Sample records for algorithm achieves higher

  1. Cooperative optimization and their application in LDPC codes

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Rong, Jian; Zhong, Xiaochun

    2008-10-01

    Cooperative optimization is a new way for finding global optima of complicated functions of many variables. The proposed algorithm is a class of message passing algorithms and has solid theory foundations. It can achieve good coding gains over the sum-product algorithm for LDPC codes. For (6561, 4096) LDPC codes, the proposed algorithm can achieve 2.0 dB gains over the sum-product algorithm at BER of 4×10-7. The decoding complexity of the proposed algorithm is lower than the sum-product algorithm can do; furthermore, the former can achieve much lower error floor than the latter can do after the Eb / No is higher than 1.8 dB.

  2. Validation of an improved 'diffeomorphic demons' algorithm for deformable image registration in image-guided radiation therapy.

    PubMed

    Zhou, Lu; Zhou, Linghong; Zhang, Shuxu; Zhen, Xin; Yu, Hui; Zhang, Guoqian; Wang, Ruihao

    2014-01-01

    Deformable image registration (DIR) was widely used in radiation therapy, such as in automatic contour generation, dose accumulation, tumor growth or regression analysis. To achieve higher registration accuracy and faster convergence, an improved 'diffeomorphic demons' registration algorithm was proposed and validated. Based on Brox et al.'s gradient constancy assumption and Malis's efficient second-order minimization (ESM) algorithm, a grey value gradient similarity term and a transformation error term were added into the demons energy function, and a formula was derived to calculate the update of transformation field. The limited Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm was used to optimize the energy function so that the iteration number could be determined automatically. The proposed algorithm was validated using mathematically deformed images and physically deformed phantom images. Compared with the original 'diffeomorphic demons' algorithm, the registration method proposed achieve a higher precision and a faster convergence speed. Due to the influence of different scanning conditions in fractionated radiation, the density range of the treatment image and the planning image may be different. In such a case, the improved demons algorithm can achieve faster and more accurate radiotherapy.

  3. A novel image encryption algorithm using chaos and reversible cellular automata

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Luan, Dapeng

    2013-11-01

    In this paper, a novel image encryption scheme is proposed based on reversible cellular automata (RCA) combining chaos. In this algorithm, an intertwining logistic map with complex behavior and periodic boundary reversible cellular automata are used. We split each pixel of image into units of 4 bits, then adopt pseudorandom key stream generated by the intertwining logistic map to permute these units in confusion stage. And in diffusion stage, two-dimensional reversible cellular automata which are discrete dynamical systems are applied to iterate many rounds to achieve diffusion on bit-level, in which we only consider the higher 4 bits in a pixel because the higher 4 bits carry almost the information of an image. Theoretical analysis and experimental results demonstrate the proposed algorithm achieves a high security level and processes good performance against common attacks like differential attack and statistical attack. This algorithm belongs to the class of symmetric systems.

  4. A range-based predictive localization algorithm for WSID networks

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Chen, Junjie; Li, Gang

    2017-11-01

    Most studies on localization algorithms are conducted on the sensor networks with densely distributed nodes. However, the non-localizable problems are prone to occur in the network with sparsely distributed sensor nodes. To solve this problem, a range-based predictive localization algorithm (RPLA) is proposed in this paper for the wireless sensor networks syncretizing the RFID (WSID) networks. The Gaussian mixture model is established to predict the trajectory of a mobile target. Then, the received signal strength indication is used to reduce the residence area of the target location based on the approximate point-in-triangulation test algorithm. In addition, collaborative localization schemes are introduced to locate the target in the non-localizable situations. Simulation results verify that the RPLA achieves accurate localization for the network with sparsely distributed sensor nodes. The localization accuracy of the RPLA is 48.7% higher than that of the APIT algorithm, 16.8% higher than that of the single Gaussian model-based algorithm and 10.5% higher than that of the Kalman filtering-based algorithm.

  5. Image reconstruction through thin scattering media by simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Fang, Longjie; Zuo, Haoyi; Pang, Lin; Yang, Zuogang; Zhang, Xicheng; Zhu, Jianhua

    2018-07-01

    An idea for reconstructing the image of an object behind thin scattering media is proposed by phase modulation. The optimized phase mask is achieved by modulating the scattered light using simulated annealing algorithm. The correlation coefficient is exploited as a fitness function to evaluate the quality of reconstructed image. The reconstructed images optimized from simulated annealing algorithm and genetic algorithm are compared in detail. The experimental results show that our proposed method has better definition and higher speed than genetic algorithm.

  6. [Preliminary application of an improved Demons deformable registration algorithm in tumor radiotherapy].

    PubMed

    Zhou, Lu; Zhen, Xin; Lu, Wenting; Dou, Jianhong; Zhou, Linghong

    2012-01-01

    To validate the efficiency of an improved Demons deformable registration algorithm and evaluate its application in registration of the treatment image and the planning image in image-guided radiotherapy (IGRT). Based on Brox's gradient constancy assumption and Malis's efficient second-order minimization algorithm, a grey value gradient similarity term was added into the original energy function, and a formula was derived to calculate the update of transformation field. The limited Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm was used to optimize the energy function for automatic determination of the iteration number. The proposed algorithm was validated using mathematically deformed images, physically deformed phantom images and clinical tumor images. Compared with the original Additive Demons algorithm, the improved Demons algorithm achieved a higher precision and a faster convergence speed. Due to the influence of different scanning conditions in fractionated radiation, the density range of the treatment image and the planning image may be different. The improved Demons algorithm can achieve faster and more accurate radiotherapy.

  7. LPA-CBD an improved label propagation algorithm based on community belonging degree for community detection

    NASA Astrophysics Data System (ADS)

    Gui, Chun; Zhang, Ruisheng; Zhao, Zhili; Wei, Jiaxuan; Hu, Rongjing

    In order to deal with stochasticity in center node selection and instability in community detection of label propagation algorithm, this paper proposes an improved label propagation algorithm named label propagation algorithm based on community belonging degree (LPA-CBD) that employs community belonging degree to determine the number and the center of community. The general process of LPA-CBD is that the initial community is identified by the nodes with the maximum degree, and then it is optimized or expanded by community belonging degree. After getting the rough structure of network community, the remaining nodes are labeled by using label propagation algorithm. The experimental results on 10 real-world networks and three synthetic networks show that LPA-CBD achieves reasonable community number, better algorithm accuracy and higher modularity compared with other four prominent algorithms. Moreover, the proposed algorithm not only has lower algorithm complexity and higher community detection quality, but also improves the stability of the original label propagation algorithm.

  8. Optimization of Selected Remote Sensing Algorithms for Embedded NVIDIA Kepler GPU Architecture

    NASA Technical Reports Server (NTRS)

    Riha, Lubomir; Le Moigne, Jacqueline; El-Ghazawi, Tarek

    2015-01-01

    This paper evaluates the potential of embedded Graphic Processing Units in the Nvidias Tegra K1 for onboard processing. The performance is compared to a general purpose multi-core CPU and full fledge GPU accelerator. This study uses two algorithms: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery and Automated Cloud-Cover Assessment (ACCA) Algorithm. Tegra K1 achieved 51 for ACCA algorithm and 20 for the dimension reduction algorithm, as compared to the performance of the high-end 8-core server Intel Xeon CPU with 13.5 times higher power consumption.

  9. A class of parallel algorithms for computation of the manipulator inertia matrix

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Bejczy, Antal K.

    1989-01-01

    Parallel and parallel/pipeline algorithms for computation of the manipulator inertia matrix are presented. An algorithm based on composite rigid-body spatial inertia method, which provides better features for parallelization, is used for the computation of the inertia matrix. Two parallel algorithms are developed which achieve the time lower bound in computation. Also described is the mapping of these algorithms with topological variation on a two-dimensional processor array, with nearest-neighbor connection, and with cardinality variation on a linear processor array. An efficient parallel/pipeline algorithm for the linear array was also developed, but at significantly higher efficiency.

  10. Development of a Compound Optimization Approach Based on Imperialist Competitive Algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Qimei; Yang, Zhihong; Wang, Yong

    In this paper, an improved novel approach is developed for the imperialist competitive algorithm to achieve a greater performance. The Nelder-Meand simplex method is applied to execute alternately with the original procedures of the algorithm. The approach is tested on twelve widely-used benchmark functions and is also compared with other relative studies. It is shown that the proposed approach has a faster convergence rate, better search ability, and higher stability than the original algorithm and other relative methods.

  11. A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components

    NASA Astrophysics Data System (ADS)

    Hu, Jinghua; Pan, Mengchun; Zeng, Zhidun; Hu, Jiafei; Chen, Dixiang; Tian, Wugang; Zhao, Jianqiang; Du, Qingfa

    2016-10-01

    Frequency estimation is a fundamental problem in many applications, such as traditional vibration measurement, power system supervision, and microelectromechanical system sensors control. In this paper, a fast and accurate frequency estimation algorithm is proposed to deal with low efficiency problem in traditional methods. The proposed algorithm consists of coarse and fine frequency estimation steps, and we demonstrate that it is more efficient than conventional searching methods to achieve coarse frequency estimation (location peak of FFT amplitude) by applying modified zero-crossing technique. Thus, the proposed estimation algorithm requires less hardware and software sources and can achieve even higher efficiency when the experimental data increase. Experimental results with modulated magnetic signal show that the root mean square error of frequency estimation is below 0.032 Hz with the proposed algorithm, which has lower computational complexity and better global performance than conventional frequency estimation methods.

  12. A matrix-algebraic formulation of distributed-memory maximal cardinality matching algorithms in bipartite graphs

    DOE PAGES

    Azad, Ariful; Buluç, Aydın

    2016-05-16

    We describe parallel algorithms for computing maximal cardinality matching in a bipartite graph on distributed-memory systems. Unlike traditional algorithms that match one vertex at a time, our algorithms process many unmatched vertices simultaneously using a matrix-algebraic formulation of maximal matching. This generic matrix-algebraic framework is used to develop three efficient maximal matching algorithms with minimal changes. The newly developed algorithms have two benefits over existing graph-based algorithms. First, unlike existing parallel algorithms, cardinality of matching obtained by the new algorithms stays constant with increasing processor counts, which is important for predictable and reproducible performance. Second, relying on bulk-synchronous matrix operations,more » these algorithms expose a higher degree of parallelism on distributed-memory platforms than existing graph-based algorithms. We report high-performance implementations of three maximal matching algorithms using hybrid OpenMP-MPI and evaluate the performance of these algorithm using more than 35 real and randomly generated graphs. On real instances, our algorithms achieve up to 200 × speedup on 2048 cores of a Cray XC30 supercomputer. Even higher speedups are obtained on larger synthetically generated graphs where our algorithms show good scaling on up to 16,384 cores.« less

  13. [A new peak detection algorithm of Raman spectra].

    PubMed

    Jiang, Cheng-Zhi; Sun, Qiang; Liu, Ying; Liang, Jing-Qiu; An, Yan; Liu, Bing

    2014-01-01

    The authors proposed a new Raman peak recognition method named bi-scale correlation algorithm. The algorithm uses the combination of the correlation coefficient and the local signal-to-noise ratio under two scales to achieve Raman peak identification. We compared the performance of the proposed algorithm with that of the traditional continuous wavelet transform method through MATLAB, and then tested the algorithm with real Raman spectra. The results show that the average time for identifying a Raman spectrum is 0.51 s with the algorithm, while it is 0.71 s with the continuous wavelet transform. When the signal-to-noise ratio of Raman peak is greater than or equal to 6 (modern Raman spectrometers feature an excellent signal-to-noise ratio), the recognition accuracy with the algorithm is higher than 99%, while it is less than 84% with the continuous wavelet transform method. The mean and the standard deviations of the peak position identification error of the algorithm are both less than that of the continuous wavelet transform method. Simulation analysis and experimental verification prove that the new algorithm possesses the following advantages: no needs of human intervention, no needs of de-noising and background removal operation, higher recognition speed and higher recognition accuracy. The proposed algorithm is operable in Raman peak identification.

  14. Classifying epileptic EEG signals with delay permutation entropy and Multi-Scale K-means.

    PubMed

    Zhu, Guohun; Li, Yan; Wen, Peng Paul; Wang, Shuaifang

    2015-01-01

    Most epileptic EEG classification algorithms are supervised and require large training datasets, that hinder their use in real time applications. This chapter proposes an unsupervised Multi-Scale K-means (MSK-means) MSK-means algorithm to distinguish epileptic EEG signals and identify epileptic zones. The random initialization of the K-means algorithm can lead to wrong clusters. Based on the characteristics of EEGs, the MSK-means MSK-means algorithm initializes the coarse-scale centroid of a cluster with a suitable scale factor. In this chapter, the MSK-means algorithm is proved theoretically superior to the K-means algorithm on efficiency. In addition, three classifiers: the K-means, MSK-means MSK-means and support vector machine (SVM), are used to identify seizure and localize epileptogenic zone using delay permutation entropy features. The experimental results demonstrate that identifying seizure with the MSK-means algorithm and delay permutation entropy achieves 4. 7 % higher accuracy than that of K-means, and 0. 7 % higher accuracy than that of the SVM.

  15. Solution algorithms for the two-dimensional Euler equations on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Whitaker, D. L.; Slack, David C.; Walters, Robert W.

    1990-01-01

    The objective of the study was to analyze implicit techniques employed in structured grid algorithms for solving two-dimensional Euler equations and extend them to unstructured solvers in order to accelerate convergence rates. A comparison is made between nine different algorithms for both first-order and second-order accurate solutions. Higher-order accuracy is achieved by using multidimensional monotone linear reconstruction procedures. The discussion is illustrated by results for flow over a transonic circular arc.

  16. Maximal clique enumeration with data-parallel primitives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lessley, Brenton; Perciano, Talita; Mathai, Manish

    The enumeration of all maximal cliques in an undirected graph is a fundamental problem arising in several research areas. We consider maximal clique enumeration on shared-memory, multi-core architectures and introduce an approach consisting entirely of data-parallel operations, in an effort to achieve efficient and portable performance across different architectures. We study the performance of the algorithm via experiments varying over benchmark graphs and architectures. Overall, we observe that our algorithm achieves up to a 33-time speedup and 9-time speedup over state-of-the-art distributed and serial algorithms, respectively, for graphs with higher ratios of maximal cliques to total cliques. Further, we attainmore » additional speedups on a GPU architecture, demonstrating the portable performance of our data-parallel design.« less

  17. Blob-level active-passive data fusion for Benthic classification

    NASA Astrophysics Data System (ADS)

    Park, Joong Yong; Kalluri, Hemanth; Mathur, Abhinav; Ramnath, Vinod; Kim, Minsu; Aitken, Jennifer; Tuell, Grady

    2012-06-01

    We extend the data fusion pixel level to the more semantically meaningful blob level, using the mean-shift algorithm to form labeled blobs having high similarity in the feature domain, and connectivity in the spatial domain. We have also developed Bhattacharyya Distance (BD) and rule-based classifiers, and have implemented these higher-level data fusion algorithms into the CZMIL Data Processing System. Applying these new algorithms to recent SHOALS and CASI data at Plymouth Harbor, Massachusetts, we achieved improved benthic classification accuracies over those produced with either single sensor, or pixel-level fusion strategies. These results appear to validate the hypothesis that classification accuracy may be generally improved by adopting higher spatial and semantic levels of fusion.

  18. A Flywheel Energy Storage System Demonstration for Space Applications

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.; Jansen, Ralph; Dever, Timothy

    2003-01-01

    A novel control algorithm for the charge and discharge modes of operation of a flywheel energy storage system for space applications is presented. The motor control portion of the algorithm uses sensorless field oriented control with position and speed estimates determined from a signal injection technique at low speeds and a back EMF technique at higher speeds. The charge and discharge portion of the algorithm use command feed-forward and disturbance decoupling, respectively, to achieve fast response with low gains. Simulation and experimental results are presented.

  19. Design of Automatic Extraction Algorithm of Knowledge Points for MOOCs

    PubMed Central

    Chen, Haijian; Han, Dongmei; Zhao, Lina

    2015-01-01

    In recent years, Massive Open Online Courses (MOOCs) are very popular among college students and have a powerful impact on academic institutions. In the MOOCs environment, knowledge discovery and knowledge sharing are very important, which currently are often achieved by ontology techniques. In building ontology, automatic extraction technology is crucial. Because the general methods of text mining algorithm do not have obvious effect on online course, we designed automatic extracting course knowledge points (AECKP) algorithm for online course. It includes document classification, Chinese word segmentation, and POS tagging for each document. Vector Space Model (VSM) is used to calculate similarity and design the weight to optimize the TF-IDF algorithm output values, and the higher scores will be selected as knowledge points. Course documents of “C programming language” are selected for the experiment in this study. The results show that the proposed approach can achieve satisfactory accuracy rate and recall rate. PMID:26448738

  20. Direct position determination for digital modulation signals based on improved particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Wan-Ting; Yu, Hong-yi; Du, Jian-Ping; Wang, Ding

    2018-04-01

    The Direct Position Determination (DPD) algorithm has been demonstrated to achieve a better accuracy with known signal waveforms. However, the signal waveform is difficult to be completely known in the actual positioning process. To solve the problem, we proposed a DPD method for digital modulation signals based on improved particle swarm optimization algorithm. First, a DPD model is established for known modulation signals and a cost function is obtained on symbol estimation. Second, as the optimization of the cost function is a nonlinear integer optimization problem, an improved Particle Swarm Optimization (PSO) algorithm is considered for the optimal symbol search. Simulations are carried out to show the higher position accuracy of the proposed DPD method and the convergence of the fitness function under different inertia weight and population size. On the one hand, the proposed algorithm can take full advantage of the signal feature to improve the positioning accuracy. On the other hand, the improved PSO algorithm can improve the efficiency of symbol search by nearly one hundred times to achieve a global optimal solution.

  1. Real-Time Aggressive Image Data Compression

    DTIC Science & Technology

    1990-03-31

    implemented with higher degrees of modularity, concurrency, and higher levels of machine intelligence , thereby providing higher data -throughput rates...Project Summary Project Title: Real-Time Aggressive Image Data Compression Principal Investigators: Dr. Yih-Fang Huang and Dr. Ruey-wen Liu Institution...Summary The objective of the proposed research is to develop reliable algorithms !.hat can achieve aggressive image data compression (with a compression

  2. Optimum design and operation of primary sludge fermentation schemes for volatile fatty acids production.

    PubMed

    Chanona, J; Ribes, J; Seco, A; Ferrer, J

    2006-01-01

    This paper presents a model-knowledge based algorithm for optimising the primary sludge fermentation process design and operation. This is a recently used method to obtain the volatile fatty acids (VFA), needed to improve biological nutrient removal processes, directly from the raw wastewater. The proposed algorithm consists in a heuristic reasoning algorithm based on the expert knowledge of the process. Only effluent VFA and the sludge blanket height (SBH) have to be set as design criteria, and the optimisation algorithm obtains the minimum return sludge and waste sludge flow rates which fulfil those design criteria. A pilot plant fed with municipal raw wastewater was operated in order to obtain experimental results supporting the developed algorithm groundwork. The experimental results indicate that when SBH was increased, higher solids retention time was obtained in the settler and VFA production increased. Higher recirculation flow-rates resulted in higher VFA production too. Finally, the developed algorithm has been tested by simulating different design conditions with very good results. It has been able to find the optimal operation conditions in all cases on which preset design conditions could be achieved. Furthermore, this is a general algorithm that can be applied to any fermentation-elutriation scheme with or without fermentation reactor.

  3. Adiabatic Quantum Search in Open Systems.

    PubMed

    Wild, Dominik S; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y; Lukin, Mikhail D

    2016-10-07

    Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.

  4. Conceptual Versus Algorithmic Problem-solving: Focusing on Problems Dealing with Conservation of Matter in Chemistry

    NASA Astrophysics Data System (ADS)

    Salta, Katerina; Tzougraki, Chryssa

    2011-08-01

    The students' performance in various types of problems dealing with the conservation of matter during chemical reactions has been investigated at different levels of schooling. The participants were 499 ninth grade (ages 14, 15 years) and 624 eleventh grade (ages 16, 17 years) Greek students. Data was collected using a written questionnaire concerning basic chemical concepts. Results of statistical factor and correlation analysis confirmed the classification of the problems used in three types: "algorithmic-type", "particulate-type", and "conceptual-type". All the students had a far better performance in "particulate-type" problems than in the others. Although students' ability in solving "algorithmic-type" problem increases as their school experience in chemistry progresses, their ability in solving "conceptual-type" problems decreases. Students' achievement in chemistry was measured by a Chemical Concepts Test (CCT) containing 57 questions of various forms. High-achievement students scored higher both on "algorithmic-type" and "particulate-type" problems than low achievers with the greatest difference observed in solving "algorithmic-type" problems. It is concluded that competence in "particulate-type" and "algorithmic-type" problem solving may be independent of competence in solving "conceptual-type" ones. Furthermore, it was found that students' misconceptions concerning chemical reactions and equivalence between mass and energy are impediments to their problem solving abilities. Finally, based on the findings, few suggestions concerning teaching practices are discussed.

  5. New Dandelion Algorithm Optimizes Extreme Learning Machine for Biomedical Classification Problems

    PubMed Central

    Li, Xiguang; Zhao, Liang; Gong, Changqing; Liu, Xiaojing

    2017-01-01

    Inspired by the behavior of dandelion sowing, a new novel swarm intelligence algorithm, namely, dandelion algorithm (DA), is proposed for global optimization of complex functions in this paper. In DA, the dandelion population will be divided into two subpopulations, and different subpopulations will undergo different sowing behaviors. Moreover, another sowing method is designed to jump out of local optimum. In order to demonstrate the validation of DA, we compare the proposed algorithm with other existing algorithms, including bat algorithm, particle swarm optimization, and enhanced fireworks algorithm. Simulations show that the proposed algorithm seems much superior to other algorithms. At the same time, the proposed algorithm can be applied to optimize extreme learning machine (ELM) for biomedical classification problems, and the effect is considerable. At last, we use different fusion methods to form different fusion classifiers, and the fusion classifiers can achieve higher accuracy and better stability to some extent. PMID:29085425

  6. Supercomputer algorithms for efficient linear octree encoding of three-dimensional brain images.

    PubMed

    Berger, S B; Reis, D J

    1995-02-01

    We designed and implemented algorithms for three-dimensional (3-D) reconstruction of brain images from serial sections using two important supercomputer architectures, vector and parallel. These architectures were represented by the Cray YMP and Connection Machine CM-2, respectively. The programs operated on linear octree representations of the brain data sets, and achieved 500-800 times acceleration when compared with a conventional laboratory workstation. As the need for higher resolution data sets increases, supercomputer algorithms may offer a means of performing 3-D reconstruction well above current experimental limits.

  7. muBLASTP: database-indexed protein sequence search on multicore CPUs.

    PubMed

    Zhang, Jing; Misra, Sanchit; Wang, Hao; Feng, Wu-Chun

    2016-11-04

    The Basic Local Alignment Search Tool (BLAST) is a fundamental program in the life sciences that searches databases for sequences that are most similar to a query sequence. Currently, the BLAST algorithm utilizes a query-indexed approach. Although many approaches suggest that sequence search with a database index can achieve much higher throughput (e.g., BLAT, SSAHA, and CAFE), they cannot deliver the same level of sensitivity as the query-indexed BLAST, i.e., NCBI BLAST, or they can only support nucleotide sequence search, e.g., MegaBLAST. Due to different challenges and characteristics between query indexing and database indexing, the existing techniques for query-indexed search cannot be used into database indexed search. muBLASTP, a novel database-indexed BLAST for protein sequence search, delivers identical hits returned to NCBI BLAST. On Intel Haswell multicore CPUs, for a single query, the single-threaded muBLASTP achieves up to a 4.41-fold speedup for alignment stages, and up to a 1.75-fold end-to-end speedup over single-threaded NCBI BLAST. For a batch of queries, the multithreaded muBLASTP achieves up to a 5.7-fold speedups for alignment stages, and up to a 4.56-fold end-to-end speedup over multithreaded NCBI BLAST. With a newly designed index structure for protein database and associated optimizations in BLASTP algorithm, we re-factored BLASTP algorithm for modern multicore processors that achieves much higher throughput with acceptable memory footprint for the database index.

  8. Design of a fast echo matching algorithm to reduce crosstalk with Doppler shifts in ultrasonic ranging

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Guo, Rui; Wu, Jun-an

    2017-02-01

    Crosstalk is a main factor for wrong distance measurement by ultrasonic sensors, and this problem becomes more difficult to deal with under Doppler effects. In this paper, crosstalk reduction with Doppler shifts on small platforms is focused on, and a fast echo matching algorithm (FEMA) is proposed on the basis of chaotic sequences and pulse coding technology, then verified through applying it to match practical echoes. Finally, we introduce how to select both better mapping methods for chaotic sequences, and algorithm parameters for higher achievable maximum of cross-correlation peaks. The results indicate the following: logistic mapping is preferred to generate good chaotic sequences, with high autocorrelation even when the length is very limited; FEMA can not only match echoes and calculate distance accurately with an error degree mostly below 5%, but also generates nearly the same calculation cost level for static or kinematic ranging, much lower than that by direct Doppler compensation (DDC) with the same frequency compensation step; The sensitivity to threshold value selection and performance of FEMA depend significantly on the achievable maximum of cross-correlation peaks, and a higher peak is preferred, which can be considered as a criterion for algorithm parameter optimization under practical conditions.

  9. SU-F-BRCD-09: Total Variation (TV) Based Fast Convergent Iterative CBCT Reconstruction with GPU Acceleration.

    PubMed

    Xu, Q; Yang, D; Tan, J; Anastasio, M

    2012-06-01

    To improve image quality and reduce imaging dose in CBCT for radiation therapy applications and to realize near real-time image reconstruction based on use of a fast convergence iterative algorithm and acceleration by multi-GPUs. An iterative image reconstruction that sought to minimize a weighted least squares cost function that employed total variation (TV) regularization was employed to mitigate projection data incompleteness and noise. To achieve rapid 3D image reconstruction (< 1 min), a highly optimized multiple-GPU implementation of the algorithm was developed. The convergence rate and reconstruction accuracy were evaluated using a modified 3D Shepp-Logan digital phantom and a Catphan-600 physical phantom. The reconstructed images were compared with the clinical FDK reconstruction results. Digital phantom studies showed that only 15 iterations and 60 iterations are needed to achieve algorithm convergence for 360-view and 60-view cases, respectively. The RMSE was reduced to 10-4 and 10-2, respectively, by using 15 iterations for each case. Our algorithm required 5.4s to complete one iteration for the 60-view case using one Tesla C2075 GPU. The few-view study indicated that our iterative algorithm has great potential to reduce the imaging dose and preserve good image quality. For the physical Catphan studies, the images obtained from the iterative algorithm possessed better spatial resolution and higher SNRs than those obtained from by use of a clinical FDK reconstruction algorithm. We have developed a fast convergence iterative algorithm for CBCT image reconstruction. The developed algorithm yielded images with better spatial resolution and higher SNR than those produced by a commercial FDK tool. In addition, from the few-view study, the iterative algorithm has shown great potential for significantly reducing imaging dose. We expect that the developed reconstruction approach will facilitate applications including IGART and patient daily CBCT-based treatment localization. © 2012 American Association of Physicists in Medicine.

  10. Unsupervised spike sorting based on discriminative subspace learning.

    PubMed

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2014-01-01

    Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. In this paper, we present two unsupervised spike sorting algorithms based on discriminative subspace learning. The first algorithm simultaneously learns the discriminative feature subspace and performs clustering. It uses histogram of features in the most discriminative projection to detect the number of neurons. The second algorithm performs hierarchical divisive clustering that learns a discriminative 1-dimensional subspace for clustering in each level of the hierarchy until achieving almost unimodal distribution in the subspace. The algorithms are tested on synthetic and in-vivo data, and are compared against two widely used spike sorting methods. The comparative results demonstrate that our spike sorting methods can achieve substantially higher accuracy in lower dimensional feature space, and they are highly robust to noise. Moreover, they provide significantly better cluster separability in the learned subspace than in the subspace obtained by principal component analysis or wavelet transform.

  11. HO2 rovibrational eigenvalue studies for nonzero angular momentum

    NASA Astrophysics Data System (ADS)

    Wu, Xudong T.; Hayes, Edward F.

    1997-08-01

    An efficient parallel algorithm is reported for determining all bound rovibrational energy levels for the HO2 molecule for nonzero angular momentum values, J=1, 2, and 3. Performance tests on the CRAY T3D indicate that the algorithm scales almost linearly when up to 128 processors are used. Sustained performance levels of up to 3.8 Gflops have been achieved using 128 processors for J=3. The algorithm uses a direct product discrete variable representation (DVR) basis and the implicitly restarted Lanczos method (IRLM) of Sorensen to compute the eigenvalues of the polyatomic Hamiltonian. Since the IRLM is an iterative method, it does not require storage of the full Hamiltonian matrix—it only requires the multiplication of the Hamiltonian matrix by a vector. When the IRLM is combined with a formulation such as DVR, which produces a very sparse matrix, both memory and computation times can be reduced dramatically. This algorithm has the potential to achieve even higher performance levels for larger values of the total angular momentum.

  12. Memetic Algorithm-Based Multi-Objective Coverage Optimization for Wireless Sensor Networks

    PubMed Central

    Chen, Zhi; Li, Shuai; Yue, Wenjing

    2014-01-01

    Maintaining effective coverage and extending the network lifetime as much as possible has become one of the most critical issues in the coverage of WSNs. In this paper, we propose a multi-objective coverage optimization algorithm for WSNs, namely MOCADMA, which models the coverage control of WSNs as the multi-objective optimization problem. MOCADMA uses a memetic algorithm with a dynamic local search strategy to optimize the coverage of WSNs and achieve the objectives such as high network coverage, effective node utilization and more residual energy. In MOCADMA, the alternative solutions are represented as the chromosomes in matrix form, and the optimal solutions are selected through numerous iterations of the evolution process, including selection, crossover, mutation, local enhancement, and fitness evaluation. The experiment and evaluation results show MOCADMA can have good capabilities in maintaining the sensing coverage, achieve higher network coverage while improving the energy efficiency and effectively prolonging the network lifetime, and have a significant improvement over some existing algorithms. PMID:25360579

  13. Memetic algorithm-based multi-objective coverage optimization for wireless sensor networks.

    PubMed

    Chen, Zhi; Li, Shuai; Yue, Wenjing

    2014-10-30

    Maintaining effective coverage and extending the network lifetime as much as possible has become one of the most critical issues in the coverage of WSNs. In this paper, we propose a multi-objective coverage optimization algorithm for WSNs, namely MOCADMA, which models the coverage control of WSNs as the multi-objective optimization problem. MOCADMA uses a memetic algorithm with a dynamic local search strategy to optimize the coverage of WSNs and achieve the objectives such as high network coverage, effective node utilization and more residual energy. In MOCADMA, the alternative solutions are represented as the chromosomes in matrix form, and the optimal solutions are selected through numerous iterations of the evolution process, including selection, crossover, mutation, local enhancement, and fitness evaluation. The experiment and evaluation results show MOCADMA can have good capabilities in maintaining the sensing coverage, achieve higher network coverage while improving the energy efficiency and effectively prolonging the network lifetime, and have a significant improvement over some existing algorithms.

  14. Sparsity-constrained PET image reconstruction with learned dictionaries

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Yang, Bao; Wang, Yanhua; Ying, Leslie

    2016-09-01

    PET imaging plays an important role in scientific and clinical measurement of biochemical and physiological processes. Model-based PET image reconstruction such as the iterative expectation maximization algorithm seeking the maximum likelihood solution leads to increased noise. The maximum a posteriori (MAP) estimate removes divergence at higher iterations. However, a conventional smoothing prior or a total-variation (TV) prior in a MAP reconstruction algorithm causes over smoothing or blocky artifacts in the reconstructed images. We propose to use dictionary learning (DL) based sparse signal representation in the formation of the prior for MAP PET image reconstruction. The dictionary to sparsify the PET images in the reconstruction process is learned from various training images including the corresponding MR structural image and a self-created hollow sphere. Using simulated and patient brain PET data with corresponding MR images, we study the performance of the DL-MAP algorithm and compare it quantitatively with a conventional MAP algorithm, a TV-MAP algorithm, and a patch-based algorithm. The DL-MAP algorithm achieves improved bias and contrast (or regional mean values) at comparable noise to what the other MAP algorithms acquire. The dictionary learned from the hollow sphere leads to similar results as the dictionary learned from the corresponding MR image. Achieving robust performance in various noise-level simulation and patient studies, the DL-MAP algorithm with a general dictionary demonstrates its potential in quantitative PET imaging.

  15. Using Strassen's algorithm to accelerate the solution of linear systems

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Lee, King; Simon, Horst D.

    1990-01-01

    Strassen's algorithm for fast matrix-matrix multiplication has been implemented for matrices of arbitrary shapes on the CRAY-2 and CRAY Y-MP supercomputers. Several techniques have been used to reduce the scratch space requirement for this algorithm while simultaneously preserving a high level of performance. When the resulting Strassen-based matrix multiply routine is combined with some routines from the new LAPACK library, LU decomposition can be performed with rates significantly higher than those achieved by conventional means. We succeeded in factoring a 2048 x 2048 matrix on the CRAY Y-MP at a rate equivalent to 325 MFLOPS.

  16. Optimizing phase to enhance optical trap stiffness.

    PubMed

    Taylor, Michael A

    2017-04-03

    Phase optimization offers promising capabilities in optical tweezers, allowing huge increases in the applied forces, trap stiff-ness, or measurement sensitivity. One key obstacle to potential applications is the lack of an efficient algorithm to compute an optimized phase profile, with enhanced trapping experiments relying on slow programs that would take up to a week to converge. Here we introduce an algorithm that reduces the wait from days to minutes. We characterize the achievable in-crease in trap stiffness and its dependence on particle size, refractive index, and optical polarization. We further show that phase-only control can achieve almost all of the enhancement possible with full wavefront shaping; for instance phase control allows 62 times higher trap stiffness for 10 μm silica spheres in water, while amplitude control and non-trivial polarization further increase this by 1.26 and 1.01 respectively. This algorithm will facilitate future applications in optical trapping, and more generally in wavefront optimization.

  17. FBCOT: a fast block coding option for JPEG 2000

    NASA Astrophysics Data System (ADS)

    Taubman, David; Naman, Aous; Mathew, Reji

    2017-09-01

    Based on the EBCOT algorithm, JPEG 2000 finds application in many fields, including high performance scientific, geospatial and video coding applications. Beyond digital cinema, JPEG 2000 is also attractive for low-latency video communications. The main obstacle for some of these applications is the relatively high computational complexity of the block coder, especially at high bit-rates. This paper proposes a drop-in replacement for the JPEG 2000 block coding algorithm, achieving much higher encoding and decoding throughputs, with only modest loss in coding efficiency (typically < 0.5dB). The algorithm provides only limited quality/SNR scalability, but offers truly reversible transcoding to/from any standard JPEG 2000 block bit-stream. The proposed FAST block coder can be used with EBCOT's post-compression RD-optimization methodology, allowing a target compressed bit-rate to be achieved even at low latencies, leading to the name FBCOT (Fast Block Coding with Optimized Truncation).

  18. A Near-Optimal Distributed QoS Constrained Routing Algorithm for Multichannel Wireless Sensor Networks

    PubMed Central

    Lin, Frank Yeong-Sung; Hsiao, Chiu-Han; Yen, Hong-Hsu; Hsieh, Yu-Jen

    2013-01-01

    One of the important applications in Wireless Sensor Networks (WSNs) is video surveillance that includes the tasks of video data processing and transmission. Processing and transmission of image and video data in WSNs has attracted a lot of attention in recent years. This is known as Wireless Visual Sensor Networks (WVSNs). WVSNs are distributed intelligent systems for collecting image or video data with unique performance, complexity, and quality of service challenges. WVSNs consist of a large number of battery-powered and resource constrained camera nodes. End-to-end delay is a very important Quality of Service (QoS) metric for video surveillance application in WVSNs. How to meet the stringent delay QoS in resource constrained WVSNs is a challenging issue that requires novel distributed and collaborative routing strategies. This paper proposes a Near-Optimal Distributed QoS Constrained (NODQC) routing algorithm to achieve an end-to-end route with lower delay and higher throughput. A Lagrangian Relaxation (LR)-based routing metric that considers the “system perspective” and “user perspective” is proposed to determine the near-optimal routing paths that satisfy end-to-end delay constraints with high system throughput. The empirical results show that the NODQC routing algorithm outperforms others in terms of higher system throughput with lower average end-to-end delay and delay jitter. In this paper, for the first time, the algorithm shows how to meet the delay QoS and at the same time how to achieve higher system throughput in stringently resource constrained WVSNs.

  19. HOLA: Human-like Orthogonal Network Layout.

    PubMed

    Kieffer, Steve; Dwyer, Tim; Marriott, Kim; Wybrow, Michael

    2016-01-01

    Over the last 50 years a wide variety of automatic network layout algorithms have been developed. Some are fast heuristic techniques suitable for networks with hundreds of thousands of nodes while others are multi-stage frameworks for higher-quality layout of smaller networks. However, despite decades of research currently no algorithm produces layout of comparable quality to that of a human. We give a new "human-centred" methodology for automatic network layout algorithm design that is intended to overcome this deficiency. User studies are first used to identify the aesthetic criteria algorithms should encode, then an algorithm is developed that is informed by these criteria and finally, a follow-up study evaluates the algorithm output. We have used this new methodology to develop an automatic orthogonal network layout method, HOLA, that achieves measurably better (by user study) layout than the best available orthogonal layout algorithm and which produces layouts of comparable quality to those produced by hand.

  20. A contourlet transform based algorithm for real-time video encoding

    NASA Astrophysics Data System (ADS)

    Katsigiannis, Stamos; Papaioannou, Georgios; Maroulis, Dimitris

    2012-06-01

    In recent years, real-time video communication over the internet has been widely utilized for applications like video conferencing. Streaming live video over heterogeneous IP networks, including wireless networks, requires video coding algorithms that can support various levels of quality in order to adapt to the network end-to-end bandwidth and transmitter/receiver resources. In this work, a scalable video coding and compression algorithm based on the Contourlet Transform is proposed. The algorithm allows for multiple levels of detail, without re-encoding the video frames, by just dropping the encoded information referring to higher resolution than needed. Compression is achieved by means of lossy and lossless methods, as well as variable bit rate encoding schemes. Furthermore, due to the transformation utilized, it does not suffer from blocking artifacts that occur with many widely adopted compression algorithms. Another highly advantageous characteristic of the algorithm is the suppression of noise induced by low-quality sensors usually encountered in web-cameras, due to the manipulation of the transform coefficients at the compression stage. The proposed algorithm is designed to introduce minimal coding delay, thus achieving real-time performance. Performance is enhanced by utilizing the vast computational capabilities of modern GPUs, providing satisfactory encoding and decoding times at relatively low cost. These characteristics make this method suitable for applications like video-conferencing that demand real-time performance, along with the highest visual quality possible for each user. Through the presented performance and quality evaluation of the algorithm, experimental results show that the proposed algorithm achieves better or comparable visual quality relative to other compression and encoding methods tested, while maintaining a satisfactory compression ratio. Especially at low bitrates, it provides more human-eye friendly images compared to algorithms utilizing block-based coding, like the MPEG family, as it introduces fuzziness and blurring instead of artificial block artifacts.

  1. SPHINX--an algorithm for taxonomic binning of metagenomic sequences.

    PubMed

    Mohammed, Monzoorul Haque; Ghosh, Tarini Shankar; Singh, Nitin Kumar; Mande, Sharmila S

    2011-01-01

    Compared with composition-based binning algorithms, the binning accuracy and specificity of alignment-based binning algorithms is significantly higher. However, being alignment-based, the latter class of algorithms require enormous amount of time and computing resources for binning huge metagenomic datasets. The motivation was to develop a binning approach that can analyze metagenomic datasets as rapidly as composition-based approaches, but nevertheless has the accuracy and specificity of alignment-based algorithms. This article describes a hybrid binning approach (SPHINX) that achieves high binning efficiency by utilizing the principles of both 'composition'- and 'alignment'-based binning algorithms. Validation results with simulated sequence datasets indicate that SPHINX is able to analyze metagenomic sequences as rapidly as composition-based algorithms. Furthermore, the binning efficiency (in terms of accuracy and specificity of assignments) of SPHINX is observed to be comparable with results obtained using alignment-based algorithms. A web server for the SPHINX algorithm is available at http://metagenomics.atc.tcs.com/SPHINX/.

  2. Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis.

    PubMed

    Sun, Wenqing; Zheng, Bin; Qian, Wei

    2017-10-01

    This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image diagnosis, and compare its performance with traditional computer aided diagnosis (CADx) systems using hand-crafted features. All of the 1018 cases were acquired from Lung Image Database Consortium (LIDC) public lung cancer database. The nodules were segmented according to four radiologists' markings, and 13,668 samples were generated by rotating every slice of nodule images. Three multichannel ROI based deep structured algorithms were designed and implemented in this study: convolutional neural network (CNN), deep belief network (DBN), and stacked denoising autoencoder (SDAE). For the comparison purpose, we also implemented a CADx system using hand-crafted features including density features, texture features and morphological features. The performance of every scheme was evaluated by using a 10-fold cross-validation method and an assessment index of the area under the receiver operating characteristic curve (AUC). The observed highest area under the curve (AUC) was 0.899±0.018 achieved by CNN, which was significantly higher than traditional CADx with the AUC=0.848±0.026. The results from DBN was also slightly higher than CADx, while SDAE was slightly lower. By visualizing the automatic generated features, we found some meaningful detectors like curvy stroke detectors from deep structured schemes. The study results showed the deep structured algorithms with automatically generated features can achieve desirable performance in lung nodule diagnosis. With well-tuned parameters and large enough dataset, the deep learning algorithms can have better performance than current popular CADx. We believe the deep learning algorithms with similar data preprocessing procedure can be used in other medical image analysis areas as well. Copyright © 2017. Published by Elsevier Ltd.

  3. Optimal control of hybrid qubits: Implementing the quantum permutation algorithm

    NASA Astrophysics Data System (ADS)

    Rivera-Ruiz, C. M.; de Lima, E. F.; Fanchini, F. F.; Lopez-Richard, V.; Castelano, L. K.

    2018-03-01

    The optimal quantum control theory is employed to determine electric pulses capable of producing quantum gates with a fidelity higher than 0.9997, when noise is not taken into account. Particularly, these quantum gates were chosen to perform the permutation algorithm in hybrid qubits in double quantum dots (DQDs). The permutation algorithm is an oracle based quantum algorithm that solves the problem of the permutation parity faster than a classical algorithm without the necessity of entanglement between particles. The only requirement for achieving the speedup is the use of a one-particle quantum system with at least three levels. The high fidelity found in our results is closely related to the quantum speed limit, which is a measure of how fast a quantum state can be manipulated. Furthermore, we model charge noise by considering an average over the optimal field centered at different values of the reference detuning, which follows a Gaussian distribution. When the Gaussian spread is of the order of 5 μ eV (10% of the correct value), the fidelity is still higher than 0.95. Our scheme also can be used for the practical realization of different quantum algorithms in DQDs.

  4. Overlapping communities detection based on spectral analysis of line graphs

    NASA Astrophysics Data System (ADS)

    Gui, Chun; Zhang, Ruisheng; Hu, Rongjing; Huang, Guoming; Wei, Jiaxuan

    2018-05-01

    Community in networks are often overlapping where one vertex belongs to several clusters. Meanwhile, many networks show hierarchical structure such that community is recursively grouped into hierarchical organization. In order to obtain overlapping communities from a global hierarchy of vertices, a new algorithm (named SAoLG) is proposed to build the hierarchical organization along with detecting the overlap of community structure. SAoLG applies the spectral analysis into line graphs to unify the overlap and hierarchical structure of the communities. In order to avoid the limitation of absolute distance such as Euclidean distance, SAoLG employs Angular distance to compute the similarity between vertices. Furthermore, we make a micro-improvement partition density to evaluate the quality of community structure and use it to obtain the more reasonable and sensible community numbers. The proposed SAoLG algorithm achieves a balance between overlap and hierarchy by applying spectral analysis to edge community detection. The experimental results on one standard network and six real-world networks show that the SAoLG algorithm achieves higher modularity and reasonable community number values than those generated by Ahn's algorithm, the classical CPM and GN ones.

  5. AAA and AXB algorithms for the treatment of nasopharyngeal carcinoma using IMRT and RapidArc techniques.

    PubMed

    Kamaleldin, Maha; Elsherbini, Nader A; Elshemey, Wael M

    2017-09-27

    The aim of this study is to evaluate the impact of anisotropic analytical algorithm (AAA) and 2 reporting systems (AXB-D m and AXB-D w ) of Acuros XB algorithm (AXB) on clinical plans of nasopharyngeal patients using intensity-modulated radiotherapy (IMRT) and RapidArc (RA) techniques. Six plans of different algorithm-technique combinations are performed for 10 patients to calculate dose-volume histogram (DVH) physical parameters for planning target volumes (PTVs) and organs at risk (OARs). The number of monitor units (MUs) and calculation time are also determined. Good coverage is reported for all algorithm-technique combination plans without exceeding the tolerance for OARs. Regardless of the algorithm, RA plans persistently reported higher D 2% values for PTV-70. All IMRT plans reported higher number of MUs (especially with AXB) than did RA plans. AAA-IMRT produced the minimum calculation time of all plans. Major differences between the investigated algorithm-technique combinations are reported only for the number of MUs and calculation time parameters. In terms of these 2 parameters, it is recommended to employ AXB in calculating RA plans and AAA in calculating IMRT plans to achieve minimum calculation times at reduced number of MUs. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  6. A Lossless hybrid wavelet-fractal compression for welding radiographic images.

    PubMed

    Mekhalfa, Faiza; Avanaki, Mohammad R N; Berkani, Daoud

    2016-01-01

    In this work a lossless wavelet-fractal image coder is proposed. The process starts by compressing and decompressing the original image using wavelet transformation and fractal coding algorithm. The decompressed image is removed from the original one to obtain a residual image which is coded by using Huffman algorithm. Simulation results show that with the proposed scheme, we achieve an infinite peak signal to noise ratio (PSNR) with higher compression ratio compared to typical lossless method. Moreover, the use of wavelet transform speeds up the fractal compression algorithm by reducing the size of the domain pool. The compression results of several welding radiographic images using the proposed scheme are evaluated quantitatively and compared with the results of Huffman coding algorithm.

  7. Analysis and an image recovery algorithm for ultrasonic tomography system

    NASA Technical Reports Server (NTRS)

    Jin, Michael Y.

    1994-01-01

    The problem of an ultrasonic reflectivity tomography is similar to that of a spotlight-mode aircraft Synthetic Aperture Radar (SAR) system. The analysis for a circular path spotlight mode SAR in this paper leads to the insight of the system characteristics. It indicates that such a system when operated in a wide bandwidth is capable of achieving the ultimate resolution; one quarter of the wavelength of the carrier frequency. An efficient processing algorithm based on the exact two dimensional spectrum is presented. The results of simulation indicate that the impulse responses meet the predicted resolution performance. Compared to an algorithm previously developed for the ultrasonic reflectivity tomography, the throughput rate of this algorithm is about ten times higher.

  8. Blind Channel Equalization Using Constrained Generalized Pattern Search Optimization and Reinitialization Strategy

    NASA Astrophysics Data System (ADS)

    Zaouche, Abdelouahib; Dayoub, Iyad; Rouvaen, Jean Michel; Tatkeu, Charles

    2008-12-01

    We propose a global convergence baud-spaced blind equalization method in this paper. This method is based on the application of both generalized pattern optimization and channel surfing reinitialization. The potentially used unimodal cost function relies on higher- order statistics, and its optimization is achieved using a pattern search algorithm. Since the convergence to the global minimum is not unconditionally warranted, we make use of channel surfing reinitialization (CSR) strategy to find the right global minimum. The proposed algorithm is analyzed, and simulation results using a severe frequency selective propagation channel are given. Detailed comparisons with constant modulus algorithm (CMA) are highlighted. The proposed algorithm performances are evaluated in terms of intersymbol interference, normalized received signal constellations, and root mean square error vector magnitude. In case of nonconstant modulus input signals, our algorithm outperforms significantly CMA algorithm with full channel surfing reinitialization strategy. However, comparable performances are obtained for constant modulus signals.

  9. Control of a High Speed Flywheel System for Energy Storage in Space Applications

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.; Jansen, Ralph; Dever, Timothy; Santiago, Walter

    2004-01-01

    A novel control algorithm for the charge and discharge modes of operation of a flywheel energy storage system for space applications is presented. The motor control portion of the algorithm uses sensorless field oriented control with position and speed estimates determined from a signal injection technique at low speeds and a back EMF technique at higher speeds. The charge and discharge portion of the algorithm use command feed-forward and disturbance decoupling, respectively, to achieve fast response with low gains. Simulation and experimental results are presented demonstrating the successful operation of the flywheel control up to the rated speed of 60,000 rpm.

  10. Vehicle logo recognition using multi-level fusion model

    NASA Astrophysics Data System (ADS)

    Ming, Wei; Xiao, Jianli

    2018-04-01

    Vehicle logo recognition plays an important role in manufacturer identification and vehicle recognition. This paper proposes a new vehicle logo recognition algorithm. It has a hierarchical framework, which consists of two fusion levels. At the first level, a feature fusion model is employed to map the original features to a higher dimension feature space. In this space, the vehicle logos become more recognizable. At the second level, a weighted voting strategy is proposed to promote the accuracy and the robustness of the recognition results. To evaluate the performance of the proposed algorithm, extensive experiments are performed, which demonstrate that the proposed algorithm can achieve high recognition accuracy and work robustly.

  11. A pruning algorithm for Meta-blocking based on cumulative weight

    NASA Astrophysics Data System (ADS)

    Zhang, Fulin; Gao, Zhipeng; Niu, Kun

    2017-08-01

    Entity Resolution is an important process in data cleaning and data integration. It usually employs a blocking method to avoid the quadratic complexity work when scales to large data sets. Meta-blocking can perform better in the context of highly heterogeneous information spaces. Yet, its precision and efficiency still have room to improve. In this paper, we present a new pruning algorithm for Meta-Blocking. It can achieve a higher precision than the existing WEP algorithm at a small cost of recall. In addition, can reduce the runtime of the blocking process. We evaluate our proposed method over five real-world data sets.

  12. Correlation of Wissler Human Thermal Model Blood Flow and Shiver Algorithms

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Makinen, Janice; Cognata, Thomas

    2010-01-01

    The Wissler Human Thermal Model (WHTM) is a thermal math model of the human body that has been widely used to predict the human thermoregulatory response to a variety of cold and hot environments. The model has been shown to predict core temperature and skin temperatures higher and lower, respectively, than in tests of subjects in crew escape suit working in a controlled hot environments. Conversely the model predicts core temperature and skin temperatures lower and higher, respectively, than in tests of lightly clad subjects immersed in cold water conditions. The blood flow algorithms of the model has been investigated to allow for more and less flow, respectively, for the cold and hot case. These changes in the model have yielded better correlation of skin and core temperatures in the cold and hot cases. The algorithm for onset of shiver did not need to be modified to achieve good agreement in cold immersion simulations

  13. Filtered-x generalized mixed norm (FXGMN) algorithm for active noise control

    NASA Astrophysics Data System (ADS)

    Song, Pucha; Zhao, Haiquan

    2018-07-01

    The standard adaptive filtering algorithm with a single error norm exhibits slow convergence rate and poor noise reduction performance under specific environments. To overcome this drawback, a filtered-x generalized mixed norm (FXGMN) algorithm for active noise control (ANC) system is proposed. The FXGMN algorithm is developed by using a convex mixture of lp and lq norms as the cost function that it can be viewed as a generalized version of the most existing adaptive filtering algorithms, and it will reduce to a specific algorithm by choosing certain parameters. Especially, it can be used to solve the ANC under Gaussian and non-Gaussian noise environments (including impulsive noise with symmetric α -stable (SαS) distribution). To further enhance the algorithm performance, namely convergence speed and noise reduction performance, a convex combination of the FXGMN algorithm (C-FXGMN) is presented. Moreover, the computational complexity of the proposed algorithms is analyzed, and a stability condition for the proposed algorithms is provided. Simulation results show that the proposed FXGMN and C-FXGMN algorithms can achieve better convergence speed and higher noise reduction as compared to other existing algorithms under various noise input conditions, and the C-FXGMN algorithm outperforms the FXGMN.

  14. A novel color image compression algorithm using the human visual contrast sensitivity characteristics

    NASA Astrophysics Data System (ADS)

    Yao, Juncai; Liu, Guizhong

    2017-03-01

    In order to achieve higher image compression ratio and improve visual perception of the decompressed image, a novel color image compression scheme based on the contrast sensitivity characteristics of the human visual system (HVS) is proposed. In the proposed scheme, firstly the image is converted into the YCrCb color space and divided into sub-blocks. Afterwards, the discrete cosine transform is carried out for each sub-block, and three quantization matrices are built to quantize the frequency spectrum coefficients of the images by combining the contrast sensitivity characteristics of HVS. The Huffman algorithm is used to encode the quantized data. The inverse process involves decompression and matching to reconstruct the decompressed color image. And simulations are carried out for two color images. The results show that the average structural similarity index measurement (SSIM) and peak signal to noise ratio (PSNR) under the approximate compression ratio could be increased by 2.78% and 5.48%, respectively, compared with the joint photographic experts group (JPEG) compression. The results indicate that the proposed compression algorithm in the text is feasible and effective to achieve higher compression ratio under ensuring the encoding and image quality, which can fully meet the needs of storage and transmission of color images in daily life.

  15. Selection of floating-point or fixed-point for adaptive noise canceller in somatosensory evoked potential measurement.

    PubMed

    Shen, Chongfei; Liu, Hongtao; Xie, Xb; Luk, Keith Dk; Hu, Yong

    2007-01-01

    Adaptive noise canceller (ANC) has been used to improve signal to noise ratio (SNR) of somsatosensory evoked potential (SEP). In order to efficiently apply the ANC in hardware system, fixed-point algorithm based ANC can achieve fast, cost-efficient construction, and low-power consumption in FPGA design. However, it is still questionable whether the SNR improvement performance by fixed-point algorithm is as good as that by floating-point algorithm. This study is to compare the outputs of ANC by floating-point and fixed-point algorithm ANC when it was applied to SEP signals. The selection of step-size parameter (micro) was found different in fixed-point algorithm from floating-point algorithm. In this simulation study, the outputs of fixed-point ANC showed higher distortion from real SEP signals than that of floating-point ANC. However, the difference would be decreased with increasing micro value. In the optimal selection of micro, fixed-point ANC can get as good results as floating-point algorithm.

  16. Scaling deep learning on GPU and knights landing clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yang; Buluc, Aydin; Demmel, James

    Training neural networks has become a big bottleneck. For example, training ImageNet dataset on one Nvidia K20 GPU needs 21 days. To speed up the training process, the current deep learning systems heavily rely on the hardware accelerators. However, these accelerators have limited on-chip memory compared with CPUs. We use both self-host Intel Knights Landing (KNL) clusters and multi-GPU clusters as our target platforms. From the algorithm aspect, we focus on Elastic Averaging SGD (EASGD) to design algorithms for HPC clusters. We redesign four efficient algorithms for HPC systems to improve EASGD's poor scaling on clusters. Async EASGD, Async MEASGD,more » and Hogwild EASGD are faster than existing counter-part methods (Async SGD, Async MSGD, and Hogwild SGD) in all comparisons. Sync EASGD achieves 5.3X speedup over original EASGD on the same platform. We achieve 91.5% weak scaling efficiency on 4253 KNL cores, which is higher than the state-of-the-art implementation.« less

  17. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging.

    PubMed

    Zhang, Shuanghui; Liu, Yongxiang; Li, Xiang; Bi, Guoan

    2016-04-28

    This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP) estimation and the maximum likelihood estimation (MLE) are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT) and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.

  18. Principal Component Clustering Approach to Teaching Quality Discriminant Analysis

    ERIC Educational Resources Information Center

    Xian, Sidong; Xia, Haibo; Yin, Yubo; Zhai, Zhansheng; Shang, Yan

    2016-01-01

    Teaching quality is the lifeline of the higher education. Many universities have made some effective achievement about evaluating the teaching quality. In this paper, we establish the Students' evaluation of teaching (SET) discriminant analysis model and algorithm based on principal component clustering analysis. Additionally, we classify the SET…

  19. Distributed k-Means Algorithm and Fuzzy c-Means Algorithm for Sensor Networks Based on Multiagent Consensus Theory.

    PubMed

    Qin, Jiahu; Fu, Weiming; Gao, Huijun; Zheng, Wei Xing

    2016-03-03

    This paper is concerned with developing a distributed k-means algorithm and a distributed fuzzy c-means algorithm for wireless sensor networks (WSNs) where each node is equipped with sensors. The underlying topology of the WSN is supposed to be strongly connected. The consensus algorithm in multiagent consensus theory is utilized to exchange the measurement information of the sensors in WSN. To obtain a faster convergence speed as well as a higher possibility of having the global optimum, a distributed k-means++ algorithm is first proposed to find the initial centroids before executing the distributed k-means algorithm and the distributed fuzzy c-means algorithm. The proposed distributed k-means algorithm is capable of partitioning the data observed by the nodes into measure-dependent groups which have small in-group and large out-group distances, while the proposed distributed fuzzy c-means algorithm is capable of partitioning the data observed by the nodes into different measure-dependent groups with degrees of membership values ranging from 0 to 1. Simulation results show that the proposed distributed algorithms can achieve almost the same results as that given by the centralized clustering algorithms.

  20. IEEE 802.15.4 ZigBee-Based Time-of-Arrival Estimation for Wireless Sensor Networks.

    PubMed

    Cheon, Jeonghyeon; Hwang, Hyunsu; Kim, Dongsun; Jung, Yunho

    2016-02-05

    Precise time-of-arrival (TOA) estimation is one of the most important techniques in RF-based positioning systems that use wireless sensor networks (WSNs). Because the accuracy of TOA estimation is proportional to the RF signal bandwidth, using broad bandwidth is the most fundamental approach for achieving higher accuracy. Hence, ultra-wide-band (UWB) systems with a bandwidth of 500 MHz are commonly used. However, wireless systems with broad bandwidth suffer from the disadvantages of high complexity and high power consumption. Therefore, it is difficult to employ such systems in various WSN applications. In this paper, we present a precise time-of-arrival (TOA) estimation algorithm using an IEEE 802.15.4 ZigBee system with a narrow bandwidth of 2 MHz. In order to overcome the lack of bandwidth, the proposed algorithm estimates the fractional TOA within the sampling interval. Simulation results show that the proposed TOA estimation algorithm provides an accuracy of 0.5 m at a signal-to-noise ratio (SNR) of 8 dB and achieves an SNR gain of 5 dB as compared with the existing algorithm. In addition, experimental results indicate that the proposed algorithm provides accurate TOA estimation in a real indoor environment.

  1. An improved wavelet neural network medical image segmentation algorithm with combined maximum entropy

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoqian; Tao, Jinxu; Ye, Zhongfu; Qiu, Bensheng; Xu, Jinzhang

    2018-05-01

    In order to solve the problem of medical image segmentation, a wavelet neural network medical image segmentation algorithm based on combined maximum entropy criterion is proposed. Firstly, we use bee colony algorithm to optimize the network parameters of wavelet neural network, get the parameters of network structure, initial weights and threshold values, and so on, we can quickly converge to higher precision when training, and avoid to falling into relative extremum; then the optimal number of iterations is obtained by calculating the maximum entropy of the segmented image, so as to achieve the automatic and accurate segmentation effect. Medical image segmentation experiments show that the proposed algorithm can reduce sample training time effectively and improve convergence precision, and segmentation effect is more accurate and effective than traditional BP neural network (back propagation neural network : a multilayer feed forward neural network which trained according to the error backward propagation algorithm.

  2. Improved wavelet packet classification algorithm for vibrational intrusions in distributed fiber-optic monitoring systems

    NASA Astrophysics Data System (ADS)

    Wang, Bingjie; Pi, Shaohua; Sun, Qi; Jia, Bo

    2015-05-01

    An improved classification algorithm that considers multiscale wavelet packet Shannon entropy is proposed. Decomposition coefficients at all levels are obtained to build the initial Shannon entropy feature vector. After subtracting the Shannon entropy map of the background signal, components of the strongest discriminating power in the initial feature vector are picked out to rebuild the Shannon entropy feature vector, which is transferred to radial basis function (RBF) neural network for classification. Four types of man-made vibrational intrusion signals are recorded based on a modified Sagnac interferometer. The performance of the improved classification algorithm has been evaluated by the classification experiments via RBF neural network under different diffusion coefficients. An 85% classification accuracy rate is achieved, which is higher than the other common algorithms. The classification results show that this improved classification algorithm can be used to classify vibrational intrusion signals in an automatic real-time monitoring system.

  3. Golay Complementary Waveforms in Reed–Müller Sequences for Radar Detection of Nonzero Doppler Targets

    PubMed Central

    Wang, Xuezhi; Huang, Xiaotao; Suvorova, Sofia; Moran, Bill

    2018-01-01

    Golay complementary waveforms can, in theory, yield radar returns of high range resolution with essentially zero sidelobes. In practice, when deployed conventionally, while high signal-to-noise ratios can be achieved for static target detection, significant range sidelobes are generated by target returns of nonzero Doppler causing unreliable detection. We consider signal processing techniques using Golay complementary waveforms to improve radar detection performance in scenarios involving multiple nonzero Doppler targets. A signal processing procedure based on an existing, so called, Binomial Design algorithm that alters the transmission order of Golay complementary waveforms and weights the returns is proposed in an attempt to achieve an enhanced illumination performance. The procedure applies one of three proposed waveform transmission ordering algorithms, followed by a pointwise nonlinear processor combining the outputs of the Binomial Design algorithm and one of the ordering algorithms. The computational complexity of the Binomial Design algorithm and the three ordering algorithms are compared, and a statistical analysis of the performance of the pointwise nonlinear processing is given. Estimation of the areas in the Delay–Doppler map occupied by significant range sidelobes for given targets are also discussed. Numerical simulations for the comparison of the performances of the Binomial Design algorithm and the three ordering algorithms are presented for both fixed and randomized target locations. The simulation results demonstrate that the proposed signal processing procedure has a better detection performance in terms of lower sidelobes and higher Doppler resolution in the presence of multiple nonzero Doppler targets compared to existing methods. PMID:29324708

  4. Blood vessel segmentation in color fundus images based on regional and Hessian features.

    PubMed

    Shah, Syed Ayaz Ali; Tang, Tong Boon; Faye, Ibrahima; Laude, Augustinus

    2017-08-01

    To propose a new algorithm of blood vessel segmentation based on regional and Hessian features for image analysis in retinal abnormality diagnosis. Firstly, color fundus images from the publicly available database DRIVE were converted from RGB to grayscale. To enhance the contrast of the dark objects (blood vessels) against the background, the dot product of the grayscale image with itself was generated. To rectify the variation in contrast, we used a 5 × 5 window filter on each pixel. Based on 5 regional features, 1 intensity feature and 2 Hessian features per scale using 9 scales, we extracted a total of 24 features. A linear minimum squared error (LMSE) classifier was trained to classify each pixel into a vessel or non-vessel pixel. The DRIVE dataset provided 20 training and 20 test color fundus images. The proposed algorithm achieves a sensitivity of 72.05% with 94.79% accuracy. Our proposed algorithm achieved higher accuracy (0.9206) at the peripapillary region, where the ocular manifestations in the microvasculature due to glaucoma, central retinal vein occlusion, etc. are most obvious. This supports the proposed algorithm as a strong candidate for automated vessel segmentation.

  5. Aid decision algorithms to estimate the risk in congenital heart surgery.

    PubMed

    Ruiz-Fernández, Daniel; Monsalve Torra, Ana; Soriano-Payá, Antonio; Marín-Alonso, Oscar; Triana Palencia, Eddy

    2016-04-01

    In this paper, we have tested the suitability of using different artificial intelligence-based algorithms for decision support when classifying the risk of congenital heart surgery. In this sense, classification of those surgical risks provides enormous benefits as the a priori estimation of surgical outcomes depending on either the type of disease or the type of repair, and other elements that influence the final result. This preventive estimation may help to avoid future complications, or even death. We have evaluated four machine learning algorithms to achieve our objective: multilayer perceptron, self-organizing map, radial basis function networks and decision trees. The architectures implemented have the aim of classifying among three types of surgical risk: low complexity, medium complexity and high complexity. Accuracy outcomes achieved range between 80% and 99%, being the multilayer perceptron method the one that offered a higher hit ratio. According to the results, it is feasible to develop a clinical decision support system using the evaluated algorithms. Such system would help cardiology specialists, paediatricians and surgeons to forecast the level of risk related to a congenital heart disease surgery. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Intra Frame Coding In Advanced Video Coding Standard (H.264) to Obtain Consistent PSNR and Reduce Bit Rate for Diagonal Down Left Mode Using Gaussian Pulse

    NASA Astrophysics Data System (ADS)

    Manjanaik, N.; Parameshachari, B. D.; Hanumanthappa, S. N.; Banu, Reshma

    2017-08-01

    Intra prediction process of H.264 video coding standard used to code first frame i.e. Intra frame of video to obtain good coding efficiency compare to previous video coding standard series. More benefit of intra frame coding is to reduce spatial pixel redundancy with in current frame, reduces computational complexity and provides better rate distortion performance. To code Intra frame it use existing process Rate Distortion Optimization (RDO) method. This method increases computational complexity, increases in bit rate and reduces picture quality so it is difficult to implement in real time applications, so the many researcher has been developed fast mode decision algorithm for coding of intra frame. The previous work carried on Intra frame coding in H.264 standard using fast decision mode intra prediction algorithm based on different techniques was achieved increased in bit rate, degradation of picture quality(PSNR) for different quantization parameters. Many previous approaches of fast mode decision algorithms on intra frame coding achieved only reduction of computational complexity or it save encoding time and limitation was increase in bit rate with loss of quality of picture. In order to avoid increase in bit rate and loss of picture quality a better approach was developed. In this paper developed a better approach i.e. Gaussian pulse for Intra frame coding using diagonal down left intra prediction mode to achieve higher coding efficiency in terms of PSNR and bitrate. In proposed method Gaussian pulse is multiplied with each 4x4 frequency domain coefficients of 4x4 sub macro block of macro block of current frame before quantization process. Multiplication of Gaussian pulse for each 4x4 integer transformed coefficients at macro block levels scales the information of the coefficients in a reversible manner. The resulting signal would turn abstract. Frequency samples are abstract in a known and controllable manner without intermixing of coefficients, it avoids picture getting bad hit for higher values of quantization parameters. The proposed work was implemented using MATLAB and JM 18.6 reference software. The proposed work measure the performance parameters PSNR, bit rate and compression of intra frame of yuv video sequences in QCIF resolution under different values of quantization parameter with Gaussian value for diagonal down left intra prediction mode. The simulation results of proposed algorithm are tabulated and compared with previous algorithm i.e. Tian et al method. The proposed algorithm achieved reduced in bit rate averagely 30.98% and maintain consistent picture quality for QCIF sequences compared to previous algorithm i.e. Tian et al method.

  7. An Extended Spectral-Spatial Classification Approach for Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Akbari, D.

    2017-11-01

    In this paper an extended classification approach for hyperspectral imagery based on both spectral and spatial information is proposed. The spatial information is obtained by an enhanced marker-based minimum spanning forest (MSF) algorithm. Three different methods of dimension reduction are first used to obtain the subspace of hyperspectral data: (1) unsupervised feature extraction methods including principal component analysis (PCA), independent component analysis (ICA), and minimum noise fraction (MNF); (2) supervised feature extraction including decision boundary feature extraction (DBFE), discriminate analysis feature extraction (DAFE), and nonparametric weighted feature extraction (NWFE); (3) genetic algorithm (GA). The spectral features obtained are then fed into the enhanced marker-based MSF classification algorithm. In the enhanced MSF algorithm, the markers are extracted from the classification maps obtained by both SVM and watershed segmentation algorithm. To evaluate the proposed approach, the Pavia University hyperspectral data is tested. Experimental results show that the proposed approach using GA achieves an approximately 8 % overall accuracy higher than the original MSF-based algorithm.

  8. An Improved Scheduling Algorithm for Data Transmission in Ultrasonic Phased Arrays with Multi-Group Ultrasonic Sensors

    PubMed Central

    Tang, Wenming; Liu, Guixiong; Li, Yuzhong; Tan, Daji

    2017-01-01

    High data transmission efficiency is a key requirement for an ultrasonic phased array with multi-group ultrasonic sensors. Here, a novel FIFOs scheduling algorithm was proposed and the data transmission efficiency with hardware technology was improved. This algorithm includes FIFOs as caches for the ultrasonic scanning data obtained from the sensors with the output data in a bandwidth-sharing way, on the basis of which an optimal length ratio of all the FIFOs is achieved, allowing the reading operations to be switched among all the FIFOs without time slot waiting. Therefore, this algorithm enhances the utilization ratio of the reading bandwidth resources so as to obtain higher efficiency than the traditional scheduling algorithms. The reliability and validity of the algorithm are substantiated after its implementation in the field programmable gate array (FPGA) technology, and the bandwidth utilization ratio and the real-time performance of the ultrasonic phased array are enhanced. PMID:29035345

  9. Bayesian Deconvolution for Angular Super-Resolution in Forward-Looking Scanning Radar

    PubMed Central

    Zha, Yuebo; Huang, Yulin; Sun, Zhichao; Wang, Yue; Yang, Jianyu

    2015-01-01

    Scanning radar is of notable importance for ground surveillance, terrain mapping and disaster rescue. However, the angular resolution of a scanning radar image is poor compared to the achievable range resolution. This paper presents a deconvolution algorithm for angular super-resolution in scanning radar based on Bayesian theory, which states that the angular super-resolution can be realized by solving the corresponding deconvolution problem with the maximum a posteriori (MAP) criterion. The algorithm considers that the noise is composed of two mutually independent parts, i.e., a Gaussian signal-independent component and a Poisson signal-dependent component. In addition, the Laplace distribution is used to represent the prior information about the targets under the assumption that the radar image of interest can be represented by the dominant scatters in the scene. Experimental results demonstrate that the proposed deconvolution algorithm has higher precision for angular super-resolution compared with the conventional algorithms, such as the Tikhonov regularization algorithm, the Wiener filter and the Richardson–Lucy algorithm. PMID:25806871

  10. A fast parallel clustering algorithm for molecular simulation trajectories.

    PubMed

    Zhao, Yutong; Sheong, Fu Kit; Sun, Jian; Sander, Pedro; Huang, Xuhui

    2013-01-15

    We implemented a GPU-powered parallel k-centers algorithm to perform clustering on the conformations of molecular dynamics (MD) simulations. The algorithm is up to two orders of magnitude faster than the CPU implementation. We tested our algorithm on four protein MD simulation datasets ranging from the small Alanine Dipeptide to a 370-residue Maltose Binding Protein (MBP). It is capable of grouping 250,000 conformations of the MBP into 4000 clusters within 40 seconds. To achieve this, we effectively parallelized the code on the GPU and utilize the triangle inequality of metric spaces. Furthermore, the algorithm's running time is linear with respect to the number of cluster centers. In addition, we found the triangle inequality to be less effective in higher dimensions and provide a mathematical rationale. Finally, using Alanine Dipeptide as an example, we show a strong correlation between cluster populations resulting from the k-centers algorithm and the underlying density. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.

  11. Algorithms and Application of Sparse Matrix Assembly and Equation Solvers for Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Nguyen, D. T.; Reddy, C. J.; Vatsa, V. N.; Tang, W. H.

    2001-01-01

    An algorithm for symmetric sparse equation solutions on an unstructured grid is described. Efficient, sequential sparse algorithms for degree-of-freedom reordering, supernodes, symbolic/numerical factorization, and forward backward solution phases are reviewed. Three sparse algorithms for the generation and assembly of symmetric systems of matrix equations are presented. The accuracy and numerical performance of the sequential version of the sparse algorithms are evaluated over the frequency range of interest in a three-dimensional aeroacoustics application. Results show that the solver solutions are accurate using a discretization of 12 points per wavelength. Results also show that the first assembly algorithm is impractical for high-frequency noise calculations. The second and third assembly algorithms have nearly equal performance at low values of source frequencies, but at higher values of source frequencies the third algorithm saves CPU time and RAM. The CPU time and the RAM required by the second and third assembly algorithms are two orders of magnitude smaller than that required by the sparse equation solver. A sequential version of these sparse algorithms can, therefore, be conveniently incorporated into a substructuring for domain decomposition formulation to achieve parallel computation, where different substructures are handles by different parallel processors.

  12. Column generation algorithms for virtual network embedding in flexi-grid optical networks.

    PubMed

    Lin, Rongping; Luo, Shan; Zhou, Jingwei; Wang, Sheng; Chen, Bin; Zhang, Xiaoning; Cai, Anliang; Zhong, Wen-De; Zukerman, Moshe

    2018-04-16

    Network virtualization provides means for efficient management of network resources by embedding multiple virtual networks (VNs) to share efficiently the same substrate network. Such virtual network embedding (VNE) gives rise to a challenging problem of how to optimize resource allocation to VNs and to guarantee their performance requirements. In this paper, we provide VNE algorithms for efficient management of flexi-grid optical networks. We provide an exact algorithm aiming to minimize the total embedding cost in terms of spectrum cost and computation cost for a single VN request. Then, to achieve scalability, we also develop a heuristic algorithm for the same problem. We apply these two algorithms for a dynamic traffic scenario where many VN requests arrive one-by-one. We first demonstrate by simulations for the case of a six-node network that the heuristic algorithm obtains very close blocking probabilities to exact algorithm (about 0.2% higher). Then, for a network of realistic size (namely, USnet) we demonstrate that the blocking probability of our new heuristic algorithm is about one magnitude lower than a simpler heuristic algorithm, which was a component of an earlier published algorithm.

  13. Autonomous Control of Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basher, H.

    2003-10-20

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that maymore » be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.« less

  14. Algorithmic synthesis using Python compiler

    NASA Astrophysics Data System (ADS)

    Cieszewski, Radoslaw; Romaniuk, Ryszard; Pozniak, Krzysztof; Linczuk, Maciej

    2015-09-01

    This paper presents a python to VHDL compiler. The compiler interprets an algorithmic description of a desired behavior written in Python and translate it to VHDL. FPGA combines many benefits of both software and ASIC implementations. Like software, the programmed circuit is flexible, and can be reconfigured over the lifetime of the system. FPGAs have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. This can be achieved by using many computational resources at the same time. Creating parallel programs implemented in FPGAs in pure HDL is difficult and time consuming. Using higher level of abstraction and High-Level Synthesis compiler implementation time can be reduced. The compiler has been implemented using the Python language. This article describes design, implementation and results of created tools.

  15. A study on low-cost, high-accuracy, and real-time stereo vision algorithms for UAV power line inspection

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Zhang, Baomin; Zhao, Xun; Li, Cong; Lu, Cunyue

    2018-04-01

    Conventional stereo vision algorithms suffer from high levels of hardware resource utilization due to algorithm complexity, or poor levels of accuracy caused by inadequacies in the matching algorithm. To address these issues, we have proposed a stereo range-finding technique that produces an excellent balance between cost, matching accuracy and real-time performance, for power line inspection using UAV. This was achieved through the introduction of a special image preprocessing algorithm and a weighted local stereo matching algorithm, as well as the design of a corresponding hardware architecture. Stereo vision systems based on this technique have a lower level of resource usage and also a higher level of matching accuracy following hardware acceleration. To validate the effectiveness of our technique, a stereo vision system based on our improved algorithms were implemented using the Spartan 6 FPGA. In comparative experiments, it was shown that the system using the improved algorithms outperformed the system based on the unimproved algorithms, in terms of resource utilization and matching accuracy. In particular, Block RAM usage was reduced by 19%, and the improved system was also able to output range-finding data in real time.

  16. Hybrid sparse blind deconvolution: an implementation of SOOT algorithm to real data

    NASA Astrophysics Data System (ADS)

    Pakmanesh, Parvaneh; Goudarzi, Alireza; Kourki, Meisam

    2018-06-01

    Getting information of seismic data depends on deconvolution as an important processing step; it provides the reflectivity series by signal compression. This compression can be obtained by removing the wavelet effects on the traces. The recently blind deconvolution has provided reliable performance for sparse signal recovery. In this study, two deconvolution methods have been implemented to the seismic data; the convolution of these methods provides a robust spiking deconvolution approach. This hybrid deconvolution is applied using the sparse deconvolution (MM algorithm) and the Smoothed-One-Over-Two algorithm (SOOT) in a chain. The MM algorithm is based on the minimization of the cost function defined by standards l1 and l2. After applying the two algorithms to the seismic data, the SOOT algorithm provided well-compressed data with a higher resolution than the MM algorithm. The SOOT algorithm requires initial values to be applied for real data, such as the wavelet coefficients and reflectivity series that can be achieved through the MM algorithm. The computational cost of the hybrid method is high, and it is necessary to be implemented on post-stack or pre-stack seismic data of complex structure regions.

  17. Approximate Algorithms for Computing Spatial Distance Histograms with Accuracy Guarantees

    PubMed Central

    Grupcev, Vladimir; Yuan, Yongke; Tu, Yi-Cheng; Huang, Jin; Chen, Shaoping; Pandit, Sagar; Weng, Michael

    2014-01-01

    Particle simulation has become an important research tool in many scientific and engineering fields. Data generated by such simulations impose great challenges to database storage and query processing. One of the queries against particle simulation data, the spatial distance histogram (SDH) query, is the building block of many high-level analytics, and requires quadratic time to compute using a straightforward algorithm. Previous work has developed efficient algorithms that compute exact SDHs. While beating the naive solution, such algorithms are still not practical in processing SDH queries against large-scale simulation data. In this paper, we take a different path to tackle this problem by focusing on approximate algorithms with provable error bounds. We first present a solution derived from the aforementioned exact SDH algorithm, and this solution has running time that is unrelated to the system size N. We also develop a mathematical model to analyze the mechanism that leads to errors in the basic approximate algorithm. Our model provides insights on how the algorithm can be improved to achieve higher accuracy and efficiency. Such insights give rise to a new approximate algorithm with improved time/accuracy tradeoff. Experimental results confirm our analysis. PMID:24693210

  18. A robust embedded vision system feasible white balance algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Yu, Feihong

    2018-01-01

    White balance is a very important part of the color image processing pipeline. In order to meet the need of efficiency and accuracy in embedded machine vision processing system, an efficient and robust white balance algorithm combining several classical ones is proposed. The proposed algorithm mainly has three parts. Firstly, in order to guarantee higher efficiency, an initial parameter calculated from the statistics of R, G and B components from raw data is used to initialize the following iterative method. After that, the bilinear interpolation algorithm is utilized to implement demosaicing procedure. Finally, an adaptive step adjustable scheme is introduced to ensure the controllability and robustness of the algorithm. In order to verify the proposed algorithm's performance on embedded vision system, a smart camera based on IMX6 DualLite, IMX291 and XC6130 is designed. Extensive experiments on a large amount of images under different color temperatures and exposure conditions illustrate that the proposed white balance algorithm avoids color deviation problem effectively, achieves a good balance between efficiency and quality, and is suitable for embedded machine vision processing system.

  19. Incrementing data quality of multi-frequency echograms using the Adaptive Wiener Filter (AWF) denoising algorithm

    NASA Astrophysics Data System (ADS)

    Peña, M.

    2016-10-01

    Achieving acceptable signal-to-noise ratio (SNR) can be difficult when working in sparsely populated waters and/or when species have low scattering such as fluid filled animals. The increasing use of higher frequencies and the study of deeper depths in fisheries acoustics, as well as the use of commercial vessels, is raising the need to employ good denoising algorithms. The use of a lower Sv threshold to remove noise or unwanted targets is not suitable in many cases and increases the relative background noise component in the echogram, demanding more effectiveness from denoising algorithms. The Adaptive Wiener Filter (AWF) denoising algorithm is presented in this study. The technique is based on the AWF commonly used in digital photography and video enhancement. The algorithm firstly increments the quality of the data with a variance-dependent smoothing, before estimating the noise level as the envelope of the Sv minima. The AWF denoising algorithm outperforms existing algorithms in the presence of gaussian, speckle and salt & pepper noise, although impulse noise needs to be previously removed. Cleaned echograms present homogenous echotraces with outlined edges.

  20. Automatic cardiac cycle determination directly from EEG-fMRI data by multi-scale peak detection method.

    PubMed

    Wong, Chung-Ki; Luo, Qingfei; Zotev, Vadim; Phillips, Raquel; Chan, Kam Wai Clifford; Bodurka, Jerzy

    2018-03-31

    In simultaneous EEG-fMRI, identification of the period of cardioballistic artifact (BCG) in EEG is required for the artifact removal. Recording the electrocardiogram (ECG) waveform during fMRI is difficult, often causing inaccurate period detection. Since the waveform of the BCG extracted by independent component analysis (ICA) is relatively invariable compared to the ECG waveform, we propose a multiple-scale peak-detection algorithm to determine the BCG cycle directly from the EEG data. The algorithm first extracts the high contrast BCG component from the EEG data by ICA. The BCG cycle is then estimated by band-pass filtering the component around the fundamental frequency identified from its energy spectral density, and the peak of BCG artifact occurrence is selected from each of the estimated cycle. The algorithm is shown to achieve a high accuracy on a large EEG-fMRI dataset. It is also adaptive to various heart rates without the needs of adjusting the threshold parameters. The cycle detection remains accurate with the scan duration reduced to half a minute. Additionally, the algorithm gives a figure of merit to evaluate the reliability of the detection accuracy. The algorithm is shown to give a higher detection accuracy than the commonly used cycle detection algorithm fmrib_qrsdetect implemented in EEGLAB. The achieved high cycle detection accuracy of our algorithm without using the ECG waveforms makes possible to create and automate pipelines for processing large EEG-fMRI datasets, and virtually eliminates the need for ECG recordings for BCG artifact removal. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. LDA boost classification: boosting by topics

    NASA Astrophysics Data System (ADS)

    Lei, La; Qiao, Guo; Qimin, Cao; Qitao, Li

    2012-12-01

    AdaBoost is an efficacious classification algorithm especially in text categorization (TC) tasks. The methodology of setting up a classifier committee and voting on the documents for classification can achieve high categorization precision. However, traditional Vector Space Model can easily lead to the curse of dimensionality and feature sparsity problems; so it affects classification performance seriously. This article proposed a novel classification algorithm called LDABoost based on boosting ideology which uses Latent Dirichlet Allocation (LDA) to modeling the feature space. Instead of using words or phrase, LDABoost use latent topics as the features. In this way, the feature dimension is significantly reduced. Improved Naïve Bayes (NB) is designed as the weaker classifier which keeps the efficiency advantage of classic NB algorithm and has higher precision. Moreover, a two-stage iterative weighted method called Cute Integration in this article is proposed for improving the accuracy by integrating weak classifiers into strong classifier in a more rational way. Mutual Information is used as metrics of weights allocation. The voting information and the categorization decision made by basis classifiers are fully utilized for generating the strong classifier. Experimental results reveals LDABoost making categorization in a low-dimensional space, it has higher accuracy than traditional AdaBoost algorithms and many other classic classification algorithms. Moreover, its runtime consumption is lower than different versions of AdaBoost, TC algorithms based on support vector machine and Neural Networks.

  2. Integrating concept ontology and multitask learning to achieve more effective classifier training for multilevel image annotation.

    PubMed

    Fan, Jianping; Gao, Yuli; Luo, Hangzai

    2008-03-01

    In this paper, we have developed a new scheme for achieving multilevel annotations of large-scale images automatically. To achieve more sufficient representation of various visual properties of the images, both the global visual features and the local visual features are extracted for image content representation. To tackle the problem of huge intraconcept visual diversity, multiple types of kernels are integrated to characterize the diverse visual similarity relationships between the images more precisely, and a multiple kernel learning algorithm is developed for SVM image classifier training. To address the problem of huge interconcept visual similarity, a novel multitask learning algorithm is developed to learn the correlated classifiers for the sibling image concepts under the same parent concept and enhance their discrimination and adaptation power significantly. To tackle the problem of huge intraconcept visual diversity for the image concepts at the higher levels of the concept ontology, a novel hierarchical boosting algorithm is developed to learn their ensemble classifiers hierarchically. In order to assist users on selecting more effective hypotheses for image classifier training, we have developed a novel hyperbolic framework for large-scale image visualization and interactive hypotheses assessment. Our experiments on large-scale image collections have also obtained very positive results.

  3. Adaptive Subframe Partitioning and Efficient Packet Scheduling in OFDMA Cellular System with Fixed Decode-and-Forward Relays

    NASA Astrophysics Data System (ADS)

    Wang, Liping; Ji, Yusheng; Liu, Fuqiang

    The integration of multihop relays with orthogonal frequency-division multiple access (OFDMA) cellular infrastructures can meet the growing demands for better coverage and higher throughput. Resource allocation in the OFDMA two-hop relay system is more complex than that in the conventional single-hop OFDMA system. With time division between transmissions from the base station (BS) and those from relay stations (RSs), fixed partitioning of the BS subframe and RS subframes can not adapt to various traffic demands. Moreover, single-hop scheduling algorithms can not be used directly in the two-hop system. Therefore, we propose a semi-distributed algorithm called ASP to adjust the length of every subframe adaptively, and suggest two ways to extend single-hop scheduling algorithms into multihop scenarios: link-based and end-to-end approaches. Simulation results indicate that the ASP algorithm increases system utilization and fairness. The max carrier-to-interference ratio (Max C/I) and proportional fairness (PF) scheduling algorithms extended using the end-to-end approach obtain higher throughput than those using the link-based approach, but at the expense of more overhead for information exchange between the BS and RSs. The resource allocation scheme using ASP and end-to-end PF scheduling achieves a tradeoff between system throughput maximization and fairness.

  4. SHARP: A Spatially Higher-order, Relativistic Particle-in-cell Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalaby, Mohamad; Broderick, Avery E.; Chang, Philip

    Numerical heating in particle-in-cell (PIC) codes currently precludes the accurate simulation of cold, relativistic plasma over long periods, severely limiting their applications in astrophysical environments. We present a spatially higher-order accurate relativistic PIC algorithm in one spatial dimension, which conserves charge and momentum exactly. We utilize the smoothness implied by the usage of higher-order interpolation functions to achieve a spatially higher-order accurate algorithm (up to the fifth order). We validate our algorithm against several test problems—thermal stability of stationary plasma, stability of linear plasma waves, and two-stream instability in the relativistic and non-relativistic regimes. Comparing our simulations to exact solutionsmore » of the dispersion relations, we demonstrate that SHARP can quantitatively reproduce important kinetic features of the linear regime. Our simulations have a superior ability to control energy non-conservation and avoid numerical heating in comparison to common second-order schemes. We provide a natural definition for convergence of a general PIC algorithm: the complement of physical modes captured by the simulation, i.e., those that lie above the Poisson noise, must grow commensurately with the resolution. This implies that it is necessary to simultaneously increase the number of particles per cell and decrease the cell size. We demonstrate that traditional ways for testing for convergence fail, leading to plateauing of the energy error. This new PIC code enables us to faithfully study the long-term evolution of plasma problems that require absolute control of the energy and momentum conservation.« less

  5. DNABIT Compress - Genome compression algorithm.

    PubMed

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-22

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  6. Numerical method for high accuracy index of refraction estimation for spectro-angular surface plasmon resonance systems.

    PubMed

    Alleyne, Colin J; Kirk, Andrew G; Chien, Wei-Yin; Charette, Paul G

    2008-11-24

    An eigenvector analysis based algorithm is presented for estimating refractive index changes from 2-D reflectance/dispersion images obtained with spectro-angular surface plasmon resonance systems. High resolution over a large dynamic range can be achieved simultaneously. The method performs well in simulations with noisy data maintaining an error of less than 10(-8) refractive index units with up to six bits of noise on 16 bit quantized image data. Experimental measurements show that the method results in a much higher signal to noise ratio than the standard 1-D weighted centroid dip finding algorithm.

  7. A 0.13-µm implementation of 5 Gb/s and 3-mW folded parallel architecture for AES algorithm

    NASA Astrophysics Data System (ADS)

    Rahimunnisa, K.; Karthigaikumar, P.; Kirubavathy, J.; Jayakumar, J.; Kumar, S. Suresh

    2014-02-01

    A new architecture for encrypting and decrypting the confidential data using Advanced Encryption Standard algorithm is presented in this article. This structure combines the folded structure with parallel architecture to increase the throughput. The whole architecture achieved high throughput with less power. The proposed architecture is implemented in 0.13-µm Complementary metal-oxide-semiconductor (CMOS) technology. The proposed structure is compared with different existing structures, and from the result it is proved that the proposed structure gives higher throughput and less power compared to existing works.

  8. On the non-closure of particle backscattering coefficient in oligotrophic oceans.

    PubMed

    Lee, ZhongPing; Huot, Yannick

    2014-11-17

    Many studies have consistently found that the particle backscattering coefficient (bbp) in oligotrophic oceans estimated from remote-sensing reflectance (Rrs) using semi-analytical algorithms is higher than that from in situ measurements. This overestimation can be as high as ~300% for some oligotrophic ocean regions. Various sources potentially responsible for this discrepancy are examined. Further, after applying an empirical algorithm to correct the impact from Raman scattering, it is found that bbp from analytical inversion of Rrs is in good agreement with that from in situ measurements, and that a closure is achieved.

  9. FEAST: sensitive local alignment with multiple rates of evolution.

    PubMed

    Hudek, Alexander K; Brown, Daniel G

    2011-01-01

    We present a pairwise local aligner, FEAST, which uses two new techniques: a sensitive extension algorithm for identifying homologous subsequences, and a descriptive probabilistic alignment model. We also present a new procedure for training alignment parameters and apply it to the human and mouse genomes, producing a better parameter set for these sequences. Our extension algorithm identifies homologous subsequences by considering all evolutionary histories. It has higher maximum sensitivity than Viterbi extensions, and better balances specificity. We model alignments with several submodels, each with unique statistical properties, describing strongly similar and weakly similar regions of homologous DNA. Training parameters using two submodels produces superior alignments, even when we align with only the parameters from the weaker submodel. Our extension algorithm combined with our new parameter set achieves sensitivity 0.59 on synthetic tests. In contrast, LASTZ with default settings achieves sensitivity 0.35 with the same false positive rate. Using the weak submodel as parameters for LASTZ increases its sensitivity to 0.59 with high error. FEAST is available at http://monod.uwaterloo.ca/feast/.

  10. A soft decoding algorithm and hardware implementation for the visual prosthesis based on high order soft demodulation.

    PubMed

    Yang, Yuan; Quan, Nannan; Bu, Jingjing; Li, Xueping; Yu, Ningmei

    2016-09-26

    High order modulation and demodulation technology can solve the frequency requirement between the wireless energy transmission and data communication. In order to achieve reliable wireless data communication based on high order modulation technology for visual prosthesis, this work proposed a Reed-Solomon (RS) error correcting code (ECC) circuit on the basis of differential amplitude and phase shift keying (DAPSK) soft demodulation. Firstly, recognizing the weakness of the traditional DAPSK soft demodulation algorithm based on division that is complex for hardware implementation, an improved phase soft demodulation algorithm for visual prosthesis to reduce the hardware complexity is put forward. Based on this new algorithm, an improved RS soft decoding method is hence proposed. In this new decoding method, the combination of Chase algorithm and hard decoding algorithms is used to achieve soft decoding. In order to meet the requirements of implantable visual prosthesis, the method to calculate reliability of symbol-level based on multiplication of bit reliability is derived, which reduces the testing vectors number of Chase algorithm. The proposed algorithms are verified by MATLAB simulation and FPGA experimental results. During MATLAB simulation, the biological channel attenuation property model is added into the ECC circuit. The data rate is 8 Mbps in the MATLAB simulation and FPGA experiments. MATLAB simulation results show that the improved phase soft demodulation algorithm proposed in this paper saves hardware resources without losing bit error rate (BER) performance. Compared with the traditional demodulation circuit, the coding gain of the ECC circuit has been improved by about 3 dB under the same BER of [Formula: see text]. The FPGA experimental results show that under the condition of data demodulation error with wireless coils 3 cm away, the system can correct it. The greater the distance, the higher the BER. Then we use a bit error rate analyzer to measure BER of the demodulation circuit and the RS ECC circuit with different distance of two coils. And the experimental results show that the RS ECC circuit has about an order of magnitude lower BER than the demodulation circuit when under the same coils distance. Therefore, the RS ECC circuit has more higher reliability of the communication in the system. The improved phase soft demodulation algorithm and soft decoding algorithm proposed in this paper enables data communication that is more reliable than other demodulation system, which also provide a significant reference for further study to the visual prosthesis system.

  11. New Physical Algorithms for Downscaling SMAP Soil Moisture

    NASA Astrophysics Data System (ADS)

    Sadeghi, M.; Ghafari, E.; Babaeian, E.; Davary, K.; Farid, A.; Jones, S. B.; Tuller, M.

    2017-12-01

    The NASA Soil Moisture Active Passive (SMAP) mission provides new means for estimation of surface soil moisture at the global scale. However, for many hydrological and agricultural applications the spatial SMAP resolution is too low. To address this scale issue we fused SMAP data with MODIS observations to generate soil moisture maps at 1-km spatial resolution. In course of this study we have improved several existing empirical algorithms and introduced a new physical approach for downscaling SMAP data. The universal triangle/trapezoid model was applied to relate soil moisture to optical/thermal observations such as NDVI, land surface temperature and surface reflectance. These algorithms were evaluated with in situ data measured at 5-cm depth. Our results demonstrate that downscaling SMAP soil moisture data based on physical indicators of soil moisture derived from the MODIS satellite leads to higher accuracy than that achievable with empirical downscaling algorithms. Keywords: Soil moisture, microwave data, downscaling, MODIS, triangle/trapezoid model.

  12. Parameter optimization of electrochemical machining process using black hole algorithm

    NASA Astrophysics Data System (ADS)

    Singh, Dinesh; Shukla, Rajkamal

    2017-12-01

    Advanced machining processes are significant as higher accuracy in machined component is required in the manufacturing industries. Parameter optimization of machining processes gives optimum control to achieve the desired goals. In this paper, electrochemical machining (ECM) process is considered to evaluate the performance of the considered process using black hole algorithm (BHA). BHA considers the fundamental idea of a black hole theory and it has less operating parameters to tune. The two performance parameters, material removal rate (MRR) and overcut (OC) are considered separately to get optimum machining parameter settings using BHA. The variations of process parameters with respect to the performance parameters are reported for better and effective understanding of the considered process using single objective at a time. The results obtained using BHA are found better while compared with results of other metaheuristic algorithms, such as, genetic algorithm (GA), artificial bee colony (ABC) and bio-geography based optimization (BBO) attempted by previous researchers.

  13. Decision-level fusion of SAR and IR sensor information for automatic target detection

    NASA Astrophysics Data System (ADS)

    Cho, Young-Rae; Yim, Sung-Hyuk; Cho, Hyun-Woong; Won, Jin-Ju; Song, Woo-Jin; Kim, So-Hyeon

    2017-05-01

    We propose a decision-level architecture that combines synthetic aperture radar (SAR) and an infrared (IR) sensor for automatic target detection. We present a new size-based feature, called target-silhouette to reduce the number of false alarms produced by the conventional target-detection algorithm. Boolean Map Visual Theory is used to combine a pair of SAR and IR images to generate the target-enhanced map. Then basic belief assignment is used to transform this map into a belief map. The detection results of sensors are combined to build the target-silhouette map. We integrate the fusion mass and the target-silhouette map on the decision level to exclude false alarms. The proposed algorithm is evaluated using a SAR and IR synthetic database generated by SE-WORKBENCH simulator, and compared with conventional algorithms. The proposed fusion scheme achieves higher detection rate and lower false alarm rate than the conventional algorithms.

  14. Fundamental limits of reconstruction-based superresolution algorithms under local translation.

    PubMed

    Lin, Zhouchen; Shum, Heung-Yeung

    2004-01-01

    Superresolution is a technique that can produce images of a higher resolution than that of the originally captured ones. Nevertheless, improvement in resolution using such a technique is very limited in practice. This makes it significant to study the problem: "Do fundamental limits exist for superresolution?" In this paper, we focus on a major class of superresolution algorithms, called the reconstruction-based algorithms, which compute high-resolution images by simulating the image formation process. Assuming local translation among low-resolution images, this paper is the first attempt to determine the explicit limits of reconstruction-based algorithms, under both real and synthetic conditions. Based on the perturbation theory of linear systems, we obtain the superresolution limits from the conditioning analysis of the coefficient matrix. Moreover, we determine the number of low-resolution images that are sufficient to achieve the limit. Both real and synthetic experiments are carried out to verify our analysis.

  15. Solution of the hydrodynamic device model using high-order non-oscillatory shock capturing algorithms

    NASA Technical Reports Server (NTRS)

    Fatemi, Emad; Jerome, Joseph; Osher, Stanley

    1989-01-01

    A micron n+ - n - n+ silicon diode is simulated via the hydrodynamic model for carrier transport. The numerical algorithms employed are for the non-steady case, and a limiting process is used to reach steady state. The simulation employs shock capturing algorithms, and indeed shocks, or very rapid transition regimes, are observed in the transient case for the coupled system, consisting of the potential equation and the conservation equations describing charge, momentum, and energy transfer for the electron carriers. These algorithms, termed essentially non-oscillatory, were successfully applied in other contexts to model the flow in gas dynamics, magnetohydrodynamics, and other physical situations involving the conservation laws in fluid mechanics. The method here is first order in time, but the use of small time steps allows for good accuracy. Runge-Kutta methods allow one to achieve higher accuracy in time if desired. The spatial accuracy is of high order in regions of smoothness.

  16. Chaos Quantum-Behaved Cat Swarm Optimization Algorithm and Its Application in the PV MPPT

    PubMed Central

    2017-01-01

    Cat Swarm Optimization (CSO) algorithm was put forward in 2006. Despite a faster convergence speed compared with Particle Swarm Optimization (PSO) algorithm, the application of CSO is greatly limited by the drawback of “premature convergence,” that is, the possibility of trapping in local optimum when dealing with nonlinear optimization problem with a large number of local extreme values. In order to surmount the shortcomings of CSO, Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed in this paper. Firstly, Quantum-behaved Cat Swarm Optimization (QCSO) algorithm improves the accuracy of the CSO algorithm, because it is easy to fall into the local optimum in the later stage. Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed by introducing tent map for jumping out of local optimum in this paper. Secondly, CQCSO has been applied in the simulation of five different test functions, showing higher accuracy and less time consumption than CSO and QCSO. Finally, photovoltaic MPPT model and experimental platform are established and global maximum power point tracking control strategy is achieved by CQCSO algorithm, the effectiveness and efficiency of which have been verified by both simulation and experiment. PMID:29181020

  17. Chaos Quantum-Behaved Cat Swarm Optimization Algorithm and Its Application in the PV MPPT.

    PubMed

    Nie, Xiaohua; Wang, Wei; Nie, Haoyao

    2017-01-01

    Cat Swarm Optimization (CSO) algorithm was put forward in 2006. Despite a faster convergence speed compared with Particle Swarm Optimization (PSO) algorithm, the application of CSO is greatly limited by the drawback of "premature convergence," that is, the possibility of trapping in local optimum when dealing with nonlinear optimization problem with a large number of local extreme values. In order to surmount the shortcomings of CSO, Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed in this paper. Firstly, Quantum-behaved Cat Swarm Optimization (QCSO) algorithm improves the accuracy of the CSO algorithm, because it is easy to fall into the local optimum in the later stage. Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed by introducing tent map for jumping out of local optimum in this paper. Secondly, CQCSO has been applied in the simulation of five different test functions, showing higher accuracy and less time consumption than CSO and QCSO. Finally, photovoltaic MPPT model and experimental platform are established and global maximum power point tracking control strategy is achieved by CQCSO algorithm, the effectiveness and efficiency of which have been verified by both simulation and experiment.

  18. Crosswalk navigation for people with visual impairments on a wearable device

    NASA Astrophysics Data System (ADS)

    Cheng, Ruiqi; Wang, Kaiwei; Yang, Kailun; Long, Ningbo; Hu, Weijian; Chen, Hao; Bai, Jian; Liu, Dong

    2017-09-01

    Detecting and reminding of crosswalks at urban intersections is one of the most important demands for people with visual impairments. A real-time crosswalk detection algorithm, adaptive extraction and consistency analysis (AECA), is proposed. Compared with existing algorithms, which detect crosswalks in ideal scenarios, the AECA algorithm performs better in challenging scenarios, such as crosswalks at far distances, low-contrast crosswalks, pedestrian occlusion, various illuminances, and the limited resources of portable PCs. Bright stripes of crosswalks are extracted by adaptive thresholding, and are gathered to form crosswalks by consistency analysis. On the testing dataset, the proposed algorithm achieves a precision of 84.6% and a recall of 60.1%, which are higher than the bipolarity-based algorithm. The position and orientation of crosswalks are conveyed to users by voice prompts so as to align themselves with crosswalks and walk along crosswalks. The field tests carried out in various practical scenarios prove the effectiveness and reliability of the proposed navigation approach.

  19. Multi-task feature selection in microarray data by binary integer programming.

    PubMed

    Lan, Liang; Vucetic, Slobodan

    2013-12-20

    A major challenge in microarray classification is that the number of features is typically orders of magnitude larger than the number of examples. In this paper, we propose a novel feature filter algorithm to select the feature subset with maximal discriminative power and minimal redundancy by solving a quadratic objective function with binary integer constraints. To improve the computational efficiency, the binary integer constraints are relaxed and a low-rank approximation to the quadratic term is applied. The proposed feature selection algorithm was extended to solve multi-task microarray classification problems. We compared the single-task version of the proposed feature selection algorithm with 9 existing feature selection methods on 4 benchmark microarray data sets. The empirical results show that the proposed method achieved the most accurate predictions overall. We also evaluated the multi-task version of the proposed algorithm on 8 multi-task microarray datasets. The multi-task feature selection algorithm resulted in significantly higher accuracy than when using the single-task feature selection methods.

  20. Joint Power Charging and Routing in Wireless Rechargeable Sensor Networks.

    PubMed

    Jia, Jie; Chen, Jian; Deng, Yansha; Wang, Xingwei; Aghvami, Abdol-Hamid

    2017-10-09

    The development of wireless power transfer (WPT) technology has inspired the transition from traditional battery-based wireless sensor networks (WSNs) towards wireless rechargeable sensor networks (WRSNs). While extensive efforts have been made to improve charging efficiency, little has been done for routing optimization. In this work, we present a joint optimization model to maximize both charging efficiency and routing structure. By analyzing the structure of the optimization model, we first decompose the problem and propose a heuristic algorithm to find the optimal charging efficiency for the predefined routing tree. Furthermore, by coding the many-to-one communication topology as an individual, we further propose to apply a genetic algorithm (GA) for the joint optimization of both routing and charging. The genetic operations, including tree-based recombination and mutation, are proposed to obtain a fast convergence. Our simulation results show that the heuristic algorithm reduces the number of resident locations and the total moving distance. We also show that our proposed algorithm achieves a higher charging efficiency compared with existing algorithms.

  1. Joint Power Charging and Routing in Wireless Rechargeable Sensor Networks

    PubMed Central

    Jia, Jie; Chen, Jian; Deng, Yansha; Wang, Xingwei; Aghvami, Abdol-Hamid

    2017-01-01

    The development of wireless power transfer (WPT) technology has inspired the transition from traditional battery-based wireless sensor networks (WSNs) towards wireless rechargeable sensor networks (WRSNs). While extensive efforts have been made to improve charging efficiency, little has been done for routing optimization. In this work, we present a joint optimization model to maximize both charging efficiency and routing structure. By analyzing the structure of the optimization model, we first decompose the problem and propose a heuristic algorithm to find the optimal charging efficiency for the predefined routing tree. Furthermore, by coding the many-to-one communication topology as an individual, we further propose to apply a genetic algorithm (GA) for the joint optimization of both routing and charging. The genetic operations, including tree-based recombination and mutation, are proposed to obtain a fast convergence. Our simulation results show that the heuristic algorithm reduces the number of resident locations and the total moving distance. We also show that our proposed algorithm achieves a higher charging efficiency compared with existing algorithms. PMID:28991200

  2. Tools for Analyzing Computing Resource Management Strategies and Algorithms for SDR Clouds

    NASA Astrophysics Data System (ADS)

    Marojevic, Vuk; Gomez-Miguelez, Ismael; Gelonch, Antoni

    2012-09-01

    Software defined radio (SDR) clouds centralize the computing resources of base stations. The computing resource pool is shared between radio operators and dynamically loads and unloads digital signal processing chains for providing wireless communications services on demand. Each new user session request particularly requires the allocation of computing resources for executing the corresponding SDR transceivers. The huge amount of computing resources of SDR cloud data centers and the numerous session requests at certain hours of a day require an efficient computing resource management. We propose a hierarchical approach, where the data center is divided in clusters that are managed in a distributed way. This paper presents a set of computing resource management tools for analyzing computing resource management strategies and algorithms for SDR clouds. We use the tools for evaluating a different strategies and algorithms. The results show that more sophisticated algorithms can achieve higher resource occupations and that a tradeoff exists between cluster size and algorithm complexity.

  3. Achieving a high mode count in the exact electromagnetic simulation of diffractive optical elements.

    PubMed

    Junker, André; Brenner, Karl-Heinz

    2018-03-01

    The application of rigorous optical simulation algorithms, both in the modal as well as in the time domain, is known to be limited to the nano-optical scale due to severe computing time and memory constraints. This is true even for today's high-performance computers. To address this problem, we develop the fast rigorous iterative method (FRIM), an algorithm based on an iterative approach, which, under certain conditions, allows solving also large-size problems approximation free. We achieve this in the case of a modal representation by avoiding the computationally complex eigenmode decomposition. Thereby, the numerical cost is reduced from O(N 3 ) to O(N log N), enabling a simulation of structures like certain diffractive optical elements with a significantly higher mode count than presently possible. Apart from speed, another major advantage of the iterative FRIM over standard modal methods is the possibility to trade runtime against accuracy.

  4. DNABIT Compress – Genome compression algorithm

    PubMed Central

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that “DNABIT Compress” algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases. PMID:21383923

  5. A Hybrid CPU/GPU Pattern-Matching Algorithm for Deep Packet Inspection

    PubMed Central

    Chen, Yaw-Chung

    2015-01-01

    The large quantities of data now being transferred via high-speed networks have made deep packet inspection indispensable for security purposes. Scalable and low-cost signature-based network intrusion detection systems have been developed for deep packet inspection for various software platforms. Traditional approaches that only involve central processing units (CPUs) are now considered inadequate in terms of inspection speed. Graphic processing units (GPUs) have superior parallel processing power, but transmission bottlenecks can reduce optimal GPU efficiency. In this paper we describe our proposal for a hybrid CPU/GPU pattern-matching algorithm (HPMA) that divides and distributes the packet-inspecting workload between a CPU and GPU. All packets are initially inspected by the CPU and filtered using a simple pre-filtering algorithm, and packets that might contain malicious content are sent to the GPU for further inspection. Test results indicate that in terms of random payload traffic, the matching speed of our proposed algorithm was 3.4 times and 2.7 times faster than those of the AC-CPU and AC-GPU algorithms, respectively. Further, HPMA achieved higher energy efficiency than the other tested algorithms. PMID:26437335

  6. A Hybrid CPU/GPU Pattern-Matching Algorithm for Deep Packet Inspection.

    PubMed

    Lee, Chun-Liang; Lin, Yi-Shan; Chen, Yaw-Chung

    2015-01-01

    The large quantities of data now being transferred via high-speed networks have made deep packet inspection indispensable for security purposes. Scalable and low-cost signature-based network intrusion detection systems have been developed for deep packet inspection for various software platforms. Traditional approaches that only involve central processing units (CPUs) are now considered inadequate in terms of inspection speed. Graphic processing units (GPUs) have superior parallel processing power, but transmission bottlenecks can reduce optimal GPU efficiency. In this paper we describe our proposal for a hybrid CPU/GPU pattern-matching algorithm (HPMA) that divides and distributes the packet-inspecting workload between a CPU and GPU. All packets are initially inspected by the CPU and filtered using a simple pre-filtering algorithm, and packets that might contain malicious content are sent to the GPU for further inspection. Test results indicate that in terms of random payload traffic, the matching speed of our proposed algorithm was 3.4 times and 2.7 times faster than those of the AC-CPU and AC-GPU algorithms, respectively. Further, HPMA achieved higher energy efficiency than the other tested algorithms.

  7. Using MaxCompiler for the high level synthesis of trigger algorithms

    NASA Astrophysics Data System (ADS)

    Summers, S.; Rose, A.; Sanders, P.

    2017-02-01

    Firmware for FPGA trigger applications at the CMS experiment is conventionally written using hardware description languages such as Verilog and VHDL. MaxCompiler is an alternative, Java based, tool for developing FPGA applications which uses a higher level of abstraction from the hardware than a hardware description language. An implementation of the jet and energy sum algorithms for the CMS Level-1 calorimeter trigger has been written using MaxCompiler to benchmark against the VHDL implementation in terms of accuracy, latency, resource usage, and code size. A Kalman Filter track fitting algorithm has been developed using MaxCompiler for a proposed CMS Level-1 track trigger for the High-Luminosity LHC upgrade. The design achieves a low resource usage, and has a latency of 187.5 ns per iteration.

  8. Products recognition on shop-racks from local scale-invariant features

    NASA Astrophysics Data System (ADS)

    Zawistowski, Jacek; Kurzejamski, Grzegorz; Garbat, Piotr; Naruniec, Jacek

    2016-04-01

    This paper presents a system designed for the multi-object detection purposes and adjusted for the application of product search on the market shelves. System uses well known binary keypoint detection algorithms for finding characteristic points in the image. One of the main idea is object recognition based on Implicit Shape Model method. Authors of the article proposed many improvements of the algorithm. Originally fiducial points are matched with a very simple function. This leads to the limitations in the number of objects parts being success- fully separated, while various methods of classification may be validated in order to achieve higher performance. Such an extension implies research on training procedure able to deal with many objects categories. Proposed solution opens a new possibilities for many algorithms demanding fast and robust multi-object recognition.

  9. A Flexible Annular-Array Imaging Platform for Micro-Ultrasound

    PubMed Central

    Qiu, Weibao; Yu, Yanyan; Chabok, Hamid Reza; Liu, Cheng; Tsang, Fu Keung; Zhou, Qifa; Shung, K. Kirk; Zheng, Hairong; Sun, Lei

    2013-01-01

    Micro-ultrasound is an invaluable imaging tool for many clinical and preclinical applications requiring high resolution (approximately several tens of micrometers). Imaging systems for micro-ultrasound, including single-element imaging systems and linear-array imaging systems, have been developed extensively in recent years. Single-element systems are cheaper, but linear-array systems give much better image quality at a higher expense. Annular-array-based systems provide a third alternative, striking a balance between image quality and expense. This paper presents the development of a novel programmable and real-time annular-array imaging platform for micro-ultrasound. It supports multi-channel dynamic beamforming techniques for large-depth-of-field imaging. The major image processing algorithms were achieved by a novel field-programmable gate array technology for high speed and flexibility. Real-time imaging was achieved by fast processing algorithms and high-speed data transfer interface. The platform utilizes a printed circuit board scheme incorporating state-of-the-art electronics for compactness and cost effectiveness. Extensive tests including hardware, algorithms, wire phantom, and tissue mimicking phantom measurements were conducted to demonstrate good performance of the platform. The calculated contrast-to-noise ratio (CNR) of the tissue phantom measurements were higher than 1.2 in the range of 3.8 to 8.7 mm imaging depth. The platform supported more than 25 images per second for real-time image acquisition. The depth-of-field had about 2.5-fold improvement compared to single-element transducer imaging. PMID:23287923

  10. RB Particle Filter Time Synchronization Algorithm Based on the DPM Model.

    PubMed

    Guo, Chunsheng; Shen, Jia; Sun, Yao; Ying, Na

    2015-09-03

    Time synchronization is essential for node localization, target tracking, data fusion, and various other Wireless Sensor Network (WSN) applications. To improve the estimation accuracy of continuous clock offset and skew of mobile nodes in WSNs, we propose a novel time synchronization algorithm, the Rao-Blackwellised (RB) particle filter time synchronization algorithm based on the Dirichlet process mixture (DPM) model. In a state-space equation with a linear substructure, state variables are divided into linear and non-linear variables by the RB particle filter algorithm. These two variables can be estimated using Kalman filter and particle filter, respectively, which improves the computational efficiency more so than if only the particle filter was used. In addition, the DPM model is used to describe the distribution of non-deterministic delays and to automatically adjust the number of Gaussian mixture model components based on the observational data. This improves the estimation accuracy of clock offset and skew, which allows achieving the time synchronization. The time synchronization performance of this algorithm is also validated by computer simulations and experimental measurements. The results show that the proposed algorithm has a higher time synchronization precision than traditional time synchronization algorithms.

  11. Kalman/Map filtering-aided fast normalized cross correlation-based Wi-Fi fingerprinting location sensing.

    PubMed

    Sun, Yongliang; Xu, Yubin; Li, Cheng; Ma, Lin

    2013-11-13

    A Kalman/map filtering (KMF)-aided fast normalized cross correlation (FNCC)-based Wi-Fi fingerprinting location sensing system is proposed in this paper. Compared with conventional neighbor selection algorithms that calculate localization results with received signal strength (RSS) mean samples, the proposed FNCC algorithm makes use of all the on-line RSS samples and reference point RSS variations to achieve higher fingerprinting accuracy. The FNCC computes efficiently while maintaining the same accuracy as the basic normalized cross correlation. Additionally, a KMF is also proposed to process fingerprinting localization results. It employs a new map matching algorithm to nonlinearize the linear location prediction process of Kalman filtering (KF) that takes advantage of spatial proximities of consecutive localization results. With a calibration model integrated into an indoor map, the map matching algorithm corrects unreasonable prediction locations of the KF according to the building interior structure. Thus, more accurate prediction locations are obtained. Using these locations, the KMF considerably improves fingerprinting algorithm performance. Experimental results demonstrate that the FNCC algorithm with reduced computational complexity outperforms other neighbor selection algorithms and the KMF effectively improves location sensing accuracy by using indoor map information and spatial proximities of consecutive localization results.

  12. Kalman/Map Filtering-Aided Fast Normalized Cross Correlation-Based Wi-Fi Fingerprinting Location Sensing

    PubMed Central

    Sun, Yongliang; Xu, Yubin; Li, Cheng; Ma, Lin

    2013-01-01

    A Kalman/map filtering (KMF)-aided fast normalized cross correlation (FNCC)-based Wi-Fi fingerprinting location sensing system is proposed in this paper. Compared with conventional neighbor selection algorithms that calculate localization results with received signal strength (RSS) mean samples, the proposed FNCC algorithm makes use of all the on-line RSS samples and reference point RSS variations to achieve higher fingerprinting accuracy. The FNCC computes efficiently while maintaining the same accuracy as the basic normalized cross correlation. Additionally, a KMF is also proposed to process fingerprinting localization results. It employs a new map matching algorithm to nonlinearize the linear location prediction process of Kalman filtering (KF) that takes advantage of spatial proximities of consecutive localization results. With a calibration model integrated into an indoor map, the map matching algorithm corrects unreasonable prediction locations of the KF according to the building interior structure. Thus, more accurate prediction locations are obtained. Using these locations, the KMF considerably improves fingerprinting algorithm performance. Experimental results demonstrate that the FNCC algorithm with reduced computational complexity outperforms other neighbor selection algorithms and the KMF effectively improves location sensing accuracy by using indoor map information and spatial proximities of consecutive localization results. PMID:24233027

  13. Evaluation of Dynamic Channel and Power Assignment for Cognitive Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syed A. Ahmad; Umesh Shukla; Ryan E. Irwin

    2011-03-01

    In this paper, we develop a unifying optimization formulation to describe the Dynamic Channel and Power Assignment (DCPA) problem and evaluation method for comparing DCPA algorithms. DCPA refers to the allocation of transmit power and frequency channels to links in a cognitive network so as to maximize the total number of feasible links while minimizing the aggregate transmit power. We apply our evaluation method to five algorithms representative of DCPA used in literature. This comparison illustrates the tradeoffs between control modes (centralized versus distributed) and channel/power assignment techniques. We estimate the complexity of each algorithm. Through simulations, we evaluate themore » effectiveness of the algorithms in achieving feasible link allocations in the network, as well as their power efficiency. Our results indicate that, when few channels are available, the effectiveness of all algorithms is comparable and thus the one with smallest complexity should be selected. The Least Interfering Channel and Iterative Power Assignment (LICIPA) algorithm does not require cross-link gain information, has the overall lowest run time, and highest feasibility ratio of all the distributed algorithms; however, this comes at a cost of higher average power per link.« less

  14. Smartphone-Based Indoor Localization with Bluetooth Low Energy Beacons

    PubMed Central

    Zhuang, Yuan; Yang, Jun; Li, You; Qi, Longning; El-Sheimy, Naser

    2016-01-01

    Indoor wireless localization using Bluetooth Low Energy (BLE) beacons has attracted considerable attention after the release of the BLE protocol. In this paper, we propose an algorithm that uses the combination of channel-separate polynomial regression model (PRM), channel-separate fingerprinting (FP), outlier detection and extended Kalman filtering (EKF) for smartphone-based indoor localization with BLE beacons. The proposed algorithm uses FP and PRM to estimate the target’s location and the distances between the target and BLE beacons respectively. We compare the performance of distance estimation that uses separate PRM for three advertisement channels (i.e., the separate strategy) with that use an aggregate PRM generated through the combination of information from all channels (i.e., the aggregate strategy). The performance of FP-based location estimation results of the separate strategy and the aggregate strategy are also compared. It was found that the separate strategy can provide higher accuracy; thus, it is preferred to adopt PRM and FP for each BLE advertisement channel separately. Furthermore, to enhance the robustness of the algorithm, a two-level outlier detection mechanism is designed. Distance and location estimates obtained from PRM and FP are passed to the first outlier detection to generate improved distance estimates for the EKF. After the EKF process, the second outlier detection algorithm based on statistical testing is further performed to remove the outliers. The proposed algorithm was evaluated by various field experiments. Results show that the proposed algorithm achieved the accuracy of <2.56 m at 90% of the time with dense deployment of BLE beacons (1 beacon per 9 m), which performs 35.82% better than <3.99 m from the Propagation Model (PM) + EKF algorithm and 15.77% more accurate than <3.04 m from the FP + EKF algorithm. With sparse deployment (1 beacon per 18 m), the proposed algorithm achieves the accuracies of <3.88 m at 90% of the time, which performs 49.58% more accurate than <8.00 m from the PM + EKF algorithm and 21.41% better than <4.94 m from the FP + EKF algorithm. Therefore, the proposed algorithm is especially useful to improve the localization accuracy in environments with sparse beacon deployment. PMID:27128917

  15. Smartphone-Based Indoor Localization with Bluetooth Low Energy Beacons.

    PubMed

    Zhuang, Yuan; Yang, Jun; Li, You; Qi, Longning; El-Sheimy, Naser

    2016-04-26

    Indoor wireless localization using Bluetooth Low Energy (BLE) beacons has attracted considerable attention after the release of the BLE protocol. In this paper, we propose an algorithm that uses the combination of channel-separate polynomial regression model (PRM), channel-separate fingerprinting (FP), outlier detection and extended Kalman filtering (EKF) for smartphone-based indoor localization with BLE beacons. The proposed algorithm uses FP and PRM to estimate the target's location and the distances between the target and BLE beacons respectively. We compare the performance of distance estimation that uses separate PRM for three advertisement channels (i.e., the separate strategy) with that use an aggregate PRM generated through the combination of information from all channels (i.e., the aggregate strategy). The performance of FP-based location estimation results of the separate strategy and the aggregate strategy are also compared. It was found that the separate strategy can provide higher accuracy; thus, it is preferred to adopt PRM and FP for each BLE advertisement channel separately. Furthermore, to enhance the robustness of the algorithm, a two-level outlier detection mechanism is designed. Distance and location estimates obtained from PRM and FP are passed to the first outlier detection to generate improved distance estimates for the EKF. After the EKF process, the second outlier detection algorithm based on statistical testing is further performed to remove the outliers. The proposed algorithm was evaluated by various field experiments. Results show that the proposed algorithm achieved the accuracy of <2.56 m at 90% of the time with dense deployment of BLE beacons (1 beacon per 9 m), which performs 35.82% better than <3.99 m from the Propagation Model (PM) + EKF algorithm and 15.77% more accurate than <3.04 m from the FP + EKF algorithm. With sparse deployment (1 beacon per 18 m), the proposed algorithm achieves the accuracies of <3.88 m at 90% of the time, which performs 49.58% more accurate than <8.00 m from the PM + EKF algorithm and 21.41% better than <4.94 m from the FP + EKF algorithm. Therefore, the proposed algorithm is especially useful to improve the localization accuracy in environments with sparse beacon deployment.

  16. The tradition algorithm approach underestimates the prevalence of serodiagnosis of syphilis in HIV-infected individuals.

    PubMed

    Chen, Bin; Peng, Xiuming; Xie, Tiansheng; Jin, Changzhong; Liu, Fumin; Wu, Nanping

    2017-07-01

    Currently, there are three algorithms for screening of syphilis: traditional algorithm, reverse algorithm and European Centre for Disease Prevention and Control (ECDC) algorithm. To date, there is not a generally recognized diagnostic algorithm. When syphilis meets HIV, the situation is even more complex. To evaluate their screening performance and impact on the seroprevalence of syphilis in HIV-infected individuals, we conducted a cross-sectional study included 865 serum samples from HIV-infected patients in a tertiary hospital. Every sample (one per patient) was tested with toluidine red unheated serum test (TRUST), T. pallidum particle agglutination assay (TPPA), and Treponema pallidum enzyme immunoassay (TP-EIA) according to the manufacturer's instructions. The results of syphilis serological testing were interpreted following different algorithms respectively. We directly compared the traditional syphilis screening algorithm with the reverse syphilis screening algorithm in this unique population. The reverse algorithm achieved remarkable higher seroprevalence of syphilis than the traditional algorithm (24.9% vs. 14.2%, p < 0.0001). Compared to the reverse algorithm, the traditional algorithm also had a missed serodiagnosis rate of 42.8%. The total percentages of agreement and corresponding kappa values of tradition and ECDC algorithm compared with those of reverse algorithm were as follows: 89.4%,0.668; 99.8%, 0.994. There was a very good strength of agreement between the reverse and the ECDC algorithm. Our results supported the reverse (or ECDC) algorithm in screening of syphilis in HIV-infected populations. In addition, our study demonstrated that screening of HIV-populations using different algorithms may result in a statistically different seroprevalence of syphilis.

  17. A compatible control algorithm for greenhouse environment control based on MOCC strategy.

    PubMed

    Hu, Haigen; Xu, Lihong; Zhu, Bingkun; Wei, Ruihua

    2011-01-01

    Conventional methods used for solving greenhouse environment multi-objective conflict control problems lay excessive emphasis on control performance and have inadequate consideration for both energy consumption and special requirements for plant growth. The resulting solution will cause higher energy cost. However, during the long period of work and practice, we find that it may be more reasonable to adopt interval or region control objectives instead of point control objectives. In this paper, we propose a modified compatible control algorithm, and employ Multi-Objective Compatible Control (MOCC) strategy and an extant greenhouse model to achieve greenhouse climate control based on feedback control architecture. A series of simulation experiments through various comparative studies are presented to validate the feasibility of the proposed algorithm. The results are encouraging and suggest the energy-saving application to real-world engineering problems in greenhouse production. It may be valuable and helpful to formulate environmental control strategies, and to achieve high control precision and low energy cost for real-world engineering application in greenhouse production. Moreover, the proposed approach has also potential to be useful for other practical control optimization problems with the features like the greenhouse environment control system.

  18. A Compatible Control Algorithm for Greenhouse Environment Control Based on MOCC Strategy

    PubMed Central

    Hu, Haigen; Xu, Lihong; Zhu, Bingkun; Wei, Ruihua

    2011-01-01

    Conventional methods used for solving greenhouse environment multi-objective conflict control problems lay excessive emphasis on control performance and have inadequate consideration for both energy consumption and special requirements for plant growth. The resulting solution will cause higher energy cost. However, during the long period of work and practice, we find that it may be more reasonable to adopt interval or region control objectives instead of point control objectives. In this paper, we propose a modified compatible control algorithm, and employ Multi-Objective Compatible Control (MOCC) strategy and an extant greenhouse model to achieve greenhouse climate control based on feedback control architecture. A series of simulation experiments through various comparative studies are presented to validate the feasibility of the proposed algorithm. The results are encouraging and suggest the energy-saving application to real-world engineering problems in greenhouse production. It may be valuable and helpful to formulate environmental control strategies, and to achieve high control precision and low energy cost for real-world engineering application in greenhouse production. Moreover, the proposed approach has also potential to be useful for other practical control optimization problems with the features like the greenhouse environment control system. PMID:22163799

  19. An Unsupervised Online Spike-Sorting Framework.

    PubMed

    Knieling, Simeon; Sridharan, Kousik S; Belardinelli, Paolo; Naros, Georgios; Weiss, Daniel; Mormann, Florian; Gharabaghi, Alireza

    2016-08-01

    Extracellular neuronal microelectrode recordings can include action potentials from multiple neurons. To separate spikes from different neurons, they can be sorted according to their shape, a procedure referred to as spike-sorting. Several algorithms have been reported to solve this task. However, when clustering outcomes are unsatisfactory, most of them are difficult to adjust to achieve the desired results. We present an online spike-sorting framework that uses feature normalization and weighting to maximize the distinctiveness between different spike shapes. Furthermore, multiple criteria are applied to either facilitate or prevent cluster fusion, thereby enabling experimenters to fine-tune the sorting process. We compare our method to established unsupervised offline (Wave_Clus (WC)) and online (OSort (OS)) algorithms by examining their performance in sorting various test datasets using two different scoring systems (AMI and the Adamos metric). Furthermore, we evaluate sorting capabilities on intra-operative recordings using established quality metrics. Compared to WC and OS, our algorithm achieved comparable or higher scores on average and produced more convincing sorting results for intra-operative datasets. Thus, the presented framework is suitable for both online and offline analysis and could substantially improve the quality of microelectrode-based data evaluation for research and clinical application.

  20. Assessment of mean-field microkinetic models for CO methanation on stepped metal surfaces using accelerated kinetic Monte Carlo

    NASA Astrophysics Data System (ADS)

    Andersen, Mie; Plaisance, Craig P.; Reuter, Karsten

    2017-10-01

    First-principles screening studies aimed at predicting the catalytic activity of transition metal (TM) catalysts have traditionally been based on mean-field (MF) microkinetic models, which neglect the effect of spatial correlations in the adsorbate layer. Here we critically assess the accuracy of such models for the specific case of CO methanation over stepped metals by comparing to spatially resolved kinetic Monte Carlo (kMC) simulations. We find that the typical low diffusion barriers offered by metal surfaces can be significantly increased at step sites, which results in persisting correlations in the adsorbate layer. As a consequence, MF models may overestimate the catalytic activity of TM catalysts by several orders of magnitude. The potential higher accuracy of kMC models comes at a higher computational cost, which can be especially challenging for surface reactions on metals due to a large disparity in the time scales of different processes. In order to overcome this issue, we implement and test a recently developed algorithm for achieving temporal acceleration of kMC simulations. While the algorithm overall performs quite well, we identify some challenging cases which may lead to a breakdown of acceleration algorithms and discuss possible directions for future algorithm development.

  1. A Distributed Compressive Sensing Scheme for Event Capture in Wireless Visual Sensor Networks

    NASA Astrophysics Data System (ADS)

    Hou, Meng; Xu, Sen; Wu, Weiling; Lin, Fei

    2018-01-01

    Image signals which acquired by wireless visual sensor network can be used for specific event capture. This event capture is realized by image processing at the sink node. A distributed compressive sensing scheme is used for the transmission of these image signals from the camera nodes to the sink node. A measurement and joint reconstruction algorithm for these image signals are proposed in this paper. Make advantage of spatial correlation between images within a sensing area, the cluster head node which as the image decoder can accurately co-reconstruct these image signals. The subjective visual quality and the reconstruction error rate are used for the evaluation of reconstructed image quality. Simulation results show that the joint reconstruction algorithm achieves higher image quality at the same image compressive rate than the independent reconstruction algorithm.

  2. A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing.

    PubMed

    Li, Zhixin; Su, Dandan; Zhu, Haijiang; Li, Wei; Zhang, Fan; Li, Ruirui

    2017-01-08

    Synthetic Aperture Radar (SAR) raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC) methods have demonstrated their potential for accelerating simulation, the input/output (I/O) bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS) for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU) based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4_ speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration.

  3. Towards deep learning with segregated dendrites

    PubMed Central

    Guerguiev, Jordan; Lillicrap, Timothy P

    2017-01-01

    Deep learning has led to significant advances in artificial intelligence, in part, by adopting strategies motivated by neurophysiology. However, it is unclear whether deep learning could occur in the real brain. Here, we show that a deep learning algorithm that utilizes multi-compartment neurons might help us to understand how the neocortex optimizes cost functions. Like neocortical pyramidal neurons, neurons in our model receive sensory information and higher-order feedback in electrotonically segregated compartments. Thanks to this segregation, neurons in different layers of the network can coordinate synaptic weight updates. As a result, the network learns to categorize images better than a single layer network. Furthermore, we show that our algorithm takes advantage of multilayer architectures to identify useful higher-order representations—the hallmark of deep learning. This work demonstrates that deep learning can be achieved using segregated dendritic compartments, which may help to explain the morphology of neocortical pyramidal neurons. PMID:29205151

  4. Towards deep learning with segregated dendrites.

    PubMed

    Guerguiev, Jordan; Lillicrap, Timothy P; Richards, Blake A

    2017-12-05

    Deep learning has led to significant advances in artificial intelligence, in part, by adopting strategies motivated by neurophysiology. However, it is unclear whether deep learning could occur in the real brain. Here, we show that a deep learning algorithm that utilizes multi-compartment neurons might help us to understand how the neocortex optimizes cost functions. Like neocortical pyramidal neurons, neurons in our model receive sensory information and higher-order feedback in electrotonically segregated compartments. Thanks to this segregation, neurons in different layers of the network can coordinate synaptic weight updates. As a result, the network learns to categorize images better than a single layer network. Furthermore, we show that our algorithm takes advantage of multilayer architectures to identify useful higher-order representations-the hallmark of deep learning. This work demonstrates that deep learning can be achieved using segregated dendritic compartments, which may help to explain the morphology of neocortical pyramidal neurons.

  5. Continuous higher-order sliding mode control with time-varying gain for a class of uncertain nonlinear systems.

    PubMed

    Han, Yaozhen; Liu, Xiangjie

    2016-05-01

    This paper presents a continuous higher-order sliding mode (HOSM) control scheme with time-varying gain for a class of uncertain nonlinear systems. The proposed controller is derived from the concept of geometric homogeneity and super-twisting algorithm, and includes two parts, the first part of which achieves smooth finite time stabilization of pure integrator chains. The second part conquers the twice differentiable uncertainty and realizes system robustness by employing super-twisting algorithm. Particularly, time-varying switching control gain is constructed to reduce the switching control action magnitude to the minimum possible value while keeping the property of finite time convergence. Examples concerning the perturbed triple integrator chains and excitation control for single-machine infinite bus power system are simulated respectively to demonstrate the effectiveness and applicability of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Performance evaluation of image denoising developed using convolutional denoising autoencoders in chest radiography

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon; Choi, Sunghoon; Kim, Hee-Joung

    2018-03-01

    When processing medical images, image denoising is an important pre-processing step. Various image denoising algorithms have been developed in the past few decades. Recently, image denoising using the deep learning method has shown excellent performance compared to conventional image denoising algorithms. In this study, we introduce an image denoising technique based on a convolutional denoising autoencoder (CDAE) and evaluate clinical applications by comparing existing image denoising algorithms. We train the proposed CDAE model using 3000 chest radiograms training data. To evaluate the performance of the developed CDAE model, we compare it with conventional denoising algorithms including median filter, total variation (TV) minimization, and non-local mean (NLM) algorithms. Furthermore, to verify the clinical effectiveness of the developed denoising model with CDAE, we investigate the performance of the developed denoising algorithm on chest radiograms acquired from real patients. The results demonstrate that the proposed denoising algorithm developed using CDAE achieves a superior noise-reduction effect in chest radiograms compared to TV minimization and NLM algorithms, which are state-of-the-art algorithms for image noise reduction. For example, the peak signal-to-noise ratio and structure similarity index measure of CDAE were at least 10% higher compared to conventional denoising algorithms. In conclusion, the image denoising algorithm developed using CDAE effectively eliminated noise without loss of information on anatomical structures in chest radiograms. It is expected that the proposed denoising algorithm developed using CDAE will be effective for medical images with microscopic anatomical structures, such as terminal bronchioles.

  7. The Normalized-Rate Iterative Algorithm: A Practical Dynamic Spectrum Management Method for DSL

    NASA Astrophysics Data System (ADS)

    Statovci, Driton; Nordström, Tomas; Nilsson, Rickard

    2006-12-01

    We present a practical solution for dynamic spectrum management (DSM) in digital subscriber line systems: the normalized-rate iterative algorithm (NRIA). Supported by a novel optimization problem formulation, the NRIA is the only DSM algorithm that jointly addresses spectrum balancing for frequency division duplexing systems and power allocation for the users sharing a common cable bundle. With a focus on being implementable rather than obtaining the highest possible theoretical performance, the NRIA is designed to efficiently solve the DSM optimization problem with the operators' business models in mind. This is achieved with the help of two types of parameters: the desired network asymmetry and the desired user priorities. The NRIA is a centralized DSM algorithm based on the iterative water-filling algorithm (IWFA) for finding efficient power allocations, but extends the IWFA by finding the achievable bitrates and by optimizing the bandplan. It is compared with three other DSM proposals: the IWFA, the optimal spectrum balancing algorithm (OSBA), and the bidirectional IWFA (bi-IWFA). We show that the NRIA achieves better bitrate performance than the IWFA and the bi-IWFA. It can even achieve performance almost as good as the OSBA, but with dramatically lower requirements on complexity. Additionally, the NRIA can achieve bitrate combinations that cannot be supported by any other DSM algorithm.

  8. Parallel and fault-tolerant algorithms for hypercube multiprocessors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aykanat, C.

    1988-01-01

    Several techniques for increasing the performance of parallel algorithms on distributed-memory message-passing multi-processor systems are investigated. These techniques are effectively implemented for the parallelization of the Scaled Conjugate Gradient (SCG) algorithm on a hypercube connected message-passing multi-processor. Significant performance improvement is achieved by using these techniques. The SCG algorithm is used for the solution phase of an FE modeling system. Almost linear speed-up is achieved, and it is shown that hypercube topology is scalable for an FE class of problem. The SCG algorithm is also shown to be suitable for vectorization, and near supercomputer performance is achieved on a vectormore » hypercube multiprocessor by exploiting both parallelization and vectorization. Fault-tolerance issues for the parallel SCG algorithm and for the hypercube topology are also addressed.« less

  9. CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests.

    PubMed

    Ma, Li; Fan, Suohai

    2017-03-14

    The random forests algorithm is a type of classifier with prominent universality, a wide application range, and robustness for avoiding overfitting. But there are still some drawbacks to random forests. Therefore, to improve the performance of random forests, this paper seeks to improve imbalanced data processing, feature selection and parameter optimization. We propose the CURE-SMOTE algorithm for the imbalanced data classification problem. Experiments on imbalanced UCI data reveal that the combination of Clustering Using Representatives (CURE) enhances the original synthetic minority oversampling technique (SMOTE) algorithms effectively compared with the classification results on the original data using random sampling, Borderline-SMOTE1, safe-level SMOTE, C-SMOTE, and k-means-SMOTE. Additionally, the hybrid RF (random forests) algorithm has been proposed for feature selection and parameter optimization, which uses the minimum out of bag (OOB) data error as its objective function. Simulation results on binary and higher-dimensional data indicate that the proposed hybrid RF algorithms, hybrid genetic-random forests algorithm, hybrid particle swarm-random forests algorithm and hybrid fish swarm-random forests algorithm can achieve the minimum OOB error and show the best generalization ability. The training set produced from the proposed CURE-SMOTE algorithm is closer to the original data distribution because it contains minimal noise. Thus, better classification results are produced from this feasible and effective algorithm. Moreover, the hybrid algorithm's F-value, G-mean, AUC and OOB scores demonstrate that they surpass the performance of the original RF algorithm. Hence, this hybrid algorithm provides a new way to perform feature selection and parameter optimization.

  10. An Efficient Correction Algorithm for Eliminating Image Misalignment Effects on Co-Phasing Measurement Accuracy for Segmented Active Optics Systems

    PubMed Central

    Yue, Dan; Xu, Shuyan; Nie, Haitao; Wang, Zongyang

    2016-01-01

    The misalignment between recorded in-focus and out-of-focus images using the Phase Diversity (PD) algorithm leads to a dramatic decline in wavefront detection accuracy and image recovery quality for segmented active optics systems. This paper demonstrates the theoretical relationship between the image misalignment and tip-tilt terms in Zernike polynomials of the wavefront phase for the first time, and an efficient two-step alignment correction algorithm is proposed to eliminate these misalignment effects. This algorithm processes a spatial 2-D cross-correlation of the misaligned images, revising the offset to 1 or 2 pixels and narrowing the search range for alignment. Then, it eliminates the need for subpixel fine alignment to achieve adaptive correction by adding additional tip-tilt terms to the Optical Transfer Function (OTF) of the out-of-focus channel. The experimental results demonstrate the feasibility and validity of the proposed correction algorithm to improve the measurement accuracy during the co-phasing of segmented mirrors. With this alignment correction, the reconstructed wavefront is more accurate, and the recovered image is of higher quality. PMID:26934045

  11. An efficient tensor transpose algorithm for multicore CPU, Intel Xeon Phi, and NVidia Tesla GPU

    NASA Astrophysics Data System (ADS)

    Lyakh, Dmitry I.

    2015-04-01

    An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typically appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the naïve scattering algorithm (no memory access optimization). The tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).

  12. Performance Analysis of a Hardware Implemented Complex Signal Kurtosis Radio-Frequency Interference Detector

    NASA Technical Reports Server (NTRS)

    Schoenwald, Adam J.; Bradley, Damon C.; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Wong, Mark

    2016-01-01

    Radio-frequency interference (RFI) is a known problem for passive remote sensing as evidenced in the L-band radiometers SMOS, Aquarius and more recently, SMAP. Various algorithms have been developed and implemented on SMAP to improve science measurements. This was achieved by the use of a digital microwave radiometer. RFI mitigation becomes more challenging for microwave radiometers operating at higher frequencies in shared allocations. At higher frequencies larger bandwidths are also desirable for lower measurement noise further adding to processing challenges. This work focuses on finding improved RFI mitigation techniques that will be effective at additional frequencies and at higher bandwidths. To aid the development and testing of applicable detection and mitigation techniques, a wide-band RFI algorithm testing environment has been developed using the Reconfigurable Open Architecture Computing Hardware System (ROACH) built by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) Group. The testing environment also consists of various test equipment used to reproduce typical signals that a radiometer may see including those with and without RFI. The testing environment permits quick evaluations of RFI mitigation algorithms as well as show that they are implementable in hardware. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The complex signal kurtosis detector showed improved performance over the real kurtosis detector under certain conditions. The real kurtosis is implemented on SMAP at 24 MHz bandwidth. The complex signal kurtosis algorithm was then implemented in hardware at 200 MHz bandwidth using the ROACH. In this work, performance of the complex signal kurtosis and the real signal kurtosis are compared. Performance evaluations and comparisons in both simulation as well as experimental hardware implementations were done with the use of receiver operating characteristic (ROC) curves.

  13. a Hadoop-Based Algorithm of Generating dem Grid from Point Cloud Data

    NASA Astrophysics Data System (ADS)

    Jian, X.; Xiao, X.; Chengfang, H.; Zhizhong, Z.; Zhaohui, W.; Dengzhong, Z.

    2015-04-01

    Airborne LiDAR technology has proven to be the most powerful tools to obtain high-density, high-accuracy and significantly detailed surface information of terrain and surface objects within a short time, and from which the Digital Elevation Model of high quality can be extracted. Point cloud data generated from the pre-processed data should be classified by segmentation algorithms, so as to differ the terrain points from disorganized points, then followed by a procedure of interpolating the selected points to turn points into DEM data. The whole procedure takes a long time and huge computing resource due to high-density, that is concentrated on by a number of researches. Hadoop is a distributed system infrastructure developed by the Apache Foundation, which contains a highly fault-tolerant distributed file system (HDFS) with high transmission rate and a parallel programming model (Map/Reduce). Such a framework is appropriate for DEM generation algorithms to improve efficiency. Point cloud data of Dongting Lake acquired by Riegl LMS-Q680i laser scanner was utilized as the original data to generate DEM by a Hadoop-based algorithms implemented in Linux, then followed by another traditional procedure programmed by C++ as the comparative experiment. Then the algorithm's efficiency, coding complexity, and performance-cost ratio were discussed for the comparison. The results demonstrate that the algorithm's speed depends on size of point set and density of DEM grid, and the non-Hadoop implementation can achieve a high performance when memory is big enough, but the multiple Hadoop implementation can achieve a higher performance-cost ratio, while point set is of vast quantities on the other hand.

  14. Speech recognition for embedded automatic positioner for laparoscope

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Yin, Qingyun; Wang, Yi; Yu, Daoyin

    2014-07-01

    In this paper a novel speech recognition methodology based on Hidden Markov Model (HMM) is proposed for embedded Automatic Positioner for Laparoscope (APL), which includes a fixed point ARM processor as the core. The APL system is designed to assist the doctor in laparoscopic surgery, by implementing the specific doctor's vocal control to the laparoscope. Real-time respond to the voice commands asks for more efficient speech recognition algorithm for the APL. In order to reduce computation cost without significant loss in recognition accuracy, both arithmetic and algorithmic optimizations are applied in the method presented. First, depending on arithmetic optimizations most, a fixed point frontend for speech feature analysis is built according to the ARM processor's character. Then the fast likelihood computation algorithm is used to reduce computational complexity of the HMM-based recognition algorithm. The experimental results show that, the method shortens the recognition time within 0.5s, while the accuracy higher than 99%, demonstrating its ability to achieve real-time vocal control to the APL.

  15. FMRQ-A Multiagent Reinforcement Learning Algorithm for Fully Cooperative Tasks.

    PubMed

    Zhang, Zhen; Zhao, Dongbin; Gao, Junwei; Wang, Dongqing; Dai, Yujie

    2017-06-01

    In this paper, we propose a multiagent reinforcement learning algorithm dealing with fully cooperative tasks. The algorithm is called frequency of the maximum reward Q-learning (FMRQ). FMRQ aims to achieve one of the optimal Nash equilibria so as to optimize the performance index in multiagent systems. The frequency of obtaining the highest global immediate reward instead of immediate reward is used as the reinforcement signal. With FMRQ each agent does not need the observation of the other agents' actions and only shares its state and reward at each step. We validate FMRQ through case studies of repeated games: four cases of two-player two-action and one case of three-player two-action. It is demonstrated that FMRQ can converge to one of the optimal Nash equilibria in these cases. Moreover, comparison experiments on tasks with multiple states and finite steps are conducted. One is box-pushing and the other one is distributed sensor network problem. Experimental results show that the proposed algorithm outperforms others with higher performance.

  16. Solution of the hydrodynamic device model using high-order non-oscillatory shock capturing algorithms. [for junction diodes simulation

    NASA Technical Reports Server (NTRS)

    Fatemi, Emad; Osher, Stanley; Jerome, Joseph

    1991-01-01

    A micron n+ - n - n+ silicon diode is simulated via the hydrodynamic model for carrier transport. The numerical algorithms employed are for the non-steady case, and a limiting process is used to reach steady state. The simulation employs shock capturing algorithms, and indeed shocks, or very rapid transition regimes, are observed in the transient case for the coupled system, consisting of the potential equation and the conservation equations describing charge, momentum, and energy transfer for the electron carriers. These algorithms, termed essentially nonoscillatory, were successfully applied in other contexts to model the flow in gas dynamics, magnetohydrodynamics, and other physical situations involving the conservation laws in fluid mechanics. The method here is first order in time, but the use of small time steps allows for good accuracy. Runge-Kutta methods allow one to achieve higher accuracy in time if desired. The spatial accuracy is of high order in regions of smoothness.

  17. Doppler-based motion compensation algorithm for focusing the signature of a rotorcraft.

    PubMed

    Goldman, Geoffrey H

    2013-02-01

    A computationally efficient algorithm was developed and tested to compensate for the effects of motion on the acoustic signature of a rotorcraft. For target signatures with large spectral peaks that vary slowly in amplitude and have near constant frequency, the time-varying Doppler shift can be tracked and then removed from the data. The algorithm can be used to preprocess data for classification, tracking, and nulling algorithms. The algorithm was tested on rotorcraft data. The average instantaneous frequency of the first harmonic of a rotorcraft was tracked with a fixed-lag smoother. Then, state space estimates of the frequency were used to calculate a time warping that removed the effect of a time-varying Doppler shift from the data. The algorithm was evaluated by analyzing the increase in the amplitude of the harmonics in the spectrum of a rotorcraft. The results depended upon the frequency of the harmonics and the processing interval duration. Under good conditions, the results for the fundamental frequency of the target (~11 Hz) almost achieved an estimated upper bound. The results for higher frequency harmonics had larger increases in the amplitude of the peaks, but significantly lower than the estimated upper bounds.

  18. Fast parallel algorithm for slicing STL based on pipeline

    NASA Astrophysics Data System (ADS)

    Ma, Xulong; Lin, Feng; Yao, Bo

    2016-05-01

    In Additive Manufacturing field, the current researches of data processing mainly focus on a slicing process of large STL files or complicated CAD models. To improve the efficiency and reduce the slicing time, a parallel algorithm has great advantages. However, traditional algorithms can't make full use of multi-core CPU hardware resources. In the paper, a fast parallel algorithm is presented to speed up data processing. A pipeline mode is adopted to design the parallel algorithm. And the complexity of the pipeline algorithm is analyzed theoretically. To evaluate the performance of the new algorithm, effects of threads number and layers number are investigated by a serial of experiments. The experimental results show that the threads number and layers number are two remarkable factors to the speedup ratio. The tendency of speedup versus threads number reveals a positive relationship which greatly agrees with the Amdahl's law, and the tendency of speedup versus layers number also keeps a positive relationship agreeing with Gustafson's law. The new algorithm uses topological information to compute contours with a parallel method of speedup. Another parallel algorithm based on data parallel is used in experiments to show that pipeline parallel mode is more efficient. A case study at last shows a suspending performance of the new parallel algorithm. Compared with the serial slicing algorithm, the new pipeline parallel algorithm can make full use of the multi-core CPU hardware, accelerate the slicing process, and compared with the data parallel slicing algorithm, the new slicing algorithm in this paper adopts a pipeline parallel model, and a much higher speedup ratio and efficiency is achieved.

  19. Network intrusion detection based on a general regression neural network optimized by an improved artificial immune algorithm.

    PubMed

    Wu, Jianfa; Peng, Dahao; Li, Zhuping; Zhao, Li; Ling, Huanzhang

    2015-01-01

    To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data.

  20. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce.

    PubMed

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.

  1. A Fast and Scalable Algorithm for Calculating the Achievable Capacity of a Wireless Mesh Network

    DTIC Science & Technology

    2016-04-10

    to interference from a given transmission . We then use our algorithm to perform a network capacity analysis comparing different wireless technologies...A Fast and Scalable Algorithm for Calculating the Achievable Capacity of a Wireless Mesh Network Greg Kuperman, Jun Sun, and Aradhana Narula-Tam MIT...the maximum achievable capacity of a multi-hop wireless mesh network subject to interference constraints. Being able to quickly determine the maximum

  2. Performance seeking control (PSC) for the F-15 highly integrated digital electronic control (HIDEC) aircraft

    NASA Technical Reports Server (NTRS)

    Orme, John S.

    1995-01-01

    The performance seeking control algorithm optimizes total propulsion system performance. This adaptive, model-based optimization algorithm has been successfully flight demonstrated on two engines with differing levels of degradation. Models of the engine, nozzle, and inlet produce reliable, accurate estimates of engine performance. But, because of an observability problem, component levels of degradation cannot be accurately determined. Depending on engine-specific operating characteristics PSC achieves various levels performance improvement. For example, engines with more deterioration typically operate at higher turbine temperatures than less deteriorated engines. Thus when the PSC maximum thrust mode is applied, for example, there will be less temperature margin available to be traded for increasing thrust.

  3. An Adaptive Numeric Predictor-corrector Guidance Algorithm for Atmospheric Entry Vehicles. M.S. Thesis - MIT, Cambridge

    NASA Technical Reports Server (NTRS)

    Spratlin, Kenneth Milton

    1987-01-01

    An adaptive numeric predictor-corrector guidance is developed for atmospheric entry vehicles which utilize lift to achieve maximum footprint capability. Applicability of the guidance design to vehicles with a wide range of performance capabilities is desired so as to reduce the need for algorithm redesign with each new vehicle. Adaptability is desired to minimize mission-specific analysis and planning. The guidance algorithm motivation and design are presented. Performance is assessed for application of the algorithm to the NASA Entry Research Vehicle (ERV). The dispersions the guidance must be designed to handle are presented. The achievable operational footprint for expected worst-case dispersions is presented. The algorithm performs excellently for the expected dispersions and captures most of the achievable footprint.

  4. Feature Tracking for High Speed AFM Imaging of Biopolymers.

    PubMed

    Hartman, Brett; Andersson, Sean B

    2018-03-31

    The scanning speed of atomic force microscopes continues to advance with some current commercial microscopes achieving on the order of one frame per second and at least one reaching 10 frames per second. Despite the success of these instruments, even higher frame rates are needed with scan ranges larger than are currently achievable. Moreover, there is a significant installed base of slower instruments that would benefit from algorithmic approaches to increasing their frame rate without requiring significant hardware modifications. In this paper, we present an experimental demonstration of high speed scanning on an existing, non-high speed instrument, through the use of a feedback-based, feature-tracking algorithm that reduces imaging time by focusing on features of interest to reduce the total imaging area. Experiments on both circular and square gratings, as well as silicon steps and DNA strands show a reduction in imaging time by a factor of 3-12 over raster scanning, depending on the parameters chosen.

  5. Probing optimal measurement configuration for optical scatterometry by the multi-objective genetic algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Xiuguo; Gu, Honggang; Jiang, Hao; Zhang, Chuanwei; Liu, Shiyuan

    2018-04-01

    Measurement configuration optimization (MCO) is a ubiquitous and important issue in optical scatterometry, whose aim is to probe the optimal combination of measurement conditions, such as wavelength, incidence angle, azimuthal angle, and/or polarization directions, to achieve a higher measurement precision for a given measuring instrument. In this paper, the MCO problem is investigated and formulated as a multi-objective optimization problem, which is then solved by the multi-objective genetic algorithm (MOGA). The case study on the Mueller matrix scatterometry for the measurement of a Si grating verifies the feasibility of the MOGA in handling the MCO problem in optical scatterometry by making a comparison with the Monte Carlo simulations. Experiments performed at the achieved optimal measurement configuration also show good agreement between the measured and calculated best-fit Mueller matrix spectra. The proposed MCO method based on MOGA is expected to provide a more general and practical means to solve the MCO problem in the state-of-the-art optical scatterometry.

  6. Airborne SAR systems for infrastructures monitoring

    NASA Astrophysics Data System (ADS)

    Perna, Stefano; Berardino, Paolo; Esposito, Carmen; Natale, Antonio

    2017-04-01

    The present contribution is aimed at showing the capabilities of Synthetic Aperture Radar (SAR) systems mounted onboard airborne platforms for the monitoring of infrastructures. As well known, airborne SAR systems guarantee narrower spatial coverage than satellite sensors [1]. On the other side, airborne SAR products are characterized by geometric resolution typically higher than that achievable in the satellite case, where larger antennas must be necessarily exploited. More important, airborne SAR platforms guarantee operational flexibility significantly higher than that achievable with satellite systems. Indeed, the revisit time between repeated SAR acquisitions in the satellite case cannot be freely decided, whereas in the airborne case it can be kept very short. This renders the airborne platforms of key interest for the monitoring of infrastructures, especially in case of emergencies. However, due to the platform deviations from a rectilinear, reference flight track, the generation of airborne SAR products is not a turn of the crank procedure as in the satellite case. Notwithstanding proper algorithms exist in order to circumvent this kind of limitations. In this work, we show how the exploitation of airborne SAR sensors, coupled to the use of such algorithms, allows obtaining high resolution monitoring of infrastructures in urban areas. [1] G. Franceschetti, and R.Lanari, Synthetic Aperture Radar Processing, CRC PRESS, New York, 1999.

  7. Theoretical and Empirical Analysis of a Spatial EA Parallel Boosting Algorithm.

    PubMed

    Kamath, Uday; Domeniconi, Carlotta; De Jong, Kenneth

    2018-01-01

    Many real-world problems involve massive amounts of data. Under these circumstances learning algorithms often become prohibitively expensive, making scalability a pressing issue to be addressed. A common approach is to perform sampling to reduce the size of the dataset and enable efficient learning. Alternatively, one customizes learning algorithms to achieve scalability. In either case, the key challenge is to obtain algorithmic efficiency without compromising the quality of the results. In this article we discuss a meta-learning algorithm (PSBML) that combines concepts from spatially structured evolutionary algorithms (SSEAs) with concepts from ensemble and boosting methodologies to achieve the desired scalability property. We present both theoretical and empirical analyses which show that PSBML preserves a critical property of boosting, specifically, convergence to a distribution centered around the margin. We then present additional empirical analyses showing that this meta-level algorithm provides a general and effective framework that can be used in combination with a variety of learning classifiers. We perform extensive experiments to investigate the trade-off achieved between scalability and accuracy, and robustness to noise, on both synthetic and real-world data. These empirical results corroborate our theoretical analysis, and demonstrate the potential of PSBML in achieving scalability without sacrificing accuracy.

  8. Performance Analysis of a Hardware Implemented Complex Signal Kurtosis Radio-Frequency Interference Detector

    NASA Technical Reports Server (NTRS)

    Schoenwald, Adam J.; Bradley, Damon C.; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Wong, Mark

    2016-01-01

    Radio-frequency interference (RFI) is a known problem for passive remote sensing as evidenced in the L-band radiometers SMOS, Aquarius and more recently, SMAP. Various algorithms have been developed and implemented on SMAP to improve science measurements. This was achieved by the use of a digital microwave radiometer. RFI mitigation becomes more challenging for microwave radiometers operating at higher frequencies in shared allocations. At higher frequencies larger bandwidths are also desirable for lower measurement noise further adding to processing challenges. This work focuses on finding improved RFI mitigation techniques that will be effective at additional frequencies and at higher bandwidths. To aid the development and testing of applicable detection and mitigation techniques, a wide-band RFI algorithm testing environment has been developed using the Reconfigurable Open Architecture Computing Hardware System (ROACH) built by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) Group. The testing environment also consists of various test equipment used to reproduce typical signals that a radiometer may see including those with and without RFI. The testing environment permits quick evaluations of RFI mitigation algorithms as well as show that they are implementable in hardware. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The complex signal kurtosis detector showed improved performance over the real kurtosis detector under certain conditions. The real kurtosis is implemented on SMAP at 24 MHz bandwidth. The complex signal kurtosis algorithm was then implemented in hardware at 200 MHz bandwidth using the ROACH. In this work, performance of the complex signal kurtosis and the real signal kurtosis are compared. Performance evaluations and comparisons in both simulation as well as experimental hardware implementations were done with the use of receiver operating characteristic (ROC) curves. The complex kurtosis algorithm has the potential to reduce data rate due to onboard processing in addition to improving RFI detection performance.

  9. Scalable Parallel Density-based Clustering and Applications

    NASA Astrophysics Data System (ADS)

    Patwary, Mostofa Ali

    2014-04-01

    Recently, density-based clustering algorithms (DBSCAN and OPTICS) have gotten significant attention of the scientific community due to their unique capability of discovering arbitrary shaped clusters and eliminating noise data. These algorithms have several applications, which require high performance computing, including finding halos and subhalos (clusters) from massive cosmology data in astrophysics, analyzing satellite images, X-ray crystallography, and anomaly detection. However, parallelization of these algorithms are extremely challenging as they exhibit inherent sequential data access order, unbalanced workload resulting in low parallel efficiency. To break the data access sequentiality and to achieve high parallelism, we develop new parallel algorithms, both for DBSCAN and OPTICS, designed using graph algorithmic techniques. For example, our parallel DBSCAN algorithm exploits the similarities between DBSCAN and computing connected components. Using datasets containing up to a billion floating point numbers, we show that our parallel density-based clustering algorithms significantly outperform the existing algorithms, achieving speedups up to 27.5 on 40 cores on shared memory architecture and speedups up to 5,765 using 8,192 cores on distributed memory architecture. In our experiments, we found that while achieving the scalability, our algorithms produce clustering results with comparable quality to the classical algorithms.

  10. Iterative simulated quenching for designing irregular-spot-array generators.

    PubMed

    Gillet, J N; Sheng, Y

    2000-07-10

    We propose a novel, to our knowledge, algorithm of iterative simulated quenching with temperature rescaling for designing diffractive optical elements, based on an analogy between simulated annealing and statistical thermodynamics. The temperature is iteratively rescaled at the end of each quenching process according to ensemble statistics to bring the system back from a frozen imperfect state with a local minimum of energy to a dynamic state in a Boltzmann heat bath in thermal equilibrium at the rescaled temperature. The new algorithm achieves much lower cost function and reconstruction error and higher diffraction efficiency than conventional simulated annealing with a fast exponential cooling schedule and is easy to program. The algorithm is used to design binary-phase generators of large irregular spot arrays. The diffractive phase elements have trapezoidal apertures of varying heights, which fit ideal arbitrary-shaped apertures better than do trapezoidal apertures of fixed heights.

  11. An innovative artificial bee colony algorithm and its application to a practical intercell scheduling problem

    NASA Astrophysics Data System (ADS)

    Li, Dongni; Guo, Rongtao; Zhan, Rongxin; Yin, Yong

    2018-06-01

    In this article, an innovative artificial bee colony (IABC) algorithm is proposed, which incorporates two mechanisms. On the one hand, to provide the evolutionary process with a higher starting level, genetic programming (GP) is used to generate heuristic rules by exploiting the elements that constitute the problem. On the other hand, to achieve a better balance between exploration and exploitation, a leading mechanism is proposed to attract individuals towards a promising region. To evaluate the performance of IABC in solving practical and complex problems, it is applied to the intercell scheduling problem with limited transportation capacity. It is observed that the GP-generated rules incorporate the elements of the most competing human-designed rules, and they are more effective than the human-designed ones. Regarding the leading mechanism, the strategies of the ageing leader and multiple challengers make the algorithm less likely to be trapped in local optima.

  12. GPU-based real-time trinocular stereo vision

    NASA Astrophysics Data System (ADS)

    Yao, Yuanbin; Linton, R. J.; Padir, Taskin

    2013-01-01

    Most stereovision applications are binocular which uses information from a 2-camera array to perform stereo matching and compute the depth image. Trinocular stereovision with a 3-camera array has been proved to provide higher accuracy in stereo matching which could benefit applications like distance finding, object recognition, and detection. This paper presents a real-time stereovision algorithm implemented on a GPGPU (General-purpose graphics processing unit) using a trinocular stereovision camera array. Algorithm employs a winner-take-all method applied to perform fusion of disparities in different directions following various image processing techniques to obtain the depth information. The goal of the algorithm is to achieve real-time processing speed with the help of a GPGPU involving the use of Open Source Computer Vision Library (OpenCV) in C++ and NVidia CUDA GPGPU Solution. The results are compared in accuracy and speed to verify the improvement.

  13. Image quality classification for DR screening using deep learning.

    PubMed

    FengLi Yu; Jing Sun; Annan Li; Jun Cheng; Cheng Wan; Jiang Liu

    2017-07-01

    The quality of input images significantly affects the outcome of automated diabetic retinopathy (DR) screening systems. Unlike the previous methods that only consider simple low-level features such as hand-crafted geometric and structural features, in this paper we propose a novel method for retinal image quality classification (IQC) that performs computational algorithms imitating the working of the human visual system. The proposed algorithm combines unsupervised features from saliency map and supervised features coming from convolutional neural networks (CNN), which are fed to an SVM to automatically detect high quality vs poor quality retinal fundus images. We demonstrate the superior performance of our proposed algorithm on a large retinal fundus image dataset and the method could achieve higher accuracy than other methods. Although retinal images are used in this study, the methodology is applicable to the image quality assessment and enhancement of other types of medical images.

  14. Optimisation of the mean boat velocity in rowing.

    PubMed

    Rauter, G; Baumgartner, L; Denoth, J; Riener, R; Wolf, P

    2012-01-01

    In rowing, motor learning may be facilitated by augmented feedback that displays the ratio between actual mean boat velocity and maximal achievable mean boat velocity. To provide this ratio, the aim of this work was to develop and evaluate an algorithm calculating an individual maximal mean boat velocity. The algorithm optimised the horizontal oar movement under constraints such as the individual range of the horizontal oar displacement, individual timing of catch and release and an individual power-angle relation. Immersion and turning of the oar were simplified, and the seat movement of a professional rower was implemented. The feasibility of the algorithm, and of the associated ratio between actual boat velocity and optimised boat velocity, was confirmed by a study on four subjects: as expected, advanced rowing skills resulted in higher ratios, and the maximal mean boat velocity depended on the range of the horizontal oar displacement.

  15. Pole-placement Predictive Functional Control for under-damped systems with real numbers algebra.

    PubMed

    Zabet, K; Rossiter, J A; Haber, R; Abdullah, M

    2017-11-01

    This paper presents the new algorithm of PP-PFC (Pole-placement Predictive Functional Control) for stable, linear under-damped higher-order processes. It is shown that while conventional PFC aims to get first-order exponential behavior, this is not always straightforward with significant under-damped modes and hence a pole-placement PFC algorithm is proposed which can be tuned more precisely to achieve the desired dynamics, but exploits complex number algebra and linear combinations in order to deliver guarantees of stability and performance. Nevertheless, practical implementation is easier by avoiding complex number algebra and hence a modified formulation of the PP-PFC algorithm is also presented which utilises just real numbers while retaining the key attributes of simple algebra, coding and tuning. The potential advantages are demonstrated with numerical examples and real-time control of a laboratory plant. Copyright © 2017 ISA. All rights reserved.

  16. PixelLearn

    NASA Technical Reports Server (NTRS)

    Mazzoni, Dominic; Wagstaff, Kiri; Bornstein, Benjamin; Tang, Nghia; Roden, Joseph

    2006-01-01

    PixelLearn is an integrated user-interface computer program for classifying pixels in scientific images. Heretofore, training a machine-learning algorithm to classify pixels in images has been tedious and difficult. PixelLearn provides a graphical user interface that makes it faster and more intuitive, leading to more interactive exploration of image data sets. PixelLearn also provides image-enhancement controls to make it easier to see subtle details in images. PixelLearn opens images or sets of images in a variety of common scientific file formats and enables the user to interact with several supervised or unsupervised machine-learning pixel-classifying algorithms while the user continues to browse through the images. The machinelearning algorithms in PixelLearn use advanced clustering and classification methods that enable accuracy much higher than is achievable by most other software previously available for this purpose. PixelLearn is written in portable C++ and runs natively on computers running Linux, Windows, or Mac OS X.

  17. Biological sequence compression algorithms.

    PubMed

    Matsumoto, T; Sadakane, K; Imai, H

    2000-01-01

    Today, more and more DNA sequences are becoming available. The information about DNA sequences are stored in molecular biology databases. The size and importance of these databases will be bigger and bigger in the future, therefore this information must be stored or communicated efficiently. Furthermore, sequence compression can be used to define similarities between biological sequences. The standard compression algorithms such as gzip or compress cannot compress DNA sequences, but only expand them in size. On the other hand, CTW (Context Tree Weighting Method) can compress DNA sequences less than two bits per symbol. These algorithms do not use special structures of biological sequences. Two characteristic structures of DNA sequences are known. One is called palindromes or reverse complements and the other structure is approximate repeats. Several specific algorithms for DNA sequences that use these structures can compress them less than two bits per symbol. In this paper, we improve the CTW so that characteristic structures of DNA sequences are available. Before encoding the next symbol, the algorithm searches an approximate repeat and palindrome using hash and dynamic programming. If there is a palindrome or an approximate repeat with enough length then our algorithm represents it with length and distance. By using this preprocessing, a new program achieves a little higher compression ratio than that of existing DNA-oriented compression algorithms. We also describe new compression algorithm for protein sequences.

  18. Comparison of Controller and Flight Deck Algorithm Performance During Interval Management with Dynamic Arrival Trees (STARS)

    NASA Technical Reports Server (NTRS)

    Battiste, Vernol; Lawton, George; Lachter, Joel; Brandt, Summer; Koteskey, Robert; Dao, Arik-Quang; Kraut, Josh; Ligda, Sarah; Johnson, Walter W.

    2012-01-01

    Managing the interval between arrival aircraft is a major part of the en route and TRACON controller s job. In an effort to reduce controller workload and low altitude vectoring, algorithms have been developed to allow pilots to take responsibility for, achieve and maintain proper spacing. Additionally, algorithms have been developed to create dynamic weather-free arrival routes in the presence of convective weather. In a recent study we examined an algorithm to handle dynamic re-routing in the presence of convective weather and two distinct spacing algorithms. The spacing algorithms originated from different core algorithms; both were enhanced with trajectory intent data for the study. These two algorithms were used simultaneously in a human-in-the-loop (HITL) simulation where pilots performed weather-impacted arrival operations into Louisville International Airport while also performing interval management (IM) on some trials. The controllers retained responsibility for separation and for managing the en route airspace and some trials managing IM. The goal was a stress test of dynamic arrival algorithms with ground and airborne spacing concepts. The flight deck spacing algorithms or controller managed spacing not only had to be robust to the dynamic nature of aircraft re-routing around weather but also had to be compatible with two alternative algorithms for achieving the spacing goal. Flight deck interval management spacing in this simulation provided a clear reduction in controller workload relative to when controllers were responsible for spacing the aircraft. At the same time, spacing was much less variable with the flight deck automated spacing. Even though the approaches taken by the two spacing algorithms to achieve the interval management goals were slightly different they seem to be simpatico in achieving the interval management goal of 130 sec by the TRACON boundary.

  19. Wireless EEG System Achieving High Throughput and Reduced Energy Consumption Through Lossless and Near-Lossless Compression.

    PubMed

    Alvarez, Guillermo Dufort Y; Favaro, Federico; Lecumberry, Federico; Martin, Alvaro; Oliver, Juan P; Oreggioni, Julian; Ramirez, Ignacio; Seroussi, Gadiel; Steinfeld, Leonardo

    2018-02-01

    This work presents a wireless multichannel electroencephalogram (EEG) recording system featuring lossless and near-lossless compression of the digitized EEG signal. Two novel, low-complexity, efficient compression algorithms were developed and tested in a low-power platform. The algorithms were tested on six public EEG databases comparing favorably with the best compression rates reported up to date in the literature. In its lossless mode, the platform is capable of encoding and transmitting 59-channel EEG signals, sampled at 500 Hz and 16 bits per sample, at a current consumption of 337 A per channel; this comes with a guarantee that the decompressed signal is identical to the sampled one. The near-lossless mode allows for significant energy savings and/or higher throughputs in exchange for a small guaranteed maximum per-sample distortion in the recovered signal. Finally, we address the tradeoff between computation cost and transmission savings by evaluating three alternatives: sending raw data, or encoding with one of two compression algorithms that differ in complexity and compression performance. We observe that the higher the throughput (number of channels and sampling rate) the larger the benefits obtained from compression.

  20. A High-Resolution Demodulation Algorithm for FBG-FP Static-Strain Sensors Based on the Hilbert Transform and Cross Third-Order Cumulant

    PubMed Central

    Huang, Wenzhu; Zhen, Tengkun; Zhang, Wentao; Zhang, Fusheng; Li, Fang

    2015-01-01

    Static strain can be detected by measuring a cross-correlation of reflection spectra from two fiber Bragg gratings (FBGs). However, the static-strain measurement resolution is limited by the dominant Gaussian noise source when using this traditional method. This paper presents a novel static-strain demodulation algorithm for FBG-based Fabry-Perot interferometers (FBG-FPs). The Hilbert transform is proposed for changing the Gaussian distribution of the two FBG-FPs’ reflection spectra, and a cross third-order cumulant is used to use the results of the Hilbert transform and get a group of noise-vanished signals which can be used to accurately calculate the wavelength difference of the two FBG-FPs. The benefit by these processes is that Gaussian noise in the spectra can be suppressed completely in theory and a higher resolution can be reached. In order to verify the precision and flexibility of this algorithm, a detailed theory model and a simulation analysis are given, and an experiment is implemented. As a result, a static-strain resolution of 0.9 nε under laboratory environment condition is achieved, showing a higher resolution than the traditional cross-correlation method. PMID:25923938

  1. A High-Resolution Demodulation Algorithm for FBG-FP Static-Strain Sensors Based on the Hilbert Transform and Cross Third-Order Cumulant.

    PubMed

    Huang, Wenzhu; Zhen, Tengkun; Zhang, Wentao; Zhang, Fusheng; Li, Fang

    2015-04-27

    Static strain can be detected by measuring a cross-correlation of reflection spectra from two fiber Bragg gratings (FBGs). However, the static-strain measurement resolution is limited by the dominant Gaussian noise source when using this traditional method. This paper presents a novel static-strain demodulation algorithm for FBG-based Fabry-Perot interferometers (FBG-FPs). The Hilbert transform is proposed for changing the Gaussian distribution of the two FBG-FPs' reflection spectra, and a cross third-order cumulant is used to use the results of the Hilbert transform and get a group of noise-vanished signals which can be used to accurately calculate the wavelength difference of the two FBG-FPs. The benefit by these processes is that Gaussian noise in the spectra can be suppressed completely in theory and a higher resolution can be reached. In order to verify the precision and flexibility of this algorithm, a detailed theory model and a simulation analysis are given, and an experiment is implemented. As a result, a static-strain resolution of 0.9 nε under laboratory environment condition is achieved, showing a higher resolution than the traditional cross-correlation method.

  2. Focusing light through strongly scattering media using genetic algorithm with SBR discriminant

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Zhang, Zhenfeng; Feng, Qi; Liu, Zhipeng; Lin, Chengyou; Ding, Yingchun

    2018-02-01

    In this paper, we have experimentally demonstrated light focusing through strongly scattering media by performing binary amplitude optimization with a genetic algorithm. In the experiments, we control 160 000 mirrors of digital micromirror device to modulate and optimize the light transmission paths in the strongly scattering media. We replace the universal target-position-intensity (TPI) discriminant with signal-to-background ratio (SBR) discriminant in genetic algorithm. With 400 incident segments, a relative enhancement value of 17.5% with a ground glass diffuser is achieved, which is higher than the theoretical value of 1/(2π )≈ 15.9 % for binary amplitude optimization. According to our repetitive experiments, we conclude that, with the same segment number, the enhancement for the SBR discriminant is always higher than that for the TPI discriminant, which results from the background-weakening effect of SBR discriminant. In addition, with the SBR discriminant, the diameters of the focus can be changed ranging from 7 to 70 μm at arbitrary positions. Besides, multiple foci with high enhancement are obtained. Our work provides a meaningful reference for the study of binary amplitude optimization in the wavefront shaping field.

  3. A secure 3-way routing protocols for intermittently connected mobile ad hoc networks.

    PubMed

    Sekaran, Ramesh; Parasuraman, Ganesh Kumar

    2014-01-01

    The mobile ad hoc network may be partially connected or it may be disconnected in nature and these forms of networks are termed intermittently connected mobile ad hoc network (ICMANET). The routing in such disconnected network is commonly an arduous task. Many routing protocols have been proposed for routing in ICMANET since decades. The routing techniques in existence for ICMANET are, namely, flooding, epidemic, probabilistic, copy case, spray and wait, and so forth. These techniques achieve an effective routing with minimum latency, higher delivery ratio, lesser overhead, and so forth. Though these techniques generate effective results, in this paper, we propose novel routing algorithms grounded on agent and cryptographic techniques, namely, location dissemination service (LoDiS) routing with agent AES, A-LoDiS with agent AES routing, and B-LoDiS with agent AES routing, ensuring optimal results with respect to various network routing parameters. The algorithm along with efficient routing ensures higher degree of security. The security level is cited testing with respect to possibility of malicious nodes into the network. This paper also aids, with the comparative results of proposed algorithms, for secure routing in ICMANET.

  4. A Secure 3-Way Routing Protocols for Intermittently Connected Mobile Ad Hoc Networks

    PubMed Central

    Parasuraman, Ganesh Kumar

    2014-01-01

    The mobile ad hoc network may be partially connected or it may be disconnected in nature and these forms of networks are termed intermittently connected mobile ad hoc network (ICMANET). The routing in such disconnected network is commonly an arduous task. Many routing protocols have been proposed for routing in ICMANET since decades. The routing techniques in existence for ICMANET are, namely, flooding, epidemic, probabilistic, copy case, spray and wait, and so forth. These techniques achieve an effective routing with minimum latency, higher delivery ratio, lesser overhead, and so forth. Though these techniques generate effective results, in this paper, we propose novel routing algorithms grounded on agent and cryptographic techniques, namely, location dissemination service (LoDiS) routing with agent AES, A-LoDiS with agent AES routing, and B-LoDiS with agent AES routing, ensuring optimal results with respect to various network routing parameters. The algorithm along with efficient routing ensures higher degree of security. The security level is cited testing with respect to possibility of malicious nodes into the network. This paper also aids, with the comparative results of proposed algorithms, for secure routing in ICMANET. PMID:25136697

  5. SU-E-J-88: Deformable Registration Using Multi-Resolution Demons Algorithm for 4DCT.

    PubMed

    Li, Dengwang; Yin, Yong

    2012-06-01

    In order to register 4DCT efficiently, we propose an improved deformable registration algorithm based on improved multi-resolution demons strategy to improve the efficiency of the algorithm. 4DCT images of lung cancer patients are collected from a General Electric Discovery ST CT scanner from our cancer hospital. All of the images are sorted into groups and reconstructed according to their phases, and eachrespiratory cycle is divided into 10 phases with the time interval of 10%. Firstly, in our improved demons algorithm we use gradients of both reference and floating images as deformation forces and also redistribute the forces according to the proportion of the two forces. Furthermore, we introduce intermediate variable to cost function for decreasing the noise in registration process. At the same time, Gaussian multi-resolution strategy and BFGS method for optimization are used to improve speed and accuracy of the registration. To validate the performance of the algorithm, we register the previous 10 phase-images. We compared the difference of floating and reference images before and after registered where two landmarks are decided by experienced clinician. We registered 10 phase-images of 4D-CT which is lung cancer patient from cancer hospital and choose images in exhalationas the reference images, and all other images were registered into the reference images. This method has a good accuracy demonstrated by a higher similarity measure for registration of 4D-CT and it can register a large deformation precisely. Finally, we obtain the tumor target achieved by the deformation fields using proposed method, which is more accurately than the internal margin (IM) expanded by the Gross Tumor Volume (GTV). Furthermore, we achieve tumor and normal tissue tracking and dose accumulation using 4DCT data. An efficient deformable registration algorithm was proposed by using multi-resolution demons algorithm for 4DCT. © 2012 American Association of Physicists in Medicine.

  6. Big data privacy protection model based on multi-level trusted system

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Liu, Zehua; Han, Hongfeng

    2018-05-01

    This paper introduces and inherit the multi-level trusted system model that solves the Trojan virus by encrypting the privacy of user data, and achieve the principle: "not to read the high priority hierarchy, not to write the hierarchy with low priority". Thus ensuring that the low-priority data privacy leak does not affect the disclosure of high-priority data privacy. This paper inherits the multi-level trustworthy system model of Trojan horse and divides seven different risk levels. The priority level 1˜7 represent the low to high value of user data privacy, and realize seven kinds of encryption with different execution efficiency Algorithm, the higher the priority, the greater the value of user data privacy, at the expense of efficiency under the premise of choosing a more encrypted encryption algorithm to ensure data security. For enterprises, the price point is determined by the unit equipment users to decide the length of time. The higher the risk sub-group algorithm, the longer the encryption time. The model assumes that users prefer the lower priority encryption algorithm to ensure efficiency. This paper proposes a privacy cost model for each of the seven risk subgroups. Among them, the higher the privacy cost, the higher the priority of the risk sub-group, the higher the price the user needs to pay to ensure the privacy of the data. Furthermore, by introducing the existing pricing model of economics and the human traffic model proposed by this paper and fluctuating with the market demand, this paper improves the price of unit products when the market demand is low. On the other hand, when the market demand increases, the profit of the enterprise will be guaranteed under the guidance of the government by reducing the price per unit of product. Then, this paper introduces the dynamic factors of consumers' mood and age to optimize. At the same time, seven algorithms are selected from symmetric and asymmetric encryption algorithms to define the enterprise costs at different levels. Therefore, the proposed model solves the continuous influence caused by cascading events and ensures that the disclosure of low-level data privacy of users does not affect the high-level data privacy, thus greatly improving the safety of the private information of user.

  7. Fast live cell imaging at nanometer scale using annihilating filter-based low-rank Hankel matrix approach

    NASA Astrophysics Data System (ADS)

    Min, Junhong; Carlini, Lina; Unser, Michael; Manley, Suliana; Ye, Jong Chul

    2015-09-01

    Localization microscopy such as STORM/PALM can achieve a nanometer scale spatial resolution by iteratively localizing fluorescence molecules. It was shown that imaging of densely activated molecules can accelerate temporal resolution which was considered as major limitation of localization microscopy. However, this higher density imaging needs to incorporate advanced localization algorithms to deal with overlapping point spread functions (PSFs). In order to address this technical challenges, previously we developed a localization algorithm called FALCON1, 2 using a quasi-continuous localization model with sparsity prior on image space. It was demonstrated in both 2D/3D live cell imaging. However, it has several disadvantages to be further improved. Here, we proposed a new localization algorithm using annihilating filter-based low rank Hankel structured matrix approach (ALOHA). According to ALOHA principle, sparsity in image domain implies the existence of rank-deficient Hankel structured matrix in Fourier space. Thanks to this fundamental duality, our new algorithm can perform data-adaptive PSF estimation and deconvolution of Fourier spectrum, followed by truly grid-free localization using spectral estimation technique. Furthermore, all these optimizations are conducted on Fourier space only. We validated the performance of the new method with numerical experiments and live cell imaging experiment. The results confirmed that it has the higher localization performances in both experiments in terms of accuracy and detection rate.

  8. The Impact of Online Algorithm Visualization on ICT Students' Achievements in Introduction to Programming Course

    ERIC Educational Resources Information Center

    Saltan, Fatih

    2017-01-01

    Online Algorithm Visualization (OAV) is one of the recent developments in the instructional technology field that aims to help students handle difficulties faced when they begin to learn programming. This study aims to investigate the effect of online algorithm visualization on students' achievement in the introduction to programming course. To…

  9. A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing

    PubMed Central

    Li, Zhixin; Su, Dandan; Zhu, Haijiang; Li, Wei; Zhang, Fan; Li, Ruirui

    2017-01-01

    Synthetic Aperture Radar (SAR) raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC) methods have demonstrated their potential for accelerating simulation, the input/output (I/O) bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS) for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU) based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4× speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration. PMID:28075343

  10. Network Intrusion Detection Based on a General Regression Neural Network Optimized by an Improved Artificial Immune Algorithm

    PubMed Central

    Wu, Jianfa; Peng, Dahao; Li, Zhuping; Zhao, Li; Ling, Huanzhang

    2015-01-01

    To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data. PMID:25807466

  11. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce

    PubMed Central

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network’s initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data. PMID:27304987

  12. A real negative selection algorithm with evolutionary preference for anomaly detection

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Chen, Wen; Li, Tao

    2017-04-01

    Traditional real negative selection algorithms (RNSAs) adopt the estimated coverage (c0) as the algorithm termination threshold, and generate detectors randomly. With increasing dimensions, the data samples could reside in the low-dimensional subspace, so that the traditional detectors cannot effectively distinguish these samples. Furthermore, in high-dimensional feature space, c0 cannot exactly reflect the detectors set coverage rate for the nonself space, and it could lead the algorithm to be terminated unexpectedly when the number of detectors is insufficient. These shortcomings make the traditional RNSAs to perform poorly in high-dimensional feature space. Based upon "evolutionary preference" theory in immunology, this paper presents a real negative selection algorithm with evolutionary preference (RNSAP). RNSAP utilizes the "unknown nonself space", "low-dimensional target subspace" and "known nonself feature" as the evolutionary preference to guide the generation of detectors, thus ensuring the detectors can cover the nonself space more effectively. Besides, RNSAP uses redundancy to replace c0 as the termination threshold, in this way RNSAP can generate adequate detectors under a proper convergence rate. The theoretical analysis and experimental result demonstrate that, compared to the classical RNSA (V-detector), RNSAP can achieve a higher detection rate, but with less detectors and computing cost.

  13. Global Contrast Based Salient Region Detection.

    PubMed

    Cheng, Ming-Ming; Mitra, Niloy J; Huang, Xiaolei; Torr, Philip H S; Hu, Shi-Min

    2015-03-01

    Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient object detection algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-quality saliency maps. These saliency maps are further used to initialize a novel iterative version of GrabCut, namely SaliencyCut, for high quality unsupervised salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets, as well as a more challenging Internet image dataset. Our experimental results demonstrate that our algorithm consistently outperforms 15 existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also show that our algorithm can be used to efficiently extract salient object masks from Internet images, enabling effective sketch-based image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are ambiguous, our saliency guided image retrieval achieves a superior retrieval rate compared with state-of-the-art SBIR methods, and additionally provides important target object region information.

  14. P-Finder: Reconstruction of Signaling Networks from Protein-Protein Interactions and GO Annotations.

    PubMed

    Young-Rae Cho; Yanan Xin; Speegle, Greg

    2015-01-01

    Because most complex genetic diseases are caused by defects of cell signaling, illuminating a signaling cascade is essential for understanding their mechanisms. We present three novel computational algorithms to reconstruct signaling networks between a starting protein and an ending protein using genome-wide protein-protein interaction (PPI) networks and gene ontology (GO) annotation data. A signaling network is represented as a directed acyclic graph in a merged form of multiple linear pathways. An advanced semantic similarity metric is applied for weighting PPIs as the preprocessing of all three methods. The first algorithm repeatedly extends the list of nodes based on path frequency towards an ending protein. The second algorithm repeatedly appends edges based on the occurrence of network motifs which indicate the link patterns more frequently appearing in a PPI network than in a random graph. The last algorithm uses the information propagation technique which iteratively updates edge orientations based on the path strength and merges the selected directed edges. Our experimental results demonstrate that the proposed algorithms achieve higher accuracy than previous methods when they are tested on well-studied pathways of S. cerevisiae. Furthermore, we introduce an interactive web application tool, called P-Finder, to visualize reconstructed signaling networks.

  15. Curve Set Feature-Based Robust and Fast Pose Estimation Algorithm

    PubMed Central

    Hashimoto, Koichi

    2017-01-01

    Bin picking refers to picking the randomly-piled objects from a bin for industrial production purposes, and robotic bin picking is always used in automated assembly lines. In order to achieve a higher productivity, a fast and robust pose estimation algorithm is necessary to recognize and localize the randomly-piled parts. This paper proposes a pose estimation algorithm for bin picking tasks using point cloud data. A novel descriptor Curve Set Feature (CSF) is proposed to describe a point by the surface fluctuation around this point and is also capable of evaluating poses. The Rotation Match Feature (RMF) is proposed to match CSF efficiently. The matching process combines the idea of the matching in 2D space of origin Point Pair Feature (PPF) algorithm with nearest neighbor search. A voxel-based pose verification method is introduced to evaluate the poses and proved to be more than 30-times faster than the kd-tree-based verification method. Our algorithm is evaluated against a large number of synthetic and real scenes and proven to be robust to noise, able to detect metal parts, more accurately and more than 10-times faster than PPF and Oriented, Unique and Repeatable (OUR)-Clustered Viewpoint Feature Histogram (CVFH). PMID:28771216

  16. An efficient tensor transpose algorithm for multicore CPU, Intel Xeon Phi, and NVidia Tesla GPU

    DOE PAGES

    Lyakh, Dmitry I.

    2015-01-05

    An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typicallymore » appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the na ve scattering algorithm (no memory access optimization). Furthermore, the tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).« less

  17. Minimalist ensemble algorithms for genome-wide protein localization prediction.

    PubMed

    Lin, Jhih-Rong; Mondal, Ananda Mohan; Liu, Rong; Hu, Jianjun

    2012-07-03

    Computational prediction of protein subcellular localization can greatly help to elucidate its functions. Despite the existence of dozens of protein localization prediction algorithms, the prediction accuracy and coverage are still low. Several ensemble algorithms have been proposed to improve the prediction performance, which usually include as many as 10 or more individual localization algorithms. However, their performance is still limited by the running complexity and redundancy among individual prediction algorithms. This paper proposed a novel method for rational design of minimalist ensemble algorithms for practical genome-wide protein subcellular localization prediction. The algorithm is based on combining a feature selection based filter and a logistic regression classifier. Using a novel concept of contribution scores, we analyzed issues of algorithm redundancy, consensus mistakes, and algorithm complementarity in designing ensemble algorithms. We applied the proposed minimalist logistic regression (LR) ensemble algorithm to two genome-wide datasets of Yeast and Human and compared its performance with current ensemble algorithms. Experimental results showed that the minimalist ensemble algorithm can achieve high prediction accuracy with only 1/3 to 1/2 of individual predictors of current ensemble algorithms, which greatly reduces computational complexity and running time. It was found that the high performance ensemble algorithms are usually composed of the predictors that together cover most of available features. Compared to the best individual predictor, our ensemble algorithm improved the prediction accuracy from AUC score of 0.558 to 0.707 for the Yeast dataset and from 0.628 to 0.646 for the Human dataset. Compared with popular weighted voting based ensemble algorithms, our classifier-based ensemble algorithms achieved much better performance without suffering from inclusion of too many individual predictors. We proposed a method for rational design of minimalist ensemble algorithms using feature selection and classifiers. The proposed minimalist ensemble algorithm based on logistic regression can achieve equal or better prediction performance while using only half or one-third of individual predictors compared to other ensemble algorithms. The results also suggested that meta-predictors that take advantage of a variety of features by combining individual predictors tend to achieve the best performance. The LR ensemble server and related benchmark datasets are available at http://mleg.cse.sc.edu/LRensemble/cgi-bin/predict.cgi.

  18. Minimalist ensemble algorithms for genome-wide protein localization prediction

    PubMed Central

    2012-01-01

    Background Computational prediction of protein subcellular localization can greatly help to elucidate its functions. Despite the existence of dozens of protein localization prediction algorithms, the prediction accuracy and coverage are still low. Several ensemble algorithms have been proposed to improve the prediction performance, which usually include as many as 10 or more individual localization algorithms. However, their performance is still limited by the running complexity and redundancy among individual prediction algorithms. Results This paper proposed a novel method for rational design of minimalist ensemble algorithms for practical genome-wide protein subcellular localization prediction. The algorithm is based on combining a feature selection based filter and a logistic regression classifier. Using a novel concept of contribution scores, we analyzed issues of algorithm redundancy, consensus mistakes, and algorithm complementarity in designing ensemble algorithms. We applied the proposed minimalist logistic regression (LR) ensemble algorithm to two genome-wide datasets of Yeast and Human and compared its performance with current ensemble algorithms. Experimental results showed that the minimalist ensemble algorithm can achieve high prediction accuracy with only 1/3 to 1/2 of individual predictors of current ensemble algorithms, which greatly reduces computational complexity and running time. It was found that the high performance ensemble algorithms are usually composed of the predictors that together cover most of available features. Compared to the best individual predictor, our ensemble algorithm improved the prediction accuracy from AUC score of 0.558 to 0.707 for the Yeast dataset and from 0.628 to 0.646 for the Human dataset. Compared with popular weighted voting based ensemble algorithms, our classifier-based ensemble algorithms achieved much better performance without suffering from inclusion of too many individual predictors. Conclusions We proposed a method for rational design of minimalist ensemble algorithms using feature selection and classifiers. The proposed minimalist ensemble algorithm based on logistic regression can achieve equal or better prediction performance while using only half or one-third of individual predictors compared to other ensemble algorithms. The results also suggested that meta-predictors that take advantage of a variety of features by combining individual predictors tend to achieve the best performance. The LR ensemble server and related benchmark datasets are available at http://mleg.cse.sc.edu/LRensemble/cgi-bin/predict.cgi. PMID:22759391

  19. A Type-2 Block-Component-Decomposition Based 2D AOA Estimation Algorithm for an Electromagnetic Vector Sensor Array

    PubMed Central

    Gao, Yu-Fei; Gui, Guan; Xie, Wei; Zou, Yan-Bin; Yang, Yue; Wan, Qun

    2017-01-01

    This paper investigates a two-dimensional angle of arrival (2D AOA) estimation algorithm for the electromagnetic vector sensor (EMVS) array based on Type-2 block component decomposition (BCD) tensor modeling. Such a tensor decomposition method can take full advantage of the multidimensional structural information of electromagnetic signals to accomplish blind estimation for array parameters with higher resolution. However, existing tensor decomposition methods encounter many restrictions in applications of the EMVS array, such as the strict requirement for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc. To solve these problems, this paper investigates tensor modeling for partially-polarized signals of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank-(L1,L2,·) BCD is developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical experiments demonstrate that the present algorithm has the advantages of both accuracy and robustness of parameter estimation. Even under the conditions of lower SNR, small angular separation and limited snapshots, the proposed algorithm still possesses better performance than subspace methods and the canonical polyadic decomposition (CPD) method. PMID:28448431

  20. A Type-2 Block-Component-Decomposition Based 2D AOA Estimation Algorithm for an Electromagnetic Vector Sensor Array.

    PubMed

    Gao, Yu-Fei; Gui, Guan; Xie, Wei; Zou, Yan-Bin; Yang, Yue; Wan, Qun

    2017-04-27

    This paper investigates a two-dimensional angle of arrival (2D AOA) estimation algorithm for the electromagnetic vector sensor (EMVS) array based on Type-2 block component decomposition (BCD) tensor modeling. Such a tensor decomposition method can take full advantage of the multidimensional structural information of electromagnetic signals to accomplish blind estimation for array parameters with higher resolution. However, existing tensor decomposition methods encounter many restrictions in applications of the EMVS array, such as the strict requirement for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc. To solve these problems, this paper investigates tensor modeling for partially-polarized signals of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank- ( L 1 , L 2 , · ) BCD is developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical experiments demonstrate that the present algorithm has the advantages of both accuracy and robustness of parameter estimation. Even under the conditions of lower SNR, small angular separation and limited snapshots, the proposed algorithm still possesses better performance than subspace methods and the canonical polyadic decomposition (CPD) method.

  1. Deploy Nalu/Kokkos algorithmic infrastructure with performance benchmarking.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domino, Stefan P.; Ananthan, Shreyas; Knaus, Robert C.

    The former Nalu interior heterogeneous algorithm design, which was originally designed to manage matrix assembly operations over all elemental topology types, has been modified to operate over homogeneous collections of mesh entities. This newly templated kernel design allows for removal of workset variable resize operations that were formerly required at each loop over a Sierra ToolKit (STK) bucket (nominally, 512 entities in size). Extensive usage of the Standard Template Library (STL) std::vector has been removed in favor of intrinsic Kokkos memory views. In this milestone effort, the transition to Kokkos as the underlying infrastructure to support performance and portability onmore » many-core architectures has been deployed for key matrix algorithmic kernels. A unit-test driven design effort has developed a homogeneous entity algorithm that employs a team-based thread parallelism construct. The STK Single Instruction Multiple Data (SIMD) infrastructure is used to interleave data for improved vectorization. The collective algorithm design, which allows for concurrent threading and SIMD management, has been deployed for the core low-Mach element- based algorithm. Several tests to ascertain SIMD performance on Intel KNL and Haswell architectures have been carried out. The performance test matrix includes evaluation of both low- and higher-order methods. The higher-order low-Mach methodology builds on polynomial promotion of the core low-order control volume nite element method (CVFEM). Performance testing of the Kokkos-view/SIMD design indicates low-order matrix assembly kernel speed-up ranging between two and four times depending on mesh loading and node count. Better speedups are observed for higher-order meshes (currently only P=2 has been tested) especially on KNL. The increased workload per element on higher-order meshes bene ts from the wide SIMD width on KNL machines. Combining multiple threads with SIMD on KNL achieves a 4.6x speedup over the baseline, with assembly timings faster than that observed on Haswell architecture. The computational workload of higher-order meshes, therefore, seems ideally suited for the many-core architecture and justi es further exploration of higher-order on NGP platforms. A Trilinos/Tpetra-based multi-threaded GMRES preconditioned by symmetric Gauss Seidel (SGS) represents the core solver infrastructure for the low-Mach advection/diffusion implicit solves. The threaded solver stack has been tested on small problems on NREL's Peregrine system using the newly developed and deployed Kokkos-view/SIMD kernels. fforts are underway to deploy the Tpetra-based solver stack on NERSC Cori system to benchmark its performance at scale on KNL machines.« less

  2. History-based route selection for reactive ad hoc routing protocols

    NASA Astrophysics Data System (ADS)

    Medidi, Sirisha; Cappetto, Peter

    2007-04-01

    Ad hoc networks rely on cooperation in order to operate, but in a resource constrained environment not all nodes behave altruistically. Selfish nodes preserve their own resources and do not forward packets not in their own self interest. These nodes degrade the performance of the network, but judicious route selection can help maintain performance despite this behavior. Many route selection algorithms place importance on shortness of the route rather than its reliability. We introduce a light-weight route selection algorithm that uses past behavior to judge the quality of a route rather than solely on the length of the route. It draws information from the underlying routing layer at no extra cost and selects routes with a simple algorithm. This technique maintains this data in a small table, which does not place a high cost on memory. History-based route selection's minimalism suits the needs the portable wireless devices and is easy to implement. We implemented our algorithm and tested it in the ns2 environment. Our simulation results show that history-based route selection achieves higher packet delivery and improved stability than its length-based counterpart.

  3. Online feature selection with streaming features.

    PubMed

    Wu, Xindong; Yu, Kui; Ding, Wei; Wang, Hao; Zhu, Xingquan

    2013-05-01

    We propose a new online feature selection framework for applications with streaming features where the knowledge of the full feature space is unknown in advance. We define streaming features as features that flow in one by one over time whereas the number of training examples remains fixed. This is in contrast with traditional online learning methods that only deal with sequentially added observations, with little attention being paid to streaming features. The critical challenges for Online Streaming Feature Selection (OSFS) include 1) the continuous growth of feature volumes over time, 2) a large feature space, possibly of unknown or infinite size, and 3) the unavailability of the entire feature set before learning starts. In the paper, we present a novel Online Streaming Feature Selection method to select strongly relevant and nonredundant features on the fly. An efficient Fast-OSFS algorithm is proposed to improve feature selection performance. The proposed algorithms are evaluated extensively on high-dimensional datasets and also with a real-world case study on impact crater detection. Experimental results demonstrate that the algorithms achieve better compactness and higher prediction accuracy than existing streaming feature selection algorithms.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyakh, Dmitry I.

    An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typicallymore » appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the na ve scattering algorithm (no memory access optimization). Furthermore, the tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).« less

  5. Hybrid EEG--Eye Tracker: Automatic Identification and Removal of Eye Movement and Blink Artifacts from Electroencephalographic Signal.

    PubMed

    Mannan, Malik M Naeem; Kim, Shinjung; Jeong, Myung Yung; Kamran, M Ahmad

    2016-02-19

    Contamination of eye movement and blink artifacts in Electroencephalogram (EEG) recording makes the analysis of EEG data more difficult and could result in mislead findings. Efficient removal of these artifacts from EEG data is an essential step in improving classification accuracy to develop the brain-computer interface (BCI). In this paper, we proposed an automatic framework based on independent component analysis (ICA) and system identification to identify and remove ocular artifacts from EEG data by using hybrid EEG and eye tracker system. The performance of the proposed algorithm is illustrated using experimental and standard EEG datasets. The proposed algorithm not only removes the ocular artifacts from artifactual zone but also preserves the neuronal activity related EEG signals in non-artifactual zone. The comparison with the two state-of-the-art techniques namely ADJUST based ICA and REGICA reveals the significant improved performance of the proposed algorithm for removing eye movement and blink artifacts from EEG data. Additionally, results demonstrate that the proposed algorithm can achieve lower relative error and higher mutual information values between corrected EEG and artifact-free EEG data.

  6. Global motion compensated visual attention-based video watermarking

    NASA Astrophysics Data System (ADS)

    Oakes, Matthew; Bhowmik, Deepayan; Abhayaratne, Charith

    2016-11-01

    Imperceptibility and robustness are two key but complementary requirements of any watermarking algorithm. Low-strength watermarking yields high imperceptibility but exhibits poor robustness. High-strength watermarking schemes achieve good robustness but often suffer from embedding distortions resulting in poor visual quality in host media. This paper proposes a unique video watermarking algorithm that offers a fine balance between imperceptibility and robustness using motion compensated wavelet-based visual attention model (VAM). The proposed VAM includes spatial cues for visual saliency as well as temporal cues. The spatial modeling uses the spatial wavelet coefficients while the temporal modeling accounts for both local and global motion to arrive at the spatiotemporal VAM for video. The model is then used to develop a video watermarking algorithm, where a two-level watermarking weighting parameter map is generated from the VAM saliency maps using the saliency model and data are embedded into the host image according to the visual attentiveness of each region. By avoiding higher strength watermarking in the visually attentive region, the resulting watermarked video achieves high perceived visual quality while preserving high robustness. The proposed VAM outperforms the state-of-the-art video visual attention methods in joint saliency detection and low computational complexity performance. For the same embedding distortion, the proposed visual attention-based watermarking achieves up to 39% (nonblind) and 22% (blind) improvement in robustness against H.264/AVC compression, compared to existing watermarking methodology that does not use the VAM. The proposed visual attention-based video watermarking results in visual quality similar to that of low-strength watermarking and a robustness similar to those of high-strength watermarking.

  7. Switching portfolios.

    PubMed

    Singer, Y

    1997-08-01

    A constant rebalanced portfolio is an asset allocation algorithm which keeps the same distribution of wealth among a set of assets along a period of time. Recently, there has been work on on-line portfolio selection algorithms which are competitive with the best constant rebalanced portfolio determined in hindsight (Cover, 1991; Helmbold et al., 1996; Cover and Ordentlich, 1996). By their nature, these algorithms employ the assumption that high returns can be achieved using a fixed asset allocation strategy. However, stock markets are far from being stationary and in many cases the wealth achieved by a constant rebalanced portfolio is much smaller than the wealth achieved by an ad hoc investment strategy that adapts to changes in the market. In this paper we present an efficient portfolio selection algorithm that is able to track a changing market. We also describe a simple extension of the algorithm for the case of a general transaction cost, including the transactions cost models recently investigated in (Blum and Kalai, 1997). We provide a simple analysis of the competitiveness of the algorithm and check its performance on real stock data from the New York Stock Exchange accumulated during a 22-year period. On this data, our algorithm outperforms all the algorithms referenced above, with and without transaction costs.

  8. An Innovative Thinking-Based Intelligent Information Fusion Algorithm

    PubMed Central

    Hu, Liang; Liu, Gang; Zhou, Jin

    2013-01-01

    This study proposes an intelligent algorithm that can realize information fusion in reference to the relative research achievements in brain cognitive theory and innovative computation. This algorithm treats knowledge as core and information fusion as a knowledge-based innovative thinking process. Furthermore, the five key parts of this algorithm including information sense and perception, memory storage, divergent thinking, convergent thinking, and evaluation system are simulated and modeled. This algorithm fully develops innovative thinking skills of knowledge in information fusion and is a try to converse the abstract conception of brain cognitive science to specific and operable research routes and strategies. Furthermore, the influences of each parameter of this algorithm on algorithm performance are analyzed and compared with those of classical intelligent algorithms trough test. Test results suggest that the algorithm proposed in this study can obtain the optimum problem solution by less target evaluation times, improve optimization effectiveness, and achieve the effective fusion of information. PMID:23956699

  9. An innovative thinking-based intelligent information fusion algorithm.

    PubMed

    Lu, Huimin; Hu, Liang; Liu, Gang; Zhou, Jin

    2013-01-01

    This study proposes an intelligent algorithm that can realize information fusion in reference to the relative research achievements in brain cognitive theory and innovative computation. This algorithm treats knowledge as core and information fusion as a knowledge-based innovative thinking process. Furthermore, the five key parts of this algorithm including information sense and perception, memory storage, divergent thinking, convergent thinking, and evaluation system are simulated and modeled. This algorithm fully develops innovative thinking skills of knowledge in information fusion and is a try to converse the abstract conception of brain cognitive science to specific and operable research routes and strategies. Furthermore, the influences of each parameter of this algorithm on algorithm performance are analyzed and compared with those of classical intelligent algorithms trough test. Test results suggest that the algorithm proposed in this study can obtain the optimum problem solution by less target evaluation times, improve optimization effectiveness, and achieve the effective fusion of information.

  10. Online Adaboost-Based Parameterized Methods for Dynamic Distributed Network Intrusion Detection.

    PubMed

    Hu, Weiming; Gao, Jun; Wang, Yanguo; Wu, Ou; Maybank, Stephen

    2014-01-01

    Current network intrusion detection systems lack adaptability to the frequently changing network environments. Furthermore, intrusion detection in the new distributed architectures is now a major requirement. In this paper, we propose two online Adaboost-based intrusion detection algorithms. In the first algorithm, a traditional online Adaboost process is used where decision stumps are used as weak classifiers. In the second algorithm, an improved online Adaboost process is proposed, and online Gaussian mixture models (GMMs) are used as weak classifiers. We further propose a distributed intrusion detection framework, in which a local parameterized detection model is constructed in each node using the online Adaboost algorithm. A global detection model is constructed in each node by combining the local parametric models using a small number of samples in the node. This combination is achieved using an algorithm based on particle swarm optimization (PSO) and support vector machines. The global model in each node is used to detect intrusions. Experimental results show that the improved online Adaboost process with GMMs obtains a higher detection rate and a lower false alarm rate than the traditional online Adaboost process that uses decision stumps. Both the algorithms outperform existing intrusion detection algorithms. It is also shown that our PSO, and SVM-based algorithm effectively combines the local detection models into the global model in each node; the global model in a node can handle the intrusion types that are found in other nodes, without sharing the samples of these intrusion types.

  11. A unifying framework for rigid multibody dynamics and serial and parallel computational issues

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Jain, Abhinandan

    1989-01-01

    A unifying framework for various formulations of the dynamics of open-chain rigid multibody systems is discussed. Their suitability for serial and parallel processing is assessed. The framework is based on the derivation of intrinsic, i.e., coordinate-free, equations of the algorithms which provides a suitable abstraction and permits a distinction to be made between the computational redundancy in the intrinsic and extrinsic equations. A set of spatial notation is used which allows the derivation of the various algorithms in a common setting and thus clarifies the relationships among them. The three classes of algorithms viz., O(n), O(n exp 2) and O(n exp 3) or the solution of the dynamics problem are investigated. Researchers begin with the derivation of O(n exp 3) algorithms based on the explicit computation of the mass matrix and it provides insight into the underlying basis of the O(n) algorithms. From a computational perspective, the optimal choice of a coordinate frame for the projection of the intrinsic equations is discussed and the serial computational complexity of the different algorithms is evaluated. The three classes of algorithms are also analyzed for suitability for parallel processing. It is shown that the problem belongs to the class of N C and the time and processor bounds are of O(log2/2(n)) and O(n exp 4), respectively. However, the algorithm that achieves the above bounds is not stable. Researchers show that the fastest stable parallel algorithm achieves a computational complexity of O(n) with O(n exp 4), respectively. However, the algorithm that achieves the above bounds is not stable. Researchers show that the fastest stable parallel algorithm achieves a computational complexity of O(n) with O(n exp 2) processors, and results from the parallelization of the O(n exp 3) serial algorithm.

  12. Mapping implicit spectral methods to distributed memory architectures

    NASA Technical Reports Server (NTRS)

    Overman, Andrea L.; Vanrosendale, John

    1991-01-01

    Spectral methods were proven invaluable in numerical simulation of PDEs (Partial Differential Equations), but the frequent global communication required raises a fundamental barrier to their use on highly parallel architectures. To explore this issue, a 3-D implicit spectral method was implemented on an Intel hypercube. Utilization of about 50 percent was achieved on a 32 node iPSC/860 hypercube, for a 64 x 64 x 64 Fourier-spectral grid; finer grids yield higher utilizations. Chebyshev-spectral grids are more problematic, since plane-relaxation based multigrid is required. However, by using a semicoarsening multigrid algorithm, and by relaxing all multigrid levels concurrently, relatively high utilizations were also achieved in this harder case.

  13. Matching incomplete time series with dynamic time warping: an algorithm and an application to post-stroke rehabilitation.

    PubMed

    Tormene, Paolo; Giorgino, Toni; Quaglini, Silvana; Stefanelli, Mario

    2009-01-01

    The purpose of this study was to assess the performance of a real-time ("open-end") version of the dynamic time warping (DTW) algorithm for the recognition of motor exercises. Given a possibly incomplete input stream of data and a reference time series, the open-end DTW algorithm computes both the size of the prefix of reference which is best matched by the input, and the dissimilarity between the matched portions. The algorithm was used to provide real-time feedback to neurological patients undergoing motor rehabilitation. We acquired a dataset of multivariate time series from a sensorized long-sleeve shirt which contains 29 strain sensors distributed on the upper limb. Seven typical rehabilitation exercises were recorded in several variations, both correctly and incorrectly executed, and at various speeds, totaling a data set of 840 time series. Nearest-neighbour classifiers were built according to the outputs of open-end DTW alignments and their global counterparts on exercise pairs. The classifiers were also tested on well-known public datasets from heterogeneous domains. Nonparametric tests show that (1) on full time series the two algorithms achieve the same classification accuracy (p-value =0.32); (2) on partial time series, classifiers based on open-end DTW have a far higher accuracy (kappa=0.898 versus kappa=0.447;p<10(-5)); and (3) the prediction of the matched fraction follows closely the ground truth (root mean square <10%). The results hold for the motor rehabilitation and the other datasets tested, as well. The open-end variant of the DTW algorithm is suitable for the classification of truncated quantitative time series, even in the presence of noise. Early recognition and accurate class prediction can be achieved, provided that enough variance is available over the time span of the reference. Therefore, the proposed technique expands the use of DTW to a wider range of applications, such as real-time biofeedback systems.

  14. The force control and path planning of electromagnetic induction-based massage robot.

    PubMed

    Wang, Wendong; Zhang, Lei; Li, Jinzhe; Yuan, Xiaoqing; Shi, Yikai; Jiang, Qinqin; He, Lijing

    2017-07-20

    Massage robot is considered as an effective physiological treatment to relieve fatigue, improve blood circulation, relax muscle tone, etc. The simple massage equipment quickly spread into market due to low cost, but they are not widely accepted due to restricted massage function. Complicated structure and high cost caused difficulties for developing multi-function massage equipment. This paper presents a novel massage robot which can achieve tapping, rolling, kneading and other massage operations, and proposes an improved reciprocating path planning algorithm to improve massage effect. The number of coil turns, the coil current and the distance between massage head and yoke were chosen to investigate the influence on massage force by finite element method. The control system model of the wheeled massage robot was established, including control subsystem of the motor, path algorithm control subsystem, parameter module of the massage robot and virtual reality interface module. The improved reciprocating path planning algorithm was proposed to improve regional coverage rate and massage effect. The influence caused by coil current, the number of coil turns and the distance between massage head and yoke were simulated in Maxwell. It indicated that coil current has more important influence compared to the other two factors. The path planning simulation of the massage robot was completed in Matlab, and the results show that the improved reciprocating path planning algorithm achieved higher coverage rate than the traditional algorithm. With the analysis of simulation results, it can be concluded that the number of coil turns and the distance between the moving iron core and the yoke could be determined prior to coil current, and the force can be controllable by optimizing structure parameters of massage head and adjusting coil current. Meanwhile, it demonstrates that the proposed algorithm could effectively improve path coverage rate during massage operations, therefore the massage effect can be improved.

  15. Statistics based sampling for controller and estimator design

    NASA Astrophysics Data System (ADS)

    Tenne, Dirk

    The purpose of this research is the development of statistical design tools for robust feed-forward/feedback controllers and nonlinear estimators. This dissertation is threefold and addresses the aforementioned topics nonlinear estimation, target tracking and robust control. To develop statistically robust controllers and nonlinear estimation algorithms, research has been performed to extend existing techniques, which propagate the statistics of the state, to achieve higher order accuracy. The so-called unscented transformation has been extended to capture higher order moments. Furthermore, higher order moment update algorithms based on a truncated power series have been developed. The proposed techniques are tested on various benchmark examples. Furthermore, the unscented transformation has been utilized to develop a three dimensional geometrically constrained target tracker. The proposed planar circular prediction algorithm has been developed in a local coordinate framework, which is amenable to extension of the tracking algorithm to three dimensional space. This tracker combines the predictions of a circular prediction algorithm and a constant velocity filter by utilizing the Covariance Intersection. This combined prediction can be updated with the subsequent measurement using a linear estimator. The proposed technique is illustrated on a 3D benchmark trajectory, which includes coordinated turns and straight line maneuvers. The third part of this dissertation addresses the design of controller which include knowledge of parametric uncertainties and their distributions. The parameter distributions are approximated by a finite set of points which are calculated by the unscented transformation. This set of points is used to design robust controllers which minimize a statistical performance of the plant over the domain of uncertainty consisting of a combination of the mean and variance. The proposed technique is illustrated on three benchmark problems. The first relates to the design of prefilters for a linear and nonlinear spring-mass-dashpot system and the second applies a feedback controller to a hovering helicopter. Lastly, the statistical robust controller design is devoted to a concurrent feed-forward/feedback controller structure for a high-speed low tension tape drive.

  16. Assessing the role of a medication-indication resource in the treatment relation extraction from clinical text

    PubMed Central

    Bejan, Cosmin Adrian; Wei, Wei-Qi; Denny, Joshua C

    2015-01-01

    Objective To evaluate the contribution of the MEDication Indication (MEDI) resource and SemRep for identifying treatment relations in clinical text. Materials and methods We first processed clinical documents with SemRep to extract the Unified Medical Language System (UMLS) concepts and the treatment relations between them. Then, we incorporated MEDI into a simple algorithm that identifies treatment relations between two concepts if they match a medication-indication pair in this resource. For a better coverage, we expanded MEDI using ontology relationships from RxNorm and UMLS Metathesaurus. We also developed two ensemble methods, which combined the predictions of SemRep and the MEDI algorithm. We evaluated our selected methods on two datasets, a Vanderbilt corpus of 6864 discharge summaries and the 2010 Informatics for Integrating Biology and the Bedside (i2b2)/Veteran's Affairs (VA) challenge dataset. Results The Vanderbilt dataset included 958 manually annotated treatment relations. A double annotation was performed on 25% of relations with high agreement (Cohen's κ = 0.86). The evaluation consisted of comparing the manual annotated relations with the relations identified by SemRep, the MEDI algorithm, and the two ensemble methods. On the first dataset, the best F1-measure results achieved by the MEDI algorithm and the union of the two resources (78.7 and 80, respectively) were significantly higher than the SemRep results (72.3). On the second dataset, the MEDI algorithm achieved better precision and significantly lower recall values than the best system in the i2b2 challenge. The two systems obtained comparable F1-measure values on the subset of i2b2 relations with both arguments in MEDI. Conclusions Both SemRep and MEDI can be used to extract treatment relations from clinical text. Knowledge-based extraction with MEDI outperformed use of SemRep alone, but superior performance was achieved by integrating both systems. The integration of knowledge-based resources such as MEDI into information extraction systems such as SemRep and the i2b2 relation extractors may improve treatment relation extraction from clinical text. PMID:25336593

  17. Comparison of a Novel Multiple Marker Assay Versus the Risk of Malignancy Index for the Prediction of Epithelial Ovarian Cancer in Patients with a Pelvic Mass

    PubMed Central

    MOORE, Richard G.; JABRE-RAUGHLEY, Moune; BROWN, Amy K.; ROBISON, Katina M.; MILLER, M. Craig; ALLARD, W. Jeffery; KURMAN, Robert J.; BAST, Robert C.; SKATES, Steven J.

    2012-01-01

    Objectives To compare the Risk of Malignancy Index (RMI) to the Risk of Ovarian Malignancy Algorithm (ROMA) to predict EOC in women with a pelvic mass. Study Design 457 women with imaging results from ultrasound, CT and MRI, and serum HE4 and CA 125 determined prior to surgery for pelvic mass were evaluable. RMI values were determined using CA 125, imaging score and menopausal status. ROMA values were determined using HE4, CA 125, and menopausal status. Results At a set specificity of 75%, ROMA had a sensitivity of 94.3% and RMI had a sensitivity of 84.6% for distinguishing benign from EOC (p=0.0029). In patients with stage I and II disease, ROMA achieved a sensitivity of 85.3% compared with 64.7% for RMI (p<0.0001). Conclusions The dual marker algorithm utilizing HE4 and CA125 to calculate a ROMA value achieves a significantly higher sensitivity for identifying women with EOC than does RMI. PMID:20471625

  18. Tracking Multiple Topics for Finding Interesting Articles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pon, R K; Cardenas, A F; Buttler, D J

    We introduce multiple topic tracking (MTT) for iScore to better recommend news articles for users with multiple interests and to address changes in user interests over time. As an extension of the basic Rocchio algorithm, traditional topic detection and tracking, and single-pass clustering, MTT maintains multiple interest profiles to identify interesting articles for a specific user given user-feedback. Focusing on only interesting topics enables iScore to discard useless profiles to address changes in user interests and to achieve a balance between resource consumption and classification accuracy. iScore is able to achieve higher quality results than traditional methods such as themore » Rocchio algorithm. We identify several operating parameters that work well for MTT. Using the same parameters, we show that MTT alone yields high quality results for recommending interesting articles from several corpora. The inclusion of MTT improves iScore's performance by 25% in recommending news articles from the Yahoo! News RSS feeds and the TREC11 adaptive filter article collection. And through a small user study, we show that iScore can still perform well when only provided with little user feedback.« less

  19. Digital watermarking algorithm research of color images based on quaternion Fourier transform

    NASA Astrophysics Data System (ADS)

    An, Mali; Wang, Weijiang; Zhao, Zhen

    2013-10-01

    A watermarking algorithm of color images based on the quaternion Fourier Transform (QFFT) and improved quantization index algorithm (QIM) is proposed in this paper. The original image is transformed by QFFT, the watermark image is processed by compression and quantization coding, and then the processed watermark image is embedded into the components of the transformed original image. It achieves embedding and blind extraction of the watermark image. The experimental results show that the watermarking algorithm based on the improved QIM algorithm with distortion compensation achieves a good tradeoff between invisibility and robustness, and better robustness for the attacks of Gaussian noises, salt and pepper noises, JPEG compression, cropping, filtering and image enhancement than the traditional QIM algorithm.

  20. Multiple feature fusion via covariance matrix for visual tracking

    NASA Astrophysics Data System (ADS)

    Jin, Zefenfen; Hou, Zhiqiang; Yu, Wangsheng; Wang, Xin; Sun, Hui

    2018-04-01

    Aiming at the problem of complicated dynamic scenes in visual target tracking, a multi-feature fusion tracking algorithm based on covariance matrix is proposed to improve the robustness of the tracking algorithm. In the frame-work of quantum genetic algorithm, this paper uses the region covariance descriptor to fuse the color, edge and texture features. It also uses a fast covariance intersection algorithm to update the model. The low dimension of region covariance descriptor, the fast convergence speed and strong global optimization ability of quantum genetic algorithm, and the fast computation of fast covariance intersection algorithm are used to improve the computational efficiency of fusion, matching, and updating process, so that the algorithm achieves a fast and effective multi-feature fusion tracking. The experiments prove that the proposed algorithm can not only achieve fast and robust tracking but also effectively handle interference of occlusion, rotation, deformation, motion blur and so on.

  1. ECG signal performance de-noising assessment based on threshold tuning of dual-tree wavelet transform.

    PubMed

    El B'charri, Oussama; Latif, Rachid; Elmansouri, Khalifa; Abenaou, Abdenbi; Jenkal, Wissam

    2017-02-07

    Since the electrocardiogram (ECG) signal has a low frequency and a weak amplitude, it is sensitive to miscellaneous mixed noises, which may reduce the diagnostic accuracy and hinder the physician's correct decision on patients. The dual tree wavelet transform (DT-WT) is one of the most recent enhanced versions of discrete wavelet transform. However, threshold tuning on this method for noise removal from ECG signal has not been investigated yet. In this work, we shall provide a comprehensive study on the impact of the choice of threshold algorithm, threshold value, and the appropriate wavelet decomposition level to evaluate the ECG signal de-noising performance. A set of simulations is performed on both synthetic and real ECG signals to achieve the promised results. First, the synthetic ECG signal is used to observe the algorithm response. The evaluation results of synthetic ECG signal corrupted by various types of noise has showed that the modified unified threshold and wavelet hyperbolic threshold de-noising method is better in realistic and colored noises. The tuned threshold is then used on real ECG signals from the MIT-BIH database. The results has shown that the proposed method achieves higher performance than the ordinary dual tree wavelet transform into all kinds of noise removal from ECG signal. The simulation results indicate that the algorithm is robust for all kinds of noises with varying degrees of input noise, providing a high quality clean signal. Moreover, the algorithm is quite simple and can be used in real time ECG monitoring.

  2. Dose reduction potential of iterative reconstruction algorithms in neck CTA-a simulation study.

    PubMed

    Ellmann, Stephan; Kammerer, Ferdinand; Allmendinger, Thomas; Brand, Michael; Janka, Rolf; Hammon, Matthias; Lell, Michael M; Uder, Michael; Kramer, Manuel

    2016-10-01

    This study aimed to determine the degree of radiation dose reduction in neck CT angiography (CTA) achievable with Sinogram-affirmed iterative reconstruction (SAFIRE) algorithms. 10 consecutive patients scheduled for neck CTA were included in this study. CTA images of the external carotid arteries either were reconstructed with filtered back projection (FBP) at full radiation dose level or underwent simulated dose reduction by proprietary reconstruction software. The dose-reduced images were reconstructed using either SAFIRE 3 or SAFIRE 5 and compared with full-dose FBP images in terms of vessel definition. 5 observers performed a total of 3000 pairwise comparisons. SAFIRE allowed substantial radiation dose reductions in neck CTA while maintaining vessel definition. The possible levels of radiation dose reduction ranged from approximately 34 to approximately 90% and depended on the SAFIRE algorithm strength and the size of the vessel of interest. In general, larger vessels permitted higher degrees of radiation dose reduction, especially with higher SAFIRE strength levels. With small vessels, the superiority of SAFIRE 5 over SAFIRE 3 was lost. Neck CTA can be performed with substantially less radiation dose when SAFIRE is applied. The exact degree of radiation dose reduction should be adapted to the clinical question, in particular to the smallest vessel needing excellent definition.

  3. High-speed architecture for the decoding of trellis-coded modulation

    NASA Technical Reports Server (NTRS)

    Osborne, William P.

    1992-01-01

    Since 1971, when the Viterbi Algorithm was introduced as the optimal method of decoding convolutional codes, improvements in circuit technology, especially VLSI, have steadily increased its speed and practicality. Trellis-Coded Modulation (TCM) combines convolutional coding with higher level modulation (non-binary source alphabet) to provide forward error correction and spectral efficiency. For binary codes, the current stare-of-the-art is a 64-state Viterbi decoder on a single CMOS chip, operating at a data rate of 25 Mbps. Recently, there has been an interest in increasing the speed of the Viterbi Algorithm by improving the decoder architecture, or by reducing the algorithm itself. Designs employing new architectural techniques are now in existence, however these techniques are currently applied to simpler binary codes, not to TCM. The purpose of this report is to discuss TCM architectural considerations in general, and to present the design, at the logic gate level, or a specific TCM decoder which applies these considerations to achieve high-speed decoding.

  4. Efficient algorithm for baseline wander and powerline noise removal from ECG signals based on discrete Fourier series.

    PubMed

    Bahaz, Mohamed; Benzid, Redha

    2018-03-01

    Electrocardiogram (ECG) signals are often contaminated with artefacts and noises which can lead to incorrect diagnosis when they are visually inspected by cardiologists. In this paper, the well-known discrete Fourier series (DFS) is re-explored and an efficient DFS-based method is proposed to reduce contribution of both baseline wander (BW) and powerline interference (PLI) noises in ECG records. In the first step, the determination of the exact number of low frequency harmonics contributing in BW is achieved. Next, the baseline drift is estimated by the sum of all associated Fourier sinusoids components. Then, the baseline shift is discarded efficiently by a subtraction of its approximated version from the original biased ECG signal. Concerning the PLI, the subtraction of the contributing harmonics calculated in the same manner reduces efficiently such type of noise. In addition of visual quality results, the proposed algorithm shows superior performance in terms of higher signal-to-noise ratio and smaller mean square error when faced to the DCT-based algorithm.

  5. An Automated Parallel Image Registration Technique Based on the Correlation of Wavelet Features

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Campbell, William J.; Cromp, Robert F.; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    With the increasing importance of multiple platform/multiple remote sensing missions, fast and automatic integration of digital data from disparate sources has become critical to the success of these endeavors. Our work utilizes maxima of wavelet coefficients to form the basic features of a correlation-based automatic registration algorithm. Our wavelet-based registration algorithm is tested successfully with data from the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) and the Landsat/Thematic Mapper(TM), which differ by translation and/or rotation. By the choice of high-frequency wavelet features, this method is similar to an edge-based correlation method, but by exploiting the multi-resolution nature of a wavelet decomposition, our method achieves higher computational speeds for comparable accuracies. This algorithm has been implemented on a Single Instruction Multiple Data (SIMD) massively parallel computer, the MasPar MP-2, as well as on the CrayT3D, the Cray T3E and a Beowulf cluster of Pentium workstations.

  6. Iris Location Algorithm Based on the CANNY Operator and Gradient Hough Transform

    NASA Astrophysics Data System (ADS)

    Zhong, L. H.; Meng, K.; Wang, Y.; Dai, Z. Q.; Li, S.

    2017-12-01

    In the iris recognition system, the accuracy of the localization of the inner and outer edges of the iris directly affects the performance of the recognition system, so iris localization has important research meaning. Our iris data contain eyelid, eyelashes, light spot and other noise, even the gray transformation of the images is not obvious, so the general methods of iris location are unable to realize the iris location. The method of the iris location based on Canny operator and gradient Hough transform is proposed. Firstly, the images are pre-processed; then, calculating the gradient information of images, the inner and outer edges of iris are coarse positioned using Canny operator; finally, according to the gradient Hough transform to realize precise localization of the inner and outer edge of iris. The experimental results show that our algorithm can achieve the localization of the inner and outer edges of the iris well, and the algorithm has strong anti-interference ability, can greatly reduce the location time and has higher accuracy and stability.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, SB; Cady, ST; Dominguez-Garcia, AD

    This paper presents the theory and implementation of a distributed algorithm for controlling differential power processing converters in photovoltaic (PV) applications. This distributed algorithm achieves true maximum power point tracking of series-connected PV submodules by relying only on local voltage measurements and neighbor-to-neighbor communication between the differential power converters. Compared to previous solutions, the proposed algorithm achieves reduced number of perturbations at each step and potentially faster tracking without adding extra hardware; all these features make this algorithm well-suited for long submodule strings. The formulation of the algorithm, discussion of its properties, as well as three case studies are presented.more » The performance of the distributed tracking algorithm has been verified via experiments, which yielded quantifiable improvements over other techniques that have been implemented in practice. Both simulations and hardware experiments have confirmed the effectiveness of the proposed distributed algorithm.« less

  8. Power optimization of digital baseband WCDMA receiver components on algorithmic and architectural level

    NASA Astrophysics Data System (ADS)

    Schämann, M.; Bücker, M.; Hessel, S.; Langmann, U.

    2008-05-01

    High data rates combined with high mobility represent a challenge for the design of cellular devices. Advanced algorithms are required which result in higher complexity, more chip area and increased power consumption. However, this contrasts to the limited power supply of mobile devices. This presentation discusses the application of an HSDPA receiver which has been optimized regarding power consumption with the focus on the algorithmic and architectural level. On algorithmic level the Rake combiner, Prefilter-Rake equalizer and MMSE equalizer are compared regarding their BER performance. Both equalizer approaches provide a significant increase of performance for high data rates compared to the Rake combiner which is commonly used for lower data rates. For both equalizer approaches several adaptive algorithms are available which differ in complexity and convergence properties. To identify the algorithm which achieves the required performance with the lowest power consumption the algorithms have been investigated using SystemC models regarding their performance and arithmetic complexity. Additionally, for the Prefilter Rake equalizer the power estimations of a modified Griffith (LMS) and a Levinson (RLS) algorithm have been compared with the tool ORINOCO supplied by ChipVision. The accuracy of this tool has been verified with a scalable architecture of the UMTS channel estimation described both in SystemC and VHDL targeting a 130 nm CMOS standard cell library. An architecture combining all three approaches combined with an adaptive control unit is presented. The control unit monitors the current condition of the propagation channel and adjusts parameters for the receiver like filter size and oversampling ratio to minimize the power consumption while maintaining the required performance. The optimization strategies result in a reduction of the number of arithmetic operations up to 70% for single components which leads to an estimated power reduction of up to 40% while the BER performance is not affected. This work utilizes SystemC and ORINOCO for the first estimation of power consumption in an early step of the design flow. Thereby algorithms can be compared in different operating modes including the effects of control units. Here an algorithm having higher peak complexity and power consumption but providing more flexibility showed less consumption for normal operating modes compared to the algorithm which is optimized for peak performance.

  9. CUDA Optimization Strategies for Compute- and Memory-Bound Neuroimaging Algorithms

    PubMed Central

    Lee, Daren; Dinov, Ivo; Dong, Bin; Gutman, Boris; Yanovsky, Igor; Toga, Arthur W.

    2011-01-01

    As neuroimaging algorithms and technology continue to grow faster than CPU performance in complexity and image resolution, data-parallel computing methods will be increasingly important. The high performance, data-parallel architecture of modern graphical processing units (GPUs) can reduce computational times by orders of magnitude. However, its massively threaded architecture introduces challenges when GPU resources are exceeded. This paper presents optimization strategies for compute- and memory-bound algorithms for the CUDA architecture. For compute-bound algorithms, the registers are reduced through variable reuse via shared memory and the data throughput is increased through heavier thread workloads and maximizing the thread configuration for a single thread block per multiprocessor. For memory-bound algorithms, fitting the data into the fast but limited GPU resources is achieved through reorganizing the data into self-contained structures and employing a multi-pass approach. Memory latencies are reduced by selecting memory resources whose cache performance are optimized for the algorithm's access patterns. We demonstrate the strategies on two computationally expensive algorithms and achieve optimized GPU implementations that perform up to 6× faster than unoptimized ones. Compared to CPU implementations, we achieve peak GPU speedups of 129× for the 3D unbiased nonlinear image registration technique and 93× for the non-local means surface denoising algorithm. PMID:21159404

  10. CUDA optimization strategies for compute- and memory-bound neuroimaging algorithms.

    PubMed

    Lee, Daren; Dinov, Ivo; Dong, Bin; Gutman, Boris; Yanovsky, Igor; Toga, Arthur W

    2012-06-01

    As neuroimaging algorithms and technology continue to grow faster than CPU performance in complexity and image resolution, data-parallel computing methods will be increasingly important. The high performance, data-parallel architecture of modern graphical processing units (GPUs) can reduce computational times by orders of magnitude. However, its massively threaded architecture introduces challenges when GPU resources are exceeded. This paper presents optimization strategies for compute- and memory-bound algorithms for the CUDA architecture. For compute-bound algorithms, the registers are reduced through variable reuse via shared memory and the data throughput is increased through heavier thread workloads and maximizing the thread configuration for a single thread block per multiprocessor. For memory-bound algorithms, fitting the data into the fast but limited GPU resources is achieved through reorganizing the data into self-contained structures and employing a multi-pass approach. Memory latencies are reduced by selecting memory resources whose cache performance are optimized for the algorithm's access patterns. We demonstrate the strategies on two computationally expensive algorithms and achieve optimized GPU implementations that perform up to 6× faster than unoptimized ones. Compared to CPU implementations, we achieve peak GPU speedups of 129× for the 3D unbiased nonlinear image registration technique and 93× for the non-local means surface denoising algorithm. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Results of using the NSTX-U Plasma Control System for scenario development

    NASA Astrophysics Data System (ADS)

    Boyer, M. D.; Battaglia, D. J.; Gates, D. A.; Gerhardt, S.; Menard, J.; Mueller, D.; Myers, C. E.; Ferron, J.; Sabbagh, S.; NSTX-U Team

    2016-10-01

    To best use the new capabilities of NSTX-U (e.g., higher toroidal field and additional, more distributed heating and current drive sources) and to achieve the operational goals of the program, major upgrades to the Plasma Control System have been made. These include improvements to vertical control, real-time equilibrium reconstruction, and plasma boundary shape control and the addition of flexible algorithms for beam modulation and gas injection to control the upgraded actuators in real-time, enabling their use in algorithms for stored energy and profile control. Control system commissioning activities have so far focused on vertical position and shape control. The upgraded controllers have been used to explore the vertical stability limits in inner wall limited and diverted discharges, and control of X-point and strike point locations has been demonstrated and is routinely used. A method for controlling the mid-plane inner gap, a challenge for STs, has also been added to improve reproducible control of diverted discharges. A supervisory shutdown handling algorithm has also been commissioned to ramp the plasma down and safely turn off actuators after an event such as loss of vertical control. Use of the upgrades has contributed to achieving 1MA, 0.65T scenarios with greater than 1s pulse length. Work supported by U.S. D.O.E. Contract No. DE-AC02-09CH11466.

  12. Robust Speech Enhancement Using Two-Stage Filtered Minima Controlled Recursive Averaging

    NASA Astrophysics Data System (ADS)

    Ghourchian, Negar; Selouani, Sid-Ahmed; O'Shaughnessy, Douglas

    In this paper we propose an algorithm for estimating noise in highly non-stationary noisy environments, which is a challenging problem in speech enhancement. This method is based on minima-controlled recursive averaging (MCRA) whereby an accurate, robust and efficient noise power spectrum estimation is demonstrated. We propose a two-stage technique to prevent the appearance of musical noise after enhancement. This algorithm filters the noisy speech to achieve a robust signal with minimum distortion in the first stage. Subsequently, it estimates the residual noise using MCRA and removes it with spectral subtraction. The proposed Filtered MCRA (FMCRA) performance is evaluated using objective tests on the Aurora database under various noisy environments. These measures indicate the higher output SNR and lower output residual noise and distortion.

  13. Indoor Pedestrian Localization Using iBeacon and Improved Kalman Filter.

    PubMed

    Sung, Kwangjae; Lee, Dong Kyu 'Roy'; Kim, Hwangnam

    2018-05-26

    The reliable and accurate indoor pedestrian positioning is one of the biggest challenges for location-based systems and applications. Most pedestrian positioning systems have drift error and large bias due to low-cost inertial sensors and random motions of human being, as well as unpredictable and time-varying radio-frequency (RF) signals used for position determination. To solve this problem, many indoor positioning approaches that integrate the user's motion estimated by dead reckoning (DR) method and the location data obtained by RSS fingerprinting through Bayesian filter, such as the Kalman filter (KF), unscented Kalman filter (UKF), and particle filter (PF), have recently been proposed to achieve higher positioning accuracy in indoor environments. Among Bayesian filtering methods, PF is the most popular integrating approach and can provide the best localization performance. However, since PF uses a large number of particles for the high performance, it can lead to considerable computational cost. This paper presents an indoor positioning system implemented on a smartphone, which uses simple dead reckoning (DR), RSS fingerprinting using iBeacon and machine learning scheme, and improved KF. The core of the system is the enhanced KF called a sigma-point Kalman particle filter (SKPF), which localize the user leveraging both the unscented transform of UKF and the weighting method of PF. The SKPF algorithm proposed in this study is used to provide the enhanced positioning accuracy by fusing positional data obtained from both DR and fingerprinting with uncertainty. The SKPF algorithm can achieve better positioning accuracy than KF and UKF and comparable performance compared to PF, and it can provide higher computational efficiency compared with PF. iBeacon in our positioning system is used for energy-efficient localization and RSS fingerprinting. We aim to design the localization scheme that can realize the high positioning accuracy, computational efficiency, and energy efficiency through the SKPF and iBeacon indoors. Empirical experiments in real environments show that the use of the SKPF algorithm and iBeacon in our indoor localization scheme can achieve very satisfactory performance in terms of localization accuracy, computational cost, and energy efficiency.

  14. Image-processing algorithms for inspecting characteristics of hybrid rice seed

    NASA Astrophysics Data System (ADS)

    Cheng, Fang; Ying, Yibin

    2004-03-01

    Incompletely closed glumes, germ and disease are three characteristics of hybrid rice seed. Image-processing algorithms developed to detect these seed characteristics were presented in this paper. The rice seed used for this study involved five varieties of Jinyou402, Shanyou10, Zhongyou207, Jiayou and IIyou. The algorithms were implemented with a 5*600 images set, a 4*400 images set and the other 5*600 images set respectively. The image sets included black background images, white background images and both sides images of rice seed. Results show that the algorithm for inspecting seeds with incompletely closed glumes based on Radon Transform achieved an accuracy of 96% for normal seeds, 92% for seeds with fine fissure and 87% for seeds with unclosed glumes, the algorithm for inspecting germinated seeds on panicle based on PCA and ANN achieved n average accuracy of 98% for normal seeds, 88% for germinated seeds on panicle and the algorithm for inspecting diseased seeds based on color features achieved an accuracy of 92% for normal and healthy seeds, 95% for spot diseased seeds and 83% for severe diseased seeds.

  15. Accurate HLA type inference using a weighted similarity graph.

    PubMed

    Xie, Minzhu; Li, Jing; Jiang, Tao

    2010-12-14

    The human leukocyte antigen system (HLA) contains many highly variable genes. HLA genes play an important role in the human immune system, and HLA gene matching is crucial for the success of human organ transplantations. Numerous studies have demonstrated that variation in HLA genes is associated with many autoimmune, inflammatory and infectious diseases. However, typing HLA genes by serology or PCR is time consuming and expensive, which limits large-scale studies involving HLA genes. Since it is much easier and cheaper to obtain single nucleotide polymorphism (SNP) genotype data, accurate computational algorithms to infer HLA gene types from SNP genotype data are in need. To infer HLA types from SNP genotypes, the first step is to infer SNP haplotypes from genotypes. However, for the same SNP genotype data set, the haplotype configurations inferred by different methods are usually inconsistent, and it is often difficult to decide which one is true. In this paper, we design an accurate HLA gene type inference algorithm by utilizing SNP genotype data from pedigrees, known HLA gene types of some individuals and the relationship between inferred SNP haplotypes and HLA gene types. Given a set of haplotypes inferred from the genotypes of a population consisting of many pedigrees, the algorithm first constructs a weighted similarity graph based on a new haplotype similarity measure and derives constraint edges from known HLA gene types. Based on the principle that different HLA gene alleles should have different background haplotypes, the algorithm searches for an optimal labeling of all the haplotypes with unknown HLA gene types such that the total weight among the same HLA gene types is maximized. To deal with ambiguous haplotype solutions, we use a genetic algorithm to select haplotype configurations that tend to maximize the same optimization criterion. Our experiments on a previously typed subset of the HapMap data show that the algorithm is highly accurate, achieving an accuracy of 96% for gene HLA-A, 95% for HLA-B, 97% for HLA-C, 84% for HLA-DRB1, 98% for HLA-DQA1 and 97% for HLA-DQB1 in a leave-one-out test. Our algorithm can infer HLA gene types from neighboring SNP genotype data accurately. Compared with a recent approach on the same input data, our algorithm achieved a higher accuracy. The code of our algorithm is available to the public for free upon request to the corresponding authors.

  16. UWB Tracking Algorithms: AOA and TDOA

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun David; Arndt, D.; Ngo, P.; Gross, J.; Refford, Melinda

    2006-01-01

    Ultra-Wideband (UWB) tracking prototype systems are currently under development at NASA Johnson Space Center for various applications on space exploration. For long range applications, a two-cluster Angle of Arrival (AOA) tracking method is employed for implementation of the tracking system; for close-in applications, a Time Difference of Arrival (TDOA) positioning methodology is exploited. Both AOA and TDOA are chosen to utilize the achievable fine time resolution of UWB signals. This talk presents a brief introduction to AOA and TDOA methodologies. The theoretical analysis of these two algorithms reveal the affecting parameters impact on the tracking resolution. For the AOA algorithm, simulations show that a tracking resolution less than 0.5% of the range can be achieved with the current achievable time resolution of UWB signals. For the TDOA algorithm used in close-in applications, simulations show that the (sub-inch) high tracking resolution is achieved with a chosen tracking baseline configuration. The analytical and simulated results provide insightful guidance for the UWB tracking system design.

  17. Formally Verified Practical Algorithms for Recovery from Loss of Separation

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Munoz, Caesar A.

    2009-01-01

    In this paper, we develop and formally verify practical algorithms for recovery from loss of separation. The formal verification is performed in the context of a criteria-based framework. This framework provides rigorous definitions of horizontal and vertical maneuver correctness that guarantee divergence and achieve horizontal and vertical separation. The algorithms are shown to be independently correct, that is, separation is achieved when only one aircraft maneuvers, and implicitly coordinated, that is, separation is also achieved when both aircraft maneuver. In this paper we improve the horizontal criteria over our previous work. An important benefit of the criteria approach is that different aircraft can execute different algorithms and implicit coordination will still be achieved, as long as they all meet the explicit criteria of the framework. Towards this end we have sought to make the criteria as general as possible. The framework presented in this paper has been formalized and mechanically verified in the Prototype Verification System (PVS).

  18. Efficient Record Linkage Algorithms Using Complete Linkage Clustering.

    PubMed

    Mamun, Abdullah-Al; Aseltine, Robert; Rajasekaran, Sanguthevar

    2016-01-01

    Data from different agencies share data of the same individuals. Linking these datasets to identify all the records belonging to the same individuals is a crucial and challenging problem, especially given the large volumes of data. A large number of available algorithms for record linkage are prone to either time inefficiency or low-accuracy in finding matches and non-matches among the records. In this paper we propose efficient as well as reliable sequential and parallel algorithms for the record linkage problem employing hierarchical clustering methods. We employ complete linkage hierarchical clustering algorithms to address this problem. In addition to hierarchical clustering, we also use two other techniques: elimination of duplicate records and blocking. Our algorithms use sorting as a sub-routine to identify identical copies of records. We have tested our algorithms on datasets with millions of synthetic records. Experimental results show that our algorithms achieve nearly 100% accuracy. Parallel implementations achieve almost linear speedups. Time complexities of these algorithms do not exceed those of previous best-known algorithms. Our proposed algorithms outperform previous best-known algorithms in terms of accuracy consuming reasonable run times.

  19. Efficient Record Linkage Algorithms Using Complete Linkage Clustering

    PubMed Central

    Mamun, Abdullah-Al; Aseltine, Robert; Rajasekaran, Sanguthevar

    2016-01-01

    Data from different agencies share data of the same individuals. Linking these datasets to identify all the records belonging to the same individuals is a crucial and challenging problem, especially given the large volumes of data. A large number of available algorithms for record linkage are prone to either time inefficiency or low-accuracy in finding matches and non-matches among the records. In this paper we propose efficient as well as reliable sequential and parallel algorithms for the record linkage problem employing hierarchical clustering methods. We employ complete linkage hierarchical clustering algorithms to address this problem. In addition to hierarchical clustering, we also use two other techniques: elimination of duplicate records and blocking. Our algorithms use sorting as a sub-routine to identify identical copies of records. We have tested our algorithms on datasets with millions of synthetic records. Experimental results show that our algorithms achieve nearly 100% accuracy. Parallel implementations achieve almost linear speedups. Time complexities of these algorithms do not exceed those of previous best-known algorithms. Our proposed algorithms outperform previous best-known algorithms in terms of accuracy consuming reasonable run times. PMID:27124604

  20. Wavefront correction performed by a deformable mirror of arbitrary actuator pattern within a multireflection waveguide.

    PubMed

    Ma, Xingkun; Huang, Lei; Bian, Qi; Gong, Mali

    2014-09-10

    The wavefront correction ability of a deformable mirror with a multireflection waveguide was investigated and compared via simulations. By dividing a conventional actuator array into a multireflection waveguide that consisted of single-actuator units, an arbitrary actuator pattern could be achieved. A stochastic parallel perturbation algorithm was proposed to find the optimal actuator pattern for a particular aberration. Compared with conventional an actuator array, the multireflection waveguide showed significant advantages in correction of higher order aberrations.

  1. Algorithms for selecting informative marker panels for population assignment.

    PubMed

    Rosenberg, Noah A

    2005-11-01

    Given a set of potential source populations, genotypes of an individual of unknown origin at a collection of markers can be used to predict the correct source population of the individual. For improved efficiency, informative markers can be chosen from a larger set of markers to maximize the accuracy of this prediction. However, selecting the loci that are individually most informative does not necessarily produce the optimal panel. Here, using genotypes from eight species--carp, cat, chicken, dog, fly, grayling, human, and maize--this univariate accumulation procedure is compared to new multivariate "greedy" and "maximin" algorithms for choosing marker panels. The procedures generally suggest similar panels, although the greedy method often recommends inclusion of loci that are not chosen by the other algorithms. In seven of the eight species, when applied to five or more markers, all methods achieve at least 94% assignment accuracy on simulated individuals, with one species--dog--producing this level of accuracy with only three markers, and the eighth species--human--requiring approximately 13-16 markers. The new algorithms produce substantial improvements over use of randomly selected markers; where differences among the methods are noticeable, the greedy algorithm leads to slightly higher probabilities of correct assignment. Although none of the approaches necessarily chooses the panel with optimal performance, the algorithms all likely select panels with performance near enough to the maximum that they all are suitable for practical use.

  2. Static vs. dynamic decoding algorithms in a non-invasive body-machine interface

    PubMed Central

    Seáñez-González, Ismael; Pierella, Camilla; Farshchiansadegh, Ali; Thorp, Elias B.; Abdollahi, Farnaz; Pedersen, Jessica; Mussa-Ivaldi, Ferdinando A.

    2017-01-01

    In this study, we consider a non-invasive body-machine interface that captures body motions still available to people with spinal cord injury (SCI) and maps them into a set of signals for controlling a computer user interface while engaging in a sustained level of mobility and exercise. We compare the effectiveness of two decoding algorithms that transform a high-dimensional body-signal vector into a lower dimensional control vector on 6 subjects with high-level SCI and 8 controls. One algorithm is based on a static map from current body signals to the current value of the control vector set through principal component analysis (PCA), the other on dynamic mapping a segment of body signals to the value and the temporal derivatives of the control vector set through a Kalman filter. SCI and control participants performed straighter and smoother cursor movements with the Kalman algorithm during center-out reaching, but their movements were faster and more precise when using PCA. All participants were able to use the BMI’s continuous, two-dimensional control to type on a virtual keyboard and play pong, and performance with both algorithms was comparable. However, seven of eight control participants preferred PCA as their method of virtual wheelchair control. The unsupervised PCA algorithm was easier to train and seemed sufficient to achieve a higher degree of learnability and perceived ease of use. PMID:28092564

  3. Higher-order time integration of Coulomb collisions in a plasma using Langevin equations

    DOE PAGES

    Dimits, A. M.; Cohen, B. I.; Caflisch, R. E.; ...

    2013-02-08

    The extension of Langevin-equation Monte-Carlo algorithms for Coulomb collisions from the conventional Euler-Maruyama time integration to the next higher order of accuracy, the Milstein scheme, has been developed, implemented, and tested. This extension proceeds via a formulation of the angular scattering directly as stochastic differential equations in the two fixed-frame spherical-coordinate velocity variables. Results from the numerical implementation show the expected improvement [O(Δt) vs. O(Δt 1/2)] in the strong convergence rate both for the speed |v| and angular components of the scattering. An important result is that this improved convergence is achieved for the angular component of the scattering ifmore » and only if the “area-integral” terms in the Milstein scheme are included. The resulting Milstein scheme is of value as a step towards algorithms with both improved accuracy and efficiency. These include both algorithms with improved convergence in the averages (weak convergence) and multi-time-level schemes. The latter have been shown to give a greatly reduced cost for a given overall error level when compared with conventional Monte-Carlo schemes, and their performance is improved considerably when the Milstein algorithm is used for the underlying time advance versus the Euler-Maruyama algorithm. A new method for sampling the area integrals is given which is a simplification of an earlier direct method and which retains high accuracy. Lastly, this method, while being useful in its own right because of its relative simplicity, is also expected to considerably reduce the computational requirements for the direct conditional sampling of the area integrals that is needed for adaptive strong integration.« less

  4. Efficient operator splitting algorithm for joint sparsity-regularized SPIRiT-based parallel MR imaging reconstruction.

    PubMed

    Duan, Jizhong; Liu, Yu; Jing, Peiguang

    2018-02-01

    Self-consistent parallel imaging (SPIRiT) is an auto-calibrating model for the reconstruction of parallel magnetic resonance imaging, which can be formulated as a regularized SPIRiT problem. The Projection Over Convex Sets (POCS) method was used to solve the formulated regularized SPIRiT problem. However, the quality of the reconstructed image still needs to be improved. Though methods such as NonLinear Conjugate Gradients (NLCG) can achieve higher spatial resolution, these methods always demand very complex computation and converge slowly. In this paper, we propose a new algorithm to solve the formulated Cartesian SPIRiT problem with the JTV and JL1 regularization terms. The proposed algorithm uses the operator splitting (OS) technique to decompose the problem into a gradient problem and a denoising problem with two regularization terms, which is solved by our proposed split Bregman based denoising algorithm, and adopts the Barzilai and Borwein method to update step size. Simulation experiments on two in vivo data sets demonstrate that the proposed algorithm is 1.3 times faster than ADMM for datasets with 8 channels. Especially, our proposal is 2 times faster than ADMM for the dataset with 32 channels. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A novel LTE scheduling algorithm for green technology in smart grid.

    PubMed

    Hindia, Mohammad Nour; Reza, Ahmed Wasif; Noordin, Kamarul Ariffin; Chayon, Muhammad Hasibur Rashid

    2015-01-01

    Smart grid (SG) application is being used nowadays to meet the demand of increasing power consumption. SG application is considered as a perfect solution for combining renewable energy resources and electrical grid by means of creating a bidirectional communication channel between the two systems. In this paper, three SG applications applicable to renewable energy system, namely, distribution automation (DA), distributed energy system-storage (DER) and electrical vehicle (EV), are investigated in order to study their suitability in Long Term Evolution (LTE) network. To compensate the weakness in the existing scheduling algorithms, a novel bandwidth estimation and allocation technique and a new scheduling algorithm are proposed. The technique allocates available network resources based on application's priority, whereas the algorithm makes scheduling decision based on dynamic weighting factors of multi-criteria to satisfy the demands (delay, past average throughput and instantaneous transmission rate) of quality of service. Finally, the simulation results demonstrate that the proposed mechanism achieves higher throughput, lower delay and lower packet loss rate for DA and DER as well as provide a degree of service for EV. In terms of fairness, the proposed algorithm shows 3%, 7 % and 9% better performance compared to exponential rule (EXP-Rule), modified-largest weighted delay first (M-LWDF) and exponential/PF (EXP/PF), respectively.

  6. A Novel LTE Scheduling Algorithm for Green Technology in Smart Grid

    PubMed Central

    Hindia, Mohammad Nour; Reza, Ahmed Wasif; Noordin, Kamarul Ariffin; Chayon, Muhammad Hasibur Rashid

    2015-01-01

    Smart grid (SG) application is being used nowadays to meet the demand of increasing power consumption. SG application is considered as a perfect solution for combining renewable energy resources and electrical grid by means of creating a bidirectional communication channel between the two systems. In this paper, three SG applications applicable to renewable energy system, namely, distribution automation (DA), distributed energy system-storage (DER) and electrical vehicle (EV), are investigated in order to study their suitability in Long Term Evolution (LTE) network. To compensate the weakness in the existing scheduling algorithms, a novel bandwidth estimation and allocation technique and a new scheduling algorithm are proposed. The technique allocates available network resources based on application’s priority, whereas the algorithm makes scheduling decision based on dynamic weighting factors of multi-criteria to satisfy the demands (delay, past average throughput and instantaneous transmission rate) of quality of service. Finally, the simulation results demonstrate that the proposed mechanism achieves higher throughput, lower delay and lower packet loss rate for DA and DER as well as provide a degree of service for EV. In terms of fairness, the proposed algorithm shows 3%, 7 % and 9% better performance compared to exponential rule (EXP-Rule), modified-largest weighted delay first (M-LWDF) and exponential/PF (EXP/PF), respectively. PMID:25830703

  7. Abbreviation definition identification based on automatic precision estimates.

    PubMed

    Sohn, Sunghwan; Comeau, Donald C; Kim, Won; Wilbur, W John

    2008-09-25

    The rapid growth of biomedical literature presents challenges for automatic text processing, and one of the challenges is abbreviation identification. The presence of unrecognized abbreviations in text hinders indexing algorithms and adversely affects information retrieval and extraction. Automatic abbreviation definition identification can help resolve these issues. However, abbreviations and their definitions identified by an automatic process are of uncertain validity. Due to the size of databases such as MEDLINE only a small fraction of abbreviation-definition pairs can be examined manually. An automatic way to estimate the accuracy of abbreviation-definition pairs extracted from text is needed. In this paper we propose an abbreviation definition identification algorithm that employs a variety of strategies to identify the most probable abbreviation definition. In addition our algorithm produces an accuracy estimate, pseudo-precision, for each strategy without using a human-judged gold standard. The pseudo-precisions determine the order in which the algorithm applies the strategies in seeking to identify the definition of an abbreviation. On the Medstract corpus our algorithm produced 97% precision and 85% recall which is higher than previously reported results. We also annotated 1250 randomly selected MEDLINE records as a gold standard. On this set we achieved 96.5% precision and 83.2% recall. This compares favourably with the well known Schwartz and Hearst algorithm. We developed an algorithm for abbreviation identification that uses a variety of strategies to identify the most probable definition for an abbreviation and also produces an estimated accuracy of the result. This process is purely automatic.

  8. An efficient and accurate 3D displacements tracking strategy for digital volume correlation

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Wang, Bo; Wu, Dafang; Lubineau, Gilles

    2014-07-01

    Owing to its inherent computational complexity, practical implementation of digital volume correlation (DVC) for internal displacement and strain mapping faces important challenges in improving its computational efficiency. In this work, an efficient and accurate 3D displacement tracking strategy is proposed for fast DVC calculation. The efficiency advantage is achieved by using three improvements. First, to eliminate the need of updating Hessian matrix in each iteration, an efficient 3D inverse compositional Gauss-Newton (3D IC-GN) algorithm is introduced to replace existing forward additive algorithms for accurate sub-voxel displacement registration. Second, to ensure the 3D IC-GN algorithm that converges accurately and rapidly and avoid time-consuming integer-voxel displacement searching, a generalized reliability-guided displacement tracking strategy is designed to transfer accurate and complete initial guess of deformation for each calculation point from its computed neighbors. Third, to avoid the repeated computation of sub-voxel intensity interpolation coefficients, an interpolation coefficient lookup table is established for tricubic interpolation. The computational complexity of the proposed fast DVC and the existing typical DVC algorithms are first analyzed quantitatively according to necessary arithmetic operations. Then, numerical tests are performed to verify the performance of the fast DVC algorithm in terms of measurement accuracy and computational efficiency. The experimental results indicate that, compared with the existing DVC algorithm, the presented fast DVC algorithm produces similar precision and slightly higher accuracy at a substantially reduced computational cost.

  9. Multifeature-based high-resolution palmprint recognition.

    PubMed

    Dai, Jifeng; Zhou, Jie

    2011-05-01

    Palmprint is a promising biometric feature for use in access control and forensic applications. Previous research on palmprint recognition mainly concentrates on low-resolution (about 100 ppi) palmprints. But for high-security applications (e.g., forensic usage), high-resolution palmprints (500 ppi or higher) are required from which more useful information can be extracted. In this paper, we propose a novel recognition algorithm for high-resolution palmprint. The main contributions of the proposed algorithm include the following: 1) use of multiple features, namely, minutiae, density, orientation, and principal lines, for palmprint recognition to significantly improve the matching performance of the conventional algorithm. 2) Design of a quality-based and adaptive orientation field estimation algorithm which performs better than the existing algorithm in case of regions with a large number of creases. 3) Use of a novel fusion scheme for an identification application which performs better than conventional fusion methods, e.g., weighted sum rule, SVMs, or Neyman-Pearson rule. Besides, we analyze the discriminative power of different feature combinations and find that density is very useful for palmprint recognition. Experimental results on the database containing 14,576 full palmprints show that the proposed algorithm has achieved a good performance. In the case of verification, the recognition system's False Rejection Rate (FRR) is 16 percent, which is 17 percent lower than the best existing algorithm at a False Acceptance Rate (FAR) of 10(-5), while in the identification experiment, the rank-1 live-scan partial palmprint recognition rate is improved from 82.0 to 91.7 percent.

  10. GRID: a high-resolution protein structure refinement algorithm.

    PubMed

    Chitsaz, Mohsen; Mayo, Stephen L

    2013-03-05

    The energy-based refinement of protein structures generated by fold prediction algorithms to atomic-level accuracy remains a major challenge in structural biology. Energy-based refinement is mainly dependent on two components: (1) sufficiently accurate force fields, and (2) efficient conformational space search algorithms. Focusing on the latter, we developed a high-resolution refinement algorithm called GRID. It takes a three-dimensional protein structure as input and, using an all-atom force field, attempts to improve the energy of the structure by systematically perturbing backbone dihedrals and side-chain rotamer conformations. We compare GRID to Backrub, a stochastic algorithm that has been shown to predict a significant fraction of the conformational changes that occur with point mutations. We applied GRID and Backrub to 10 high-resolution (≤ 2.8 Å) crystal structures from the Protein Data Bank and measured the energy improvements obtained and the computation times required to achieve them. GRID resulted in energy improvements that were significantly better than those attained by Backrub while expending about the same amount of computational resources. GRID resulted in relaxed structures that had slightly higher backbone RMSDs compared to Backrub relative to the starting crystal structures. The average RMSD was 0.25 ± 0.02 Å for GRID versus 0.14 ± 0.04 Å for Backrub. These relatively minor deviations indicate that both algorithms generate structures that retain their original topologies, as expected given the nature of the algorithms. Copyright © 2012 Wiley Periodicals, Inc.

  11. A multi-emitter fitting algorithm for potential live cell super-resolution imaging over a wide range of molecular densities.

    PubMed

    Takeshima, T; Takahashi, T; Yamashita, J; Okada, Y; Watanabe, S

    2018-05-25

    Multi-emitter fitting algorithms have been developed to improve the temporal resolution of single-molecule switching nanoscopy, but the molecular density range they can analyse is narrow and the computation required is intensive, significantly limiting their practical application. Here, we propose a computationally fast method, wedged template matching (WTM), an algorithm that uses a template matching technique to localise molecules at any overlapping molecular density from sparse to ultrahigh density with subdiffraction resolution. WTM achieves the localization of overlapping molecules at densities up to 600 molecules μm -2 with a high detection sensitivity and fast computational speed. WTM also shows localization precision comparable with that of DAOSTORM (an algorithm for high-density super-resolution microscopy), at densities up to 20 molecules μm -2 , and better than DAOSTORM at higher molecular densities. The application of WTM to a high-density biological sample image demonstrated that it resolved protein dynamics from live cell images with subdiffraction resolution and a temporal resolution of several hundred milliseconds or less through a significant reduction in the number of camera images required for a high-density reconstruction. WTM algorithm is a computationally fast, multi-emitter fitting algorithm that can analyse over a wide range of molecular densities. The algorithm is available through the website. https://doi.org/10.17632/bf3z6xpn5j.1. © 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  12. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.

    PubMed

    Gao, Lei; Bourke, A K; Nelson, John

    2014-06-01

    Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult population. To date, a substantial amount of research studies exist, which focus on activity recognition using inertial sensors. Many of these studies adopt a single sensor approach and focus on proposing novel features combined with complex classifiers to improve the overall recognition accuracy. In addition, the implementation of the advanced feature extraction algorithms and the complex classifiers exceed the computing ability of most current wearable sensor platforms. This paper proposes a method to adopt multiple sensors on distributed body locations to overcome this problem. The objective of the proposed system is to achieve higher recognition accuracy with "light-weight" signal processing algorithms, which run on a distributed computing based sensor system comprised of computationally efficient nodes. For analysing and evaluating the multi-sensor system, eight subjects were recruited to perform eight normal scripted activities in different life scenarios, each repeated three times. Thus a total of 192 activities were recorded resulting in 864 separate annotated activity states. The methods for designing such a multi-sensor system required consideration of the following: signal pre-processing algorithms, sampling rate, feature selection and classifier selection. Each has been investigated and the most appropriate approach is selected to achieve a trade-off between recognition accuracy and computing execution time. A comparison of six different systems, which employ single or multiple sensors, is presented. The experimental results illustrate that the proposed multi-sensor system can achieve an overall recognition accuracy of 96.4% by adopting the mean and variance features, using the Decision Tree classifier. The results demonstrate that elaborate classifiers and feature sets are not required to achieve high recognition accuracies on a multi-sensor system. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. GPUs benchmarking in subpixel image registration algorithm

    NASA Astrophysics Data System (ADS)

    Sanz-Sabater, Martin; Picazo-Bueno, Jose Angel; Micó, Vicente; Ferrerira, Carlos; Granero, Luis; Garcia, Javier

    2015-05-01

    Image registration techniques are used among different scientific fields, like medical imaging or optical metrology. The straightest way to calculate shifting between two images is using the cross correlation, taking the highest value of this correlation image. Shifting resolution is given in whole pixels which cannot be enough for certain applications. Better results can be achieved interpolating both images, as much as the desired resolution we want to get, and applying the same technique described before, but the memory needed by the system is significantly higher. To avoid memory consuming we are implementing a subpixel shifting method based on FFT. With the original images, subpixel shifting can be achieved multiplying its discrete Fourier transform by a linear phase with different slopes. This method is high time consuming method because checking a concrete shifting means new calculations. The algorithm, highly parallelizable, is very suitable for high performance computing systems. GPU (Graphics Processing Unit) accelerated computing became very popular more than ten years ago because they have hundreds of computational cores in a reasonable cheap card. In our case, we are going to register the shifting between two images, doing the first approach by FFT based correlation, and later doing the subpixel approach using the technique described before. We consider it as `brute force' method. So we will present a benchmark of the algorithm consisting on a first approach (pixel resolution) and then do subpixel resolution approaching, decreasing the shifting step in every loop achieving a high resolution in few steps. This program will be executed in three different computers. At the end, we will present the results of the computation, with different kind of CPUs and GPUs, checking the accuracy of the method, and the time consumed in each computer, discussing the advantages, disadvantages of the use of GPUs.

  14. Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina

    NASA Astrophysics Data System (ADS)

    An, Lin; Shen, Tueng T.; Wang, Ruikang K.

    2011-10-01

    This paper presents comprehensive and depth-resolved retinal microvasculature images within human retina achieved by a newly developed ultrahigh sensitive optical microangiography (UHS-OMAG) system. Due to its high flow sensitivity, UHS-OMAG is much more sensitive to tissue motion due to the involuntary movement of the human eye and head compared to the traditional OMAG system. To mitigate these motion artifacts on final imaging results, we propose a new phase compensation algorithm in which the traditional phase-compensation algorithm is repeatedly used to efficiently minimize the motion artifacts. Comparatively, this new algorithm demonstrates at least 8 to 25 times higher motion tolerability, critical for the UHS-OMAG system to achieve retinal microvasculature images with high quality. Furthermore, the new UHS-OMAG system employs a high speed line scan CMOS camera (240 kHz A-line scan rate) to capture 500 A-lines for one B-frame at a 400 Hz frame rate. With this system, we performed a series of in vivo experiments to visualize the retinal microvasculature in humans. Two featured imaging protocols are utilized. The first is of the low lateral resolution (16 μm) and a wide field of view (4 × 3 mm2 with single scan and 7 × 8 mm2 for multiple scans), while the second is of the high lateral resolution (5 μm) and a narrow field of view (1.5 × 1.2 mm2 with single scan). The great imaging performance delivered by our system suggests that UHS-OMAG can be a promising noninvasive alternative to the current clinical retinal microvasculature imaging techniques for the diagnosis of eye diseases with significant vascular involvement, such as diabetic retinopathy and age-related macular degeneration.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katti, Amogh; Di Fatta, Giuseppe; Naughton III, Thomas J

    Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum's User Level Failure Mitigation proposal has introduced an operation, MPI_Comm_shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI_Comm_shrink operation requires a fault tolerant failure detection and consensus algorithm. This paper presents and compares two novel failure detection and consensus algorithms. The proposed algorithms are based on Gossip protocols and are inherently fault-tolerant and scalable. The proposed algorithms were implementedmore » and tested using the Extreme-scale Simulator. The results show that in both algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus.« less

  16. Achievable rate maximization for decode-and-forward MIMO-OFDM networks with an energy harvesting relay.

    PubMed

    Du, Guanyao; Yu, Jianjun

    2016-01-01

    This paper investigates the system achievable rate for the multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system with an energy harvesting (EH) relay. Firstly we propose two protocols, time switching-based decode-and-forward relaying (TSDFR) and a flexible power splitting-based DF relaying (PSDFR) protocol by considering two practical receiver architectures, to enable the simultaneous information processing and energy harvesting at the relay. In PSDFR protocol, we introduce a temporal parameter to describe the time division pattern between the two phases which makes the protocol more flexible and general. In order to explore the system performance limit, we discuss the system achievable rate theoretically and formulate two optimization problems for the proposed protocols to maximize the system achievable rate. Since the problems are non-convex and difficult to solve, we first analyze them theoretically and get some explicit results, then design an augmented Lagrangian penalty function (ALPF) based algorithm for them. Numerical results are provided to validate the accuracy of our analytical results and the effectiveness of the proposed ALPF algorithm. It is shown that, PSDFR outperforms TSDFR to achieve higher achievable rate in such a MIMO-OFDM relaying system. Besides, we also investigate the impacts of the relay location, the number of antennas and the number of subcarriers on the system performance. Specifically, it is shown that, the relay position greatly affects the system performance of both protocols, and relatively worse achievable rate is achieved when the relay is placed in the middle of the source and the destination. This is different from the MIMO-OFDM DF relaying system without EH. Moreover, the optimal factor which indicates the time division pattern between the two phases in the PSDFR protocol is always above 0.8, which means that, the common division of the total transmission time into two equal phases in previous work applying PS-based receiver is not optimal.

  17. Massively Parallel Solution of Poisson Equation on Coarse Grain MIMD Architectures

    NASA Technical Reports Server (NTRS)

    Fijany, A.; Weinberger, D.; Roosta, R.; Gulati, S.

    1998-01-01

    In this paper a new algorithm, designated as Fast Invariant Imbedding algorithm, for solution of Poisson equation on vector and massively parallel MIMD architectures is presented. This algorithm achieves the same optimal computational efficiency as other Fast Poisson solvers while offering a much better structure for vector and parallel implementation. Our implementation on the Intel Delta and Paragon shows that a speedup of over two orders of magnitude can be achieved even for moderate size problems.

  18. An Energy-Efficient Spectrum-Aware Reinforcement Learning-Based Clustering Algorithm for Cognitive Radio Sensor Networks

    PubMed Central

    Mustapha, Ibrahim; Ali, Borhanuddin Mohd; Rasid, Mohd Fadlee A.; Sali, Aduwati; Mohamad, Hafizal

    2015-01-01

    It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach. PMID:26287191

  19. An Energy-Efficient Spectrum-Aware Reinforcement Learning-Based Clustering Algorithm for Cognitive Radio Sensor Networks.

    PubMed

    Mustapha, Ibrahim; Mohd Ali, Borhanuddin; Rasid, Mohd Fadlee A; Sali, Aduwati; Mohamad, Hafizal

    2015-08-13

    It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach.

  20. Can human experts predict solubility better than computers?

    PubMed

    Boobier, Samuel; Osbourn, Anne; Mitchell, John B O

    2017-12-13

    In this study, we design and carry out a survey, asking human experts to predict the aqueous solubility of druglike organic compounds. We investigate whether these experts, drawn largely from the pharmaceutical industry and academia, can match or exceed the predictive power of algorithms. Alongside this, we implement 10 typical machine learning algorithms on the same dataset. The best algorithm, a variety of neural network known as a multi-layer perceptron, gave an RMSE of 0.985 log S units and an R 2 of 0.706. We would not have predicted the relative success of this particular algorithm in advance. We found that the best individual human predictor generated an almost identical prediction quality with an RMSE of 0.942 log S units and an R 2 of 0.723. The collection of algorithms contained a higher proportion of reasonably good predictors, nine out of ten compared with around half of the humans. We found that, for either humans or algorithms, combining individual predictions into a consensus predictor by taking their median generated excellent predictivity. While our consensus human predictor achieved very slightly better headline figures on various statistical measures, the difference between it and the consensus machine learning predictor was both small and statistically insignificant. We conclude that human experts can predict the aqueous solubility of druglike molecules essentially equally well as machine learning algorithms. We find that, for either humans or algorithms, combining individual predictions into a consensus predictor by taking their median is a powerful way of benefitting from the wisdom of crowds.

  1. Improved pulse laser ranging algorithm based on high speed sampling

    NASA Astrophysics Data System (ADS)

    Gao, Xuan-yi; Qian, Rui-hai; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; He, Shi-jie; Guo, Xiao-kang

    2016-10-01

    Narrow pulse laser ranging achieves long-range target detection using laser pulse with low divergent beams. Pulse laser ranging is widely used in military, industrial, civil, engineering and transportation field. In this paper, an improved narrow pulse laser ranging algorithm is studied based on the high speed sampling. Firstly, theoretical simulation models have been built and analyzed including the laser emission and pulse laser ranging algorithm. An improved pulse ranging algorithm is developed. This new algorithm combines the matched filter algorithm and the constant fraction discrimination (CFD) algorithm. After the algorithm simulation, a laser ranging hardware system is set up to implement the improved algorithm. The laser ranging hardware system includes a laser diode, a laser detector and a high sample rate data logging circuit. Subsequently, using Verilog HDL language, the improved algorithm is implemented in the FPGA chip based on fusion of the matched filter algorithm and the CFD algorithm. Finally, the laser ranging experiment is carried out to test the improved algorithm ranging performance comparing to the matched filter algorithm and the CFD algorithm using the laser ranging hardware system. The test analysis result demonstrates that the laser ranging hardware system realized the high speed processing and high speed sampling data transmission. The algorithm analysis result presents that the improved algorithm achieves 0.3m distance ranging precision. The improved algorithm analysis result meets the expected effect, which is consistent with the theoretical simulation.

  2. An Orthogonal Evolutionary Algorithm With Learning Automata for Multiobjective Optimization.

    PubMed

    Dai, Cai; Wang, Yuping; Ye, Miao; Xue, Xingsi; Liu, Hailin

    2016-12-01

    Research on multiobjective optimization problems becomes one of the hottest topics of intelligent computation. In order to improve the search efficiency of an evolutionary algorithm and maintain the diversity of solutions, in this paper, the learning automata (LA) is first used for quantization orthogonal crossover (QOX), and a new fitness function based on decomposition is proposed to achieve these two purposes. Based on these, an orthogonal evolutionary algorithm with LA for complex multiobjective optimization problems with continuous variables is proposed. The experimental results show that in continuous states, the proposed algorithm is able to achieve accurate Pareto-optimal sets and wide Pareto-optimal fronts efficiently. Moreover, the comparison with the several existing well-known algorithms: nondominated sorting genetic algorithm II, decomposition-based multiobjective evolutionary algorithm, decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes, multiobjective optimization by LA, and multiobjective immune algorithm with nondominated neighbor-based selection, on 15 multiobjective benchmark problems, shows that the proposed algorithm is able to find more accurate and evenly distributed Pareto-optimal fronts than the compared ones.

  3. Estimation of diffusion coefficients from voltammetric signals by support vector and gaussian process regression

    PubMed Central

    2014-01-01

    Background Support vector regression (SVR) and Gaussian process regression (GPR) were used for the analysis of electroanalytical experimental data to estimate diffusion coefficients. Results For simulated cyclic voltammograms based on the EC, Eqr, and EqrC mechanisms these regression algorithms in combination with nonlinear kernel/covariance functions yielded diffusion coefficients with higher accuracy as compared to the standard approach of calculating diffusion coefficients relying on the Nicholson-Shain equation. The level of accuracy achieved by SVR and GPR is virtually independent of the rate constants governing the respective reaction steps. Further, the reduction of high-dimensional voltammetric signals by manual selection of typical voltammetric peak features decreased the performance of both regression algorithms compared to a reduction by downsampling or principal component analysis. After training on simulated data sets, diffusion coefficients were estimated by the regression algorithms for experimental data comprising voltammetric signals for three organometallic complexes. Conclusions Estimated diffusion coefficients closely matched the values determined by the parameter fitting method, but reduced the required computational time considerably for one of the reaction mechanisms. The automated processing of voltammograms according to the regression algorithms yields better results than the conventional analysis of peak-related data. PMID:24987463

  4. Hybrid EEG—Eye Tracker: Automatic Identification and Removal of Eye Movement and Blink Artifacts from Electroencephalographic Signal

    PubMed Central

    Mannan, Malik M. Naeem; Kim, Shinjung; Jeong, Myung Yung; Kamran, M. Ahmad

    2016-01-01

    Contamination of eye movement and blink artifacts in Electroencephalogram (EEG) recording makes the analysis of EEG data more difficult and could result in mislead findings. Efficient removal of these artifacts from EEG data is an essential step in improving classification accuracy to develop the brain-computer interface (BCI). In this paper, we proposed an automatic framework based on independent component analysis (ICA) and system identification to identify and remove ocular artifacts from EEG data by using hybrid EEG and eye tracker system. The performance of the proposed algorithm is illustrated using experimental and standard EEG datasets. The proposed algorithm not only removes the ocular artifacts from artifactual zone but also preserves the neuronal activity related EEG signals in non-artifactual zone. The comparison with the two state-of-the-art techniques namely ADJUST based ICA and REGICA reveals the significant improved performance of the proposed algorithm for removing eye movement and blink artifacts from EEG data. Additionally, results demonstrate that the proposed algorithm can achieve lower relative error and higher mutual information values between corrected EEG and artifact-free EEG data. PMID:26907276

  5. Comparison of algorithms for solving the sign problem in the O(3) model in 1 +1 dimensions at finite chemical potential

    NASA Astrophysics Data System (ADS)

    Katz, S. D.; Niedermayer, F.; Nógrádi, D.; Török, Cs.

    2017-03-01

    We study three possible ways to circumvent the sign problem in the O(3) nonlinear sigma model in 1 +1 dimensions. We compare the results of the worm algorithm to complex Langevin and multiparameter reweighting. Using the worm algorithm, the thermodynamics of the model is investigated, and continuum results are shown for the pressure at different μ /T values in the range 0-4. By performing T =0 simulations using the worm algorithm, the Silver Blaze phenomenon is reproduced. Regarding the complex Langevin, we test various implementations of discretizing the complex Langevin equation. We found that the exponentialized Euler discretization of the Langevin equation gives wrong results for the action and the density at low T /m . By performing a continuum extrapolation, we found that this discrepancy does not disappear and depends slightly on temperature. The discretization with spherical coordinates performs similarly at low μ /T but breaks down also at some higher temperatures at high μ /T . However, a third discretization that uses a constraining force to achieve the ϕ2=1 condition gives correct results for the action but wrong results for the density at low μ /T .

  6. KungFQ: a simple and powerful approach to compress fastq files.

    PubMed

    Grassi, Elena; Di Gregorio, Federico; Molineris, Ivan

    2012-01-01

    Nowadays storing data derived from deep sequencing experiments has become pivotal and standard compression algorithms do not exploit in a satisfying manner their structure. A number of reference-based compression algorithms have been developed but they are less adequate when approaching new species without fully sequenced genomes or nongenomic data. We developed a tool that takes advantages of fastq characteristics and encodes them in a binary format optimized in order to be further compressed with standard tools (such as gzip or lzma). The algorithm is straightforward and does not need any external reference file, it scans the fastq only once and has a constant memory requirement. Moreover, we added the possibility to perform lossy compression, losing some of the original information (IDs and/or qualities) but resulting in smaller files; it is also possible to define a quality cutoff under which corresponding base calls are converted to N. We achieve 2.82 to 7.77 compression ratios on various fastq files without losing information and 5.37 to 8.77 losing IDs, which are often not used in common analysis pipelines. In this paper, we compare the algorithm performance with known tools, usually obtaining higher compression levels.

  7. RMP: Reduced-set matching pursuit approach for efficient compressed sensing signal reconstruction.

    PubMed

    Abdel-Sayed, Michael M; Khattab, Ahmed; Abu-Elyazeed, Mohamed F

    2016-11-01

    Compressed sensing enables the acquisition of sparse signals at a rate that is much lower than the Nyquist rate. Compressed sensing initially adopted [Formula: see text] minimization for signal reconstruction which is computationally expensive. Several greedy recovery algorithms have been recently proposed for signal reconstruction at a lower computational complexity compared to the optimal [Formula: see text] minimization, while maintaining a good reconstruction accuracy. In this paper, the Reduced-set Matching Pursuit (RMP) greedy recovery algorithm is proposed for compressed sensing. Unlike existing approaches which either select too many or too few values per iteration, RMP aims at selecting the most sufficient number of correlation values per iteration, which improves both the reconstruction time and error. Furthermore, RMP prunes the estimated signal, and hence, excludes the incorrectly selected values. The RMP algorithm achieves a higher reconstruction accuracy at a significantly low computational complexity compared to existing greedy recovery algorithms. It is even superior to [Formula: see text] minimization in terms of the normalized time-error product, a new metric introduced to measure the trade-off between the reconstruction time and error. RMP superior performance is illustrated with both noiseless and noisy samples.

  8. An index of refraction algorithm for seawater over temperature, pressure, salinity, density, and wavelength

    NASA Astrophysics Data System (ADS)

    Millard, R. C.; Seaver, G.

    1990-12-01

    A 27-term index of refraction algorithm for pure and sea waters has been developed using four experimental data sets of differing accuracies. They cover the range 500-700 nm in wavelength, 0-30°C in temperature, 0-40 psu in salinity, and 0-11,000 db in pressure. The index of refraction algorithm has an accuracy that varies from 0.4 ppm for pure water at atmospheric pressure to 80 ppm at high pressures, but preserves the accuracy of each original data set. This algorithm is a significant improvement over existing descriptions as it is in analytical form with a better and more carefully defined accuracy. A salinometer algorithm with the same uncertainty has been created by numerically inverting the index algorithm using the Newton-Raphson method. The 27-term index algorithm was used to generate a pseudo-data set at the sodium D wavelength (589.26 nm) from which a 6-term densitometer algorithm was constructed. The densitometer algorithm also produces salinity as an intermediate step in the salinity inversion. The densitometer residuals have a standard deviation of 0.049 kg m -3 which is not accurate enough for most oceanographic applications. However, the densitometer algorithm was used to explore the sensitivity of density from this technique to temperature and pressure uncertainties. To achieve a deep ocean densitometer of 0.001 kg m -3 accuracy would require the index of refraction to have an accuracy of 0.3 ppm, the temperature an accuracy of 0.01°C and the pressure 1 db. Our assessment of the currently available index of refraction measurements finds that only the data for fresh water at atmospheric pressure produce an algorithm satisfactory for oceanographic use (density to 0.4 ppm). The data base for the algorithm at higher pressures and various salinities requires an order of magnitude or better improvement in index measurement accuracy before the resultant density accuracy will be comparable to the currently available oceanographic algorithm.

  9. Solar Panel System for Street Light Using Maximum Power Point Tracking (MPPT) Technique

    NASA Astrophysics Data System (ADS)

    Wiedjaja, A.; Harta, S.; Josses, L.; Winardi; Rinda, H.

    2014-03-01

    Solar energy is one form of the renewable energy which is very abundant in regions close to the equator. One application of solar energy is for street light. This research focuses on using the maximum power point tracking technique (MPPT), particularly the perturb and observe (P&O) algorithm, to charge battery for street light system. The proposed charger circuit can achieve 20.73% higher power efficiency compared to that of non-MPPT charger. We also develop the LED driver circuit for the system which can achieve power efficiency up to 91.9% at a current of 1.06 A. The proposed street lightning system can be implemented with a relatively low cost for public areas.

  10. Parallel Algorithms for Switching Edges in Heterogeneous Graphs.

    PubMed

    Bhuiyan, Hasanuzzaman; Khan, Maleq; Chen, Jiangzhuo; Marathe, Madhav

    2017-06-01

    An edge switch is an operation on a graph (or network) where two edges are selected randomly and one of their end vertices are swapped with each other. Edge switch operations have important applications in graph theory and network analysis, such as in generating random networks with a given degree sequence, modeling and analyzing dynamic networks, and in studying various dynamic phenomena over a network. The recent growth of real-world networks motivates the need for efficient parallel algorithms. The dependencies among successive edge switch operations and the requirement to keep the graph simple (i.e., no self-loops or parallel edges) as the edges are switched lead to significant challenges in designing a parallel algorithm. Addressing these challenges requires complex synchronization and communication among the processors leading to difficulties in achieving a good speedup by parallelization. In this paper, we present distributed memory parallel algorithms for switching edges in massive networks. These algorithms provide good speedup and scale well to a large number of processors. A harmonic mean speedup of 73.25 is achieved on eight different networks with 1024 processors. One of the steps in our edge switch algorithms requires the computation of multinomial random variables in parallel. This paper presents the first non-trivial parallel algorithm for the problem, achieving a speedup of 925 using 1024 processors.

  11. Parallel Algorithms for Switching Edges in Heterogeneous Graphs☆

    PubMed Central

    Khan, Maleq; Chen, Jiangzhuo; Marathe, Madhav

    2017-01-01

    An edge switch is an operation on a graph (or network) where two edges are selected randomly and one of their end vertices are swapped with each other. Edge switch operations have important applications in graph theory and network analysis, such as in generating random networks with a given degree sequence, modeling and analyzing dynamic networks, and in studying various dynamic phenomena over a network. The recent growth of real-world networks motivates the need for efficient parallel algorithms. The dependencies among successive edge switch operations and the requirement to keep the graph simple (i.e., no self-loops or parallel edges) as the edges are switched lead to significant challenges in designing a parallel algorithm. Addressing these challenges requires complex synchronization and communication among the processors leading to difficulties in achieving a good speedup by parallelization. In this paper, we present distributed memory parallel algorithms for switching edges in massive networks. These algorithms provide good speedup and scale well to a large number of processors. A harmonic mean speedup of 73.25 is achieved on eight different networks with 1024 processors. One of the steps in our edge switch algorithms requires the computation of multinomial random variables in parallel. This paper presents the first non-trivial parallel algorithm for the problem, achieving a speedup of 925 using 1024 processors. PMID:28757680

  12. Development of Serum Marker Models to Increase Diagnostic Accuracy of Advanced Fibrosis in Nonalcoholic Fatty Liver Disease: The New LINKI Algorithm Compared with Established Algorithms.

    PubMed

    Lykiardopoulos, Byron; Hagström, Hannes; Fredrikson, Mats; Ignatova, Simone; Stål, Per; Hultcrantz, Rolf; Ekstedt, Mattias; Kechagias, Stergios

    2016-01-01

    Detection of advanced fibrosis (F3-F4) in nonalcoholic fatty liver disease (NAFLD) is important for ascertaining prognosis. Serum markers have been proposed as alternatives to biopsy. We attempted to develop a novel algorithm for detection of advanced fibrosis based on a more efficient combination of serological markers and to compare this with established algorithms. We included 158 patients with biopsy-proven NAFLD. Of these, 38 had advanced fibrosis. The following fibrosis algorithms were calculated: NAFLD fibrosis score, BARD, NIKEI, NASH-CRN regression score, APRI, FIB-4, King´s score, GUCI, Lok index, Forns score, and ELF. Study population was randomly divided in a training and a validation group. A multiple logistic regression analysis using bootstrapping methods was applied to the training group. Among many variables analyzed age, fasting glucose, hyaluronic acid and AST were included, and a model (LINKI-1) for predicting advanced fibrosis was created. Moreover, these variables were combined with platelet count in a mathematical way exaggerating the opposing effects, and alternative models (LINKI-2) were also created. Models were compared using area under the receiver operator characteristic curves (AUROC). Of established algorithms FIB-4 and King´s score had the best diagnostic accuracy with AUROCs 0.84 and 0.83, respectively. Higher accuracy was achieved with the novel LINKI algorithms. AUROCs in the total cohort for LINKI-1 was 0.91 and for LINKI-2 models 0.89. The LINKI algorithms for detection of advanced fibrosis in NAFLD showed better accuracy than established algorithms and should be validated in further studies including larger cohorts.

  13. Monte Carlo simulations on marker grouping and ordering.

    PubMed

    Wu, J; Jenkins, J; Zhu, J; McCarty, J; Watson, C

    2003-08-01

    Four global algorithms, maximum likelihood (ML), sum of adjacent LOD score (SALOD), sum of adjacent recombinant fractions (SARF) and product of adjacent recombinant fraction (PARF), and one approximation algorithm, seriation (SER), were used to compare the marker ordering efficiencies for correctly given linkage groups based on doubled haploid (DH) populations. The Monte Carlo simulation results indicated the marker ordering powers for the five methods were almost identical. High correlation coefficients were greater than 0.99 between grouping power and ordering power, indicating that all these methods for marker ordering were reliable. Therefore, the main problem for linkage analysis was how to improve the grouping power. Since the SER approach provided the advantage of speed without losing ordering power, this approach was used for detailed simulations. For more generality, multiple linkage groups were employed, and population size, linkage cutoff criterion, marker spacing pattern (even or uneven), and marker spacing distance (close or loose) were considered for obtaining acceptable grouping powers. Simulation results indicated that the grouping power was related to population size, marker spacing distance, and cutoff criterion. Generally, a large population size provided higher grouping power than small population size, and closely linked markers provided higher grouping power than loosely linked markers. The cutoff criterion range for achieving acceptable grouping power and ordering power differed for varying cases; however, combining all situations in this study, a cutoff criterion ranging from 50 cM to 60 cM was recommended for achieving acceptable grouping power and ordering power for different cases.

  14. Spectrum Access In Cognitive Radio Using a Two-Stage Reinforcement Learning Approach

    NASA Astrophysics Data System (ADS)

    Raj, Vishnu; Dias, Irene; Tholeti, Thulasi; Kalyani, Sheetal

    2018-02-01

    With the advent of the 5th generation of wireless standards and an increasing demand for higher throughput, methods to improve the spectral efficiency of wireless systems have become very important. In the context of cognitive radio, a substantial increase in throughput is possible if the secondary user can make smart decisions regarding which channel to sense and when or how often to sense. Here, we propose an algorithm to not only select a channel for data transmission but also to predict how long the channel will remain unoccupied so that the time spent on channel sensing can be minimized. Our algorithm learns in two stages - a reinforcement learning approach for channel selection and a Bayesian approach to determine the optimal duration for which sensing can be skipped. Comparisons with other learning methods are provided through extensive simulations. We show that the number of sensing is minimized with negligible increase in primary interference; this implies that lesser energy is spent by the secondary user in sensing and also higher throughput is achieved by saving on sensing.

  15. Study of wavelet packet energy entropy for emotion classification in speech and glottal signals

    NASA Astrophysics Data System (ADS)

    He, Ling; Lech, Margaret; Zhang, Jing; Ren, Xiaomei; Deng, Lihua

    2013-07-01

    The automatic speech emotion recognition has important applications in human-machine communication. Majority of current research in this area is focused on finding optimal feature parameters. In recent studies, several glottal features were examined as potential cues for emotion differentiation. In this study, a new type of feature parameter is proposed, which calculates energy entropy on values within selected Wavelet Packet frequency bands. The modeling and classification tasks are conducted using the classical GMM algorithm. The experiments use two data sets: the Speech Under Simulated Emotion (SUSE) data set annotated with three different emotions (angry, neutral and soft) and Berlin Emotional Speech (BES) database annotated with seven different emotions (angry, bored, disgust, fear, happy, sad and neutral). The average classification accuracy achieved for the SUSE data (74%-76%) is significantly higher than the accuracy achieved for the BES data (51%-54%). In both cases, the accuracy was significantly higher than the respective random guessing levels (33% for SUSE and 14.3% for BES).

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmagarmid, A.K.

    The availability of distributed data bases is directly affected by the timely detection and resolution of deadlocks. Consequently, mechanisms are needed to make deadlock detection algorithms resilient to failures. Presented first is a centralized algorithm that allows transactions to have multiple requests outstanding. Next, a new distributed deadlock detection algorithm (DDDA) is presented, using a global detector (GD) to detect global deadlocks and local detectors (LDs) to detect local deadlocks. This algorithm essentially identifies transaction-resource interactions that m cause global (multisite) deadlocks. Third, a deadlock detection algorithm utilizing a transaction-wait-for (TWF) graph is presented. It is a fully disjoint algorithmmore » that allows multiple outstanding requests. The proposed algorithm can achieve improved overall performance by using multiple disjoint controllers coupled with the two-phase property while maintaining the simplicity of centralized schemes. Fourth, an algorithm that combines deadlock detection and avoidance is given. This algorithm uses concurrent transaction controllers and resource coordinators to achieve maximum distribution. The language of CSP is used to describe this algorithm. Finally, two efficient deadlock resolution protocols are given along with some guidelines to be used in choosing a transaction for abortion.« less

  17. Rapid earthquake detection through GPU-Based template matching

    NASA Astrophysics Data System (ADS)

    Mu, Dawei; Lee, En-Jui; Chen, Po

    2017-12-01

    The template-matching algorithm (TMA) has been widely adopted for improving the reliability of earthquake detection. The TMA is based on calculating the normalized cross-correlation coefficient (NCC) between a collection of selected template waveforms and the continuous waveform recordings of seismic instruments. In realistic applications, the computational cost of the TMA is much higher than that of traditional techniques. In this study, we provide an analysis of the TMA and show how the GPU architecture provides an almost ideal environment for accelerating the TMA and NCC-based pattern recognition algorithms in general. So far, our best-performing GPU code has achieved a speedup factor of more than 800 with respect to a common sequential CPU code. We demonstrate the performance of our GPU code using seismic waveform recordings from the ML 6.6 Meinong earthquake sequence in Taiwan.

  18. FPGA-Based Pulse Pile-Up Correction With Energy and Timing Recovery.

    PubMed

    Haselman, M D; Pasko, J; Hauck, S; Lewellen, T K; Miyaoka, R S

    2012-10-01

    Modern field programmable gate arrays (FPGAs) are capable of performing complex discrete signal processing algorithms with clock rates well above 100 MHz. This, combined with FPGA's low expense, ease of use, and selected dedicated hardware make them an ideal technology for a data acquisition system for a positron emission tomography (PET) scanner. The University of Washington is producing a high-resolution, small-animal PET scanner that utilizes FPGAs as the core of the front-end electronics. For this scanner, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilized to add significant signal processing power to produce higher quality images. In this paper we report on an all-digital pulse pile-up correction algorithm that has been developed for the FPGA. The pile-up mitigation algorithm will allow the scanner to run at higher count rates without incurring large data losses due to the overlapping of scintillation signals. This correction technique utilizes a reference pulse to extract timing and energy information for most pile-up events. Using pulses acquired from a Zecotech Photonics MAPD-N with an LFS-3 scintillator, we show that good timing and energy information can be achieved in the presence of pile-up utilizing a moderate amount of FPGA resources.

  19. Common spatial pattern combined with kernel linear discriminate and generalized radial basis function for motor imagery-based brain computer interface applications

    NASA Astrophysics Data System (ADS)

    Hekmatmanesh, Amin; Jamaloo, Fatemeh; Wu, Huapeng; Handroos, Heikki; Kilpeläinen, Asko

    2018-04-01

    Brain Computer Interface (BCI) can be a challenge for developing of robotic, prosthesis and human-controlled systems. This work focuses on the implementation of a common spatial pattern (CSP) base algorithm to detect event related desynchronization patterns. Utilizing famous previous work in this area, features are extracted by filter bank with common spatial pattern (FBCSP) method, and then weighted by a sensitive learning vector quantization (SLVQ) algorithm. In the current work, application of the radial basis function (RBF) as a mapping kernel of linear discriminant analysis (KLDA) method on the weighted features, allows the transfer of data into a higher dimension for more discriminated data scattering by RBF kernel. Afterwards, support vector machine (SVM) with generalized radial basis function (GRBF) kernel is employed to improve the efficiency and robustness of the classification. Averagely, 89.60% accuracy and 74.19% robustness are achieved. BCI Competition III, Iva data set is used to evaluate the algorithm for detecting right hand and foot imagery movement patterns. Results show that combination of KLDA with SVM-GRBF classifier makes 8.9% and 14.19% improvements in accuracy and robustness, respectively. For all the subjects, it is concluded that mapping the CSP features into a higher dimension by RBF and utilization GRBF as a kernel of SVM, improve the accuracy and reliability of the proposed method.

  20. Fully automated, deep learning segmentation of oxygen-induced retinopathy images

    PubMed Central

    Xiao, Sa; Bucher, Felicitas; Wu, Yue; Rokem, Ariel; Lee, Cecilia S.; Marra, Kyle V.; Fallon, Regis; Diaz-Aguilar, Sophia; Aguilar, Edith; Friedlander, Martin; Lee, Aaron Y.

    2017-01-01

    Oxygen-induced retinopathy (OIR) is a widely used model to study ischemia-driven neovascularization (NV) in the retina and to serve in proof-of-concept studies in evaluating antiangiogenic drugs for ocular, as well as nonocular, diseases. The primary parameters that are analyzed in this mouse model include the percentage of retina with vaso-obliteration (VO) and NV areas. However, quantification of these two key variables comes with a great challenge due to the requirement of human experts to read the images. Human readers are costly, time-consuming, and subject to bias. Using recent advances in machine learning and computer vision, we trained deep learning neural networks using over a thousand segmentations to fully automate segmentation in OIR images. While determining the percentage area of VO, our algorithm achieved a similar range of correlation coefficients to that of expert inter-human correlation coefficients. In addition, our algorithm achieved a higher range of correlation coefficients compared with inter-expert correlation coefficients for quantification of the percentage area of neovascular tufts. In summary, we have created an open-source, fully automated pipeline for the quantification of key values of OIR images using deep learning neural networks. PMID:29263301

  1. Reinforcement learning for resource allocation in LEO satellite networks.

    PubMed

    Usaha, Wipawee; Barria, Javier A

    2007-06-01

    In this paper, we develop and assess online decision-making algorithms for call admission and routing for low Earth orbit (LEO) satellite networks. It has been shown in a recent paper that, in a LEO satellite system, a semi-Markov decision process formulation of the call admission and routing problem can achieve better performance in terms of an average revenue function than existing routing methods. However, the conventional dynamic programming (DP) numerical solution becomes prohibited as the problem size increases. In this paper, two solution methods based on reinforcement learning (RL) are proposed in order to circumvent the computational burden of DP. The first method is based on an actor-critic method with temporal-difference (TD) learning. The second method is based on a critic-only method, called optimistic TD learning. The algorithms enhance performance in terms of requirements in storage, computational complexity and computational time, and in terms of an overall long-term average revenue function that penalizes blocked calls. Numerical studies are carried out, and the results obtained show that the RL framework can achieve up to 56% higher average revenue over existing routing methods used in LEO satellite networks with reasonable storage and computational requirements.

  2. Tracking Multiple Topics for Finding Interesting Articles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pon, R K; Cardenas, A F; Buttler, D J

    We introduce multiple topic tracking (MTT) for iScore to better recommend news articles for users with multiple interests and to address changes in user interests over time. As an extension of the basic Rocchio algorithm, traditional topic detection and tracking, and single-pass clustering, MTT maintains multiple interest profiles to identify interesting articles for a specific user given user-feedback. Focusing on only interesting topics enables iScore to discard useless profiles to address changes in user interests and to achieve a balance between resource consumption and classification accuracy. Also by relating a topic's interestingness to an article's interestingness, iScore is able tomore » achieve higher quality results than traditional methods such as the Rocchio algorithm. We identify several operating parameters that work well for MTT. Using the same parameters, we show that MTT alone yields high quality results for recommending interesting articles from several corpora. The inclusion of MTT improves iScore's performance by 9% to 14% in recommending news articles from the Yahoo! News RSS feeds and the TREC11 adaptive filter article collection. And through a small user study, we show that iScore can still perform well when only provided with little user feedback.« less

  3. Minimum Interference Channel Assignment Algorithm for Multicast in a Wireless Mesh Network.

    PubMed

    Choi, Sangil; Park, Jong Hyuk

    2016-12-02

    Wireless mesh networks (WMNs) have been considered as one of the key technologies for the configuration of wireless machines since they emerged. In a WMN, wireless routers provide multi-hop wireless connectivity between hosts in the network and also allow them to access the Internet via gateway devices. Wireless routers are typically equipped with multiple radios operating on different channels to increase network throughput. Multicast is a form of communication that delivers data from a source to a set of destinations simultaneously. It is used in a number of applications, such as distributed games, distance education, and video conferencing. In this study, we address a channel assignment problem for multicast in multi-radio multi-channel WMNs. In a multi-radio multi-channel WMN, two nearby nodes will interfere with each other and cause a throughput decrease when they transmit on the same channel. Thus, an important goal for multicast channel assignment is to reduce the interference among networked devices. We have developed a minimum interference channel assignment (MICA) algorithm for multicast that accurately models the interference relationship between pairs of multicast tree nodes using the concept of the interference factor and assigns channels to tree nodes to minimize interference within the multicast tree. Simulation results show that MICA achieves higher throughput and lower end-to-end packet delay compared with an existing channel assignment algorithm named multi-channel multicast (MCM). In addition, MICA achieves much lower throughput variation among the destination nodes than MCM.

  4. Minimum Interference Channel Assignment Algorithm for Multicast in a Wireless Mesh Network

    PubMed Central

    Choi, Sangil; Park, Jong Hyuk

    2016-01-01

    Wireless mesh networks (WMNs) have been considered as one of the key technologies for the configuration of wireless machines since they emerged. In a WMN, wireless routers provide multi-hop wireless connectivity between hosts in the network and also allow them to access the Internet via gateway devices. Wireless routers are typically equipped with multiple radios operating on different channels to increase network throughput. Multicast is a form of communication that delivers data from a source to a set of destinations simultaneously. It is used in a number of applications, such as distributed games, distance education, and video conferencing. In this study, we address a channel assignment problem for multicast in multi-radio multi-channel WMNs. In a multi-radio multi-channel WMN, two nearby nodes will interfere with each other and cause a throughput decrease when they transmit on the same channel. Thus, an important goal for multicast channel assignment is to reduce the interference among networked devices. We have developed a minimum interference channel assignment (MICA) algorithm for multicast that accurately models the interference relationship between pairs of multicast tree nodes using the concept of the interference factor and assigns channels to tree nodes to minimize interference within the multicast tree. Simulation results show that MICA achieves higher throughput and lower end-to-end packet delay compared with an existing channel assignment algorithm named multi-channel multicast (MCM). In addition, MICA achieves much lower throughput variation among the destination nodes than MCM. PMID:27918438

  5. Electrochemical model based charge optimization for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Pramanik, Sourav; Anwar, Sohel

    2016-05-01

    In this paper, we propose the design of a novel optimal strategy for charging the lithium-ion battery based on electrochemical battery model that is aimed at improved performance. A performance index that aims at minimizing the charging effort along with a minimum deviation from the rated maximum thresholds for cell temperature and charging current has been defined. The method proposed in this paper aims at achieving a faster charging rate while maintaining safe limits for various battery parameters. Safe operation of the battery is achieved by including the battery bulk temperature as a control component in the performance index which is of critical importance for electric vehicles. Another important aspect of the performance objective proposed here is the efficiency of the algorithm that would allow higher charging rates without compromising the internal electrochemical kinetics of the battery which would prevent abusive conditions, thereby improving the long term durability. A more realistic model, based on battery electro-chemistry has been used for the design of the optimal algorithm as opposed to the conventional equivalent circuit models. To solve the optimization problem, Pontryagins principle has been used which is very effective for constrained optimization problems with both state and input constraints. Simulation results show that the proposed optimal charging algorithm is capable of shortening the charging time of a lithium ion cell while maintaining the temperature constraint when compared with the standard constant current charging. The designed method also maintains the internal states within limits that can avoid abusive operating conditions.

  6. Use of machine learning to improve autism screening and diagnostic instruments: effectiveness, efficiency, and multi-instrument fusion

    PubMed Central

    Bone, Daniel; Bishop, Somer; Black, Matthew P.; Goodwin, Matthew S.; Lord, Catherine; Narayanan, Shrikanth S.

    2016-01-01

    Background Machine learning (ML) provides novel opportunities for human behavior research and clinical translation, yet its application can have noted pitfalls (Bone et al., 2015). In this work, we fastidiously utilize ML to derive autism spectrum disorder (ASD) instrument algorithms in an attempt to improve upon widely-used ASD screening and diagnostic tools. Methods The data consisted of Autism Diagnostic Interview-Revised (ADI-R) and Social Responsiveness Scale (SRS) scores for 1,264 verbal individuals with ASD and 462 verbal individuals with non-ASD developmental or psychiatric disorders (DD), split at age 10. Algorithms were created via a robust ML classifier, support vector machine (SVM), while targeting best-estimate clinical diagnosis of ASD vs. non-ASD. Parameter settings were tuned in multiple levels of cross-validation. Results The created algorithms were more effective (higher performing) than current algorithms, were tunable (sensitivity and specificity can be differentially weighted), and were more efficient (achieving near-peak performance with five or fewer codes). Results from ML-based fusion of ADI-R and SRS are reported. We present a screener algorithm for below (above) age 10 that reached 89.2% (86.7%) sensitivity and 59.0% (53.4%) specificity with only five behavioral codes. Conclusions ML is useful for creating robust, customizable instrument algorithms. In a unique dataset comprised of controls with other difficulties, our findings highlight limitations of current caregiver-report instruments and indicate possible avenues for improving ASD screening and diagnostic tools. PMID:27090613

  7. Use of machine learning to improve autism screening and diagnostic instruments: effectiveness, efficiency, and multi-instrument fusion.

    PubMed

    Bone, Daniel; Bishop, Somer L; Black, Matthew P; Goodwin, Matthew S; Lord, Catherine; Narayanan, Shrikanth S

    2016-08-01

    Machine learning (ML) provides novel opportunities for human behavior research and clinical translation, yet its application can have noted pitfalls (Bone et al., 2015). In this work, we fastidiously utilize ML to derive autism spectrum disorder (ASD) instrument algorithms in an attempt to improve upon widely used ASD screening and diagnostic tools. The data consisted of Autism Diagnostic Interview-Revised (ADI-R) and Social Responsiveness Scale (SRS) scores for 1,264 verbal individuals with ASD and 462 verbal individuals with non-ASD developmental or psychiatric disorders, split at age 10. Algorithms were created via a robust ML classifier, support vector machine, while targeting best-estimate clinical diagnosis of ASD versus non-ASD. Parameter settings were tuned in multiple levels of cross-validation. The created algorithms were more effective (higher performing) than the current algorithms, were tunable (sensitivity and specificity can be differentially weighted), and were more efficient (achieving near-peak performance with five or fewer codes). Results from ML-based fusion of ADI-R and SRS are reported. We present a screener algorithm for below (above) age 10 that reached 89.2% (86.7%) sensitivity and 59.0% (53.4%) specificity with only five behavioral codes. ML is useful for creating robust, customizable instrument algorithms. In a unique dataset comprised of controls with other difficulties, our findings highlight the limitations of current caregiver-report instruments and indicate possible avenues for improving ASD screening and diagnostic tools. © 2016 Association for Child and Adolescent Mental Health.

  8. Hybrid protection algorithms based on game theory in multi-domain optical networks

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Wu, Jingjing; Hou, Weigang; Liu, Yejun; Zhang, Lincong; Li, Hongming

    2011-12-01

    With the network size increasing, the optical backbone is divided into multiple domains and each domain has its own network operator and management policy. At the same time, the failures in optical network may lead to a huge data loss since each wavelength carries a lot of traffic. Therefore, the survivability in multi-domain optical network is very important. However, existing survivable algorithms can achieve only the unilateral optimization for profit of either users or network operators. Then, they cannot well find the double-win optimal solution with considering economic factors for both users and network operators. Thus, in this paper we develop the multi-domain network model with involving multiple Quality of Service (QoS) parameters. After presenting the link evaluation approach based on fuzzy mathematics, we propose the game model to find the optimal solution to maximize the user's utility, the network operator's utility, and the joint utility of user and network operator. Since the problem of finding double-win optimal solution is NP-complete, we propose two new hybrid protection algorithms, Intra-domain Sub-path Protection (ISP) algorithm and Inter-domain End-to-end Protection (IEP) algorithm. In ISP and IEP, the hybrid protection means that the intelligent algorithm based on Bacterial Colony Optimization (BCO) and the heuristic algorithm are used to solve the survivability in intra-domain routing and inter-domain routing, respectively. Simulation results show that ISP and IEP have the similar comprehensive utility. In addition, ISP has better resource utilization efficiency, lower blocking probability, and higher network operator's utility, while IEP has better user's utility.

  9. Phenotyping for patient safety: algorithm development for electronic health record based automated adverse event and medical error detection in neonatal intensive care.

    PubMed

    Li, Qi; Melton, Kristin; Lingren, Todd; Kirkendall, Eric S; Hall, Eric; Zhai, Haijun; Ni, Yizhao; Kaiser, Megan; Stoutenborough, Laura; Solti, Imre

    2014-01-01

    Although electronic health records (EHRs) have the potential to provide a foundation for quality and safety algorithms, few studies have measured their impact on automated adverse event (AE) and medical error (ME) detection within the neonatal intensive care unit (NICU) environment. This paper presents two phenotyping AE and ME detection algorithms (ie, IV infiltrations, narcotic medication oversedation and dosing errors) and describes manual annotation of airway management and medication/fluid AEs from NICU EHRs. From 753 NICU patient EHRs from 2011, we developed two automatic AE/ME detection algorithms, and manually annotated 11 classes of AEs in 3263 clinical notes. Performance of the automatic AE/ME detection algorithms was compared to trigger tool and voluntary incident reporting results. AEs in clinical notes were double annotated and consensus achieved under neonatologist supervision. Sensitivity, positive predictive value (PPV), and specificity are reported. Twelve severe IV infiltrates were detected. The algorithm identified one more infiltrate than the trigger tool and eight more than incident reporting. One narcotic oversedation was detected demonstrating 100% agreement with the trigger tool. Additionally, 17 narcotic medication MEs were detected, an increase of 16 cases over voluntary incident reporting. Automated AE/ME detection algorithms provide higher sensitivity and PPV than currently used trigger tools or voluntary incident-reporting systems, including identification of potential dosing and frequency errors that current methods are unequipped to detect. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katti, Amogh; Di Fatta, Giuseppe; Naughton, Thomas

    Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum s User Level Failure Mitigation proposal has introduced an operation, MPI Comm shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI Comm shrink operation requires a failure detection and consensus algorithm. This paper presents three novel failure detection and consensus algorithms using Gossiping. The proposed algorithms were implemented and tested using the Extreme-scale Simulator. The results show that inmore » all algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus. The third approach is a three-phase distributed failure detection and consensus algorithm and provides consistency guarantees even in very large and extreme-scale systems while at the same time being memory and bandwidth efficient.« less

  11. "ON ALGEBRAIC DECODING OF Q-ARY REED-MULLER AND PRODUCT REED-SOLOMON CODES"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SANTHI, NANDAKISHORE

    We consider a list decoding algorithm recently proposed by Pellikaan-Wu for q-ary Reed-Muller codes RM{sub q}({ell}, m, n) of length n {le} q{sup m} when {ell} {le} q. A simple and easily accessible correctness proof is given which shows that this algorithm achieves a relative error-correction radius of {tau} {le} (1-{radical}{ell}q{sup m-1}/n). This is an improvement over the proof using one-point Algebraic-Geometric decoding method given in. The described algorithm can be adapted to decode product Reed-Solomon codes. We then propose a new low complexity recursive aJgebraic decoding algorithm for product Reed-Solomon codes and Reed-Muller codes. This algorithm achieves a relativemore » error correction radius of {tau} {le} {Pi}{sub i=1}{sup m} (1 - {radical}k{sub i}/q). This algorithm is then proved to outperform the Pellikaan-Wu algorithm in both complexity and error correction radius over a wide range of code rates.« less

  12. Explosive Detection in Aviation Applications Using CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martz, H E; Crawford, C R

    2011-02-15

    CT scanners are deployed world-wide to detect explosives in checked and carry-on baggage. Though very similar to single- and dual-energy multi-slice CT scanners used today in medical imaging, some recently developed explosives detection scanners employ multiple sources and detector arrays to eliminate mechanical rotation of a gantry, photon counting detectors for spectral imaging, and limited number of views to reduce cost. For each bag scanned, the resulting reconstructed images are first processed by automated threat recognition algorithms to screen for explosives and other threats. Human operators review the images only when these automated algorithms report the presence of possible threats.more » The US Department of Homeland Security (DHS) has requirements for future scanners that include dealing with a larger number of threats, higher probability of detection, lower false alarm rates and lower operating costs. One tactic that DHS is pursuing to achieve these requirements is to augment the capabilities of the established security vendors with third-party algorithm developers. A third-party in this context refers to academics and companies other than the established vendors. DHS is particularly interested in exploring the model that has been used very successfully by the medical imaging industry, in which university researchers develop algorithms that are eventually deployed in commercial medical imaging equipment. The purpose of this paper is to discuss opportunities for third-parties to develop advanced reconstruction and threat detection algorithms.« less

  13. Graph cuts and neural networks for segmentation and porosity quantification in Synchrotron Radiation X-ray μCT of an igneous rock sample.

    PubMed

    Meneses, Anderson Alvarenga de Moura; Palheta, Dayara Bastos; Pinheiro, Christiano Jorge Gomes; Barroso, Regina Cely Rodrigues

    2018-03-01

    X-ray Synchrotron Radiation Micro-Computed Tomography (SR-µCT) allows a better visualization in three dimensions with a higher spatial resolution, contributing for the discovery of aspects that could not be observable through conventional radiography. The automatic segmentation of SR-µCT scans is highly valuable due to its innumerous applications in geological sciences, especially for morphology, typology, and characterization of rocks. For a great number of µCT scan slices, a manual process of segmentation would be impractical, either for the time expended and for the accuracy of results. Aiming the automatic segmentation of SR-µCT geological sample images, we applied and compared Energy Minimization via Graph Cuts (GC) algorithms and Artificial Neural Networks (ANNs), as well as the well-known K-means and Fuzzy C-Means algorithms. The Dice Similarity Coefficient (DSC), Sensitivity and Precision were the metrics used for comparison. Kruskal-Wallis and Dunn's tests were applied and the best methods were the GC algorithms and ANNs (with Levenberg-Marquardt and Bayesian Regularization). For those algorithms, an approximate Dice Similarity Coefficient of 95% was achieved. Our results confirm the possibility of usage of those algorithms for segmentation and posterior quantification of porosity of an igneous rock sample SR-µCT scan. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Impact of Linearity and Write Noise of Analog Resistive Memory Devices in a Neural Algorithm Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs-Gedrim, Robin B.; Agarwal, Sapan; Knisely, Kathrine E.

    Resistive memory (ReRAM) shows promise for use as an analog synapse element in energy-efficient neural network algorithm accelerators. A particularly important application is the training of neural networks, as this is the most computationally-intensive procedure in using a neural algorithm. However, training a network with analog ReRAM synapses can significantly reduce the accuracy at the algorithm level. In order to assess this degradation, analog properties of ReRAM devices were measured and hand-written digit recognition accuracy was modeled for the training using backpropagation. Bipolar filamentary devices utilizing three material systems were measured and compared: one oxygen vacancy system, Ta-TaO x, andmore » two conducting metallization systems, Cu-SiO 2, and Ag/chalcogenide. Analog properties and conductance ranges of the devices are optimized by measuring the response to varying voltage pulse characteristics. Key analog device properties which degrade the accuracy are update linearity and write noise. Write noise may improve as a function of device manufacturing maturity, but write nonlinearity appears relatively consistent among the different device material systems and is found to be the most significant factor affecting accuracy. As a result, this suggests that new materials and/or fundamentally different resistive switching mechanisms may be required to improve device linearity and achieve higher algorithm training accuracy.« less

  15. Impact of Linearity and Write Noise of Analog Resistive Memory Devices in a Neural Algorithm Accelerator

    DOE PAGES

    Jacobs-Gedrim, Robin B.; Agarwal, Sapan; Knisely, Kathrine E.; ...

    2017-12-01

    Resistive memory (ReRAM) shows promise for use as an analog synapse element in energy-efficient neural network algorithm accelerators. A particularly important application is the training of neural networks, as this is the most computationally-intensive procedure in using a neural algorithm. However, training a network with analog ReRAM synapses can significantly reduce the accuracy at the algorithm level. In order to assess this degradation, analog properties of ReRAM devices were measured and hand-written digit recognition accuracy was modeled for the training using backpropagation. Bipolar filamentary devices utilizing three material systems were measured and compared: one oxygen vacancy system, Ta-TaO x, andmore » two conducting metallization systems, Cu-SiO 2, and Ag/chalcogenide. Analog properties and conductance ranges of the devices are optimized by measuring the response to varying voltage pulse characteristics. Key analog device properties which degrade the accuracy are update linearity and write noise. Write noise may improve as a function of device manufacturing maturity, but write nonlinearity appears relatively consistent among the different device material systems and is found to be the most significant factor affecting accuracy. As a result, this suggests that new materials and/or fundamentally different resistive switching mechanisms may be required to improve device linearity and achieve higher algorithm training accuracy.« less

  16. Effective Association of SAR and AIS Data Using Non-Rigid Point Pattern Matching

    NASA Astrophysics Data System (ADS)

    Zhao, Z.; Ji, K. F.; Xing, X. W.; Zou, H. X.

    2014-03-01

    Ship surveillance using multiple remote sensing sensors becomes more and more vital presently. Among the various sensors, space-borne Synthetic Aperture Radar (SAR) is optimal for its high resolution over wide swaths and all-weather working capabilities. Meanwhile, Automatic Identification System (AIS) is efficient to provide ship navigational information. Limited to the progress of ship surveillance using SAR image only, the integration of them significantly benefits more. Data association is the fundamental issue. Many algorithms have been developed including the Nearest-Neighbour (NN) algorithm, the Joint Probabilistic Data Association (JPDA) method, and the Multiple Hypothesis Testing (MHT) approach. Ship positions derived from SAR image can be associated with the ones provided by AIS. State-of-the-art method (NN algorithm) is proved to be feasible. But it faces more challenges under adverse circumstances, such as high-density-shipping condition. We investigate the non-rigid Point Pattern Matching (PPM) method to solve this problem. To the best of our knowledge, this paper is the first to introduce non-rigid PPM to the data association of SAR and AIS. On the basis of introduction to the data association, Coherent Point Drift (CPD) algorithm is investigated. Experiments are carried out and the results illustrate that the CPD algorithm achieves higher accuracy and outperforms state-of-the-art method, especially under high-density-shipping condition.

  17. On marker-based parentage verification via non-linear optimization.

    PubMed

    Boerner, Vinzent

    2017-06-15

    Parentage verification by molecular markers is mainly based on short tandem repeat markers. Single nucleotide polymorphisms (SNPs) as bi-allelic markers have become the markers of choice for genotyping projects. Thus, the subsequent step is to use SNP genotypes for parentage verification as well. Recent developments of algorithms such as evaluating opposing homozygous SNP genotypes have drawbacks, for example the inability of rejecting all animals of a sample of potential parents. This paper describes an algorithm for parentage verification by constrained regression which overcomes the latter limitation and proves to be very fast and accurate even when the number of SNPs is as low as 50. The algorithm was tested on a sample of 14,816 animals with 50, 100 and 500 SNP genotypes randomly selected from 40k genotypes. The samples of putative parents of these animals contained either five random animals, or four random animals and the true sire. Parentage assignment was performed by ranking of regression coefficients, or by setting a minimum threshold for regression coefficients. The assignment quality was evaluated by the power of assignment (P[Formula: see text]) and the power of exclusion (P[Formula: see text]). If the sample of putative parents contained the true sire and parentage was assigned by coefficient ranking, P[Formula: see text] and P[Formula: see text] were both higher than 0.99 for the 500 and 100 SNP genotypes, and higher than 0.98 for the 50 SNP genotypes. When parentage was assigned by a coefficient threshold, P[Formula: see text] was higher than 0.99 regardless of the number of SNPs, but P[Formula: see text] decreased from 0.99 (500 SNPs) to 0.97 (100 SNPs) and 0.92 (50 SNPs). If the sample of putative parents did not contain the true sire and parentage was rejected using a coefficient threshold, the algorithm achieved a P[Formula: see text] of 1 (500 SNPs), 0.99 (100 SNPs) and 0.97 (50 SNPs). The algorithm described here is easy to implement, fast and accurate, and is able to assign parentage using genomic marker data with a size as low as 50 SNPs.

  18. Unsupervised chunking based on graph propagation from bilingual corpus.

    PubMed

    Zhu, Ling; Wong, Derek F; Chao, Lidia S

    2014-01-01

    This paper presents a novel approach for unsupervised shallow parsing model trained on the unannotated Chinese text of parallel Chinese-English corpus. In this approach, no information of the Chinese side is applied. The exploitation of graph-based label propagation for bilingual knowledge transfer, along with an application of using the projected labels as features in unsupervised model, contributes to a better performance. The experimental comparisons with the state-of-the-art algorithms show that the proposed approach is able to achieve impressive higher accuracy in terms of F-score.

  19. The Pharmacist's Perspective on Pharmacogenetics Implementation.

    PubMed

    Weitendorf, Frederick; Reynolds, Kristen K

    2016-09-01

    The future for pharmacogenetics will continue to expand. Pharmacists can apply and incorporate drug knowledge in collaboration with other health providers using pharmacogenetics. Patients benefit with enhanced therapeutic outcomes that could lead to more streamlined drug approaches, fewer follow-up visits, cost savings, and shorter times to achieve therapeutic outcomes. As more drug-gene pathways are discovered and use of this knowledge increases, the potential for algorithm development for medication use will occur, resulting in better patient outcomes, higher standard of care, and reflect evidence-based medicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A Fast Robot Identification and Mapping Algorithm Based on Kinect Sensor.

    PubMed

    Zhang, Liang; Shen, Peiyi; Zhu, Guangming; Wei, Wei; Song, Houbing

    2015-08-14

    Internet of Things (IoT) is driving innovation in an ever-growing set of application domains such as intelligent processing for autonomous robots. For an autonomous robot, one grand challenge is how to sense its surrounding environment effectively. The Simultaneous Localization and Mapping with RGB-D Kinect camera sensor on robot, called RGB-D SLAM, has been developed for this purpose but some technical challenges must be addressed. Firstly, the efficiency of the algorithm cannot satisfy real-time requirements; secondly, the accuracy of the algorithm is unacceptable. In order to address these challenges, this paper proposes a set of novel improvement methods as follows. Firstly, the ORiented Brief (ORB) method is used in feature detection and descriptor extraction. Secondly, a bidirectional Fast Library for Approximate Nearest Neighbors (FLANN) k-Nearest Neighbor (KNN) algorithm is applied to feature match. Then, the improved RANdom SAmple Consensus (RANSAC) estimation method is adopted in the motion transformation. In the meantime, high precision General Iterative Closest Points (GICP) is utilized to register a point cloud in the motion transformation optimization. To improve the accuracy of SLAM, the reduced dynamic covariance scaling (DCS) algorithm is formulated as a global optimization problem under the G2O framework. The effectiveness of the improved algorithm has been verified by testing on standard data and comparing with the ground truth obtained on Freiburg University's datasets. The Dr Robot X80 equipped with a Kinect camera is also applied in a building corridor to verify the correctness of the improved RGB-D SLAM algorithm. With the above experiments, it can be seen that the proposed algorithm achieves higher processing speed and better accuracy.

  1. Single-step reinitialization and extending algorithms for level-set based multi-phase flow simulations

    NASA Astrophysics Data System (ADS)

    Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-12-01

    We propose efficient single-step formulations for reinitialization and extending algorithms, which are critical components of level-set based interface-tracking methods. The level-set field is reinitialized with a single-step (non iterative) "forward tracing" algorithm. A minimum set of cells is defined that describes the interface, and reinitialization employs only data from these cells. Fluid states are extrapolated or extended across the interface by a single-step "backward tracing" algorithm. Both algorithms, which are motivated by analogy to ray-tracing, avoid multiple block-boundary data exchanges that are inevitable for iterative reinitialization and extending approaches within a parallel-computing environment. The single-step algorithms are combined with a multi-resolution conservative sharp-interface method and validated by a wide range of benchmark test cases. We demonstrate that the proposed reinitialization method achieves second-order accuracy in conserving the volume of each phase. The interface location is invariant to reapplication of the single-step reinitialization. Generally, we observe smaller absolute errors than for standard iterative reinitialization on the same grid. The computational efficiency is higher than for the standard and typical high-order iterative reinitialization methods. We observe a 2- to 6-times efficiency improvement over the standard method for serial execution. The proposed single-step extending algorithm, which is commonly employed for assigning data to ghost cells with ghost-fluid or conservative interface interaction methods, shows about 10-times efficiency improvement over the standard method while maintaining same accuracy. Despite their simplicity, the proposed algorithms offer an efficient and robust alternative to iterative reinitialization and extending methods for level-set based multi-phase simulations.

  2. An Educational System for Learning Search Algorithms and Automatically Assessing Student Performance

    ERIC Educational Resources Information Center

    Grivokostopoulou, Foteini; Perikos, Isidoros; Hatzilygeroudis, Ioannis

    2017-01-01

    In this paper, first we present an educational system that assists students in learning and tutors in teaching search algorithms, an artificial intelligence topic. Learning is achieved through a wide range of learning activities. Algorithm visualizations demonstrate the operational functionality of algorithms according to the principles of active…

  3. Low-cost autonomous perceptron neural network inspired by quantum computation

    NASA Astrophysics Data System (ADS)

    Zidan, Mohammed; Abdel-Aty, Abdel-Haleem; El-Sadek, Alaa; Zanaty, E. A.; Abdel-Aty, Mahmoud

    2017-11-01

    Achieving low cost learning with reliable accuracy is one of the important goals to achieve intelligent machines to save time, energy and perform learning process over limited computational resources machines. In this paper, we propose an efficient algorithm for a perceptron neural network inspired by quantum computing composite from a single neuron to classify inspirable linear applications after a single training iteration O(1). The algorithm is applied over a real world data set and the results are outer performs the other state-of-the art algorithms.

  4. ECG Sensor Card with Evolving RBP Algorithms for Human Verification.

    PubMed

    Tseng, Kuo-Kun; Huang, Huang-Nan; Zeng, Fufu; Tu, Shu-Yi

    2015-08-21

    It is known that cardiac and respiratory rhythms in electrocardiograms (ECGs) are highly nonlinear and non-stationary. As a result, most traditional time-domain algorithms are inadequate for characterizing the complex dynamics of the ECG. This paper proposes a new ECG sensor card and a statistical-based ECG algorithm, with the aid of a reduced binary pattern (RBP), with the aim of achieving faster ECG human identity recognition with high accuracy. The proposed algorithm has one advantage that previous ECG algorithms lack-the waveform complex information and de-noising preprocessing can be bypassed; therefore, it is more suitable for non-stationary ECG signals. Experimental results tested on two public ECG databases (MIT-BIH) from MIT University confirm that the proposed scheme is feasible with excellent accuracy, low complexity, and speedy processing. To be more specific, the advanced RBP algorithm achieves high accuracy in human identity recognition and is executed at least nine times faster than previous algorithms. Moreover, based on the test results from a long-term ECG database, the evolving RBP algorithm also demonstrates superior capability in handling long-term and non-stationary ECG signals.

  5. Artifact removal algorithms for stroke detection using a multistatic MIST beamforming algorithm.

    PubMed

    Ricci, E; Di Domenico, S; Cianca, E; Rossi, T

    2015-01-01

    Microwave imaging (MWI) has been recently proved as a promising imaging modality for low-complexity, low-cost and fast brain imaging tools, which could play a fundamental role to efficiently manage emergencies related to stroke and hemorrhages. This paper focuses on the UWB radar imaging approach and in particular on the processing algorithms of the backscattered signals. Assuming the use of the multistatic version of the MIST (Microwave Imaging Space-Time) beamforming algorithm, developed by Hagness et al. for the early detection of breast cancer, the paper proposes and compares two artifact removal algorithms. Artifacts removal is an essential step of any UWB radar imaging system and currently considered artifact removal algorithms have been shown not to be effective in the specific scenario of brain imaging. First of all, the paper proposes modifications of a known artifact removal algorithm. These modifications are shown to be effective to achieve good localization accuracy and lower false positives. However, the main contribution is the proposal of an artifact removal algorithm based on statistical methods, which allows to achieve even better performance but with much lower computational complexity.

  6. An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease

    PubMed Central

    Schmitter, Daniel; Roche, Alexis; Maréchal, Bénédicte; Ribes, Delphine; Abdulkadir, Ahmed; Bach-Cuadra, Meritxell; Daducci, Alessandro; Granziera, Cristina; Klöppel, Stefan; Maeder, Philippe; Meuli, Reto; Krueger, Gunnar

    2014-01-01

    Voxel-based morphometry from conventional T1-weighted images has proved effective to quantify Alzheimer's disease (AD) related brain atrophy and to enable fairly accurate automated classification of AD patients, mild cognitive impaired patients (MCI) and elderly controls. Little is known, however, about the classification power of volume-based morphometry, where features of interest consist of a few brain structure volumes (e.g. hippocampi, lobes, ventricles) as opposed to hundreds of thousands of voxel-wise gray matter concentrations. In this work, we experimentally evaluate two distinct volume-based morphometry algorithms (FreeSurfer and an in-house algorithm called MorphoBox) for automatic disease classification on a standardized data set from the Alzheimer's Disease Neuroimaging Initiative. Results indicate that both algorithms achieve classification accuracy comparable to the conventional whole-brain voxel-based morphometry pipeline using SPM for AD vs elderly controls and MCI vs controls, and higher accuracy for classification of AD vs MCI and early vs late AD converters, thereby demonstrating the potential of volume-based morphometry to assist diagnosis of mild cognitive impairment and Alzheimer's disease. PMID:25429357

  7. Print quality analysis for ink-saving algorithms

    NASA Astrophysics Data System (ADS)

    Ortiz Segovia, Maria V.; Bonnier, Nicolas; Allebach, Jan P.

    2012-01-01

    Ink-saving strategies for CMYK printers have evolved from their earlier stages where the 'draft' print mode was the main option available to control ink usage. The savings were achieved by printing alternate dots in an image at the expense of reducing print quality considerably. Nowadays, customers are not only unwilling to compromise quality but have higher expectations regarding both visual print quality and ink reduction solutions. Therefore, the need for more intricate ink-saving solutions with lower impact on print quality is evident. Printing-related factors such as the way the printer places the dots on the paper and the ink-substrate interaction play important and complex roles in the characterization and modeling of the printing process that make the ink reduction topic a challenging problem. In our study, we are interested in benchmarking ink-saving algorithms to find the connections between different ink reduction levels of a given ink-saving method and a set of print quality attributes. This study is mostly related to CMYK printers that use dispersed dot halftoning algorithms. The results of our efforts to develop such an evaluation scheme are presented in this paper.

  8. An efficient CU partition algorithm for HEVC based on improved Sobel operator

    NASA Astrophysics Data System (ADS)

    Sun, Xuebin; Chen, Xiaodong; Xu, Yong; Sun, Gang; Yang, Yunsheng

    2018-04-01

    As the latest video coding standard, High Efficiency Video Coding (HEVC) achieves over 50% bit rate reduction with similar video quality compared with previous standards H.264/AVC. However, the higher compression efficiency is attained at the cost of significantly increasing computational load. In order to reduce the complexity, this paper proposes a fast coding unit (CU) partition technique to speed up the process. To detect the edge features of each CU, a more accurate improved Sobel filtering is developed and performed By analyzing the textural features of CU, an early CU splitting termination is proposed to decide whether a CU should be decomposed into four lower-dimensions CUs or not. Compared with the reference software HM16.7, experimental results indicate the proposed algorithm can lessen the encoding time up to 44.09% on average, with a negligible bit rate increase of 0.24%, and quality losses lower 0.03 dB, respectively. In addition, the proposed algorithm gets a better trade-off between complexity and rate-distortion among the other proposed works.

  9. Spike sorting based upon machine learning algorithms (SOMA).

    PubMed

    Horton, P M; Nicol, A U; Kendrick, K M; Feng, J F

    2007-02-15

    We have developed a spike sorting method, using a combination of various machine learning algorithms, to analyse electrophysiological data and automatically determine the number of sampled neurons from an individual electrode, and discriminate their activities. We discuss extensions to a standard unsupervised learning algorithm (Kohonen), as using a simple application of this technique would only identify a known number of clusters. Our extra techniques automatically identify the number of clusters within the dataset, and their sizes, thereby reducing the chance of misclassification. We also discuss a new pre-processing technique, which transforms the data into a higher dimensional feature space revealing separable clusters. Using principal component analysis (PCA) alone may not achieve this. Our new approach appends the features acquired using PCA with features describing the geometric shapes that constitute a spike waveform. To validate our new spike sorting approach, we have applied it to multi-electrode array datasets acquired from the rat olfactory bulb, and from the sheep infero-temporal cortex, and using simulated data. The SOMA sofware is available at http://www.sussex.ac.uk/Users/pmh20/spikes.

  10. Ranking Support Vector Machine with Kernel Approximation

    PubMed Central

    Dou, Yong

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms. PMID:28293256

  11. Ranking Support Vector Machine with Kernel Approximation.

    PubMed

    Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.

  12. Tracking tumor boundary in MV-EPID images without implanted markers: A feasibility study.

    PubMed

    Zhang, Xiaoyong; Homma, Noriyasu; Ichiji, Kei; Takai, Yoshihiro; Yoshizawa, Makoto

    2015-05-01

    To develop a markerless tracking algorithm to track the tumor boundary in megavoltage (MV)-electronic portal imaging device (EPID) images for image-guided radiation therapy. A level set method (LSM)-based algorithm is developed to track tumor boundary in EPID image sequences. Given an EPID image sequence, an initial curve is manually specified in the first frame. Driven by a region-scalable energy fitting function, the initial curve automatically evolves toward the tumor boundary and stops on the desired boundary while the energy function reaches its minimum. For the subsequent frames, the tracking algorithm updates the initial curve by using the tracking result in the previous frame and reuses the LSM to detect the tumor boundary in the subsequent frame so that the tracking processing can be continued without user intervention. The tracking algorithm is tested on three image datasets, including a 4-D phantom EPID image sequence, four digitally deformable phantom image sequences with different noise levels, and four clinical EPID image sequences acquired in lung cancer treatment. The tracking accuracy is evaluated based on two metrics: centroid localization error (CLE) and volume overlap index (VOI) between the tracking result and the ground truth. For the 4-D phantom image sequence, the CLE is 0.23 ± 0.20 mm, and VOI is 95.6% ± 0.2%. For the digital phantom image sequences, the total CLE and VOI are 0.11 ± 0.08 mm and 96.7% ± 0.7%, respectively. In addition, for the clinical EPID image sequences, the proposed algorithm achieves 0.32 ± 0.77 mm in the CLE and 72.1% ± 5.5% in the VOI. These results demonstrate the effectiveness of the authors' proposed method both in tumor localization and boundary tracking in EPID images. In addition, compared with two existing tracking algorithms, the proposed method achieves a higher accuracy in tumor localization. In this paper, the authors presented a feasibility study of tracking tumor boundary in EPID images by using a LSM-based algorithm. Experimental results conducted on phantom and clinical EPID images demonstrated the effectiveness of the tracking algorithm for visible tumor target. Compared with previous tracking methods, the authors' algorithm has the potential to improve the tracking accuracy in radiation therapy. In addition, real-time tumor boundary information within the irradiation field will be potentially useful for further applications, such as adaptive beam delivery, dose evaluation.

  13. Tracking tumor boundary in MV-EPID images without implanted markers: A feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoyong, E-mail: xiaoyong@ieee.org; Homma, Noriyasu, E-mail: homma@ieee.org; Ichiji, Kei, E-mail: ichiji@yoshizawa.ecei.tohoku.ac.jp

    2015-05-15

    Purpose: To develop a markerless tracking algorithm to track the tumor boundary in megavoltage (MV)-electronic portal imaging device (EPID) images for image-guided radiation therapy. Methods: A level set method (LSM)-based algorithm is developed to track tumor boundary in EPID image sequences. Given an EPID image sequence, an initial curve is manually specified in the first frame. Driven by a region-scalable energy fitting function, the initial curve automatically evolves toward the tumor boundary and stops on the desired boundary while the energy function reaches its minimum. For the subsequent frames, the tracking algorithm updates the initial curve by using the trackingmore » result in the previous frame and reuses the LSM to detect the tumor boundary in the subsequent frame so that the tracking processing can be continued without user intervention. The tracking algorithm is tested on three image datasets, including a 4-D phantom EPID image sequence, four digitally deformable phantom image sequences with different noise levels, and four clinical EPID image sequences acquired in lung cancer treatment. The tracking accuracy is evaluated based on two metrics: centroid localization error (CLE) and volume overlap index (VOI) between the tracking result and the ground truth. Results: For the 4-D phantom image sequence, the CLE is 0.23 ± 0.20 mm, and VOI is 95.6% ± 0.2%. For the digital phantom image sequences, the total CLE and VOI are 0.11 ± 0.08 mm and 96.7% ± 0.7%, respectively. In addition, for the clinical EPID image sequences, the proposed algorithm achieves 0.32 ± 0.77 mm in the CLE and 72.1% ± 5.5% in the VOI. These results demonstrate the effectiveness of the authors’ proposed method both in tumor localization and boundary tracking in EPID images. In addition, compared with two existing tracking algorithms, the proposed method achieves a higher accuracy in tumor localization. Conclusions: In this paper, the authors presented a feasibility study of tracking tumor boundary in EPID images by using a LSM-based algorithm. Experimental results conducted on phantom and clinical EPID images demonstrated the effectiveness of the tracking algorithm for visible tumor target. Compared with previous tracking methods, the authors’ algorithm has the potential to improve the tracking accuracy in radiation therapy. In addition, real-time tumor boundary information within the irradiation field will be potentially useful for further applications, such as adaptive beam delivery, dose evaluation.« less

  14. A synthesis of light absorption properties of the Pan-Arctic Ocean: application to semi-analytical estimates of dissolved organic carbon concentrations from space

    NASA Astrophysics Data System (ADS)

    Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Bélanger, S.; Bricaud, A.

    2013-11-01

    The light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean (e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012), the datasets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database at the pan-Arctic scale by pooling the majority of published datasets and merging new datasets. Our results showed that the total non-water absorption coefficients measured in the Eastern Arctic Ocean (EAO; Siberian side) are significantly higher than in the Western Arctic Ocean (WAO; North American side). This higher absorption is explained by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off North America. In contrast, the relationship between the phytoplankton absorption (aφ(λ)) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semi-analytical CDOM absorption algorithm is based on chl a-specific aφ(λ) values (Matsuoka et al., 2013), this result indirectly suggests that CDOM absorption can be appropriately derived not only for the WAO but also for the EAO using ocean color data. Derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC vs. CDOM relationships, a semi-analytical algorithm for estimating DOC concentrations for coastal waters at the Pan-Arctic scale is presented and applied to satellite ocean color data.

  15. A synthesis of light absorption properties of the Arctic Ocean: application to semianalytical estimates of dissolved organic carbon concentrations from space

    NASA Astrophysics Data System (ADS)

    Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Bélanger, S.; Bricaud, A.

    2014-06-01

    In addition to scattering coefficients, the light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean (e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012), the data sets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database of the Arctic Ocean by pooling the majority of published data sets and merging new data sets. Our results show that the total nonwater absorption coefficients measured in the eastern Arctic Ocean (EAO; Siberian side) are significantly higher than in the western Arctic Ocean (WAO; North American side). This higher absorption is explained by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off North America. In contrast, the relationship between the phytoplankton absorption (aϕ(λ)) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semianalytical CDOM absorption algorithm is based on chl a-specific aϕ(λ) values (Matsuoka et al., 2013), this result indirectly suggests that CDOM absorption can be appropriately derived not only for the WAO but also for the EAO using ocean color data. Based on statistics, derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC versus CDOM relationships, a semianalytical algorithm for estimating DOC concentrations for river-influenced coastal waters of the Arctic Ocean is presented and applied to satellite ocean color data.

  16. A Synthesis of Light Absorption Properties of the Arctic Ocean: Application to Semi-analytical Estimates of Dissolved Organic Carbon Concentrations from Space

    NASA Technical Reports Server (NTRS)

    Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Belanger, S.; Bricaud, A.

    2014-01-01

    The light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean [e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012], the datasets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database at the pan-Arctic scale by pooling the majority of published datasets and merging new datasets. Our results showed that the total non-water absorption coefficients measured in the Eastern Arctic Ocean (EAO; Siberian side) are significantly higher 74 than in the Western Arctic Ocean (WAO; North American side). This higher absorption is explained 75 by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian 76 side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off 77 North America. In contrast, the relationship between the phytoplankton absorption (a()) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semi-analytical CDOM absorption algorithm is based on chl a-specific a() values [Matsuoka et al., 2013], this result indirectly suggests that CDOM absorption can be appropriately erived not only for the WAO but also for the EAO using ocean color data. Derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC versus CDOM relationships, a semi-analytical algorithm for estimating DOC concentrations for coastal waters at the Pan-Arctic scale is presented and applied to satellite ocean color data.

  17. Wavelength converter placement for different RWA algorithms in wavelength-routed all-optical networks

    NASA Astrophysics Data System (ADS)

    Chu, Xiaowen; Li, Bo; Chlamtac, Imrich

    2002-07-01

    Sparse wavelength conversion and appropriate routing and wavelength assignment (RWA) algorithms are the two key factors in improving the blocking performance in wavelength-routed all-optical networks. It has been shown that the optimal placement of a limited number of wavelength converters in an arbitrary mesh network is an NP complete problem. There have been various heuristic algorithms proposed in the literature, in which most of them assume that a static routing and random wavelength assignment RWA algorithm is employed. However, the existing work shows that fixed-alternate routing and dynamic routing RWA algorithms can achieve much better blocking performance. Our study in this paper further demonstrates that the wavelength converter placement and RWA algorithms are closely related in the sense that a well designed wavelength converter placement mechanism for a particular RWA algorithm might not work well with a different RWA algorithm. Therefore, the wavelength converter placement and the RWA have to be considered jointly. The objective of this paper is to investigate the wavelength converter placement problem under fixed-alternate routing algorithm and least-loaded routing algorithm. Under the fixed-alternate routing algorithm, we propose a heuristic algorithm called Minimum Blocking Probability First (MBPF) algorithm for wavelength converter placement. Under the least-loaded routing algorithm, we propose a heuristic converter placement algorithm called Weighted Maximum Segment Length (WMSL) algorithm. The objective of the converter placement algorithm is to minimize the overall blocking probability. Extensive simulation studies have been carried out over three typical mesh networks, including the 14-node NSFNET, 19-node EON and 38-node CTNET. We observe that the proposed algorithms not only outperform existing wavelength converter placement algorithms by a large margin, but they also can achieve almost the same performance comparing with full wavelength conversion under the same RWA algorithm.

  18. Comparison of Three Instructional Sequences for the Addition and Subtraction Algorithms. Technical Report 273.

    ERIC Educational Resources Information Center

    Wiles, Clyde A.

    The study's purpose was to investigate the differential effects on the achievement of second-grade students that could be attributed to three instructional sequences for the learning of the addition and subtraction algorithms. One sequence presented the addition algorithm first (AS), the second presented the subtraction algorithm first (SA), and…

  19. A universal deep learning approach for modeling the flow of patients under different severities.

    PubMed

    Jiang, Shancheng; Chin, Kwai-Sang; Tsui, Kwok L

    2018-02-01

    The Accident and Emergency Department (A&ED) is the frontline for providing emergency care in hospitals. Unfortunately, relative A&ED resources have failed to keep up with continuously increasing demand in recent years, which leads to overcrowding in A&ED. Knowing the fluctuation of patient arrival volume in advance is a significant premise to relieve this pressure. Based on this motivation, the objective of this study is to explore an integrated framework with high accuracy for predicting A&ED patient flow under different triage levels, by combining a novel feature selection process with deep neural networks. Administrative data is collected from an actual A&ED and categorized into five groups based on different triage levels. A genetic algorithm (GA)-based feature selection algorithm is improved and implemented as a pre-processing step for this time-series prediction problem, in order to explore key features affecting patient flow. In our improved GA, a fitness-based crossover is proposed to maintain the joint information of multiple features during iterative process, instead of traditional point-based crossover. Deep neural networks (DNN) is employed as the prediction model to utilize their universal adaptability and high flexibility. In the model-training process, the learning algorithm is well-configured based on a parallel stochastic gradient descent algorithm. Two effective regularization strategies are integrated in one DNN framework to avoid overfitting. All introduced hyper-parameters are optimized efficiently by grid-search in one pass. As for feature selection, our improved GA-based feature selection algorithm has outperformed a typical GA and four state-of-the-art feature selection algorithms (mRMR, SAFS, VIFR, and CFR). As for the prediction accuracy of proposed integrated framework, compared with other frequently used statistical models (GLM, seasonal-ARIMA, ARIMAX, and ANN) and modern machine models (SVM-RBF, SVM-linear, RF, and R-LASSO), the proposed integrated "DNN-I-GA" framework achieves higher prediction accuracy on both MAPE and RMSE metrics in pairwise comparisons. The contribution of our study is two-fold. Theoretically, the traditional GA-based feature selection process is improved to have less hyper-parameters and higher efficiency, and the joint information of multiple features is maintained by fitness-based crossover operator. The universal property of DNN is further enhanced by merging different regularization strategies. Practically, features selected by our improved GA can be used to acquire an underlying relationship between patient flows and input features. Predictive values are significant indicators of patients' demand and can be used by A&ED managers to make resource planning and allocation. High accuracy achieved by the present framework in different cases enhances the reliability of downstream decision makings. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Power allocation for SWIPT in K-user interference channels using game theory

    NASA Astrophysics Data System (ADS)

    Wen, Zhigang; Liu, Ying; Liu, Xiaoqing; Li, Shan; Chen, Xianya

    2018-12-01

    A simultaneous wireless information and power transfer system in interference channels of multi-users is considered. In this system, each transmitter sends one data stream to its targeted receiver, which causes interference to other receivers. Since all transmitter-receiver links want to maximize their own average transmission rate, a power allocation problem under the transmit power constraints and the energy-harvesting constraints is developed. To solve this problem, we propose a game theory framework. Then, we convert the game into a variational inequalities problem by establishing the connection between game theory and variational inequalities and solve the variational inequalities problem. Through theoretical analysis, the existence and uniqueness of Nash equilibrium are both guaranteed by the theory of variational inequalities. A distributed iterative alternating optimization water-filling algorithm is derived, which is proved to converge. Numerical results show that the proposed algorithm reaches fast convergence and achieves a higher sum rate than the unaided scheme.

  1. Fuzzy support vector machines for adaptive Morse code recognition.

    PubMed

    Yang, Cheng-Hong; Jin, Li-Cheng; Chuang, Li-Yeh

    2006-11-01

    Morse code is now being harnessed for use in rehabilitation applications of augmentative-alternative communication and assistive technology, facilitating mobility, environmental control and adapted worksite access. In this paper, Morse code is selected as a communication adaptive device for persons who suffer from muscle atrophy, cerebral palsy or other severe handicaps. A stable typing rate is strictly required for Morse code to be effective as a communication tool. Therefore, an adaptive automatic recognition method with a high recognition rate is needed. The proposed system uses both fuzzy support vector machines and the variable-degree variable-step-size least-mean-square algorithm to achieve these objectives. We apply fuzzy memberships to each point, and provide different contributions to the decision learning function for support vector machines. Statistical analyses demonstrated that the proposed method elicited a higher recognition rate than other algorithms in the literature.

  2. Method and apparatus for digitally based high speed x-ray spectrometer

    DOEpatents

    Warburton, W.K.; Hubbard, B.

    1997-11-04

    A high speed, digitally based, signal processing system which accepts input data from a detector-preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system achieves high throughputs at low cost by dividing the required digital processing steps between a ``hardwired`` processor implemented in combinatorial digital logic, which detects the presence of the x-ray signals in the digitized data stream and extracts filtered estimates of their amplitudes, and a programmable digital signal processing computer, which refines the filtered amplitude estimates and bins them to produce the desired spectral analysis. One set of algorithms allow this hybrid system to match the resolution of analog systems while operating at much higher data rates. A second set of algorithms implemented in the processor allow the system to be self calibrating as well. The same processor also handles the interface to an external control computer. 19 figs.

  3. Method and apparatus for digitally based high speed x-ray spectrometer

    DOEpatents

    Warburton, William K.; Hubbard, Bradley

    1997-01-01

    A high speed, digitally based, signal processing system which accepts input data from a detector-preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system achieves high throughputs at low cost by dividing the required digital processing steps between a "hardwired" processor implemented in combinatorial digital logic, which detects the presence of the x-ray signals in the digitized data stream and extracts filtered estimates of their amplitudes, and a programmable digital signal processing computer, which refines the filtered amplitude estimates and bins them to produce the desired spectral analysis. One set of algorithms allow this hybrid system to match the resolution of analog systems while operating at much higher data rates. A second set of algorithms implemented in the processor allow the system to be self calibrating as well. The same processor also handles the interface to an external control computer.

  4. BDS/GPS Dual Systems Positioning Based on the Modified SR-UKF Algorithm

    PubMed Central

    Kong, JaeHyok; Mao, Xuchu; Li, Shaoyuan

    2016-01-01

    The Global Navigation Satellite System can provide all-day three-dimensional position and speed information. Currently, only using the single navigation system cannot satisfy the requirements of the system’s reliability and integrity. In order to improve the reliability and stability of the satellite navigation system, the positioning method by BDS and GPS navigation system is presented, the measurement model and the state model are described. Furthermore, the modified square-root Unscented Kalman Filter (SR-UKF) algorithm is employed in BDS and GPS conditions, and analysis of single system/multi-system positioning has been carried out, respectively. The experimental results are compared with the traditional estimation results, which show that the proposed method can perform highly-precise positioning. Especially when the number of satellites is not adequate enough, the proposed method combine BDS and GPS systems to achieve a higher positioning precision. PMID:27153068

  5. Optimisation of confinement in a fusion reactor using a nonlinear turbulence model

    NASA Astrophysics Data System (ADS)

    Highcock, E. G.; Mandell, N. R.; Barnes, M.

    2018-04-01

    The confinement of heat in the core of a magnetic fusion reactor is optimised using a multidimensional optimisation algorithm. For the first time in such a study, the loss of heat due to turbulence is modelled at every stage using first-principles nonlinear simulations which accurately capture the turbulent cascade and large-scale zonal flows. The simulations utilise a novel approach, with gyrofluid treatment of the small-scale drift waves and gyrokinetic treatment of the large-scale zonal flows. A simple near-circular equilibrium with standard parameters is chosen as the initial condition. The figure of merit, fusion power per unit volume, is calculated, and then two control parameters, the elongation and triangularity of the outer flux surface, are varied, with the algorithm seeking to optimise the chosen figure of merit. A twofold increase in the plasma power per unit volume is achieved by moving to higher elongation and strongly negative triangularity.

  6. Texture segmentation by genetic programming.

    PubMed

    Song, Andy; Ciesielski, Vic

    2008-01-01

    This paper describes a texture segmentation method using genetic programming (GP), which is one of the most powerful evolutionary computation algorithms. By choosing an appropriate representation texture, classifiers can be evolved without computing texture features. Due to the absence of time-consuming feature extraction, the evolved classifiers enable the development of the proposed texture segmentation algorithm. This GP based method can achieve a segmentation speed that is significantly higher than that of conventional methods. This method does not require a human expert to manually construct models for texture feature extraction. In an analysis of the evolved classifiers, it can be seen that these GP classifiers are not arbitrary. Certain textural regularities are captured by these classifiers to discriminate different textures. GP has been shown in this study as a feasible and a powerful approach for texture classification and segmentation, which are generally considered as complex vision tasks.

  7. A computer-aided detection (CAD) system with a 3D algorithm for small acute intracranial hemorrhage

    NASA Astrophysics Data System (ADS)

    Wang, Ximing; Fernandez, James; Deshpande, Ruchi; Lee, Joon K.; Chan, Tao; Liu, Brent

    2012-02-01

    Acute Intracranial hemorrhage (AIH) requires urgent diagnosis in the emergency setting to mitigate eventual sequelae. However, experienced radiologists may not always be available to make a timely diagnosis. This is especially true for small AIH, defined as lesion smaller than 10 mm in size. A computer-aided detection (CAD) system for the detection of small AIH would facilitate timely diagnosis. A previously developed 2D algorithm shows high false positive rates in the evaluation based on LAC/USC cases, due to the limitation of setting up correct coordinate system for the knowledge-based classification system. To achieve a higher sensitivity and specificity, a new 3D algorithm is developed. The algorithm utilizes a top-hat transformation and dynamic threshold map to detect small AIH lesions. Several key structures of brain are detected and are used to set up a 3D anatomical coordinate system. A rule-based classification of the lesion detected is applied based on the anatomical coordinate system. For convenient evaluation in clinical environment, the CAD module is integrated with a stand-alone system. The CAD is evaluated by small AIH cases and matched normal collected in LAC/USC. The result of 3D CAD and the previous 2D CAD has been compared.

  8. Penalized weighted least-squares approach for multienergy computed tomography image reconstruction via structure tensor total variation regularization.

    PubMed

    Zeng, Dong; Gao, Yuanyuan; Huang, Jing; Bian, Zhaoying; Zhang, Hua; Lu, Lijun; Ma, Jianhua

    2016-10-01

    Multienergy computed tomography (MECT) allows identifying and differentiating different materials through simultaneous capture of multiple sets of energy-selective data belonging to specific energy windows. However, because sufficient photon counts are not available in each energy window compared with that in the whole energy window, the MECT images reconstructed by the analytical approach often suffer from poor signal-to-noise and strong streak artifacts. To address the particular challenge, this work presents a penalized weighted least-squares (PWLS) scheme by incorporating the new concept of structure tensor total variation (STV) regularization, which is henceforth referred to as 'PWLS-STV' for simplicity. Specifically, the STV regularization is derived by penalizing higher-order derivatives of the desired MECT images. Thus it could provide more robust measures of image variation, which can eliminate the patchy artifacts often observed in total variation (TV) regularization. Subsequently, an alternating optimization algorithm was adopted to minimize the objective function. Extensive experiments with a digital XCAT phantom and meat specimen clearly demonstrate that the present PWLS-STV algorithm can achieve more gains than the existing TV-based algorithms and the conventional filtered backpeojection (FBP) algorithm in terms of both quantitative and visual quality evaluations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. An improved optimization algorithm and Bayes factor termination criterion for sequential projection pursuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb-Robertson, Bobbie-Jo M.; Jarman, Kristin H.; Harvey, Scott D.

    2005-05-28

    A fundamental problem in analysis of highly multivariate spectral or chromatographic data is reduction of dimensionality. Principal components analysis (PCA), concerned with explaining the variance-covariance structure of the data, is a commonly used approach to dimension reduction. Recently an attractive alternative to PCA, sequential projection pursuit (SPP), has been introduced. Designed to elicit clustering tendencies in the data, SPP may be more appropriate when performing clustering or classification analysis. However, the existing genetic algorithm (GA) implementation of SPP has two shortcomings, computation time and inability to determine the number of factors necessary to explain the majority of the structure inmore » the data. We address both these shortcomings. First, we introduce a new SPP algorithm, a random scan sampling algorithm (RSSA), that significantly reduces computation time. We compare the computational burden of the RSS and GA implementation for SPP on a dataset containing Raman spectra of twelve organic compounds. Second, we propose a Bayes factor criterion, BFC, as an effective measure for selecting the number of factors needed to explain the majority of the structure in the data. We compare SPP to PCA on two datasets varying in type, size, and difficulty; in both cases SPP achieves a higher accuracy with a lower number of latent variables.« less

  10. The GOES-R Product Generation Architecture - Post CDR Update

    NASA Astrophysics Data System (ADS)

    Dittberner, G.; Kalluri, S.; Weiner, A.

    2012-12-01

    The GOES-R system will substantially improve the accuracy of information available to users by providing data from significantly enhanced instruments, which will generate an increased number and diversity of products with higher resolution, and much shorter relook times. Considerably greater compute and memory resources are necessary to achieve the necessary latency and availability for these products. Over time, new and updated algorithms are expected to be added and old ones removed as science advances and new products are developed. The GOES-R GS architecture is being planned to maintain functionality so that when such changes are implemented, operational product generation will continue without interruption. The primary parts of the PG infrastructure are the Service Based Architecture (SBA) and the Data Fabric (DF). SBA is the middleware that encapsulates and manages science algorithms that generate products. It is divided into three parts, the Executive, which manages and configures the algorithm as a service, the Dispatcher, which provides data to the algorithm, and the Strategy, which determines when the algorithm can execute with the available data. SBA is a distributed architecture, with services connected to each other over a compute grid and is highly scalable. This plug-and-play architecture allows algorithms to be added, removed, or updated without affecting any other services or software currently running and producing data. Algorithms require product data from other algorithms, so a scalable and reliable messaging is necessary. The SBA uses the DF to provide this data communication layer between algorithms. The DF provides an abstract interface over a distributed and persistent multi-layered storage system (e.g., memory based caching above disk-based storage) and an event management system that allows event-driven algorithm services to know when instrument data are available and where they reside. Together, the SBA and the DF provide a flexible, high performance architecture that can meet the needs of product processing now and as they grow in the future.

  11. The GOES-R Product Generation Architecture

    NASA Astrophysics Data System (ADS)

    Dittberner, G. J.; Kalluri, S.; Hansen, D.; Weiner, A.; Tarpley, A.; Marley, S.

    2011-12-01

    The GOES-R system will substantially improve users' ability to succeed in their work by providing data with significantly enhanced instruments, higher resolution, much shorter relook times, and an increased number and diversity of products. The Product Generation architecture is designed to provide the computer and memory resources necessary to achieve the necessary latency and availability for these products. Over time, new and updated algorithms are expected to be added and old ones removed as science advances and new products are developed. The GOES-R GS architecture is being planned to maintain functionality so that when such changes are implemented, operational product generation will continue without interruption. The primary parts of the PG infrastructure are the Service Based Architecture (SBA) and the Data Fabric (DF). SBA is the middleware that encapsulates and manages science algorithms that generate products. It is divided into three parts, the Executive, which manages and configures the algorithm as a service, the Dispatcher, which provides data to the algorithm, and the Strategy, which determines when the algorithm can execute with the available data. SBA is a distributed architecture, with services connected to each other over a compute grid and is highly scalable. This plug-and-play architecture allows algorithms to be added, removed, or updated without affecting any other services or software currently running and producing data. Algorithms require product data from other algorithms, so a scalable and reliable messaging is necessary. The SBA uses the DF to provide this data communication layer between algorithms. The DF provides an abstract interface over a distributed and persistent multi-layered storage system (e.g., memory based caching above disk-based storage) and an event management system that allows event-driven algorithm services to know when instrument data are available and where they reside. Together, the SBA and the DF provide a flexible, high performance architecture that can meet the needs of product processing now and as they grow in the future.

  12. GOES-R GS Product Generation Infrastructure Operations

    NASA Astrophysics Data System (ADS)

    Blanton, M.; Gundy, J.

    2012-12-01

    GOES-R GS Product Generation Infrastructure Operations: The GOES-R Ground System (GS) will produce a much larger set of products with higher data density than previous GOES systems. This requires considerably greater compute and memory resources to achieve the necessary latency and availability for these products. Over time, new algorithms could be added and existing ones removed or updated, but the GOES-R GS cannot go down during this time. To meet these GOES-R GS processing needs, the Harris Corporation will implement a Product Generation (PG) infrastructure that is scalable, extensible, extendable, modular and reliable. The primary parts of the PG infrastructure are the Service Based Architecture (SBA), which includes the Distributed Data Fabric (DDF). The SBA is the middleware that encapsulates and manages science algorithms that generate products. The SBA is divided into three parts, the Executive, which manages and configures the algorithm as a service, the Dispatcher, which provides data to the algorithm, and the Strategy, which determines when the algorithm can execute with the available data. The SBA is a distributed architecture, with services connected to each other over a compute grid and is highly scalable. This plug-and-play architecture allows algorithms to be added, removed, or updated without affecting any other services or software currently running and producing data. Algorithms require product data from other algorithms, so a scalable and reliable messaging is necessary. The SBA uses the DDF to provide this data communication layer between algorithms. The DDF provides an abstract interface over a distributed and persistent multi-layered storage system (memory based caching above disk-based storage) and an event system that allows algorithm services to know when data is available and to get the data that they need to begin processing when they need it. Together, the SBA and the DDF provide a flexible, high performance architecture that can meet the needs of product processing now and as they grow in the future.

  13. Linear feasibility algorithms for treatment planning in interstitial photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Rendon, A.; Beck, J. C.; Lilge, Lothar

    2008-02-01

    Interstitial Photodynamic therapy (IPDT) has been under intense investigation in recent years, with multiple clinical trials underway. This effort has demanded the development of optimization strategies that determine the best locations and output powers for light sources (cylindrical or point diffusers) to achieve an optimal light delivery. Furthermore, we have recently introduced cylindrical diffusers with customizable emission profiles, placing additional requirements on the optimization algorithms, particularly in terms of the stability of the inverse problem. Here, we present a general class of linear feasibility algorithms and their properties. Moreover, we compare two particular instances of these algorithms, which are been used in the context of IPDT: the Cimmino algorithm and a weighted gradient descent (WGD) algorithm. The algorithms were compared in terms of their convergence properties, the cost function they minimize in the infeasible case, their ability to regularize the inverse problem, and the resulting optimal light dose distributions. Our results show that the WGD algorithm overall performs slightly better than the Cimmino algorithm and that it converges to a minimizer of a clinically relevant cost function in the infeasible case. Interestingly however, treatment plans resulting from either algorithms were very similar in terms of the resulting fluence maps and dose volume histograms, once the diffuser powers adjusted to achieve equal prostate coverage.

  14. Image processing meta-algorithm development via genetic manipulation of existing algorithm graphs

    NASA Astrophysics Data System (ADS)

    Schalkoff, Robert J.; Shaaban, Khaled M.

    1999-07-01

    Automatic algorithm generation for image processing applications is not a new idea, however previous work is either restricted to morphological operates or impractical. In this paper, we show recent research result in the development and use of meta-algorithms, i.e. algorithms which lead to new algorithms. Although the concept is generally applicable, the application domain in this work is restricted to image processing. The meta-algorithm concept described in this paper is based upon out work in dynamic algorithm. The paper first present the concept of dynamic algorithms which, on the basis of training and archived algorithmic experience embedded in an algorithm graph (AG), dynamically adjust the sequence of operations applied to the input image data. Each node in the tree-based representation of a dynamic algorithm with out degree greater than 2 is a decision node. At these nodes, the algorithm examines the input data and determines which path will most likely achieve the desired results. This is currently done using nearest-neighbor classification. The details of this implementation are shown. The constrained perturbation of existing algorithm graphs, coupled with a suitable search strategy, is one mechanism to achieve meta-algorithm an doffers rich potential for the discovery of new algorithms. In our work, a meta-algorithm autonomously generates new dynamic algorithm graphs via genetic recombination of existing algorithm graphs. The AG representation is well suited to this genetic-like perturbation, using a commonly- employed technique in artificial neural network synthesis, namely the blueprint representation of graphs. A number of exam. One of the principal limitations of our current approach is the need for significant human input in the learning phase. Efforts to overcome this limitation are discussed. Future research directions are indicated.

  15. A High Fuel Consumption Efficiency Management Scheme for PHEVs Using an Adaptive Genetic Algorithm

    PubMed Central

    Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah

    2015-01-01

    A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974

  16. Comparison of evolutionary algorithms for LPDA antenna optimization

    NASA Astrophysics Data System (ADS)

    Lazaridis, Pavlos I.; Tziris, Emmanouil N.; Zaharis, Zaharias D.; Xenos, Thomas D.; Cosmas, John P.; Gallion, Philippe B.; Holmes, Violeta; Glover, Ian A.

    2016-08-01

    A novel approach to broadband log-periodic antenna design is presented, where some of the most powerful evolutionary algorithms are applied and compared for the optimal design of wire log-periodic dipole arrays (LPDA) using Numerical Electromagnetics Code. The target is to achieve an optimal antenna design with respect to maximum gain, gain flatness, front-to-rear ratio (F/R) and standing wave ratio. The parameters of the LPDA optimized are the dipole lengths, the spacing between the dipoles, and the dipole wire diameters. The evolutionary algorithms compared are the Differential Evolution (DE), Particle Swarm (PSO), Taguchi, Invasive Weed (IWO), and Adaptive Invasive Weed Optimization (ADIWO). Superior performance is achieved by the IWO (best results) and PSO (fast convergence) algorithms.

  17. Near-lossless multichannel EEG compression based on matrix and tensor decompositions.

    PubMed

    Dauwels, Justin; Srinivasan, K; Reddy, M Ramasubba; Cichocki, Andrzej

    2013-05-01

    A novel near-lossless compression algorithm for multichannel electroencephalogram (MC-EEG) is proposed based on matrix/tensor decomposition models. MC-EEG is represented in suitable multiway (multidimensional) forms to efficiently exploit temporal and spatial correlations simultaneously. Several matrix/tensor decomposition models are analyzed in view of efficient decorrelation of the multiway forms of MC-EEG. A compression algorithm is built based on the principle of “lossy plus residual coding,” consisting of a matrix/tensor decomposition-based coder in the lossy layer followed by arithmetic coding in the residual layer. This approach guarantees a specifiable maximum absolute error between original and reconstructed signals. The compression algorithm is applied to three different scalp EEG datasets and an intracranial EEG dataset, each with different sampling rate and resolution. The proposed algorithm achieves attractive compression ratios compared to compressing individual channels separately. For similar compression ratios, the proposed algorithm achieves nearly fivefold lower average error compared to a similar wavelet-based volumetric MC-EEG compression algorithm.

  18. Multi-layer service function chaining scheduling based on auxiliary graph in IP over optical network

    NASA Astrophysics Data System (ADS)

    Li, Yixuan; Li, Hui; Liu, Yuze; Ji, Yuefeng

    2017-10-01

    Software Defined Optical Network (SDON) can be considered as extension of Software Defined Network (SDN) in optical networks. SDON offers a unified control plane and makes optical network an intelligent transport network with dynamic flexibility and service adaptability. For this reason, a comprehensive optical transmission service, able to achieve service differentiation all the way down to the optical transport layer, can be provided to service function chaining (SFC). IP over optical network, as a promising networking architecture to interconnect data centers, is the most widely used scenarios of SFC. In this paper, we offer a flexible and dynamic resource allocation method for diverse SFC service requests in the IP over optical network. To do so, we firstly propose the concept of optical service function (OSF) and a multi-layer SFC model. OSF represents the comprehensive optical transmission service (e.g., multicast, low latency, quality of service, etc.), which can be achieved in multi-layer SFC model. OSF can also be considered as a special SF. Secondly, we design a resource allocation algorithm, which we call OSF-oriented optical service scheduling algorithm. It is able to address multi-layer SFC optical service scheduling and provide comprehensive optical transmission service, while meeting multiple optical transmission requirements (e.g., bandwidth, latency, availability). Moreover, the algorithm exploits the concept of Auxiliary Graph. Finally, we compare our algorithm with the Baseline algorithm in simulation. And simulation results show that our algorithm achieves superior performance than Baseline algorithm in low traffic load condition.

  19. Fuzzy Logic-based Intelligent Scheme for Enhancing QoS of Vertical Handover Decision in Vehicular Ad-hoc Networks

    NASA Astrophysics Data System (ADS)

    Azzali, F.; Ghazali, O.; Omar, M. H.

    2017-08-01

    The design of next generation networks in various technologies under the “Anywhere, Anytime” paradigm offers seamless connectivity across different coverage. A conventional algorithm such as RSSThreshold algorithm, that only uses the received strength signal (RSS) as a metric, will decrease handover performance regarding handover latency, delay, packet loss, and handover failure probability. Moreover, the RSS-based algorithm is only suitable for horizontal handover decision to examine the quality of service (QoS) compared to the vertical handover decision in advanced technologies. In the next generation network, vertical handover can be started based on the user’s convenience or choice rather than connectivity reasons. This study proposes a vertical handover decision algorithm that uses a Fuzzy Logic (FL) algorithm, to increase QoS performance in heterogeneous vehicular ad-hoc networks (VANET). The study uses network simulator 2.29 (NS 2.29) along with the mobility traffic network and generator to implement simulation scenarios and topologies. This helps the simulation to achieve a realistic VANET mobility scenario. The required analysis on the performance of QoS in the vertical handover can thus be conducted. The proposed Fuzzy Logic algorithm shows improvement over the conventional algorithm (RSSThreshold) in the average percentage of handover QoS whereby it achieves 20%, 21% and 13% improvement on handover latency, delay, and packet loss respectively. This is achieved through triggering a process in layer two and three that enhances the handover performance.

  20. [Research and realization of signal processing algorithms based on FPGA in digital ophthalmic ultrasonography imaging].

    PubMed

    Fang, Simin; Zhou, Sheng; Wang, Xiaochun; Ye, Qingsheng; Tian, Ling; Ji, Jianjun; Wang, Yanqun

    2015-01-01

    To design and improve signal processing algorithms of ophthalmic ultrasonography based on FPGA. Achieved three signal processing modules: full parallel distributed dynamic filter, digital quadrature demodulation, logarithmic compression, using Verilog HDL hardware language in Quartus II. Compared to the original system, the hardware cost is reduced, the whole image shows clearer and more information of the deep eyeball contained in the image, the depth of detection increases from 5 cm to 6 cm. The new algorithms meet the design requirements and achieve the system's optimization that they can effectively improve the image quality of existing equipment.

  1. Anytime synthetic projection: Maximizing the probability of goal satisfaction

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Bresina, John L.

    1990-01-01

    A projection algorithm is presented for incremental control rule synthesis. The algorithm synthesizes an initial set of goal achieving control rules using a combination of situation probability and estimated remaining work as a search heuristic. This set of control rules has a certain probability of satisfying the given goal. The probability is incrementally increased by synthesizing additional control rules to handle 'error' situations the execution system is likely to encounter when following the initial control rules. By using situation probabilities, the algorithm achieves a computationally effective balance between the limited robustness of triangle tables and the absolute robustness of universal plans.

  2. A novel algorithm for fast grasping of unknown objects using C-shape configuration

    NASA Astrophysics Data System (ADS)

    Lei, Qujiang; Chen, Guangming; Meijer, Jonathan; Wisse, Martijn

    2018-02-01

    Increasing grasping efficiency is very important for the robots to grasp unknown objects especially subjected to unfamiliar environments. To achieve this, a new algorithm is proposed based on the C-shape configuration. Specifically, the geometric model of the used under-actuated gripper is approximated as a C-shape. To obtain an appropriate graspable position, this C-shape configuration is applied to fit geometric model of an unknown object. The geometric model of unknown object is constructed by using a single-view partial point cloud. To examine the algorithm using simulations, a comparison of the commonly used motion planners is made. The motion planner with the highest number of solved runs, lowest computing time and the shortest path length is chosen to execute grasps found by this grasping algorithm. The simulation results demonstrate that excellent grasping efficiency is achieved by adopting our algorithm. To validate this algorithm, experiment tests are carried out using a UR5 robot arm and an under-actuated gripper. The experimental results show that steady grasping actions are obtained. Hence, this research provides a novel algorithm for fast grasping of unknown objects.

  3. Epidemic failure detection and consensus for extreme parallelism

    DOE PAGES

    Katti, Amogh; Di Fatta, Giuseppe; Naughton, Thomas; ...

    2017-02-01

    Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum s User Level Failure Mitigation proposal has introduced an operation, MPI Comm shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI Comm shrink operation requires a failure detection and consensus algorithm. This paper presents three novel failure detection and consensus algorithms using Gossiping. The proposed algorithms were implemented and tested using the Extreme-scale Simulator. The results show that inmore » all algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus. The third approach is a three-phase distributed failure detection and consensus algorithm and provides consistency guarantees even in very large and extreme-scale systems while at the same time being memory and bandwidth efficient.« less

  4. Computational modeling of river flow using bathymetry collected with an experimental, water-penetrating, green LiDAR

    NASA Astrophysics Data System (ADS)

    Kinzel, P. J.; Legleiter, C. J.; Nelson, J. M.

    2009-12-01

    Airborne bathymetric Light Detection and Ranging (LiDAR) systems designed for coastal and marine surveys are increasingly being deployed in fluvial environments. While the adaptation of this technology to rivers and streams would appear to be straightforward, currently technical challenges remain with regard to achieving high levels of vertical accuracy and precision when mapping bathymetry in shallow fluvial settings. Collectively these mapping errors have a direct bearing on hydraulic model predictions made using these data. We compared channel surveys conducted along the Platte River, Nebraska, and the Trinity River, California, using conventional ground-based methods with those made with the hybrid topographic/bathymetric Experimental Advanced Airborne Research LiDAR (EAARL). In the turbid and braided Platte River, a bathymetric-waveform processing algorithm was shown to enhance the definition of thalweg channels over a more simplified, first-surface waveform processing algorithm. Consequently flow simulations using data processed with the shallow bathymetric algorithm resulted in improved prediction of wetted area relative to the first-surface algorithm, when compared to the wetted area in concurrent aerial imagery. However, when compared to using conventionally collected data for flow modeling, the inundation extent was over predicted with the EAARL topography due to higher bed elevations measured by the LiDAR. In the relatively clear, meandering Trinity River, bathymetric processing algorithms were capable of defining a 3 meter deep pool. However, a similar bias in depth measurement was observed, with the LiDAR measuring the elevation of the river bottom above its actual position, resulting in a predicted water surface higher than that measured by field data. This contribution addresses the challenge of making bathymetric measurements with the EAARL in different environmental conditions encountered in fluvial settings, explores technical issues related to reliably detecting the water surface and river bottom, and illustrates the impact of using LiDAR data and current processing techniques to produce above and below water topographic surfaces for hydraulic modeling and habitat applications.

  5. PySeqLab: an open source Python package for sequence labeling and segmentation.

    PubMed

    Allam, Ahmed; Krauthammer, Michael

    2017-11-01

    Text and genomic data are composed of sequential tokens, such as words and nucleotides that give rise to higher order syntactic constructs. In this work, we aim at providing a comprehensive Python library implementing conditional random fields (CRFs), a class of probabilistic graphical models, for robust prediction of these constructs from sequential data. Python Sequence Labeling (PySeqLab) is an open source package for performing supervised learning in structured prediction tasks. It implements CRFs models, that is discriminative models from (i) first-order to higher-order linear-chain CRFs, and from (ii) first-order to higher-order semi-Markov CRFs (semi-CRFs). Moreover, it provides multiple learning algorithms for estimating model parameters such as (i) stochastic gradient descent (SGD) and its multiple variations, (ii) structured perceptron with multiple averaging schemes supporting exact and inexact search using 'violation-fixing' framework, (iii) search-based probabilistic online learning algorithm (SAPO) and (iv) an interface for Broyden-Fletcher-Goldfarb-Shanno (BFGS) and the limited-memory BFGS algorithms. Viterbi and Viterbi A* are used for inference and decoding of sequences. Using PySeqLab, we built models (classifiers) and evaluated their performance in three different domains: (i) biomedical Natural language processing (NLP), (ii) predictive DNA sequence analysis and (iii) Human activity recognition (HAR). State-of-the-art performance comparable to machine-learning based systems was achieved in the three domains without feature engineering or the use of knowledge sources. PySeqLab is available through https://bitbucket.org/A_2/pyseqlab with tutorials and documentation. ahmed.allam@yale.edu or michael.krauthammer@yale.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  6. Scalable software-defined optical networking with high-performance routing and wavelength assignment algorithms.

    PubMed

    Lee, Chankyun; Cao, Xiaoyuan; Yoshikane, Noboru; Tsuritani, Takehiro; Rhee, June-Koo Kevin

    2015-10-19

    The feasibility of software-defined optical networking (SDON) for a practical application critically depends on scalability of centralized control performance. The paper, highly scalable routing and wavelength assignment (RWA) algorithms are investigated on an OpenFlow-based SDON testbed for proof-of-concept demonstration. Efficient RWA algorithms are proposed to achieve high performance in achieving network capacity with reduced computation cost, which is a significant attribute in a scalable centralized-control SDON. The proposed heuristic RWA algorithms differ in the orders of request processes and in the procedures of routing table updates. Combined in a shortest-path-based routing algorithm, a hottest-request-first processing policy that considers demand intensity and end-to-end distance information offers both the highest throughput of networks and acceptable computation scalability. We further investigate trade-off relationship between network throughput and computation complexity in routing table update procedure by a simulation study.

  7. Accurate and diverse recommendations via eliminating redundant correlations

    NASA Astrophysics Data System (ADS)

    Zhou, Tao; Su, Ri-Qi; Liu, Run-Ran; Jiang, Luo-Luo; Wang, Bing-Hong; Zhang, Yi-Cheng

    2009-12-01

    In this paper, based on a weighted projection of a bipartite user-object network, we introduce a personalized recommendation algorithm, called network-based inference (NBI), which has higher accuracy than the classical algorithm, namely collaborative filtering. In NBI, the correlation resulting from a specific attribute may be repeatedly counted in the cumulative recommendations from different objects. By considering the higher order correlations, we design an improved algorithm that can, to some extent, eliminate the redundant correlations. We test our algorithm on two benchmark data sets, MovieLens and Netflix. Compared with NBI, the algorithmic accuracy, measured by the ranking score, can be further improved by 23 per cent for MovieLens and 22 per cent for Netflix. The present algorithm can even outperform the Latent Dirichlet Allocation algorithm, which requires much longer computational time. Furthermore, most previous studies considered the algorithmic accuracy only; in this paper, we argue that the diversity and popularity, as two significant criteria of algorithmic performance, should also be taken into account. With more or less the same accuracy, an algorithm giving higher diversity and lower popularity is more favorable. Numerical results show that the present algorithm can outperform the standard one simultaneously in all five adopted metrics: lower ranking score and higher precision for accuracy, larger Hamming distance and lower intra-similarity for diversity, as well as smaller average degree for popularity.

  8. Improved Continuous-Time Higher Harmonic Control Using Hinfinity Methods

    NASA Astrophysics Data System (ADS)

    Fan, Frank H.

    The helicopter is a versatile aircraft that can take-off and land vertically, hover efficiently, and maneuver in confined space. This versatility is enabled by the main rotor, which also causes undesired harmonic vibration during operation. This unwanted vibration has a negative impact on the practicality of the helicopter and also increases its operational cost. Passive control techniques have been applied to helicopter vibration suppression, but these methods are generally heavy and are not robust to changes in operating conditions. Feedback control offers the advantages of robustness and potentially higher performance over passive control techniques, and amongst the various feedback schemes, Shaw's higher harmonic control algorithm has been shown to be an effective method for attenuating harmonic disturbance in helicopters. In this thesis, the higher harmonic disturbance algorithm is further developed to achieve improved performance. One goal in this thesis is to determine the importance of periodicity in the helicopter rotor dynamics for control synthesis. Based on the analysis of wind tunnel data and simulation results, we conclude the helicopter rotor can be modeled reasonably well as linear and time-invariant for control design purposes. Modeling the helicopter rotor as linear time-invariant allows us to apply linear control theory concepts to the higher harmonic control problem. Another goal in this thesis is to find the limits of performance in harmonic disturbance rejection. To achieve this goal, we first define the metrics to measure the performance of the controller in terms of response speed and robustness to changes in the plant dynamics. The performance metrics are incorporated into an Hinfinity control problem. For a given plant, the resulting Hinfinity controller achieves the maximum performance, thus allowing us to identify the performance limitation in harmonic disturbance rejection. However, the Hinfinity controllers are of high order, and may have unstable poles, leading us to develop a design method to generate stable, fixed-order, and high performance controllers. Both the Hinfinity and the fixed-order controllers are designed for constant flight conditions. A gain-scheduled control law is used to reduce the vibration throughout the flight envelope. The gain-scheduling is accomplished by blending the outputs from fixed-order controllers designed for different flight conditions. The structure of the fixed-order controller allows the usage of a previously developed anti-windup scheme, and the blending function results in a bumpless full flight envelope control law. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  9. A rate-constrained fast full-search algorithm based on block sum pyramid.

    PubMed

    Song, Byung Cheol; Chun, Kang-Wook; Ra, Jong Beom

    2005-03-01

    This paper presents a fast full-search algorithm (FSA) for rate-constrained motion estimation. The proposed algorithm, which is based on the block sum pyramid frame structure, successively eliminates unnecessary search positions according to rate-constrained criterion. This algorithm provides the identical estimation performance to a conventional FSA having rate constraint, while achieving considerable reduction in computation.

  10. Optimal Doppler centroid estimation for SAR data from a quasi-homogeneous source

    NASA Technical Reports Server (NTRS)

    Jin, M. Y.

    1986-01-01

    This correspondence briefly describes two Doppler centroid estimation (DCE) algorithms, provides a performance summary for these algorithms, and presents the experimental results. These algorithms include that of Li et al. (1985) and a newly developed one that is optimized for quasi-homogeneous sources. The performance enhancement achieved by the optimal DCE algorithm is clearly demonstrated by the experimental results.

  11. Ensemble-based prediction of RNA secondary structures.

    PubMed

    Aghaeepour, Nima; Hoos, Holger H

    2013-04-24

    Accurate structure prediction methods play an important role for the understanding of RNA function. Energy-based, pseudoknot-free secondary structure prediction is one of the most widely used and versatile approaches, and improved methods for this task have received much attention over the past five years. Despite the impressive progress that as been achieved in this area, existing evaluations of the prediction accuracy achieved by various algorithms do not provide a comprehensive, statistically sound assessment. Furthermore, while there is increasing evidence that no prediction algorithm consistently outperforms all others, no work has been done to exploit the complementary strengths of multiple approaches. In this work, we present two contributions to the area of RNA secondary structure prediction. Firstly, we use state-of-the-art, resampling-based statistical methods together with a previously published and increasingly widely used dataset of high-quality RNA structures to conduct a comprehensive evaluation of existing RNA secondary structure prediction procedures. The results from this evaluation clarify the performance relationship between ten well-known existing energy-based pseudoknot-free RNA secondary structure prediction methods and clearly demonstrate the progress that has been achieved in recent years. Secondly, we introduce AveRNA, a generic and powerful method for combining a set of existing secondary structure prediction procedures into an ensemble-based method that achieves significantly higher prediction accuracies than obtained from any of its component procedures. Our new, ensemble-based method, AveRNA, improves the state of the art for energy-based, pseudoknot-free RNA secondary structure prediction by exploiting the complementary strengths of multiple existing prediction procedures, as demonstrated using a state-of-the-art statistical resampling approach. In addition, AveRNA allows an intuitive and effective control of the trade-off between false negative and false positive base pair predictions. Finally, AveRNA can make use of arbitrary sets of secondary structure prediction procedures and can therefore be used to leverage improvements in prediction accuracy offered by algorithms and energy models developed in the future. Our data, MATLAB software and a web-based version of AveRNA are publicly available at http://www.cs.ubc.ca/labs/beta/Software/AveRNA.

  12. A genetic algorithm for replica server placement

    NASA Astrophysics Data System (ADS)

    Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl

    2012-01-01

    Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.

  13. A genetic algorithm for replica server placement

    NASA Astrophysics Data System (ADS)

    Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl

    2011-12-01

    Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.

  14. Improved Collaborative Filtering Algorithm via Information Transformation

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Wang, Bing-Hong; Guo, Qiang

    In this paper, we propose a spreading activation approach for collaborative filtering (SA-CF). By using the opinion spreading process, the similarity between any users can be obtained. The algorithm has remarkably higher accuracy than the standard collaborative filtering using the Pearson correlation. Furthermore, we introduce a free parameter β to regulate the contributions of objects to user-user correlations. The numerical results indicate that decreasing the influence of popular objects can further improve the algorithmic accuracy and personality. We argue that a better algorithm should simultaneously require less computation and generate higher accuracy. Accordingly, we further propose an algorithm involving only the top-N similar neighbors for each target user, which has both less computational complexity and higher algorithmic accuracy.

  15. New development of the image matching algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqiang; Feng, Zhao

    2018-04-01

    To study the image matching algorithm, algorithm four elements are described, i.e., similarity measurement, feature space, search space and search strategy. Four common indexes for evaluating the image matching algorithm are described, i.e., matching accuracy, matching efficiency, robustness and universality. Meanwhile, this paper describes the principle of image matching algorithm based on the gray value, image matching algorithm based on the feature, image matching algorithm based on the frequency domain analysis, image matching algorithm based on the neural network and image matching algorithm based on the semantic recognition, and analyzes their characteristics and latest research achievements. Finally, the development trend of image matching algorithm is discussed. This study is significant for the algorithm improvement, new algorithm design and algorithm selection in practice.

  16. Data compressive paradigm for multispectral sensing using tunable DWELL mid-infrared detectors.

    PubMed

    Jang, Woo-Yong; Hayat, Majeed M; Godoy, Sebastián E; Bender, Steven C; Zarkesh-Ha, Payman; Krishna, Sanjay

    2011-09-26

    While quantum dots-in-a-well (DWELL) infrared photodetectors have the feature that their spectral responses can be shifted continuously by varying the applied bias, the width of the spectral response at any applied bias is not sufficiently narrow for use in multispectral sensing without the aid of spectral filters. To achieve higher spectral resolutions without using physical spectral filters, algorithms have been developed for post-processing the DWELL's bias-dependent photocurrents resulting from probing an object of interest repeatedly over a wide range of applied biases. At the heart of these algorithms is the ability to approximate an arbitrary spectral filter, which we desire the DWELL-algorithm combination to mimic, by forming a weighted superposition of the DWELL's non-orthogonal spectral responses over a range of applied biases. However, these algorithms assume availability of abundant DWELL data over a large number of applied biases (>30), leading to large overall acquisition times in proportion with the number of biases. This paper reports a new multispectral sensing algorithm to substantially compress the number of necessary bias values subject to a prescribed performance level across multiple sensing applications. The algorithm identifies a minimal set of biases to be used in sensing only the relevant spectral information for remote-sensing applications of interest. Experimental results on target spectrometry and classification demonstrate a reduction in the number of required biases by a factor of 7 (e.g., from 30 to 4). The tradeoff between performance and bias compression is thoroughly investigated. © 2011 Optical Society of America

  17. A hardware fast tracker for the ATLAS trigger

    NASA Astrophysics Data System (ADS)

    Asbah, Nedaa

    2016-09-01

    The trigger system of the ATLAS experiment is designed to reduce the event rate from the LHC nominal bunch crossing at 40 MHz to about 1 kHz, at the design luminosity of 1034 cm-2 s-1. After a successful period of data taking from 2010 to early 2013, the LHC already started with much higher instantaneous luminosity. This will increase the load on High Level Trigger system, the second stage of the selection based on software algorithms. More sophisticated algorithms will be needed to achieve higher background rejection while maintaining good efficiency for interesting physics signals. The Fast TracKer (FTK) is part of the ATLAS trigger upgrade project. It is a hardware processor that will provide, at every Level-1 accepted event (100 kHz) and within 100 microseconds, full tracking information for tracks with momentum as low as 1 GeV. Providing fast, extensive access to tracking information, with resolution comparable to the offline reconstruction, FTK will help in precise detection of the primary and secondary vertices to ensure robust selections and improve the trigger performance. FTK exploits hardware technologies with massive parallelism, combining Associative Memory ASICs, FPGAs and high-speed communication links.

  18. A new method for incoherent combining of far-field laser beams based on multiple faculae recognition

    NASA Astrophysics Data System (ADS)

    Ye, Demao; Li, Sichao; Yan, Zhihui; Zhang, Zenan; Liu, Yuan

    2018-03-01

    Compared to coherent beam combining, incoherent beam combining can complete the output of high power laser beam with high efficiency, simple structure, low cost and high thermal damage resistance, and it is easy to realize in engineering. Higher target power is achieved by incoherent beam combination which using technology of multi-channel optical path correction. However, each channel forms a spot in the far field respectively, which cannot form higher laser power density with low overlap ratio of faculae. In order to improve the combat effectiveness of the system, it is necessary to overlap different faculae that improve the target energy density. Hence, a novel method for incoherent combining of far-field laser beams is present. The method compromises piezoelectric ceramic technology and evaluation algorithm of faculae coincidence degree which based on high precision multi-channel optical path correction. The results show that the faculae recognition algorithm is low-latency(less than 10ms), which can meet the needs of practical engineering. Furthermore, the real time focusing ability of far field faculae is improved which was beneficial to the engineering of high-energy laser weapon or other laser jamming systems.

  19. Consensus Algorithms for Networks of Systems with Second- and Higher-Order Dynamics

    NASA Astrophysics Data System (ADS)

    Fruhnert, Michael

    This thesis considers homogeneous networks of linear systems. We consider linear feedback controllers and require that the directed graph associated with the network contains a spanning tree and systems are stabilizable. We show that, in continuous-time, consensus with a guaranteed rate of convergence can always be achieved using linear state feedback. For networks of continuous-time second-order systems, we provide a new and simple derivation of the conditions for a second-order polynomials with complex coefficients to be Hurwitz. We apply this result to obtain necessary and sufficient conditions to achieve consensus with networks whose graph Laplacian matrix may have complex eigenvalues. Based on the conditions found, methods to compute feedback gains are proposed. We show that gains can be chosen such that consensus is achieved robustly over a variety of communication structures and system dynamics. We also consider the use of static output feedback. For networks of discrete-time second-order systems, we provide a new and simple derivation of the conditions for a second-order polynomials with complex coefficients to be Schur. We apply this result to obtain necessary and sufficient conditions to achieve consensus with networks whose graph Laplacian matrix may have complex eigenvalues. We show that consensus can always be achieved for marginally stable systems and discretized systems. Simple conditions for consensus achieving controllers are obtained when the Laplacian eigenvalues are all real. For networks of continuous-time time-variant higher-order systems, we show that uniform consensus can always be achieved if systems are quadratically stabilizable. In this case, we provide a simple condition to obtain a linear feedback control. For networks of discrete-time higher-order systems, we show that constant gains can be chosen such that consensus is achieved for a variety of network topologies. First, we develop simple results for networks of time-invariant systems and networks of time-variant systems that are given in controllable canonical form. Second, we formulate the problem in terms of Linear Matrix Inequalities (LMIs). The condition found simplifies the design process and avoids the parallel solution of multiple LMIs. The result yields a modified Algebraic Riccati Equation (ARE) for which we present an equivalent LMI condition.

  20. GPU-based Branchless Distance-Driven Projection and Backprojection

    PubMed Central

    Liu, Rui; Fu, Lin; De Man, Bruno; Yu, Hengyong

    2017-01-01

    Projection and backprojection operations are essential in a variety of image reconstruction and physical correction algorithms in CT. The distance-driven (DD) projection and backprojection are widely used for their highly sequential memory access pattern and low arithmetic cost. However, a typical DD implementation has an inner loop that adjusts the calculation depending on the relative position between voxel and detector cell boundaries. The irregularity of the branch behavior makes it inefficient to be implemented on massively parallel computing devices such as graphics processing units (GPUs). Such irregular branch behaviors can be eliminated by factorizing the DD operation as three branchless steps: integration, linear interpolation, and differentiation, all of which are highly amenable to massive vectorization. In this paper, we implement and evaluate a highly parallel branchless DD algorithm for 3D cone beam CT. The algorithm utilizes the texture memory and hardware interpolation on GPUs to achieve fast computational speed. The developed branchless DD algorithm achieved 137-fold speedup for forward projection and 188-fold speedup for backprojection relative to a single-thread CPU implementation. Compared with a state-of-the-art 32-thread CPU implementation, the proposed branchless DD achieved 8-fold acceleration for forward projection and 10-fold acceleration for backprojection. GPU based branchless DD method was evaluated by iterative reconstruction algorithms with both simulation and real datasets. It obtained visually identical images as the CPU reference algorithm. PMID:29333480

  1. GPU-based Branchless Distance-Driven Projection and Backprojection.

    PubMed

    Liu, Rui; Fu, Lin; De Man, Bruno; Yu, Hengyong

    2017-12-01

    Projection and backprojection operations are essential in a variety of image reconstruction and physical correction algorithms in CT. The distance-driven (DD) projection and backprojection are widely used for their highly sequential memory access pattern and low arithmetic cost. However, a typical DD implementation has an inner loop that adjusts the calculation depending on the relative position between voxel and detector cell boundaries. The irregularity of the branch behavior makes it inefficient to be implemented on massively parallel computing devices such as graphics processing units (GPUs). Such irregular branch behaviors can be eliminated by factorizing the DD operation as three branchless steps: integration, linear interpolation, and differentiation, all of which are highly amenable to massive vectorization. In this paper, we implement and evaluate a highly parallel branchless DD algorithm for 3D cone beam CT. The algorithm utilizes the texture memory and hardware interpolation on GPUs to achieve fast computational speed. The developed branchless DD algorithm achieved 137-fold speedup for forward projection and 188-fold speedup for backprojection relative to a single-thread CPU implementation. Compared with a state-of-the-art 32-thread CPU implementation, the proposed branchless DD achieved 8-fold acceleration for forward projection and 10-fold acceleration for backprojection. GPU based branchless DD method was evaluated by iterative reconstruction algorithms with both simulation and real datasets. It obtained visually identical images as the CPU reference algorithm.

  2. Two novel motion-based algorithms for surveillance video analysis on embedded platforms

    NASA Astrophysics Data System (ADS)

    Vijverberg, Julien A.; Loomans, Marijn J. H.; Koeleman, Cornelis J.; de With, Peter H. N.

    2010-05-01

    This paper proposes two novel motion-vector based techniques for target detection and target tracking in surveillance videos. The algorithms are designed to operate on a resource-constrained device, such as a surveillance camera, and to reuse the motion vectors generated by the video encoder. The first novel algorithm for target detection uses motion vectors to construct a consistent motion mask, which is combined with a simple background segmentation technique to obtain a segmentation mask. The second proposed algorithm aims at multi-target tracking and uses motion vectors to assign blocks to targets employing five features. The weights of these features are adapted based on the interaction between targets. These algorithms are combined in one complete analysis application. The performance of this application for target detection has been evaluated for the i-LIDS sterile zone dataset and achieves an F1-score of 0.40-0.69. The performance of the analysis algorithm for multi-target tracking has been evaluated using the CAVIAR dataset and achieves an MOTP of around 9.7 and MOTA of 0.17-0.25. On a selection of targets in videos from other datasets, the achieved MOTP and MOTA are 8.8-10.5 and 0.32-0.49 respectively. The execution time on a PC-based platform is 36 ms. This includes the 20 ms for generating motion vectors, which are also required by the video encoder.

  3. Algorithmic Mechanism Design of Evolutionary Computation.

    PubMed

    Pei, Yan

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm.

  4. Algorithmic Mechanism Design of Evolutionary Computation

    PubMed Central

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm. PMID:26257777

  5. Discrimination of crop types with TerraSAR-X-derived information

    NASA Astrophysics Data System (ADS)

    Sonobe, Rei; Tani, Hiroshi; Wang, Xiufeng; Kobayashi, Nobuyuki; Shimamura, Hideki

    Although classification maps are required for management and for the estimation of agricultural disaster compensation, those techniques have yet to be established. This paper describes the comparison of three different classification algorithms for mapping crops in Hokkaido, Japan, using TerraSAR-X (including TanDEM-X) dual-polarimetric data. In the study area, beans, beets, grasslands, maize, potatoes and winter wheat were cultivated. In this study, classification using TerraSAR-X-derived information was performed. Coherence values, polarimetric parameters and gamma nought values were also obtained and evaluated regarding their usefulness in crop classification. Accurate classification may be possible with currently existing supervised learning models. A comparison between the classification and regression tree (CART), support vector machine (SVM) and random forests (RF) algorithms was performed. Even though J-M distances were lower than 1.0 on all TerraSAR-X acquisition days, good results were achieved (e.g., separability between winter wheat and grass) due to the characteristics of the machine learning algorithm. It was found that SVM performed best, achieving an overall accuracy of 95.0% based on the polarimetric parameters and gamma nought values for HH and VV polarizations. The misclassified fields were less than 100 a in area and 79.5-96.3% were less than 200 a with the exception of grassland. When some feature such as a road or windbreak forest is present in the TerraSAR-X data, the ratio of its extent to that of the field is relatively higher for the smaller fields, which leads to misclassifications.

  6. Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media

    NASA Astrophysics Data System (ADS)

    Li, Runze; Peng, Tong; Liang, Yansheng; Yang, Yanlong; Yao, Baoli; Yu, Xianghua; Min, Junwei; Lei, Ming; Yan, Shaohui; Zhang, Chunmin; Ye, Tong

    2017-10-01

    Focusing and imaging through scattering media has been proved possible with high resolution wavefront shaping. A completely scrambled scattering field can be corrected by applying a correction phase mask on a phase only spatial light modulator (SLM) and thereby the focusing quality can be improved. The correction phase is often found by global searching algorithms, among which Genetic Algorithm (GA) stands out for its parallel optimization process and high performance in noisy environment. However, the convergence of GA slows down gradually with the progression of optimization, causing the improvement factor of optimization to reach a plateau eventually. In this report, we propose an interleaved segment correction (ISC) method that can significantly boost the improvement factor with the same number of iterations comparing with the conventional all segment correction method. In the ISC method, all the phase segments are divided into a number of interleaved groups; GA optimization procedures are performed individually and sequentially among each group of segments. The final correction phase mask is formed by applying correction phases of all interleaved groups together on the SLM. The ISC method has been proved significantly useful in practice because of its ability to achieve better improvement factors when noise is present in the system. We have also demonstrated that the imaging quality is improved as better correction phases are found and applied on the SLM. Additionally, the ISC method lowers the demand of dynamic ranges of detection devices. The proposed method holds potential in applications, such as high-resolution imaging in deep tissue.

  7. Percentage depth dose calculation accuracy of model based algorithms in high energy photon small fields through heterogeneous media and comparison with plastic scintillator dosimetry.

    PubMed

    Alagar, Ananda Giri Babu; Mani, Ganesh Kadirampatti; Karunakaran, Kaviarasu

    2016-01-08

    Small fields smaller than 4 × 4 cm2 are used in stereotactic and conformal treatments where heterogeneity is normally present. Since dose calculation accuracy in both small fields and heterogeneity often involves more discrepancy, algorithms used by treatment planning systems (TPS) should be evaluated for achieving better treatment results. This report aims at evaluating accuracy of four model-based algorithms, X-ray Voxel Monte Carlo (XVMC) from Monaco, Superposition (SP) from CMS-Xio, AcurosXB (AXB) and analytical anisotropic algorithm (AAA) from Eclipse are tested against the measurement. Measurements are done using Exradin W1 plastic scintillator in Solid Water phantom with heterogeneities like air, lung, bone, and aluminum, irradiated with 6 and 15 MV photons of square field size ranging from 1 to 4 cm2. Each heterogeneity is introduced individually at two different depths from depth-of-dose maximum (Dmax), one setup being nearer and another farther from the Dmax. The central axis percentage depth-dose (CADD) curve for each setup is measured separately and compared with the TPS algorithm calculated for the same setup. The percentage normalized root mean squared deviation (%NRMSD) is calculated, which represents the whole CADD curve's deviation against the measured. It is found that for air and lung heterogeneity, for both 6 and 15 MV, all algorithms show maximum deviation for field size 1 × 1 cm2 and gradually reduce when field size increases, except for AAA. For aluminum and bone, all algorithms' deviations are less for 15 MV irrespective of setup. In all heterogeneity setups, 1 × 1 cm2 field showed maximum deviation, except in 6MV bone setup. All algorithms in the study, irrespective of energy and field size, when any heterogeneity is nearer to Dmax, the dose deviation is higher compared to the same heterogeneity far from the Dmax. Also, all algorithms show maximum deviation in lower-density materials compared to high-density materials.

  8. Parallel Algorithm Solves Coupled Differential Equations

    NASA Technical Reports Server (NTRS)

    Hayashi, A.

    1987-01-01

    Numerical methods adapted to concurrent processing. Algorithm solves set of coupled partial differential equations by numerical integration. Adapted to run on hypercube computer, algorithm separates problem into smaller problems solved concurrently. Increase in computing speed with concurrent processing over that achievable with conventional sequential processing appreciable, especially for large problems.

  9. Combining two open source tools for neural computation (BioPatRec and Netlab) improves movement classification for prosthetic control.

    PubMed

    Prahm, Cosima; Eckstein, Korbinian; Ortiz-Catalan, Max; Dorffner, Georg; Kaniusas, Eugenijus; Aszmann, Oskar C

    2016-08-31

    Controlling a myoelectric prosthesis for upper limbs is increasingly challenging for the user as more electrodes and joints become available. Motion classification based on pattern recognition with a multi-electrode array allows multiple joints to be controlled simultaneously. Previous pattern recognition studies are difficult to compare, because individual research groups use their own data sets. To resolve this shortcoming and to facilitate comparisons, open access data sets were analysed using components of BioPatRec and Netlab pattern recognition models. Performances of the artificial neural networks, linear models, and training program components were compared. Evaluation took place within the BioPatRec environment, a Matlab-based open source platform that provides feature extraction, processing and motion classification algorithms for prosthetic control. The algorithms were applied to myoelectric signals for individual and simultaneous classification of movements, with the aim of finding the best performing algorithm and network model. Evaluation criteria included classification accuracy and training time. Results in both the linear and the artificial neural network models demonstrated that Netlab's implementation using scaled conjugate training algorithm reached significantly higher accuracies than BioPatRec. It is concluded that the best movement classification performance would be achieved through integrating Netlab training algorithms in the BioPatRec environment so that future prosthesis training can be shortened and control made more reliable. Netlab was therefore included into the newest release of BioPatRec (v4.0).

  10. Lessons learned and way forward from 6 years of Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2017-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve and qualify algorithms for the retrieval of aerosol information from European sensors. Meanwhile, several validated (multi-) decadal time series of different aerosol parameters from complementary sensors are available: Aerosol Optical Depth (AOD), stratospheric extinction profiles, a qualitative Absorbing Aerosol Index (AAI), fine mode AOD, mineral dust AOD; absorption information and aerosol layer height are in an evaluation phase and the multi-pixel GRASP algorithm for the POLDER instrument is used for selected regions. Validation (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account in an iterative evolution cycle. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. The use of an ensemble method was tested, where several algorithms are applied to the same sensor. The presentation will summarize and discuss the lessons learned from the 6 years of intensive collaboration and highlight major achievements (significantly improved AOD quality, fine mode AOD, dust AOD, pixel level uncertainties, ensemble approach); also limitations and remaining deficits shall be discussed. An outlook will discuss the way forward for the continuous algorithm improvement and re-processing together with opportunities for time series extension with successor instruments of the Sentinel family and the complementarity of the different satellite aerosol products.

  11. Efficient Training of Supervised Spiking Neural Network via Accurate Synaptic-Efficiency Adjustment Method.

    PubMed

    Xie, Xiurui; Qu, Hong; Yi, Zhang; Kurths, Jurgen

    2017-06-01

    The spiking neural network (SNN) is the third generation of neural networks and performs remarkably well in cognitive tasks, such as pattern recognition. The temporal neural encode mechanism found in biological hippocampus enables SNN to possess more powerful computation capability than networks with other encoding schemes. However, this temporal encoding approach requires neurons to process information serially on time, which reduces learning efficiency significantly. To keep the powerful computation capability of the temporal encoding mechanism and to overcome its low efficiency in the training of SNNs, a new training algorithm, the accurate synaptic-efficiency adjustment method is proposed in this paper. Inspired by the selective attention mechanism of the primate visual system, our algorithm selects only the target spike time as attention areas, and ignores voltage states of the untarget ones, resulting in a significant reduction of training time. Besides, our algorithm employs a cost function based on the voltage difference between the potential of the output neuron and the firing threshold of the SNN, instead of the traditional precise firing time distance. A normalized spike-timing-dependent-plasticity learning window is applied to assigning this error to different synapses for instructing their training. Comprehensive simulations are conducted to investigate the learning properties of our algorithm, with input neurons emitting both single spike and multiple spikes. Simulation results indicate that our algorithm possesses higher learning performance than the existing other methods and achieves the state-of-the-art efficiency in the training of SNN.

  12. Using Automatic Control Approach In Detention Storages For Storm Water Management In An Urban Watershed

    NASA Astrophysics Data System (ADS)

    Goyal, A.; Yadav, H.; Tyagi, H.; Gosain, A. K.; Khosa, R.

    2017-12-01

    Increased imperviousness due to rapid urbanization have changed the urban hydrological cycle. As watersheds are urbanized, infiltration and groundwater recharge have decreased, surface runoff hydrograph shows higher peak indicating large volumes of surface runoff in lesser time durations. The ultimate panacea is to reduce the peak of hydrograph or increase the retention time of surface flow. SWMM is widely used hydrologic and hydraulic software which helps to simulate the urban storm water management with the provision to apply different techniques to prevent flooding. A model was setup to simulate the surface runoff and channel flow in a small urban catchment. It provides the temporal and spatial information of flooding in a catchment. Incorporating the detention storages in the drainage network helps achieve reduced flooding. Detention storages provided with predefined algorithms were for controlling the pluvial flooding in urban watersheds. The algorithm based on control theory, automated the functioning of detention storages ensuring that the storages become active on occurrence of flood in the storm water drains and shuts down when flooding is over. Detention storages can be implemented either at source or at several downstream control points. The proposed piece of work helps to mitigate the wastage of rainfall water, achieve desirable groundwater and attain a controlled urban storm water management system.

  13. Low-rank canonical-tensor decomposition of potential energy surfaces: application to grid-based diagrammatic vibrational Green's function theory

    NASA Astrophysics Data System (ADS)

    Rai, Prashant; Sargsyan, Khachik; Najm, Habib; Hermes, Matthew R.; Hirata, So

    2017-09-01

    A new method is proposed for a fast evaluation of high-dimensional integrals of potential energy surfaces (PES) that arise in many areas of quantum dynamics. It decomposes a PES into a canonical low-rank tensor format, reducing its integral into a relatively short sum of products of low-dimensional integrals. The decomposition is achieved by the alternating least squares (ALS) algorithm, requiring only a small number of single-point energy evaluations. Therefore, it eradicates a force-constant evaluation as the hotspot of many quantum dynamics simulations and also possibly lifts the curse of dimensionality. This general method is applied to the anharmonic vibrational zero-point and transition energy calculations of molecules using the second-order diagrammatic vibrational many-body Green's function (XVH2) theory with a harmonic-approximation reference. In this application, high dimensional PES and Green's functions are both subjected to a low-rank decomposition. Evaluating the molecular integrals over a low-rank PES and Green's functions as sums of low-dimensional integrals using the Gauss-Hermite quadrature, this canonical-tensor-decomposition-based XVH2 (CT-XVH2) achieves an accuracy of 0.1 cm-1 or higher and nearly an order of magnitude speedup as compared with the original algorithm using force constants for water and formaldehyde.

  14. Multi-Complementary Model for Long-Term Tracking

    PubMed Central

    Zhang, Deng; Zhang, Junchang; Xia, Chenyang

    2018-01-01

    In recent years, video target tracking algorithms have been widely used. However, many tracking algorithms do not achieve satisfactory performance, especially when dealing with problems such as object occlusions, background clutters, motion blur, low illumination color images, and sudden illumination changes in real scenes. In this paper, we incorporate an object model based on contour information into a Staple tracker that combines the correlation filter model and color model to greatly improve the tracking robustness. Since each model is responsible for tracking specific features, the three complementary models combine for more robust tracking. In addition, we propose an efficient object detection model with contour and color histogram features, which has good detection performance and better detection efficiency compared to the traditional target detection algorithm. Finally, we optimize the traditional scale calculation, which greatly improves the tracking execution speed. We evaluate our tracker on the Object Tracking Benchmarks 2013 (OTB-13) and Object Tracking Benchmarks 2015 (OTB-15) benchmark datasets. With the OTB-13 benchmark datasets, our algorithm is improved by 4.8%, 9.6%, and 10.9% on the success plots of OPE, TRE and SRE, respectively, in contrast to another classic LCT (Long-term Correlation Tracking) algorithm. On the OTB-15 benchmark datasets, when compared with the LCT algorithm, our algorithm achieves 10.4%, 12.5%, and 16.1% improvement on the success plots of OPE, TRE, and SRE, respectively. At the same time, it needs to be emphasized that, due to the high computational efficiency of the color model and the object detection model using efficient data structures, and the speed advantage of the correlation filters, our tracking algorithm could still achieve good tracking speed. PMID:29425170

  15. Morphological operators for enhanced polarimetric image target detection

    NASA Astrophysics Data System (ADS)

    Romano, João. M.; Rosario, Dalton S.

    2015-09-01

    We introduce an algorithm based on morphological filters with the Stokes parameters that augments the daytime and nighttime detection of weak-signal manmade objects immersed in a predominant natural background scene. The approach features a tailored sequence of signal-enhancing filters, consisting of core morphological operators (dilation, erosion) and higher level morphological operations (e.g., spatial gradient, opening, closing) to achieve a desired overarching goal. Using representative data from the SPICE database, the results show that the approach was able to automatically and persistently detect with a high confidence level the presence of three mobile military howitzer surrogates (targets) in natural clutter.

  16. Hybrid ARQ Scheme with Autonomous Retransmission for Multicasting in Wireless Sensor Networks.

    PubMed

    Jung, Young-Ho; Choi, Jihoon

    2017-02-25

    A new hybrid automatic repeat request (HARQ) scheme for multicast service for wireless sensor networks is proposed in this study. In the proposed algorithm, the HARQ operation is combined with an autonomous retransmission method that ensure a data packet is transmitted irrespective of whether or not the packet is successfully decoded at the receivers. The optimal number of autonomous retransmissions is determined to ensure maximum spectral efficiency, and a practical method that adjusts the number of autonomous retransmissions for realistic conditions is developed. Simulation results show that the proposed method achieves higher spectral efficiency than existing HARQ techniques.

  17. A Sustainable City Planning Algorithm Based on TLBO and Local Search

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Lin, Li; Huang, Xuanxuan; Liu, Yiming; Zhang, Yonggang

    2017-09-01

    Nowadays, how to design a city with more sustainable features has become a center problem in the field of social development, meanwhile it has provided a broad stage for the application of artificial intelligence theories and methods. Because the design of sustainable city is essentially a constraint optimization problem, the swarm intelligence algorithm of extensive research has become a natural candidate for solving the problem. TLBO (Teaching-Learning-Based Optimization) algorithm is a new swarm intelligence algorithm. Its inspiration comes from the “teaching” and “learning” behavior of teaching class in the life. The evolution of the population is realized by simulating the “teaching” of the teacher and the student “learning” from each other, with features of less parameters, efficient, simple thinking, easy to achieve and so on. It has been successfully applied to scheduling, planning, configuration and other fields, which achieved a good effect and has been paid more and more attention by artificial intelligence researchers. Based on the classical TLBO algorithm, we propose a TLBO_LS algorithm combined with local search. We design and implement the random generation algorithm and evaluation model of urban planning problem. The experiments on the small and medium-sized random generation problem showed that our proposed algorithm has obvious advantages over DE algorithm and classical TLBO algorithm in terms of convergence speed and solution quality.

  18. Fast object detection algorithm based on HOG and CNN

    NASA Astrophysics Data System (ADS)

    Lu, Tongwei; Wang, Dandan; Zhang, Yanduo

    2018-04-01

    In the field of computer vision, object classification and object detection are widely used in many fields. The traditional object detection have two main problems:one is that sliding window of the regional selection strategy is high time complexity and have window redundancy. And the other one is that Robustness of the feature is not well. In order to solve those problems, Regional Proposal Network (RPN) is used to select candidate regions instead of selective search algorithm. Compared with traditional algorithms and selective search algorithms, RPN has higher efficiency and accuracy. We combine HOG feature and convolution neural network (CNN) to extract features. And we use SVM to classify. For TorontoNet, our algorithm's mAP is 1.6 percentage points higher. For OxfordNet, our algorithm's mAP is 1.3 percentage higher.

  19. Convergence and Applications of a Gossip-Based Gauss-Newton Algorithm

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Scaglione, Anna

    2013-11-01

    The Gauss-Newton algorithm is a popular and efficient centralized method for solving non-linear least squares problems. In this paper, we propose a multi-agent distributed version of this algorithm, named Gossip-based Gauss-Newton (GGN) algorithm, which can be applied in general problems with non-convex objectives. Furthermore, we analyze and present sufficient conditions for its convergence and show numerically that the GGN algorithm achieves performance comparable to the centralized algorithm, with graceful degradation in case of network failures. More importantly, the GGN algorithm provides significant performance gains compared to other distributed first order methods.

  20. An implicit iterative algorithm with a tuning parameter for Itô Lyapunov matrix equations

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Wu, Ai-Guo; Sun, Hui-Jie

    2018-01-01

    In this paper, an implicit iterative algorithm is proposed for solving a class of Lyapunov matrix equations arising in Itô stochastic linear systems. A tuning parameter is introduced in this algorithm, and thus the convergence rate of the algorithm can be changed. Some conditions are presented such that the developed algorithm is convergent. In addition, an explicit expression is also derived for the optimal tuning parameter, which guarantees that the obtained algorithm achieves its fastest convergence rate. Finally, numerical examples are employed to illustrate the effectiveness of the given algorithm.

  1. An Efficient Image Recovery Algorithm for Diffraction Tomography Systems

    NASA Technical Reports Server (NTRS)

    Jin, Michael Y.

    1993-01-01

    A diffraction tomography system has potential application in ultrasonic medical imaging area. It is capable of achieving imagery with the ultimate resolution of one quarter the wavelength by collecting ultrasonic backscattering data from a circular array of sensors and reconstructing the object reflectivity using a digital image recovery algorithm performed by a computer. One advantage of such a system is that is allows a relatively lower frequency wave to penetrate more deeply into the object and still achieve imagery with a reasonable resolution. An efficient image recovery algorithm for the diffraction tomography system was originally developed for processing a wide beam spaceborne SAR data...

  2. Hyper-spectral image compression algorithm based on mixing transform of wave band grouping to eliminate redundancy

    NASA Astrophysics Data System (ADS)

    Xie, ChengJun; Xu, Lin

    2008-03-01

    This paper presents an algorithm based on mixing transform of wave band grouping to eliminate spectral redundancy, the algorithm adapts to the relativity difference between different frequency spectrum images, and still it works well when the band number is not the power of 2. Using non-boundary extension CDF(2,2)DWT and subtraction mixing transform to eliminate spectral redundancy, employing CDF(2,2)DWT to eliminate spatial redundancy and SPIHT+CABAC for compression coding, the experiment shows that a satisfied lossless compression result can be achieved. Using hyper-spectral image Canal of American JPL laboratory as the data set for lossless compression test, when the band number is not the power of 2, lossless compression result of this compression algorithm is much better than the results acquired by JPEG-LS, WinZip, ARJ, DPCM, the research achievements of a research team of Chinese Academy of Sciences, Minimum Spanning Tree and Near Minimum Spanning Tree, on the average the compression ratio of this algorithm exceeds the above algorithms by 41%,37%,35%,29%,16%,10%,8% respectively; when the band number is the power of 2, for 128 frames of the image Canal, taking 8, 16 and 32 respectively as the number of one group for groupings based on different numbers, considering factors like compression storage complexity, the type of wave band and the compression effect, we suggest using 8 as the number of bands included in one group to achieve a better compression effect. The algorithm of this paper has priority in operation speed and hardware realization convenience.

  3. Network intrusion detection by the coevolutionary immune algorithm of artificial immune systems with clonal selection

    NASA Astrophysics Data System (ADS)

    Salamatova, T.; Zhukov, V.

    2017-02-01

    The paper presents the application of the artificial immune systems apparatus as a heuristic method of network intrusion detection for algorithmic provision of intrusion detection systems. The coevolutionary immune algorithm of artificial immune systems with clonal selection was elaborated. In testing different datasets the empirical results of evaluation of the algorithm effectiveness were achieved. To identify the degree of efficiency the algorithm was compared with analogs. The fundamental rules based of solutions generated by this algorithm are described in the article.

  4. GPU based cloud system for high-performance arrhythmia detection with parallel k-NN algorithm.

    PubMed

    Tae Joon Jun; Hyun Ji Park; Hyuk Yoo; Young-Hak Kim; Daeyoung Kim

    2016-08-01

    In this paper, we propose an GPU based Cloud system for high-performance arrhythmia detection. Pan-Tompkins algorithm is used for QRS detection and we optimized beat classification algorithm with K-Nearest Neighbor (K-NN). To support high performance beat classification on the system, we parallelized beat classification algorithm with CUDA to execute the algorithm on virtualized GPU devices on the Cloud system. MIT-BIH Arrhythmia database is used for validation of the algorithm. The system achieved about 93.5% of detection rate which is comparable to previous researches while our algorithm shows 2.5 times faster execution time compared to CPU only detection algorithm.

  5. The Separatrix Algorithm for Synthesis and Analysis of Stochastic Simulations with Applications in Disease Modeling

    PubMed Central

    Klein, Daniel J.; Baym, Michael; Eckhoff, Philip

    2014-01-01

    Decision makers in epidemiology and other disciplines are faced with the daunting challenge of designing interventions that will be successful with high probability and robust against a multitude of uncertainties. To facilitate the decision making process in the context of a goal-oriented objective (e.g., eradicate polio by ), stochastic models can be used to map the probability of achieving the goal as a function of parameters. Each run of a stochastic model can be viewed as a Bernoulli trial in which “success” is returned if and only if the goal is achieved in simulation. However, each run can take a significant amount of time to complete, and many replicates are required to characterize each point in parameter space, so specialized algorithms are required to locate desirable interventions. To address this need, we present the Separatrix Algorithm, which strategically locates parameter combinations that are expected to achieve the goal with a user-specified probability of success (e.g. 95%). Technically, the algorithm iteratively combines density-corrected binary kernel regression with a novel information-gathering experiment design to produce results that are asymptotically correct and work well in practice. The Separatrix Algorithm is demonstrated on several test problems, and on a detailed individual-based simulation of malaria. PMID:25078087

  6. Real-time trajectory optimization on parallel processors

    NASA Technical Reports Server (NTRS)

    Psiaki, Mark L.

    1993-01-01

    A parallel algorithm has been developed for rapidly solving trajectory optimization problems. The goal of the work has been to develop an algorithm that is suitable to do real-time, on-line optimal guidance through repeated solution of a trajectory optimization problem. The algorithm has been developed on an INTEL iPSC/860 message passing parallel processor. It uses a zero-order-hold discretization of a continuous-time problem and solves the resulting nonlinear programming problem using a custom-designed augmented Lagrangian nonlinear programming algorithm. The algorithm achieves parallelism of function, derivative, and search direction calculations through the principle of domain decomposition applied along the time axis. It has been encoded and tested on 3 example problems, the Goddard problem, the acceleration-limited, planar minimum-time to the origin problem, and a National Aerospace Plane minimum-fuel ascent guidance problem. Execution times as fast as 118 sec of wall clock time have been achieved for a 128-stage Goddard problem solved on 32 processors. A 32-stage minimum-time problem has been solved in 151 sec on 32 processors. A 32-stage National Aerospace Plane problem required 2 hours when solved on 32 processors. A speed-up factor of 7.2 has been achieved by using 32-nodes instead of 1-node to solve a 64-stage Goddard problem.

  7. Introducing two Random Forest based methods for cloud detection in remote sensing images

    NASA Astrophysics Data System (ADS)

    Ghasemian, Nafiseh; Akhoondzadeh, Mehdi

    2018-07-01

    Cloud detection is a necessary phase in satellite images processing to retrieve the atmospheric and lithospheric parameters. Currently, some cloud detection methods based on Random Forest (RF) model have been proposed but they do not consider both spectral and textural characteristics of the image. Furthermore, they have not been tested in the presence of snow/ice. In this paper, we introduce two RF based algorithms, Feature Level Fusion Random Forest (FLFRF) and Decision Level Fusion Random Forest (DLFRF) to incorporate visible, infrared (IR) and thermal spectral and textural features (FLFRF) including Gray Level Co-occurrence Matrix (GLCM) and Robust Extended Local Binary Pattern (RELBP_CI) or visible, IR and thermal classifiers (DLFRF) for highly accurate cloud detection on remote sensing images. FLFRF first fuses visible, IR and thermal features. Thereafter, it uses the RF model to classify pixels to cloud, snow/ice and background or thick cloud, thin cloud and background. DLFRF considers visible, IR and thermal features (both spectral and textural) separately and inserts each set of features to RF model. Then, it holds vote matrix of each run of the model. Finally, it fuses the classifiers using the majority vote method. To demonstrate the effectiveness of the proposed algorithms, 10 Terra MODIS and 15 Landsat 8 OLI/TIRS images with different spatial resolutions are used in this paper. Quantitative analyses are based on manually selected ground truth data. Results show that after adding RELBP_CI to input feature set cloud detection accuracy improves. Also, the average cloud kappa values of FLFRF and DLFRF on MODIS images (1 and 0.99) are higher than other machine learning methods, Linear Discriminate Analysis (LDA), Classification And Regression Tree (CART), K Nearest Neighbor (KNN) and Support Vector Machine (SVM) (0.96). The average snow/ice kappa values of FLFRF and DLFRF on MODIS images (1 and 0.85) are higher than other traditional methods. The quantitative values on Landsat 8 images show similar trend. Consequently, while SVM and K-nearest neighbor show overestimation in predicting cloud and snow/ice pixels, our Random Forest (RF) based models can achieve higher cloud, snow/ice kappa values on MODIS and thin cloud, thick cloud and snow/ice kappa values on Landsat 8 images. Our algorithms predict both thin and thick cloud on Landsat 8 images while the existing cloud detection algorithm, Fmask cannot discriminate them. Compared to the state-of-the-art methods, our algorithms have acquired higher average cloud and snow/ice kappa values for different spatial resolutions.

  8. A machine learning-based framework to identify type 2 diabetes through electronic health records

    PubMed Central

    Zheng, Tao; Xie, Wei; Xu, Liling; He, Xiaoying; Zhang, Ya; You, Mingrong; Yang, Gong; Chen, You

    2016-01-01

    Objective To discover diverse genotype-phenotype associations affiliated with Type 2 Diabetes Mellitus (T2DM) via genome-wide association study (GWAS) and phenome-wide association study (PheWAS), more cases (T2DM subjects) and controls (subjects without T2DM) are required to be identified (e.g., via Electronic Health Records (EHR)). However, existing expert based identification algorithms often suffer in a low recall rate and could miss a large number of valuable samples under conservative filtering standards. The goal of this work is to develop a semi-automated framework based on machine learning as a pilot study to liberalize filtering criteria to improve recall rate with a keeping of low false positive rate. Materials and methods We propose a data informed framework for identifying subjects with and without T2DM from EHR via feature engineering and machine learning. We evaluate and contrast the identification performance of widely-used machine learning models within our framework, including k-Nearest-Neighbors, Naïve Bayes, Decision Tree, Random Forest, Support Vector Machine and Logistic Regression. Our framework was conducted on 300 patient samples (161 cases, 60 controls and 79 unconfirmed subjects), randomly selected from 23,281 diabetes related cohort retrieved from a regional distributed EHR repository ranging from 2012 to 2014. Results We apply top-performing machine learning algorithms on the engineered features. We benchmark and contrast the accuracy, precision, AUC, sensitivity and specificity of classification models against the state-of-the-art expert algorithm for identification of T2DM subjects. Our results indicate that the framework achieved high identification performances (∼0.98 in average AUC), which are much higher than the state-of-the-art algorithm (0.71 in AUC). Discussion Expert algorithm-based identification of T2DM subjects from EHR is often hampered by the high missing rates due to their conservative selection criteria. Our framework leverages machine learning and feature engineering to loosen such selection criteria to achieve a high identification rate of cases and controls. Conclusions Our proposed framework demonstrates a more accurate and efficient approach for identifying subjects with and without T2DM from EHR. PMID:27919371

  9. A machine learning-based framework to identify type 2 diabetes through electronic health records.

    PubMed

    Zheng, Tao; Xie, Wei; Xu, Liling; He, Xiaoying; Zhang, Ya; You, Mingrong; Yang, Gong; Chen, You

    2017-01-01

    To discover diverse genotype-phenotype associations affiliated with Type 2 Diabetes Mellitus (T2DM) via genome-wide association study (GWAS) and phenome-wide association study (PheWAS), more cases (T2DM subjects) and controls (subjects without T2DM) are required to be identified (e.g., via Electronic Health Records (EHR)). However, existing expert based identification algorithms often suffer in a low recall rate and could miss a large number of valuable samples under conservative filtering standards. The goal of this work is to develop a semi-automated framework based on machine learning as a pilot study to liberalize filtering criteria to improve recall rate with a keeping of low false positive rate. We propose a data informed framework for identifying subjects with and without T2DM from EHR via feature engineering and machine learning. We evaluate and contrast the identification performance of widely-used machine learning models within our framework, including k-Nearest-Neighbors, Naïve Bayes, Decision Tree, Random Forest, Support Vector Machine and Logistic Regression. Our framework was conducted on 300 patient samples (161 cases, 60 controls and 79 unconfirmed subjects), randomly selected from 23,281 diabetes related cohort retrieved from a regional distributed EHR repository ranging from 2012 to 2014. We apply top-performing machine learning algorithms on the engineered features. We benchmark and contrast the accuracy, precision, AUC, sensitivity and specificity of classification models against the state-of-the-art expert algorithm for identification of T2DM subjects. Our results indicate that the framework achieved high identification performances (∼0.98 in average AUC), which are much higher than the state-of-the-art algorithm (0.71 in AUC). Expert algorithm-based identification of T2DM subjects from EHR is often hampered by the high missing rates due to their conservative selection criteria. Our framework leverages machine learning and feature engineering to loosen such selection criteria to achieve a high identification rate of cases and controls. Our proposed framework demonstrates a more accurate and efficient approach for identifying subjects with and without T2DM from EHR. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Electrode channel selection based on backtracking search optimization in motor imagery brain-computer interfaces.

    PubMed

    Dai, Shengfa; Wei, Qingguo

    2017-01-01

    Common spatial pattern algorithm is widely used to estimate spatial filters in motor imagery based brain-computer interfaces. However, use of a large number of channels will make common spatial pattern tend to over-fitting and the classification of electroencephalographic signals time-consuming. To overcome these problems, it is necessary to choose an optimal subset of the whole channels to save computational time and improve the classification accuracy. In this paper, a novel method named backtracking search optimization algorithm is proposed to automatically select the optimal channel set for common spatial pattern. Each individual in the population is a N-dimensional vector, with each component representing one channel. A population of binary codes generate randomly in the beginning, and then channels are selected according to the evolution of these codes. The number and positions of 1's in the code denote the number and positions of chosen channels. The objective function of backtracking search optimization algorithm is defined as the combination of classification error rate and relative number of channels. Experimental results suggest that higher classification accuracy can be achieved with much fewer channels compared to standard common spatial pattern with whole channels.

  11. Multi-AUV Target Search Based on Bioinspired Neurodynamics Model in 3-D Underwater Environments.

    PubMed

    Cao, Xiang; Zhu, Daqi; Yang, Simon X

    2016-11-01

    Target search in 3-D underwater environments is a challenge in multiple autonomous underwater vehicles (multi-AUVs) exploration. This paper focuses on an effective strategy for multi-AUV target search in the 3-D underwater environments with obstacles. First, the Dempster-Shafer theory of evidence is applied to extract information of environment from the sonar data to build a grid map of the underwater environments. Second, a topologically organized bioinspired neurodynamics model based on the grid map is constructed to represent the dynamic environment. The target globally attracts the AUVs through the dynamic neural activity landscape of the model, while the obstacles locally push the AUVs away to avoid collision. Finally, the AUVs plan their search path to the targets autonomously by a steepest gradient descent rule. The proposed algorithm deals with various situations, such as static targets search, dynamic targets search, and one or several AUVs break down in the 3-D underwater environments with obstacles. The simulation results show that the proposed algorithm is capable of guiding multi-AUV to achieve search task of multiple targets with higher efficiency and adaptability compared with other algorithms.

  12. Compartmentalized Low-Rank Recovery for High-Resolution Lipid Unsuppressed MRSI

    PubMed Central

    Bhattacharya, Ipshita; Jacob, Mathews

    2017-01-01

    Purpose To introduce a novel algorithm for the recovery of high-resolution magnetic resonance spectroscopic imaging (MRSI) data with minimal lipid leakage artifacts, from dual-density spiral acquisition. Methods The reconstruction of MRSI data from dual-density spiral data is formulated as a compartmental low-rank recovery problem. The MRSI dataset is modeled as the sum of metabolite and lipid signals, each of which is support limited to the brain and extracranial regions, respectively, in addition to being orthogonal to each other. The reconstruction problem is formulated as an optimization problem, which is solved using iterative reweighted nuclear norm minimization. Results The comparisons of the scheme against dual-resolution reconstruction algorithm on numerical phantom and in vivo datasets demonstrate the ability of the scheme to provide higher spatial resolution and lower lipid leakage artifacts. The experiments demonstrate the ability of the scheme to recover the metabolite maps, from lipid unsuppressed datasets with echo time (TE)=55 ms. Conclusion The proposed reconstruction method and data acquisition strategy provide an efficient way to achieve high-resolution metabolite maps without lipid suppression. This algorithm would be beneficial for fast metabolic mapping and extension to multislice acquisitions. PMID:27851875

  13. An Automatic Multidocument Text Summarization Approach Based on Naïve Bayesian Classifier Using Timestamp Strategy

    PubMed Central

    Ramanujam, Nedunchelian; Kaliappan, Manivannan

    2016-01-01

    Nowadays, automatic multidocument text summarization systems can successfully retrieve the summary sentences from the input documents. But, it has many limitations such as inaccurate extraction to essential sentences, low coverage, poor coherence among the sentences, and redundancy. This paper introduces a new concept of timestamp approach with Naïve Bayesian Classification approach for multidocument text summarization. The timestamp provides the summary an ordered look, which achieves the coherent looking summary. It extracts the more relevant information from the multiple documents. Here, scoring strategy is also used to calculate the score for the words to obtain the word frequency. The higher linguistic quality is estimated in terms of readability and comprehensibility. In order to show the efficiency of the proposed method, this paper presents the comparison between the proposed methods with the existing MEAD algorithm. The timestamp procedure is also applied on the MEAD algorithm and the results are examined with the proposed method. The results show that the proposed method results in lesser time than the existing MEAD algorithm to execute the summarization process. Moreover, the proposed method results in better precision, recall, and F-score than the existing clustering with lexical chaining approach. PMID:27034971

  14. Analyser-based mammography using single-image reconstruction.

    PubMed

    Briedis, Dahliyani; Siu, Karen K W; Paganin, David M; Pavlov, Konstantin M; Lewis, Rob A

    2005-08-07

    We implement an algorithm that is able to decode a single analyser-based x-ray phase-contrast image of a sample, converting it into an equivalent conventional absorption-contrast radiograph. The algorithm assumes the projection approximation for x-ray propagation in a single-material object embedded in a substrate of approximately uniform thickness. Unlike the phase-contrast images, which have both directional bias and a bias towards edges present in the sample, the reconstructed images are directly interpretable in terms of the projected absorption coefficient of the sample. The technique was applied to a Leeds TOR[MAM] phantom, which is designed to test mammogram quality by the inclusion of simulated microcalcifications, filaments and circular discs. This phantom was imaged at varying doses using three modalities: analyser-based synchrotron phase-contrast images converted to equivalent absorption radiographs using our algorithm, slot-scanned synchrotron imaging and imaging using a conventional mammography unit. Features in the resulting images were then assigned a quality score by volunteers. The single-image reconstruction method achieved higher scores at equivalent and lower doses than the conventional mammography images, but no improvement of visualization of the simulated microcalcifications, and some degradation in image quality at reduced doses for filament features.

  15. Development of Super-Ensemble techniques for ocean analyses: the Mediterranean Sea case

    NASA Astrophysics Data System (ADS)

    Pistoia, Jenny; Pinardi, Nadia; Oddo, Paolo; Collins, Matthew; Korres, Gerasimos; Drillet, Yann

    2017-04-01

    Short-term ocean analyses for Sea Surface Temperature SST in the Mediterranean Sea can be improved by a statistical post-processing technique, called super-ensemble. This technique consists in a multi-linear regression algorithm applied to a Multi-Physics Multi-Model Super-Ensemble (MMSE) dataset, a collection of different operational forecasting analyses together with ad-hoc simulations produced by modifying selected numerical model parameterizations. A new linear regression algorithm based on Empirical Orthogonal Function filtering techniques is capable to prevent overfitting problems, even if best performances are achieved when we add correlation to the super-ensemble structure using a simple spatial filter applied after the linear regression. Our outcomes show that super-ensemble performances depend on the selection of an unbiased operator and the length of the learning period, but the quality of the generating MMSE dataset has the largest impact on the MMSE analysis Root Mean Square Error (RMSE) evaluated with respect to observed satellite SST. Lower RMSE analysis estimates result from the following choices: 15 days training period, an overconfident MMSE dataset (a subset with the higher quality ensemble members), and the least square algorithm being filtered a posteriori.

  16. Interference graph-based dynamic frequency reuse in optical attocell networks

    NASA Astrophysics Data System (ADS)

    Liu, Huanlin; Xia, Peijie; Chen, Yong; Wu, Lan

    2017-11-01

    Indoor optical attocell network may achieve higher capacity than radio frequency (RF) or Infrared (IR)-based wireless systems. It is proposed as a special type of visible light communication (VLC) system using Light Emitting Diodes (LEDs). However, the system spectral efficiency may be severely degraded owing to the inter-cell interference (ICI), particularly for dense deployment scenarios. To address these issues, we construct the spectral interference graph for indoor optical attocell network, and propose the Dynamic Frequency Reuse (DFR) and Weighted Dynamic Frequency Reuse (W-DFR) algorithms to decrease ICI and improve the spectral efficiency performance. The interference graph makes LEDs can transmit data without interference and select the minimum sub-bands needed for frequency reuse. Then, DFR algorithm reuses the system frequency equally across service-providing cells to mitigate spectrum interference. While W-DFR algorithm can reuse the system frequency by using the bandwidth weight (BW), which is defined based on the number of service users. Numerical results show that both of the proposed schemes can effectively improve the average spectral efficiency (ASE) of the system. Additionally, improvement of the user data rate is also obtained by analyzing its cumulative distribution function (CDF).

  17. Multiscale high-order/low-order (HOLO) algorithms and applications

    NASA Astrophysics Data System (ADS)

    Chacón, L.; Chen, G.; Knoll, D. A.; Newman, C.; Park, H.; Taitano, W.; Willert, J. A.; Womeldorff, G.

    2017-02-01

    We review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. The HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.

  18. Compressed sensing with gradient total variation for low-dose CBCT reconstruction

    NASA Astrophysics Data System (ADS)

    Seo, Chang-Woo; Cha, Bo Kyung; Jeon, Seongchae; Huh, Young; Park, Justin C.; Lee, Byeonghun; Baek, Junghee; Kim, Eunyoung

    2015-06-01

    This paper describes the improvement of convergence speed with gradient total variation (GTV) in compressed sensing (CS) for low-dose cone-beam computed tomography (CBCT) reconstruction. We derive a fast algorithm for the constrained total variation (TV)-based a minimum number of noisy projections. To achieve this task we combine the GTV with a TV-norm regularization term to promote an accelerated sparsity in the X-ray attenuation characteristics of the human body. The GTV is derived from a TV and enforces more efficient computationally and faster in convergence until a desired solution is achieved. The numerical algorithm is simple and derives relatively fast convergence. We apply a gradient projection algorithm that seeks a solution iteratively in the direction of the projected gradient while enforcing a non-negatively of the found solution. In comparison with the Feldkamp, Davis, and Kress (FDK) and conventional TV algorithms, the proposed GTV algorithm showed convergence in ≤18 iterations, whereas the original TV algorithm needs at least 34 iterations in reducing 50% of the projections compared with the FDK algorithm in order to reconstruct the chest phantom images. Future investigation includes improving imaging quality, particularly regarding X-ray cone-beam scatter, and motion artifacts of CBCT reconstruction.

  19. Wavelet Algorithms for Illumination Computations

    NASA Astrophysics Data System (ADS)

    Schroder, Peter

    One of the core problems of computer graphics is the computation of the equilibrium distribution of light in a scene. This distribution is given as the solution to a Fredholm integral equation of the second kind involving an integral over all surfaces in the scene. In the general case such solutions can only be numerically approximated, and are generally costly to compute, due to the geometric complexity of typical computer graphics scenes. For this computation both Monte Carlo and finite element techniques (or hybrid approaches) are typically used. A simplified version of the illumination problem is known as radiosity, which assumes that all surfaces are diffuse reflectors. For this case hierarchical techniques, first introduced by Hanrahan et al. (32), have recently gained prominence. The hierarchical approaches lead to an asymptotic improvement when only finite precision is required. The resulting algorithms have cost proportional to O(k^2 + n) versus the usual O(n^2) (k is the number of input surfaces, n the number of finite elements into which the input surfaces are meshed). Similarly a hierarchical technique has been introduced for the more general radiance problem (which allows glossy reflectors) by Aupperle et al. (6). In this dissertation we show the equivalence of these hierarchical techniques to the use of a Haar wavelet basis in a general Galerkin framework. By so doing, we come to a deeper understanding of the properties of the numerical approximations used and are able to extend the hierarchical techniques to higher orders. In particular, we show the correspondence of the geometric arguments underlying hierarchical methods to the theory of Calderon-Zygmund operators and their sparse realization in wavelet bases. The resulting wavelet algorithms for radiosity and radiance are analyzed and numerical results achieved with our implementation are reported. We find that the resulting algorithms achieve smaller and smoother errors at equivalent work.

  20. Determining Plane-Sweep Sampling Points in Image Space Using the Cross-Ratio for Image-Based Depth Estimation

    NASA Astrophysics Data System (ADS)

    Ruf, B.; Erdnuess, B.; Weinmann, M.

    2017-08-01

    With the emergence of small consumer Unmanned Aerial Vehicles (UAVs), the importance and interest of image-based depth estimation and model generation from aerial images has greatly increased in the photogrammetric society. In our work, we focus on algorithms that allow an online image-based dense depth estimation from video sequences, which enables the direct and live structural analysis of the depicted scene. Therefore, we use a multi-view plane-sweep algorithm with a semi-global matching (SGM) optimization which is parallelized for general purpose computation on a GPU (GPGPU), reaching sufficient performance to keep up with the key-frames of input sequences. One important aspect to reach good performance is the way to sample the scene space, creating plane hypotheses. A small step size between consecutive planes, which is needed to reconstruct details in the near vicinity of the camera may lead to ambiguities in distant regions, due to the perspective projection of the camera. Furthermore, an equidistant sampling with a small step size produces a large number of plane hypotheses, leading to high computational effort. To overcome these problems, we present a novel methodology to directly determine the sampling points of plane-sweep algorithms in image space. The use of the perspective invariant cross-ratio allows us to derive the location of the sampling planes directly from the image data. With this, we efficiently sample the scene space, achieving higher sampling density in areas which are close to the camera and a lower density in distant regions. We evaluate our approach on a synthetic benchmark dataset for quantitative evaluation and on a real-image dataset consisting of aerial imagery. The experiments reveal that an inverse sampling achieves equal and better results than a linear sampling, with less sampling points and thus less runtime. Our algorithm allows an online computation of depth maps for subsequences of five frames, provided that the relative poses between all frames are given.

  1. Improving the Sensitivity and Positive Predictive Value in a Cystic Fibrosis Newborn Screening Program Using a Repeat Immunoreactive Trypsinogen and Genetic Analysis.

    PubMed

    Sontag, Marci K; Lee, Rachel; Wright, Daniel; Freedenberg, Debra; Sagel, Scott D

    2016-08-01

    To evaluate the performance of a new cystic fibrosis (CF) newborn screening algorithm, comprised of immunoreactive trypsinogen (IRT) in first (24-48 hours of life) and second (7-14 days of life) dried blood spot plus DNA on second dried blood spot, over existing algorithms. A retrospective review of the IRT/IRT/DNA algorithm implemented in Colorado, Wyoming, and Texas. A total of 1 520 079 newborns were screened, 32 557 (2.1%) had abnormal first IRT; 8794 (0.54%) on second. Furthermore, 14 653 mutation analyses were performed; 1391 newborns were referred for diagnostic testing; 274 newborns were diagnosed; and 201/274 (73%) of newborns had 2 mutations on the newborn screening CFTR panel. Sensitivity was 96.2%, compared with sensitivity of 76.1% observed with IRT/IRT (105 ng/mL cut-offs, P < .0001). The ratio of newborns with CF to heterozygote carriers was 1:2.5, and newborns with CF to newborns with CFTR-related metabolic syndrome was 10.8:1. The overall positive predictive value was 20%. The median age of diagnosis was 28, 30, and 39.5 days in the 3 states. IRT/IRT/DNA is more sensitive than IRT/IRT because of lower cut-offs (∼97 percentile or 60 ng/mL); higher cut-offs in IRT/IRT programs (>99 percentile, 105 ng/mL) would not achieve sufficient sensitivity. Carrier identification and identification of newborns with CFTR-related metabolic syndrome is less common in IRT/IRT/DNA compared with IRT/DNA. The time to diagnosis is nominally longer, but diagnosis can be achieved in the neonatal period and opportunities to further improve timeliness have been enacted. IRT/IRT/DNA algorithm should be considered by programs with 2 routine screens. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. 77 FR 50191 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Order Instituting Proceedings To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... compete with the algorithms that member firms and other market participants currently use to achieve VWAP... orders generated by market participants that may choose to use a competing algorithm. IV. Procedure... offer trading algorithms that would compete with other market participants would impose an undue burden...

  3. Mental Computation or Standard Algorithm? Children's Strategy Choices on Multi-Digit Subtractions

    ERIC Educational Resources Information Center

    Torbeyns, Joke; Verschaffel, Lieven

    2016-01-01

    This study analyzed children's use of mental computation strategies and the standard algorithm on multi-digit subtractions. Fifty-eight Flemish 4th graders of varying mathematical achievement level were individually offered subtractions that either stimulated the use of mental computation strategies or the standard algorithm in one choice and two…

  4. Backfilling with guarantees granted upon job submission.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, Vitus Joseph; Bunde, David P.; Lindsay, Alexander M.

    2011-01-01

    In this paper, we present scheduling algorithms that simultaneously support guaranteed starting times and favor jobs with system desired traits. To achieve the first of these goals, our algorithms keep a profile with potential starting times for every unfinished job and never move these starting times later, just as in Conservative Backfilling. To achieve the second, they exploit previously unrecognized flexibility in the handling of holes opened in this profile when jobs finish early. We find that, with one choice of job selection function, our algorithms can consistently yield a lower average waiting time than Conservative Backfilling while still providingmore » a guaranteed start time to each job as it arrives. In fact, in most cases, the algorithms give a lower average waiting time than the more aggressive EASY backfilling algorithm, which does not provide guaranteed start times. Alternately, with a different choice of job selection function, our algorithms can focus the benefit on the widest submitted jobs, the reason for the existence of parallel systems. In this case, these jobs experience significantly lower waiting time than Conservative Backfilling with minimal impact on other jobs.« less

  5. Image segmentation evaluation for very-large datasets

    NASA Astrophysics Data System (ADS)

    Reeves, Anthony P.; Liu, Shuang; Xie, Yiting

    2016-03-01

    With the advent of modern machine learning methods and fully automated image analysis there is a need for very large image datasets having documented segmentations for both computer algorithm training and evaluation. Current approaches of visual inspection and manual markings do not scale well to big data. We present a new approach that depends on fully automated algorithm outcomes for segmentation documentation, requires no manual marking, and provides quantitative evaluation for computer algorithms. The documentation of new image segmentations and new algorithm outcomes are achieved by visual inspection. The burden of visual inspection on large datasets is minimized by (a) customized visualizations for rapid review and (b) reducing the number of cases to be reviewed through analysis of quantitative segmentation evaluation. This method has been applied to a dataset of 7,440 whole-lung CT images for 6 different segmentation algorithms designed to fully automatically facilitate the measurement of a number of very important quantitative image biomarkers. The results indicate that we could achieve 93% to 99% successful segmentation for these algorithms on this relatively large image database. The presented evaluation method may be scaled to much larger image databases.

  6. Super-resolution reconstruction of MR image with a novel residual learning network algorithm

    NASA Astrophysics Data System (ADS)

    Shi, Jun; Liu, Qingping; Wang, Chaofeng; Zhang, Qi; Ying, Shihui; Xu, Haoyu

    2018-04-01

    Spatial resolution is one of the key parameters of magnetic resonance imaging (MRI). The image super-resolution (SR) technique offers an alternative approach to improve the spatial resolution of MRI due to its simplicity. Convolutional neural networks (CNN)-based SR algorithms have achieved state-of-the-art performance, in which the global residual learning (GRL) strategy is now commonly used due to its effectiveness for learning image details for SR. However, the partial loss of image details usually happens in a very deep network due to the degradation problem. In this work, we propose a novel residual learning-based SR algorithm for MRI, which combines both multi-scale GRL and shallow network block-based local residual learning (LRL). The proposed LRL module works effectively in capturing high-frequency details by learning local residuals. One simulated MRI dataset and two real MRI datasets have been used to evaluate our algorithm. The experimental results show that the proposed SR algorithm achieves superior performance to all of the other compared CNN-based SR algorithms in this work.

  7. Orientation domains: A mobile grid clustering algorithm with spherical corrections

    NASA Astrophysics Data System (ADS)

    Mencos, Joana; Gratacós, Oscar; Farré, Mercè; Escalante, Joan; Arbués, Pau; Muñoz, Josep Anton

    2012-12-01

    An algorithm has been designed and tested which was devised as a tool assisting the analysis of geological structures solely from orientation data. More specifically, the algorithm was intended for the analysis of geological structures that can be approached as planar and piecewise features, like many folded strata. Input orientation data is expressed as pairs of angles (azimuth and dip). The algorithm starts by considering the data in Cartesian coordinates. This is followed by a search for an initial clustering solution, which is achieved by comparing the results output from the systematic shift of a regular rigid grid over the data. This initial solution is optimal (achieves minimum square error) once the grid size and the shift increment are fixed. Finally, the algorithm corrects for the variable spread that is generally expected from the data type using a reshaped non-rigid grid. The algorithm is size-oriented, which implies the application of conditions over cluster size through all the process in contrast to density-oriented algorithms, also widely used when dealing with spatial data. Results are derived in few seconds and, when tested over synthetic examples, they were found to be consistent and reliable. This makes the algorithm a valuable alternative to the time-consuming traditional approaches available to geologists.

  8. Slower speed and stronger coupling: adaptive mechanisms of chaos synchronization.

    PubMed

    Wang, Xiao Fan

    2002-06-01

    We show that two initially weakly coupled chaotic systems can achieve synchronization by adaptively reducing their speed and/or enhancing the coupling strength. Explicit adaptive algorithms for speed reduction and coupling enhancement are provided. We apply these algorithms to the synchronization of two coupled Lorenz systems. It is found that after a long-time adaptive process, the two coupled chaotic systems can achieve synchronization with almost the minimum required coupling-speed ratio.

  9. FPGA implementation of sparse matrix algorithm for information retrieval

    NASA Astrophysics Data System (ADS)

    Bojanic, Slobodan; Jevtic, Ruzica; Nieto-Taladriz, Octavio

    2005-06-01

    Information text data retrieval requires a tremendous amount of processing time because of the size of the data and the complexity of information retrieval algorithms. In this paper the solution to this problem is proposed via hardware supported information retrieval algorithms. Reconfigurable computing may adopt frequent hardware modifications through its tailorable hardware and exploits parallelism for a given application through reconfigurable and flexible hardware units. The degree of the parallelism can be tuned for data. In this work we implemented standard BLAS (basic linear algebra subprogram) sparse matrix algorithm named Compressed Sparse Row (CSR) that is showed to be more efficient in terms of storage space requirement and query-processing timing over the other sparse matrix algorithms for information retrieval application. Although inverted index algorithm is treated as the de facto standard for information retrieval for years, an alternative approach to store the index of text collection in a sparse matrix structure gains more attention. This approach performs query processing using sparse matrix-vector multiplication and due to parallelization achieves a substantial efficiency over the sequential inverted index. The parallel implementations of information retrieval kernel are presented in this work targeting the Virtex II Field Programmable Gate Arrays (FPGAs) board from Xilinx. A recent development in scientific applications is the use of FPGA to achieve high performance results. Computational results are compared to implementations on other platforms. The design achieves a high level of parallelism for the overall function while retaining highly optimised hardware within processing unit.

  10. Parallel fuzzy connected image segmentation on GPU

    PubMed Central

    Zhuge, Ying; Cao, Yong; Udupa, Jayaram K.; Miller, Robert W.

    2011-01-01

    Purpose: Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm implementation on NVIDIA’s compute unified device Architecture (cuda) platform for segmenting medical image data sets. Methods: In the FC algorithm, there are two major computational tasks: (i) computing the fuzzy affinity relations and (ii) computing the fuzzy connectedness relations. These two tasks are implemented as cuda kernels and executed on GPU. A dramatic improvement in speed for both tasks is achieved as a result. Results: Our experiments based on three data sets of small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 24.4x, 18.1x, and 10.3x, correspondingly, for the three data sets on the NVIDIA Tesla C1060 over the implementation of the algorithm on CPU, and takes 0.25, 0.72, and 15.04 s, correspondingly, for the three data sets. Conclusions: The authors developed a parallel algorithm of the widely used fuzzy connected image segmentation method on the NVIDIA GPUs, which are far more cost- and speed-effective than both cluster of workstations and multiprocessing systems. A near-interactive speed of segmentation has been achieved, even for the large data set. PMID:21859037

  11. Parallel fuzzy connected image segmentation on GPU.

    PubMed

    Zhuge, Ying; Cao, Yong; Udupa, Jayaram K; Miller, Robert W

    2011-07-01

    Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm implementation on NVIDIA's compute unified device Architecture (CUDA) platform for segmenting medical image data sets. In the FC algorithm, there are two major computational tasks: (i) computing the fuzzy affinity relations and (ii) computing the fuzzy connectedness relations. These two tasks are implemented as CUDA kernels and executed on GPU. A dramatic improvement in speed for both tasks is achieved as a result. Our experiments based on three data sets of small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 24.4x, 18.1x, and 10.3x, correspondingly, for the three data sets on the NVIDIA Tesla C1060 over the implementation of the algorithm on CPU, and takes 0.25, 0.72, and 15.04 s, correspondingly, for the three data sets. The authors developed a parallel algorithm of the widely used fuzzy connected image segmentation method on the NVIDIA GPUs, which are far more cost- and speed-effective than both cluster of workstations and multiprocessing systems. A near-interactive speed of segmentation has been achieved, even for the large data set.

  12. A greedy, graph-based algorithm for the alignment of multiple homologous gene lists.

    PubMed

    Fostier, Jan; Proost, Sebastian; Dhoedt, Bart; Saeys, Yvan; Demeester, Piet; Van de Peer, Yves; Vandepoele, Klaas

    2011-03-15

    Many comparative genomics studies rely on the correct identification of homologous genomic regions using accurate alignment tools. In such case, the alphabet of the input sequences consists of complete genes, rather than nucleotides or amino acids. As optimal multiple sequence alignment is computationally impractical, a progressive alignment strategy is often employed. However, such an approach is susceptible to the propagation of alignment errors in early pairwise alignment steps, especially when dealing with strongly diverged genomic regions. In this article, we present a novel accurate and efficient greedy, graph-based algorithm for the alignment of multiple homologous genomic segments, represented as ordered gene lists. Based on provable properties of the graph structure, several heuristics are developed to resolve local alignment conflicts that occur due to gene duplication and/or rearrangement events on the different genomic segments. The performance of the algorithm is assessed by comparing the alignment results of homologous genomic segments in Arabidopsis thaliana to those obtained by using both a progressive alignment method and an earlier graph-based implementation. Especially for datasets that contain strongly diverged segments, the proposed method achieves a substantially higher alignment accuracy, and proves to be sufficiently fast for large datasets including a few dozens of eukaryotic genomes. http://bioinformatics.psb.ugent.be/software. The algorithm is implemented as a part of the i-ADHoRe 3.0 package.

  13. Automated detection of diabetic retinopathy lesions on ultrawidefield pseudocolour images.

    PubMed

    Wang, Kang; Jayadev, Chaitra; Nittala, Muneeswar G; Velaga, Swetha B; Ramachandra, Chaithanya A; Bhaskaranand, Malavika; Bhat, Sandeep; Solanki, Kaushal; Sadda, SriniVas R

    2018-03-01

    We examined the sensitivity and specificity of an automated algorithm for detecting referral-warranted diabetic retinopathy (DR) on Optos ultrawidefield (UWF) pseudocolour images. Patients with diabetes were recruited for UWF imaging. A total of 383 subjects (754 eyes) were enrolled. Nonproliferative DR graded to be moderate or higher on the 5-level International Clinical Diabetic Retinopathy (ICDR) severity scale was considered as grounds for referral. The software automatically detected DR lesions using the previously trained classifiers and classified each image in the test set as referral-warranted or not warranted. Sensitivity, specificity and the area under the receiver operating curve (AUROC) of the algorithm were computed. The automated algorithm achieved a 91.7%/90.3% sensitivity (95% CI 90.1-93.9/80.4-89.4) with a 50.0%/53.6% specificity (95% CI 31.7-72.8/36.5-71.4) for detecting referral-warranted retinopathy at the patient/eye levels, respectively; the AUROC was 0.873/0.851 (95% CI 0.819-0.922/0.804-0.894). Diabetic retinopathy (DR) lesions were detected from Optos pseudocolour UWF images using an automated algorithm. Images were classified as referral-warranted DR with a high degree of sensitivity and moderate specificity. Automated analysis of UWF images could be of value in DR screening programmes and could allow for more complete and accurate disease staging. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  14. Efficient Queries of Stand-off Annotations for Natural Language Processing on Electronic Medical Records.

    PubMed

    Luo, Yuan; Szolovits, Peter

    2016-01-01

    In natural language processing, stand-off annotation uses the starting and ending positions of an annotation to anchor it to the text and stores the annotation content separately from the text. We address the fundamental problem of efficiently storing stand-off annotations when applying natural language processing on narrative clinical notes in electronic medical records (EMRs) and efficiently retrieving such annotations that satisfy position constraints. Efficient storage and retrieval of stand-off annotations can facilitate tasks such as mapping unstructured text to electronic medical record ontologies. We first formulate this problem into the interval query problem, for which optimal query/update time is in general logarithm. We next perform a tight time complexity analysis on the basic interval tree query algorithm and show its nonoptimality when being applied to a collection of 13 query types from Allen's interval algebra. We then study two closely related state-of-the-art interval query algorithms, proposed query reformulations, and augmentations to the second algorithm. Our proposed algorithm achieves logarithmic time stabbing-max query time complexity and solves the stabbing-interval query tasks on all of Allen's relations in logarithmic time, attaining the theoretic lower bound. Updating time is kept logarithmic and the space requirement is kept linear at the same time. We also discuss interval management in external memory models and higher dimensions.

  15. Efficient Queries of Stand-off Annotations for Natural Language Processing on Electronic Medical Records

    PubMed Central

    Luo, Yuan; Szolovits, Peter

    2016-01-01

    In natural language processing, stand-off annotation uses the starting and ending positions of an annotation to anchor it to the text and stores the annotation content separately from the text. We address the fundamental problem of efficiently storing stand-off annotations when applying natural language processing on narrative clinical notes in electronic medical records (EMRs) and efficiently retrieving such annotations that satisfy position constraints. Efficient storage and retrieval of stand-off annotations can facilitate tasks such as mapping unstructured text to electronic medical record ontologies. We first formulate this problem into the interval query problem, for which optimal query/update time is in general logarithm. We next perform a tight time complexity analysis on the basic interval tree query algorithm and show its nonoptimality when being applied to a collection of 13 query types from Allen’s interval algebra. We then study two closely related state-of-the-art interval query algorithms, proposed query reformulations, and augmentations to the second algorithm. Our proposed algorithm achieves logarithmic time stabbing-max query time complexity and solves the stabbing-interval query tasks on all of Allen’s relations in logarithmic time, attaining the theoretic lower bound. Updating time is kept logarithmic and the space requirement is kept linear at the same time. We also discuss interval management in external memory models and higher dimensions. PMID:27478379

  16. Towards Development of Clustering Applications for Large-Scale Comparative Genotyping and Kinship Analysis Using Y-Short Tandem Repeats.

    PubMed

    Seman, Ali; Sapawi, Azizian Mohd; Salleh, Mohd Zaki

    2015-06-01

    Y-chromosome short tandem repeats (Y-STRs) are genetic markers with practical applications in human identification. However, where mass identification is required (e.g., in the aftermath of disasters with significant fatalities), the efficiency of the process could be improved with new statistical approaches. Clustering applications are relatively new tools for large-scale comparative genotyping, and the k-Approximate Modal Haplotype (k-AMH), an efficient algorithm for clustering large-scale Y-STR data, represents a promising method for developing these tools. In this study we improved the k-AMH and produced three new algorithms: the Nk-AMH I (including a new initial cluster center selection), the Nk-AMH II (including a new dominant weighting value), and the Nk-AMH III (combining I and II). The Nk-AMH III was the superior algorithm, with mean clustering accuracy that increased in four out of six datasets and remained at 100% in the other two. Additionally, the Nk-AMH III achieved a 2% higher overall mean clustering accuracy score than the k-AMH, as well as optimal accuracy for all datasets (0.84-1.00). With inclusion of the two new methods, the Nk-AMH III produced an optimal solution for clustering Y-STR data; thus, the algorithm has potential for further development towards fully automatic clustering of any large-scale genotypic data.

  17. A Parallel Genetic Algorithm to Discover Patterns in Genetic Markers that Indicate Predisposition to Multifactorial Disease

    PubMed Central

    Rausch, Tobias; Thomas, Alun; Camp, Nicola J.; Cannon-Albright, Lisa A.; Facelli, Julio C.

    2008-01-01

    This paper describes a novel algorithm to analyze genetic linkage data using pattern recognition techniques and genetic algorithms (GA). The method allows a search for regions of the chromosome that may contain genetic variations that jointly predispose individuals for a particular disease. The method uses correlation analysis, filtering theory and genetic algorithms (GA) to achieve this goal. Because current genome scans use from hundreds to hundreds of thousands of markers, two versions of the method have been implemented. The first is an exhaustive analysis version that can be used to visualize, explore, and analyze small genetic data sets for two marker correlations; the second is a GA version, which uses a parallel implementation allowing searches of higher-order correlations in large data sets. Results on simulated data sets indicate that the method can be informative in the identification of major disease loci and gene-gene interactions in genome-wide linkage data and that further exploration of these techniques is justified. The results presented for both variants of the method show that it can help genetic epidemiologists to identify promising combinations of genetic factors that might predispose to complex disorders. In particular, the correlation analysis of IBD expression patterns might hint to possible gene-gene interactions and the filtering might be a fruitful approach to distinguish true correlation signals from noise. PMID:18547558

  18. Performance Enhancement of Radial Distributed System with Distributed Generators by Reconfiguration Using Binary Firefly Algorithm

    NASA Astrophysics Data System (ADS)

    Rajalakshmi, N.; Padma Subramanian, D.; Thamizhavel, K.

    2015-03-01

    The extent of real power loss and voltage deviation associated with overloaded feeders in radial distribution system can be reduced by reconfiguration. Reconfiguration is normally achieved by changing the open/closed state of tie/sectionalizing switches. Finding optimal switch combination is a complicated problem as there are many switching combinations possible in a distribution system. Hence optimization techniques are finding greater importance in reducing the complexity of reconfiguration problem. This paper presents the application of firefly algorithm (FA) for optimal reconfiguration of radial distribution system with distributed generators (DG). The algorithm is tested on IEEE 33 bus system installed with DGs and the results are compared with binary genetic algorithm. It is found that binary FA is more effective than binary genetic algorithm in achieving real power loss reduction and improving voltage profile and hence enhancing the performance of radial distribution system. Results are found to be optimum when DGs are added to the test system, which proved the impact of DGs on distribution system.

  19. Robust continuous clustering

    PubMed Central

    Shah, Sohil Atul

    2017-01-01

    Clustering is a fundamental procedure in the analysis of scientific data. It is used ubiquitously across the sciences. Despite decades of research, existing clustering algorithms have limited effectiveness in high dimensions and often require tuning parameters for different domains and datasets. We present a clustering algorithm that achieves high accuracy across multiple domains and scales efficiently to high dimensions and large datasets. The presented algorithm optimizes a smooth continuous objective, which is based on robust statistics and allows heavily mixed clusters to be untangled. The continuous nature of the objective also allows clustering to be integrated as a module in end-to-end feature learning pipelines. We demonstrate this by extending the algorithm to perform joint clustering and dimensionality reduction by efficiently optimizing a continuous global objective. The presented approach is evaluated on large datasets of faces, hand-written digits, objects, newswire articles, sensor readings from the Space Shuttle, and protein expression levels. Our method achieves high accuracy across all datasets, outperforming the best prior algorithm by a factor of 3 in average rank. PMID:28851838

  20. Configuring Airspace Sectors with Approximate Dynamic Programming

    NASA Technical Reports Server (NTRS)

    Bloem, Michael; Gupta, Pramod

    2010-01-01

    In response to changing traffic and staffing conditions, supervisors dynamically configure airspace sectors by assigning them to control positions. A finite horizon airspace sector configuration problem models this supervisor decision. The problem is to select an airspace configuration at each time step while considering a workload cost, a reconfiguration cost, and a constraint on the number of control positions at each time step. Three algorithms for this problem are proposed and evaluated: a myopic heuristic, an exact dynamic programming algorithm, and a rollouts approximate dynamic programming algorithm. On problem instances from current operations with only dozens of possible configurations, an exact dynamic programming solution gives the optimal cost value. The rollouts algorithm achieves costs within 2% of optimal for these instances, on average. For larger problem instances that are representative of future operations and have thousands of possible configurations, excessive computation time prohibits the use of exact dynamic programming. On such problem instances, the rollouts algorithm reduces the cost achieved by the heuristic by more than 15% on average with an acceptable computation time.

  1. Exercise recognition for Kinect-based telerehabilitation.

    PubMed

    Antón, D; Goñi, A; Illarramendi, A

    2015-01-01

    An aging population and people's higher survival to diseases and traumas that leave physical consequences are challenging aspects in the context of an efficient health management. This is why telerehabilitation systems are being developed, to allow monitoring and support of physiotherapy sessions at home, which could reduce healthcare costs while also improving the quality of life of the users. Our goal is the development of a Kinect-based algorithm that provides a very accurate real-time monitoring of physical rehabilitation exercises and that also provides a friendly interface oriented both to users and physiotherapists. The two main constituents of our algorithm are the posture classification method and the exercises recognition method. The exercises consist of series of movements. Each movement is composed of an initial posture, a final posture and the angular trajectories of the limbs involved in the movement. The algorithm was designed and tested with datasets of real movements performed by volunteers. We also explain in the paper how we obtained the optimal values for the trade-off values for posture and trajectory recognition. Two relevant aspects of the algorithm were evaluated in our tests, classification accuracy and real-time data processing. We achieved 91.9% accuracy in posture classification and 93.75% accuracy in trajectory recognition. We also checked whether the algorithm was able to process the data in real-time. We found that our algorithm could process more than 20,000 postures per second and all the required trajectory data-series in real-time, which in practice guarantees no perceptible delays. Later on, we carried out two clinical trials with real patients that suffered shoulder disorders. We obtained an exercise monitoring accuracy of 95.16%. We present an exercise recognition algorithm that handles the data provided by Kinect efficiently. The algorithm has been validated in a real scenario where we have verified its suitability. Moreover, we have received a positive feedback from both users and the physiotherapists who took part in the tests.

  2. A novel resource sharing algorithm based on distributed construction for radiant enclosure problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finzell, Peter; Bryden, Kenneth M.

    This study demonstrates a novel approach to solving inverse radiant enclosure problems based on distributed construction. Specifically, the problem of determining the temperature distribution needed on the heater surfaces to achieve a desired design surface temperature profile is recast as a distributed construction problem in which a shared resource, temperature, is distributed by computational agents moving blocks. The sharing of blocks between agents enables them to achieve their desired local state, which in turn achieves the desired global state. Each agent uses the current state of their local environment and a simple set of rules to determine when to exchangemore » blocks, each block representing a discrete unit of temperature change. This algorithm is demonstrated using the established two-dimensional inverse radiation enclosure problem. The temperature profile on the heater surfaces is adjusted to achieve a desired temperature profile on the design surfaces. The resource sharing algorithm was able to determine the needed temperatures on the heater surfaces to obtain the desired temperature distribution on the design surfaces in the nine cases examined.« less

  3. A novel resource sharing algorithm based on distributed construction for radiant enclosure problems

    DOE PAGES

    Finzell, Peter; Bryden, Kenneth M.

    2017-03-06

    This study demonstrates a novel approach to solving inverse radiant enclosure problems based on distributed construction. Specifically, the problem of determining the temperature distribution needed on the heater surfaces to achieve a desired design surface temperature profile is recast as a distributed construction problem in which a shared resource, temperature, is distributed by computational agents moving blocks. The sharing of blocks between agents enables them to achieve their desired local state, which in turn achieves the desired global state. Each agent uses the current state of their local environment and a simple set of rules to determine when to exchangemore » blocks, each block representing a discrete unit of temperature change. This algorithm is demonstrated using the established two-dimensional inverse radiation enclosure problem. The temperature profile on the heater surfaces is adjusted to achieve a desired temperature profile on the design surfaces. The resource sharing algorithm was able to determine the needed temperatures on the heater surfaces to obtain the desired temperature distribution on the design surfaces in the nine cases examined.« less

  4. Exact and heuristic algorithms for Space Information Flow.

    PubMed

    Uwitonze, Alfred; Huang, Jiaqing; Ye, Yuanqing; Cheng, Wenqing; Li, Zongpeng

    2018-01-01

    Space Information Flow (SIF) is a new promising research area that studies network coding in geometric space, such as Euclidean space. The design of algorithms that compute the optimal SIF solutions remains one of the key open problems in SIF. This work proposes the first exact SIF algorithm and a heuristic SIF algorithm that compute min-cost multicast network coding for N (N ≥ 3) given terminal nodes in 2-D Euclidean space. Furthermore, we find that the Butterfly network in Euclidean space is the second example besides the Pentagram network where SIF is strictly better than Euclidean Steiner minimal tree. The exact algorithm design is based on two key techniques: Delaunay triangulation and linear programming. Delaunay triangulation technique helps to find practically good candidate relay nodes, after which a min-cost multicast linear programming model is solved over the terminal nodes and the candidate relay nodes, to compute the optimal multicast network topology, including the optimal relay nodes selected by linear programming from all the candidate relay nodes and the flow rates on the connection links. The heuristic algorithm design is also based on Delaunay triangulation and linear programming techniques. The exact algorithm can achieve the optimal SIF solution with an exponential computational complexity, while the heuristic algorithm can achieve the sub-optimal SIF solution with a polynomial computational complexity. We prove the correctness of the exact SIF algorithm. The simulation results show the effectiveness of the heuristic SIF algorithm.

  5. Scaling Deep Learning on GPU and Knights Landing clusters

    DOE PAGES

    You, Yang; Buluc, Aydin; Demmel, James

    2017-09-26

    The speed of deep neural networks training has become a big bottleneck of deep learning research and development. For example, training GoogleNet by ImageNet dataset on one Nvidia K20 GPU needs 21 days. To speed up the training process, the current deep learning systems heavily rely on the hardware accelerators. However, these accelerators have limited on-chip memory compared with CPUs. To handle large datasets, they need to fetch data from either CPU memory or remote processors. We use both self-hosted Intel Knights Landing (KNL) clusters and multi-GPU clusters as our target platforms. From an algorithm aspect, current distributed machine learningmore » systems are mainly designed for cloud systems. These methods are asynchronous because of the slow network and high fault-tolerance requirement on cloud systems. We focus on Elastic Averaging SGD (EASGD) to design algorithms for HPC clusters. Original EASGD used round-robin method for communication and updating. The communication is ordered by the machine rank ID, which is inefficient on HPC clusters. First, we redesign four efficient algorithms for HPC systems to improve EASGD's poor scaling on clusters. Async EASGD, Async MEASGD, and Hogwild EASGD are faster \\textcolor{black}{than} their existing counterparts (Async SGD, Async MSGD, and Hogwild SGD, resp.) in all the comparisons. Finally, we design Sync EASGD, which ties for the best performance among all the methods while being deterministic. In addition to the algorithmic improvements, we use some system-algorithm codesign techniques to scale up the algorithms. By reducing the percentage of communication from 87% to 14%, our Sync EASGD achieves 5.3x speedup over original EASGD on the same platform. We get 91.5% weak scaling efficiency on 4253 KNL cores, which is higher than the state-of-the-art implementation.« less

  6. An algorithm for calculating exam quality as a basis for performance-based allocation of funds at medical schools.

    PubMed

    Kirschstein, Timo; Wolters, Alexander; Lenz, Jan-Hendrik; Fröhlich, Susanne; Hakenberg, Oliver; Kundt, Günther; Darmüntzel, Martin; Hecker, Michael; Altiner, Attila; Müller-Hilke, Brigitte

    2016-01-01

    The amendment of the Medical Licensing Act (ÄAppO) in Germany in 2002 led to the introduction of graded assessments in the clinical part of medical studies. This, in turn, lent new weight to the importance of written tests, even though the minimum requirements for exam quality are sometimes difficult to reach. Introducing exam quality as a criterion for the award of performance-based allocation of funds is expected to steer the attention of faculty members towards more quality and perpetuate higher standards. However, at present there is a lack of suitable algorithms for calculating exam quality. In the spring of 2014, the students' dean commissioned the "core group" for curricular improvement at the University Medical Center in Rostock to revise the criteria for the allocation of performance-based funds for teaching. In a first approach, we developed an algorithm that was based on the results of the most common type of exam in medical education, multiple choice tests. It included item difficulty and discrimination, reliability as well as the distribution of grades achieved. This algorithm quantitatively describes exam quality of multiple choice exams. However, it can also be applied to exams involving short assay questions and the OSCE. It thus allows for the quantitation of exam quality in the various subjects and - in analogy to impact factors and third party grants - a ranking among faculty. Our algorithm can be applied to all test formats in which item difficulty, the discriminatory power of the individual items, reliability of the exam and the distribution of grades are measured. Even though the content validity of an exam is not considered here, we believe that our algorithm is suitable as a general basis for performance-based allocation of funds.

  7. Scaling Deep Learning on GPU and Knights Landing clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yang; Buluc, Aydin; Demmel, James

    The speed of deep neural networks training has become a big bottleneck of deep learning research and development. For example, training GoogleNet by ImageNet dataset on one Nvidia K20 GPU needs 21 days. To speed up the training process, the current deep learning systems heavily rely on the hardware accelerators. However, these accelerators have limited on-chip memory compared with CPUs. To handle large datasets, they need to fetch data from either CPU memory or remote processors. We use both self-hosted Intel Knights Landing (KNL) clusters and multi-GPU clusters as our target platforms. From an algorithm aspect, current distributed machine learningmore » systems are mainly designed for cloud systems. These methods are asynchronous because of the slow network and high fault-tolerance requirement on cloud systems. We focus on Elastic Averaging SGD (EASGD) to design algorithms for HPC clusters. Original EASGD used round-robin method for communication and updating. The communication is ordered by the machine rank ID, which is inefficient on HPC clusters. First, we redesign four efficient algorithms for HPC systems to improve EASGD's poor scaling on clusters. Async EASGD, Async MEASGD, and Hogwild EASGD are faster \\textcolor{black}{than} their existing counterparts (Async SGD, Async MSGD, and Hogwild SGD, resp.) in all the comparisons. Finally, we design Sync EASGD, which ties for the best performance among all the methods while being deterministic. In addition to the algorithmic improvements, we use some system-algorithm codesign techniques to scale up the algorithms. By reducing the percentage of communication from 87% to 14%, our Sync EASGD achieves 5.3x speedup over original EASGD on the same platform. We get 91.5% weak scaling efficiency on 4253 KNL cores, which is higher than the state-of-the-art implementation.« less

  8. On Computing Breakpoint Distances for Genomes with Duplicate Genes.

    PubMed

    Shao, Mingfu; Moret, Bernard M E

    2017-06-01

    A fundamental problem in comparative genomics is to compute the distance between two genomes in terms of its higher level organization (given by genes or syntenic blocks). For two genomes without duplicate genes, we can easily define (and almost always efficiently compute) a variety of distance measures, but the problem is NP-hard under most models when genomes contain duplicate genes. To tackle duplicate genes, three formulations (exemplar, maximum matching, and any matching) have been proposed, all of which aim to build a matching between homologous genes so as to minimize some distance measure. Of the many distance measures, the breakpoint distance (the number of nonconserved adjacencies) was the first one to be studied and remains of significant interest because of its simplicity and model-free property. The three breakpoint distance problems corresponding to the three formulations have been widely studied. Although we provided last year a solution for the exemplar problem that runs very fast on full genomes, computing optimal solutions for the other two problems has remained challenging. In this article, we describe very fast, exact algorithms for these two problems. Our algorithms rely on a compact integer-linear program that we further simplify by developing an algorithm to remove variables, based on new results on the structure of adjacencies and matchings. Through extensive experiments using both simulations and biological data sets, we show that our algorithms run very fast (in seconds) on mammalian genomes and scale well beyond. We also apply these algorithms (as well as the classic orthology tool MSOAR) to create orthology assignment, then compare their quality in terms of both accuracy and coverage. We find that our algorithm for the "any matching" formulation significantly outperforms other methods in terms of accuracy while achieving nearly maximum coverage.

  9. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography.

    PubMed

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-07

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  10. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-01

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  11. Hybrid employment recommendation algorithm based on Spark

    NASA Astrophysics Data System (ADS)

    Li, Zuoquan; Lin, Yubei; Zhang, Xingming

    2017-08-01

    Aiming at the real-time application of collaborative filtering employment recommendation algorithm (CF), a clustering collaborative filtering recommendation algorithm (CCF) is developed, which applies hierarchical clustering to CF and narrows the query range of neighbour items. In addition, to solve the cold-start problem of content-based recommendation algorithm (CB), a content-based algorithm with users’ information (CBUI) is introduced for job recommendation. Furthermore, a hybrid recommendation algorithm (HRA) which combines CCF and CBUI algorithms is proposed, and implemented on Spark platform. The experimental results show that HRA can overcome the problems of cold start and data sparsity, and achieve good recommendation accuracy and scalability for employment recommendation.

  12. Energy-saving EPON Bandwidth Allocation Algorithm Supporting ONU's Sleep Mode

    NASA Astrophysics Data System (ADS)

    Zhang, Yinfa; Ren, Shuai; Liao, Xiaomin; Fang, Yuanyuan

    2014-09-01

    A new bandwidth allocation algorithm was presented by combining merits of the IPACT algorithm and the cyclic DBA algorithm based on the DBA algorithm for ONU's sleep mode. Simulation results indicate that compared with the normal mode ONU, the ONU's sleep mode can save about 74% of energy. The new algorithm has a smaller average packet delay and queue length in the upstream direction. While in the downstream direction, the average packet delay of the new algorithm is less than polling cycle Tcycle and the average queue length is less than the product of Tcycle and the maximum link rate. The new algorithm achieves a better compromise between energy-saving and ensuring quality of service.

  13. Quantum algorithm for support matrix machines

    NASA Astrophysics Data System (ADS)

    Duan, Bojia; Yuan, Jiabin; Liu, Ying; Li, Dan

    2017-09-01

    We propose a quantum algorithm for support matrix machines (SMMs) that efficiently addresses an image classification problem by introducing a least-squares reformulation. This algorithm consists of two core subroutines: a quantum matrix inversion (Harrow-Hassidim-Lloyd, HHL) algorithm and a quantum singular value thresholding (QSVT) algorithm. The two algorithms can be implemented on a universal quantum computer with complexity O[log(npq) ] and O[log(pq)], respectively, where n is the number of the training data and p q is the size of the feature space. By iterating the algorithms, we can find the parameters for the SMM classfication model. Our analysis shows that both HHL and QSVT algorithms achieve an exponential increase of speed over their classical counterparts.

  14. Simultaneous deblurring and iterative reconstruction of CBCT for image guided brain radiosurgery.

    PubMed

    Hashemi, SayedMasoud; Song, William Y; Sahgal, Arjun; Lee, Young; Huynh, Christopher; Grouza, Vladimir; Nordström, Håkan; Eriksson, Markus; Dorenlot, Antoine; Régis, Jean Marie; Mainprize, James G; Ruschin, Mark

    2017-04-07

    One of the limiting factors in cone-beam CT (CBCT) image quality is system blur, caused by detector response, x-ray source focal spot size, azimuthal blurring, and reconstruction algorithm. In this work, we develop a novel iterative reconstruction algorithm that improves spatial resolution by explicitly accounting for image unsharpness caused by different factors in the reconstruction formulation. While the model-based iterative reconstruction techniques use prior information about the detector response and x-ray source, our proposed technique uses a simple measurable blurring model. In our reconstruction algorithm, denoted as simultaneous deblurring and iterative reconstruction (SDIR), the blur kernel can be estimated using the modulation transfer function (MTF) slice of the CatPhan phantom or any other MTF phantom, such as wire phantoms. The proposed image reconstruction formulation includes two regularization terms: (1) total variation (TV) and (2) nonlocal regularization, solved with a split Bregman augmented Lagrangian iterative method. The SDIR formulation preserves edges, eases the parameter adjustments to achieve both high spatial resolution and low noise variances, and reduces the staircase effect caused by regular TV-penalized iterative algorithms. The proposed algorithm is optimized for a point-of-care head CBCT unit for image-guided radiosurgery and is tested with CatPhan phantom, an anthropomorphic head phantom, and 6 clinical brain stereotactic radiosurgery cases. Our experiments indicate that SDIR outperforms the conventional filtered back projection and TV penalized simultaneous algebraic reconstruction technique methods (represented by adaptive steepest-descent POCS algorithm, ASD-POCS) in terms of MTF and line pair resolution, and retains the favorable properties of the standard TV-based iterative reconstruction algorithms in improving the contrast and reducing the reconstruction artifacts. It improves the visibility of the high contrast details in bony areas and the brain soft-tissue. For example, the results show the ventricles and some brain folds become visible in SDIR reconstructed images and the contrast of the visible lesions is effectively improved. The line-pair resolution was improved from 12 line-pair/cm in FBP to 14 line-pair/cm in SDIR. Adjusting the parameters of the ASD-POCS to achieve 14 line-pair/cm caused the noise variance to be higher than the SDIR. Using these parameters for ASD-POCS, the MTF of FBP and ASD-POCS were very close and equal to 0.7 mm -1 which was increased to 1.2 mm -1 by SDIR, at half maximum.

  15. Simultaneous deblurring and iterative reconstruction of CBCT for image guided brain radiosurgery

    NASA Astrophysics Data System (ADS)

    Hashemi, SayedMasoud; Song, William Y.; Sahgal, Arjun; Lee, Young; Huynh, Christopher; Grouza, Vladimir; Nordström, Håkan; Eriksson, Markus; Dorenlot, Antoine; Régis, Jean Marie; Mainprize, James G.; Ruschin, Mark

    2017-04-01

    One of the limiting factors in cone-beam CT (CBCT) image quality is system blur, caused by detector response, x-ray source focal spot size, azimuthal blurring, and reconstruction algorithm. In this work, we develop a novel iterative reconstruction algorithm that improves spatial resolution by explicitly accounting for image unsharpness caused by different factors in the reconstruction formulation. While the model-based iterative reconstruction techniques use prior information about the detector response and x-ray source, our proposed technique uses a simple measurable blurring model. In our reconstruction algorithm, denoted as simultaneous deblurring and iterative reconstruction (SDIR), the blur kernel can be estimated using the modulation transfer function (MTF) slice of the CatPhan phantom or any other MTF phantom, such as wire phantoms. The proposed image reconstruction formulation includes two regularization terms: (1) total variation (TV) and (2) nonlocal regularization, solved with a split Bregman augmented Lagrangian iterative method. The SDIR formulation preserves edges, eases the parameter adjustments to achieve both high spatial resolution and low noise variances, and reduces the staircase effect caused by regular TV-penalized iterative algorithms. The proposed algorithm is optimized for a point-of-care head CBCT unit for image-guided radiosurgery and is tested with CatPhan phantom, an anthropomorphic head phantom, and 6 clinical brain stereotactic radiosurgery cases. Our experiments indicate that SDIR outperforms the conventional filtered back projection and TV penalized simultaneous algebraic reconstruction technique methods (represented by adaptive steepest-descent POCS algorithm, ASD-POCS) in terms of MTF and line pair resolution, and retains the favorable properties of the standard TV-based iterative reconstruction algorithms in improving the contrast and reducing the reconstruction artifacts. It improves the visibility of the high contrast details in bony areas and the brain soft-tissue. For example, the results show the ventricles and some brain folds become visible in SDIR reconstructed images and the contrast of the visible lesions is effectively improved. The line-pair resolution was improved from 12 line-pair/cm in FBP to 14 line-pair/cm in SDIR. Adjusting the parameters of the ASD-POCS to achieve 14 line-pair/cm caused the noise variance to be higher than the SDIR. Using these parameters for ASD-POCS, the MTF of FBP and ASD-POCS were very close and equal to 0.7 mm-1 which was increased to 1.2 mm-1 by SDIR, at half maximum.

  16. A review on quantum search algorithms

    NASA Astrophysics Data System (ADS)

    Giri, Pulak Ranjan; Korepin, Vladimir E.

    2017-12-01

    The use of superposition of states in quantum computation, known as quantum parallelism, has significant advantage in terms of speed over the classical computation. It is evident from the early invented quantum algorithms such as Deutsch's algorithm, Deutsch-Jozsa algorithm and its variation as Bernstein-Vazirani algorithm, Simon algorithm, Shor's algorithms, etc. Quantum parallelism also significantly speeds up the database search algorithm, which is important in computer science because it comes as a subroutine in many important algorithms. Quantum database search of Grover achieves the task of finding the target element in an unsorted database in a time quadratically faster than the classical computer. We review Grover's quantum search algorithms for a singe and multiple target elements in a database. The partial search algorithm of Grover and Radhakrishnan and its optimization by Korepin called GRK algorithm are also discussed.

  17. On the reduced-complexity of LDPC decoders for beyond 400 Gb/s serial optical transmission

    NASA Astrophysics Data System (ADS)

    Djordjevic, Ivan B.; Xu, Lei; Wang, Ting

    2010-12-01

    Two reduced-complexity (RC) LDPC decoders are proposed, which can be used in combination with large-girth LDPC codes to enable beyond 400 Gb/s serial optical transmission. We show that optimally attenuated RC min-sum sum algorithm performs only 0.45 dB worse than conventional sum-product algorithm, while having lower storage memory requirements and much lower latency. We further evaluate the proposed algorithms for use in beyond 400 Gb/s serial optical transmission in combination with PolMUX 32-IPQ-based signal constellation and show that low BERs can be achieved for medium optical SNRs, while achieving the net coding gain above 11.4 dB.

  18. Photovoltaic Cells Mppt Algorithm and Design of Controller Monitoring System

    NASA Astrophysics Data System (ADS)

    Meng, X. Z.; Feng, H. B.

    2017-10-01

    This paper combined the advantages of each maximum power point tracking (MPPT) algorithm, put forward a kind of algorithm with higher speed and higher precision, based on this algorithm designed a maximum power point tracking controller with ARM. The controller, communication technology and PC software formed a control system. Results of the simulation and experiment showed that the process of maximum power tracking was effective, and the system was stable.

  19. GPU-based relative fuzzy connectedness image segmentation.

    PubMed

    Zhuge, Ying; Ciesielski, Krzysztof C; Udupa, Jayaram K; Miller, Robert W

    2013-01-01

    Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. The most common FC segmentations, optimizing an [script-l](∞)-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA's Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology.

  20. GPU-based relative fuzzy connectedness image segmentation

    PubMed Central

    Zhuge, Ying; Ciesielski, Krzysztof C.; Udupa, Jayaram K.; Miller, Robert W.

    2013-01-01

    Purpose: Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. Methods: The most common FC segmentations, optimizing an ℓ∞-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA’s Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Results: Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. Conclusions: A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology. PMID:23298094

  1. Sensor-Based Vibration Signal Feature Extraction Using an Improved Composite Dictionary Matching Pursuit Algorithm

    PubMed Central

    Cui, Lingli; Wu, Na; Wang, Wenjing; Kang, Chenhui

    2014-01-01

    This paper presents a new method for a composite dictionary matching pursuit algorithm, which is applied to vibration sensor signal feature extraction and fault diagnosis of a gearbox. Three advantages are highlighted in the new method. First, the composite dictionary in the algorithm has been changed from multi-atom matching to single-atom matching. Compared to non-composite dictionary single-atom matching, the original composite dictionary multi-atom matching pursuit (CD-MaMP) algorithm can achieve noise reduction in the reconstruction stage, but it cannot dramatically reduce the computational cost and improve the efficiency in the decomposition stage. Therefore, the optimized composite dictionary single-atom matching algorithm (CD-SaMP) is proposed. Second, the termination condition of iteration based on the attenuation coefficient is put forward to improve the sparsity and efficiency of the algorithm, which adjusts the parameters of the termination condition constantly in the process of decomposition to avoid noise. Third, composite dictionaries are enriched with the modulation dictionary, which is one of the important structural characteristics of gear fault signals. Meanwhile, the termination condition of iteration settings, sub-feature dictionary selections and operation efficiency between CD-MaMP and CD-SaMP are discussed, aiming at gear simulation vibration signals with noise. The simulation sensor-based vibration signal results show that the termination condition of iteration based on the attenuation coefficient enhances decomposition sparsity greatly and achieves a good effect of noise reduction. Furthermore, the modulation dictionary achieves a better matching effect compared to the Fourier dictionary, and CD-SaMP has a great advantage of sparsity and efficiency compared with the CD-MaMP. The sensor-based vibration signals measured from practical engineering gearbox analyses have further shown that the CD-SaMP decomposition and reconstruction algorithm is feasible and effective. PMID:25207870

  2. Sensor-based vibration signal feature extraction using an improved composite dictionary matching pursuit algorithm.

    PubMed

    Cui, Lingli; Wu, Na; Wang, Wenjing; Kang, Chenhui

    2014-09-09

    This paper presents a new method for a composite dictionary matching pursuit algorithm, which is applied to vibration sensor signal feature extraction and fault diagnosis of a gearbox. Three advantages are highlighted in the new method. First, the composite dictionary in the algorithm has been changed from multi-atom matching to single-atom matching. Compared to non-composite dictionary single-atom matching, the original composite dictionary multi-atom matching pursuit (CD-MaMP) algorithm can achieve noise reduction in the reconstruction stage, but it cannot dramatically reduce the computational cost and improve the efficiency in the decomposition stage. Therefore, the optimized composite dictionary single-atom matching algorithm (CD-SaMP) is proposed. Second, the termination condition of iteration based on the attenuation coefficient is put forward to improve the sparsity and efficiency of the algorithm, which adjusts the parameters of the termination condition constantly in the process of decomposition to avoid noise. Third, composite dictionaries are enriched with the modulation dictionary, which is one of the important structural characteristics of gear fault signals. Meanwhile, the termination condition of iteration settings, sub-feature dictionary selections and operation efficiency between CD-MaMP and CD-SaMP are discussed, aiming at gear simulation vibration signals with noise. The simulation sensor-based vibration signal results show that the termination condition of iteration based on the attenuation coefficient enhances decomposition sparsity greatly and achieves a good effect of noise reduction. Furthermore, the modulation dictionary achieves a better matching effect compared to the Fourier dictionary, and CD-SaMP has a great advantage of sparsity and efficiency compared with the CD-MaMP. The sensor-based vibration signals measured from practical engineering gearbox analyses have further shown that the CD-SaMP decomposition and reconstruction algorithm is feasible and effective.

  3. Study on a low complexity adaptive modulation algorithm in OFDM-ROF system with sub-carrier grouping technology

    NASA Astrophysics Data System (ADS)

    Liu, Chong-xin; Liu, Bo; Zhang, Li-jia; Xin, Xiang-jun; Tian, Qing-hua; Tian, Feng; Wang, Yong-jun; Rao, Lan; Mao, Yaya; Li, Deng-ao

    2018-01-01

    During the last decade, the orthogonal frequency division multiplexing radio-over-fiber (OFDM-ROF) system with adaptive modulation technology is of great interest due to its capability of raising the spectral efficiency dramatically, reducing the effects of fiber link or wireless channel, and improving the communication quality. In this study, according to theoretical analysis of nonlinear distortion and frequency selective fading on the transmitted signal, a low-complexity adaptive modulation algorithm is proposed in combination with sub-carrier grouping technology. This algorithm achieves the optimal performance of the system by calculating the average combined signal-to-noise ratio of each group and dynamically adjusting the origination modulation format according to the preset threshold and user's requirements. At the same time, this algorithm takes the sub-carrier group as the smallest unit in the initial bit allocation and the subsequent bit adjustment. So, the algorithm complexity is only 1 /M (M is the number of sub-carriers in each group) of Fischer algorithm, which is much smaller than many classic adaptive modulation algorithms, such as Hughes-Hartogs algorithm, Chow algorithm, and is in line with the development direction of green and high speed communication. Simulation results show that the performance of OFDM-ROF system with the improved algorithm is much better than those without adaptive modulation, and the BER of the former achieves 10e1 to 10e2 times lower than the latter when SNR values gets larger. We can obtain that this low complexity adaptive modulation algorithm is extremely useful for the OFDM-ROF system.

  4. Secret information reconciliation based on punctured low-density parity-check codes for continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Jiang, Xue-Qin; Huang, Peng; Huang, Duan; Lin, Dakai; Zeng, Guihua

    2017-02-01

    Achieving information theoretic security with practical complexity is of great interest to continuous-variable quantum key distribution in the postprocessing procedure. In this paper, we propose a reconciliation scheme based on the punctured low-density parity-check (LDPC) codes. Compared to the well-known multidimensional reconciliation scheme, the present scheme has lower time complexity. Especially when the chosen punctured LDPC code achieves the Shannon capacity, the proposed reconciliation scheme can remove the information that has been leaked to an eavesdropper in the quantum transmission phase. Therefore, there is no information leaked to the eavesdropper after the reconciliation stage. This indicates that the privacy amplification algorithm of the postprocessing procedure is no more needed after the reconciliation process. These features lead to a higher secret key rate, optimal performance, and availability for the involved quantum key distribution scheme.

  5. Reinstated JET ICRF ILA: Overview and Results

    NASA Astrophysics Data System (ADS)

    Dumortier, Pierre; Durodié, Frédéric; Blackman, Trevor; Helou, Walid; Jacquet, Philippe; Lerche, Ernesto; Monakhov, Igor; Noble, Craig; Bobkov, Volodymyr; Goulding, Richard; Kaufman, Michael; Van Eester, Dirk

    2017-10-01

    The works undertaken to reinstate the JET ICRF ILA are reviewed. The vacuum matching capacitors were replaced, an extensive calibration of all the measurements in the RF circuit was carried out, new simulation tools were created and new control algorithms were implemented for the - toroidal and poloidal - phase control of the array as well as for the matching of the second stage. A review of the contribution of the reinstated ILA to the JET programme during the last campaigns is given showing namely that the new controls allowed extending the range of the operation to lower (29MHz) and higher (51MHz) frequencies than previously achieved and allowed more flexible and reliable operation. Operation with coupled power levels up to 2.8MW and voltages up to 40kV was achieved. ILA results on plasma are discussed and emphasis is given to the features of interest for ITER.

  6. Recent technologic advances in multi-detector row cardiac CT.

    PubMed

    Halliburton, Sandra Simon

    2009-11-01

    Recent technical advances in multi-detector row CT have resulted in lower radiation dose, improved temporal and spatial resolution, decreased scan time, and improved tissue differentiation. Lower radiation doses have resulted from the use of pre-patient z collimators, the availability of thin-slice axial data acquisition, the increased efficiency of ECG-based tube current modulation, and the implementation of iterative reconstruction algorithms. Faster gantry rotation and the simultaneous use of two x-ray sources have led to improvements in temporal resolution, and gains in spatial resolution have been achieved through application of the flying x-ray focal-spot technique in the z-direction. Shorter scan times have resulted from the design of detector arrays with increasing numbers of detector rows and through the simultaneous use of two x-ray sources to allow higher helical pitch. Some improvement in tissue differentiation has been achieved with dual energy CT. This article discusses these recent technical advances in detail.

  7. DYNAMIC STABILITY OF THE SOLAR SYSTEM: STATISTICALLY INCONCLUSIVE RESULTS FROM ENSEMBLE INTEGRATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeebe, Richard E., E-mail: zeebe@soest.hawaii.edu

    Due to the chaotic nature of the solar system, the question of its long-term stability can only be answered in a statistical sense, for instance, based on numerical ensemble integrations of nearby orbits. Destabilization of the inner planets, leading to close encounters and/or collisions can be initiated through a large increase in Mercury's eccentricity, with a currently assumed likelihood of ∼1%. However, little is known at present about the robustness of this number. Here I report ensemble integrations of the full equations of motion of the eight planets and Pluto over 5 Gyr, including contributions from general relativity. The resultsmore » show that different numerical algorithms lead to statistically different results for the evolution of Mercury's eccentricity (e{sub M}). For instance, starting at present initial conditions (e{sub M}≃0.21), Mercury's maximum eccentricity achieved over 5 Gyr is, on average, significantly higher in symplectic ensemble integrations using heliocentric rather than Jacobi coordinates and stricter error control. In contrast, starting at a possible future configuration (e{sub M}≃0.53), Mercury's maximum eccentricity achieved over the subsequent 500 Myr is, on average, significantly lower using heliocentric rather than Jacobi coordinates. For example, the probability for e{sub M} to increase beyond 0.53 over 500 Myr is >90% (Jacobi) versus only 40%-55% (heliocentric). This poses a dilemma because the physical evolution of the real system—and its probabilistic behavior—cannot depend on the coordinate system or the numerical algorithm chosen to describe it. Some tests of the numerical algorithms suggest that symplectic integrators using heliocentric coordinates underestimate the odds for destabilization of Mercury's orbit at high initial e{sub M}.« less

  8. Identification of Flights for Cost-Efficient Climate Impact Reduction

    NASA Technical Reports Server (NTRS)

    Chen, Neil Y.; Kirschen, Philippe G.; Sridhar, Banavar; Ng, Hok K.

    2014-01-01

    The aircraft-induced climate impact has drawn attention in recent years. Aviation operations affect the environment mainly through the release of carbon-dioxide, nitrogen-oxides, and by the formation of contrails. Recent research has shown that altering trajectories can reduce aviation environmental cost by reducing Absolute Global Temperature Change Potential, a climate assessment metric that adapts a linear system for modeling the global temperature response to aviation emissions and contrails. However, these methods will increase fuel consumption that leads to higher fuel costs imposed on airlines. The goal of this work is to identify ights for which the environmental cost of climate impact reduction outweighs the increase in operational cost on an individual aircraft basis. Environmental cost is quanti ed using the monetary social cost of carbon. The increase in operational cost is considering cost of additional fuel usage only. For this paper, an algorithm has been developed that modi es the trajectories of ights to evaluate the e ect of environ- mental cost and operational cost of ights in the United States National Airspace System. The algorithm identi es ights for which the environmental cost of climate impact can be reduced and modi es their trajectories to achieve maximum environmental net bene t, which is the di erence between reduction in environmental cost and additional operational cost. The result shows on a selected day, 16% of the ights among eight major airlines, or 2,043 ights, can achieve environmental net bene t using weather forecast data, resulting in net bene t of around $500,000. The result also suggests that the long-haul ights would be better candidates for cost-ecient climate impact reduction than the short haul ights. The algorithm will help to identify the characteristics of ights that are capable of applying cost-ecient climate impact reduction strategy.

  9. Population pharmacokinetics of busulfan in pediatric and young adult patients undergoing hematopoietic cell transplant: a model-based dosing algorithm for personalized therapy and implementation into routine clinical use.

    PubMed

    Long-Boyle, Janel R; Savic, Rada; Yan, Shirley; Bartelink, Imke; Musick, Lisa; French, Deborah; Law, Jason; Horn, Biljana; Cowan, Morton J; Dvorak, Christopher C

    2015-04-01

    Population pharmacokinetic (PK) studies of busulfan in children have shown that individualized model-based algorithms provide improved targeted busulfan therapy when compared with conventional dose guidelines. The adoption of population PK models into routine clinical practice has been hampered by the tendency of pharmacologists to develop complex models too impractical for clinicians to use. The authors aimed to develop a population PK model for busulfan in children that can reliably achieve therapeutic exposure (concentration at steady state) and implement a simple model-based tool for the initial dosing of busulfan in children undergoing hematopoietic cell transplantation. Model development was conducted using retrospective data available in 90 pediatric and young adult patients who had undergone hematopoietic cell transplantation with busulfan conditioning. Busulfan drug levels and potential covariates influencing drug exposure were analyzed using the nonlinear mixed effects modeling software, NONMEM. The final population PK model was implemented into a clinician-friendly Microsoft Excel-based tool and used to recommend initial doses of busulfan in a group of 21 pediatric patients prospectively dosed based on the population PK model. Modeling of busulfan time-concentration data indicates that busulfan clearance displays nonlinearity in children, decreasing up to approximately 20% between the concentrations of 250-2000 ng/mL. Important patient-specific covariates found to significantly impact busulfan clearance were actual body weight and age. The percentage of individuals achieving a therapeutic concentration at steady state was significantly higher in subjects receiving initial doses based on the population PK model (81%) than in historical controls dosed on conventional guidelines (52%) (P = 0.02). When compared with the conventional dosing guidelines, the model-based algorithm demonstrates significant improvement for providing targeted busulfan therapy in children and young adults.

  10. Enhancing resolution and contrast in second-harmonic generation microscopy using an advanced maximum likelihood estimation restoration method

    NASA Astrophysics Data System (ADS)

    Sivaguru, Mayandi; Kabir, Mohammad M.; Gartia, Manas Ranjan; Biggs, David S. C.; Sivaguru, Barghav S.; Sivaguru, Vignesh A.; Berent, Zachary T.; Wagoner Johnson, Amy J.; Fried, Glenn A.; Liu, Gang Logan; Sadayappan, Sakthivel; Toussaint, Kimani C.

    2017-02-01

    Second-harmonic generation (SHG) microscopy is a label-free imaging technique to study collagenous materials in extracellular matrix environment with high resolution and contrast. However, like many other microscopy techniques, the actual spatial resolution achievable by SHG microscopy is reduced by out-of-focus blur and optical aberrations that degrade particularly the amplitude of the detectable higher spatial frequencies. Being a two-photon scattering process, it is challenging to define a point spread function (PSF) for the SHG imaging modality. As a result, in comparison with other two-photon imaging systems like two-photon fluorescence, it is difficult to apply any PSF-engineering techniques to enhance the experimental spatial resolution closer to the diffraction limit. Here, we present a method to improve the spatial resolution in SHG microscopy using an advanced maximum likelihood estimation (AdvMLE) algorithm to recover the otherwise degraded higher spatial frequencies in an SHG image. Through adaptation and iteration, the AdvMLE algorithm calculates an improved PSF for an SHG image and enhances the spatial resolution by decreasing the full-width-at-halfmaximum (FWHM) by 20%. Similar results are consistently observed for biological tissues with varying SHG sources, such as gold nanoparticles and collagen in porcine feet tendons. By obtaining an experimental transverse spatial resolution of 400 nm, we show that the AdvMLE algorithm brings the practical spatial resolution closer to the theoretical diffraction limit. Our approach is suitable for adaptation in micro-nano CT and MRI imaging, which has the potential to impact diagnosis and treatment of human diseases.

  11. Computational solution of spike overlapping using data-based subtraction algorithms to resolve synchronous sympathetic nerve discharge

    PubMed Central

    Su, Chun-Kuei; Chiang, Chia-Hsun; Lee, Chia-Ming; Fan, Yu-Pei; Ho, Chiu-Ming; Shyu, Liang-Yu

    2013-01-01

    Sympathetic nerves conveying central commands to regulate visceral functions often display activities in synchronous bursts. To understand how individual fibers fire synchronously, we establish “oligofiber recording techniques” to record “several” nerve fiber activities simultaneously, using in vitro splanchnic sympathetic nerve–thoracic spinal cord preparations of neonatal rats as experimental models. While distinct spike potentials were easily recorded from collagenase-dissociated sympathetic fibers, a problem arising from synchronous nerve discharges is a higher incidence of complex waveforms resulted from spike overlapping. Because commercial softwares do not provide an explicit solution for spike overlapping, a series of custom-made LabVIEW programs incorporated with MATLAB scripts was therefore written for spike sorting. Spikes were represented as data points after waveform feature extraction and automatically grouped by k-means clustering followed by principal component analysis (PCA) to verify their waveform homogeneity. For dissimilar waveforms with exceeding Hotelling's T2 distances from the cluster centroids, a unique data-based subtraction algorithm (SA) was used to determine if they were the complex waveforms resulted from superimposing a spike pattern close to the cluster centroid with the other signals that could be observed in original recordings. In comparisons with commercial software, higher accuracy was achieved by analyses using our algorithms for the synthetic data that contained synchronous spiking and complex waveforms. Moreover, both T2-selected and SA-retrieved spikes were combined as unit activities. Quantitative analyses were performed to evaluate if unit activities truly originated from single fibers. We conclude that applications of our programs can help to resolve synchronous sympathetic nerve discharges (SND). PMID:24198782

  12. Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images.

    PubMed

    Salvi, Massimo; Molinari, Filippo

    2018-06-20

    Accurate nuclei detection and segmentation in histological images is essential for many clinical purposes. While manual annotations are time-consuming and operator-dependent, full automated segmentation remains a challenging task due to the high variability of cells intensity, size and morphology. Most of the proposed algorithms for the automated segmentation of nuclei were designed for specific organ or tissues. The aim of this study was to develop and validate a fully multiscale method, named MANA (Multiscale Adaptive Nuclei Analysis), for nuclei segmentation in different tissues and magnifications. MANA was tested on a dataset of H&E stained tissue images with more than 59,000 annotated nuclei, taken from six organs (colon, liver, bone, prostate, adrenal gland and thyroid) and three magnifications (10×, 20×, 40×). Automatic results were compared with manual segmentations and three open-source software designed for nuclei detection. For each organ, MANA obtained always an F1-score higher than 0.91, with an average F1 of 0.9305 ± 0.0161. The average computational time was about 20 s independently of the number of nuclei to be detected (anyway, higher than 1000), indicating the efficiency of the proposed technique. To the best of our knowledge, MANA is the first fully automated multi-scale and multi-tissue algorithm for nuclei detection. Overall, the robustness and versatility of MANA allowed to achieve, on different organs and magnifications, performances in line or better than those of state-of-art algorithms optimized for single tissues.

  13. Optimization of neural network architecture for classification of radar jamming FM signals

    NASA Astrophysics Data System (ADS)

    Soto, Alberto; Mendoza, Ariadna; Flores, Benjamin C.

    2017-05-01

    The purpose of this study is to investigate several artificial Neural Network (NN) architectures in order to design a cognitive radar system capable of optimally distinguishing linear Frequency-Modulated (FM) signals from bandlimited Additive White Gaussian Noise (AWGN). The goal is to create a theoretical framework to determine an optimal NN architecture to achieve a Probability of Detection (PD) of 95% or higher and a Probability of False Alarm (PFA) of 1.5% or lower at 5 dB Signal to Noise Ratio (SNR). Literature research reveals that the frequency-domain power spectral densities characterize a signal more efficiently than its time-domain counterparts. Therefore, the input data is preprocessed by calculating the magnitude square of the Discrete Fourier Transform of the digitally sampled bandlimited AWGN and linear FM signals to populate a matrix containing N number of samples and M number of spectra. This matrix is used as input for the NN, and the spectra are divided as follows: 70% for training, 15% for validation, and 15% for testing. The study begins by experimentally deducing the optimal number of hidden neurons (1-40 neurons), then the optimal number of hidden layers (1-5 layers), and lastly, the most efficient learning algorithm. The training algorithms examined are: Resilient Backpropagation, Scaled Conjugate Gradient, Conjugate Gradient with Powell/Beale Restarts, Polak-Ribiére Conjugate Gradient, and Variable Learning Rate Backpropagation. We determine that an architecture with ten hidden neurons (or higher), one hidden layer, and a Scaled Conjugate Gradient for training algorithm encapsulates an optimal architecture for our application.

  14. An integrated classifier for computer-aided diagnosis of colorectal polyps based on random forest and location index strategies

    NASA Astrophysics Data System (ADS)

    Hu, Yifan; Han, Hao; Zhu, Wei; Li, Lihong; Pickhardt, Perry J.; Liang, Zhengrong

    2016-03-01

    Feature classification plays an important role in differentiation or computer-aided diagnosis (CADx) of suspicious lesions. As a widely used ensemble learning algorithm for classification, random forest (RF) has a distinguished performance for CADx. Our recent study has shown that the location index (LI), which is derived from the well-known kNN (k nearest neighbor) and wkNN (weighted k nearest neighbor) classifier [1], has also a distinguished role in the classification for CADx. Therefore, in this paper, based on the property that the LI will achieve a very high accuracy, we design an algorithm to integrate the LI into RF for improved or higher value of AUC (area under the curve of receiver operating characteristics -- ROC). Experiments were performed by the use of a database of 153 lesions (polyps), including 116 neoplastic lesions and 37 hyperplastic lesions, with comparison to the existing classifiers of RF and wkNN, respectively. A noticeable gain by the proposed integrated classifier was quantified by the AUC measure.

  15. Mastering the game of Go without human knowledge.

    PubMed

    Silver, David; Schrittwieser, Julian; Simonyan, Karen; Antonoglou, Ioannis; Huang, Aja; Guez, Arthur; Hubert, Thomas; Baker, Lucas; Lai, Matthew; Bolton, Adrian; Chen, Yutian; Lillicrap, Timothy; Hui, Fan; Sifre, Laurent; van den Driessche, George; Graepel, Thore; Hassabis, Demis

    2017-10-18

    A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo's own move selections and also the winner of AlphaGo's games. This neural network improves the strength of the tree search, resulting in higher quality move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved superhuman performance, winning 100-0 against the previously published, champion-defeating AlphaGo.

  16. Mastering the game of Go without human knowledge

    NASA Astrophysics Data System (ADS)

    Silver, David; Schrittwieser, Julian; Simonyan, Karen; Antonoglou, Ioannis; Huang, Aja; Guez, Arthur; Hubert, Thomas; Baker, Lucas; Lai, Matthew; Bolton, Adrian; Chen, Yutian; Lillicrap, Timothy; Hui, Fan; Sifre, Laurent; van den Driessche, George; Graepel, Thore; Hassabis, Demis

    2017-10-01

    A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo’s own move selections and also the winner of AlphaGo’s games. This neural network improves the strength of the tree search, resulting in higher quality move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved superhuman performance, winning 100-0 against the previously published, champion-defeating AlphaGo.

  17. Automatic Structural Parcellation of Mouse Brain MRI Using Multi-Atlas Label Fusion

    PubMed Central

    Ma, Da; Cardoso, Manuel J.; Modat, Marc; Powell, Nick; Wells, Jack; Holmes, Holly; Wiseman, Frances; Tybulewicz, Victor; Fisher, Elizabeth; Lythgoe, Mark F.; Ourselin, Sébastien

    2014-01-01

    Multi-atlas segmentation propagation has evolved quickly in recent years, becoming a state-of-the-art methodology for automatic parcellation of structural images. However, few studies have applied these methods to preclinical research. In this study, we present a fully automatic framework for mouse brain MRI structural parcellation using multi-atlas segmentation propagation. The framework adopts the similarity and truth estimation for propagated segmentations (STEPS) algorithm, which utilises a locally normalised cross correlation similarity metric for atlas selection and an extended simultaneous truth and performance level estimation (STAPLE) framework for multi-label fusion. The segmentation accuracy of the multi-atlas framework was evaluated using publicly available mouse brain atlas databases with pre-segmented manually labelled anatomical structures as the gold standard, and optimised parameters were obtained for the STEPS algorithm in the label fusion to achieve the best segmentation accuracy. We showed that our multi-atlas framework resulted in significantly higher segmentation accuracy compared to single-atlas based segmentation, as well as to the original STAPLE framework. PMID:24475148

  18. Cuff-less blood pressure measurement using pulse arrival time and a Kalman filter

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Chen, Xianxiang; Fang, Zhen; Xue, Yongjiao; Zhan, Qingyuan; Yang, Ting; Xia, Shanhong

    2017-02-01

    The present study designs an algorithm to increase the accuracy of continuous blood pressure (BP) estimation. Pulse arrival time (PAT) has been widely used for continuous BP estimation. However, because of motion artifact and physiological activities, PAT-based methods are often troubled with low BP estimation accuracy. This paper used a signal quality modified Kalman filter to track blood pressure changes. A Kalman filter guarantees that BP estimation value is optimal in the sense of minimizing the mean square error. We propose a joint signal quality indice to adjust the measurement noise covariance, pushing the Kalman filter to weigh more heavily on measurements from cleaner data. Twenty 2 h physiological data segments selected from the MIMIC II database were used to evaluate the performance. Compared with straightforward use of the PAT-based linear regression model, the proposed model achieved higher measurement accuracy. Due to low computation complexity, the proposed algorithm can be easily transplanted into wearable sensor devices.

  19. RPython high-level synthesis

    NASA Astrophysics Data System (ADS)

    Cieszewski, Radoslaw; Linczuk, Maciej

    2016-09-01

    The development of FPGA technology and the increasing complexity of applications in recent decades have forced compilers to move to higher abstraction levels. Compilers interprets an algorithmic description of a desired behavior written in High-Level Languages (HLLs) and translate it to Hardware Description Languages (HDLs). This paper presents a RPython based High-Level synthesis (HLS) compiler. The compiler get the configuration parameters and map RPython program to VHDL. Then, VHDL code can be used to program FPGA chips. In comparison of other technologies usage, FPGAs have the potential to achieve far greater performance than software as a result of omitting the fetch-decode-execute operations of General Purpose Processors (GPUs), and introduce more parallel computation. This can be exploited by utilizing many resources at the same time. Creating parallel algorithms computed with FPGAs in pure HDL is difficult and time consuming. Implementation time can be greatly reduced with High-Level Synthesis compiler. This article describes design methodologies and tools, implementation and first results of created VHDL backend for RPython compiler.

  20. The adaptive parallel UKF inversion method for the shape of space objects based on the ground-based photometric data

    NASA Astrophysics Data System (ADS)

    Du, Xiaoping; Wang, Yang; Liu, Hao

    2018-04-01

    The space object in highly elliptical orbit is always presented as an image point on the ground-based imaging equipment so that it is difficult to resolve and identify the shape and attitude directly. In this paper a novel algorithm is presented for the estimation of spacecraft shape. The apparent magnitude model suitable for the inversion of object information such as shape and attitude is established based on the analysis of photometric characteristics. A parallel adaptive shape inversion algorithm based on UKF was designed after the achievement of dynamic equation of the nonlinear, Gaussian system involved with the influence of various dragging forces. The result of a simulation study demonstrate the viability and robustness of the new filter and its fast convergence rate. It realizes the inversion of combination shape with high accuracy, especially for the bus of cube and cylinder. Even though with sparse photometric data, it still can maintain a higher success rate of inversion.

  1. Study on optimal configuration of the grid-connected wind-solar-battery hybrid power system

    NASA Astrophysics Data System (ADS)

    Ma, Gang; Xu, Guchao; Ju, Rong; Wu, Tiantian

    2017-08-01

    The capacity allocation of each energy unit in the grid-connected wind-solar-battery hybrid power system is a significant segment in system design. In this paper, taking power grid dispatching into account, the research priorities are as follows: (1) We establish the mathematic models of each energy unit in the hybrid power system. (2) Based on dispatching of the power grid, energy surplus rate, system energy volatility and total cost, we establish the evaluation system for the wind-solar-battery power system and use a number of different devices as the constraint condition. (3) Based on an improved Genetic algorithm, we put forward a multi-objective optimisation algorithm to solve the optimal configuration problem in the hybrid power system, so we can achieve the high efficiency and economy of the grid-connected hybrid power system. The simulation result shows that the grid-connected wind-solar-battery hybrid power system has a higher comprehensive performance; the method of optimal configuration in this paper is useful and reasonable.

  2. Thermal-Aware Test Access Mechanism and Wrapper Design Optimization for System-on-Chips

    NASA Astrophysics Data System (ADS)

    Yu, Thomas Edison; Yoneda, Tomokazu; Chakrabarty, Krishnendu; Fujiwara, Hideo

    Rapid advances in semiconductor manufacturing technology have led to higher chip power densities, which places greater emphasis on packaging and temperature control during testing. For system-on-chips, peak power-based scheduling algorithms have been used to optimize tests under specified power constraints. However, imposing power constraints does not always solve the problem of overheating due to the non-uniform distribution of power across the chip. This paper presents a TAM/Wrapper co-design methodology for system-on-chips that ensures thermal safety while still optimizing the test schedule. The method combines a simplified thermal-cost model with a traditional bin-packing algorithm to minimize test time while satisfying temperature constraints. Furthermore, for temperature checking, thermal simulation is done using cycle-accurate power profiles for more realistic results. Experiments show that even a minimal sacrifice in test time can yield a considerable decrease in test temperature as well as the possibility of further lowering temperatures beyond those achieved using traditional power-based test scheduling.

  3. Design of an autofocus capsule endoscope system and the corresponding 3D reconstruction algorithm.

    PubMed

    Zhang, Wei; Jin, Yi-Tao; Guo, Xin; Su, Jin-Hui; You, Su-Ping

    2016-10-01

    A traditional capsule endoscope can only take 2D images, and most of the images are not clear enough to be used for diagnosing. A 3D capsule endoscope can help doctors make a quicker and more accurate diagnosis. However, blurred images negatively affect reconstruction accuracy. A compact, autofocus capsule endoscope system is designed in this study. Using a liquid lens, the system can be electronically controlled to autofocus, and without any moving elements. The depth of field of the system is in the 3-100 mm range and its field of view is about 110°. The images captured by this optical system are much clearer than those taken by a traditional capsule endoscope. A 3D reconstruction algorithm is presented to adapt to the zooming function of our proposed system. Simulations and experiments have shown that more feature points can be correctly matched and a higher reconstruction accuracy can be achieved by this strategy.

  4. Algorithm optimization for multitined radiofrequency ablation: comparative study in ex vivo and in vivo bovine liver.

    PubMed

    Appelbaum, Liat; Sosna, Jacob; Pearson, Robert; Perez, Sarah; Nissenbaum, Yizhak; Mertyna, Pawel; Libson, Eugene; Goldberg, S Nahum

    2010-02-01

    To prospectively optimize multistep algorithms for largest available multitined radiofrequency (RF) electrode system in ex vivo and in vivo tissues, to determine best energy parameters to achieve large predictable target sizes of coagulation, and to compare these algorithms with manufacturer's recommended algorithms. Institutional animal care and use committee approval was obtained for the in vivo portion of this study. Ablation (n = 473) was performed in ex vivo bovine liver; final tine extension was 5-7 cm. Variables in stepped-deployment RF algorithm were interrogated and included initial current ramping to 105 degrees C (1 degrees C/0.5-5.0 sec), the number of sequential tine extensions (2-7 cm), and duration of application (4-12 minutes) for final two to three tine extensions. Optimal parameters to achieve 5-7 cm of coagulation were compared with recommended algorithms. Optimal settings for 5- and 6-cm final tine extensions were confirmed in in vivo perfused bovine liver (n = 14). Multivariate analysis of variance and/or paired t tests were used. Mean RF ablation zones of 5.1 cm +/- 0.2 (standard deviation), 6.3 cm +/- 0.4, and 7 cm +/- 0.3 were achieved with 5-, 6-, and 7-cm final tine extensions in a mean of 19.5 min +/- 0.5, 27.9 min +/- 6, and 37.1 min +/- 2.3, respectively, at optimal settings. With these algorithms, size of ablation at 6- and 7-cm tine extension significantly increased from mean of 5.4 cm +/- 0.4 and 6.1 cm +/- 0.6 (manufacturer's algorithms) (P <.05, both comparisons); two recommended tine extensions were eliminated. In vivo confirmation produced mean diameter in specified time: 5.5 cm +/- 0.4 in 18.5 min +/- 0.5 (5-cm extensions) and 5.7 cm +/- 0.2 in 21.2 min +/- 0.6 (6-cm extensions). Large zones of coagulation of 5-7 cm can be created with optimized RF algorithms that help reduce number of tine extensions compared with manufacturer's recommendations. Such algorithms are likely to facilitate the utility of these devices for RF ablation of focal tumors in clinical practice. (c) RSNA, 2010.

  5. Efficient Parallel Kernel Solvers for Computational Fluid Dynamics Applications

    NASA Technical Reports Server (NTRS)

    Sun, Xian-He

    1997-01-01

    Distributed-memory parallel computers dominate today's parallel computing arena. These machines, such as Intel Paragon, IBM SP2, and Cray Origin2OO, have successfully delivered high performance computing power for solving some of the so-called "grand-challenge" problems. Despite initial success, parallel machines have not been widely accepted in production engineering environments due to the complexity of parallel programming. On a parallel computing system, a task has to be partitioned and distributed appropriately among processors to reduce communication cost and to attain load balance. More importantly, even with careful partitioning and mapping, the performance of an algorithm may still be unsatisfactory, since conventional sequential algorithms may be serial in nature and may not be implemented efficiently on parallel machines. In many cases, new algorithms have to be introduced to increase parallel performance. In order to achieve optimal performance, in addition to partitioning and mapping, a careful performance study should be conducted for a given application to find a good algorithm-machine combination. This process, however, is usually painful and elusive. The goal of this project is to design and develop efficient parallel algorithms for highly accurate Computational Fluid Dynamics (CFD) simulations and other engineering applications. The work plan is 1) developing highly accurate parallel numerical algorithms, 2) conduct preliminary testing to verify the effectiveness and potential of these algorithms, 3) incorporate newly developed algorithms into actual simulation packages. The work plan has well achieved. Two highly accurate, efficient Poisson solvers have been developed and tested based on two different approaches: (1) Adopting a mathematical geometry which has a better capacity to describe the fluid, (2) Using compact scheme to gain high order accuracy in numerical discretization. The previously developed Parallel Diagonal Dominant (PDD) algorithm and Reduced Parallel Diagonal Dominant (RPDD) algorithm have been carefully studied on different parallel platforms for different applications, and a NASA simulation code developed by Man M. Rai and his colleagues has been parallelized and implemented based on data dependency analysis. These achievements are addressed in detail in the paper.

  6. SU-E-T-268: Differences in Treatment Plan Quality and Delivery Between Two Commercial Treatment Planning Systems for Volumetric Arc-Based Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S; Zhang, H; Zhang, B

    2015-06-15

    Purpose: To clinically evaluate the differences in volumetric modulated arc therapy (VMAT) treatment plan and delivery between two commercial treatment planning systems. Methods: Two commercial VMAT treatment planning systems with different VMAT optimization algorithms and delivery approaches were evaluated. This study included 16 clinical VMAT plans performed with the first system: 2 spine, 4 head and neck (HN), 2 brain, 4 pancreas, and 4 pelvis plans. These 16 plans were then re-optimized with the same number of arcs using the second treatment planning system. Planning goals were invariant between the two systems. Gantry speed, dose rate modulation, MLC modulation, planmore » quality, number of monitor units (MUs), VMAT quality assurance (QA) results, and treatment delivery time were compared between the 2 systems. VMAT QA results were performed using Mapcheck2 and analyzed with gamma analysis (3mm/3% and 2mm/2%). Results: Similar plan quality was achieved with each VMAT optimization algorithm, and the difference in delivery time was minimal. Algorithm 1 achieved planning goals by highly modulating the MLC (total distance traveled by leaves (TL) = 193 cm average over control points per plan), while maintaining a relatively constant dose rate (dose-rate change <100 MU/min). Algorithm 2 involved less MLC modulation (TL = 143 cm per plan), but greater dose-rate modulation (range = 0-600 MU/min). The average number of MUs was 20% less for algorithm 2 (ratio of MUs for algorithms 2 and 1 ranged from 0.5-1). VMAT QA results were similar for all disease sites except HN plans. For HN plans, the average gamma passing rates were 88.5% (2mm/2%) and 96.9% (3mm/3%) for algorithm 1 and 97.9% (2mm/2%) and 99.6% (3mm/3%) for algorithm 2. Conclusion: Both VMAT optimization algorithms achieved comparable plan quality; however, fewer MUs were needed and QA results were more robust for Algorithm 2, which more highly modulated dose rate.« less

  7. An objective algorithm for reconstructing the three-dimensional ocean temperature field based on Argo profiles and SST data

    NASA Astrophysics Data System (ADS)

    Zhou, Chaojie; Ding, Xiaohua; Zhang, Jie; Yang, Jungang; Ma, Qiang

    2017-12-01

    While global oceanic surface information with large-scale, real-time, high-resolution data is collected by satellite remote sensing instrumentation, three-dimensional (3D) observations are usually obtained from in situ measurements, but with minimal coverage and spatial resolution. To meet the needs of 3D ocean investigations, we have developed a new algorithm to reconstruct the 3D ocean temperature field based on the Array for Real-time Geostrophic Oceanography (Argo) profiles and sea surface temperature (SST) data. The Argo temperature profiles are first optimally fitted to generate a series of temperature functions of depth, with the vertical temperature structure represented continuously. By calculating the derivatives of the fitted functions, the calculation of the vertical temperature gradient of the Argo profiles at an arbitrary depth is accomplished. A gridded 3D temperature gradient field is then found by applying inverse distance weighting interpolation in the horizontal direction. Combined with the processed SST, the 3D temperature field reconstruction is realized below the surface using the gridded temperature gradient. Finally, to confirm the effectiveness of the algorithm, an experiment in the Pacific Ocean south of Japan is conducted, for which a 3D temperature field is generated. Compared with other similar gridded products, the reconstructed 3D temperature field derived by the proposed algorithm achieves satisfactory accuracy, with correlation coefficients of 0.99 obtained, including a higher spatial resolution (0.25° × 0.25°), resulting in the capture of smaller-scale characteristics. Finally, both the accuracy and the superiority of the algorithm are validated.

  8. Accelerating navigation in the VecGeom geometry modeller

    NASA Astrophysics Data System (ADS)

    Wenzel, Sandro; Zhang, Yang; pre="for the"> VecGeom Developers,

    2017-10-01

    The VecGeom geometry library is a relatively recent effort aiming to provide a modern and high performance geometry service for particle detector simulation in hierarchical detector geometries common to HEP experiments. One of its principal targets is the efficient use of vector SIMD hardware instructions to accelerate geometry calculations for single track as well as multi-track queries. Previously, excellent performance improvements compared to Geant4/ROOT could be reported for elementary geometry algorithms at the level of single shape queries. In this contribution, we will focus on the higher level navigation algorithms in VecGeom, which are the most important components as seen from the simulation engines. We will first report on our R&D effort and developments to implement SIMD enhanced data structures to speed up the well-known “voxelised” navigation algorithms, ubiquitously used for particle tracing in complex detector modules consisting of many daughter parts. Second, we will discuss complementary new approaches to improve navigation algorithms in HEP. These ideas are based on a systematic exploitation of static properties of the detector layout as well as automatic code generation and specialisation of the C++ navigator classes. Such specialisations reduce the overhead of generic- or virtual function based algorithms and enhance the effectiveness of the SIMD vector units. These novel approaches go well beyond the existing solutions available in Geant4 or TGeo/ROOT, achieve a significantly superior performance, and might be of interest for a wide range of simulation backends (GeantV, Geant4). We exemplify this with concrete benchmarks for the CMS and ALICE detectors.

  9. Image Reconstruction from Under sampled Fourier Data Using the Polynomial Annihilation Transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archibald, Richard K.; Gelb, Anne; Platte, Rodrigo

    Fourier samples are collected in a variety of applications including magnetic resonance imaging and synthetic aperture radar. The data are typically under-sampled and noisy. In recent years, l 1 regularization has received considerable attention in designing image reconstruction algorithms from under-sampled and noisy Fourier data. The underlying image is assumed to have some sparsity features, that is, some measurable features of the image have sparse representation. The reconstruction algorithm is typically designed to solve a convex optimization problem, which consists of a fidelity term penalized by one or more l 1 regularization terms. The Split Bregman Algorithm provides a fastmore » explicit solution for the case when TV is used for the l1l1 regularization terms. Due to its numerical efficiency, it has been widely adopted for a variety of applications. A well known drawback in using TV as an l 1 regularization term is that the reconstructed image will tend to default to a piecewise constant image. This issue has been addressed in several ways. Recently, the polynomial annihilation edge detection method was used to generate a higher order sparsifying transform, and was coined the “polynomial annihilation (PA) transform.” This paper adapts the Split Bregman Algorithm for the case when the PA transform is used as the l 1 regularization term. In so doing, we achieve a more accurate image reconstruction method from under-sampled and noisy Fourier data. Our new method compares favorably to the TV Split Bregman Algorithm, as well as to the popular TGV combined with shearlet approach.« less

  10. A multi-sensor data-driven methodology for all-sky passive microwave inundation retrieval

    NASA Astrophysics Data System (ADS)

    Takbiri, Zeinab; Ebtehaj, Ardeshir M.; Foufoula-Georgiou, Efi

    2017-06-01

    We present a multi-sensor Bayesian passive microwave retrieval algorithm for flood inundation mapping at high spatial and temporal resolutions. The algorithm takes advantage of observations from multiple sensors in optical, short-infrared, and microwave bands, thereby allowing for detection and mapping of the sub-pixel fraction of inundated areas under almost all-sky conditions. The method relies on a nearest-neighbor search and a modern sparsity-promoting inversion method that make use of an a priori dataset in the form of two joint dictionaries. These dictionaries contain almost overlapping observations by the Special Sensor Microwave Imager and Sounder (SSMIS) on board the Defense Meteorological Satellite Program (DMSP) F17 satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Aqua and Terra satellites. Evaluation of the retrieval algorithm over the Mekong Delta shows that it is capable of capturing to a good degree the inundation diurnal variability due to localized convective precipitation. At longer timescales, the results demonstrate consistency with the ground-based water level observations, denoting that the method is properly capturing inundation seasonal patterns in response to regional monsoonal rain. The calculated Euclidean distance, rank-correlation, and also copula quantile analysis demonstrate a good agreement between the outputs of the algorithm and the observed water levels at monthly and daily timescales. The current inundation products are at a resolution of 12.5 km and taken twice per day, but a higher resolution (order of 5 km and every 3 h) can be achieved using the same algorithm with the dictionary populated by the Global Precipitation Mission (GPM) Microwave Imager (GMI) products.

  11. Focusing attention on objects of interest using multiple matched filters.

    PubMed

    Stough, T M; Brodley, C E

    2001-01-01

    In order to be of use to scientists, large image databases need to be analyzed to create a catalog of the objects of interest. One approach is to apply a multiple tiered search algorithm that uses reduction techniques of increasing computational complexity to select the desired objects from the database. The first tier of this type of algorithm, often called a focus of attention (FOA) algorithm, selects candidate regions from the image data and passes them to the next tier of the algorithm. In this paper we present a new approach to FOA that employs multiple matched filters (MMF), one for each object prototype, to detect the regions of interest. The MMFs are formed using k-means clustering on a set of image patches identified by domain experts as positive examples of objects of interest. An innovation of the approach is to radically reduce the dimensionality of the feature space, used by the k-means algorithm, by taking block averages (spoiling) the sample image patches. The process of spoiling is analyzed and its applicability to other domains is discussed. The combination of the output of the MMFs is achieved through the projection of the detections back into an empty image and then thresholding. This research was motivated by the need to detect small volcanos in the Magellan probe data from Venus. An empirical evaluation of the approach illustrates that a combination of the MMF plus the average filter results in a higher likelihood of 100% detection of the objects of interest at a lower false positive rate than a single matched filter alone.

  12. Machine-checked proofs of the design and implementation of a fault-tolerant circuit

    NASA Technical Reports Server (NTRS)

    Bevier, William R.; Young, William D.

    1990-01-01

    A formally verified implementation of the 'oral messages' algorithm of Pease, Shostak, and Lamport is described. An abstract implementation of the algorithm is verified to achieve interactive consistency in the presence of faults. This abstract characterization is then mapped down to a hardware level implementation which inherits the fault-tolerant characteristics of the abstract version. All steps in the proof were checked with the Boyer-Moore theorem prover. A significant results is the demonstration of a fault-tolerant device that is formally specified and whose implementation is proved correct with respect to this specification. A significant simplifying assumption is that the redundant processors behave synchronously. A mechanically checked proof that the oral messages algorithm is 'optimal' in the sense that no algorithm which achieves agreement via similar message passing can tolerate a larger proportion of faulty processor is also described.

  13. Acceleration of block-matching algorithms using a custom instruction-based paradigm on a Nios II microprocessor

    NASA Astrophysics Data System (ADS)

    González, Diego; Botella, Guillermo; García, Carlos; Prieto, Manuel; Tirado, Francisco

    2013-12-01

    This contribution focuses on the optimization of matching-based motion estimation algorithms widely used for video coding standards using an Altera custom instruction-based paradigm and a combination of synchronous dynamic random access memory (SDRAM) with on-chip memory in Nios II processors. A complete profile of the algorithms is achieved before the optimization, which locates code leaks, and afterward, creates a custom instruction set, which is then added to the specific design, enhancing the original system. As well, every possible memory combination between on-chip memory and SDRAM has been tested to achieve the best performance. The final throughput of the complete designs are shown. This manuscript outlines a low-cost system, mapped using very large scale integration technology, which accelerates software algorithms by converting them into custom hardware logic blocks and showing the best combination between on-chip memory and SDRAM for the Nios II processor.

  14. A Generalized Method for Automatic Downhand and Wirefeed Control of a Welding Robot and Positioner

    NASA Technical Reports Server (NTRS)

    Fernandez, Ken; Cook, George E.

    1988-01-01

    A generalized method for controlling a six degree-of-freedom (DOF) robot and a two DOF positioner used for arc welding operations is described. The welding path is defined in the part reference frame, and robot/positioner joint angles of the equivalent eight DOF serial linkage are determined via an iterative solution. Three algorithms are presented: the first solution controls motion of the eight DOF mechanism such that proper torch motion is achieved while minimizing the sum-of-squares of joint displacements; the second algorithm adds two constraint equations to achieve torch control while maintaining part orientation so that welding occurs in the downhand position; and the third algorithm adds the ability to control the proper orientation of a wire feed mechanism used in gas tungsten arc (GTA) welding operations. A verification of these algorithms is given using ROBOSIM, a NASA developed computer graphic simulation software package design for robot systems development.

  15. An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles.

    PubMed

    Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei

    2013-01-14

    Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).

  16. Multiscale high-order/low-order (HOLO) algorithms and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacon, Luis; Chen, Guangye; Knoll, Dana Alan

    Here, we review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. Themore » HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.« less

  17. Multiscale high-order/low-order (HOLO) algorithms and applications

    DOE PAGES

    Chacon, Luis; Chen, Guangye; Knoll, Dana Alan; ...

    2016-11-11

    Here, we review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. Themore » HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.« less

  18. Tail Biting Trellis Representation of Codes: Decoding and Construction

    NASA Technical Reports Server (NTRS)

    Shao. Rose Y.; Lin, Shu; Fossorier, Marc

    1999-01-01

    This paper presents two new iterative algorithms for decoding linear codes based on their tail biting trellises, one is unidirectional and the other is bidirectional. Both algorithms are computationally efficient and achieves virtually optimum error performance with a small number of decoding iterations. They outperform all the previous suboptimal decoding algorithms. The bidirectional algorithm also reduces decoding delay. Also presented in the paper is a method for constructing tail biting trellises for linear block codes.

  19. A Palmprint Recognition Algorithm Using Phase-Only Correlation

    NASA Astrophysics Data System (ADS)

    Ito, Koichi; Aoki, Takafumi; Nakajima, Hiroshi; Kobayashi, Koji; Higuchi, Tatsuo

    This paper presents a palmprint recognition algorithm using Phase-Only Correlation (POC). The use of phase components in 2D (two-dimensional) discrete Fourier transforms of palmprint images makes it possible to achieve highly robust image registration and matching. In the proposed algorithm, POC is used to align scaling, rotation and translation between two palmprint images, and evaluate similarity between them. Experimental evaluation using a palmprint image database clearly demonstrates efficient matching performance of the proposed algorithm.

  20. McTwo: a two-step feature selection algorithm based on maximal information coefficient.

    PubMed

    Ge, Ruiquan; Zhou, Manli; Luo, Youxi; Meng, Qinghan; Mai, Guoqin; Ma, Dongli; Wang, Guoqing; Zhou, Fengfeng

    2016-03-23

    High-throughput bio-OMIC technologies are producing high-dimension data from bio-samples at an ever increasing rate, whereas the training sample number in a traditional experiment remains small due to various difficulties. This "large p, small n" paradigm in the area of biomedical "big data" may be at least partly solved by feature selection algorithms, which select only features significantly associated with phenotypes. Feature selection is an NP-hard problem. Due to the exponentially increased time requirement for finding the globally optimal solution, all the existing feature selection algorithms employ heuristic rules to find locally optimal solutions, and their solutions achieve different performances on different datasets. This work describes a feature selection algorithm based on a recently published correlation measurement, Maximal Information Coefficient (MIC). The proposed algorithm, McTwo, aims to select features associated with phenotypes, independently of each other, and achieving high classification performance of the nearest neighbor algorithm. Based on the comparative study of 17 datasets, McTwo performs about as well as or better than existing algorithms, with significantly reduced numbers of selected features. The features selected by McTwo also appear to have particular biomedical relevance to the phenotypes from the literature. McTwo selects a feature subset with very good classification performance, as well as a small feature number. So McTwo may represent a complementary feature selection algorithm for the high-dimensional biomedical datasets.

  1. Automated segmentation of the actively stained mouse brain using multi-spectral MR microscopy.

    PubMed

    Sharief, Anjum A; Badea, Alexandra; Dale, Anders M; Johnson, G Allan

    2008-01-01

    Magnetic resonance microscopy (MRM) has created new approaches for high-throughput morphological phenotyping of mouse models of diseases. Transgenic and knockout mice serve as a test bed for validating hypotheses that link genotype to the phenotype of diseases, as well as developing and tracking treatments. We describe here a Markov random fields based segmentation of the actively stained mouse brain, as a prerequisite for morphological phenotyping. Active staining achieves higher signal to noise ratio (SNR) thereby enabling higher resolution imaging per unit time than obtained in previous formalin-fixed mouse brain studies. The segmentation algorithm was trained on isotropic 43-mum T1- and T2-weighted MRM images. The mouse brain was segmented into 33 structures, including the hippocampus, amygdala, hypothalamus, thalamus, as well as fiber tracts and ventricles. Probabilistic information used in the segmentation consisted of (a) intensity distributions in the T1- and T2-weighted data, (b) location, and (c) contextual priors for incorporating spatial information. Validation using standard morphometric indices showed excellent consistency between automatically and manually segmented data. The algorithm has been tested on the widely used C57BL/6J strain, as well as on a selection of six recombinant inbred BXD strains, chosen especially for their largely variant hippocampus.

  2. A scoring system for ascertainment of incident stroke; the Risk Index Score (RISc).

    PubMed

    Kass-Hout, T A; Moyé, L A; Smith, M A; Morgenstern, L B

    2006-01-01

    The main objective of this study was to develop and validate a computer-based statistical algorithm that could be translated into a simple scoring system in order to ascertain incident stroke cases using hospital admission medical records data. The Risk Index Score (RISc) algorithm was developed using data collected prospectively by the Brain Attack Surveillance in Corpus Christi (BASIC) project, 2000. The validity of RISc was evaluated by estimating the concordance of scoring system stroke ascertainment to stroke ascertainment by physician and/or abstractor review of hospital admission records. RISc was developed on 1718 randomly selected patients (training set) and then statistically validated on an independent sample of 858 patients (validation set). A multivariable logistic model was used to develop RISc and subsequently evaluated by goodness-of-fit and receiver operating characteristic (ROC) analyses. The higher the value of RISc, the higher the patient's risk of potential stroke. The study showed RISc was well calibrated and discriminated those who had potential stroke from those that did not on initial screening. In this study we developed and validated a rapid, easy, efficient, and accurate method to ascertain incident stroke cases from routine hospital admission records for epidemiologic investigations. Validation of this scoring system was achieved statistically; however, clinical validation in a community hospital setting is warranted.

  3. Time integration algorithms for the two-dimensional Euler equations on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Slack, David C.; Whitaker, D. L.; Walters, Robert W.

    1994-01-01

    Explicit and implicit time integration algorithms for the two-dimensional Euler equations on unstructured grids are presented. Both cell-centered and cell-vertex finite volume upwind schemes utilizing Roe's approximate Riemann solver are developed. For the cell-vertex scheme, a four-stage Runge-Kutta time integration, a fourstage Runge-Kutta time integration with implicit residual averaging, a point Jacobi method, a symmetric point Gauss-Seidel method and two methods utilizing preconditioned sparse matrix solvers are presented. For the cell-centered scheme, a Runge-Kutta scheme, an implicit tridiagonal relaxation scheme modeled after line Gauss-Seidel, a fully implicit lower-upper (LU) decomposition, and a hybrid scheme utilizing both Runge-Kutta and LU methods are presented. A reverse Cuthill-McKee renumbering scheme is employed for the direct solver to decrease CPU time by reducing the fill of the Jacobian matrix. A comparison of the various time integration schemes is made for both first-order and higher order accurate solutions using several mesh sizes, higher order accuracy is achieved by using multidimensional monotone linear reconstruction procedures. The results obtained for a transonic flow over a circular arc suggest that the preconditioned sparse matrix solvers perform better than the other methods as the number of elements in the mesh increases.

  4. External validation of heart-type fatty acid binding protein, high-sensitivity cardiac troponin, and electrocardiography as rule-out for acute myocardial infarction.

    PubMed

    Van Hise, Christopher B; Greenslade, Jaimi H; Parsonage, William; Than, Martin; Young, Joanna; Cullen, Louise

    2018-02-01

    To externally validate a clinical decision rule incorporating heart fatty acid binding protein (h-FABP), high-sensitivity troponin (hs-cTn) and electrocardiogram (ECG) for the detection of acute myocardial infarction (AMI) on presentation to the Emergency Department. We also investigated whether this clinical decision rule improved identification of AMI over algorithms incorporating hs-cTn and ECG only. This study included data from 789 patients from the Brisbane ADAPT cohort and 441 patients from the Christchurch TIMI RCT cohort. The primary outcome was index AMI. Sensitivity, specificity, positive predictive value and negative predictive value were used to assess the diagnostic accuracy of the algorithms. 1230 patients were recruited, including 112 (9.1%) with AMI. The algorithm including h-FABP and hs-cTnT had 100% sensitivity and 32.4% specificity. The algorithm utilising h-FABP and hs-cTnI had similar sensitivity (99.1%) and higher specificity (43.4%). The hs-cTnI and hs-cTnT algorithms without h-FABP both had a sensitivity of 98.2%; a result that was not significantly different from either algorithm incorporating h-FABP. Specificity was higher for the hs-cTnI algorithm (68.1%) compared to the hs-cTnT algorithm (33.0%). The specificity of the algorithm incorporating hs-cTnI alone was also significantly higher than both of the algorithms incorporating h-FABP (p<0.01). For patients presenting to the Emergency Department with chest pain, an algorithm incorporating h-FABP, hs-cTn and ECG has high accuracy and can rule out up to 40% of patients. An algorithm incorporating only hs-cTn and ECG has similar sensitivity and may rule out a higher proportion of patients. Each of the algorithms can be used to safely identify patients as low risk for AMI on presentation to the Emergency Department. Copyright © 2017 The Canadian Society of Clinical Chemists. All rights reserved.

  5. On increasing the spectral efficiency and transmissivity in the data transmission channel on the spacecraft-ground tracking station line

    NASA Astrophysics Data System (ADS)

    Andrianov, M. N.; Kostenko, V. I.; Likhachev, S. F.

    2018-01-01

    The algorithms for achieving a practical increase in the rate of data transmission on the space-craft-ground tracking station line has been considered. This increase is achieved by applying spectral-effective modulation techniques, the technology of orthogonal frequency compression of signals using millimeterrange radio waves. The advantages and disadvantages of each of three algorithms have been revealed. A significant advantage of data transmission in the millimeter range has been indicated.

  6. Behavior of Machine Learning Algorithms in Adversarial Environments

    DTIC Science & Technology

    2010-11-23

    handwriting recog- nition [cf., Plamondon and Srihari, 2000], they also have potentially far-reaching utility for many applications in security, networking...cost of the largest ℓp cost ball that fits entirely within their convex hull; let’s say this cost is C† ≤ C+0 . To achieve ǫ-multiplicative optimality...optimal on Fconvex,’+’ for ℓ2 costs. The proof of this result is in Appendix C.4. This result says that there is no algorithm can generally achieve ǫ

  7. Evaluation of Algorithms for a Miles-in-Trail Decision Support Tool

    NASA Technical Reports Server (NTRS)

    Bloem, Michael; Hattaway, David; Bambos, Nicholas

    2012-01-01

    Four machine learning algorithms were prototyped and evaluated for use in a proposed decision support tool that would assist air traffic managers as they set Miles-in-Trail restrictions. The tool would display probabilities that each possible Miles-in-Trail value should be used in a given situation. The algorithms were evaluated with an expected Miles-in-Trail cost that assumes traffic managers set restrictions based on the tool-suggested probabilities. Basic Support Vector Machine, random forest, and decision tree algorithms were evaluated, as was a softmax regression algorithm that was modified to explicitly reduce the expected Miles-in-Trail cost. The algorithms were evaluated with data from the summer of 2011 for air traffic flows bound to the Newark Liberty International Airport (EWR) over the ARD, PENNS, and SHAFF fixes. The algorithms were provided with 18 input features that describe the weather at EWR, the runway configuration at EWR, the scheduled traffic demand at EWR and the fixes, and other traffic management initiatives in place at EWR. Features describing other traffic management initiatives at EWR and the weather at EWR achieved relatively high information gain scores, indicating that they are the most useful for estimating Miles-in-Trail. In spite of a high variance or over-fitting problem, the decision tree algorithm achieved the lowest expected Miles-in-Trail costs when the algorithms were evaluated using 10-fold cross validation with the summer 2011 data for these air traffic flows.

  8. An improved semi-implicit method for structural dynamics analysis

    NASA Technical Reports Server (NTRS)

    Park, K. C.

    1982-01-01

    A semi-implicit algorithm is presented for direct time integration of the structural dynamics equations. The algorithm avoids the factoring of the implicit difference solution matrix and mitigates the unacceptable accuracy losses which plagued previous semi-implicit algorithms. This substantial accuracy improvement is achieved by augmenting the solution matrix with two simple diagonal matrices of the order of the integration truncation error.

  9. Design of Genetic Algorithms for Topology Control of Unmanned Vehicles

    DTIC Science & Technology

    2010-01-01

    decentralised topology control mechanism distributed among active running software agents to achieve a uniform spread of terrestrial unmanned vehicles...14. ABSTRACT We present genetic algorithms (GAs) as a decentralised topology control mechanism distributed among active running software agents to...inspired topology control algorithm. The topology control of UVs using a decentralised solution over an unknown geographical terrain is a challenging

  10. A real-time implementation of an advanced sensor failure detection, isolation, and accommodation algorithm

    NASA Technical Reports Server (NTRS)

    Delaat, J. C.; Merrill, W. C.

    1983-01-01

    A sensor failure detection, isolation, and accommodation algorithm was developed which incorporates analytic sensor redundancy through software. This algorithm was implemented in a high level language on a microprocessor based controls computer. Parallel processing and state-of-the-art 16-bit microprocessors are used along with efficient programming practices to achieve real-time operation.

  11. Expert-guided evolutionary algorithm for layout design of complex space stations

    NASA Astrophysics Data System (ADS)

    Qian, Zhiqin; Bi, Zhuming; Cao, Qun; Ju, Weiguo; Teng, Hongfei; Zheng, Yang; Zheng, Siyu

    2017-08-01

    The layout of a space station should be designed in such a way that different equipment and instruments are placed for the station as a whole to achieve the best overall performance. The station layout design is a typical nondeterministic polynomial problem. In particular, how to manage the design complexity to achieve an acceptable solution within a reasonable timeframe poses a great challenge. In this article, a new evolutionary algorithm has been proposed to meet such a challenge. It is called as the expert-guided evolutionary algorithm with a tree-like structure decomposition (EGEA-TSD). Two innovations in EGEA-TSD are (i) to deal with the design complexity, the entire design space is divided into subspaces with a tree-like structure; it reduces the computation and facilitates experts' involvement in the solving process. (ii) A human-intervention interface is developed to allow experts' involvement in avoiding local optimums and accelerating convergence. To validate the proposed algorithm, the layout design of one-space station is formulated as a multi-disciplinary design problem, the developed algorithm is programmed and executed, and the result is compared with those from other two algorithms; it has illustrated the superior performance of the proposed EGEA-TSD.

  12. Synchronization Algorithms for Co-Simulation of Power Grid and Communication Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciraci, Selim; Daily, Jeffrey A.; Agarwal, Khushbu

    2014-09-11

    The ongoing modernization of power grids consists of integrating them with communication networks in order to achieve robust and resilient control of grid operations. To understand the operation of the new smart grid, one approach is to use simulation software. Unfortunately, current power grid simulators at best utilize inadequate approximations to simulate communication networks, if at all. Cooperative simulation of specialized power grid and communication network simulators promises to more accurately reproduce the interactions of real smart grid deployments. However, co-simulation is a challenging problem. A co-simulation must manage the exchange of informa- tion, including the synchronization of simulator clocks,more » between all simulators while maintaining adequate computational perfor- mance. This paper describes two new conservative algorithms for reducing the overhead of time synchronization, namely Active Set Conservative and Reactive Conservative. We provide a detailed analysis of their performance characteristics with respect to the current state of the art including both conservative and optimistic synchronization algorithms. In addition, we provide guidelines for selecting the appropriate synchronization algorithm based on the requirements of the co-simulation. The newly proposed algorithms are shown to achieve as much as 14% and 63% im- provement, respectively, over the existing conservative algorithm.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacón, L., E-mail: chacon@lanl.gov; Chen, G.; Knoll, D.A.

    We review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. The HOLOmore » approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.« less

  14. Joint Smoothed l₀-Norm DOA Estimation Algorithm for Multiple Measurement Vectors in MIMO Radar.

    PubMed

    Liu, Jing; Zhou, Weidong; Juwono, Filbert H

    2017-05-08

    Direction-of-arrival (DOA) estimation is usually confronted with a multiple measurement vector (MMV) case. In this paper, a novel fast sparse DOA estimation algorithm, named the joint smoothed l 0 -norm algorithm, is proposed for multiple measurement vectors in multiple-input multiple-output (MIMO) radar. To eliminate the white or colored Gaussian noises, the new method first obtains a low-complexity high-order cumulants based data matrix. Then, the proposed algorithm designs a joint smoothed function tailored for the MMV case, based on which joint smoothed l 0 -norm sparse representation framework is constructed. Finally, for the MMV-based joint smoothed function, the corresponding gradient-based sparse signal reconstruction is designed, thus the DOA estimation can be achieved. The proposed method is a fast sparse representation algorithm, which can solve the MMV problem and perform well for both white and colored Gaussian noises. The proposed joint algorithm is about two orders of magnitude faster than the l 1 -norm minimization based methods, such as l 1 -SVD (singular value decomposition), RV (real-valued) l 1 -SVD and RV l 1 -SRACV (sparse representation array covariance vectors), and achieves better DOA estimation performance.

  15. A Genetic-Based Scheduling Algorithm to Minimize the Makespan of the Grid Applications

    NASA Astrophysics Data System (ADS)

    Entezari-Maleki, Reza; Movaghar, Ali

    Task scheduling algorithms in grid environments strive to maximize the overall throughput of the grid. In order to maximize the throughput of the grid environments, the makespan of the grid tasks should be minimized. In this paper, a new task scheduling algorithm is proposed to assign tasks to the grid resources with goal of minimizing the total makespan of the tasks. The algorithm uses the genetic approach to find the suitable assignment within grid resources. The experimental results obtained from applying the proposed algorithm to schedule independent tasks within grid environments demonstrate the applicability of the algorithm in achieving schedules with comparatively lower makespan in comparison with other well-known scheduling algorithms such as, Min-min, Max-min, RASA and Sufferage algorithms.

  16. Theoretic derivation of directed acyclic subgraph algorithm and comparisons with message passing algorithm

    NASA Astrophysics Data System (ADS)

    Ha, Jeongmok; Jeong, Hong

    2016-07-01

    This study investigates the directed acyclic subgraph (DAS) algorithm, which is used to solve discrete labeling problems much more rapidly than other Markov-random-field-based inference methods but at a competitive accuracy. However, the mechanism by which the DAS algorithm simultaneously achieves competitive accuracy and fast execution speed, has not been elucidated by a theoretical derivation. We analyze the DAS algorithm by comparing it with a message passing algorithm. Graphical models, inference methods, and energy-minimization frameworks are compared between DAS and message passing algorithms. Moreover, the performances of DAS and other message passing methods [sum-product belief propagation (BP), max-product BP, and tree-reweighted message passing] are experimentally compared.

  17. [State Recognition of Solid Fermentation Process Based on Near Infrared Spectroscopy with Adaboost and Spectral Regression Discriminant Analysis].

    PubMed

    Yu, Shuang; Liu, Guo-hai; Xia, Rong-sheng; Jiang, Hui

    2016-01-01

    In order to achieve the rapid monitoring of process state of solid state fermentation (SSF), this study attempted to qualitative identification of process state of SSF of feed protein by use of Fourier transform near infrared (FT-NIR) spectroscopy analysis technique. Even more specifically, the FT-NIR spectroscopy combined with Adaboost-SRDA-NN integrated learning algorithm as an ideal analysis tool was used to accurately and rapidly monitor chemical and physical changes in SSF of feed protein without the need for chemical analysis. Firstly, the raw spectra of all the 140 fermentation samples obtained were collected by use of Fourier transform near infrared spectrometer (Antaris II), and the raw spectra obtained were preprocessed by use of standard normal variate transformation (SNV) spectral preprocessing algorithm. Thereafter, the characteristic information of the preprocessed spectra was extracted by use of spectral regression discriminant analysis (SRDA). Finally, nearest neighbors (NN) algorithm as a basic classifier was selected and building state recognition model to identify different fermentation samples in the validation set. Experimental results showed as follows: the SRDA-NN model revealed its superior performance by compared with other two different NN models, which were developed by use of the feature information form principal component analysis (PCA) and linear discriminant analysis (LDA), and the correct recognition rate of SRDA-NN model achieved 94.28% in the validation set. In this work, in order to further improve the recognition accuracy of the final model, Adaboost-SRDA-NN ensemble learning algorithm was proposed by integrated the Adaboost and SRDA-NN methods, and the presented algorithm was used to construct the online monitoring model of process state of SSF of feed protein. Experimental results showed as follows: the prediction performance of SRDA-NN model has been further enhanced by use of Adaboost lifting algorithm, and the correct recognition rate of the Adaboost-SRDA-NN model achieved 100% in the validation set. The overall results demonstrate that SRDA algorithm can effectively achieve the spectral feature information extraction to the spectral dimension reduction in model calibration process of qualitative analysis of NIR spectroscopy. In addition, the Adaboost lifting algorithm can improve the classification accuracy of the final model. The results obtained in this work can provide research foundation for developing online monitoring instruments for the monitoring of SSF process.

  18. A Comparative Study on the Detection of Covert Attention in Event-Related EEG and MEG Signals to Control a BCI

    PubMed Central

    Reichert, Christoph; Dürschmid, Stefan; Heinze, Hans-Jochen; Hinrichs, Hermann

    2017-01-01

    In brain-computer interface (BCI) applications the detection of neural processing as revealed by event-related potentials (ERPs) is a frequently used approach to regain communication for people unable to interact through any peripheral muscle control. However, the commonly used electroencephalography (EEG) provides signals of low signal-to-noise ratio, making the systems slow and inaccurate. As an alternative noninvasive recording technique, the magnetoencephalography (MEG) could provide more advantageous electrophysiological signals due to a higher number of sensors and the magnetic fields not being influenced by volume conduction. We investigated whether MEG provides higher accuracy in detecting event-related fields (ERFs) compared to detecting ERPs in simultaneously recorded EEG, both evoked by a covert attention task, and whether a combination of the modalities is advantageous. In our approach, a detection algorithm based on spatial filtering is used to identify ERP/ERF components in a data-driven manner. We found that MEG achieves higher decoding accuracy (DA) compared to EEG and that the combination of both further improves the performance significantly. However, MEG data showed poor performance in cross-subject classification, indicating that the algorithm's ability for transfer learning across subjects is better in EEG. Here we show that BCI control by covert attention is feasible with EEG and MEG using a data-driven spatial filter approach with a clear advantage of the MEG regarding DA but with a better transfer learning in EEG. PMID:29085279

  19. A new algorithm for reducing the workload of experts in performing systematic reviews.

    PubMed

    Matwin, Stan; Kouznetsov, Alexandre; Inkpen, Diana; Frunza, Oana; O'Blenis, Peter

    2010-01-01

    To determine whether a factorized version of the complement naïve Bayes (FCNB) classifier can reduce the time spent by experts reviewing journal articles for inclusion in systematic reviews of drug class efficacy for disease treatment. The proposed classifier was evaluated on a test collection built from 15 systematic drug class reviews used in previous work. The FCNB classifier was constructed to classify each article as containing high-quality, drug class-specific evidence or not. Weight engineering (WE) techniques were added to reduce underestimation for Medical Subject Headings (MeSH)-based and Publication Type (PubType)-based features. Cross-validation experiments were performed to evaluate the classifier's parameters and performance. Work saved over sampling (WSS) at no less than a 95% recall was used as the main measure of performance. The minimum workload reduction for a systematic review for one topic, achieved with a FCNB/WE classifier, was 8.5%; the maximum was 62.2% and the average over the 15 topics was 33.5%. This is 15.0% higher than the average workload reduction obtained using a voting perceptron-based automated citation classification system. The FCNB/WE classifier is simple, easy to implement, and produces significantly better results in reducing the workload than previously achieved. The results support it being a useful algorithm for machine-learning-based automation of systematic reviews of drug class efficacy for disease treatment.

  20. Use of continuous glucose monitoring in patients with type 1 diabetes.

    PubMed

    Ellis, Samuel L; Naik, Ramachandra G; Gemperline, Kate; Garg, Satish K

    2008-08-01

    The prevalence of type 1 diabetes continues to increase worldwide at a rate higher than previously projected, while the number of patients achieving American Diabetes Association (ADA) glycated hemoglobin (A1c) goals remains suboptimal. There are numerous barriers to patients achieving A1c targets including increased frequency of severe hypoglycemia associated with lowering plasma glucose as measured by lower A1c values. Continuous glucose monitoring (CGM) was first approved for retrospective analysis and now has advanced to the next step in diabetes management with the approval of real-time glucose sensing. Real-time CGM, in short term studies, has been shown to decrease A1c values, improve glucose variability (GV), and minimize the time and number of hypoglycemic events in patients with type 1 diabetes. These products are approved for adjunctive use to self-monitoring of blood glucose (SMBG), but future long-term studies are needed to document their safety, efficacy, ability to replace SMBG as a tool of monitoring, and ultimately utility into closed-loop insulin delivery systems. New algorithms will need to be developed that account for rapid changes in the glucose values, so that accuracy of the sensor data can be maintained. In addition, for better clinical care and usage, algorithms also need to be developed for both patients and the providers to guide them for their ongoing diabetes care.

  1. Multi-resolution model-based traffic sign detection and tracking

    NASA Astrophysics Data System (ADS)

    Marinas, Javier; Salgado, Luis; Camplani, Massimo

    2012-06-01

    In this paper we propose an innovative approach to tackle the problem of traffic sign detection using a computer vision algorithm and taking into account real-time operation constraints, trying to establish intelligent strategies to simplify as much as possible the algorithm complexity and to speed up the process. Firstly, a set of candidates is generated according to a color segmentation stage, followed by a region analysis strategy, where spatial characteristic of previously detected objects are taken into account. Finally, temporal coherence is introduced by means of a tracking scheme, performed using a Kalman filter for each potential candidate. Taking into consideration time constraints, efficiency is achieved two-fold: on the one side, a multi-resolution strategy is adopted for segmentation, where global operation will be applied only to low-resolution images, increasing the resolution to the maximum only when a potential road sign is being tracked. On the other side, we take advantage of the expected spacing between traffic signs. Namely, the tracking of objects of interest allows to generate inhibition areas, which are those ones where no new traffic signs are expected to appear due to the existence of a TS in the neighborhood. The proposed solution has been tested with real sequences in both urban areas and highways, and proved to achieve higher computational efficiency, especially as a result of the multi-resolution approach.

  2. Low-rank canonical-tensor decomposition of potential energy surfaces: application to grid-based diagrammatic vibrational Green's function theory

    DOE PAGES

    Rai, Prashant; Sargsyan, Khachik; Najm, Habib; ...

    2017-03-07

    Here, a new method is proposed for a fast evaluation of high-dimensional integrals of potential energy surfaces (PES) that arise in many areas of quantum dynamics. It decomposes a PES into a canonical low-rank tensor format, reducing its integral into a relatively short sum of products of low-dimensional integrals. The decomposition is achieved by the alternating least squares (ALS) algorithm, requiring only a small number of single-point energy evaluations. Therefore, it eradicates a force-constant evaluation as the hotspot of many quantum dynamics simulations and also possibly lifts the curse of dimensionality. This general method is applied to the anharmonic vibrationalmore » zero-point and transition energy calculations of molecules using the second-order diagrammatic vibrational many-body Green's function (XVH2) theory with a harmonic-approximation reference. In this application, high dimensional PES and Green's functions are both subjected to a low-rank decomposition. Evaluating the molecular integrals over a low-rank PES and Green's functions as sums of low-dimensional integrals using the Gauss–Hermite quadrature, this canonical-tensor-decomposition-based XVH2 (CT-XVH2) achieves an accuracy of 0.1 cm -1 or higher and nearly an order of magnitude speedup as compared with the original algorithm using force constants for water and formaldehyde.« less

  3. Hybrid feedforward and feedback controller design for nuclear steam generators over wide range operation using genetic algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Y.; Edwards, R.M.; Lee, K.Y.

    1997-03-01

    In this paper, a simplified model with a lower order is first developed for a nuclear steam generator system and verified against some realistic environments. Based on this simplified model, a hybrid multi-input and multi-out (MIMO) control system, consisting of feedforward control (FFC) and feedback control (FBC), is designed for wide range conditions by using the genetic algorithm (GA) technique. The FFC control, obtained by the GA optimization method, injects an a priori command input into the system to achieve an optimal performance for the designed system, while the GA-based FBC control provides the necessary compensation for any disturbances ormore » uncertainties in a real steam generator. The FBC control is an optimal design of a PI-based control system which would be more acceptable for industrial practices and power plant control system upgrades. The designed hybrid MIMO FFC/FBC control system is first applied to the simplified model and then to a more complicated model with a higher order which is used as a substitute of the real system to test the efficacy of the designed control system. Results from computer simulations show that the designed GA-based hybrid MIMO FFC/FBC control can achieve good responses and robust performances. Hence, it can be considered as a viable alternative to the current control system upgrade.« less

  4. Ultrasonic technique for imaging tissue vibrations: preliminary results.

    PubMed

    Sikdar, Siddhartha; Beach, Kirk W; Vaezy, Shahram; Kim, Yongmin

    2005-02-01

    We propose an ultrasound (US)-based technique for imaging vibrations in the blood vessel walls and surrounding tissue caused by eddies produced during flow through narrowed or punctured arteries. Our approach is to utilize the clutter signal, normally suppressed in conventional color flow imaging, to detect and characterize local tissue vibrations. We demonstrate the feasibility of visualizing the origin and extent of vibrations relative to the underlying anatomy and blood flow in real-time and their quantitative assessment, including measurements of the amplitude, frequency and spatial distribution. We present two signal-processing algorithms, one based on phase decomposition and the other based on spectral estimation using eigen decomposition for isolating vibrations from clutter, blood flow and noise using an ensemble of US echoes. In simulation studies, the computationally efficient phase-decomposition method achieved 96% sensitivity and 98% specificity for vibration detection and was robust to broadband vibrations. Somewhat higher sensitivity (98%) and specificity (99%) could be achieved using the more computationally intensive eigen decomposition-based algorithm. Vibration amplitudes as low as 1 mum were measured accurately in phantom experiments. Real-time tissue vibration imaging at typical color-flow frame rates was implemented on a software-programmable US system. Vibrations were studied in vivo in a stenosed femoral bypass vein graft in a human subject and in a punctured femoral artery and incised spleen in an animal model.

  5. Low-rank canonical-tensor decomposition of potential energy surfaces: application to grid-based diagrammatic vibrational Green's function theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Prashant; Sargsyan, Khachik; Najm, Habib

    Here, a new method is proposed for a fast evaluation of high-dimensional integrals of potential energy surfaces (PES) that arise in many areas of quantum dynamics. It decomposes a PES into a canonical low-rank tensor format, reducing its integral into a relatively short sum of products of low-dimensional integrals. The decomposition is achieved by the alternating least squares (ALS) algorithm, requiring only a small number of single-point energy evaluations. Therefore, it eradicates a force-constant evaluation as the hotspot of many quantum dynamics simulations and also possibly lifts the curse of dimensionality. This general method is applied to the anharmonic vibrationalmore » zero-point and transition energy calculations of molecules using the second-order diagrammatic vibrational many-body Green's function (XVH2) theory with a harmonic-approximation reference. In this application, high dimensional PES and Green's functions are both subjected to a low-rank decomposition. Evaluating the molecular integrals over a low-rank PES and Green's functions as sums of low-dimensional integrals using the Gauss–Hermite quadrature, this canonical-tensor-decomposition-based XVH2 (CT-XVH2) achieves an accuracy of 0.1 cm -1 or higher and nearly an order of magnitude speedup as compared with the original algorithm using force constants for water and formaldehyde.« less

  6. Fast and Flexible Successive-Cancellation List Decoders for Polar Codes

    NASA Astrophysics Data System (ADS)

    Hashemi, Seyyed Ali; Condo, Carlo; Gross, Warren J.

    2017-11-01

    Polar codes have gained significant amount of attention during the past few years and have been selected as a coding scheme for the next generation of mobile broadband standard. Among decoding schemes, successive-cancellation list (SCL) decoding provides a reasonable trade-off between the error-correction performance and hardware implementation complexity when used to decode polar codes, at the cost of limited throughput. The simplified SCL (SSCL) and its extension SSCL-SPC increase the speed of decoding by removing redundant calculations when encountering particular information and frozen bit patterns (rate one and single parity check codes), while keeping the error-correction performance unaltered. In this paper, we improve SSCL and SSCL-SPC by proving that the list size imposes a specific number of bit estimations required to decode rate one and single parity check codes. Thus, the number of estimations can be limited while guaranteeing exactly the same error-correction performance as if all bits of the code were estimated. We call the new decoding algorithms Fast-SSCL and Fast-SSCL-SPC. Moreover, we show that the number of bit estimations in a practical application can be tuned to achieve desirable speed, while keeping the error-correction performance almost unchanged. Hardware architectures implementing both algorithms are then described and implemented: it is shown that our design can achieve 1.86 Gb/s throughput, higher than the best state-of-the-art decoders.

  7. Intelligent Fault Diagnosis of Rotary Machinery Based on Unsupervised Multiscale Representation Learning

    NASA Astrophysics Data System (ADS)

    Jiang, Guo-Qian; Xie, Ping; Wang, Xiao; Chen, Meng; He, Qun

    2017-11-01

    The performance of traditional vibration based fault diagnosis methods greatly depends on those handcrafted features extracted using signal processing algorithms, which require significant amounts of domain knowledge and human labor, and do not generalize well to new diagnosis domains. Recently, unsupervised representation learning provides an alternative promising solution to feature extraction in traditional fault diagnosis due to its superior learning ability from unlabeled data. Given that vibration signals usually contain multiple temporal structures, this paper proposes a multiscale representation learning (MSRL) framework to learn useful features directly from raw vibration signals, with the aim to capture rich and complementary fault pattern information at different scales. In our proposed approach, a coarse-grained procedure is first employed to obtain multiple scale signals from an original vibration signal. Then, sparse filtering, a newly developed unsupervised learning algorithm, is applied to automatically learn useful features from each scale signal, respectively, and then the learned features at each scale to be concatenated one by one to obtain multiscale representations. Finally, the multiscale representations are fed into a supervised classifier to achieve diagnosis results. Our proposed approach is evaluated using two different case studies: motor bearing and wind turbine gearbox fault diagnosis. Experimental results show that the proposed MSRL approach can take full advantages of the availability of unlabeled data to learn discriminative features and achieved better performance with higher accuracy and stability compared to the traditional approaches.

  8. Efficient conjugate gradient algorithms for computation of the manipulator forward dynamics

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Scheid, Robert E.

    1989-01-01

    The applicability of conjugate gradient algorithms for computation of the manipulator forward dynamics is investigated. The redundancies in the previously proposed conjugate gradient algorithm are analyzed. A new version is developed which, by avoiding these redundancies, achieves a significantly greater efficiency. A preconditioned conjugate gradient algorithm is also presented. A diagonal matrix whose elements are the diagonal elements of the inertia matrix is proposed as the preconditioner. In order to increase the computational efficiency, an algorithm is developed which exploits the synergism between the computation of the diagonal elements of the inertia matrix and that required by the conjugate gradient algorithm.

  9. Multi-heuristic dynamic task allocation using genetic algorithms in a heterogeneous distributed system

    PubMed Central

    Page, Andrew J.; Keane, Thomas M.; Naughton, Thomas J.

    2010-01-01

    We present a multi-heuristic evolutionary task allocation algorithm to dynamically map tasks to processors in a heterogeneous distributed system. It utilizes a genetic algorithm, combined with eight common heuristics, in an effort to minimize the total execution time. It operates on batches of unmapped tasks and can preemptively remap tasks to processors. The algorithm has been implemented on a Java distributed system and evaluated with a set of six problems from the areas of bioinformatics, biomedical engineering, computer science and cryptography. Experiments using up to 150 heterogeneous processors show that the algorithm achieves better efficiency than other state-of-the-art heuristic algorithms. PMID:20862190

  10. Genetics-based control of a mimo boiler-turbine plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimeo, R.M.; Lee, K.Y.

    1994-12-31

    A genetic algorithm is used to develop an optimal controller for a non-linear, multi-input/multi-output boiler-turbine plant. The algorithm is used to train a control system for the plant over a wide operating range in an effort to obtain better performance. The results of the genetic algorithm`s controller designed from the linearized plant model at a nominal operating point. Because the genetic algorithm is well-suited to solving traditionally difficult optimization problems it is found that the algorithm is capable of developing the controller based on input/output information only. This controller achieves a performance comparable to the standard linear quadratic regulator.

  11. Evaluation of hybrid algorithm for analysis of scattered light using ex vivo nuclear morphology measurements of cervical epithelium

    PubMed Central

    Ho, Derek; Drake, Tyler K.; Bentley, Rex C.; Valea, Fidel A.; Wax, Adam

    2015-01-01

    We evaluate a new hybrid algorithm for determining nuclear morphology using angle-resolved low coherence interferometry (a/LCI) measurements in ex vivo cervical tissue. The algorithm combines Mie theory based and continuous wavelet transform inverse light scattering analysis. The hybrid algorithm was validated and compared to traditional Mie theory based analysis using an ex vivo tissue data set. The hybrid algorithm achieved 100% agreement with pathology in distinguishing dysplastic and non-dysplastic biopsy sites in the pilot study. Significantly, the new algorithm performed over four times faster than traditional Mie theory based analysis. PMID:26309741

  12. Analysis and optimization of hybrid electric vehicle thermal management systems

    NASA Astrophysics Data System (ADS)

    Hamut, H. S.; Dincer, I.; Naterer, G. F.

    2014-02-01

    In this study, the thermal management system of a hybrid electric vehicle is optimized using single and multi-objective evolutionary algorithms in order to maximize the exergy efficiency and minimize the cost and environmental impact of the system. The objective functions are defined and decision variables, along with their respective system constraints, are selected for the analysis. In the multi-objective optimization, a Pareto frontier is obtained and a single desirable optimal solution is selected based on LINMAP decision-making process. The corresponding solutions are compared against the exergetic, exergoeconomic and exergoenvironmental single objective optimization results. The results show that the exergy efficiency, total cost rate and environmental impact rate for the baseline system are determined to be 0.29, ¢28 h-1 and 77.3 mPts h-1 respectively. Moreover, based on the exergoeconomic optimization, 14% higher exergy efficiency and 5% lower cost can be achieved, compared to baseline parameters at an expense of a 14% increase in the environmental impact. Based on the exergoenvironmental optimization, a 13% higher exergy efficiency and 5% lower environmental impact can be achieved at the expense of a 27% increase in the total cost.

  13. A Comparative Study of Anomaly Detection Techniques for Smart City Wireless Sensor Networks.

    PubMed

    Garcia-Font, Victor; Garrigues, Carles; Rifà-Pous, Helena

    2016-06-13

    In many countries around the world, smart cities are becoming a reality. These cities contribute to improving citizens' quality of life by providing services that are normally based on data extracted from wireless sensor networks (WSN) and other elements of the Internet of Things. Additionally, public administration uses these smart city data to increase its efficiency, to reduce costs and to provide additional services. However, the information received at smart city data centers is not always accurate, because WSNs are sometimes prone to error and are exposed to physical and computer attacks. In this article, we use real data from the smart city of Barcelona to simulate WSNs and implement typical attacks. Then, we compare frequently used anomaly detection techniques to disclose these attacks. We evaluate the algorithms under different requirements on the available network status information. As a result of this study, we conclude that one-class Support Vector Machines is the most appropriate technique. We achieve a true positive rate at least 56% higher than the rates achieved with the other compared techniques in a scenario with a maximum false positive rate of 5% and a 26% higher in a scenario with a false positive rate of 15%.

  14. A Comparative Study of Anomaly Detection Techniques for Smart City Wireless Sensor Networks

    PubMed Central

    Garcia-Font, Victor; Garrigues, Carles; Rifà-Pous, Helena

    2016-01-01

    In many countries around the world, smart cities are becoming a reality. These cities contribute to improving citizens’ quality of life by providing services that are normally based on data extracted from wireless sensor networks (WSN) and other elements of the Internet of Things. Additionally, public administration uses these smart city data to increase its efficiency, to reduce costs and to provide additional services. However, the information received at smart city data centers is not always accurate, because WSNs are sometimes prone to error and are exposed to physical and computer attacks. In this article, we use real data from the smart city of Barcelona to simulate WSNs and implement typical attacks. Then, we compare frequently used anomaly detection techniques to disclose these attacks. We evaluate the algorithms under different requirements on the available network status information. As a result of this study, we conclude that one-class Support Vector Machines is the most appropriate technique. We achieve a true positive rate at least 56% higher than the rates achieved with the other compared techniques in a scenario with a maximum false positive rate of 5% and a 26% higher in a scenario with a false positive rate of 15%. PMID:27304957

  15. Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters.

    PubMed

    Manjappa, Rakesh; Makki S, Sharath; Kumar, Rajesh; Kanhirodan, Rajan

    2015-02-01

    Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at the inhomogeneities. Jacob's ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results.

  16. Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manjappa, Rakesh; Makki S, Sharath; Kanhirodan, Rajan, E-mail: rajan@physics.iisc.ernet.in

    2015-02-15

    Purpose: Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. Methods: The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at themore » inhomogeneities. Jacob’s ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. Results: The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. Conclusions: The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results.« less

  17. Fair and efficient network congestion control based on minority game

    NASA Astrophysics Data System (ADS)

    Wang, Zuxi; Wang, Wen; Hu, Hanping; Deng, Zhaozhang

    2011-12-01

    Low link utility, RTT unfairness and unfairness of Multi-Bottleneck network are the existing problems in the present network congestion control algorithms at large. Through the analogy of network congestion control with the "El Farol Bar" problem, we establish a congestion control model based on minority game(MG), and then present a novel network congestion control algorithm based on the model. The result of simulations indicates that the proposed algorithm can make the achievements of link utility closing to 100%, zero packet lose rate, and small of queue size. Besides, the RTT unfairness and the unfairness of Multi-Bottleneck network can be solved, to achieve the max-min fairness in Multi-Bottleneck network, while efficiently weaken the "ping-pong" oscillation caused by the overall synchronization.

  18. RZA-NLMF algorithm-based adaptive sparse sensing for realizing compressive sensing

    NASA Astrophysics Data System (ADS)

    Gui, Guan; Xu, Li; Adachi, Fumiyuki

    2014-12-01

    Nonlinear sparse sensing (NSS) techniques have been adopted for realizing compressive sensing in many applications such as radar imaging. Unlike the NSS, in this paper, we propose an adaptive sparse sensing (ASS) approach using the reweighted zero-attracting normalized least mean fourth (RZA-NLMF) algorithm which depends on several given parameters, i.e., reweighted factor, regularization parameter, and initial step size. First, based on the independent assumption, Cramer-Rao lower bound (CRLB) is derived as for the performance comparisons. In addition, reweighted factor selection method is proposed for achieving robust estimation performance. Finally, to verify the algorithm, Monte Carlo-based computer simulations are given to show that the ASS achieves much better mean square error (MSE) performance than the NSS.

  19. Maximizing Submodular Functions under Matroid Constraints by Evolutionary Algorithms.

    PubMed

    Friedrich, Tobias; Neumann, Frank

    2015-01-01

    Many combinatorial optimization problems have underlying goal functions that are submodular. The classical goal is to find a good solution for a given submodular function f under a given set of constraints. In this paper, we investigate the runtime of a simple single objective evolutionary algorithm called (1 + 1) EA and a multiobjective evolutionary algorithm called GSEMO until they have obtained a good approximation for submodular functions. For the case of monotone submodular functions and uniform cardinality constraints, we show that the GSEMO achieves a (1 - 1/e)-approximation in expected polynomial time. For the case of monotone functions where the constraints are given by the intersection of K ≥ 2 matroids, we show that the (1 + 1) EA achieves a (1/k + δ)-approximation in expected polynomial time for any constant δ > 0. Turning to nonmonotone symmetric submodular functions with k ≥ 1 matroid intersection constraints, we show that the GSEMO achieves a 1/((k + 2)(1 + ε))-approximation in expected time O(n(k + 6)log(n)/ε.

  20. Embedded Palmprint Recognition System Using OMAP 3530

    PubMed Central

    Shen, Linlin; Wu, Shipei; Zheng, Songhao; Ji, Zhen

    2012-01-01

    We have proposed in this paper an embedded palmprint recognition system using the dual-core OMAP 3530 platform. An improved algorithm based on palm code was proposed first. In this method, a Gabor wavelet is first convolved with the palmprint image to produce a response image, where local binary patterns are then applied to code the relation among the magnitude of wavelet response at the ccentral pixel with that of its neighbors. The method is fully tested using the public PolyU palmprint database. While palm code achieves only about 89% accuracy, over 96% accuracy is achieved by the proposed G-LBP approach. The proposed algorithm was then deployed to the DSP processor of OMAP 3530 and work together with the ARM processor for feature extraction. When complicated algorithms run on the DSP processor, the ARM processor can focus on image capture, user interface and peripheral control. Integrated with an image sensing module and central processing board, the designed device can achieve accurate and real time performance. PMID:22438721

Top