated to form the NO donors S-nitrosothiols (RSNOs). In this work, GSH, a precursor of the NO donor S-nitrosoglutathione (GSNO), was encapsulated into a mucoadhesive combination of alginate/chitosan nanoparticles. The encapsulated GSH was nitrosated in the alginate/chitosan nanoparticles by adding sodium nitrite, leading to the formation of encapsulated GSNO. The cytotoxicity characterization of the nanoparticles containing either GSH or GSNO showed that these materials were completely non cytotoxic to cellular viability. These results show that this novel nanostructure biomaterial has a great potential to be use in biomedical applications where NO has a therapeutical effect.

  13. Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies.

    PubMed

    Silva, Mariana dos Santos; Cocenza, Daniela Sgarbi; Grillo, Renato; de Melo, Nathalie Ferreira Silva; Tonello, Paulo Sérgio; de Oliveira, Luciana Camargo; Cassimiro, Douglas Lopes; Rosa, André Henrique; Fraceto, Leonardo Fernandes

    2011-06-15

    Agrochemicals are amongst the contaminants most widely encountered in surface and subterranean hydrological systems. They comprise a variety of molecules, with properties that confer differing degrees of persistence and mobility in the environment, as well as different toxic, carcinogenic, mutagenic and teratogenic potentials, which can affect non-target organisms including man. In this work, alginate/chitosan nanoparticles were prepared as a carrier system for the herbicide paraquat. The preparation and physico-chemical characterization of the nanoparticles was followed by evaluation of zeta potential, pH, size and polydispersion. The techniques employed included transmission electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy. The formulation presented a size distribution of 635 ± 12 nm, polydispersion of 0.518, zeta potential of -22.8 ± 2.3 mV and association efficiency of 74.2%. There were significant differences between the release profiles of free paraquat and the herbicide associated with the alginate/chitosan nanoparticles. Tests showed that soil sorption of paraquat, either free or associated with the nanoparticles, was dependent on the quantity of organic matter present. The results presented in this work show that association of paraquat with alginate/chitosan nanoparticles alters the release profile of the herbicide, as well as its interaction with the soil, indicating that this system could be an effective means of reducing negative impacts caused by paraquat. PMID:21493003

  14. Polyelectrolyte complex nanoparticles from cationised gelatin and sodium alginate for curcumin delivery.

    PubMed

    Sarika, P R; James, Nirmala Rachel

    2016-09-01

    Self assembled hybrid polyelectrolyte complex (PEC) nanoparticles are prepared from cationically modified gelatin and sodium alginate (Alg) by electrostatic complexation between the polymers. Cationised gelatin (CG) is prepared by the reaction of gelatin with ethylenediamine. Structural changes in gelatin, after modification with ethylenediamine are investigated by XRD and (1)H NMR spectroscopy. Hybrid polyelectrolyte nanoparticles, labeled CG/Alg, are prepared by simple mixing of CG and Alg. CG/Alg complex shows spherical morphology as confirmed by scanning electron microscopy. These polyelectrolyte complex nanoparticles can be used for the encapsulation and delivery of natural antioxidant curcumin to carcinoma cells. CG/Alg nanoparticles show curcumin encapsulation efficiency of 69% and exhibit sustained release of curcumin in vitro. Anticancer activity of curcumin loaded CG/Alg nanoparticles towards MCF-7 cells is disclosed by MTT assay. Intracellular uptake of the drug encapsulated nanoparticles is confirmed by fluorescent imaging. PMID:27185149

  15. Efficacy of acidic pretreatment for the saccharification and fermentation of alginate from brown macroalgae.

    PubMed

    Wang, Damao; Yun, Eun Ju; Kim, Sooah; Kim, Do Hyoung; Seo, Nari; An, Hyun Joo; Kim, Jae-Han; Cheong, Nam Yong; Kim, Kyoung Heon

    2016-06-01

    This study was performed to evaluate the effectiveness of acidic pretreatment in increasing the enzymatic digestibility of alginate from brown macroalgae. Pretreatment with 1 % (w/v) sulfuric acid at 120 °C for 30 min produced oligosaccharides, mannuronic acid, and guluronic acid. Enzymatic saccharification of pretreated alginate by alginate lyases produced 52.2 % of the theoretical maximal sugar yield, which was only 7.5 % higher than the sugar yield obtained with unpretreated alginate. Mass spectrometric analyses of products of the two reactions revealed that acidic pretreatment and enzymatic saccharification produced saturated monomers (i.e., mannuronic and guluronic acid) with saturated oligosaccharides and unsaturated monomers (i.e., 4-deoxy-L-erythro-5-hexoseulose uronic acid; DEH), respectively. While DEH is further metabolized by microorganisms, mannuronic acid and guluronic acid are not metabolizable. Because of the poor efficacy in increasing enzymatic digestibility and owing to the formation of non-fermentable saturated monomers, acidic pretreatment cannot be recommended for enzymatic saccharification and fermentation of alginate. PMID:26923145

  16. Enhanced aggregation of alginate-coated iron oxide (hematite) nanoparticles in the presence of calcium, strontium, and barium cations.

    PubMed

    Chen, Kai Loon; Mylon, Steven E; Elimelech, Menachem

    2007-05-22

    Early-stage aggregation kinetics studies of alginate-coated hematite nanoparticles in solutions containing alkaline-earth metal cations revealed enhanced aggregation rates in the presence of Ca2+, Sr2+, and Ba2+, but not with Mg2+. Transmission electron microscopy (TEM) imaging of the aggregates provided evidence that alginate gel formation was essential for enhanced aggregation to occur. Dynamic light scattering (DLS) aggregation results clearly indicated that a much lower concentration of Ba2+ compared to Ca2+ and Sr2+ was required to achieve a similar degree of enhanced aggregation in each system. To elucidate the relationship between the alginate's affinities for divalent cations and the enhanced aggregation of the alginate-coated hematite nanoparticles, atomic force microscopy (AFM) was employed to probe the interaction forces between alginate-coated hematite surfaces under the solution chemistries used for the aggregation study. Maximum adhesion forces, maximum pull-off distances, and the work of adhesion were used as indicators to gauge the alginate's affinity for the divalent cations and the resulting attractive interactions between alginate-coated hematite nanoparticles. The results showed that alginate had higher affinity for Ba2+ than either Sr2+ or Ca2+. This same trend was consistent with the cation concentrations required for comparable enhanced aggregation kinetics, suggesting that the rate of alginate gel formation controls the enhanced aggregation kinetics. An aggregation mechanism incorporating the gelation of alginate is proposed to explain the accelerated aggregate growth in the presence of Ca2+, Sr2+, and Ba2+. PMID:17469860

  17. Transplantation of testicular tissue in alginate hydrogel loaded with VEGF nanoparticles improves spermatogonial recovery.

    PubMed

    Poels, Jonathan; Abou-Ghannam, Gaël; Decamps, Aline; Leyman, Mélanie; Rieux, Anne des; Wyns, Christine

    2016-07-28

    Transplantation of cryopreserved immature testicular tissue (ITT) is a promising strategy to restore fertility in young boys facing gonadotoxic treatments. However, up to now, limited spermatogonial recovery has been achieved in xenografting models used to evaluate the potential of cryopreserved tissue transplantation. When comparing avascular xenografts of cryopreserved and fresh human ITT into a mouse model, the number of spermatogonia was significantly reduced, regardless of the cryopreservation procedure used. To improve tissue engraftment, revascularization and hence spermatogonial survival, ITT was embedded in two types of hydrogel loaded with VEGF nanoparticles. Small pieces (±1mm(3)) of testicular tissue were grafted in NMRI mice as follows: grafted without encapsulation, grafted after encapsulation in fibrin, in alginate, in fibrin-VEGF-nanoparticle (NP) and in alginate-VEGF-NP. Non-grafted tissue served as control. After 5 and 21days of implantation, seminiferous tubule integrity, revascularization and spermatogonial recovery were evaluated by histology and immunohistochemistry. Seminiferous tubule integrity ranged from 13.3% to 39.6% and 42.7% to 68.7% on day 5 and day 21, respectively. Vascular density on day 5 was found to be higher in VEGF supplemented groups, regardless of the hydrogel used. Staining for phosphorylated VEGF receptor 2 and endothelial proliferation on day 5 was higher in all groups compared to non-grafted avascular controls. Spermatogonial recovery ranged between 14.8% and 27.3% on day 21 and was significantly higher in the alginate and alginate-VEGF-NP groups. The present study demonstrates the potential of alginate hydrogel loaded with nanoencapsulated growth factors to improve cryopreserved tissue engraftment. PMID:27189137

  18. Swelling assisted photografting of itaconic acid onto sodium alginate membranes

    NASA Astrophysics Data System (ADS)

    Taşkın, Gülşen; Şanlı, Oya; Asman, Gülsen

    2011-09-01

    Grafting of itaconic acid (IA) was achieved onto sodium alginate (NaAlg) membranes by using UV-radiation. Process was performed under nitrogen atmosphere and benzophenone (BP) was used as a photoinitiator. Membranes were preswelled before the polymerization process and ethanol was determined as the best swelling agent among the studied solvents. The effect of polymerization time, initiator and monomer concentrations on the grafting efficiency were investigated. The best conditions for optimum grafting were obtained with IA concentration of 1.0 M, a BP concentration of 0.1 M and a reaction time of 4 h at 25 °C. Under these conditions grafting efficiency for NaAlg-g-IA membranes was found to be 14% (w/w). To obtain further increase in grafting efficiency membranes were also preswelled in IA and BP solutions and polymerization was carried out at different temperatures after UV polymerization. Grafted membranes were characterized by using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Effect of grafting on membrane properties such as intrinsic viscosity and swelling percentage were also determined.

  19. Green synthesis and characterization of alginate nanoparticles and its role as a biosorbent for Cr(VI) ions

    NASA Astrophysics Data System (ADS)

    Geetha, P.; Latha, M. S.; Pillai, Saumya S.; Deepa, B.; Santhosh Kumar, K.; Koshy, Mathew

    2016-02-01

    Green synthesis of nanoparticles has attained considerable attention in recent years because of its myriad of applications including drug delivery, tissue engineering and water purification. In the present study, alginate nanoparticles stabilized by honey were prepared by cross-linking aqueous solution of alginate with calcium ions. Honey mediated synthesis has been reported earlier for the production of metal nanoparticles. However no literature is available on the use of this technique for polymeric nanoparticles. Highly stable nanoparticles of 10-100 nm size were generated by this technique. The synthesised nanoparticles were characterized by transmission electron microscopy, scanning electron microscopy, atomic force microscopy, dynamic light scattering and Fourier transform infrared spectroscopic techniques. Potential of using these nanoparticles for heavy metal removal was studied by using Cr(VI) from aqueous solution, where a maximum removal efficiency of 93.5% was obtained. This method was also successfully employed for the production of other polymeric nanoparticles like casein, chitosan and albumin.

  20. Preparation and cytotoxicity of N,N,N-trimethyl chitosan/alginate beads containing gold nanoparticles.

    PubMed

    Martins, Alessandro F; Facchi, Suelen P; Monteiro, Johny P; Nocchi, Samara R; Silva, Cleiser T P; Nakamura, Celso V; Girotto, Emerson M; Rubira, Adley F; Muniz, Edvani C

    2015-01-01

    Polyelectrolyte complex beads based on N,N,N-trimethyl chitosan (TMC) and sodium alginate (ALG) were obtained. This biomaterial was characterised by FTIR, TGA/DTG, DSC and SEM analysis. The good properties of polyelectrolyte complex hydrogel beads were associated, for the first time, with gold nanoparticles (AuNPs). Through a straightforward methodology, AuNPs were encapsulated into the beads. The in vitro cytotoxicity assays on the Caco-2 colon cancer cells and healthy VERO cells showed that the beads presented good biocompatibility on both cell lines, whereas the beads loaded with gold nanoparticles (beads/AuNPs) was slightly cytotoxic on the Caco-2 and VERO cells. PMID:25159881

  1. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres

    PubMed Central

    Liao, Yu-Te; Liu, Chia-Hung; Yu, Jiashing; Wu, Kevin C-W

    2014-01-01

    A new microsphere consisting of inorganic mesoporous silica nanoparticles (MSNs) and organic alginate (denoted as MSN@Alg) was successfully synthesized by air-dynamic atomization and applied to the intracellular drug delivery systems (DDS) of liver cancer cells with sustained release and specific targeting properties. MSN@Alg microspheres have the advantages of MSN and alginate, where MSN provides a large surface area for high drug loading and alginate provides excellent biocompatibility and COOH functionality for specific targeting. Rhodamine 6G was used as a model drug, and the sustained release behavior of the rhodamine 6G-loaded MSN@Alg microspheres can be prolonged up to 20 days. For targeting therapy, the anticancer drug doxorubicin was loaded into MSN@Alg microspheres, and the (lysine)4-tyrosine-arginine-glycine-aspartic acid (K4YRGD) peptide was functionalized onto the surface of MSN@Alg for targeting liver cancer cells, hepatocellular carcinoma (HepG2). The results of the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and confocal laser scanning microscopy indicate that the MSN@Alg microspheres were successfully uptaken by HepG2 without apparent cytotoxicity. In addition, the intracellular drug delivery efficiency was greatly enhanced (ie, 3.5-fold) for the arginine-glycine-aspartic acid (RGD)-labeled, doxorubicin-loaded MSN@Alg drug delivery system compared with the non-RGD case. The synthesized MSN@Alg microspheres show great potential as drug vehicles with high biocompatibility, sustained release, and targeting features for future intracellular DDS. PMID:24940057

  2. Influence of amino acids, buffers, and ph on the γ-irradiation-induced degradation of alginates.

    PubMed

    Ulset, Ann-Sissel T; Mori, Hideki; Dalheim, Marianne Ø; Hara, Masayuki; Christensen, Bjørn E

    2014-12-01

    Alginate-based biomaterials and medical devices are commonly subjected to γ-irradiation as a means of sterilization, either in the dry state or the gel (hydrated) state. In this process the alginate chains degrade randomly in a dose-dependent manner, altering alginates' material properties. The addition of free radical scavenging amino acids such as histidine and phenylalanine protects the alginate significantly against degradation, as shown by monitoring changes in the molecular weight distributions using SEC-MALLS and determining the pseudo first order rate constants of degradation. Tris buffer (0.5 M), but not acetate, citrate, or phosphate buffers had a similar effect on the degradation rate. Changes in pH itself had only marginal effects on the rate of alginate degradation and on the protective effect of amino acids. Contrary to previous reports, the chemical composition (M/G profile) of the alginates, including homopolymeric mannuronan, was unaltered following irradiation up to 10 kGy. PMID:25412478

  3. Environmental effects and desorption characteristics on heavy metal removal using carboxylated alginic acid.

    PubMed

    Jeon, Choong; Je Yoo, Young; Hoell, Wolfgang H

    2005-01-01

    Effects of ionic strength and organic materials on copper ion uptake capacity using carboxylated alginic acid which showed very high metal ion uptake capacity were investigated. The ionic strength only had a slight effect on the decrease of copper ion uptake capacity regardless of NaCl concentration. And, the effect of organic materials such as NTA (nitrilotriaceticacid) and sodium hypophosphite on the copper ion uptake capacity was negligible. When the lead ion adsorbed on carboxylated alginic acid was desorbed by NTA, which showed high desorption efficiency, the best optimum concentration of NTA was about 0.01 M. Also desorption efficiency decreased, however, concentration factor increased as S/L ratio which is defined as the ratio of adding amount of adsorbed and volume of desorbing agent increased. In sequential adsorption and desorption cycles, the lead uptake capacity on carboxylated alginic acid was relatively maintained through cycles 1-5. PMID:15364075

  4. Enzymatically cross-linked alginic-hyaluronic acid composite hydrogels as cell delivery vehicles.

    PubMed

    Ganesh, Nitya; Hanna, Craig; Nair, Shantikumar V; Nair, Lakshmi S

    2013-04-01

    An injectable composite gel was developed from alginic and hyaluronic acid. The enzymatically cross-linked injectable gels were prepared via the oxidative coupling of tyramine modified sodium algiante and sodium hyaluronate in the presence of horse radish peroxidase (HRP) and hydrogen peroxide (H2O2). The composite gels were prepared by mixing equal parts of the two tyraminated polymer solutions in 10U HRP and treating with 1.0% H2O2. The properties of the alginate gels were significantly affected by the addition of hyaluronic acid. The percentage water absorption and storage modulus of the composite gels were found to be lower than the alginate gels. The alginate and composite gels showed lower protein release compared to hyaluronate gels in the absence of hyaluronidase. Even hyaluronate gels showed only approximately 10% protein release after 14 days incubation in phosphate buffer solution. ATDC-5 cells encapsulated in the injectable gels showed high cell viability. The composite gels showed the presence of enlarged spherical cells with significantly higher metabolic activity compared to cells in hyaluronic and alginic acid gels. The results suggest the potential of the composite approach to develop covalently cross-linked hydrogels with tuneable physical, mechanical, and biological properties. PMID:23357799

  5. Drug–polymer interaction between glucosamine sulfate and alginate nanoparticles: FTIR, DSC and dielectric spectroscopy studies

    NASA Astrophysics Data System (ADS)

    El-Houssiny, A. S.; Ward, A. A.; Mostafa, D. M.; Abd-El-Messieh, S. L.; Abdel-Nour, K. N.; Darwish, M. M.; Khalil, W. A.

    2016-06-01

    This work involves the preparation and characterization of alginate nanoparticles (Alg NPs) as a new transdermal carrier for site particular transport of glucosamine sulfate (GS). The GS–Alg NPs were examined through transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and dielectric spectroscopy. GS–Alg NPs was efficiently prepared via ionic gelation method which generates favorable conditions for the entrapment of hydrophilic drugs. The TEM studies revealed that GS–Alg NPs are discrete and have spherical shapes. FTIR studies showed a spectral change of the characteristic absorptions bands of Alg NPs after encapsulation with GS because of the amine groups of GS and the carboxylic acid groups of Alg. The DSC data showed changes in the thermal behavior of GS–Alg NPs after the addition of GS indicating signs of main chemical interaction among the drug (GS) and the polymer (Alg). The absence of the drug melting endothermic peak within the DSC thermogram of GS–Alg NPs indicating that GS is molecularly dispersed in the NPs and not crystallize. From the dielectric study, it was found modifications within the dielectric loss (ε″) and conductivity (σ) values after the addition of GS. The ε″ and σ values of Alg NPs decreased after the addition of GS which indicated the successful encapsulation of GS within Alg NPs. Furthermore, the dielectric study indicated an increase of the activation energy and the relaxation time for the first process in the GS–Alg NPs as compared to Alg NPs. Consequently, the existing observations indicated an initiation of electrostatic interaction among the amine group of GS and carboxyl group of Alg indicating the successful encapsulation of GS inside Alg NPs which could provide favorable circumstance for the encapsulation of GS for topical management.

  6. Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia.

    PubMed

    Liao, Shih-Hsiang; Liu, Chia-Hung; Bastakoti, Bishnu Prasad; Suzuki, Norihiro; Chang, Yung; Yamauchi, Yusuke; Lin, Feng-Huei; Wu, Kevin C-W

    2015-01-01

    Hyperthermia is one of the promising treatments for cancer therapy. However, the development of a magnetic fluid agent that can selectively target a tumor and efficiently elevate temperature while exhibiting excellent biocompatibility still remains challenging. Here a new core-shell nanostructure consisting of inorganic iron oxide (Fe3O4) nanoparticles as the core, organic alginate as the shell, and cell-targeting ligands (ie, D-galactosamine) decorated on the outer surface (denoted as Fe3O4@Alg-GA nanoparticles) was prepared using a combination of a pre-gel method and coprecipitation in aqueous solution. After treatment with an AC magnetic field, the results indicate that Fe3O4@Alg-GA nanoparticles had excellent hyperthermic efficacy in a human hepatocellular carcinoma cell line (HepG2) owing to enhanced cellular uptake, and show great potential as therapeutic agents for future in vivo drug delivery systems. PMID:26005343

  7. Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia

    PubMed Central

    Liao, Shih-Hsiang; Liu, Chia-Hung; Bastakoti, Bishnu Prasad; Suzuki, Norihiro; Chang, Yung; Yamauchi, Yusuke; Lin, Feng-Huei; Wu, Kevin C-W

    2015-01-01

    Hyperthermia is one of the promising treatments for cancer therapy. However, the development of a magnetic fluid agent that can selectively target a tumor and efficiently elevate temperature while exhibiting excellent biocompatibility still remains challenging. Here a new core-shell nanostructure consisting of inorganic iron oxide (Fe3O4) nanoparticles as the core, organic alginate as the shell, and cell-targeting ligands (ie, D-galactosamine) decorated on the outer surface (denoted as Fe3O4@Alg-GA nanoparticles) was prepared using a combination of a pre-gel method and coprecipitation in aqueous solution. After treatment with an AC magnetic field, the results indicate that Fe3O4@Alg-GA nanoparticles had excellent hyperthermic efficacy in a human hepatocellular carcinoma cell line (HepG2) owing to enhanced cellular uptake, and show great potential as therapeutic agents for future in vivo drug delivery systems. PMID:26005343

  8. Janus-compartmental alginate microbeads having polydiacetylene liposomes and magnetic nanoparticles for visual lead(II) detection.

    PubMed

    Kang, Do Hyun; Jung, Ho-Sup; Ahn, Namyoung; Yang, Su Min; Seo, Sungbaek; Suh, Kahp-Yang; Chang, Pahn-Shick; Jeon, Noo Li; Kim, Jinsang; Kim, Keesung

    2014-07-01

    Janus-compartmental alginate microbeads having two divided phases of sensory polydiacetylene (PDA) liposomes and magnetic nanoparticles were fabricated for facile sensory applications. The sensory liposomes are composed of PDA for label-free signal generation and 1,2-dipalmitoyl-sn-glycero-3-galloyl (DPGG) lipids whose galloyl headgroup has specific interactions with lead(II). The second phase having magnetic nanoparticles is designed for convenient handling of the microbeads, such as washing, solvent exchange, stirring, and detection, by applying magnetic field. Selective and convenient colorimetric detection of lead(II) and efficient removal of lead(II) by alginate matrix at the same time are demonstrated. PMID:24926923

  9. Folate mediated self-assembled phytosterol-alginate nanoparticles for targeted intracellular anticancer drug delivery.

    PubMed

    Wang, Jianting; Wang, Ming; Zheng, Mingming; Guo, Qiong; Wang, Yafan; Wang, Heqing; Xie, Xiangrong; Huang, Fenghong; Gong, Renmin

    2015-05-01

    Self-assembled core/shell nanoparticles (NPs) were synthesized from water-soluble alginate substituted by hydrophobic phytosterols. Folate, a cancer-cell-specific ligand, was conjugated to the phytosterol-alginate (PA) NPs for targeting folate-receptor-overexpressing cancer cells. The physicochemical properties of folate-phytosterol-alginate (FPA) NPs were characterized by nuclear magnetic resonance, transmission electron microscopy, dynamic light scattering, electrophoretic light scattering, and fluorescence spectroscopy. Doxorubicin (DOX), an anticancer drug, was entrapped inside prepared NPs by dialysis method. The identification of prepared FPA NPs to folate-receptor-overexpressing cancer cells (KB cells) was confirmed by cytotoxicity and folate competition assays. Compared to the pure DOX and DOX/PA NPs, the DOX/FPA NPs had lower IC50 value to KB cells because of folate-receptor-mediated endocytosis process and the cytotoxicity of DOX/FPA NPs to KB cells could be competitively inhibited by free folate. The cellular uptake and internalization of pure DOX and DOX/FPA NPs was confirmed by confocal laser scanning microscopy image and the higher intracellular uptake of drug for DOX/FPA NPs over pure DOX was observed. The FPA NPs had the potential as a promising carrier to target drugs to cancer cells overexpressing folate receptors and avoid cytotoxicity to normal tissues. PMID:25829128

  10. Optimal production of 4-deoxy-L-erythro-5-hexoseulose uronic acid from alginate for brown macro algae saccharification by combining endo- and exo-type alginate lyases.

    PubMed

    Wang, Da Mao; Kim, Hee Taek; Yun, Eun Ju; Kim, Do Hyoung; Park, Yong-Cheol; Woo, Hee Chul; Kim, Kyoung Heon

    2014-10-01

    Algae are considered as third-generation biomass, and alginate is the main component of brown macroalgae. Alginate can be enzymatically depolymerized by alginate lyases into uronate monomers, such as mannuronic acid and guluronic acid, which are further nonenzymatically converted to 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH). We have optimized an enzymatic saccharification process using two recombinant alginate lyases, endo-type Alg7D and exo-type Alg17C, for the efficient production of DEH from alginate. When comparing the sequential and simultaneous additions of Alg7D and Alg17C, it was found that the final yield of DEH was significantly higher when the enzymes were added sequentially. The progress of saccharification reactions and production of DEH were verified by thin layer chromatography and gas chromatography-mass spectrometry, respectively. Our results showed that the two recombinant enzymes could be exploited for the efficient production of DEH that is the key substrate for producing biofuels from brown macro algal biomass. PMID:24794171

  11. Review article: alginate-raft formulations in the treatment of heartburn and acid reflux.

    PubMed

    Mandel, K G; Daggy, B P; Brodie, D A; Jacoby, H I

    2000-06-01

    Alginate-based raft-forming formulations have been marketed word-wide for over 30 years under various brand names, including Gaviscon. They are used for the symptomatic treatment of heartburn and oesophagitis, and appear to act by a unique mechanism which differs from that of traditional antacids. In the presence of gastric acid, alginates precipitate, forming a gel. Alginate-based raft-forming formulations usually contain sodium or potassium bicarbonate; in the presence of gastric acid, the bicarbonate is converted to carbon dioxide which becomes entrapped within the gel precipitate, converting it into a foam which floats on the surface of the gastric contents, much like a raft on water. Both in vitro and in vivo studies have demonstrated that alginate-based rafts can entrap carbon dioxide, as well as antacid components contained in some formulations, thus providing a relatively pH-neutral barrier. Several studies have demonstrated that the alginate raft can preferentially move into the oesophagus in place, or ahead, of acidic gastric contents during episodes of gastro-oesophageal reflux; some studies further suggest that the raft can act as a physical barrier to reduce reflux episodes. Although some alginate-based formulations also contain antacid components which can provide significant acid neutralization capacity, the efficacy of these formulations to reduce heartburn symptoms does not appear to be totally dependent on the neutralization of bulk gastric contents. The strength of the alginate raft is dependant on several factors, including the amount of carbon dioxide generated and entrapped in the raft, the molecular properties of the alginate, and the presence of aluminium or calcium in the antacid components of the formulation. Raft formation occurs rapidly, often within a few seconds of dosing; hence alginate-containing antacids are comparable to traditional antacids for speed of onset of relief. Since the raft can be retained in the stomach for several

  12. Novel crosslinked alginate/hyaluronic acid hydrogels for nerve tissue engineering

    NASA Astrophysics Data System (ADS)

    Wang, Min-Dan; Zhai, Peng; Schreyer, David J.; Zheng, Ruo-Shi; Sun, Xiao-Dan; Cui, Fu-Zhai; Chen, Xiong-Biao

    2013-09-01

    Artificial tissue engineering scaffolds can potentially provide support and guidance for the regrowth of severed axons following nerve injury. In this study, a hybrid biomaterial composed of alginate and hyaluronic acid (HA) was synthesized and characterized in terms of its suitability for covalent modification, biocompatibility for living Schwann cells and feasibility to construct three dimensional (3D) scaffolds. Carbodiimide mediated amide formation for the purpose of covalent crosslinking of the HA was carried out in the presence of calciumions that ionically crosslink alginate. Amide formation was found to be dependent on the concentrations of carbodiimide and calcium chloride. The double-crosslinked composite hydrogels display biocompatibility that is comparable to simple HA hydrogels, allowing for Schwann cell survival and growth. No significant difference was found between composite hydrogels made from different ratios of alginate and HA. A 3D BioPlotter™ rapid prototyping system was used to fabricate 3D scaffolds. The result indicated that combining HA with alginate facilitated the fabrication process and that 3D scaffolds with porous inner structure can be fabricated from the composite hydrogels, but not from HA alone. This information provides a basis for continuing in vitro and in vivo tests of the suitability of alginate/HA hydrogel as a biomaterial to create living cell scaffolds to support nerve regeneration.

  13. Metal selectivity of Sargassum spp. and their alginates in relation to their alpha-L-guluronic acid content and conformation.

    PubMed

    Davis, Thomas A; Llanes, Francisco; Volesky, Bohumil; Mucci, Alfonso

    2003-01-15

    The discovery of a consistent and unusual enrichment in homopolymeric alpha-L-guluronic acid G-blocks in alginates extracted from a suite of Sargassum brown algae is described in this study. 1H NMR spectroscopy was used to characterize these alginates which display homopolymeric guluronic acid block (G-block) frequency values (F(GG)) between 0.37 and 0.81. The presence of these G-blocks results in an enhanced selectivity for cadmium or calcium relative to monovalent ions such as sodium and the proton as well as smaller divalent ions such as magnesium. Results of competitive exchange experiments for the Cd-Ca-alginate system yield selectivity coefficient, K*(Cd)Ca, values between 0.43 +/- 0.10 and 1.32 +/- 0.02 for a range in F(GG) of 0.23 to 0.81. In contrast to the Cd-Ca-alginate system, the Mg-Ca-alginate and Mg-Cd-alginate systems yielded maximum values of K*(Mg)Ca (18.0 +/- 1.4) and K*(Mg)Cd (16.0 +/- 0.9) for the alginates extracted from Sargassum fluitans (F(GG) = 0.81; Cuba) and Sargassum thunbergii (F(GG) = 0.75; Korea), respectively. Selectivity studies with mixed-metal pair alginate systems highlight the importance of the specific macromolecular conformation of the alginate polymer in determining metal binding behavior in multiple-metal systems. Furthermore, they demonstrate the importance of the conformation of the alginate as it occurs within the tissue of Sargassum in determining the metal binding behavior of this algal biosorbent. The unique composition of the alginates present in species of Sargassum may represent a distinct advantage over other brown algal species when considering their implementation for the strategic removal of toxic heavy metals from contaminated and industrial wastewaters. PMID:12564896

  14. Structure of a Bacterial ABC Transporter Involved in the Import of an Acidic Polysaccharide Alginate.

    PubMed

    Maruyama, Yukie; Itoh, Takafumi; Kaneko, Ai; Nishitani, Yu; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku

    2015-09-01

    The acidic polysaccharide alginate represents a promising marine biomass for the microbial production of biofuels, although the molecular and structural characteristics of alginate transporters remain to be clarified. In Sphingomonas sp. A1, the ATP-binding cassette transporter AlgM1M2SS is responsible for the import of alginate across the cytoplasmic membrane. Here, we present the substrate-transport characteristics and quaternary structure of AlgM1M2SS. The addition of poly- or oligoalginate enhanced the ATPase activity of reconstituted AlgM1M2SS coupled with one of the periplasmic solute-binding proteins, AlgQ1 or AlgQ2. External fluorescence-labeled oligoalginates were specifically imported into AlgM1M2SS-containing proteoliposomes in the presence of AlgQ2, ATP, and Mg(2+). The crystal structure of AlgQ2-bound AlgM1M2SS adopts an inward-facing conformation. The interaction between AlgQ2 and AlgM1M2SS induces the formation of an alginate-binding tunnel-like structure accessible to the solvent. The translocation route inside the transmembrane domains contains charged residues suitable for the import of acidic saccharides. PMID:26235029

  15. Effect of electrolyte valency, alginate concentration and pH on engineered TiO₂ nanoparticle stability in aqueous solution.

    PubMed

    Loosli, Frédéric; Le Coustumer, Philippe; Stoll, Serge

    2015-12-01

    Agglomeration and disagglomeration processes are expected to play a key role on the fate of engineered nanoparticles in natural aquatic systems. These processes are investigated here in detail by studying first the stability of TiO2 nanoparticles in the presence of monovalent and divalent electrolytes at different pHs (below and above the point of zero charge of TiO2) and discussing the importance of specific divalent cation adsorption with the help of the DLVO theory as well as the importance of the nature of the counterions. Then the impact of one polysaccharide (alginate) on the stability of agglomerates formed under pH and water hardness representative of Lake Geneva environmental conditions is investigated. In these conditions the large TiO2 agglomerates (diameter>1μm) are positively charged due to Ca(2+) and Mg(2+) specific adsorption and alginate, which is negatively charged, adsorbs onto the agglomerate surface. Our results indicate that the presence of alginate at typical natural organic matter concentration (1-10 mg L(-1)) strongly modifies the TiO2 agglomerate (50 mg L(-1)) stability by inducing their partial and rapid disagglomeration. The importance of disagglomeration is found dependent on the alginate concentration with maximum of disagglomeration obtained for alginate concentration ≥8 mg L(-1) and leading to 400 nm fragments. From an environmental point of view partial restabilization of TiO2 agglomerates in the presence of alginate constitutes an important outcome. Disagglomeration will enhance their transport and residence time in aquatic systems which is an important step in the current knowledge on risk assessment associated to engineered nanoparticles. PMID:25726181

  16. Effective method of chitosan-coated alginate nanoparticles for target drug delivery applications.

    PubMed

    Wang, Fang; Yang, Siqian; Yuan, Jian; Gao, Qinwei; Huang, Chaobo

    2016-07-01

    In the present study, alginate nanoparticles were firstly prepared for paclitaxel (PTX) delivery with an average size of 200 ± 21 nm. To improve the stability and targeting effect, the chitosan (CS) and folate-chitosan (FA-CS) were introduced to form PTX-loaded CS/ALG NPs and FA-CS/ALG NPs by a new double emulsion cross-linking electrostatic attraction method. The optimization chitosan concentration was 0.5% obtained from the experiment results. The CS/ALG-PTX NPs and FA-CS/ALG-PTX NPs had the average particle size of 306.9 ± 12.9 nm and 283.6 ± 19.2 nm with the zeta potential of 31.1 ± 1.3 mV and -2.98 ± 0.7 mV, and had higher drug loading and entrapment efficiencies than ALG-PTX NPs. The in vitro drug release profile along with release kinetics and mechanism from PTX-loaded NPs were studied under two simulated physiological conditions. Further, the in vitro anti-cancer activity of nanoparticles and the cellular uptake of nanoparticles on HepG2 cells were investigated. The results demonstrated that alginate, CS/ALG and FA-CS/ALG can be used as nanoformulation drug carriers by our new method, and FA-CS/ALG was a promising vehicle for anticancer drug targeted delivery system. PMID:27164869

  17. Synthesis of Quercetin Loaded Nanoparticles Based on Alginate for Pb(II) Adsorption in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Qi, Yun; Jiang, Meng; Cui, Yuan-Lu; Zhao, Lin; Zhou, Xia

    2015-10-01

    Pb(II) is a representative heavy metal in industrial wastewater, which may frequently cause serious hazard to living organisms. In this study, comparative studies between alginate nanoparticles (AN) and quercetin-decorated alginate nanoparticles (Q-AN) were investigated for Pb(II) ion adsorption. Characterization of AN and Q-AN were analysed by transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffractometer (XRD), and thermogravimetric analysis (TG-DTG-DSC). The main operating conditions such as pH, initial concentration of Pb(II), and co-existing metal ions were also investigated using a batch experiment. AN and Q-AN, with a diameter of 95.06 and 58.23 nm, were constituted by many small primary nanoparticles. It revealed that when initial concentration of Pb(II) is between 250 and 1250 mg L-1, the adsorption rate and equilibrium adsorption were increased with the increase of pH from 2 to 7. The maximum adsorption capacities of 147.02 and 140.37 mg L-1 were achieved by AN and Q-AN, respectively, with 0.2 g adsorbents in 1000 mg L-1 Pb(II) at pH 7. The adsorption rate of Pb(II) was little influenced by the co-existing metal ions, such as Mn(II), Co(II), and Cd(II). Desorption experiments showed that Q-AN possessed a higher desorption rate than AN, which were 90.07 and 83.26 %, respectively. AN and Q-AN would probably be applied as adsorbents to remove Pb(II) and then recover it from wastewater for the advantages of simple preparation, high adsorption capacity, and recyclability.

  18. Amoxicillin Loaded Chitosan–Alginate Polyelectrolyte Complex Nanoparticles as Mucopenetrating Delivery System for H. Pylori

    PubMed Central

    Arora, Saahil; Gupta, Sankalp; Narang, Raj K.; Budhiraja, Ramji D.

    2011-01-01

    The present study has been undertaken to apply the concept of nanoparticulate mucopenetrating drug delivery system for complete eradication of Helicobacter pylori (H. pylori), colonised deep into the gastric mucosal lining. Most of the existing drug delivery systems have failed on account of either improper mucoadhesion or mucopenetration and no dosage form with dual activity of adhesion and penetration has been designed till date for treating H. pylori induced disorders. In the present study, novel chitosan-alginate polyelectrolyte complex (CS-ALG PEC) nanoparticles of amoxicillin have been designed and optimized for various variables such as pH and mixing ratio of polymers, concentrations of polymers, drug and surfactant, using 33 Box-Behnken design. Various studies like particle size, surface charge, percent drug entrapment, in-vitro mucoadhesion and in-vivo mucopenetration of nanoparticles on rat models were conducted. The optimised FITC labelled CS-ALG PEC nanoparticles have shown comparative low in-vitro mucoadhesion with respect to plain chitosan nanoparticles, but excellent mucopenetration and localization as observed with increased fluorescence in gastric mucosa continuously over 6 hours, which clinically can help in eradication of H. pylori. PMID:21886911

  19. Forward osmosis filtration for removal of organic foulants: Effects of combined tannic and alginic acids.

    PubMed

    Wang, Lin; Zhang, Wanzhu; Chu, Huaqiang; Dong, Bingzhi

    2016-03-15

    The filtration performance of combined organic foulants by forward osmosis (FO) in active-layer-facing-the-draw-solution (AL-facing-DS) orientation was investigated systematically. Tannic acid and alginate were used as model organic foulants for polysaccharides and humic dissolved organic matters, respectively. The FO could reject combined and single tannic acid and alginate foulants effectively. The more severe fouling flux decline, accompanied with lower combined foulants' retention, was observed with increasing proportions of tannic acid in the combined foulants-containing feed, which was ascribed mainly to the more severe fouling resulting from tannic acid adsorption within the porous support layer of the FO membrane compared to minor alginate deposition on the membrane surface. It was found that the higher the initial flux level and cross flow velocity, the faster the flux decline with lower mixed foulants retention. It was also revealed that the calcium ions in a basic solution enhanced the combined fouling flux reduction and combined foulants retention. As the major constituent of the combined fouling layer, the adsorption of tannic acid might play a more significant role in the mixed fouling of the FO membrane, which was probably influenced by permeation drag caused by water flux and chemical interactions induced by feed solution pH and calcium ion concentration. PMID:26803261

  20. Alginate/Poly(γ-glutamic Acid) Base Biocompatible Gel for Bone Tissue Engineering

    PubMed Central

    Chan, Wing P.; Kung, Fu-Chen; Kuo, Yu-Lin; Yang, Ming-Chen; Lai, Wen-Fu Thomas

    2015-01-01

    A technique for synthesizing biocompatible hydrogels by cross-linking calcium-form poly(γ-glutamic acid), alginate sodium, and Pluronic F-127 was created, in which alginate can be cross-linked by Ca2+ from Ca–γ-PGA directly and γ-PGA molecules introduced into the alginate matrix to provide pH sensitivity and hemostasis. Mechanical properties, swelling behavior, and blood compatibility were investigated for each hydrogel compared with alginate and for γ-PGA hydrogel with the sodium form only. Adding F-127 improves mechanical properties efficiently and influences the temperature-sensitive swelling of the hydrogels but also has a minor effect on pH-sensitive swelling and promotes anticoagulation. MG-63 cells were used to test biocompatibility. Gelation occurred gradually through change in the elastic modulus as the release of calcium ions increased over time and caused ionic cross-linking, which promotes the elasticity of gel. In addition, the growth of MG-63 cells in the gel reflected nontoxicity. These results showed that this biocompatible scaffold has potential for application in bone materials. PMID:26504784

  1. Alginate/Poly(γ-glutamic Acid) Base Biocompatible Gel for Bone Tissue Engineering.

    PubMed

    Chan, Wing P; Kung, Fu-Chen; Kuo, Yu-Lin; Yang, Ming-Chen; Lai, Wen-Fu Thomas

    2015-01-01

    A technique for synthesizing biocompatible hydrogels by cross-linking calcium-form poly(γ-glutamic acid), alginate sodium, and Pluronic F-127 was created, in which alginate can be cross-linked by Ca(2+) from Ca-γ-PGA directly and γ-PGA molecules introduced into the alginate matrix to provide pH sensitivity and hemostasis. Mechanical properties, swelling behavior, and blood compatibility were investigated for each hydrogel compared with alginate and for γ-PGA hydrogel with the sodium form only. Adding F-127 improves mechanical properties efficiently and influences the temperature-sensitive swelling of the hydrogels but also has a minor effect on pH-sensitive swelling and promotes anticoagulation. MG-63 cells were used to test biocompatibility. Gelation occurred gradually through change in the elastic modulus as the release of calcium ions increased over time and caused ionic cross-linking, which promotes the elasticity of gel. In addition, the growth of MG-63 cells in the gel reflected nontoxicity. These results showed that this biocompatible scaffold has potential for application in bone materials. PMID:26504784

  2. Interaction of metal ions with acid sites of biosorbents peat moss and Vaucheria and model substances alginic and humic acids

    SciTech Connect

    Crist, R.H.; Martin, J.R.; Crist, D.R.

    1999-07-01

    The interaction between added metal ions and acid sites of two biosorbents, peat moss and the alga Vaucheria, was studied. Results were interpreted in terms of two model substances, alginic acid, a copolymer of guluronic and mannuronic acids present in marine algae, and humic acid in peat moss. For peat moss and Vaucheria at pH 4--6, two protons were displaced per Cd sorbed, after correction for sorbed metals also displaced by the heavy metal. The frequent neglect of exchange of heavy metals for metals either sorbed on the native material or added for pH adjustment leads to erroneous conclusions about proton displacement stoichiometry. Proton displacement constants K{sub ex}{sup H} decreased logarithmically with pH and had similar slopes for alginic acid and biosorbents. This pH effect was interpreted as an electrostatic effect of increasing anionic charge making proton removal less favorable. The maximum number of exchangeable acid sites (capacity C{sub H}) decreased with pH for alginic acid but increased with pH for biosorbents. Consistent with titration behavior, this difference was explained in terms of more weak acid sites in the biosorbents.

  3. As(III) and As(V) removal from the aqueous phase via adsorption onto acid mine drainage sludge (AMDS) alginate beads and goethite alginate beads.

    PubMed

    Lee, Hongkyun; Kim, Dohyeong; Kim, Jongsik; Ji, Min-Kyu; Han, Young-Soo; Park, Young-Tae; Yun, Hyun-Shik; Choi, Jaeyoung

    2015-07-15

    Acid mine drainage sludge (AMDS) is a solid waste generated following the neutralization of acid mine drainage (AMD). This material entrapped in calcium alginate was investigated for the sorption of As(III) and As(V). Three different adsorbent materials were prepared: AMDS alginate beads (AABs), goethite alginate beads (GABs), and pure alginate beads. The effects of pH and the adsorption kinetics were investigated, and the adsorption isotherms were also evaluated. The optimum pH range using the AABs was determined to be within 2-10 for As(III) and 2-9 for As(V). Adsorption equilibrium data were evaluated using the Langmuir isotherm model, and the maximum adsorption capacity qmax was 18.25 and 4.97 mg g(-1) for As(III) on AAB and GAB, respectively, and 21.79 and 10.92 mg g(-1) for As(V) on AAB and GAB, respectively. The adsorption of As(III) and As(V) was observed to follow pseudo-second order kinetics. The As K-edge X-ray absorption near-edge structure (XANES) revealed that the adsorbed As(III) on the AABs was oxidized to As(V) via manganese oxide in the AMDS. PMID:25804789

  4. Recovery of zinc, cadmium, and lanthanum by biopolymer gel particles of alginic acid

    SciTech Connect

    Konishi, Yasuhiro; Asai, Satoru; Midoh, Yuji; Oku, Muneharu )

    1993-07-01

    Biopolymer gel particles of alginic acid were found to be a useful material for recovering zinc, cadmium, and lanthanum from aqueous solutions. The metals sorbed by the gel particles could be completely eluted by using dilute HCl solution of 0.1 kmol/m[sup 3]. The distribution ratios of the individual metals between the gel and liquid phases were measured by using a batch method. The equilibrium data were consistent with predictions made assuming that sorption takes place with the ion-exchange reaction between metal ions and alginic acid. The maximum sorption capacity of the gel particles and the distribution equilibrium constants for the metals were determined by comparing the experimental data with the theoretical predictions. The observed effect of temperature on the distribution equilibrium was insignificant in the range from 15 to 35[degrees]C. 17 refs., 6 figs., 1 tab.

  5. Improvement of crocin stability by biodegradeble nanoparticles of chitosan-alginate.

    PubMed

    Rahaiee, Somayeh; Shojaosadati, Seyed Abbas; Hashemi, Maryam; Moini, Sohrab; Razavi, Seyed Hadi

    2015-08-01

    This study aimed to improve the stability of crocin, a saffron carotenoid, encapsulating into chitosan (Cs)-sodium alginate (Alg) nanoparticles prepared by a modified ionic gelation method were investigated as a new carrier to improve the stability of crocin. Response surface methodology was used to optimize the important variables, namely the concentrations of Cs and Alg, and pH influencing the particle size, zeta-potential, and encapsulation efficiency to find the optimum formulation for production of crocin nanoparticles (CNPs). Microscopic analysis and dynamic light scattering examination indicated non-smooth and spherical nanoparticles with the size range of 165-230 nm in weight ratio of Cs:Alg (1:1.25) and pH 4.7. Fourier transform-infrared spectroscopy displayed an extensive hydrogen bonding interaction between the crocin and biopolymers. Encapsulation efficiency, loading capacity and yield of CNPs were 38.16, 30.96 and 48.33%, respectively. The zeta-potential of NPs was about -33.52 mV which resulted in the better stability of NPs during manipulation and storage. Stability studies showed that nanoencapsulation provided enhanced crocin stability with biopolymers compared to the standard crocin under unfavorable environmental conditions. PMID:25934104

  6. Nanoparticles based on phenylalanine ethyl ester-alginate conjugate as vitamin B2 delivery system.

    PubMed

    Zhang, Pei; Zhao, Shi-Rui; Li, Jun-Xia; Hong, Liang; Raja, Mazhar A; Yu, Le-Jun; Liu, Chen-Guang

    2016-07-01

    Phenylalanine ethyl ester (PAE)-alginate (Alg) conjugate (PAE-Alg, PEA) was synthesized and formation of an amide bond between PAE and Alg was confirmed by Fourier transformed-infrared and (1)H nuclear magnetic resonance spectroscopy. The degree of PAE substitution was 3.5-4.7 (PAE group per hundred sugar residues of Alg) which was determined by elemental analysis. The critical aggregation concentration values determined for PEA conjugates PEA1, PEA2, and PEA3 were 0.20, 0.12, and 0.10 mg/ml, respectively. The particle size of PEA nanoparticles (PEA-NPs) decreased from 425 nm to 226 nm with the increasing degree of PAE substitution. Vitamin B2 (VB2), as a model nutrient, was encapsulated into the nanoparticles. The drug-loading content increased with increasing degree of PAE substitution. The maximum VB2 loading capacity and loading efficiency of PEA3 nanoparticles were 3.53 ± 0.03% and 91.48 ± 0.80%, respectively. The in vitro release behavior of VB2 from the PEA-NPs showed a biphasic release profile with an initial burst release of about 40-50% of VB2 in the first 10 h followed by a steady and continuous release phase for the following 50 h in PBS, pH 7.4. The human colorectal carcinoma cell line was used to investigate the cytotoxicity of PEA-NPs. Our results showed that various concentrations of nanoparticles did not cause significant cytotoxicity against cell lines at normal concentrations. PMID:26916950

  7. Enhanced antiproliferative activity of carboplatin-loaded chitosan-alginate nanoparticles in a retinoblastoma cell line.

    PubMed

    Parveen, Suphiya; Mitra, Moutushy; Krishnakumar, S; Sahoo, Sanjeeb K

    2010-08-01

    In the present study the potential of carboplatin-loaded chitosan-alginate nanoparticles (CANPs) for the treatment of retinoblastoma was investigated. The carboplatin-loaded CANPs were approximately 300 nm in size, exhibited a high zeta potential of approximately 36 mV and drug encapsulation of approximately 20 wt.%. The CANPs were further characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry and transmission electron microscopy. In vitro release studies revealed fast release of approximately 25% of the drug during the first 24h, followed by sustained release. CANPs demonstrated greater and sustained antiproliferative activity of the drug in a dose- and time-dependent manner (carboplatin IC(50)=0.56 microg ml(-1), carboplatin-loaded CANPs IC(50)=0.004 microg ml(-1)), as well as an enhanced apoptotic effect as compared with the drug in solution in a retinoblastoma cell line (Y79). The higher cytotoxic effect of CANPs may be due to their greater cellular uptake as compared with native carboplatin. It was also demonstrated that clathrin-mediated endocytosis plays a key role in the internalization of CANPs in the Y79 cell line. In conclusion, biodegradable chitosan nanoparticles could be used as an effective ocular drug delivery system for sustained intracellular delivery of carboplatin for the treatment of retinoblastoma. PMID:20149903

  8. Calcium alginate nanoparticles synthesized through a novel interfacial cross-linking method as a potential protein drug delivery system.

    PubMed

    Nesamony, Jerry; Singh, Priti R; Nada, Shadia E; Shah, Zahoor A; Kolling, William M

    2012-06-01

    The goal of this research work was to develop a novel technique to synthesize calcium alginate nanoparticles using pharmaceutically relevant microemulsions. Stable microemulsion-based reactors were prepared using aqueous sodium alginate, aqueous calcium chloride, dioctyl sodium sulfosuccinate (DOSS), and isopropyl myristate. The reactor microemulsions were characterized via conductivity and dynamic light scattering (DLS) experiments. The conductivity data indicated composition- and reagent-dependent variations in electrical conductivity when the aqueous phase containing reagents were present at or above a Wo (Wo = [DOSS]/[water]) value of 14. The reactor microemulsions were of approximately 6 nm sized droplets. When the reactor microemulsions were mixed and sonicated for 1 h approximately, 350-nm-sized calcium alginate nanoparticles were produced, as indicated by DLS measurements. The particles were isolated and characterized via low-vacuum scanning electron microscopy. The electron micrographs corroborate the DLS results. The nanoparticles were evaluated as a drug delivery system by incorporating bovine serum albumin (BSA) and performing in vitro release and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) studies. The BSA release profile was characterized by an initial burst release followed by a sustained-release phase. SDS-PAGE studies indicated that the incorporated protein did not suffer covalent aggregation or degradation via fragmentation. PMID:22411606

  9. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium alginate. 184.1187 Section 184.1187 Food... GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Calcium alginate is prepared...

  10. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Potassium alginate...

  11. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium alginate. 184.1724 Section 184.1724 Food and... Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Sodium alginate...

  12. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Sodium alginate is prepared by...

  13. Prevention of Polyglycolic Acid-Induced Peritoneal Adhesions Using Alginate in a Rat Model

    PubMed Central

    Matoba, Mari; Hashimoto, Ayumi; Tanzawa, Ayumi; Orikasa, Taichi; Ikeda, Junki; Iwame, Yoshizumi; Ozamoto, Yuki; Miyamoto, Hiroe; Yoshida, Chiko; Hashimoto, Toru; Torii, Hiroko; Takamori, Hideki; Morita, Shinichiro; Tsujimoto, Hiroyuki; Hagiwara, Akeo

    2015-01-01

    Postoperative intra-abdominal or intrathoracic adhesions sometimes cause significant morbidity. We have designed three types of alginate-based treatments using strongly cross-linked (SL), weakly cross-linked (WL), and non-cross-linked (NL) alginate with calcium gluconate. In rat experiments, we compared the antiadhesive effects of the three types of alginate-based treatments, fibrin glue treatment (a standard treatment), and no treatment against adhesions caused by polyglycolic acid (PGA) mesh (PGA-induced adhesions). The antiadhesive materials were set on the PGA sheet fixed on the parietal peritoneum of the abdomen. Fifty-six days later, the adhesions were evaluated macroscopically by the adhesion scores and microscopically by hematoxylin-eosin staining and immunostaining. We also tested the fibroblast growth on the surface of the antiadhesive materials in vitro. The antiadhesive effects of WL and NL were superior to the no treatment and fibrin glue treatment. A microscopic evaluation confirmed that the PGA sheet was covered by a peritoneal layer constructed of well-differentiated mesothelial cells, and the inflammation was most improved in the NL and WL. The fibroblast growth was inhibited most on the surfaces of the NL and WL. These results suggest that either the WL or NL treatments are suitable for preventing PGA-induced adhesions compared to SL or the conventional treatment. PMID:26078949

  14. Facile synthesis of carbon supported copper nanoparticles from alginate precursor with controlled metal content and catalytic NO reduction properties.

    PubMed

    Papageorgiou, Sergios K; Favvas, Evangelos P; Sapalidis, Andreas A; Romanos, George E; Katsaros, Fotios K

    2011-05-15

    A copper-nanoparticle-doped carbon was prepared from an alginate based precursor in a one step carbonisation-reduction procedure based on the modified polyol process. The ion exchange capacity of the precursor as well as the porosity, metal content, thermal properties, of the final product, were investigated. The preparation route leads to a porous carbon/copper composite with predefined metal loading reaching up to over 30% (w/w) of finely dispersed Cu nanoparticles of fairly uniform size. NO catalytic abatement evaluation showed high efficiency even at low temperatures compared to other recently reported carbon supported catalysts. PMID:21398027

  15. Use of alginate, chitosan and cellulose nanocrystals as emulsion stabilizers in the synthesis of biodegradable polymeric nanoparticles.

    PubMed

    Rescignano, Nicoletta; Fortunati, Elena; Armentano, Ilaria; Hernandez, Rebeca; Mijangos, Carmen; Pasquino, Rossana; Kenny, José Maria

    2015-05-01

    Biopolymeric nanoparticles (NPs) based on a biodegradable poly(DL-Lactide-co-Glycolide) PLGA copolymer matrix combined with alginate, chitosan and nanostructured cellulose crystals as three different natural emulsion stabilizers, were synthesized by a double emulsion (water/oil/water) method with subsequent solvent evaporation. The morphological, thermal, chemical and rheological properties of the novel designed NPs and the effect of the different emulsion stabilizers used during the synthesis were deeply investigated in order to optimize the synthesis procedure and the development of biodegradable nanoparticles coated with natural polymers. The morphological analysis of the produced nanoparticles showed that all the different formulations presented a spherical shape with smooth surface. Infrared spectroscopy investigations showed that the PLGA copolymer maintained its backbone structure and confirmed the presence of chitosan, alginate and cellulose nanocrystals (CNC) on the nanoparticle surface. The obtained results suggest that PLGA nanoparticles with CNC as emulsion stabilizer might represent promising formulations opening new perspective in the field of self-assembly of biodegradable nanomaterials for medical and pharmaceutical applications. PMID:25596366

  16. Kojic acid production from cocoa juice by Aspergillus flavus entrapped in calcium alginate.

    PubMed

    el-Sharkawy, S H

    1995-06-01

    Sixteen microorganisms of Aspergillus strains were screened for production of kojic acid using cocoa juice as carbon source. Only Aspergillus flavus ATCC 9179 was found to produce the acid in low yield (22 mg/ml). Calcium alginate immobilization of the cells was used under optimum conditions to maximize the yield of kojic acid (60 mg/ml). Cultures were incubated in the medium with 50% of cocoa juice added in pulses of 8 ml each every 96 hours, and 4% methanol, pH 3.5, 150 rpm, 26 degrees C for three weeks. The incubations were monitored by thin layer and high pressure liquid chromatography. Kojic acid was extracted from the culture broth by organic solvent, concentrated and crystallized. The chemical identity of kojic acid was determined by HPLC, MS, 1H- and 13C-NMR spectroscopy. PMID:7546538

  17. Laser-induced breakdown spectroscopy of γ-Fe 2O 3 nanoparticles in a biocompatible alginate matrix

    NASA Astrophysics Data System (ADS)

    Brown, E.; Rehse, S. J.

    2007-12-01

    An intensive multi-disciplinary research effort is underway at Wayne State University to synthesize and characterize magnetic nanoparticles in a biocompatible matrix for biomedical applications. The particular system being studied consists of 3-10 nm γ-Fe 2O 3 nanoparticles in an alginate matrix, which is being studied for applications in targeted drug delivery, as a magnetic-resonance imaging (MRI) contrast agent, and for hyperthermic treatments of malignant tumors. In the present work we report on our efforts to determine if laser-induced breakdown spectroscopy (LIBS) can offer a more accurate and substantially faster determination of iron content in such nanoparticle-containing materials than competing technologies such as inductively-coupled plasma (ICP). Standardized samples of α-Fe 2O 3 nanoparticles (5-25 nm diameter) and silver micropowder (2-3.5 μm diameter) were created with thirteen precisely known concentrations and pressed hydraulically to create solid "pellets" for LIBS analysis. The ratio of the intensity of an Fe(I) emission line at 371.994 nm to that of an Ag(I) line at 328.069 nm was used to create a calibration curve exhibiting an exponential dependence on Fe mass fraction. Using this curve, an "unknown" γ-Fe 2O 3/alginate/silver pellet was tested, leading to a measurement of the mass fraction of Fe in the nanoparticle/alginate matrix of 51 ± 3 wt.%, which is in very good agreement with expectations and previous determinations of its iron concentration.

  18. Enhancement of phototoxicity against human pancreatic cancer cells with photosensitizer-encapsulated amphiphilic sodium alginate derivative nanoparticles.

    PubMed

    Yu, Zhong; Li, Huajie; Zhang, Li-Ming; Zhu, Zhaohua; Yang, Liqun

    2014-10-01

    Photosensitizer-encapsulated amphiphilic sodium alginate derivative (Photosan-CSAD) nanoparticles were prepared because of their ability to enhance phototoxicity in the photodynamic therapy of pancreatic cancer. These nanoparticles are spherical, 150-250 nm in size as determined by transmission electron microscopy, and have negative zeta potentials. Upon incubation with human pancreatic cancer cells, the Photosan-CSAD nanoparticles showed high fluorescence activity and reactive oxygen species generation, resulting in strong phototoxicity. However, no dark toxicity was observed. Apoptosis played a leading role in the cell death process induced by the Photosan phototoxicity. These results demonstrate that the Photosan-CSAD nanoparticles are a candidate for the photodynamic therapy of pancreatic cancer. PMID:25089506

  19. Novel one-pot synthesis of dicarboxylic acids mediated alginate-zirconium biopolymeric complex for defluoridation of water.

    PubMed

    Prabhu, Subbaiah Muthu; Meenakshi, Sankaran

    2015-04-20

    The present investigation explains the fluoride removal from aqueous solution using alginate-zirconium complex prepared with respective dicarboxylic acids like oxalic acid (Ox), malonic acid (MA) and succinic acid (SA) as a medium. The complexes viz., alginate-oxalic acid-zirconium (Alg-Ox-Zr), alginate-malonic acid-zirconium (Alg-MA-Zr) and alginate-succinic acid-zirconium (Alg-SA-Zr) were synthesized and studied for fluoride removal. The synthesized complexes were characterized by FTIR, XRD, SEM with EDAX and mapping images. The effects of various operating parameters were optimized. The result showed that the maximum removal of fluoride 9653mgF(-)/kg was achieved by Alg-Ox-Zr complex at acidic pH in an ambient atmospheric condition. Equilibrium data of Alg-Ox-Zr complex was fitted well with Freundlich isotherm. The calculated values of thermodynamic parameters indicated that the fluoride adsorption is spontaneous and endothermic in nature. The mechanism of fluoride removal behind Alg-Ox-Zr complex has been proposed in detail. The suitability of the Alg-Ox-Zr complex has been tested with the field sample collected in a nearby fluoride endemic area. PMID:25662688

  20. Bioplotting of a bioactive alginate dialdehyde-gelatin composite hydrogel containing bioactive glass nanoparticles.

    PubMed

    Leite, Álvaro J; Sarker, Bapi; Zehnder, Tobias; Silva, Raquel; Mano, João F; Boccaccini, Aldo R

    2016-01-01

    Alginate dialdehyde-gelatin (ADA-GEL) constructs incorporating bioactive glass nanoparticles (BGNPs) were produced by biofabrication to obtain a grid-like highly-hydrated composite. The material could induce the deposition of an apatite layer upon immersion in a biological-like environment to sustain cell attachment and proliferation. Composites were formulated with different concentrations of BGNPs synthetized from a sol-gel route, namely 0.1% and 0.5% (w/v). Strontium doped BGNPs were also used. EDS analysis suggested that the BGNPs loading promoted the growth of bone-like apatite layer on the surface when the constructs were immersed in a simulated body fluid. Moreover, the composite constructs could incorporate with high efficiency ibuprofen as a drug model. Furthermore, the biofabrication process allowed the successful incorporation of MG-63 cells into the composite material. Cells were distributed homogeneously within the hydrogel composite, and no differences were found in cell viability between ADA-GEL and the composite constructs, proving that the addition of BGNPs did not influence cell fate. Overall, the composite material showed potential for future applications in bone tissue engineering. PMID:27432012

  1. Photocatalytic degradation of pharmaceutical wastes by alginate supported TiO2 nanoparticles in packed bed photo reactor (PBPR).

    PubMed

    Sarkar, Santanu; Chakraborty, Sudip; Bhattacharjee, Chiranjib

    2015-11-01

    In recent years deposal of pharmaceutical wastes has become a major problem globally. Therefore, it is necessary to removes pharmaceutical waste from the municipal as well as industrial effluents before its discharge. The convectional wastewater and biological treatments are generally failed to separate different drugs from wastewater streams. Thus, heterogeneous photocatalysis process becomes lucrative method for reduction of detrimental effects of pharmaceutical compounds. The main disadvantage of the process is the reuse or recycle of photocatalysis is a tedious job. In this work, the degradation of aqueous solution of chlorhexidine digluconate (CHD), an antibiotic drug, by heterogeneous photocatalysis was study using supported TiO2 nanoparticle. The major concern of this study is to bring down the limitations of suspension mode heterogeneous photocatalysis by implementation of immobilized TiO2 with help of calcium alginate beads. The alginate supported catalyst beads was characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDAX) as well as the characteristic crystalline forms of TiO2 nanoparticle was confirmed by XRD. The degradation efficiency of TiO2 impregnated alginate beads (TIAB) was compared with the performance of free TiO2 suspension. Although, the degradation efficiency was reduced considerably using TIAB but the recycle and reuse of catalyst was increased quite appreciably. The kinetic parameters related to this work have also been measure. Moreover, to study the susceptibility of the present system photocatalysis of other three drugs ibuprofen (IBP), atenolol (ATL) and carbamazepine (CBZ) has been carried out using immobilized TiO2. The continuous mode operation in PBPR has ensured the applicability of alginate beads along with TiO2 in wastewater treatment. The variation of residence time has significant impact on the performance of PBPR. PMID:25743764

  2. Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin.

    PubMed

    Lopes, Marlene; Shrestha, Neha; Correia, Alexandra; Shahbazi, Mohammad-Ali; Sarmento, Bruno; Hirvonen, Jouni; Veiga, Francisco; Seiça, Raquel; Ribeiro, António; Santos, Hélder A

    2016-06-28

    The potential of nanoparticles (NPs) to overcome the barriers for oral delivery of protein drugs have led to the development of platforms capable of improving their bioavailability. However, despite the progresses in drug delivery technologies, the success of oral delivery of insulin remains elusive and the disclosure of insulin mechanisms of absorption remains to be clarified. To overcome multiple barriers faced by oral insulin and to enhance the insulin permeability across the intestinal epithelium, here insulin-loaded alginate/dextran sulfate (ADS)-NPs were formulated and dual-coated with chitosan (CS) and albumin (ALB). The nanosystem was characterized by its pH-sensitivity and mucoadhesivity, which enabled to prevent 70% of in vitro insulin release in simulated gastric conditions and allowed a sustained insulin release following the passage to simulated intestinal conditions. The pH and time-dependent morphology of the NPs was correlated to the release and permeation profile of insulin. Dual CS/ALB coating of the ADS-NPs demonstrated augmented intestinal interactions with the intestinal cells in comparison to the uncoated-NPs, resulting in a higher permeability of insulin across Caco-2/HT29-MTX/Raji B cell monolayers. The permeability of the insulin-loaded ALB-NPs was reduced after the temperature was decreased and after co-incubation with chlorpromazine, suggesting an active insulin transport by clathrin-mediated endocytosis. Moreover, the permeability inhibition with the pre-treatment with sodium chlorate suggested that the interaction between glycocalix and the NPs was critical for insulin permeation. Overall, the developed nanosystem has clinical potential for the oral delivery of insulin and therapy of type 1 diabetes mellitus. PMID:27074369

  3. Effect of alginate on the aggregation kinetics of copper oxide nanoparticles (CuO NPs): bridging interaction and hetero-aggregation induced by Ca(2.).

    PubMed

    Miao, Lingzhan; Wang, Chao; Hou, Jun; Wang, Peifang; Ao, Yanhui; Li, Yi; Lv, Bowen; Yang, Yangyang; You, Guoxiang; Xu, Yi

    2016-06-01

    The stability of CuO nanoparticles (NPs) is expected to play a key role in the environmental risk assessment of nanotoxicity in aquatic systems. In this study, the effect of alginate (model polysaccharides) on the stability of CuO NPs in various environmentally relevant ionic strength conditions was investigated by using time-resolved dynamic light scattering. Significant aggregation of CuO NPs was observed in the presence of both monovalent and divalent cations. The critical coagulation concentrations (CCC) were 54.5 and 2.9 mM for NaNO3 and Ca(NO3)2, respectively. The presence of alginate slowed nano-CuO aggregation rates over the entire NaNO3 concentration range due to the combined electrostatic and steric effect. High concentrations of Ca(2+) (>6 mM) resulted in stronger adsorption of alginate onto CuO NPs; however, enhanced aggregation of CuO NPs occurred simultaneously under the same conditions. Spectroscopic analysis revealed that the bridging interaction of alginate with Ca(2+) might be an important mechanism for the enhanced aggregation. Furthermore, significant coagulation of the alginate molecules was observed in solutions of high Ca(2+) concentrations, indicating a hetero-aggregation mechanism between the alginate-covered CuO NPs and the unabsorbed alginate. These results suggested a different aggregation mechanism of NPs might co-exist in aqueous systems enriched with natural organic matter, which should be taken into consideration in future studies. Graphical abstract Hetero-aggregation mechanism of CuO nanoparticles and alginate under high concentration of Ca(2.) PMID:26931664

  4. Outcomes in patients with nonerosive reflux disease treated with a proton pump inhibitor and alginic acid ± glycyrrhetinic acid and anthocyanosides

    PubMed Central

    Di Pierro, Francesco; Gatti, Mario; Rapacioli, Giuliana; Ivaldi, Leandro

    2013-01-01

    Background The purpose of this study was to compare the efficacy of alginic acid alone versus alginic acid combined with low doses of pure glycyrrhetinic acid and bilberry anthocyanosides as an addon to conventional proton pump inhibitor therapy in relieving symptoms associated with nonerosive reflux disease. Methods This prospective, randomized, 8-week, open-label trial was conducted at two centers. Sixty-three patients with persistent symptoms of gastroesophageal reflux disease and normal upper gastrointestinal endoscopy were eligible for the study. Patients in group A (n = 31) were treated with pantoprazole and a formula (Mirgeal®) containing alginic acid and low doses of pure glycyrrhetinic acid + standardized Vaccinium myrtillus extract for 4 weeks, then crossed over to the multi-ingredient formula for a further 4 weeks. Patients in group B (n = 32) were treated pantoprazole and alginic acid alone twice daily, then crossed over to alginic acid twice daily for a further 4 weeks. Efficacy was assessed by medical evaluation of a symptom relief score, estimated using a visual analog scale (0–10). Side effects, tolerability, and compliance were also assessed. Results Of the 63 patients enrolled in the study, 58 (29 in group A and 29 in group B) completed the 8-week trial. The baseline characteristics were comparable between the two groups. During the study, significant differences were recorded in symptom scores for both groups. In group A, symptoms of chest pain, heartburn, and abdominal swelling were less serious than in group B. Treatment A was better tolerated, did not induce hypertension, and had fewer side effects than treatment B. No significant differences in compliance were found between the two groups. Conclusion Use of low doses of pure glycyrrhetinic acid + bilberry anthocyanosides, together with alginic acid as addon therapy, substantially improves symptoms in patients with nonerosive reflux disease without increasing side effects or worsening

  5. Multiple-response optimization of the acidic treatment of the brown alga Ecklonia radiata for the sequential extraction of fucoidan and alginate.

    PubMed

    Lorbeer, Andrew John; Lahnstein, Jelle; Bulone, Vincent; Nguyen, Trung; Zhang, Wei

    2015-12-01

    The aim of this study was to optimize the acidic treatment of the brown alga Ecklonia radiata in order to extract fucoidan and facilitate the efficient sequential extraction of alginates. Response surface methodology was used to determine the effects of the temperature, pH, and duration of the acidic treatment on fucoidan yield, alginate extractability, and the molecular weight of sequentially extracted alginates. Desirability functions were then used to predict the best overall combinations of responses. The most desirable compromise allowed for the recovery of a fucoidan-rich fraction with a yield of 3.75% (w/w of alga) and the sequential extraction of alginates having an average molecular weight of 730kDa at a yield of 44% (w/w of alga), with low cross-contamination between the products. The optimized acidic treatment could form the basis of an industrial biorefinery process for the production of both fucoidan and alginate. PMID:26342343

  6. New composite materials based on alginate and hydroxyapatite as potential carriers for ascorbic acid.

    PubMed

    Ilie, Andreia; Ghiţulică, Cristina; Andronescu, Ecaterina; Cucuruz, Andrei; Ficai, Anton

    2016-08-30

    The purpose of this article was to obtain prolonged drug release systems in which the drug (ascorbic acid) to reach intact the target area in an environment that is able to control the administration of the active component by chemical or physiological pathways. As support for drug, it was used a material based on calcium phosphate - hydroxyapatite and a natural polymer - alginate, since it is one of the most investigated composite materials for medical applications due to its positive response to biological testing: bioactivity, biocompatibility and osteoconductivity. Three composites with different ratios between alginate and hydroxyapatite were obtained: (a) Alg/HA/AA 1:1 (the mass ratio between Alg and HA being of 1:1), (b) Alg/HA/AA 1:3 (Alg:HA mass ratio of 1:3) and (c) Alg/HA/AA 3:1 (Alg:HA mass ratio of 3:1). The synthesized materials were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and to observe the drug release process, UV-vis spectroscopy. PMID:26784979

  7. Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates.

    PubMed

    Hu, Yang; Ma, Shanshan; Yang, Zhuohong; Zhou, Wuyi; Du, Zhengshan; Huang, Jian; Yi, Huan; Wang, Chaoyang

    2016-04-01

    In this study, we develop a facile one-pot approach to the fabrication of poly(L-lactic acid) (PLLA) microsphere-incorporated calcium alginate (ALG-Ca)/hydroxyapatite (HAp) porous scaffolds based on HAp nanoparticle-stabilized oil-in-water Pickering emulsion templates, which contain alginate in the aqueous phase and PLLA in the oil phase. The emulsion aqueous phase is solidified by in situ gelation of alginate with Ca(2+) released from HAp by decreasing pH with slow hydrolysis of d-gluconic acid δ-lactone (GDL) to produce emulsion droplet-incorporated gels, followed by freeze-drying to form porous scaffolds containing microspheres. The pore structure of porous scaffolds can be adjusted by varying the HAp or GDL concentration. The compressive tests show that the increase of HAp or GDL concentration is beneficial to improve the compressive property of porous scaffolds, while the excessive HAp can lead to the decrease in compressive property. Moreover, the swelling behavior studies display that the swelling ratios of porous scaffolds reduce with increasing HAp or GDL concentration. Furthermore, hydrophobic drug ibuprofen (IBU) and hydrophilic drug bovine serum albumin (BSA) are loaded into the microspheres and scaffold matrix, respectively. In vitro drug release results indicate that BSA has a rapid release while IBU has a sustained release in the dual drug-loaded scaffolds. In vitro cell culture experiments verify that mouse bone mesenchymal stem cells can proliferate on the porous scaffolds well, indicating the good biocompatibility of porous scaffolds. All these results demonstrate that the PLLA microsphere-incorporated ALG-Ca/HAp porous scaffolds have a promising potential for tissue engineering and drug delivery applications. PMID:26774574

  8. Impact of hydrolysis conditions on the detection of mannuronic to guluronic acid ratio in alginate and its derivatives.

    PubMed

    Lu, Jiaojiao; Yang, Hai; Hao, Jie; Wu, Chengling; Liu, Li; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing

    2015-05-20

    Alginate is a linear and acidic polysaccharide, composed of (1 → 4) linked β-D-mannuronic acid (ManA) and α-L-guluronic acid (GulA). The ratio of ManA to GulA (M/G) is one of the most important factors for the application of alginate and its derivatives in various areas. In this work, a robust and accurate method was developed to analyze M/G using high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The impact of hydrolysis conditions on the release patterns of ManA and GulA from alginate and its derivatives was investigated. The release patterns of ManA and GulA need to be considered separately to obtain an accurate M/G. Several hydrolysis conditions were established that released ManA and GulA completely and maintained these saccharide residues intact. The proper M/G of alginates from different sources and its derivatives could then be calculated by integration of the corresponding ManA and GulA peaks. PMID:25817657

  9. Cytotoxicity and genotoxicity of a trypanocidal drug quinapyramine sulfate loaded-sodium alginate nanoparticles in mammalian cells.

    PubMed

    Manuja, Anju; Kumar, Balvinder; Chopra, Meenu; Bajaj, Anshu; Kumar, Rajender; Dilbaghi, Neeraj; Kumar, Sandeep; Singh, Sandeep; Riyesh, T; Yadav, Suresh C

    2016-07-01

    We synthesized quinapyramine sulfate loaded-sodium alginate nanoparticles (QS-NPs) to reduce undesirable toxic effects of QS against the parasite Trypanosoma evansi, a causative agent of trypanosomosis. To determine the safety of the formulated nanoparticles, biocompatibility of QS-NPs was determined using Vero, Hela cell lines and horse erythrocytes in a dose-dependent manner. Our experiments unveiled a concentration-dependent safety/cytotoxicity (metabolic activity), genotoxicity (DNA damage, chromosomal aberrations), production of reactive oxygen species and hemolysis in QS-NPs treated cells. Annexin-V propidium iodide (PI) staining showed no massive apoptosis or necrosis. However, at very high doses (more than 300 times than the effective doses), we observed more toxicity in QS-NPs treated cells as compared to QS treated cells. QS-NPs were safe at effective trypanocidal doses and even at doses several times higher than the effective dose. PMID:27000439

  10. Microfluidic study on CNT dispersion during breakup of aqueous alginic acid drop in continuous PDMS phase

    NASA Astrophysics Data System (ADS)

    Choi, Jae Hong; Nam, Young Woo; Hong, Joung Sook

    2013-02-01

    Microfluidic study is performed to investigate how multi-walled carbon nanotube (CNTs) aggregates disperse in blend system during morphology evolution. As the dispersed phase, a drop containing CNT is generated at the flow focusing and it deforms through a contraction channel (gap and width of contraction ˜ 100 μm). When an aqueous polymeric drop (2 wt% alginic acid) with CNT (0.05 wt% or 0.5 wt%) is stretched through a 4:1 contraction channel, CNT aggregates enhances breakup of the stretched drop. Also, small droplets including CNTs are pinched off during relaxation of the stretched drop. Based on these observations, it is found that CNTs disperse in a multiphase system by repetitive breakup process during mixing rather than migration driven by chemical affinity.

  11. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium alginate. 184.1187 Section 184.1187 Food... Specific Substances Affirmed as GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown...

  12. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  13. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  14. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  15. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  16. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown...

  17. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown...

  18. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown...

  19. Preparation and characteristics of sodium alginate/Na(+)rectorite-g-itaconic acid/acrylamide hydrogel films.

    PubMed

    Yang, Lianli; Ma, Xiaoyan; Guo, Naini; Zhang, Yang

    2014-05-25

    Sodium alginate/Na(+)rectorite-graft-itaconic acid/acrylamide (SA/Na(+)REC-g-IA/AM) hydrogel film was prepared via solution polymerization. The effect of Na(+)REC, KPS, and NMBA content and the ratio of IA to AM on graft ratio, graft efficiency and absorption of liquids were investigated. The structure and morphology were analyzed by FTIR, XRD, TEM and SEM. Results revealed that the optimal Na(+)REC, KPS, and NMBA content and the ratio of IA to AM were 2wt%, 0.8wt%, 0.38wt% and 4, respectively. The hydrogel film was found to exhibit an intercalative structure and coarse surface. The mechanism of graft copolymerization was discussed. A slower and more continuous release of salicylic acid for SA/Na(+)REC-g-IA/AM composite hydrogel film was shown in vitro drug-controlled release studies, in comparison with SA film. The salicylic acid release mechanism of SA/Na(+)REC-g-IA/AM hydrogel film followed Fickian diffusion. PMID:24708990

  20. Biomedical-grade, high mannuronic acid content (BioMVM) alginate enhances the proteoglycan production of primary human meniscal fibrochondrocytes in a 3-D microenvironment

    PubMed Central

    Rey-Rico, Ana; Klich, Angelique; Cucchiarini, Magali; Madry, Henning

    2016-01-01

    Alginates are important hydrogels for meniscus tissue engineering as they support the meniscal fibrochondrocyte phenotype and proteoglycan production, the extracellular matrix (ECM) component chiefly responsible for its viscoelastic properties. Here, we systematically evaluated four biomedical- and two nonbiomedical-grade alginates for their capacity to provide the best three-dimensional (3-D) microenvironment and to support proteoglycan synthesis of encapsulated human meniscal fibrochondrocytes in vitro. Biomedical-grade, high mannuronic acid alginate spheres (BioLVM, BioMVM) were the most uniform in size, indicating an effect of the purity of alginate on the shape of the spheres. Interestingly, the purity of alginates did not affect cell viability. Of note, only fibrochondrocytes encapsulated in BioMVM alginate produced and retained significant amounts of proteoglycans. Following transplantation in an explant culture model, the alginate spheres containing fibrochondrocytes remained in close proximity with the meniscal tissue adjacent to the defect. The results reveal a promising role of BioMVM alginate to enhance the proteoglycan production of primary human meniscal fibrochondrocytes in a 3-D hydrogel microenvironment. These findings have significant implications for cell-based translational studies aiming at restoring lost meniscal tissue in regions containing high amounts of proteoglycans. PMID:27302206

  1. Gold Nanoparticles for Nucleic Acid Delivery

    PubMed Central

    Ding, Ya; Jiang, Ziwen; Saha, Krishnendu; Kim, Chang Soo; Kim, Sung Tae; Landis, Ryan F; Rotello, Vincent M

    2014-01-01

    Gold nanoparticles provide an attractive and applicable scaffold for delivery of nucleic acids. In this review, we focus on the use of covalent and noncovalent gold nanoparticle conjugates for applications in gene delivery and RNA-interference technologies. We also discuss challenges in nucleic acid delivery, including endosomal entrapment/escape and active delivery/presentation of nucleic acids in the cell. PMID:24599278

  2. Mutational analysis of nucleoside diphosphate kinase from Pseudomonas aeruginosa: characterization of critical amino acid residues involved in exopolysaccharide alginate synthesis.

    PubMed Central

    Sundin, G W; Shankar, S; Chakrabarty, A M

    1996-01-01

    We report the utilization of site-directed and random mutagenesis procedures in the gene encoding nucleoside diphosphate kinase (ndk) from Pseudomonas aeruginosa in order to examine the role of Ndk in the production of alginate by this organism. Cellular levels of the 16-kDa form of the Ndk enzyme are greatly reduced in P. aeruginosa 8830 with a knockout mutation in the algR2 gene (8830R2::Cm); this strain is also defective in the production of the exopolysaccharide alginate. In this study, we isolated four mutations in ndk (Ala-14-->Pro [Ala14Pro], Gly21Val, His117Gln, and Ala125Arg) which resulted in the loss of Ndk biochemical activity; hyperexpression of any of these four mutant genes did not restore alginate production to 8830R2::Cm. We identified six additional amino acid residues (Ser-43, Ala-56, Ser-69, Glu-80, Gly-91, and Asp-135) whose alteration resulted in the inability of Ndk to complement alginate production. After hyperproduction in 8830R2::Cm, it was determined that each of these six mutant Ndks was biochemically active. However, in four cases, the in vivo levels of Ndk were reduced, which consequently affected the growth of 8830R2::Cm in the presence of Tween 20. Two mutant Ndk proteins which could not complement the alginate synthesis defect in 8830R2::Cm were not affected in any characteristic examined in the present study. All of the mutant Ndks characterized which were still biochemically active formed membrane complexes with Pk, resulting in GTP synthesis. Two of the four Ndk activity mutants (His117Gln and Ala125Arg) identified were capable of being truncated to 12 kDa and formed a membrane complex with Pk; however, the complexes formed were inactive for GTP synthesis. The other two Ndk activity mutants could be truncated to 12 kDa but were not detected in membrane fractions. These results further our understanding of the role of Ndk in alginate synthesis and identify amino acid residues in Ndk which have not previously been studied as

  3. The mode of action alginic acid compound in the reduction of gastroesophageal reflux.

    PubMed

    Malmud, L S; Charkes, N D; Littlefield, J; Reilley, J; Stern, H; Rosenberg, R; Fisher, R S

    1979-10-01

    This study was designed to evaluate quantitatively the mode of action of alginic acid compound (AAC) in the treatment of patients with symptomatic gastroesophageal reflux. Gastroesophageal scintigraphy using an orall administered Tc-99m sulfur colloid solution was used to demonstrate that AAC decreased significantly the gastroesophageal reflux index from (9.9 +/- 1.3) % to (6.5 +/- 0.8) % (p less than 0.05). No alteration of lower esophageal sphincter pressure was observed. After ACC was suitably labeled with Sr-87m, a dual-nuclide scintigraphic technique was used to show that most (greater than 75%) of the AAC was located in the upper half of the stomach in both normal subjects and patients with gastroesophageal reflux. In those subjects in whom reflux did occur after treatment with AAC, the Sr-87m-AAC refluxed into the esophagus preferentially compared with the liquid containing Tc-99m sulfur colloid. These findings suggest that AAC dimishes gastroesophageal reflux by means of its foaming, floating, and viscous properties. PMID:231639

  4. Chitosan coated sodium alginate-chitosan nanoparticles loaded with 5-FU for ocular delivery: in vitro characterization and in vivo study in rabbit eye.

    PubMed

    Nagarwal, Ramesh C; Kumar, Rakesh; Pandit, J K

    2012-11-20

    The objective of the study was to develop chitosan (CH) coated sodium alginate-chitosan (SA-CH) nanoparticles, i.e. CH-SA-CH NPs loaded with 5-FU for ophthalmic delivery. Drug loaded nanoparticles (DNPs) were prepared by ionic gelation technique using sodium alginate (SA) and chitosan (CH) and then suspended in chitosan solution. The mean size of nanoparticles and morphology were characterized by dynamic light scattering, scanning electron microscopy, atomic force microscopy and zeta potential. The in vitro release was studied by dialysis membrane technique. The size and drug encapsulation efficiency were dependent on molar ratio of SA and CH. The size of SA-CH nanoparticles was significantly increased with changed morphology after CH coating. SA-CH nanoparticles did not show any interaction with mucin while an enhanced viscosity was observed on coating of nanoparticles with CH. CH-SA-CH DNPs presented a sustained release of 5-FU compared to the 5-FU solution with high burst effect. In vivo study in rabbit eye showed significantly greater level of 5-FU in aqueous humor compared to 5-FU solution. The enhanced mucoadhesiveness of CH-SA-CH DNPs results in higher bioavailability as compared to the uncoated nanoparticles. Optimized formulation was found non-irritant and tolerable when tested by modified Draize test in rabbit eye. PMID:22922098

  5. Lactic acid fermentation by cells immobilised on various porous cellulosic materials and their alginate/poly-lactic acid composites.

    PubMed

    Kumar, Mrinal Nishant; Gialleli, Angelika-Ioanna; Masson, Jean Bernard; Kandylis, Panagiotis; Bekatorou, Argyro; Koutinas, Athanasios A; Kanellaki, Maria

    2014-08-01

    Porous delignified cellulose (or tubular cellulose, abbr. TC) from Indian Mango (Mangifera indica) and Sal (Shorea robusta) wood and Rice husk, and TC/Ca-alginate/polylactic acid composites, were used as Lactobacillus bulgaricus immobilisation carriers leading to improvements in lactic acid fermentation of cheese whey and synthetic lactose media, compared to free cells. Specifically, shorter fermentation rates, higher lactic acid yields (g/g sugar utilised) and productivities (g/Ld), and higher amounts of volatile by-products were achieved, while no significant differences were observed on the performance of the different immobilised biocatalysts. The proposed biocatalysts are of food grade purity, cheap and easy to prepare, and they are attractive for bioprocess development based on immobilised cells. Such composite biocatalysts may be used for the co-immobilisation of different microorganisms or enzymes (in separate layers of the biocatalyst), to efficiently conduct different types of fermentations in the same bioreactor, avoiding inhibition problems of chemical or biological (competition) nature. PMID:24690466

  6. The Effect of Chondroitin Sulphate and Hyaluronic Acid on Chondrocytes Cultured within a Fibrin-Alginate Hydrogel.

    PubMed

    Little, Christopher J; Kulyk, William M; Chen, Xiongbiao

    2014-01-01

    Osteoarthritis is a painful degenerative joint disease that could be better managed if tissue engineers can develop methods to create long-term engineered articular cartilage tissue substitutes. Many of the tissue engineered cartilage constructs currently available lack the chemical stimuli and cell-friendly environment that promote the matrix accumulation and cell proliferation needed for use in joint cartilage repair. The goal of this research was to test the efficacy of using a fibrin-alginate hydrogel containing hyaluronic acid (HA) and/or chondroitin sulphate (CS) supplements for chondrocyte culture. Neonatal porcine chondrocytes cultured in fibrin-alginate hydrogels retained their phenotype better than chondrocytes cultured in monolayer, as evidenced by analysis of their relative expression of type II versus type I collagen mRNA transcripts. HA or CS supplementation of the hydrogels increased matrix glycosaminoglycan (GAG) production during the first week of culture. However, the effects of these supplements on matrix accumulation were not additive and were no longer observed after two weeks of culture. Supplementation of the hydrogels with CS or a combination of both CS and HA increased the chondrocyte cell population after two weeks of culture. Statistical analysis indicated that the HA and CS treatment effects on chondrocyte numbers may be additive. This research suggests that supplementation with CS and/or HA has positive effects on cartilage matrix production and chondrocyte proliferation in three-dimensional (3D) fibrin-alginate hydrogels. PMID:25238548

  7. Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy

    PubMed Central

    Díaz-Visurraga, Judith; Daza, Carla; Pozo, Claudio; Becerra, Abraham; von Plessing, Carlos; García, Apolinaria

    2012-01-01

    Background The objective of this study was to clarify the intermolecular interaction between antibacterial copper nanoparticles (Cu NPs) and sodium alginate (NaAlg) by Fourier transform infrared spectroscopy (FT-IR) and to process the spectra applying two-dimensional infrared (2D-IR) correlation analysis. To our knowledge, the addition of NaAlg as a stabilizer of copper nanoparticles has not been previously reported. It is expected that the obtained results will provide valuable additional information on: (1) the influence of reducing agent ratio on the formation of copper nanoparticles in order to design functional nanomaterials with increased antibacterial activity, and (2) structural changes related to the incorporation of Cu NPs into the polymer matrix. Methods Cu NPs were prepared by microwave heating using ascorbic acid as reducing agent and NaAlg as stabilizing agent. The characterization of synthesized Cu NPs by ultraviolet visible spectroscopy, transmission electron microscopy (TEM), electron diffraction analysis, X-ray diffraction (XRD), and semiquantitative analysis of the weight percentage composition indicated that the average particle sizes of Cu NPs are about 3–10 nm, they are spherical in shape, and consist of zerovalent Cu and Cu2O. Also, crystallite size and relative particle size of stabilized Cu NPs were calculated by XRD using Scherrer’s formula and FT from the X-ray diffraction data. Thermogravimetric analysis, differential thermal analysis, differential scanning calorimetry (DSC), FT-IR, second-derivative spectra, and 2D-IR correlation analysis were applied to studying the stabilization mechanism of Cu NPs by NaAlg molecules. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of stabilized Cu NPs against five bacterial strains (Staphylococccus aureus ATCC 6538P, Escherichia coli ATCC 25922 and O157: H7, and Salmonella enterica serovar Typhimurium ATCC 13311 and 14028) were evaluated with macrodilution

  8. Hyaluronic acid and alginate covalent nanogels by template cross-linking in polyion complex micelle nanoreactors.

    PubMed

    De Santis, Serena; Diociaiuti, Marco; Cametti, Cesare; Masci, Giancarlo

    2014-01-30

    Hyaluronic acid (HA) and alginate (AL) covalent nanogels cross-linked with l-lysine ethyl ester were prepared by template chemical cross-linking of the polysaccharide in polyion complex micelle (PIC) nanoreactors. By using this method we were able to prepare HA and AL nanogels without organic solvents. PICs were prepared by using poly(ethylene oxide)-block-poly[(3-acrylamidopropyl)-trimethylammonium chloride] (PEO-b-PAMPTMA) or poly[(N-isopropylacrylamide)-block-PAMPTMA] (PNIPAAM-b-PAMPTMA). Only PNIPAAM-b-PAMPTMA block copolymers allowed to prepare PIC with small and controlled size. Short polysaccharide chains (Xn=50 and 63 for AL and HA, respectively, where Xn is the number of monosaccharidic units present in the polysaccharide) where used to optimize PIC formation. The remarkable difference in charge density and rigidity of HA and AL did not have a significant influence on the formation of PICs. PICs with small size (diameter of about 50-80 nm) and low polydispersity were obtained up to 5mg/mL of polymer. After cross-linking with l-lysine ethyl ester, the nanoreactors were dissociated by adding NaCl. The nanogels were easily purified and isolated by dialysis. The dissociation of the nanoreactors and the formation of the nanogels were confirmed by (1)H NMR, DLS, TEM and ζ-potential measurements. The size of the smallest nanogels in solution in the swollen state was 50-70 nm in presence of salt and 80-100 nm in water. PMID:24299754

  9. Magnetic Pycnoporus sanguineus-loaded alginate composite beads for removing dye from aqueous solutions.

    PubMed

    Yang, Chih-Hui; Shih, Ming-Cheng; Chiu, Han-Chen; Huang, Keng-Shiang

    2014-01-01

    Dye pollution in wastewater is a severe environmental problem because treating water containing dyes using conventional physical, chemical, and biological treatments is difficult. A conventional process is used to adsorb dyes and filter wastewater. Magnetic filtration is an emerging technology. In this study, magnetic Pycnoporus sanguineus-loaded alginate composite beads were employed to remove a dye solution. A white rot fungus, P. sanguineus, immobilized in alginate beads were used as a biosorbent to remove the dye solution. An alginate polymer could protect P. sanguineus in acidic environments. Superparamagnetic nanomaterials, iron oxide nanoparticles, were combined with alginate gels to form magnetic alginate composites. The magnetic guidability of alginate composites and biocompatibility of iron oxide nanoparticles facilitated the magnetic filtration and separation processes. The fungus cells were immobilized in loaded alginate composites to study the influence of the initial dye concentration and pH on the biosorption capacity. The composite beads could be removed easily post-adsorption by using a magnetic filtration process. When the amount of composite beads was varied, the results of kinetic studies of malachite green adsorption by immobilized cells of P. sanguineus fitted well with the pseudo-second-order model. The results indicated that the magnetic composite beads effectively adsorbed the dye solution from wastewater and were environmentally friendly. PMID:24945580

  10. Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media.

    PubMed

    Ng, Choong Hey; Yang, Kun-Lin

    2016-01-01

    Esterification of organic acids and alcohols in aqueous media is very inefficient due to thermodynamic constraints. However, fermentation processes used to produce organic acids and alcohols are often conducted in aqueous media. To produce esters in aqueous media, biphasic alginate beads with immobilized lipase are developed for in situ esterification of butanol and butyric acid. The biphasic beads contain a solid matrix of calcium alginate and hexadecane together with 5 mg/mL of lipase as the biocatalyst. Hexadecane in the biphasic beads serves as an organic phase to facilitate the esterification reaction. Under optimized conditions, the beads are able to catalyze the production of 0.16 mmol of butyl butyrate from 0.5 mmol of butyric acid and 1.5 mmol of butanol. In contrast, when monophasic beads (without hexadecane) are used, only trace amount of butyl butyrate is produced. One main application of biphasic beads is in simultaneous fermentation and esterification (SFE) because the organic phase inside the beads is very stable and does not leach out into the culture medium. SFE is successfully conducted with an esterification yield of 6.32% using biphasic beads containing iso-octane even though the solvent is proven toxic to the butanol-producing Clostridium spp. PMID:26672465

  11. Nanoparticles modified with multiple organic acids

    NASA Technical Reports Server (NTRS)

    Cook, Ronald Lee (Inventor); Luebben, Silvia DeVito (Inventor); Myers, Andrew William (Inventor); Smith, Bryan Matthew (Inventor); Elliott, Brian John (Inventor); Kreutzer, Cory (Inventor); Wilson, Carolina (Inventor); Meiser, Manfred (Inventor)

    2007-01-01

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  12. Nanoparticles modified with multiple organic acids

    DOEpatents

    Cook, Ronald Lee; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew; Elliott, Brian John; Kreutzer, Cory; Wilson, Carolina; Meiser, Manfred

    2007-07-17

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  13. Development and characterization of a new carrier for vaccine delivery based on calcium-alginate nanoparticles: Safe immunoprotective approach against scorpion envenoming.

    PubMed

    Nait Mohamed, Faez Amokrane; Laraba-Djebari, Fatima

    2016-05-23

    To enhance humoral defense against diseases, vaccine formulation is routinely prepared to improve immune response. Studies in nanomaterials as a carrier of vaccine delivery are promising and interesting. In this study, attenuated Androctonus australis hector (Aah) venom and its toxic fraction were encapsulated into different formulations inside calcium-alginate nanoparticles (Ca-Alg Nps), and used as a vaccine delivery system against scorpion envenomation. Ca-Alg Nps were prepared by ionic gelation and characterized. An immunization schedule was undertaken in rabbits in order to study how Aah venom entrapped in Ca-Alg Nps might induce protective immunity. Results showed the influence of different parameters on the suitable nanoparticle formation. They also showed no toxicity of free Ca-Alg Nps and a different inflammatory profile depending on the nanovaccine formulations. More interestingly, evaluation of specific IgG titer and IgG1/IgG2a isotype balance revealed a protective effect with the nanoparticles encapsulating the attenuated antigens. Challenge up to 6 LD 50 of native venom, allowed to an important immunoprotection of all immunized rabbits, with no recorded death. Taken together and with respect to the properties of nanoparticles and high immunogenicity, calcium-alginate nanoparticles could be considered as a new promising adjuvant system and a vaccine delivery against scorpion envenomation. PMID:27109567

  14. Olfaction Presentation System Using Odor Scanner and Odor-Emitting Apparatus Coupled with Chemical Capsules of Alginic Acid Polymer

    NASA Astrophysics Data System (ADS)

    Sakairi, Minoru; Nishimura, Ayako; Suzuki, Daisuke

    For the purpose of the application of odor to information technology, we have developed an odor-emitting apparatus coupled with chemical capsules made of alginic acid polymer. This apparatus consists of a chemical capsule cartridge including chemical capsules of odor ingredients, valves to control odor emission, and a temperature control unit. Different odors can be easily emitted by using the apparatus. We have developed an integrated system of vision, audio and olfactory information in which odor strength can be controlled coinciding with on-screen moving images based on analytical results from the odor scanner.

  15. Depolymerization of alginate into a monomeric sugar acid using Alg17C, an exo-oligoalginate lyase cloned from Saccharophagus degradans 2-40.

    PubMed

    Kim, Hee Taek; Chung, Jae Hyuk; Wang, Damao; Lee, Jieun; Woo, Hee Chul; Choi, In-Geol; Kim, Kyoung Heon

    2012-03-01

    Macroalgae are considered to be promising biomass for fuels and chemicals production. To utilize brown macroalgae as biomass, the degradation of alginate, which is the main carbohydrate of brown macroalgae, into monomeric units is a critical prerequisite step. Saccharophagus degradans 2-40 is capable of degrading more than ten different polysaccharides including alginate, and its genome sequence demonstrated that this bacterium contains several putative alginate lyase genes including alg17C. The gene for Alg17C, which is classified into the PL-17 family, was cloned and overexpressed in Escherichia coli. The recombinant Alg17C was found to preferentially act on oligoalginates with degrees of polymerization higher than 2 to produce the alginate monomer, 4-deoxy-L: -erythro-5-hexoseulose uronic acid. The optimal pH and temperature for Alg17C were found to be 6 and 40 °C, respectively. The K (M) and V (max) of Alg17C were 35.2 mg/ml and 41.7 U/mg, respectively. Based on the results of this study, Alg17C could be used as the key enzyme to produce alginate monomers in the process of utilizing alginate for biofuels and chemicals production. PMID:22281843

  16. Multilayer sodium alginate beads with porous core containing chitosan based nanoparticles for oral delivery of anticancer drug.

    PubMed

    Li, Jing; Jiang, Changqing; Lang, Xuqian; Kong, Ming; Cheng, Xiaojie; Liu, Ya; Feng, Chao; Chen, Xiguang

    2016-04-01

    To develop efficient and safe anticancer drug doxorubicin hydrochloride (DOX) delivery system for oral chemotherapy, chitosan based nanoparticles (CS/CMCS-NPs) composed of chitosan (CS) and o-carboxymeymethy chitosan (CMCS) were immobilized in multilayer sodium alginate beads (NPs-M-Beads). Two kinds of NPs-M-Beads, with or without porous core, were respectively prepared by internal or external ionic gelation method. In the small intestine, the intact CS/CMCS-NPs were able to escape from porous-beads and sustained release the loading DOX. In vivo results showed that the DOX could be efficiently absorbed by small intestine of SD rat and the higher concentration of the DOX in major organs of rats were found after oral administration of Porous-Beads, which were about 2-4 folds higher than that of non-porous-beads. These results suggested that the NPs-M-Beads with porous core to be exciting and promising for oral delivery of DOX. PMID:26724684

  17. Enhanced antitumor activity of the photosensitizer meso-Tetra(N-methyl-4-pyridyl) porphine tetra tosylate through encapsulation in antibody-targeted chitosan/alginate nanoparticles.

    PubMed

    Abdelghany, Sharif M; Schmid, Daniela; Deacon, Jill; Jaworski, Jakub; Fay, Francois; McLaughlin, Kirsty M; Gormley, Julie A; Burrows, James F; Longley, Daniel B; Donnelly, Ryan F; Scott, Christopher J

    2013-02-11

    meso-Tetra(N-methyl-4-pyridyl) porphine tetra tosylate (TMP) is a photosensitizer that can be used in photodynamic therapy (PDT) to induce cell death through generation of reactive oxygen species in targeted tumor cells. However, TMP is highly hydrophilic, and therefore, its ability to accumulate intracellularly is limited. In this study, a strategy to improve TMP uptake into cells has been investigated by encapsulating the compound in a hydrogel-based chitosan/alginate nanoparticle formulation. Nanoparticles of 560 nm in diameter entrapping 9.1 μg of TMP per mg of formulation were produced and examined in cell-based assays. These particles were endocytosed into human colorectal carcinoma HCT116 cells and elicited a more potent photocytotoxic effect than free drug. Antibodies targeting death receptor 5 (DR5), a cell surface apoptosis-inducing receptor up-regulated in various types of cancer and found on HCT116 cells, were then conjugated onto the particles. The conjugated antibodies further enhanced uptake and cytotoxic potency of the nanoparticle. Taken together, these results show that antibody-conjugated chitosan/alginate nanoparticles significantly enhanced the therapeutic effectiveness of entrapped TMP. This novel approach provides a strategy for providing targeted site-specific delivery of TMP and other photosensitizer drugs to treat colorectal tumors using PDT. PMID:23327610

  18. Cell proliferation on PVA/sodium alginate and PVA/poly(γ-glutamic acid) electrospun fiber.

    PubMed

    Yang, Jen Ming; Yang, Jhe Hao; Tsou, Shu Chun; Ding, Chian Hua; Hsu, Chih Chin; Yang, Kai Chiang; Yang, Chun Chen; Chen, Ko Shao; Chen, Szi Wen; Wang, Jong Shyan

    2016-09-01

    To overcome the obstacles of easy dissolution of PVA nanofibers without crosslinking treatment and the poor electrospinnability of the PVA cross-linked nanofibers via electrospinning process, the PVA based electrospun hydrogel nanofibers are prepared with post-crosslinking method. To expect the electrospun hydrogel fibers might be a promising scaffold for cell culture and tissue engineering applications, the evaluation of cell proliferation on the post-crosslinking electrospun fibers is conducted in this study. At beginning, poly(vinyl alcohol) (PVA), PVA/sodium alginate (PVASA) and PVA/poly(γ-glutamic acid) (PVAPGA) electrospun fibers were prepared by electrospinning method. The electrospun PVA, PVASA and PVAPGA nanofibers were treated with post-cross-linking method with glutaraldehyde (Glu) as crosslinking agent. These electrospun fibers were characterized with thermogravimetry analysis (TGA) and their morphologies were observed with a scanning electron microscope (SEM). To support the evaluation and explanation of cell growth on the fiber, the study of 3T3 mouse fibroblast cell growth on the surface of pure PVA, SA, and PGA thin films is conducted. The proliferation of 3T3 on the electrospun fiber surface of PVA, PVASA, and PVAPGA was evaluated by seeding 3T3 fibroblast cells on these crosslinked electrospun fibers. The cell viability on electrospun fibers was conducted with water-soluble tetrazolium salt-1 assay (Cell Proliferation Reagent WST-1). The morphology of the cells on the fibers was also observed with SEM. The results of WST-1 assay revealed that 3T3 cells cultured on different electrospun fibers had similar viability, and the cell viability increased with time for all electrospun fibers. From the morphology of the cells on electrospun fibers, it is found that 3T3 cells attached on all electrospun fiber after 1day seeded. Cell-cell communication was noticed on day 3 for all electrospun fibers. Extracellular matrix (ECM) productions were found and

  19. Preparation and evaluation of hydrogel-composites from methacrylated hyaluronic acid, alginate, and gelatin for tissue engineering.

    PubMed

    Möller, Lena; Krause, Andreas; Dahlmann, Julia; Gruh, Ina; Kirschning, Andreas; Dräger, Gerald

    2011-02-01

    Hydrogels are three-dimensional water-insoluble hydrophilic natural or synthetic polymer networks made up of crosslinked water-soluble polymers. The purpose of this study was to develop and directly compare photo crosslinked hydrogels on the basis of pure gelatin, alginate and hyaluronic acid as well as their blends. The functionalization of starting materials with methacrylate moieties was evaluated by 1H-NMR spectroscopy. Hydrogels were prepared from methacrylates by photo cross-linking using UV light. The effect of changing the hydrogel composition was quantified through examination of hydrogel swelling behavior and rheological properties. In addition, the viability and adhesion of neonatal rat cardiomyocytes (NRCM) seeded onto the hydrogels was examined by in vivo imaging of NRCM-mediated scaffold contraction as well as by histological evaluation after immunostaining. Biological testing showed good biocompatibility and cell survival in the presence of all materials discussed. Adhesion of cells could only be observed in the presence of gelatin. Blends of gelatin, alginate and hyaluronic acid are promising candidates for the generation of non-toxic, biocompatible hydrogel scaffolds for tissue engineering. Variation of individual compound ratios in the blends can be used for a precise control of mechanical properties and may allow wide-ranging uses in various tissue engineering applications with different mechanical requirements. PMID:21374568

  20. Production of volatiles in fresh-cut apple: effect of applying alginate coatings containing linoleic acid or isoleucine.

    PubMed

    Maya-Meraz, Irma O; Espino-Díaz, Miguel; Molina-Corral, Francisco J; González-Aguilar, Gustavo A; Jacobo-Cuellar, Juan L; Sepulveda, David R; Olivas, Guadalupe I

    2014-11-01

    One of the main quality parameters in apples is aroma, its main precursors are fatty acids (FA) and amino acids (AA). In this study, alginate edible coatings were used as carriers of linoleic acid or isoleucine to serve as precursors for the production of aroma in cut apples. Apple wedges were immersed in a CaCl2 solution and coated with one of the following formulations: alginate solution (Alg-Ca), Alg-Ca-low-level linoleic acid (0.61 g/Lt), (LFA), Alg-Ca-high-level linoleic acid (2.44 g/L; HFA), Alg-Ca-low-level isoleucine (0.61 g/L; LAA), and Alg-Ca-high-level isoleucine (2.44 g/L; HAA). Apple wedges were stored at 3 °C and 85% relative humidity for 21 d and key volatiles were studied during storage. Addition of precursors, mainly isoleucine, showed to increase the production of some key volatiles on coated fresh-cut apples during storage. The concentration of 2-methyl-1-butanol was 4 times higher from day 12 to day 21 in HAA, while 2-methyl butyl acetate increased from day 12 to day 21 in HAA. After 21 d, HAA-apples presented a 40-fold value of 2-methyl-butyl acetate, compared to Alg-Ca cut apples. Values of hexanal increased during cut apple storage when the coating carried linoleic acid, mainly on HFA, from 3 to 12 d. The ability of apples to metabolize AA and FA depends on the concentration of precursors, but also depends on key enzymes, previous apple storage, among others. Further studies should be done to better clarify the behavior of fresh-cut apples as living tissue to metabolize precursors contained in edible coatings for the production of volatiles. PMID:25296624

  1. Alginate stabilized gold nanoparticle as multidrug carrier: Evaluation of cellular interactions and hemolytic potential.

    PubMed

    Dey, Soma; Sherly, M Caroline Diana; Rekha, M R; Sreenivasan, K

    2016-01-20

    This work delineates the synthesis of curcumin (Ccm) and methotrexate (MTX) conjugated biopolymer stabilized AuNPs (MP@Alg-Ccm AuNPs). The dual drug conjugated nano-vector was characterized by FTIR, (1)H NMR and UV-vis spectroscopic techniques. Hydrodynamic diameter and surface charge of the AuNPs were determined by DLS analysis and the spherical particles were visualized by TEM. MP@Alg-Ccm AuNPs exhibited improved cytotoxic potential against C6 glioma and MCF-7 cancer cell lines and was found to be highly hemocompatible. MP@Alg-Ccm AuNPs also exhibited active targeting efficiency against MCF-7 cancer cells due to the presence of "antifolate" drug MTX. Thus MP@Alg-Ccm AuNPs may find potential application in targeted combination chemotherapy for the treatment of cancer. The study is also interesting from the synthetic point of view because, here generation of AuNPs was done using "green chemical" alginate and dual drug conjugated AuNPs were created in two simple reaction steps using "green solvent" water. PMID:26572330

  2. Drug Nanoparticle Formulation Using Ascorbic Acid Derivatives

    PubMed Central

    Moribe, Kunikazu; Limwikrant, Waree; Higashi, Kenjirou; Yamamoto, Keiji

    2011-01-01

    Drug nanoparticle formulation using ascorbic acid derivatives and its therapeutic uses have recently been introduced. Hydrophilic ascorbic acid derivatives such as ascorbyl glycoside have been used not only as antioxidants but also as food and pharmaceutical excipients. In addition to drug solubilization, drug nanoparticle formation was observed using ascorbyl glycoside. Hydrophobic ascorbic acid derivatives such as ascorbyl mono- and di-n-alkyl fatty acid derivatives are used either as drugs or carrier components. Ascorbyl n-alkyl fatty acid derivatives have been formulated as antioxidants or anticancer drugs for nanoparticle formulations such as micelles, microemulsions, and liposomes. ASC-P vesicles called aspasomes are submicron-sized particles that can encapsulate hydrophilic drugs. Several transdermal and injectable formulations of ascorbyl n-alkyl fatty acid derivatives were used, including ascorbyl palmitate. PMID:21603195

  3. Adipic acid dihydrazide treated partially oxidized alginate beads for sustained oral delivery of flurbiprofen.

    PubMed

    Maiti, Sabyasachi; Singha, Kamalika; Ray, Somasree; Dey, Paramita; Sa, Biswanath

    2009-01-01

    In this study, periodate oxidation of sodium alginate was controlled such that the oxidized alginate could form isolatable beads with Ca(+2) ions. The beads of oxidized alginate having a degree of oxidation 1 mol%, entrapped 89% flurbiprofen and released almost all of its content within 1.5 h in pH 7.2 phosphate buffer solution. The beads were covalently crosslinked with adipic dihydrazide (ADH) in addition to ionic crosslinks and were characterized. Scanning electron microscopy revealed that the beads were spherical having smooth surfaces. The drug entrapment efficiency decreased (90-86%) with increasing concentration of ADH (2-6% w/v) in the gelation medium. However, the beads prolonged the drug release in alkaline dissolution medium up to 8 h depending upon the concentration of ADH. The beads prepared with 2% ADH swelled more rapidly and led to faster drug release in either pH 1.2 HCl solution or pH 7.2 phosphate buffer solution. The swelling tendencies were reduced and the drug release became slower with higher concentrations in either fluid. The drug diffusion from the beads followed super case II transport mechanism. FTIR spectroscopy indicated stable nature of flurbiprofen in the beads and therefore had potential as sustained oral delivery system for the drug. PMID:19235554

  4. Stabilizing Alginate Confinement and Polymer Coating of CO-Releasing Molecules Supported on Iron Oxide Nanoparticles To Trigger the CO Release by Magnetic Heating.

    PubMed

    Meyer, Hajo; Winkler, Felix; Kunz, Peter; Schmidt, Annette M; Hamacher, Alexandra; Kassack, Matthias U; Janiak, Christoph

    2015-12-01

    Maghemite (Fe2O3) iron oxide nanoparticles (IONPs) were synthesized, modified with covalent surface-bound CO-releasing molecules of a tri(carbonyl)-chlorido-phenylalaninato-ruthenium(II) complex (CORM), and coated with a dextran polymer. The time- and temperature-dependent CO release from this CORM-3 analogue was followed by a myoglobin assay. A new measurement method for the myoglobin assay was developed, based on confining "water-soluble" polymer-coated Dextran500k@CORM@IONP particles in hollow spheres of nontoxic and easily prepared calcium alginate. Dropping a mixture of Dextran500k@CORM@IONP and sodium alginate into a CaCl2 solution leads to stable hollow spheres of Ca(2+) cross-linked alginate which contain the Dextran500k@CORM@IONP particles. This "alginate-method" (i) protects CORM-3 analogues from rapid CO-displacement reactions with a protein, (ii) enables a spatial separation of the CORM from its surrounding myoglobin assay with the alginate acting as a CO-permeable membrane, and (iii) allows the use of substances with high absorptivity (such as iron oxide nanoparticles) in the myoglobin assay without interference in the optical path of the UV cell. Embedding the CORM@IONP nanoparticles in the alginate vessel represents a compartmentation of the reactive component and allows for close contact with, yet facile separation from, the surrounding myoglobin assay. The half-life of the CO release from Dextran500k@CORM@IONP particles surrounded by alginate was determined to be 890 ± 70 min at 20 °C. An acceleration of the CO release occurs at higher temperature with a half-life of 172 ± 27 min at 37 °C and 45 ± 7 min at 50 °C. The CO release can be triggered in an alternating current magnetic field (31.7 kA m(-1), 247 kHz, 39.9 mT) through local magnetic heating of the susceptible iron oxide nanoparticles. With magnetic heating at 20 °C in the bulk solution, the half-life of CO release from Dextran500k@CORM@IONP particles decreased to 155 ± 18 min

  5. Acid monolayer functionalized iron oxide nanoparticle catalysts

    NASA Astrophysics Data System (ADS)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  6. Acid-functionalized nanoparticles for biomass hydrolysis

    NASA Astrophysics Data System (ADS)

    Pena Duque, Leidy Eugenia

    Cellulosic ethanol is a renewable source of energy. Lignocellulosic biomass is a complex material composed mainly of cellulose, hemicellulose, and lignin. Biomass pretreatment is a required step to make sugar polymers liable to hydrolysis. Mineral acids are commonly used for biomass pretreatment. Using acid catalysts that can be recovered and reused could make the process economically more attractive. The overall goal of this dissertation is the development of a recyclable nanocatalyst for the hydrolysis of biomass sugars. Cobalt iron oxide nanoparticles (CoFe2O4) were synthesized to provide a magnetic core that could be separated from reaction using a magnetic field and modified to carry acid functional groups. X-ray diffraction (XRD) confirmed the crystal structure was that of cobalt spinel ferrite. CoFe2O4 were covered with silica which served as linker for the acid functions. Silica-coated nanoparticles were functionalized with three different acid functions: perfluoropropyl-sulfonic acid, carboxylic acid, and propyl-sulfonic acid. Transmission electron microscope (TEM) images were analyzed to obtain particle size distributions of the nanoparticles. Total carbon, nitrogen, and sulfur were quantified using an elemental analyzer. Fourier transform infra-red spectra confirmed the presence of sulfonic and carboxylic acid functions and ion-exchange titrations accounted for the total amount of catalytic acid sites per nanoparticle mass. These nanoparticles were evaluated for their performance to hydrolyze the beta-1,4 glycosidic bond of the cellobiose molecule. Propyl-sulfonic (PS) and perfluoropropyl-sulfonic (PFS) acid functionalized nanoparticles catalyzed the hydrolysis of cellobiose significantly better than the control. PS and PFS were also evaluated for their capacity to solubilize wheat straw hemicelluloses and performed better than the control. Although PFS nanoparticles were stronger acid catalysts, the acid functions leached out of the nanoparticle during

  7. Efficiency of barium removal from radioactive waste water using the combination of maghemite and titania nanoparticles in PVA and alginate beads.

    PubMed

    Majidnia, Zohreh; Idris, Ani; Majid, MuhdZaimiAbd; Zin, RosliMohamad; Ponraj, Mohanadoss

    2015-11-01

    In this paper, both maghemite (γ-Fe2O3) and titanium oxide (TiO2) nanoparticles were synthesized and mixed in various ratios and embedded in PVA and alginate beads. Batch sorption experiments were applied for removal of barium ions from aqueous solution under sunlight using the beads. The process has been investigated as a function of pH, contact time, temperature, initial barium ion concentration and TiO2:γ-Fe2O3 ratios (1:10, 1:60 and 1). The recycling attributes of these beads were also considered. Furthermore, the results revealed that 99% of the Ba(II) was eliminated in 150min at pH 8 under sunlight. Also, the maghemite and titania PVA-alginate beads can be readily isolated from the aqueous solution after the process and reused for at least 7 times without significant losses of their initial properties. The reduction of Ba(II) with maghemite and titania PVA-alginate beads fitted the pseudo first order and second order Langmuir-Hinshelwood (L-H) kinetic model. PMID:26275818

  8. Immobilization of Brassica oleracea chlorophyllase 1 (BoCLH1) and Candida rugosa lipase (CRL) in magnetic alginate beads: an enzymatic evaluation in the corresponding proteins.

    PubMed

    Yang, Chih-Hui; Yen, Chih-Chung; Jheng, Jen-Jyun; Wang, Chih-Yu; Chen, Sheau-Shyang; Huang, Pei-Yu; Huang, Keng-Shiang; Shaw, Jei-Fu

    2014-01-01

    Enzymes have a wide variety of applications in diverse biotechnological fields, and the immobilization of enzymes plays a key role in academic research or industrialization due to the stabilization and recyclability it confers. In this study, we immobilized the Brassica oleracea chlorophyllase 1 (BoCLH1) or Candida rugosa lipase (CRL) in magnetic iron oxide nanoparticles-loaded alginate composite beads. The catalytic activity and specific activity of the BoCLH1 and CRL entrapped in magnetic alginate composite beads were evaluated. Results show that the activity of immobilized BoCLH1 in magnetic alginate composite beads (3.36±0.469 U/g gel) was higher than that of immobilized BoCLH1 in alginate beads (2.96±0.264 U/g gel). In addition, the specific activity of BoCLH1 beads (10.90±1.521 U/mg protein) was higher than that immobilized BoCLH1 in alginate beads (8.52±0.758 U/mg protein). In contrast, the immobilized CRL in magnetic alginate composite beads exhibited a lower enzyme activity (11.81±0.618) than CRL immobilized in alginate beads (94.83±7.929), and the specific activity of immobilized CRL entrapped in magnetic alginate composite beads (1.99±0.104) was lower than immobilized lipase in alginate beads (15.01±1.255). A study of the degradation of magnetic alginate composite beads immersed in acidic solution (pH 3) shows that the magnetic alginate composite beads remain intact in acidic solution for at least 6 h, indicating the maintenance of the enzyme catalytic effect in low-pH environment. Finally, the enzyme immobilized magnetic alginate composite beads could be collected by an external magnet and reused for at least six cycles. PMID:25105918

  9. An alginate-antacid formulation (Gaviscon Double Action Liquid®) can eliminate the postprandial “acid pocket” in symptomatic GERD patients

    PubMed Central

    Kwiatek, Monika A.; Roman, Sabine; Fareeduddin, Anita; Pandolfino, John E.; Kahrilas, Peter J.

    2013-01-01

    SUMMARY BACKGROUND Recently, an “acid pocket” has been described in the proximal stomach, particularly evident postprandially in GERD patients, when heartburn is common. By creating a low density gel “raft” that floats on top of gastric contents, alginate-antacid formulations may neutralize the “acid pocket”. AIM We hypothesized that the postprandial “acid pocket” can be displaced distal to the esophagogastric junction (EGJ) by an alginate-antacid formulation. METHODS The “acid pocket” was studied in ten symptomatic GERD patients. Measurements were made using concurrent stepwise pH pull-throughs, high resolution manometry, and fluoroscopy in a semi-recumbent posture. Each subject was studied in three conditions: fasted, 20 min after consuming a high-fat meal and 20 min later after a 20 ml oral dose of an alginate-antacid formulation (Gaviscon Double Action Liquid®). The relative position of pH transition points (pH > 4) to the EGJ high-pressure zone was analyzed. RESULTS Most patients (8/10) exhibited an acidified segment extending from the proximal stomach into the EGJ when fasted that persisted postprandially. Gaviscon neutralized the acidified segment in 6 of the 8 subjects shifting the pH transition point significantly away from the EGJ. The length and pressure of the EGJ high-pressure zone were minimally affected. CONCLUSIONS Gaviscon can eliminate the “acid pocket” in GERD patients. Considering that EGJ length was unchanged throughout, this effect was likely attributable to the alginate “raft” displacing gastric contents away from the EGJ. These findings suggest the alginate-antacid formulation to be a well-targeted postprandial GERD therapy. PMID:21535446

  10. Alginate-modifying enzymes: biological roles and biotechnological uses

    PubMed Central

    Ertesvåg, Helga

    2015-01-01

    Alginate denotes a group of industrially important 1-4-linked biopolymers composed of the C-5-epimers β-D-mannuronic acid (M) and α-L-guluronic acid (G). The polysaccharide is manufactured from brown algae where it constitutes the main structural cell wall polymer. The physical properties of a given alginate molecule, e.g., gel-strength, water-binding capacity, viscosity and biocompatibility, are determined by polymer length, the relative amount and distribution of G residues and the acetyl content, all of which are controlled by alginate modifying enzymes. Alginate has also been isolated from some bacteria belonging to the genera Pseudomonas and Azotobacter, and bacterially synthesized alginate may be O-acetylated at O-2 and/or O-3. Initially, alginate is synthesized as polymannuronic acid, and some M residues are subsequently epimerized to G residues. In bacteria a mannuronan C-5-epimerase (AlgG) and an alginate acetylase (AlgX) are integral parts of the protein complex necessary for alginate polymerization and export. All alginate-producing bacteria use periplasmic alginate lyases to remove alginate molecules aberrantly released to the periplasm. Alginate lyases are also produced by organisms that utilize alginate as carbon source. Most alginate-producing organisms encode more than one mannuronan C-5 epimerase, each introducing its specific pattern of G residues. Acetylation protects against further epimerization and from most alginate lyases. An enzyme from Pseudomonas syringae with alginate deacetylase activity has been reported. Functional and structural studies reveal that alginate lyases and epimerases have related enzyme mechanisms and catalytic sites. Alginate lyases are now utilized as tools for alginate characterization. Secreted epimerases have been shown to function well in vitro, and have been engineered further in order to obtain enzymes that can provide alginates with new and desired properties for use in medical and pharmaceutical applications

  11. Targeted removal of trichlorophenol in water by oleic acid-coated nanoscale palladium/zero-valent iron alginate beads.

    PubMed

    Chang, Jaewon; Woo, Heesoo; Ko, Myoung-Soo; Lee, Jaesang; Lee, Seockheon; Yun, Seong-Taek; Lee, Seunghak

    2015-08-15

    A new material was developed and evaluated for the targeted removal of trichlorophenol (TCP) from among potential interferents which are known to degrade removal activity. To achieve TCP-targeted activity, an alginate bead containing nanoscale palladium/zero-valent iron (Pd/nZVI) was coated with a highly hydrophobic oleic acid layer. The new material (Pd/nZVI-A-O) preferentially sorbed TCP from a mixture of chlorinated phenols into the oleic acid cover layer and subsequently dechlorinated it to phenol. The removal efficacy of TCP by Pd/nZVI-A-O was not affected by co-existing organic substances such as Suwannee River humic acid (SRHA), whereas the material without the oleic acid layer (Pd/nZVI-A) became less effective with increasing SRHA concentration. The inorganic substances nitrate and phosphate significantly reduced the reactivity of Pd/nZVI-A, however, Pd/nZVI-A-O showed similar TCP removal efficacies regardless of the initial inorganic ion concentrations. The influence of bicarbonate on the TCP removal efficacies of both Pd/nZVI-A and Pd/nZVI-A-O was not significant. The findings from this study suggest that Pd/nZVI-A-O, with its targeted, constant reactivity for TCP, would be effective for treating this contaminant in surface water or groundwater containing various competitive substrates. PMID:25819991

  12. Hepatic effects of the clomazone herbicide in both its free form and associated with chitosan-alginate nanoparticles in bullfrog tadpoles.

    PubMed

    de Oliveira, Cristiane Ronchi; Fraceto, Leonardo Fernandes; Rizzi, Gisele Miglioranza; Salla, Raquel Fernanda; Abdalla, Fábio Camargo; Costa, Monica Jones; Silva-Zacarin, Elaine Cristina Mathias

    2016-04-01

    The use of agrochemicals in agriculture is intense and most of them could be carried out to aquatic environment. Nevertheless, there are only few studies that assess the effects of these xenobiotics on amphibians. Clomazone is an herbicide widely used in rice fields, where amphibian species live. Thus, those species may be threatened by non-target exposure. However, nanoparticles are being developed to be used as a carrier system for the agrochemicals. Such nanoparticles release the herbicide in a modified way, and are considered to be more efficient and less harmful to the environment. The aim of this study was to comparatively evaluate the effect of clomazone in its free form and associated with nanoparticles, in the liver of bullfrog tadpoles (Lithobates catesbeianus) when submitted to acute exposure for 96 h. According to semi-quantitative analysis, there was an increase in the frequency of melanomacrophage centres, in the accumulation of eosinophils and in lipidosis in the liver of experimental groups exposed to clomazone - in its free form and associated with nanoparticles - in comparison with the control group, and the nanotoxicity of chitosan-alginate nanoparticles. The increase of melanomacrophage centres in all exposed groups was significant (P < 0.0001) in comparison to control group. Therefore, the results of this research have shown that exposure to sublethal doses of the herbicide and nanoparticles triggered hepatic responses. Moreover, these results provided important data about the effect of the clomazone herbicide and organic nanoparticles, which act as carriers of agrochemicals, on the bullfrog tadpole liver. PMID:26874058

  13. Gaviscon Double Action Liquid (antacid & alginate) is more effective than antacid in controlling postprandial esophageal acid exposure in GERD patients; a double-blind crossover study

    PubMed Central

    De Ruigh, Annemijn; Roman, Sabine; Chen, Joan; Pandolfino, John E.; Kahrilas, Peter J.

    2015-01-01

    Background Recent studies have shown that Gaviscon Double Action Liquid (a combination alginate-antacid) administered postprandially co-localizes with the acid pocket, the ‘reservoir’ for postprandial acid reflux. Aim This study compared the effectiveness of Gaviscon Double Action Liquid to an equivalent strength antacid without alginate in controlling postprandial acid reflux in GERD patients. Methods 14 GERD patients undertook two 3.5-hour high-resolution manometry/pH-impedance studies during which they ate a standardized meal. In a double-blinded randomized crossover design they then took Gaviscon or CVS brand antacid, each with ~18 mmol/l acid neutralizing capacity. The primary outcome was distal esophageal acid exposure; secondary outcomes were number of reflux events, proximal extent of reflux, nadir pH of the refluxate, mechanism of reflux, and reflux symptoms scored with a validated instrument. Results 10 patients completed the study. Gaviscon studies had significantly less distal esophageal acid exposure and greater nadir refluxate pH in the 30–150 minute postprandial period than antacid studies. There were no differences in the number of reflux events (acid or weakly acidic) or the number of proximal reflux events (15–17 cm above the LES) with either study medication. Conclusions Gaviscon Double Action Liquid was more effective than an antacid without alginate in controlling postprandial esophageal acid exposure. However, the number and spatial distribution of reflux events within the esophagus were similar. This suggests that Gaviscon main effectiveness related to its co-localization with and displacement/neutralization of the post-prandial acid pocket, rather than preventing reflux. PMID:25041141

  14. Mussel-inspired adhesive and transferable free-standing films by self-assembling dexamethasone encapsulated BSA nanoparticles and vancomycin immobilized oxidized alginate.

    PubMed

    Han, Lu; Wang, Zhen-ming; Lu, Xiong; Dong, Li; Xie, Chao-ming; Wang, Ke-feng; Chen, Xiao-lang; Ding, Yong-hui; Weng, Lu-tao

    2015-02-01

    This study developed an adhesive and transferable free-standing (FS) film with dual function of osteoinductivity and antibacterial activity, which was obtained by sequentially assembling vancomycin immobilized oxidized sodium alginate and dexamethasone encapsulated chitosan coated BSA nanoparticles on a poly-dopamine layer. The FS films enabled the dual release of vancomycin and dexamethasone. The FS films had excellent osteoinductivity and antibacterial activity by cell culture and antibacterial assay. The FS film was detached from substrates and transferred to non-fouling surfaces by a wet transfer method, which demonstrated that the adhesive FS film is potential to modify biopolymers with non-fouling surfaces in mild and biocompatible conditions for biomedical applications. PMID:25601750

  15. Relevance of charge balance and hyaluronic acid on alginate-chitosan sponge microstructure and its influence on fibroblast growth.

    PubMed

    Orellana, Sandra L; Giacaman, Annesi; Pavicic, Francisca; Vidal, Alejandra; Moreno-Villoslada, Ignacio; Concha, Miguel

    2016-10-01

    The study of biomaterials by electrical charge scaling to explore the role of net charge on biocompatibility and suitability for tissue regeneration has been limited as has the search for products that could improve this first-rate variable. In the present study, we prepared sponges composed of chitosan/alginate (CS/ALG) with or without hyaluronic acid (HA) by mixing polymer stock solutions of different net electric charge ratios (n(+/) n(-) ), and then lyophilizing them to obtain porous materials. The electric charge ratios n(+/) n(-) studied were 0.3, 0.8, 1.0, and 2.5 for CS/ALG and 0.3, 1.0, 1.9, and 3.7 for CS/ALG/HA sponges. Under these conditions a role for net electric charge balance over sponge microstructure rearrangement, protection to dissolution, cellular proliferation, and cell-cell interactions was apparent, effects that were enhanced by copolymer modification with HA. Mass balance, electric charge, and specific products that influence both such as HA, have a potential in biomaterials for wound healing. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2537-2543, 2016. PMID:27238940

  16. Fabrication of a novel bone ash-reinforced gelatin/alginate/hyaluronic acid composite film for controlled drug delivery.

    PubMed

    Alemdar, Neslihan

    2016-10-20

    In this study, a novel pH-sensitive composite film with enhanced thermal and mechanical properties was prepared by the incorporation of bone ash at varying concentrations from 0 to 10v.% into gelatin/sodium alginate/hyaluronic acid (Gel/SA/HyA) polymeric structure for colon-specific drug delivery system. Films were characterized by FT-IR, SEM, and XRD analyses. Thermal and mechanical performances of films were determined by DSC, TGA and universal mechanical tester, respectively. Results proved that thermal stability and mechanical properties of bone ash-reinforced composite films improved significantly with respect to that of neat Gel/SA/HyA film. Cytotoxicity assay for composite films was carried out by using L929 cells. Water uptake capacity of films was determined by swelling test. Herein, release experiments of 5-Fluorouracil (5-FU) were performed in two different solutions (pH 2.1 and 7.4). The results assured that Gel/SA/HyA film containing BA could be considered as a potential biomaterial for controlled drug delivery systems. PMID:27474650

  17. Preparation and swelling behavior of a novel self-assembled β-cyclodextrin/acrylic acid/sodium alginate hydrogel.

    PubMed

    Huang, Zhanhua; Liu, Shouxin; Zhang, Bin; Wu, Qinglin

    2014-11-26

    A novel biodegradable β-cyclodextrin/acrylic acid/sodium alginate (CSA) hydrogel with a three-dimensional network structure was self-assembled by inverse suspension copolymerization. The CSA resin was pH sensitive and had good water absorption properties in pH 6-8 buffer solutions. At a β-CD:AA:SA mass ratio of 1:9:3 the CSA water absorbency was found to be 1403 g/g and the CSA hydrogel strength was 4.968 N. In 0.005-0.1 mol/L chloride salt and sulfate salt solutions the CSA water absorbencies increased as follows: NaCl>KCl>MgCl2>CaCl2>FeCl3, and Na2SO4>K2SO4>FeSO4>Al2(SO4)3, respectively. The release of water from the CSA hydrogel occurred slowly over 120 h. The biodegradation efficiency of the resin reached 85.3% for Lentinula edodes. The super water absorbency, good salt resistance and excellent water retention properties of CSA make it suitable for application as an agricultural water retention agent in saline soils. PMID:25256504

  18. Phenylboronic Acid-Mediated Tumor Targeting of Chitosan Nanoparticles

    PubMed Central

    Wang, Xin; Tang, Huang; Wang, Chongzhi; Zhang, Jialiang; Wu, Wei; Jiang, Xiqun

    2016-01-01

    The phenylboronic acid-conjugated chitosan nanoparticles were prepared by particle surface modification. The size, zeta potential and morphology of the nanoparticles were characterized by dynamic light scattering, zeta potential measurement and transmission electron microscopy. The cellular uptake, tumor penetration, biodistribution and antitumor activity of the nanoparticles were evaluated by using monolayer cell model, 3-D multicellular spheroid model and H22 tumor-bearing mice. The incorporation of phenylboronic acid group into chitosan nanoparticles impart a surface charge-reversible characteristic to the nanoparticles. In vitro evaluation using 2-D and 3-D cell models showed that phenylboronic acid-decorated nanoparticles were more easily internalized by tumor cells compared to non-decorated chitosan nanoparticles, and could deliver more drug into tumor cells due to the active targeting effect of boronic acid group. Furthermore, the phenylboronic acid-decorated nanoparticles displayed a deeper penetration and persistent accumulation in the multicellular spheroids, resulting in better inhibition growth to multicellular spheroids than non-decorated nanoparticles. Tumor penetration, drug distribution and near infrared fluorescence imaging revealed that phenylboronic acid-decorated nanoparticles could penetrate deeper and accumulate more in tumor area than non-decorated ones. In vivo antitumor examination demonstrated that the phenylboronic acid-decorated nanoparticles have superior efficacy in restricting tumor growth and prolonging the survival time of tumor-bearing mice than free drug and drug-loaded chitosan nanoparticles. PMID:27375786

  19. Phenylboronic Acid-Mediated Tumor Targeting of Chitosan Nanoparticles.

    PubMed

    Wang, Xin; Tang, Huang; Wang, Chongzhi; Zhang, Jialiang; Wu, Wei; Jiang, Xiqun

    2016-01-01

    The phenylboronic acid-conjugated chitosan nanoparticles were prepared by particle surface modification. The size, zeta potential and morphology of the nanoparticles were characterized by dynamic light scattering, zeta potential measurement and transmission electron microscopy. The cellular uptake, tumor penetration, biodistribution and antitumor activity of the nanoparticles were evaluated by using monolayer cell model, 3-D multicellular spheroid model and H22 tumor-bearing mice. The incorporation of phenylboronic acid group into chitosan nanoparticles impart a surface charge-reversible characteristic to the nanoparticles. In vitro evaluation using 2-D and 3-D cell models showed that phenylboronic acid-decorated nanoparticles were more easily internalized by tumor cells compared to non-decorated chitosan nanoparticles, and could deliver more drug into tumor cells due to the active targeting effect of boronic acid group. Furthermore, the phenylboronic acid-decorated nanoparticles displayed a deeper penetration and persistent accumulation in the multicellular spheroids, resulting in better inhibition growth to multicellular spheroids than non-decorated nanoparticles. Tumor penetration, drug distribution and near infrared fluorescence imaging revealed that phenylboronic acid-decorated nanoparticles could penetrate deeper and accumulate more in tumor area than non-decorated ones. In vivo antitumor examination demonstrated that the phenylboronic acid-decorated nanoparticles have superior efficacy in restricting tumor growth and prolonging the survival time of tumor-bearing mice than free drug and drug-loaded chitosan nanoparticles. PMID:27375786

  20. Poly(styrenesulfonic acid)-impregnated alginate capsule for the selective sorption of Pd(II) from a Pt(IV)-Pd(II) binary solution.

    PubMed

    Wei, Wei; Lin, Shuo; Reddy, D Harikishore Kumar; Bediako, John Kwame; Yun, Yeoung-Sang

    2016-11-15

    Poly(styrenesulfonic acid)-impregnated alginate capsule (PSSA-AC) was prepared using a simple fabrication process, and used for selective separation of Pd(II) and Pt(IV) from their mixture. Evaluation of the pH effect revealed that PSSA-AC had good Pd(II) selectivity especially when the pH was between 3 and 5 at which neutral species Pd(OH)2 are present. Experiments on metal penetration through the Ca(2+)-alginate film showed that anionic species hardly penetrate through the alginate film (acting as an ionic barrier). The selective sorption mechanism is proposed as the following steps: (1) selective penetration of the neutral Pd(OH)2 through the ionic barrier (Ca(2+)-alginate shell) and then (2) chelation reaction of the neutral Pd(OH)2 with the SO3(-) groups of PSSA in the core. The maximum Pd(II) uptake was 291.19±17.48mg/g, which was about 32 times higher than that of Pt(IV). The results of the sorption/desorption test indicated that the PSSA-AC has good reusability potential. Even through one cycle of sorption/desorption, Pd(II) and Pt(IV) were successfully separated from their mixture with significantly high purities of 98.65% Pd(II) and 98.71% Pt(IV). This study reports for the first time the feasibility and potential of ionic barrier-based sorbents as selective separation of precious metals which have different speciations. PMID:27399150

  1. Quaternized Chitosan/Alginate-Fe3O4 Magnetic Nanoparticles Enhance the Chemosensitization of Multidrug-Resistant Gastric Carcinoma by Regulating Cell Autophagy Activity in Mice.

    PubMed

    Li, Xiujuan; Feng, Jing; Zhang, Ran; Wang, Jinda; Su, Tao; Tian, Zuhong; Han, Dong; Zhao, Chuanxu; Fan, Miaomiao; Li, Congye; Liu, Bing; Feng, Xuyang; Nie, Yongzhan; Wu, Kaichun; Chen, Yundai; Deng, Hongbing; Cao, Feng

    2016-05-01

    Multidrug resistance (MDR) and targeted therapies present major challenges in tumor chemotherapy. Nanoparticles (NPs) hold promise for use in cancer theranostics due to their advantages in terms of tumor-targeted cytotoxicity and imaging. In this study, we developed N-((2-hydroxy-3-trimethylammonium) propyl) chitosan chloride (HTCC)/alginate-encapsulated Fe3O4 magnetic NPs (HTCC-MNPs) and applied them to MDR gastric cancer both in vivo and in vitro. HTCC-MNPs were fabricated from sodium alginate (ALG), Fe3O4 and HTCC using an ionic gelation method. The sizes and physical characteristics of the NPs were determined using dynamic light scattering, transmission electron microscopy (TEM) and zeta potential analysis. The HTCC-MNPs exhibited excellent water solubility and biocompatibility as well as significantly reduced cell viability in the drug-resistant cancer cell line SGC7901/ADR, but not in normal gastric cells (P < 0.05). An analysis of LC3 expression demonstrated the involvement of autophagy in HTCC-MNP cytotoxicity. Additionally, apoptosis was verified using a DNA content assay. HTCC-MNPs led to mitochondrial membrane potential loss, decreased ATP production and excessive reactive oxygen species (ROS) generation compared to a control group (P < 0.05). Magnetic resonance imaging showed enrichment of HTCC-MNPs in tumor-bearing mice. In vivo bioluminescence imaging and tumor volume measurements revealed that HTCC-MNPs markedly inhibited in vivo tumor growth (P < 0.05). In conclusion, HTCC-MNPs significantly inhibited MDR gastric tumor growth and reduced tumor volume via the induction of cellular autophagy and apoptosis, which was attributed to mitochondrial dysfunction and excessive ROS accumulation. PMID:27305817

  2. Oxidation of alginate and pectate biopolymers by cerium(IV) in perchloric and sulfuric acid solutions: A comparative kinetic and mechanistic study.

    PubMed

    Fawzy, Ahmed

    2016-03-15

    The kinetics of oxidation of alginate (Alg) and pectate (Pec) carbohydrate biopolymers was studied by spectrophotometry in aqueous perchloric and sulfuric acid solutions at fixed ionic strengths and temperature. In both acids, the reactions showed a first order dependence on [Ce(IV)], whereas the orders with respect to biopolymer concentrations are less than unity. In perchloric acid, the reactions exhibited less than unit orders with respect to [H(+)] whereas those proceeded in sulfuric acid showed negative fractional-first order dependences on [H(+)]. The effect of ionic strength and dielectric constant was studied. Probable mechanistic schemes for oxidation reactions were proposed. In both acids, the final oxidation products were characterized as mono-keto derivatives of both biopolymers. The activation parameters with respect to the slow step of the mechanisms were computed and discussed. The rate laws were derived and the reaction constants involved in the different steps of the mechanisms were calculated. PMID:26794772

  3. Alginate as a displacer for protein displacement chromatography.

    PubMed

    Chen, G; Scouten, W H

    1996-01-01

    Alginate use in displacement chromatography as a displacer has been studied. The experiments showed that untreated alginate is the basis of potential displacer for displacement chromatography, but needs to be cleaved into smaller chains. Alginate treated with ultrasound, which cleaves alginate into shorter polysaccharide chains, gave better displacement than untreated alginate, while alginate subjected to limited acid hydrolysis gave the best results in displacement chromatography. It was found that the mixture of ovalbumin and beta-lactoglobulin separated well, and several components of ovalbumin were also separated and purified when alginate hydrolysate was used as a displacer. beta-Lactoglobulins A and B, which have the same molecular weight and differ in isoelectric point by only 0.1 pH units, were displaced from Q-Sepharose by alginate hydrolysate. PMID:9174919

  4. Magneto-responsive alginate capsules

    NASA Astrophysics Data System (ADS)

    Degen, Patrick; Zwar, Elena; Schulz, Imke; Rehage, Heinz

    2015-05-01

    Upon incorporation of magnetic nanoparticles (mNPs) into gels, composite materials called ferrogels are obtained. These magneto-responsive systems have a wide range of potential applications including switches and sensors as well as drug delivery systems. In this article, we focus on the properties of calcium alginate capsules, which are widely used as carrier systems in medicine and technology. We studied the incorporation of different kinds of mNPs in matrix capsules and in the core and the shell of hollow particles. We found out that not all particle-alginate or particle-CaCl2 solution combinations were suitable for a successful capsule preparation on grounds of a destabilization of the nanoparticles or the polymer. For those systems allowing the preparation of switchable beads or capsules, we systematically studied the size and microscopic structure of the capsules, their magnetic behavior and mechanical resistance.

  5. A simple approach for morphology tailoring of alginate particles by manipulation ionic nature of polyurethanes.

    PubMed

    Daemi, Hamed; Barikani, Mehdi; Barmar, Mohammad

    2014-05-01

    A number of different ionic aqueous polyurethane dispersions (PUDs) were synthesized based on NCO-terminated prepolymers. Two different anionic and cationic polyurethane samples were synthesized using dimethylol propionic acid and N-methyldiethanolamine emulsifiers, respectively. Then, proper amounts of PUDs and sodium alginate were mixed to obtain a number of aqueous polyurethane dispersions-sodium alginate (PUD/SA) elastomers. The chemical structure, thermal, morphological, thermo-mechanical and mechanical properties, and hydrophilicity content of the prepared samples were studied by FTIR, EDX, DSC, TGA, SEM, DMTA, tensile testing and contact angle techniques. The cationic polyurethanes and their blends with sodium alginate showed excellent miscibility and highly stretchable properties, while the samples containing anionic polyurethanes and alginate illustrated a poor compatibility and no significant miscibility. The morphology of alginate particles shifted from nanoparticles to microparticles by changing the nature of PUDs from cationic to anionic types. The final cationic elastomers not only showed better mechanical properties but also were formulated easier than anionic samples. PMID:24560945

  6. Structural Characterization of Sodium Alginate and Calcium Alginate.

    PubMed

    Hecht, Hadas; Srebnik, Simcha

    2016-06-13

    Alginate readily aggregates and forms a physical gel in the presence of cations. The association of the chains, and ultimately gel structure and mechanics, depends not only on ion type, but also on the sequence and composition of the alginate chain that ultimately determines its stiffness. Chain flexibility is generally believed to decrease with guluronic residue content, but it is also known that both polymannuronate and polyguluronate blocks are stiffer than heteropolymeric blocks. In this work, we use atomistic molecular dynamics simulation to primarily explore the association and aggregate structure of different alginate chains under various Ca(2+) concentrations and for different alginate chain composition. We show that Ca(2+) ions in general facilitate chain aggregation and gelation. However, aggregation is predominantly affected by alginate monomer composition, which is found to correlate with chain stiffness under certain solution conditions. In general, greater fractions of mannuronic monomers are found to increase chain flexibility of heteropolymer chains. Furthermore, differences in chain guluronic acid content are shown to lead to different interchain association mechanisms, such as lateral association, zipper mechanism, and entanglement, where the mannuronic residues are shown to operate as an elasticity moderator and therefore promote chain association. PMID:27177209

  7. Permanent hair dye-incorporated hyaluronic acid nanoparticles.

    PubMed

    Lee, Hye-Young; Jeong, Young-Il; Kim, Da-Hye; Choi, Ki-Choon

    2013-01-01

    We prepared p-phenylenediamine (PDA)-incorporated nanoparticles using hyaluronic acid (HA). PDA-incorporated HA nanoparticles have spherical shapes and sizes were less than 300 nm. The results of FT-IR spectra indicated that PDA-incorporated HA nanoparticles were formed by ion-complex formation between amine group of PDA and carboxyl group of HA. Furthermore, powder-X-ray diffractogram (XRD) measurement showed that intrinsic crystalline peak of PDA disappeared by formation of nanoparticle with HA at XRD measurement. These results indicated that PDA-incorporated HA nanoparticles were formed by ion-complex formation. At drug release study, the higher PDA contents induced faster release rate from nanoparticles. PDA-incorporated nanoparticles showed reduced intrinsic toxicity against HaCaT human keratinocyte cells at MTT assay and apoptosis assay. We suggest that PDA-incorporated HA nanoparticles are promising candidates for novel permanent hair dye. PMID:23088321

  8. Optimization of process parameters for removal of heavy metals by biomass of Cu and Co-doped alginate-coated chitosan nanoparticles.

    PubMed

    Esmaeili, Akbar; Khoshnevisan, Najmeh

    2016-10-01

    In this study, the efficiency of alginate-coated chitosan nanoparticles (Alg-CS-NPs) for removal of heavy metals from industrial effluents was investigated. To this end, the researchers constructed a reactor containing biomass, using response surface methodology (RSM) for process optimization. Reactor tests were carried out with both synthetic and industrial effluents containing nickel. The optimum conditions to achieve maximum removal efficiency (RE) rates for both synthetic and industrial effluents were specified for contact time (0-120min), pH level (1-9), biomass dose (0.1-0.9g), and initial metal ion concentration (10-90mg/L). It was determined that 94.48% of the nickel could be removed at pH=3, 70mg/L initial nickel concentration, a dose of 0.3g biomass, and 30min contact time. The kinetic data fit well to a pseudo second-order model and the equilibrium data of the metal ions could be described well with Freundlich isotherm models. PMID:27416515

  9. Synthesis of magnetic alginate beads based on Fe3O4 nanoparticles for the removal of 3-methylindole from aqueous solution using Fenton process.

    PubMed

    Hammouda, Samia Ben; Adhoum, Nafaâ; Monser, Lotfi

    2015-08-30

    A novel magnetic heterogeneous catalyst has been developed by incorporation of iron(II) and magnetic functionalized nanoparticles Fe3O4 in alginate beads with the aim of using them in the advanced Fenton oxidation of a malodorous compound (3 methyl-indole: 3-MI). The effects of significant operational parameters such as initial pH, oxidant concentration and catalyst amount were investigated and optimized for a better removal of 3-MI at initial concentration of 20mgL(-1). Besides, the catalyst stability was evaluated according to the iron leached into the aqueous solution. Results revealed that the parameters affecting Fenton catalysis must be carefully chosen to avoid excessive iron release. Under optimized conditions, the magnetic catalyst exhibited a good catalytic performance. Total removal of 3 methyl indole and a remarkable organic mineralization, without significant leaching of iron, were attained within 120min at pH 3.0 by using 0.4gL(-1) of Fe-MABs and 9.8mmolL(-1) of H2O2. The novel magnetic catalyst would be of potential application due to its high efficiency, easy recovery and good structural stability. PMID:25867585

  10. 3D Porous Chitosan-Alginate Scaffolds as an In Vitro Model for Evaluating Nanoparticle-Mediated Tumor Targeting and Gene Delivery to Prostate Cancer.

    PubMed

    Wang, Kui; Kievit, Forrest M; Florczyk, Stephen J; Stephen, Zachary R; Zhang, Miqin

    2015-10-12

    Cationic nanoparticles (NPs) for targeted gene delivery are conventionally evaluated using 2D in vitro cultures. However, this does not translate well to corresponding in vivo studies because of the marked difference in NP behavior in the presence of the tumor microenvironment. In this study, we investigated whether prostate cancer (PCa) cells cultured in three-dimensional (3D) chitosan-alginate (CA) porous scaffolds could model cationic NP-mediated gene targeted delivery to tumors in vitro. We assessed in vitro tumor cell proliferation, formation of tumor spheroids, and expression of marker genes that promote tumor malignancy in CA scaffolds. The efficacy of NP-targeted gene delivery was evaluated in PCa cells in 2D cultures, PCa tumor spheroids grown in CA scaffolds, and PCa tumors in a mouse TRAMP-C2 flank tumor model. PCa cells cultured in CA scaffolds grew into tumor spheroids and displayed characteristics of higher malignancy as compared to those in 2D cultures. Significantly, targeted gene delivery was only observed in cells cultured in CA scaffolds, whereas cells cultured on 2D plates showed no difference in gene delivery between targeted and nontarget control NPs. In vivo NP evaluation confirmed targeted gene delivery, indicating that only CA scaffolds correctly modeled NP-mediated targeted delivery in vivo. These findings suggest that CA scaffolds serve as a better in vitro platform than 2D cultures for evaluation of NP-mediated targeted gene delivery to PCa. PMID:26347946

  11. Evaluation of sodium alginate as drug release modifier in matrix tablets.

    PubMed

    Liew, Celine Valeria; Chan, Lai Wah; Ching, Ai Ling; Heng, Paul Wan Sia

    2006-02-17

    Alginates are useful natural polymers suitable for use in the design of pharmaceutical dosage forms. However, the effects of particle size, viscosity and chemical composition of alginates on drug release from alginate matrix tablets are not clearly understood. Hence, 17 grades of sodium alginate with different particle size distributions, viscosities and chemical compositions were used to prepare matrix tablets at various concentrations to screen the factors influencing drug release from such matrices. Particle size was found to have an influence on drug release from these matrices. Sodium alginate was subsequently classified into several size fractions and also cryogenically milled to produce smaller particle size samples. Cryogenic milling could be successfully applied to pulverize coarse alginate particles without changing the quality through degradation or segregation. This study showed the significance of each alginate property in modulating drug release: particle size is important in initial alginic acid gel barrier formation as it affected the extent of burst release; higher alginate viscosity slowed down drug release rate in the buffer phase but enhanced release rate in the acid phase; high M-alginate might be more advantageous than high-G-alginate in sustaining drug release; and, the effect of increasing alginate concentration was greater with larger alginate particles. This can serve as a framework for formulators working with alginates. Furthermore, the results showed that sodium alginate matrices can sustain drug release for at least 8 h, even for a highly water-soluble drug in the presence of a water-soluble excipient. PMID:16364576

  12. Electrically controlled release of benzoic acid from poly(3,4-ethylenedioxythiophene)/alginate matrix: effect of conductive poly(3,4-ethylenedioxythiophene) morphology.

    PubMed

    Paradee, Nophawan; Sirivat, Anuvat

    2014-08-01

    A drug-loaded conductive polymer/hydrogel blend, benzoic acid-loaded poly(3,4-ethylenedioxythiophene/alginate (BA-loaded PEDOT/Alg) hydrogel, was used as a carrier/matrix for an electrical stimuli transdermal drug delivery system (TDDS). The effects of cross-linking ratio, PEDOT particle size, and electric field strength on the release mechanism and the diffusion coefficient (D) of BA were examined by using a modified Franz-diffusion cell. The diffusion scaling exponent value of BA is close to 0.5 which refers to the diffusion controlled mechanism, or the Fickian diffusion as the BA release mechanism. The D increased when there was a decrease in the cross-linking ratio due to the mesh size-hindering effect. When increasing electric field strength, the D of BA-loaded PEDOT/Alg hydrogel increased because the cathode-BA(-) electrorepulsion, electroinduced alginate expansion, and PEDOT electroneutralization simultaneously occurred. The highest D belonged to a blend with the smallest PEDOT particle and highest electrical conductivity. The D of BA was a function of the matrix mesh size except when drug size/mesh size was lower than 2.38 × 10(-3), where D of BA became mesh size independent as the matrix mesh size was extremely large. Thus, the fabricated conductive polymer hydrogel blends have a great potential to be used in TDDS under electrical stimulation. PMID:25059579

  13. A Comparative Study Between the Antibacterial Effect of Nisin and Nisin-Loaded Chitosan/Alginate Nanoparticles on the Growth of Staphylococcus aureus in Raw and Pasteurized Milk Samples.

    PubMed

    Zohri, Maryam; Alavidjeh, Mohammad Shafiee; Haririan, Ismaeil; Ardestani, Mehdi Shafiee; Ebrahimi, Seyed Esmaeil Sadat; Sani, Hadi Tarighati; Sadjadi, Seyed Kazem

    2010-12-01

    The aim of this study was to evaluate the antibacterial effect of nisin-loaded chitosan/alginate nanoparticles as a novel antibacterial delivery vehicle. The nisin-loaded nanoparticles were prepared using colloidal dispersion of the chitosan/alginate polymers in the presence of nisin. After the preparation of the nisin-loaded nanoparticles, their physicochemical properties such as size, shape, and zeta potential of the formulations were studied using scanning electron microscope and nanosizer instruments, consecutively. FTIR and differential scanning calorimetery studies were performed to investigate polymer-polymer or polymer-protein interactions. Next, the release kinetics and entrapment efficiency of the nisin-loaded nanoparticles were examined to assess the application potential of these formulations as a candidate vector. For measuring the antibacterial activity of the nisin-loaded nanoparticles, agar diffusion and MIC methods were employed. The samples under investigation for total microbial counts were pasteurized and raw milks each of which contained the nisin-loaded nanoparticles and inoculated Staphylococcus aureus (ATCC 19117 at 10(6) CFU/mL), pasteurized and raw milks each included free nisin and S. aureus (10(6) CFU/mL), and pasteurized and raw milks each had S. aureus (10(6) CFU/mL) in as control. Total counts of S. aureus were measured after 24 and 48 h for the pasteurized milk samples and after the time intervals of 0, 6, 10, 14, 18, and 24 h for the raw milk samples, respectively. According to the results, entrapment efficiency of nisin inside of the nanoparticles was about 90-95%. The average size of the nanoparticles was 205 nm, and the average zeta potential of them was -47 mV. In agar diffusion assay, an antibacterial activity (inhibition zone diameter, at 450 IU/mL) about 2 times higher than that of free nisin was observed for the nisin-loaded nanoparticles. MIC of the nisin-loaded nanoparticles (0.5 mg/mL) was about four times less than

  14. Sodium alginate-cross-linked polymyxin B sulphate-loaded solid lipid nanoparticles: Antibiotic resistance tests and HaCat and NIH/3T3 cell viability studies.

    PubMed

    Severino, Patrícia; Chaud, Marco V; Shimojo, Andrea; Antonini, Danilo; Lancelloti, Marcelo; Santana, Maria Helena A; Souto, Eliana B

    2015-05-01

    Polymyxins are a group of antibiotics with a common structure of a cyclic peptide with a long hydrophobic tail. Polymyxin B sulphate (PLX) has cationic charge, which is an obstacle for the efficient loading into Solid Lipid Nanoparticles (SLN). In the present paper, we describe an innovative method to load PLX into SLN to achieve the sustained release of the drug. PLX was firstly cross-linked with sodium alginate (SA) at different ratios (1:1, 1:2 and 1:3 SA/PLX), and loaded into SLN produced by high pressure homogenization (HPH). Optimized SLN were produced applying 500bar pressure and 5 homogenization cycles. The best results were obtained with SA/PLX (1:1), recording 99.08±1.2% for the association efficiency of the drug with SA, 0.99±10g for the loading capacity and 212.07±5.84% degree of swelling. The rheological profile of aqueous SA solution followed the typical behaviour of concentrated polymeric solutions, whereas aqueous SA/PLX solution exhibited a gel-like dynamic behaviour. Micrographs show that SA/PLX depicted a porous and discontinuous amorphous phase in different ratios. The encapsulation efficiency of SA/PLX (1:1) in SLN, the mean particle diameter, polydispersity index and zeta potential were, respectively, 82.7±5.5%; 439.5±20.42nm, 0.241±0.050 and -34.8±0.55mV. The effect of SLN on cell viability was checked in HaCat and NIH/3T3 cell lines, and the minimal inhibitory concentrations (MIC) were determined in Pseudomonas aeruginosa strains. SA/PLX-loaded SLN were shown to be less toxic than free PLX. Minimal inhibitory concentrations (MIC) showed the presence of the cross-linker polymer-drug complex, and SLN were shown to enhance MIC in the evaluated strains. PMID:25863712

  15. Stability of alginate microbead properties in vitro

    PubMed Central

    Moya, Monica L.; Morley, Michael; Khanna, Omaditya; Opara, Emmanuel C.

    2013-01-01

    Alginate microbeads have been investigated clinically for a number of therapeutic interventions, including drug delivery for treatment of ischemic tissues, cell delivery for tissue regeneration, and islet encapsulation as a therapy for type I diabetes. The physical properties of the microbeads play an important role in regulating cell behavior, protein release, and biological response following implantation. In this research alginate microbeads were synthesized, varying composition (mannuronic acid to guluronic acid ratio), concentration of alginate and needle gauge size. Following synthesis, the size, volume fraction, and morphometry of the beads were quantified. In addition, these properties were monitored over time in vitro in the presence of varying calcium levels in the microenvironment. The initial volume available for solute diffusion increased with alginate concentration and mannuronic (M) acid content, and bead diameter decreased with M content but increased with needle diameter. Interestingly, microbeads eroded completely in saline in less than 3 weeks regardless of synthesis conditions much faster than what has been observed in vivo. However, microbead stability was increased by the addition of calcium in the culture medium. Beads synthesized with low alginate concentration and high G content exhibited a more rapid change in physical properties even in the presence of calcium. These data suggest that temporal variations in the physical characteristics of alginate microbeads can occur in vitro depending on synthesis conditions and microbead environment. The results presented here will assist in optimizing the design of the materials for clinical application in drug delivery and cell therapy. PMID:22350778

  16. Use of alginate beads as carriers for lactic acid bacteria in a structured system and preliminary validation in a meat product.

    PubMed

    Corbo, Maria Rosaria; Bevilacqua, Antonio; Speranza, Barbara; Di Maggio, Barbara; Gallo, Mariangela; Sinigaglia, Milena

    2016-01-01

    This paper proposes the microencapsulation into alginate beads of 4 isolates of lactic acid bacteria (Lactobacillus spp.), previously isolated from pork meat. First, the beads were studied in relation to the encapsulation yield (EY), kinetic of cell release in a structured system, and survival throughout bead storage at 4 °C. EY was 93-96% and the survival of the encapsulated microorganisms was variable, with two isolates showing a bacterial population of 6.1-6.9 log cfu/g after 35 days under refrigerated conditions. Thereafter, the paper addressed a preliminary validation in a meat model system, containing salt, nitrites and nitrates, lactose, pepper, and then in a commercial preparation of pork meat. For the validation in pork meat, free cells were used as controls. Cell released from beads were able to achieve a significant acidification; in particular, after 7 days they showed the same results of free cells. PMID:26476507

  17. Enhanced formic acid oxidation on Cu-Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Dai, Lin; Zou, Shouzhong

    Developing catalysts with high activity and high resistance to surface poisoning remains a challenge in direct formic acid fuel cell research. In this work, copper-palladium nanoparticles were formed through a galvanic replacement process. After electrochemically selective dissolution of surface Cu, Pd-enriched Cu-Pd nanoparticles were formed. These particles exhibit much higher formic acid oxidation activities than that on pure Pd nanoparticles, and they are much more resistant to the surface poisoning. Possible mechanisms of catalytic activity enhancement are briefly discussed.

  18. Thiolation of Maghemite Nanoparticles by Dimercaptosuccinic Acid

    PubMed

    Fauconnier; Pons; Roger; Bee

    1997-10-15

    Magnetic particle-effector conjugates are widely used in vitro for cell sorting in various pathologies. The coupling between the particles and the effectors being realized through S-S bridges, the particles must first be thiolated before the coupling. In this work, the synthesis, in aqueous medium, of nanoparticles of maghemite thiolated by dimercaptosuccinic acid is described. The superficial complexation by a thiol-containing ligand induces a reductive dissolution of the oxide and leads to the adsorption of polydisulfide species coming from the oxidation of the ligand. Adsorption and redox reactions being strongly correlated to the composition of the medium, the amount of adsorbed ligand and the quantity of iron(II) released into the medium have been simultaneously determined, at various pH, for different concentrations of ligand added. The charge of the particles is drastically modified in the presence of a chelating agent; as a consequence, the colloidal stability is greatly affected and so the flocculation ranges of the complexed particles have been established for different pH. When the quantity of ligand added is sufficient (0.05 mol/mol of iron), the ferrofluid based on thiolated maghemite particles is stable between pH 3 and 11 and can be used for biomedical applications. Copyright 1997 Academic Press. Copyright 1997Academic Press PMID:9398425

  19. Nanoparticles of Esterified Polymalic Acid for Controlled Anticancer Drug Releasea

    PubMed Central

    Lanz-Landázuri, Alberto; Portilla-Arias, José; de Ilarduya, Antxon Martínez; García-Alvarez, Montserrat; Holler, Eggehard; Ljubimova, Julia

    2014-01-01

    Esterification of microbial poly(malic acid) is performed with either ethanol or 1-butanol to obtain polymalate conjugates capable to form nanoparticles (100–350 nm). Degradation under physiological conditions takes place with release of malic acid and the corresponding alcohol as unique degradation products. The anticancer drugs Temozolomide and Doxorubicin are encapsulated in nanoparticles with efficiency of 17 and 37%, respectively. In vitro drug release assays show that Temozolomide is almost completely discharged in a few hours whereas Doxorubicin is steadily released along several days. Drug-loaded nano-particles show remarkable effectiveness against cancer cells. Partially ethylated poly(malic acid) nano-particles are those showing the highest cellular uptake. PMID:24902676

  20. Cellular interactions of lauric acid and dextran-coated magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Pradhan, Pallab; Giri, Jyotsnendu; Banerjee, Rinti; Bellare, Jayesh; Bahadur, Dhirendra

    2007-04-01

    In vitro cytocompatibility and cellular interactions of lauric acid and dextran-coated magnetite nanoparticles were evaluated with two different cell lines (mouse fibroblast and human cervical carcinoma). Lauric acid-coated magnetite nanoparticles were less cytocompatible than dextran-coated magnetite nanoparticles and cellular uptake of lauric acid-coated magnetic nanoparticles was more than that of dextran-coated magnetite nanoparticles. Lesser cytocompatibility and higher uptake of lauric acid-coated magnetite nanoparticles as compared to dextran-coated magnetic nanoparticles may be due to different cellular interactions by coating material. Thus, coating plays an important role in modulation of biocompatibility and cellular interaction of magnetic nanoparticles.

  1. Synthesis and characterization of magnetite nanoparticles coated with lauric acid

    SciTech Connect

    Mamani, J.B.; Costa-Filho, A.J.; Cornejo, D.R.; Vieira, E.D.; Gamarra, L.F.

    2013-07-15

    Understanding the process of synthesis of magnetic nanoparticles is important for its implementation in in vitro and in vivo studies. In this work we report the synthesis of magnetic nanoparticles made from ferrous oxide through coprecipitation chemical process. The nanostructured material was coated with lauric acid and dispersed in aqueous medium containing surfactant that yielded a stable colloidal suspension. The characterization of magnetic nanoparticles with distinct physico-chemical configurations is fundamental for biomedical applications. Therefore magnetic nanoparticles were characterized in terms of their morphology by means of TEM and DLS, which showed a polydispersed set of spherical nanoparticles (average diameter of ca. 9 nm) as a result of the protocol. The structural properties were characterized by using X-ray diffraction (XRD). XRD pattern showed the presence of peaks corresponding to the spinel phase of magnetite (Fe{sub 3}O{sub 4}). The relaxivities r{sub 2} and r{sub 2}* values were determined from the transverse relaxation times T{sub 2} and T{sub 2}* at 3 T. Magnetic characterization was performed using SQUID and FMR, which evidenced the superparamagnetic properties of the nanoparticles. Thermal characterization using DSC showed exothermic events associated with the oxidation of magnetite to maghemite. - Highlights: • Synthesis of magnetic nanoparticles coated with lauric acid • Characterization of magnetic nanoparticles • Morphological, structural, magnetic, calorimetric and relaxometric characterization.

  2. Falsirhodobacter sp. alg1 Harbors Single Homologs of Endo and Exo-Type Alginate Lyases Efficient for Alginate Depolymerization

    PubMed Central

    Takahashi, Mami; Tanaka, Reiji; Miyake, Hideo; Shibata, Toshiyuki; Chow, Seinen; Kuroda, Kouichi; Ueda, Mitsuyoshi; Takeyama, Haruko

    2016-01-01

    Alginate-degrading bacteria play an important role in alginate degradation by harboring highly efficient and unique alginolytic genes. Although the general mechanism for alginate degradation by these bacteria is fairly understood, much is still required to fully exploit them. Here, we report the isolation of a novel strain, Falsirhodobacter sp. alg1, the first report for an alginate-degrading bacterium from the family Rhodobacteraceae. Genome sequencing reveals that strain alg1 harbors a primary alginate degradation pathway with only single homologs of an endo- and exo-type alginate lyase, AlyFRA and AlyFRB, which is uncommon among such bacteria. Subsequent functional analysis showed that both enzymes were extremely efficient to depolymerize alginate suggesting evolutionary interests in the acquirement of these enzymes. The exo-type alginate lyase, AlyFRB in particular could depolymerize alginate without producing intermediate products making it a highly efficient enzyme for the production of 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH). Based on our findings, we believe that the discovery of Falsirhodobacter sp. alg1 and its alginolytic genes hints at the potentiality of a more diverse and unique population of alginate-degrading bacteria. PMID:27176711

  3. Acid-Catalyzed Reaction of Epoxides on Atmospheric Nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, W.; Gomez-Hernandez, M.; Lal, V.; Qiu, C.; Khalizov, A. F.; Wang, L.; Zhang, R.

    2013-12-01

    Aerosol plays an important role in affecting the earth climate and harming human health. Atmospheric aerosols can be formed from either primary emissions or gas-to-particle conversion process. Numerous studies, including both experimental and theoretical, have been carried out to elucidate the mechanism of gas-to-particle conversion process (a.k.a. nucleation) and the later growth stage of newly formed nanoparticles. However, a complete list of species involving in the nucleation and growth processes of nanoparticles is still poorly understood. The growth of newly formed sulfuric acid - water nanoparticles has been suggested to involve several potential organic vapors, such as amines, glyoxal, 2-4 hexadienal, and epoxides. In the present study, new formed sulfuric acid -water nanoparticles were size selected by a differential mobility analyzer and exposed to epoxide vapors. The size-change after exposure was detected using the second differential mobility analyzer. The size-enlarged particles were then collected by an electrostatic precipitator, thermal vaporized, and analyzed by an ion drift chemical ionization mass spectrometer. Our results show that the sizes of nanoparticles are increased considerably and the magnitude of the increment in size is size-dependent. Mass spectrometry analysis of the nanoparticles after exposure demonstrates that low volatile organosulfate and oligomers are formed in nanoparticles upon their exposure to epoxide vapors.

  4. Evaluation of polylactic acid nanoparticles safety using Drosophila model.

    PubMed

    Legaz, Sophie; Exposito, Jean-Yves; Lethias, Claire; Viginier, Barbara; Terzian, Christophe; Verrier, Bernard

    2016-10-01

    Cytotoxicity of nanoparticles and their sub-lethal effect on cell behavior and cell fate are a high topic of studies in the nanomaterial field. With an explosion of nanoparticle types (size, shape, polarity, stiffness, composition, etc.), Drosophila has become an attractive animal model for high throughput analysis of these nanocarriers in the drug delivery field with applications in cancer therapy, or simply to generate a fast and complete cytotoxic study of a peculiar nanoparticle. In respect to that, we have conducted an in cellulo study of poly(lactic acid) (PLA) nanoparticle cytotoxicity, and determined that near lethal nanoparticle doses, oxidative stress as well as P53 and ATP pathways may lead to cell cycle arrest at G1, and ultimately to cell death. Neither viability nor the development of Drosophila larvae are affected by the ingestion of PLA nanoparticles at sub-lethal concentrations. Drosophila will be a useful model to study PLA and PLA-modified nanoparticle toxicity, and nanoparticle fate after ingestion. PMID:27108761

  5. Poly(amino acid) functionalized maghemite and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Perego, Davide; Masciocchi, Norberto; Guagliardi, Antonietta; Domínguez-Vera, José Manuel; Gálvez, Natividad

    2013-02-01

    Bimodal MRI/OI imaging probes are of great interest in nanomedicine. Although many organic polymers have been studied thoroughly for in vivo applications, reports on the use of poly(amino acid)s as coating polymers are scarce. In this paper, poly-(d-glutamic acid, d-lysine) (PGL) has been used for coating maghemite and gold nanoparticles. An advantage of this flexible and biocompatible polymer is that, once anchored to the nanoparticle surface, dangling lysine amino groups are available for the incorporation of new functionalities. As an example, Alexa Fluor derivatives have been attached to PGL-coated maghemite nanoparticles to obtain magnetic/fluorescent materials. These dual-property materials could be used as bimodal MRI/OI probes for in vivo imaging.

  6. Oleic acid-enhanced transdermal delivery pathways of fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Lo, Wen; Ghazaryan, Ara; Tso, Chien-Hsin; Hu, Po-Sheng; Chen, Wei-Liang; Kuo, Tsung-Rong; Lin, Sung-Jan; Chen, Shean-Jen; Chen, Chia-Chun; Dong, Chen-Yuan

    2012-05-01

    Transdermal delivery of nanocarriers provides an alternative pathway to transport therapeutic agents, alleviating pain, improving compliance of patients, and increasing overall effectiveness of delivery. In this work, enhancement of transdermal delivery of fluorescent nanoparticles and sulforhodamine B with assistance of oleic acid was visualized utilizing multiphoton microscopy (MPM) and analyzed quantitatively using multi-photon excitation-induced fluorescent signals. Results of MPM imaging and MPM intensity-based spatial depth-dependent analysis showed that oleic acid is effective in facilitating transdermal delivery of nanoparticles.

  7. Preparation and effect of Ca 2+ on water solubility, particle release and swelling properties of magnetic alginate films

    NASA Astrophysics Data System (ADS)

    Roger, S.; Talbot, D.; Bee, A.

    2006-10-01

    Magnetic natural films composed of alginate and maghemite nanoparticles are studied. A surface treatment by citrate ions of the magnetic nanoparticles is first required to limit interactions with carboxylate functions of alginate and to stabilize them in neutral pH. Sodium alginate films, with or without nanoparticles, are immersed in a calcium chloride bath to convert them into mixed sodium/calcium alginate films. The ion exchange process is quantified by the degree of substitution (DS) deduced from sodium and calcium content obtained by atomic absorption spectroscopy. The magnetic nanoparticles content is also analysed to correlate the release of the particles to the amount of calcium present in the film. Nanoparticles do not significantly change the ion exchange process. Water insoluble films, which do not release magnetic nanoparticles, are obtained for a complete conversion of sodium alginate into calcium alginate (DS value is thus close to the stoechiometric ratio equal to 0.5). Such increase in water resistance of alginate films is caused by the formation of a dense network by crosslinking of the alginate polymer with Ca ions which prevents the alginate from going out of the film. Swelling properties of the mixed films are then investigated as a function of calcium concentration and nanoparticles content. It is found that the swelling ability in water of the films decreases by increasing the immersion time in CaCl 2 bath, the swelling ratio is thus a measure of the extent of crosslinking

  8. Comparative characterization of three bacterial exo-type alginate lyases.

    PubMed

    Hirayama, Makoto; Hashimoto, Wataru; Murata, Kousaku; Kawai, Shigeyuki

    2016-05-01

    Alginate, a major acidic polysaccharide in brown macroalgae, has attracted attention as a carbon source for production of ethanol and other chemical compounds. Alginate is monomerized by exo-type alginate lyase into an unsaturated uronate; thus, this enzyme is critical for the saccharification and utilization of alginate. Although several exo-type alginate lyases have been characterized independently, their activities were not assayed under the same conditions or using the same unit definition, making it difficult to compare enzymatic properties or to select the most suitable enzyme for saccharification of alginate. In this study, we characterized the three bacterial exo-type alginate lyases under the same conditions: A1-IV of Sphingomonas sp. strain A1, Atu3025 of Agrobacterium tumefaciens, and Alg17c of Saccharophagus degradans. A1-IV had the highest specific activity as well as the highest productivity of uronate, whereas Alg17c had the lowest activity and productivity. Only dialyzed Atu3025 and Alg17c were tolerant to freezing. Alg17c exhibited a remarkable halotolerance, which may be advantageous for monomerization of alginate from marine brown algae. Thus, each enzyme exhibited particular desirable and undesirable properties. Our results should facilitate further utilization of the promising polysaccharide alginate. PMID:26827758

  9. PLGA/alginate composite microspheres for hydrophilic protein delivery.

    PubMed

    Zhai, Peng; Chen, X B; Schreyer, David J

    2015-11-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. PMID:26249587

  10. Alginate-Iron Speciation and Its Effect on In Vitro Cellular Iron Metabolism

    PubMed Central

    Horniblow, Richard D.; Dowle, Miriam; Iqbal, Tariq H.; Latunde-Dada, Gladys O.; Palmer, Richard E.

    2015-01-01

    Alginates are a class of biopolymers with known iron binding properties which are routinely used in the fabrication of iron-oxide nanoparticles. In addition, alginates have been implicated in influencing human iron absorption. However, the synthesis of iron oxide nanoparticles employs non-physiological pH conditions and whether nanoparticle formation in vivo is responsible for influencing cellular iron metabolism is unclear. Thus the aims of this study were to determine how alginate and iron interact at gastric-comparable pH conditions and how this influences iron metabolism. Employing a range of spectroscopic techniques under physiological conditions alginate-iron complexation was confirmed and, in conjunction with aberration corrected scanning transmission electron microscopy, nanoparticles were observed. The results infer a nucleation-type model of iron binding whereby alginate is templating the condensation of iron-hydroxide complexes to form iron oxide centred nanoparticles. The interaction of alginate and iron at a cellular level was found to decrease cellular iron acquisition by 37% (p < 0.05) and in combination with confocal microscopy the alginate inhibits cellular iron transport through extracellular iron chelation with the resulting complexes not internalised. These results infer alginate as being useful in the chelation of excess iron, especially in the context of inflammatory bowel disease and colorectal cancer where excess unabsorbed luminal iron is thought to be a driver of disease. PMID:26378798

  11. Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue.

    PubMed

    Jung, Kyung-Won; Choi, Brian Hyun; Hwang, Min-Jin; Jeong, Tae-Un; Ahn, Kyu-Hong

    2016-11-01

    Biomass-based granular activated carbon was successfully prepared by entrapping activated carbon powder derived from spent coffee grounds into calcium-alginate beads (SCG-GAC) for the removal of acid orange 7 (AO7) and methylene blue (MB) from aqueous media. The dye adsorption process is highly pH-dependent and essentially independent of ionic effects. The adsorption kinetics was satisfactorily described by the pore diffusion model, which revealed that pore diffusion was the rate-limiting step during the adsorption process. The equilibrium isotherm and isosteric heat of adsorption indicate that SCG-GAC possesses an energetically heterogeneous surface and operates via endothermic process in nature. The maximum adsorption capacities of SCG-GAC for AO7 (pH 3.0) and MB (pH 11.0) adsorption were found to be 665.9 and 986.8mg/g at 30°C, respectively. Lastly, regeneration tests further confirmed that SCG-GAC has promising potential in its reusability, showing removal efficiency of more than 80% even after seven consecutive cycles. PMID:27494099

  12. Synthesis of composite gelatin-hyaluronic acid-alginate porous scaffold and evaluation for in vitro stem cell growth and in vivo tissue integration.

    PubMed

    Singh, Deepti; Tripathi, Anuj; Zo, Sunmi; Singh, Dolly; Han, Sung Soo

    2014-04-01

    Engineering three-dimensional (3-D) porous scaffolds with precise bio-functional properties is one of the most important issues in tissue engineering. In the present study, a three-dimensional gelatin-hyaluronic acid-alginate (GHA) polymeric composite was synthesized by freeze-drying, which was followed by ionic crosslinking using CaCl2, and evaluated for its suitability in bone tissue engineering applications. The obtained matrix showed high porosity (85%), an interconnected pore morphology and a rapid swelling behavior. The rheological analysis of GHA showed a viscoelastic characteristic, which suggested a high load bearing capacity without fractural deformation. The influence of the GHA matrix on cell growth and on modulating the differentiation ability of mesenchymal stem cells was evaluated by different biochemical and immunostaining assays. The monitoring of cells over a period of four weeks showed increased cellular proliferation and osteogenic differentiation without external growth factors, compared with control (supplemented with osteogenic differentiation medium). The in vivo matrix implantation showed higher matrix-tissue integration and cell infiltration as the duration of the implant increased. These results suggest that a porous GHA matrix with suitable mechanical integrity and tissue compatibility is a promising substrate for the osteogenic differentiation of stem cells for bone tissue engineering applications. PMID:24572494

  13. Design of chitosan-based nanoparticles functionalized with gallic acid.

    PubMed

    Lamarra, J; Rivero, S; Pinotti, A

    2016-10-01

    Active nanoparticles based on chitosan could be applied as a support for the modulation of gallic acid delivery. In this sense, these nanostructures could be employed in different fields such as food, packaging, and pharmaceutical areas. The design parameters of chitosan-based nanoparticles functionalized with gallic acid (GA) were optimized through RSM by means of the analysis of zeta potential (ZP) and percentage encapsulation efficiency (PEE). The nanoparticles were prepared by ionotropic gelation using tripolyphosphate (TPP), at different combinations of chitosan (CH) concentration, CH:TPP ratio and GA. Global desirability methodology allowed finding the optimum formulation that included CH 0.76% (w/w), CH:TPP ratio of 5 and 37mgGA/gCH leading to ZP of +50mV and 82% of PEE. Analysis through QuickScan and turbidity demonstrated that the most stable nanoparticle suspensions were achieved combining concentrations of chitosan ranging between 0.5 and 0.75% with CH:TPP ratios higher than 3. These suspensions had high stability confirmed by means ZP and transmittance values which were higher than +25mV and 0.21 on average, respectively, as well as nanoparticle diameters of about 140nm. FTIR revealed the occurrence of both hydrogen bond and ionic interactions of CH-TPP which allowed the encapsulation and the improvement of the stability of the active agent. PMID:27287172

  14. A Novel Aldo-Keto Reductase, HdRed, from the Pacific Abalone Haliotis discus hannai, Which Reduces Alginate-derived 4-Deoxy-L-erythro-5-hexoseulose Uronic Acid to 2-Keto-3-deoxy-D-gluconate.

    PubMed

    Mochizuki, Shogo; Nishiyama, Ryuji; Inoue, Akira; Ojima, Takao

    2015-12-25

    Abalone feeds on brown seaweeds and digests seaweeds' alginate with alginate lyases (EC 4.2.2.3). However, it has been unclear whether the end product of alginate lyases (i.e. unsaturated monouronate-derived 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH)) is assimilated by abalone itself, because DEH cannot be metabolized via the Embden-Meyerhof pathway of animals. Under these circumstances, we recently noticed the occurrence of an NADPH-dependent reductase, which reduced DEH to 2-keto-3-deoxy-D-gluconate, in hepatopancreas extract of the pacific abalone Haliotis discus hannai. In the present study, we characterized this enzyme to some extent. The DEH reductase, named HdRed in the present study, could be purified from the acetone-dried powder of hepatopancreas by ammonium sulfate fractionation followed by conventional column chromatographies. HdRed showed a single band of ∼ 40 kDa on SDS-PAGE and reduced DEH to 2-keto-3-deoxy-D-gluconate with an optimal temperature and pH at around 50 °C and 7.0, respectively. HdRed exhibited no appreciable activity toward 28 authentic compounds, including aldehyde, aldose, ketose, α-keto-acid, uronic acid, deoxy sugar, sugar alcohol, carboxylic acid, ketone, and ester. The amino acid sequence of 371 residues of HdRed deduced from the cDNA showed 18-60% identities to those of aldo-keto reductase (AKR) superfamily enzymes, such as human aldose reductase, halophilic bacterium reductase, and sea hare norsolorinic acid (a polyketide derivative) reductase-like protein. Catalytic residues and cofactor binding residues known in AKR superfamily enzymes were fairly well conserved in HdRed. Phylogenetic analysis for HdRed and AKR superfamily enzymes indicated that HdRed is an AKR belonging to a novel family. PMID:26555267

  15. Transdermal iontophoresis of flufenamic acid loaded PLGA nanoparticles.

    PubMed

    Malinovskaja-Gomez, K; Labouta, H I; Schneider, M; Hirvonen, J; Laaksonen, T

    2016-06-30

    The objective of this study was to test in vitro a drug delivery system that combines nanoencapsulation and iontophoresis for the transdermal delivery of lipophilic model drug using poly(lactic-co-glycolic acid) (PLGA) as the carrier polymer. Negatively charged fluorescent nanoparticles loaded with negatively charged flufenamic acid were prepared. The colloidal properties of the particles were stable under iontophoretic current (constant, pulsed and alternating) profiles and in contact with skin barrier. The release of the drug from the particles was not affected by iontophoresis and remained always limited (≈50%), leading to significantly lower transdermal fluxes across human epidermis and full thickness porcine skin compared to respective free drug formulation. From nanoparticles, pulsed current profile resulted in comparable or higher fluxes compared to constant current profile although fluorescence imaging was not able to confirm deeper distribution of nanoparticles in skin. Based on our results, there is no clear advantage with respect to drug permeation from nanoencapsulating flufenamic acid into PLGA nanoparticles compared to free drug formulation, either in passive or iontophoretic delivery regimens. However, pulsed current iontophoresis could be an effective alternative instead of traditional constant current iontophoresis to enhance transdermal permeation of drugs from nanoencapsulated formulations. PMID:27131608

  16. Effects of added oligoguluronate on mechanical properties of Ca - alginate - oligoguluronate hydrogels depend on chain length of the alginate.

    PubMed

    Padoł, Anna Maria; Draget, Kurt Ingar; Stokke, Bjørn Torger

    2016-08-20

    The effect of adding shorter alginate fragments highly enriched in α-l-guluronic acid (oligoG) on the Young's modulus of the Ca-induced alginate hydrogels were determined using nanoindentation. Ca-alginate gels using two low and one high molecular weight alginate, with increasing amount of added oligoG, were prepared at constant 20mM total Ca(2+) by in situ release of the cation. Differences in the effect on the mechanical properties of increasing amount of oligoG to the various alginate samples were attributed to their different capability to support network connectivity by junction zone formation. Upon decreasing the fractional Ca-saturation of all the α-l-guluronic acid residues (G) present, Fsat, by increasing the oligoG concentration, the lower molecular weight alginates displayed the largest reduction in Young's modulus. This was suggested to be due to the few sequences of α-l-guluronic acid residues making up potential zones engaging in network connectivity of this alginate. Similar trends were observed for a low molecular weight alginate with larger fraction of G. The higher molecular weight sample displayed less reduction of Young's modulus associated with increasing concentration of oligoG. The consequences of reduction in effective, mean junction zone functionality and associated increase in sol fraction with added oligoG on the elastic properties thus depend on the chain length of the alginates. These finding suggest that effects of added oligoG on Ca-induced alginate gelation should connect the effect on junction zone formation to those mediating network connectivity. PMID:27178929

  17. Spray Freeze-Drying as an Alternative to the Ionic Gelation Method to Produce Chitosan and Alginate Nano-Particles Targeted to the Colon.

    PubMed

    Gamboa, Alexander; Araujo, Valeria; Caro, Nelson; Gotteland, Martin; Abugoch, Lilian; Tapia, Cristian

    2015-12-01

    Chitosan and alginate nano-composite (NP) carriers intended for colonic delivery containing prednisolone and inulin were obtained by two processes. Spray freeze-drying using chitosan (SFDC) or alginate (SFDA) was proposed as an alternative to the traditional chitosan-tripolyphosphate platform (CTPP). NPs were fully characterised and assessed for their yield of particles; level of prednisolone and inulin release in phosphate and Krebs buffers; and sensitivity to degradation by lysozyme, bacteria and faecal slurry. NPs based on chitosan showed similar properties (size, structure, viscoelastic behaviour), but those based on SFDC showed a higher mean release of both active ingredients, with similar efficiency of encapsulation and loading capacity for prednisolone but lower for inulin. SFDC was less degraded in the presence of lysozyme and E. coli and was degraded by B. thetaiotaomicron but not by faecal slurry. The results obtained with SFDA were promising because this NP showed good encapsulation parameters for both active ingredients and biological degradability by E. coli and faecal slurry. However, it will be necessary to use alginate derivatives to reduce its solubility and improve its mechanical behaviour. PMID:26305273

  18. Design of an effective bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate (ATMP-FA) and optimization by Box-Behnken model for biodiesel esterification synthesis of oleic acid over ATMP-FA.

    PubMed

    Liu, Wei; Yin, Ping; Liu, Xiguang; Qu, Rongjun

    2014-12-01

    Biodiesel production has become an intense research area because of rapidly depleting energy reserves and increasing petroleum prices together with environmental concerns. This paper focused on the optimization of the catalytic performance in the esterification reaction of oleic acid for biodiesel production over the bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate ATMP-FA. The reaction parameters including catalyst amount, ethanol to oleic acid molar ratio and reaction temperature have been optimized by response surface methodology (RSM) using the Box-Behnken model. It was found that the reaction temperature was the most significant factor, and the best conversion ratio of oleic acid could reach 93.17% under the reaction conditions with 9.53% of catalyst amount and 8.62:1 of ethanol to oleic acid molar ratio at 91.0 °C. The research results show that two catalytic species could work cooperatively to promote the esterification reaction, and the bifunctional ATMP-FA is a potential catalyst for biodiesel production. PMID:25310862

  19. Solid Lipid Nanoparticles Loaded with Retinoic Acid and Lauric Acid as an Alternative for Topical Treatment of Acne Vulgaris.

    PubMed

    Silva, Elton Luiz; Carneiro, Guilherme; De Araújo, Lidiane Advíncula; Trindade, Mariana de Jesus Vaz; Yoshida, Maria Irene; Oréfice, Rodrigo Lambert; Farias, Luis de Macêdo; De Carvalho, Maria Auxiliadora Roque; Dos Santos, Simone Gonçalves; Goulart, Gisele Assis Castro; Alves, Ricardo José; Ferreira, Lucas Antônio Miranda

    2015-01-01

    Topical therapy is the first choice for the treatment of mild to moderate acne and all-trans retinoic acid is one of the most used drugs. The combination of retinoids and antimicrobials is an innovative approach for acne therapy. Recently, lauric acid, a saturated fatty acid, has shown strong antimicrobial activity against Propionibacterium acnes. However, topical application of retinoic acid is followed by high incidence of side-effects, including erythema and irritation. Solid lipid nanoparticles represent an alternative to overcome these side-effects. This work aims to develop solid lipid nanoparticles loaded with retinoic acid and lauric acid and evaluate their antibacterial activity. The influence of lipophilic stearylamine on the characteristics of solid lipid nanoparticles was investigated. Solid lipid nanoparticles were characterized for size, zeta potential, encapsulation efficiency, differential scanning calorimetry and X-ray diffraction. The in vitro inhibitory activity of retinoic acid-lauric acid-loaded solid lipid nanoparticles was evaluated against Propionibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis. High encapsulation efficiency was obtained at initial time (94 ± 7% and 100 ± 4% for retinoic acid and lauric acid, respectively) and it was demonstrated that lauric acid-loaded-solid lipid nanoparticles provided the incorporation of retinoic acid. However, the presence of stearylamine is necessary to ensure stability of encapsulation. Moreover, retinoic acid-lauric acid-loaded solid lipid nanoparticles showed growth inhibitory activity against Staphylococcus epidermidis, Propionibacterium acnes and Staphylococcus aureus, representing an interesting alternative for the topical therapy of acne vulgaris. PMID:26328443

  20. Effects of composition and structure of alginates on adsorption of divalent metals

    NASA Astrophysics Data System (ADS)

    Nai-Yu, Zheng; Yan-Xia, Zhang; Xiao, Fan; Li-Jun, Han

    1994-03-01

    Results of a series of experiments (on the adsorption of divalent metal ions by dried alginic acid, Na and Ca alginates of different composition and block structure) conducted in this systematic study of the effects of the composition and structure of alginates on the static adsorption equilibrium of divalent metal ions indicate that the properties of alginate adsorption to divalent metal ions are highly different, depending not only on the cations used, but also on the form and structure of the alginates. There is close correlation between the adsorption properties and the structure of the alginates. The selectivity coefficient of Na alginate for Cd-Sr ion exchange tends to increase with the increase of the M/G ratio in alginate, whereas the adsorption capacity of Ca alginate for Cu2+ ion decrease with the increase of the G-block or the average length of the G-block(bar N_G ) and the total adsorption capacity of alginic acid is found to vary in the same order as the F MM(diad frequency) in alginate in the mixed solution of Sr2+, Ba2+ and Cd2+.

  1. Alginate Particles as Platform for Drug Delivery by the Oral Route: State-of-the-Art

    PubMed Central

    2014-01-01

    Pharmaceutical research and development aims to design products with ensured safety, quality, and efficacy to treat disease. To make the process more rational, coherent, efficient, and cost-effective, the field of Pharmaceutical Materials Science has emerged as the systematic study of the physicochemical properties and behavior of materials of pharmaceutical interest in relation to product performance. The oral route is the most patient preferred for drug administration. The presence of a mucus layer that covers the entire gastrointestinal tract has been exploited to expand the use of the oral route by developing a mucoadhesive drug delivery system that showed a prolonged residence time. Alginic acid and sodium and potassium alginates have emerged as one of the most extensively explored mucoadhesive biomaterials owing to very good cytocompatibility and biocompatibility, biodegradation, sol-gel transition properties, and chemical versatility that make possible further modifications to tailor their properties. The present review overviews the most relevant applications of alginate microparticles and nanoparticles for drug administration by the oral route and discusses the perspectives of this biomaterial in the future. PMID:25101184

  2. ''Pulling'' Nanoparticles into Water: Phase Transfer of Oleic Acid Stabilized Monodisperse Nanoparticles into Aqueous Solutions of alpha-Cyclodextrin

    SciTech Connect

    Wang, Y.; Wong, J.F.; Teng, X.; Lin, X.Z.; Yang, H.

    2003-10-18

    (B204)This paper describes a general method to drastically improve the disparity of oleic acid stabilized nanoparticles in aqueous solutions. We use oleic acid stabilized monodisperse nanoparticles of iron oxides and silver as model systems, and have modified the surface properties of these nanoparticles through the formation of an inclusion complex between surface-bound surfactant molecules and alpha-cyclodextrin (alpha-CD). After the modification, the nanoparticles of both iron oxide and Ag can transfer from hydrophobic solvents, such as hexane, to alpha-CD aqueous phase. The efficiency of the phase transfer to the aqueous solutions depend son the initial alpha-CD concentration. The alpha-CD/oleic acid complex stabilized nanoparticles can be stable for long periods of time in aqueous phase under ambient atmospheric conditions. Transmission electron microscopy (TME), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform-infrared (FT-IR) spectroscopy, and colorimetric methods have been used in the characterization of these nanoparticles.

  3. Characterization of AlgMsp, an Alginate Lyase from Microbulbifer sp. 6532A

    PubMed Central

    Swift, Steven M.; Hudgens, Jeffrey W.; Heselpoth, Ryan D.; Bales, Patrick M.; Nelson, Daniel C.

    2014-01-01

    Alginate is a polysaccharide produced by certain seaweeds and bacteria that consists of mannuronic acid and guluronic acid residues. Seaweed alginate is used in food and industrial chemical processes, while the biosynthesis of bacterial alginate is associated with pathogenic Pseudomonas aeruginosa. Alginate lyases cleave this polysaccharide into short oligo-uronates and thus have the potential to be utilized for both industrial and medicinal applications. An alginate lyase gene, algMsp, from Microbulbifer sp. 6532A, was synthesized as an E.coli codon-optimized clone. The resulting 37 kDa recombinant protein, AlgMsp, was expressed, purified and characterized. The alginate lyase displayed highest activity at pH 8 and 0.2 M NaCl. Activity of the alginate lyase was greatest at 50°C; however the enzyme was not stable over time when incubated at 50°C. The alginate lyase was still highly active at 25°C and displayed little or no loss of activity after 24 hours at 25°C. The activity of AlgMsp was not dependent on the presence of divalent cations. Comparing activity of the lyase against polymannuronic acid and polyguluronic acid substrates showed a higher turnover rate for polymannuronic acid. However, AlgMSP exhibited greater catalytic efficiency with the polyguluronic acid substrate. Prolonged AlgMsp-mediated degradation of alginate produced dimer, trimer, tetramer, and pentamer oligo-uronates. PMID:25409178

  4. Antioxidant poly(lactic-co-glycolic) acid nanoparticles made with α-tocopherol-ascorbic acid surfactant.

    PubMed

    Astete, Carlos E; Dolliver, Debra; Whaley, Meocha; Khachatryan, Lavrent; Sabliov, Cristina M

    2011-12-27

    The goal of the study was to synthesize a surfactant made of α-tocopherol (vitamin E) and ascorbic acid (vitamin C) of antioxidant properties dubbed as EC, and to use this surfactant to make poly(lactic-co-glycolic) acid (PLGA) nanoparticles. Self-assembled EC nanostructures and PLGA-EC nanoparticles were made by nanoprecipitation, and their physical properties (size, size distribution, morphology) were studied at different salt concentrations, surfactant concentrations, and polymer/surfactant ratios. EC surfactant was shown to form self-assembled nanostructures in water with a size of 22 to 138 nm in the presence of sodium chloride, or 12 to 31 nm when synthesis was carried out in sodium bicarbonate. Polymeric PLGA-EC nanoparticles presented a size of 90 to 126 nm for 40% to 120% mass ratio PLGA to surfactant. For the same mass ratios, the PLGA-Span80 formed particles measured 155 to 216 nm. Span80 formed bilayers, whereas EC formed monolayers at the interfaces. PLGA-EC nanoparticles and EC showed antioxidant activity based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay measurements using UV and EPR techniques, antioxidant activity which is not characteristic to commercially available Span80. The thiobarbituric acid reactive substances (TBARS) assay for lipid peroxidation showed that PLGA nanoparticles with EC performed better as antioxidants than the EC nanoassembly or the free vitamin C. Nanoparticles were readily internalized by HepG2 cells and were localized in the cytoplasm. The newly synthesized EC surfactant was therefore found successful in forming uniform, small size polymeric nanoparticles of intrinsic antioxidant properties. PMID:22017172

  5. The Alginate Demonstration: Polymers, Food Science, and Ion Exchange

    NASA Astrophysics Data System (ADS)

    Waldman, Amy Sue; Schechinger, Linda; Govindarajoo, Geeta; Nowick, James S.; Pignolet, Louis H.

    1998-11-01

    We have recently devised a polymer demonstration involving the crosslinking and decrosslinking of alginate, a polysaccharide isolated from seaweed. The polymer is composed of D-mannuronic acid and L-guluronic acid subunits and is a component of cell walls. It is commonly used as a thickener in foods such as ice cream and fruit-filled snacks. For the demonstration, a 2% solution of sodium alginate is poured into a 1% solution of calcium chloride. Nontoxic calcium alginate "worms" form due to crosslinking of the polymer. Alternatively, the commercially available antacid Gaviscon can be used as a source of sodium alginate. The crosslinks can then be broken by shaking the worms in brine. The demonstration is a fine addition to any chemical educator's repertoire of polymer experiments.

  6. Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation.

    PubMed

    Falkeborg, Mia; Cheong, Ling-Zhi; Gianfico, Carlo; Sztukiel, Katarzyna Magdalena; Kristensen, Kasper; Glasius, Marianne; Xu, Xuebing; Guo, Zheng

    2014-12-01

    Alginate oligosaccharides (AOs) prepared from alginate, by alginate lyase-mediated depolymerization, were structurally characterized by mass spectrometry, infrared spectrometry and thin layer chromatography. Studies of their antioxidant activities revealed that AOs were able to completely (100%) inhibit lipid oxidation in emulsions, superiorly to ascorbic acid (89% inhibition). AOs showed radical scavenging activity towards ABTṠ, hydroxyl, and superoxide radicals, which might explain their excellent antioxidant activity. The radical scavenging activity is suggested to originate mainly from the presence of the conjugated alkene acid structure formed during enzymatic depolymerization. According to the resonance hybrid theory, the parent radicals of AOs are delocalized through allylic rearrangement, and as a consequence, the reactive intermediates are stabilized. AOs were weak ferrous ion chelators. This work demonstrated that AOs obtained from a facile enzymatic treatment of abundant alginate is an excellent natural antioxidant, which may find applications in the food industry. PMID:24996323

  7. Gold nanoparticles with different amino acid surfaces: serum albumin adsorption, intracellular uptake and cytotoxicity.

    PubMed

    Cai, Huanxin; Yao, Ping

    2014-11-01

    Gold nanoparticles with aspartate, glycine, leucine, lysine, and serine surfaces were produced from the mixed solutions of HAuCl4 and respective amino acids via UV irradiation. The amino acids bind to the nanoparticle surfaces via amine groups and their carboxylic groups extend out to stabilize the nanoparticles. The nanoparticles have diameters of 15-47 nm in pH 7.4 aqueous solution and have diameters of 62-73 nm after 48 h incubation in cell culture containing serum. The nanoparticles adsorb human and bovine serum albumins on their surfaces by specific interactions, characterized by the intrinsic fluorescence quenching of the albumins. The albumin adsorption effectively decreases the aggregation of the nanoparticles in cell culture and also decreases the intracellular uptake of the nanoparticles. The gold nanoparticles produced from leucine and lysine, which have amphiphilic groups on their surfaces, present better biocompatibility than the other gold nanoparticles. PMID:25466455

  8. Microfluidic generation of hollow Ca-alginate microfibers.

    PubMed

    Meng, Zhi-Jun; Wang, Wei; Xie, Rui; Ju, Xiao-Jie; Liu, Zhuang; Chu, Liang-Yin

    2016-07-01

    This work reports on an efficient microfluidic approach for continuous production of hollow Ca-alginate microfibers with controllable structures and functions. A coaxial microcapillary microfluidic device combined with a rotator is constructed to produce a cylindrical flow jet with four aqueous solutions as templates for continuous fabrication and collection of microfibers. A four-aqueous-phase flow jet with an intermediate buffer flow between the Ca(2+)-containing and alginate-containing flows is used as the template for microfiber fabrication. The buffer flow efficiently controls the diffusion of Ca(2+) into the alginate-containing flow as well as the crosslinking reaction, thus ensuring the continuous fabrication of hollow Ca-alginate microfibers under relatively low flow rates without clogging of the microchannel. The structure of the hollow microfibers can be flexibly adjusted by changing the flow rates and device dimensions. Meanwhile, the continuous fabrication process of the microfibers allows flexible incorporation of a functional component into the sheath flow for functionalization and addition of active substances in the core flow for encapsulation. This is demonstrated by fabricating hollow Ca-alginate microfibers with a wall containing magnetic nanoparticles for magnetic functionalization and with hollow internals containing Chlorella pyrenoidosa cells for confined growth. This work provides an efficient strategy for continuous fabrication of functional hollow Ca-alginate microfibers with controllable structures and functions. PMID:27302737

  9. Mechanistic insights into interaction of humic acid with silver nanoparticles.

    PubMed

    Manoharan, Vijayan; Ravindran, Aswathy; Anjali, C H

    2014-01-01

    Humic acid (HA) is one of the major components of the natural organic matter present in the environment that alters the fate and behavior of silver nanoparticles (Ag NPs). Transformation of Ag NPs happens upon interaction with HA, thereby, changing both physical and chemical properties. Fluorescence spectroscopy and scanning electron microscopy (SEM) were used to analyze the interaction of Ag NPs with HA. In pH and time-dependent studies, the near field electro dynamical environment of Ag NPs influenced the fluorescence of HA, indicated by fluorescence enhancement. SEM revealed not only morphological changes, but also significant reduction in size of Ag NPs after interaction with HA. Based on these studies, a probable mechanism was proposed for the interaction of HA with Ag NPs, suggesting the possible transformation that these nanoparticles can undergo in the environment. PMID:23801156

  10. Practical preparation procedures for docetaxel-loaded nanoparticles using polylactic acid-co-glycolic acid

    PubMed Central

    Keum, Chang-Gu; Noh, Young-Wook; Baek, Jong-Suep; Lim, Ji-Ho; Hwang, Chan-Ju; Na, Young-Guk; Shin, Sang-Chul; Cho, Cheong-Weon

    2011-01-01

    Background Nanoparticles fabricated from the biodegradable and biocompatible polymer, polylactic-co-glycolic acid (PLGA), are the most intensively investigated polymers for drug delivery systems. The objective of this study was to explore fully the development of a PLGA nanoparticle drug delivery system for alternative preparation of a commercial formulation. In our nanoparticle fabrication, our purpose was to compare various preparation parameters. Methods Docetaxel-loaded PLGA nanoparticles were prepared by a single emulsion technique and solvent evaporation. The nanoparticles were characterized by various techniques, including scanning electron microscopy for surface morphology, dynamic light scattering for size and zeta potential, x-ray photoelectron spectroscopy for surface chemistry, and high-performance liquid chromatography for in vitro drug release kinetics. To obtain a smaller particle, 0.2% polyvinyl alcohol, 0.03% D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), 2% Poloxamer 188, a five-minute sonication time, 130 W sonication power, evaporation with magnetic stirring, and centrifugation at 8000 rpm were selected. To increase encapsulation efficiency in the nanoparticles, certain factors were varied, ie, 2–5 minutes of sonication time, 70–130 W sonication power, and 5–25 mg drug loading. Results A five-minute sonication time, 130 W sonication power, and a 10 mg drug loading amount were selected. Under these conditions, the nanoparticles reached over 90% encapsulation efficiency. Release kinetics showed that 20.83%, 40.07%, and 51.5% of the docetaxel was released in 28 days from nanoparticles containing Poloxamer 188, TPGS, or polyvinyl alcohol, respectively. TPGS and Poloxamer 188 had slower release kinetics than polyvinyl alcohol. It was predicted that there was residual drug remaining on the surface from x-ray photoelectron spectroscopy. Conclusion Our research shows that the choice of surfactant is important for controlled release of

  11. Prospective, randomized, and active controlled study of the efficacy of alginic acid and antacid in the treatment of patients with endoscopy-negative reflux disease

    PubMed Central

    Lai, I-Rue; Wu, Ming-Shiang; Lin, Jaw-Town

    2006-01-01

    AIM: To assess the efficacy and safety of a compound containing alginic acid plus antacid (Topaal®) compared to equal-strength antacid (Nacid®) in patients with endoscopy-negative reflux disease (ENRD). METHODS: A total of 121 patients with ENRD were randomized to receive Topaal® (65 patients) or Nacid® (56 patients) for 6 weeks, with a consultation every 3 weeks. The primary end-point assessment was the change in the severity of heartburn as evaluated using a visual analog scale (VAS) at 6 weeks. The secondary end-point assessments were the VAS at 3 weeks, the change of frequency of the reflux symptom, the change of quality of life and the adverse effects. RESULTS: Demographics of randomized subjects in each treatment group were comparable except that the Topaal® group included more males. The baseline characteristics between the groups were similar. After 6 weeks of treatment, the reduction of VAS of heartburn was more prominent in the Topaal® group (-6.29 cm vs -4.11 cm). At the 3rd week, Topaal® group showed greater reduction of VAS for heartburn (P = 0.0016), regurgitation (P = 0.0006), vomiting (P  = 0.0373), and belching (P  <0.0001). The patients of the Topaal® group had lower frequency of heartburn (P  = 0.0015) and pain (P   = 0.0163) at the end of the 6-week treatment period. From the doctor’s point of view, the Topaal® group also showed significant reduction in the severity of heartburn (P   = 0.0020), regurgitation (P   = 0.0081), vomiting (P  = 0.0182), and belching (P   = 0.0018) at the end of the treatment. The improvement of the quality of life was more remarkable in the Topaal® group at the end of the 6-week treatment period (P  < 0.0001). For the adverse effect, there was no difference in both the groups. CONCLUSION: Topaal® is more effective than Nacid® for the treatment of symptoms presented by patients with ENRD. PMID:16521188

  12. Nanoparticle preparation of Mefenamic acid by electrospray drying

    SciTech Connect

    Zolkepali, Nurul Karimah Bakar, Noor Fitrah Abu Anuar, Nornizar; Naim, M. Nazli; Bakar, Mohd Rushdi Abu

    2014-02-24

    Nanoparticles preparation of Mefenamic acid (MA) by using an electrospray drying method was conducted in this study. Electrospray drying is a process that uses electrostatic force to disperse a conductive liquid stream into fine charged droplets through the coulomb fission of charges in the liquid and finally dry into fine particles. Electrospray drying modes operation usually in Taylor cone jet, and it was formed by controlling applied voltage and liquid flow rate. A conductive liquid (2.77–8.55μScm{sup −1}) which is MA solution was prepared by using acetone with concentration 0.041 and 0.055 M before pumping at a flow rate of 3–6ml/h. By applying the applied voltage at 1.3–1.5 kV, Taylor cone jet mode was formed prior to the electrospray. During electrospray drying process, solvent evaporation from the droplet was occurring that leads to coulomb disruption and may generate to nanoparticles. The dried nanoparticles were collected on a grounded substrate that was placed at varying distance from the electrospray. MA particle with size range of 100–400 nm were produced by electrospray drying process. Characterization of particles by using X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) show that particles formed into polymorph I.

  13. Intracellular fate of spherical nucleic acid nanoparticle conjugates.

    PubMed

    Wu, Xiaochen A; Choi, Chung Hang J; Zhang, Chuan; Hao, Liangliang; Mirkin, Chad A

    2014-05-28

    Spherical nucleic acid (SNA) nanoparticle conjugates are a class of bionanomaterials that are extremely potent in many biomedical applications. Their unique ability to enter multiple mammalian cell types as single-entity agents arises from their novel three-dimensional architecture, which consists of a dense shell of highly oriented oligonucleotides chemically attached typically to a gold nanoparticle core. This architecture allows SNAs to engage certain cell surface receptors to facilitate entry. Here, we report studies aimed at determining the intracellular fate of SNAs and the trafficking events that occur inside C166 mouse endothelial cells after cellular entry. We show that SNAs traffic through the endocytic pathway into late endosomes and reside there for up to 24 h after incubation. Disassembly of oligonucleotides from the nanoparticle core is observed 16 h after cellular entry, most likely due to degradation by enzymes such as DNase II localized in late endosomes. Our observations point to these events being likely independent of core composition and treatment conditions, and they do not seem to be particularly dependent upon oligonucleotide sequence. Significantly and surprisingly, the SNAs do not enter the lysosomes under the conditions studied. To independently track the fate of the particle core and the fluorophore-labeled oligonucleotides that comprise its shell, we synthesized a novel class of quantum dot SNAs to determine that as the SNA structures are broken down over the 24 h time course of the experiment, the oligonucleotide fragments are recycled out of the cell while the nanoparticle core is not. This mechanistic insight points to the importance of designing and synthesizing next-generation SNAs that can bypass the degradation bottleneck imposed by their residency in late endosomes, and it also suggests that such structures might be extremely useful for endosomal signaling pathways by engaging receptors that are localized within the endosome

  14. 4-mercaptophenylboronic acid functionalized gold nanoparticles for colorimetric sialic acid detection.

    PubMed

    Sankoh, Supannee; Thammakhet, Chongdee; Numnuam, Apon; Limbut, Warakorn; Kanatharana, Proespichaya; Thavarungkul, Panote

    2016-11-15

    A simple and selective colorimetric sensor for sialic acid detection, based on the aggregation of 4-mercaptophenylboronic acid functionalized gold nanoparticles (4-MPBA-AuNPs) was developed. The color of the solution changed from wine-red to blue after binding with sialic acid. The colorimetric sensor provided good analytical performances with a linear dynamic range of 80µM to 2.00mM and a 68±2µM limit of detection without any effect from possible interferences and sample matrix. In addition, the quantitative results were obtained within only 10min. This developed sensor was used to detect sialic acid in blood serum samples and the results were in good agreement with those from the current periodate-resorcinol method (P>0.05) thus indicating that this developed colorimetric sensor can be used as an alternative method for sialic acid detection with a shorter analysis time and a high accuracy. PMID:27266659

  15. Upconversion nanoparticles with a strong acid-resistant capping

    NASA Astrophysics Data System (ADS)

    Recalde, Ileana; Estebanez, Nestor; Francés-Soriano, Laura; Liras, Marta; González-Béjar, María; Pérez-Prieto, Julia

    2016-03-01

    Water-dispersible upconversion nanoparticles (β-NaYF4:Yb3+,Er3+, UCNP) coated with a thin shell of a biocompatible copolymer comprising 2-hydroxyethylmethacrylate (HEMA) and 2-acrylamido-2-methyl-1-propanesulphonsulphonic acid (AMPS), which we will term COP, have been prepared by multidentate grafting. This capping is remarkably resistant to strong acidic conditions as low as pH 2. The additional functionality of the smart UCNP@COP nanosystem has been proved by its association to a well-known photosensitizer (namely, methylene blue, MB). The green-to-red emission ratio of the UC@COP@MB nanohybrid exhibits excellent linear dependence in the 7 to 2 pH range as a consequence of the release of the dye as the pH decreases.Water-dispersible upconversion nanoparticles (β-NaYF4:Yb3+,Er3+, UCNP) coated with a thin shell of a biocompatible copolymer comprising 2-hydroxyethylmethacrylate (HEMA) and 2-acrylamido-2-methyl-1-propanesulphonsulphonic acid (AMPS), which we will term COP, have been prepared by multidentate grafting. This capping is remarkably resistant to strong acidic conditions as low as pH 2. The additional functionality of the smart UCNP@COP nanosystem has been proved by its association to a well-known photosensitizer (namely, methylene blue, MB). The green-to-red emission ratio of the UC@COP@MB nanohybrid exhibits excellent linear dependence in the 7 to 2 pH range as a consequence of the release of the dye as the pH decreases. Electronic supplementary information (ESI) available: Additional spectra and data of HEMA, AMPS, COP, UCNP@oleate, UCNP@COP, and UCNP@COP@MB. See DOI: 10.1039/c5nr06653k

  16. Development of phenylboronic acid-functionalized nanoparticles for emodin delivery

    PubMed Central

    Wang, Bo; Chen, Limin; Sun, Yingjuan; Zhu, Youliang; Sun, Zhaoyan; An, Tiezhu; Li, Yuhua; Lin, Yuan; Fan, Daping; Wang, Qian

    2015-01-01

    Stable and monodisperse phenylboronic acid-functionalized nanoparticles (PBA-NPs) were fabricated using 3-((acrylamido)methyl)phenylboronic acid homopolymer (PBAH) via solvent displacement technique. The effect of operating parameters, including stirring time, initial polymer concentration and the proportion of methanol on the self-assembly process were systematically investigated. The diameters of the PBA-NPs were increased as increasing the initial PBAH concentration and the proportion of methanol. Likewise, there was a linear dependence between the size of self-assembled nanoparticles and the polymer concentration. Moreover, the dissipative particle dynamics (DPD) simulation technique was used to investigate the mechanism of self-assembly behavior of PBAH, which indicated that the interior of PBA-NPs was hydrophobic and compact, and the boronic acid groups were displayed on both the outermost and interior of PBA-NPs. The resulting PBA-NPs could successfully encapsulate emodin through PBA-diol interaction and the encapsulation efficiency (EE%) and drug loading content (DLC%) of drug-loaded PBA-NPs were 78% and 2.1%, respectively. Owing to the acid-labile feature of the boronate linkage, a reduction in environmental pH from pH 7.4 to 5.0 could trigger the disassociation of the boronate ester bonds, which could accelerate the drug release from PBA-Emodin-NPs. Besides, PBA-Emodin-NPs showed a much higher cytotoxicity to HepG2 cells (cancer cells) than that to MC-3T3-E1 cells (normal cells). These results imply that PBA-NPs would be a promising scaffold for the delivery of polyphenolic drugs. PMID:25960874

  17. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core.

    PubMed

    Clark, Andrew J; Davis, Mark E

    2015-10-01

    Most therapeutic agents are excluded from entering the central nervous system by the blood-brain barrier (BBB). Receptor mediated transcytosis (RMT) is a common mechanism used by proteins, including transferrin (Tf), to traverse the BBB. Here, we prepared Tf-containing, 80-nm gold nanoparticles with an acid-cleavable linkage between the Tf and the nanoparticle core to facilitate nanoparticle RMT across the BBB. These nanoparticles are designed to bind to Tf receptors (TfRs) with high avidity on the blood side of the BBB, but separate from their multidentate Tf-TfR interactions upon acidification during the transcytosis process to allow release of the nanoparticle into the brain. These targeted nanoparticles show increased ability to cross an in vitro model of the BBB and, most important, enter the brain parenchyma of mice in greater amounts in vivo after systemic administration compared with similar high-avidity nanoparticles containing noncleavable Tf. In addition, we investigated this design with nanoparticles containing high-affinity antibodies (Abs) to TfR. With the Abs, the addition of the acid-cleavable linkage provided no improvement to in vivo brain uptake for Ab-containing nanoparticles, and overall brain uptake was decreased for all Ab-containing nanoparticles compared with Tf-containing ones. These results are consistent with recent reports of high-affinity anti-TfR Abs trafficking to the lysosome within BBB endothelium. In contrast, high-avidity, Tf-containing nanoparticles with the acid-cleavable linkage avoid major endothelium retention by shedding surface Tf during their transcytosis. PMID:26392563

  18. A Pseudomonas aeruginosa alginate-exotoxin A conjugate that elicits anti-alginate and exotoxin A-neutralizing antibodies.

    PubMed

    Coin, D; Vacheron, M J; Guinand, M; Michel, G

    1991-08-01

    Pseudomonas aeruginosa alginate was covalently coupled to exotoxin A by reductive amination using adipic acid dihydrazide as spacer. The conjugate was composed of 25% alginate and 75% exotoxin A and possessed an average molecular mass higher than 700 kDa as determined by polyacrylamide gel electrophoresis. The conjugate had virtually no ADP-ribosyltransferase activity and a reduced cytotoxicity for TSA8 murine cells, derived from Friend erythroleukemia cells, as indicated by a greater than 50-fold increased LD50. Anti-conjugate antibodies recognized exotoxin A and alginate. A booster injection resulted in markedly increased antibody ELISA titers to both exotoxin A and alginate. The antibodies neutralized the exotoxin A toxicity. PMID:1931130

  19. Introduction of biotin or folic acid into polypyrrole magnetite core-shell nanoparticles

    SciTech Connect

    Nan, Alexandrina; Turcu, Rodica; Liebscher, Jürgen

    2013-11-13

    In order to contribute to the trend in contemporary research to develop magnetic core shell nanoparticles with better properties (reduced toxicity, high colloidal and chemical stability, wide scope of application) in straightforward and reproducible methods new core shell magnetic nanoparticles were developed based on polypyrrole shells functionalized with biotin and folic acid. Magnetite nanoparticles stabilized by sebacic acid were used as magnetic cores. The morphology of magnetite was determined by transmission electron microscopy TEM, while the chemical structure investigated by FT-IR.

  20. Growth behavior of gold nanoparticles synthesized in unsaturated fatty acids by vacuum evaporation methods.

    PubMed

    Fujita, Akito; Matsumoto, Yusuke; Takeuchi, Mitsuaki; Ryuto, Hiromichi; Takaoka, Gikan H

    2016-02-21

    Physical vapor evaporation of metals on low vapor pressure liquids is a simple and clean method to synthesize nanoparticles and thin films, though only little work has been conducted so far. Here, gold nanoparticles were synthesized by vacuum evaporation (VE) methods in ricinoleic acid and oleic acid, two typical unsaturated fatty acids (UFAs). The two solvents formed black aggregates after deposition and then shrunk and finally disappeared with the progress of time. By transmission electron microscopy (TEM) images, nanoparticles in ricinoleic acids formed aggregates and then dispersed by time, while in oleic acid big aggregates were not observed in all timescales. From TEM images and small angle X-ray scattering (SAXS) measurements, the mean size of the nanoparticles was about 4 nm in both ricinoleic and oleic acids. UV-Vis spectra were also taken as a function of time and the results were consistent with the growth behavior presumed by TEM images. Air exposure had an influence on the behavior of the sample triggering the nanoparticle formation in both solvents. From control experiments, we discovered that oxygen gas triggered the phenomenon and nanoparticles function as a catalyst for the oxidation of the UFAs. It stimulates the phenomenon and in ricinoleic acid, specifically, electrons are transferred from riconleic acid to the gold nanoparticles, enhancing the surface potential of the nanoparticles and the repulsive force between their electronic double layers. PMID:26821883

  1. Understanding Alginate Gel Development for Bioclogging and Biogeophysical Experiments

    NASA Astrophysics Data System (ADS)

    Brown, I.; Atekwana, E. A.; Abdel Aal, G. Z.; Atekwana, E. A.; Sarkisova, S.; Patrauchan, M.

    2012-12-01

    Bioremediation strategies to mitigate the transport of heavy metals and radionuclides in subsurface sediments have largely targeted to increase the mobility and/or solubility of these compounds by the stimulation of biogeochemical activity of the metal- and sulfate-reducing bacteria. The latter secrete and/or release out diverse biochemical molecule including, first of all, organic acids and biopolymers such as alginic acid, proteins and DNA. Alginate gel is one of the major components determining the structure of biofilm which causes clogging in porous media. Biopolymers composing biofilm having, at least, two main functions: to be a scaffold for a microbial biofilm, and to regulate the exchange of metabolites and ions between an environment and bacterial cells. Additionally, the accumulation of biopolymers and a matured biofilm within porous media was shown to contribute to a detectable biogeophysical signal, spectral induced polarization (SIP), in particular. Our objective is to understand the role of different biofilm components on the SIP response as the latter has been proposed as a non-invasive tool to monitor biofilm development and rate of clogging in the subsurface. Understanding the process of alginate gel development may aid in the understanding of the fate and transport of mineralized heavy metals and radionuclides in contaminated soils. Here we describe the reciprocal relationship between environmental chemistry and alginate gel development. Commercial (Sigma) alginic acid (AA) was used as a substratum for the preparation of a model gel. AA was solubilized by adjusting solutions with pH up to 4 with 0.1 NaOH. Both Ca(OH)2 or CaCl2 were used to initiate the gelation of alginate. pH, fluid conductivity, soluble Ca2+ concentration, and a yield of gelated alginate were monitored in both liquid and porous media after the interaction of calcium compounds with alginate. This study confirms the critical role of Ca2+ for alginate gelation, biofilm development

  2. In vivo degradation of alginate in the presence and in the absence of resistant starch.

    PubMed

    Jonathan, Melliana; Souza da Silva, Carol; Bosch, Guido; Schols, Henk; Gruppen, Harry

    2015-04-01

    This study evaluated the intestinal degradability of alginate during 74 days intake in pigs as models for humans. Diets contained pregelatinized starch, retrograded starch, alginate, or a mix of retrograded starch and alginate. Faeces were collected on day 1, 3, 7, 14, 39 and 74. Clear trends in intestinal alginate degradation were observed. Up to day 39, the total tract digestibility of alginate was limited (0.52 ± 0.10), and was lower with the inclusion of retrograded starch in the diet (0.34 ± 0.02). More than 90% of the faecal alginate was insoluble in water, which may explain the low digestibility of the alginate. The digestibility of mannuronic acid (M) was 2-3 times higher than that of guluronic acid (G). The changes of G:M ratio and the relative amounts of alginate oligosaccharides between day 39 and 74 indicated that the microbiota needed more than 39 days to adapt to alginate. This study demonstrated that in-depth analyses of dietary fibres are valuable in understanding the fate of the dietary fibres in the large intestine as it was shown that degradation of a dietary fibre depends not only on the properties of the fibre itself, but also on the other dietary fibres present in the diet and the adaptation time. PMID:25442531

  3. Synthesis and characterization of a Pseudomonas aeruginosa alginate-toxin A conjugate vaccine.

    PubMed Central

    Cryz, S J; Fürer, E; Que, J U

    1991-01-01

    Alginate from Pseudomonas aeruginosa 3064 was depolymerized by controlled heating in dilute acid. The resulting depolymerized alginate (Mr less than 60,000) was covalently coupled to toxin A with adipic acid dihydrazide as a spacer molecule and carbodiimide as a linker. The resulting conjugate was composed of toxin A and depolymerized alginate at a ratio of 4:1 and possessed an Mr of 260,000. The conjugate was nontoxic and nonpyrogenic. While native alginate (Mr greater than 640,000) given in a range of doses was poorly immunogenic in mice and rabbits, the conjugate induced high levels of antibody which bound to native alginate. Rabbits, but not mice, also produced an antitoxin immunoglobulin antibody response. Alginate derived from three other strains of P. aeruginosa competed with the homologous 3064 alginate for binding to anticonjugate antibody. This indicates that the conjugate elicits an antibody response able to recognize heterologous alginates. The serum from rabbits immunized with the conjugate was effective at promoting the uptake and killing of mucoid strains of P. aeruginosa by human polymorphonuclear leukocytes. In contrast, immunization with native alginate did not engender an opsonic antibody response. Rabbit anticonjugate antibody also neutralized the cytotoxic potential of toxin A. PMID:1898901

  4. Development of a controlled release of salicylic acid loaded stearic acid-oleic acid nanoparticles in cream for topical delivery.

    PubMed

    Woo, J O; Misran, M; Lee, P F; Tan, L P

    2014-01-01

    Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs) with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release. PMID:24578624

  5. Development of a Controlled Release of Salicylic Acid Loaded Stearic Acid-Oleic Acid Nanoparticles in Cream for Topical Delivery

    PubMed Central

    Woo, J. O.; Misran, M.; Lee, P. F.; Tan, L. P.

    2014-01-01

    Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs) with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release. PMID:24578624

  6. Surface modification of magnetite nanoparticles using lactobionic acid and their interaction with hepatocytes.

    PubMed

    Kamruzzaman Selim, K M; Ha, Yong-Soo; Kim, Sun-Jung; Chang, Yongmin; Kim, Tae-Jeong; Ho Lee, Gang; Kang, Inn-Kyu

    2007-02-01

    In the current study, superparamagnetic magnetite nanoparticles were surface-modified with lactobionic acid (LA) to improve their intracellular uptake and ability to target hepatocytes. Maltotrionic acid (MA)-modified nanoparticles were also synthesized as a control. Cell culture experiment showed that LA-modified nanoparticles were internalized into hepatocytes and atomic absorption spectrometer (AAS) measurement indicated that the uptake amount of LA-modified magnetite into hepatocytes was higher than that of unmodified and MA-modified nanoparticles. LA-modified nanoparticle solution was injected in rabbit and the magnetic resonance (MR) images obtained showed that LA-coated nanoparticles were selectively accumulated onto the hepatocytes. This result demonstrates that the LA-modified magnetite nanoparticles have a great potential to be used as contrast agent for liver diagnosis. PMID:17049979

  7. Tannic acid-mediated green synthesis of antibacterial silver nanoparticles.

    PubMed

    Kim, Tae Yoon; Cha, Song-Hyun; Cho, Seonho; Park, Youmie

    2016-04-01

    The search for novel antibacterial agents is necessary to combat microbial resistance to current antibiotics. Silver nanoparticles (AgNPs) have been reported to be effective antibacterial agents. Tannic acid is a polyphenol compound from plants with antioxidant and antibacterial activities. In this report, AgNPs were prepared from silver ions by tannic acid-mediated green synthesis (TA-AgNPs). The reaction process was facile and involved mixing both silver ions and tannic acid. The absorbance at 423 nm in the UV-Visible spectra demonstrated that tannic acid underwent a reduction reaction to produce TA-AgNPs from silver ions. The synthetic yield of TA-AgNPs was 90.5 % based on inductively coupled plasma mass spectrometry analysis. High-resolution transmission electron microscopy and atomic force microscopy images indicated that spherical-shaped TA-AgNPs with a mean particle size of 27.7-46.7 nm were obtained. Powder high-resolution X-ray diffraction analysis indicated that the TA-AgNP structure was face-centered cubic with a zeta potential of -27.56 mV. The hydroxyl functional groups of tannic acid contributed to the synthesis of TA-AgNPs, which was confirmed by Fourier transform infrared spectroscopy. The in vitro antibacterial activity was measured using the minimum inhibitory concentration (MIC) method. The TA-AgNPs were more effective against Gram-negative bacteria than Gram-positive bacteria. The MIC for the TA-AgNPs in all of the tested strains was in a silver concentration range of 6.74-13.48 μg/mL. The tannic acid-mediated synthesis of AgNPs afforded biocompatible nanocomposites for antibacterial applications. PMID:26895244

  8. Application of carboxyphenylboronic acid-functionalized magnetic nanoparticles for extracting nucleic acid from seeds.

    PubMed

    Sun, Ning; Deng, Congliang; Ge, Guanglu; Xia, Qiang

    2015-01-01

    Magnetic iron oxide nanoparticles functionalized with 4-carboxyphenylboronic acid (CPBA-MNPs) were developed for extracting genomic DNA, total RNA and nucleic acids from seeds. The seed samples were genetically-modified maize seeds and unmodified soybean seeds infected by bean pod mottle virus and tobacco ringspot virus. The total nucleic acids, genomic DNA, and RNA could be separately extracted from these seeds with high qualities using CPBA-MNPs under different conditions. Furthermore, the results of real-time quantitative qPCR and real-time reverse transcription (RT)-PCR indicated that the nucleic acids extracted from these seeds using CPBA-MNPs were suitable for the detection of genetically-modified seeds and seed-borne viruses. PMID:25214223

  9. Novel humic acid-bonded magnetite nanoparticles for protein immobilization.

    PubMed

    Bayrakci, Mevlut; Gezici, Orhan; Bas, Salih Zeki; Ozmen, Mustafa; Maltas, Esra

    2014-09-01

    The present paper is the first report that introduces (i) a useful methodology for chemical immobilization of humic acid (HA) to aminopropyltriethoxysilane-functionalized magnetite iron oxide nanoparticles (APS-MNPs) and (ii) human serum albumin (HSA) binding to the obtained material (HA-APS-MNPs). The newly prepared magnetite nanoparticle was characterized by using Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and elemental analysis. Results indicated that surface modification of the bare magnetite nanoparticles (MNPs) with aminopropyltriethoxysilane (APS) and HA was successfully performed. The protein binding studies that were evaluated in batch mode exhibited that HA-APS-MNPs could be efficiently used as a substrate for the binding of HSA from aqueous solutions. Usually, recovery values higher than 90% were found to be feasible by HA-APS-MNPs, while that value was around 2% and 70% in the cases of MNPs and APS-MNPs, respectively. Hence, the capacity of MNPs was found to be significantly improved by immobilization of HA. Furthermore, thermal degradation of HA-APS-MNPs and HSA bonded HA-APS-MNPs was evaluated in terms of the Horowitz-Metzger equation in order to determine kinetic parameters for thermal decomposition. Activation energies calculated for HA-APS-MNPs (20.74 kJmol(-1)) and HSA bonded HA-APS-MNPs (33.42 kJmol(-1)) implied chemical immobilization of HA to APS-MNPs, and tight interactions between HA and HA-APS-MNPs. PMID:25063152

  10. Stable dye-labelled oligonucleotide-nanoparticle conjugates for nucleic acid detection

    NASA Astrophysics Data System (ADS)

    Barrett, Lee; Dougan, Jennifer A.; Faulds, Karen; Graham, Duncan

    2011-08-01

    Metallic nanoparticles functionalized with oligonucleotides are used for a number of nucleic acid detection strategies. However, oligonucleotide-nanoparticle conjugates suffer from a lack of stability when exposed to certain conditions associated with DNA detection assays. In this study, we report the synthesis of thiol and thioctic acid-modified oligonucleotide gold nanoparticle (OGNs) conjugates functionalized with a dye label and varying spacer groups. The thioctic acid-modified conjugates exhibit increased stability when treated with dithiothreitol (DTT) compared to the more commonly used thiol modification. When the dye labelled oligonucleotide nanoparticle conjugates are exposed to the same conditions there is a pronounced increase in the stability for both thioctic acid and thiol modified sequences. These results open up the possibility of simply using a dye label to enhance the stability of oligonucleotide-nanoparticle conjugates in DNA detection assays where the enhanced stability of the conjugate system can be advantageous in more complex biological environments.

  11. Nonlinear Optical Properties of Au-Nanoparticles Conjugated with Lipoic Acid in Water

    NASA Astrophysics Data System (ADS)

    Trejo-Durán, M.; Cornejo-Monroy, D.; Alvarado-Méndez, E.; Olivares-Vargas, A.; Castano, V. M.

    2014-08-01

    Gold nanoparticles were chemically conjugated with lipoic acid to control their optical properties. Z-scan and other optical techniques were used to characterize the non-linear behavior of the resulting nanostructured materials. The results show that the nonlinearity is of thermal origin, which can be controlled by the use of lipoic acid as well as other organic molecules conjugated onto metal nanoparticles. In particular, the presence of lipoic acid increases n_2 and dn/dT.

  12. Acid-responsive PEGylated doxorubicin prodrug nanoparticles for neuropilin-1 receptor-mediated targeted drug delivery.

    PubMed

    Song, Huijuan; Zhang, Ju; Wang, Weiwei; Huang, Pingsheng; Zhang, Yumin; Liu, Jianfeng; Li, Chen; Kong, Deling

    2015-12-01

    Self-assembled prodrug nanoparticles have demonstrated great promise in cancer chemotherapy. In the present study, we developed a new kind of prodrug nanoparticles for targeted drug delivery. PEGylated doxorubicin conjugate with an acid-cleavable cis-aconityl spacer was prepared. Then it was functionalized with a tumor-penetrating peptide, Cys-Arg-Gly-Asp-Lys (CRGDK), providing the prodrug nanoparticles with the specific binding ability to neurophilin-1 receptor. In acid mediums, doxorubicin could be released from the prodrug nanoparticles with an accumulative release around 60% through the acid-triggered hydrolysis of cis-aconityl bond and nanoparticle disassembly. Whereas, drug release was slow under a neutral pH and the accumulative drug release was less than 16%. In the cell culture tests, our prodrug nanoparticles showed enhanced endocytosis and cytotoxicity in cancer cells including HepG2, MCF-7 and MDA-MB-231 cells, but lower cytotoxicity in human cardiomyocyte H2C9. In the animal experiments, the prodrug nanoparticles were intravenously injected into Balb/c nude mice bearing MDA-MB-231 tumors. Enhanced drug penetration and accumulation in tumors, accompanying with a rapid early tumor-binding behavior, was observed after intravenous injection of the peptide modified prodrug nanoparticles. These data suggests that the acid-sensitive and tumor-targeting PEGylated doxorubicin prodrug nanoparticle may be an efficient drug delivery system for cancer chemotherapy. PMID:26433349

  13. Preferential localization of Lactococcus lactis cells entrapped in a caseinate/alginate phase separated system.

    PubMed

    Léonard, Lucie; Gharsallaoui, Adem; Ouaali, Fahima; Degraeve, Pascal; Waché, Yves; Saurel, Rémi; Oulahal, Nadia

    2013-09-01

    This study aimed to entrap bioprotective lactic acid bacteria in a sodium caseinate/sodium alginate aqueous two-phase system. Phase diagram at pH=7 showed that sodium alginate and sodium caseinate were not miscible when their concentrations exceeded 1% (w/w) and 6% (w/w), respectively. The stability of the caseinate/alginate two-phase system was also checked at pH values of 6.0 and 5.5. Lactococcus lactis subsp. lactis LAB3 cells were added in a 4% (w/w) caseinate/1.5% (w/w) alginate two-phase system at pH=7. Fluorescence microscopy allowed to observe that the caseinate-rich phase formed droplets dispersed in a continuous alginate-rich phase. The distribution of bacteria in such a system was observed by epifluorescence microscopy: Lc. lactis LAB3 cells stained with Live/Dead(®) Baclight kit™ were located exclusively in the protein phase. Since zeta-potential measurements indicated that alginate, caseinate and bacterial cells all had an overall negative charge at pH 7, the preferential adhesion of LAB cells was assumed to be driven by hydrophobic effect or by depletion phenomena in such biopolymeric systems. Moreover, LAB cells viability was significantly higher in the ternary mixture obtained in the presence of both caseinate and alginate than in single alginate solution. Caseinate/alginate phase separated systems appeared thus well suited for Lc. lactis LAB3 cells entrapment. PMID:23665092

  14. Inherently antioxidant and antimicrobial tannic acid release from poly(tannic acid) nanoparticles with controllable degradability.

    PubMed

    Sahiner, Nurettin; Sagbas, Selin; Aktas, Nahit; Silan, Coskun

    2016-06-01

    From a natural polyphenol, Tannic acid (TA), poly(TA) nanoparticles were readily prepared using a single step approach with three different biocompatible crosslinkers; trimethylolpropane triglycidyl ether (TMPGDE), poly(ethylene glycol) diglycidyl ether (PEGGE), and trisodium trimetaphosphate (STMP). P(TA) particles were obtained with controllable diameters between 400 to 800nm with -25mV surface charge. The effect of synthesis conditions, such as the emulsion medium, pH values of TA solution, and the type of crosslinker, on the shape, size, dispersity, yield, and degradability of poly(Tannic Acid) (p(TA)) nanoparticles was systematically investigated. The hydrolytic degradation amount in physiological pH conditions of 5.4, 7.4, and 9.0 at 37.5°C were found to be in the order TMPGDEnanoparticles can be controlled by the appropriate choice of crosslinker, and the pH of releasing media. The highest TA release, 600mg/g, was obtained for TMPGDE-crosslinked p(TA) particles in intestinal pH conditions (pH 9) over 3 days; whereas, a slow and linear TA release profile over almost 30 days was obtained by using PEGGE-crosslinked p(TA) in body fluid pH conditions (pH 7.4). The total phenol content of p(TA) particles was calculated as 70±1μgmL(-1) for 170μgmL(-1) p(TA), and the trolox equivalent antioxidant capacity was found to be 2027±104mM trolox equivalent g(-1). Moreover, p(TA) nanoparticles demonstrated strong antimicrobial effects against common bacterial strains. More interestingly, with a higher concentration of p(TA) particles, higher blood clotting indices were obtained. PMID:26970821

  15. In Vitro Investigation of Self-Assembled Nanoparticles Based on Hyaluronic Acid-Deoxycholic Acid Conjugates for Controlled Release Doxorubicin: Effect of Degree of Substitution of Deoxycholic Acid

    PubMed Central

    Wei, Wen-Hao; Dong, Xue-Meng; Liu, Chen-Guang

    2015-01-01

    Self-assembled nanoparticles based on a hyaluronic acid-deoxycholic acid (HD) chemical conjugate with different degree of substitution (DS) of deoxycholic acid (DOCA) were prepared. The degree of substitution (DS) was determined by titration method. The nanoparticles were loaded with doxorubicin (DOX) as the model drug. The human cervical cancer (HeLa) cell line was utilized for in vitro studies and cell cytotoxicity of DOX incorporated in the HD nanoparticles was accessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, cellular uptake of fluorescently labeled nanoparticles was also investigated. An increase in the degree of deoxycholic acid substitution reduced the size of the nanoparticles and also enhanced their drug encapsulation efficiency (EE), which increased with the increase of DS. A higher degree of deoxycholic acid substitution also lead to a lower release rate and an initial burst release of doxorubicin from the nanoparticles. In summary, the degree of substitution allows the modulation of the particle size, drug encapsulation efficiency, drug release rate, and cell uptake efficiency of the nanoparticles. The herein developed hyaluronic acid-deoxycholic acid conjugates are a good candidate for drug delivery and could potentiate therapeutic formulations for doxorubicin–mediated cancer therapy. PMID:25837468

  16. Alginate Polymerization and Modification Are Linked in Pseudomonas aeruginosa

    PubMed Central

    Fata Moradali, M.; Donati, Ivan; Sims, Ian M.; Ghods, Shirin

    2015-01-01

    ABSTRACT The molecular mechanisms of alginate polymerization/modification/secretion by a proposed envelope-spanning multiprotein complex are unknown. Here, bacterial two-hybrid assays and pulldown experiments showed that the catalytic subunit Alg8 directly interacts with the proposed copolymerase Alg44 while embedded in the cytoplasmic membrane. Alg44 additionally interacts with the lipoprotein AlgK bridging the periplasmic space. Site-specific mutagenesis of Alg44 showed that protein-protein interactions and stability were independent of conserved amino acid residues R17 and R21, which are involved in c-di-GMP binding, the N-terminal PilZ domain, and the C-terminal 26 amino acids. Site-specific mutagenesis was employed to investigate the c-di-GMP-mediated activation of alginate polymerization by the PilZAlg44 domain and Alg8. Activation was found to be different from the proposed activation mechanism for cellulose synthesis. The interactive role of Alg8, Alg44, AlgG (epimerase), and AlgX (acetyltransferase) on alginate polymerization and modification was studied by using site-specific deletion mutants, inactive variants, and overproduction of subunits. The compositions, molecular masses, and material properties of resulting novel alginates were analyzed. The molecular mass was reduced by epimerization, while it was increased by acetylation. Interestingly, when overproduced, Alg44, AlgG, and the nonepimerizing variant AlgG(D324A) increased the degree of acetylation, while epimerization was enhanced by AlgX and its nonacetylating variant AlgX(S269A). Biofilm architecture analysis showed that acetyl groups promoted cell aggregation while nonacetylated polymannuronate alginate promoted stigmergy. Overall, this study sheds new light on the arrangement of the multiprotein complex involved in alginate production. Furthermore, the activation mechanism and the interplay between polymerization and modification of alginate were elucidated. PMID:25968647

  17. One pot, rapid and efficient synthesis of water dispersible gold nanoparticles using alpha-amino acids

    NASA Astrophysics Data System (ADS)

    Wangoo, Nishima; Kaur, Sarabjit; Bajaj, Manish; Jain, D. V. S.; Sharma, Rohit K.

    2014-10-01

    A detailed study on the synthesis of spherical and monodispersed gold nanoparticles (AuNPs) using all of the 20 naturally occurring α-amino acids has been reported. The synthesized nanoparticles have been further characterized using various techniques such as absorbance spectroscopy, transmission electron microscopy, dynamic light scattering and nuclear magnetic resonance. Size control of the nanoparticles has been achieved by varying the ratio of the gold ion to the amino acid. These monodispersed water soluble AuNPs synthesized using non-toxic, naturally occurring α-amino acids as reducing and capping/stabilizing agents serve as a remarkable example of green chemistry.

  18. Smart Magnetically Responsive Hydrogel Nanoparticles Prepared by a Novel Aerosol-Assisted Method for Biomedical and Drug Delivery Applications

    PubMed Central

    El-Sherbiny, Ibrahim M.; Smyth, Hugh D. C.

    2011-01-01

    We have developed a novel spray gelation-based method to synthesize a new series of magnetically responsive hydrogel nanoparticles for biomedical and drug delivery applications. The method is based on the production of hydrogel nanoparticles from sprayed polymeric microdroplets obtained by an air-jet nebulization process that is immediately followed by gelation in a crosslinking fluid. Oligoguluronate (G-blocks) was prepared through the partial acid hydrolysis of sodium alginate. PEG-grafted chitosan was also synthesized and characterized (FTIR, EA, and DSC). Then, magnetically responsive hydrogel nanoparticles based on alginate and alginate/G-blocks were synthesized via aerosolization followed by either ionotropic gelation or both ionotropic and polyelectrolyte complexation using CaCl2 or PEG-g-chitosan/CaCl2 as crosslinking agents, respectively. Particle size and dynamic swelling were determined using dynamic light scattering (DLS) and microscopy. Surface morphology of the nanoparticles was examined using SEM. The distribution of magnetic cores within the hydrogels nanoparticles was also examined using TEM. In addition, the iron and calcium contents of the particles were estimated using EDS. Spherical magnetic hydrogel nanoparticles with average particle size of 811 ± 162 to 941 ± 2 nm were obtained. This study showed that the developed method is promising for the manufacture of hydrogel nanoparticles, and it represents a relatively simple and potential low-cost system. PMID:21808638

  19. Facile one-pot synthesis of gold nanoparticles using tannic acid and its application in catalysis

    NASA Astrophysics Data System (ADS)

    Aswathy Aromal, S.; Philip, Daizy

    2012-04-01

    The paper reports a simple and efficient method for the synthesis of stable, nearly spherical gold nanoparticles using tannic acid as both the reducing and stabilizing agent. The nanoparticles are characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), EDX and X-ray diffraction (XRD) analysis. The influence of tannic acid on the control of size and shape of gold nanoparticles is reported. Upon an increase in the concentration of tannic acid, there is a shift in the shape of nanoparticles as evidenced by the change in bandwidth and peak position of the surface plasmon resonance (SPR) band. Also, it is found that tannic acid ceases to act as a reducing agent beyond the limit of 10 mL (6×10-3 M) for 30 mL of HAuCl4 (1.3×10-3 M). On increasing the quantity of tannic acid, nucleation is favored in the initial stages and thereafter growth supersedes nucleation. The stable colloids obtained by this method are found to consist of nanoparticles with average size 8 and 12 nm. The crystallinity of the sample with fcc phase is observed from TEM, SAED and XRD pattern. Involvement of carboxylic acid group in capping of gold nanoparticles is evident from the FTIR spectrum. The application of the synthesized nanoparticles as catalyst in the reduction of 4-Nitrophenol to 4-Aminophenol is also reported.

  20. Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles

    NASA Astrophysics Data System (ADS)

    Teow, Yiwei; Valiyaveettil, Suresh

    2010-12-01

    Interaction of nanoparticles with human cells is an interesting topic for understanding toxicity and developing potential drug candidates. Water soluble platinum nanoparticles were synthesized viareduction of hexachloroplatinic acid using sodium borohydride in the presence of capping agents. The bioactivity of folic acid and poly(vinyl pyrrolidone) capped platinum nanoparticles (Pt-nps) has been investigated using commercially available cell lines. In the cell viability experiments, PVP-capped nanoparticles were found to be less toxic (>80% viability), whereas, folic acid-capped platinum nanoparticles showed a reduced viability down to 24% after 72 h of exposure at a concentration of 100 μg ml-1 for MCF7 breast cancer cells. Such toxicity, combined with the possibility to incorporate functional organic molecules as capping agents, can be used for developing new drug candidates.

  1. Development of electrochemical folic acid sensor based on hydroxyapatite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kanchana, P.; Sekar, C.

    2015-02-01

    We report the synthesis of hydroxyapatite (HA) nanoparticles (NPs) by a simple microwave irradiation method and its application as sensing element for the precise determination of folic acid (FA) by electrochemical method. The structure and composition of the HA NPs characterized using XRD, FTIR, Raman and XPS. SEM and EDX studies confirmed the formation of elongated spherical shaped HA NPs with an average particle size of about 34 nm. The HA NPs thin film on glassy carbon electrode (GCE) were deposited by drop casting method. Electrocatalytic behavior of FA in the physiological pH 7.0 was investigated by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperometry. The fabricated HA/GCE exhibited a linear calibration plot over a wide FA concentration ranging from 1.0 × 10-7 to 3.5 × 10-4 M with the detection limit of 75 nM. In addition, the HA NPs modified GCE showed good selectivity toward the determination of FA even in the presence of a 100-fold excess of ascorbic acid (AA) and 1000-fold excess of other common interferents. The fabricated biosensor exhibits good sensitivity and stability, and was successfully applied for the determination of FA in pharmaceutical samples.

  2. Stabilization of polyion complex nanoparticles composed of poly(amino acid) using hydrophobic interactions.

    PubMed

    Akagi, Takami; Watanabe, Kazuki; Kim, Hyungjin; Akashi, Mitsuru

    2010-02-16

    We report the design and preparation of polyion complex (PIC) nanoparticles composed of anionic hydrophobically modified and cationic poly(amino acid) and the effect of hydrophobic interactions on the stability of these PIC nanoparticles under physiological conditions. We selected poly(gamma-glutamic acid) (gamma-PGA) as the biodegradable anionic polymer and poly(epsilon-lysine) (epsilon-PL) as the cationic polymer. Amphiphilic graft copolymers consisting of gamma-PGA and L-phenylalanine (L-Phe) as the hydrophobic side chain were synthesized by grafting L-Phe to gamma-PGA. The PIC nanoparticles were prepared by mixing gamma-PGA-graft-L-Phe (gamma-PGA-Phe) with epsilon-PL in phosphate buffered saline (PBS). The formation and stability of the PIC nanoparticles were investigated by dynamic light scattering (DLS) measurements. Monomodal anionic PIC nanoparticles were obtained using nonstoichiometric mixing ratios. When unmodified gamma-PGA was mixed with epsilon-PL in PBS, the formation of PIC nanoparticles was observed. However, within a few hours after the preparation, the PIC nanoparticles dissolved in the PBS. In contrast, gamma-PGA-Phe/epsilon-PL nanoparticles showed high stability for a prolonged period of time in PBS and over a wide range of pH values. The stability and size of the PIC nanoparticles depended on the gamma-PGA-Phe/epsilon-PL mixing ratio and the hydrophobicity of the gamma-PGA. The improved stability of the PIC nanoparticles was attributed to the formation of hydrophobic domains in the core of the nanoparticles. The fabrication of PIC nanoparticles using hydrophobic interactions was very useful for the stabilization of the nanoparticles. These results will provide a novel concept in the design of carrier systems composed of PIC. It is expected that the gamma-PGA-Phe/epsilon-PL nanoparticles will have great potential as multifunctional carriers for pharmaceutical and biomedical applications, such as drug and vaccine delivery systems. PMID:20017513

  3. Effect of alginate and alginate-cimetidine combination therapy on stimulated postprandial gastro-oesophageal reflux.

    PubMed

    Washington, N; Denton, G

    1995-11-01

    This randomized, single-blind cross-over study compared the effectiveness of a conventional alginate reflux barrier formulation (20 mL single dose of Liquid Gaviscon; sodium alginate, sodium bicarbonate, calcium carbonate) with a 20 mL single dose of an alginate-cimetidine combination formulation (Algitec Suspension; sodium alginate, cimetidine) in the suppression of food and acid reflux into the oesophagus after a test meal in 12 healthy volunteers. Subjects were fasted overnight before the study. A pH electrode and gamma detector were accurately positioned 5 cm above the cardia. The volunteers received a 99mTc-labelled meal designed to provoke reflux and then either remained untreated, or 30 min later were given either Algitec Suspension or Liquid Gaviscon. Reflux of both food and acid into the oesophagus was measured for 3 h. There was a seven day wash-out period between each treatment. Food reflux in the control group was 22,878 +/- 14,385 counts x 10(3) and this was significantly suppressed by both Liquid Gaviscon (174 +/- 128 (s.e.) counts x 10(3); P = 0.003); however, although the reduction of food reflux to 3812 +/- 2322 counts x 10(3) observed after Algitec treatment was considerable, this did not reach statistical significance (P > 0.05) due to the large intersubject variation. Liquid Gaviscon was significantly better at reducing food reflux than Algitec (P = 0.001). Gaviscon also significantly reduced acid reflux when compared with the control group (1.08 +/- 0.73 vs 5.87 +/- 3.27% recording time oesophageal pH < 4, respectively) (P = 0.03). The slight reduction in acid reflux after Algitec treatment (3.25 +/- 1.82% recording time oesophageal pH < 4) also did not reach statistical significance. The difference between Algitec and Gaviscon treatment was also not significant. PMID:8708979

  4. Homo- and co-polymerization of polysytrene-block-poly(acrylic acid)-coated metal nanoparticles.

    PubMed

    Wang, Hong; Song, Xiaohui; Liu, Cuicui; He, Jiating; Chong, Wen Han; Chen, Hongyu

    2014-08-26

    Amphiphilic block copolymers such as polystyrene-block-poly(acrylic acid) (PSPAA) give micelles that are known to undergo sphere-to-cylinder shape transformation. Exploiting this polymer property, core-shell nanoparticles coated in PSPAA can be "polymerized" into long chains following the chain-growth polymerization mode. This method is now extended to include a variety of different nanoparticles. A case study on the assembly process was carried out to understand the influence of the PAA block length, the surface ligand, and the size and morphology of the monomer nanoparticles. Shortening the PAA block promotes the reorganization of the amphiphilic copolymer in the micelles, which is essential for assembling large Au nanoparticles. Small Au nanoparticles can be directly "copolymerized" with empty PSPAA micelles into chains. The reaction time, acid quantity, and the [Au nanoparticles]/[PSPAA micelles] concentration ratio played important roles in controlling the sphere-cylinder-vesicle conversion of the PSPAA micelles, giving rise to different kinds of random "copolymers". With this knowledge, a general method is then developed to synthesize homo, random, and block "copolymers", where the basic units include small Au nanoparticles (d = 16 nm), large Au nanoparticles (d = 32 nm), Au nanorods, Te nanowires, and carbon nanotubes. Given the lack of means for assembling nanoparticles, advancing synthetic capabilities is of crucial importance. Our work provides convenient routes for combining nanoparticles into long-chain structures, facilitating rational design of complex nanostructures in the future. PMID:25000121

  5. Microbial alginate production, modification and its applications

    PubMed Central

    Hay, Iain D; Rehman, Zahid Ur; Moradali, M Fata; Wang, Yajie; Rehm, Bernd H A

    2013-01-01

    Alginate is an important polysaccharide used widely in the food, textile, printing and pharmaceutical industries for its viscosifying, and gelling properties. All commercially produced alginates are isolated from farmed brown seaweeds. These algal alginates suffer from heterogeneity in composition and material properties. Here, we will discuss alginates produced by bacteria; the molecular mechanisms involved in their biosynthesis; and the potential to utilize these bacterially produced or modified alginates for high-value applications where defined material properties are required. PMID:24034361

  6. Inorganic Nanoparticle Nucleation on Polymer Matrices

    NASA Astrophysics Data System (ADS)

    Kosteleski, Adrian John

    The introduction of inorganic nanoparticles into organic materials enhances both the mechanical and chemical properties of the material. Metallic nanoparticles, like silver and gold, have been introduced into polymers for use as antimicrobial coatings or dielectric materials, respectively. The challenge in creating these materials currently is the difficulty to homogeneously disperse the particles throughout the polymer matrix. The uneven dispersion of nanoparticles can lead to less than optimal quality and undesired properties. By creating a polymer nanocomposite material with well-controlled size inorganic materials that are evenly dispersed throughout the polymer matrix; we can improve the materials performance and properties. The objective for this research is to use polymer networks for the in situ mineralization of silver and other metallic materials to create intricate inorganic structures. The work performed here studied the ability to nucleate silver nanoparticles using poly (acrylic acid) (PAA) as the templating agent. Ionic silver was chemically reduced by sodium borohydride (NaBH4) in the presence of PAA. The effect of varying reactant concentrations of silver, NaBH 4, and PAA on particle size was studied. Reaction conditions in terms of varying temperature and pH levels of the reaction solution were monitored to observe the effect of silver nanoparticle size, shape, and concentration. By monitoring the UV spectra over time the reaction mechanism of the silver reduction process was determined to be an autocatalytic process: a period of slow, continuous nucleation followed by rapid, autocatalytic growth. The reaction kinetics for this autocatalytic process is also reported. PAA was crosslinked both chemically and physically to 3 biopolymers; ELP, an elastin like peptide, cotton fabrics, and calcium alginate hydrogels. Various compositions of PAA were physically crosslinked with calcium alginate gels to design an antimicrobial hydrogel for use in wound

  7. Chitosan-based nanoparticles for rosmarinic acid ocular delivery--In vitro tests.

    PubMed

    da Silva, Sara Baptista; Ferreira, Domingos; Pintado, Manuela; Sarmento, Bruno

    2016-03-01

    In this study, chitosan nanoparticles were used to encapsulate antioxidant rosmarinic acid, Salvia officinalis (sage) and Satureja montana (savory) extracts as rosmarinic acid natural vehicles. The nanoparticles were prepared by ionic gelation using chitosan and sodium tripolyphosphate (TPP) in a mass ratio of 7:1, at pH 5.8. Particle size distribution analysis and transmission electron microscopy (TEM) confirmed the size ranging from 200 to 300 nm, while surface charge of nanoparticles ranged from 20 to 30 mV. Nanoparticles demonstrate to be safe without relevant cytotoxicity against retina pigment epithelium (ARPE-19) and human cornea cell line (HCE-T). The permeability study in HCE monolayer cell line showed an apparent permeability coefficient Papp of 3.41±0.99×10(-5) and 3.24±0.79×10(-5) cm/s for rosmarinic acid loaded chitosan nanoparticles and free in solution, respectively. In ARPE-19 monolayer cell line the Papp was 3.39±0.18×10(-5) and 3.60±0.05×10(-5) cm/s for rosmarinic acid loaded chitosan nanoparticles and free in solution, respectively. Considering the mucin interaction method, nanoparticles indicate mucoadhesive proprieties suggesting an increased retention time over the ocular mucosa after instillation. These nanoparticles may be promising drug delivery systems for ocular application in oxidative eye conditions. PMID:26645149

  8. Starch nanoparticles formed by rapidly cooling dispersions of amylose-oleic acid complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is increasing interest in the preparation of starch-based nanoparticles for a variety of uses, such as biobased fillers in polymeric matrices to improve structural or barrier properties. Most established methods for preparing these nanoparticles involve acid hydrolysis of starch coupled with m...

  9. Photonic monitoring of chitosan nanostructured alginate microcapsules for drug release

    NASA Astrophysics Data System (ADS)

    Khajuria, Deepak Kumar; Konnur, Manish C.; Vasireddi, Ramakrishna; Roy Mahapatra, D.

    2015-02-01

    By using a novel microfluidic set-up for drug screening applications, this study examines delivery of a novel risedronate based drug formulation for treatment of osteoporosis that was developed to overcome the usual shortcomings of risedronate, such as its low bioavailability and adverse gastric effects. Risedronate nanoparticles were prepared using muco-adhesive polymers such as chitosan as matrix for improving the intestinal cellular absorption of risedronate and also using a gastric-resistant polymer such as sodium alginate for reducing the gastric inflammation of risedronate. The in-vitro characteristics of the alginate encapsulated chitosan nanoparticles are investigated, including their stability, muco-adhesiveness, and Caco-2 cell permeability. Fluorescent markers are tagged with the polymers and their morphology within the microcapsules is imaged at various stages of drug release.

  10. Investigation of follicular and non-follicular pathways for polyarginine and oleic acid modified nanoparticles

    PubMed Central

    Hayden, Patrick; Singh, Mandip

    2013-01-01

    Purpose The aim of the current study was to investigate the percutaneous permeation pathways of cell penetrating peptide modified lipid nanoparticles and oleic acid modified polymeric nanoparticles. Methods Confocal microscopy was performed on skin cultures (EpiDermFT™) for modified and un-modified nanoparticles. Differential stripping was performed following in vitro skin permeation of Ibuprofen (Ibu) encapsulated nanoparticles to estimate Ibu levels in different skin layers and receiver compartment. The hair follicles (HF) were blocked and in vitro skin permeation of nanoparticles was then compared with unblocked HF. The surface modified nanoparticles were investigated for response on allergic contact dermatitis (ACD). Results Surface modified nanoparticles showed a significant higher (p < 0.05) in fluorescence in EpiDermFT™ cultures compared to controls. The HF play less than 5% role in total nanoparticle permeation into the skin. The Ibu levels were significantly high (p<0.05) for surface modified nanoparticles compared to controls. The Ibu levels in skin and receiver compartment were not significantly different when HF were open or closed. Modified nanoparticles showed significant improvement in treatment of ACD compared to solution. Conclusions Our studies demonstrate that increased skin permeation of surface modified nanoparticles is not only dependent on a follicular pathway but also occur through non-follicular pathway(s). PMID:23187866

  11. Nanoparticles change the ordering pattern of n-carboxylic acids into nanorods on HOPG.

    PubMed

    Wang, Ruomiao; Li, Li; Arachchige, Indika; Ganguly, Shreyashi; Brock, Stephanie L; Mao, Guangzhao

    2010-11-23

    This paper describes the formation of organic nanorods induced by monolayer-protected inorganic nanoparticles. Alkanes and alkane derivatives, such as n-carboxylic acids, self-assemble on highly oriented pyrolytic graphite (HOPG) into a persistent molecular packing structure that is dictated by the epitaxial interaction between the carbon chain plane and the HOPG basal plane. Carboxylic acids form 2-D crystalline layers consisting of nanostripe domains whose periodicity is one or two times the molecular chain length. However, when the molecular ordering occurs in the vicinity of a nanoparticle, this persistent HOPG-dominated nanostripe pattern is disrupted, and nanorods attached to the nanoparticles become the dominant structure. In order to understand the underlying mechanism of the nanoparticle-mediated nanorod formation, the effects of film-forming conditions, carboxylic acid chain length, nanoparticle size, and chemical composition of the nanoparticle are examined. It is determined that carboxylic acid nanorods can be induced by nanoparticles of different core materials including CdSe, CdS, and Au, as long as the protecting monolayer allows sufficient dispersion and colloidal stability of the nanoparticles in solution. A carboxylic chain length range amenable to the nanorod formation is identified, as is the relationship between the nanoparticle size and the number of nanorods per nanoparticle. This study contributes to the understanding of seed-mediated crystallization and molecular ordering. Moreover, it defines the parameters governing solution-based formation of hybrid nanostructures and nanopatterns incorporating dual functionality as defined by the inorganic nanoparticle and organic nanorod, respectively. PMID:20958027

  12. An HPLC Method for Microanalysis and Pharmacokinetics of Marine Sulfated Polysaccharide PSS-Loaded Poly Lactic-co-Glycolic Acid (PLGA) Nanoparticles in Rat Plasma

    PubMed Central

    Li, Peng-Li; Li, Chun-Xia; Xue, Yi-Ting; Li, Hai-Hua; Liu, Hong-Bing; He, Xiao-Xi; Yu, Guang-Li; Guan, Hua-Shi

    2013-01-01

    This study was aimed at developing a sensitive and selective HPLC method with postcolumn fluorescence derivatization for the detection of propylene glycol alginate sodium sulfate (PSS) in rat plasma. Plasma samples were prepared by a simple and fast ultrafiltration method. PSS was extracted from rat plasma with d-glucuronic acid as internal standard. Isocratic chromatographic separation was performed on a TSKgel G2500 PWxL column with the mobile phase of 0.1 M sodium sulfate at a flow rate of 0.5 mL/min. Analyte detection was achieved by fluorescence detection (FLD) at 250 nm (excitation) and 435 nm (emission) using guanidine hydrochloride as postcolumn derivatizing reagent in an alkaline medium at 120 °C. The calibration curve was linear over a concentration range of 1–500 μg/mL, and the lower limit of detection (LLOD) was found to be 250 ng/mL. This validated method was applied successfully to the pharmacokinetic study of PSS and PSS-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (PSS-NP) in rat plasma after a single intravenous (PSS only) and oral administration (PSS and PSS-NP). Significant differences in the main pharmacokinetic parameters of PSS and PSS-NP were observed. The relative bioavailability of PSS-NP was 190.10% compared with PSS which shows that PSS-NP can improve oral bioavailability. PMID:23549283

  13. An HPLC method for microanalysis and pharmacokinetics of marine sulfated polysaccharide PSS-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles in rat plasma.

    PubMed

    Li, Peng-Li; Li, Chun-Xia; Xue, Yi-Ting; Li, Hai-Hua; Liu, Hong-Bing; He, Xiao-Xi; Yu, Guang-Li; Guan, Hua-Shi

    2013-04-01

    This study was aimed at developing a sensitive and selective HPLC method with postcolumn fluorescence derivatization for the detection of propylene glycol alginate sodium sulfate (PSS) in rat plasma. Plasma samples were prepared by a simple and fast ultrafiltration method. PSS was extracted from rat plasma with D-glucuronic acid as internal standard. Isocratic chromatographic separation was performed on a TSKgel G2500 PWxL column with the mobile phase of 0.1 M sodium sulfate at a flow rate of 0.5 mL/min. Analyte detection was achieved by fluorescence detection (FLD) at 250 nm (excitation) and 435 nm (emission) using guanidine hydrochloride as postcolumn derivatizing reagent in an alkaline medium at 120 °C. The calibration curve was linear over a concentration range of 1-500 μg/mL, and the lower limit of detection (LLOD) was found to be 250 ng/mL. This validated method was applied successfully to the pharmacokinetic study of PSS and PSS-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (PSS-NP) in rat plasma after a single intravenous (PSS only) and oral administration (PSS and PSS-NP). Significant differences in the main pharmacokinetic parameters of PSS and PSS-NP were observed. The relative bioavailability of PSS-NP was 190.10% compared with PSS which shows that PSS-NP can improve oral bioavailability. PMID:23549283

  14. Mussel-inspired alginate gel promoting the osteogenic differentiation of mesenchymal stem cells and anti-infection.

    PubMed

    Zhang, Shiwen; Xu, Kaige; Darabi, Mohammad Ali; Yuan, Quan; Xing, Malcolm

    2016-12-01

    Alginate hydrogels have been used in cell encapsulation for many years but a prevalent issue with pure alginates is that they are unable to provide enough bioactive properties to interact with mammalian cells. This paper discusses the modification of alginate with mussel-inspired dopamine for cell loading and anti-infection. Mouse bone marrow stem cells were immobilized into alginate and alginate-dopamine beads and fibers. Through live-dead and MTT assay, alginates modified by dopamine promoted cell viability and proliferation. In vitro cell differentiation results showed that such an alginate-dopamine gel can promote the osteogenic differentiation of mesenchymal stem cell after PCR and ALP assays. In addition to that, the adhesive prosperities of dopamine allowed for coating the surface of alginate-dopamine gel with silver nanoparticles, which provided the gel with significant antibacterial characteristics. Overall, these results demonstrate that a dopamine-modified alginate gel can be a great tool for cell encapsulation to promote cell proliferation and can be applied to bone regeneration, especially in contaminated bone defects. PMID:27612740

  15. Alginate: properties and biomedical applications

    PubMed Central

    Lee, Kuen Yong; Mooney, David J.

    2011-01-01

    Alginate is a biomaterial that has found numerous applications in biomedical science and engineering due to its favorable properties, including biocompatibility and ease of gelation. Alginate hydrogels have been particularly attractive in wound healing, drug delivery, and tissue engineering applications to date, as these gels retain structural similarity to the extracellular matrices in tissues and can be manipulated to play several critical roles. This review will provide a comprehensive overview of general properties of alginate and its hydrogels, their biomedical applications, and suggest new perspectives for future studies with these polymers. PMID:22125349

  16. Single and double stranded DNA detection using locked nucleic acid (LNA) functionalized nanoparticles

    NASA Astrophysics Data System (ADS)

    McKenzie, Fiona; Stokes, Robert; Faulds, Karen; Graham, Duncan

    2008-08-01

    Gold and silver nanoparticles functionalized with oligonucleotides can be used for the detection of specific sequences of DNA. We show that gold nanoparticles modified with locked nucleic acid (LNA) form stronger duplexes with a single stranded DNA target and offer better discrimination against single base pair mismatches than analogous DNA probes. Our LNA nanoparticle probes have also been used to detect double stranded DNA through triplex formation, whilst still maintaining selectivity for only complementary targets. Nanoparticle conjugates embedded with suitable surface enhanced resonance Raman scattering (SERRS) labels have been synthesized enabling simultaneous detection and identification of multiple DNA targets.

  17. Polymethacrylic acid as a new precursor of CuO nanoparticles

    NASA Astrophysics Data System (ADS)

    Hosny, Nasser Mohammed; Zoromba, Mohamed Shafick

    2012-11-01

    Polymethacrylic acid and its copper complexes have been synthesized and characterized. These complexes have been used as precursors to produce CuO nanoparticles by thermal decomposition in air. The stages of decompositions and the calcination temperature of the precursors have been determined from thermal analyses (TGA). The obtained CuO nanoparticles have been characterized by X-ray diffraction (XRD), scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). XRD showed a monoclinic structure with particle size 8-20 nm for the synthesized copper oxide nanoparticles. These nanoparticles are catalytically active in decomposing hydrogen peroxide and a mechanism of decomposition has been suggested.

  18. Pattern formation in fatty acid-nanoparticle and lipid-nanoparticle mixed monolayers at water surface

    NASA Astrophysics Data System (ADS)

    Choudhuri, M.; Datta, A.; Iyengar, A. N. Sekar; Janaki, M. S.

    2015-06-01

    Dodecanethiol-capped gold nanoparticles (AuNPs) are self-organized in two different amphiphilic monolayers one of which is a single-tailed fatty acid Stearic acid (StA) and the other a double-tailed lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). In the StA-AuNP film the AuNPs self-organize to form an interconnected network of nanoclusters on compression while in the DMPC-AuNP film the AuNPs aggregate to form random, isolated clusters in the film. The long time evolution of the films at constant surface pressure reveals ring structures in the former and diffusion limited aggregates in the latter that with time evolve into an irregular porous maze of AuNPs in the DMPC film. The difference in structure of the AuNP patterns in the two films can be attributed to a difference in the lipophilic interactions between the NPs and the amphiphilic molecules. The mean square intensity fluctuations f(ln) calculated along a typical line for the 2D structures in both the films at initial and final stages of long time evolution reflect the structural changes in the films over time.

  19. Effect of acid and temperature on the discontinuous shear thickening phenomenon of silica nanoparticle suspensions

    NASA Astrophysics Data System (ADS)

    Li, Shuangbing; Wang, Jixiao; Cai, Wei; Zhao, Song; Wang, Zhi; Wang, Shichang

    2016-08-01

    The discontinuous shear thickening (DST) phenomenon of silica nanoparticle suspensions was investigated in this article. First, the non-aggregated silica nanoparticles were synthesized and characterized. The results indicate that the silica nanoparticles are spherical particles with a narrow size distribution with a diameter of approximately 90 nm. Next, the influence of nitric acid concentration and temperature on the DST phenomenon of shear thickening fluids (STFs) was investigated. The results indicate that the concentrated fluids with nitric acid concentration below 8.50 mmol/L and at a temperature below 40 °C exhibit a readily noticeable DST phenomenon.

  20. Optimization of culturing condition and medium composition for the production of alginate lyase by a marine Vibrio sp. YKW-34

    NASA Astrophysics Data System (ADS)

    Fu, Xiaoting; Lin, Hong; Kim, Sang Moo

    2008-02-01

    Carbohydrases secreted by marine Vibrio sp. YKW-34 with strong Laminaria cell wall degrading ability were screened, and among them alginate lyase was found to be dominant. The effects of medium composition and culturing condition on the production of alginate lyase by marine Vibrio sp. YKW-34 in flask were investigated in this study. In the culture medium of marine broth, no alginate lyase was produced. The activity of the alginate lyase, after being induced, reached 5 UmL-1. The best inoculum volume and inoculum age were 10% and 12 h, respectively. The optimal temperature for alginate lyase production was 25°C. The fermentation medium was composed of 0.5% of Laminaria powder and 0.2% of KNO3 with an initial acidity of pH 8.0. Alginate could induce alginate lyase production but not as efficiently as Laminaria powder did. The addition of fucoidan, cellulose and glucose had negative effect on the alginate lyase production. Other kinds of nitrogen sources, such as yeast extract, beef extract and peptone, had positive effect on the growth of the microorganism and negative effect on alginate lyase production. In addition, the time course of alginate lyase production under the optimized condition was described. The optimal harvest time was 48 h.

  1. Superabsorbent nanocomposite (alginate-g-PAMPS/MMT): synthesis, characterization and swelling behavior.

    PubMed

    Yadav, Mithilesh; Rhee, Kyong Yop

    2012-09-01

    A superabsorbent composite (alginate-g-PAMPS/MMT) was prepared by graft copolymerization from alginate, 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and Na+ montmorillonite (MMT) in an inert atmosphere. Effects of polymerization variables on water absorbency, including the content of Na+ montmorillonite, sodium alginate, N,N'-methylenebisacrylamide and AMPS, were studied. The introduced montmorillonite formed a loose and porous surface and improved the water absorbency of the alginate-g-PAMPS/MMT superabsorbent composite. Swelling behaviors of the superabsorbent composites in various cationic salt solutions (NaCl, CaCl2 and FeCl3) and anionic salt solutions (NaCl and Na2SO4) were also systematically investigated. The superabsorbent composite was further characterized using Fourier transform infrared spectroscopy (FTIR), rheology, thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) taking alginate-g-PAMPS as a reference. PMID:24751026

  2. Nonlinear behavior of ionically and covalently cross-linked alginate hydrogels

    NASA Astrophysics Data System (ADS)

    Hashemnejad, Seyedmeysam; Zabet, Mahla; Kundu, Santanu

    2015-03-01

    Gels deform differently under applied load and the deformation behavior is related to their network structures and environmental conditions, specifically, strength and density of crosslinking, polymer concentration, applied load, and temperature. Here, we investigate the mechanical behavior of both ionically and covalent cross-linked alginate hydrogel using large amplitude oscillatory shear (LAOS) and cavitation experiments. Ionically-bonded alginate gels were obtained by using divalent calcium. Alginate volume fraction and alginate to calcium ratio were varied to obtain gels with different mechanical properties. Chemical gels were synthesized using adipic acid dihdrazide (AAD) as a cross-linker. The non-linear rheological parameters are estimated from the stress responses to elucidate the strain softening behavior of these gels. Fracture initiation and propagation mechanism during shear rheology and cavitation experiments will be presented. Our results provide a better understanding on the deformation mechanism of alginate gel under large-deformation.

  3. Quantitative determination of uric acid using CdTe nanoparticles as fluorescence probes.

    PubMed

    Jin, Dongri; Seo, Min-Ho; Huy, Bui The; Pham, Quoc-Thai; Conte, Maxwell L; Thangadurai, Daniel; Lee, Yong-Ill

    2016-03-15

    A convenient enzymatic optical method for uric acid detection was developed based on the fluorescence quenching of ligand-capped CdTe nanoparticles by H2O2 which was generated from the enzymatic reaction of uric acid. The interactions between the CdTe nanoparticles capped with different ligands (glutathione, 3-mercaptopropionic acid, and thioglycerol) and H2O2 were investigated. The fluorescence quenching studies of GSH-capped CdTe nanoparticles demonstrated an excellent sensitivity to H2O2. The effects of uric acid, uricase and H2O2 on the fluorescence intensity of CdTe nanoparticles were also explored. The detection conditions, reaction time, pH value, incubation period and the concentration of uricase and uric acid were optimized. The detection limit of uric acid was found to be 0.10 µM and the linear range was 0.22-6 µM under the optimized experimental conditions. These results typify that CdTe nanoparticles could be used as a fluorescent probe for uric acid detection. PMID:26433069

  4. Coatless alginate pellets as sustained-release drug carrier for inflammatory bowel disease treatment.

    PubMed

    Md Ramli, Siti Hajar; Wong, Tin Wui; Naharudin, Idanawati; Bose, Anirbandeep

    2016-11-01

    Conventional alginate pellets underwent rapid drug dissolution and failed to exert colon targeting unless subjected to complex coating. This study designed coatless delayed-release oral colon-specific alginate pellets for ulcerative colitis treatment. Alginate pellets, formulated with water-insoluble ethylcellulose and various calcium salts, were prepared using solvent-free melt pelletization technique which prevented reaction between processing materials during agglomeration and allowed reaction to initiate only in dissolution. Combination of acid-soluble calcium carbonate and highly water-soluble calcium acetate did not impart colon-specific characteristics to pellets due to pore formation in fragmented matrices. Combination of moderately water-soluble calcium phosphate and calcium acetate delayed drug release due to rapid alginate crosslinking by soluble calcium from acetate salt followed by sustaining alginate crosslinking by calcium phosphate. The use of 1:3 ethylcellulose-to-alginate enhanced the sustained drug release attribute. The ethylcellulose was able to maintain the pellet integrity without calcium acetate. Using hydrophobic prednisolone as therapeutic, hydrophilic alginate pellets formulated with hydrophobic ethylcellulose and moderately polar calcium phosphate exhibited colon-specific in vitro drug release and in vivo anti-inflammatory action. Coatless oral colon-specific alginate pellets can be designed through optimal formulation with melt pelletization as the processing technology. PMID:27516284

  5. Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection.

    PubMed

    Orlowski, Piotr; Tomaszewska, Emilia; Gniadek, Marianna; Baska, Piotr; Nowakowska, Julita; Sokolowska, Justyna; Nowak, Zuzanna; Donten, Mikolaj; Celichowski, Grzegorz; Grobelny, Jaroslaw; Krzyzowska, Malgorzata

    2014-01-01

    The interaction between silver nanoparticles and herpesviruses is attracting great interest due to their antiviral activity and possibility to use as microbicides for oral and anogenital herpes. In this work, we demonstrate that tannic acid modified silver nanoparticles sized 13 nm, 33 nm and 46 nm are capable of reducing HSV-2 infectivity both in vitro and in vivo. The antiviral activity of tannic acid modified silver nanoparticles was size-related, required direct interaction and blocked virus attachment, penetration and further spread. All tested tannic acid modified silver nanoparticles reduced both infection and inflammatory reaction in the mouse model of HSV-2 infection when used at infection or for a post-infection treatment. Smaller-sized nanoparticles induced production of cytokines and chemokines important for anti-viral response. The corresponding control buffers with tannic acid showed inferior antiviral effects in vitro and were ineffective in blocking in vivo infection. Our results show that tannic acid modified silver nanoparticles are good candidates for microbicides used in treatment of herpesvirus infections. PMID:25117537

  6. Boronic Acid functionalized core-shell polymer nanoparticles prepared by distillation precipitation polymerization for glycopeptide enrichment.

    PubMed

    Qu, Yanyan; Liu, Jianxi; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2012-07-16

    The boronic acid-functionalized core-shell polymer nanoparticles, poly(N,N-methylenebisacrylamide-co-methacrylic acid)@4-vinylphenylboronic acid (poly(MBA-co-MAA)@VPBA), were successfully synthesized for enriching glycosylated peptides. Such nanoparticles were composed of a hydrophilic polymer core prepared by distillation precipitation polymerization (DPP) and a boronic acid-functionalized shell designed for capturing glycopeptides. Owing to the relatively large amount of residual vinyl groups introduced by DPP on the core surface, the VPBA monomer was coated with high efficiency, working as the shell. Moreover, the overall polymerization route, especially the use of DPP, made the synthesis of nanoparticles facile and time-saving. With the poly(MBA-co-MAA)@VPBA nanoparticles, 18 glycopeptides from horseradish peroxidase (HRP) digest were captured and identified by MALDI-TOF mass spectrometric analysis, relative to eight glycopeptides enriched by using commercially available meta-aminophenylboronic acid agarose under the same conditions. When the concentration of the HRP digest was decreased to as low as 5 nmol, glycopeptides could still be selectively isolated by the prepared nanoparticles. Our results demonstrated that the synthetic poly(MBA-co-MAA)@VPBA nanoparticles might be a promising selective enrichment material for glycoproteome analysis. PMID:22707097

  7. Nanogels based on alginic aldehyde and gelatin by inverse miniemulsion technique: synthesis and characterization.

    PubMed

    Sarika, P R; Anil Kumar, P R; Raj, Deepa K; James, Nirmala Rachel

    2015-03-30

    Nanogels were developed from alginic aldehyde and gelatin by an inverse miniemulsion technique. Stable inverse miniemulsions were prepared by sonication of noncontinuous aqueous phase (mixture of alginic aldehyde and gelatin) in a continuous organic phase (Span 20 dissolved in cyclohexane). Cross-linking occurred between alginic aldehyde (AA) and gelatin (gel) in the presence of borax by Schiff's base reaction during the formation of inverse miniemulsion. The effects of surfactant (Span 20) concentration, volume of the aqueous phase and AA/gel weight ratio on the size of the alginic aldehyde-gelatin (AA-gel) nanoparticles were studied. Nanogels were characterized by DLS, FT-IR spectroscopy, TGA, SEM and TEM. DLS, TEM and SEM studies demonstrated nanosize and spherical morphology of the nanogels. Hemocompatibility and in vitro cytocompatibility analyses of the nanogels proved their nontoxicity. The results indicated the potential of the present nanogel system as a candidate for drug- and gene-delivery applications. PMID:25563951

  8. Preparation of Silica Nanoparticles Through Microwave-assisted Acid-catalysis

    PubMed Central

    Lovingood, Derek D.; Owens, Jeffrey R.; Seeber, Michael; Kornev, Konstantin G.; Luzinov, Igor

    2013-01-01

    Microwave-assisted synthetic techniques were used to quickly and reproducibly produce silica nanoparticle sols using an acid catalyst with nanoparticle diameters ranging from 30-250 nm by varying the reaction conditions. Through the selection of a microwave compatible solvent, silicic acid precursor, catalyst, and microwave irradiation time, these microwave-assisted methods were capable of overcoming the previously reported shortcomings associated with synthesis of silica nanoparticles using microwave reactors. The siloxane precursor was hydrolyzed using the acid catalyst, HCl. Acetone, a low-tan δ solvent, mediates the condensation reactions and has minimal interaction with the electromagnetic field. Condensation reactions begin when the silicic acid precursor couples with the microwave radiation, leading to silica nanoparticle sol formation. The silica nanoparticles were characterized by dynamic light scattering data and scanning electron microscopy, which show the materials' morphology and size to be dependent on the reaction conditions. Microwave-assisted reactions produce silica nanoparticles with roughened textured surfaces that are atypical for silica sols produced by Stöber's methods, which have smooth surfaces. PMID:24379052

  9. Non-redox modulated fluorescence strategy for sensitive and selective ascorbic acid detection with highly photoluminescent nitrogen-doped carbon nanoparticles via solid-state synthesis.

    PubMed

    Zhu, Xiaohua; Zhao, Tingbi; Nie, Zhou; Liu, Yang; Yao, Shouzhuo

    2015-08-18

    Highly photoluminescent nitrogen-doped carbon nanoparticles (N-CNPs) were prepared by a simple and green route employing sodium alginate as a carbon source and tryptophan as both a nitrogen source and a functional monomer. The as-synthesized N-CNPs exhibited excellent water solubility and biocompatibility with a fluorescence quantum yield of 47.9%. The fluorescence of the N-CNPs was intensively suppressed by the addition of ascorbic acid (AA). The mechanism of the fluorescence suppression of the N-CNPs was investigated, and the synergistic action of the inner filter effect (IFE) and the static quenching effect (SQE) contributed to the intensive fluorescence suppression, which was different from those reported for the traditional redox-based fluorescent probes. Owing to the spatial effect and hydrogen bond between the AA and the groups on the N-CNP surface, excellent sensitivity and selectivity for AA detecting was obtained in a wide linear relationship from 0.2 μM to 150 μM. The detection limit was as low as 50 nM (signal-to-noise ratio of 3). The proposed sensing systems also represented excellent sensitivity and selectivity for AA analysis in human biological fluids, providing a valuable platform for AA sensing in clinic diagnostic and drug screening. PMID:26202861

  10. Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue.

    PubMed

    Thakur, Sourbh; Pandey, Sadanand; Arotiba, Omotayo A

    2016-11-20

    Batch adsorption experiments were carried out for the removal of methylene blue (MB) cationic dye from aqueous solution using organic/inorganic hydrogel nanocomposite of titania incorporated sodium alginate crosslinked polyacrylic acid (SA-cl-poly(AA)-TiO2). The hydrogel was prepared by graft copolymerization of acrylic acid (AA) onto sodium alginate (SA) biopolymer in the presence of a crosslinking agent, a free radical initiator and TiO2 nanoparticles. The hydrogel exhibited a high swelling capacity of 412.98g/g. The factors influencing adsorption capacity of the absorbents such as pH of the dye solutions, initial concentration of the dye, amount of absorbents, and temperature were investigated and used to propose a possible mechanism of adsorption. The adsorption process concurs with a pseudo-second-order kinetics and with Langmuir isotherm equation. A very high adsorption capacity (Qmax=2257.36 (mg/g)) and a correlation coefficient of 0.998 calculated from isotherm equations show the high efficiency of the absorbent and thus expected to be a good candidate as an absorbent for water treatment. PMID:27561469

  11. Shape-dependent electrocatalysis: methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles.

    PubMed

    Solla-Gullón, J; Vidal-Iglesias, F J; López-Cudero, A; Garnier, E; Feliu, J M; Aldaz, A

    2008-07-01

    Reactivity towards methanol and formic acid electrooxidation on Pt nanoparticles with well characterised surfaces were studied and compared with the behaviour of single crystal electrodes with basal orientations. Polyoriented and preferential (100), (111) and (100)-(111) Pt nanoparticles were synthesised, cleaned preserving its surface structure, characterised and employed to evaluate the influence of the surface structure/shape of the Pt nanoparticles on these two relevant electrochemical reactions. The results pointed out that, in agreement with fundamental studies with Pt single crystal electrodes, the surface structure of the electrodes plays an important role on the reactivity of both oxidation processes, and thus the electrocatalytic properties strongly depend on the surface structure/shape of the nanoparticles, in particular on the presence of sites with (111) symmetry. These findings open the possibility of designing new and better electrocatalytic materials using decorated shape-controlled Pt nanoparticles as previously described with Pt single crystal electrodes. PMID:18563230

  12. Fabrication of poly hydroxybutyrate-polyethylene glycol-folic acid nanoparticles loaded by paclitaxel.

    PubMed

    Rezaei, Fatemeh; Rafienia, Mohammad; Keshvari, Hamid; Sattary, Mansooreh; Naeimi, Mitra; Keyvani, Hossein

    2016-01-01

    In this study drug (paclitaxel)-loaded nanoparticles of poly hydroxybutyrate-polyethylene glycol-folic acid (PHB-PEG-FOL) were prepared by using an oil-in-water (O/W) emulsion-solvent evaporation method. The functionalization and conjugation steps in the chemical synthesis were confirmed using Fourier transform infrared (FTIR) and nuclear magnetic resonance tests ((1)H NMR). Morphology of nanoparticles was evaluated by scanning electron microscopy (SEM). Nanoparticles were characterized by particle size analyzer. Between two samples containing drug, the lower doses showed more homogeneous distribution, and the lowest aggregation. The drug release profiles showed a two-phase release including initial rapid release and a continuous release. MG63 cells were used to evaluate cytotoxicity. The cytotoxicity of PHB-PEG-FOL nanoparticles with drug against cancer cells was much higher and longer than free drug sample. These nanoparticles were successfully synthesized as a novel system for targeted drug delivery against cancer cells. PMID:26234551

  13. Alginate Encapsulation Parameters Influence the Differentiation of Microencapsulated Embryonic Stem Cell Aggregates

    PubMed Central

    Wilson, Jenna L.; Najia, Mohamad Ali; Saeed, Rabbia; McDevitt, Todd C.

    2014-01-01

    Pluripotent embryonic stem cells (ESCs) have tremendous potential as tools for regenerative medicine and drug discovery, yet the lack of processes to manufacture viable and homogenous cell populations of sufficient numbers limits the clinical translation of current and future cell therapies. Microencapsulation of ESCs within microbeads can shield cells from hydrodynamic shear forces found in bioreactor environments while allowing for sufficient diffusion of nutrients and oxygen through the encapsulation material. Despite initial studies examining alginate microbeads as a platform for stem cell expansion and directed differentiation, the impact of alginate encapsulation parameters on stem cell phenotype has not been thoroughly investigated. Therefore, the objective of this study was to systematically examine the effects of varying alginate compositions on microencapsulated ESC expansion and phenotype. Pre-formed aggregates of murine ESCs were encapsulated in alginate microbeads composed of a high or low ratio of guluronic to mannuronic acid residues (High G and High M, respectively), with and without a poly-l-lysine (PLL) coating, thereby providing four distinct alginate bead compositions for analysis. Encapsulation in all alginate compositions was found to delay differentiation, with encapsulation within High G alginate yielding the least differentiated cell population. The addition of a PLL coating to the High G alginate prevented cell escape from beads for up to 14 days. Furthermore, encapsulation within High M alginate promoted differentiation toward a primitive endoderm phenotype. Taken together, the findings of this study suggest that distinct ESC expansion capacities and differentiation trajectories emerge depending on the alginate composition employed, indicating that encapsulation material physical properties can be used to control stem cell fate. PMID:24166004

  14. Synthesis of monodispersed palladium nanoparticles using tannic acid and its optical non-linearity.

    PubMed

    Meena Kumari, M; Aromal, S Aswathy; Philip, Daizy

    2013-02-15

    Palladium nanoparticles with average size 11.3 nm have been synthesized via a one-step reduction and capping method. This colloidal route using tannic acid does not require any other surfactant or capping agent to direct the growth of palladium nanoparticles. The effect of temperature on the conversion of Pd(2+) ion to Pd(0) is investigated. The growth process of nanoparticles is monitored using UV-visible spectra. The morphology and phase transformation have been confirmed by transmission electron microscopy and X-ray diffraction. An attempt to reveal the capping mechanism of tannic acid is done through FTIR analysis. The optical non-linearity of the samples was studied using open aperture Z-scan technique. The significance of this protocol for the generation of environmentally benign palladium nanoparticles lies mainly in its simplicity and cost effectiveness. PMID:23257340

  15. Ocular hypotensive efficacy and safety of once daily carteolol alginate

    PubMed Central

    Demailly, P.; Allaire, C.; Trinquand, C.

    2001-01-01

    BACKGROUND/AIM—Carteolol is a β adrenoceptor antagonist used topically to reduce intraocular pressure, typically twice daily. In an effort to provide a once daily dosing regimen, carteolol was formulated with 1% alginic acid. The objective of this study was to evaluate the efficacy and safety of carteolol alginate solution in comparison with standard carteolol solution.
METHODS—This was a double masked, parallel group, multicentre study. Patients with ocular hypertension or open angle glaucoma (n=235) were randomly assigned to receive either carteolol alginate four times daily or standard carteolol solution, twice daily. The masking was maintained through the use of a vehicle in the evening for the alginate group. Patients were evaluated at baseline, 15, 60, and 120 days.
RESULTS—At 0900 (presumed trough) on day 60, mean reductions in intraocular pressure (IOP) from baseline were 6.09 (SD 2.97) and 6.09 (3.18) mm Hg for the standard carteolol and alginate, respectively. At 1100 (presumed peak), mean reductions were 6.51 (2.53) and 6.47 (2.76) mm Hg, respectively. Results were similar at other times (day 15 and day 120). The most common side effect was transient stinging on instillation of drops, which did not differ significantly between groups. There were no differences of note in other ocular or systemic signs or symptoms.
CONCLUSION—The new alginate formulation of carteolol 2% given once daily was as effective as standard carteolol 2% given twice daily with no meaningful differences regarding safety.

 PMID:11466245

  16. 21 CFR 582.7187 - Calcium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium alginate. 582.7187 Section 582.7187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium alginate. (a) Product. Calcium alginate. (b) Conditions of use. This substance is...

  17. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  18. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  19. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  20. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  1. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  2. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized...

  3. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized...

  4. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized...

  5. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized...

  6. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized...

  7. Composite Polylactic-Methacrylic Acid Copolymer Nanoparticles for the Delivery of Methotrexate

    PubMed Central

    Sibeko, Bongani; Choonara, Yahya E.; du Toit, Lisa C.; Modi, Girish; Naidoo, Dinesh; Khan, Riaz A.; Kumar, Pradeep; Ndesendo, Valence M. K.; Iyuke, Sunny E.; Pillay, Viness

    2012-01-01

    The purpose of this study was to develop poly(lactic acid)-methacrylic acid copolymeric nanoparticles with the potential to serve as nanocarrier systems for methotrexate (MTX) used in the chemotherapy of primary central nervous system lymphoma (PCNSL). Nanoparticles were prepared by a double emulsion solvent evaporation technique employing a 3-Factor Box-Behnken experimental design strategy. Analysis of particle size, absolute zeta potential, polydispersity (Pdl), morphology, drug-loading capacity (DLC), structural transitions through FTIR spectroscopy, and drug release kinetics was undertaken. Molecular modelling elucidated the mechanisms of the experimental findings. Nanoparticles with particle sizes ranging from 211.0 to 378.3 nm and a recovery range of 36.8–86.2 mg (Pdl ≤ 0.5) were synthesized. DLC values were initially low (12 ± 0.5%) but were finally optimized to 98 ± 0.3%. FTIR studies elucidated the comixing of MTX within the nanoparticles. An initial burst release (50% of MTX released in 24 hours) was obtained which was followed by a prolonged release phase of MTX over 84 hours. SEM images revealed near-spherical nanoparticles, while TEM micrographs revealed the presence of MTX within the nanoparticles. Stable nanoparticles were formed as corroborated by the chemometric modelling studies undertaken. PMID:22919501

  8. Spherical Nucleic Acids as a Divergent Platform for Synthesizing RNA–Nanoparticle Conjugates through Enzymatic Ligation

    PubMed Central

    2015-01-01

    Herein, we describe a rapid, divergent method for using spherical nucleic acids (SNAs) as a universal platform for attaching RNA to DNA-modified nanoparticles using enzyme-mediated techniques. This approach provides a sequence-specific method for the covalent attachment of one or more in vitro transcribed RNAs to a universal SNA scaffold, regardless of RNA sequence. The RNA–nanoparticle constructs are shown to effectively knock down two different gene targets using a single, dual-ligated nanoparticle construct. PMID:25144723

  9. Stabilization of mid-sized silicon nanoparticles by functionalization with acrylic acid

    NASA Astrophysics Data System (ADS)

    Bywalez, Robert; Karacuban, Hatice; Nienhaus, Hermann; Schulz, Christof; Wiggers, Hartmut

    2012-01-01

    We present an enhanced method to form stable dispersions of medium-sized silicon nanoparticles for solar cell applications by thermally induced grafting of acrylic acid to the nanoparticle surface. In order to confirm their covalent attachment on the silicon nanoparticles and to assess the quality of the functionalization, X-ray photoelectron spectroscopy and diffuse reflectance infrared Fourier spectroscopy measurements were carried out. The stability of the dispersion was elucidated by dynamic light scattering and Zeta-potential measurements, showing no sign of degradation for months.

  10. Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors

    NASA Astrophysics Data System (ADS)

    Almeida, Patrick V.; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Kaasalainen, Martti; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A.

    2014-08-01

    Active targeting of nanoparticles to receptor-overexpressing cancer cells has great potential for enhancing the cellular uptake of nanoparticles and for reducing fast clearance of the nanoparticles from the body. Herein, we present a preparation method of a porous silicon (PSi)-based nanodelivery system for breast cancer targeting, by covalently conjugating a synthesized amide-modified hyaluronic acid (HA+) derived polymer on the surface of undecylenic acid-modified thermally hydrocarbonized PSi (UnTHCPSi) nanoparticles. The resulting UnTHCPSi-HA+ nanoparticles showed relatively small size, reduced polydispersibility, high biocompatibility, improved colloidal and human plasma stability, as well as enhanced cellular interactions and internalization. Moreover, we demonstrated that the enhanced cellular association of UnTHCPSi-HA+ relies on the capability of the conjugated HA+ to bind and consequently target CD44 receptors expressed on the surface of breast cancer cells, thus making the HA+-functionalized UnTHCPSi nanoparticles a suitable and promising nanoplatform for the targeting of CD44-overexpressing breast tumors and for drug delivery.Active targeting of nanoparticles to receptor-overexpressing cancer cells has great potential for enhancing the cellular uptake of nanoparticles and for reducing fast clearance of the nanoparticles from the body. Herein, we present a preparation method of a porous silicon (PSi)-based nanodelivery system for breast cancer targeting, by covalently conjugating a synthesized amide-modified hyaluronic acid (HA+) derived polymer on the surface of undecylenic acid-modified thermally hydrocarbonized PSi (UnTHCPSi) nanoparticles. The resulting UnTHCPSi-HA+ nanoparticles showed relatively small size, reduced polydispersibility, high biocompatibility, improved colloidal and human plasma stability, as well as enhanced cellular interactions and internalization. Moreover, we demonstrated that the enhanced cellular association of Un

  11. Nonlinear elasticity of alginate gels

    NASA Astrophysics Data System (ADS)

    Hashemnejad, Seyed Meysam; Kundu, Santanu

    Alginate is a naturally occurring anionic polysaccharide extracted from brown algae. Because of biocompatibility, low toxicity, and simple gelation process, alginate gels are used in biomedical and food applications. Here, we report the rheological behavior of ionically crosslinked alginate gels, which are obtained by in situ gelation of alginates with calcium salts, in between two parallel plates of a rheometer. Strain stiffening behavior was captured using large amplitude oscillatory shear (LAOS) experiments. In addition, negative normal stress was observed for these gels, which has not been reported earlier for any polysaccharide networks. The magnitude of negative normal stress increases with applied strain and can exceed that of the shear stress at large strain. Rheological results fitted with a constitutive model that considers both stretching and bending of chains indicate that nonlinearity is likely related to the stretching of the chains between the crosslink junctions. The results provide an improved understanding of the deformation mechanism of ionically crosslinked alginate gel and the results will be important in developing synthetic extracellular matrix (ECM) from these materials.

  12. Luminescence properties of LaF{sub 3}:Ce nanoparticles encapsulated by oleic acid

    SciTech Connect

    Kim, Jaewoo; Lee, Jun-Hyung; An, Hyejin; Lee, Jungkuk; Park, Seong-Hee; Seo, Young-Soo; Miller, William H.

    2014-09-15

    Highlights: • In-situ hydrophobization of water dispersible LaF{sub 3}:Ce nanoparticles was achieved. • Oleic acid surface modification of the nanoparticles was verified by IR spectra. • Quantum yields of LaF{sub 3}:Ce and OA-LaF{sub 3}:Ce nanoparticles were evaluated. • Quantum yields of LaF{sub 3}:Ce are strongly dependent on OA surface modification. - Abstract: Cerium ions doped lanthanum fluoride (LaF{sub 3}:Ce) nanopowder as well as LaF{sub 3}:Ce nanopowder whose surfaces was modified by oleic acid (OA) were synthesized by using an in-situ hydrothermal process under the various doping concentrations. Based on the XRD spectra and TEM images, it was confirmed that the crystalline structured hexagonal LaF{sub 3}:Ce nanopowder was synthesized. Oleic acid was efficient for conversion of the water dispersible LaF{sub 3}:Ce nanoparticles to hydrophobic ones. Surface modification was verified by FTIR absorption spectrum as well as TEM images, showing no agglomeration between 5 and 10 nm scaled particles. Photoluminescence based on 5d ⟶ 4f electronic transition of cerium ions excited at λ{sub ex} ∼256 nm for both neat and OA encapsulated LaF{sub 3}:Ce nanoparticles decreases as the cerium concentration increases, while the quantum yields of OA encapsulated nanoparticles were much lower than the neat particles due to low photon transmittance of OA at the range longer than ∼350 nm.

  13. Synthesis and Characterization of Sodium Alginate Conjugate and Study of Effect of Conjugation on Drug Release from Matrix Tablet.

    PubMed

    Satheeshababu, B K; Mohamed, I

    2015-01-01

    The aim of the present research work to study the effect of conjugation of the polymer on drug release from the matrix tablets. Sodium alginate L-cysteine conjugate was achieved by covalent attachment of thiol group of L-cysteine with the primary amino group of sodium alginate through the amide bonds formed by primary amino groups of the sodium alginate and the carboxylic acid group of L-cysteine. The synthesised sodium alginate L-cysteine conjugate was characterised by determining of charring point, Fourier transmission-infrared and differential scanning calorimetric analysis. To study the effect of conjugation on drug release pattern, the matrix tablets were prepared using various proportions of sodium alginate and sodium alginate L-cysteine conjugate along with atorvastatin calcium as model drug. The wet granulation technique was adopted and prepared matrix tablets were evaluated for various physical parameters. The in vitro drug release study results suggested that tablet formulated in combination of sodium alginate and sodium alginate L-cysteine conjugate S4 showed 100% after 8 h drug release whereas formulated with only sodium alginate S0 released 40% in 8 h. PMID:26798173

  14. Synthesis and Characterization of Sodium Alginate Conjugate and Study of Effect of Conjugation on Drug Release from Matrix Tablet

    PubMed Central

    Satheeshababu, B. K.; Mohamed, I.

    2015-01-01

    The aim of the present research work to study the effect of conjugation of the polymer on drug release from the matrix tablets. Sodium alginate L-cysteine conjugate was achieved by covalent attachment of thiol group of L-cysteine with the primary amino group of sodium alginate through the amide bonds formed by primary amino groups of the sodium alginate and the carboxylic acid group of L-cysteine. The synthesised sodium alginate L-cysteine conjugate was characterised by determining of charring point, Fourier transmission-infrared and differential scanning calorimetric analysis. To study the effect of conjugation on drug release pattern, the matrix tablets were prepared using various proportions of sodium alginate and sodium alginate L-cysteine conjugate along with atorvastatin calcium as model drug. The wet granulation technique was adopted and prepared matrix tablets were evaluated for various physical parameters. The in vitro drug release study results suggested that tablet formulated in combination of sodium alginate and sodium alginate L-cysteine conjugate S4 showed 100% after 8 h drug release whereas formulated with only sodium alginate S0 released 40% in 8 h. PMID:26798173

  15. Tailoring acidity of HZSM-5 nanoparticles for methyl bromide dehydrobromination by Al and Mg incorporation.

    PubMed

    Liu, Zhen; Zhang, Zhongdong; Xing, Wei; Komarneni, Sridhar; Yan, Zifeng; Gao, Xionghou; Zhou, Xiaoping

    2014-01-01

    Three kinds of HZSM-5 nanoparticles with different acidity were tailored by impregnating MgO or varying Si/Al ratios. Both the textural and acidic properties of the as-prepared nanoparticles were characterized by nitrogen adsorption-desorption measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM), ammonia temperature-programmed desorption (NH3-TPD) and Fourier transform infrared spectroscopy (FTIR or Py-FTIR). It was found that the intensity of Lewis acid sites with weak strength was enhanced by impregnating MgO or reducing Al concentration, and such an enhancement could be explained by the formation of Mg(OH)(+) or charge unbalance of the MgO framework on the surface of HZSM-5 support. The effect of HZSM-5 nanoparticles' acidity on methyl bromide dehydrobromination as catalyst was evaluated. As the results, MgHZ-360 catalyst with the highest concentration of Lewis acid sites showed excellent stability, which maintained methyl bromide conversion of up 97% in a period of 400 h on stream. Coke characterization by BET measurements and TGA/DTA and GC/MS analysis revealed that polymethylated naphthalenes species were formed outside the channels of the catalyst with higher acid intensity and higher Brønsted acid concentration during the initial period of reaction, while graphitic carbon formed in the channels of catalyst with lower acid intensity and higher Lewis acid concentration during the stable stage. PMID:25328502

  16. Tailoring acidity of HZSM-5 nanoparticles for methyl bromide dehydrobromination by Al and Mg incorporation

    PubMed Central

    2014-01-01

    Three kinds of HZSM-5 nanoparticles with different acidity were tailored by impregnating MgO or varying Si/Al ratios. Both the textural and acidic properties of the as-prepared nanoparticles were characterized by nitrogen adsorption-desorption measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM), ammonia temperature-programmed desorption (NH3-TPD) and Fourier transform infrared spectroscopy (FTIR or Py-FTIR). It was found that the intensity of Lewis acid sites with weak strength was enhanced by impregnating MgO or reducing Al concentration, and such an enhancement could be explained by the formation of Mg(OH)+ or charge unbalance of the MgO framework on the surface of HZSM-5 support. The effect of HZSM-5 nanoparticles' acidity on methyl bromide dehydrobromination as catalyst was evaluated. As the results, MgHZ-360 catalyst with the highest concentration of Lewis acid sites showed excellent stability, which maintained methyl bromide conversion of up 97% in a period of 400 h on stream. Coke characterization by BET measurements and TGA/DTA and GC/MS analysis revealed that polymethylated naphthalenes species were formed outside the channels of the catalyst with higher acid intensity and higher Brønsted acid concentration during the initial period of reaction, while graphitic carbon formed in the channels of catalyst with lower acid intensity and higher Lewis acid concentration during the stable stage. PMID:25328502

  17. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications.

    PubMed

    Zain, N Mat; Stapley, A G F; Shama, G

    2014-11-01

    Silver and copper nanoparticles were produced by chemical reduction of their respective nitrates by ascorbic acid in the presence of chitosan using microwave heating. Particle size was shown to increase by increasing the concentration of nitrate and reducing the chitosan concentration. Surface zeta potentials were positive for all nanoparticles produced and these varied from 27.8 to 33.8 mV. Antibacterial activities of Ag, Cu, mixtures of Ag and Cu, and Ag/Cu bimetallic nanoparticles were tested using Bacillus subtilis and Escherichia coli. Of the two, B. subtilis proved more susceptible under all conditions investigated. Silver nanoparticles displayed higher activity than copper nanoparticles and mixtures of nanoparticles of the same mean particle size. However when compared on an equal concentration basis Cu nanoparticles proved more lethal to the bacteria due to a higher surface area. The highest antibacterial activity was obtained with bimetallic Ag/Cu nanoparticles with minimum inhibitory concentrations (MIC) of 0.054 and 0.076 mg/L against B. subtilis and E. coli, respectively. PMID:25129735

  18. Selective extraction and determination of chlorogenic acid in fruit juices using hydrophilic magnetic imprinted nanoparticles.

    PubMed

    Hao, Yi; Gao, Ruixia; Liu, Dechun; He, Gaiyan; Tang, Yuhai; Guo, Zengjun

    2016-06-01

    In this paper, the novel hydrophilic magnetic molecularly imprinted nanoparticles were developed for selective separation and determination of chlorogenic acid in aqueous fruit juices. The polymers were prepared by using amino-functionalized magnetic nanoparticles as carriers, branched polyethyleneimine as functional monomer, and chlorogenic acid as template molecule. Branched polyethyleneimine with abundant active amino groups could react with template sufficiently, and its unique dendritic structure may amplify the number of the imprinted cavities. Meanwhile, it would improve the hydrophilicity of imprinted materials for attaining high extraction efficiency. The resulted polymers exhibit fast kinetics, high adsorption capacity, and favorable selectivity. In addition, the obtained nanoparticles were used as solid-phase extraction sorbents for selective isolation and determination of chlorogenic acid in peach, apple, and grape juices (0.92, 4.21, and 0.75 μg mL(-1), respectively). PMID:26830581

  19. Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles.

    PubMed

    Erhayem, Mohamed; Sohn, Mary

    2014-02-01

    In many studies, different humic acid (HA) sources are used interchangeably to evaluate the effect of organic matter on geochemical processes in the environment. This research looks more specifically at the effect of HA source on HA adsorption onto nano-TiO2 and how HA adsorption affects the fate and transport of nano-TiO2. In this study, six humic acids (HAs) were studied which were derived from soils (SLHA), or from sediments (SDHA) all originating from the state of Florida. Humic acid adsorption onto titanium dioxide nanoparticles (nano-TiO2) and the sedimentation of HA-coated and uncoated nano-TiO2 were monitored by Ultraviolet-visible (UV-vis) spectroscopy. Synchronous scan fluorescence (SSF) spectroscopy was used to complement the study of HA adsorption onto nano-TiO2. Phosphate buffer was found to reduce the amount of HA adsorbed onto nano-TiO2 relative to solutions of NaCl of the same pH and ionic strength. Adsorption constant values (Kads) for HAs varied in the order SLHA>FSDHA (freshwater sedimentary HA)>ESDHA (estuarine sedimentary HA). SSF results suggested that the more highly conjugated fractions of HA, which are more prevalent in SLHAs versus SDHAs, were preferentially adsorbed. In order to better understand the relationship between adsorption and aggregation, sedimentation studies were conducted and it was found that the percentage of nano-TiO2 sedimentation was preferentially enhanced in the order of the presence of SLHA>FSDHA>ESDHA. The extent of nano-TiO2 sedimentation was decreased with increasing HA concentration. TEM imaging of nano-TiO2 confirmed that nano-TiO2 was aggregated in the presence of HAs. The findings in this study suggest that HAs from different sources influence the fate and transport of nano-TiO2 in the environment differently. PMID:24140685

  20. Propaedeutic study for the delivery of nucleic acid-based molecules from PLGA microparticles and stearic acid nanoparticles

    PubMed Central

    Grassi, G; Coceani, N; Farra, R; Dapas, B; Racchi, G; Fiotti, N; Pascotto, A; Rehimers, B; Guarnieri, G; Grassi, M

    2006-01-01

    We studied the mechanism governing the delivery of nucleic acid-based drugs (NABD) from microparticles and nanoparticles in zero shear conditions, a situation occurring in applications such as in situ delivery to organ parenchyma. The delivery of a NABD molecule from poly(DL-lactide-co-glycolide) (PLGA) microparticles and stearic acid (SA) nanoparticles was studied using an experimental apparatus comprising a donor chamber separated from the receiver chamber by a synthetic membrane. A possible toxic effect on cell biology, as evaluated by studying cell proliferation, was also conducted for just PLGA microparticles. A mathematical model based on the hypothesis that NABD release from particles is due to particle erosion was used to interpret experimental release data. Despite zero shear conditions imposed in the donor chamber, particle erosion was the leading mechanism for NABD release from both PLGA microparticles and SA nanoparticles. PLGA microparticle erosion speed is one order of magnitude higher than that of competing to SA nanoparticles. Finally, no deleterious effects of PLGA microparticles on cell proliferation were detected. Thus, the data here reported can help optimize the delivery systems aimed at release of NABD from micro- and nanoparticles. PMID:17722283

  1. Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery

    PubMed Central

    Dorniani, Dena; Hussein, Mohd Zobir Bin; Kura, Aminu Umar; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2012-01-01

    Background and methods Magnetic iron oxide nanoparticles were prepared using a sonochemical method under atmospheric conditions at a Fe2+ to Fe3+ molar ratio of 1:2. The iron oxide nanoparticles were subsequently coated with chitosan and gallic acid to produce a core-shell structure. Results X-ray diffraction demonstrated that the magnetic nanoparticles were pure Fe3O4 with a cubic inverse spinel structure. Transmission electron microscopy showed that the Fe3O4 nanoparticles were of spherical shape with a mean diameter of 11 nm, compared with 13 nm for the iron oxide-chitosan-gallic acid (FCG) nanocarriers. Conclusion The magnetic nanocarrier enhanced the thermal stability of the drug, gallic acid. Release of the active drug from the FCG nanocarrier was found to occur in a controlled manner. The gallic acid and FCG nanoparticles were not toxic in a normal human fibroblast (3T3) line, and anticancer activity was higher in HT29 than MCF7 cell lines. PMID:23166439

  2. Ionically cross-linked alginate hydrogels as tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Kuo, Catherine Kyleen

    Generation of living tissues through tissue engineering can be achieved via incorporation of cells into synthetic scaffolds designed to facilitate new tissue formation. Necessary characteristics of a scaffold include biocompatibility, high porosity with controllable pore size and interconnectivity, moldability, chemical and mechanical stability, and structural homogeneity. Hydrogels often possess many of the necessary characteristics and thus are favorable candidates for scaffolding. Alginate hydrogels are commonly made by ionically crosslinking with calcium ions from CaCl2 or CaSO4. These hydrogels are favored for their mild gel formation, however the gelation rate is rapid and uncontrollable (fast-gelation), resulting in varying crosslinking density throughout the gel. In this work, structurally homogeneous calcium alginate hydrogels were formed via a slow-gelation system that utilizes uniform mixing of CaCO3 with sodium alginate solution, and the addition of slowly hydrolyzing D-gluconic acid lactone to slowly release calcium ions for crosslinking. Homogeneity and mechanical properties of these hydrogels were shown to be superior to those of fast-gelled hydrogels. Gelation rate was controlled through the incorporation of CaSO4, and by varying total calcium content, polymer concentration and gelation temperature. Control over mechanical properties and diffusivity was demonstrated in the homogeneous hydrogels by adjusting compositional variables. Consistent control over solute diffusivity through gel discs reflected the structural homogeneity of the gels. To overcome the instability of ionically crosslinked gels in tissue culture medium, a method was developed to control the hydrogel dimensions by adjusting the ionic concentration of the medium. Stability of the hydrogels in this controlled environment was characterized through swelling experiments and mechanical testing. To provide for scaffold degradation and thereby promote tissue growth, alginate lyase was

  3. Preparation of linoleic acid-capped silver nanoparticles and their antimicrobial effect.

    PubMed

    Das, R; Gang, S; Nath, S S; Bhattacharjee, R

    2012-06-01

    Silver nanoparticles have been prepared through the chemical reduction of silver ions by ethanol using linoleic acid as a stabilising agent. This colloidal solution shows an absorption band in the visible range with an absorption peak at 421 nm. The peaks in the X-ray diffraction (XRD) pattern matches well with the standard values of the face-centred-cubic form of metallic silver. Transmission Electron Microscope (TEM) micrograph shows a nearly uniform distribution of the particles with an average size of 8 nm. This linoleic acid-capped silver nanoparticles show antimicrobial activity against Escherichia coli and Staphylococcus aureus. PMID:22559712

  4. pH-Responsive Fe(III)-Gallic Acid Nanoparticles for In Vivo Photoacoustic-Imaging-Guided Photothermal Therapy.

    PubMed

    Zeng, Jianfeng; Cheng, Ming; Wang, Yong; Wen, Ling; Chen, Ling; Li, Zhen; Wu, Yongyou; Gao, Mingyuan; Chai, Zhifang

    2016-04-01

    pH-responsive biocompatible Fe(III)-gallic acid nanoparticles with strong near-infrared absorbance are very stable in mild acidic conditions, but easily decomposed in neutral conditions, which enables the nanoparticles to be stable in a tumor and easily metabolized in other organs, thus providing a safe nanoplatform for in vivo photoacoustic imaging/photothermal therapy theranostic applications. PMID:26845393

  5. Synthesis and characterization of Pseudomonas aeruginosa alginate-tetanus toxoid conjugate.

    PubMed

    Kashef, Nasim; Behzadian-Nejad, Qorban; Najar-Peerayeh, Shahin; Mousavi-Hosseini, Kamran; Moazzeni, Mohammad; Djavid, Gholamreza Esmaeeli

    2006-10-01

    Chronic infection with Pseudomonas aeruginosa is the main proven perpetrator of lung function decline and ultimate mortality in cystic fibrosis (CF) patients. Mucoid strains of this bacterium elaborate mucoid exopolysaccharide, also referred to as alginate. Alginate-based immunization of naïve animals elicits opsonic antibodies and leads to clearance of mucoid P. aeruginosa from the lungs. Alginate was isolated from mucoid P. aeruginosa strain 8821M by repeated ethanol precipitation, dialysis, proteinase and nuclease digestion, and chromatography. To improve immunogenicity, the purified antigen was coupled to tetanus toxoid (TT) with adipic acid dihydrazide (ADH) as a spacer and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDAC) as a linker. The reaction mixture was passed through a Sepharose CL-4B column. The resulting conjugate was composed of TT and large-size alginate polymer at a ratio of about 3 : 1; it was non-toxic and non-pyrogenic, and elicited high titres of alginate-specific IgG. Antisera raised against the conjugate had high opsonic activity against the vaccine strain. The alginate conjugate was also able to protect mice against a lethal dose of mucoid P. aeruginosa. These data indicate that an alginate-based vaccine has significant potential to protect against chronic infection with mucoid P. aeruginosa in the CF host. PMID:17005795

  6. The effect of omeprazole pre-treatment on rafts formed by reflux suppressant tablets containing alginate.

    PubMed

    Dettmar, P W; Little, S L; Baxter, T

    2005-01-01

    Alginate-based reflux suppressant preparations provide symptom relief by forming a physical barrier on top of the stomach contents in the form of a neutral floating gel or raft. This study investigated whether reduced acidity in the stomach brought about by omeprazole pre-treatment affected the formation and gastric residence time of alginate rafts. It was a balanced, cross-over study in 12 healthy non-patient volunteers following a single dose of two indium-111-labelled alginate tablets in the presence or absence of 3 days' pre-treatment with omeprazole. Raft formation and gastric residence, in the presence of a technetium-99m-labelled meal, were assessed by gamma scintigraphy for 3 h after alginate tablet administration. The relative raft-forming ability of alginate tablets after omeprazole compared with alginate tablets alone was 0.950 with 95% confidence intervals of 0.882 and 1.018. Pre-treatment and co-administration with omeprazole has no significant effect on the raft-forming ability of alginate tablets. PMID:15938591

  7. 3D Cell Culture in Alginate Hydrogels

    PubMed Central

    Andersen, Therese; Auk-Emblem, Pia; Dornish, Michael

    2015-01-01

    This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent), and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue. PMID:27600217

  8. In vitro fermentation of alginate and its derivatives by human gut microbiota.

    PubMed

    Li, Miaomiao; Li, Guangsheng; Shang, Qingsen; Chen, Xiuxia; Liu, Wei; Pi, Xiong'e; Zhu, Liying; Yin, Yeshi; Yu, Guangli; Wang, Xin

    2016-06-01

    Alginate (Alg) has a long history as a food ingredient in East Asia. However, the human gut microbes responsible for the degradation of alginate and its derivatives have not been fully understood yet. Here, we report that alginate and the low molecular polymer derivatives of mannuronic acid oligosaccharides (MO) and guluronic acid oligosaccharides (GO) can be completely degraded and utilized at various rates by fecal microbiota obtained from six Chinese individuals. However, the derivative of propylene glycol alginate sodium sulfate (PSS) was not hydrolyzed. The bacteria having a pronounced ability to degrade Alg, MO and GO were isolated from human fecal samples and were identified as Bacteroides ovatus, Bacteroides xylanisolvens, and Bacteroides thetaiotaomicron. Alg, MO and GO can increase the production level of short chain fatty acids (SCFA), but GO generates the highest level of SCFA. Our data suggest that alginate and its derivatives could be degraded by specific bacteria in the human gut, providing the basis for the impacts of alginate and its derivates as special food additives on human health. PMID:26891629

  9. High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature.

    PubMed

    Limaye, Mukta V; Singh, Shashi B; Date, Sadgopal K; Kothari, Deepti; Reddy, V Raghavendra; Gupta, Ajay; Sathe, Vasant; Choudhary, Ram Jane; Kulkarni, Sulabha K

    2009-07-01

    High coercivity (9.47 kOe) has been obtained for oleic acid capped chemically synthesized CoFe(2)O(4) nanoparticles of crystallite size approximately 20 nm. X-ray diffraction analysis confirms the formation of spinel phase in these nanoparticles. Thermal annealing at various temperatures increases the particle size and ultimately shows bulk like properties at particle size approximately 56 nm. The nature of bonding of oleic acid with CoFe(2)O(4) nanoparticles and amount of oleic acid in the sample is determined by Fourier transform infrared spectroscopy and thermogrvimetric analysis, respectively. The Raman analysis suggests that the samples are under strain due to capping molecules. Cation distribution in the sample is studied using Mossbauer spectroscopy. Oleic acid concentration dependent studies show that the amount of capping molecules plays an important role in achieving such a high coercivity. On the basis of above observations, it has been proposed that very high coercivity (9.47 kOe) is the result of the magnetic anisotropy, strain, and disorder of the surface spins developed by covalently bonded oleic acid to the surface of CoFe(2)O(4) nanoparticles. PMID:19522478

  10. Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors

    PubMed Central

    Almeida, Patrick V.; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Kaasalainen, Martti; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A.

    2014-01-01

    Active targeting of nanoparticles to receptor-overexpressing cancer cells has great potential for enhancing the cellular uptake of nanoparticles and for reducing fast clearance of the nanoparticles from the body. Herein, we present a preparation method of a porous silicon (PSi)-based nanodelivery system for breast cancer targeting, by covalently conjugating a synthesized amide-modified hyaluronic acid (HA+) derived polymer on the surface of undecylenic acid-modified thermally hydrocarbonized PSi (UnTHCPSi) nanoparticles. The resulting UnTHCPSi–HA+ nanoparticles showed relatively small size, reduced polydispersibility, high biocompatibility, improved colloidal and human plasma stability, as well as enhanced cellular interactions and internalization. Moreover, we demonstrated that the enhanced cellular association of UnTHCPSi–HA+ relies on the capability of the conjugated HA+ to bind and consequently target CD44 receptors expressed on the surface of breast cancer cells, thus making the HA+-functionalized UnTHCPSi nanoparticles a suitable and promising nanoplatform for the targeting of CD44-overexpressing breast tumors and for drug delivery. PMID:25074521

  11. Microarray immunoassay for phenoxybenzoic acid using polymer-functionalized lanthanide oxide nanoparticles as fluorescent labels

    NASA Astrophysics Data System (ADS)

    Nichkova, Mikaela; Dosev, Dosi; Gee, Shirley J.; Hammock, Bruce D.; Kennedy, Ian M.

    2005-11-01

    Fluorescent properties and low production cost makes lanthanide oxide nanoparticles attractive labels in biochemistry. Nanoparticles with different fluorescent spectra were produced by doping of oxides such as Y IIO 3 and Gd IIO 3 with different lanthanide ions (Eu, Tb, Sm) giving the possibility for multicolor labeling. Protein microarrays have the potential to play a fundamental role in the miniaturization of biosensors, clinical immunological assays, and protein-protein interaction studies. Here we present the application of fluorescent lanthanide oxide nanoparticles as labels in microarray-based immunoassay for phenoxybenzoic acid (PBA), a generic biomarker of human exposure to the highly potent insecticides pyrethroids. A novel polymer-based protocol was developed for biochemical functionalization of the nanoparticles. Microarrays of antibodies were fabricated by microcontact printing in line patterns onto glass substrates and immunoassays were successfully performed using the corresponding functionalized nanoparticles. The applicability of the fluorophore nanoparticles as reporters for detection of antibody-antigen interactions has been demonstrated for phenoxybenzoic acid (PBA)/anti-PBA IgG. The sensitivity of the competitive fluorescent immunoassay for PBA was similar to that of the corresponding ELISA.

  12. Imaging of the GI tract by QDs loaded heparin-deoxycholic acid (DOCA) nanoparticles.

    PubMed

    Khatun, Zehedina; Nurunnabi, Md; Cho, Kwang Jae; Lee, Yong-kyu

    2012-11-01

    This study presents an approach to deliver non invasive, near-IR imaging agent using oral delivery system. Low molecular weight heparin (LMWH)-deoxycholic acid (DOCA)/(LHD) nanoparticles formed by a self-assembly method was prepared to evaluate their physicochemical properties and oral absorption in vitro and in vivo. Near-IR QDs were prepared and loaded into LHD nanoparticles for imaging of the gastro-intestinal (GI) tract absorption. Q-LHD nanoparticles were almost spherical in shape with diameters of 194-217 nm. The size and fluorescent intensity of the Q-LHD nanoparticles were stable in 10% FBS solution and retained their fluorescent even after 5 days of incubation. Cell viability of Q-LHD nanoparticles maintained in the range of 80-95% for 24h incubation. No damage was found in tissues or organs during animal experiments. The in vivo oral absorption of Q-LHD was observed in SKH1 mice for 3h under different doses. From the results, we confirmed that Q-LHD was absorbed mostly into the ileum of small intestine containing intestinal bile acid transporter as observed in TEM and molecular imaging system. Our designed nanoparticles could be administered orally for bio-imaging and studying the bio-distribution of drug. PMID:22944403

  13. Quantitative and discriminative analysis of nucleic acid samples using luminometric nonspecific nanoparticle methods

    NASA Astrophysics Data System (ADS)

    Pihlasalo, S.; Mariani, L.; Härmä, H.

    2016-03-01

    Homogeneous simple assays utilizing luminescence quenching and time-resolved luminescence resonance energy transfer (TR-LRET) were developed for the quantification of nucleic acids without sequence information. Nucleic acids prevent the adsorption of a protein to europium nanoparticles which is detected as a luminescence quenching of europium nanoparticles with a soluble quencher or as a decrease of TR-LRET from europium nanoparticles to the acceptor dye. Contrary to the existing methods based on fluorescent dye binding to nucleic acids, equal sensitivities for both single- (ssDNA) and double-stranded DNA (dsDNA) were measured and a detection limit of 60 pg was calculated for the quenching assay. The average coefficient of variation was 5% for the quenching assay and 8% for the TR-LRET assay. The TR-LRET assay was also combined with a nucleic acid dye selective to dsDNA in a single tube assay to measure the total concentration of DNA and the ratio of ssDNA and dsDNA in the mixture. To our knowledge, such a multiplexed assay is not accomplished with commercially available assays.Homogeneous simple assays utilizing luminescence quenching and time-resolved luminescence resonance energy transfer (TR-LRET) were developed for the quantification of nucleic acids without sequence information. Nucleic acids prevent the adsorption of a protein to europium nanoparticles which is detected as a luminescence quenching of europium nanoparticles with a soluble quencher or as a decrease of TR-LRET from europium nanoparticles to the acceptor dye. Contrary to the existing methods based on fluorescent dye binding to nucleic acids, equal sensitivities for both single- (ssDNA) and double-stranded DNA (dsDNA) were measured and a detection limit of 60 pg was calculated for the quenching assay. The average coefficient of variation was 5% for the quenching assay and 8% for the TR-LRET assay. The TR-LRET assay was also combined with a nucleic acid dye selective to dsDNA in a single tube

  14. Antitumor activity of hyaluronic acid-selenium nanoparticles in Heps tumor mice models.

    PubMed

    Ren, Yuena; Zhao, Ting; Mao, Guanghua; Zhang, Min; Li, Fang; Zou, Ye; Yang, Liuqing; Wu, Xiangyang

    2013-06-01

    In this study, hyaluronic acid-selenium (HA-Se) nanoparticles as novel complexes were synthesized and their antitumor activities in vivo were investigated. The mice inoculated with Heps tumor were orally administered with HA-Se nanoparticles at 86.45 mg/kg (H) and 4.32 mg/kg (L) body weights as high and low doses respectively (2.20% selenium content in the HA-Se nanoparticles samples by ICP-AES) for 10 days. The transmission electron microscopy (TEM) results indicated that the HA-Se nanoparticles were spherical with mean size of 50-70 nm. The HA-Se nanoparticles could significantly reduce tumor weights at the tumor inhibition ratios of 46.92% (H) and 49.12% (L) respectively. However, in the 5-fluorouracil positive group (25 mg/kg), the tumor inhibition ratio was 61.71%. From the study, the HA-Se nanoparticles (4.32 mg/kg) significantly increased thymus and spleen relative weights, enhanced the activities of superoxide dismutase (SOD), reduced the formation of malondialdehyde (MDA) and the activities of aspartate transaminase, alanine transaminase and crea in Heps tumor mice. The results of the study indicated that the HA-Se nanoparticles are potential antitumor candidate for cancer treatment. PMID:23500433

  15. Chitosan and alginate scaffolds for bone tissue regeneration.

    PubMed

    Olmez, S S; Korkusuz, P; Bilgili, H; Senel, S

    2007-06-01

    Polymeric scaffold for tissue regeneration was developed for veterinary applications. Oxytetracycline hydrochloride (OTC), which is a widely used antibiotic in veterinary medicine was chosen as the model compound. Gel formulations using chitosan and alginate were prepared in distilled water or in 1% (v/v) acetic acid solution. Sponges were also prepared by a freeze-drying process. Tripolyphosphate was used for cross-linking. Viscosity was decreased in the presence of OTC in chitosan gels whereas no difference was found with alginate gels. All gels showed pseudoplastic behaviour. Water absorption capacity was highest with chitosan/alginate sponges. The solvent used for preparation of the chitosan gels was found to affect the release of OTC. The release of OTC from the sponges was increased by cross-linking. Chitosan/alginate sponges showed the slowest and lowest drug release among the developed sponge formulations in this study. The formulations were found to be biocompatible, inducing no adverse reaction in vivo on surgically formed bone defects of radius of rabbits. The level of organization of the remodelled new bone in the treatment groups was better than that of control. Incorporation of OTC into formulations did not show any considerable enhancing effect. PMID:17663189

  16. Acid-Responsive Therapeutic Polymer for Prolonging Nanoparticle Circulation Lifetime and Destroying Drug-Resistant Tumors.

    PubMed

    Piao, Ji-Gang; Gao, Feng; Yang, Lihua

    2016-01-13

    How to destroy drug-resistant tumor cells remains an ongoing challenge for cancer treatment. We herein report on a therapeutic nanoparticle, aHLP-PDA, which has an acid-activated hemolytic polymer (aHLP) grafted onto photothermal polydopamine (PDA) nanosphere via boronate ester bond, in efforts to ablate drug-resistant tumors. Upon exposure to oxidative stress and/or near-infrared laser irradiation, aHLP-PDA nanoparticle responsively releases aHLP, likely via responsive cleavage of boronate ester bond, and thus responsively exhibits acid-facilitated mammalian-membrane-disruptive activity. In vitro cell studies with drug-resistant and/or thermo-tolerant cancer cells show that the aHLP-PDA nanoparticle demonstrates preferential cytotoxicity at acidic pH over physiological pH. When administered intravenously, the aHLP-PDA nanoparticle exhibits significantly prolonged blood circulation lifetime and enhanced tumor uptake compared to bare PDA nanosphere, likely owing to aHLP's stealth effects conferred by its zwitterionic nature at blood pH. As a result, the aHLP-PDA nanoparticle effectively ablates drug-resistant tumors, leading to 100% mouse survival even on the 32nd day after suspension of photothermal treatment, as demonstrated with the mouse model. This work suggests that a combination of nanotechnology with lessons learned in bacterial antibiotic resistance may offer a feasible and effective strategy for treating drug-resistant cancers often found in relapsing patients. PMID:26654626

  17. A Novel Preparation Method for 5-Aminosalicylic Acid Loaded Eudragit S100 Nanoparticles

    PubMed Central

    Hu, Daode; Liu, Liang; Chen, Wenjuan; Li, Sining; Zhao, Yaping

    2012-01-01

    In this study, solution enhanced dispersion by supercritical fluids (SEDS) technique was applied for the preparation of 5-aminosalicylic acid (5-ASA) loaded Eudragit S100 (EU S100) nanoparticles. The effects of various process variables including pressure, temperature, 5-ASA concentration and solution flow rate on morphology, particle size, 5-ASA loading and entrapment efficiency of nanoparticles were investigated. Under the appropriate conditions, drug-loaded nanoparticles exhibited a spherical shape and small particle size with narrow particle size distribution. In addition, the nanoparticles prepared were characterized by X-ray diffraction, Differential scanning calorimetry and Fourier transform infrared spectroscopy analyses. The results showed that 5-ASA was imbedded into EU S100 in an amorphous state after SEDS processing and the SEDS process did not induce degradation of 5-ASA. PMID:22754377

  18. Effect of nitric acid concentrations on synthesis and stability of maghemite nanoparticles suspension.

    PubMed

    Nurdin, Irwan; Johan, Mohd Rafie; Yaacob, Iskandar Idris; Ang, Bee Chin

    2014-01-01

    Maghemite (γ-Fe2O3) nanoparticles have been synthesized using a chemical coprecipitation method at different nitric acid concentrations as an oxidizing agent. Characterization of all samples performed by several techniques including X-ray diffraction (XRD), transmission electron microscopy (TEM), alternating gradient magnetometry (AGM), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and zeta potential. The XRD patterns confirmed that the particles were maghemite. The crystallite size of all samples decreases with the increasing concentration of nitric acid. TEM observation showed that the particles have spherical morphology with narrow particle size distribution. The particles showed superparamagnetic behavior with decreased magnetization values at the increasing concentration of nitric acid. TGA measurement showed that the stability temperature decreases with the increasing concentration of nitric acid. DLS measurement showed that the hydrodynamic particle sizes decrease with the increasing concentration of nitric acid. Zeta potential values show a decrease with the increasing concentration of nitric acid. The increasing concentration of nitric acid in synthesis of maghemite nanoparticles produced smaller size particles, lower magnetization, better thermal stability, and more stable maghemite nanoparticles suspension. PMID:24963510

  19. Effect of Nitric Acid Concentrations on Synthesis and Stability of Maghemite Nanoparticles Suspension

    PubMed Central

    Yaacob, Iskandar Idris

    2014-01-01

    Maghemite (γ-Fe2O3) nanoparticles have been synthesized using a chemical coprecipitation method at different nitric acid concentrations as an oxidizing agent. Characterization of all samples performed by several techniques including X-ray diffraction (XRD), transmission electron microscopy (TEM), alternating gradient magnetometry (AGM), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and zeta potential. The XRD patterns confirmed that the particles were maghemite. The crystallite size of all samples decreases with the increasing concentration of nitric acid. TEM observation showed that the particles have spherical morphology with narrow particle size distribution. The particles showed superparamagnetic behavior with decreased magnetization values at the increasing concentration of nitric acid. TGA measurement showed that the stability temperature decreases with the increasing concentration of nitric acid. DLS measurement showed that the hydrodynamic particle sizes decrease with the increasing concentration of nitric acid. Zeta potential values show a decrease with the increasing concentration of nitric acid. The increasing concentration of nitric acid in synthesis of maghemite nanoparticles produced smaller size particles, lower magnetization, better thermal stability, and more stable maghemite nanoparticles suspension. PMID:24963510

  20. Targeting Siglecs with a sialic acid-decorated nanoparticle abrogates inflammation.

    PubMed

    Spence, Shaun; Greene, Michelle K; Fay, François; Hams, Emily; Saunders, Sean P; Hamid, Umar; Fitzgerald, Marianne; Beck, Jonathan; Bains, Baljinder K; Smyth, Peter; Themistou, Efrosyni; Small, Donna M; Schmid, Daniela; O'Kane, Cecilia M; Fitzgerald, Denise C; Abdelghany, Sharif M; Johnston, James A; Fallon, Padraic G; Burrows, James F; McAuley, Daniel F; Kissenpfennig, Adrien; Scott, Christopher J

    2015-09-01

    Sepsis is the most frequent cause of death in hospitalized patients, and severe sepsis is a leading contributory factor to acute respiratory distress syndrome (ARDS). At present, there is no effective treatment for these conditions, and care is primarily supportive. Murine sialic acid-binding immunoglobulin-like lectin-E (Siglec-E) and its human orthologs Siglec-7 and Siglec-9 are immunomodulatory receptors found predominantly on hematopoietic cells. These receptors are important negative regulators of acute inflammatory responses and are potential targets for the treatment of sepsis and ARDS. We describe a Siglec-targeting platform consisting of poly(lactic-co-glycolic acid) nanoparticles decorated with a natural Siglec ligand, di(α2→8) N-acetylneuraminic acid (α2,8 NANA-NP). This nanoparticle induced enhanced oligomerization of the murine Siglec-E receptor on the surface of macrophages, unlike the free α2,8 NANA ligand. Furthermore, treatment of murine macrophages with these nanoparticles blocked the production of lipopolysaccharide-induced inflammatory cytokines in a Siglec-E-dependent manner. The nanoparticles were also therapeutically beneficial in vivo in both systemic and pulmonary murine models replicating inflammatory features of sepsis and ARDS. Moreover, we confirmed the anti-inflammatory effect of these nanoparticles on human monocytes and macrophages in vitro and in a human ex vivo lung perfusion (EVLP) model of lung injury. We also established that interleukin-10 (IL-10) induced Siglec-E expression and α2,8 NANA-NP further augmented the expression of IL-10. Indeed, the effectiveness of the nanoparticle depended on IL-10. Collectively, these results demonstrated a therapeutic effect of targeting Siglec receptors with a nanoparticle-based platform under inflammatory conditions. PMID:26333936

  1. Water-dispersible ascorbic-acid-coated magnetite nanoparticles for contrast enhancement in MRI

    NASA Astrophysics Data System (ADS)

    Sreeja, V.; Jayaprabha, K. N.; Joy, P. A.

    2015-04-01

    Superparamagnetic iron oxide nanoparticles of size ~5 nm surface functionalized with ascorbic acid (vitamin C) form a stable dispersion in water with a hydrodynamic size of ~30 nm. The anti-oxidant property of ascorbic acid is retained after capping, as evidenced from the capability of converting methylene blue to its reduced leuco form. NMR relaxivity studies show that the ascorbic-acid-coated superparamagnetic iron oxide aqueous nanofluid is suitable as a contrast enhancement agent for MRI applications, coupled with the excellent biocompatibility and medicinal values of ascorbic acid.

  2. Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method.

    PubMed

    Sohail, Asma; Turner, Mark S; Coombes, Allan; Bostrom, Thor; Bhandari, Bhesh

    2011-01-31

    Encapsulation of probiotic bacteria in cross-linked alginate beads is of major interest for improving the survivability in harsh acid and bile environment and also in food matrices. Alginate micro beads (10-40 μm) containing the probiotics Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM were produced by a novel technique based on dual aerosols of alginate solution and CaCl(2) cross linking solution. Extruded macro beads (approximately 2mm diameter) produced by the conventional method and micro beads produced by novel aerosols technique offered comparable protection to L. rhamnosus in high acid and bile environment. Chitosan coating of micro beads resulted in a significant increase in survival time of L. rhamnosus from 40 to 120 min in acid condition and the reduction in cell numbers was confined to 0.94 log over this time. Alginate macro beads are more effective than micro beads in protecting L. acidophilus against high acid and bile. Chitosan coating of micro beads resulted in similar protection to L. acidophilus in macro beads in acid and extended the survival time from 90 to at least 120 min. Viability of this organism in micro beads was 3.5 log after 120 min. The continuous processing capability and scale-up potential of the dual aerosol technique offers potential for an efficient encapsulation of probiotics in very small alginate micro beads below sensorial detection limits while still being able to confer effective protection in acid and bile environment. PMID:21276627

  3. UV Spectra of Amino Acid Immobilized at Nanoparticles Formation through Nanosphere Lithography (NSL) by Plasma Treatment

    SciTech Connect

    Mohamad, Farizan; Agam, Mohd Arif; Nur, Hadi

    2011-05-25

    The modifying of nanospheres structures by plasma treatments to the fabricated nanoparticles arrays by Nanosphere Lithography (NSL) techniques to create Periodic Particles Arrays (PPAs) with different size, shape and orientation. Spectra of amino acid that immobilized to the nanoparticles arrays under Ultra Violet (UV) spectrums were studied. The PPAs with different sizes, shapes and orientation were fabricated by plasma treatment of 5 sec, 7 sec and 10 sec to the Polystyrene Nanosphere (PSN). Plasma treatment will effect to the PSN including etching part of the PSN to produce a much bigger channel to the single layer template of the PSN. Metal was deposited at interstitial sites between of the polymer balls and later removed by dissolving them in organic solvent, leaving a hexagonal pattern of metal structures at the interstitial sites. The nanoparticles immobilized with the standard amino acid, which later investigated under UV spectrums. The spectrums shows the possibilities use as biosensor devices.

  4. Grafting of 4-aminomethylbenzensulfonamide-lipoic acid conjugate on gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Stiti, M.; Bouzit, H.; Abdaoui, M.; Winum, J. Y.

    2012-02-01

    In this paper, we describe the synthesis of goldnanoparticles bearing aminomethylbenzensulfonamide via a lipoyl moiety. The resulting stable nanoparticles with an average size of 4.0 nm have been achieved by a facile and high-yielding one phase method, by the action of 4-aminomethylbenzensulfonamide-lipoic acid bioconjugate on chloroauric acide, using dimethylsulfoxide (DMSO) as the solvent and sodium tetrahydridoborate (NaBH4) as the reducing agent. UV-vis absorption, transmission electron microscopy (TEM) and X-ray diffraction were used to analyse the morphology and the structure of the obtained nanoparticles. Preliminary study shows that these new nanoparticles are endowed with highly and specific inhibitory activity for the isoform (IX) of carbonic anhydrase over expressed in many cancers, and are therefore attractive candidate to be used both in diagnosis and in treatment of tumours.

  5. Plasma amino acid coatings for a conformal growth of titania nanoparticles.

    PubMed

    Anderson, Kyle D; Marczewski, Kamil; Singamaneni, Srikanth; Slocik, Joseph M; Jakubiak, Rachel; Naik, Rajesh R; Bunning, Timothy J; Tsukruk, Vladimir V

    2010-08-01

    We report on the conformal synthesis of ultrathin films from the amino acid histidine on flat silicon substrates and 3D periodic polymer structures via plasma enhanced chemical vapor deposition. We demonstrate the efficient utilization of this functional amino acid nanocoating for the formation of individual titania nanoparticles with dimensions from 2 to 15 nm depending upon reduction conditions. The titania nanoparticles were grown directly on histidine-functionalized planar and 3D polymer substrates by a wet-chemistry method that showed uniform surface coverage that reached approximately 75%. This approach demonstrates the potential for modifying the optical properties of periodic porous polymeric structures via direct conformal growth of titania nanoparticles. PMID:20735097

  6. pH Titratable Superparamagnetic Iron Oxide for Improved Nanoparticle Accumulation in Acidic Tumor Microenvironments

    PubMed Central

    Crayton, Samuel H.; Tsourkas, Andrew

    2011-01-01

    A wide variety of nanoparticle platforms are being developed for the diagnosis and treatment of malignancy. While many of these are passively targeted or rely on receptor-ligand interactions, metabolically directed nanoparticles provide a complementary approach. It is known that both primary and secondary events in tumorigensis alter the metabolic profile of developing and metastatic cancers. One highly conserved metabolic phenotype is a state of up-regulated glycolysis and reduced use of oxidative phosphorylation, even when oxygen tension is not limiting. This metabolic shift, termed the Warburg effect, creates a “hostile” tumor microenvironment with increased levels of lactic acid and low extracellular pH. In order to exploit this phenomenon and improve the delivery of nanoparticle platforms to a wide variety of tumors, a pH-responsive iron oxide nanoparticle was designed. Specifically, glycol chitosan (GC), a water-soluble polymer with pH titratable charge, was conjugated to the surface of superparamagnetic iron oxide nanoparticles (SPIO) to generate a T2*-weighted MR contrast agent that responds to alterations in its surrounding pH. Compared to control nanoparticles that lack pH sensitivity, these GC-SPIO nanoparticles demonstrated potent pH-dependent cellular association and MR contrast in vitro. In murine tumor models GC-SPIO also generated robust T2*-weighted contrast, which correlated with increased delivery of the agent to the tumor site, measured quantitatively by inductively coupled plasma mass spectrometry. Importantly, the increased delivery of GC-SPIO nanoparticles cannot be solely attributed to the commonly observed enhanced permeability and retention effect, since these nanoparticles have similar physical properties and blood circulation times as control agents. PMID:22035454

  7. All-trans retinoic acid-loaded lipid nanoparticles as a transdermal drug delivery carrier.

    PubMed

    Charoenputtakhun, Ponwanit; Opanasopit, Praneet; Rojanarata, Theerasak; Ngawhirunpat, Tanasait

    2014-03-01

    The objective of this study was to investigate the effects of drug amounts (0.1%, 0.2% and 0.3% w/w), amounts of the oil (10%, 15% and 20% w/w of lipid matrix) and types of the oil (soybean oil (S), medium chain triglycerides (M), oleic acids (O) and linoleic acids (L)) in lipid matrix of all-trans retinoic acid (ATRA)-loaded nanostructured lipid carriers (NLCs) for transdermal drug delivery. The ATRA-loaded solid lipid nanoparticles (SLNs) were formulated with 30% w/w cetyl palmitate. All lipid nanoparticles had average sizes between 130 and 241 nm and had negative zeta potentials. The drug loading of all formulations was higher than 95%. The release of drug from all lipid nanoparticles followed zero-order kinetics. The amount of drug released from all the NLCs and SLNs was significantly greater than the drug released from the ATRA suspension. The ATRA flux of the SLNs was higher than the NLCs. The flux of the NLCs containing oleic acid was significantly higher than the other types of oils. The chemical stability at 4 °C, the percentage of ATRA remaining in all the lipid nanoparticles tested was higher than 80%. It can be concluded that both the SLNs and NLCs are promising dermal drug delivery systems for ATRA. PMID:23356887

  8. Development and application of nanoparticles synthesized with folic acid-conjugated soy protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, soy protein isolate (SPI) was conjugated with folic acid (FA) to prepare nanoparticles for target-specific drug delivery. Successful conjugation was evidenced by UV spectrophotometry and primary amino group analysis. An increase in count rate by at least 142% was observed in FA-conjug...

  9. Polymorph-dependent titanium dioxide nanoparticle dissolution in acidic and alkali digestions

    EPA Science Inventory

    Multiple polymorphs (anatase, brookite and rutile) of titanium dioxide nanoparticles (TiO2-NPs) with variable structures were quantified in environmental matrices via microwave-based hydrofluoric (HF) and nitric (HNO3) mixed acid digestion and muffle furnace (MF)-based potassium ...

  10. A Rhodium Nanoparticle-Lewis Acidic Ionic Liquid Catalyst for the Chemoselective Reduction of Heteroarenes.

    PubMed

    Karakulina, Alena; Gopakumar, Aswin; Akçok, İsmail; Roulier, Bastien L; LaGrange, Thomas; Katsyuba, Sergey A; Das, Shoubhik; Dyson, Paul J

    2016-01-01

    We describe a catalytic system composed of rhodium nanoparticles immobilized in a Lewis acidic ionic liquid. The combined system catalyzes the hydrogenation of quinolines, pyridines, benzofurans, and furan to access the corresponding heterocycles, important molecules present in fine chemicals, agrochemicals, and pharmaceuticals. The catalyst is highly selective, acting only on the heteroaromatic ring, and not interfering with other reducible functional groups. PMID:26577114

  11. Structure and optical properties of noble metal and oxide nanoparticles dispersed in various polysaccharide biopolymers

    NASA Astrophysics Data System (ADS)

    Djoković, V.; Božanic, D. K.; Vodnik, V. V.; Krsmanović, R. M.; Trandafilovic, L. V.; Dimitrijević-Branković, S.

    2011-10-01

    We present the results on the structure and the optical properties of noble metal (Ag, Au) and oxide (ZnO) nanoparticles synthesized by various methods in different polysaccharide matrices such as chitosan, glycogen, alginate and starch. The structure of the obtained nanoparticles was studied in detail with microscopic techniques (TEM, SEM), while the XPS spectroscopy was used to investigate the effects at the nanoparticle-biomolecule interfaces. The antimicrobial activity of the nanocomposite films with Ag nanoparticles was tested against the Staphylococcus aureus, Escherichia coli and Candida albicans pathogens. In addition, we will present the results on the structure and optical properties of the tryptophan amino acid functionalized silver nanoparticles dispersed in water soluble polymer matrices.

  12. Alginate Lyase Exhibits Catalysis-Independent Biofilm Dispersion and Antibiotic Synergy

    PubMed Central

    Lamppa, John W.

    2013-01-01

    More than 2 decades of study support the hypothesis that alginate lyases are promising therapeutic candidates for treating mucoid Pseudomonas aeruginosa infections. In particular, the enzymes' ability to degrade alginate, a key component of mucoid biofilm matrix, has been the presumed mechanism by which they disrupt biofilms and enhance antibiotic efficacy. The systematic studies reported here show that, in an in vitro model, alginate lyase dispersion of P. aeruginosa biofilms and enzyme synergy with tobramycin are completely decoupled from catalytic activity. In fact, equivalent antibiofilm effects can be achieved with bovine serum albumin or simple amino acids. These results provide new insights into potential mechanisms of alginate lyase therapeutic activity, and they should motivate a careful reexamination of the fundamental assumptions underlying interest in enzymatic biofilm dispersion. PMID:23070175

  13. Nano zinc oxide-sodium alginate antibacterial cellulose fibres.

    PubMed

    Varaprasad, Kokkarachedu; Raghavendra, Gownolla Malegowd; Jayaramudu, Tippabattini; Seo, Jongchul

    2016-01-01

    In the present study, antibacterial cellulose fibres were successfully fabricated by a simple and cost-effective procedure by utilizing nano zinc oxide. The possible nano zinc oxide was successfully synthesized by precipitation technique and then impregnated effectively over cellulose fibres through sodium alginate matrix. XRD analysis revealed the 'rod-like' shape alignment of zinc oxide with an interplanar d-spacing of 0.246nm corresponding to the (101) planes of the hexagonal wurtzite structure. TEM analysis confirmed the nano dimension of the synthesized zinc oxide nanoparticles. The presence of nano zinc oxide over cellulose fibres was evident from the SEM-EDS experiments. FTIR and TGA studies exhibited their effective bonding interaction. The tensile stress-strain curves data indicated the feasibility of the fabricated fibres for longer duration utility without any significant damage or breakage. The antibacterial studies against Escherichia coli revealed the excellent bacterial devastation property. Further, it was observed that when all the parameters remained constant, the variation of sodium alginate concentration showed impact in devastating the E. coli. In overall, the fabricated nano zinc oxide-sodium alginate cellulose fibres can be effectively utilized as antibacterial fibres for biomedical applications. PMID:26453887

  14. Magnetic field-responsive release of transforming growth factor beta 1 from heparin-modified alginate ferrogels.

    PubMed

    Kim, Hwi; Park, Honghyun; Lee, Jae Won; Lee, Kuen Yong

    2016-10-20

    Stimuli-responsive polymeric systems have been widely used for various drug delivery and tissue engineering applications. Magnetic stimulation can be also exploited to regulate the release of pharmaceutical drugs, growth factors, and cells from hydrogels in a controlled manner, on-demand. In the present study, alginate ferrogels containing iron oxide nanoparticles were fabricated via ionic cross-linking, and their various characteristics were investigated. The deformation of the ferrogels was dependent on the polymer concentration, calcium concentration, iron oxide concentration, and strength of magnetic field. To modulate the release of transforming growth factor beta 1 (TGF-β1) under magnetic stimulation, alginate was chemically modified with heparin, as TGF-β1 has a heparin-binding domain. Alginate was first modified with ethylenediamine, and heparin was then conjugated to the ethylenediamine-modified alginate via carbodiimide chemistry. Conjugation of heparin to alginate was confirmed by infrared spectroscopy and proton nuclear magnetic resonance spectroscopy. Sustained release of TGF-β1 from alginate-g-heparin ferrogels was achieved, and application of a magnetic field to the ferrogels regulated TGF-β1 release, resultantly enhancing chondrogenic differentiation of ATDC5 cells, which were used as a model chondrogenic cell line. Alginate-based ferrogels that release drugs in a controlled manner may therefore be useful in many biomedical applications. PMID:27474590

  15. Differential effects of amino acid surface decoration on the anticancer efficacy of selenium nanoparticles.

    PubMed

    Feng, Yanxian; Su, Jianyu; Zhao, Zhennan; Zheng, Wenjie; Wu, Hualian; Zhang, Yibo; Chen, Tianfeng

    2014-01-28

    The use of selenium for anticancer therapy has been heavily explored during the last decade. Amino acids (AAs) play central roles both as building blocks of proteins and intermediates in metabolism. In the present study, AAs-modified selenium nanoparticles (SeNPs@AAs) have been successfully synthesized in a simple redox system. Typical neutral (valine), acidic (aspartic acid) and basic (lysine) amino acids were used to decorate SeNPs, and the stable and homodisperse nanoparticles were characterized by zeta potential and transmission electron microscope. The result of X-ray photoelectron spectra (XPS) showed that the interaction of -NH3(+) groups of the amino acids with negative-charged SeNPs could be a driving force for dispersion of the nanoparticles. The screening of in vitro anticancer activities demonstrated that SeNPs@AAs exhibited differential growth inhibitory effects on various human cancer cell lines. Among them, SeNPs decorated by Lys displayed higher anticancer efficacy than those of valine and aspartic acid. The studies on the in vitro cellular uptake mechanisms revealed that SeNPs@AAs were internalized by cancer cells through endocytosis. Flow cytometric analysis and the determination of caspase activity indicated that treatment of the MCF-7 breast adenocarcinoma cells with SeNPs@AAs led to a dose-dependent increase in apoptosis. Moreover, it was found that SeNPs@AAs-induced ROS overproduction could be the upstream signal of caspase activation and mitochondrial dysfunction in cancer cells. Taken together, our results suggest that these amino acid biocompatible nanoparticles might have potential application as chemopreventive and chemotherapeutic agents for human cancers. PMID:24257441

  16. Salt-mediated self-assembly of thioctic acid on gold nanoparticles.

    PubMed

    Volkert, Anna A; Subramaniam, Varuni; Ivanov, Michael R; Goodman, Amanda M; Haes, Amanda J

    2011-06-28

    Self-assembled monolayer (SAM) modification is a widely used method to improve the functionality and stability of bulk and nanoscale materials. For instance, the chemical compatibility and utility of solution-phase nanoparticles are often improved using covalently bound SAMs. Herein, solution-phase gold nanoparticles are modified with thioctic acid SAMs in the presence and absence of salt. Molecular packing density on the nanoparticle surfaces is estimated using X-ray photoelectron spectroscopy and increases by ∼20% when molecular self-assembly occurs in the presence versus the absence of salt. We hypothesize that as the ionic strength of the solution increases, pinhole and collapsed-site defects in the SAM are more easily accessible as the electrostatic interaction energy between adjacent molecules decreases, thereby facilitating the subsequent assembly of additional thioctic acid molecules. Significantly, increased SAM packing densities increase the stability of functionalized gold nanoparticles by a factor of 2 relative to nanoparticles functionalized in the absence of salt. These results are expected to improve the reproducible functionalization of solution-phase nanomaterials for various applications. PMID:21524135

  17. Thiol-Ene Induced Diphosphonic Acid Functionalization of Superparamagnetic Iron Oxide Nanoparticles

    SciTech Connect

    Rutledge, Ryan D.; Warner, Cynthia L.; Pittman, Jonathan W.; Addleman, Raymond S.; Engelhard, Mark H.; Chouyyok, Wilaiwan; Warner, Marvin G.

    2010-07-20

    Multi-functional organic molecules represent an interesting challenge for nanoparticle functionalization due to the potential for undesirable interactions between the substrate material and the variable functionalities, making it difficult to control the final orientation of the ligand. In the present study, UV-induced thiol-ene click chemistry has been utilized as a means of directed functionalization of bifunctional ligands on an iron oxide nanoparticle surface. Allyl diphosphonic acid ligand was covalently deposited on the surface of thiol-presenting iron oxide nanoparticles via the formation of a UV-induced thioether. This method of thiol-ene click chemistry offers a set of reaction conditions capable of controlling the ligand deposition and circumventing the natural affinity exhibited by the phosphonic acid moiety for the iron oxide surface. These claims are supported via a multimodal characterization platform which includes thermogravimetric analysis, x-ray photoelectron spectroscopy, and metal contact analysis and are consistent with a properly oriented, highly active ligand on the nanoparticle surface. These experiments suggest thiol-ene click chemistry as both a practical and generally applicable strategy for the directed deposition of multi-functional ligands on metal oxide nanoparticle surfaces.

  18. Formic acid electrooxidation on Bi-modified polyoriented and preferential (111) Pt nanoparticles.

    PubMed

    López-Cudero, Ana; Vidal-Iglesias, Francisco J; Solla-Gullón, José; Herrero, Enrique; Aldaz, Antonio; Feliu, Juan M

    2009-01-14

    Formic acid electrooxidation was studied on Bi modified polyoriented and preferential (111) Pt nanoparticles. For both types of nanoparticles, Bi coverage was progressively increased and its effect on formic acid electrooxidation was evaluated using cyclic voltammetry and chronoamperometric measurements. In both experiments, significant and progressive enhancements on the electrooxidation current densities were obtained in comparison to the bare Pt nanoparticles. In voltammetry, at maximum Bi coverage, higher current densities at peak potential were obtained with the preferential (111) Pt nanoparticles (approximately 42 mA cm(-2)) as compared to the polyoriented Pt nanoparticles (approximately 32 mA cm(-2)) in agreement with previous single crystal studies. Nevertheless, this tendency was not observed in chronoamperometry at 0.4 V where currents obtained at maximum Bi coverage were similar. On the other hand, CO poison formation was also evaluated at open circuit potential. The resulting electrochemical activity has been rationalized using different parameters, such as surface structure, size domains, particle size and Bi coverage. PMID:19088999

  19. Removal of aqueous perfluorooctanoic acid (PFOA) using starch-stabilized magnetite nanoparticles.

    PubMed

    Gong, Yanyan; Wang, Lin; Liu, Juncheng; Tang, Jingchun; Zhao, Dongye

    2016-08-15

    Fully stabilized magnetite (Fe3O4) nanoparticles were prepared with a water-soluble starch as a stabilizer and tested for removal of aqueous perfluorooctanoic acid (PFOA). The presence of starch at ≥0.2wt% can fully stabilize 0.1g/L as Fe of the Fe3O4 nanoparticles. The particle stabilization technique resulted in 2.4 times higher PFOA uptake. Fourier transform infrared spectra suggested that the main PFOA removal mechanism was inner-sphere complexation. Batch kinetic experiments revealed that the starch-stabilized nanoparticles facilitated a rapid PFOA uptake with a sorption equilibrium time of 30min, and the sorption process followed a pseudo-second-order kinetic model. The Langmuir model was able to well interpret the adsorption isotherm, with a maximum adsorption capacity of 62.5mg/g. Increasing pH from 4.7 to 9.6 led to a sharp increase (by 2.6 times) in PFOA uptake. The presence of 12mg/L humic acid inhibited PFOA uptake by 96%, while effect of ionic strength (CaCl2=0-2mmol/L) was negligible. The nanoparticles significantly reduced the biological toxicity of PFOA. The results demonstrated promise of starch-stabilized Fe3O4 nanoparticles as a "green" adsorbent for effective removal of PFOA in soil and groundwater. PMID:27100000

  20. Paclitaxel-loaded nanoparticles of star-shaped cholic acid-core PLA-TPGS copolymer for breast cancer treatment

    NASA Astrophysics Data System (ADS)

    Tang, Xiaolong; Cai, Shuyu; Zhang, Rongbo; Liu, Peng; Chen, Hongbo; Zheng, Yi; Sun, Leilei

    2013-10-01

    A system of novel nanoparticles of star-shaped cholic acid-core polylactide- d-α-tocopheryl polyethylene glycol 1000 succinate (CA-PLA-TPGS) block copolymer was developed for paclitaxel delivery for breast cancer treatment, which demonstrated superior in vitro and in vivo performance in comparison with paclitaxel-loaded poly( d, l-lactide- co-glycolide) (PLGA) nanoparticles and linear PLA-TPGS nanoparticles. The paclitaxel- or couramin 6-loaded nanoparticles were fabricated by a modified nanoprecipitation method and then characterized in terms of size, surface charge, surface morphology, drug encapsulation efficiency, and in vitro drug release. The CA-PLA-TPGS nanoparticles were found to be spherical in shape with an average size of around 120 nm. The nanoparticles were found to be stable, showing no change in the particle size and surface charge during 90-day storage of the aqueous solution. The release profiles of the paclitaxel-loaded nanoparticles exhibited typically biphasic release patterns. The results also showed that the CA-PLA-TPGS nanoparticles have higher antitumor efficacy than the PLA-TPGS nanoparticles and PLGA nanoparticles in vitro and in vivo. In conclusion, such nanoparticles of star-shaped cholic acid-core PLA-TPGS block copolymer could be considered as a potentially promising and effective strategy for breast cancer treatment.

  1. Imaging Contrast Effects in Alginate Microbeads

    NASA Astrophysics Data System (ADS)

    Shapley, Nina; Hester-Reilly, Holly

    2007-03-01

    We have investigated the use of alginate gel microbeads as contrast agents for the study of suspension flows in complex geometries using nuclear magnetic resonance (NMR) imaging. These deformable particles can provide imaging contrast to rigid polymer particles in a bimodal suspension (two particle sizes). Microbeads were formed of crosslinked alginate gel, with or without trapped oil droplets. Crosslinking of the aqueous sodium alginate solution or the continuous phase of an oil-in-water emulsion occurred rapidly at gentle processing conditions. The alginate microbeads exhibit both spin-spin relaxation time (T2) contrast and diffusion contrast relative to both the suspending fluid and rigid polystyrene particles. Large alginate emulsion microbeads flowing in the abrupt, axisymmetric expansion geometry can be clearly distinguished from the suspending fluid and from rigid polymer particles in both spin-echo and diffusion weighted imaging. The alginate microbeads, particularly those containing trapped emulsion droplets, offer potential as a positive contrast agent in multiple NMR imaging applications.

  2. Caffeic acid-coated multifunctional magnetic nanoparticles for the treatment and bimodal imaging of tumours.

    PubMed

    Lee, Jun; Kim, Kyoung Sub; Na, Kun

    2016-07-01

    Accurate theragnosis of tumour is essential for improving the life rate of tumour patients. Superparamagnetic iron oxide nanoparticles (SPIONs) have been used as both diagnostic and therapeutic agents. However, their application is often limited because of a lack of water solubility, lack of cancer treatment efficacy, and ineffective targeting of tumour cells. In this report, a double ligand (caffeic acid-polyethylene glycol-folic acid; FA-PEG-CA, caffeic acid-polyethylene glycol-pheophorbide-a; PheoA-PEG-CA) coated iron oxide nanoparticle has been fabricated that overcomes the limitations of conventional SPION. Photosensitizer and tumour targeting ligands were coated on SPION using a ligand-substitution method. We confirmed the successful substitution of oleic acid ligands with FA-PEG-CA and PheoA-PEG-CA ligands by FT-IR spectroscopy. The caffeic acid coated iron oxide nanoparticles (CAMNPs) also demonstrated high water solubility in an aqueous environment and folate-mediated active tumour targeting. The water solubility of CAMNPs was evaluated by DLS measurement and TEM images. The cytotoxicity of CAMNPs increased two-fold in MDA-MB-231 cells at a laser irradiation condition. The fabricated CAMNPs retained their ability to function as both MRI diagnostic and tumour-selective therapeutic agents. These results suggest that these efficient characteristics of CAMNPs can be incorporated into applications, thus enhancing the efficacy of clinical cancer treatment. PMID:27107705

  3. Facile synthesis of PtAu alloy nanoparticles with high activity for formic acid oxidation

    SciTech Connect

    Zhang, Sheng; Shao, Yuyan; Yin, Geping; Lin, Yuehe

    2010-02-15

    We report the facile synthesis of carbon supported PtAu alloy nanoparticles with high electrocatalytic activity as the anode catalyst for direct formic acid fuel cells (DFAFCs). PtAu alloy nanopaticles are synthesized by co-reducing HAuCl4 and H2PtCl6 with NaBH4 in the presence of sodium citrate and then the nanoparticles are deposited on Vulcan XC-72R carbon support (PtAu/C). The obtained catalysts are characterized with X-ray diffraction (XRD) and transmission electron microscope (TEM), which reveal PtAu alloy formation with an average diameter of 4.6 nm. PtAu/C exhibits 8 times higher catalytic activity toward formic acid oxidation than Pt/C. The enhanced activity of PtAu/C catalyst is attributed to noncontinuous Pt sites formed in the presence of the neighbored Au sites, which promotes direct oxidation of formic acid by avoiding poison CO.

  4. Development of fluorescent nanoparticle-labeled lateral flow assay for the detection of nucleic acids.

    PubMed

    Wang, Yuhong; Nugen, Sam R

    2013-10-01

    The rapid, specific and sensitive detection of nucleic acids is of utmost importance for the identification of infectious agents, diagnosis and treatment of genetic diseases, and the detection of pathogens related to human health and safety. Here we report the development of a simple and sensitive nucleic acid sequence-based and Ru(bpy)3 (2+)-doped silica nanoparticle-labeled lateral flow assay which achieves low limit of detection by using fluorescencent nanoparticles. The detection of the synthetic nucleic acid sequences representative of Trypanosoma mRNA, the causative agent for African sleeping sickness, was utilized to demonstrate this assay. The 30 nm spherical Ru(bpy)3 (2+)-doped silica nanoparticles were prepared in aqueous medium by a novel method recently reported. The nanoparticles were modified by 3-glycidoxypropyl trimethoxysilane in order to conjugate to amine-capped oligonucleotide reporter probes. The fluorescent intensities of the fluorescent assays were quantified on a mictrotiter plate reader using a custom holder. The experimental results showed that the lateral flow fluorescent assay developed was more sensitive compared with the traditional colloidal gold test strips. The limit of detection for the fluorescent lateral flow assay developed is approximately 0.066 fmols as compared to approximately 15 fmols for the colloidal gold. The limit of detection can further be reduced about one order of magnitude when "dipstick" format was used. PMID:23525961

  5. Stabilization of D-amino acid oxidase from Rhodosporidium toruloides by immobilization onto magnetic nanoparticles.

    PubMed

    Hsieh, Hao-Chieh; Kuan, I-Ching; Lee, Shiow-Ling; Tien, Gee-Yeng; Wang, Yi-Jen; Yu, Chi-Yang

    2009-04-01

    D-amino acid oxidase from Rhodosporidium toruloides was immobilized onto glutaraldehyde-activated magnetic nanoparticles. Approximately four enzyme molecules were attached to one magnetic nanoparticle when the weight ratio of the enzyme to the support was 0.12. After immobilization, the T(m) was increased from 45 degrees C of the free form to 55 degrees C. In the presence of 20 mM H2O2, the immobilized form retained 93% of its activity after 5 h while the free form was completely inactivated after 3.5 h. PMID:19066733

  6. [Alginates in therapy for gastroesophageal reflux disease].

    PubMed

    Avdeev, V G

    2015-01-01

    This article presents evidence of the prevalence of gastroesophageal reflux disease (GERD) and highlights its main treatment options. Among its medications, particular emphasis is laid on alginates and their main mechanisms of action are described. There is information on the efficacy of alginates, including the alginate-antacid Gaviscon Double Action, in treating GERD. Recommendations for how to administer these drugs are given. PMID:26155630

  7. FLX Pyrosequencing Analysis of the Effects of the Brown-Algal Fermentable Polysaccharides Alginate and Laminaran on Rat Cecal Microbiotas

    PubMed Central

    An, Choa; Yazaki, Takahiro; Takahashi, Hajime; Kimura, Bon

    2013-01-01

    Edible brown algae are used as major food material in Far East Asian countries, particularly in South Korea and Japan. They contain fermentable dietary fibers, alginic acid (uronic acid polymer) and laminaran (β-1,3-glucan), that are fermented into organic acids by intestinal bacteria. To clarify the effect of edible algae on the intestinal environment, the cecal microbiotas of rats fed diets containing no dietary fiber (control) or 2% (wt/wt) sodium alginate or laminaran for 2 weeks were analyzed using FLX amplicon pyrosequencing with bar-coded primers targeting the bacterial 16S rRNA gene. The most abundant phylum in all groups was Firmicutes. Specifically, Allobaculum was dominant in all diet groups. In addition, Bacteroides capillosus (37.1%) was abundant in the alginate group, while Clostridium ramosum (3.14%) and Parabacteroides distasonis (1.36%) were only detected in the laminaran group. Furthermore, rats fed alginate showed simplified microbiota phylotypes compared with others. With respect to cecal chemical compounds, laminaran increased cecal organic acid levels, particularly propionic acid. Alginate increased total cecal organic acids. Cecal putrefactive compounds, such as indole, H2S, and phenol, were decreased by both alginate and laminaran. These results indicate that edible brown algae can alter the intestinal environment, with fermentation by intestinal microbiota. PMID:23183985

  8. Engineering alginate as bioink for bioprinting.

    PubMed

    Jia, Jia; Richards, Dylan J; Pollard, Samuel; Tan, Yu; Rodriguez, Joshua; Visconti, Richard P; Trusk, Thomas C; Yost, Michael J; Yao, Hai; Markwald, Roger R; Mei, Ying

    2014-10-01

    Recent advances in three-dimensional (3-D) printing offer an excellent opportunity to address critical challenges faced by current tissue engineering approaches. Alginate hydrogels have been used extensively as bioinks for 3-D bioprinting. However, most previous research has focused on native alginates with limited degradation. The application of oxidized alginates with controlled degradation in bioprinting has not been explored. Here, a collection of 30 different alginate hydrogels with varied oxidation percentages and concentrations was prepared to develop a bioink platform that can be applied to a multitude of tissue engineering applications. The authors systematically investigated the effects of two key material properties (i.e. viscosity and density) of alginate solutions on their printabilities to identify a suitable range of material properties of alginates to be applied to bioprinting. Further, four alginate solutions with varied biodegradability were printed with human adipose-derived stem cells (hADSCs) into lattice-structured, cell-laden hydrogels with high accuracy. Notably, these alginate-based bioinks were shown to be capable of modulating proliferation and spreading of hADSCs without affecting the structure integrity of the lattice structures (except the highly degradable one) after 8days in culture. This research lays a foundation for the development of alginate-based bioink for tissue-specific tissue engineering applications. PMID:24998183

  9. Engineering alginate as bioink for bioprinting

    PubMed Central

    Jia, Jia; Richards, Dylan J.; Pollard, Samuel; Tan, Yu; Rodriguez, Joshua; Visconti, Richard P.; Trusk, Thomas C.; Yost, Michael J.; Yao, Hai; Markwald, Roger R.; Mei, Ying

    2015-01-01

    Recent advances in 3D printing offer an excellent opportunity to address critical challenges faced by current tissue engineering approaches. Alginate hydrogels have been extensively utilized as bioinks for 3D bioprinting. However, most previous research has focused on native alginates with limited degradation. The application of oxidized alginates with controlled degradation in bioprinting has not been explored. Here, we prepared a collection of 30 different alginate hydrogels with varied oxidation percentages and concentrations to develop a bioink platform that can be applied to a multitude of tissue engineering applications. We systematically investigated the effects of two key material properties (i.e. viscosity and density) of alginate solutions on their printabilities to identify a suitable range of material properties of alginates to be applied to bioprinting. Further, four alginate solutions with varied biodegradability were printed with human adipose-derived stem cells (hADSCs) into lattice-structured, cell-laden hydrogels with high accuracy. Notably, these alginate-based bioinks were shown to be capable of modulating proliferation and spreading of hADSCs without affecting structure integrity of the lattice structures (except the highly degradable one) after 8 days in culture. This research lays a foundation for the development of alginate-based bioink for tissue-specific tissue engineering applications. PMID:24998183

  10. Two competing reactions of tetrabutylammonium alginate in organic solvents: Amidation versus γ-lactone synthesis.

    PubMed

    Schleeh, Thomas; Madau, Mathieu; Roessner, Dierk

    2016-03-15

    Biocompatibility and thickening properties predetermine alginates as ingredients in food, cosmetic and pharmaceutical products. Further chemical modifications are often desired for a product optimization. The introduction of hydrophobic groups can be realized by employing organic tetrabutylammonium alginate (TBA-Alg) solutions. The synthesis of alginic acid alkyl amides from TBA-Alg with 2-chloro-1-methylpyridinium iodide (CMPI) as a coupling agent, however, has so far not resulted in a high degree of amidation. The analysis of the coupling reaction revealed the formation of mannuronic acid γ-lactone structures, which required a conformation change from (1)C4 to (4)C1. The opening of the γ-lactone required a high excess of butylamine. In the case of CMPI, triethylamine had to be added prior to the coupling agent in order to suppress the assumed alginic acid formation. The degrees of amidation achieved were up to 0.8, and for propylphosphonic anhydride as the coupling agent up to 1. The molecular weights of the alginic acid butyl amide were ≥35kDa. PMID:26794759

  11. Controlled release of drug and better bioavailability using poly(lactic acid-co-glycolic acid) nanoparticles.

    PubMed

    Pandey, Sanjeev K; Patel, Dinesh K; Maurya, Akhilendra K; Thakur, Ravi; Mishra, Durga P; Vinayak, Manjula; Haldar, Chandana; Maiti, Pralay

    2016-08-01

    Tamoxifen (Tmx) embedded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (PLGA-Tmx) is prepared to evaluate its better DNA cleavage potential, cytotoxicity using Dalton's lymphoma ascite (DLA) cells and MDA-MB231 breast cancer cells. PLGA-Tmx nanoparticles are prepared through emulsified nanoprecipitation technique with varying dimension of 17-30nm by changing the concentrations of polymer, emulsifier and drug. Nanoparticles dimension are measured through electron and atomic force microscopy. Interactions between tamoxifen and PLGA are verified through spectroscopic and calorimetric methods. PLGA-Tmx shows excellent DNA cleavage potential as compared to pure Tmx raising better bioavailability. In vitro cytotoxicity studies indicate that PLGA-Tmx reduces DLA cells viability up to ∼38% against ∼15% in pure Tmx. Hoechst stain is used to detect apoptotic DLA cells through fluorescence imaging of nuclear fragmentation and condensation exhibiting significant increase of apoptosis (70%) in PLGA-Tmx vis-à-vis pure drug (58%). Enhanced DNA cleavage potential, nuclear fragmentation and condensation in apoptotic cells confirm greater bioavailability of PLGA-Tmx as compared to pure Tmx in terms of receptor mediated endocytosis. Hence, the sustained release kinetics of PLGA-Tmx nanoparticles shows much better anticancer efficacy through enhanced DNA cleavage potential and nuclear fragmentation and, thereby, reveal a novel vehicle for the treatment of cancer. PMID:27112980

  12. A Novel Method for the Preparation of Retinoic Acid-Loaded Nanoparticles

    PubMed Central

    Errico, Cesare; Gazzarri, Matteo; Chiellini, Federica

    2009-01-01

    The goal of present work was to investigate the use of bioerodible polymeric nanoparticles as carriers of retinoic acid (RA), which is known to induce differentiation of several cell lines into neurons. A novel method, named “Colloidal-Coating”, has been developed for the preparation of nanoparticles based on a copolymer of maleic anhydride and butyl vinyl ether (VAM41) loaded with RA. Nanoparticles with an average diameter size of 70 nm and good morphology were prepared. The activity of the encapsulated RA was evaluated on SK-N-SH human neuroblastoma cells, which are known to undergo inhibition of proliferation and neuronal differentiation upon treatment with RA. The activity of RA was not affected by the encapsulation and purification processes. PMID:19564952

  13. Alginate cryogel based glucose biosensor

    NASA Astrophysics Data System (ADS)

    Fatoni, Amin; Windy Dwiasi, Dian; Hermawan, Dadan

    2016-02-01

    Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under sub-zero temperature. This porous structure was growth in a 100 μL micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μm. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R2 of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.

  14. Quantitative and discriminative analysis of nucleic acid samples using luminometric nonspecific nanoparticle methods.

    PubMed

    Pihlasalo, S; Mariani, L; Härmä, H

    2016-03-21

    Homogeneous simple assays utilizing luminescence quenching and time-resolved luminescence resonance energy transfer (TR-LRET) were developed for the quantification of nucleic acids without sequence information. Nucleic acids prevent the adsorption of a protein to europium nanoparticles which is detected as a luminescence quenching of europium nanoparticles with a soluble quencher or as a decrease of TR-LRET from europium nanoparticles to the acceptor dye. Contrary to the existing methods based on fluorescent dye binding to nucleic acids, equal sensitivities for both single- (ssDNA) and double-stranded DNA (dsDNA) were measured and a detection limit of 60 pg was calculated for the quenching assay. The average coefficient of variation was 5% for the quenching assay and 8% for the TR-LRET assay. The TR-LRET assay was also combined with a nucleic acid dye selective to dsDNA in a single tube assay to measure the total concentration of DNA and the ratio of ssDNA and dsDNA in the mixture. To our knowledge, such a multiplexed assay is not accomplished with commercially available assays. PMID:26912463

  15. Preparation of regular sized Ca-alginate microspheres using membrane emulsification method.

    PubMed

    You, J O; Park, S B; Park, H Y; Haam, S; Chung, C H; Kim, W S

    2001-01-01

    Monodisperse Ca-alginate microspheres were prepared using the membrane emulsification method. Three ionic types of drugs (anionic, cationic and non-ionic) were incorporated into the microspheres, and the effects of sodium alginate concentration and the pressure applied during the dispersing process on the properties of the microspheres were examined. Monodisperse microspheres were obtained when the concentration of alginate solution was 2 wt% and the pressure applied was 0.4 x 10(5) Pa. The mean size of microspheres was approximately 4 microm. Lidocaine x HCl (cationic), sodium salicylate (anionic) and 4-acetamidophenol (non-ionic) were selected as ionic model drugs and included in the alginate microspheres. Lidocaine x HCl (cationic drug) release was more retarded than that of the anionic drug, because of the electrostatic attraction between the negative charge of the ionized carboxyl group in the alginate chain and the positive charge of the cationic drug. In acidic release medium, a slow release was observed due to the low swelling characteristic and the increased viscosity of alginate, regardless of ionic type of drug. PMID:11428680

  16. Impact of cross-linker on alginate matrix integrity and drug release.

    PubMed

    Ching, A L; Liew, C V; Heng, P W S; Chan, L W

    2008-05-01

    Sodium alginate, a biopolymer, was employed in the formulation of matrix tablets. They cracked or laminated at acidic pH, compromising their dissolution performance. Improved mechanical strength and reduced barrier permeability of calcium alginate gel provided the rationale for cross-linking the alginate matrix to sustain drug release. Studies had suggested that the incorporation of soluble calcium salts in alginate matrix tablets could sustain drug release at near-neutral pH due to in situ cross-linking. However, results from the present study showed otherwise when gastrointestinal pH conditions were simulated. Significant reduction in drug release rate was only observed when an external calcium source was utilized at low concentration. High calcium ion concentrations caused matrix disintegration. In contrast, matrices pre-coated by calcium alginate could sustain drug release at pH 1.2 followed by pH 6.8 for over 12h. The presence of cross-linked barrier impeded matrix lamination and preserved matrix structure, contributing to at least three-fold reduction in drug release at pH 1.2. Zero order release as well as delayed burst release could be achieved by employing appropriate grade of alginate and cross-linking conditions. PMID:18272307

  17. Self-assembling nanoparticles encapsulating zoledronic acid revert multidrug resistance in cancer cells

    PubMed Central

    Gazzano, Elena; Salzano, Giuseppina; Giordano, Antonio; Desiderio, Vincenzo; Ghigo, Dario; Caraglia, Michele; De Rosa, Giuseppe; Riganti, Chiara

    2015-01-01

    The overexpression of ATP binding cassette (ABC) transporters makes tumor cells simultaneously resistant to several cytotoxic drugs. Impairing the energy metabolism of multidrug resistant (MDR) cells is a promising chemosensitizing strategy, but many metabolic modifiers are too toxic in vivo. We previously observed that the aminobisphosphonate zoledronic acid inhibits the activity of hypoxia inducible factor-1α (HIF-1α), a master regulator of cancer cell metabolism. Free zoledronic acid, however, reaches low intratumor concentration. We synthesized nanoparticle formulations of the aminobisphosphonate that allow a higher intratumor delivery of the drug. We investigated whether they are effective metabolic modifiers and chemosensitizing agents against human MDR cancer cells in vitro and in vivo. At not toxic dosage, nanoparticles carrying zoledronic acid chemosensitized MDR cells to a broad spectrum of cytotoxic drugs, independently of the type of ABC transporters expressed. The nanoparticles inhibited the isoprenoid synthesis and the Ras/ERK1/2-driven activation of HIF-1α, decreased the transcription and activity of glycolytic enzymes, the glucose flux through the glycolysis and tricarboxylic acid cycle, the electron flux through the mitochondrial respiratory chain, the synthesis of ATP. So doing, they lowered the ATP-dependent activity of ABC transporters, increasing the chemotherapy efficacy in vitro and in vivo. These effects were more pronounced in MDR cells than in chemosensitive ones and were due to the inhibition of farnesyl pyrophosphate synthase (FPPS), as demonstrated in FPPS-silenced tumors. Our work proposes nanoparticle formulations of zoledronic acid as the first not toxic metabolic modifiers, effective against MDR tumors. PMID:26372812

  18. Needlelike and spherical polyelectrolyte complex nanoparticles of poly(l-lysine) and copolymers of maleic acid.

    PubMed

    Müller, M; Reihs, T; Ouyang, W

    2005-01-01

    We report on the bulk and surface properties of dispersions consisting of nonstoichiometric polyelectrolyte complex (PEC) nanoparticles. PEC nanoparticles were prepared by mixing poly(l-lysine) (PLL) or poly(diallyldimethylammonium chloride) (PDADMAC) with poly(maleic acid-co-alpha-methylstyrene) (PMA-MS) or poly(maleic acid-co-propylene) (PMA-P). The monomolar mixing ratio was n-/n+ = 0.6, and the concentration ranged from 1 to 6 mmol/L. Subsequent centrifugation enabled the separation of the excess polycation, resulting in a stable coacervate phase further used in the experiments. The bulk phase parameters turbidity and hydrodynamic radius (R(h)) of the PEC nanoparticles showed a linear dependence on the total polymer content independently of the mixed polyelectrolytes. This can be interpreted by the increased collision probability of the polyelectrolyte chains when the overlap concentration is approached or exceeded. Different morphologies of the cationic PEC nanoparticles, which were solution-cast onto Si supports, were obtained by atomic force microscopy (AFM). The combinations of PLL/PMA-MS and PDADMAC/PMA-MS revealed more or less hemispherical particle shapes, whereas that of PLL/PMA-P revealed an elongated needlelike particle shape. Circular dichroism and attenuated total reflection Fourier transform infrared (ATR-FTIR) measurements proved the alpha-helical conformation for the PEC PLL/PMA-P and the random coil conformation for the PEC PLL/PMA-MS. We conclude that stiff alpha-helical PLL induces anisotropic elongated PEC nanoparticles, whereas randomly coiled PLL forms isotropic spherical PEC nanoparticles. PMID:15620340

  19. Perspectives of Engineered Marine Derived Polymers for Biomedical Nanoparticles.

    PubMed

    Tran, Khanh Thi My; Vo, Toi Van; Duan, Wei; Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh

    2016-01-01

    Marine environment exhibits an enormous diversity of organisms which contains an abundant source of polysaccharides. As polymer matrix carriers, marine-based polymers possess several valuable properties including high stability, non-toxicity, hydrophilicity, biodegradability, with low production cost. Despite notable biological activities of these natural polymers, there are certain limitations in exploring their functions in applications of nano-sized drug delivery systems. The review aims to demonstrate exceptional characteristics of marine-based polymers including fucoidan, alginate, carrageenan, hyaluronic acid, chondroitin sulfate, and chitosan as well as provide perspectives of current publications on their nanoparticle formulations for biomedical applications. PMID:26898745

  20. Biocomposite cellulose-alginate films: promising packaging materials.

    PubMed

    Sirviö, Juho Antti; Kolehmainen, Aleksi; Liimatainen, Henrikki; Niinimäki, Jouko; Hormi, Osmo E O

    2014-05-15

    Biocomposite films based on cellulose and alginate were produced using unmodified birch pulp, microfibrillated cellulose (MFC), nanofibrillated cellulose (NFC) and birch pulp derivate, nanofibrillated anionic dicarboxylic acid cellulose (DCC), having widths of fibres ranging from 19.0 μm to 25 nm as cellulose fibre materials. Ionically cross-linked biocomposites were produced using Ca(2+) cross-linking. Addition of micro- and nanocelluloses as a reinforcement increased the mechanical properties of the alginate films remarkably, e.g. addition of 15% of NFC increased a tensile strength of the film from 70.02 to 97.97 MPa. After ionic cross-linking, the tensile strength of the film containing 10% of DCC was increased from 69.63 to 125.31 MPa. The biocomposite films showed excellent grease barrier properties and reduced water vapour permeability (WVP) after the addition of cellulose fibres, except when unmodified birch pulp was used. PMID:24423542

  1. Transport in Porous Media of Poly(Acrylic Acid) Coated Ferrihydrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jaffe, P. R.; Xiang, A.; Koel, B. E.

    2012-12-01

    Augmentation of soils with iron to enhance biological processes such as uranium reduction via iron reducing bacteria, e.g., Geobacter sp., might be achieved via the injection of iron nanoparticles into the subsurface. The challenge is to make these nanoparticles transportable in the subsurface while not affecting the iron bioavailability. Poorly crystallized 2-line ferrihydrite iron oxide nanoparticles were synthesized and coated with different amounts of poly(acrylic acid) polymers (Na-PAA6K or Na-PAA140K). Analyses were then performed on these particles, including sorption/desorption of the polymer onto the iron nanoparticles, particle size, zeta potential, transport in sand and soil columns, and bioavailabity of the Fe(III) in the absence and presence of the coating to iron reducing organisms. Results showed that at pH values of environmental relevance, the zeta potential of the particles varied from about 3 mV (pH=8.2) for the non-coated particles to about -30 mV for the particles coated with the polymers to their highest sorption capacity. The coated particle diameter was shown to be in the range of 200 nm. Column transport experiments showed that for the highest polymer coating the nanoparticle breakthrough was virtually identical to that of bromide, while significant filtration was observed for particles with an intermediate coating, and complete particle removal via filtration was observed for the non-coated particles. These results held for sand as well as for soil, which had been previously characterized, from a field site at Rifle, CO. Bioavailability experiments showed no difference in the iron reduction rate between the untreated and treated nanoparticles. These results show that it is possible to manufacture iron nanoparticles to enhance biological iron reduction, and that the transport properties of these treated particles is tunable so that a desired retention in the porous medium can be achieved.

  2. Novel chitosan-spotted alginate fibers from wet-spinning of alginate solutions containing emulsified chitosan-citrate complex and their characterization.

    PubMed

    Watthanaphanit, Anyarat; Supaphol, Pitt; Furuike, Tetsuya; Tokura, Seiichi; Tamura, Hiroshi; Rujiravanit, Ratana

    2009-02-01

    The major problem associated with the production of alginate/chitosan hybridized fibers by wet spinning is the formation of gels due to ionic interactions of the oppositely charged molecules of alginate and chitosan when these two polymers are directly mixed. Here, we proposed a novel method of using chitosan in the form of an emulsion. The emulsion was prepared by adding a primary emulsion of olive oil in a sodium dodecyl sulfate (SDS) aqueous solution into a chitosan-citrate complex. The complexation of chitosan with citric acid is the key of this method. The citrate ions neutralize the positive charges of chitosan, rendering the chitosan-citrate complex to readily penetrate into the core of the SDS/olive oil micelles. The obtained emulsified chitosan-citrate complex (hereafter, the chitosan-citrate emulsion) of varying amount was then added into an alginate aqueous solution to prepare the alginate/chitosan spinning dope suspensions. The alginate/chitosan hybridized fibers showed spotty features of the emulsified chitosan-citrate complex particles locating close to the surface and the inside of the hybridized fibers. At the lowest content of incorporated chitosan (i.e., 0.5% w/w chitosan), both the tenacity and the elongation at break of the obtained chitosan-spotted alginate fibers were the greatest. Further increase in the chitosan content resulted in a monotonous decrease in the property values. Lastly, preliminary studies demonstrated that the obtained chitosan-spotted alginate fibers showed great promises as carriers for drug delivery. PMID:19072144

  3. Composite nanoparticles based on hyaluronic acid chemically cross-linked with alpha,beta-polyaspartylhydrazide.

    PubMed

    Pitarresi, G; Craparo, E F; Palumbo, F S; Carlisi, B; Giammona, G

    2007-06-01

    In this paper, new composite nanoparticles based on hyaluronic acid (HA) chemically cross-linked with alpha,beta-polyaspartylhydrazide (PAHy) were prepared by the use of a reversed-phase microemulsion technique. HA-PAHy nanoparticles were characterized by FT-IR spectroscopy, confirming the occurrence of the chemical cross-linking, dimensional analysis, and transmission electron micrography, showing a sub-micrometer size and spherical shape. Zeta potential measurements demonstrated the presence of HA on the nanoparticle surface. A remarkable affinity of the obtained nanoparticles toward aqueous media that simulate some biological fluids was found. Stability studies showed the absence of chemical degradation in various media, while in the presence of hyaluronidase, a partial degradation occurred. Cell compatibility was evaluated by performing in vitro assays on human chronic myelogenous leukaemia cells (K-562) chosen as a model cell line and a haemolytic test. HA-PAHy nanoparticles were also able to entrap 5-fluorouracil, chosen as a model drug, and release it in a simulated physiological fluid and in human plasma with a mechanism essentially controlled by a Fickian diffusion. PMID:17521164

  4. Ellagic Acid Directed Growth of Au-Pt Bimetallic Nanoparticles and Their Catalytic Applications

    NASA Astrophysics Data System (ADS)

    Barnaby, Stacey N.; Sarker, Nazmul H.; Banerjee, Ipsita A.

    2013-02-01

    In this work, we report the facile formation of bimetallic nanoparticles of Au-Pt in the presence of the plant polyphenol ellagic acid (EA). It was found that EA formed micro-fibrillar assemblies, which aggregated into micro-bundles under aqueous conditions. Those micro-bundles acted as templates for the growth of Au nanoparticles, as well as bimetallic Au-Pt nanoparticles biomimetically. At higher concentrations of EA, it was observed that in addition to forming fibrous micro-bundles, columnar assemblies of EA were formed in the presence of the metal nanoparticles. The formation of the assemblies was found to be concentration dependent. It appears that upon binding to metal ions and subsequent formation of the nanoparticles, morphological changes occur in the case of EA assemblies. The morphological changes observed were probed by electron microscopy. Further, the ability of the materials to degrade the toxic aromatic nitro compound 2-methoxy-4-nitroaniline was explored, where 50% degradation was observed within 15 min, indicating that such hybrid materials may have potential applications in environmental remediation.

  5. Characterization of alginate lyase activity on liquid, gelled, and complexed states of alginate.

    PubMed

    Breguet, Véronique; von Stockar, Urs; Marison, Ian W

    2007-01-01

    A study of alginate lyase was carried out to determine if this enzyme could be used to remove alginate present in the core of alginate/poly-L-lysine (AG/PLL) microcapsules in order to maximize cell growth and colonization. A complete kinetic study was undertaken, which indicated an optimal activity of the enzyme at pH 7-8, 50 degrees C, in the presence of Ca2+. The buffer, not the ionic strength, influenced the alginate degradation rate. Alginate lyase was also shown to be active on gelled forms of alginate, as well as on the AG/PLL complex constituting the membrane of microcapsules. Batch cultures of CHO cells in the presence of alginate showed a decrease of the growth rate by a factor of 2, although the main metabolic flux rates were not modified. The addition of alginate lyase to cell culture medium increased the doubling time 5-7-fold and decreased the protein production rate, although cell viability was not affected. The addition of enzyme to medium containing alginate did not improve growth conditions. This suggests that alginate lyase is probably not suitable for hydrolysis of microcapsules in the presence of cells, in order to achieve high cell density and high productivity. However, the high activity may be useful for releasing cells from alginate beads or AG/PLL microcapsules. PMID:17691813

  6. Binding of actin to thioglycolic acid modified superparamagnetic nanoparticles for antibody conjugation.

    PubMed

    Maltas, Esra; Ertekin, Betul

    2015-01-01

    Thioglycolic acid modified superparamagnetic iron oxide nanoparticles (TG-APTS-SPION) were synthesized by using (3-aminopropyl) triethoxysilane (APTS) and thioglycolic acid (TG). Actin was immobilized on the nanoparticle surfaces. Binding amount of the actin (Act) on TG-APTS-SPIONs was determined by using a calibration curve equation that was drawn using fluorescence spectra at 280 and 342 nm of excitation and emission wavelengths. Anti-Actin (anti-Act) was interacted with the actin immobilized TG-APTS-SPIONs as primary antibody. Horse radish peroxidase (HRP) was also interacted with antibody conjugated nanoparticles as secondary antibody. The binding capacity of primary and secondary antibodies was also estimated by fluorescence spectroscopy. Scanning electron microscopy (SEM), Infrared spectroscopy (FTIR) and energy dispersive X-ray (EDX) analysis were also clarified binding of the protein and antibodies to the nanoparticles' surfaces. Western blot analysis was also done for actin conjunction with anti Act antibody to confirm binding of the antibody to the protein. PMID:25451750

  7. pH-Triggered release from surface-modified poly(lactic-co-glycolic acid) nanoparticles

    PubMed Central

    Häuser, Manuel; Langer, Klaus

    2015-01-01

    Summary Nanoparticles (NP) of poly(lactic-co-glycolic acid) (PLGA) represent a promising biodegradable drug delivery system. We suggest here a two-step release system of PLGA nanoparticles with a pH-tunable polymeric shell, providing an initial pH-triggered step, releasing a membrane-toxic cationic compound. PLGA nanoparticles are coated by polyelectrolytes using the layer-by-layer self-assembly technique, employing poly(acrylic acid) (PAA) as a pH-sensitive component and poly(diallyldimethylammonium chloride) (PDADMAC) as the releasable polycation. The pH during multilayer deposition plays a major role and influences the titration curve of the layer system. The pH-tunability of PAA is intensively investigated with regard to the pH region, in which the particle system becomes uncharged. The isoelectric point can be shifted by employing suitable deposition pH values. The release is investigated by quantitative 1H NMR, yielding a pH-dependent release curve. A release of PDADMAC is initiated by a decrease of the pH value. The released amount of polymer, as quantified by 1H NMR analysis, clearly depends on the pH value and thus on the state of deprotonation of the pH-sensitive PAA layer. Subsequent incubation of the nanoparticles with high concentrations of sodium chloride shows no further release and thus demonstrates the pH-driven release to be quantitative. PMID:26885463

  8. Effects of Humic and Fulvic Acids on Silver Nanoparticle Stability, Dissolution, and Toxicity

    PubMed Central

    Gunsolus, Ian L.; Mousavi, Maral P. S.; Hussein, Kadir; Bühlmann, Philippe; Haynes, Christy L.

    2015-01-01

    The colloidal stability of silver nanoparticles (AgNPs) in natural aquatic environments influences their transport and environmental persistence, while their dissolution to Ag+ influences their toxicity to organisms. Here, we characterize the colloidal stability, dissolution behavior, and toxicity of two industrially relevant classes of AgNPs (i.e., AgNPs stabilized by citrate or polyvinylpyrrolidone) after exposure to natural organic matter (NOM, i.e., Suwannee River Humic and Fulvic Acid Standards and Pony Lake Fulvic Acid Reference). We show that NOM interaction with the nanoparticle surface depends on (i) the NOM’s chemical composition, where sulfur- and nitrogen-rich NOM more significantly increases colloidal stability, and (ii) the affinity of the capping agent for the AgNP surface, where nanoparticles with loosely bound capping agents are more effectively stabilized by NOM. Adsorption of NOM is shown to have little effect on AgNP dissolution under most experimental conditions, the exception being when the NOM is rich in sulfur and nitrogen. Similarly, the toxicity of AgNPs to a bacterial model (Shewanella oneidensis MR-1) decreases most significantly in the presence of sulfur- and nitrogen-rich NOM. Our data suggest that the rate of AgNP aggregation and dissolution in aquatic environments containing NOM will depend on the chemical composition of the NOM, and that the toxicity of AgNPs to aquatic microorganisms is controlled primarily by the extent of nanoparticle dissolution. PMID:26047330

  9. Effects of Humic and Fulvic Acids on Silver Nanoparticle Stability, Dissolution, and Toxicity.

    PubMed

    Gunsolus, Ian L; Mousavi, Maral P S; Hussein, Kadir; Bühlmann, Philippe; Haynes, Christy L

    2015-07-01

    The colloidal stability of silver nanoparticles (AgNPs) in natural aquatic environments influences their transport and environmental persistence, while their dissolution to Ag(+) influences their toxicity to organisms. Here, we characterize the colloidal stability, dissolution behavior, and toxicity of two industrially relevant classes of AgNPs (i.e., AgNPs stabilized by citrate or polyvinylpyrrolidone) after exposure to natural organic matter (NOM, i.e., Suwannee River Humic and Fulvic Acid Standards and Pony Lake Fulvic Acid Reference). We show that NOM interaction with the nanoparticle surface depends on (i) the NOM's chemical composition, where sulfur- and nitrogen-rich NOM more significantly increases colloidal stability, and (ii) the affinity of the capping agent for the AgNP surface, where nanoparticles with loosely bound capping agents are more effectively stabilized by NOM. Adsorption of NOM is shown to have little effect on AgNP dissolution under most experimental conditions, the exception being when the NOM is rich in sulfur and nitrogen. Similarly, the toxicity of AgNPs to a bacterial model (Shewanella oneidensis MR-1) decreases most significantly in the presence of sulfur- and nitrogen-rich NOM. Our data suggest that the rate of AgNP aggregation and dissolution in aquatic environments containing NOM will depend on the chemical composition of the NOM, and that the toxicity of AgNPs to aquatic microorganisms is controlled primarily by the extent of nanoparticle dissolution. PMID:26047330

  10. Alginate Biosynthesis Factories in Pseudomonas fluorescens: Localization and Correlation with Alginate Production Level.

    PubMed

    Maleki, Susan; Almaas, Eivind; Zotchev, Sergey; Valla, Svein; Ertesvåg, Helga

    2016-02-01

    Pseudomonas fluorescens is able to produce the medically and industrially important exopolysaccharide alginate. The proteins involved in alginate biosynthesis and secretion form a multiprotein complex spanning the inner and outer membranes. In the present study, we developed a method by which the porin AlgE was detected by immunogold labeling and transmission electron microscopy. Localization of the AlgE protein was found to depend on the presence of other proteins in the multiprotein complex. No correlation was found between the number of alginate factories and the alginate production level, nor were the numbers of these factories affected in an algC mutant that is unable to produce the precursor needed for alginate biosynthesis. Precursor availability and growth phase thus seem to be the main determinants for the alginate production rate in our strain. Clustering analysis demonstrated that the alginate multiprotein complexes were not distributed randomly over the entire outer cell membrane surface. PMID:26655760

  11. Alginate Biosynthesis Factories in Pseudomonas fluorescens: Localization and Correlation with Alginate Production Level

    PubMed Central

    Maleki, Susan; Almaas, Eivind; Zotchev, Sergey; Valla, Svein

    2015-01-01

    Pseudomonas fluorescens is able to produce the medically and industrially important exopolysaccharide alginate. The proteins involved in alginate biosynthesis and secretion form a multiprotein complex spanning the inner and outer membranes. In the present study, we developed a method by which the porin AlgE was detected by immunogold labeling and transmission electron microscopy. Localization of the AlgE protein was found to depend on the presence of other proteins in the multiprotein complex. No correlation was found between the number of alginate factories and the alginate production level, nor were the numbers of these factories affected in an algC mutant that is unable to produce the precursor needed for alginate biosynthesis. Precursor availability and growth phase thus seem to be the main determinants for the alginate production rate in our strain. Clustering analysis demonstrated that the alginate multiprotein complexes were not distributed randomly over the entire outer cell membrane surface. PMID:26655760

  12. Prolonged Hypocalcemic Effect by Pulmonary Delivery of Calcitonin Loaded Poly(Methyl Vinyl Ether Maleic Acid) Bioadhesive Nanoparticles

    PubMed Central

    Varshosaz, J.; Minaiyan, M.; Forghanian, M.

    2014-01-01

    The purpose of the present study was to design a pulmonary controlled release system of salmon calcitonin (sCT). Therefore, poly(methyl vinyl ether maleic acid) [P(MVEMA)] nanoparticles were prepared by ionic cross-linking method using Fe2+ and Zn2+ ions. Physicochemical properties of nanoparticles were studied in vitro. The stability of sCT in the optimized nanoparticles was studied by electrophoretic gel method. Plasma calcium levels until 48 h were determined in rats as pulmonary-free sCT solution or nanoparticles (25 μg·kg−1), iv solution of sCT (5 μg·kg−1), and pulmonary blank nanoparticles. The drug remained stable during fabrication and tests on nanoparticles. The optimized nanoparticles showed proper physicochemical properties. Normalized reduction of plasma calcium levels was at least 2.76 times higher in pulmonary sCT nanoparticles compared to free solution. The duration of hypocalcemic effect of pulmonary sCT nanoparticles was 24 h, while it was just 1 h for the iv solution. There was not any significant difference between normalized blood calcium levels reduction in pulmonary drug solution and iv injection. Pharmacological activity of nanoparticles after pulmonary delivery was 65% of the iv route. Pulmonary delivery of P(MVEMA) nanoparticles of sCT enhanced and prolonged the hypocalcemic effect of the drug significantly. PMID:24701588

  13. Effect of Oxygen Tension and Medium Components on Monomer Distribution of Alginate.

    PubMed

    Kıvılcımdan Moral, Çiğdem; Doğan, Özdemir; Sanin, Faika Dilek

    2015-06-01

    Alginate is a natural biopolymer composed of mannuronic and guluronic acid monomers. It is produced by algae and some species of Azotobacter and Pseudomonas. This study aims to investigate the effect of dissolved oxygen tension (DOT) and growth medium substrate and calcium concentrations on the monomeric composition of alginate produced by Azotobacter vinelandii ATCC® 9046 in a fermenter. Results showed that alginate production increased with increasing DOT from 1 to 5 %. The highest alginate production was obtained as 4.51 g/L under 20 g/L of sucrose and 50 mg/L of calcium at 5 % DOT. At these conditions, alginate was rich in mannuronic acid (up to 61 %) and it was particularly high at low calcium concentration. On the other hand, at extreme conditions such as high DOT level (10 % DOT) and low sucrose concentration (10 g/L), guluronic acid was dominant (ranging between 65 and 100 %). PMID:25877399

  14. Metal ion-humic acid nanoparticle interactions: role of both complexation and condensation mechanisms.

    PubMed

    Town, Raewyn M; van Leeuwen, Herman P

    2016-07-21

    Purely Donnan type models for electrostatic binding by humic acid (HA) nanoparticles are shown to be physically incomplete. To describe the extent of ion binding by HA, such models need to invoke parameters that are not consistent with experimental observations. These disparate parameters include anomalously high Donnan potentials, as well as intrinsic affinity constants for electrostatically associating ions such as Ca(2+). In contrast, the recently introduced counterion condensation - Donnan model (CCD) provides a physicochemically realistic description of the electrostatic contribution to metal ion binding by humic acid nanoparticles. The extent of Ca(2+)-HA association can be adequately described solely in terms of electrostatics only, including counterion condensation in the intraparticulate double layer in addition to Donnan partitioning in the remainder of the particle body. The binding of Cd(ii), Pb, (ii) and Cu(ii) by HA also involves inner-sphere complex formation leading to intraparticulate metal species distributions with major proportions of condensed and complexed ions. PMID:27327433

  15. Carbon nanofiber supported bimetallic PdAu nanoparticles for formic acid electrooxidation

    NASA Astrophysics Data System (ADS)

    Qin, Yuan-Hang; Jiang, Yue; Niu, Dong-Fang; Zhang, Xin-Sheng; Zhou, Xing-Gui; Niu, Li; Yuan, Wei-Kang

    2012-10-01

    Carbon nanofiber (CNF) supported PdAu nanoparticles are synthesized with sodium citrate as the stabilizing agent and sodium borohydride as the reducing agent. High resolution transmission electron microscopy (HRTEM) characterization indicates that the synthesized PdAu particles are well dispersed on the CNF surface and X-ray diffraction (XRD) characterization indicates that the alloying degree of the synthesized PdAu nanoparticles can be improved by adding tetrahydrofuran to the synthesis solution. The results of electrochemical characterization indicate that the addition of Au can promote the electrocatalytic activity of Pd/C catalyst for formic acid oxidation and the CNF supported high-alloying PdAu catalyst possesses better electrocatalytic activity and stability for formic acid oxidation than either the CNF supported low-alloying PdAu catalyst or the CNF supported Pd catalyst.

  16. Semiconductor nanoparticles in poly((2-dimethylamino)ethyl methacrylate-co-acrylic acid) co-polymers

    NASA Astrophysics Data System (ADS)

    Trandafilović, L. V.; Bibić, N.; Georges, M. K.; Blanuša, J.; Radhakrishnan, T.; Djoković, V.

    2013-11-01

    Nanostructured cadmium selenide (CdSe) and lead sulfide (PbS) semiconductors were prepared in a poly(2-(dimethylamino)ethyl methacrylate-co-acrylic acid) matrix. The obtained nanoparticles were characterized by using optical and structural methods. Co-polymers were synthesized in two different molar ratios of pDMAEMA:acrylic acid monomer units (1:2, 1:1). Transmission electron microscopy analysis confirmed the presence of nano-sized CdSe and PbS particles. In the case of CdSe, a shift of the onset of the optical absorption toward lower wavelengths was observed. X-ray diffraction analysis revealed that both CdSe and PbS nanoparticles have cubic crystal structure.

  17. Synthesis and assembly of Pd nanoparticles on graphene for enhanced electrooxidation of formic acid

    NASA Astrophysics Data System (ADS)

    Jin, Tao; Guo, Shaojun; Zuo, Jing-Lin; Sun, Shouheng

    2012-12-01

    Monodisperse 4.5 nm Pd nanoparticles (NPs) were synthesized by solution phase reduction of palladium acetylacetonate with morpholine borane in a mixture of oleylamine and 1-octadecene. These NPs were assembled on graphene uniformly in the form of a monolayer, and showed much enhanced catalysis for electrooxidation of formic acid. The work demonstrates the great potential of graphene as a support to enhance NP catalysis and stability for important chemical oxidation reactions.Monodisperse 4.5 nm Pd nanoparticles (NPs) were synthesized by solution phase reduction of palladium acetylacetonate with morpholine borane in a mixture of oleylamine and 1-octadecene. These NPs were assembled on graphene uniformly in the form of a monolayer, and showed much enhanced catalysis for electrooxidation of formic acid. The work demonstrates the great potential of graphene as a support to enhance NP catalysis and stability for important chemical oxidation reactions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33060a

  18. Caffeic acid: potential applications in nanotechnology as a green reducing agent for sustainable synthesis of gold nanoparticles.

    PubMed

    Seo, Yu Seon; Cha, Song-Hyun; Yoon, Hye-Ran; Kang, Young-Hwa; Park, Youmie

    2015-04-01

    The sustainable synthesis of gold nanoparticles from gold ions was conducted with caffeic acid as a green reducing agent. The formation of gold nanoparticles was confirmed by spectroscopic and microscopic methods. Spherical nanoparticles with an average diameter of 29.99 ± 7.43 nm were observed in high- resolution transmission electron microscopy and atomic force microscopy images. The newly prepared gold nanoparticles exhibited catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. This system enables the preparation of green catalysts using plant natural products as reducing agents, which fulfills the growing need for sustainability initiatives. PMID:25973494

  19. Elucidating the Influence of Gold Nanoparticles on the Binding of Salvianolic Acid B and Rosmarinic Acid to Bovine Serum Albumin

    PubMed Central

    Peng, Xin; Qi, Wei; Huang, Renliang; Su, Rongxin; He, Zhimin

    2015-01-01

    Salvianolic acid B and rosmarinic acid are two main water-soluble active ingredients from Salvia miltiorrhiza with important pharmacological activities and clinical applications. The interactions between salvianolic acid B (or rosmarinic acid) and bovine serum albumin (BSA) in the presence and absence of gold nanoparticles (Au NPs) with three different sizes were investigated by using biophysical methods for the first time. Experimental results proved that two components quenched the fluorescence of BSA mainly through a static mechanism irrespective of the absence or presence of Au NPs. The presence of Au NPs decreased the binding constants of salvianolic acid B with BSA from 27.82% to 10.08%, while Au NPs increased the affinities of rosmarinic acid for BSA from 0.4% to 14.32%. The conformational change of BSA in the presence of Au NPs (caused by a noncompetitive binding between Au NPs and drugs at different albumin sites) induced changeable affinity and binding distance between drugs and BSA compared with no Au NPs. The competitive experiments revealed that the site I (subdomain IIA) of BSA was the primary binding site for salvianolic acid B and rosmarinic acid. Additionally, two compounds may induce conformational and micro-environmental changes of BSA. The results would provide valuable binding information between salvianolic acid B (or rosmarinic acid) and BSA, and also indicated that the Au NPs could alter the interaction mechanism and binding capability of drugs to BSA, which might be beneficial to understanding the pharmacokinetics and biological activities of the two drugs. PMID:25861047

  20. Solid-State NMR Characterization of Mixed Phosphonic Acid Ligand Binding and Organization on Silica Nanoparticles.

    PubMed

    Davidowski, Stephen K; Holland, Gregory P

    2016-04-01

    As ligand functionalization of nanomaterials becomes more complex, methods to characterize the organization of multiple ligands on surfaces is required. In an effort to further the understanding of ligand-surface interactions, a combination of multinuclear ((1)H, (29)Si, (31)P) and multidimensional solid-state nuclear magnetic resonance (NMR) techniques was utilized to characterize the phosphonic acid functionalization of fumed silica nanoparticles using methylphosphonic acid (MPA) and phenylphosphonic acid (PPA). (1)H → (29)Si cross-polarization (CP)-magic angle spinning (MAS) solid-state NMR was used to selectively detect silicon atoms near hydrogen atoms (primarily surface species); these results indicate that geminal silanols are preferentially depleted during the functionalization with phosphonic acids. (1)H → (31)P CP-MAS solid-state NMR measurements on the functionalized silica nanoparticles show three distinct resonances shifted upfield (lower ppm) and broadened compared to the resonances of the crystalline ligands. Quantitative (31)P MAS solid-state NMR measurements indicate that ligands favor a monodentate binding mode. When fumed silica nanoparticles were functionalized with an equal molar ratio of MPA and PPA, the MPA bound the nanoparticle surface preferentially. Cross-peaks apparent in the 2D (1)H exchange spectroscopy (EXSY) NMR measurements of the multiligand sample at short mixing times indicate that the MPA and PPA are spatially close (≤5 Å) on the surface of the nanostructure. Furthermore, (1)H-(1)H double quantum-single quantum (DQ-SQ) back-to-back (BABA) 2D NMR spectra further confirmed that MPA and PPA are strongly dipolar coupled with observation of DQ intermolecular contacts between the ligands. DQ experimental buildup curves and simulations indicate that the average distance between MPA and PPA is no further than 4.2 ± 0.2 Å. PMID:26914738

  1. Immobilization of dehydrogenase onto epoxy-functionalized nanoparticles for synthesis of (R)-mandelic acid.

    PubMed

    Jiang, Xiao-Ping; Lu, Ting-Ting; Liu, Cai-Hong; Ling, Xiao-Ming; Zhuang, Meng-Yao; Zhang, Jiu-Xun; Zhang, Ye-Wang

    2016-07-01

    Epoxy functionalized magnetic Fe3O4@SiO2 nanoparticles were successfully prepared and characterized by Fourier-transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The prepared nanoparticles were used for immobilization of alcohol dehydrogenase (ADH) from Saccharomyces cerevisiae by covalent attachment. The optimal immobilization conditions were obtained as follows: enzyme/support 4.49mg/g, pH 8.0, buffer concentration 0.05M, time 12h and temperature 30°C. Under these conditions, a high immobilization yield and efficiency of above 92% were obtained after the optimization. Broad pH tolerance and high thermostability were achieved by the immobilization. The immobilized ADH retained about 84% initial activity after five cycles. Kinetic parameters Vmax and Km of free and immobilized ADH were determined as 56.72μM/min, 44.27μM/min and 11.54mM, 31.32mM, respectively. (R)-mandelic acid synthesis with the immobilized ADH was carried out, and the yield of (R)-mandelic acid was as high as 64%. These results indicate that the ADH immobilized onto epoxy-functionalized nanoparticles is an efficient and simple way for preparation of stable ADH, and the immobilized ADH has potential applications in the production of (R)-mandelic acid. PMID:26995611

  2. Determination of acetylsalicylic acid in commercial tablets by SERS using silver nanoparticle-coated filter paper

    NASA Astrophysics Data System (ADS)

    Sallum, Loriz Francisco; Soares, Frederico Luis Felipe; Ardila, Jorge Armando; Carneiro, Renato Lajarim

    2014-12-01

    In this work, filter paper was used as a low cost substrate for silver nanoparticles in order to perform the detection and quantification of acetylsalicylic acid by SERS in a commercial tablet. The reaction conditions were 150 mM of ammonium hydroxide, 50 mM of silver nitrate, 500 mM of glucose, 12 min of the reaction time, 45 °C temperature, pretreatment with ammonium hydroxide and quantitative filter paper (1-2 μm). The average size of silver nanoparticles deposited on the paper substrate was 180 nm. Adsorption time of acetylsalicylic acid on the surface of the silver-coated filter paper was studied and an adsorption time of 80 min was used to build the analytical curve. It was possible to obtain a calibration curve with good precision with a coefficient of determination of 0.933. The method proposed in this work was capable to quantify acetylsalicylic acid in commercial tablets, at low concentration levels, with relative error of 2.06% compared to the HPLC. The preparation of filter paper coated with silver nanoparticles using Tollen's reagent presents several advantages such as low cost of synthesis, support and reagents; minimum amount of residuals, which are easily treated, despite the SERS spectroscopy presenting fast analysis, with low sample preparation and low amount of reactants as in HPLC analysis.

  3. Hyaluronic Acid Modified Hollow Prussian Blue Nanoparticles Loading 10-hydroxycamptothecin for Targeting Thermochemotherapy of Cancer

    PubMed Central

    Jing, Lijia; shao, shangmin; Wang, Yang; Yang, Yongbo; Yue, Xiuli; Dai, Zhifei

    2016-01-01

    This paper reported the fabrication of a multifunctional nanoplatform by modifying hollow Prussian blue nanoparticles with hyaluronic acid grafting polyethylene glycol, followed by loading 10-hydroxycamptothecin for tumor-targeted thermochemotherapy. It was found that the surface modification of hollow Prussian blue nanoparticles with hyaluronic acid grafting polyethylene endowed a great colloidal stability, long blood circulation time and the capability for targeting Hela cells over-expressing the CD44 receptor. The obtained nanoagent exhibited efficient photothermal effect and a light triggered and stepwise release behavior of 10-hydroxycamptothecin due to the strong optical absorption in the near-infrared region. The investigations on the body weight change, histological injury and blood biochemical indexes showed that such nanoagent had excellent biocompatibility for medical application. Both in vitro and in vivo experiments proved that the combination of chemotherapy and photothermal therapy through the agent of hyaluronic acid modified Prussian blue nanoparticles loading 10-hydroxycamptothecin could significantly improve the therapeutic efficacy compared with either therapy alone because of a good synergetic effect. PMID:26722372

  4. Barium hydroxyapatite nanoparticles synthesized by citric acid sol-gel combustion method

    SciTech Connect

    Xiu Zhiliang; Lue Mengkai . E-mail: mklu@icm.sdu.edu.cn; Liu Suwen; Zhou Guangjun; Su Benyu; Zhang Haiping

    2005-09-01

    Barium hydroxyapatite (BaHAP) nanoparticles have been synthesized by citric acid sol-gel combustion method using citric acid as a reductant/fuel and nitrate as an oxidant at a relatively low temperature of 600 deg. C. The thermal decomposition of nitrate-citrate xerogel was investigated by thermogravimetric/differential thermal analysis (TG/DTA) technique. The yielding powders calcined at 600 deg. C have been characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and transmission electron microscope (TEM). The possible combustion process was presented.

  5. Silica nanoparticles as a delivery system for nucleic acid-based reagents

    PubMed Central

    Hom, Christopher; Lu, Jie

    2010-01-01

    The transport of nucleic acid-based reagents is predicated upon developing structurally stable delivery systems that can preferentially bind and protect DNA and RNA, and release their cargo upon reaching their designated sites. Recent advancements in tailoring the size, shape, and external surface functionalization of silica materials have led to increased biocompatibility and efficiency of delivery. In this Feature Article, we highlight recent research progress in the use of silica nanoparticles as a delivery vehicle for nucleic acid-based reagents. PMID:20740060

  6. Graphene decorated with PtAu alloy nanoparticles: facile synthesis and promising application for formic acid oxidation

    SciTech Connect

    Zhang, Sheng; Shao, Yuyan; Liao, Honggang; Liu, Jun; Aksay, Ilhan A.; Yin, Geping; Lin, Yuehe

    2011-03-01

    PtAu alloy nanoparticles (~ 3.2 nm in diameter) are synthesized in poly(diallyldimethylammonium chloride) (PDDA) aqueous solution and uniformly dispersed on graphene nanosheets. PtAu/graphene exhibits high electrocatalytic activity and stability for formic acid oxidation, which is attributed to the high dispersion of PtAu nanoparticles and the specific interaction between PtAu and graphene, indicating a promising catalyst for direct formic acid fuel cells. The facile method can be readily extended to the synthesis of other alloy nanoparticles.

  7. Para amino benzoic acid-derived self-assembled biocompatible nanoparticles for efficient delivery of siRNA

    PubMed Central

    Reddy, Teegala Lakshminarayan; Krishnarao, P Sivarama; Rao, Garikapati Koteswara; Bhimireddy, Eswar; Venkateswarlu, P; Mohapatra, Debendra K; Yadav, JS; Bhadra, Utpal; Pal Bhadra, Manika

    2015-01-01

    A number of diseases can result from abnormal gene expression. One of the approaches for treating such diseases is gene therapy to inhibit expression of a particular gene in a specific cell population by RNA interference. Use of efficient delivery vehicles increases the safety and success of gene therapy. Here we report the development of functionalized biocompatible fluorescent nanoparticles from para amino benzoic acid nanoparticles for efficient delivery of short interfering RNA (siRNA). These nanoparticles were non-toxic and did not interfere with progression of the cell cycle. The intrinsic fluorescent nature of these nanoparticles allows easy tracking and an opportunity for diagnostic applications. Human Bcl-2 siRNA was complexed with these nanoparticles to inhibit expression in cells at both the transcriptional and translational levels. Our findings indicated high gene transfection efficiency. These biocompatible nanoparticles allow targeted delivery of siRNA, providing an efficient vehicle for gene delivery. PMID:26491299

  8. Palladium nanoparticles synthesized by reducing species generated during a successive acidic/alkaline treatment of sucrose

    NASA Astrophysics Data System (ADS)

    Amornkitbamrung, Lunjakorn; Pienpinijtham, Prompong; Thammacharoen, Chuchaat; Ekgasit, Sanong

    2014-03-01

    Uniform spherical palladium nanoparticles with an average particle size of 4.3 ± 0.5 nm were successfully synthesized by reducing H2PdCl4 with intermediates in situ generated during a successive acidic/alkaline treatment of sucrose. A successive acidic/alkaline treatment plays an important role on converting the non-reducing sucrose into efficient reducing species containing aldehyde functionality. The Benedict's test corroborates the development and vanishing of the in situ generated reducing species upon prolonged degradation. An increase in alkalinity drastically improves the reduction efficiency. ATR FT-IR spectroscopy indicated spontaneous development of carboxylate after the alkaline treatment. Under the employed condition, small organic species with carbonyl groups (aldehyde, acid, and acid salt) were generated through the sucrose degradation before being oxidized to carbonate after an hour of the treatment. Sucrose was completely decomposed into carbonate after a 24-h successive acidic/alkaline treatment. The synthesized palladium nanoparticles express a good catalytic activity in the decolorization process of Congo red by sodium borohydride.

  9. Effect of tannic acid-fish scale gelatin hydrolysate hybrid nanoparticles on intestinal barrier function and α-amylase activity.

    PubMed

    Wu, Shao-Jung; Ho, Yi-Cheng; Jiang, Shun-Zhou; Mi, Fwu-Long

    2015-07-01

    Practical application of tannic acid is limited because it readily binds proteins to form insoluble aggregates. In this study, tannic acid was self-assembled with fish scale gelatin hydrolysates (FSGH) to form stable colloidal complex nanoparticles. The nanoparticles prepared from 4 mg ml(-1) tannic acid and 4 mg ml(-1) FSGH had a mean particle size of 260.8 ± 3.6 nm, and showed a positive zeta potential (20.4 ± 0.4 mV). The nanoparticles acted as effective nano-biochelators and free radical scavengers because they provided a large number of adsorption sites for interaction with heavy metal ions and scavenging free radicals. The maximum adsorption capacity for Cu(2+) ions was 123.5 mg g(-1) and EC50 of DPPH radical scavenging activity was 21.6 ± 1.2 μg ml(-1). Hydroxyl radical scavenging effects of the nanoparticles were investigated by electron spin resonance spectroscopy. The copper-chelating capacity and free radical scavenging activity of the nanoparticles were associated with their capacity to inhibit Cu(2+) ion-induced barrier impairment and hyperpermeability of Caco-2 intestinal epithelial tight junction (TJ). However, α-amylase inhibitory activity of the nanoparticles was significantly lower than that of free tannic acid. The results suggest that the nanoparticles can ameliorate Cu(2+) ion induced intestinal epithelial TJ dysfunction without severely inhibiting the activity of the digestive enzymes. PMID:26069899

  10. Optimized synthesis of glycyrrhetinic acid-modified chitosan 5-fluorouracil nanoparticles and their characteristics

    PubMed Central

    Cheng, Mingrong; Chen, Houxiang; Wang, Yong; Xu, Hongzhi; He, Bing; Han, Jiang; Zhang, Zhiping

    2014-01-01

    The nanoparticle drug delivery system, which uses natural or synthetic polymeric material as a carrier to deliver drugs to targeted tissues, has a broad prospect for clinical application for its targeting, slow-release, and biodegradable properties. Here, we used chitosan (CTS) and hepatoma cell-specific binding molecule glycyrrhetinic acid to synthesize glycyrrhetinic acid-modified chitosan (GA-CTS). The synthetic product was confirmed by infrared (IR) spectra and hydrogen-1 nuclear magnetic resonance. The GA-CTS/5-fluorouracil (5-FU) nanoparticles were synthesized by combining GA-CTS and 5-FU and conjugating 5-FU onto the GA-CTS nanomaterial. The central composite design was performed to optimize the preparation process as CTS:tripolyphosphate sodium (TPP) weight ratio =5:1, 5-FU:CTS weight ratio =1:1, TPP concentration =0.05% (w/v), and cross-link time =50 minutes. GA-CTS/5-FU nanoparticles had a mean particle size of 193.7 nm, a polydispersity index of 0.003, a zeta potential of +27.4 mV, and a drug loading of 1.56%. The GA-CTS/5-FU nanoparticle had a protective effect on the drug against plasma degrading enzyme, and provided a sustained release system comprising three distinct phases of quick, steady, and slow release. Our study showed that the peak time, half-life time, mean residence time and area under the curve of GA-CTS/5-FU were longer or more than those of the 5-FU group, but the maximum concentration (Cmax) was lower. We demonstrated that the nanoparticles accumulated in the liver and have significantly inhibited tumor growth in an orthotropic liver cancer mouse model. PMID:24493926

  11. Gold nanoparticles having dipicolinic acid imprinted nanoshell for Bacillus cereus spores recognition

    NASA Astrophysics Data System (ADS)

    Gültekin, Aytaç; Ersöz, Arzu; Hür, Deniz; Sarıözlü, Nalan Yılmaz; Denizli, Adil; Say, Rıdvan

    2009-10-01

    Taking into account the recognition element for sensors linked to molecular imprinted polymers (MIPs), a proliferation of interest has been witnessed by those who are interested in this subject. Indeed, MIP nanoparticles are theme which recently has come to light in the literature. In this study, we have proposed a novel thiol ligand-capping method with polymerizable methacryloylamidocysteine (MAC) attached to gold nanoparticles, reminiscent of a self-assembled monolayer. Furthermore, a surface shell by synthetic host polymers based on molecular imprinting method for recognition has been reconstructed. In this method, methacryloyl iminodiacetic acid-chrome (MAIDA-Cr(III)) has been used as a new metal-chelating monomer via metal coordination-chelation interactions and dipicolinic acid (DPA) which is the main participant of Bacillus cereus spores has been used as a template. Nanoshell sensors with templates produce a cavity that is selective for DPA. The DPA can simultaneously chelate to Cr(III) metal ion and fit into the shape-selective cavity. Thus, the interaction between Cr(III) ion and free coordination spheres has an effect on the binding ability of the gold nanoparticles nanosensor. The interactions between DPA and MIP particles were studied observing fluorescence measurements. DPA addition caused significant decreases in fluorescence intensity because they induced photoluminescence emission from Au nanoparticles through the specific binding to the recognition sites of the crosslinked nanoshell polymer matrix. The binding affinity of the DPA imprinted nanoparticles has been explored by using the Langmuir and Scatchard methods and the analysis of the quenching results has been performed in terms of the Stern-Volmer equation.

  12. Chiroptical characterization of homopolymeric block fractions in alginates.

    PubMed

    Martínez-Gómez, Fabián; Mansilla, Andrés; Matsuhiro, Betty; Matulewicz, María C; Troncoso-Valenzuela, Marcos A

    2016-08-01

    Homopolymannuronic and homopolyguluronic fractions were obtained by partial hydrolysis of the alkaline extracts from the brown seaweeds Ascoseira mirabilis, Desmarestia menziessi, Desmarestia ligulata and Durvillaea sp. collected in southern Chile. Full characterization of the fractions was achieved by FT-IR and NMR spectroscopy. Total hydrolysis with 90% formic acid of the homopolymeric fractions allowed the preparation of mannuronic and guluronic acids. Both monomers and homopolymeric fractions as neutral salts were studied by CD and ORD. Chiroptical spectra were similar in shape and sign to those previously published in the literature, and permitted to assign D configuration to mannuronic acid and L configuration to guluronic acid in alginic acids. Specific optical rotation values at the sodium D light for the homopolymannuronic (∼-100°) and homopolyguluronic (∼-110°) acid fractions were obtained. These high negative values are proposed for the assignment of the absolute configuration of monomers in homopolymeric fractions. PMID:27112854

  13. Functionalised alginate flow seeding microparticles for use in Particle Image Velocimetry (PIV).

    PubMed

    Varela, Sylvana; Balagué, Isaac; Sancho, Irene; Ertürk, Nihal; Ferrando, Montserrat; Vernet, Anton

    2016-01-01

    Alginate microparticles as flow seeding fulfil all the requirements that are recommended for the velocity measurements in Particle Image Velocimetry (PIV). These spherical microparticles offer the advantage of being environmentally friendly, having excellent seeding properties and they can be produced via a very simple process. In the present study, the performances of alginate microparticles functionalised with a fluorescent dye, Rhodamine B (RhB), for PIV have been studied. The efficacy of fluorescence is appreciated in a number of PIV applications since it can boost the signal-to-noise ratio. Alginate microparticles functionalised with RhB have high emission efficiency, desirable match with fluid density and controlled size. The study of the particles behaviour in strong acid and basic solutions and ammonia is also included. This type of particles can be used for measurements with PIV and Planar Laser Induced Fluorescence (PLIF) simultaneously, including acid-base reactions. PMID:26878165

  14. Nanoparticle-assisted laser desorption/ionization using sinapic acid-modified iron oxide nanoparticles for mass spectrometry analysis.

    PubMed

    Komori, Hanaka; Hashizaki, Riho; Osaka, Issey; Hibi, Takao; Katano, Hajime; Taira, Shu

    2015-12-21

    Iron oxide-based nanoparticles (NP) were covalently modified with sinapic acid (SA) through a condensation reaction to assist the ionization of both large and small molecules. The morphology of SA-modified NPs (SA-NP) was characterized by transmission electron microscopy (TEM), and the modification of the NP surface with SA was confirmed using ultraviolet (UV) and infrared (IR) spectroscopy. The number of SA molecules was estimated to be 6 per NP. SA-NP-assisted laser desorption/ionization was carried out on small molecules, such as pesticides and plant hormones, and large molecules, such as peptides and proteins. A peptide fragment from degraded proteins was detected more efficiently compared with conventional methods. PMID:26535417

  15. Low temperature crystalline Ag-Ni alloy formation from silver and nickel nanoparticles entrapped in a fatty acid composite film

    NASA Astrophysics Data System (ADS)

    Kumar, Ashavani; Damle, Chinmay; Sastry, Murali

    2001-11-01

    Nanoparticles of silver and nickel were grown in thermally evaporated fatty acid (stearic acid) films by immersion of the film sequentially in solutions containing Ag+ ions and Ni2+ ions. Attractive electrostatic interaction between the metal cations and the carboxylate ions in the fatty acid film leads to entrapment of the cations in the film. Thereafter, the metal ions were reduced in situ to yield nanoparticles of Ag and Ni of ˜30 nm diameter within the fatty acid matrix. Thermal treatment of the stearic acid-(silver+nickel) nanocomposite films led to the formation of a Ni-Ag alloy at ˜100 °C. Prolonged heat treatment at this temperature resulted in the phase separation of the alloy and the reformation of individual Ag and Ni nanoparticles.

  16. Oleic acid coated magnetic nano-particles: Synthesis and characterizations

    SciTech Connect

    Panda, Biswajit Goyal, P. S.

    2015-06-24

    Magnetic nano particles of Fe{sub 3}O{sub 4} coated with oleic acid were synthesized using wet chemical route, which involved co-precipitation of Fe{sup 2+} and Fe{sup 3+} ions. The nano particles were characterized using XRD, TEM, FTIR, TGA and VSM. X-ray diffraction studies showed that nano particles consist of single phase Fe{sub 3}O{sub 4} having inverse spinel structure. The particle size obtained from width of Bragg peak is about 12.6 nm. TEM analysis showed that sizes of nano particles are in range of 6 to 17 nm with a dominant population at 12 - 14 nm. FTIR and TGA analysis showed that -COOH group of oleic acid is bound to the surface of Fe{sub 3}O{sub 4} particles and one has to heat the sample to 278° C to remove the attached molecule from the surface. Further it was seen that Fe{sub 3}O{sub 4} particles exhibit super paramagnetism with a magnetization of about 53 emu/ gm.

  17. Citric-acid-coated magnetite nanoparticles for biological applications

    NASA Astrophysics Data System (ADS)

    Răcuciu, M.; Creangă, D. E.; Airinei, A.

    2006-10-01

    Water-based magnetic fluids, generally intended for biomedical applications, often have various coating molecules that make them stable and compatible with biological liquids. Magnetic fluids containing iron oxide particles have been prepared by a co-precipitation method, using citric acid as stabilizer. The magnetic particles of the magnetic fluids were obtained by chemical precipitation from ferric ( FeCl3) and ferrous salts ( FeSO4 or FeCl2) in alkali medium (ammonia hydroxide). Citric acid was used to stabilize the magnetic-particle suspension. Physical tests were performed in order to determine various microstructural and rheological features. Transmission electron microscopy was the main investigation method for assessing the magnetic-particle size. The dimensional distribution of the magnetic-particle physical diameter was analyzed using the box-plot statistical method while infrared absorption spectra were used to study the colloidal particle structure. The magnetic-fluid density (picnometric method), viscosity (capillary method) and surface tension (stalagmometric method) were measured using standard methods.

  18. A honeycomb composite of mollusca shell matrix and calcium alginate.

    PubMed

    You, Hua-jian; Li, Jin; Zhou, Chan; Liu, Bin; Zhang, Yao-guang

    2016-03-01

    A honeycomb composite is useful to carry cells for application in bone, cartilage, skin, and soft tissue regenerative therapies. To fabricate a composite, and expand the application of mollusca shells as well as improve preparing methods of calcium alginate in tissue engineering research, Anodonta woodiana shell powder was mixed with sodium alginate at varying mass ratios to obtain a gel mixture. The mixture was frozen and treated with dilute hydrochloric acid to generate a shell matrix/calcium alginate composite. Calcium carbonate served as the control. The composite was transplanted subcutaneously into rats. At 7, 14, 42, and 70 days after transplantation, frozen sections were stained with hematoxylin and eosin, followed by DAPI, β-actin, and collagen type-I immunofluorescence staining, and observed using laser confocal microscopy. The composite featured a honeycomb structure. The control and composite samples displayed significantly different mechanical properties. The water absorption rate of the composite and control group were respectively 205-496% and 417-586%. The composite (mass ratio of 5:5) showed good biological safety over a 70-day period; the subcutaneous structure of the samples was maintained and the degradation rate was lower than that of the control samples. Freezing the gel mixture afforded control over chemical reaction rates. Given these results, the composite is a promising honeycomb scaffold for tissue engineering. PMID:26700239

  19. Doxorubicin-loaded glycyrrhetinic acid modified recombinant human serum albumin nanoparticles for targeting liver tumor chemotherapy.

    PubMed

    Qi, Wen-Wen; Yu, Hai-Yan; Guo, Hui; Lou, Jun; Wang, Zhi-Ming; Liu, Peng; Sapin-Minet, Anne; Maincent, Philippe; Hong, Xue-Chuan; Hu, Xian-Ming; Xiao, Yu-Ling

    2015-03-01

    Due to overexpression of glycyrrhetinic acid (GA) receptor in liver cancer cells, glycyrrhetinic acid modified recombinant human serum albumin (rHSA) nanoparticles for targeting liver tumor cells may result in increased therapeutic efficacy and decreased adverse effects of cancer therapy. In this study, doxorubicin (DOX) loaded and glycyrrhetinic acid modified recombinant human serum albumin nanoparticles (DOX/GA-rHSA NPs) were prepared for targeting therapy for liver cancer. GA was covalently coupled to recombinant human serum albumin nanoparticles, which could efficiently deliver DOX into liver cancer cells. The resultant GA-rHSA NPs exhibited uniform spherical shape and high stability in plasma with fixed negative charge (∼-25 mV) and a size about 170 nm. DOX was loaded into GA-rHSA NPs with a maximal encapsulation efficiency of 75.8%. Moreover, the targeted NPs (DOX/GA-rHSA NPs) showed increased cytotoxic activity in liver tumor cells compared to the nontargeted NPs (DOX/rHSA NPs, DOX loaded recombinant human serum albumin nanoparticles without GA conjugating). The targeted NPs exhibited higher cellular uptake in a GA receptor-positive liver cancer cell line than nontargeted NPs as measured by both flow cytometry and confocal laser scanning microscopy. Biodistribution experiments showed that DOX/GA-rHSA NPs exhibited a much higher level of tumor accumulation than nontargeted NPs at 1 h after injection in hepatoma-bearing Balb/c mice. Therefore, the DOX/GA-rHSA NPs could be considered as an efficient nanoplatform for targeting drug delivery system for liver cancer. PMID:25584860

  20. Hyaluronic acid-tagged silica nanoparticles in colon cancer therapy: therapeutic efficacy evaluation

    PubMed Central

    Liu, Kai; Wang, Zhi-qi; Wang, Shi-jiang; Liu, Ping; Qin, Yue-hong; Ma, Yan; Li, Xiao-Chen; Huo, Zhi-Jun

    2015-01-01

    Colon cancer is one of the leading causes of cancer-related death worldwide, and the therapeutic application of 5-fluorouracil (5-FU) is limited due to its nonspecificity, low bioavailability, and overdose. The present study is an attempt to improve the chemotherapeutic efficacy of 5-FU in colon cancers. Therefore, we have prepared 5-FU-loaded hyaluronic acid (HA)-conjugated silica nanoparticles (SiNPs) to target to colon cancer cells. In this study, we have showed the specific binding and intracellular accumulation of targeted nanoparticles based on HA surface modifications in colon carcinoma cells. The particles had spherical shapes with sizes of approximately 130 nm. HA-conjugated nanoparticles showed a sustained release pattern for 5-FU and continuously released for 120 hours. We have further investigated the cytotoxicity potential of targeted and nontargeted nanoparticles in colo-205 cancer cells. IC50 value of 5-FU/hyaluronic acid-conjugated silica nanoparticles (HSNP) was 0.65 µg/mL compared with ~2.8 µg/mL for 5-FU/SNP after 24 hours of incubation. The result clearly showed that HA-conjugated NP was more effective in inducing apoptosis in cancer cells than nontargeted NP. The 5-FU/HSNP showed ~45% of cell apoptosis (early and late apoptosis stage) compared with only 20% for 5-FU/silica nanoparticles (SNP)-treated group. The HA-conjugated nanoparticles provide the possibility of efficient drug transport into tumors that could effectively reduce the side effects in the normal tissues. 5-FU/HSNP was highly efficient in suppressing the tumor growth in xenograft tumor model. The proportion of Ki67 in 5-FU/HSNP-treated group was significantly lower than that of either free drug or nontargeted SiNPs. Altogether, we have showed that conjugation of HA to SiNPs could result in enhanced uptake of 5-FU through CD44-mediated endocytosis uptake and could result in significant antitumor efficacy. Thus, 5-FU/HSNP could be a promising drug delivery system for colon cancer

  1. Polyglutamic Acid-Gated Mesoporous Silica Nanoparticles for Enzyme-Controlled Drug Delivery.

    PubMed

    Tukappa, Asha; Ultimo, Amelia; de la Torre, Cristina; Pardo, Teresa; Sancenón, Félix; Martínez-Máñez, Ramón

    2016-08-23

    Mesoporous silica nanoparticles (MSNs) are highly attractive as supports in the design of controlled delivery systems that can act as containers for the encapsulation of therapeutic agents, overcoming common issues such as poor water solubility and poor stability of some drugs and also enhancing their bioavailability. In this context, we describe herein the development of polyglutamic acid (PGA)-capped MSNs that can selectively deliver rhodamine B and doxorubicin. PGA-capped MSNs remain closed in an aqueous environment, yet they are able to deliver the cargo in the presence of pronase because of the hydrolysis of the peptide bonds in PGA. The prepared solids released less than 20% of the cargo in 1 day in water, whereas they were able to reach 90% of the maximum release of the entrapped guest in ca. 5 h in the presence of pronase. Studies of the PGA-capped nanoparticles with SK-BR-3 breast cancer cells were also undertaken. Rhodamine-loaded nanoparticles were not toxic, whereas doxorubicin-loaded nanoparticles were able to efficiently kill more than 90% of the cancer cells at a concentration of 100 μg/mL. PMID:27468799

  2. Quantitative Intracellular Localization of Cationic Lipid-Nucleic Acid Nanoparticles with Fluorescence Microscopy.

    PubMed

    Majzoub, Ramsey N; Ewert, Kai K; Safinya, Cyrus R

    2016-01-01

    Current activity in developing synthetic carriers of nucleic acids (NA) and small molecule drugs for therapeutic applications is unprecedented. One promising class of synthetic vectors for the delivery of therapeutic NA is PEGylated cationic liposome (CL)-NA nanoparticles (NPs). Chemically modified PEG-lipids can be used to surface-functionalize lipid-NA nanoparticles, allowing researchers to design active nanoparticles that can overcome the various intracellular and extracellular barriers to efficient delivery. Optimization of these functionalized vectors requires a comprehensive understanding of their intracellular pathways. In this chapter we present two distinct methods for investigating the intracellular activity of PEGylated CL-NA NPs using quantitative analysis with fluorescence microscopy.The first method, spatial localization, describes how to prepare fluorescently labeled CL-NA NPs, perform fluorescence microscopy and properly analyze the data to measure the intracellular distribution of nanoparticles and fluorescent signal. We provide software which allows data from multiple cells to be averaged together and yield statistically significant results. The second method, fluorescence colocalization, describes how to label endocytic organelles via Rab-GFPs and generate micrographs for software-assisted NP-endocytic marker colocalization measurements. These tools will allow researchers to study the endosomal trafficking of CL-NA NPs which can guide their design and improve their efficiency. PMID:27436314

  3. Calcium Alginate and Calcium Alginate-Chitosan Beads Containing Celecoxib Solubilized in a Self-Emulsifying Phase.

    PubMed

    Segale, Lorena; Giovannelli, Lorella; Mannina, Paolo; Pattarino, Franco

    2016-01-01

    In this work alginate and alginate-chitosan beads containing celecoxib solubilized into a self-emulsifying phase were developed in order to obtain a drug delivery system for oral administration, able to delay the drug release in acidic environment and to promote it in the intestinal compartment. The rationale of this work was linked to the desire to improve celecoxib therapeutic effectiveness reducing its gastric adverse effects and to favor its use in the prophylaxis of colon cancer and as adjuvant in the therapy of familial polyposis. The systems were prepared by ionotropic gelation using needles with different diameters (400 and 600 μm). Morphology, particle size, swelling behavior, and in vitro drug release performance of the beads in aqueous media with different pH were investigated. The experimental results demonstrated that the presence of chitosan in the formulation caused an increase of the mechanical resistance of the bead structure and, as a consequence, a limitation of the bead swelling ability and a decrease of the drug release rate at neutral pH. Alginate-chitosan beads could be a good tool to guarantee a celecoxib colon delivery. PMID:27127680

  4. Calcium Alginate and Calcium Alginate-Chitosan Beads Containing Celecoxib Solubilized in a Self-Emulsifying Phase

    PubMed Central

    Segale, Lorena; Giovannelli, Lorella; Mannina, Paolo; Pattarino, Franco

    2016-01-01

    In this work alginate and alginate-chitosan beads containing celecoxib solubilized into a self-emulsifying phase were developed in order to obtain a drug delivery system for oral administration, able to delay the drug release in acidic environment and to promote it in the intestinal compartment. The rationale of this work was linked to the desire to improve celecoxib therapeutic effectiveness reducing its gastric adverse effects and to favor its use in the prophylaxis of colon cancer and as adjuvant in the therapy of familial polyposis. The systems were prepared by ionotropic gelation using needles with different diameters (400 and 600 μm). Morphology, particle size, swelling behavior, and in vitro drug release performance of the beads in aqueous media with different pH were investigated. The experimental results demonstrated that the presence of chitosan in the formulation caused an increase of the mechanical resistance of the bead structure and, as a consequence, a limitation of the bead swelling ability and a decrease of the drug release rate at neutral pH. Alginate-chitosan beads could be a good tool to guarantee a celecoxib colon delivery. PMID:27127680

  5. Preparation of microfibrillated cellulose/chitosan-benzalkonium chloride biocomposite for enhancing antibacterium and strength of sodium alginate films.

    PubMed

    Liu, Kai; Lin, Xinxing; Chen, Lihui; Huang, Liulian; Cao, Shilin; Wang, Huangwei

    2013-07-01

    The nonantibacterial and low strength properties of sodium alginate films negatively impact their application for food packaging. In order to improve these properties, a novel chitosan-benzalkonium chloride (C-BC) complex was prepared by ionic gelation using tripolyphosphate (TPP) as a coagulant, and a biocomposite obtained through the adsorption of C-BC complex on microfibrillated cellulose, MFC/C-BC, was then incorporated into a sodium alginate film. The TEM image showed that the C-BC nanoparticles were spherical in shape with a diameter of about 30 nm, and the adsorption equilibrium time of these nanoparticles on the surface of MFC was estimated to be 6 min under the driving forces of hydrogen bonds and electrostatic interactions. According to the disc diffusion method, the MFC/C-BC biocomposite-incorporated sodium alginate film exhibited remarkable antibacterial activity against Staphylococcus aureus and certain antibacterial activity against Escherichia coli . The strength tests indicated that the tensile strength of the composite sodium alginate film increased about 225% when the loading of MFC/C-BC biocomposite was 10 wt %. These results suggested that the MFC/C-BC biocomposite-incorporated sodium alginate film with excellent antibacterial and strength properties would be a promising material for food packaging, and the MFC/C-BC may also be a potential multifunctional biocomposite for other biodegradable materials. PMID:23750871

  6. Low-ppm-Level colorimetric acid detection using gold nanoparticles with electro-steric stabilization.

    PubMed

    Bae, Doo Ri; Lee, You-Jin; Lee, Sung Woo; Han, Young-Kyu; Yoon, Jae-Sik; Lee, Ji-Hyun; Lee, Sang-Gil; Chang, Ki Soo; Yi, Gi-Ra; Lee, Gaehang

    2014-12-01

    Electro-sterically stabilized gold suspensions were employed in a colorimetric system for the detection of strong acid in water. Using oleyamine and oleic acid as steric stabilizer in 1,2-dichlorobenzene, hydrophobic gold nanoparticles were first synthesized by a reduction reaction of gold salts and were then transferred into water with a cationic surfactant. When the hydrochlo- ric acid solution higher than critical concentration was injected, particles were quickly aggregated and precipitated, creating a clear solution from the colored suspension. The particles were stable against chemical etching by corrosive ion such as chloride. Critical concentration was dependent of the size and concentration of the particles. The minimum concentration of dramatic color change was at 5 ppm level of hydrochloric acid, in which the largest colloidal gold nanoparticles (54 nm) were used. Furthermore, because of their steric repulsive soft layer on particles, particles could be reused for further detection experiments after regeneration by the simple pH-neutralization and washing process. PMID:25971086

  7. Characterization and formic acid oxidation studies of PtAu nanoparticles.

    PubMed

    Saipanya, Surin; Srisombat, Laongnuan; Wongtap, Pitak; Sarakonsri, Thapanee

    2014-10-01

    Characterization and electrocatalytic oxidation of formic acid on PtAu nanoparticles supported multiwalled carbon nanotube (MWCNT) were studied. Electrochemical measurements were conducted in a self-made conventional three-electrode glass cell at room temperature. A Pt wire and Ag/AgCl were used as auxiliary and reference electrodes, respectively. The Pt was electrodeposited onto the electrode and their catalytic activities in the electrooxidation of formic acid were examined and compared. The morphology and composition were studied by a combination of transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). Cyclic voltamograms of formic acid electrooxidation show a distinguishing shape with a prominent oxidation peak in the forward scan contributed to the formic acid oxidation whilst the backward scan is associated with the oxidation of exclusion of carbonaceous species. On the basis of the onset potential and current density, the resulting PtAu nanoparticles showed much higher electrocatalytic activity than other counterparts. The results show an excellent sign of applications for fuel cell. PMID:25942921

  8. Hyperbranched PEG-based supramolecular nanoparticles for acid-responsive targeted drug delivery.

    PubMed

    Chen, Xiaofei; Yao, Xuemei; Wang, Chunran; Chen, Li; Chen, Xuesi

    2015-06-01

    Herein, hyperbranched poly(ethylene glycol)-based supramolecular nanoparticles with pH-sensitive properties were designed and used for targeted drug delivery. Via host-guest recognition between benzimidazole anchored poly(ethylene glycol)-hyperbranched polyglycerol (PEG-HPG-BM) and folic acid modified CD (FA-CD), targeted supramolecular nanoparticles (TSNs) were fabricated. At neutral aqueous conditions TSNs could load the model drug DOX. While under intracellular acidic conditions the loaded-drug would be released due to the protonation of BM. This protonation allowed the supramolecular nanoparticles to expand or even disassemble, which showes the pH-dependent property. The introduction of the active targeting FA molecule and the specific interactions with the receptor of HeLa cells means that DOX-loaded TSNs show a significantly improved anticancer efficacy. In vitro drug release assays and intracellular experiments confirmed that TSNs had an obvious pH-sensitive property and remarkably improved anticancer effects, which hold great potential for further biomedical applications such as anticancer drug delivery. PMID:26221847

  9. Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Shete, P. B.; Patil, R. M.; Tiwale, B. M.; Pawar, S. H.

    2015-03-01

    Fe3O4 magnetic nanoparticles (MNPs) have proved their tremendous potential to be used for various biomedical applications. Oleic acid (OA) is widely used in ferrite nanoparticle synthesis because it can form a dense protective monolayer, thereby producing highly uniform and monodispersed particles. Capping agents such as oleic acid are often used because they form a protective monolayer, which is strongly bonded to the surface of nanoparticles. This is necessary for making monodisperse and highly uniform MNPs. Coating of Fe3O4 MNPs with OA makes the particles dispersible only in organic solvents and consequently limits their use for biomedical applications. Hence, in this work, the OA coated MNPs were again functionalized with chitosan (CS), in order to impart hydrophilicity on their surface. All the morphological, magnetic, colloidal and cytotoxic characteristics of the resulting core-shells were studied thoroughly. Their heating induction ability was studied to predict their possible use in hyperthermia therapy of cancer. Specific absorption rate was found to be increased than that of bare MNPs.

  10. Effect of ultrasonic treatments on nanoparticle preparation of acid-hydrolyzed waxy maize starch.

    PubMed

    Kim, Hee-Young; Han, Jung-Ah; Kweon, Dong-Keon; Park, Jong-Dae; Lim, Seung-Taik

    2013-04-01

    Waxy maize starch was dispersed (14.7% solids) in an aqueous sulfuric acid solution (3.16M), and hydrolyzed by stirring for up to 7 days at 40°C with ultrasonic treatments at different vibration amplitudes (20 and 40%) and durations (30 and 60min/day). The amount of starch nanoparticles in the hydrolyzates isolated after 7 days, measured by a dynamic light scattering detector, was raised from 20% to 70% by an ultrasonic treatment (20% amplitude, 30min). The aggregation of nanoparticles possibly occurring during the hydrolysis was effectively prevented by the ultrasonication. Alternatively, ultrasonic treatments were applied to the re-dispersed suspension of the large microparticles of starch hydrolyzates (2 days) precipitated by a mild centrifugation (500rpm, 10min). By an ultrasonic treatment at 60% vibration amplitude for 3min, the microparticles could be completely transformed to nanoparticles. The inherent crystalline structure of waxy maize starch (A-type in X-ray diffraction) remained after the ultrasonic treatments during acid hydrolysis, but it was disrupted by the ultrasonic treatments for the re-dispersed microparticles. PMID:23499099

  11. Arsenate removal with 3-mercaptopropanoic acid-coated superparamagnetic iron oxide nanoparticles.

    PubMed

    Morillo, D; Uheida, A; Pérez, G; Muhammed, M; Valiente, M

    2015-01-15

    In the present work, superparamagnetic iron oxide nanoparticles (SPION) surface-coated with 3-mercaptopropanoic acid (3-MPA) were prepared and their feasibility for the removal of arsenate from dilute aqueous solutions was demonstrated. The synthesized 3-MPA-coated SPION was characterized using transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Fourier transform infra-red spectrometry (FTIR). Separation efficiency of the coated nanoparticles and the equilibrium isotherm of arsenate adsorption were investigated. The obtained results reveal the arsenate adsorption to be highly pH-dependent, and the maximum adsorption was attained in less than 60 min. The resulting increase of 3-MPA-coated SPION adsorption capacity to twice the adsorption capacity of SPION alone under the same conditions is attributed to the increase of active adsorption sites. An adsorption reaction is proposed. On the other hand, efficient recovery of arsenate from the loaded nanoparticles was achieved using nitric acid (HNO3) solution, which also provides a concentration over the original arsenate solution. PMID:25454446

  12. Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential.

    PubMed

    Mittal, Amit Kumar; Kumar, Sanjay; Banerjee, Uttam Chand

    2014-10-01

    In this study a synthetic approach for the stable, mono-dispersed high yielding bimetallic (Ag-Se) nanoparticles by quercetin and gallic acid is described. The bimetallic nanoparticles were synthesized at room temperature. Different reaction parameters (concentration of quercetin, gallic acid and Ag/Se salt, pH, temperature and reaction time) were optimized to control the properties of nanoparticles. The nanoparticles were characterized by various analytical techniques and their size was determined to be 30-35 nm. Our findings suggest that both the reduction as well as stabilization of nanoparticles were achieved by the flavonoids and phenolics. This study describes the efficacy of quercetin and gallic acid mediated synthesis of bimetallic (Ag-Se) nanoparticles and their in vitro antioxidant, antimicrobial (Gram-positive and Gram-negative bacteria) and antitumor potentials. The synthesized Ag-Se nanoparticles were used as anticancer agents for Dalton lymphoma (DL) cells and in in vitro 80% of its viability was reduced at 50 μg/mL. PMID:25000181

  13. Magnetic studies of iron oxide nanoparticles coated with oleic acid and Pluronic® block copolymer

    NASA Astrophysics Data System (ADS)

    Morales, M. A.; Jain, Tapan Kumar; Labhasetwar, V.; Leslie-Pelecky, D. L.

    2005-05-01

    We have prepared and studied iron-oxide nanoparticles coated with oleic acid (OA) and Pluronic® polymer. The mean diameter of the iron-oxide nanoparticles was 9.3(±)0.8nm. Saturation magnetization values measured at 10K varied from 66.1(±0.7)emu/gto98.7(±0.5)emu/g. At 300K the loops showed negligible coercive field. The peaks in zero-field-cooled susceptibility decreased from 280to168K with increasing OA concentration up to 10.6wt%, and remained nearly constant for higher concentrations. This suggests that incomplete coverage of the OA allows small, interacting agglomerates to form.

  14. Preparation of ultrafine poly(methyl methacrylate-co-methacrylic acid) biodegradable nanoparticles loaded with ibuprofen.

    PubMed

    Saade, Hened; Diaz de León-Gómez, Ramón; Enríquez-Medrano, Francisco Javier; López, Raúl Guillermo

    2016-08-01

    Ibuprofen-loaded polymeric particles with around 9.2 nm in mean diameter, as determined by electron microscopy, dispersed in an aqueous media containing up to 12.8% solids were prepared by semicontinuous heterophase polymerization. The polymeric material is a (2/1 mol/mol) methyl methacrylate-co-methacrylic acid copolymer similar to Eudragit S100, deemed safe for human consumption and used in the manufacturing of drug-loaded pills as well as micro- and nanoparticles. The loading efficiency was 100%, attaining around 10-12% in drug content. Release studies showed that the drug is released from the nanoparticles at a slower rate than that in the case of free IB. Given their size as well as the pH values required for their dissolution, it is believed that this type of particles could be used as a basis for preparing nanosystems loaded with a variety of drugs. PMID:27126476

  15. EPR investigations of silicon carbide nanoparticles functionalized by acid doped polyaniline

    NASA Astrophysics Data System (ADS)

    Karray, Fekri; Kassiba, Abdelhadi

    2012-06-01

    Nanocomposites (SiC-PANI) based on silicon carbide nanoparticles (SiC) encapsulated in conducting polyaniline (PANI) are synthesized by direct polymerization of PANI on the nanoparticle surfaces. The conductivity of PANI and the nanocomposites was modulated by several doping levels of camphor sulfonic acid (CSA). Electron paramagnetic resonance (EPR) investigations were carried out on representative SiC-PANI samples over the temperature range [100-300 K]. The features of the EPR spectra were analyzed taking into account the paramagnetic species such as polarons with spin S=1/2 involved in two main environments realized in the composites as well as their thermal activation. A critical temperature range 200-225 K was revealed through crossover changes in the thermal behavior of the EPR spectral parameters. Insights on the electronic transport properties and their thermal evolutions were inferred from polarons species probed by EPR and the electrical conductivity in doped nanocomposites.

  16. Inhibition of Photodegradation of Highly Dispersed Folic Acid Nanoparticles by the Antioxidant Effect of Transglycosylated Rutin.

    PubMed

    Kadota, Kazunori; Semba, Kumi; Shakudo, Ryosuke; Sato, Hideyuki; Deki, Yuto; Shirakawa, Yoshiyuki; Tozuka, Yuichi

    2016-04-20

    We developed highly dispersible and photostable nanoparticles of vitamin, folic acid (FA). FA was wet bead milled with milling and dispersing adjuvants and transglycosylated compounds such as α-glucosyl hesperidin (Hesperidin-G) and rutin (Rutin-G), which solubilized FA. The milled slurries of FA particles with transglycosylated compounds consisted of nanosized particles with a median diameter of <100 nm. The lyophilized formulations of these slurries retained their nanometer size after resuspension in water with no aggregation. The apparent solubility of FA in these formulations was 100-fold higher than that of untreated FA. The solubilizing effect of Rutin-G may affect the particle size reduction and dispersibility of FA. The photostability results showed that the strong antioxidant activity of Rutin-G substantially increased the photostability of FA solution. On the basis of these results, bead milling of FA with Rutin-G is a promising technique for developing highly dispersible, photostable nanoparticle FA formulations. PMID:27039660

  17. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells

    NASA Astrophysics Data System (ADS)

    Wan, Long; Jiao, Jian; Cui, Yu; Guo, Jingwen; Han, Ning; Di, Donghua; Chang, Di; Wang, Pu; Jiang, Tongying; Wang, Siling

    2016-04-01

    In this paper, hyaluronic acid (HA) functionalized uniform mesoporous carbon spheres (UMCS) were synthesized for targeted enzyme responsive drug delivery using a facile electrostatic attraction strategy. This HA modification ensured stable drug encapsulation in mesoporous carbon nanoparticles in an extracellular environment while increasing colloidal stability, biocompatibility, cell-targeting ability, and controlled cargo release. The cellular uptake experiments of fluorescently labeled mesoporous carbon nanoparticles, with or without HA functionalization, demonstrated that HA-UMCS are able to specifically target cancer cells overexpressing CD44 receptors. Moreover, the cargo loaded doxorubicin (DOX) and verapamil (VER) exhibited a dual pH and hyaluronidase-1 responsive release in the tumor microenvironment. In addition, VER/DOX/HA-UMCS exhibited a superior therapeutic effect on an in vivo HCT-116 tumor in BALB/c nude mice. In summary, it is expected that HA-UMCS will offer a new method for targeted co-delivery of drugs to tumors overexpressing CD44 receptors.

  18. Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO(2)) nanoparticles.

    PubMed

    Xiong, Sijing; George, Saji; Yu, Haiyang; Damoiseaux, Robert; France, Bryan; Ng, Kee Woei; Loo, Joachim Say-Chye

    2013-06-01

    The aim of this study is to uncover the size influence of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO(2)) nanoparticles on their potential cytotoxicity. PLGA and TiO(2) nanoparticles of three different sizes were thoroughly characterized before in vitro cytotoxic tests which included viability, generation of reactive oxygen species (ROS), mitochondrial depolarization, integrity of plasma membrane, intracellular calcium influx and cytokine release. Size-dependent cytotoxic effect was observed in both RAW264.7 cells and BEAS-2B cells after cells were incubated with PLGA or TiO(2) nanoparticles for 24 h. Although PLGA nanoparticles did not trigger significantly lethal toxicity up to a concentration of 300 μg/ml, the TNF-α release after the stimulation of PLGA nanoparticles should not be ignored especially in clinical applications. Relatively more toxic TiO(2) nanoparticles triggered cell death, ROS generation, mitochondrial depolarization, plasma membrane damage, intracellular calcium concentration increase and size-dependent TNF-α release, especially at a concentration higher than 100 μg/ml. These cytotoxic effects could be due to the size-dependent interaction between nanoparticles and biomolecules, as smaller particles tend to adsorb more biomolecules. In summary, we demonstrated that the ability of protein adsorption could be an important paradigm to predict the in vitro cytotoxicity of nanoparticles, especially for low toxic nanomaterials such as PLGA and TiO(2) nanoparticles. PMID:22983807

  19. Surface modification of alumina-coated silica nanoparticles in aqueous sols with phosphonic acids and impact on nanoparticle interactions.

    PubMed

    Pauly, Céline Schmitt; Genix, Anne-Caroline; Alauzun, Johan G; Sztucki, Michael; Oberdisse, Julian; Hubert Mutin, P

    2015-07-15

    It is often necessary to tailor nanoparticle (NP) interactions and their compatibility with a polymer matrix by grafting organic groups, but the commonly used silanization route offers little versatility, particularly in water. Herein, alumina-coated silica NPs in aqueous sols have been modified for the first time with low molecular-weight phosphonic acids (PAs) bearing organic groups of various hydrophobicities and charges: propyl, pentyl and octyl PAs, and two PAs bearing hydrophilic groups, either a neutral diethylene glycol (DEPA) or a potentially charged carboxylic acid (CAPA) group. The interactions and aggregation in the sols have been investigated using zeta potential measurements, dynamic light scattering, transmission electron microscopy, and small-angle scattering methods. The surface modification has been studied using FTIR and (31)P MAS NMR spectroscopies. Both high grafting density ρ and high hydrophobicity of the groups on the PAs induced aggregation, whereas suspensions of NPs grafted by DEPA remained stable up to the highest ρ. Unexpectedly, CAPA-modified NPs showed aggregation even at low ρ, suggesting that the carboxylic end group was also grafted to the surface. Surface modification of aqueous sols with PAs allows thus for the grafting of a higher density and a wider variety of organic groups than organosilanes, offering an increased control of the interactions between NPs, which is of interest for designing waterborne nanocomposites. PMID:26134150

  20. Immobilization of lactobionic acid on the surface of cadmium sulfide nanoparticles and their interaction with hepatocytes.

    PubMed

    Kamruzzaman Selim, K M; Xing, Zhi-Cai; Guo, Haiqing; Kang, Inn-Kyu

    2009-09-01

    In the current study, beta-galactose-carrying lactobionic acid (LA) was conjugated on the surface of mercaptoacetic acid-coated cadmium sulfide nanoparticles (CSNPs) to ensure specific recognition of liver cells (hepatocytes) and to enhance biocompatibility. Maltotrionic acid-coated CSNPs (MCSNPs) were also prepared for use as a control. The results showed that LA-immobilized CSNPs (LCSNPs) were selectively and rapidly internalized into hepatocytes and emitted more intense fluorescence images as well as demonstrated increased biocompatible behavior in vitro than those of CSNPs and MCSNPs. Furthermore, the uptake amount of LCSNPs into hepatocytes was higher than that of CSNPs and MCSNPs. All these results indicate that LCSNPs may find ever-growing applications in biological labels and detection or contrast agents in life science and medical diagnostics. PMID:19365615

  1. Optimization of the production of solid Witepsol nanoparticles loaded with rosmarinic acid.

    PubMed

    Campos, Débora A; Madureira, Ana Raquel; Gomes, Ana Maria; Sarmento, Bruno; Pintado, Maria Manuela

    2014-03-01

    During the last decade there has been a growing interest in the formulation of new food and nutraceutical products containing compounds with antioxidant activity. Unfortunately, due to their structure, certain compounds such as polyphenols, in particular rosmarinic acid (RA) are not stable and may interact easily with matrices in which they are incorporated. To overcome such limitations, the formulation of loaded polyphenols nanoparticles can offer an efficient solution to protect such compounds. Based on this rationale, the aim of this study was to prepare solid lipid nanoparticles (SLNs) loaded with RA using a hot melt ultrasonication method, where Witepsol H15 was used as lipid and Polysorbate 80 (Tween 80) as surfactant, following a 3(2) fractional factorial design, resulting in the use of 3 different percentages of surfactant (viz. 1, 2 and 3%, v/v) and lipid (0.5, 1.0 and 1.5%, w/v). The stability of the nanoparticles systems were tested during 28 d in aqueous solution stored at refrigeration temperature (ca. 5 °C), tracking the mean particle size of different formulations by photon correlation spectroscopy. To confirm RA entrapment, thermal analyses of the nanoparticles by DSC and FTIR were performed. The association efficiencies percentages (AE%) were determined using HPLC to quantitatively assess the RA in supernatants. Results showed that Witepsol H15 produced nanoparticles with initial mean diameters between 270 and 1000 nm, yet over time, a slight increase occurred, but without occurrence of aggregation. The AE% showed a high percentage of encapsulation (ca. 99%), which reveals low polyphenol releases from SLNs throughout storage time. In general, results showed a successful production of SLNs with properties that can be used to food applications. PMID:24413308

  2. Nanotubes-Embedded Indocyanine Green-Hyaluronic Acid Nanoparticles for Photoacoustic-Imaging-Guided Phototherapy.

    PubMed

    Wang, Guohao; Zhang, Fan; Tian, Rui; Zhang, Liwen; Fu, Guifeng; Yang, Lily; Zhu, Lei

    2016-03-01

    Phototherapy is a light-triggered treatment for tumor ablation and growth inhibition via photodynamic therapy (PDT) and photothermal therapy (PTT). Despite extensive studies in this area, a major challenge is the lack of selective and effective phototherapy agents that can specifically accumulate in tumors to reach a therapeutic concentration. Although recent attempts have produced photosensitizers complexed with photothermal nanomaterials, the tedious preparation steps and poor tumor efficiency of therapy still hampers the broad utilization of these nanocarriers. Herein, we developed a CD44 targeted photoacoustic (PA) nanophototherapy agent by conjugating Indocyanine Green (ICG) to hyaluronic acid nanoparticles (HANPs) encapsulated with single-walled carbon nanotubes (SWCNTs), resulting in a theranostic nanocomplex of ICG-HANP/SWCNTs (IHANPT). We fully characterized its physical features as well as PA imaging and photothermal and photodynamic therapy properties in vitro and in vivo. Systemic delivery of IHANPT theranostic nanoparticles led to the accumulation of the targeted nanoparticles in tumors in a human cancer xenograft model in nude mice. PA imaging confirmed targeted delivery of the IHANPT nanoparticles into tumors (T/M ratio = 5.19 ± 0.3). The effect of phototherapy was demonstrated by low-power laser irradiation (808 nm, 0.8 W/cm(2)) to induce efficient photodynamic effect from ICG dye. The photothermal effect from the ICG and SWCNTs rapidly raised the tumor temperature to 55.4 ± 1.8 °C. As the result, significant tumor growth inhibition and marked induction of tumor cell death and necrosis were observed in the tumors in the tumors. There were no apparent systemic and local toxic effects found in the mice. The dynamic thermal stability of IHANPT was studied to ensure that PTT does not affect ICG-dependent PDT in phototherapy. Therefore, our results highlight imaging property and therapeutic effect of the novel IHANPT theranostic nanoparticle for CD44

  3. Protamine-based nanoparticles as new antigen delivery systems.

    PubMed

    González-Aramundiz, José Vicente; Peleteiro Olmedo, Mercedes; González-Fernández, África; Alonso Fernández, María José; Csaba, Noemi Stefánia

    2015-11-01

    The use of biodegradable nanoparticles as antigen delivery vehicles is an attractive approach to overcome the problems associated with the use of Alum-based classical adjuvants. Herein we report, the design and development of protamine-based nanoparticles as novel antigen delivery systems, using recombinant hepatitis B surface antigen as a model viral antigen. The nanoparticles, composed of protamine and a polysaccharide (hyaluronic acid or alginate), were obtained using a mild ionic cross-linking technique. The size and surface charge of the nanoparticles could be modulated by adjusting the ratio of the components. Prototypes with optimal physicochemical characteristics and satisfactory colloidal stability were selected for the assessment of their antigen loading capacity, antigen stability during storage and in vitro and in vivo proof-of-concept studies. In vitro studies showed that antigen-loaded nanoparticles induced the secretion of cytokines by macrophages more efficiently than the antigen in solution, thus indicating a potential adjuvant effect of the nanoparticles. Finally, in vivo studies showed the capacity of these systems to trigger efficient immune responses against the hepatitis B antigen following intramuscular administration, suggesting the potential interest of protamine-polysaccharide nanoparticles as antigen delivery systems. PMID:26455338

  4. Understanding the mechanism of amino acid-based Au nanoparticle chain formation.

    PubMed

    Sethi, Manish; Knecht, Marc R

    2010-06-15

    Understanding the surface orientation and interactions between biomolecules and nanoparticles is important in order to determine their effects on the final structure and activity. At present, limited analytical techniques are available to probe these interactions, especially for materials dispersed in solution. We recently demonstrated that arginine, a simple amino acid, is able to bind to the surface of Au nanoparticles in a segregated pattern, which produces an electronic dipole across the structure. As a result, the formation of linear chains of Au nanoparticles occurred that was dependent upon of the concentration of arginine. Here, we present new information concerning the mechanism of assembly and demonstrate unique reaction conditions that can be used to directly control the assembly rate, and thus the size of the final superstructure that is produced. The assembly process was modulated by the arginine/Au nanoparticle ratio, the temperature of the system, the dielectric of the solvent, and the solution ionic strength, all of which can be used in combination to control the process. These effects were monitored using UV-vis spectroscopy, transmission electron microscopy, and dynamic light scattering. From these results, it is suggested that the second step of the assembly process, which is the formation of nanoparticle chains mediated by Brownian motion, controls the overall assembly rate and thus the size and orientation of the final superstructure produced. Furthermore, the reaction kinetics of the system have been studied from which rate constants and activity energies have been extracted for electrostatic-based nanoparticle assembly. This analysis indicates that the assembly/organization step is likely broken into two substeps with the formation of nanoparticle dimers occurring in solution first, followed by the oligomerization of the dimers to form the linear and branched chains. The dimerization step follows traditional second-order kinetics and is

  5. Role of fatty acid composites in the toxicity of titanium dioxide nanoparticles used in cosmetic products.

    PubMed

    Chang, JuOae; Lee, Chang-Woo; Alsulimani, Helal Hussain; Choi, Jee Eun; Lee, Joo-Kyung; Kim, AhYoung; Park, Bae Ho; Kim, Jonghan; Lee, HeaYeon

    2016-01-01

    It has been recognized that the use of nanoparticles (NPs) in the cosmetic industry results in products with better efficacy and functionality. However, recent advances in molecular toxicology have revealed that NP exposure can promote cytotoxicity and oxidative damage, which has raised health concerns in the use of NPs in personal care products. Nevertheless, the mechanistic basis for the toxicity and safety of cosmetic NPs is poorly understood. The goal of the study was to determine the cytotoxicity and intracellular distribution of titanium dioxide (TiO2) NPs containing fatty acid composites (palmitoleic acid, palmitic acid, stearic acid and oleic acid) commonly used in cosmetic products. Two types of cells, human fibroblast skin cells and adenocarcinoma lung cells, were exposed to either bare TiO2 NPs or TiO2 NPs mixed with fatty acids for up to 48 hr. NMR analysis confirmed that the fatty acid composites remained in the NPs after wash. The cytotoxicity of TiO2 NPs was determined by cell viability measurement using quantitative confocal microscopy, and the localization of two different forms of TiO2 NPs were assessed using electron spectroscopic imaging with transmission electron microscopy. TiO2 NPs containing fatty acids posed significantly reduced cytotoxicity (80-88% decreases) than bare NPs in both cell types. Furthermore, there was less intracellular penetration of the NPs containing fatty acid composites compared with bare NPs. These results provide important insights into the role of fatty acids in protecting the cells from possible toxicity caused by NPs used in the production of cosmetic products. PMID:27432239

  6. Studies of magnetic alginate-based electrospun matrices crosslinked with different methods for potential hyperthermia treatment.

    PubMed

    Chen, Yen-Hsuan; Cheng, Chi-Hui; Chang, Wan-Ju; Lin, Yi-Ching; Lin, Feng-Huei; Lin, Jui-Che

    2016-05-01

    The magnetic electrospun mats were lately established as an innovative biomaterial for hyperthermic cancer treatment. Unlike those surface-modified magnetic nanoparticles that may not firmly adhere onto the tumor for long-term duration, the magnetic mats with nanofibrous structure can promote cell adhesion and kill the tumor directly within an alternating magnetic field. However, most magnetic electrospun mats were fabricated using non-biodegradable polymers and organic solvents, causing the problems of removal after therapy and the suspected biotoxicity associated with residual solvent. Alginate (SA) was utilized in this investigation as the main material for electrospinning because of being biodegradable and water-soluble. The alginate-based electrospun mats were then treated by an ionic or a covalent crosslinking method, and then followed by chelation with Fe(2+)/Fe(3+) for chemical coprecipitation of Fe3O4 magnetic nanoparticles. Significant less cytotoxicity was noted on both liquid extracts from the ionic-crosslinked (Fe3O4-SA/PEO) and covalent-crosslinked (Fe3O4-SA/PVA) magnetic electrospun mats as well as the surface of Fe3O4-SA/PVA. In vitro hyperthermia assay indicated that the covalent-crosslinked magnetic alginate-based mats reduced tumor cell viability greater than Fe3O4 nanoparticles. Such magnetic electrospun mats are of potential for hyperthermia treatment by endoscopic/surgical delivery as well as serving as a supplementary debridement treatment after surgical tumor removal. PMID:26952432

  7. Phosphotungstic acid supported on magnetic nanoparticles as an efficient reusable catalyst for epoxidation of alkenes

    SciTech Connect

    Kooti, M.; Afshari, M.

    2012-11-15

    Highlights: ► Phosphotungstic acid supported on functionalized cobalt ferrite was prepared. ► Silica coated cobalt ferrite nanoparticles were used as support. ► This composite was successfully used as catalyst for epoxidation of alkenes. ► Oxidation reactions were carried out in the presence of t-BuOOH as oxidant. ► The catalyst can be readily separated from solution by magnetic field. -- Abstract: A new magnetically separable catalyst consisting of phosphotungstic acid supported on imidazole functionalized silica coated cobalt ferrite nanoparticles was prepared. The synthesized catalyst was characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR), and inductively coupled plasma atomic emission spectroscopy (ICP-AES). This immobilized phosphotungstic acid was shown to be an efficient heterogeneous catalyst for the epoxidation of various alkenes using tert-butylhydroperoxide (t-BuOOH) as oxidant. The catalyst is readily recovered by simple magnetic decantation and can be recycled several times with no significant loss of catalytic activity.

  8. Gold Nanoparticles Enhance the Anticancer Activity of Gallic Acid against Cholangiocarcinoma Cell Lines.

    PubMed

    Rattanata, Narintorn; Daduang, Sakda; Wongwattanakul, Molin; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lekphrom, Ratsami; Sandee, Alisa; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Daduang, Jureerut

    2015-01-01

    Gold nanoparticles (GNPs) were conjugated with gallic acid (GA) at various concentrations between 30 and 150 μM and characterized using transmission electron microscopy (TEM) and UV-Vis spectroscopy (UV-VIS). The anticancer activities of the gallic acid-stabilized gold nanoparticles against well-differentiated (M213) and moderately differentiated (M214) adenocarcinomas were then determined using a neutral red assay. The GA mechanism of action was evaluated using Fourier transform infrared (FTIR) microspectroscopy. Distinctive features of the FTIR spectra between the control and GA-treated cells were confirmed by principal component analysis (PCA). The surface plasmon resonance spectra of the GNPs had a maximum absorption at 520 nm, whereas GNPs-GA shifted the maximum absorption values. In an in vitro study, the complexed GNPs-GA had an increased ability to inhibit the proliferation of cancer cells that was statistically significant (P<0.0001) in both M213 and M214 cells compared to GA alone, indicating that the anticancer activity of GA can be improved by conjugation with GNPs. Moreover, PCA revealed that exposure of the tested cells to GA resulted in significant changes in their cell membrane lipids and fatty acids, which may enhance the efficacy of this anticancer activity regarding apoptosis pathways. PMID:26514503

  9. Use of mesoporous silicate nanoparticles as drug carrier for mefenamic acid

    NASA Astrophysics Data System (ADS)

    Mustafa, F. M.; Hodali, H. A.

    2015-10-01

    The aim of the study is to evaluate the use of mesoporous silicate nanoparticles for the loading and release of the non-steroidal anti-inflammatory drug, mefenamic acid. Nanoparticles of the mesoporous silicate materials, MCM-41 and SBA-16 were synthesized and characterized by XRD, SEM, FT-IR, TGA and BET surface area techniques. Both silicate systems were loaded with mefenamic acid with loading capacities of 18.6% and 11.6%, respectively. The in vitro release of mefenamic acid into simulated body fluid (pH = 7.4) at 37°C was investigated. The percent release was nonlinearly regressed against time (t) according to the first order kinetic release model; Higuchi's first burst model and Kopcha's empirical model. The overall %release was obtained for both silicate systems and was found to be about 60%. Analysis of results show the rate of drug release is more rapid from SBA-16 (the more interconnected porous network) than from MCM-41. It also show that drug release from either mesoporous silicate is a diffusion controlled process.

  10. The Effect of Copper And Zinc Nanoparticles on the Growth Parameters, Contents of Ascorbic Acid, and Qualitative Composition of Amino Acids and Acylcarnitines in Pistia stratiotes L. (Araceae)

    NASA Astrophysics Data System (ADS)

    Olkhovych, Olga; Volkogon, Mykola; Taran, Nataliya; Batsmanova, Lyudmyla; Kravchenko, Inna

    2016-04-01

    The paper covers the research of copper and zinc nanoparticle effect on the content of ascorbic acid, and quantitative and qualitative composition of amino acids and acylcarnitines in Pistia stratiotes L. plants. Plant exposition to copper nanoparticles led to the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 25 %), and (3) the amount of all studied amino acids except for the glycine amino acid. At this, the amount of 5-oxoproline, arginine, leucine, ornithine, phenylalanine, proline, serine, and tyrosine was two times lower than in control plants. The reduction of the contents of 8 out of 12 investigated acylcarnitines (namely C0, C2, C3, C5, C6, C8, C16, C18:1) was observed in plants under the influence of copper nanoparticles. The result of plants incubation with zinc nanoparticles was the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 15 %), (3) the content of leucine, methionine, phenylalanine, proline, and tyrosine (more than twice), and (4) the content of 10 acylcarnitines (C0, C2, C3, C4, C5, C10, C16, C18, C18:1, C18:2). The observed reduction in amino acid contents may negatively affect plants adaptive reactions associated with de novo synthesis of stress proteins. At the same time, the decrease in the content of acylcarnitines, responsible for fatty acid transportation, may lead to the changes in the activity and direction of lipid metabolism in plants and reduce plant's ability to use free fatty acids as the oxidation substrate for cell reparation.

  11. The Effect of Copper And Zinc Nanoparticles on the Growth Parameters, Contents of Ascorbic Acid, and Qualitative Composition of Amino Acids and Acylcarnitines in Pistia stratiotes L. (Araceae).

    PubMed

    Olkhovych, Olga; Volkogon, Mykola; Taran, Nataliya; Batsmanova, Lyudmyla; Kravchenko, Inna

    2016-12-01

    The paper covers the research of copper and zinc nanoparticle effect on the content of ascorbic acid, and quantitative and qualitative composition of amino acids and acylcarnitines in Pistia stratiotes L. plants. Plant exposition to copper nanoparticles led to the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 25 %), and (3) the amount of all studied amino acids except for the glycine amino acid. At this, the amount of 5-oxoproline, arginine, leucine, ornithine, phenylalanine, proline, serine, and tyrosine was two times lower than in control plants. The reduction of the contents of 8 out of 12 investigated acylcarnitines (namely C0, C2, C3, C5, C6, C8, C16, C18:1) was observed in plants under the influence of copper nanoparticles. The result of plants incubation with zinc nanoparticles was the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 15 %), (3) the content of leucine, methionine, phenylalanine, proline, and tyrosine (more than twice), and (4) the content of 10 acylcarnitines (C0, C2, C3, C4, C5, C10, C16, C18, C18:1, C18:2). The observed reduction in amino acid contents may negatively affect plants adaptive reactions associated with de novo synthesis of stress proteins. At the same time, the decrease in the content of acylcarnitines, responsible for fatty acid transportation, may lead to the changes in the activity and direction of lipid metabolism in plants and reduce plant's ability to use free fatty acids as the oxidation substrate for cell reparation. PMID:27107771

  12. A chamber study of the influence of boreal BVOC emissions and sulphuric acid on nanoparticle formation rates at ambient concentrations

    NASA Astrophysics Data System (ADS)

    Dal Maso, M.; Liao, L.; Wildt, J.; Kiendler-Scharr, A.; Kleist, E.; Tillmann, R.; Sipilä, M.; Hakala, J.; Lehtipalo, K.; Ehn, M.; Kerminen, V.-M.; Kulmala, M.; Worsnop, D.; Mentel, T.

    2014-12-01

    Aerosol formation from biogenic and anthropogenic precursor trace gases in continental background areas affects climate via altering the amount of available cloud condensation nuclei. Significant uncertainty still exists regarding the agents controlling the formation of aerosol nanoparticles. We have performed experiments in the Jülich Plant-Atmosphere Simulation Chamber with instrumentation for the detection of sulphuric acid and nanoparticles, and present the first simultaneous chamber observations of nanoparticles, sulphuric acid, and realistic levels and mixtures of biogenic volatile compounds (BVOC). We present direct laboratory observations of nanoparticle formation from sulphuric acid and realistic BVOC precursor vapor mixtures performed at atmospherically relevant concentration levels. We directly measured particle formation rates separately from particle growth rates. From this, we established that in our experiments, the formation rate was proportional to the product of sulphuric acid and biogenic VOC emission strength. The formation rates were consistent with a mechanism in which nucleating BVOC oxidation products are rapidly formed and activate with sulphuric acid. The growth rate of nanoparticles immediately after birth was best correlated with estimated products resulting from BVOC ozonolysis.

  13. A chamber study of the influence of boreal BVOC emissions and sulfuric acid on nanoparticle formation rates at ambient concentrations

    NASA Astrophysics Data System (ADS)

    Dal Maso, M.; Liao, L.; Wildt, J.; Kiendler-Scharr, A.; Kleist, E.; Tillmann, R.; Sipilä, M.; Hakala, J.; Lehtipalo, K.; Ehn, M.; Kerminen, V.-M.; Kulmala, M.; Worsnop, D.; Mentel, T.

    2016-02-01

    Aerosol formation from biogenic and anthropogenic precursor trace gases in continental background areas affects climate via altering the amount of available cloud condensation nuclei. Significant uncertainty still exists regarding the agents controlling the formation of aerosol nanoparticles. We have performed experiments in the Jülich plant-atmosphere simulation chamber with instrumentation for the detection of sulfuric acid and nanoparticles, and present the first simultaneous chamber observations of nanoparticles, sulfuric acid, and realistic levels and mixtures of biogenic volatile compounds (BVOCs). We present direct laboratory observations of nanoparticle formation from sulfuric acid and realistic BVOC precursor vapour mixtures performed at atmospherically relevant concentration levels. We directly measured particle formation rates separately from particle growth rates. From this, we established that in our experiments, the formation rate was proportional to the product of sulfuric acid and biogenic VOC emission strength. The formation rates were consistent with a mechanism in which nucleating BVOC oxidation products are rapidly formed and activate with sulfuric acid. The growth rate of nanoparticles immediately after birth was best correlated with estimated products resulting from BVOC ozonolysis.

  14. [Bioavailability of orally administered iron. Effects of alginate/antacid administration].

    PubMed

    Campo, S; Breda, E

    1992-03-01

    Sideropenia is often encountered in medical practice; the iron preparation that presents the highest bioavailability is unquestionably iron sulphate. This compound, however, frequently provokes numerous side-effects that induce the patient to suspend treatment. Here it is shown that the bioavailability of the drug is not changed after intake of alginic acid, while side-effects are considerably reduced. PMID:1553063

  15. Acidic Nanoparticles Are Trafficked to Lysosomes and Restore an Acidic Lysosomal pH and Degradative Function to Compromised ARPE-19 Cells

    PubMed Central

    Baltazar, Gabriel C.; Guha, Sonia; Lu, Wennan; Lim, Jason; Boesze-Battaglia, Kathleen; Laties, Alan M.; Tyagi, Puneet; Kompella, Uday B.; Mitchell, Claire H.

    2012-01-01

    Lysosomal enzymes function optimally in acidic environments, and elevation of lysosomal pH can impede their ability to degrade material delivered to lysosomes through autophagy or phagocytosis. We hypothesize that abnormal lysosomal pH is a key aspect in diseases of accumulation and that restoring lysosomal pH will improve cell function. The propensity of nanoparticles to end up in the lysosome makes them an ideal method of delivering drugs to lysosomes. This study asked whether acidic nanoparticles could traffic to lysosomes, lower lysosomal pH and enhance lysosomal degradation by the cultured human retinal pigmented epithelial cell line ARPE-19. Acidic nanoparticles composed of poly (DL-lactide-co-glycolide) (PLGA) 502 H, PLGA 503 H and poly (DL-lactide) (PLA) colocalized to lysosomes of ARPE-19 cells within 60 min. PLGA 503 H and PLA lowered lysosomal pH in cells compromised by the alkalinizing agent chloroquine when measured 1 hr. after treatment, with acidification still observed 12 days later. PLA enhanced binding of Bodipy-pepstatin-A to the active site of cathepsin D in compromised cells. PLA also reduced the cellular levels of opsin and the lipofuscin-like autofluorescence associated with photoreceptor outer segments. These observations suggest the acidification produced by the nanoparticles was functionally effective. In summary, acid nanoparticles lead to a rapid and sustained lowering of lysosomal pH and improved degradative activity. PMID:23272048

  16. Effective Removal of Tetracycline from Aqueous Solution by Organic Acid-Coated Magnetic Nanoparticles.

    PubMed

    Guo, Liang; Liang, Yuyan; Chen, Xuelan; Xu, Wei; Wu, Kesheng; Wei, Hua; Xiong, Yonghua

    2016-03-01

    Self-assembled iron oxide nanocomposites are good magnetic nano-adsorbents that can be prepared using simple methods. Four types of organic acid-functionalised (oleic acid, undecenoic acid, caprylic acid or hexanoic acid) magnetic nanoparticles (MNPs) were synthesised through a one-pot chemisorption method for the removal of tetracycline (TC) from aqueous solution. The undecenoic acid-coated MNPs (UA-MNPs) exhibited the highest adsorption efficiency and can be easily retrieved with a low-gradient magnetic separator (0.4 Tesla) at pH 5.0 aqueous solution. The TC adsorption process on the UA-MNPs followed the Langmuir isotherm and the maximum adsorption capacities increased from 86.96 mg g(-1) to 222.2 mg g(-1) with the increase in temperature from 288 K to 318 K. The kinetics of adsorption fits pseudo-second-order model perfectly with a rate constant, 5.946 g mg(-1) min(-1) at 298 K. The positive values of the enthalpy (AH) and the negative value of the free energy (AG) indicated an endothermic and spontaneous adsorption process of TC on the UA-MNPs. Moreover, the UA-MNPs possessed excellent ability to adsorb the other three major types of TC antibiotics, including chlortetracycline, oxytetracycline and doxycycline. PMID:27455621

  17. Differentiation of Wharton's jelly mesenchymal stem cells into neurons in alginate scaffold

    PubMed Central

    Hosseini, Seyed Mojtaba; Vasaghi, Attiyeh; Nakhlparvar, Newsha; Roshanravan, Reza; Talaei-khozani, Tahereh; Razi, Zahra

    2015-01-01

    Alginate scaffold has been considered as an appropriate biomaterial for promoting the differentiation of embryonic stem cells toward neuronal cell lineage. We hypothesized that alginate scaffold is suitable for culturing Wharton's jelly mesenchymal stem cells (WJMSCs) and can promote the differentiation of WJMSCs into neuron-like cells. In this study, we cultured WJMSCs in a three-dimensional scaffold fabricated by 0.25% alginate and 50 mM CaCl2 in the presence of neurogenic medium containing 10 μM retinoic acid and 20 ng/mL basic fibroblast growth factor. These cells were also cultured in conventional two-dimensional culture condition in the presence of neurogenic medium as controls. After 10 days, immunofluorescence staining was performed for detecting β-tubulin (marker for WJMSCs-differentiated neuron) and CD271 (motor neuron marker). β-Tubulin and CD271 expression levels were significantly greater in the WJMSCs cultured in the three-dimensional alginate scaffold than in the conventional two-dimensional culture condition. These findings suggest that three-dimensional alginate scaffold cell culture system can induce neuronal differentiation of WJMSCs effectively. PMID:26487861

  18. Effects of Lactobacillus plantarum immobilization in alginate coated with chitosan and gelatin on antibacterial activity.

    PubMed

    Trabelsi, Imen; Ayadi, Dorra; Bejar, Wacim; Bejar, Samir; Chouayekh, Hichem; Ben Salah, Riadh

    2014-03-01

    The present study aimed to investigate and evaluate the efficiency of immobilizing the Lactobacillus plantarum TN9 strain in alginate using chitosan and gelatin as coating materials, in terms of viability and antibacterial activity. The results indicate that maximum concentrations of L. plantarum TN9 strain were produced with 2% sodium alginate, 10(8)UFC/ml, and 1M calcium chloride. The viability and antibacterial activity of the L. plantarum TN9 cultures before and after immobilization in alginate, chitosan-coated alginate, and gelatin-coated alginate, were studied. The findings revealed that the viability of encapsulated L. plantarum could be preserved more than 5.8 log CFU/ml after 35 day of incubation at 4 °C, and no effects were observed when gelatin was used. The antibacterial activity of encapsulated L. plantarum TN9 against Gram-positive and Gram-negative pathogenic bacteria was enhanced in the presence of chitosan coating materials, and no activity was observed in the presence of gelatin. The effects of catalase and proteolytic enzymes on the culture supernatant of L. plantarum TN9 were also investigated, and the results suggested that the antibacterial activity observed was due to the production of organic acids. Taken together, the findings indicated that immobilization in chitosan enhanced the antibacterial activity of L. plantarum TN9 against several pathogenic bacteria. This encapsulated strain could be considered as a potential strong candidate for future application as an additive in the food and animal feed industries. PMID:24315948

  19. Stability of alginate-immobilized algal cells

    SciTech Connect

    Dainty, A.L.; Goulding, K.H.; Robinson, P.K.; Simpkins, I; Trevan, M.D.

    1986-01-01

    Investigations were carried out using immobilized Chlorella cells to determine the diameter, compressibility, tolerance to phosphate chelation, and ability to retain algal cells during incubation of various alginate beads. These physical bead-characteristics were affected by a variety of interactive factors, including multivalent cation type (hardening agent) and cell, cation, and alginate concentration, the latter exhibiting a predominant influence. The susceptibility of alginate beads to phosphate chelation involved a complex interaction of cation type, concentration, and pH of phosphate solution. A scale of response ranging from gel swelling to gel shrinking was observed for a range of conditions. However, stable Ca alginate beads were maintained in incubation media with a pH of 5.5 and a phosphate concentration of 5 micro M. A preliminary investigation into cell leakage from the beads illustrated the importance of maintaining a stable gel structure and limiting cell growth to reduce leakage.

  20. Isomeric control of protein recognition with amino acid- and dipeptide-functionalized gold nanoparticles.

    PubMed

    You, Chang-Cheng; Agasti, Sarit S; Rotello, Vincent M

    2008-01-01

    Amino acid and dipeptide-functionalized gold nanoparticles (NPs) possessing L/D-leucine and/or L/D-phenylalanine residues have been constructed in order to target the surfaces of alpha-chymotrypsin (ChT) and cytochrome c (CytC). Isothermal titration calorimetry (ITC) was conducted to evaluate the binding thermodynamics and selectivity of these NP-protein interactions. The chirality of the NP end-groups substantially affects the resultant complex stability, with up to 20-fold differences seen between particles of identical hydrophobicity, demonstrating that structural information from the ligands can be used to control protein recognition. PMID:17972262

  1. A paper based microfluidic device for easy detection of uric acid using positively charged gold nanoparticles.

    PubMed

    Kumar, Anand; Hens, Abhiram; Arun, Ravi Kumar; Chatterjee, Monosree; Mahato, Kuldeep; Layek, Keya; Chanda, Nripen

    2015-03-21

    A paper based microfluidic device is fabricated that can rapidly detect very low concentrations of uric acid (UA) using 3,5,3',5'-tetramethyl benzidine (TMB), H2O2 and positively charged gold nanoparticles ((+)AuNPs). In the presence of (+)AuNPs, H2O2 reacts with TMB to produce a bluish-green colour which becomes colourless on reaction with UA. This colorimetric method can detect as low as 8.1 ppm of UA within <20 minutes on white filter paper. This technique provides an alternative way for UA detection. PMID:25655365

  2. One-stop Genomic DNA Extraction by Salicylic Acid Coated Magnetic Nanoparticles

    PubMed Central

    Zhou, Zhongwu; Kadam, Ulhas; Irudayaraj, Joseph

    2014-01-01

    Salicylic acid coated magnetic nanoparticles were prepared via a modified, one-step synthesis and used for a one-stop extraction of genomic DNA from mammalian cells. The synthesized magnetic particles were used for magnetic separation of cells from the media by non-specific binding of the particles, as well as extraction of genomic DNA from the lysate. The quantity and quality were confirmed by agarose gel electrophoresis and polymerase chain reaction. The entire process of extraction and isolation can be completed within 30 min. Compared to traditional methods based on centrifugation and filtration, the established method is fast, simple, reliable, and environmentally-friendly. PMID:23911528

  3. One pot green synthesis of Ag, Au and Au-Ag alloy nanoparticles using isonicotinic acid hydrazide and starch.

    PubMed

    Malathi, Sampath; Ezhilarasu, Tamilarasu; Abiraman, Tamilselvan; Balasubramanian, Sengottuvelan

    2014-10-13

    Gold-silver alloy nanoparticles were synthesized via chemical reduction of varying mole fractions of chloroauric acid (HAuCl4) and silver nitrate (AgNO3) by environmentally benign isonicotinic acid hydrazide (INH) in the presence of starch as a capping agent in aqueous medium. The absorption spectra of Au-Ag nanoparticles show blue shift with increasing silver content indicating the formation of alloy nanoparticles. When the Ag content in the alloy decreases the size of the nanoparticles increases and as a result of which the oxidation potential also increases. The emission maximum undergoes a red shift from 443 to 614 nm. The nanoparticles are monodisperse and spherical with an average particle size of 3-18 nm. The catalytic behavior of alloy nanoparticles indicate that the rate constant for the reduction of 4-nitro phenol to 4-amino phenol increases exponentially from metallic Ag to metallic Au as Au content increases in the Au-Ag alloy nanoparticles. PMID:25037410

  4. Preparation of polyelectrolyte complex nanoparticles of chitosan and poly(2-acry1amido-2-methylpropanesulfonic acid) for doxorubicin release.

    PubMed

    Zhang, Liping; Wang, Jie; Ni, Caihua; Zhang, Yanan; Shi, Gang

    2016-01-01

    A new kind of polyelectrolyte complex (PEC) based on cationic chitosan (CS) and anionic poly(2-acry1amido-2-methylpropanesulfonic acid) (PAMPS) was prepared using a polymer-monomer pair reaction system. Chitosan was mixed with 2-acry1amido-2-methylpropanesulfonic acid) (AMPS) in an aqueous solution, followed by polymerization of AMPS. The complex was formed by electrostatic interaction of NH3(+) groups of CS and SO3(-) groups of AMPS, leading to a formation of complex nanoparticles of CS-PAMPS. A series of nanoparticles were obtained by changing the weight ratio of CS to AMPS, the structure and properties of nanoparticles were investigated. It was observed that the nanoparticles possessed spherical morphologies with average diameters from 255 nm to 390 nm varied with compositions of the nanoparticles. The nanoparticles were used as drug vehicles for doxorubicin, displaying relative high drug loading rate and encapsulation rate. The vitro release profiles revealed that the drug release could be controlled by adjusting pH of the release media. The nanoparticles demonstrated apparent advantages such as simple preparation process, free of organic solvents, size controllable, good biodegradability and biocompatibility, and they could be potentially used in drug controlled release field. PMID:26478364

  5. An amperometric uric acid biosensor based on chitosan-carbon nanotubes electrospun nanofiber on silver nanoparticles.

    PubMed

    Numnuam, Apon; Thavarungkul, Panote; Kanatharana, Proespichaya

    2014-06-01

    A novel amperometric uric acid biosensor was fabricated by immobilizing uricase on an electrospun nanocomposite of chitosan-carbon nanotubes nanofiber (Chi-CNTsNF) covering an electrodeposited layer of silver nanoparticles (AgNPs) on a gold electrode (uricase/Chi-CNTsNF/AgNPs/Au). The uric acid response was determined at an optimum applied potential of -0.35 V vs Ag/AgCl in a flow-injection system based on the change of the reduction current for dissolved oxygen during oxidation of uric acid by the immobilized uricase. The response was directly proportional to the uric acid concentration. Under the optimum conditions, the fabricated uric acid biosensor had a very wide linear range, 1.0-400 μmol L(-1), with a very low limit of detection of 1.0 μmol L(-1) (s/n = 3). The operational stability of the uricase/Chi-CNTsNF/AgNPs/Au biosensor (up to 205 injections) was excellent and the storage life was more than six weeks. A low Michaelis-Menten constant of 0.21 mmol L(-1) indicated that the immobilized uricase had high affinity for uric acid. The presence of potential common interfering substances, for example ascorbic acid, glucose, and lactic acid, had negligible effects on the performance of the biosensor. When used for analysis of uric acid in serum samples, the results agreed well with those obtained by use of the standard enzymatic colorimetric method (P > 0.05). PMID:24718436

  6. Enhancement of anti-inflammatory activity of glycyrrhizic acid by encapsulation in chitosan-katira gum nanoparticles.

    PubMed

    Bernela, Manju; Ahuja, Munish; Thakur, Rajesh

    2016-08-01

    Efforts were made to improve the bioavailability and efficacy of Glycyrrhizic acid, a triterpentine saponin obtained from Glycyrrhiza glabra, having several pharmacological properties, by its encapsulation in biocompatible biopolymeric nanoparticles. Polycationic chitosan and polyanionic gum katira were used to prepare nanoparticles by ionic complexation method. Glycyrrhizic acid was loaded into the nanoparticles and was then examined for change in its in vivo anti-inflammatory activity against carrageenan-induced rat hind paw inflammation. The effects of concentrations of glycyrrhizic acid, chitosan and katira gum, upon particle size and encapsulation efficiency of glycyrrhizic acid were studied with the help of response surface methodology employing 3-factor, 3-level central composite experimental design. Particle size and encapsulation efficiency of optimized nanoparticulate formulation were 175.8nm and 84.77%, respectively. Particles were observed in transmission electron microscopy to be spherical in shape and 80nm in size. FTIR analysis indicated electrostatic interactions between carboxyl groups of ammonium glycyrrhizinate and amino groups of chitosan. In vitro drug release studies indicated that glycyrrhizic acid was released from the nanoparticles following zero-order kinetics and that there was a sustained release of the drug with 90.71% of it being released over a 12h period, and that the mechanism of release of glycyrrhizic acid from the nanoparticles was a combination of diffusion and erosion of the polymer matrix. In-vivo anti inflammatory efficacy of glycyrrhizic acid clearly improved upon encapsulation in chitosan-katira gum nanoparticles, by overcoming the limited bioavailability of its other forms. PMID:27287555

  7. Microfluidics-assisted generation of stimuli-responsive hydrogels based on alginates incorporated with thermo-responsive and amphiphilic polymers as novel biomaterials.

    PubMed

    Karakasyan, C; Mathos, J; Lack, S; Davy, J; Marquis, M; Renard, D

    2015-11-01

    We used a droplet-based microfluidics technique to produce monodisperse responsive alginate-block-polyetheramine copolymer microgels. The polyetheramine group (PEA), corresponding to a propylene oxide /ethylene oxide ratio (PO/EO) of 29/6 (Jeffamine(®) M2005), was condensed, via the amine link, to alginates with various mannuronic/guluronic acids ratios and using two alginate:jeffamine mass ratios. The size of the grafted-alginate microgels varied from 60 to 80 μm depending on the type of alginate used and the degree of substitution. The droplet-based microfluidics technique offered exquisite control of both the dimension and physical chemical properties of the grafted-alginate microgels. These microgels were therefore comparable to isolated grafted-alginate chains in retaining both their amphiphilic and thermo-sensitive properties. Amphiphilicity was demonstrated at the oil-water interface where grafted-alginate microgels were found to decrease interfacial tension by ∼ 50%. The thermo-sensitivity of microgels was clearly demonstrated and a 10 to 20% reduction in size between was evidenced on increasing the temperature above the lower critical solution temperature (TLCST) of Jeffamine. In addition, the reversibility of thermo-sensitivity was demonstrated by studying the oil-water affinity of microgels with temperature after Congo red labeling. Finally, droplet-based microfluidics was found to be a good and promising tool for generating responsive biobased hydrogels for drug delivery applications and potential new colloidal stabilizers for dispersed systems such as Pickering emulsions. PMID:26322476

  8. Development of magnetic resonance imaging based detection methods for beta amyloids via sialic acid-functionalized magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kouyoumdjian, Hovig

    The development of a non-invasive method for the detection of Alzheimer's disease is of high current interest, which can be critical in early diagnosis and in guiding preventive treatment of the disease. The aggregates of beta amyloids are a pathological hallmark of Alzheimer's disease. Carbohydrates such as sialic acid terminated gangliosides have been shown to play significant roles in initiation of amyloid aggregation. Herein, we report a biomimetic approach using sialic acid coated iron oxide superparamagnetic nanoparticles for in vitro detection in addition to the assessment of the in vivo mouse-BBB (Blood brain barrier) crossing of the BSA (bovine serum albumin)-modified ones. The sialic acid functionalized dextran nanoparticles were shown to bind with beta amyloids through several techniques including ELISA (enzyme linked immunosorbent assay), MRI (magnetic resonance imaging), TEM (transmission electron microscopy), gel electrophoresis and tyrosine fluorescence assay. The superparamagnetic nature of the nanoparticles allowed easy detection of the beta amyloids in mouse brains in both in vitro and ex vivo model by magnetic resonance imaging. Furthermore, the sialic acid nanoparticles greatly reduced beta amyloid induced cytotoxicity to SH-SY5Y neuroblastoma cells, highlighting the potential of the glyconanoparticles for detection and imaging of beta amyloids. Sialic acid functionalized BSA (bovine serum albumin) nanoparticles also showed significant binding to beta amyloids, through ELISA and ex vivo mouse brain MRI experiments. Alternatively, the BBB crossing was demonstrated by several techniques such as confocal microscopy, endocytosis, exocytosis assays and were affirmed by nanoparticles transcytosis assays through bEnd.3 endothelial cells. Finally, the BBB crossing was confirmed by analyzing the MRI signal of nanoparticle-injected CD-1 mice.

  9. 6LiF oleic acid capped nanoparticles entrapment in siloxanes for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Carturan, S.; Maggioni, G.; Marchi, T.; Gramegna, F.; Cinausero, M.; Quaranta, A.; Palma, M. Dalla

    2016-07-01

    The good light output of siloxane based scintillators as displayed under γ-rays and α particles has been exploited here to obtain clear and reliable response toward thermal neutrons. Sensitization towards thermal neutrons has been pursued by adding 6LiF, in form of nanoparticles. Aiming at the enhancement of compatibility between the inorganic nanoparticles and the low polarity, siloxane based surrounding medium, oleic acid-capped 6LiF nanoparticles have been synthesized by thermal decomposition of Li trifluoroacetate. Thin pellets siloxane scintillator maintained their optical transmittance up to weight load of 2% of 6Li. Thin samples with increasing 6Li concentration and thicker ones with fixed 6Li amount have been prepared and tested with several sources (α, γ-rays, moderated neutrons). Light output as high as 80% of EJ212 under α irradiation was measured with thin samples, and negligible changes have been observed as a result of 6LiF addition. In case of thick samples, severe light loss has been observed, as induced by opacity. Nevertheless, thermal neutrons detection has been assessed and the data have been compared with GS20, based on Li glass, taken as a reference material.

  10. Polypropylene Glycol-Silver Nanoparticle Composites: A Novel Anticorrosion Material for Aluminum in Acid Medium

    NASA Astrophysics Data System (ADS)

    Solomon, Moses M.; Umoren, Saviour A.; Israel, Aniekemeabasi U.; Ebenso, Eno E.

    2015-11-01

    Admixture of polypropylene glycol and 1 mM AgNO3 together with natural honey as reducing and stabilizing agent was employed to prepare in situ polypropylene glycol/silver nanoparticle (PPG/AgNPs) composite. The prepared PPG/AgNPs composite was characterized by UV-Vis spectroscopy, FTIR, XRD, and EDS, while the morphology of the Ag nanoparticles in the composite was obtained by TEM. TEM results revealed that the Ag nanoparticles were spherical in shape. The anticorrosion property of PPG/AgNPs composite was examined by electrochemical, weight loss, SEM, EDS, and water contact angle measurements. Results obtained show that PPG/AgNPs are effective in retarding the dissolution of Al in an acid-induced corrosive environment. Inhibition efficiency increased with the increasing composite concentration but decreased with the increasing temperature. Potentiodynamic polarization results revealed that PPG/AgNPs functions as a mixed-type corrosion inhibitor. The adsorption of the composite onto Al surface was found to follow El-Awady et al. adsorption isotherm model. SEM, EDS, and water contact angle results confirmed the adsorption of PPG/AgNPs films onto Al surface.

  11. Interaction of polyacrylic acid coated and non-coated iron oxide nanoparticles with human neutrophils.

    PubMed

    Couto, Diana; Freitas, Marisa; Vilas-Boas, Vânia; Dias, Irene; Porto, Graça; Lopez-Quintela, M Arturo; Rivas, José; Freitas, Paulo; Carvalho, Félix; Fernandes, Eduarda

    2014-02-10

    Iron oxide nanoparticles (ION), with different coatings and sizes, have attracted extensive interest in the last years to be applied in drug delivery, cancer therapy and as contrast agents in imagiologic techniques such as magnetic resonance imaging. However, the safety of these nanoparticles is still not completely established, particularly to host defense systems that are usually recruited for their clearance from the body. In this paper, given the importance of neutrophils in the immune response of the organism to nanoparticles, the effect of polyacrylic acid (PAA)-coated and non-coated ION on human neutrophils was evaluated in vitro, namely their capacity to activate the oxidative burst and to modify their lifespan. The obtained results showed that the studied PAA-coated and non-coated ION triggered neutrophils' oxidative burst in a NADPH oxidase dependent manner, and that PAA-coated ION increased - while non-coated ION prevented - apoptotic signaling and apoptosis. These effects may have important clinical implications in biomedical applications of ION. PMID:24291037

  12. Nebulised amphotericin B-polymethacrylic acid nanoparticle prophylaxis prevents invasive aspergillosis

    PubMed Central

    Shirkhani, Khojasteh; Teo, Ian; Armstrong-James, Darius; Shaunak, Sunil

    2015-01-01

    Aspergillus species are the major life threatening fungal pathogens in transplant patients. Germination of inhaled fungal spores initiates infection, causes severe pneumonia, and has a mortality of > 50%. This is leading to the consideration of pre-exposure prophylaxis to prevent infection. We made a very low MWt amphotericin B-polymethacrylic acid nanoparticle. It was not toxic to lung epithelial cells or monocyte-derived-macrophages in-vitro, or in an in-vivo transplant immuno-suppression mouse model of life threatening invasive aspergillosis. Three days of nebuliser based prophylaxis delivered the nanoparticle effectively to lung and prevented both fungal growth and lung inflammation. Protection from disease was associated with > 99% killing of the Aspergillus and a 90% reduction in lung TNF-α; the primary driver of tissue destructive immuno-pathology. This study provides in-vivo proof-of-principle that very small and cost-effective nanoparticles can be made simply, and delivered safely and effectively to lung by the aerosol route to prevent fungal infections. From the Clinical Editor Aspergillus is an opportunistic pathogen, which affects immunocompromised patients. One novel way to help fight against this infection is pre-exposure prophylaxis. The authors here made PMA based anionic hydrogels carrying amphotericin B, with mucoadhesive behavior. They showed that aerosol route of the drug was very effective in protecting against the disease in an in-vivo model and should provide a stepping-stone towards clinical trials in the future. PMID:25791815

  13. Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation

    SciTech Connect

    Zhu, Jing; Zheng, Xin; Wang, Jie; Wu, Zexing; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wang, Deli

    2015-09-15

    Controlling the size, composition, and structure of bimetallic nanoparticles is of particular interest in the field of electrocatalysts for fuel cells. In the present work, structurally ordered nanoparticles with intermetallic phases of Pt3Zn and PtZn have been successfully synthesized via an impregnation reduction method, followed by post heat-treatment. The Pt3Zn and PtZn ordered intermetallic nanoparticles are well dispersed on a carbon support with ultrasmall mean particle sizes of ~5 nm and ~3 nm in diameter, respectively, which are credited to the evaporation of the zinc element at high temperature. These catalysts are less susceptible to CO poisoning relative to Pt/C and exhibited enhanced catalytic activity and stability toward formic acid electrooxidation. The mass activities of the as-prepared catalysts were approximately 2 to 3 times that of commercial Pt at 0.5 V (vs. RHE). As a result, this facile synthetic strategy is scalable for mass production of catalytic materials.

  14. Shape-dependent electrocatalysis: formic acid electrooxidation on cubic Pd nanoparticles.

    PubMed

    Vidal-Iglesias, Francisco J; Arán-Ais, Rosa M; Solla-Gullón, José; Garnier, Emmanuel; Herrero, Enrique; Aldaz, Antonio; Feliu, Juan M

    2012-08-01

    The electrocatalytic properties of palladium nanocubes towards the electrochemical oxidation of formic acid were studied in H(2)SO(4) and HClO(4) solutions and compared with those of spherical Pd nanoparticles. The spherical and cubic Pd nanoparticles were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The intrinsic electrocatalytic properties of both nanoparticles were shown to be strongly dependent on the amount of metal deposited on the gold substrate. Thus, to properly compare the activity of both systems (spheres and nanocubes), the amount of sample has to be optimized to avoid problems due to a lower diffusion flux of reactants in the internal parts of the catalyst layer resulting in a lower apparent activity. Under the optimized conditions, the activity of the spheres and nanocubes was very similar between 0.1 and 0.35 V. From this potential value, the activity of the Pd nanocubes was remarkably higher. This enhanced electrocatalytic activity was attributed to the prevalence of Pd(100) facets in agreement with previous studies with Pd single crystal electrodes. The effect of HSO(4)(-)/SO(4)(2-) desorption-adsorption was also evaluated. The activity found in HClO(4) was significantly higher than that obtained in H(2)SO(4) in the whole potential range. PMID:22722609

  15. Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation

    DOE PAGESBeta

    Zhu, Jing; Zheng, Xin; Wang, Jie; Wu, Zexing; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wang, Deli

    2015-09-15

    Controlling the size, composition, and structure of bimetallic nanoparticles is of particular interest in the field of electrocatalysts for fuel cells. In the present work, structurally ordered nanoparticles with intermetallic phases of Pt3Zn and PtZn have been successfully synthesized via an impregnation reduction method, followed by post heat-treatment. The Pt3Zn and PtZn ordered intermetallic nanoparticles are well dispersed on a carbon support with ultrasmall mean particle sizes of ~5 nm and ~3 nm in diameter, respectively, which are credited to the evaporation of the zinc element at high temperature. These catalysts are less susceptible to CO poisoning relative to Pt/Cmore » and exhibited enhanced catalytic activity and stability toward formic acid electrooxidation. The mass activities of the as-prepared catalysts were approximately 2 to 3 times that of commercial Pt at 0.5 V (vs. RHE). As a result, this facile synthetic strategy is scalable for mass production of catalytic materials.« less

  16. New Perspective in the Formulation and Characterization of Didodecyldimethylammonium Bromide (DMAB) Stabilized Poly(Lactic-co-Glycolic Acid) (PLGA) Nanoparticles.

    PubMed

    Gossmann, Rebecca; Langer, Klaus; Mulac, Dennis

    2015-01-01

    Over the last few decades the establishment of nanoparticles as suitable drug carriers with the transport of drugs across biological barriers such as the gastrointestinal barrier moved into the focus of many research groups. Besides drug transport such carrier systems are well suited for the protection of drugs against enzymatic and chemical degradation. The preparation of biocompatible and biodegradable nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) is intensively described in literature, while especially nanoparticles with cationic properties show a promising increased cellular uptake. This is due to the electrostatic interaction between the cationic surface and the negatively charged lipid membrane of the cells. Even though several studies achieved the successful preparation of nanoparticles stabilized with the cationic surfactants such as didodecyldimethylammonium bromide (DMAB), in most cases insufficient attention was paid to a precise analytical characterization of the nanoparticle system. The aim of the present work was to overcome this deficit by presenting a new perspective in the formulation and characterization of DMAB-stabilized PLGA nanoparticles. Therefore these nanoparticles were carefully examined with regard to particle diameter, zeta potential, the effect of variation in stabilizer concentration, residual DMAB content, and electrolyte stability. Without any steric stabilization, the DMAB-modified nanoparticles were sensitive to typical electrolyte concentrations of biological environments due to compression of the electrical double layer in conjunction with a decrease in zeta potential. To handle this problem, the present study proposed two modifications to enable electrolyte stability. Both polyvinyl alcohol (PVA) and polyethylene glycol (PEG) modified DMAB-PLGA-nanoparticles were stable during electrolyte addition. Furthermore, in contrast to unmodified DMAB-PLGA-nanoparticles and free DMAB, such modifications led to a lower

  17. New Perspective in the Formulation and Characterization of Didodecyldimethylammonium Bromide (DMAB) Stabilized Poly(Lactic-co-Glycolic Acid) (PLGA) Nanoparticles

    PubMed Central

    Gossmann, Rebecca; Langer, Klaus; Mulac, Dennis

    2015-01-01

    Over the last few decades the establishment of nanoparticles as suitable drug carriers with the transport of drugs across biological barriers such as the gastrointestinal barrier moved into the focus of many research groups. Besides drug transport such carrier systems are well suited for the protection of drugs against enzymatic and chemical degradation. The preparation of biocompatible and biodegradable nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) is intensively described in literature, while especially nanoparticles with cationic properties show a promising increased cellular uptake. This is due to the electrostatic interaction between the cationic surface and the negatively charged lipid membrane of the cells. Even though several studies achieved the successful preparation of nanoparticles stabilized with the cationic surfactants such as didodecyldimethylammonium bromide (DMAB), in most cases insufficient attention was paid to a precise analytical characterization of the nanoparticle system. The aim of the present work was to overcome this deficit by presenting a new perspective in the formulation and characterization of DMAB-stabilized PLGA nanoparticles. Therefore these nanoparticles were carefully examined with regard to particle diameter, zeta potential, the effect of variation in stabilizer concentration, residual DMAB content, and electrolyte stability. Without any steric stabilization, the DMAB-modified nanoparticles were sensitive to typical electrolyte concentrations of biological environments due to compression of the electrical double layer in conjunction with a decrease in zeta potential. To handle this problem, the present study proposed two modifications to enable electrolyte stability. Both polyvinyl alcohol (PVA) and polyethylene glycol (PEG) modified DMAB-PLGA-nanoparticles were stable during electrolyte addition. Furthermore, in contrast to unmodified DMAB-PLGA-nanoparticles and free DMAB, such modifications led to a lower

  18. A Comparison between Ultraviolet Disinfection and Copper Alginate Beads within a Vortex Bioreactor for the Deactivation of Bacteria in Simulated Waste Streams with High Levels of Colour, Humic Acid and Suspended Solids

    PubMed Central

    Thomas, Simon F.; Rooks, Paul; Rudin, Fabian; Atkinson, Sov; Goddard, Paul; Bransgrove, Rachel M.; Mason, Paul T.; Allen, Michael J.

    2014-01-01

    We show in this study that the combination of a swirl flow reactor and an antimicrobial agent (in this case copper alginate beads) is a promising technique for the remediation of contaminated water in waste streams recalcitrant to UV-C treatment. This is demonstrated by comparing the viability of both common and UV-C resistant organisms in operating conditions where UV-C proves ineffective - notably high levels of solids and compounds which deflect UV-C. The swirl flow reactor is easy to construct from commonly available plumbing parts and may prove a versatile and powerful tool in waste water treatment in developing countries. PMID:25541706

  19. pH-responsive biocompatible fluorescent polymer nanoparticles based on phenylboronic acid for intracellular imaging and drug delivery

    NASA Astrophysics Data System (ADS)

    Li, Shengliang; Hu, Kelei; Cao, Weipeng; Sun, Yun; Sheng, Wang; Li, Feng; Wu, Yan; Liang, Xing-Jie

    2014-10-01

    To address current medical challenges, there is an urgent need to develop drug delivery systems with multiple functions, such as simultaneous stimuli-responsive drug release and real-time imaging. Biocompatible polymers have great potential for constructing smart multifunctional drug-delivery systems through grafting with other functional ligands. More importantly, novel biocompatible polymers with intrinsic fluorescence emission can work as theranostic nanomedicines for real-time imaging and drug delivery. Herein, we developed a highly fluorescent nanoparticle based on a phenylboronic acid-modified poly(lactic acid)-poly(ethyleneimine)(PLA-PEI) copolymer loaded with doxorubicin (Dox) for intracellular imaging and pH-responsive drug delivery. The nanoparticles exhibited superior fluorescence properties, such as fluorescence stability, no blinking and excitation-dependent fluorescence behavior. The Dox-loaded fluorescent nanoparticles showed pH-responsive drug release and were more effective in suppressing the proliferation of MCF-7 cells. In addition, the biocompatible fluorescent nanoparticles could be used as a tool for intracellular imaging and drug delivery, and the process of endosomal escape was traced by real-time imaging. These pH-responsive and biocompatible fluorescent polymer nanoparticles, based on phenylboronic acid, are promising tools for intracellular imaging and drug delivery.To address current medical challenges, there is an urgent need to develop drug delivery systems with multiple functions, such as simultaneous stimuli-responsive drug release and real-time imaging. Biocompatible polymers have great potential for constructing smart multifunctional drug-delivery systems through grafting with other functional ligands. More importantly, novel biocompatible polymers with intrinsic fluorescence emission can work as theranostic nanomedicines for real-time imaging and drug delivery. Herein, we developed a highly fluorescent nanoparticle based on a

  20. Freeze-thaw induced gelation of alginates.

    PubMed

    Zhao, Ying; Shen, Wei; Chen, Zhigang; Wu, Tao

    2016-09-01

    Adding divalent ions or lowering pH below the pKa values of alginate monomers are common ways in preparing alginate gels. Herein a new way of preparing alginate gels using freeze-thaw technique is described. Solvent crystallization during freezing drove the polymers to associate into certain structures that became the junction zones of hydrogels after thawing. It enabled the preparation of alginate gels at pH 4.0 and 3.5, two pH at which the gel could not be formed previously. At pH 3.0 where alginate gel could be formed initially, applying freeze-thaw treatment increased the gel storage modulus almost 100 times. The formation of hydrogels and the resulting gel properties, such as dynamic moduli and gel syneresis were influenced by the pH values, number of freeze-thaw cycles, alginate concentrations, and ionic strengths. The obtained hydrogels were soft and demonstrated a melting behavior upon storage, which may find novel applications in the biomedical industry. PMID:27185114

  1. Lactococcus lactis release from calcium alginate beads.

    PubMed Central

    Champagne, C P; Gaudy, C; Poncelet, D; Neufeld, R J

    1992-01-01

    Cell release during milk fermentation by Lactococcus lactis immobilized in calcium alginate beads was examined. Numbers of free cells in the milk gradually increased from 1 x 10(6) to 3 x 10(7) CFU/ml upon successive reutilization of the beads. Rinsing the beads between fermentations did not influence the numbers of free cells in the milk. Cell release was not affected by initial cell density within the beads or by alginate concentration, although higher acidification rates were achieved with increased cell loading. Coating alginate beads with poly-L-lysine (PLL) did not significantly reduce the release of cells during five consecutive fermentations. A double coating of PLL and alginate reduced cell release by a factor of approximately 50. However, acidification of milk with beads having the PLL-alginate coating was slower than that with uncoated beads. Immersing the beads in ethanol to kill cells on the periphery reduced cell release, but acidification activity was maintained. Dipping the beads in aluminum nitrate or a hot CaCl2 solution was not as effective as dipping them in ethanol. Ethanol treatment or heating of the beads appears to be a promising method for maintaining acidification activity while minimizing viable cell release due to loosely entrapped cells near the surface of the alginate beads. PMID:1622208

  2. Characterization of the alginate biosynthetic gene cluster in Pseudomonas syringae pv. syringae.

    PubMed Central

    Peñaloza-Vázquez, A; Kidambi, S P; Chakrabarty, A M; Bender, C L

    1997-01-01

    Alginate, a copolymer of D-mannuronic acid and L-guluronic acid, is produced by a variety of pseudomonads, including Pseudomonas syringae. Alginate biosynthesis has been most extensively studied in P. aeruginosa, and a number of structural and regulatory genes from this species have been cloned and characterized. In the present study, an alginate-defective (Alg-) mutant of P. syringae pv. syringae FF5 was shown to contain a Tn5 insertion in algL, a gene encoding alginate lyase. A cosmid clone designated pSK2 restored alginate production to the algL mutant and was shown to contain homologs of algD, alg8, alg44, algG, algX (alg60), algL, algF, and algA. The order and arrangement of the structural gene cluster were virtually identical to those previously described for P. aeruginosa. Complementation analyses, however, indicated that the structural gene clusters in P. aeruginosa and P. syringae were not functionally interchangeable when expressed from their native promoters. A region upstream of the algD gene in P. syringae pv. syringae was shown to activate the transcription of a promoterless glucuronidase (uidA) gene and indicated that transcription initiated upstream of algD as described for P. aeruginosa. Transcription of the algD promoter from P. syringae FF5 was significantly higher at 32 degrees C than at 18 or 26 degrees C and was stimulated when copper sulfate or sodium chloride was added to the medium. Alginate gene expression was also stimulated by the addition of the nonionic solute sorbitol, indicating that osmolarity is a signal for algD expression in P. syringae FF5. PMID:9226254

  3. Adsorption of a cationic surfactant by a magsorbent based on magnetic alginate beads.

    PubMed

    Obeid, Layaly; El Kolli, Nadia; Dali, Noëlle; Talbot, Delphine; Abramson, Sébastien; Welschbillig, Mathias; Cabuil, Valérie; Bée, Agnès

    2014-10-15

    Adsorption of cetylpyridinium chloride (CPC), a cationic surfactant, by magnetic alginate beads (MagAlgbeads) was investigated. The magnetic adsorbent (called magsorbent) was prepared by encapsulation of magnetic functionalized nanoparticles in an alginate gel. The influence on CPC adsorption of several parameters such as contact time, pH and initial surfactant concentration was studied. The equilibrium isotherm shows that adsorption occurs through both electrostatic interactions with charge neutralization of the carboxylate groups of the beads and hydrophobic interactions inducing the formation of surfactant aggregates in the beads. The dosage of calcium ions released in the solution turns out to be a useful tool for understanding the adsorption mechanisms. Adsorption is accompanied by a shrinking of the beads that corresponds to a 45% reduction of the volume. Adsorption kinetic experiments show that equilibrium time is strongly dependent on the surfactant concentration, which monitors the nature of the interactions. On the other hand, since the pH affects the ionization state of adsorption sites, adsorption depends on the pH solution, maximum adsorption being obtained in a large pH range (3.2-12) in agreement with the pKa value of alginate (pKa=3.4-4.2). Finally, due to the formation of micelle-like surfactants aggregates in the magnetic alginate beads, they could be used as a new efficient magsorbent for hydrophobic pollutants. PMID:25086393

  4. Electrophoretic deposition of ZnO/alginate and ZnO-bioactive glass/alginate composite coatings for antimicrobial applications.

    PubMed

    Cordero-Arias, L; Cabanas-Polo, S; Goudouri, O M; Misra, S K; Gilabert, J; Valsami-Jones, E; Sanchez, E; Virtanen, S; Boccaccini, A R

    2015-10-01

    Two organic/inorganic composite coatings based on alginate, as organic matrix, and zinc oxide nanoparticles (n-ZnO) with and without bioactive glass (BG), as inorganic components, intended for biomedical applications, were developed by electrophoretic deposition (EPD). Different n-ZnO (1-10 g/L) and BG (1-1.5 g/L) contents were studied for a fixed alginate concentration (2 g/L). The presence of n-ZnO was confirmed to impart antibacterial properties to the coatings against gram-negative bacteria Escherichia coli, while the BG induced the formation of hydroxyapatite on coating surfaces thereby imparting bioactivity, making the coating suitable for bone replacement applications. Coating composition was analyzed by thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) analyses. Scanning electron microscopy (SEM) was employed to study both the surface and the cross section morphology of the coatings. Polarization curves of the coated substrates made in cell culture media at 37 °C confirmed the corrosion protection function of the novel organic/inorganic composite coatings. PMID:26117748

  5. Effects of pH and fulvic acids concentration on the stability of fulvic acids--cerium (IV) oxide nanoparticle complexes.

    PubMed

    Oriekhova, Olena; Stoll, Serge

    2016-02-01

    The behavior of cerium (IV) oxide nanoparticles has been first investigated at different pH conditions. The point of zero charge was determined as well as the stability domains using dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. A baseline hydrodynamic diameter of 180 nm was obtained indicating that individual CeO2 nanoparticles are forming small aggregates. Then we analyzed the particle behavior at variable concentrations of fulvic acids for three different pH-electrostatic scenarios corresponding to positive, neutral and negative CeO2 surface charges. The presence of fulvic acids was found to play a key role on the CeO2 stability via the formation of electrostatic complexes. It was shown that a small amount of fulvic acids (2 mg L(-1)), representative of environmental fresh water concentrations, is sufficient to stabilize CeO2 nanoparticles (50 mg L(-1)). When electrostatic complexes are formed between negatively charged FAs and positively charged CeO2 NPs the stability of such complexes is obtained with time (up to 7 weeks) as well as in pH changing conditions. Based on zeta potential variations we also found that the fulvic acids are changing the CeO2 acid-base surface properties. Obtained results presented here constitute an important outcome in the domain of risk assessment, transformation and removal of engineered nanomaterials released into the environment. PMID:26347935

  6. Preparation and evaluation of lysozyme-loaded nanoparticles coated with poly-γ-glutamic acid and chitosan.

    PubMed

    Liu, Yong; Sun, Yan; Xu, Yaoxing; Feng, Hai; Fu, Sida; Tang, Jiangwu; Liu, Wei; Sun, Dongchang; Jiang, Hua; Xu, Shaochun

    2013-08-01

    To improve the application of lysozymes, methods for coating lysozymes with poly-γ-glutamic acid and chitosan were studied. Several lysozyme-loaded chitosan/poly-γ-glutamic acid composite nanosystems for loading and controlling the release of lysozymes were established. The lysozyme loading content and efficiency of the different systems were examined. The antibacterial activity of the composite nanoparticles was also investigated. Results showed that when the lysozymes were coated with poly-γ-glutamic acid and further rewrapped with chitosan, smooth spherical composite nanoparticles were obtained; the loading efficiency and loading content reached 76% and 40%, respectively. The lysozyme release in vitro was slow and presented a two-stage programmed release. Antibacterial testing in vitro indicated that lysozyme-loaded nanoparticles coated with poly-γ-glutamic acid/chitosan had outstanding antibacterial activity. An obvious assembly of bacterial cells and composite nanoparticles was observed during co-incubation. Therefore, the poly-γ-glutamic acid/chitosan composite coating broadened the antibacterial spectrum of the composite lysozyme nanoreagent, and presented satisfactory antibacterial effect. The lysozyme-loaded chitosan/poly-γ-glutamic acid nanocoating system established in this research could provide reference for coating and controlled releasing of alkaline proteins. PMID:23628585

  7. Immobilization of uricase enzyme on self-assembled gold nanoparticles for application in uric acid biosensor.

    PubMed

    Ahuja, T; Tanwar, V K; Mishra, S K; Kumar, D; Biradar, A M; Rajesh

    2011-06-01

    An enzyme immobilization matrix is described by preparing a self-assembly of gold nanoparticles (GNPs) over a self-assembled monolayer (SAM) of 3-aminopropyltriethoxysilane (APTES) on an indium-tin-oxide (ITO) coated glass plate. The surface of the GNPs was modified with a mixed (1:9) SAM of 11-mercaptoundecanoic acid (MUA) and 3-mercapto-propionic acid (MPA). The enzyme, uricase was covalently immobilized to the carboxyl groups of the mixed SAM of MUA/MPA through carbodiimide coupling reaction. The whole assembly was constructed on 1 cm2 area of ITO-glass plate and was tested as an amperometric biosensor for the detection of uric acid in aqueous solution. The biosensor assembly was characterized by atomic force microscopy (AFM) and electrochemical techniques. The AFM of the enzyme biosensor assembly reveals an asymmetrical sharp regular island-like structure with an average roughness parameter value of 2.81 nm. Chronoamperometric response was measured as a function of uric acid concentration in aqueous solution (pH 7.4), which exhibits a linear response over a concentration range of 0.07 to 0.63 mM with a sensitivity of 19.27 microAmM(-1) and a response of 25 s with excellent reproducibility. These results are not influenced by the presence of interfering reagents such as ascorbic acid, urea and glucose. GNPs-biomolecule assemblies constructed using this method may facilitate development of new hybrid biosensing materials. PMID:21770094

  8. Toxicity of tannic acid-modified silver nanoparticles in keratinocytes: potential for immunomodulatory applications.

    PubMed

    Orlowski, Piotr; Soliwoda, Katarzyna; Tomaszewska, Emilia; Bien, Karolina; Fruba, Aleksandra; Gniadek, Marianna; Labedz, Olga; Nowak, Zuzanna; Celichowski, Grzegorz; Grobelny, Jarosław; Krzyzowska, Malgorzata

    2016-09-01

    Hydrolyzable tannins are known to exhibit anti-inflammatory activity, which can be used in combination with silver nanoparticles (AgNPs) for dermal uses. In this study, we investigated the effects of tannic acid-modified 13, 33, 46nm and unmodified 10-65nm AgNPs using the human-derived keratinocyte HaCaT and VK2-E6/E7 cell lines in the form of stationary and spheroids cultures. After exposition to tannic acid-modified AgNPs, VK2-E6/E7 cells showed higher toxicity, increased production of reactive oxygen species (ROS) and activity of JNK stress kinase, while HaCaT cell line demonstrated less ROS production and activation of ERK kinase. AgNPs internalization was detected both in the superficial and internal layers of spheroids prepared from both cell lines. Tannic acid modified AgNPs sized above 30nm did not induce DNA breaks in comet assay performed in both cell lines. Tannic acid-modified but not unmodified AgNPs down-regulated TNF-α and LPS-triggered production of IL-8 in VK2-E6/E7 but not in HaCaT cells. In summary, tannic acid-modified AgNPs sized above 30nm show good toxicological profile both in vitro and possess immunomodulatory properties useful for potential dermal applications in humans. PMID:27216470

  9. Tannic acid functionalized graphene hydrogel for entrapping gold nanoparticles with high catalytic performance toward dye reduction.

    PubMed

    Luo, Jing; Zhang, Nan; Lai, Jianping; Liu, Ren; Liu, Xiaoya

    2015-12-30

    In this work, a simple, cost-effective, and environmental-friendly strategy was developed to synthesize gold nanoparticles (Au NPs) decorated graphene hydrogel with the use of tannic acid. This facile route involved the reduction of graphene oxide (GO) in the presence of tannic acid to form tannic acid functionalized graphene hydrogel, followed by loading and in situ reduction of AuCl4(-) ions in the graphene hydrogel network benefiting from the abundant phenol groups of tannic acid. Tannic acid (TA), a typical plant polyphenol widely present in woods, not only reduced GO and induced the self-assembly of reduced graphene oxide into graphene hydrogel, but also served as the reducing agent and stabilizer for the synthesis and immobilization of Au NPs, avoiding extra chemical reagent and any stabilizer. The obtained Au NPs decorated graphene hydrogel (Au@TA-GH) was fully characterized and exhibited much higher catalytic activities than the unsupported and other polymer-supported Au NPs toward the reduction of methylene blue (MB). In addition, the high catalytic activity of Au@TA-GH could withhold in different pH solution conditions. Another distinct advantage of Au@TA-GH as catalysts is that it can be easily recovered and reused for five cycles. PMID:26275351

  10. Fabrication of a glucose biosensor based on citric acid assisted cobalt ferrite magnetic nanoparticles.

    PubMed

    Krishna, Rahul; Titus, Elby; Chandra, Sudeshna; Bardhan, Neel Kanth; Krishna, Rohit; Bahadur, Dhirendra; Gracio, José

    2012-08-01

    A novel and practical glucose biosensor was fabricated with immobilization of Glucose oxidase (GOx) enzyme on the surface of citric acid (CA) assisted cobalt ferrite (CF) magnetic nanoparticles (MNPs). This innovative sensor was constructed with glassy carbon electrode which is represented as (GOx)/CA-CF/(GCE). An explicit high negative zeta potential value (-22.4 mV at pH 7.0) was observed on the surface of CA-CF MNPs. Our sensor works on the principle of detection of H2O2 which is produced by the enzymatic oxidation of glucose to gluconic acid. This sensor has tremendous potential for application in glucose biosensing due to the higher sensitivity 2.5 microA/cm2-mM and substantial increment of the anodic peak current from 0.2 microA to 10.5 microA. PMID:22962799

  11. Biogenic gold nanoparticles as fotillas to fire berberine hydrochloride using folic acid as molecular road map.

    PubMed

    Pandey, Sunil; Mewada, Ashmi; Thakur, Mukeshchand; Shah, Ritu; Oza, Goldie; Sharon, Madhuri

    2013-10-01

    Use of biologically modified gold nanoparticles (GNPs) as molecular vehicle to ferry potential anti-cancer drug berberine hydrochloride (BHC) using folic acid (FA) as targeting molecule is reported in this work. A tropical fruit peel, Trapa bispinosa is used to fabricate highly monodispersed GNPs, passivated with essential functional groups which were used as linkers to attach FA and BHC via amide linkage. Flocculation Parameter (FP) of biologically synthesized GNPs was calculated under different salt concentrations which were found to be very ideal under a physiological condition. Various statistical models were used to find drug release profile out of which Higuchi was found to be the most ideal. GNP-FA-BHC complexes were found to be active against folic acid expressing HeLa cells. PMID:23910269

  12. Ag@poly(m-phenylenediamine) core-shell nanoparticles for highly selective, multiplex nucleic acid detection.

    PubMed

    Zhang, Yingwei; Wang, Lei; Tian, Jingqi; Li, Hailong; Luo, Yonglan; Sun, Xuping

    2011-03-15

    In this letter, we report on the one-step synthesis of Ag@poly(m-phenylenediamine) core-shell nanoparticles (APCSNPs), carried out by direct mixing of aqueous silver nitrate and m-phenylenediamine solutions at room temperature. We further demonstrate the use of APCSNP as a novel fluorescent sensing platform for nucleic acid detection. In this regard, the detection of DNA is accomplished in two steps. First, APCSNP absorbs and quenches the fluorescence of dye-labeled single-stranded DNA (ssDNA) as a probe. Second, hybridizing of the probe with its target produces a double-stranded DNA (dsDNA) that detaches from APCSNP, resulting in the recovery of dye fluorescence. It suggests that this sensing system has a high selectivity down to single-base mismatch, and the results exhibit good reproducibility. Furthermore, we also demonstrate its application for the multiplex detection of nucleic acid sequences. PMID:21302954

  13. Spectroscopic studies of nucleic acid additions during seed-mediated growth of gold nanoparticles

    PubMed Central

    Tapp, Maeling; Sullivan, Rick; Dennis, Patrick; Naik, Rajesh R.

    2015-01-01

    The effect of adding nucleic acids to gold seeds during the growth stage of either nanospheres or nanorods was investigated using UV-Vis spectroscopy to reveal any oligonucleotide base or structure-specific effects on nanoparticle growth kinetics or plasmonic signatures. Spectral data indicate that the presence of DNA duplexes during seed ageing drastically accelerated nanosphere growth while the addition of single-stranded polyadenine at any point during seed ageing induces nanosphere aggregation. For seeds added to a gold nanorod growth solution, single-stranded polythymine induces a modest blue-shift in the longitudinal peak wavelength. Moreover, a particular sequence comprised of 50% thymine bases was found to induce a faster, more dramatic blue-shift in the longitudinal peak wavelength compared to any of the homopolymer incubation cases. Monomeric forms of the nucleic acids, however, do not yield discernable spectral differences in any of the gold suspensions studied. PMID:25960601

  14. Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films.

    PubMed

    Shankar, Shiv; Rhim, Jong-Whan

    2015-10-01

    Silver nanoparticles (AgNPs) were synthesized using amino acids (tyrosine and tryptophan) as reducing and capping agents, and they were incorporated into the agar to prepare antimicrobial composite films. The AgNPs solutions exhibited characteristic absorption peak at 420 nm that showed a red shift to ∼434 nm after forming composite with agar. XRD data demonstrated the crystalline structure of AgNPs with dominant (111) facet. Apparent surface color and transmittance of agar films were greatly influenced by the AgNPs. The incorporation of AgNPs into agar did not exhibit any change in chemical structure, thermal stability, moisture content, and water vapor permeability. The water contact angle, tensile strength, and modulus decreased slightly, but elongation at break increased after AgNPs incorporation. The agar/AgNPs nanocomposite films possessed strong antibacterial activity against Listeria monocytogenes and Escherichia coli. The agar/AgNPs film could be applied to the active food packaging by controlling the food-borne pathogens. PMID:26076636

  15. Dispersion and stability of bare hematite nanoparticles: effect of dispersion tools, nanoparticle concentration, humic acid and ionic strength

    PubMed Central

    Dickson, Dionne; Liu, Guangliang; Li, Chenzhong; Tachiev, Georgio; Cai, Yong

    2012-01-01

    The aggregation and sedimentation of iron oxide nanoparticles (IONPs) can significantly affect the mobility and reactivity of IONPs and subsequently influence the interaction between IONPs and environmental contaminants. Dispersing bare IONPs into a stable suspension within nanoscale range is an important step for studying the interaction of IONPs with contaminants (e.g., toxic metals). In this study, different techniques to disperse bare IONPs (vortex, bath sonication and probe ultrasonication) and the effects of important environmental factors such as dissolved organic matter and ionic strength on the stability of IONPs dispersions were investigated. Vortex minimally dispersed IONPs with hydrodynamic diameter outside the “nanosize range” (698–2400nm). Similar to vortex, bath sonication could not disperse IONPs efficiently. Probe ultrasonication was more effective at dispersing IONPs (50% or more) with hydrodynamic diameters ranging from 120–140 nm with minimal changes in size and sedimentation of IONPs for a prolonged period of time. Over the course of 168 hours, considerable amounts of IONPs remained dispersed in the presence and absence of low ionic strength (0.1 mM of NaCl) and 100 mg/L of humic acid (HA). These results indicate that IONPs can be broken down efficiently into “nanosize range” by probe ultrasonication and a degree of stability can be achieved without the use of synthetic modifiers to enhance colloidal stability. This dispersion tool could be used to develop a laboratory method to study the adsorption mechanism between dispersed bare IONPs and toxic contaminants. PMID:22289174

  16. Improved In Vitro Antileukemic Activity of All-Trans Retinoic Acid Loaded in Cholesteryl Butyrate Solid Lipid Nanoparticles.

    PubMed

    Silva, Elton Luiz; Lima, Flávia Alves; Carneiro, Guilherme; Ramos Jonas Periera; Gomes, Dawidson Assis; de Souza-Fagundes, Elaine Maria; Ferreira, Lucas Antônio Miranda

    2016-02-01

    All-trans retinoic acid, a hydrophobic drug, has become one of the most successful examples of differentiation agents used for treatment of acute promyelocytic leukemia. On the other hand, histone deacetylase inhibitors, such as cholesteryl butyrate, present differentiating activity and.can potentiate action of drugs such as all-trans retinoic acid. Solid lipid nanoparticles represent a promising alternative for administration of hydrophobic drugs such as ATRA. This study aimed to develop, characterize, and evaluate the cytotoxicity of all-trans retinoic acid-loaded solid lipid nanoparticles for leukemia treatment. The influence of in situ formation of an ion pairing between all-trans retinoic acid and lipophilic amines on the characteristics of the particles (size, zeta potential, encapsulation efficiency) was evaluated. Cholesteryl butyrate, a butyric acid donor, was used as a component of the lipid matrix. In vitro activity on cell viability and distribution of cell cycle phases were evaluated for HL-60, Jurkat, and THP-1 cell lines. The encapsulation efficiency of all-trans retinoic acid in cholesteryl butyrate-solid lipid nanoparticles was significantly increased by the presence of the amine. Inhibition of cell viability by all-trans retinoic acid-loaded solid lipid nanoparticles was more pronounced than the free drug. Analysis of the distribution of cell cycle phases also showed increased activity for all-trans retinoic acid-loaded cholesteryl butyrate-solid lipid nanoparticles, with a clear increase in subdiploid DNA content. The ion pair formation in SLN containing cholesteryl butyrate can be explored as a simple and inexpensive strategy to improve the efficacy and bioavail-ability of ATRA in the treatment of the cancer and metabolic diseases in which this retinoid plays an important role. PMID:27433579

  17. Preparation and evaluation of SiO2-deposited stearic acid-g-chitosan nanoparticles for doxorubicin delivery

    PubMed Central

    Yuan, Hong; Bao, Xin; Du, Yong-Zhong; You, Jian; Hu, Fu-Qiang

    2012-01-01

    Purpose: Both polymer micelles and mesoporous silica nanoparticles have been widely researched as vectors for small molecular insoluble drugs. To combine the advantages of copolymers and silica, studies on the preparation of copolymer-silica composites and cellular evaluation were carried out. Methods: First, a stearic acid-g-chitosan (CS-SA) copolymer was synthesized through a coupling reaction, and then silicone oxide (SiO2)-deposited doxorubicin (DOX)-loaded stearic acid-g-chitosan (CS-SA/SiO2/DOX) nanoparticles were prepared through the sol-gel reaction. Physical and chemical properties such as particle size, zeta potential, and morphologies were examined, and small-angle X-ray scattering (SAXS) analysis was employed to identify the mesoporous structures of the generated nanoparticles. Cellular uptake and cytotoxicity studies were also conducted. Results: CS-SA/SiO2/DOX nanoparticles with different amounts of SiO2 deposited were obtained, and SAXS studies showed that mesoporous structures existed in the CS-SA/SiO2/DOX nanoparticles. The mesoporous size of middle-ratio and high-ratio deposited CS-SA/SiO2/DOX nanoparticles were 4–5 nm and 8–10 nm, respectively. Based on transmission electron microscopy images of CS-SA/SiO2/DOX nanoparticles, dark rings around the nanoparticles could be observed in contrast with CS-SA/DOX micelles. Furthermore, CS-SA/SiO2/DOX nanoparticles exhibited faster release behavior in vitro than CS-SA/DOX micelles; cellular uptake research in A549 indicated that the CS-SA/SiO2/DOX nanoparticles were taken up by A549 cells more rapidly, and that CS-SA/SiO2/DOX nanoparticles entered the cell more easily when the amount of SiO2 was higher. IC50 values of CS-SA/DOX micelles, CS-SA/SiO2/DOX-4, CS-SA/SiO2/DOX-8, and CS-SA/SiO2/DOX-16 nanoparticles against A549 cells measured using the MTT assay were 1.69, 0.93, 0.32, and 0.12 μg/mL, respectively. Conclusion: SiO2-deposited stearic acid-g-chitosan organic–inorganic composites show promise

  18. Copper nanoparticles supported on doped graphenes as catalyst for the dehydrogenative coupling of silanes and alcohols.

    PubMed

    Blandez, Juan F; Primo, Ana; Asiri, Abdullah M; Álvaro, Mercedes; García, Hermenegildo

    2014-11-10

    Copper nanoparticles (NPs) supported on a series of undoped and doped graphene materials (Gs) have been obtained by pyrolysis of alginate or chitosan biopolymers, modified or not with boric acid, containing Cu(2+) ions at 900 °C under inert atmosphere. The resulting Cu-G materials containing about 17 wt % Cu NPs (from 10 to 200 nm) exhibit high catalytic activity for the dehydrogenative coupling of silanes with alcohols. The optimal material consisting on Cu-(B)G is more efficient than Cu NPs on other carbon supports. PMID:25196304

  19. Effect of oleic acid modified polymeric bilayered nanoparticles on percutaneous delivery of spantide II and ketoprofen

    PubMed Central

    Shah, Punit; Desai, Pinaki; Singh, Mandip

    2011-01-01

    The objective of present study was to evaluate the effect of oleic acid modified polymeric bilayered nanoparticles (NPS) on combined delivery of two anti-inflammatory drugs, spantide II (SP) and ketoprofen (KP) on the skin permeation. NPS were prepared using poly(lactic-co-glycolic acid) (PLGA) and chitosan. SP and KP were encapsulated in different layers alone or/and in combination (KP-NPS, SP-NPS and SP+KP-NPS). The surface of NPS was modified with oleic acid (OA) (`Nanoease' technology) using an established procedure in the laboratory (KP-NPS-OA, SP-NPS-OA and SP+KP-NPS-OA). Fluorescent dyes (DiO and DID) containing surface modified (DiO-NPS-OA and DID-NPS-OA) and unmodified NPS (DiO-NPS and DID-NPS) were visualized in lateral rat skin sections using confocal microscopy and Raman confocal spectroscopy after skin permeation. In vitro skin permeation was performed in dermatomed human skin and HPLC was used to analyze the drug levels in different skin layers. Further, allergic contact dermatitis (ACD) model was used to evaluate the response of KP-NPS, SP-NPS, SP+KP-NPS, KP-NPS-OA, SP-NPS-OA and SP+KP-NPS-OA treatment in C57BL/6 mice. The fluorescence from OA modified NPS was observed upto depth of 240 μm and was significantly higher as compared to non-modified NPS. The amount of SP and KP retained in skin layers from OA modified NPS increased by several folds compare to unmodified NPS and control solution. In addition, the combination index value calculated from ACD response for solution suggested additive effect and moderate synergism for NPS-OA. Our results strongly suggest that surface modification of bilayered nanoparticles with oleic acid improved drug delivery to the deeper skin layers. PMID:22134117

  20. Counterion-Mediated Assembly of Spherical Nucleic Acid-Au Nanoparticle Conjugates (SNA-AuNPs)

    NASA Astrophysics Data System (ADS)

    Kewalramani, Sumit; Moreau, Liane; Guerrero-García, Guillermo; Mirkin, Chad; Olvera de La Cruz, Monica; Bedzyk, Michael; Afosr Muri Team

    2015-03-01

    Controlled crystallization of colloids from solution has been a goal of material scientists for decades. Recently, nucleic acid functionalized spherical Au nanoparticles (SNA-AuNPs) have been programmed to assemble in a wide variety of crystal structures. In this approach, the assembly is driven by Watson-Crick hybridization between DNAs coating the AuNPs. Here, we show that counterions can induce ordered assembly of SNA-AuNPs in bulk solutions, even in the absence of base pairing interactions. The electrostatics-driven assembly of spherical nucleic acid-Au nanoparticle conjugates (SNA-AuNPs) is probed as a function of counterion concentration and counterion valency [ +1 (Na+) or +2 (Ca2+) ] by in situ solution X-ray scattering. Assemblies of AuNPs capped with single-stranded (ss-) or double-stranded (ds-) DNA are examined. SAXS reveals disordered (gas-like) --> face-centered-cubic (FCC) --> glass-like phase transitions with increasing solution ionic strength. These studies demonstrate how non-base-pairing interactions can be tuned to create crystalline assemblies of SNA-AuNPs. The dependence of the inter-SNA-AuNP interactions on counterion valency and stiffness of the DNA corona will be discussed.

  1. Improved Performance of Lipase Immobilized on Tannic Acid-Templated Mesoporous Silica Nanoparticles.

    PubMed

    Jiang, Yanjun; Sun, Wenya; Zhou, Liya; Ma, Li; He, Ying; Gao, Jing

    2016-08-01

    Mesoporous silica nanoparticles were synthesized by using tannic acid as a pore-forming agent, which is an environmentally friendly, cheap, and non-surfactant template. SEM and TEM images indicated that the tannic acid-templated mesoporous silica nanoparticles (TA-MSNs) are monodisperse spherical-like particles with an average diameter of 195 ± 16 nm. The Brunauer-Emmett-Teller (BET) results showed that the TA-MSNs had a relatively high surface area (447 m(2)/g) and large pore volume (0.91 cm(3)/g), and the mean pore size was ca. 10.1 nm. Burkholderia cepacia lipase was immobilized on the TA-MSNs by physical adsorption for the first time, and the properties of immobilized lipase (BCL@TA-MSNs) were investigated. The BCL@TA-MSNs exhibited satisfactory thermal stability; strong tolerance to organic solvents such as methanol, ethanol, isooctane, n-hexane, and tetrahydrofuran; and high operational reusability when BCL@TA-MSNs were applied in esterification and transesterification reactions. After recycling 15 times in the transesterification reaction for biodiesel production, over 85 % of biodiesel yield can be maintained. With these desired characteristics, the TA-MSNs may provide excellent candidates for enzyme immobilization. PMID:27011329

  2. Precipitation-Redispersion of Cerium Oxide Nanoparticles with Poly(acrylic acid): Toward Stable Dispersions

    SciTech Connect

    Sehgal,A.; Lalatonne, Y.; Berret, J.; Morvan, M.

    2005-01-01

    We exploit a precipitation-redispersion mechanism for complexation of short chain polyelectrolytes with cerium oxide nanoparticles to extend their stability ranges. As synthesized, cerium oxide sols at pH 1.4 consist of monodisperse cationic nanocrystalline particles having a hydrodynamic diameter of 10 nm and a molecular weight of 400 000 g mol{sup -1}. We show that short chain uncharged poly(acrylic acid) at low pH when added to a cerium oxide sols leads to macroscopic precipitation. As the pH is increased, the solution spontaneously redisperses into a clear solution of single particles with an anionic poly(acrylic acid) corona. The structure and dynamics of cerium oxide nanosols and their hybrid polymer-inorganic complexes in solution are investigated by static and dynamic light scattering, X-ray scattering, and chemical analysis. Quantitative analysis of the redispersed sol gives rise to an estimate of 40-50 polymer chains per particle for stable suspension. This amount represents 20% of the mass of the polymer-nanoparticle complexes. This complexation adds utility to the otherwise unstable cerium oxide dispersions by extending the range of stability of the sols in terms of pH, ionic strength, and concentration.

  3. Hyaluronic Acid Modified Tantalum Oxide Nanoparticles Conjugating Doxorubicin for Targeted Cancer Theranostics.

    PubMed

    Jin, Yushen; Ma, Xibo; Feng, Shanshan; Liang, Xiao; Dai, Zhifei; Tian, Jie; Yue, Xiuli

    2015-12-16

    Theranostic tantalum oxide nanoparticles (TaOxNPs) of about 40 nm were successfully developed by conjugating functional molecules including polyethylene glycol (PEG), near-infrared (NIR) fluorescent dye, doxorubicin (DOX), and hyaluronic acid (HA) onto the surface of the nanoparticles (TaOx@Cy7-DOX-PEG-HA NPs) for actively targeting delivery, pH-responsive drug release, and NIR fluorescence/X-ray CT bimodal imaging. The obtained nanoagent exhibits good biocompatibility, high cumulative release rate in the acidic microenvironments, long blood circulation time, and superior tumor-targeting ability. Both in vitro and in vivo experiments show that it can serve as an excellent contrast agent to simultaneously enhance fluorescence imaging and CT imaging greatly. Most importantly, such a nanoagent could enhance the therapeutic efficacy of the tumor greatly and the tumor growth inhibition was evaluated to be 87.5%. In a word, multifunctional TaOx@Cy7-DOX-PEG-HA NPs can serve as a theranostic nanomedicine for fluorescence/X-ray CT bimodal imaging, remote-controlled therapeutics, enabling personalized detection, and treatment of cancer with high efficacy. PMID:26554699

  4. Dendrimer-triglycine-EGF nanoparticles for tumor imaging and targeted nucleic acid and drug delivery

    PubMed Central

    Yuan, Quan; Lee, Eunmee; Yeudall, W. Andrew; Yang, Hu

    2010-01-01

    We designed an epidermal growth factor (EGF)-containing polyamidoamine (PAMAM) Generation 4 dendrimer vector labeled with quantum dots for targeted imaging and nucleic acid delivery. 1H-NMR, SDS-PAGE, and western blotting were applied to characterize the synthesized G4.0-GGG-EGF nanoparticles. Targeting efficiency, cell viability, proliferation, and intracellular signal transduction were evaluated using HN12, NIH3T3, and NIH3T3/EGFR cells. We found that EGF-conjugated dendrimers did not stimulate growth of EGFR-expressing cells at the selected concentration. Consistent with this, minimal stimulation of post-receptor signaling pathways was observed. These nanoparticles can localize within cells that express the EGFR in a receptor-dependent manner, whereas uptake into cells lacking the receptor was low. A well characterized vimentin shRNA (shVIM) and siRNA YFP were used to test the delivery and transfection efficiency of the constructed targeted vector. Significant knockdown of expression was observed, indicating that this vector is useful for introduction of nucleic acids or drugs into cells by a receptor-targeted mechanism. PMID:20729136

  5. Self-assembled nanoparticles based on chondroitin sulfate-deoxycholic acid conjugates for docetaxel delivery: Effect of degree of substitution of deoxycholic acid.

    PubMed

    Liu, Mengrui; Du, Hongliang; Zhai, Guangxi

    2016-10-01

    Hydrophobically-modified polymers based on chondroitin sulfate with different degree of substitution (DS) of deoxycholic acid (DOCA) were developed for docetaxel delivery. Chondroitin sulfate-deoxycholic acid (CSAD) bioconjugates were synthesized via the linker of adipic dihydrazide by amide bond. They were characterized with spherical shape, mean diameter of around 165.2nm and negative zeta potential (-14.87 to -20.53mV). An increase of DOCA DS reduced size of nanoparticles, while increasing drug loading efficiency. Drug release in vitro showed a triphasic sustained pattern and higher accumulative drug release percentage was observed with increased DS of DOCA on polymer. Self-assemblies with higher DS also had enhanced internalization of nanoparticles and stronger cytotoxicity at the cellular level. The self-assemble nanoparticles demonstrate to be excellent targeting drug delivery systems and the desired therapeutics can be achieved via the alteration of DS. PMID:27343846

  6. Synthesis of cholic-acid-carrying polymer and in-vitro evaluation of hepatoma-targeting nanoparticles decorated with the polymer.

    PubMed

    Zhang, Jiantao; Yu, Changjun; Jiang, Guoqiang

    2016-06-01

    The specific interaction between bile acids and the bile acids transporters provides a promising way for hepatoma-targeted drug delivery. We synthesized an amphipathic polymer containing cholic acid (CA), the main bile acids in body, and prepared CA-functionalized nanoparticles to target hepatoma cells. Poly-[3-(4-vinylbenzonate)-7, 12-dihydroxy-5-cholan-24-oic acid] (PVBCA) was synthesized by introducing methyl cholate onto polyvinyl benzoate polymer backbone, and was characterized by (1)H-NMR, FT-IR, and GFC. PVBCA can be incorporated onto PLGA nanoparticles surface via the emulsion-solvent evaporation procedure, resulting in the nanoparticles carrying CA moieties on their surface. The binding of CA moieties to the bile acids' transporters on the cell membrane enhances the cellular uptake of the nanoparticles significantly. The SMMC-7721 cell uptake of PVBCA-decorated nanoparticles increases with amount of incorporated PVBCA and is 2- to 2.8-fold higher than that of the normal PLGA nanoparticles. By exclusion of specific endocytosis pathways using chemical inhibitors, we found that the uptake mechanism of PVBCA-decorated nanoparticles was mainly attributed to clathrin-and-caveolae-independent endocytosis, which was distinct from that of PLGA nanoparticles. The present study provides a simple and versatile method for hepatoma-targeted delivery of nanoparticles. PMID:27045998

  7. Delivery of vanillin by poly(lactic-acid) nanoparticles: Development, characterization and in vitro evaluation of antioxidant activity.

    PubMed

    Dalmolin, Luciana Facco; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2016-05-01

    Poly(lactic acid) (PLA) nanoparticles containing vanillin were prepared using an emulsion-solvent evaporation technique and were characterized and assessed for their in vitro antioxidant potential. Physicochemical properties of the nanoparticles were characterized by size, polydispersity index, zeta potential, encapsulation efficiency and stability. Solid state and thermal properties were assessed using X-ray diffraction and differential scanning calorimetry, while in vitro drug release profile was also evaluated. Results showed PLA nanoparticles having a characteristic amorphous structure, sizes in the range of 240 nm with high homogeneity in size distribution, zeta potential of -22 mV and vanillin encapsulation efficiency of 41%. In vitro release study showed a slow and sustained release of vanillin governed by diffusion. Nanoparticles were stable over a period of three months. Antioxidant ability of the vanillin-loaded PLA nanoparticles in scavenging the radical 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was inferior to free vanillin and due to its prolonged release showed a profile that was both time and concentration dependent, while free vanillin showed concentration-dependent activity. The study concluded that PLA nanoparticles are potential carriers for vanillin delivery. PMID:26952391

  8. Aggregation and disaggregation of ZnO nanoparticles: influence of pH and adsorption of Suwannee River humic acid.

    PubMed

    Mohd Omar, Fatehah; Abdul Aziz, Hamidi; Stoll, Serge

    2014-01-15

    The surface charge and average size of manufactured ZnO nanoparticles (NPs) were studied as a function of pH to understand the aggregation behavior and importance of the electrostatic interactions in solution. The interactions between ZnO and Suwannee River humic acid (SRHA) were then investigated under a range of environmentally relevant conditions with the ZnO nanoparticles pHPZC as the point of reference. The anionic charges carried by aquatic humic substances were found to play a major role in the aggregation and disaggregation of ZnO nanoparticles. At low concentrations of SRHA (<0.05 mg/L) and below the pHPZC, anionic SRHA was rapidly adsorbed onto the positively charged ZnO NPs hence promoting aggregation. With similar SHRA concentrations, at pHPZC, SRHA was able to control the suspension behavior of the ZnO and promote partial disaggregation in small volumes. This was more distinguishable when the pH was greater than pHPZC as SRHA formed a surface coating on the ZnO nanoparticles and enhanced stability via electrostatic and steric interactions. In most cases, the NP coating by SRHA induced disaggregation behavior in the ZnO nanoparticles and decreased the aggregate size in parallel to increasing SRHA concentrations. Results also suggest that environmental aquatic concentration ranges of humic acids largely modify the stability of aggregated or dispersed ZnO nanoparticles. PMID:24029691

  9. Maximizing the utilization of Laminaria japonica as biomass via improvement of alginate lyase activity in a two-phase fermentation system.

    PubMed

    Oh, Yuri; Xu, Xu; Kim, Ji Young; Park, Jong Moon

    2015-08-01

    Brown seaweed contains up to 67% of carbohydrates by dry weight and presents high potential as a polysaccharide feedstock for biofuel production. To effectively use brown seaweed as a biomass, degradation of alginate is the major challenge due to its complicated structure and low solubility in water. This study focuses on the isolation of alginate degrading bacteria, determining of the optimum fermentation conditions, as well as comparing the conventional single fermentation system with the two-phase fermentation system which is separately using alginate and mannitol extracted from Laminaria japonica. Maximum yield of organic acids production and volatile solids reduction obtained were 0.516 g/g and 79.7%, respectively, using the two-phase fermentation system in which alginate fermentation was carried out at pH 7 and mannitol fermentation at pH 8. The two-phase fermentation system increased the yield of organic acids production by 1.14 times and led to a 1.45-times reduction of VS when compared to the conventional single fermentation system at pH 8. The results show that the two-phase fermentation system improved the utilization of alginate by separating alginate from mannitol leading to enhanced alginate lyase activity. PMID:26098412

  10. Improved production of reducing sugars from rice straw using crude cellulase activated with Fe₃O₄/alginate nanocomposite.

    PubMed

    Srivastava, Neha; Singh, Jay; Ramteke, Pramod W; Mishra, P K; Srivastava, Manish

    2015-05-01

    Effect of Fe3O4 nanoparticles (NPs) and Fe3O4/Alginate nanocomposites (NCs) have been investigated on production and thermostability of crude cellulase enzyme system obtained by newly isolated thermotolerant Aspergillus fumigatus AA001. Fe3O4 NPs and Fe3O4/Alginate NCs have been synthesized by co-precipitation method and characterized through various techniques. In presence of Fe3O4 NPs and Fe3O4/Alginate NCs, filter paper activity of crude cellulase was increased about 35% and 40%, respectively in 72 h as compared to control. Fe3O4/Alginate NCs treated crude enzyme was thermally stable up to 8h at 70°C and retained 56% of its relative activity whereas; control samples could retain only 19%. Further, the hydrolysis of 1.0% alkali treated rice straw using Fe3O4/Alginate NCs treated cellulase gave much higher sugar productivity than control at optimal condition. These findings may be utilized in the area of biofuels and biowaste management. PMID:25740000

  11. Amplified electrochemical detection of nucleic acid hybridization via selective preconcentration of unmodified gold nanoparticles.

    PubMed

    Li, Yuan; Tian, Rui; Zheng, Xingwang; Huang, Rongfu

    2016-08-31

    The common drawback of optical methods for rapid detection of nucleic acid by exploiting the differential affinity of single-/double-stranded nucleic acids for unmodified gold nanoparticles (AuNPs) is its relatively low sensitivity. In this article, on the basis of selective preconcentration of AuNPs unprotected by single-stranded DNA (ssDNA) binding, a novel electrochemical strategy for nucleic acid sequence identification assay has been developed. Through detecting the redox signal mediated by AuNPs on 1, 6-hexanedithiol blocked gold electrode, the proposed method is able to ensure substantial signal amplification and a low background current. This strategy is demonstrated for quantitative analysis of the target microRNA (let-7a) in human breast adenocarcinoma cells, and a detection limit of 16 fM is readily achieved with desirable specificity and sensitivity. These results indicate that the selective preconcentration of AuNPs for electrochemical signal readout can offer a promising platform for the detection of specific nucleic acid sequence. PMID:27506344

  12. Solid lipid nanoparticles as nucleic acid delivery system: properties and molecular mechanisms.

    PubMed

    de Jesus, Marcelo B; Zuhorn, Inge S

    2015-03-10

    Solid lipid nanoparticles (SLNs) have been proposed in the 1990s as appropriate drug delivery systems, and ever since they have been applied in a wide variety of cosmetic and pharmaceutical applications. In addition, SLNs are considered suitable alternatives as carriers in gene delivery. Although important advances have been made in this particular field, fundamental knowledge of the underlying mechanisms of SLN-mediated gene delivery is conspicuously lacking, an imperative requirement in efforts aimed at further improving their efficiency. Here, we address recent advances in the use of SLNs as platform for delivery of nucleic acids as therapeutic agents. In addition, we will discuss available technology for conveniently producing SLNs. In particular, we will focus on underlying molecular mechanisms by which SLNs and nucleic acids assemble into complexes and how the nucleic acid cargo may be released intracellularly. In discussing underlying mechanisms, we will, when appropriate, refer to analogous studies carried out with systems based on cationic lipids and polymers, that have proven useful in the assessment of structure-function relationships. Finally, we will give suggestions for improving SLN-based gene delivery systems, by pointing to alternative methods for SLNplex assembly, focusing on the realization of a sustained nucleic acid release. PMID:25578828

  13. High-Throughput Screening of Saturated Fatty Acid Influence on Nanostructure of Lyotropic Liquid Crystalline Lipid Nanoparticles.

    PubMed

    Tran, Nhiem; Hawley, Adrian M; Zhai, Jiali; Muir, Benjamin W; Fong, Celesta; Drummond, Calum J; Mulet, Xavier

    2016-05-10

    Self-assembled lyotropic liquid crystalline lipid nanoparticles have been developed for a wide range of biomedical applications with an emerging focus for use as delivery vehicles for drugs, genes, and in vivo imaging agents. In this study, we report the generation of lipid nanoparticle libraries with information regarding mesophase and lattice parameter, which can aid the selection of formulation for a particular end-use application. In this study we elucidate the phase composition parameters that influence the internal structure of lipid nanoparticles produced from monoolein, monopalmitolein and phytantriol incorporating a variety of saturated fatty acids (FA) with different chain lengths at varying concentrations and temperatures. The material libraries were established using high throughput formulation and screening techniques, including synchrotron small-angle X-ray scattering. The results demonstrate the rich polymorphism of lipid nanoparticles with nonlamellar mesophases in the presence of saturated FAs. The inclusion of saturated FAs within the lipid nanoparticles promotes a gradual phase transition at all temperatures studied toward structures with higher negative surface curvatures (e.g., from inverse bicontinuous cubic phase to hexagonal phase and then emulsified microemulsion). The three partial phase diagrams produced are discussed in terms of the influence of FA chain length and concentration on nanoparticle internal mesophase structure and lattice parameters. The study also highlights a compositionally dependent coexistence of multiple mesophases, which may indicate the presence of multicompartment nanoparticles containing cubic/cubic and cubic/hexagonal mesophases. PMID:27023315

  14. Hypocrellin B and paclitaxel-encapsulated hyaluronic acid-ceramide nanoparticles for targeted photodynamic therapy in lung cancer.

    PubMed

    Chang, Ji-Eun; Cho, Hyun-Jong; Yi, Eunjue; Kim, Dae-Duk; Jheon, Sanghoon

    2016-05-01

    To increase the therapeutic efficacy of photodynamic therapy (PDT) in treating lung cancer, we developed both photosensitizer and anticancer drug encapsulated hyaluronic acid-ceramide nanoparticles. Based on our previous study, a co-delivery system of photosensitizers and anticancer agents greatly improves the therapeutic effect of PDT. Furthermore, hyaluronic acid-ceramide-based nanoparticles are ideal targeting carriers for lung cancer. In vitro phototoxicity in A549 (human lung adenocarcinoma) cells and in vivo antitumor efficacy in A549 tumor-bearing mice treated with hypocrellin B (HB)-loaded nanoparticles (HB-NPs) or hypocrellin B and paclitaxel loaded nanoparticles (HB-P-NPs) were evaluated. Cell viability assay, microscopic analysis and FACS analysis were performed for the in vitro studies and HB-P-NPs showed enhanced phototoxicity compared with HB-NPs. In the animal study, the tumor volume change and the histological analysis was studied and the anticancer efficacy improved in the order of free HBacid-ceramide nanoparticle-based targeted delivery improved the effects of PDT in lung cancer in mice. PMID:26967521

  15. Elucidation on enhanced application of synthesised kojic acid immobilised magnetic and chitosan tri-polyphosphate nanoparticles as antibacterial agents.

    PubMed

    Chaudhary, Jignesh; Lakhawat, Sudarshan; Pathak, Amrendra Nath

    2015-12-01

    Kojic acid (KA) is a secondary metabolite which is secreted by several aspergillus species. It is a multi-functional skeleton from which many derivatives can be synthesised and applied in various areas of biotechnology. KA grafting on synthesised magnetic nanoparticles (MNPs) and chitosan tri-polyphosphate (chitosan-TPP) nanoparticles was successfully done and characterised by Fourier transformation infrared spectroscopy. It was observed that amino propyl triethoxy silane-coated MNPs and chitosan-TPP nanoparticles enhanced the antibacterial activity of KA against both Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa). The organic constitution and significant antibacterial activity of KA-chitosan-TPP nanoparticles can be applicable in the field of medical biotechnology. PMID:26647814

  16. Experimental and theoretical photoluminescence studies in nucleic acid assembled gold-upconverting nanoparticle clusters

    NASA Astrophysics Data System (ADS)

    He, Liangcan; Mao, Chenchen; Cho, Suehyun; Ma, Ke; Xi, Weixian; Bowman, Christopher N.; Park, Wounjhang; Cha, Jennifer N.

    2015-10-01

    Combinations of rare earth doped upconverting nanoparticles (UCNPs) and gold nanostructures are sought as nanoscale theranostics due to their ability to convert near infrared (NIR) photons into visible light and heat, respectively. However, because the large NIR absorption cross-section of the gold coupled with their thermo-optical properties can significantly hamper the photoluminescence of UCNPs, methods to optimize the ratio of gold nanostructures to UCNPs must be developed and studied. We demonstrate here nucleic acid assembly methods to conjugate spherical gold nanoparticles (AuNPs) and gold nanostars (AuNSs) to silica-coated UCNPs and probe the effect on photoluminescence. These studies showed that while UCNP fluorescence enhancement was observed from the AuNPs conjugated UCNPs, AuNSs tended to quench fluorescence. However, conjugating lower ratios of AuNSs to UCNPs led to reduced quenching. Simulation studies both confirmed the experimental results and demonstrated that the orientation and distance of the UCNP with respect to the core and arms of the gold nanostructures played a significant role in PL. In addition, the AuNS-UCNP assemblies were able to cause rapid gains in temperature of the surrounding medium enabling their potential use as a photoimaging-photodynamic-photothermal agent.Combinations of rare earth doped upconverting nanoparticles (UCNPs) and gold nanostructures are sought as nanoscale theranostics due to their ability to convert near infrared (NIR) photons into visible light and heat, respectively. However, because the large NIR absorption cross-section of the gold coupled with their thermo-optical properties can significantly hamper the photoluminescence of UCNPs, methods to optimize the ratio of gold nanostructures to UCNPs must be developed and studied. We demonstrate here nucleic acid assembly methods to conjugate spherical gold nanoparticles (AuNPs) and gold nanostars (AuNSs) to silica-coated UCNPs and probe the effect on

  17. Nanoparticle Formation from Hybrid, Multiblock Copolymers of Poly(Acrylic Acid) and VPGVG Peptide

    PubMed Central

    Grieshaber, Sarah E.; Paik, Bradford A.; Bai, Shi; Kiick, Kristi L.; Jia, Xinqiao

    2012-01-01

    Elastin-mimetic hybrid copolymers with an alternating molecular architecture were synthesized via the step growth polymerization of azide-functionalized, telechelic poly(tert-butyl acrylate) (PtBA) and an alkyne-terminated, valine and glycine-rich peptide with a sequence of (VPGVG)2 (VG2). The resultant hybrid copolymer, [PtBA-VG2]n, contains up to six constituent building blocks and has a polydispersity index (PDI) of ~1.9. Trifluoroacetic acid (TFA) treatment of [PtBA-VG2]n gave rise to an alternating copolymer of poly(acrylic acid) (PAA) and VG2 ([PAA-VG2]n). The modular design permits facile adjustment of the copolymer composition by varying the molecular weight of PAA (22 and 63 repeat units). Characterization by dynamic light scattering indicated that the multiblock copolymers formed discrete nanoparticles at room temperature in aqueous solution at pH 3.8, with an average diameter of 250-270 nm and a particle size distribution of 0.34 for multiblock copolymers containing PAA22 and 0.17 for those containing PAA63. Upon increasing the pH to 7.4, both types of particles were able to swell without being disintegrated, reaching an average diameter of 285-300 nm for [PAA22-VG2]n and 330-350 nm for [PAA63-VG2]n, respectively. The nanoparticles were not dissociated upon the addition of urea, further confirming their unusual stability. The nanoparticles were capable of sequestering a hydrophobic fluorescent dye (pyrene), and the critical aggregation concentration (CAC) was determined to be 1.09 × 10-2 or 1.05 × 10-2 mg/mL for [PAA22-VG2]n and [PAA63-VG2]n, respectively. We suggest that the multiblock copolymers form through collective H-bonding and hydrophobic interactions between the PAA and VG2 peptide units, and that the unusual stability of the multiblock nanoparticles is conferred by the multiblock architecture. These hybrid multiblock copolymers are potentially useful as pH-responsive drug delivery vehicles, with the possibility of drug loading through

  18. Preparations and characterization of alginate/silver composite films: Effect of types of silver particles.

    PubMed

    Shankar, Shiv; Wang, Long-Feng; Rhim, Jong-Whan

    2016-08-01

    Alginate-based films reinforced with different types of silver particles such as metallic silver (AgM), silver zeolite (AgZ), citrate reduced silver nanoparticles (AgNP(C)), laser ablated silver nanoparticles (AgNP(LA)), and silver nitrate (AgNO3) were prepared using a solvent casting method and the effect of silver particles on the optical, mechanical, water vapor barrier, and antimicrobial properties the composite films was evaluated. Size and shape of the silver particles were varied depending on the types of silver source and the preparation method. The alginate films incorporated with AgNP(C), AgNP(LA), and AgNO3 showed a characteristic surface plasmon resonance absorption peaks of AgNPs around 420nm. Film properties such as mechanical, optical, and water vapor barrier properties were greatly influenced by the types of AgNPs used. Alginate/AgNPs composite films except AgM and AgNP(LA) incorporated ones exhibited strong antimicrobial activity against two food-borne pathogenic bacteria, Escherichia coli and Listeria monocytogenes. The developed films have a high potential for the application as antimicrobial food packaging films. PMID:27112867

  19. pH-Responsive Polyethylene Glycol Monomethyl Ether-ε-Polylysine-G-Poly (Lactic Acid)-Based Nanoparticles as Protein Delivery Systems

    PubMed Central

    Liu, Huiqin; Li, Yijia; Yang, Rui; Gao, Xiujun; Ying, Guoguang

    2016-01-01

    The application of poly(lactic acid) for sustained protein delivery is restricted by the harsh pH inside carriers. In this study, we synthesized a pH-responsive comb-shaped block copolymer, polyethylene glycol monomethyl ether-ε-polylysine-g-poly (lactic acid) (PEP)to deliver protein (bovine serum albumin (BSA)). The PEP nanoparticles could automatically adjust the internal pH to a milder level, as shown by the quantitative ratio metric results. The circular dichroism spectra showed that proteins from the PEP nanoparticles were more stable than those from poly(lactic acid) nanoparticles. PEP nanoparticles could achieve sustained BSA release in both in vitro and in vivo experiments. Cytotoxicity results in HL-7702 cells suggested good cell compatibility of PEP carriers. Acute toxicity results showed that the PEP nanoparticles induced no toxic response in Kunming mice. Thus, PEP nanoparticles hold potential as efficient carriers for sustained protein release. PMID:27467072

  20. Intracellular Uptake and Trafficking of Difluoroboron Dibenzoylmethane-Poly(lactic acid) Nanoparticles in HeLa Cells

    PubMed Central

    Contreras, Janette; Xie, Jiansong; Chen, Yin Jie; Pei, Hua; Zhang, Guoqing; Fraser, Cassandra L.; Hamm-Alvarez, Sarah F.

    2010-01-01

    In this study, nanoparticles based on difluoroboron dibenzoylmethane-poly(lactic acid) (BF2dbmPLA) are prepared. Polylactic acid or polylactide is a commonly used degradable polymer, while the boron dye possesses a large extinction coefficient, high emission quantum yield, 2-photon absorption, and sensitivity to the surrounding environment. BF2dbmPLA exhibits molecular weight-dependent emission properties, and can be formulated as stable nanoparticles, suggesting that its unique optical properties may be useful in multiple contexts for probing intracellular environments. Here we show that BF2dbmPLA nanoparticles are internalized into cultured HeLa cells by endocytosis, and that within the cellular milieu they retain their fluorescence properties. BF2dbmPLA nanoparticles are photostable, resisting laser-induced photobleaching under conditions that destroy the fluorescence of a common photostable probe, LysoTracker™ blue. Their endocytosis is also lipid raft-dependent, as evidenced by their significant co-localization with cholera toxin B subunit in membrane compartments after uptake, and their sensitivity of uptake to methyl-β-cyclodextrin. Additionally, BF2dbmPLA nanoparticle endocytosis utilizes microtubules and actin filaments. Internalized BF2dbmPLA nanoparticles do not accumulate in acidic late endosomes and lysosomes, but within a perinuclear non-lysosomal compartment. These findings demonstrate the feasibility of using novel BF2dbmPLA nanoparticles exhibiting diverse emission properties for in situ, live cell imaging, and suggest that their endogenous uptake occurs through a lipid-raft dependent endocytosis mechanism. PMID:20420413

  1. 21 CFR 172.858 - Propylene glycol alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Propylene glycol alginate. 172.858 Section 172.858... Propylene glycol alginate. The food additive propylene glycol alginate (CAS Reg. No. 9005-37-2) may be used... the act: (1) The name of the additive, “propylene glycol alginate” or “propylene glycol ester...

  2. The effect of acid-base clustering and ions on the growth of atmospheric nano-particles

    NASA Astrophysics Data System (ADS)

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J.; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K.; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P.; Ruuskanen, Taina; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N.; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E.; Wagner, Paul E.; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M.; Virtanen, Annele; Donahue, Neil M.; Carslaw, Kenneth S.; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R.; Kulmala, Markku

    2016-05-01

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere.

  3. Effect of jet stretch and particle load on cellulose nanocrystal-alginate nanocomposite fibers.

    PubMed

    Ureña-Benavides, Esteban E; Brown, Philip J; Kitchens, Christopher L

    2010-09-01

    Alginate fibers have found many applications such as the preparation of dressings to treat exuding wounds, drug delivery, enzyme immobilization, etc.; however, their use is limited due to poor mechanical properties. Cellulose nanocrystals (CNCs) were isolated from cotton and introduced into calcium alginate fibers with the goal of improving their strength and modulus. The isolated CNCs are elongated nanoparticles of crystalline cellulose with an average length of 130 nm with a standard deviation (s) of 63 nm, an average width of 20.4 nm (s = 7.8 nm), and an average height of 6.8 nm (s = 3.3 nm). The CNCs were mixed with an aqueous sodium alginate dope solution and wet spun into a CaCl(2) bath to form fibers. It was found that if the apparent jet stretch (ratio of the fiber draw velocity to extrusion velocity) is kept constant, addition of the nanocrystals reduces the tensile strength and modulus of the material; however, a small concentration of CNCs in the dope solution increases the tensile energy to break and enables an increase in the fiber spinning apparent jet stretch ratio by nearly 2-fold at up to 25% CNCs load; the maximum ratio of 4.6 is observed at 25 wt % CNC loading as compared to a maximum of 2.4 for the native alginate. Mechanical testing showed a 38% increase in tenacity and a 123% increase in tensile modulus with 10 wt % CNCs loading and an apparent jet stretch of 4.2. The data suggest that alignment of the nanocrystals in the composites is a key factor influencing the mechanical properties. CNCs have potential to become a biocompatible, renewable, and cost-effective solution to reinforce alginate fibers. PMID:20712357

  4. Encapsulated eucalyptus oil in ionically cross-linked alginate microcapsules and its controlled release.

    PubMed

    Noppakundilograt, Supaporn; Piboon, Phianghathai; Graisuwan, Wilaiporn; Nuisin, Roongkan; Kiatkamjornwong, Suda

    2015-10-20

    Sodium alginate microcapsules containing eucalyptus oil were prepared by oil-in-water emulsification via Shirasu porous glass (SPG) membrane and cross-linked by calcium chloride (CaCl2). SPG membrane pore size of 5.2μm was used to control the size of eucalyptus oil microdroplets. Effects of sodium alginate, having a mannuronic acid/guluronic acid (M/G) ratio of 1.13, eucalyptus oil and CaCl2 amounts on microdroplet sizes and size distribution were elucidated. Increasing sodium alginate amounts from 0.1 to 0.5% (wv(-1)) sodium alginate, the average droplets size increased from 42.2±2.0 to 48.5±0.6μm, with CVs of 16.5±2.2 and 30.2±4.5%, respectively. CaCl2 successfully gave narrower size distribution of cross-linked eucalyptus oil microcapsules. The optimum conditions for preparing the microcapsules, oil loading efficiency, and controlled release of the encapsulated eucalyptus oil from the microcapsules as a function of time at 40°C were investigated. Release model for the oil from microcapsules fitted Ritger-Peppas model with non-Fickian transport mechanism. PMID:26256156

  5. Preparation and Characterization of Alginate and Psyllium Beads Containing Lactobacillus acidophilus

    PubMed Central

    Lotfipour, Farzaneh; Mirzaeei, Shahla; Maghsoodi, Maryam

    2012-01-01

    This paper describes preparation and characterization of beads of alginate and psyllium containing probiotic bacteria of Lactobacillus acidophilus DMSZ20079. Twelve different formulations containing alginate (ALG) and alginate-psyllium (ALG-PSL) were prepared using extrusion technique. The prepared beads were characterized in terms of size, morphology and surface properties, encapsulation efficiency, viabilities in acid (pH 1.8, 2 hours) and bile (0.5% w/v, 2 hours) conditions, and release in simulated colon pH conditions. The results showed that spherical beads with narrow size distribution ranging from 1.59 ± 0.04 to 1.67 ± 0.09 mm for ALG and from 1.61 ± 0.06 to 1.80 ± 0.07 mm for ALG-PSL with encapsulation efficiency higher than 98% were achieved. Furthermore, addition of PSL into ALG enhanced the integrity of prepared beads in comparison with ALG formulations. The results indicated that incorporation of PSL into alginate beads improved viability of the bacteria in acidic conditions as well as bile conditions. Also, stimulating effect of PSL on the probiotic bacteria was observed through 20-hour incubation in simulated colonic pH solution. According to our in vitro studies, PSL can be a suitable polymer candidate for partial substitution with ALG for probiotic coating. PMID:22649306

  6. Alginate based hybrid copolymer hydrogels--influence of pore morphology on cell-material interaction.

    PubMed

    Gnanaprakasam Thankam, Finosh; Muthu, Jayabalan

    2014-11-01

    Alginate based hybrid copolymer hydrogels with unidirectional pore morphology were prepared to achieve synergistic biological performance for cardiac tissue engineering applications. Alginate based hybrid copolymer (ALGP) were prepared using alginate and poly(propylene fumarate) (HT-PPF) units. Different hybrid bimodal hydrogels were prepared by covalent crosslinking using poly(ethylene glycol diacrylate) and vinyl monomer viz acrylic acid, methyl methacrylate, butyl methacrylate and N-N'-methylene-bis-acrylamide and ionic crosslinking with calcium. The morphologically modified hydrogels (MM-hydrogels) with unidirectional elongated pores and high aspect ratio were prepared. MM-hydrogels favour better mechanical properties; it also enhances cell viability and infiltration due to unidirectional pores. However, the crosslinkers influence the fibroblast infiltration of these hydrogels. Synthesis of collagen and fibroblast infiltration was greater for alginate copolymer crosslinked with poly(ethylene glycol diacrylate-acrylic acid (ALGP-PA) even after one month (288%). This hybrid MM-hydrogel promoted cardiomyoblast growth on to their interstices signifying its potent applications in cardiac tissue engineering. PMID:25129740

  7. Galactosylated alginate-curcumin micelles for enhanced delivery of curcumin to hepatocytes.

    PubMed

    P R, Sarika; James, Nirmala Rachel; Kumar P R, Anil; K Raj, Deepa

    2016-05-01

    Galactosylated alginate-curcumin conjugate (LANH2-Alg Ald-Cur) is synthesized for targeted delivery of curcumin to hepatocytes exploiting asialoglycoprotein receptor (ASGPR) on hepatocytes. The synthetic procedure includes oxidation of alginate (Alg), modification of lactobionic acid (LA), grafting of targeting group (modified lactobinic acid, LANH2) and conjugation of curcumin to alginate. Alginate-curcumin conjugate (Alg-Cur) without targeting group is also prepared for the comparison of properties. LANH2-Alg Ald-Cur self assembles to micelle with diameter of 235±5nm and zeta potential of -29mV in water. Cytotoxicity analysis demonstrates enhanced toxicity of LANH2-Alg Ald-Cur over Alg-Cur on HepG2 cells. Cellular uptake studies confirm that LANH2-Alg Ald-Cur can selectively recognize HepG2 cells and shows higher internalization than Alg-Cur conjugate. Results indicate that LANH2-Alg Ald-Cur conjugate micelles are suitable candidates for targeted delivery of curcumin to HepG2 cells. PMID:26774374

  8. Enzymatic Hydrolysis of Alginate to Produce Oligosaccharides by a New Purified Endo-Type Alginate Lyase

    PubMed Central

    Zhu, Benwei; Chen, Meijuan; Yin, Heng; Du, Yuguang; Ning, Limin

    2016-01-01

    Enzymatic hydrolysis of sodium alginate to produce alginate oligosaccharides has drawn increasing attention due to its advantages of containing a wild reaction condition, excellent gel properties and specific products easy for purification. However, the efficient commercial enzyme tools are rarely available. A new alginate lyase with high activity (24,038 U/mg) has been purified from a newly isolated marine strain, Cellulophaga sp. NJ-1. The enzyme was most active at 50 °C and pH 8.0 and maintained stability at a broad pH range (6.0–10.0) and temperature below 40 °C. It had broad substrate specificity toward sodium alginate, heteropolymeric MG blocks (polyMG), homopolymeric M blocks (polyM) and homopolymeric G blocks (polyG), and possessed higher affinity toward polyG (15.63 mM) as well as polyMG (23.90 mM) than polyM (53.61 mM) and sodium alginate (27.21 mM). The TLC and MS spectroscopy analysis of degradation products suggested that it completely hydrolyzed sodium alginate into oligosaccharides of low degrees of polymerization (DPs). The excellent properties would make it a promising tool for full use of sodium alginate to produce oligosaccharides. PMID:27275826

  9. Enzymatic Hydrolysis of Alginate to Produce Oligosaccharides by a New Purified Endo-Type Alginate Lyase.

    PubMed

    Zhu, Benwei; Chen, Meijuan; Yin, Heng; Du, Yuguang; Ning, Limin

    2016-01-01

    Enzymatic hydrolysis of sodium alginate to produce alginate oligosaccharides has drawn increasing attention due to its advantages of containing a wild reaction condition, excellent gel properties and specific products easy for purification. However, the efficient commercial enzyme tools are rarely available. A new alginate lyase with high activity (24,038 U/mg) has been purified from a newly isolated marine strain, Cellulophaga sp. NJ-1. The enzyme was most active at 50 °C and pH 8.0 and maintained stability at a broad pH range (6.0-10.0) and temperature below 40 °C. It had broad substrate specificity toward sodium alginate, heteropolymeric MG blocks (polyMG), homopolymeric M blocks (polyM) and homopolymeric G blocks (polyG), and possessed higher affinity toward polyG (15.63 mM) as well as polyMG (23.90 mM) than polyM (53.61 mM) and sodium alginate (27.21 mM). The TLC and MS spectroscopy analysis of degradation products suggested that it completely hydrolyzed sodium alginate into oligosaccharides of low degrees of polymerization (DPs). The excellent properties would make it a promising tool for full use of sodium alginate to produce oligosaccharides. PMID:27275826

  10. Nanoparticles of alkylglyceryl-dextran-graft-poly(lactic acid) for drug delivery to the brain: Preparation and in vitro investigation.

    PubMed

    Toman, Petr; Lien, Chun-Fu; Ahmad, Zeeshan; Dietrich, Susanne; Smith, James R; An, Qian; Molnár, Éva; Pilkington, Geoffrey J; Górecki, Darek C; Tsibouklis, John; Barbu, Eugen

    2015-09-01

    Poly(lactic acid), which has an inherent tendency to form colloidal systems of low polydispersity, and alkylglyceryl-modified dextran - a material designed to combine the non-immunogenic and stabilising properties of dextran with the demonstrated permeation enhancing ability of alkylglycerols - have been combined for the development of nanoparticulate, blood-brain barrier-permeating, non-viral vectors. To this end, dextran, that had been functionalised via treatment with epoxide precursors of alkylglycerol, was covalently linked to poly(lactic acid) using a carbodiimide cross-linker to form alkylglyceryl-modified dextran-graft-poly(lactic acid). Solvent displacement and electrospray methods allowed the formulation of these materials into nanoparticles having a unimodal size distribution profile of about 100-200nm and good stability at physiologically relevant pH (7.4). The nanoparticles were characterised in terms of hydrodynamic size (by Dynamic Light Scattering and Nanoparticle Tracking Analysis), morphology (by Scanning Electron Microscopy and Atomic Force Microscopy) and zeta potential, and their toxicity was evaluated using MTT