Sample records for algol

  1. Reverse Algols

    NASA Technical Reports Server (NTRS)

    Leung, K. C.

    1989-01-01

    Reverse Algols, binary systems with a semidetached configuration in which the more massive component is in contact with the critical equipotential surface, are examined. Observational evidence for reverse Algols is presented and the parameters of seven reverse Algols are listed. The evolution of Algols and reverse Algols is discussed. It is suggested that, because reverse Algols represent the premass-reversal semidetached phase of close binary evolution, the evolutionary time scale between regular and reverse Algols is the ratio of the number of confirmed systems of these two Algol types.

  2. The variable He 10830 A line of Algol. [eclipsing binary star

    NASA Technical Reports Server (NTRS)

    Zirin, H.; Liggett, M. A.

    1982-01-01

    Spectra of several eclipses of Algol in the range 10500-11000 A where the line contribution of Algol B is important, are presented. Strong unshifted 10830 (2000 mA) absorption peaks at primary minimum but disappears between phases 0.3 and 0.7. At minimum the line must primarily arise in Algol B, but the presence of 10830 absorption just outside eclipse, when the contribution to the total light of Algol B is small, must be due to excitation of He in the atmosphere of the primary by X-ray irradiation from Algol B, a known X-ray source. A Si I line from Algol B is also detected, and the Pa-gamma line sometimes peaks during eclipse. Even if some of the 10830 absorption comes from Algol A, Algol B still has the strongest 10830 (3000 mA) yet measured in any star.

  3. Low resolution spectroscopy of selected Algol systems

    NASA Astrophysics Data System (ADS)

    Devarapalli, Shanti Priya; Jagirdar, Rukmini; Parthasarathy, M.; Sahu, D. K.; Mohan, Vijay; Bhatt, B. C.; Thomas, Vineet S.

    2018-04-01

    The analysis of spectroscopic data for 30 Algol-type binaries is presented. All these systems are short period Algols having primaries with spectral types B and A. Dominant spectral lines were identified for the spectra collected and their equivalent widths were calculated. All the spectra were examined to understand presence of mass transfer, a disk or circumstellar matter and chromospheric emission. We also present first spectroscopic and period study for few Algols and conclude that high resolution spectra within and outside the primary minimum are needed for better understanding of these Algol type close binaries.

  4. A brief description and comparison of programming languages FORTRAN, ALGOL, COBOL, PL/1, and LISP 1.5 from a critical standpoint

    NASA Technical Reports Server (NTRS)

    Mathur, F. P.

    1972-01-01

    Several common higher level program languages are described. FORTRAN, ALGOL, COBOL, PL/1, and LISP 1.5 are summarized and compared. FORTRAN is the most widely used scientific programming language. ALGOL is a more powerful language for scientific programming. COBOL is used for most commercial programming applications. LISP 1.5 is primarily a list-processing language. PL/1 attempts to combine the desirable features of FORTRAN, ALGOL, and COBOL into a single language.

  5. How Accurately Can We Predict Eclipses for Algol? (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Turner, D.

    2016-06-01

    (Abstract only) beta Persei, or Algol, is a very well known eclipsing binary system consisting of a late B-type dwarf that is regularly eclipsed by a GK subgiant every 2.867 days. Eclipses, which last about 8 hours, are regular enough that predictions for times of minima are published in various places, Sky & Telescope magazine and The Observer's Handbook, for example. But eclipse minimum lasts for less than a half hour, whereas subtle mistakes in the current ephemeris for the star can result in predictions that are off by a few hours or more. The Algol system is fairly complex, with the Algol A and Algol B eclipsing system also orbited by Algol C with an orbital period of nearly 2 years. Added to that are complex long-term O-C variations with a periodicity of almost two centuries that, although suggested by Hoffmeister to be spurious, fit the type of light travel time variations expected for a fourth star also belonging to the system. The AB sub-system also undergoes mass transfer events that add complexities to its O-C behavior. Is it actually possible to predict precise times of eclipse minima for Algol months in advance given such complications, or is it better to encourage ongoing observations of the star so that O-C variations can be tracked in real time?

  6. Did the ancient egyptians discover Algol?

    NASA Astrophysics Data System (ADS)

    Jetsu, L.; Porceddu, S.; Porceddu, S.; Lyytinen, J.; Kajatkari, P.; Markkanen, T.; Toivari-Viitala, J.

    2013-02-01

    Fabritius discovered the first variable star, Mira, in 1596. Holwarda determined the 11 months period of Mira in 1638. Montanari discovered the next variable star, Algol, in 1669. Its period, 2.867 days, was determined by Goodricke (178). Algol was associated with demon-like creatures, "Gorgon" in ancient Greek and "ghoul" in ancient Arab mythology. This indicates that its variability was discovered much before 1669 (Wilk 1996), but this mythological evidence is ambiguous (Davis 1975). For thousands of years, the Ancient Egyptian Scribes (AES) observed stars for timekeeping in a region, where there are nearly 300 clear nights a year. We discovered a significant periodicity of 2.850 days in their calendar for lucky and unlucky days dated to 1224 BC, "the Cairo Calendar". Several astrophysical and astronomical tests supported our conclusion that this was the period of Algol three millennia ago. The "ghoulish habits" of Algol could explain this 0.017 days period increase (Battersby 2012).

  7. Algol: An Early Candidate for a Transiting Exoplanet

    NASA Astrophysics Data System (ADS)

    French, Linda M.; Stuart, I.

    2008-09-01

    Virtually every astronomy text credits John Goodricke (1764-1786) with the discovery of the period of variability of the star Algol (β Per) and with the explanation of its variation (eclipses by an unseen stellar companion). Today, Algol is considered a prototype of an eclipsing binary star. In actuality, John Goodricke worked in collaboration with his neighbor, mentor, and distant relative, Edward Pigott. As observed by Hoskin1, the observing journals2 of the two clearly show that the eclipse explanation originated with Edward. Both originally used the term "planet” to describe the eclipsing body. However, in Goodricke's 1783 paper describing Algol, he writes: "....I should imagine it could hardly be accounted for otherwise than either by the interposition of a large body revolving round Algol, or some kind of motion of its own, whereby part of its body, covered with spots or such like matter...."3 Goodricke was later to soften his stance still further after the two discovered several other variable stars; his last published work4 mentions only starspots as an explanation for the light variation of Algol. Although the physics of the time would not have allowed Goodricke and Pigott to distinguish between a star and a planet as the unseen companion, the eighteenth-century astronomers showed great prescience in realizing that the eclipses of Algol were just that. Their mental leap, at a time when astronomers were just beginning to think seriously of discovering planets around other stars, should not go unremembered by modern planetary scientists. Footnotes 1 Hoskin, M. (1982). In Stellar Astronomy, Science History Publications Ltd., Chalfont St. Giles, England. 2 Goodricke and Pigott journals. York City Archives, York, England. 3 Goodricke, J. G. (1783). Phil. Soc. Roy. Soc. London 73, 474-482. 4 Goodricke, J. G. (1786). Phil. Soc. Roy. Soc. London 76, 48-61.

  8. Coordinated XTE/EUVE Observations of Algol

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1997-01-01

    EUVE, ASCA, and XTE observed the eclipsing binary Algol (Beta Per) from 1-7 Feb. 96. The coordinated observation covered approximately 2 binary orbits of the system, with a net exposure of approximately 160 ksec for EUVE, 40 ksec for ASCA (in 4 pointing), and 90 ksec for XTE (in 45 pointings). We discuss results of modeling the combined EUVE, ASCA, and XTE data using continuous differential emission measure distributions, and provide constraints on the Fe abundance in the Algol system.

  9. Eighteenth-Century Observations of Algol: The First Suggestion of an Exoplanet?

    NASA Astrophysics Data System (ADS)

    French, Linda M.

    2017-10-01

    In November of 1782, 18-year old John Goodricke of York, England, was amazed to observe the star Algol (Beta Persei) dim by more than one magnitude and then return to full brightness over a period of seven hours. Goodricke and his mentor, Edward Pigott, speculated that the dimming could only have been caused by a "dark body" passing in front of Algol. Over the succeeding months, the two were able to refine the period between what we now know to be eclipses to 2.87 days. They would determine the periods of other variable stars, including the first two Cepheid variables known. Yet in their lifetime, their suggestion that Algol's variation was due to an eclipse was not accepted. Most astronomers believed the variations were due to spots on the surface of a single star. Only a century later, with the advent of astronomical spectroscopy, was Algol's true nature revealed. Goodricke and Pigott's work is one of the first studies of stellar variation; their methods and occasional pitfalls are ones to which modern astronomers can relate.

  10. EUVE observations of Algol: Detection of a continuum and implications for the coronal (Fe/H) abundance

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.; Lemen, James R.; Schmitt, Jurgen H. M. M.; Pye, John P.

    1995-01-01

    We report results from the first extreme ultraviolet spectrum of the prototypical eclipsing binary Algol (beta Per), obtained with the spectrometers on the Extreme Ultraviolet Explorer (EUVE). The Algol spectrum in the 80-350 A range is dominated by emission lines of Fe XVI-XXIV, and the He II 304 A line. The Fe emission is characteristic of high-temperature plasma at temperatures up to at least log T approximately 7.3 K. We have successfully modeled the observed quiescent spectrum using a continuous emission measure distribution with the bulk of the emitting material at log T greater than 6.5. We are able to adequately fit both the coronal lines and continuum data with a cosmic abundance plasma, but only if Algol's quiescent corona is dominated by material at log T greater than 7.5, which is physically ruled out by prior X-ray observations of the quiescent Algol spectrum. Since the coronal (Fe/H) abundance is the principal determinant of the line-to-continuum ratio in the EUV, allowing the abundance to be a free parameter results in models with a range of best-fit abundances approximately = 15%-40% of solar photospheric (Fe/H). Since Algol's photospheric (Fe/H) appears to be near-solar, the anomalous EUV line-to-continuum ratio could either be the result of element segregation in the coronal formation process, or other, less likely mechanisms that may enhance the continuum with respect to the lines.

  11. Coordinated ASCA/EUVE/XTE Observations of Algol

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1997-01-01

    EUVE, Advanced Satellite for Cosmology and Astrophysics (ASCA), and X-ray Timing Explorer (XTE) observed the eclipsing binary Algol (Beta Per) from 1-7 Feb 1996. The coordinated observation covered approx. 2 binary orbits of the system, with a net exposure of approx. 160 ksec for EUVE, 40 ksec for ASCA (in 4 pointings), and 90 ksec for XTE (in 45 pointings). We discuss results of modeling the combined EUVE, ASCA, and XTE data using continuous differential emission measure distributions, and provide constraints on the abundance in the Algol system.

  12. Shifting Milestones of Natural Sciences: The Ancient Egyptian Discovery of Algol's Period Confirmed

    NASA Astrophysics Data System (ADS)

    Jetsu, Lauri; Porceddu, Sebastien

    2015-12-01

    The Ancient Egyptians wrote Calendars of Lucky and Unlucky Days that assigned astronomically influenced prognoses for each day of the year. The best preserved of these calendars is the Cairo Calendar (hereafter CC) dated to 1244-1163 B.C. We have presented evidence that the 2.85 days period in the lucky prognoses of CC is equal to that of the eclipsing binary Algol during this historical era. We wanted to find out the vocabulary that represents Algol in the mythological texts of CC. Here we show that Algol was represented as Horus and thus signified both divinity and kingship. The texts describing the actions of Horus are consistent with the course of events witnessed by any naked eye observer of Algol. These descriptions support our claim that CC is the oldest preserved historical document of the discovery of a variable star. The period of the Moon, 29.6 days, has also been discovered in CC. We show that the actions of Seth were connected to this period, which also strongly regulated the times described as lucky for Heaven and for Earth. Now, for the first time, periodicity is discovered in the descriptions of the days in CC. Unlike many previous attempts to uncover the reasoning behind the myths of individual days, we discover the actual rules in the appearance and behaviour of deities during the whole year.

  13. An algol program for dissimilarity analysis: a divisive-omnithetic clustering technique

    USGS Publications Warehouse

    Tipper, J.C.

    1979-01-01

    Clustering techniques are used properly to generate hypotheses about patterns in data. Of the hierarchical techniques, those which are divisive and omnithetic possess many theoretically optimal properties. One such method, dissimilarity analysis, is implemented here in ALGOL 60, and determined to be competitive computationally with most other methods. ?? 1979.

  14. The "Cool Algol" BD+05 706 : Photometric observations of a new eclipsing double-lined spectroscopic binary

    NASA Astrophysics Data System (ADS)

    Marschall, L. A.; Torres, G.; Neuhauser, R.

    1998-05-01

    BVRI Observations of the star BD+05 706, carried out between January, 1997, and April 1998 using the 0.4m reflector and Photometrics CCD camera at the Gettysburg College Observatory, show that the star is an eclipsing binary system with a light curve characteristic of a class of semi-detached binaries known as the "cool Algols". These results are in good agreement with the previous report of BD+05 706 as a cool Algol by Torres, Neuhauser, and Wichmann,(Astron. J., 115, May 1998) who based their classification on the strong X-ray emission detected by Rosat and on a series of spectroscopic observations of the radial velocities of both components of the system obtained at the Oak Ridge Observatory, the Fred L. Whipple Observatory, and the Multiple Mirror Telescope. Only 10 other examples of cool Algols are known, and the current photometric light curve, together with the radial velocity curves obtained previously, allows us to derive a complete solution for the physical parameters of each component, providing important constraints on models for these interesting systems.

  15. A FUSE Survey of Algol-Type Interacting Binary Systems

    NASA Astrophysics Data System (ADS)

    Peters, C.

    We propose a survey of Algol-type interacting binaries with FUSE. The observing list contains 15 systems with deltage40o for which systemic parameters are known. The program stars span the range from early-type contact systems that will eventually become conventional Algols to wide binaries in an advanced evolutionary state with prominent accretion disks. Some physical parameters that can be obtained include the ionization temperature and density in the accretion disk, domain of infall (gas stream), high temperature plasma on the trailing side of the system, and in certain systems the splash zone. We will look for the presence of ionO6 absorption and assess the phase interval over which it is observed. Emission from this ion has already been found in FUSE observations of three Algols (V356Sgr, TTHya, and RYPer) during total eclipse and confirms the presence of a sim300,000K plasma abovebelow the orbital plane. In accordance with the policy on the FUSE Survey and Supplementary Program, the observations will be obtained at random phases, but we request 5 visits of each target in order to secure good phase coverage and maximize the probability of obtaining data at interesting phases, such as the interval containing the mass outflow in the splash region where a tangentially-impacting gas stream is deflected off of the mass gainers photosphere. The physical parameters that are obtained in this project will constrain future 3-D hydrodynamical simulations of mass flow in Algols. This project will build upon the successful one (Z902) carried through in FUSE Cycle3.

  16. An analytical analysis of the dispersion predictions for effluents from the Saturn 5 and Scout-Algol 3 rocket exhausts

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Susko, M.; Kaufman, J. W.; Hill, C. K.

    1973-01-01

    Predictions of the spatial concentration mapping of the potentially toxic constituents of the exhaust effluents from a launch of a Saturn 5 and of a Scout-Algol 3 vehicle utilizing the NASA/MSFC Multilayer Diffusion Program are provided. In the case of the Saturn 5, special attention was given to the concentration fields of carbon monoxide with a correlation of carbon dioxide concentrations. The Scout-Algol 3 provided an example of the centerline concentrations of hydrogen chloride, carbon monoxide, and alumina under typical meteorological conditions. While these results define the specific environmental impact of these two launches under the meteorological conditions existing during launches, they also provide a basis for the empirical monitoring of the constituents of the exhaust effluents of these vehicles.

  17. Hot Accretion Spots and Nitrogen Enhancement in Algol-Type Interacting Binary Systems

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.

    2013-07-01

    The shock from the impact of a gas stream onto the photosphere of a mass gainer in an Algol system is expected to produce a hot spot and also heat circumstellar material that is splashed from the impact site. Furthermore in some cases we expect the stripped-down mass loser (a late-type subgiant) to be nitrogen rich and carbon poor if CNO-processed material is currently being transferred. I will present observational evidence from the Kepler and FUSE spacecrafts for the presence of hot spots and discuss their behavior. FUSE observations of Algols that convincingly show that the gas stream material from some Algol secondaries is N-enhanced and virtually devoid of carbon is also presented. From Kepler data we have identified a long-term phenomenon in which the relative brightness of the quadrature light varies by a few percent and numerically reverses over a time scale of about a 100-400 days. We call the systems T/L (trailing hemisphere/leading hemisphere) variables. Such behavior has never been identified from ground-based photometry. WX Draconis (A8 + K0 IV, P = 1.80 d), a system whose primary displays delta Scuti-like pulsations, is the prototype. The Kepler light curves are being modeled with the latest version of the Wilson-Devinney program that includes the capability of treating migrating hot/cool spots. I will discuss whether the T/L behavior is likely due to a migrating hot accretion spot on the primary or variability in a large cool-spotted area on the secondary. From archival FUSE data we have confirmed the presence of a hot accretion spot in the Algol system U Cephei and present information on the spot parameters/behavior and conditions in a splash plasma from the impact site. Kepler and archival FUSE observations continue to provide important information on the nature of the component stars in Algol systems and the detailed physics of mass transfer, especially the role of accretion hot spots. We are grateful for support from NASA grants NNX11AC78G and NNX12AE44G.

  18. Long-term Spectroscopic and Photometric Monitoring of Bright Interacting Algol-type Binary Stars

    NASA Astrophysics Data System (ADS)

    Reed, Phillip A.

    2018-01-01

    Binary stars have long been used as natural laboratories for studying such fundamental stellar properties as mass. Interacting binaries allow us to examine more complicated aspects such as mass flow between stars, accretion processes, magnetic fields, and stellar mergers. Algol-type interacting binary stars -- consisting of a cool giant or sub-giant donating mass to a much hotter, less evolved, and more massive main-sequence companion -- undergo steady mass transfer and have been used to measure mass transfer rates and to test stellar evolution theories. The method of back-projection Doppler tomography has also been applied to interacting Algols and has produced indirect velocity-space images of the accretion structures (gas streams, accretion disks, etc.) derived from spectroscopic observations of hydrogen and helium emission lines. The accretion structures in several Algol systems have actually been observed to change between disk-like states and stream-like states on timescales as short as several orbital cycles (Richards et al., 2014). Presented here are the first results from a project aimed at studying bright interacting Algol systems with simultaneous mid-resolution (11,000

  19. DID THE ANCIENT EGYPTIANS RECORD THE PERIOD OF THE ECLIPSING BINARY ALGOL-THE RAGING ONE?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jetsu, L.; Porceddu, S.; Lyytinen, J.

    The eclipses in binary stars give precise information of orbital period changes. Goodricke discovered the 2.867 day period in the eclipses of Algol in the year 1783. The irregular orbital period changes of this longest known eclipsing binary continue to puzzle astronomers. The mass transfer between the two members of this binary should cause a long-term increase of the orbital period, but observations over two centuries have not confirmed this effect. Here, we present evidence indicating that the period of Algol was 2.850 days three millennia ago. For religious reasons, the ancient Egyptians have recorded this period into the Cairomore » Calendar (CC), which describes the repetitive changes of the Raging one. CC may be the oldest preserved historical document of the discovery of a variable star.« less

  20. Architectural design of an Algol interpreter

    NASA Technical Reports Server (NTRS)

    Jackson, C. K.

    1971-01-01

    The design of a syntax-directed interpreter for a subset of Algol is described. It is a conceptual design with sufficient details and completeness but as much independence of implementation as possible. The design includes a detailed description of a scanner, an analyzer described in the Floyd-Evans productions, a hash-coded symbol table, and an executor. Interpretation of sample programs is also provided to show how the interpreter functions.

  1. The FUSE Survey of Algol-Type Interacting Binary Systems

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.; Andersson, B.; Ake, T. B.; Sankrit, R.

    2006-12-01

    A survey of Algol binaries at random phases is currently being carried through with the FUSE spacecraft as part of the FUSE survey and supplemental program. A similar program was undertaken in FUSE Cycle 3. Both programs have produced multiple observations of 12 Algol systems with periods ranging from 1.2 37 d and include direct-impact and disk systems. We report on the status of the program. The absence of O VI absorption in the systems observed to date allows us to place an upper limit on the column density and temperature of the High Temperature Accretion Region, HTAR ( 100,000 K) confirmed in some Algols from earlier IUE data. The HTAR plasma component appears to be distinct from an O VI-emitting polar plasma discovered in FUSE totality observations of RY Per, V356 Sgr, and TT Hya. New observations of the direct-impact system U Cep have provided more information on the geometry and mass flow (including a splash plasma) in the vicinity of a hot spot at phase 0.90 that was discovered earlier. The extent of disk asymmetries in the long period ( 33 d) systems SX Cas and RX Cas is discussed. Models for direct-impact and the disk systems will be presented. The authors appreciate support from NASA grants NAG5-12253, NNG04GL17G, and NAS5-32985.

  2. Shifting Milestones of Natural Sciences: The Ancient Egyptian Discovery of Algol’s Period Confirmed

    PubMed Central

    Jetsu, Lauri; Porceddu, Sebastian

    2015-01-01

    The Ancient Egyptians wrote Calendars of Lucky and Unlucky Days that assigned astronomically influenced prognoses for each day of the year. The best preserved of these calendars is the Cairo Calendar (hereafter CC) dated to 1244–1163 B.C. We have presented evidence that the 2.85 days period in the lucky prognoses of CC is equal to that of the eclipsing binary Algol during this historical era. We wanted to find out the vocabulary that represents Algol in the mythological texts of CC. Here we show that Algol was represented as Horus and thus signified both divinity and kingship. The texts describing the actions of Horus are consistent with the course of events witnessed by any naked eye observer of Algol. These descriptions support our claim that CC is the oldest preserved historical document of the discovery of a variable star. The period of the Moon, 29.6 days, has also been discovered in CC. We show that the actions of Seth were connected to this period, which also strongly regulated the times described as lucky for Heaven and for Earth. Now, for the first time, periodicity is discovered in the descriptions of the days in CC. Unlike many previous attempts to uncover the reasoning behind the myths of individual days, we discover the actual rules in the appearance and behaviour of deities during the whole year. PMID:26679699

  3. Accretion Structures in Algol-Type Interacting Binary Systems

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine

    The physics of mass transfer in interacting binaries of the Algol type will be investigated through an analysis of an extensive collection of FUV spectra from the FUSE spacecraft, Kepler photometry, and FUV spectra from IUE and ORFEUS-SPAS II. The Algols range from close direct impact systems to wider systems that contain prominent accretion disks. Several components of the circumstellar (CS) material have been identified, including the gas stream, splash/outflow domains, a high temperature accretion region (HTAR), accretion disk, and magnetically-controlled flows (cf. Peters 2001, 2007, Richards et al. 2010). Hot spots are sometimes seen at the site where the gas stream impacts the mass gainer's photosphere. Collectively we call these components of mass transfer "accretion structures". The CS material will be studied from an analysis of both line-of-sight FUV absorption features and emission lines. The emission line regions will be mapped in and above/below the orbital plane with 2D and 3D Doppler tomography techniques. We will look for the presence of hot accretion spots in both the Kepler photometry of Algols in the Kepler fields and phase-dependent flux variability in the FUSE spectra. We will also search for evidence of microflaring at the impact site of the gas stream. An abundance study of the mass gainer will reveal the extent to which CNO-processed material from the core of the mass loser is being deposited on the primary. Analysis codes that will be used include 2D and 3D tomography codes, SHELLSPEC, light curve analysis programs such as PHOEBE and Wilson-Devinney, and the NLTE codes TLUSTY/SYNSPEC. This project will transform our understanding of the mass transfer process from a generic to a hydrodynamical one and provide important information on the degree of mass loss from the system which is needed for calculations of the evolution of Algol binaries.

  4. Orbital period variation study of the low-mass Algol eclipsing binary AI Draconis

    NASA Astrophysics Data System (ADS)

    Hanna, Magdy A.

    2013-06-01

    Orbital period changes for the Algol-type eclipsing binary AI Dra were studied based on the analysis of its observed times of light minimum. The period variation showed cyclic changes in the interval from JD. ≈ 24 36000 to JD. ≈ 24 47500 and a secular period increase rate (dP/dt = 2.44 × 10-7 d/year) starting from JD. ≈ 24 48500 up to 24 55262, in a time scale equals to 5 × 106 year.

  5. The moderately interacting Algol-type eclipsing binary RY Geminorum

    NASA Technical Reports Server (NTRS)

    Plavec, Mirek J.; Dobias, Jan J.

    1987-01-01

    Ultraviolet spectra of the Algol-type semidetached system RY Geminorum, whose components can be described as A0 V and K0 IV, have been matched to the ultraviolet spectrum by Kurucz (1979) model atmospheres, and a best fit is found for T(eff) = 9150 K. Comparison with standard star spectra requires that this value be raised to 9400 K. The color excess of the system is determined to be no more than E(B-V) = 0.03 mag; the distance to the system is about 360 pc. The masses are approximately 2.36 and 0.38 solar masses, and the radii are 2.5 and 5.8 solar radii, respectively. The separation of the two centers is 26 solar radii. Evidence for a circumstellar line absorption is found in optical and ultraviolet spectrograms, and evidence is found in IUE spectra taken in partial eclipse for circumstellar emission lines of the type detected previously in the WS Serpentis stars and in several semidetected systems of the Algol type.

  6. Evolution of close binary systems: Observational aspects

    NASA Technical Reports Server (NTRS)

    Plavec, M. J.

    1981-01-01

    Detached close binary systems define the main sequence band satisfactorily, but very little is known about the masses of giants and supergiants. High dispersion international ultraviolet explorer satellite observations promise an improvement, since blue companions are now frequently found to late type supergiants. Mu Sagittaril and in particular Xi Aurigae are discussed in more detail. The barium star abundance anomaly appears to be due to mass transfer in interacting systems. The symbiotic stars are another type of binary systems containing late type giants; several possible models for the hotter star and for the type of interaction are discussed. The W Serpentis stars appear to be Algols in the rapid phase of mass transfer, but a possible link relating them to the symbiotics is also indicated. Evidence of hot circumstellar plasmas has now been found in several ordinary Algols; there may exist a smooth transition between very quiescent Algols and the W Serpentis stars. Beta Lyrae is discussed in the light of new spectrophotometric results.

  7. Compact Neutral Hydrogen Clouds: Searching for Undiscovered Dwarf Galaxies and Gas Associated with an Algol-type Variable Star

    NASA Astrophysics Data System (ADS)

    Grcevich, Jana; Berger, Sabrina; Putman, Mary E.; Eli Goldston Peek, Joshua

    2016-01-01

    Several interesting compact neutral hydrogen clouds were found in the GALFA-HI (Galactic Arecibo L-Band Feed Array HI) survey which may represent undiscovered dwarf galaxy candidates. The continuation of this search is motivated by successful discoveries of Local Volume dwarfs in the GALFA-HI DR1. We identify additional potential dwarf galaxies from the GALFA-HI DR1 Compact Cloud Catalog which are indentified as having unexpected velocities given their other characteristics via the bayesian analysis software BayesDB. We also present preliminary results of a by-eye search for dwarf galaxies in the GALFA-HI DR2, which provides additional sky coverage. Interestingly, one particularly compact cloud discovered during our dwarf galaxy search is spatially coincident with an Algol-type variable star. Although the association is tentative, Algol-type variables are thought to have undergone significant gas loss and it is possible this gas may be observable in HI.

  8. Non-conservative evolution in Algols: where is the matter?

    NASA Astrophysics Data System (ADS)

    Deschamps, R.; Braun, K.; Jorissen, A.; Siess, L.; Baes, M.; Camps, P.

    2015-05-01

    Context. There is indirect evidence of non-conservative evolutions in Algols. However, the systemic mass-loss rate is poorly constrained by observations and generally set as a free parameter in binary-star evolution simulations. Moreover, systemic mass loss may lead to observational signatures that still need to be found. Aims: Within the "hotspot" ejection mechanism, some of the material that is initially transferred from the companion star via an accretion stream is expelled from the system due to the radiative energy released on the gainer's surface by the impacting material. The objective of this paper is to retrieve observable quantities from this process and to compare them with observations. Methods: We investigate the impact of the outflowing gas and the possible presence of dust grains on the spectral energy distribution (SED). We used the 1D plasma code Cloudy and compared the results with the 3D Monte-Carlo radiative transfer code Skirt for dusty simulations. The circumbinary mass-distribution and binary parameters were computed with state-of-the-art binary calculations done with the Binstar evolution code. Results: The outflowing material reduces the continuum flux level of the stellar SED in the optical and UV. Because of the time-dependence of this effect, it may help to distinguish between different ejection mechanisms. If present, dust leads to observable infrared excesses, even with low dust-to-gas ratios, and traces the cold material at large distances from the star. By searching for this dust emission in the WISE catalogue, we found a small number of Algols showing infrared excesses, among which the two rather surprising objects SX Aur and CZ Vel. We find that some binary B[e] stars show the same strong Balmer continuum as we predict with our models. However, direct evidence of systemic mass loss is probably not observable in genuine Algols, since these systems no longer eject mass through the hotspot mechanism. Furthermore, owing to its high velocity, the outflowing material dissipates in a few hundred years. If hot enough, the hotspot may produce highly ionised species, such as Si iv, and observable characteristics that are typical of W Ser systems. Conclusions: If present, systemic mass loss leads to clear observational imprints. These signatures are not to be found in genuine Algols but in the closely related β Lyraes, W Serpentis stars, double periodic variables, symbiotic Algols, and binary B[e] stars. We emphasise the need for further observations of such objects where systemic mass loss is most likely to occur. Appendices are available in electronic form at http://www.aanda.org

  9. Observations of X-ray flares in G-K dwarfs by XMM-Newton

    NASA Astrophysics Data System (ADS)

    Pandey, Jeewan Chandra

    Eclipsing binary BD +5 706 is best investigated member of rare class of cool Algols, which differ from clasical Algol systems in that the mass gaining component is also a late-type star. The analysis of X-ray lightcurve of this system registered by ROSAT suggested the primary component to be the dominant source of activity in the system (Torres et al, AJ 125, 3237, 2003). We reconstruct the spatial structure of coronal emission within the system according to the method proposed by Siarkowski, and show that coronal emission is most likely attributed to both components.

  10. The quiescent and flaring EUV spectrum of Algol and its relationship to other active coronae. EUV spectroscopy of bright hyades coronae: 71 Tauri and Theta 1 Tauri

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1994-01-01

    This program involves analysis and interpretation of EUVE spectrometer observations of the active stars Algol (beta Per) and 71 Tauri. The EUVE satellite spectrometers observed the prototype eclipsing binary Algol over nearly 1.5 orbital periods. Effective exposure times were 100 ksec and 89 ksec in the short wave (70-180 A) and medium wave (140-370 A) channels. High temperature (up to 20 MK) Fe XVI-XXIV emission lines are clearly detected in the overall spectrum. In addition, a quiescent continuum is present which increases towards shorter wavelengths. Using synthesized spectra of optically thin line and continuum emission folded through the instrumental response, we have examined constraints on the (Fe/H) coronal abundance in Algol. We find that the coronal Fe is underabundant by factors that approximately equal 2-4 relative to solar photospheric values, unless an unreasonably large quantity of coronal plasma at T greater than 30 MK is present in the quiescent spectrum. The latter possibility is, however, inconsistent with available X-ray data. Lightcurves of the high temperature EUV lines compared to line emission at He II 304 A show considerable differences, with much deeper minima present in the He II line during both primary and secondary eclipses. Toward the end of the observation a moderate flare lasting approximately 6 hours was detected in the high temperature Fe emission lines. The 71 Tau observation, for about the same exposure time, revealed only a handful of weak emission lines; however, the strongest lines were also those of Fe XXIII/XX, suggesting a hot coronal plasma. No obvious flaring or other variation was present in the 71 Tau Deep Survey lightcurve.

  11. δ Scuti-type pulsation in the hot component of the Algol-type binary system BG Peg

    NASA Astrophysics Data System (ADS)

    Şenyüz, T.; Soydugan, E.

    2014-02-01

    In this study, 23 Algol-type binary systems, which were selected as candidate binaries with pulsating components, were observed at the Çanakkale Onsekiz Mart University Observatory. One of these systems was BG Peg. Its hotter component shows δ Scuti-type light variations. Physical parameters of BG Peg were derived from modelling the V light curve using the Wilson-Devinney code. The frequency analysis shows that the pulsational component of the BG Peg system pulsates in two modes with periods of 0.039 and 0.047 d. Mode identification indicates that both modes are most likely non-radial l = 2 modes.

  12. Period variations of Algol-type eclipsing binaries AD And, TWCas and IV Cas

    NASA Astrophysics Data System (ADS)

    Parimucha, Štefan; Gajdoš, Pavol; Kudak, Viktor; Fedurco, Miroslav; Vaňko, Martin

    2018-04-01

    We present new analyses of variations in O – C diagrams of three Algol-type eclipsing binary stars: AD And, TW Cas and IV Cas. We have used all published minima times (including visual and photographic) as well as newly determined ones from our and SuperWasp observations. We determined orbital parameters of 3rd bodies in the systems with statistically significant errors, using our code based on genetic algorithms and Markov chain Monte Carlo simulations. We confirmed the multiple nature of AD And and the triple-star model of TW Cas, and we proposed a quadruple-star model of IV Cas.

  13. John Goodricke, Edward Pigott, and Their Study of Variable Stars

    NASA Astrophysics Data System (ADS)

    French, Linda M.

    2012-06-01

    John Goodricke and Edward Pigott, working in York, England, between 1781 and 1786, determined the periods of variation of eclipsing binaries such as Algol and Beta Lyrae and speculated that the eclipses of Algol might be caused by a "dark body," perhaps even a planet. They also determined the periods of variation of the first two known Cepheid variables, the stars whose period-luminosity relation today enables astronomers to determine distances to distant galaxies. Goodricke holds special interest because he was completely deaf and because he died at the age of 21. The lives and work of these two astronomers are described.

  14. Search for A-F Spectral type pulsating components in Algol-type eclipsing binary systems

    NASA Astrophysics Data System (ADS)

    Kim, S.-L.; Lee, J. W.; Kwon, S.-G.; Youn, J.-H.; Mkrtichian, D. E.; Kim, C.

    2003-07-01

    We present the results of a systematic search for pulsating components in Algol-type eclipsing binary systems. A total number of 14 eclipsing binaries with A-F spectral type primary components were observed for 22 nights. We confirmed small-amplitude oscillating features of a recently detected pulsator TW Dra, which has a pulsating period of 0.053 day and a semi-amplitude of about 5 mmag in B-passband. We discovered new pulsating components in two eclipsing binaries of RX Hya and AB Per. The primary component of RX Hya is pulsating with a dominant period of 0.052 day and a semi-amplitude of about 7 mmag. AB Per has also a pulsating component with a period of 0.196 day and a semi-amplitude of about 10 mmag in B-passband. We suggest that these two new pulsators are members of the newly introduced group of mass-accreting pulsating stars in semi-detached Algol-type eclipsing binary systems. Table 4 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/231

  15. Photometric, Spectroscopic, and X-ray Analysis of the Cool Algol BD+05 706

    NASA Astrophysics Data System (ADS)

    Torres, G.; Mader, J.; Marschall, L. A.; Neuhaeuser, R.; Duffy, A. S.

    2000-12-01

    BD+05 706 is an example of a rare class of a dozen or so interacting binaries called ``cool Algols", in which both components of the system are late-type stars. By contrast, the ``classical Algols" are systems in which the star transfering mass is of late spectral type, but the mass gainer is much hotter. BD+05 706 was shown previously to be eclipsing (Marschall, Torres & Neuhaeuser 1998, BAAS, 30, 835). In this paper we report our complete analysis of BVRI light curves for the system obtained at Gettysburg College Observatory, together with spectroscopy from the Harvard-Smithsonian Center for Astrophysics reported previously (Torres, Neuhaeuser & Wichmann 1998, AJ, 115, 2028), and X-ray observations obtained with the ROSAT satellite. Our light curve analysis indicates the presence of spots, most likely on the more massive, active component (primary), which change from season to season. Our results confirm the semi-detached nature of the system, and combined with the spectroscopy they have allowed us to obtain the most precise absolute masses and radii for any object of this class. Our X-ray light curve for BD+05 706 shows the primary eclipse clearly, but no sign of a secondary eclipse, confirming that the primary is the active star. Strong X-ray flares are also visible.

  16. The Algol-like binary TT Hydrae - The stars, circumstellar matter, and superionized plasma

    NASA Technical Reports Server (NTRS)

    Plavec, Mirek J.

    1988-01-01

    This paper reports on superionized UV emission lines discovered in TT Hydrae (HD 97528), a semidetached eclipsing binary system in the Southern-Hemisphere sky. The list of emission lines observed is typical for interacting nondegenerate binaries of the Algol type, but with system-specific relative-intensity characteristics. The primary component of the system is a B9.5 V main-sequence star with effective temperature of 9800 K. Its mass equals 2.25 solar masses; the radius is 1.9 solar radii; and surface gravity log g equals 4.23. The secondary star has a mass of 0.41 solar mass and fills its critical Roche lobe. Evidence obtained on mass interaction supports the conclusion that HD 97528 is a normal semidetached system.

  17. First analysis of eight Algol-type binaries: EI Aur, XY Dra, BP Dra, DD Her, VX Lac, WX Lib, RZ Lyn, and TY Tri

    NASA Astrophysics Data System (ADS)

    Zasche, P.

    2016-01-01

    The available photometry from the online databases were used for the first light curve analysis of eight eclipsing binary systems EI Aur, XY Dra, BP Dra, DD Her, VX Lac, WX Lib, RZ Lyn, and TY Tri. All these stars are of Algol-type, having the detached components and the orbital periods from 0.92 to 6.8 days. For the systems EI Aur and BP Dra the large amount of the third light was detected during the light curve solution. Moreover, 468 new times of minima for these binaries were derived, trying to identify the period variations. For the systems XY Dra and VX Lac the third bodies were detected with the periods 17.7, and 49.3 years, respectively.

  18. BVR{sub c}I{sub c} observations and analyses on V2421 Cygni, a precontact W UMa binary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samec, R. G.; Shebs, Travis S.; Faulkner, D. R.

    2014-01-01

    We present the first precision BVRI light curves, synthetic light curve solutions, and a period study for the high amplitude solar type binary, V2421 Cygni. The light curves have the appearance of an Algol (EA) type; however, it is made up of dwarf solar type components in a detached mode with a period of only 0.6331 days with an amplitude of about a full magnitude, i.e., it is a precontact W UMa binary. Flare-like disruptions occur in the light curves following the primary and secondary eclipses possibly due to the line-of-sight track of a gas stream. An associated stream spotmore » and splash spot cause bright equatorial spots on the stellar surface of the primary star. The more massive star is the gainer, making this system a classic, albeit dwarf, Algol.« less

  19. Mass loss from interacting close binary systems

    NASA Technical Reports Server (NTRS)

    Plavec, M. J.

    1981-01-01

    The three well-defined classes of evolved binary systems that show evidence of present and/or past mass loss are the cataclysmic variables, the Algols, and Wolf-Rayet stars. It is thought that the transformation of supergiant binary systems into the very short-period cataclysmic variables must have been a complex process. The new evidence that has recently been obtained from the far ultraviolet spectra that a certain subclass of the Algols (the Serpentids) are undergoing fairly rapid evolution is discussed. It is thought probable that the remarkable mass outflow observed in them is connected with a strong wind powered by accretion. The origin of the circumbinary clouds or flat disks that probably surround many strongly interacting binaries is not clear. Attention is also given to binary systems with hot white dwarf or subdwarf components, such as the symbiotic objects and the BQ stars; it is noted that in them both components may be prone to an enhanced stellar wind.

  20. Development of the Algol III solid rocket motor for SCOUT.

    NASA Technical Reports Server (NTRS)

    Felix, B. R.; Mcbride, N. M.

    1971-01-01

    The design and performance of a motor developed for the first stage of the NASA SCOUT-D and E launch vehicles are discussed. The motor delivers a 30% higher total impulse and a 35 to 45% higher payload mass capability than its predecessor, the Algol IIB. The motor is 45 in. in diameter, has a length-to-diameter ratio of 8:1 and delivers an average 100,000-lb thrust for an action time of 72 sec. The motor design features a very high volumetrically loaded internal-burning charge of 17% aluminized polybutadiene propellant, a plasma-welded and heat-treated steel alloy case, and an all-ablative plastic nose liner enclosed in a steel shell. The only significant development problem was the grain design tailoring to account for erosive burning effects which occurred in the high-subsonic-Mach-number port. The tests performed on the motor are described.

  1. Orbital and Systemic Parameters for Algol Binaries in the Field-of-View of the Kepler Spacecraft

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.; Vaccaro, Todd R.; Wilson, Robert E.

    2013-02-01

    We propose observations of seven Algol-type binaries with the 4m Echelle spectrograph necessary for the interpretation of ongoing photometry from the it Kepler spacecraft and archival it Kepler data being analyzed for an approved NASA/ADAP project. These Algols are direct-impact systems (periods range from 1.3-4.5^d) in which the gas stream strikes the photosphere of the gainer, producing a shock. The it Kepler light curves reveal striking long and short-term variability never before seen in ground-based observations. Especially interesting is a long-term oscillation in the relative brightness of the quadrature light that we call L/T variability, which appears to be caused from a migrating variable hot spot. The it Kepler photometry is being interpreted with an updated version of the Wilson & Devinney (WD) program. The KPNO spectra will supply it critical input parameters (e.g. temperatures) and yield radial velocity curves from which we will determine the masses of the stars and absolute dimensions of the systems. Currently there are it no published spectra of most of the program binaries, including WX Dra, the prototype L/T variable and our primary target. We request 4 nights of observing time to cover one orbital cycle in the binaries with the longest periods. This project will yield information on the detailed physics of mass transfer, especially the roles of accretion hot spots and magnetic fields, and also test the new WD program for future applications by others working with the it Kepler database.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y.-G.; Dai, H.-F.; Zhang, X.-B.

    We present new photometry for the eclipsing binary V1241 Tau, which was obtained on six nights between 2011 December and 2012 January using the 85 cm telescope at the Xinglong station of the National Astronomical Observatories of China. By using the updated Wilson-Devinney code, photometric models with third lights were deduced from two sets of light curves. The result implies that V1241 Tau is an Algol-type near-contact binary (NCB), whose mass ratio and filling-out of the primary are q = 0.545 ({+-} 0.003) and f{sub 1} = 82.4% ({+-} 0.2%), respectively. Based on all available times of minimum light spanningmore » over 80 yr, the O - C curve of V1241 Tau appears to show a quasi-sinusoidal oscillation, i.e., a light-time orbit. The modulated period and amplitude are P{sub mod} = 47.4 ({+-} 1.7) yr and A = 0.0087 ({+-} 0.0005) days, respectively. This kind of period variation may be more likely attributed to the light-time effect via a presence of an unseen third body. From an analysis of 23 Algol-type NCBs with EB-type light curves, we determine that the fill-out for the primary f{sub 1} will increase as the orbital period P decreases. With angular momentum loss, the orbit of the binary will shrink, which causes f{sub 1} to increase. The primary component finally fills its Roche lobe, and the binary evolves into contact configuration. Therefore, this kind of Algol-type NCB with EB-type light curves, such as V1241 Tau, may be a progenitor of the A-type W UMa binary.« less

  3. Revision of the Phenomenological Characteristics of the Algol-Type Stars Using the Nav Algorithm

    NASA Astrophysics Data System (ADS)

    Tkachenko, M. G.; Andronov, I. L.; Chinarova, L. L.

    Phenomenological characteristics of the sample of the Algol-type stars are revised using a recently developed NAV ("New Algol Variable") algorithm (2012Ap.....55..536A, 2012arXiv 1212.6707A) and compared to that obtained using common methods of Trigonometric Polynomial Fit (TP) or local Algebraic Polynomial (A) fit of a fixed or (alternately) statistically optimal degree (1994OAP.....7...49A, 2003ASPC..292..391A). The computer program NAV is introduced, which allows to determine the best fit with 7 "linear" and 5 "nonlinear" parameters and their error estimates. The number of parameters is much smaller than for the TP fit (typically 20-40, depending on the width of the eclipse, and is much smaller (5-20) for the W UMa and β Lyrae-type stars. This causes more smooth approximation taking into account the reflection and ellipsoidal effects (TP2) and generally different shapes of the primary and secondary eclipses. An application of the method to two-color CCD photometry to the recently discovered eclipsing variable 2MASS J18024395 + 4003309 = VSX J180243.9 +400331 (2015JASS...32..101A) allowed to make estimates of the physical parameters of the binary system based on the phenomenological parameters of the light curve. The phenomenological parameters of the light curves were determined for the sample of newly discovered EA and EW-type stars (VSX J223429.3+552903, VSX J223421.4+553013, VSX J223416.2+553424, USNO-B1.0 1347-0483658, UCAC3-191-085589, VSX J180755.6+074711= UCAC3 196-166827). Despite we have used original observations published by the discoverers, the accuracy estimates of the period using the NAV method are typically better than the original ones.

  4. Optical Photometry and X-Ray Monitoring of the ``Cool Algol'' BD +05°706: Determination of the Physical Properties

    NASA Astrophysics Data System (ADS)

    Torres, Guillermo; Mader, Jeff A.; Marschall, Laurence A.; Neuhäuser, Ralph; Duffy, Alaine S.

    2003-06-01

    We present new photometric observations in the BVRI bands of the double-lined eclipsing binary BD +05°706 conducted over three observing seasons, as well as new X-ray observations obtained with ROSAT covering a full orbital cycle (P=18.9 days). A detailed light-curve analysis of the optical data shows the system to be semidetached, confirming indications from an earlier analysis by Torres et al. (published in 1998), with the less massive and cooler star filling its Roche lobe. The system is a member of the rare class of cool Algol systems, which are different from the ``classical'' Algol systems in that the mass-gaining component is also a late-type star rather than a B- or A-type star. By combining the new photometry with a reanalysis of the spectroscopic observations reported by Torres et al., we derive accurate absolute masses for the components of M1=2.633+/-0.028 Msolar and M2=0.5412+/-0.0093 Msolar, radii of R1=7.55+/-0.20 Rsolar and R2=11.02+/-0.21 Rsolar, as well as effective temperatures of 5000+/-100 and 4640+/-150 K, for the primary and secondary, respectively. There are obvious signs of activity (spottedness) in the optical light curve of the binary. Our X-ray light curve clearly shows the primary eclipse but not the secondary eclipse, suggesting that the primary star is the dominant source of the activity in the system. The depth and duration of the eclipse allow us to infer some of the properties of the X-ray-emitting region around that star.

  5. On a programming language for graph algorithms

    NASA Technical Reports Server (NTRS)

    Rheinboldt, W. C.; Basili, V. R.; Mesztenyi, C. K.

    1971-01-01

    An algorithmic language, GRAAL, is presented for describing and implementing graph algorithms of the type primarily arising in applications. The language is based on a set algebraic model of graph theory which defines the graph structure in terms of morphisms between certain set algebraic structures over the node set and arc set. GRAAL is modular in the sense that the user specifies which of these mappings are available with any graph. This allows flexibility in the selection of the storage representation for different graph structures. In line with its set theoretic foundation, the language introduces sets as a basic data type and provides for the efficient execution of all set and graph operators. At present, GRAAL is defined as an extension of ALGOL 60 (revised) and its formal description is given as a supplement to the syntactic and semantic definition of ALGOL. Several typical graph algorithms are written in GRAAL to illustrate various features of the language and to show its applicability.

  6. What we learn from eclipsing binaries in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Guinan, Edward F.

    1990-01-01

    Recent results on stars and stellar physics from IUE (International Ultraviolet Explorer) observations of eclipsing binaries are discussed. Several case studies are presented, including V 444 Cyg, Aur stars, V 471 Tau and AR Lac. Topics include stellar winds and mass loss, stellar atmospheres, stellar dynamos, and surface activity. Studies of binary star dynamics and evolution are discussed. The progress made with IUE in understanding the complex dynamical and evolutionary processes taking place in W UMa-type binaries and Algol systems is highlighted. The initial results of intensive studies of the W UMa star VW Cep and three representative Algol-type binaries (in different stages of evolution) focused on gas flows and accretion, are included. The future prospects of eclipsing binary research are explored. Remaining problems are surveyed and the next challenges are presented. The roles that eclipsing binaries could play in studies of stellar evolution, cluster dynamics, galactic structure, mass luminosity relations for extra galactic systems, cosmology, and even possible detection of extra solar system planets using eclipsing binaries are discussed.

  7. Orbital period study of the Algol-type eclipsing binary system TW Draconis

    NASA Astrophysics Data System (ADS)

    Qian, S. B.; Boonrucksar, S.

    2002-10-01

    The century-long times of light minimum of the Algol-type eclipsing binary star, TW Dra (BD +64°1077, Sp A5V+K2III), are investigated by considering a new pattern of period change. Two sudden period increases and two successive period decreases are discovered to superimpose on a rapid secular increase (d P/d t=+4.43×10 -6 days/year). The secular increase may be caused by a dynamical mass transfer from the secondary to the primary component (d m/d t=6.81×10 -7 M ⊙/year) that is in agreement with the semi-detached configuration of the system and with the existence of a hot spot and a gaseous stream in the binary system. The irregular period jumps superimposed on the secular increase can be explained by the structure variation of the K2-type giant via instabilities of the outer convective layer or via magnetic activity cycles.

  8. TENEX SAIL

    NASA Technical Reports Server (NTRS)

    Smith, R.

    1975-01-01

    SAIL, a high level ALGOL language for the PDP-10, is extended to operate under the TENEX time sharing system without executing DEC system calls. A large set of TENEX oriented runtime routines are added to allow complete access to TENEX. The emphasis is on compatibility of programs across time sharing systems and integrity of the language.

  9. The impact of IUE on binary star studies

    NASA Technical Reports Server (NTRS)

    Plavec, M. J.

    1981-01-01

    The use of IUE observations in the investigation of binary stars is discussed. The results of data analysis of several classes of binary systems are briefly reviewed including zeta Aurigae and VV Cephei stars, mu Sagittarii, epsilon Aurigae, beta Lyrae and the W Serpentis stars, symbiotic stars, and the Algols.

  10. User-Extensible Graphics Using Abstract Structure,

    DTIC Science & Technology

    1987-08-01

    Flex 6 The Algol68 model of the graphical abstract structure 5 The creation of a PictureDefinition 6 The making of a picture from a PictureDefinition 7...data together with the operations that can be performed on that data. i 7! ś I _ § 4, The Alqol68 model of the graphical abstract structure Every

  11. Structural changes in the hot Algol OGLE-LMC-DPV-097 and its disc related to its long cycle

    NASA Astrophysics Data System (ADS)

    Garcés L, J.; Mennickent, R. E.; Djurašević, G.; Poleski, R.; Soszyński, I.

    2018-06-01

    Double Periodic Variables (DPVs) are hot Algols showing a long photometric cycle of uncertain origin. We report the discovery of changes in the orbital light curve of OGLE-LMC-DPV-097 which depend on the phase of its long photometric cycle. During the ascending branch of the long cycle the brightness at the first quadrature is larger than during the second quadrature, during the maximum of the long cycle the brightness is basically the same at both quadratures, during the descending branch the brightness at the second quadrature is larger than during the first quadrature, and during the minimum of the long cycle the secondary minimum disappears. We model the light curve at different phases of the long cycle and find that the data are consistent with changes in the properties of the accretion disc and two disc spots. The disc's size and temperature change with the long-cycle period. We find a smaller and hotter disc at minimum, and larger and cooler disc at maximum. The spot temperatures, locations, and angular sizes also show variability during the long cycle.

  12. Radio Emission from Algol. I. Coronal Geometry and Emission Mechanisms Determined from VLBA and Green Bank Interferometer Observations

    NASA Astrophysics Data System (ADS)

    Mutel, R. L.; Molnar, L. A.; Waltman, E. B.; Ghigo, F. D.

    1998-11-01

    We report dual circular polarization VLBA observations of Algol made at orbital phases 0.22-0.30 using a differential phase referencing technique. The flux density of Algol varied from 10 to 20 mJy during the observations. The radio maps show a double-lobed source separated by 1.6 mas (1.4 times the K star diameter). Although the total emission is only weakly circularly polarized, the individual lobes are strongly circularly polarized and of opposite helicity. Snapshot VLBI maps made at 3 hour intervals show variations in the flux density of both components, but no significant motions of the centroids. We also analyze Green Bank Interferometer (GBI) synoptic observations of right- and left-circularly polarized (RCP and LCP) flux densities of Algol at 2.3 and 8.3 GHz several times a day from early 1995 to mid-1997. The resulting data set, which consists of more than 2500 observations over 2 years, is by far the most comprehensive available for any stellar system. In addition, we analyzed GBI observations of the very similar (but noneclipsing) binary system HR 1099 over the same time period in order to compare the two systems. We summarize the GBI observations using several statistical descriptions. We find no phase dependence of either the radio luminosity or circular polarization for either system. The luminosity histograms for the two systems are remarkably similar. The distribution functions are not well represented by exponentials as previously suggested, but can be represented by power laws truncated at low luminosity. The cutoff occurs at 20-30 mJy and may represent emission from a slowly varying basal level that is always detected. We confirm several previous results, including the strong dependence of spectral index on luminosity, the decrease of fractional circular polarization with luminosity, and the dependence of fractional circular polarization on orbital inclination angle. We suggest that the radio emission at 8.3 GHz is x-mode gyrosynchrotron emission from optically thin emission regions containing mildly relativistic electrons in a dipolar magnetic field. There is no evidence for highly circularly polarized coherent flares at 8.3 GHz, although it is possible that such flares occasionally occur at 2.25 GHz. The lack of orbital phase dependence in the GBI light curves, combined with the significant inclination of the VLBA structure with respect to the orbital plane, is inconsistent with previous models in which the radio lobes are located in the equatorial plane. The individual lobes seen in the VLBI maps may be associated with the polar regions, with the strong circular polarization resulting from the opposed mean magnetic field vector component along the observer's line of sight in opposite hemispheres. Astrometric results from the VLBA observations are discussed in a companion paper.

  13. Spectroscopic Investigation of TW Dra: Improved Stellar and System Parameters

    NASA Astrophysics Data System (ADS)

    Tkachenko, A.; Lehmann, H.; Mkrtichian, D.

    2010-12-01

    We investigate the Algol-type system TW Dra by means of the new computer program Shellspec07_inverse which is specially designed for the fine-tuning of stellar and system parameters of eclipsing binaries. We derive precise atmospheric and system parameters of TW Dra with an accuracy comparable to that expected from photometric data, and give a short comparison of our results with previous determinations.

  14. First photometric study of two southern eclipsing binaries IS Tel and DW Aps

    NASA Astrophysics Data System (ADS)

    Özer, S.; Sürgit, D.; Erdem, A.; Öztürk, O.

    2017-02-01

    The paper presents the first photometric analysis of two southern eclipsing binary stars, IS Tel and DW Aps. Their V light curves from the All Sky Automated Survey were modelled by using Wilson-Devinney method. The final models give these two Algol-like binary stars as having detached configurations. Absolute parameters of the components of the systems were also estimated.

  15. New O-C Observations for 150 Algols: Insight to the Origins of Period Shifts

    NASA Astrophysics Data System (ADS)

    Hoffman, D. I.; Harrison, T. E.; McNamara, B. J.; Vestrand, W. T.

    2005-12-01

    Many eclipsing binaries of type Algol, RS CVn, and W UMa have observed orbital period shifts. Of these, many show both increasing and decreasing period shifts. Two leading explanations for these shifts are third body effects and magnetic activity changing the oblateness of the secondary, though neither one can explain all of the observed period oscillations. The first-generation Robotic Optical Transient Search Experiment (ROTSE-I) based in Los Alamos, NM, was primarily designed to look for the optical counterparts to gamma-ray bursts as well as searching for other optical transients not detected in gamma-rays. The telescope, consisting of four 200mm camera lenses, can image the entire northern sky twice in a night, which is a very useful tool in monitoring relatively bright eclipsing binaries for period shifts. The public data release from ROTSE-I, the Northern Sky Variability Survey (NSVS), spans one year of data stating in April, 1999. O-C data for 150 eclipsing binaries are presented using the NSVS data. We revisit work by Borkovits and Hegedüs on some third body candidates in several eclipsing binary systems using recent AAVSO and NSVS data. Some unusual light curves of eclipsing binaries produced from NSVS data is presented and discussed.

  16. Defense Management Education and Training

    DTIC Science & Technology

    1991-07-01

    loading, stowing, and discharge of a cargo ship . This course is intended for ocean cargo specialists and military marine terminal operations...stowage planning. The student prepares a cargo prestowage plan, the USNS ALGOL (T- AKR 287). Mathematical ability is critical. PREREQUISITES: Personnel...AFIT/LS Performance Measurement Data (JT) QMT 372 Reliability (AF) OS/R/15 days AFIT/LS 0 2- A -24 DoD ",010.16-C QMT 540 Advanced Contract Pricing OS/R/10

  17. VizieR Online Data Catalog: Light curves of Algol-type binaries. VI. FR Ori (Yang+, 2014)

    NASA Astrophysics Data System (ADS)

    Yang, Y.-G.; Wei, J.-Y.; Li, H.-L.

    2014-09-01

    New photometry of FR Ori was performed in 2012 November (Nov 7-8 and Nov 16-20) and December (Dec 5-9), using the 60cm telescope at the Xinglong Station (XLs) of the National Astronomical Observatories of China (NAOC). A Princeton Instrument 1024*1024 CCD camera was mounted at this telescope. The standard Johnson/Cousins set of BVIR filters was applied. (3 data files).

  18. Translations on USSR Science and Technology, Physical Sciences and Technology, No. 25

    DTIC Science & Technology

    1977-12-07

    PORTRAN-II; FORTRAN -IV; and ALGOL-60 dialect. BASIC language may be used when solving problems in the interactive mode (the stages of...transmissions and broadcasts. Materials from foreign-language sources are translated; those from English-language sources are transcribed or reprinted, with... source . Times within items are as given by source . The contents of this publication in no way represent the poli- cies, views or attitudes of the U.S

  19. CNO Processing in Massive Algol Binaries

    NASA Technical Reports Server (NTRS)

    Wade, Richard A.

    1998-01-01

    This program, used ultraviolet observations by the IUE Observatory along with other tools to search for abundance anomalies indicative of CNO processing in the secondary (mass-donating) stars of six interacting binary systems. Related IUE-based activities were also undertaken under this grant. Two Supplements to the grant were awarded. Supplement No. 1 was in connection with the NASA Grant Supplements for Education program, for a workshop for elementary school science teachers. The two sessions of the workshop were held October 24 and November 14, 1992. Eighteen school teachers from central Pennsylvania, grades 1-7, participated in the workshop, for which they received one unit of in-service training credit from their Intermediate Unit. Supplement No. 2 was awarded for additional IUE observations of the Algol stars V342 Aql and TU Mon. Observations of all six candidate stars were made with IUE, and attention was narrowed to TU Mon in particular, for which further IUE observations were made using Director's discretionary time. Observations of TU Mon were also carried out with the Voyager UV spectrometers, and optical spectroscopy was obtained on several occasions at Penn State's Black Moshannon Observatory. Photometric data on TU Mon were acquired by Dr. Paul Etzel at Mt. Laguna Observatory (MLO). McGouldrick was employed part-time during the Fall academic semester to assist in accessing the IUE Archive, and to correlate data on some cataclysmic variables and related objects that were observed with both IUE and the Voyager Far Ultraviolet Spectrometers. Approximately 21 relevant binary systems were observed with the Voyager UVS over the past decade, and a paper is being prepared for eventual publication that will serve as an index to the UVS data archive on these stars, providing observation dates, mean count rates in far and extreme UV bands, and a discussion of the relevant literature concerning the far UV behavior (including correlative IUE information from the archive and the literature). Much of the activity under the grant was in connection with V342 Aquilae, a 3.39 day Algol system thought to be in a state of rapid mass transfer. The goal was to combine optical and ultraviolet data to arrive at a robust, informative interpretation of this unique binary system. Complete orbital phase coverage of V342 Aql was obtained spectroscopically and photometrically.

  20. CNO Processing in Massive Algol Binaries

    NASA Astrophysics Data System (ADS)

    Wade, Richard A.

    1998-08-01

    This program, used ultraviolet observations by the IUE Observatory along with other tools to search for abundance anomalies indicative of CNO processing in the secondary (mass-donating) stars of six interacting binary systems. Related IUE-based activities were also undertaken under this grant. Two Supplements to the grant were awarded. Supplement No. 1 was in connection with the NASA Grant Supplements for Education program, for a workshop for elementary school science teachers. The two sessions of the workshop were held October 24 and November 14, 1992. Eighteen school teachers from central Pennsylvania, grades 1-7, participated in the workshop, for which they received one unit of in-service training credit from their Intermediate Unit. Supplement No. 2 was awarded for additional IUE observations of the Algol stars V342 Aql and TU Mon. Observations of all six candidate stars were made with IUE, and attention was narrowed to TU Mon in particular, for which further IUE observations were made using Director's discretionary time. Observations of TU Mon were also carried out with the Voyager UV spectrometers, and optical spectroscopy was obtained on several occasions at Penn State's Black Moshannon Observatory. Photometric data on TU Mon were acquired by Dr. Paul Etzel at Mt. Laguna Observatory (MLO). McGouldrick was employed part-time during the Fall academic semester to assist in accessing the IUE Archive, and to correlate data on some cataclysmic variables and related objects that were observed with both IUE and the Voyager Far Ultraviolet Spectrometers. Approximately 21 relevant binary systems were observed with the Voyager UVS over the past decade, and a paper is being prepared for eventual publication that will serve as an index to the UVS data archive on these stars, providing observation dates, mean count rates in far and extreme UV bands, and a discussion of the relevant literature concerning the far UV behavior (including correlative IUE information from the archive and the literature). Much of the activity under the grant was in connection with V342 Aquilae, a 3.39 day Algol system thought to be in a state of rapid mass transfer. The goal was to combine optical and ultraviolet data to arrive at a robust, informative interpretation of this unique binary system. Complete orbital phase coverage of V342 Aql was obtained spectroscopically and photometrically.

  1. 1998 UBV Light Curves of Eclipsing Binary AI Draconis and Absolute Parameters

    NASA Astrophysics Data System (ADS)

    Jassur, D. M. Z.; Khaledian, M. S.; Kermani, M. H.

    New UBV photometry of Algol-Type eclipsing binary star AI Dra and the absolute physical parameters of this system have been presented. The light curve analysis carried out by the method of differential corrections indicates that both components are inside their Roche-Lobes. From combining the photometric solution with spectroscopic data obtained from velocity curve analysis, it has been found that the system consist of a main sequence primary and an evolved (subgiant) secondary.

  2. Advanced software techniques for data management systems. Volume 3: Programming language characteristics and comparison reference

    NASA Technical Reports Server (NTRS)

    James, T. A.; Hall, B. C.; Newbold, P. M.

    1972-01-01

    A comparative evaluation was made of eight higher order languages of general interest in the aerospace field: PL/1; HAL; JOVIAL/J3; SPL/J6; CLASP; ALGOL 60; FORTRAN 4; and MAC360. A summary of the functional requirements for a language for general use in manned aerodynamic applications is presented. The evaluation supplies background material to be used in assessing the worth of each language for some particular application.

  3. Specification/Verification of Temporal Properties for Distributed Systems: Issues and Approaches. Volume 1

    DTIC Science & Technology

    1990-02-01

    copies Pl ,...,P. of a multiple module fp resolve nondeterminism (local or global) in an identical manner. 5. The copies PI,...,P, axe physically...recovery block. A recovery block consists of a conventional block (like in ALGOL or PL /I) which is provided with a means of error detection, called an...improved failures model for communicating processes. In Proceeding. NSF- SERC Seminar on Concurrency, volume 197 of Lecture Notes in Computer Science

  4. A translational registration system for LANDSAT image segments

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Erthal, G. J.; Velasco, F. R. D.; Mascarenhas, N. D. D.

    1983-01-01

    The use of satellite images obtained from various dates is essential for crop forecast systems. In order to make possible a multitemporal analysis, it is necessary that images belonging to each acquisition have pixel-wise correspondence. A system developed to obtain, register and record image segments from LANDSAT images in computer compatible tapes is described. The translational registration of the segments is performed by correlating image edges in different acquisitions. The system was constructed for the Burroughs B6800 computer in ALGOL language.

  5. VLBI phase-referencing for observations of weak radio sources

    NASA Technical Reports Server (NTRS)

    Lestrade, J.-F.

    1991-01-01

    Phase-referencing is a technique used in VLBI to extend the signal coherence time from a few minutes to a few hours in order to enhance significantly its sensitivity. With this technique, VLBI observations of milliJansky radio sources can be conducted for high-accuracy differential astrometry as well as imaging. We describe the technique in some details and present, as an example, a submilliarcsecond differential astrometric experiment design to identify the star responsible for the weak radio emission in the binary system Algol.

  6. SCOUT Nozzle Data Book

    NASA Technical Reports Server (NTRS)

    Shieds, S.

    1976-01-01

    Available analyses and material property information are summarized relevant to the design of four rocket motor nozzles currently incorporated in the four solid propellant rocket stages of the NASA SCOUT launch vehicle. The nozzles discussed include those for the following motors: (1) first stage - Algol IIIA; (2) second stage - Castor IIA; (3) third stage - Antares IIA; and (4) fourth stage - Altair IIIA. Separate sections for each nozzle provide complete data packages. Information on the Antares IIB motor which had limited usage as an alternate motor for the third stage is included.

  7. Photometric Study of the near-contact short period Algol system, AK Canis Minoris

    NASA Astrophysics Data System (ADS)

    Samec, Ronald G.; McDermith, Richard J.; Gray, Jamison D.; Carrigan, Brian

    1995-05-01

    As a part of our departments new undergraduate research program, we are surveying the eccentric eclipsing binary (EEB) candidates of Hegedus (1988). AK CMi is listed as a system with a displaced secondary. The observations were taken 10 to 15 February 1994, inclusive, at Lowell Obsevatory, Flagstaff, Arizona. A thermoelectrically cooled EMI 6256S ( S-13 cathode) PMT was used in conjunction with the 0.78 m National Undergraduate Research Observatory reflector. Two precision epochs of minimicrons light were determined from the observations made during primary and secondary eclipses. They are: Min I = 2449396.7032(5) and Min II = 2449395.8546(3). Targeting the last twenty-three years of data, we calculated improved linear and quadratic ephemerides. The quadratic term, -1.0(2)E-10, suggests that AK CMi is undergoing a continuous period decrease. This may be due to magnetic braking arising from the fast rotating solar-type secondary component. There is little evidence from the present light curves that AK CMi has a eccentric orbit. Assymetries near secondary minima possibly induced by an intermittent gas stream may be responsible for the classification of AK CMi as an EEB. The light curve solution reveals that AK CMi is a short period Algol with an A spectral-type primary component and an early K-type secondary. We calculated mass ratio of 0.5 and a secondary component fillout of 90% showing that AK CMi is a near contact binary.

  8. PHOTOMETRIC PROPERTIES OF SELECTED ALGOL-TYPE BINARIES. III. AL GEMINORUM AND BM MONOCEROTIS WITH POSSIBLE LIGHT-TIME ORBITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y.-G.; Dai, H.-F.; Li, H.-L., E-mail: yygcn@163.com

    We present the CCD photometry of two Algol-type binaries, AL Gem and BM Mon, observed from 2008 November to 2011 January. With the updated Wilson-Devinney program, photometric solutions were deduced from their EA-type light curves. The mass ratios and fill-out factors of the primaries are found to be q{sub ph} = 0.090({+-} 0.005) and f{sub 1} = 47.3%({+-} 0.3%) for AL Gem, and q{sub ph} = 0.275({+-} 0.007) and f{sub 1} = 55.4%({+-} 0.5%) for BM Mon, respectively. By analyzing the O-C curves, we discovered that the periods of AL Gem and BM Mon change in a quasi-sinusoidal mode, whichmore » may possibly result from the light-time effect via the presence of a third body. Periods, amplitudes, and eccentricities of light-time orbits are 78.83({+-} 1.17) yr, 0fd0204({+-}0fd0007), and 0.28({+-} 0.02) for AL Gem and 97.78({+-} 2.67) yr, 0fd0175({+-}0fd0006), and 0.29({+-} 0.02) for BM Mon, respectively. Assumed to be in a coplanar orbit with the binary, the masses of the third bodies would be 0.29 M{sub Sun} for AL Gem and 0.26 M{sub Sun} for BM Mon. This kind of additional companion can extract angular momentum from the close binary orbit, and such processes may play an important role in multiple star evolution.« less

  9. Lunar-based Ultraviolet Telescope study of the well-known Algol-type binary TW Dra

    NASA Astrophysics Data System (ADS)

    Liao, Wen-Ping; Qian, Sheng-Bang; Zejda, Miloslav; Zhu, Li-Ying; Li, Lin-Jia

    2016-06-01

    By using the Lunar-based Ultraviolet Telescope (LUT) from 2014 December 2 to December 4, the first near-UV light curve of the well-known Algol-type binary TW Dra is reported, which is analyzed with the 2013 version of the W-D code. Our solutions confirmed that TW Dra is a semi-detached binary system where the secondary component fills its Roche lobe. The mass ratio and a high inclination are obtained (q = 0.47, i = 86.68°). Based on 589 available data spanning more than one century, the complex period changes are studied. Secular increase and three cyclical changes are found in the corresponding orbital period analysis. The secular increase changes reveal mass transfer from the secondary component to the primary one at a rate of 6.8 × 10-7 M ⊙ yr-1. One large cyclical change of 116.04 yr may be caused by disturbance of visual component ADS 9706B orbiting TW Dra (ADS 9706A), while the other two cyclical changes with shorter periods of 22.47 and 37.27 yr can be explained as the result of two circumbinary companions that are orbiting around TW Dra, where the two companions are in simple 3 : 5 orbit-rotation resonances. TW Dra itself is a basic binary in a possible sextuple system with the configuration (1 + 1) + (1 + 1) + (1 + 1), which further suggests that multiplicity may be a fairly common phenomenon in close binary systems.

  10. An analytical study for the design of advanced rotor airfoils

    NASA Technical Reports Server (NTRS)

    Kemp, L. D.

    1973-01-01

    A theoretical study has been conducted to design and evaluate two airfoils for helicopter rotors. The best basic shape, designed with a transonic hodograph design method, was modified to meet subsonic criteria. One airfoil had an additional constraint for low pitching-moment at the transonic design point. Airfoil characteristics were predicted. Results of a comparative analysis of helicopter performance indicate that the new airfoils will produce reduced rotor power requirements compared to the NACA 0012. The hodograph design method, written in CDC Algol, is listed and described.

  11. The ultraviolet spectrum of the eclipsing binary IM Aurigae

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.; Feibelman, W. A.; Kondo, Y.

    1986-01-01

    Low dispersion IUE spectra have been obtained at primary and secondary minima, together with a high dispersion spectrum near maximum, for the eclipsing Algol-type IM Aurigae system. The weak, sharp absorption features noted at two distinct velocities in the high dispersion data are attributed to circumbinary gaseous shells and/or gas streams between the stellar components. The implications of these results for the recently observed increase in O-C values of the primary minimum, which prompted this UV spectral search for evidence of a recent mass-loss event, are discussed.

  12. The region of formation of the ultraviolet high temperature resonance lines in the eclipsing binary Beta Persei (Algol)

    NASA Technical Reports Server (NTRS)

    Brandi, E.; Garcia, L. G.; Kondo, Y.; Sahade, J.

    1989-01-01

    A new series of IUE observations of Beta Persei has shown that the high temperature resonance lines of Si IV and C IV arise in a region that surrounds the brighter, early-type component of the system. The continuum spectrum corresponds to that of a B8V object, and the value of E(B-V) that yielded the best match between the two IUE regions was 0.06, the value quoted for Beta Per in Jamar et al.'s (1976) Catalog.

  13. A search for pulsations in two Algol-type systems V1241 Tau and GQ Dra

    NASA Astrophysics Data System (ADS)

    Ulaş, Burak; Ulusoy, Ceren; Gazeas, Kosmas; Erkan, Naci; Liakos, Alexios

    2014-02-01

    We present new photometric observations of two eclipsing binary systems, V1241 Tau and GQ Dra. We use the following methodology: initially, the Wilson-Devinney code is applied to the light curves in order to determine the photometric elements of the systems. Then, the residuals are analysed using Fourier techniques. The results are the following. One frequency can be possibly attributed to a real light variation of V1241 Tau, while there is no evidence of pulsations in the light curve of GQ Dra.

  14. The eclipsing binary star RZ Cas: accretion-driven variability of the multimode oscillation spectrum

    NASA Astrophysics Data System (ADS)

    Mkrtichian, D. E.; Lehmann, H.; Rodríguez, E.; Olson, E.; Kim, S.-L.; Kusakin, A. V.; Lee, J. W.; Youn, J.-H.; Kwon, S.-G.; López-González, M. J.; Janiashvili, E.; Tiwari, S. K.; Joshi, Santosh; Lampens, P.; Van Cauteren, P.; Glazunova, L.; Gamarova, A.; Grankin, K. N.; Rovithis-Livaniou, E.; Svoboda, P.; Uhlar, R.; Tsymbal, V.; Kokumbaeva, R.; Urushadze, T.; Kuratov, K.; Shin, H.-C.; Kang, Y.-W.; Soonthornthum, B.

    2018-04-01

    We analysed photometric time series of the active, semidetached Algol-type system RZ Cas obtained in 1999-2009, in order to search for seasonal and short-term variations in the oscillation spectrum of RZ Cas A. The orbital period shows ±1 s cyclic variations on time-scales of 6-9 years. We detected six low-degree p-mode oscillations with periods between 22.3 and 26.22 min and obtained safe mode identifications using the periodic spatial filter method. The amplitudes and frequencies of all modes vary.

  15. The Double Contact Nature of TT Herculis

    NASA Astrophysics Data System (ADS)

    Terrell, Dirk; Nelson, Robert H.

    2014-03-01

    We present new radial velocities and photometry of the short-period Algol TT Herculis. Previous attempts to model the light curves of the system have met with limited success, primarily because of the lack of a reliable mass ratio. Our spectroscopic observations are the first to result in radial velocities for the secondary star, and thus provide a spectroscopic mass ratio. Simultaneous analysis of the radial velocities and new photometry shows that the system is a double contact binary, with a rapidly rotating primary that fills its limiting lobe.

  16. Photometric Properties for Selected Algol-type Binaries. VIII. The Triple Systems DI Peg and AF Gem Revisited

    NASA Astrophysics Data System (ADS)

    Yang, Yuan-Gui; Yang, Ying; Li, Shu-Zheng

    2014-06-01

    New extensive photometry for two triple binary stars, DI Peg and AF Gem, was performed from 2012 October to 2013 January, with two small telescopes at Xinglong station (XLs) of NAOC. From new multi-color observations and previously published ones in literature, the photometric models were (re)deduced using the updated Wilson-Devinney code. The results indicated that the low third lights exist in two classic Algol-type binaries, whose fill-out factors for the more massive components are fp = 78.2(± 0.4)% for DI Peg, and fp = 69.0(± 0.3)% for AF Gem, respectively. Through analyzing the O-C curves, the orbital periods for two binaries change in the complicated mode. The period of DI Peg possibly appears to show two light-time orbits, whose modulated periods are P 3 = 54.6(± 0.5) yr and P 4 = 23.0(± 0.6) yr, respectively. The inferred minimum masses for the inner and outer sub-stellar companions are M in = 0.095 M ⊙ and M out = 0.170 M ⊙, respectively. Therefore, DI Peg may be a quadruple star. The orbital period of AF Gem appears to show a continuous period decrease or a cyclic variation; the latter may be preferable. The cyclic oscillation, with a period of 120.3(± 2.5) yr, may be attributed to the light-time effect due to the third body. This kind of additional companion may extract angular momentum from the central system, which may play a key role in the evolution of the binary.

  17. Phenomenological Modeling of Newly Discovered Eclipsing Binary 2MASS J18024395 + 4003309 = VSX J180243.9+400331

    NASA Astrophysics Data System (ADS)

    Andronov, Ivan L.; Kim, Yonggi; Kim, Young-Hee; Yoon, Joh-Na; Chinarova, Lidia L.; Tkachenko, Mariia G.

    2015-06-01

    We present a by-product of our long term photometric monitoring of cataclysmic variables. 2MASS J18024395 +4003309 = VSX J180243.9 +400331 was discovered in the field of the intermediate polar V1323 Her observed using the Korean 1-m telescope located at Mt. Lemmon, USA. An analysis of the two-color VR CCD observations of this variable covers all the phase intervals for the first time. The light curves show this object can be classified as an Algol-type variable with tidally distorted components, and an asymmetry of the maxima (the O'Connell effect). The periodogram analysis confirms the cycle numbering of Andronov et al. (2012) and for the initial approximation, the ephemeris is used as follows: Min I. BJD = 2456074.4904+0.3348837E . For phenomenological modeling, we used the trigonometric polynomial approximation of statistically optimal degree, and a recent method "NAV" ("New Algol Variable") using local specific shapes for the eclipse. Methodological aspects and estimates of the physical parameters based on analysis of phenomenological parameters are presented. As results of our phenomenological model, we obtained for the inclination i=90°, M1=0.745M⊙, M2=0.854M⊙, M=M1+M2=1.599M⊙, the orbital separation a=1.65°109m=2.37R⊙ and relative radii r1=R1/a=0.314 and r2=R2/a=0.360. These estimates may be used as preliminary starting values for further modeling using extended physical models based on the Wilson & Devinney (1971) code and it's extensions

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, L.-Y.; Zhou, X.; Qian, S.-B.

    A complete light curve of the neglected eclipsing binary Algol V548 Cygni in the UV band was obtained with the Lunar-based Ultraviolet Telescope in 2014 May. Photometric solutions are obtained using the Wilson–Devinney method. It is found that solutions with and without third light are quite different. The mass ratio without third light is determined to be q = 0.307, while that derived with third light is q = 0.606. It is shown that V548 Cygni is a semi-detached binary where the secondary component is filling the critical Roche lobe. An analysis of all available eclipse times suggests that there are three cyclic variationsmore » in the O–C diagram that are interpreted by the light travel-time effect via the presence of three additional stellar companions. This is in agreement with the presence of a large quantity of third light in the system. The masses of these companions are estimated as m sin i′ ∼ 1.09, 0.20, and 0.52 M{sub ⊙}. They are orbiting the central binary with orbital periods of about 5.5, 23.3, and 69.9 years, i.e., in 1:4:12 resonance orbit. Their orbital separations are about 4.5, 13.2, and 26.4 au, respectively. Our photometric solutions suggest that they contribute about 32.4% to the total light of the multiple system. No obvious long-term changes in the orbital period were found, indicating that the contributions of the mass transfer and the mass loss due to magnetic braking to the period variations are comparable. The detection of three possible additional stellar components orbiting a typical Algol in a multiple system make V548 Cygni a very interesting binary to study in the future.« less

  19. Photometric properties for selected algol-type binaries. VIII. The triple systems DI Peg and AF Gem revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yuan-Gui; Li, Shu-Zheng; Yang, Ying, E-mail: yygcn@163.com, E-mail: yangyg@chnu.edu.cn, E-mail: yangy818@yeah.net

    2014-06-01

    New extensive photometry for two triple binary stars, DI Peg and AF Gem, was performed from 2012 October to 2013 January, with two small telescopes at Xinglong station (XLs) of NAOC. From new multi-color observations and previously published ones in literature, the photometric models were (re)deduced using the updated Wilson-Devinney code. The results indicated that the low third lights exist in two classic Algol-type binaries, whose fill-out factors for the more massive components are f{sub p} = 78.2(± 0.4)% for DI Peg, and f{sub p} = 69.0(± 0.3)% for AF Gem, respectively. Through analyzing the O–C curves, the orbital periodsmore » for two binaries change in the complicated mode. The period of DI Peg possibly appears to show two light-time orbits, whose modulated periods are P {sub 3} = 54.6(± 0.5) yr and P {sub 4} = 23.0(± 0.6) yr, respectively. The inferred minimum masses for the inner and outer sub-stellar companions are M {sub in} = 0.095 M {sub ☉} and M {sub out} = 0.170 M {sub ☉}, respectively. Therefore, DI Peg may be a quadruple star. The orbital period of AF Gem appears to show a continuous period decrease or a cyclic variation; the latter may be preferable. The cyclic oscillation, with a period of 120.3(± 2.5) yr, may be attributed to the light-time effect due to the third body. This kind of additional companion may extract angular momentum from the central system, which may play a key role in the evolution of the binary.« less

  20. Absolute Dimensions and Evolutionary Status of the Semi-detached Algol W Ursae Minoris

    NASA Astrophysics Data System (ADS)

    Park, Jang-Ho; Hong, Kyeongsoo; Koo, Jae-Rim; Lee, Jae Woo; Kim, Chun-Hwey

    2018-03-01

    Double-lined eclipsing binaries allow accurate and direct determination of fundamental parameters such as mass and radius for each component, and they provide important constraints on the stellar structure and evolution models. In this study, we aim to determine a unique set of binary parameters for the Algol system W UMi and to examine its evolutionary status. New high-resolution time-series spectroscopic observations were carried out during 14 nights from 2008 April to 2011 March, and a total of 37 spectra were obtained using the Bohyunsan Optical Echelle Spectrograph. We measured the radial velocities (RVs) for both components, and the effective temperature of the primary star was found to be T eff,1 = 9310 ± 90 K by a comparison of the observed spectra and the Kurucz models. The physical parameters of W UMi were derived by an analysis of our RV data together with the multi-band light curves of Devinney et al. The individual masses, radii, and luminosities of both components are M 1 = 3.68 ± 0.10 M ⊙ and M 2 = 1.47 ± 0.04 M ⊙, R 1 = 3.88 ± 0.03 R ⊙ and R 2 = 3.13 ± 0.03 R ⊙, and L 1 = 102 ± 1 L ⊙ and L 2 = 7.3 ± 0.1 L ⊙, respectively. A comparison of these parameters with theoretical stellar models showed that the primary component lies in the main-sequence band, while the less massive secondary is noticeably evolved. The results indicate that the initially more massive star became the present secondary by losing most of its own mass via mass transfer to the companion (present primary).

  1. Occultations from an Active Accretion Disk in a 72-day Detached Post-Algol System Detected by K2

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Rappaport, S.; Nelson, L.; Huang, C. X.; Senhadji, A.; Rodriguez, J. E.; Vanderburg, A.; Quinn, S.; Johnson, C. I.; Latham, D. W.; Torres, G.; Gary, B. L.; Tan, T. G.; Johnson, M. C.; Burt, J.; Kristiansen, M. H.; Jacobs, T. L.; LaCourse, D.; Schwengeler, H. M.; Terentev, I.; Bieryla, A.; Esquerdo, G. A.; Berlind, P.; Calkins, M. L.; Bento, J.; Cochran, W. D.; Karjalainen, M.; Hatzes, A. P.; Karjalainen, R.; Holden, B.; Butler, R. P.

    2018-02-01

    Disks in binary systems can cause exotic eclipsing events. MWC 882 (BD –22 4376, EPIC 225300403) is such a disk-eclipsing system identified from observations during Campaign 11 of the K2 mission. We propose that MWC 882 is a post-Algol system with a B7 donor star of mass 0.542+/- 0.053 {M}ȯ in a 72-day orbit around an A0 accreting star of mass 3.24+/- 0.29 {M}ȯ . The 59.9+/- 6.2 {R}ȯ disk around the accreting star occults the donor star once every orbit, inducing 19-day long, 7% deep eclipses identified by K2 and subsequently found in pre-discovery All-Sky Automated Survey and All Sky Automated Survey for Supernovae observations. We coordinated a campaign of photometric and spectroscopic observations for MWC 882 to measure the dynamical masses of the components and to monitor the system during eclipse. We found the photometric eclipse to be gray to ≈1%. We found that the primary star exhibits spectroscopic signatures of active accretion, and we observed gas absorption features from the disk during eclipse. We suggest that MWC 882 initially consisted of a ≈3.6 M ⊙ donor star transferring mass via Roche lobe overflow to a ≈2.1 M ⊙ accretor in a ≈7-day initial orbit. Through angular momentum conservation, the donor star is pushed outward during mass transfer to its current orbit of 72 days. The observed state of the system corresponds with the donor star having left the red giant branch ∼0.3 Myr ago, terminating active mass transfer. The present disk is expected to be short-lived (102 yr) without an active feeding mechanism, presenting a challenge to this model.

  2. VLBI astrometry and the Hipparcos link to the extragalactic reference frame

    NASA Technical Reports Server (NTRS)

    Lestrade, J.-F.; Preston, R. A.; Gabuzda, D. C.; Phillips, R. B.

    1991-01-01

    Intermediate results are reported from a program of VLBI radio observations designed to establish a link between the rotating reference frame of the ESA Hipparcos astrometric satellite and the extragalactic VLBI frame being developed by the International Earth Rotation Service. A group of 12 link stars have been observed at various epochs since 1982, and more observations are being undertaken during the 3-yr Hipparcos mission (1989-1992). Analysis of data on Algol indicates that phase-reference VLBI can determine an expected sky displacement of 4 marcsec with an uncertainty of 0.5 marcsec, even when the activity is only a few mJy.

  3. VizieR Online Data Catalog: Algol-type binaries. VIII. DI Peg & AF Gem (Yang+, 2014)

    NASA Astrophysics Data System (ADS)

    Yang, Y.-G.; Yang, Y.; Li, S.-Z.

    2014-10-01

    In the 2012-2013 observing season, DI Peg and AF Gem were observed using the 60cm telescope and the 85cm telescope at Xinglong station (XLs) of National Astronomical Observatories of Chinese (NAOC). The standard Johnson-Cousins UBVRcIc photometric systems were mounted upon two small telescopes. On five consecutive nights from 2012 October 9 to 13, the multi-color photometry of DI Peg was made with the 60cm telescope. The other variable star, AF Gem, was observed using the 85cm telescope on 7 nights from 2013 January 1 to 7. (5 data files).

  4. Flowcharting with D-charts

    NASA Technical Reports Server (NTRS)

    Meyer, D.

    1985-01-01

    A D-Chart is a style of flowchart using control symbols highly appropriate to modern structured programming languages. The intent of a D-Chart is to provide a clear and concise one-for-one mapping of control symbols to high-level language constructs for purposes of design and documentation. The notation lends itself to both high-level and code-level algorithmic description. The various issues that may arise when representing, in D-Chart style, algorithms expressed in the more popular high-level languages are addressed. In particular, the peculiarities of mapping control constructs for Ada, PASCAL, FORTRAN 77, C, PL/I, Jovial J73, HAL/S, and Algol are discussed.

  5. Flowcharting with D-charts

    NASA Technical Reports Server (NTRS)

    Meyer, D. D.

    1985-01-01

    A D-Chart is a style of flowchart using control symbols highly appropriate to modern structured programming languages. The intent of a D-Chart is to provide a clear and concise one-for-one mapping of control symbols to high-level language constructs for purposes of design and documentation. The notation lends itself to both high-level and code-level algorithmic description. The various issues that may arise when representing, in D-Chart style, algorithms expressed in the more popular high-level languages are addressed. In particular, the peculiarities of mapping control constructs for Ada, PASCAL, FORTRAN 77, C, PL/I, Joviai J73, HAL/S, and Algol are discussed.

  6. SSL: A software specification language

    NASA Technical Reports Server (NTRS)

    Austin, S. L.; Buckles, B. P.; Ryan, J. P.

    1976-01-01

    SSL (Software Specification Language) is a new formalism for the definition of specifications for software systems. The language provides a linear format for the representation of the information normally displayed in a two-dimensional module inter-dependency diagram. In comparing SSL to FORTRAN or ALGOL, it is found to be largely complementary to the algorithmic (procedural) languages. SSL is capable of representing explicitly module interconnections and global data flow, information which is deeply imbedded in the algorithmic languages. On the other hand, SSL is not designed to depict the control flow within modules. The SSL level of software design explicitly depicts intermodule data flow as a functional specification.

  7. The W Serpentis binaries with a few words on epsilon Aurigae

    NASA Technical Reports Server (NTRS)

    Plavec, M. J.

    1982-01-01

    The Algol systems, U-Cephei and V356 Sagittarii, which should be included among the W Serpentis stars, characterized by strong ultraviolet emission lines are discussed. The spectra of the W-Ser stars are similar to those of the T-Tauri stars, and a similarity of physical conditions is indicated. A model of W-Serpentis, a B-star embedded in a thick disk, may be relevant to other exotic eclipsing systems, possibly even to obliquity of ecliptic Aurigae. The obliquity of ecliptic and the relationship to Aur, BM Orionis is reviewed; the system probably contains a pre main sequence star highly flattened by differential rotation.

  8. A translator and simulator for the Burroughs D machine

    NASA Technical Reports Server (NTRS)

    Roberts, J.

    1972-01-01

    The D Machine is described as a small user microprogrammable computer designed to be a versatile building block for such diverse functions as: disk file controllers, I/O controllers, and emulators. TRANSLANG is an ALGOL-like language, which allows D Machine users to write microprograms in an English-like format as opposed to creating binary bit pattern maps. The TRANSLANG translator parses TRANSLANG programs into D Machine microinstruction bit patterns which can be executed on the D Machine simulator. In addition to simulation and translation, the two programs also offer several debugging tools, such as: a full set of diagnostic error messages, register dumps, simulated memory dumps, traces on instructions and groups of instructions, and breakpoints.

  9. From YY Boo (eclipsing binary) via J1407 (ringed companion) to WD 1145+017 (white dwarf with debris disk) (Abstract)

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.

    2018-06-01

    (Abstract only) Several years ago by accident I observed YY Boo outside of an eclipse and was very surprised to see a short term periodic variation of about 0.1 mag. That was completely unexpected and it initiated an international campaign by amateurs to identify the cause of these variations. It turned out that YY Boo showed a pulsation period of about 88 min in addition to being an Algol type eclipsing binary. Hence it turned out that YY Boo has become a new member of a class of pulsating eclipsing binary systems with, at that time, the second largest amplitude after BO Her.

  10. Dust Around Herbig Ae Stars: Additional Constraints from their Photometric and Polarimetric Variability

    NASA Technical Reports Server (NTRS)

    Krivova, N. A.; Ilin, V. B.; Fischer, O.

    1996-01-01

    For the Herbig Ae stars with Algol-like minima (UX Ori, WW Vul, etc), the effects of circumstellar dust include: excess infrared emission, anomalous ultraviolet extinction, the 'blueing' of the stars in minima accompanying by an increase of intrinsic polarization. Using a Monte-Carlo code for polarized radiation transfer we have simulated these effects and compared the results obtained for different models with the observational data available. We found that the photometric and polarimetric behavior of the stars provided essential additional constraints on the circumstellar dust models. The models with spheroidal shell geometry and compact (non-fluffy) dust grains do not appear to be able to explain all the data.

  11. John Goodricke, Edward Pigott, and Their Study of Variable Stars

    NASA Astrophysics Data System (ADS)

    French, Linda M.

    2011-05-01

    John Goodricke (1764-1786) and Edward Pigott (1753-1825) are credited with determining the first accurate periods for several important variable stars. Goodricke's name is associated with the determination of the period of the eclipsing binary Algol (Beta Persei); for this he was awarded the Copley Prize of the Royal Society of London. He also determined the periods of the contact binary Beta Lyrae and of Delta Cephei, the prototype Cepheid variable. Around the same time, Edward Pigott obtained the period of Eta Aquilae, another Cepheid. In actuality, the two collaborated on all these observations; today we would call them co-discoverers. Goodricke is the better known of the two, in part because he won the Copley Medal, in part because of his tragically short life, and in part because he was deaf. Edward Pigott was the more experienced observer, having worked with his father Nathaniel on determining the longitudes of several cities on the Continent. Evidence shows, however, that Goodricke had some astronomical experience while a student at the Warrington Academy. The journals of the two show that they developed a partnership that made the most of both their talents over the brief time (less than five years) they worked together before Goodricke's death. Today, the two are remembered as having suggested eclipses as the cause for the periodic dimming of Algol. This explanation is accepted today as the correct one. In their day, however, most eminent astronomers believed that starspots were a more likely cause for the dimming. By the time of John Goodricke's death, he seems to have accepted that explanation as well. A study of the work of Goodricke and Pigott contains many lessons for today's observers of variable stars. This work was supported by an AAS Small Research Grant and by the Pollack Award of the Dudley Observatory.

  12. KIC 6048106: an Algol-type eclipsing system with long-term magnetic activity and hybrid pulsations - I. Binary modelling

    NASA Astrophysics Data System (ADS)

    Samadi Ghadim, A.; Lampens, P.; Jassur, M.

    2018-03-01

    The A-F-type stars and pulsators (δ Scuti-γ Dor) are in a critical regime where they experience a transition from radiative to convective transport of energy in their envelopes. Such stars can pulsate in both gravity and acoustic modes. Hence, the knowledge of their fundamental parameters along with their observed pulsation characteristics can help in improving the stellar models. When residing in a binary system, these pulsators provide more accurate and less model-dependent stellar parameters than in the case of their single counterparts. We present a light-curve model for the eclipsing system KIC 6048106 based on the Kepler photometry and the code PHOEBE. We aim to obtain accurate physical parameters and tough constraints for the stellar modelling of this intermediate-mass hybrid pulsator. We performed a separate modelling of three light-curve segments which show a distinct behaviour due to a difference in activity. We also analysed the Kepler Eclipse Time Variations (ETVs). KIC 6048106 is an Algol-type binary with F5-K5 components, a near-circular orbit and a 1.56-d period undergoing variations of the order of Δ P/P˜eq 3.60× 10^{-7} in 287 ± 7 d. The primary component is a main-sequence star with M1 = 1.55 ± 0.11 M⊙, R1 = 1.57 ± 0.12 R⊙. The secondary is a much cooler subgiant with M2 = 0.33 ± 0.07 M⊙, R2 = 1.77 ± 0.16 R⊙. Many small near-polar spots are active on its surface. The second quadrature phase shows a brightness modulation on a time-scale 290 ± 7 d, in good agreement with the ETV modulation. This study reveals a stable binary configuration along with clear evidence of a long-term activity of the secondary star.

  13. A study of coronal X-ray emission from short-period Algol binaries

    NASA Technical Reports Server (NTRS)

    Singh, K. P.; Drake, S. A.; White, N. E.

    1995-01-01

    A study of X-ray emission from five short-period Algol-type binaries based on observations with Advanced Satellite for Cosmology and Astrophysics (ASCA) and ROSAT is presented. We have observed RZ Cas with both satellites, and beta Per, U Cep, delta Lib, and TW Dra with ROSAT. Significant intensity variations are seen in the X-ray emission from RZ Cas, U Cep, TW Dra, and delta Lib. These variations seem unrelated to the eclipsing behavior of these systems and are probably due to either rotational modulation of compact active regions on the surfaces of the chromospherically active secondary components or to flaring activity in the systems. The spectra of all but one of the systems require the presence of at least two discrete plasma components with different temperatures (0.6 - 0.7 keV, and approximately 2 keV) and the abundances of the medium-Z elements 20% - 50% of the solar photospheric values. The high resolving power and signal-to-noise ratio of the ASCA spectra allow us to individually constrain the coronal abundances of O, Ne, Mg, Si, S, and Fe in RZ Cas. We demonstrate that, if we use the elemental abundances and temperatures obtained from the analysis of their ASCA spectra as (fixed) inputs, to fit the ROSAT PSPC spectra well requires the presence of a third component (kT approximately 0.2 - 0.3 keV) in RZ Cas and beta Per. A continuous emission measure model of the power-law type (EM(T) variesas (T/T(sub max)(sup alpha)) generally gives a poor fit to the ASCA and ROSAT data on most sources. Circumstellar or circumbinary absorbing matter seems to be present in some of these systems, as indicated by the variable total column density needed to fit their X-ray spectra.

  14. The most plausible explanation of the cyclic period changes in close binaries: the case of the RS CVn-type binary WW Dra

    NASA Astrophysics Data System (ADS)

    Liao, W.-P.; Qian, S.-B.

    2010-07-01

    Cyclic period changes are a fairly common phenomenon in close binary systems and are usually explained as being caused either by the magnetic activity of one or both components or by the light travel time effect (LTTE) of a third body. We searched the orbital period changes in 182 EA-type (including the 101 Algol systems used by Hall), 43 EB-type and 53 EW-type binaries with known mass ratio and spectral type of the secondary component. We reproduced and improved the diagram in Hall according to the new collected data. Our plots do not support the conclusion derived by Hall that cyclic period changes are restricted to binaries having a secondary component with spectral type later than F5. The presence of period changes among systems with a secondary component of early type indicates that magnetic activity is one, but not the only, cause of the period variation. It is discovered that cyclic period changes, probably resulting from the presence of a third body, are more frequent in EW-type binaries among close systems. Therefore, the most plausible explanation of the cyclic period changes is the LTTE through the presence of a third body. Using the century-long historical record of the times of light minimum, we analysed the cyclic period change in the Algol binary WW Dra. It is found that the orbital period of the binary shows a ~112.2-yr cyclic variation with an amplitude of ~0.1977d. The cyclic oscillation can be attributed to the LTTE by means of a third body with a mass no less than 6.43Msolar. However, no spectral lines of the third body were discovered, indicating that it may be a candidate black hole. The third body is orbiting the binary at a distance closer than 14.4 au and may play an important role in the evolution of this system.

  15. Tracing CNO exposed layers in the Algol-type binary system u Her

    NASA Astrophysics Data System (ADS)

    Kolbas, V.; Dervişoğlu, A.; Pavlovski, K.; Southworth, J.

    2014-11-01

    The chemical composition of stellar photospheres in mass-transferring binary systems is a precious diagnostic of the nucleosynthesis processes that occur deep within stars, and preserves information on the components' history. The binary system u Her belongs to a group of hot Algols with both components being B stars. We have isolated the individual spectra of the two components by the technique of spectral disentangling of a new series of 43 high-resolution échelle spectra. Augmenting these with an analysis of the Hipparcos photometry of the system yields revised stellar quantities for the components of u Her. For the primary component (the mass-gaining star), we find MA = 7.88 ± 0.26 M⊙, RA = 4.93 ± 0.15 R⊙ and Teff, A = 21 600 ± 220 K. For the secondary (the mass-losing star) we find MB = 2.79 ± 0.12 M⊙, RB = 4.26 ± 0.06 R⊙ and Teff, B = 12 600 ± 550 K. A non-local thermodynamic equilibrium analysis of the primary star's atmosphere reveals deviations in the abundances of nitrogen and carbon from the standard cosmic abundance pattern in accord with theoretical expectations for CNO nucleosynthesis processing. From a grid of calculated evolutionary models the best match to the observed properties of the stars in u Her enabled tracing the initial properties and history of this binary system. We confirm that it has evolved according to case A mass transfer. A detailed abundance analysis of the primary star gives C/N = 0.9, which supports the evolutionary calculations and indicates strong mixing in the early evolution of the secondary component, which was originally the more massive of the two. The composition of the secondary component would be a further important constraint on the initial properties of u Her system, but requires spectra of a higher signal-to-noise ratio.

  16. Computer enhancement through interpretive techniques

    NASA Technical Reports Server (NTRS)

    Foster, G.; Spaanenburg, H. A. E.; Stumpf, W. E.

    1972-01-01

    The improvement in the usage of the digital computer through the use of the technique of interpretation rather than the compilation of higher ordered languages was investigated by studying the efficiency of coding and execution of programs written in FORTRAN, ALGOL, PL/I and COBOL. FORTRAN was selected as the high level language for examining programs which were compiled, and A Programming Language (APL) was chosen for the interpretive language. It is concluded that APL is competitive, not because it and the algorithms being executed are well written, but rather because the batch processing is less efficient than has been admitted. There is not a broad base of experience founded on trying different implementation strategies which have been targeted at open competition with traditional processing methods.

  17. VizieR Online Data Catalog: Period of HD 19356 recorded in the Cairo Calendar? (Jetsu+, 2013)

    NASA Astrophysics Data System (ADS)

    Jetsu, L.; Porceddu, S.; Lyytinen, J.; Kajatkari, P.; Lehtinen, J.; Markkanen, T.; Toivari-Viitala, J.

    2016-08-01

    Ancient Egyptian Scribes (AES) wrote Calendars of Lucky and Unlucky Days that assigned good and bad prognoses for the days of the year. These prognoses were based on mythological and astronomical events considered influential for everyday life. The best preserved calendar is the Cairo Calendar (CC) in papyrus Cairo 86637 dated to 1271-1163B.C. Here, we concentrate on statistics, astrophysics, and astronomy. We show that n~200 good prognoses would induce PMoon and PAlgol in CC, even if the remaining n~700 good and bad prognoses had aperiodic origins. The connections between Algol and AES are discussed in detail in S. Porceddu et al. (2013, in preparation, Paper III), where we date CC to 1224 B.C. (2 data files).

  18. Evidence of Periodicity in Ancient Egyptian Calendars of Lucky and Unlucky Days

    NASA Astrophysics Data System (ADS)

    Porceddu, P.; Jetsu, L.; Markkanen, T.; Toivari-Viitala, J.

    2008-10-01

    This article presents an experiment in time series analysis, specifically the Rayleigh Test, applied to the ancient Egyptian calendars of lucky and unlucky days recorded in papyri P. Cairo 86637, P. BM 10474 and P. Sallier IV. The Rayleigh Test is used to determine whether the lucky and unlucky days are distributed randomly within the year, or whether they exhibit periodicity. The results of the analysis show beyond doubt that some of the lucky days were distributed according to a lunar calendar. The cycles of the moon thus played an important role in the religious thinking of the Egyptians. Other periods found using the Rayleigh Test are connected to the civil calendar, the mythological symbolism of the twelfth hour of the day and possibly the period of variation of the star Algol.

  19. Development and evaluation of a Fault-Tolerant Multiprocessor (FTMP) computer. Volume 2: FTMP software

    NASA Technical Reports Server (NTRS)

    Lala, J. H.; Smith, T. B., III

    1983-01-01

    The software developed for the Fault-Tolerant Multiprocessor (FTMP) is described. The FTMP executive is a timer-interrupt driven dispatcher that schedules iterative tasks which run at 3.125, 12.5, and 25 Hz. Major tasks which run under the executive include system configuration control, flight control, and display. The flight control task includes autopilot and autoland functions for a jet transport aircraft. System Displays include status displays of all hardware elements (processors, memories, I/O ports, buses), failure log displays showing transient and hard faults, and an autopilot display. All software is in a higher order language (AED, an ALGOL derivative). The executive is a fully distributed general purpose executive which automatically balances the load among available processor triads. Provisions for graceful performance degradation under processing overload are an integral part of the scheduling algorithms.

  20. Period Variations of the Eclipsing Binary Systems T LMi and VX Lac

    NASA Astrophysics Data System (ADS)

    Yılmaz, M.; İzci, D. D.; Gümüş, D.; Özavci, İ.; Selam, S. O.

    2015-07-01

    We present a period analysis of the two Algol-type eclipsing binary systems T LMi and VX Lac using all available times of minimum in the literature, as well as new minima obtained at the Ankara University Kreiken Observatory. The period analysis of T LMi suggests mass transfer between the components and also a third body that is dynamically bound to the binary system. The analysis of VX Lac also suggests mass transfer between the components, and the presence of a third and a fourth body under the assumption of a Light-Time Effect. In addition, the periodic variation of VX Lac was examined under the hypothesis of magnetic activity, and the corresponding parameters were derived. We report here the orbital parameters for both systems, along with the ones related to mass transfer, and those for the third and fourth bodies.

  1. ORBITAL SOLUTIONS AND ABSOLUTE ELEMENTS OF THE ECLIPSING BINARY EE AQUARII

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wronka, Marissa Diehl; Gold, Caitlin; Sowell, James R.

    2010-04-15

    EE Aqr is a 7.9 mag Algol variable with a 12 hr orbital period. The Wilson-Devinney program is used to simultaneously solve 11 previously published light curves together with two existing radial velocity curves. The resulting masses are M {sub 1} = 2.24 {+-} 0.13 M {sub sun} and M {sub 2} = 0.72 {+-} 0.04 M {sub sun}, and the radii are R {sub 1} = 1.76 {+-} 0.03 R {sub sun} and R {sub 2} = 1.10 {+-} 0.02 R {sub sun}. The system has the lower-mass component completely filling its Roche lobe. Its distance from Hipparcos observationsmore » is 112 {+-} 10 pc. An improved ephemeris is derived, and no deviations in the period over time were seen. Light and velocity curve parameters, orbital elements, and absolute dimensions are presented, plus a comparison is made with previous solutions.« less

  2. Einstein observations of selected close binaries and shell stars

    NASA Technical Reports Server (NTRS)

    Guinan, E. F.; Koch, R. H.; Plavec, M. J.

    1984-01-01

    Several evolved close binaries and shell stars were observed with the IPC aboard the HEAO 2 Einstein Observatory. No eclipsing target was detected, and only two of the shell binaries were detected. It is argued that there is no substantial difference in L(X) for eclipsing and non-eclipsing binaries. The close binary and shell star CX Dra was detected as a moderately strong source, and the best interpretation is that the X-ray flux arises primarily from the corona of the cool member of the binary at about the level of Algol-like or RS CVn-type sources. The residual visible-band light curve of this binary has been modeled so as to conform as well as possible with this interpretation. HD 51480 was detected as a weak source. Substantial background information from IUE and ground scanner measurements are given for this binary. The positions and flux values of several accidentally detected sources are given.

  3. Radial Velocities of 41 Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.

    2017-12-01

    Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.

  4. Four New Binary Stars in the Field of CL Aurigae. II

    NASA Astrophysics Data System (ADS)

    Kim, Chun-Hwey; Lee, Jae Woo; Duck, Hyun Kim; Andronov, Ivan L.

    2010-12-01

    We report on a discovery of four new variable stars (USNO-B1.0 1234-0103195, 1235- 0097170, 1236-0100293 and 1236-0100092) in the field of CL Aur. The stars are classified as eclipsing binary stars with orbital periods of 0.5137413(23) (EW type), 0.8698365(26) (EA) and 4.0055842(40) (EA with a significant orbital eccentricity), respectively. The fourth star (USNO-B1.0 1236-0100092) showed only one partial ascending branch of the light curves, although 22 nights were covered at the 61-cm telescope at the Sobaeksan Optical Astronomy Observatory (SOAO) in Korea. Fourteen minima timings for these stars are published separately. In an addition to the original discovery paper (Kim et al. 2010), we discuss methodological problems and present results of mathematical modeling of the light curves using other methods, i.e. trigonometric polynomial fits and the newly developed fit "NAV" ("New Algol Variable").

  5. Photometric and spectroscopic investigation of the oscillating Algol type binary: EW Boo

    NASA Astrophysics Data System (ADS)

    Doğruel, Mustafa Burak; Gürol, Birol

    2015-10-01

    We obtained the physical and geometrical parameters of the EW Boo system, which exhibits short period and small amplitude pulsations as well as brightness variations due to orbital motion of components. Towards this end we carried out photometric observations at Ankara University Kreiken Observatory (AUKO) as well as spectroscopic observations at TUBITAK National Observatory (TNO). The light and radial velocity curves obtained from these observations have been simultaneously analyzed with PHOEBE and the absolute parameters of the system along with the geometric parameters of the components have been determined. Using model light curves of EW Boo, light curve regions in which the pulsations are active have been determined and as a result of analyses performed in the frequency region, characteristic parameters of pulsations have been obtained. We find that the results are compatible with current parameters of similar systems in the literature. The evolutionary status of the components is propounded and discussed.

  6. Effluent sampling of Scout D and Delta launch vehicle exhausts

    NASA Technical Reports Server (NTRS)

    Hulten, W. C.; Storey, R. W.; Gregory, G. L.; Woods, D. C.; Harris, F. S., Jr.

    1974-01-01

    Characterization of engine-exhaust effluents (hydrogen chloride, aluminum oxide, carbon dioxide, and carbon monoxide) has been attempted by conducting field experiments monitoring the exhaust cloud from a Scout-Algol III vehicle launch and a Delta-Thor vehicle launch. The exhaust cloud particulate size number distribution (total number of particles as a function of particle diameter), mass loading, morphology, and elemental composition have been determined within limitations. The gaseous species in the exhaust cloud have been identified. In addition to the ground-based measurements, instrumented aircraft flights through the low-altitude, stabilized-exhaust cloud provided measurements which identified CO and HCI gases and Al2O3 particles. Measurements of the initial exhaust cloud during formation and downwind at several distances have established sampling techniques which will be used for experimental verification of model predictions of effluent dispersion and fallout from exhaust clouds.

  7. Spectroscopy of bright Algol-type semi-detached close binary system HU Tauri (HR 1471)

    NASA Astrophysics Data System (ADS)

    Parthasarathy, M.

    2018-01-01

    Radial velocities of the primary component (B8V) of HU Tauri derived from the photographic spectra obtained during January 1974 to December 1974 and spectroscopic orbital elements from the analysis of the radial velocity curve of the B8V primary are given. The H line of the late type secondary component is clearly detected on the photographic spectra taken around the quadratures and radial velocities of the secondary component are derived. The radial velocity semi amplitudes of the primary (K) and secondary (K) are found to be 60 km/sec and 234 km/sec respectively. The mass ratio M/M = K/K is found to be 0.2564. The detection of the H line of the secondary is confirmed from the high resolution spectra that I obtained during 1981 and 1983 at quadratures using the 2.1-m McDonald observatory Otto Struve reflector telescope and high resolution coude Reticon spectrograph.

  8. Surprising Rapid Collapse of Sirius B from Red Giant to White Dwarf Through Mass Transfer to Sirius a

    NASA Astrophysics Data System (ADS)

    Yousef, Shahinaz; Ali, Ola

    2013-03-01

    Sirius was observed in antiquity as a red star. In his famous astronomy textbook the Almagest written 140 AD, Ptolemy described the star Sirius as fiery red. He curiously depicted it as one of six red-colored stars. The other five are class M and K stars, such as Arcturus and Betelgeuse. Apparent confirmation in ancient Greek and Roman sources are found and Sirius was also reported red in Europe about 1400 years ago. Sirius must have changed to a white dwarf in the night of Ascension. The star chapter in the Quran started with "by the star as it collapsed (1) your companion have not gone astray nor being misled (2), and in verse 49 which is the rotation period of the companion Sirius B around Sirius A, it is said" He is the Lord of Sirius (49). If Sirius actually was red what could have caused it to change into the brilliant bluish-white star we see today? What the naked eye perceives as a single star is actually a binary star system, consisting of a white main sequence star of spectral type A1V, termed Sirius A, and a faint white dwarf companion of spectral type DA2, termed Sirius B. The red color indicates that the star seen then was a red giant. It looks that what they have seen in antiquity was Sirius B which was then a red giant and it collapsed to form a white dwarf. Since there is no evidence of a planetary nebula, then the red Sirius paradox can be solved in terms of stellar evolution with mass transfer. Sirius B was the most massive star which evolved to a red giant and filled the Roche lobe. Mass transfer to Sirius A occurred through the Lagrangian point. Sirius A then became more massive while Sirius B lost mass and shrank. Sirius B then collapsed abruptly into a white dwarf. In the case of Algol, Ptolmy observed it as white star but it was red at the time of El sufi. At present it is white. The rate of mass transfer from Sirius B to Sirius A, and from Algol B to A is estimated from observational data of colour change from red to bullish white to be 0.0021 and 0.0024 M⊙/yr respectively.

  9. Light Curve and Orbital Period Analysis of VX Lac

    NASA Astrophysics Data System (ADS)

    Yılmaz, M.; Nelson, R. H.; Şenavcı, H. V.; İzci, D.; Özavcı, İ.; Gümüş, D.

    2017-04-01

    In this study, we performed simultaneously light curve and radial velocity, and also period analyses of the eclipsing binary system VX Lac. Four color (BVRI) light curves of the system were analysed using the W-D code. The results imply that VX Lac is a classic Algol-type binary with a mass ratio of q=0.27, of which the less massive secondary component fills its Roche lobe. The orbital period behaviour of the system was analysed by assuming the light time effect (LITE) from a third body. The O-C analysis yielded a mass transfer rate of dM/dt=1.86×10-8M⊙yr-1 and the minimal mass of the third body to be M3=0.31M⊙. The residuals from mass transfer and the third body were also analysed because another cyclic variation is seen in O-C diagram. This periodic variation was examined under the hypotheses of stellar magnetic activity and fourth body.

  10. Orbital variability in the eclipsing pulsar binary PSR B1957+20

    NASA Technical Reports Server (NTRS)

    Arzoumanian, Z.; Fruchter, A. S.; Taylor, J. H.

    1994-01-01

    We have conducted timing observations of the eclipsing millisecond binary pulsar PSR B1957+20, extending the span of data on this pulsar to more than five years. During this time the orbital period of the system has varied by roughly Delta P(sub b)/P(sub b) = 1.6 x 10(exp -7), changing quardratically with time and displaying with time and displaying an orbital period second derivative of P(sub b) = (1.43 +/- 0.08) x 10(exp -18)/sec. The previous measurement of a large negative orbital period derivative reflected only the short-term behavior of the system during the early observations; the orbital period derivative is now positive. If, as we suspect, the PSR B1957+20 system is undergoing quasi-cyclic orbital period variations similar to those found in other close binaries such as Algol and RS CVn, then the 0.025 solar mass companion to PSR B1957+20 is most likely non-degenerate, convective, and magnetically active.

  11. A model of V356 Sagittarii. [eclipsing binary star

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.; Caldwell, C. N.

    1978-01-01

    It is pointed out that V356 Sgr is an abnormal member of the Algol class of binaries. According to Popper (1955), the primary component is of spectral type B3V and is rotating rapidly, while the secondary is of type A2II and is rotating at least approximately in synchronism with the orbital motion. The system is either semidetached or quite near to being semidetached. The main anomalies are related to the ratio of eclipse depths, the very small reflection effect of the light curves, differences between the duration of the primary and the secondary eclipse, and the unusual characteristics of the primary eclipse. It is concluded that the lack of agreement between theory and observation can be due only to an important attribute of the binary which has not yet been incorporated into the theory. The peculiarities can most reasonably be explained in terms of a geometrically and optically thick disk which surrounds the primary component.

  12. The hot subdwarf in the eclipsing binary HD 185510

    NASA Technical Reports Server (NTRS)

    Jeffery, C. S.; Simon, Theodore; Evans, T. L.

    1992-01-01

    High-resolution spectroscopic measurements of radial velocity are employed to characterize the eclipsing binary HD 185510 in terms of masses and evolutionary status. The IUE is used to obtain the radial velocities which indicate a large mass ratio Mp/Ms of 7.45 +/- 0.15, and Teff is given at 25,000 +/- 1000 K based on Ly alpha and UV spectrophotometry. Photometric observations are used to give an orbital inclination of between 90 and 70 deg inclusive, leading to masses of 0.31-0.37 and 2.3-2.8 solar mass for the hot star and the K star, respectively. The surface gravity of HD 185510B is shown to be higher than those values for sdB stars suggesting that the object is a low-mass white dwarf that has not reached its fully degenerate configuration. The object is theorized to be a low-mass helium main-sequence star or a nascent helium degenerate in a post-Algol system.

  13. RX GEMINORUM: PHOTOMETRIC SOLUTIONS, (NEARLY UNIFORM) GAINER ROTATION, DONOR RADIAL VELOCITY SOLUTION, NON-LTE ACCRETION DISK MODELS OF Hα EMISSION PROFILES, AND SECULAR LIGHT CURVE CHANGES IN THE 20TH CENTURY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Edward C.; Etzel, Paul B., E-mail: olsoneco@aol.com, E-mail: pbetzel@mail.sdsu.edu

    We obtained full-orbit Iybvu intermediate-band photometry and CCD spectroscopy of the long-period Algol eclipsing binary RX Geminorum. Photometric solutions using the Wilson–Devinney code give a gainer rotation (hotter, mass-accreting component) about 15 times the synchronous rate. We describe a simple technique to detect departures from uniform rotation of the hotter component. These binaries radiate double-peaked Hα emission from a low-mass accretion disk around the gainer. We used an approximate non-LTE disk code to predict models in fair agreement with observations, except in the far wings of the emission profile, where the star–inner disk boundary layer emits extra radiation. Variations inmore » Hα emission derive from modulations in the transfer rate. A study of times of minima during the 20th century suggests that a perturbing third body is present near RX Gem.« less

  14. BV Observations of the Eclipsing Binary XZ Andromedae at the EKU Observatory (Abstract)

    NASA Astrophysics Data System (ADS)

    Ciocca, M.

    2018-06-01

    (Abstract only) XZ Andromedae is an Algol-type eclipsing binary. It has been the subject of many observing campaigns, all aiming at determining the mechanisms responsible for its period variation. Results have been inconsistent and the period changes did not seem to have a common explanation between authors. The latest of these observations (Y.-G. Yang, New Astronomy, 25, 2013, 109) concluded that a third companion may be present and that mass transfer from the secondary to the primary companion may be occurring. We performed measurements in the Bessel band passes B and V, measured several times of minimum and developed a model, using binary maker 3, that matches well the observations and includes mass transfer by adding a hot spot on the primary (the cool, more evolved companion) and a "cold" spot on the secondary (hotter, but smaller companion). The data were collected at the EKU observatory with a Celestron C14 telescope and a SBIG STL-6303 camera.

  15. Hydrodynamics on Supercomputers: Interacting Binary Stars

    NASA Astrophysics Data System (ADS)

    Blondin, J. M.

    1997-05-01

    The interaction of close binary stars accounts for a wide variety of peculiar objects scattered throughout our Galaxy. The unique features of Algols, Symbiotics, X-ray binaries, cataclysmic variables and many others are linked to the dynamics of the circumstellar gas which can take forms from tidal streams and accretion disks to colliding stellar winds. As in many other areas of astrophysics, large scale computing has provided a powerful new tool in the study of interacting binaries. In the research to be described, hydrodynamic simulations are used to create a "laboratory", within which one can "experiment": change the system and observe (and predict) the effects of those changes. This type of numerical experimentation, when buttressed by analytic studies, provides a means of interpreting observations, identifying and understanding the relevant physics, and visualizing the physical system. The results of such experiments will be shown, including the structure of tidal streams in Roche lobe overflow systems, mass accretion in X-ray binaries, and the formation of accretion disks.

  16. Obituary: James C. Kemp, 1927-1988

    NASA Astrophysics Data System (ADS)

    Milone, E. F.

    2009-01-01

    James C. Kemp was born in Detroit, Michigan on 9 February 1927, and died in Eugene, Oregon, on 29 March 1988. He went to high school in Mexico City and did undergraduate studies at the University of Michigan and University of California at Berkeley. Kemp was an active observational astronomer, having migrated from earlier interests in Slavic languages, in which he majored, electrical engineering, and physics. He obtained a PhD in electrical engineering at Berkeley in 1960 and did post-doctoral work there with Erwin Hahn on spin resonance. He went to the University of Oregon in 1961 and conducted research in magneto-optics, developing, in the process, a piezo-optical birefringence modulator to measure circular polarization. The modulator is described by Tinbergen (1996). Kemp explored new areas as he measured magnetic fields in the sunspots with polarized infrared light, and developed polarimeters and photometers to study the behavior of such astronomical sources as white dwarfs, the relativistic jets of binary SS 433, the x-ray binary Cyg X-1, and the bright eclipsing binaries Algol and e Aurigae on the 61- and, later, 81-cm telescope at the Pine Mountain Observatory, of which Kemp was director until his death from cancer. His measurement of circularly polarization in the continuum light of the white dwarf GJ 742 (Grw +70∘ 8247, Kemp et al. 1970b) was an important discovery, and through his study of Algol (Kemp et al. 1983; Wilson & Liou 1993), he appears to have been the first to discover the limb polarization in eclipsing binaries predicted by Chandrasekhar (1946ab). Although it has taken twenty years for the BAAS to publish his obituary notice, it is somewhat appropriate that his former student, Gary Henson, who provided much of the background for this article, is involved with a polarimetry team to observe and analyze data from e Aurigae, as it approaches ingress of the next primary minimum beginning summer, 2009. The author acknowledges with gratitude the additional assistance of T. A. Clark and R. E. Wilson in preparing this article. Representative Publications and References: Chandrasekhar, S. 1946a, ApJ, 103, 361. Chandrasekhar, S. 1946b, ApJ, 104, 110. Donnelly, R. J. 1989, "James C. Kemp," Physics Today, 42, 94. Henson, G. D. 2008, private communication. Kemp, J. C., 1969, "Piezo-optical birefringence modulators: new use for a long-known effect," J. Opt. Soc. Am., 59, 950. Kemp, J. C. and Henson, G. D., 1983, "Broad-band circular polarization of sunspots, 0.27-4.5 microns," ApJ, 266, L69. Kemp, J. C., Macek, J. H., Nehring, F. W. 1984, "Induced atomic orientation, an efficient mechanism for magnetic circular polarization," ApJ, 278, 863. Kemp, J. C., Swedlund, J. B., and Evans, B. D. 1970a, "Magnetoemission from incandescent sources," Phys. Rev. Let., 24, 1211. Kemp. J. C., Swedlund, J. B., Landstreet, J. D., and Angel, J. R. P. 1970b, "Discovery of Circularly Polarized Light from a White Dwarf," ApJL, 161, L77. Kemp, J. C., Henson, G. D., Steiner, C. T., Powell, E. R. 1987, "The optical polarization of the Sun measured at a sensitivity of parts in ten million," Nature, 326, 270. Kemp, J. C., Henson, G. D., Barbour, M. S., Kraus, D. J., and Collins, G. W. 1983, "Discovery of Eclipse Polarization in Algol," ApJ, 273, L85. Kemp, J. C., Henson, G. D., Kraus, D. J., Beardsley, I. S., Carroll, L. C., Ake, T. B., Simon, T., and Collins, G. W. 1986, "Epsilon Aurigae: Polarization, Light Curves, and Geometry of the 1982-1984 Eclipse," ApJL, 300, L11. Kemp, J. C., Henson, G. D., Kraus, D. J., Carroll, L. C., Beardsley, I. S., Takagishi, K., Jugaku, J., Matsuoka, M., Leibowitz, E. M., Mazeh, T., and Mendelson, H. 1986, "SS 433: A 6 Year Photometric Record," ApJ, 305, 805. Tinbergen, J. 1996, Astronomical Polarimetry, (Cambridge: Cambridge University Press), pp. 95-96. Wilson, R. E., and Liou, J.-C. 1993, ApJ, 413, 670.

  17. A Monster CME Obscuring a Demon Star Flare

    NASA Astrophysics Data System (ADS)

    Moschou, Sofia-Paraskevi; Drake, Jeremy J.; Cohen, Ofer; Alvarado-Gomez, Julian D.; Garraffo, Cecilia

    2017-12-01

    We explore the scenario of a coronal mass ejection (CME) being the cause of the observed continuous X-ray absorption of the 1997 August 30 superflare on the eclipsing binary Algol (the Demon Star). The temporal decay of the absorption is consistent with absorption by a CME undergoing self-similar evolution with uniform expansion velocity. We investigate the kinematic and energetic properties of the CME using the ice cream cone model for its three-dimensional structure in combination with the observed profile of the hydrogen column density decline with time. Different physically justified length scales were used that allowed us to estimate lower and upper limits of the possible CME characteristics. Further consideration of the maximum available magnetic energy in starspots leads us to quantify its mass as likely lying in the range 2× {10}21 {--} 2× {10}22 g and kinetic energy in the range 7× {10}35 {--} 3× {10}38 erg. The results are in reasonable agreement with extrapolated relations between flare X-ray fluence and CME mass and kinetic energy derived for solar CMEs.

  18. M.I.T. studies of transient X-ray phenomena. [astronomical observations

    NASA Technical Reports Server (NTRS)

    Canizares, C. R.

    1976-01-01

    A variety of transient X-ray phenomena have been studied. Data from the OSO-7 satellite reveal both long and short time-scale transients. Extensive observations have been made of the Lupus X-ray Nova (3U1543-47) and GX339-4(MX 1658-48) which may represent a very different type of transient source. A unique, intense X-ray flare lasting ten minutes was also recorded, and the X-ray emission from the active galaxy Cen A was found to vary significantly over a period of several days. In a recent balloon flight the Crab pulsar, NP0532, was observed to exhibit a transient pulsed component distinct from the usual main pulse and interpulse. A sounding-rocket experiment detected an ultrasoft transient X-ray source tentatively associated with SS Cygni, and preliminary results from SAS-3 show a very hard spectrum for the new source A0535 + 26. On the other hand, extensive OSO-7 null observations of both Type I and II supernovae and of the flaring radio star Algol make it unlikely that these types of objects are potent transient X-ray emitters.

  19. High-precision broad-band linear polarimetry of early-type binaries. II. Variable, phase-locked polarization in triple Algol-type system λ Tauri

    NASA Astrophysics Data System (ADS)

    Berdyugin, A.; Piirola, V.; Sakanoi, T.; Kagitani, M.; Yoneda, M.

    2018-03-01

    Aim. To study the binary geometry of the classic Algol-type triple system λ Tau, we have searched for polarization variations over the orbital cycle of the inner semi-detached binary, arising from light scattering in the circumstellar material formed from ongoing mass transfer. Phase-locked polarization curves provide an independent estimate for the inclination i, orientation Ω, and the direction of the rotation for the inner orbit. Methods: Linear polarization measurements of λ Tau in the B, V , and R passbands with the high-precision Dipol-2 polarimeter have been carried out. The data have been obtained on the 60 cm KVA (Observatory Roque de los Muchachos, La Palma, Spain) and Tohoku 60 cm (Haleakala, Hawaii, USA) remotely controlled telescopes over 69 observing nights. Analytic and numerical modelling codes are used to interpret the data. Results: Optical polarimetry revealed small intrinsic polarization in λ Tau with 0.05% peak-to-peak variation over the orbital period of 3.95 d. The variability pattern is typical for binary systems showing strong second harmonic of the orbital period. We apply a standard analytical method and our own light scattering models to derive parameters of the inner binary orbit from the fit to the observed variability of the normalized Stokes parameters. From the analytical method, the average for three passband values of orbit inclination i = 76° + 1°/-2° and orientation Ω = 15°(195°) ± 2° are obtained. Scattering models give similar inclination values i = 72-76° and orbit orientation ranging from Ω = 16°(196°) to Ω = 19°(199°), depending on the geometry of the scattering cloud. The rotation of the inner system, as seen on the plane of the sky, is clockwise. We have found that with the scattering model the best fit is obtained for the scattering cloud located between the primary and the secondary, near the inner Lagrangian point or along the Roche lobe surface of the secondary facing the primary. The inclination i, inferred from polarimetry, agrees with the previously made conclusion on the semi-detached nature of the inner binary, whose secondary component is filling its Roche lobe. The non-periodic scatter, which is also present in the polarization data, can be interpreted as being due to sporadic changes in the mass transfer rate. The polarization data for λ Tauri are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A69

  20. A New Light Curve and Analysis of the Long Period Eclipsing Binary BF Draconis

    NASA Astrophysics Data System (ADS)

    Wolf, G. W.; Craig, L. E.; Caffey, J. F.

    1999-01-01

    The star BF Draconis was found to be an eclipsing binary by Strohmeier, Knigge and Ott (1962) and originally thought to be an Algol-type system with a period of 5.6 days. A spectrographic study by Imbert (1985) showed that the period was actually double this value and that the system consisted of two well-separated, almost-equal F-type stars in elliptical orbit. Diethelm, Wolf and Agerer (1993) later published a preliminary light curve of this system showing minima of unequal depth and width with a displaced secondary, confirming the elliptical orbit but disagreeing with Imbert on the specific orbital parameters. As a part of our long-term program of obtaining improved light curves of double-lined spectroscopic and eclipsing binaries, we have observed BF Draconis for the past four years using the 0.4 meter telescope at the Baker Observatory of Southwest Missouri State University. Complete light curves in the Cousins BVRI passbands have been obtained with our Photometrics CCD system, and a new model and orbital parameters for the binary have been determined using the Wilson-Devinney program. This research has been supported by NSF Grants AST-9315061 and AST-9605822 and NASA Grant NGT5-40060.

  1. Mass loss in the interacting semi-detached binary delta librae

    NASA Technical Reports Server (NTRS)

    Mccluskey, George E., Jr.; Mccluskey, Carolina P. S.; Kondo, Yoji

    1995-01-01

    The interacting Algol-type binary Delta Librae (AOV + G: V) has been observed with the International Ultraviolet Explorer (IUE) satellite. More than fifty high resolution spectra in the far-ultraviolet and mid-ultraviolet spectrum have been analyzed in order to model the mass flow in the Delta Librae system. The resonance lines of Si IV and C IV are present in absorption and vary in strength both secularly and with phase. The radial velocities of the Si IV and C IV absorption lines generally follow the orbital motion of the primary star but deviate by typically a few tens of kilometers per second in the direction of the observer. The presence of Si IV and C IV features indicates the existence of a region considerably hotter than the normal AOV photosphere and, since these lines are present at all phases, this region must be fairly extensive. These results are interpreted in terms of a 'pseudo-photosphere' around the equatorial region of the AOV star, created by matter being accreted from the G-type companion. The widths of the Si IV and C IV absorption features imply that some of the matter lost by the G-star leaves the system entirely.

  2. New SX Phoenicis Variables in the Globular Cluster NGC 4833

    NASA Astrophysics Data System (ADS)

    Darragh, A. N.; Murphy, B. W.

    2012-07-01

    We report the discovery of 6 SX Phoenicis stars in the southern globular cluster NGC 4833. Images were obtained from January through June 2011 with the Southeastern Association for Research in Astronomy 0.6 meter telescope located at Cerro Tololo Interamerican Observatory. The ISIS image subtraction method was used to search for variable stars in the cluster. We confirmed 17 previously cataloged variables and have identified 10 new variables. Of the total number of confirmed variables in our 10×10 arcmin^2 field, we classified 10 RRab variables, with a mean period of 0.69591 days, 7 RRc, with a mean period of 0.39555 days, 2 possible RRe variables with a mean period of 0.30950 days, a W Ursae Majoris contact binary, an Algol-type binary, and the 6 SX Phoenicis stars with a mean period of 0.05847 days. The periods, relative numbers of RRab and RRc variables, and Bailey diagram are indicative of the cluster being of the Oosterhoff type II. We present the phased-light curves, periods of previously known variables and the periods and classifications of the newly discovered variables, and their location on the color-magnitude diagram.

  3. The nature of EU Pegasi: An Algol-type binary with a δ Scuti-type component

    NASA Astrophysics Data System (ADS)

    Yang, Yuangui; Yuan, Huiyu; Dai, Haifeng; Zhang, Xiliang

    2018-03-01

    The comprehensive photometry and spectroscopy for the neglected eclipsing binary EU Pegasi are presented. We determine its spectral type to be A3V. With the W-D program, the photometric solution was deduced from the four-color light curves. The results imply that EU Peg is a detached binary with a mass ratio of q = 0.3105(± 0.0011), whose components nearly fill their Roche lobes. The low-amplitude pulsation occurs around the secondary eclipse, which may be attributed to the more massive component. Three frequencies are preliminarily explored by the Fourier analysis. The pulsating frequency at f1 = 34.1 c d-1 is a p-mode pulsation. The orbital period may be undergoing a secular decrease, superimposed by a cyclic variation. The period decreases at a rate of dP/dt = -7.34 ± 1.06 d yr-1, which may be attributed to mass loss from the system due to stellar wind. The cyclic oscillation, with Pmod = 31.0 ± 1.4 yr and A = 0.0054 ± 0.0010 d, may be caused by the light-time effect due to the assumed third body. With its evolution, the pulsating binary EU Peg will evolve from the detached configuration to the semi-detached case.

  4. NSV 1907 - A new eclipsing, nova-like cataclysmic variable

    NASA Astrophysics Data System (ADS)

    Hümmerich, Stefan; Gröbel, Rainer; Hambsch, Franz-Josef; Dubois, Franky; Ashley, Richard; Gänsicke, Boris T.; Vanaverbeke, Siegfried; Bernhard, Klaus; Wils, Patrick

    2017-01-01

    NSV 1907, formerly listed as an irregular variable in variability catalogues, was classified as an Algol-type eclipsing binary in the Catalina Surveys Periodic Variable Star Catalogue. We have identified NSV 1907 as an ultraviolet (UV) bright source using measurements from the GALEX space telescope and detected obvious out-of-eclipse variability in archival photometric data from the Catalina Sky Survey, which instigated a closer examination of the object. A spectrum and extensive multicolour photometric observations were acquired, from which we deduce that NSV 1907 is a deeply eclipsing, nova-like cataclysmic variable. Apart from the orbital variations (deep eclipses with a period of P ≈ 6.63 hours), changes in mean brightness and irregular short-term variability (flickering) were observed. The presence of a secondary minimum at phase φ ≈ 0.5 was established, which indicates a significant contribution of the companion star to the optical flux of the system. We find possible evidence for sinusoidal variations with a period of P ≈ 4.2 d, which we interpret as the nodal precession period of the accretion disc. No outbursts or VY Scl-like drops in brightness were detected either by the CSS or during our photometric monitoring. Because of its spectral characteristics and the observed variability pattern, we propose NSV 1907 as a new moderately bright long-period SW Sextantis star. Further photometric and spectroscopic observations are encouraged.

  5. Expanding CME-flare relations to other stellar systems

    NASA Astrophysics Data System (ADS)

    Moschou, Sofia P.; Drake, Jeremy J.; Cohen, Ofer

    2017-05-01

    Stellar activity is one of the main parameters in exoplanet habitability studies. While the effects of UV to X-ray emission from extreme flares on exoplanets are beginning to be investigated, the impact of coronal mass ejections is currently highly speculative because CMEs and their properties cannot yet be directly observed on other stars. An extreme superflare was observed in X-rays on the Algol binary system on August 30 1997, emitting a total of energy 1.4x 10^{37} erg and making it a great candidate for studying the upper energy limits of stellar superflares in solar-type (GK) stars. A simultaneous increase and subsequent decline in absorption during the flare was also observed and interpretted as being caused by a CME. Here we investigate the dynamic properties of a CME that could explain such time-dependent absorption and appeal to trends revealed from solar flare and CME statistics as a guide. Using the ice-cream cone model that is extensively used in solar physics to describe the three-dimensional CME structure, in combination with the temporal profile of the hydrogen column density evolution, we are able to characterize the CME and estimate its kinetic energy and mass. We examine the mass, kinetic and flare X-ray fluence in the context of solar relations to examine the extent to which such relations can be extrapolated to much more extreme stellar events.

  6. LUT Reveals a New Mass-transferring Semi-detached Binary

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; Zhou, X.; Zhu, L.-Y.; Zejda, M.; Soonthornthum, B.; Zhao, E.-G.; Zhang, J.; Zhang, B.; Liao, W.-P.

    2015-12-01

    GQ Dra is a short-period eclipsing binary in a double stellar system that was discovered by Hipparcos. Complete light curves in the UV band were obtained with the Lunar-based Ultraviolet Telescope in 2014 November and December. Photometric solutions are determined using the W-D (Wilson and Devinney) method. It is discovered that GQ Dra is a classical Algol-type semi-detached binary where the secondary component is filling the critical Roche lobe. An analysis of all available times of minimum light suggests that the orbital period is increasing continuously at a rate of \\dot{P}=+3.48(+/- 0.23)× {10}-7 days yr-1. This could be explained by mass transfer from the secondary to the primary, which is in agreement with the semi-detached configuration with a lobe-filling secondary. By assuming a conservation of mass and angular momentum, the mass transfer rate is estimated as \\dot{m}=9.57(+/- 0.63)× {10}-8 {M}⊙ {{yr}}-1. All of these results reveal that GQ Dra is a mass-transferring semi-detached binary in a double system that was formed from an initially detached binary star. After the massive primary evolves to fill the critical Roche lobe, the mass transfer will be reversed and the binary will evolve into a contact configuration with two sub-giant or giant component stars.

  7. Chandra LETGS observation of the active binary Algol

    NASA Astrophysics Data System (ADS)

    Ness, J.-U.; Schmitt, J. H. M. M.; Burwitz, V.; Mewe, R.; Predehl, P.

    2002-06-01

    A high-resolution spectrum obtained with the low-energy transmission grating onboard the Chandra observatory is presented and analyzed. Our analysis indicates very hot plasma with temperatures up to T~ 15-20 MK from the continuum and from ratios of hydrogen-like and helium-like ions of Si, Mg, and Ne. In addition lower temperature material is present since O VII and N VI are detected. Two methods for density diagnostics are applied. The He-like triplets from N VII to Si XIII are used and densities around 1011 cm-3 are found for the low temperature ions. Taking the UV radiation field from the B star companion into account, we find that the low-Z ions can be affected by the radiation field quite strongly, such that densities of 3x 1010 cm-3 are also possible, but only assuming that the emitting plasma is immersed in the radiation field. For the high temperature He-like ions only low density limits are found. Using ratios of Fe XXI lines produced at similar temperatures are sensitive to lower densities but again yield only low density limits. We thus conclude that the hot plasma has densities below 1012 cm-3. Assuming a constant pressure corona we show that the characteristic loop sizes must be small compared to the stellar radius and that filling factors below 0.1 are unlikely.

  8. Orbital period changes in RW CrA, DX Vel and V0646 Cen

    NASA Astrophysics Data System (ADS)

    Volkov, I. M.; Chochol, D.; Grygar, J.; Mašek, M.; Juryšek, J.

    2017-06-01

    We aim to determine the absolute parameters of the components of southern Algol-type binaries with deep eclipses RW CrA, DX Vel, V0646 Cen and interpret their orbital period changes. The data analysis is based on a high quality Walraven photoelectric photometry, obtained in the 1960-70s, our recent CCD photometry, ASAS (Pojmanski, 2002), and Hipparcos (Perryman et al., 1997) photometry of the objects. Their light curves were analyzed using the PHOEBE program with fixed effective temperatures of the primary components, found from disentangling the Walraven (B-U) and (V-B) colour indices. We found the absolute parameters of the components of all three objects. All reliable observed times of minimum light were used to construct and analyze the Eclipse Time Variation (ETV) diagrams. We interpreted the ETV diagrams of the detached binary RW CrA and the semi-detached binary DX Vel by a LIght-Time Effect (LITE), estimated parameters of their orbits and masses of their third bodies. We suggest a long term variation of the inclination angle of both eclipsing binaries, caused by a non-coplanar orientation of their third body orbits. We interpreted the detected orbital period increase in the semi-detached binary V0646 Cen by a mass transfer from the less to more massive component with the rate M⊙ = 6.08×10-9 M⊙/yr.

  9. Results from the Rothney Astrophysical Observatory Variable Star Search Program: Background, Procedure, and Results from RAO Field 1

    NASA Astrophysics Data System (ADS)

    Williams, Michael D.; Milone, E. F.

    2013-12-01

    We describe a variable star search program and present the fully reduced results of a search in a 19 square degree (4.4 × 4.4) field centered on J2000 RA = 22:03:24, DEC= +18:54:32. The search was carried out with the Baker-Nunn Patrol Camera located at the Rothney Astrophysical Observatory in the foothills of the Canadian Rockies. A total of 26,271 stars were detected in the field, over a range of about 11-15 (instrumental) magnitudes. Our image processing made use of the IRAF version of the DAOPHOT aperture photometry routine and we used the ANOVA method to search for periodic variations in the light curves. We formally detected periodic variability in 35 stars, that we tentatively classify according to light curve characteristics: 6 EA (Algol), 5 EB (?? Lyrae), 19 EW (W UMa), and 5 RR (RR Lyrae) stars. Eleven of the detected variable stars have been reported previously in the literature. The eclipsing binary light curves have been analyzed with a package of light curve modeling programs and 25 have yielded converged solutions. Ten of these are of systems that are detached, 3 semi-detached, 10 overcontact, and 2 are of systems that appear to be in marginal contact. We discuss these results as well as the advantages and disadvantages of the instrument and of the program.

  10. A search for tight hierarchical triple systems amongst the eclipsing binaries in the CoRoT fields

    NASA Astrophysics Data System (ADS)

    Hajdu, T.; Borkovits, T.; Forgács-Dajka, E.; Sztakovics, J.; Marschalkó, G.; Benkő, J. M.; Klagyivik, P.; Sallai, M. J.

    2017-10-01

    We report a comprehensive search for hierarchical triple stellar system candidates amongst eclipsing binaries (EBs) observed by the CoRoT spacecraft. We calculate and check eclipse timing variation (ETV) diagrams for almost 1500 EBs in an automated manner. We identify five relatively short period Algol systems for which our combined light-curve and complex ETV analyses (including both the light-travel time effect and short-term dynamical third-body perturbations) resulted in consistent third-body solutions. The computed periods of the outer bodies are between 82 and 272 d (with an alternative solution of 831 d for one of the targets). We find that the inner and outer orbits are near coplanar in all but one case. The dynamical masses of the outer subsystems determined from the ETV analyses are consistent with both the results of our light-curve analyses and the spectroscopic information available in the literature. One of our candidate systems exhibits outer eclipsing events as well, the locations of which are in good agreement with the ETV solution. We also report another certain triply eclipsing triple system that, however, is lacking a reliable ETV solution due to the very short time range of the data, and four new blended systems (composite light curves of two EBs each), where we cannot decide whether the components are gravitationally bounded or not. Amongst these blended systems, we identify the longest period and highest eccentricity EB in the entire CoRoT sample.

  11. Studies of early-type variable stars. XIV. Spectroscopic orbit and absolute parameters of HU Tauri.

    NASA Astrophysics Data System (ADS)

    Maxted, P. F. L.; Hill, G.; Hilditch, R. W.

    1995-09-01

    We present a new spectroscopic orbit for the Algol-type eclipsing binary system HU Tau (HD 29365, P=2.0563 days α(2000.0) = 04 38 15.80, δ= +20 41 05.3, V=5.87-6.8, B8V + G2). We find : m_1_ sin^3^i=4.17+/-0.09Msun_, m_2_ sin^3^i=1.07+/-0.025Msun_, (a_p_+a_s_)sin i=11.8 +/-0.1Rsun_, m_1_/m_2_=3.90+/-0.07. The spectroscopic orbit includes corrections for non-Keplerian effects derived from the solutions of the BV light curves of Ito (1988). We have been able to derive much improved absolute parameters for this system as follows: M_1_=4.43+/-0.09Msun_, M_2_=1.14+/-0.03Msun_, R _1_=2.57+/-0.03Rsun_, R _2_=4.21+/-0.03Rsun_, log(L_1_/Lsun_)= 2.09+/-0.15, log(L_2_/Lsun_)= 0.92+/-0.05. Comparison of HU Tau with non-conservative case B evolution models of De Greve (1993) suggests that the system evolved from an initial mass ratio <~0.5. However, the orbital period of HU Tau is more than 3 days shorter than any of the model systems, and the observed secondary luminosity of order 10 times less than a model star of the same mass during the slow mass transfer phase.

  12. The Near-contact Binary RZ Draconis with Two Possible Light-time Orbits

    NASA Astrophysics Data System (ADS)

    Yang, Y.-G.; Li, H.-L.; Dai, H.-F.; Zhang, L.-Y.

    2010-12-01

    We present new multicolor photometry for RZ Draconis, observed in 2009 at the Xinglong Station of the National Astronomical Observatories of China. By using the updated version of the Wilson-Devinney Code, the photometric-spectroscopic elements were deduced from new photometric observations and published radial velocity data. The mass ratio and orbital inclination are q = 0.375(±0.002) and i = 84fdg60(±0fdg13), respectively. The fill-out factor of the primary is f = 98.3%, implying that RZ Dra is an Algol-like near-contact binary. Based on 683 light minimum times from 1907 to 2009, the orbital period change was investigated in detail. From the O - C curve, it is discovered that two quasi-sinusoidal variations may exist (i.e., P 3 = 75.62(±2.20) yr and P 4 = 27.59(±0.10) yr), which likely result from light-time effects via the presence of two additional bodies. In a coplanar orbit with the binary system, the third and fourth bodies may be low-mass drafts (i.e., M 3 = 0.175 M sun and M 4 = 0.074 M sun). If this is true, RZ Dra may be a quadruple star. The additional body could extract angular momentum from the binary system, which may cause the orbit to shrink. With the orbit shrinking, the primary may fill its Roche lobe and RZ Dra evolves into a contact configuration.

  13. Automated classification of periodic variable stars detected by the wide-field infrared survey explorer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masci, Frank J.; Grillmair, Carl J.; Cutri, Roc M.

    2014-07-01

    We describe a methodology to classify periodic variable stars identified using photometric time-series measurements constructed from the Wide-field Infrared Survey Explorer (WISE) full-mission single-exposure Source Databases. This will assist in the future construction of a WISE Variable Source Database that assigns variables to specific science classes as constrained by the WISE observing cadence with statistically meaningful classification probabilities. We have analyzed the WISE light curves of 8273 variable stars identified in previous optical variability surveys (MACHO, GCVS, and ASAS) and show that Fourier decomposition techniques can be extended into the mid-IR to assist with their classification. Combined with other periodicmore » light-curve features, this sample is then used to train a machine-learned classifier based on the random forest (RF) method. Consistent with previous classification studies of variable stars in general, the RF machine-learned classifier is superior to other methods in terms of accuracy, robustness against outliers, and relative immunity to features that carry little or redundant class information. For the three most common classes identified by WISE: Algols, RR Lyrae, and W Ursae Majoris type variables, we obtain classification efficiencies of 80.7%, 82.7%, and 84.5% respectively using cross-validation analyses, with 95% confidence intervals of approximately ±2%. These accuracies are achieved at purity (or reliability) levels of 88.5%, 96.2%, and 87.8% respectively, similar to that achieved in previous automated classification studies of periodic variable stars.« less

  14. The NP Draconii Multiple Star System

    NASA Astrophysics Data System (ADS)

    Castelaz, Michael W.; Barker, Thurburn; McNaughton, Abby; Robertson, Rachel; Smith, Matt

    2016-01-01

    Otero and Dubovsky used the ASAS-3 (Pojmanski 2002), Hipparcos (Perryman et al 1997) and Northern Sky Variability Survey (NSVS; Wozniak et al 2004) databases to determine elements for 80 eclipsing binaries. NP Draconii (NSV 22984) was identified by Otero and Dubovsky (IBVS Number 5557, 2004) as a possible Algol type variable with an ephemeris of HJD Min I = 2448604.780+3.10886E days based on 84 observations over 326 days with about 2 to 4 observations on any one night. We decided to further refine the ephemeris and observe NP Dra in VRI filters, with the goal of determining the elements of the system.NP Dra is a V = 9.0 system located at J2000 = 17h 35m 16s and +55d 00' 12". We observed NP Dra August 2, 3 and September 15, 16, 17, 18, and 19 2015 UT using the Pisgah Astronomical Research Institute 0.4-m telescope in V, R, and I with 20 second exposure times in each filter. Observations in each filter were repeated about every 3 minutes each night of observing.From our light curves we determined the period using the Date Compensated Discrete Fourier Transform function (Ferraz-Mello 1981) which is part of the open source code VSTAR (AAVSO). The period derived from the observations is 2.2755 days. Superimposed on this period is another period of 0.6398 days. We will present the V, R, and I light curves, period determination and implication

  15. The Spot Variability and Related Brightness variations of the Solar Type PreContact W UMa Binary System V1001 Cas

    NASA Astrophysics Data System (ADS)

    Samec, Ronald George; Koenke, Sam S.; Faulkner, Danny R.

    2015-08-01

    A new classification of eclipsing binary has emerged, Pre Contact WUMa Binaries (PCWB’s, Samec et al. 2012). These solar-type systems are usually detached or semidetached with one or both components under filling their critical Roche lobes. They usually have EA or EB-type light curves (unequal eclipse depths, indicating components with substantially different temperatures). The accepted scenario for these W UMa binaries is that they are undergoing steady but slow angular momentum losses due to magnetic braking as stellar winds blow radially away on stiff bipolar field lines. These binaries are believed to come into stable contact and eventually coalesce into blue straggler type, single, fast rotating A-type stars (Guinan and Bradstreet,1988). High precision 2012 and 2009 light curves are compared for the very short period (~0.43d) Precontact W UMa Binary (PCWB), V1001 Cassiopeia. This is the shortest period PCWB found so far. Its short period, similar to the majority of W UMa’s, in contrast to its distinct Algol-type light curve, make it a very rare and interesting system. Our solutions of light curves separated by some three years give approximately the same physical parameters. However the spots radically change, in temperature, area and position causing a distinctive variation in the shape of the light curves. We conclude that spots are very active on this solar type dwarf system and that it may mimic its larger cousins, the RS CVn binaries.

  16. Formation Mechanisms for Helium White Dwarfs in Binaries

    NASA Astrophysics Data System (ADS)

    Sandquist, E. L.; Taam, R. E.; Burkert, A.

    1999-05-01

    We discuss the constraints that can be placed on formation mechanisms for helium degenerate stars in binary systems, as well as the orbital parameters of the progenitor binaries, by using observed systems and numerical simulations of common envelope evolution. For pre-cataclysmic variable stars having a helium white dwarf, common envelope simulations covering the range of observed companion masses indicate that the initial mass of the red giant (parent of the white dwarf) can be constrained by the final period of the system. The formation mechanisms for double helium degenerate systems are also restricted. Using energy arguments, we find that there are almost no parameter combinations for which such a system can be formed using two successive common envelope phases. Observed short-period systems appear to favor an Algol-like phase of stable mass transfer followed by a common envelope phase. However, theory predicts that the brighter component is also the most massive, which is not observed in at least one system. This may require that nuclear burning must have occurred on the white dwarf that formed first, but after its formation. Systems which instead go through a common envelope episode, followed by a phase of nonconservative mass transfer from secondary to primary, would tend to form double degenerates with low mass ratios, which have not been observed to date. Finally, we discuss a new mechanism for producing subdwarf B stars in binaries. This work was supported by NSF grants AST-9415423 and AST-9727875.

  17. The detached eclipsing binary TX Her revisited

    NASA Astrophysics Data System (ADS)

    Erdem, A.; Aliçavuş, F.; Soydugan, F.; Doğru, S. S.; Soydugan, E.; Çiçek, C.; Demircan, O.

    2011-12-01

    This paper presents new CCD Bessell BVRI light curves and photometric analysis of the Algol-type binary star TX Her. The CCD observations were carried out at Çanakkale Onsekiz Mart University Observatory in 2010. New BVRI light curves from this study and radial velocity curves from Popper (1970) were solved simultaneously using modern light and radial velocity curves synthesis methods. The general results show that TX Her is a well-detached eclipsing binary, however, both component stars fill at least half of their Roche lobes. A significant third light contribution to the total light of the system could not be determined. Using O- C residuals formed by the updated minima times, an orbital period study of the system was performed. It was confirmed that the tilted sinusoidal O- C variation corresponds to an apparent period variation caused by the light travel time effect due to an unseen third body. The following absolute parameters of the components were derived: M1 = 1.62 ± 0.04 M ⊙, M2 = 1.45 ± 0.03 M ⊙, R1 = 1.69 ± 0.03 R ⊙, R2 = 1.43 ± 0.03 R ⊙, L1 = 8.21 ± 0.90 L ⊙ and L2 = 3.64 ± 0.60 L ⊙. The distance to TX Her was calculated as 155 ± 10 pc, taking into account interstellar extinction. The position of the components of TX Her in the HR diagram are also discussed. The components are young stars with an age of ˜500 Myr.

  18. Evaluating Gaia performances on eclipsing binaries. IV. Orbits and stellar parameters for SV Cam, BS Dra and HP Dra

    NASA Astrophysics Data System (ADS)

    Milone, E. F.; Munari, U.; Marrese, P. M.; Williams, M. D.; Zwitter, T.; Kallrath, J.; Tomov, T.

    2005-10-01

    This is the fourth in a series of papers that aim both to provide reasonable orbits for a number of eclipsing binaries and to evaluate the expected performance of Gaia of these objects and the accuracy that is achievable in the determination of such fundamental stellar parameters as mass and radius. In this paper, we attempt to derive the orbits and physical parameters for three eclipsing binaries in the mid-F to mid-G spectral range. As for previous papers, only the H_P, V_T, BT photometry from the Hipparcos/Tycho mission and ground-based radial velocities from spectroscopy in the region 8480-8740 Å are used in the analyses. These data sets simulate the photometric and spectroscopic data that are expected to be obtained by Gaia, the approved ESA Cornerstone mission to be launched in 2011. The systems targeted in this paper are SV Cam, BS Dra and HP Dra. SV Cam and BS Dra have been studied previously, allowing comparisons of the derived parameters with those from full scale and devoted ground-based investigations. HP Dra has no published orbital solution. SV Cam has a β Lyrae type light curve and the others have Algol-like light curves. SV Cam has the complication of light curve anomalies, usually attributed to spots; BS Dra has non-solar metallicity, and HP Dra appears to have a small eccentricity and a sizeable time derivative in the argument of the periastron. Thus all three provide interesting and different test cases.

  19. The Light-time Effect in the Eclipsing Binaries with Early-type Components U CrB and RW Tau

    NASA Astrophysics Data System (ADS)

    Khaliullina, A. I.

    2018-04-01

    A detailed study of the orbital-period variations of the Algol-type eclipsing binaries with earlyspectral- type primary components U CrB and RW Tau has been performed. The period variations in both systems can be described as a superposition of secular and cyclic variations of the period. A secular period increase at a rate of 2.58d × 10-7/year is observed for U CrB, which can be explained if there is a uniform flow of matter from the lower-mass to the higher-mass component, with the total angular momentum conserved. RW Tau features a secular period decrease at a rate of -8.6d × 10-7/year; this could be due to a loss of angular momentum by the binary due to magnetic braking. The cyclic orbital-period variations of U CrB and RWTau can be explained by the motion of the eclipsing binary systems along their long-period orbits. In U CrB, this implies that the eclipsing binary moves with a period of 91.3 years around a third body with mass M 3 > 1.13 M ⊙; in RW Tau, the period of the motion around the third body is 66.6 years, and the mass of the third body is M 3 > 1.24 M ⊙. It also cannot be ruled out that the variations are due to the magnetic cycles of the late-type secondaries. The residual period variations could be a superposition of variations due to non-stationary ejection of matter and effects due to magnetic cycles.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, A. B.; Fu, J. N.; Zhang, Y. P.

    Time-series, multi-color photometry and high-resolution spectra of the short-period eclipsing binary V Tri were obtained through observation. The completely covered light and radial velocity (RV) curves of the binary system are presented. All times of light minima derived from both photoelectric and CCD photometry were used to calculate the orbital period and new ephemerides of the eclipsing system. The analysis of the O − C diagram reveals that the orbital period is 0.58520481 days, decreasing at a rate of dP / dt  = −7.80 × 10{sup −8} day yr{sup −1}. The mass transfer between the two components and the light-time-travel effect due tomore » a third body could be used to explain the period decrease. However, a semi-detached configuration with the lower-mass component filling and the primary nearly filling each of their Roche lobes was derived from the synthesis of the light and RV curves by using the 2015 version of the Wilson–Devinney code. We consider the period decrease to be the nonconservative mass transfer from the secondary component to the primary and the mass loss of the system, which was thought to be an EB type, while it should be an EA type (semi-detached Algol-type) from our study. The masses, radii, and luminosities of the primary and secondary are 1.60 ± 0.07 M {sub ⊙}, 1.64 ± 0.02 R {sub ⊙}, and 14.14 ± 0.73 L {sub ⊙} and 0.74 ± 0.02 M {sub ⊙}, 1.23 ± 0.02 R {sub ⊙}, and 1.65 ± 0.05 L {sub ⊙}, respectively.« less

  1. MESA models for the evolutionary status of the epsilon Aurigae disk-eclipsed binary system

    NASA Astrophysics Data System (ADS)

    Stencel, Robert E.; Gibson, Justus

    2018-06-01

    The brightest member of the class of disk-eclipsed binary stars is the Algol-like long-period binary, epsilon Aurigae (HD 31964, F0Iap + disk, http://adsabs.harvard.edu/abs/2016SPIE.9907E..17S ). Using MESA (Modules for Experiments in Stellar Astrophysics, version 9575), we have made an evaluation of its evolutionary state. We sought to satisfy several observational constraints, including: (1) requiring evolutionary tracks to pass close to the current temperature and luminosity of the primary star; (2) obtaining a period near the observed value of 27.1 years; (3) matching a mass function of 3.0; (4) concurrent Roche lobe overflow and mass transfer; (5) an isotopic ratio 12C / 13C = 5 and, (6) matching the interferometrically determined angular diameter. A MESA model starting with binary masses of 9.85 + 4.5 solar masses, with a 100 day initial period, produces a 1.2 + 10.6 solar masses result having a 547 day period, plus a single digit 12C / 13C ratio. These values were reached near an age of 20 Myr, when the donor star comes close to the observed luminosity and temperature for epsilon Aurigae A, as a post-RGB/pre-AGB star. Contemporaneously, the accretor then appears as an upper main sequence, early B-type star. This benchmark model can provide a basis for further exploration of this interacting binary, and other long period binary stars. This report has been submitted to MNRAS, along with a parallel investigation of mass transfer stream and disk sub-structure. The authors are grateful to the estate of William Herschel Womble for the support of astronomy at the University of Denver.

  2. Photometric and Polarimetric Activity of the Herbig Ae Star VX Cas

    NASA Astrophysics Data System (ADS)

    Shakhovskoi, D. N.; Rostopchina, A. N.; Grinin, V. P.; Minikulov, N. Kh.

    2003-04-01

    We present the results of our simultaneous photometric and polarimetric observations of the Herbig Ae/Be star VX Cas acquired in 1987 2001. The star belongs to the UX Ori subtype of young variable stars and exhibits a rather low level of photometric activity: only six Algol-like minima with amplitudes ΔV>1m were recorded in 15 years of observations. Two of these minima, in 1998 and 2001, were the deepest in the history of the star’s photometric studies, with V amplitudes of about 2m. In each case, the dimming was accompanied by an increase in the linear polarization in agreement with the law expected for variable circumstellar extinction. The highest V polarization was about 5%. Observations of VX Cas in the deep minima revealed a turnover of the color tracks, typical of stars of this type and due to an increased contribution from radiation scattered in the circumstellar disk. We separated the observed polarization of VX Cas into interstellar (P is) and intrinsic (P in) components. Their position angles differ by approximately 60°, with P is dominating in the bright state and P in dominating during the deep minima. The competition of these two polarization components leads to changes in both the degree and position angle of the polarization during the star’s brightness variations. Generally speaking, in terms of the behavior of the brightness, color indices, and linear polarization, VX Cas is similar to other UX Ori stars studied by us earlier. A number of episodes of photometric and polarimetric activity suggest that, in their motion along highly eccentric orbits, circumstellar gas and dust clouds can enter the close vicinity of the star (and be disrupted there).

  3. Absolute Properties of the Pulsating Post-mass Transfer Eclipsing Binary OO Draconis

    NASA Astrophysics Data System (ADS)

    Lee, Jae Woo; Hong, Kyeongsoo; Koo, Jae-Rim; Park, Jang-Ho

    2018-01-01

    OO Dra is a short-period Algol system with a δ Sct-like pulsator. We obtained time-series spectra between 2016 February and May to derive the fundamental parameters of the binary star and to study its evolutionary scenario. The radial velocity (RV) curves for both components were presented, and the effective temperature of the hotter and more massive primary was determined to be {T}{eff,1}=8260+/- 210 K by comparing the disentangling spectrum and the Kurucz models. Our RV measurements were solved with the BV light curves of Zhang et al. using the Wilson-Devinney binary code. The absolute dimensions of each component are determined as follows: M 1 = 2.03 ± 0.06 {M}⊙ , M 2 = 0.19 ± 0.01 {M}⊙ , R 1 = 2.08 ± 0.03 {R}⊙ , R 2 = 1.20 ± 0.02 {R}⊙ , L 1 = 18 ± 2 {L}⊙ , and L 2 = 2.0 ± 0.2 {L}⊙ . Comparison with stellar evolution models indicated that the primary star resides inside the δ Sct instability strip on the main sequence, while the cool secondary component is noticeably overluminous and oversized. We demonstrated that OO Dra is an oscillating post-mass transfer R CMa-type binary; the originally more massive star became the low-mass secondary component through mass loss caused by stellar wind and mass transfer, and the gainer became the pulsating primary as the result of mass accretion. The R CMa stars, such as OO Dra, are thought to have formed by non-conservative binary evolution and ultimately to evolve into EL CVn stars.

  4. Scout

    NASA Image and Video Library

    1960-09-22

    Photographed on 09/22/1960. -- An examination of the Aerojet-General "Aerobee 150A" propulsion system in February 1960. James Hansen described this as follows: "As for the technical definition of the rocket...the Langley engineers tried to keep developmental costs and time to a minimum by selecting components from off-the-shelf hardware. the majority of Scout's components were to come from an inventory of solid-fuel rockets produced for the military, although everyone involved understood that some improved motors would also have to be developed under contract. By early 1959, after intensive technical analysis and reviews, Langley settled on a design and finalized the selection of the major contractors. The rocket's 40-inch-diameter first stage was to be a new "Algol" motor, a combination of the Jupiter Senior and the navy Polaris produced by the Aerojet General Corporation, Sacramento, California. The 31-inch-diameter second stage, "Castor," was derived from the army's Sergeant and was to be manufactured by the Redstone Division of the Thiokol company in Huntsville, Alabama. the motor for the 30-inch-diameter third stage, "Antares," evolved under NASA contract from the ABL X248 design into a new version called the X254 (and subsequently into the X259); it was built under contract to NASA by ABL, a U.S. Navy Bureau of Ordnance facility operated by the Hercules Powder Company, Cumberland, Maryland. the final upper-stage propulsion unit, "Altair," which was 25.7 inches in diameter (34 inches at the heat shield), amounted to an improved edition of the X248 that was also manufactured by ABL." -- Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, pp.200-201.

  5. Photometric Study of the Solar Type Pre-Contact Binary, V2421 Cygni

    NASA Astrophysics Data System (ADS)

    Hill, Robert L.; Shebs, T.; Samec, R. G.; Kring, J.; Van Hamme, W. V.; Faulkner, D. R.

    2013-06-01

    We present the first precision BVRI light curves, and synthetic light curve solutions and a period study for the 14th magnitude (V) pre-contact W UMa Binary, V2421 Cygni. Observations were taken with the NURO 0.81-m Lowell reflector on 30 September, 1 and 2 October. Our light curves were premodeled with Binary Maker 3.0, and solved with the Wilson-Devinney program. The observations included 140 B, 149 V, 139 R and 135 I individual and calibrated observations. These were taken with the Lowell CRYOTIGER cooled (-100k) 2KX2K NASACAM. Three mean times of minimum light were determined, including HJDMin I = 2455469.82375±0.00037, and 2455471.72232±0.0012 and HJDMin II = 2455470.77149±0.0012. Eight eclipse timings were taken from the the literature for our calculation of its first precision ephemeris: JD Tmin I = 2455469.8238± 0.0047 + 0.6331290 ± 0.0000015 d*E The light curve has the appearance of an Algol (EA) type, however it is made up of dwarf solar type components in a detached mode with a period of only 0.6331 days. The light curve solution gives a mass ratio of ~0.5, an inclination of 86° and amplitudes of 1.3, 1.1, 0.98, and 0.87 in B,V,R and I, respectively. Flare-like disruptions occur in the light curves following the primary and secondary eclipses. The fill-outs are 83% and 98% for star one (hotter more massive component) and star two, respectively. The model includes two hot spots, possibly, stream spots (one a direct hit and the second, a splash spot). Further observations are needed to determine its orbital evolution. We thank USC, Lancaster for their support of our membership in NURO for the past 8 years, the American Astronomical Society for its support through its small research program and Arizona Space grant for the partial support for our student’s travel.

  6. TIME-SERIES SPECTROSCOPY OF THE ECLIPSING BINARY Y CAM WITH A PULSATING COMPONENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Kyeongsoo; Lee, Jae Woo; Kim, Seung-Lee

    We present the physical properties of the semi-detached Algol-type eclipsing binary Y Cam based on high resolution spectra obtained using the Bohyunsan Optical Echelle Spectrograph. This is the first spectroscopic monitoring data obtained for this interesting binary system, which has a δ Sct-type pulsating component. We obtained a total of 59 spectra over 14 nights from 2009 December to 2011 March. Double-lined spectral features from the hot primary and cool secondary components were well identified. We determined the effective temperatures of the two stars to be T{sub eff,1} = 8000 ± 250 K and T{sub eff,2} = 4629 ± 150more » K. The projected rotational velocities are v{sub 1}sin i{sub 1} = 51 ± 4 km s{sup −1} and v{sub 2}sin i{sub 2} = 50 ± 10 km s{sup −1}, which are very similar to a synchronous rotation with the orbital motion. Physical parameters of each component were derived by analyzing our radial velocity data together with previous photometric light curves from the literature. The masses and radii are M{sub 1} = 2.08 ± 0.09 M{sub ⊙}, M{sub 2} = 0.48 ± 0.03 M{sub ⊙}, R{sub 1} = 3.14 ± 0.05 R{sub ⊙}, and R{sub 2} = 3.33 ± 0.05 R{sub ⊙}, respectively. A comparison of these parameters with the theoretical evolution tracks showed that the primary component is located between the zero-age main sequence and the terminal-age main sequence, while the low-mass secondary is noticeably evolved. This indicates that the two components have experienced mass exchange with each other and the primary has undergone an evolution process different from that of single δ Sct-type pulsators.« less

  7. A search for extra-solar planetary transits in the field of open cluster NGC 6819

    NASA Astrophysics Data System (ADS)

    Street, Rachel Amanda

    The technique of searching for extra-solar planetary transits is investigated. This technique, which relies on detecting the brief, shallow eclipses caused by planets passing across the line of sight to the primary star, requires high-precision time-series photometry of large numbers of stars in order to detect these statistically rare events. Observations of 18000 stars in the field including the intermediate-age open cluster NGC 6819 are presented. This target field constrasts with the stellar environment surveyed by the radial velocity technique, which concentrates on the Solar neighbourhood. I present the data-reduction techniques used to obtain high-precision photometry in a semi-automated fashion for tens of thousands of stars at a time, together with an algorithm designed to search the resulting lightcurves for the transit signatures of hot Jupiter type planets. I describe simulations designed to test the detection efficiency of this algorithm and, for comparison, predict the number of transits expected from this data, assuming that hot Jupiter planets similar to HD 209458 are as common in the field of NGC 6819 as they are in the Solar neighbourhood. While no planetary transits have yet been identified, the detection of several very low amplitude eclipses by stellar companions demonstrates the effectiveness of the method. This study also indicates that stellar activity and particularly blending are significant causes of false detections. A useful additional consequence of studying this time-series photometry is the census it provides of some of the variable stars in the field. I report on the discovery of a variety of newly-discovered variables, including Algol-type detached eclipsing binaries which are likely to consist of M-dwarf stars. Further study of these stars is strongly recommended in order to help constrain models of stellar structure at the very low mass end. I conclude with a summary of this work in the context of other efforts being made in this field and recommend promising avenues of further study.

  8. Detection of a Hot Subdwarf Companion to the Be Star FY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.; Gies, Douglas R.; Grundstrom, Erika D.; McSwain, M. Virginia

    2008-10-01

    The rapid rotation of Be stars may be caused in some cases by past mass and angular momentum accretion in an interacting binary in which the mass donor is currently viewed as a small, hot subdwarf stripped of its outer envelope. Here we report on the spectroscopic detection of such a subdwarf in the Be binary system FY Canis Majoris from the analysis of data acquired by the IUE spacecraft and KPNO Coudé Feed Telescope over the course of 16 and 21 yr, respectively. We present a double-lined spectroscopic orbit for the binary based on radial velocities from the IUE spectra and use the orbital solutions with a Doppler tomography algorithm to reconstruct the components' UV spectra. The subdwarf is hot (Teff = 45 +/- 5 kK) and has a mass of about 1.3 M⊙ and a radius of about 0.6 R⊙. It contributes about 4% as much flux as the Be star does in the FUV. We also present observations of the Hα and He I λ6678 emission features that are formed in the circumstellar disk of the Be star. Orbital flux and velocity variations in the He I λ6678 profile indicate that much of the emission forms along the disk rim facing the hot subdwarf where the disk is probably heated by the incident radiation from the subdwarf. A study of the FUV infall shell lines discovered in the 1980s confirms their episodic presence but reveals that they tend to be found around both quadrature phases, unlike the pattern in Algol binaries. Phase-dependent variations in the UV N V doublet suggest the presence of a N-enhanced wind from the subdwarf and a possible shock-interaction region between the stars where the subdwarf's wind collides with the disk of the Be star.

  9. Long-Term Quadrature Light Variability in Early Type Interacting Binary Systems

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.; Wilson, R. E.; Vaccaro, T. R.

    2014-01-01

    Four years of Kepler observations have revealed a phenomenon in the light curves of short-period Algol-type eclipsing binaries that has never been reported from ground-based photometry. These systems display unequal brightness at their quadrature phases that numerically reverses over a time scale of about 100-400 days. We call these systems L/T (leading hemisphere/ trailing hemisphere) variables. Twenty-one such systems have so far been identified in the Kepler database and at least three classes of L/T behavior have been identified. The prototype is WX Draconis (A8V + K0IV, P=1.80 d) which shows L/ T light variations of 2-3%. The primary is a delta Scuti star with a dominant pulsation period of 41 m. The Kepler light curves are being analyzed with the 2013 version of the Wilson-Devinney (WD) program that includes major improvements in modeling star spots (i.e. spot motions due to drift and stellar rotation and spot growth and decay). Preliminary analysis of the WX Dra data suggests that the L/T variability can be fit with either an accretion hot spot on the primary (T = 2.3 T_phot) that jumps in longitude or a magnetic cool spotted region on the secondary. If the latter model is correct the dark region must occupy at least 20% of the surface of the facing hemisphere of the secondary if it is completely black, or a larger area if not completely black. In both hot and cool spot scenarios magnetic fields must play a role in the activity. Echelle spectra were recently secured with the KPNO 4-m telescope to determine the mass ratios of the L/T systems and their spectral types. This information will allow us to assess whether the hot or cool spot model explains the L/T activity. Progress toward this goal will be presented. Support from NASA grants NNX11AC78G and NNX12AE44G and USC’s Women in Science and Engineering (WiSE) program is greatly appreciated.

  10. PHOTOMETRIC PROPERTIES FOR SELECTED ALGOL-TYPE BINARIES. II. AO SERPENTIS AND V338 HERCULIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y.-G.; Dai, H.-F.; Hu, S.-M.

    2010-04-15

    We present the first multiband photometry for the semidetached eclipsing binary AO Serpentis, observed on seven nights between 2009 April and July at the Weihai Observatory of Shandong University. By using the 2003 version of the Wilson-Devinney code, the photometric solutions of AO Ser and a similar object V338 Her were (re)deduced. The spectral types and orbital periods are A2 and P = 0.8793 days for AO Ser, F1V and P = 1.3057 days for V338 Her. The results reveal that two binaries are low mass ratio systems, whose secondary components fill their Roche lobes. The fill-out factors of themore » primary components are f = 58.6% for AO Ser and f = 54.2% for V338 Her, respectively. From the O - C curves of AO Ser and V338 Her, it is discovered that secular period changes with cyclic variations exist. The periods and semiamplitudes are 17.32({+-}0.01) yr and 0.0051({+-}0.0001) days for AO Ser, 29.07({+-}0.04) yr and 0.0116({+-}0.0015) days for V338 Her, respectively. This kind of cyclic oscillation may be attributed to either the light-time effect via an assumed third body or perhaps cyclic magnetic activity on the secondary component. For AO Ser, the long-term period decreases at a rate of dP/dt = -5.35({+-}0.03) x 10{sup -7} days yr{sup -1}, which may be caused by mass and angular momentum loss from the system. Considering the period decreasing, the fill-out factor of the primary for AO Ser will increase and it will finally fill its Roche lobe. Meanwhile, the secular period increase rate for V338 Her is dP/dt = +1.44({+-}0.24) x 10{sup -7} days yr{sup -1}, indicating that mass transfers from the less massive component to the more massive component. This will also cause the fill-out factor of the primary to increase. When the primaries fill their Roche lobes, AO Ser and V338 Her may evolve into contact stars, as predicted by the theory of thermal relaxation oscillations.« less

  11. Invited Talk: Photometry of Bright Variable Stars with the BRITE Constellation Nano-Satellites: Opportunities for Amateur Astronomers

    NASA Astrophysics Data System (ADS)

    Guinan, E. F.

    2014-06-01

    (Abstract only) The BRIght Target Explorer (BRITE) is a joint Austrian-Canadian-Polish Astronomy mission to carry out high precision photometry of bright (mv < 4 mag.) variable stars. BRITE consists of a "Constellation" of 20 × 20 × 20-cm nano-satellite cubes equipped with wide field (20 × 24 deg.) CCD cameras, control systems, solar panels, onboard computers, and so on. The first two (of up to six) satellites were successfully launched during February 2013. After post-launch commissioning, science operations commenced during October 2013. The primary goals are to carry out continuous multi-color (currently blue and red filters) high-precision millimag (mmag) photometry in particular locations in the sky. Typically these pointings will last for two to four months and secure simultaneous blue/red photometry of bright variable stars within the field. The first science pointing is centered on the Orion region. Since most bright stars are intrinsically luminous, hot O/B stars, giants, and supergiants will be the most common targets. However, some bright eclipsing binaries (such as Algol, b Lyr, e Aur) and a few chromospherically-active RS CVn stars (such as Capella) may be eventually be monitored. The BRITE-Constellation program of high precision, two color photometry of bright stars offers a great opportunity to study a wide range of stellar astrophysical problems. Bright stars offer convenient laboratories to study many current and important problems in stellar astrophysics. These include probing stellar interiors and pulsation in pulsating stars, tests of stellar evolution and structure for Cepheids and other luminous stars. To scientifically enhance the BRITE science returns, the BRITE investigators are very interested in securing contemporaneous ground-based spectroscopy and standardized photometry of target stars. The BRITE Ground Based Observations Team is coordinating ground-based observing efforts for BRITE targets. The team helps coordinate collaborations with amateur and professional astronomer. The ground-based coordinators are: Thomas Eversberg (thomas.eversberg@dlr.de) and, for spectroscopy, Contanze Zwintz (konstanze@ster.kuleuven.be). Detailed information about the BRITE Mission is provided at: www.brite-contellation.at.

  12. FUSE Observations of the Active Interacting Binary RY Persei

    NASA Astrophysics Data System (ADS)

    Peters, G. J.; Polidan, R. S.

    2003-12-01

    RY Per (HD 17034, B4 V + F7 II-III, P=6.86 d) is a massive interacting binary (6.25 M⊙ + 1.60 M⊙, Olson & Plavec 1997, AJ, 113, 425) that displays a variable weak accretion disk that emits in Hα (Barai, et al., preprint). FUSE observations of this system, carried through in 2002 October at phases 0.20, 0.57, and 0.97 and during its total eclipse on 2002 December 8 are presented. The totality data were binned into two phase intervals: 0.0056-0.9976 (after second contact) and 0.0052-0.0089 (just before third contact). Both eclipse observations reveal broad, prominent emission lines of N III (UV1, λ λ 990-992 Å), O VI (UV1, λ λ 1032,1038 Å), N II (UV1, λ λ 1084-1086 Å), Si III (UV5, λ λ 1108,1109,1113 Å), Si IV(UV3, λ λ 1122,1138 Å), and Fe III (UV1, λ λ 1122-32 Å). Emission from C III (UV4, λ 1176 Å) seen during totality in FUSE observations of the Algol binaries V356 Sgr and TT Hya is conspicuously absent. C III (UV1, λ 977 Å) is also absent. This observation combined with the strong presence of N II, III emission suggests that material processed through the CNO cycle in the mass loser is now being transferred to the B star. The FUSE data imply that the emitting plasma is hot ( ˜100,000-300,000 K) and located above/below the orbital plane. The source of this apparent bipolar flow (also seen in V356 Sgr and TT Hya) may be the splash region detected near phase 0.5 in IUE observations of the N V resonance line, but absorption features from this region were not seen in the non-eclipse FUSE observations. A model for the circumstellar material in this system will be presented and the FUSE observations will be compared with those of V356 Sgr and TT Hya. GJP is grateful for support from NASA Grant NAG5-12253.

  13. Highlights of Odessa Branch of AN in 2017

    NASA Astrophysics Data System (ADS)

    Andronov, I. L.

    2017-12-01

    An annual report with a list of publications. Our group works on the variable star research within the international campaign "Inter-Longitude Astronomy" (ILA) based on temporarily working groups in collaboration with Poland, Slovakia, Korea, USA and other countries. A recent self-review on highlights was published in 2017. Our group continues the scientific school of Prof. Vladymir P. Tsesevich (1907 - 1983). Another project we participate is "AstroInformatics". The unprecedented photo-polarimetric monitoring of a group of AM Her - type magnetic cataclysmic variable stars was carried out since 1989 (photometry in our group - since 1978). A photometric monitoring of the intermediate polars (MU Cam, V1343 Her, V2306 Cyg et al.) was continued to study rotational evolution of magnetic white dwarfs. The super-low luminosity state was discovered in the outbursting intermediate polar = magnetic dwarf nova DO Dra. Previously typical low state was some times interrupted by outbursts, which are narrower than usual dwarf nova outbursts. Once there were detected TPO - "Transient Periodic Oscillations". The orbital and quasi-periodic variability was recently studied. Such super-low states are characteristic for nova-like variables (e.g. MV Lyr, TT Ari) or intermediate polars, but unusual for the dwarf novae. The electronic "Catalogue of Characteristics and Atlas of the Light Curves of Newly-Discovered Eclipsing Binary Stars" was compiled and is being prepared for publication. The software NAV ("New Algol Variable") with specially developed algorithms was used. It allows to determine the begin and end of the eclipses even in EB and EW - type stars, whereas the current classification (GCVS, VSX) claims that the begin and end of eclipses only in the EA - type objects. The further improvements of the NAV algorithm were comparatively studied. The "Wall-Supported Polynomial" (WSP) algoritms were implemented in the software MAVKA for statistically optimal modeling of flat eclipses and exoplanet transitions. MAVKA was used for studies of effects of the mass transfer and presence of the third components in close binary stellar systems and analysis of the poorly studied eclipsing binary 2MASS J20355082+5242136. Atlas of the Light Curves and Phase Plane Portraits of Selected Long-Period Variables was compiled.

  14. [AERA. Dream machines and computing practices at the Mathematical Center].

    PubMed

    Alberts, Gerard; De Beer, Huub T

    2008-01-01

    Dream machines may be just as effective as the ones materialised. Their symbolic thrust can be quite powerful. The Amsterdam 'Mathematisch Centrum' (Mathematical Center), founded February 11, 1946, created a Computing Department in an effort to realise its goal of serving society. When Aad van Wijngaarden was appointed as head of the Computing Department, however, he claimed space for scientific research and computer construction, next to computing as a service. Still, the computing service following the five stage style of Hartree's numerical analysis remained a dominant characteristic of the work of the Computing Department. The high level of ambition held by Aad van Wijngaarden lead to ever renewed projections of big automatic computers, symbolised by the never-built AERA. Even a machine that was actually constructed, the ARRA which followed A.D. Booth's design of the ARC, never made it into real operation. It did serve Van Wijngaarden to bluff his way into the computer age by midsummer 1952. Not until January 1954 did the computing department have a working stored program computer, which for reasons of policy went under the same name: ARRA. After just one other machine, the ARMAC, had been produced, a separate company, Electrologica, was set up for the manufacture of computers, which produced the rather successful X1 computer. The combination of ambition and absence of a working machine lead to a high level of work on programming, way beyond the usual ideas of libraries of subroutines. Edsger W. Dijkstra in particular led the way to an emphasis on the duties of the programmer within the pattern of numerical analysis. Programs generating programs, known elsewhere as autocoding systems, were at the 'Mathematisch Centrum' called 'superprograms'. Practical examples were usually called a 'complex', in Dutch, where in English one might say 'system'. Historically, this is where software begins. Dekker's matrix complex, Dijkstra's interrupt system, Dijkstra and Zonneveld's ALGOL compiler--which for housekeeping contained 'the complex'--were actual examples of such super programs. In 1960 this compiler gave the Mathematical Center a leading edge in the early development of software.

  15. Quasi-Periodic Long-Term Quadrature Light Variability in Early Type Interacting Binary Systems

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine Joan

    2015-08-01

    Four years of Kepler observations have revealed a class of Algol-type binaries in which the relative brightness of the quadrature light varies from > 1 to <1 on a time scale of about 100-400 days. The behavior pattern is quasi-periodic. We call these systems L/T (leading hemisphere/ trailing hemisphere) variables. Although L/T inequality in eclipsing binaries has been noted from ground-based photometry by several observers since the early 1950s, the regular or quasi-regular switching between maxima is new. Twenty L/T systems have so far been found in the Kepler database and at least three classes of L/T behavior have been identified. In this presentation I will give an update on the L/T phenomenon gleaned from the Kepler and K2 databases. The Kepler and K2 light curves are being analyzed with the 2015 version of the Wilson-Devinney (WD) program that includes major improvements in modeling star spots (i.e. spot motions due to drift and stellar rotation and spot growth and decay). The prototype L/T variable is WX Draconis (A8V + K0IV, P=1.80 d) which shows L/ T light variations of 2-3%. The primary is a delta Scuti star with a dominant pulsation period of 41 m. Preliminary analysis of the WX Dra data suggests that the L/T variability can be fit with either an accretion hot spot on the primary (T = 2.3 Tphot) that jumps in longitude or a magnetic cool spotted region on the secondary. If the latter model is correct the dark region must occupy at least 20% of the surface of the facing hemisphere of the secondary if it is completely black, or a larger area if not completely black. In both hot and cool spot scenarios magnetic fields must play a role in the activity. Support from NASA grants NNX11AC78G and NNX12AE44G and USC’s Women in Science and Engineering (WiSE) program is greatly appreciated.

  16. On the Evolution of Low-Mass X-Ray Binaries under the Influence of a Donor Stellar Wind Induced by X-Rays from the Accretor

    NASA Astrophysics Data System (ADS)

    Iben, Icko, Jr.; Tutukov, Alexander V.; Fedorova, Alexandra V.

    1997-09-01

    In a low-mass X-ray binary (LMXB), an intense stellar wind from the mass donor may be a consequence of the absorption of X-rays from the mass-accreting neutron star or black hole, and such a wind could change the evolution of these binaries dramatically compared with the evolution of cataclysmic variables (CVs), which are close binaries in which the accretor is a white dwarf. An analytical study and numerical models show that, in the closest and brightest LMXBs, a relativistic companion can capture up to ~10% of the mass lost in the induced stellar wind (ISW) from the main-sequence or subgiant donor, and this is enough to keep the X-ray luminosity of a typical LMXB on the level of LX ~ 5000 L⊙ and to accelerate the rotation of an old neutron star with a low magnetic field into the millisecond-period range. A self-sustained ISW may exist even if the donor does not fill its Roche lobe, but the system can be bright (LX > 100 L⊙) only if the radius of the donor is a substantial fraction (>~0.8) of the Roche lobe radius. A lower limit on the Roche lobe filling factor follows from the circumstance that both the rate Ėwind at which work must be done to lift wind matter off the donor and the rate Ėabs at which the donor absorbs X-ray energy are proportional to ṀISW (the ISW mass-loss rate) and from the requirement that Ėwind<Ėabs in order for energy to be conserved. The observed number (~100) of bright LMXBs in our Galaxy can be understood as the product of a relatively short lifetime (a few × 107 yr) and a small theoretical birthrate (~2 × 10-6-8 × 10-6 yr-1), which is comparable to semiempirical estimates of the birthrate of LMXBs and millisecond pulsars (~2 × 10-6 yr-1). The theoretical lifetime is ~10-60 times shorter than when the ISW is not taken into account, and the theoretical birthrate is ~3-6 times smaller, because of the fact that the ISW acts to expand the orbit and reduce the number of systems that can evolve through an X-ray bright stage under the influence of a magnetic stellar wind (MSW) when the donor is a main-sequence star (CV-like LMXBs), or under the influence of nuclear evolution when the donor is a subgiant or giant with a degenerate helium core (Algol-like LMXBs) of mass in the range MHe = 0.13-0.45 M⊙. The observed concentration of LMXBs in the 3-24 hr orbital period range corresponds to a similar concentration in the CV distribution and could be interpreted as evidence that the MSW in LMXBs operates at a strength not too different from its strength in CVs. For 0.3-1 M⊙ main-sequence donors, if the radius of the donor is larger than ~70% of the Roche lobe radius, the tendency of the ISW to force orbital expansion can balance the braking influence of the MSW and prevent an LMXB with a main-sequence donor from evolving to periods less than ~3 hr. When a main-sequence donor becomes completely convective (donor mass ~0.1-0.3 M⊙, depending on the mass-loss rate) and the MSW shuts off, orbital angular momentum loss due to gravitational wave radiation (GWR) is unable to counter the tendency toward expansion, and this may explain the apparent absence of short-period (Porb < 3 hr) LMXBs with main-sequence donors. This contrasts with the CV family in which the number of systems in the Galaxy with Porb ~ 1.3-2 hr (with donor mass <=0.3 M⊙ and with evolution driven only by GWR) is larger by a factor of ~100 than the number of systems with Porb > 3 hr. In Algol-like LMXBs in the Galactic disk, the timescale for the evaporation (caused by the ISW) of the donor with a low-mass, degenerate helium core can be smaller than the timescale for the radial expansion of the donor owing to nuclear evolution, and the donor may never fill its Roche lobe. However, if progenitor binaries are initially wide enough, the donor may escape evaporation as a main-sequence star, and significant mass transfer may not occur until the secondary evolves into a giant with a degenerate helium core of large mass and fills its Roche lobe. In globular clusters, as a result of capture and exchange reactions, semidetached Algol-like LMXBs can be formed in which the donor can fill its Roche lobe even when its degenerate helium core is of small mass, and Roche lobe mediated mass transfer driven by the nuclear evolution of the donor can dominate over capture from the ISW. The numerical models formally imply the possible presence in the Galaxy of ~104 dim (LX ~ 1-100 L⊙), long-period LMXBs or radio pulsars with low-mass (~0.05 M⊙) companions. Since there are few, if any, known observational counterparts of these systems, it is necessary to invoke a mechanism or mechanisms to destroy their formal progenitors. Possible destruction mechanisms include: (1) evaporation driven by the radiation from the rapidly rotating pulsar into which the accretor has been transformed by accretion during the bright LMXB phase, and (2) a dynamical instability arising when the donor is almost completely convective and fills its Roche lobe. In the case of dynamical disruption, the donor may be transformed into the envelope of a Thorne-Żytkow (1975) object with a neutron star or black hole core or into a planet-forming disk around the neutron star or black hole. A few short-period (Porb < 3 hr) LMXBs do exist, and, in them, the donor may be a helium white dwarf of mass less than ~0.09 M⊙. An ISW operating before the donor fills its Roche lobe may be responsible for reducing the mass of the white dwarf from an initial value of >=0.13 M⊙ to a value of <=0.09 M⊙, thus permitting stable mass exchange (at a rate smaller than the Eddington limiting rate) and evolution to longer periods to occur after the donor fills its Roche lobe. Another scenario relies on the collapse of a massive oxygen-neon white dwarf, which has accreted from a Roche lobe filling helium white dwarf. Problems that must be explored further in order to acquire a better understanding of the evolution of LMXBs include the formation of a corona around an irradiated low-mass main-sequence or degenerate dwarf star, accretion of ISW matter by a neutron star or black hole companion, the effect of an ISW on the MSW, formation of millisecond pulsars, complete evaporation of low-mass donors, disruption by tidal forces of a low-mass main-sequence star or a degenerate dwarf companion into a gas disk around the accretor, and the formation of planetary systems in the disk around neutron stars and or black holes in post-LMXB systems. Supported in part by the NSF (US) grant AST 94-17156 and the Russian Fund for Fundamental Research.

  17. Lost in the Dark: A proto-history of dark matter

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia L.; History 1

    2016-01-01

    The Greeks were probably not the first to think of everything, but they were quite often the first to write about it. Thus the first dark matter candidate was the counter-earth of Philolaus (c. 460 BCE), with its illuminated face forever turned away from us. The eclipsing binary interpretation of Algol brought forward the idea (Pigott & Goodricke 1780s) of stars not yet lit up, while the incorporation of thermodynamics into the astronomical tool kit suggested dark, dead stars. Jeans reported a number for these about three times the number of illuminated stars in 1922, the same year that Kapteyn set a comparable limit to what he called dark matter. The phrase appears as an index item in Russell et al.'s 1927 Astronomy and cannot, therefore, have been invented any later. The first extragalactic investigation seems to have been that by Knut Lundmark, writing in German in the Meddelande of the Lund Observatory in 1930. One of the columns of his Tabelle 4 is headed: (Leuchtende + dunkle Materia)/(Leuchtende Materie) and lists values from six up to 100 for six galaxies, e.g. Messier 51 (10), Andromedanebel (20), and NGC 4594 (30). Binary galaxies came from Holmberg (1937), Virgo from Sinclair Smith (1936), and flat rotation curves from Babcock (1939, Andromeda) and Oort (1940, NGC 3115), the latter writing cautiously that the distribution of mass seemed to be very different from that of the light. Then there was a war, but by the time of a 1961 symposium in Santa Barbara focused on the large velocity dispersions in clusters of galaxies, the votes for dark matter slightly outnumbered those for unbound clusters and other alternatives. The idea of a constant of gravity increasing with distance came a smidge later from Arigo Finzi in 1963. The tipping point was arguably 1974 with a pair of short papers summarizing M/L ratios vs. distance scale (which could, of course, have been plotted before WWII). I mention only the slightly earlier and much less often cited one by Einasto, Kaasik, and Saar (published in Nature, in case you are thinking of more Meddelande). I feel enormous respect and affection for Vera Rubin and Fritz Zwicky, but the published papers as are they are.

  18. The First Precision CCD Observations of the Near Contact Binary, UY Muscae

    NASA Astrophysics Data System (ADS)

    McKenzie, R.; Stoddard, M. L.; Samec, R. G.; Faulkner, D. R.

    2003-05-01

    As a part of our study of solar type stars with gas streams we observed UY Muscae [Star "y" (Oosterhoff, BAIN #148, 1928) GSC 8987 392, α (2000) = 12h 30m 47s , δ (2000) = -66° 01' 52.8"]. The observations were taken at CTIO in Chili with the 0.9-m reflector on 18, 19, 20, 23 May 2001, by RGS and DRF. The CFIM T2K CCD camera with standard UBVRcIc filters in quad mode were used. More than 200 observations were taken in each pass band. The stars (GSC 8987 1279 α (2000) = 12h30m43.7s, δ (2000) = -65°59 '45") and (GSC 8987 1884, α (2000) = 12h30m45.7s, δ (2000) = -66°01 '5") were used as comparison and check stars, respectively. Two mean epochs of minimum light were determined from primary and secondary eclipses, HJD = 2452047.6239(0.0017) and 2452049.5918(0.0005) . Standard errors are given in parentheses. We calculated the following ephemeris from our data: HJD Tmin I = 2452047.6240(0.0003) + 0.562273(0.000151)d*E . A UBVRI synthetic light curve solution was calculated using the Wilson Code. It indicates the primary (more massive) component is under-filling its Roche lobe [fill-out = 94.4(0.001) critical lobe. This is similar to an Algol system. The final parameters include a mass ratio, m2/m1 = 0.551(0.001) , and a temperature difference T1-T2 = 1280(3)K. Two spots were modeled: a stream spot with a temperature factor of 1.060(0.002) very near the L1 point of the primary component and a solar type dark spot of radius 25.2(0.3)° with a T factor of 0.970( 0.001). Large night to night variations in the light curve lead us to believe that the components are saturated with magnetic activity. It is possible that the system was previously in contact and is undergoing TRO oscillations. Our model indicates that the components are currently separating. Further results of this study will be presented. We wish to thank CTIO for their allocation of observing time, and a small research grant from the American Astronomical Society which supported this run.

  19. Graeco-Roman Astro-Architecture: The Temples of Pompeii

    NASA Astrophysics Data System (ADS)

    Tiede, Vance R.

    2014-01-01

    Roman architect Marcus Vetruvius Pollio (ca. 75-15 BC) wrote, “[O]ne who professes himself as an architect should be…acquainted with astronomy and the theory of the heavens…. From astronomy we find the east, west, south, and north, as well as the theory of the heavens, the Equinox, Solstice and courses of the Stars.” (De Architectura Libri Decem I:i:3,10). In order to investigate the role of astronomy in temple orientation, the author conducted a preliminary GIS DEM/Satellite Imaging survey of 11 temples at Pompeii, Italy (N 40d 45', E 14d 29'). The GIS survey measured the true azimuth and horizon altitude of each temple’s major axis and was field checked by a Ground Truth survey with theodolite and GPS, 5-18 April 2013. The resulting 3D vector data was analyzed with Program STONEHENGE (Hawkins 1983, 328) to identify the local skyline declinations aligned with the temple major axes. Analysis suggests that the major axes of the temples of Apollo, Jupiter and Venus are equally as likely to have been oriented to Pompeii’s urban grid, itself oriented NW-SE on Mt. Vesuvius’ slope and hydraulic gradient to optimize urban sewer/street drainage (cf. Hodge 1992). However, the remaining nine temples appear to be oriented to astronomical targets on the local horizon associated with Graeco-Roman calendrics and mythology. TEMPLE/ DATE/ MAJOR AXIS ASTRO-TARGET (Skyline Declination in degrees) Public Lares/AD 50/ Cross-Quarter 7 Nov/3 Feb Sun Set, Last Gleam (-16.5) Vespsian/ AD 69-79/ Cross-Quarter 7 Nov/3 Feb Sun Set, LG (-16.2) Fortuna Augusta/ AD 1/ Winter Solstice Sun Set, LG (-22.9) Aesculapius/ 100 BC/ Perseus Rise (β Persei-Algol = +33.0) & Midsummer Moon Major Stand Still Set, LG (-28.1) Isis/ 100 BC/ Midwinter Moon Major Stand Still Rise, Tangent (+28.5) & Equinox Sun Set, Tangent (-0.3) Jupiter/ 150 BC/ Θ Scorpionis-Sargas Rise (-38.0) Apollo/ 550 (rebuilt 70 BC)/ α Columbae-Phact Rise (-37.1) Venus/ 150 BC (rebuilt 70 BC)/ α Columbae-Phact Rise (-37.7) Ceres/ 250 BC/ Midsummer Moon Major Stand Still Set, LG (-27.9) Dioysyus/ 250 BC/ Equinox Sun Set, LG (+0.3) Doric/ 550 BC/ β Orionis-Rigel Rise (-14.6)

  20. Preliminary Studies of Interacting Binaries From NURO Observations : V963 Cygni and GSC 1419 0091

    NASA Astrophysics Data System (ADS)

    Samec, R. G.; Jones, S. M.; Scott, T.; Branning, J.; Miller, J.; Faulkner, D. R.; Hawkins, N. C.

    2005-12-01

    We present preliminary analyses of V963 and V965 Cygni based on observations taken at the National Undergraduate Research Observatory (NURO). Our CCD observations were taken 07-12 March 2005 and 19-25 July 2004 by DRF,RGS, and NCH with the Lowell Observatory 31-inch reflector. Standard UBVRI filters were used. Preliminary light curve analyses and updated periodicity studies are presented for these variables. V963 Cyg (GSC 2656 1995,α (2000) = 19h 44m 04.92s, δ (2000) = +31 41 50.17) is a detached binary discovered by Wachmann (Ast Abh Ham St VI, #1, 1961). The eclipse depths are nearly equal, 0.78 and 0.67 magnitudes in in V in the primary and secondary eclipses, respectively, causing observers to MISTAKINGLY classify it as an Algol-type system. Thus the two stars are similar in temperature and the period has to be DOUBLED. The curves appear fairlysymmetrical with a depressed section following the primary eclipse in R and I about 0.2 phase units wide. In BVRI, 100 to 130 observations were taken along with 75 in U. We determined three new times of minimum light, two secondary eclipses, HJD Min II = 2453207.76857±0.00029d and 2453211.9540±0.0032d, and one primary eclipse HJD Min I = 2453209.86073±0.00095d. A corrected period and an improved ephemeris was computed using available times of minimum light: HJD Min I = 2453209.8616(±0.0011)d + 1.39466792(±0.00000019)*E. GSC 1419 0091 (Brh V132) [α (2000) = 10h 11m 59.152s,δ (2000) = +16 52 30.28] is an overcontact binary discovered by Klaus Bernhard (BAV, http://www.var-mo.de/star/brh_v132.htm). We took approximately 60-65 observations in each of B,V,R, and I. We determined four new times of minimum light: HJD Min I = 2453437.8293(±0.0003) and 2453441.8291(±0.0019), and HJD Min II = 2453437.6973(±0.0012) and 2453442.76317(±0.0005). We computed an improved ephemeris from all available times of minimum and low light: HJD Min I = 2452754.4733(±0.0030)d + 0.2667251*E(±0.0000011). The light curves show shallow eclipse amplitudes of 0.46 and 0.43 mags in B and V, respectively, and a time of constant light in the secondary eclipse of 31 m. We wish to thank the NURO for their allocation of observing time, as well as NASA and the American Astronomical Society for their support in paying for travel and publication expenses.

  1. VizieR Online Data Catalog: JMMC Stellar Diameters Catalogue - JSDC. Version 2 (Bourges+, 2017)

    NASA Astrophysics Data System (ADS)

    Bourges, L.; Mella, G.; Lafrasse, S.; Duvert, G.; Chelli, A.; Le Bouquin, J.-B.; Delfosse, X.; Chesneau, O.

    2017-01-01

    The JMMC (Jean-Marie Mariotti Center) Calibrator Workgroup has long developed methods to estimate the angular diameter of stars, and provides this expertise in the SearchCal tool (http://www.jmmc.fr/searchcal). SearchCal creates a dynamical catalogue of stars suitable to calibrate Optical Long-Baseline Interferometry (OLBI) observations from on-line queries of CDS catalogues, according to observational parameters. In essence, SearchCal is limited only by the completeness of the stellar catalogues it uses, and in particular is not limited in magnitude. SearchCal being an application centered on the somewhat restricted OLBI observational purposes, it appeared useful to make our angular diameter estimates available for other purposes through a CDS-based catalog, the JMMC Stellar Diameters Catalogue (JSDC, II/300). This second version of the catalog represents a tenfold improvement both in terms of the number of objects and on the precision of the estimates. This is due to a new algorithm using reddening-free quantities -- the pseudomagnitudes, allied to a new database of all the measured stellar angular diameters -- the JMDC (II/345/jmdc), and a rigorous error propagation at all steps of the processing. All this is described in the associated publication by Chelli et al. (2016A&A...589A.112C). The catalog reports the Limb-Darkened Diameter (LDD) and error for 465877 stars, as well as their BVRIJHKLMN magnitudes, Uniform Disk Diameters (UDD) in these same photometric bands, Spectral Type, and two supplementary quality indicators: - the mean-diameter chi-square (see Appendix A.2 of Chelli et al., 2016A&A...589A.112C). - a flag indicating some degree of caution in choosing this star as an OLBI calibrator: known spectroscopic binaries, Algol type stars, etc, see Note (1). The conversion from LDD to UDD in each spectral band is made using mainly the coefficients from J/A+A/556/A86/table16 and J/A+A/554/A98/table16 when possible (compatible spectral types) and following the prescriptions of the JMMC report at http://www.mariotti.fr/doc/approved/JMMC-MEM-2610-0001.pdf in all other cases. The errors on UDD values are omitted as they are similar to the LDD error. Instead of using this catalog to find a suitable OLBI calibrator, the reader is invited to use the SearchCal tool at JMMC (http://www.jmmc.fr/searchcal) which permits a refined search, give access to other possible calibrators (faint stars not in the Tycho catalog) and benefits from the maintainance of JMMC and CDS databases. This catalog replaces the previous JSDC (II/300/jsdc). Almost all stars in II/300/jsdc are found in II/346 with a consistent diameter, with the exception of 1935 stars whose estimated diameter differs from more than 2 sigmas between the two catalogs. The associated file JSDCv2v1 dis.vot (jsdc dis.dat) summarizes this difference. (5 data files).

  2. Implications of the Turing machine model of computation for processor and programming language design

    NASA Astrophysics Data System (ADS)

    Hunter, Geoffrey

    2004-01-01

    A computational process is classified according to the theoretical model that is capable of executing it; computational processes that require a non-predeterminable amount of intermediate storage for their execution are Turing-machine (TM) processes, while those whose storage are predeterminable are Finite Automation (FA) processes. Simple processes (such as traffic light controller) are executable by Finite Automation, whereas the most general kind of computation requires a Turing Machine for its execution. This implies that a TM process must have a non-predeterminable amount of memory allocated to it at intermediate instants of its execution; i.e. dynamic memory allocation. Many processes encountered in practice are TM processes. The implication for computational practice is that the hardware (CPU) architecture and its operating system must facilitate dynamic memory allocation, and that the programming language used to specify TM processes must have statements with the semantic attribute of dynamic memory allocation, for in Alan Turing"s thesis on computation (1936) the "standard description" of a process is invariant over the most general data that the process is designed to process; i.e. the program describing the process should never have to be modified to allow for differences in the data that is to be processed in different instantiations; i.e. data-invariant programming. Any non-trivial program is partitioned into sub-programs (procedures, subroutines, functions, modules, etc). Examination of the calls/returns between the subprograms reveals that they are nodes in a tree-structure; this tree-structure is independent of the programming language used to encode (define) the process. Each sub-program typically needs some memory for its own use (to store values intermediate between its received data and its computed results); this locally required memory is not needed before the subprogram commences execution, and it is not needed after its execution terminates; it may be allocated as its execution commences, and deallocated as its execution terminates, and if the amount of this local memory is not known until just before execution commencement, then it is essential that it be allocated dynamically as the first action of its execution. This dynamically allocated/deallocated storage of each subprogram"s intermediate values, conforms with the stack discipline; i.e. last allocated = first to be deallocated, an incidental benefit of which is automatic overlaying of variables. This stack-based dynamic memory allocation was a semantic implication of the nested block structure that originated in the ALGOL-60 programming language. AGLOL-60 was a TM language, because the amount of memory allocated on subprogram (block/procedure) entry (for arrays, etc) was computable at execution time. A more general requirement of a Turing machine process is for code generation at run-time; this mandates access to the source language processor (compiler/interpretor) during execution of the process. This fundamental aspect of computer science is important to the future of system design, because it has been overlooked throughout the 55 years since modern computing began in 1048. The popular computer systems of this first half-century of computing were constrained by compile-time (or even operating system boot-time) memory allocation, and were thus limited to executing FA processes. The practical effect was that the distinction between the data-invariant program and its variable data was blurred; programmers had to make trial and error executions, modifying the program"s compile-time constants (array dimensions) to iterate towards the values required at run-time by the data being processed. This era of trial and error computing still persists; it pervades the culture of current (2003) computing practice.

  3. BOOK REVIEW: Numerical Recipes in C++: The Art of Scientific Computing (2nd edn)1 Numerical Recipes Example Book (C++) (2nd edn)2 Numerical Recipes Multi-Language Code CD ROM with LINUX or UNIX Single-Screen License Revised Version3Numerical Recipes in C++: The Art of Scientific Computing (2nd edn) Numerical Recipes Example Book (C++) (2nd edn) Numerical Recipes Multi-Language Code CD ROM with LINUX or UNIX Single-Screen License Revised Version

    NASA Astrophysics Data System (ADS)

    Press, William H.; Teukolsky, Saul A.; Vettering, William T.; Flannery, Brian P.

    2003-05-01

    The two Numerical Recipes books are marvellous. The principal book, The Art of Scientific Computing, contains program listings for almost every conceivable requirement, and it also contains a well written discussion of the algorithms and the numerical methods involved. The Example Book provides a complete driving program, with helpful notes, for nearly all the routines in the principal book. The first edition of Numerical Recipes: The Art of Scientific Computing was published in 1986 in two versions, one with programs in Fortran, the other with programs in Pascal. There were subsequent versions with programs in BASIC and in C. The second, enlarged edition was published in 1992, again in two versions, one with programs in Fortran (NR(F)), the other with programs in C (NR(C)). In 1996 the authors produced Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing as a supplement, called Volume 2, with the original (Fortran) version referred to as Volume 1. Numerical Recipes in C++ (NR(C++)) is another version of the 1992 edition. The numerical recipes are also available on a CD ROM: if you want to use any of the recipes, I would strongly advise you to buy the CD ROM. The CD ROM contains the programs in all the languages. When the first edition was published I bought it, and have also bought copies of the other editions as they have appeared. Anyone involved in scientific computing ought to have a copy of at least one version of Numerical Recipes, and there also ought to be copies in every library. If you already have NR(F), should you buy the NR(C++) and, if not, which version should you buy? In the preface to Volume 2 of NR(F), the authors say 'C and C++ programmers have not been far from our minds as we have written this volume, and we think that you will find that time spent in absorbing its principal lessons will be amply repaid in the future as C and C++ eventually develop standard parallel extensions'. In the preface and introduction to NR(C++), the authors point out some of the problems in the use of C++ in scientific computing. I have not found any mention of parallel computing in NR(C++). Fortran has quite a lot going for it. As someone who has used it in most of its versions from Fortran II, I have seen it develop and leave behind other languages promoted by various enthusiasts: who now uses Algol or Pascal? I think it unlikely that C++ will disappear: it was devised as a systems language, and can also be used for other purposes such as scientific computing. It is possible that Fortran will disappear, but Fortran has the strengths that it can develop, that there are extensive Fortran subroutine libraries, and that it has been developed for parallel computing. To argue with programmers as to which is the best language to use is sterile. If you wish to use C++, then buy NR(C++), but you should also look at volume 2 of NR(F). If you are a Fortran programmer, then make sure you have NR(F), volumes 1 and 2. But whichever language you use, make sure you have one version or the other, and the CD ROM. The Example Book provides listings of complete programs to run nearly all the routines in NR, frequently based on cases where an anlytical solution is available. It is helpful when developing a new program incorporating an unfamiliar routine to see that routine actually working, and this is what the programs in the Example Book achieve. I started teaching computational physics before Numerical Recipes was published. If I were starting again, I would make heavy use of both The Art of Scientific Computing and of the Example Book. Every computational physics teaching laboratory should have both volumes: the programs in the Example Book are included on the CD ROM, but the extra commentary in the book itself is of considerable value. P Borcherds

Top