Science.gov

Sample records for algorithm called adaptive

  1. Data-adaptive algorithms for calling alleles in repeat polymorphisms.

    PubMed

    Stoughton, R; Bumgarner, R; Frederick, W J; McIndoe, R A

    1997-01-01

    Data-adaptive algorithms are presented for separating overlapping signatures of heterozygotic allele pairs in electrophoresis data. Application is demonstrated for human microsatellite CA-repeat polymorphisms in LiCor 4000 and ABI 373 data. The algorithms allow overlapping alleles to be called correctly in almost every case where a trained observer could do so, and provide a fast automated objective alternative to human reading of the gels. The algorithm also supplies an indication of confidence level which can be used to flag marginal cases for verification by eye, or as input to later stages of statistical analysis. PMID:9059812

  2. Adaptive continuous twisting algorithm

    NASA Astrophysics Data System (ADS)

    Moreno, Jaime A.; Negrete, Daniel Y.; Torres-González, Victor; Fridman, Leonid

    2016-09-01

    In this paper, an adaptive continuous twisting algorithm (ACTA) is presented. For double integrator, ACTA produces a continuous control signal ensuring finite time convergence of the states to zero. Moreover, the control signal generated by ACTA compensates the Lipschitz perturbation in finite time, i.e. its value converges to the opposite value of the perturbation. ACTA also keeps its convergence properties, even in the case that the upper bound of the derivative of the perturbation exists, but it is unknown.

  3. Bat echolocation calls: adaptation and convergent evolution

    PubMed Central

    Jones, Gareth; Holderied, Marc W

    2007-01-01

    Bat echolocation calls provide remarkable examples of ‘good design’ through evolution by natural selection. Theory developed from acoustics and sonar engineering permits a strong predictive basis for understanding echolocation performance. Call features, such as frequency, bandwidth, duration and pulse interval are all related to ecological niche. Recent technological breakthroughs have aided our understanding of adaptive aspects of call design in free-living bats. Stereo videogrammetry, laser scanning of habitat features and acoustic flight path tracking permit reconstruction of the flight paths of echolocating bats relative to obstacles and prey in nature. These methods show that echolocation calls are among the most intense airborne vocalizations produced by animals. Acoustic tracking has clarified how and why bats vary call structure in relation to flight speed. Bats using broadband echolocation calls adjust call design in a range-dependent manner so that nearby obstacles are localized accurately. Recent phylogenetic analyses based on gene sequences show that particular types of echolocation signals have evolved independently in several lineages of bats. Call design is often influenced more by perceptual challenges imposed by the environment than by phylogeny, and provides excellent examples of convergent evolution. Now that whole genome sequences of bats are imminent, understanding the functional genomics of echolocation will become a major challenge. PMID:17251105

  4. Bat echolocation calls: adaptation and convergent evolution.

    PubMed

    Jones, Gareth; Holderied, Marc W

    2007-04-01

    Bat echolocation calls provide remarkable examples of 'good design' through evolution by natural selection. Theory developed from acoustics and sonar engineering permits a strong predictive basis for understanding echolocation performance. Call features, such as frequency, bandwidth, duration and pulse interval are all related to ecological niche. Recent technological breakthroughs have aided our understanding of adaptive aspects of call design in free-living bats. Stereo videogrammetry, laser scanning of habitat features and acoustic flight path tracking permit reconstruction of the flight paths of echolocating bats relative to obstacles and prey in nature. These methods show that echolocation calls are among the most intense airborne vocalizations produced by animals. Acoustic tracking has clarified how and why bats vary call structure in relation to flight speed. Bats using broadband echolocation calls adjust call design in a range-dependent manner so that nearby obstacles are localized accurately. Recent phylogenetic analyses based on gene sequences show that particular types of echolocation signals have evolved independently in several lineages of bats. Call design is often influenced more by perceptual challenges imposed by the environment than by phylogeny, and provides excellent examples of convergent evolution. Now that whole genome sequences of bats are imminent, understanding the functional genomics of echolocation will become a major challenge.

  5. Automated DNA Base Pair Calling Algorithm

    1999-07-07

    The procedure solves the problem of calling the DNA base pair sequence from two channel electropherogram separations in an automated fashion. The core of the program involves a peak picking algorithm based upon first, second, and third derivative spectra for each electropherogram channel, signal levels as a function of time, peak spacing, base pair signal to noise sequence patterns, frequency vs ratio of the two channel histograms, and confidence levels generated during the run. Themore » ratios of the two channels at peak centers can be used to accurately and reproducibly determine the base pair sequence. A further enhancement is a novel Gaussian deconvolution used to determine the peak heights used in generating the ratio.« less

  6. Cubit Adaptive Meshing Algorithm Library

    2004-09-01

    CAMAL (Cubit adaptive meshing algorithm library) is a software component library for mesh generation. CAMAL 2.0 includes components for triangle, quad and tetrahedral meshing. A simple Application Programmers Interface (API) takes a discrete boundary definition and CAMAL computes a quality interior unstructured grid. The triangle and quad algorithms may also import a geometric definition of a surface on which to define the grid. CAMAL’s triangle meshing uses a 3D space advancing front method, the quadmore » meshing algorithm is based upon Sandia’s patented paving algorithm and the tetrahedral meshing algorithm employs the GHS3D-Tetmesh component developed by INRIA, France.« less

  7. Adaptive protection algorithm and system

    DOEpatents

    Hedrick, Paul [Pittsburgh, PA; Toms, Helen L [Irwin, PA; Miller, Roger M [Mars, PA

    2009-04-28

    An adaptive protection algorithm and system for protecting electrical distribution systems traces the flow of power through a distribution system, assigns a value (or rank) to each circuit breaker in the system and then determines the appropriate trip set points based on the assigned rank.

  8. Streamlining algorithms for complete adaptation

    NASA Technical Reports Server (NTRS)

    Erickson, J. C., Jr. (Editor); Chevallier, J. P.; Goodyer, Michael J.; Hornung, Hans G.; Mignosi, Andre; Sears, William R.; Smith, J.; Wedemeyer, Erich H.

    1990-01-01

    For purposes of the adaptive-wall algorithms to be described, the modern era is considered to have begun with the simultaneous, independent recognition of the concept of matching an experimental inner flow across an interface to a computed outer flow by Chevallier, Ferri, Goodyer, Lissaman, Rubbert, and Sears. Fundamental investigations of the adaptive-wall matching concept by means of numerical simulations and theoretical considerations are described. An overview of the development and operation of 2D adaptive-wall facilities from about 1970 until the present is given, followed by similar material for 3D adaptive-wall facilities from approximately 1978 until the present. A general formulation of adaptation strategy is presented, with a theoretical basis for adaptation followed by 2D flexible, impermeable-wall applications; 2D ventilated-wall applications; 3D flexible, impermeable-wall applications; and 3D ventilated-wall applications. Representative experimental and 3D results are given, with 2D, followed by a discussion of limitations and open questions.

  9. Research on algorithms for adaptive antenna arrays

    NASA Astrophysics Data System (ADS)

    Widrow, B.; Newman, W.; Gooch, R.; Duvall, K.; Shur, D.

    1981-08-01

    The fundamental efficiency of adaptive algorithms is analyzed. It is found that noise in the adaptive weights increases with convergence speed. This causes loss in mean-square-error performance. Efficiency is considered from the point of view of misadjustment versus speed of convergence. A new version of the LMS algorithm based on Newton's method is analyzed and shown to make maximally efficient use of real-time input data. The performance of this algorithm is not affected by eigenvalue disparity. Practical algorithms can be devised that closely approximate Newton's method. In certain cases, the steepest descent version of LMS performs as well as Newton's method. The efficiency of adaptive algorithms with nonstationary input environments is analyzed where signals, jammers, and background noises can be of a transient and nonstationary nature. A new adaptive filtering method for broadband adaptive beamforming is described which uses both poles and zeros in the adaptive signal filtering paths from the antenna elements to the final array output.

  10. TADtool: visual parameter identification for TAD-calling algorithms

    PubMed Central

    Kruse, Kai; Hug, Clemens B.; Hernández-Rodríguez, Benjamín; Vaquerizas, Juan M.

    2016-01-01

    Summary: Eukaryotic genomes are hierarchically organized into topologically associating domains (TADs). The computational identification of these domains and their associated properties critically depends on the choice of suitable parameters of TAD-calling algorithms. To reduce the element of trial-and-error in parameter selection, we have developed TADtool: an interactive plot to find robust TAD-calling parameters with immediate visual feedback. TADtool allows the direct export of TADs called with a chosen set of parameters for two of the most common TAD calling algorithms: directionality and insulation index. It can be used as an intuitive, standalone application or as a Python package for maximum flexibility. Availability and implementation: TADtool is available as a Python package from GitHub (https://github.com/vaquerizaslab/tadtool) or can be installed directly via PyPI, the Python package index (tadtool). Contact: kai.kruse@mpi-muenster.mpg.de, jmv@mpi-muenster.mpg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27318199

  11. AIDA: An Adaptive Image Deconvolution Algorithm

    NASA Astrophysics Data System (ADS)

    Hom, Erik; Marchis, F.; Lee, T. K.; Haase, S.; Agard, D. A.; Sedat, J. W.

    2007-10-01

    We recently described an adaptive image deconvolution algorithm (AIDA) for myopic deconvolution of multi-frame and three-dimensional data acquired through astronomical and microscopic imaging [Hom et al., J. Opt. Soc. Am. A 24, 1580 (2007)]. AIDA is a reimplementation and extension of the MISTRAL method developed by Mugnier and co-workers and shown to yield object reconstructions with excellent edge preservation and photometric precision [J. Opt. Soc. Am. A 21, 1841 (2004)]. Written in Numerical Python with calls to a robust constrained conjugate gradient method, AIDA has significantly improved run times over the original MISTRAL implementation. AIDA includes a scheme to automatically balance maximum-likelihood estimation and object regularization, which significantly decreases the amount of time and effort needed to generate satisfactory reconstructions. Here, we present a gallery of results demonstrating the effectiveness of AIDA in processing planetary science images acquired using adaptive-optics systems. Offered as an open-source alternative to MISTRAL, AIDA is available for download and further development at: http://msg.ucsf.edu/AIDA. This work was supported in part by the W. M. Keck Observatory, the National Institutes of Health, NASA, the National Science Foundation Science and Technology Center for Adaptive Optics at UC-Santa Cruz, and the Howard Hughes Medical Institute.

  12. An adaptive algorithm for noise rejection.

    PubMed

    Lovelace, D E; Knoebel, S B

    1978-01-01

    An adaptive algorithm for the rejection of noise artifact in 24-hour ambulatory electrocardiographic recordings is described. The algorithm is based on increased amplitude distortion or increased frequency of fluctuations associated with an episode of noise artifact. The results of application of the noise rejection algorithm on a high noise population of test tapes are discussed.

  13. A Competency-Based Guided-Learning Algorithm Applied on Adaptively Guiding E-Learning

    ERIC Educational Resources Information Center

    Hsu, Wei-Chih; Li, Cheng-Hsiu

    2015-01-01

    This paper presents a new algorithm called competency-based guided-learning algorithm (CBGLA), which can be applied on adaptively guiding e-learning. Computational process analysis and mathematical derivation of competency-based learning (CBL) were used to develop the CBGLA. The proposed algorithm could generate an effective adaptively guiding…

  14. QPSO-based adaptive DNA computing algorithm.

    PubMed

    Karakose, Mehmet; Cigdem, Ugur

    2013-01-01

    DNA (deoxyribonucleic acid) computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO). Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1) parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2) adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3) numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm.

  15. Adaptive sensor fusion using genetic algorithms

    SciTech Connect

    Fitzgerald, D.S.; Adams, D.G.

    1994-08-01

    Past attempts at sensor fusion have used some form of Boolean logic to combine the sensor information. As an alteniative, an adaptive ``fuzzy`` sensor fusion technique is described in this paper. This technique exploits the robust capabilities of fuzzy logic in the decision process as well as the optimization features of the genetic algorithm. This paper presents a brief background on fuzzy logic and genetic algorithms and how they are used in an online implementation of adaptive sensor fusion.

  16. AIDA: Adaptive Image Deconvolution Algorithm

    NASA Astrophysics Data System (ADS)

    Hom, Erik; Haase, Sebastian; Marchis, Franck

    2013-10-01

    AIDA is an implementation and extension of the MISTRAL myopic deconvolution method developed by Mugnier et al. (2004) (see J. Opt. Soc. Am. A 21:1841-1854). The MISTRAL approach has been shown to yield object reconstructions with excellent edge preservation and photometric precision when used to process astronomical images. AIDA improves upon the original MISTRAL implementation. AIDA, written in Python, can deconvolve multiple frame data and three-dimensional image stacks encountered in adaptive optics and light microscopic imaging.

  17. Adaptive link selection algorithms for distributed estimation

    NASA Astrophysics Data System (ADS)

    Xu, Songcen; de Lamare, Rodrigo C.; Poor, H. Vincent

    2015-12-01

    This paper presents adaptive link selection algorithms for distributed estimation and considers their application to wireless sensor networks and smart grids. In particular, exhaustive search-based least mean squares (LMS) / recursive least squares (RLS) link selection algorithms and sparsity-inspired LMS / RLS link selection algorithms that can exploit the topology of networks with poor-quality links are considered. The proposed link selection algorithms are then analyzed in terms of their stability, steady-state, and tracking performance and computational complexity. In comparison with the existing centralized or distributed estimation strategies, the key features of the proposed algorithms are as follows: (1) more accurate estimates and faster convergence speed can be obtained and (2) the network is equipped with the ability of link selection that can circumvent link failures and improve the estimation performance. The performance of the proposed algorithms for distributed estimation is illustrated via simulations in applications of wireless sensor networks and smart grids.

  18. Adaptive cuckoo search algorithm for unconstrained optimization.

    PubMed

    Ong, Pauline

    2014-01-01

    Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases. PMID:25298971

  19. Adaptive cuckoo search algorithm for unconstrained optimization.

    PubMed

    Ong, Pauline

    2014-01-01

    Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases.

  20. Adaptive NUC algorithm for uncooled IRFPA based on neural networks

    NASA Astrophysics Data System (ADS)

    Liu, Ziji; Jiang, Yadong; Lv, Jian; Zhu, Hongbin

    2010-10-01

    With developments in uncooled infrared plane array (UFPA) technology, many new advanced uncooled infrared sensors are used in defensive weapons, scientific research, industry and commercial applications. A major difference in imaging techniques between infrared IRFPA imaging system and a visible CCD camera is that, IRFPA need nonuniformity correction and dead pixel compensation, we usually called it infrared image pre-processing. Two-point or multi-point correction algorithms based on calibration commonly used may correct the non-uniformity of IRFPAs, but they are limited by pixel linearity and instability. Therefore, adaptive non-uniformity correction techniques are developed. Two of these adaptive non-uniformity correction algorithms are mostly discussed, one is based on temporal high-pass filter, and another is based on neural network. In this paper, a new NUC algorithm based on improved neural networks is introduced, and involves the compare result between improved neural networks and other adaptive correction techniques. A lot of different will discussed in different angle, like correction effects, calculation efficiency, hardware implementation and so on. According to the result and discussion, it could be concluding that the adaptive algorithm offers improved performance compared to traditional calibration mode techniques. This new algorithm not only provides better sensitivity, but also increases the system dynamic range. As the sensor application expended, it will be very useful in future infrared imaging systems.

  1. Genetic algorithms in adaptive fuzzy control

    NASA Technical Reports Server (NTRS)

    Karr, C. Lucas; Harper, Tony R.

    1992-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.

  2. Adaptive computation algorithm for RBF neural network.

    PubMed

    Han, Hong-Gui; Qiao, Jun-Fei

    2012-02-01

    A novel learning algorithm is proposed for nonlinear modelling and identification using radial basis function neural networks. The proposed method simplifies neural network training through the use of an adaptive computation algorithm (ACA). In addition, the convergence of the ACA is analyzed by the Lyapunov criterion. The proposed algorithm offers two important advantages. First, the model performance can be significantly improved through ACA, and the modelling error is uniformly ultimately bounded. Secondly, the proposed ACA can reduce computational cost and accelerate the training speed. The proposed method is then employed to model classical nonlinear system with limit cycle and to identify nonlinear dynamic system, exhibiting the effectiveness of the proposed algorithm. Computational complexity analysis and simulation results demonstrate its effectiveness.

  3. A parallel adaptive mesh refinement algorithm

    NASA Technical Reports Server (NTRS)

    Quirk, James J.; Hanebutte, Ulf R.

    1993-01-01

    Over recent years, Adaptive Mesh Refinement (AMR) algorithms which dynamically match the local resolution of the computational grid to the numerical solution being sought have emerged as powerful tools for solving problems that contain disparate length and time scales. In particular, several workers have demonstrated the effectiveness of employing an adaptive, block-structured hierarchical grid system for simulations of complex shock wave phenomena. Unfortunately, from the parallel algorithm developer's viewpoint, this class of scheme is quite involved; these schemes cannot be distilled down to a small kernel upon which various parallelizing strategies may be tested. However, because of their block-structured nature such schemes are inherently parallel, so all is not lost. In this paper we describe the method by which Quirk's AMR algorithm has been parallelized. This method is built upon just a few simple message passing routines and so it may be implemented across a broad class of MIMD machines. Moreover, the method of parallelization is such that the original serial code is left virtually intact, and so we are left with just a single product to support. The importance of this fact should not be underestimated given the size and complexity of the original algorithm.

  4. Fully implicit adaptive mesh refinement MHD algorithm

    NASA Astrophysics Data System (ADS)

    Philip, Bobby

    2005-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former results in stiffness due to the presence of very fast waves. The latter requires one to resolve the localized features that the system develops. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. To our knowledge, a scalable, fully implicit AMR algorithm has not been accomplished before for MHD. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technologyootnotetextL. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite --FAC-- algorithms) for scalability. We will demonstrate that the concept is indeed feasible, featuring optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations will be presented on a variety of problems.

  5. Adaptive path planning: Algorithm and analysis

    SciTech Connect

    Chen, Pang C.

    1993-03-01

    Path planning has to be fast to support real-time robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To alleviate this problem, we present a learning algorithm that uses past experience to enhance future performance. The algorithm relies on an existing path planner to provide solutions to difficult tasks. From these solutions, an evolving sparse network of useful subgoals is learned to support faster planning. The algorithm is suitable for both stationary and incrementally-changing environments. To analyze our algorithm, we use a previously developed stochastic model that quantifies experience utility. Using this model, we characterize the situations in which the adaptive planner is useful, and provide quantitative bounds to predict its behavior. The results are demonstrated with problems in manipulator planning. Our algorithm and analysis are sufficiently general that they may also be applied to task planning or other planning domains in which experience is useful.

  6. Algorithms for adaptive nonlinear pattern recognition

    NASA Astrophysics Data System (ADS)

    Schmalz, Mark S.; Ritter, Gerhard X.; Hayden, Eric; Key, Gary

    2011-09-01

    In Bayesian pattern recognition research, static classifiers have featured prominently in the literature. A static classifier is essentially based on a static model of input statistics, thereby assuming input ergodicity that is not realistic in practice. Classical Bayesian approaches attempt to circumvent the limitations of static classifiers, which can include brittleness and narrow coverage, by training extensively on a data set that is assumed to cover more than the subtense of expected input. Such assumptions are not realistic for more complex pattern classification tasks, for example, object detection using pattern classification applied to the output of computer vision filters. In contrast, we have developed a two step process, that can render the majority of static classifiers adaptive, such that the tracking of input nonergodicities is supported. Firstly, we developed operations that dynamically insert (or resp. delete) training patterns into (resp. from) the classifier's pattern database, without requiring that the classifier's internal representation of its training database be completely recomputed. Secondly, we developed and applied a pattern replacement algorithm that uses the aforementioned pattern insertion/deletion operations. This algorithm is designed to optimize the pattern database for a given set of performance measures, thereby supporting closed-loop, performance-directed optimization. This paper presents theory and algorithmic approaches for the efficient computation of adaptive linear and nonlinear pattern recognition operators that use our pattern insertion/deletion technology - in particular, tabular nearest-neighbor encoding (TNE) and lattice associative memories (LAMs). Of particular interest is the classification of nonergodic datastreams that have noise corruption with time-varying statistics. The TNE and LAM based classifiers discussed herein have been successfully applied to the computation of object classification in hyperspectral

  7. Adaptive Trajectory Prediction Algorithm for Climbing Flights

    NASA Technical Reports Server (NTRS)

    Schultz, Charles Alexander; Thipphavong, David P.; Erzberger, Heinz

    2012-01-01

    Aircraft climb trajectories are difficult to predict, and large errors in these predictions reduce the potential operational benefits of some advanced features for NextGen. The algorithm described in this paper improves climb trajectory prediction accuracy by adjusting trajectory predictions based on observed track data. It utilizes rate-of-climb and airspeed measurements derived from position data to dynamically adjust the aircraft weight modeled for trajectory predictions. In simulations with weight uncertainty, the algorithm is able to adapt to within 3 percent of the actual gross weight within two minutes of the initial adaptation. The root-mean-square of altitude errors for five-minute predictions was reduced by 73 percent. Conflict detection performance also improved, with a 15 percent reduction in missed alerts and a 10 percent reduction in false alerts. In a simulation with climb speed capture intent and weight uncertainty, the algorithm improved climb trajectory prediction accuracy by up to 30 percent and conflict detection performance, reducing missed and false alerts by up to 10 percent.

  8. Adaptive snakes using the EM algorithm.

    PubMed

    Nascimento, Jacinto C; Marques, Jorge S

    2005-11-01

    Deformable models (e.g., snakes) perform poorly in many image analysis problems. The contour model is attracted by edge points detected in the image. However, many edge points do not belong to the object contour, preventing the active contour from converging toward the object boundary. A new algorithm is proposed in this paper to overcome this difficulty. The algorithm is based on two key ideas. First, edge points are associated in strokes. Second, each stroke is classified as valid (inlier) or invalid (outlier) and a confidence degree is associated to each stroke. The expectation maximization algorithm is used to update the confidence degrees and to estimate the object contour. It is shown that this is equivalent to the use of an adaptive potential function which varies during the optimization process. Valid strokes receive high confidence degrees while confidence degrees of invalid strokes tend to zero during the optimization process. Experimental results are presented to illustrate the performance of the proposed algorithm in the presence of clutter, showing a remarkable robustness.

  9. Data-adaptive Shrinkage via the Hyperpenalized EM Algorithm

    PubMed Central

    Boonstra, Philip S.; Taylor, Jeremy M. G.; Mukherjee, Bhramar

    2015-01-01

    We propose an extension of the expectation-maximization (EM) algorithm, called the hyperpenalized EM (HEM) algorithm, that maximizes a penalized log-likelihood, for which some data are missing or unavailable, using a data-adaptive estimate of the penalty parameter. This is potentially useful in applications for which the analyst is unable or unwilling to choose a single value of a penalty parameter but instead can posit a plausible range of values. The HEM algorithm is conceptually straightforward and also very effective, and we demonstrate its utility in the analysis of a genomic data set. Gene expression measurements and clinical covariates were used to predict survival time. However, many survival times are censored, and some observations only contain expression measurements derived from a different assay, which together constitute a difficult missing data problem. It is desired to shrink the genomic contribution in a data-adaptive way. The HEM algorithm successfully handles both the missing data and shrinkage aspects of the problem. PMID:26834856

  10. BayesCall: A model-based base-calling algorithm for high-throughput short-read sequencing.

    PubMed

    Kao, Wei-Chun; Stevens, Kristian; Song, Yun S

    2009-10-01

    Extracting sequence information from raw images of fluorescence is the foundation underlying several high-throughput sequencing platforms. Some of the main challenges associated with this technology include reducing the error rate, assigning accurate base-specific quality scores, and reducing the cost of sequencing by increasing the throughput per run. To demonstrate how computational advancement can help to meet these challenges, a novel model-based base-calling algorithm, BayesCall, is introduced for the Illumina sequencing platform. Being founded on the tools of statistical learning, BayesCall is flexible enough to incorporate various features of the sequencing process. In particular, it can easily incorporate time-dependent parameters and model residual effects. This new approach significantly improves the accuracy over Illumina's base-caller Bustard, particularly in the later cycles of a sequencing run. For 76-cycle data on a standard viral sample, phiX174, BayesCall improves Bustard's average per-base error rate by approximately 51%. The probability of observing each base can be readily computed in BayesCall, and this probability can be transformed into a useful base-specific quality score with a high discrimination ability. A detailed study of BayesCall's performance is presented here. PMID:19661376

  11. Statistical behaviour of adaptive multilevel splitting algorithms in simple models

    SciTech Connect

    Rolland, Joran Simonnet, Eric

    2015-02-15

    Adaptive multilevel splitting algorithms have been introduced rather recently for estimating tail distributions in a fast and efficient way. In particular, they can be used for computing the so-called reactive trajectories corresponding to direct transitions from one metastable state to another. The algorithm is based on successive selection–mutation steps performed on the system in a controlled way. It has two intrinsic parameters, the number of particles/trajectories and the reaction coordinate used for discriminating good or bad trajectories. We investigate first the convergence in law of the algorithm as a function of the timestep for several simple stochastic models. Second, we consider the average duration of reactive trajectories for which no theoretical predictions exist. The most important aspect of this work concerns some systems with two degrees of freedom. They are studied in detail as a function of the reaction coordinate in the asymptotic regime where the number of trajectories goes to infinity. We show that during phase transitions, the statistics of the algorithm deviate significatively from known theoretical results when using non-optimal reaction coordinates. In this case, the variance of the algorithm is peaking at the transition and the convergence of the algorithm can be much slower than the usual expected central limit behaviour. The duration of trajectories is affected as well. Moreover, reactive trajectories do not correspond to the most probable ones. Such behaviour disappears when using the optimal reaction coordinate called committor as predicted by the theory. We finally investigate a three-state Markov chain which reproduces this phenomenon and show logarithmic convergence of the trajectory durations.

  12. Synaptic dynamics: linear model and adaptation algorithm.

    PubMed

    Yousefi, Ali; Dibazar, Alireza A; Berger, Theodore W

    2014-08-01

    In this research, temporal processing in brain neural circuitries is addressed by a dynamic model of synaptic connections in which the synapse model accounts for both pre- and post-synaptic processes determining its temporal dynamics and strength. Neurons, which are excited by the post-synaptic potentials of hundred of the synapses, build the computational engine capable of processing dynamic neural stimuli. Temporal dynamics in neural models with dynamic synapses will be analyzed, and learning algorithms for synaptic adaptation of neural networks with hundreds of synaptic connections are proposed. The paper starts by introducing a linear approximate model for the temporal dynamics of synaptic transmission. The proposed linear model substantially simplifies the analysis and training of spiking neural networks. Furthermore, it is capable of replicating the synaptic response of the non-linear facilitation-depression model with an accuracy better than 92.5%. In the second part of the paper, a supervised spike-in-spike-out learning rule for synaptic adaptation in dynamic synapse neural networks (DSNN) is proposed. The proposed learning rule is a biologically plausible process, and it is capable of simultaneously adjusting both pre- and post-synaptic components of individual synapses. The last section of the paper starts with presenting the rigorous analysis of the learning algorithm in a system identification task with hundreds of synaptic connections which confirms the learning algorithm's accuracy, repeatability and scalability. The DSNN is utilized to predict the spiking activity of cortical neurons and pattern recognition tasks. The DSNN model is demonstrated to be a generative model capable of producing different cortical neuron spiking patterns and CA1 Pyramidal neurons recordings. A single-layer DSNN classifier on a benchmark pattern recognition task outperforms a 2-Layer Neural Network and GMM classifiers while having fewer numbers of free parameters and

  13. MLEM algorithm adaptation for improved SPECT scintimammography

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Feiglin, David H.; Lee, Wei; Kunniyur, Vikram R.; Gangal, Kedar R.; Coman, Ioana L.; Lipson, Edward D.; Karczewski, Deborah A.; Thomas, F. Deaver

    2005-04-01

    Standard MLEM and OSEM algorithms used in SPECT Tc-99m sestamibi scintimammography produce hot-spot artifacts (HSA) at the image support peripheries. We investigated a suitable adaptation of MLEM and OSEM algorithms needed to reduce HSA. Patients with suspicious breast lesions were administered 10 mCi of Tc-99m sestamibi and SPECT scans were acquired for patients in prone position with uncompressed breasts. In addition, to simulate breast lesions, some patients were imaged with a number of breast skin markers each containing 1 mCi of Tc-99m. In order to reduce HSA in reconstruction, we removed from the backprojection step the rays that traverse the periphery of the support region on the way to a detector bin, when their path length through this region was shorter than some critical length. Such very short paths result in a very low projection counts contributed to the detector bin, and consequently to overestimation of the activity in the peripheral voxels in the backprojection step-thus creating HSA. We analyzed the breast-lesion contrast and suppression of HSA in the images reconstructed using standard and modified MLEM and OSEM algorithms vs. critical path length (CPL). For CPL >= 0.01 pixel size, we observed improved breast-lesion contrast and lower noise in the reconstructed images, and a very significant reduction of HSA in the maximum intensity projection (MIP) images.

  14. Adaptive Numerical Algorithms in Space Weather Modeling

    NASA Technical Reports Server (NTRS)

    Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav

    2010-01-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical

  15. Adaptive numerical algorithms in space weather modeling

    NASA Astrophysics Data System (ADS)

    Tóth, Gábor; van der Holst, Bart; Sokolov, Igor V.; De Zeeuw, Darren L.; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Najib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav

    2012-02-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different relevant physics in different domains. A multi-physics system can be modeled by a software framework comprising several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamic (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit

  16. An Adaptive Path Planning Algorithm for Cooperating Unmanned Air Vehicles

    SciTech Connect

    Cunningham, C.T.; Roberts, R.S.

    2000-09-12

    An adaptive path planning algorithm is presented for cooperating Unmanned Air Vehicles (UAVs) that are used to deploy and operate land-based sensor networks. The algorithm employs a global cost function to generate paths for the UAVs, and adapts the paths to exceptions that might occur. Examples are provided of the paths and adaptation.

  17. Adaptive path planning algorithm for cooperating unmanned air vehicles

    SciTech Connect

    Cunningham, C T; Roberts, R S

    2001-02-08

    An adaptive path planning algorithm is presented for cooperating Unmanned Air Vehicles (UAVs) that are used to deploy and operate land-based sensor networks. The algorithm employs a global cost function to generate paths for the UAVs, and adapts the paths to exceptions that might occur. Examples are provided of the paths and adaptation.

  18. Adaptive algorithm for cloud cover estimation from all-sky images over the sea

    NASA Astrophysics Data System (ADS)

    Krinitskiy, M. A.; Sinitsyn, A. V.

    2016-05-01

    A new algorithm for cloud cover estimation has been formulated and developed based on the synthetic control index, called the grayness rate index, and an additional algorithm step of adaptive filtering of the Mie scattering contribution. A setup for automated cloud cover estimation has been designed, assembled, and tested under field conditions. The results shows a significant advantage of the new algorithm over currently commonly used procedures.

  19. Adaptive RED algorithm based on minority game

    NASA Astrophysics Data System (ADS)

    Wei, Jiaolong; Lei, Ling; Qian, Jingjing

    2007-11-01

    With more and more applications appearing and the technology developing in the Internet, only relying on terminal system can not satisfy the complicated demand of QoS network. Router mechanisms must be participated into protecting responsive flows from the non-responsive. Routers mainly use active queue management mechanism (AQM) to avoid congestion. In the point of interaction between the routers, the paper applies minority game to describe the interaction of the users and observes the affection on the length of average queue. The parameters α, β of ARED being hard to confirm, adaptive RED based on minority game can depict the interactions of main body and amend the parameter α, β of ARED to the best. Adaptive RED based on minority game optimizes ARED and realizes the smoothness of average queue length. At the same time, this paper extends the network simulator plat - NS by adding new elements. Simulation has been implemented and the results show that new algorithm can reach the anticipative objects.

  20. An adaptive algorithm for motion compensated color image coding

    NASA Technical Reports Server (NTRS)

    Kwatra, Subhash C.; Whyte, Wayne A.; Lin, Chow-Ming

    1987-01-01

    This paper presents an adaptive algorithm for motion compensated color image coding. The algorithm can be used for video teleconferencing or broadcast signals. Activity segmentation is used to reduce the bit rate and a variable stage search is conducted to save computations. The adaptive algorithm is compared with the nonadaptive algorithm and it is shown that with approximately 60 percent savings in computing the motion vector and 33 percent additional compression, the performance of the adaptive algorithm is similar to the nonadaptive algorithm. The adaptive algorithm results also show improvement of up to 1 bit/pel over interframe DPCM coding with nonuniform quantization. The test pictures used for this study were recorded directly from broadcast video in color.

  1. Adaptive call admission control and resource allocation in multi server wireless/cellular network

    NASA Astrophysics Data System (ADS)

    Jain, Madhu; Mittal, Ragini

    2016-11-01

    The ever increasing demand of the subscribers has put pressure on the capacity of wireless networks around the world. To utilize the scare resources, in the present paper we propose an optimal allocation scheme for an integrated wireless/cellular model with handoff priority and handoff guarantee services. The suggested algorithm optimally allocates the resources in each cell and dynamically adjust threshold to control the admission. To give the priority to handoff calls over the new calls, the provision of guard channels and subrating scheme is taken into consideration. The handoff voice call may balk and renege from the system while waiting in the buffer. An iterative algorithm is implemented to generate the arrival rate of the handoff calls in each cell. Various performance indices are established in term of steady state probabilities. The sensitivity analysis has also been carried out to examine the tractability of algorithms and to explore the effects of system descriptors on the performance indices.

  2. An Adaptive Unified Differential Evolution Algorithm for Global Optimization

    SciTech Connect

    Qiang, Ji; Mitchell, Chad

    2014-11-03

    In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.

  3. Adaptive DNA Computing Algorithm by Using PCR and Restriction Enzyme

    NASA Astrophysics Data System (ADS)

    Kon, Yuji; Yabe, Kaoru; Rajaee, Nordiana; Ono, Osamu

    In this paper, we introduce an adaptive DNA computing algorithm by using polymerase chain reaction (PCR) and restriction enzyme. The adaptive algorithm is designed based on Adleman-Lipton paradigm[3] of DNA computing. In this work, however, unlike the Adleman- Lipton architecture a cutting operation has been introduced to the algorithm and the mechanism in which the molecules used by computation were feedback to the next cycle devised. Moreover, the amplification by PCR is performed in the molecule used by feedback and the difference concentration arisen in the base sequence can be used again. By this operation the molecules which serve as a solution candidate can be reduced down and the optimal solution is carried out in the shortest path problem. The validity of the proposed adaptive algorithm is considered with the logical simulation and finally we go on to propose applying adaptive algorithm to the chemical experiment which used the actual DNA molecules for solving an optimal network problem.

  4. CLAMMS: a scalable algorithm for calling common and rare copy number variants from exome sequencing data

    PubMed Central

    Packer, Jonathan S.; Maxwell, Evan K.; O’Dushlaine, Colm; Lopez, Alexander E.; Dewey, Frederick E.; Chernomorsky, Rostislav; Baras, Aris; Overton, John D.; Habegger, Lukas; Reid, Jeffrey G.

    2016-01-01

    Motivation: Several algorithms exist for detecting copy number variants (CNVs) from human exome sequencing read depth, but previous tools have not been well suited for large population studies on the order of tens or hundreds of thousands of exomes. Their limitations include being difficult to integrate into automated variant-calling pipelines and being ill-suited for detecting common variants. To address these issues, we developed a new algorithm—Copy number estimation using Lattice-Aligned Mixture Models (CLAMMS)—which is highly scalable and suitable for detecting CNVs across the whole allele frequency spectrum. Results: In this note, we summarize the methods and intended use-case of CLAMMS, compare it to previous algorithms and briefly describe results of validation experiments. We evaluate the adherence of CNV calls from CLAMMS and four other algorithms to Mendelian inheritance patterns on a pedigree; we compare calls from CLAMMS and other algorithms to calls from SNP genotyping arrays for a set of 3164 samples; and we use TaqMan quantitative polymerase chain reaction to validate CNVs predicted by CLAMMS at 39 loci (95% of rare variants validate; across 19 common variant loci, the mean precision and recall are 99% and 94%, respectively). In the Supplementary Materials (available at the CLAMMS Github repository), we present our methods and validation results in greater detail. Availability and implementation: https://github.com/rgcgithub/clamms (implemented in C). Contact: jeffrey.reid@regeneron.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26382196

  5. Adaptive Routing Algorithm in Wireless Communication Networks Using Evolutionary Algorithm

    NASA Astrophysics Data System (ADS)

    Yan, Xuesong; Wu, Qinghua; Cai, Zhihua

    At present, mobile communications traffic routing designs are complicated because there are more systems inter-connecting to one another. For example, Mobile Communication in the wireless communication networks has two routing design conditions to consider, i.e. the circuit switching and the packet switching. The problem in the Packet Switching routing design is its use of high-speed transmission link and its dynamic routing nature. In this paper, Evolutionary Algorithms is used to determine the best solution and the shortest communication paths. We developed a Genetic Optimization Process that can help network planners solving the best solutions or the best paths of routing table in wireless communication networks are easily and quickly. From the experiment results can be noted that the evolutionary algorithm not only gets good solutions, but also a more predictable running time when compared to sequential genetic algorithm.

  6. Adaptive path planning: Algorithm and analysis

    SciTech Connect

    Chen, Pang C.

    1995-03-01

    To address the need for a fast path planner, we present a learning algorithm that improves path planning by using past experience to enhance future performance. The algorithm relies on an existing path planner to provide solutions difficult tasks. From these solutions, an evolving sparse work of useful robot configurations is learned to support faster planning. More generally, the algorithm provides a framework in which a slow but effective planner may be improved both cost-wise and capability-wise by a faster but less effective planner coupled with experience. We analyze algorithm by formalizing the concept of improvability and deriving conditions under which a planner can be improved within the framework. The analysis is based on two stochastic models, one pessimistic (on task complexity), the other randomized (on experience utility). Using these models, we derive quantitative bounds to predict the learning behavior. We use these estimation tools to characterize the situations in which the algorithm is useful and to provide bounds on the training time. In particular, we show how to predict the maximum achievable speedup. Additionally, our analysis techniques are elementary and should be useful for studying other types of probabilistic learning as well.

  7. An adaptive inverse kinematics algorithm for robot manipulators

    NASA Technical Reports Server (NTRS)

    Colbaugh, R.; Glass, K.; Seraji, H.

    1990-01-01

    An adaptive algorithm for solving the inverse kinematics problem for robot manipulators is presented. The algorithm is derived using model reference adaptive control (MRAC) theory and is computationally efficient for online applications. The scheme requires no a priori knowledge of the kinematics of the robot if Cartesian end-effector sensing is available, and it requires knowledge of only the forward kinematics if joint position sensing is used. Computer simulation results are given for the redundant seven-DOF robotics research arm, demonstrating that the proposed algorithm yields accurate joint angle trajectories for a given end-effector position/orientation trajectory.

  8. A non-parametric peak calling algorithm for DamID-Seq.

    PubMed

    Li, Renhua; Hempel, Leonie U; Jiang, Tingbo

    2015-01-01

    Protein-DNA interactions play a significant role in gene regulation and expression. In order to identify transcription factor binding sites (TFBS) of double sex (DSX)-an important transcription factor in sex determination, we applied the DNA adenine methylation identification (DamID) technology to the fat body tissue of Drosophila, followed by deep sequencing (DamID-Seq). One feature of DamID-Seq data is that induced adenine methylation signals are not assured to be symmetrically distributed at TFBS, which renders the existing peak calling algorithms for ChIP-Seq, including SPP and MACS, inappropriate for DamID-Seq data. This challenged us to develop a new algorithm for peak calling. A challenge in peaking calling based on sequence data is estimating the averaged behavior of background signals. We applied a bootstrap resampling method to short sequence reads in the control (Dam only). After data quality check and mapping reads to a reference genome, the peaking calling procedure compromises the following steps: 1) reads resampling; 2) reads scaling (normalization) and computing signal-to-noise fold changes; 3) filtering; 4) Calling peaks based on a statistically significant threshold. This is a non-parametric method for peak calling (NPPC). We also used irreproducible discovery rate (IDR) analysis, as well as ChIP-Seq data to compare the peaks called by the NPPC. We identified approximately 6,000 peaks for DSX, which point to 1,225 genes related to the fat body tissue difference between female and male Drosophila. Statistical evidence from IDR analysis indicated that these peaks are reproducible across biological replicates. In addition, these peaks are comparable to those identified by use of ChIP-Seq on S2 cells, in terms of peak number, location, and peaks width.

  9. A non-parametric peak calling algorithm for DamID-Seq.

    PubMed

    Li, Renhua; Hempel, Leonie U; Jiang, Tingbo

    2015-01-01

    Protein-DNA interactions play a significant role in gene regulation and expression. In order to identify transcription factor binding sites (TFBS) of double sex (DSX)-an important transcription factor in sex determination, we applied the DNA adenine methylation identification (DamID) technology to the fat body tissue of Drosophila, followed by deep sequencing (DamID-Seq). One feature of DamID-Seq data is that induced adenine methylation signals are not assured to be symmetrically distributed at TFBS, which renders the existing peak calling algorithms for ChIP-Seq, including SPP and MACS, inappropriate for DamID-Seq data. This challenged us to develop a new algorithm for peak calling. A challenge in peaking calling based on sequence data is estimating the averaged behavior of background signals. We applied a bootstrap resampling method to short sequence reads in the control (Dam only). After data quality check and mapping reads to a reference genome, the peaking calling procedure compromises the following steps: 1) reads resampling; 2) reads scaling (normalization) and computing signal-to-noise fold changes; 3) filtering; 4) Calling peaks based on a statistically significant threshold. This is a non-parametric method for peak calling (NPPC). We also used irreproducible discovery rate (IDR) analysis, as well as ChIP-Seq data to compare the peaks called by the NPPC. We identified approximately 6,000 peaks for DSX, which point to 1,225 genes related to the fat body tissue difference between female and male Drosophila. Statistical evidence from IDR analysis indicated that these peaks are reproducible across biological replicates. In addition, these peaks are comparable to those identified by use of ChIP-Seq on S2 cells, in terms of peak number, location, and peaks width. PMID:25785608

  10. Adaptively resizing populations: Algorithm, analysis, and first results

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.; Smuda, Ellen

    1993-01-01

    Deciding on an appropriate population size for a given Genetic Algorithm (GA) application can often be critical to the algorithm's success. Too small, and the GA can fall victim to sampling error, affecting the efficacy of its search. Too large, and the GA wastes computational resources. Although advice exists for sizing GA populations, much of this advice involves theoretical aspects that are not accessible to the novice user. An algorithm for adaptively resizing GA populations is suggested. This algorithm is based on recent theoretical developments that relate population size to schema fitness variance. The suggested algorithm is developed theoretically, and simulated with expected value equations. The algorithm is then tested on a problem where population sizing can mislead the GA. The work presented suggests that the population sizing algorithm may be a viable way to eliminate the population sizing decision from the application of GA's.

  11. A novel hybrid self-adaptive bat algorithm.

    PubMed

    Fister, Iztok; Fong, Simon; Brest, Janez; Fister, Iztok

    2014-01-01

    Nature-inspired algorithms attract many researchers worldwide for solving the hardest optimization problems. One of the newest members of this extensive family is the bat algorithm. To date, many variants of this algorithm have emerged for solving continuous as well as combinatorial problems. One of the more promising variants, a self-adaptive bat algorithm, has recently been proposed that enables a self-adaptation of its control parameters. In this paper, we have hybridized this algorithm using different DE strategies and applied these as a local search heuristics for improving the current best solution directing the swarm of a solution towards the better regions within a search space. The results of exhaustive experiments were promising and have encouraged us to invest more efforts into developing in this direction.

  12. A Novel Hybrid Self-Adaptive Bat Algorithm

    PubMed Central

    Fister, Iztok; Brest, Janez

    2014-01-01

    Nature-inspired algorithms attract many researchers worldwide for solving the hardest optimization problems. One of the newest members of this extensive family is the bat algorithm. To date, many variants of this algorithm have emerged for solving continuous as well as combinatorial problems. One of the more promising variants, a self-adaptive bat algorithm, has recently been proposed that enables a self-adaptation of its control parameters. In this paper, we have hybridized this algorithm using different DE strategies and applied these as a local search heuristics for improving the current best solution directing the swarm of a solution towards the better regions within a search space. The results of exhaustive experiments were promising and have encouraged us to invest more efforts into developing in this direction. PMID:25187904

  13. An adaptive algorithm for low contrast infrared image enhancement

    NASA Astrophysics Data System (ADS)

    Liu, Sheng-dong; Peng, Cheng-yuan; Wang, Ming-jia; Wu, Zhi-guo; Liu, Jia-qi

    2013-08-01

    An adaptive infrared image enhancement algorithm for low contrast is proposed in this paper, to deal with the problem that conventional image enhancement algorithm is not able to effective identify the interesting region when dynamic range is large in image. This algorithm begin with the human visual perception characteristics, take account of the global adaptive image enhancement and local feature boost, not only the contrast of image is raised, but also the texture of picture is more distinct. Firstly, the global image dynamic range is adjusted from the overall, the dynamic range of original image and display grayscale form corresponding relationship, the gray scale of bright object is raised and the the gray scale of dark target is reduced at the same time, to improve the overall image contrast. Secondly, the corresponding filtering algorithm is used on the current point and its neighborhood pixels to extract image texture information, to adjust the brightness of the current point in order to enhance the local contrast of the image. The algorithm overcomes the default that the outline is easy to vague in traditional edge detection algorithm, and ensure the distinctness of texture detail in image enhancement. Lastly, we normalize the global luminance adjustment image and the local brightness adjustment image, to ensure a smooth transition of image details. A lot of experiments is made to compare the algorithm proposed in this paper with other convention image enhancement algorithm, and two groups of vague IR image are taken in experiment. Experiments show that: the contrast ratio of the picture is boosted after handled by histogram equalization algorithm, but the detail of the picture is not clear, the detail of the picture can be distinguished after handled by the Retinex algorithm. The image after deal with by self-adaptive enhancement algorithm proposed in this paper becomes clear in details, and the image contrast is markedly improved in compared with Retinex

  14. Adaptive image contrast enhancement algorithm for point-based rendering

    NASA Astrophysics Data System (ADS)

    Xu, Shaoping; Liu, Xiaoping P.

    2015-03-01

    Surgical simulation is a major application in computer graphics and virtual reality, and most of the existing work indicates that interactive real-time cutting simulation of soft tissue is a fundamental but challenging research problem in virtual surgery simulation systems. More specifically, it is difficult to achieve a fast enough graphic update rate (at least 30 Hz) on commodity PC hardware by utilizing traditional triangle-based rendering algorithms. In recent years, point-based rendering (PBR) has been shown to offer the potential to outperform the traditional triangle-based rendering in speed when it is applied to highly complex soft tissue cutting models. Nevertheless, the PBR algorithms are still limited in visual quality due to inherent contrast distortion. We propose an adaptive image contrast enhancement algorithm as a postprocessing module for PBR, providing high visual rendering quality as well as acceptable rendering efficiency. Our approach is based on a perceptible image quality technique with automatic parameter selection, resulting in a visual quality comparable to existing conventional PBR algorithms. Experimental results show that our adaptive image contrast enhancement algorithm produces encouraging results both visually and numerically compared to representative algorithms, and experiments conducted on the latest hardware demonstrate that the proposed PBR framework with the postprocessing module is superior to the conventional PBR algorithm and that the proposed contrast enhancement algorithm can be utilized in (or compatible with) various variants of the conventional PBR algorithm.

  15. Adaptive-mesh algorithms for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Powell, Kenneth G.; Roe, Philip L.; Quirk, James

    1993-01-01

    The basic goal of adaptive-mesh algorithms is to distribute computational resources wisely by increasing the resolution of 'important' regions of the flow and decreasing the resolution of regions that are less important. While this goal is one that is worthwhile, implementing schemes that have this degree of sophistication remains more of an art than a science. In this paper, the basic pieces of adaptive-mesh algorithms are described and some of the possible ways to implement them are discussed and compared. These basic pieces are the data structure to be used, the generation of an initial mesh, the criterion to be used to adapt the mesh to the solution, and the flow-solver algorithm on the resulting mesh. Each of these is discussed, with particular emphasis on methods suitable for the computation of compressible flows.

  16. A Bayesian Adaptive Basis Algorithm for Single Particle Reconstruction

    PubMed Central

    Kucukelbir, Alp; Sigworth, Fred J.; Tagare, Hemant D.

    2012-01-01

    Traditional single particle reconstruction methods use either the Fourier or the delta function basis to represent the particle density map. This paper proposes a more flexible algorithm that adaptively chooses the basis based on the data. Because the basis adapts to the data, the reconstruction resolution and signal-to-noise ratio (SNR) is improved compared to a reconstruction with a fixed basis. Moreover, the algorithm automatically masks the particle, thereby separating it from the background. This eliminates the need for ad-hoc filtering or masking in the refinement loop. The algorithm is formulated in a Bayesian maximum-a-posteriori framework and uses an efficient optimization algorithm for the maximization. Evaluations using simulated and actual cryogenic electron microscopy data show resolution and SNR improvements as well as the effective masking of particle from background. PMID:22564910

  17. Adaptive improved natural gradient algorithm for blind source separation.

    PubMed

    Liu, Jian-Qiang; Feng, Da-Zheng; Zhang, Wei-Wei

    2009-03-01

    We propose an adaptive improved natural gradient algorithm for blind separation of independent sources. First, inspired by the well-known backpropagation algorithm, we incorporate a momentum term into the natural gradient learning process to accelerate the convergence rate and improve the stability. Then an estimation function for the adaptation of the separation model is obtained to adaptively control a step-size parameter and a momentum factor. The proposed natural gradient algorithm with variable step-size parameter and variable momentum factor is therefore particularly well suited to blind source separation in a time-varying environment, such as an abruptly changing mixing matrix or signal power. The expected improvement in the convergence speed, stability, and tracking ability of the proposed algorithm is demonstrated by extensive simulation results in both time-invariant and time-varying environments. The ability of the proposed algorithm to separate extremely weak or badly scaled sources is also verified. In addition, simulation results show that the proposed algorithm is suitable for separating mixtures of many sources (e.g., the number of sources is 10) in the complete case.

  18. Adaptive clustering algorithm for community detection in complex networks.

    PubMed

    Ye, Zhenqing; Hu, Songnian; Yu, Jun

    2008-10-01

    Community structure is common in various real-world networks; methods or algorithms for detecting such communities in complex networks have attracted great attention in recent years. We introduced a different adaptive clustering algorithm capable of extracting modules from complex networks with considerable accuracy and robustness. In this approach, each node in a network acts as an autonomous agent demonstrating flocking behavior where vertices always travel toward their preferable neighboring groups. An optimal modular structure can emerge from a collection of these active nodes during a self-organization process where vertices constantly regroup. In addition, we show that our algorithm appears advantageous over other competing methods (e.g., the Newman-fast algorithm) through intensive evaluation. The applications in three real-world networks demonstrate the superiority of our algorithm to find communities that are parallel with the appropriate organization in reality. PMID:18999501

  19. An Adaptive Tradeoff Algorithm for Multi-issue SLA Negotiation

    NASA Astrophysics Data System (ADS)

    Son, Seokho; Sim, Kwang Mong

    Since participants in a Cloud may be independent bodies, mechanisms are necessary for resolving different preferences in leasing Cloud services. Whereas there are currently mechanisms that support service-level agreement negotiation, there is little or no negotiation support for concurrent price and timeslot for Cloud service reservations. For the concurrent price and timeslot negotiation, a tradeoff algorithm to generate and evaluate a proposal which consists of price and timeslot proposal is necessary. The contribution of this work is thus to design an adaptive tradeoff algorithm for multi-issue negotiation mechanism. The tradeoff algorithm referred to as "adaptive burst mode" is especially designed to increase negotiation speed and total utility and to reduce computational load by adaptively generating concurrent set of proposals. The empirical results obtained from simulations carried out using a testbed suggest that due to the concurrent price and timeslot negotiation mechanism with adaptive tradeoff algorithm: 1) both agents achieve the best performance in terms of negotiation speed and utility; 2) the number of evaluations of each proposal is comparatively lower than previous scheme (burst-N).

  20. Adaptation algorithms for 2-D feedforward neural networks.

    PubMed

    Kaczorek, T

    1995-01-01

    The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).

  1. An Adaptive Immune Genetic Algorithm for Edge Detection

    NASA Astrophysics Data System (ADS)

    Li, Ying; Bai, Bendu; Zhang, Yanning

    An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.

  2. Flight data processing with the F-8 adaptive algorithm

    NASA Technical Reports Server (NTRS)

    Hartmann, G.; Stein, G.; Petersen, K.

    1977-01-01

    An explicit adaptive control algorithm based on maximum likelihood estimation of parameters has been designed for NASA's DFBW F-8 aircraft. To avoid iterative calculations, the algorithm uses parallel channels of Kalman filters operating at fixed locations in parameter space. This algorithm has been implemented in NASA/DFRC's Remotely Augmented Vehicle (RAV) facility. Real-time sensor outputs (rate gyro, accelerometer and surface position) are telemetered to a ground computer which sends new gain values to an on-board system. Ground test data and flight records were used to establish design values of noise statistics and to verify the ground-based adaptive software. The software and its performance evaluation based on flight data are described

  3. Adaptive Process Control with Fuzzy Logic and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  4. Adaptive process control using fuzzy logic and genetic algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  5. A new adaptive GMRES algorithm for achieving high accuracy

    SciTech Connect

    Sosonkina, M.; Watson, L.T.; Kapania, R.K.; Walker, H.F.

    1996-12-31

    GMRES(k) is widely used for solving nonsymmetric linear systems. However, it is inadequate either when it converges only for k close to the problem size or when numerical error in the modified Gram-Schmidt process used in the GMRES orthogonalization phase dramatically affects the algorithm performance. An adaptive version of GMRES (k) which tunes the restart value k based on criteria estimating the GMRES convergence rate for the given problem is proposed here. The essence of the adaptive GMRES strategy is to adapt the parameter k to the problem, similar in spirit to how a variable order ODE algorithm tunes the order k. With FORTRAN 90, which provides pointers and dynamic memory management, dealing with the variable storage requirements implied by varying k is not too difficult. The parameter k can be both increased and decreased-an increase-only strategy is described next followed by pseudocode.

  6. Adaptive bad pixel correction algorithm for IRFPA based on PCNN

    NASA Astrophysics Data System (ADS)

    Leng, Hanbing; Zhou, Zuofeng; Cao, Jianzhong; Yi, Bo; Yan, Aqi; Zhang, Jian

    2013-10-01

    Bad pixels and response non-uniformity are the primary obstacles when IRFPA is used in different thermal imaging systems. The bad pixels of IRFPA include fixed bad pixels and random bad pixels. The former is caused by material or manufacture defect and their positions are always fixed, the latter is caused by temperature drift and their positions are always changing. Traditional radiometric calibration-based bad pixel detection and compensation algorithm is only valid to the fixed bad pixels. Scene-based bad pixel correction algorithm is the effective way to eliminate these two kinds of bad pixels. Currently, the most used scene-based bad pixel correction algorithm is based on adaptive median filter (AMF). In this algorithm, bad pixels are regarded as image noise and then be replaced by filtered value. However, missed correction and false correction often happens when AMF is used to handle complex infrared scenes. To solve this problem, a new adaptive bad pixel correction algorithm based on pulse coupled neural networks (PCNN) is proposed. Potential bad pixels are detected by PCNN in the first step, then image sequences are used periodically to confirm the real bad pixels and exclude the false one, finally bad pixels are replaced by the filtered result. With the real infrared images obtained from a camera, the experiment results show the effectiveness of the proposed algorithm.

  7. Fast Adapting Ensemble: A New Algorithm for Mining Data Streams with Concept Drift

    PubMed Central

    Ortíz Díaz, Agustín; Ramos-Jiménez, Gonzalo; Frías Blanco, Isvani; Caballero Mota, Yailé; Morales-Bueno, Rafael

    2015-01-01

    The treatment of large data streams in the presence of concept drifts is one of the main challenges in the field of data mining, particularly when the algorithms have to deal with concepts that disappear and then reappear. This paper presents a new algorithm, called Fast Adapting Ensemble (FAE), which adapts very quickly to both abrupt and gradual concept drifts, and has been specifically designed to deal with recurring concepts. FAE processes the learning examples in blocks of the same size, but it does not have to wait for the batch to be complete in order to adapt its base classification mechanism. FAE incorporates a drift detector to improve the handling of abrupt concept drifts and stores a set of inactive classifiers that represent old concepts, which are activated very quickly when these concepts reappear. We compare our new algorithm with various well-known learning algorithms, taking into account, common benchmark datasets. The experiments show promising results from the proposed algorithm (regarding accuracy and runtime), handling different types of concept drifts. PMID:25879051

  8. Adaptive Flocking of Robot Swarms: Algorithms and Properties

    NASA Astrophysics Data System (ADS)

    Lee, Geunho; Chong, Nak Young

    This paper presents a distributed approach for adaptive flocking of swarms of mobile robots that enables to navigate autonomously in complex environments populated with obstacles. Based on the observation of the swimming behavior of a school of fish, we propose an integrated algorithm that allows a swarm of robots to navigate in a coordinated manner, split into multiple swarms, or merge with other swarms according to the environment conditions. We prove the convergence of the proposed algorithm using Lyapunov stability theory. We also verify the effectiveness of the algorithm through extensive simulations, where a swarm of robots repeats the process of splitting and merging while passing around multiple stationary and moving obstacles. The simulation results show that the proposed algorithm is scalable, and robust to variations in the sensing capability of individual robots.

  9. An adaptive grid algorithm for one-dimensional nonlinear equations

    NASA Technical Reports Server (NTRS)

    Gutierrez, William E.; Hills, Richard G.

    1990-01-01

    Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and

  10. Adaptive sensor array algorithm for structural health monitoring of helmet

    NASA Astrophysics Data System (ADS)

    Zou, Xiaotian; Tian, Ye; Wu, Nan; Sun, Kai; Wang, Xingwei

    2011-04-01

    The adaptive neural network is a standard technique used in nonlinear system estimation and learning applications for dynamic models. In this paper, we introduced an adaptive sensor fusion algorithm for a helmet structure health monitoring system. The helmet structure health monitoring system is used to study the effects of ballistic/blast events on the helmet and human skull. Installed inside the helmet system, there is an optical fiber pressure sensors array. After implementing the adaptive estimation algorithm into helmet system, a dynamic model for the sensor array has been developed. The dynamic response characteristics of the sensor network are estimated from the pressure data by applying an adaptive control algorithm using artificial neural network. With the estimated parameters and position data from the dynamic model, the pressure distribution of the whole helmet can be calculated following the Bazier Surface interpolation method. The distribution pattern inside the helmet will be very helpful for improving helmet design to provide better protection to soldiers from head injuries.

  11. Efficient implementation of the adaptive scale pixel decomposition algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Bhatnagar, S.; Rau, U.; Zhang, M.

    2016-08-01

    Context. Most popular algorithms in use to remove the effects of a telescope's point spread function (PSF) in radio astronomy are variants of the CLEAN algorithm. Most of these algorithms model the sky brightness using the delta-function basis, which results in undesired artefacts when used to image extended emission. The adaptive scale pixel decomposition (Asp-Clean) algorithm models the sky brightness on a scale-sensitive basis and thus gives a significantly better imaging performance when imaging fields that contain both resolved and unresolved emission. Aims: However, the runtime cost of Asp-Clean is higher than that of scale-insensitive algorithms. In this paper, we identify the most expensive step in the original Asp-Clean algorithm and present an efficient implementation of it, which significantly reduces the computational cost while keeping the imaging performance comparable to the original algorithm. The PSF sidelobe levels of modern wide-band telescopes are significantly reduced, allowing us to make approximations to reduce the computational cost, which in turn allows for the deconvolution of larger images on reasonable timescales. Methods: As in the original algorithm, scales in the image are estimated through function fitting. Here we introduce an analytical method to model extended emission, and a modified method for estimating the initial values used for the fitting procedure, which ultimately leads to a lower computational cost. Results: The new implementation was tested with simulated EVLA data and the imaging performance compared well with the original Asp-Clean algorithm. Tests show that the current algorithm can recover features at different scales with lower computational cost.

  12. An adaptive mesh refinement algorithm for the discrete ordinates method

    SciTech Connect

    Jessee, J.P.; Fiveland, W.A.; Howell, L.H.; Colella, P.; Pember, R.B.

    1996-03-01

    The discrete ordinates form of the radiative transport equation (RTE) is spatially discretized and solved using an adaptive mesh refinement (AMR) algorithm. This technique permits the local grid refinement to minimize spatial discretization error of the RTE. An error estimator is applied to define regions for local grid refinement; overlapping refined grids are recursively placed in these regions; and the RTE is then solved over the entire domain. The procedure continues until the spatial discretization error has been reduced to a sufficient level. The following aspects of the algorithm are discussed: error estimation, grid generation, communication between refined levels, and solution sequencing. This initial formulation employs the step scheme, and is valid for absorbing and isotopically scattering media in two-dimensional enclosures. The utility of the algorithm is tested by comparing the convergence characteristics and accuracy to those of the standard single-grid algorithm for several benchmark cases. The AMR algorithm provides a reduction in memory requirements and maintains the convergence characteristics of the standard single-grid algorithm; however, the cases illustrate that efficiency gains of the AMR algorithm will not be fully realized until three-dimensional geometries are considered.

  13. Fast frequency acquisition via adaptive least squares algorithm

    NASA Technical Reports Server (NTRS)

    Kumar, R.

    1986-01-01

    A new least squares algorithm is proposed and investigated for fast frequency and phase acquisition of sinusoids in the presence of noise. This algorithm is a special case of more general, adaptive parameter-estimation techniques. The advantages of the algorithms are their conceptual simplicity, flexibility and applicability to general situations. For example, the frequency to be acquired can be time varying, and the noise can be nonGaussian, nonstationary and colored. As the proposed algorithm can be made recursive in the number of observations, it is not necessary to have a priori knowledge of the received signal-to-noise ratio or to specify the measurement time. This would be required for batch processing techniques, such as the fast Fourier transform (FFT). The proposed algorithm improves the frequency estimate on a recursive basis as more and more observations are obtained. When the algorithm is applied in real time, it has the extra advantage that the observations need not be stored. The algorithm also yields a real time confidence measure as to the accuracy of the estimator.

  14. PHURBAS: AN ADAPTIVE, LAGRANGIAN, MESHLESS, MAGNETOHYDRODYNAMICS CODE. I. ALGORITHM

    SciTech Connect

    Maron, Jason L.; McNally, Colin P.; Mac Low, Mordecai-Mark E-mail: cmcnally@amnh.org

    2012-05-01

    We present an algorithm for simulating the equations of ideal magnetohydrodynamics and other systems of differential equations on an unstructured set of points represented by sample particles. Local, third-order, least-squares, polynomial interpolations (Moving Least Squares interpolations) are calculated from the field values of neighboring particles to obtain field values and spatial derivatives at the particle position. Field values and particle positions are advanced in time with a second-order predictor-corrector scheme. The particles move with the fluid, so the time step is not limited by the Eulerian Courant-Friedrichs-Lewy condition. Full spatial adaptivity is implemented to ensure the particles fill the computational volume, which gives the algorithm substantial flexibility and power. A target resolution is specified for each point in space, with particles being added and deleted as needed to meet this target. Particle addition and deletion is based on a local void and clump detection algorithm. Dynamic artificial viscosity fields provide stability to the integration. The resulting algorithm provides a robust solution for modeling flows that require Lagrangian or adaptive discretizations to resolve. This paper derives and documents the Phurbas algorithm as implemented in Phurbas version 1.1. A following paper presents the implementation and test problem results.

  15. Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description

    USGS Publications Warehouse

    Schmidt, Gail; Jenkerson, Calli; Masek, Jeffrey; Vermote, Eric; Gao, Feng

    2013-01-01

    The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) software was originally developed by the National Aeronautics and Space Administration–Goddard Space Flight Center and the University of Maryland to produce top-of-atmosphere reflectance from LandsatThematic Mapper and Enhanced Thematic Mapper Plus Level 1 digital numbers and to apply atmospheric corrections to generate a surface-reflectance product.The U.S. Geological Survey (USGS) has adopted the LEDAPS algorithm for producing the Landsat Surface Reflectance Climate Data Record.This report discusses the LEDAPS algorithm, which was implemented by the USGS.

  16. An Adaptable Power System with Software Control Algorithm

    NASA Technical Reports Server (NTRS)

    Castell, Karen; Bay, Mike; Hernandez-Pellerano, Amri; Ha, Kong

    1998-01-01

    A low cost, flexible and modular spacecraft power system design was developed in response to a call for an architecture that could accommodate multiple missions in the small to medium load range. Three upcoming satellites will use this design, with one launch date in 1999 and two in the year 2000. The design consists of modular hardware that can be scaled up or down, without additional cost, to suit missions in the 200 to 600 Watt orbital average load range. The design will be applied to satellite orbits that are circular, polar elliptical and a libration point orbit. Mission unique adaptations are accomplished in software and firmware. In designing this advanced, adaptable power system, the major goals were reduction in weight volume and cost. This power system design represents reductions in weight of 78 percent, volume of 86 percent and cost of 65 percent from previous comparable systems. The efforts to miniaturize the electronics without sacrificing performance has created streamlined power electronics with control functions residing in the system microprocessor. The power system design can handle any battery size up to 50 Amp-hour and any battery technology. The three current implementations will use both nickel cadmium and nickel hydrogen batteries ranging in size from 21 to 50 Amp-hours. Multiple batteries can be used by adding another battery module. Any solar cell technology can be used and various array layouts can be incorporated with no change in Power System Electronics (PSE) hardware. Other features of the design are the standardized interfaces between cards and subsystems and immunity to radiation effects up to 30 krad Total Ionizing Dose (TID) and 35 Mev/cm(exp 2)-kg for Single Event Effects (SEE). The control algorithm for the power system resides in a radiation-hardened microprocessor. A table driven software design allows for flexibility in mission specific requirements. By storing critical power system constants in memory, modifying the system

  17. [Adaptive algorithm for automatic measurement of retinal vascular diameter].

    PubMed

    Münch, K; Vilser, W; Senff, I

    1995-11-01

    A new adaptive computer-aided method for the measurement of blood vessel diameters has been developed. Within areas of interest in the image, the algorithm detects, line-wise, the edges of the vessels, which are then used for image-wise approximation and noise filtration. A high level of adaptivity with respect to numerous measuring parameters ensures its use in a wide range of applications. Thus, it has been shown to significantly improve clinically relevant reproducibility in the area of follow-up observations. The standard deviation for vessel diameter was (2.2 +/- 0.7)% in the case of arteries and (1.8 +/- 0.5)% in the case of veins. Testing the algorithm in images of poor quality revealed its high level of reliability and sensitivity.

  18. An adaptive phase alignment algorithm for cartesian feedback loops

    NASA Astrophysics Data System (ADS)

    Gimeno-Martin, A.; Pardo-Martin, J.; Ortega-Gonzalez, F.

    2010-01-01

    An adaptive algorithm to correct phase misalignments in Cartesian feedback linearization loops for power amplifiers has been presented. It yields an error smaller than 0.035 rad between forward and feedback loop signals once convergence is reached. Because this algorithm enables a feedback system to process forward and feedback samples belonging to almost the same algorithm iteration, it is suitable to improve the performance not only of power amplifiers but also any other digital feedback system for communications systems and circuits such as all digital phase locked loops. Synchronizing forward and feedback paths of Cartesian feedback loops takes a small period of time after the system starts up. The phase alignment algorithm needs to converge before the feedback Cartesian loop can start its ideal behavior. However, once the steady state is reached, both paths can be considered synchronized, and the Cartesian feedback loop will only depend on the loop parameters (open-loop gain, loop bandwidth, etc.). It means that the linearization process will also depend only on these parameters since the misalignment effect disappears. Therefore, this algorithm relieves the power amplifier linearizer circuit design of any task required for solving phase misalignment effects inherent to Cartesian feedback systems. Furthermore, when a feedback Cartesian loop has to be designed, the designer can consider that forward and feedback paths are synchronized, since the phase alignment algorithm will do this task. This will reduce the simulation complexity. Then, all efforts are applied to determining the suitable loop parameters that will make the linearization process more efficient.

  19. An efficient sampling algorithm with adaptations for Bayesian variable selection.

    PubMed

    Araki, Takamitsu; Ikeda, Kazushi; Akaho, Shotaro

    2015-01-01

    In Bayesian variable selection, indicator model selection (IMS) is a class of well-known sampling algorithms, which has been used in various models. The IMS is a class of methods that uses pseudo-priors and it contains specific methods such as Gibbs variable selection (GVS) and Kuo and Mallick's (KM) method. However, the efficiency of the IMS strongly depends on the parameters of a proposal distribution and the pseudo-priors. Specifically, the GVS determines their parameters based on a pilot run for a full model and the KM method sets their parameters as those of priors, which often leads to slow mixings of them. In this paper, we propose an algorithm that adapts the parameters of the IMS during running. The parameters obtained on the fly provide an appropriate proposal distribution and pseudo-priors, which improve the mixing of the algorithm. We also prove the convergence theorem of the proposed algorithm, and confirm that the algorithm is more efficient than the conventional algorithms by experiments of the Bayesian variable selection.

  20. Adaptive Load-Balancing Algorithms Using Symmetric Broadcast Networks

    NASA Technical Reports Server (NTRS)

    Das, Sajal K.; Biswas, Rupak; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    In a distributed-computing environment, it is important to ensure that the processor workloads are adequately balanced. Among numerous load-balancing algorithms, a unique approach due to Dam and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three novel SBN-based load-balancing algorithms, and implement them on an SP2. A thorough experimental study with Poisson-distributed synthetic loads demonstrates that these algorithms are very effective in balancing system load while minimizing processor idle time. They also compare favorably with several other existing load-balancing techniques. Additional experiments performed with real data demonstrate that the SBN approach is effective in adaptive computational science and engineering applications where dynamic load balancing is extremely crucial.

  1. A kernel adaptive algorithm for quaternion-valued inputs.

    PubMed

    Paul, Thomas K; Ogunfunmi, Tokunbo

    2015-10-01

    The use of quaternion data can provide benefit in applications like robotics and image recognition, and particularly for performing transforms in 3-D space. Here, we describe a kernel adaptive algorithm for quaternions. A least mean square (LMS)-based method was used, resulting in the derivation of the quaternion kernel LMS (Quat-KLMS) algorithm. Deriving this algorithm required describing the idea of a quaternion reproducing kernel Hilbert space (RKHS), as well as kernel functions suitable with quaternions. A modified HR calculus for Hilbert spaces was used to find the gradient of cost functions defined on a quaternion RKHS. In addition, the use of widely linear (or augmented) filtering is proposed to improve performance. The benefit of the Quat-KLMS and widely linear forms in learning nonlinear transformations of quaternion data are illustrated with simulations. PMID:25594982

  2. Analysis of hypersonic aircraft inlets using flow adaptive mesh algorithms

    NASA Astrophysics Data System (ADS)

    Neaves, Michael Dean

    The numerical investigation into the dynamics of unsteady inlet flowfields is applied to a three-dimensional scramjet inlet-isolator-diffuser geometry designed for hypersonic type applications. The Reynolds-Averaged Navier-Stokes equations are integrated in time using a subiterating, time-accurate implicit algorithm. Inviscid fluxes are calculated using the Low Diffusion Flux Splitting Scheme of Edwards. A modified version of the dynamic solution-adaptive point movement algorithm of Benson and McRae is used in a coupled mode to dynamically resolve the features of the flow by enhancing the spatial accuracy of the simulations. The unsteady mesh terms are incorporated into the flow solver via the inviscid fluxes. The dynamic solution-adaptive grid algorithm of Benson and McRae is modified to improve orthogonality at the boundaries to ensure accurate application of boundary conditions and properly resolve turbulent boundary layers. Shock tube simulations are performed to ascertain the effectiveness of the algorithm for unsteady flow situations on fixed and moving grids. Unstarts due to a combustor and freestream angle of attack perturbations are simulated in a three-dimensional inlet-isolator-diffuser configuration.

  3. An adaptive gyroscope-based algorithm for temporal gait analysis.

    PubMed

    Greene, Barry R; McGrath, Denise; O'Neill, Ross; O'Donovan, Karol J; Burns, Adrian; Caulfield, Brian

    2010-12-01

    Body-worn kinematic sensors have been widely proposed as the optimal solution for portable, low cost, ambulatory monitoring of gait. This study aims to evaluate an adaptive gyroscope-based algorithm for automated temporal gait analysis using body-worn wireless gyroscopes. Gyroscope data from nine healthy adult subjects performing four walks at four different speeds were then compared against data acquired simultaneously using two force plates and an optical motion capture system. Data from a poliomyelitis patient, exhibiting pathological gait walking with and without the aid of a crutch, were also compared to the force plate. Results show that the mean true error between the adaptive gyroscope algorithm and force plate was -4.5 ± 14.4 ms and 43.4 ± 6.0 ms for IC and TC points, respectively, in healthy subjects. Similarly, the mean true error when data from the polio patient were compared against the force plate was -75.61 ± 27.53 ms and 99.20 ± 46.00 ms for IC and TC points, respectively. A comparison of the present algorithm against temporal gait parameters derived from an optical motion analysis system showed good agreement for nine healthy subjects at four speeds. These results show that the algorithm reported here could constitute the basis of a robust, portable, low-cost system for ambulatory monitoring of gait.

  4. Discrete-time minimal control synthesis adaptive algorithm

    NASA Astrophysics Data System (ADS)

    di Bernardo, M.; di Gennaro, F.; Olm, J. M.; Santini, S.

    2010-12-01

    This article proposes a discrete-time Minimal Control Synthesis (MCS) algorithm for a class of single-input single-output discrete-time systems written in controllable canonical form. As it happens with the continuous-time MCS strategy, the algorithm arises from the family of hyperstability-based discrete-time model reference adaptive controllers introduced in (Landau, Y. (1979), Adaptive Control: The Model Reference Approach, New York: Marcel Dekker, Inc.) and is able to ensure tracking of the states of a given reference model with minimal knowledge about the plant. The control design shows robustness to parameter uncertainties, slow parameter variation and matched disturbances. Furthermore, it is proved that the proposed discrete-time MCS algorithm can be used to control discretised continuous-time plants with the same performance features. Contrary to previous discrete-time implementations of the continuous-time MCS algorithm, here a formal proof of asymptotic stability is given for generic n-dimensional plants in controllable canonical form. The theoretical approach is validated by means of simulation results.

  5. Adaptive firefly algorithm: parameter analysis and its application.

    PubMed

    Cheung, Ngaam J; Ding, Xue-Ming; Shen, Hong-Bin

    2014-01-01

    As a nature-inspired search algorithm, firefly algorithm (FA) has several control parameters, which may have great effects on its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly algorithm - adaptive firefly algorithm (AdaFa). There are three strategies in AdaFa including (1) a distance-based light absorption coefficient; (2) a gray coefficient enhancing fireflies to share difference information from attractive ones efficiently; and (3) five different dynamic strategies for the randomization parameter. Promising selections of parameters in the strategies are analyzed to guarantee the efficient performance of AdaFa. AdaFa is validated over widely used benchmark functions, and the numerical experiments and statistical tests yield useful conclusions on the strategies and the parameter selections affecting the performance of AdaFa. When applied to the real-world problem - protein tertiary structure prediction, the results demonstrated improved variants can rebuild the tertiary structure with the average root mean square deviation less than 0.4Å and 1.5Å from the native constrains with noise free and 10% Gaussian white noise. PMID:25397812

  6. Adaptive firefly algorithm: parameter analysis and its application.

    PubMed

    Cheung, Ngaam J; Ding, Xue-Ming; Shen, Hong-Bin

    2014-01-01

    As a nature-inspired search algorithm, firefly algorithm (FA) has several control parameters, which may have great effects on its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly algorithm - adaptive firefly algorithm (AdaFa). There are three strategies in AdaFa including (1) a distance-based light absorption coefficient; (2) a gray coefficient enhancing fireflies to share difference information from attractive ones efficiently; and (3) five different dynamic strategies for the randomization parameter. Promising selections of parameters in the strategies are analyzed to guarantee the efficient performance of AdaFa. AdaFa is validated over widely used benchmark functions, and the numerical experiments and statistical tests yield useful conclusions on the strategies and the parameter selections affecting the performance of AdaFa. When applied to the real-world problem - protein tertiary structure prediction, the results demonstrated improved variants can rebuild the tertiary structure with the average root mean square deviation less than 0.4Å and 1.5Å from the native constrains with noise free and 10% Gaussian white noise.

  7. Generalized pattern search algorithms with adaptive precision function evaluations

    SciTech Connect

    Polak, Elijah; Wetter, Michael

    2003-05-14

    In the literature on generalized pattern search algorithms, convergence to a stationary point of a once continuously differentiable cost function is established under the assumption that the cost function can be evaluated exactly. However, there is a large class of engineering problems where the numerical evaluation of the cost function involves the solution of systems of differential algebraic equations. Since the termination criteria of the numerical solvers often depend on the design parameters, computer code for solving these systems usually defines a numerical approximation to the cost function that is discontinuous with respect to the design parameters. Standard generalized pattern search algorithms have been applied heuristically to such problems, but no convergence properties have been stated. In this paper we extend a class of generalized pattern search algorithms to a form that uses adaptive precision approximations to the cost function. These numerical approximations need not define a continuous function. Our algorithms can be used for solving linearly constrained problems with cost functions that are at least locally Lipschitz continuous. Assuming that the cost function is smooth, we prove that our algorithms converge to a stationary point. Under the weaker assumption that the cost function is only locally Lipschitz continuous, we show that our algorithms converge to points at which the Clarke generalized directional derivatives are nonnegative in predefined directions. An important feature of our adaptive precision scheme is the use of coarse approximations in the early iterations, with the approximation precision controlled by a test. Such an approach leads to substantial time savings in minimizing computationally expensive functions.

  8. A local adaptive discretization algorithm for Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Spreng, Fabian; Schnabel, Dirk; Mueller, Alexandra; Eberhard, Peter

    2014-06-01

    In this paper, an extension to the Smoothed Particle Hydrodynamics (SPH) method is proposed that allows for an adaptation of the discretization level of a simulated continuum at runtime. By combining a local adaptive refinement technique with a newly developed coarsening algorithm, one is able to improve the accuracy of the simulation results while reducing the required computational cost at the same time. For this purpose, the number of particles is, on the one hand, adaptively increased in critical areas of a simulation model. Typically, these are areas that show a relatively low particle density and high gradients in stress or temperature. On the other hand, the number of SPH particles is decreased for domains with a high particle density and low gradients. Besides a brief introduction to the basic principle of the SPH discretization method, the extensions to the original formulation providing such a local adaptive refinement and coarsening of the modeled structure are presented in this paper. After having introduced its theoretical background, the applicability of the enhanced formulation, as well as the benefit gained from the adaptive model discretization, is demonstrated in the context of four different simulation scenarios focusing on solid continua. While presenting the results found for these examples, several properties of the proposed adaptive technique are discussed, e.g. the conservation of momentum as well as the existing correlation between the chosen refinement and coarsening patterns and the observed quality of the results.

  9. Adaptive Mesh Refinement Algorithms for Parallel Unstructured Finite Element Codes

    SciTech Connect

    Parsons, I D; Solberg, J M

    2006-02-03

    This project produced algorithms for and software implementations of adaptive mesh refinement (AMR) methods for solving practical solid and thermal mechanics problems on multiprocessor parallel computers using unstructured finite element meshes. The overall goal is to provide computational solutions that are accurate to some prescribed tolerance, and adaptivity is the correct path toward this goal. These new tools will enable analysts to conduct more reliable simulations at reduced cost, both in terms of analyst and computer time. Previous academic research in the field of adaptive mesh refinement has produced a voluminous literature focused on error estimators and demonstration problems; relatively little progress has been made on producing efficient implementations suitable for large-scale problem solving on state-of-the-art computer systems. Research issues that were considered include: effective error estimators for nonlinear structural mechanics; local meshing at irregular geometric boundaries; and constructing efficient software for parallel computing environments.

  10. G/SPLINES: A hybrid of Friedman's Multivariate Adaptive Regression Splines (MARS) algorithm with Holland's genetic algorithm

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1991-01-01

    G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.

  11. Analysis of adaptive algorithms for an integrated communication network

    NASA Technical Reports Server (NTRS)

    Reed, Daniel A.; Barr, Matthew; Chong-Kwon, Kim

    1985-01-01

    Techniques were examined that trade communication bandwidth for decreased transmission delays. When the network is lightly used, these schemes attempt to use additional network resources to decrease communication delays. As the network utilization rises, the schemes degrade gracefully, still providing service but with minimal use of the network. Because the schemes use a combination of circuit and packet switching, they should respond to variations in the types and amounts of network traffic. Also, a combination of circuit and packet switching to support the widely varying traffic demands imposed on an integrated network was investigated. The packet switched component is best suited to bursty traffic where some delays in delivery are acceptable. The circuit switched component is reserved for traffic that must meet real time constraints. Selected packet routing algorithms that might be used in an integrated network were simulated. An integrated traffic places widely varying workload demands on a network. Adaptive algorithms were identified, ones that respond to both the transient and evolutionary changes that arise in integrated networks. A new algorithm was developed, hybrid weighted routing, that adapts to workload changes.

  12. Adaptivity and smart algorithms for fluid-structure interaction

    NASA Technical Reports Server (NTRS)

    Oden, J. Tinsley

    1990-01-01

    This paper reviews new approaches in CFD which have the potential for significantly increasing current capabilities of modeling complex flow phenomena and of treating difficult problems in fluid-structure interaction. These approaches are based on the notions of adaptive methods and smart algorithms, which use instantaneous measures of the quality and other features of the numerical flowfields as a basis for making changes in the structure of the computational grid and of algorithms designed to function on the grid. The application of these new techniques to several problem classes are addressed, including problems with moving boundaries, fluid-structure interaction in high-speed turbine flows, flow in domains with receding boundaries, and related problems.

  13. Characterization of atmospheric contaminant sources using adaptive evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Cervone, Guido; Franzese, Pasquale; Grajdeanu, Adrian

    2010-10-01

    The characteristics of an unknown source of emissions in the atmosphere are identified using an Adaptive Evolutionary Strategy (AES) methodology based on ground concentration measurements and a Gaussian plume model. The AES methodology selects an initial set of source characteristics including position, size, mass emission rate, and wind direction, from which a forward dispersion simulation is performed. The error between the simulated concentrations from the tentative source and the observed ground measurements is calculated. Then the AES algorithm prescribes the next tentative set of source characteristics. The iteration proceeds towards minimum error, corresponding to convergence towards the real source. The proposed methodology was used to identify the source characteristics of 12 releases from the Prairie Grass field experiment of dispersion, two for each atmospheric stability class, ranging from very unstable to stable atmosphere. The AES algorithm was found to have advantages over a simple canonical ES and a Monte Carlo (MC) method which were used as benchmarks.

  14. Comparative Analysis of CNV Calling Algorithms: Literature Survey and a Case Study Using Bovine High-Density SNP Data

    PubMed Central

    Xu, Lingyang; Hou, Yali; Bickhart, Derek M.; Song, Jiuzhou; Liu, George E.

    2013-01-01

    Copy number variations (CNVs) are gains and losses of genomic sequence between two individuals of a species when compared to a reference genome. The data from single nucleotide polymorphism (SNP) microarrays are now routinely used for genotyping, but they also can be utilized for copy number detection. Substantial progress has been made in array design and CNV calling algorithms and at least 10 comparison studies in humans have been published to assess them. In this review, we first survey the literature on existing microarray platforms and CNV calling algorithms. We then examine a number of CNV calling tools to evaluate their impacts using bovine high-density SNP data. Large incongruities in the results from different CNV calling tools highlight the need for standardizing array data collection, quality assessment and experimental validation. Only after careful experimental design and rigorous data filtering can the impacts of CNVs on both normal phenotypic variability and disease susceptibility be fully revealed.

  15. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zu, Yun-Xiao; Zhou, Jie

    2012-01-01

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algorithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate.

  16. Fully implicit adaptive mesh refinement algorithm for reduced MHD

    NASA Astrophysics Data System (ADS)

    Philip, Bobby; Pernice, Michael; Chacon, Luis

    2006-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technology to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite grid --FAC-- algorithms) for scalability. We demonstrate that the concept is indeed feasible, featuring near-optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations in challenging dissipation regimes will be presented on a variety of problems that benefit from this capability, including tearing modes, the island coalescence instability, and the tilt mode instability. L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) B. Philip, M. Pernice, and L. Chac'on, Lecture Notes in Computational Science and Engineering, accepted (2006)

  17. Algorithme d'adaptation du filtre de Kalman aux variations soudaines de bruit

    NASA Astrophysics Data System (ADS)

    Canciu, Vintila

    This research targets the case of Kalman filtering as applied to linear time-invariant systems having unknown process noise covariance and measurement noise covariance matrices and addresses the problem represented by the incomplete a priori knowledge of these two filter initialization parameters. The goal of this research is to determine in realtime both the process covariance matrix and the noise covariance matrix in the context of adaptive Kalman filtering. The resultant filter, called evolutionary adaptive Kalman filter, is able to adapt to sudden noise variations and constitutes a hybrid solution for adaptive Kalman filtering based on metaheuristic algorithms. MATLAB/Simulink simulation using several processes and covariance matrices plus comparison with other filters was selected as validation method. The Cramer-Rae Lower Bound (CRLB) was used as performance criterion. The thesis begins with a description of the problem under consideration (the design of a Kalman filter that is able to adapt to sudden noise variations) followed by a typical application (INS-GPS integrated navigation system) and by a statistical analysis of publications related to adaptive Kalman filtering. Next, the thesis presents the current architectures of the adaptive Kalman filtering: the innovation adaptive estimator (IAE) and the multiple model adaptive estimator (MMAE). It briefly presents their formulation, their behavior, and the limit of their performances. The thesis continues with the architectural synthesis of the evolutionary adaptive Kalman filter. The steps involved in the solution of the problem under consideration is also presented: an analysis of Kalman filtering and sub-optimal filtering methods, a comparison of current adaptive Kalman and sub-optimal filtering methods, the emergence of evolutionary adaptive Kalman filter as an enrichment of sub-optimal filtering with the help of biological-inspired computational intelligence methods, and the step-by-step architectural

  18. Path Planning Algorithms for the Adaptive Sensor Fleet

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Hosler, Jeff

    2005-01-01

    The Adaptive Sensor Fleet (ASF) is a general purpose fleet management and planning system being developed by NASA in coordination with NOAA. The current mission of ASF is to provide the capability for autonomous cooperative survey and sampling of dynamic oceanographic phenomena such as current systems and algae blooms. Each ASF vessel is a software model that represents a real world platform that carries a variety of sensors. The OASIS platform will provide the first physical vessel, outfitted with the systems and payloads necessary to execute the oceanographic observations described in this paper. The ASF architecture is being designed for extensibility to accommodate heterogenous fleet elements, and is not limited to using the OASIS platform to acquire data. This paper describes the path planning algorithms developed for the acquisition phase of a typical ASF task. Given a polygonal target region to be surveyed, the region is subdivided according to the number of vessels in the fleet. The subdivision algorithm seeks a solution in which all subregions have equal area and minimum mean radius. Once the subregions are defined, a dynamic programming method is used to find a minimum-time path for each vessel from its initial position to its assigned region. This path plan includes the effects of water currents as well as avoidance of known obstacles. A fleet-level planning algorithm then shuffles the individual vessel assignments to find the overall solution which puts all vessels in their assigned regions in the minimum time. This shuffle algorithm may be described as a process of elimination on the sorted list of permutations of a cost matrix. All these path planning algorithms are facilitated by discretizing the region of interest onto a hexagonal tiling.

  19. Fast parallel MR image reconstruction via B1-based, adaptive restart, iterative soft thresholding algorithms (BARISTA).

    PubMed

    Muckley, Matthew J; Noll, Douglas C; Fessler, Jeffrey A

    2015-02-01

    Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms.

  20. Fast Parallel MR Image Reconstruction via B1-based, Adaptive Restart, Iterative Soft Thresholding Algorithms (BARISTA)

    PubMed Central

    Noll, Douglas C.; Fessler, Jeffrey A.

    2014-01-01

    Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms. PMID:25330484

  1. A novel adaptive multi-resolution combined watermarking algorithm

    NASA Astrophysics Data System (ADS)

    Feng, Gui; Lin, QiWei

    2008-04-01

    The rapid development of IT and WWW technique, causing person frequently confronts with various kinds of authorized identification problem, especially the copyright problem of digital products. The digital watermarking technique was emerged as one kind of solutions. The balance between robustness and imperceptibility is always the object sought by related researchers. In order to settle the problem of robustness and imperceptibility, a novel adaptive multi-resolution combined digital image watermarking algorithm was proposed in this paper. In the proposed algorithm, we first decompose the watermark into several sub-bands, and according to its significance to embed the sub-band to different DWT coefficient of the carrier image. While embedding, the HVS was considered. So under the precondition of keeping the quality of image, the larger capacity of watermark can be embedding. The experimental results have shown that the proposed algorithm has better performance in the aspects of robustness and security. And with the same visual quality, the technique has larger capacity. So the unification of robustness and imperceptibility was achieved.

  2. An adaptive correspondence algorithm for modeling scenes with strong interreflections.

    PubMed

    Xu, Yi; Aliaga, Daniel G

    2009-01-01

    Modeling real-world scenes, beyond diffuse objects, plays an important role in computer graphics, virtual reality, and other commercial applications. One active approach is projecting binary patterns in order to obtain correspondence and reconstruct a densely sampled 3D model. In such structured-light systems, determining whether a pixel is directly illuminated by the projector is essential to decoding the patterns. When a scene has abundant indirect light, this process is especially difficult. In this paper, we present a robust pixel classification algorithm for this purpose. Our method correctly establishes the lower and upper bounds of the possible intensity values of an illuminated pixel and of a non-illuminated pixel. Based on the two intervals, our method classifies a pixel by determining whether its intensity is within one interval but not in the other. Our method performs better than standard method due to the fact that it avoids gross errors during decoding process caused by strong inter-reflections. For the remaining uncertain pixels, we apply an iterative algorithm to reduce the inter-reflection within the scene. Thus, more points can be decoded and reconstructed after each iteration. Moreover, the iterative algorithm is carried out in an adaptive fashion for fast convergence.

  3. Enhancing artificial bee colony algorithm with self-adaptive searching strategy and artificial immune network operators for global optimization.

    PubMed

    Chen, Tinggui; Xiao, Renbin

    2014-01-01

    Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments. PMID:24772023

  4. Enhancing Artificial Bee Colony Algorithm with Self-Adaptive Searching Strategy and Artificial Immune Network Operators for Global Optimization

    PubMed Central

    Chen, Tinggui; Xiao, Renbin

    2014-01-01

    Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments. PMID:24772023

  5. Region Adaptive Color Demosaicing Algorithm Using Color Constancy

    NASA Astrophysics Data System (ADS)

    Kim, Chang Won; Oh, Hyun Mook; Yoo, Du Sic; Kang, Moon Gi

    2010-12-01

    This paper proposes a novel way of combining color demosaicing and the auto white balance (AWB) method, which are important parts of image processing. Performance of the AWB is generally affected by demosaicing results because most AWB algorithms are performed posterior to color demosaicing. In this paper, in order to increase the performance and efficiency of the AWB algorithm, the color constancy problem is examined during the color demosaicing step. Initial estimates of the directional luminance and chrominance values are defined for estimating edge direction and calculating the AWB gain. In order to prevent color failure in conventional edge-based AWB methods, we propose a modified edge-based AWB method that used a predefined achromatic region. The estimation of edge direction is performed region adaptively by using the local statistics of the initial estimates of the luminance and chrominance information. Simulated and real Bayer color filter array (CFA) data are used to evaluate the performance of the proposed method. When compared to conventional methods, the proposed method shows significant improvements in terms of visual and numerical criteria.

  6. A baseline correction algorithm for Raman spectroscopy by adaptive knots B-spline

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Fan, Xian-guang; Xu, Ying-jie; Wang, Xiu-fen; He, Hao; Zuo, Yong

    2015-11-01

    The Raman spectroscopy technique is a powerful and non-invasive technique for molecular fingerprint detection which has been widely used in many areas, such as food safety, drug safety, and environmental testing. But Raman signals can be easily corrupted by a fluorescent background, therefore we presented a baseline correction algorithm to suppress the fluorescent background in this paper. In this algorithm, the background of the Raman signal was suppressed by fitting a curve called a baseline using a cyclic approximation method. Instead of the traditional polynomial fitting, we used the B-spline as the fitting algorithm due to its advantages of low-order and smoothness, which can avoid under-fitting and over-fitting effectively. In addition, we also presented an automatic adaptive knot generation method to replace traditional uniform knots. This algorithm can obtain the desired performance for most Raman spectra with varying baselines without any user input or preprocessing step. In the simulation, three kinds of fluorescent background lines were introduced to test the effectiveness of the proposed method. We showed that two real Raman spectra (parathion-methyl and colza oil) can be detected and their baselines were also corrected by the proposed method.

  7. A wavelet packet adaptive filtering algorithm for enhancing manatee vocalizations.

    PubMed

    Gur, M Berke; Niezrecki, Christopher

    2011-04-01

    Approximately a quarter of all West Indian manatee (Trichechus manatus latirostris) mortalities are attributed to collisions with watercraft. A boater warning system based on the passive acoustic detection of manatee vocalizations is one possible solution to reduce manatee-watercraft collisions. The success of such a warning system depends on effective enhancement of the vocalization signals in the presence of high levels of background noise, in particular, noise emitted from watercraft. Recent research has indicated that wavelet domain pre-processing of the noisy vocalizations is capable of significantly improving the detection ranges of passive acoustic vocalization detectors. In this paper, an adaptive denoising procedure, implemented on the wavelet packet transform coefficients obtained from the noisy vocalization signals, is investigated. The proposed denoising algorithm is shown to improve the manatee detection ranges by a factor ranging from two (minimum) to sixteen (maximum) compared to high-pass filtering alone, when evaluated using real manatee vocalization and background noise signals of varying signal-to-noise ratios (SNR). Furthermore, the proposed method is also shown to outperform a previously suggested feedback adaptive line enhancer (FALE) filter on average 3.4 dB in terms of noise suppression and 0.6 dB in terms of waveform preservation.

  8. Design of infrasound-detection system via adaptive LMSTDE algorithm

    NASA Technical Reports Server (NTRS)

    Khalaf, C. S.; Stoughton, J. W.

    1984-01-01

    A proposed solution to an aviation safety problem is based on passive detection of turbulent weather phenomena through their infrasonic emission. This thesis describes a system design that is adequate for detection and bearing evaluation of infrasounds. An array of four sensors, with the appropriate hardware, is used for the detection part. Bearing evaluation is based on estimates of time delays between sensor outputs. The generalized cross correlation (GCC), as the conventional time-delay estimation (TDE) method, is first reviewed. An adaptive TDE approach, using the least mean square (LMS) algorithm, is then discussed. A comparison between the two techniques is made and the advantages of the adaptive approach are listed. The behavior of the GCC, as a Roth processor, is examined for the anticipated signals. It is shown that the Roth processor has the desired effect of sharpening the peak of the correlation function. It is also shown that the LMSTDE technique is an equivalent implementation of the Roth processor in the time domain. A LMSTDE lead-lag model, with a variable stability coefficient and a convergence criterion, is designed.

  9. A wavelet packet adaptive filtering algorithm for enhancing manatee vocalizations.

    PubMed

    Gur, M Berke; Niezrecki, Christopher

    2011-04-01

    Approximately a quarter of all West Indian manatee (Trichechus manatus latirostris) mortalities are attributed to collisions with watercraft. A boater warning system based on the passive acoustic detection of manatee vocalizations is one possible solution to reduce manatee-watercraft collisions. The success of such a warning system depends on effective enhancement of the vocalization signals in the presence of high levels of background noise, in particular, noise emitted from watercraft. Recent research has indicated that wavelet domain pre-processing of the noisy vocalizations is capable of significantly improving the detection ranges of passive acoustic vocalization detectors. In this paper, an adaptive denoising procedure, implemented on the wavelet packet transform coefficients obtained from the noisy vocalization signals, is investigated. The proposed denoising algorithm is shown to improve the manatee detection ranges by a factor ranging from two (minimum) to sixteen (maximum) compared to high-pass filtering alone, when evaluated using real manatee vocalization and background noise signals of varying signal-to-noise ratios (SNR). Furthermore, the proposed method is also shown to outperform a previously suggested feedback adaptive line enhancer (FALE) filter on average 3.4 dB in terms of noise suppression and 0.6 dB in terms of waveform preservation. PMID:21476661

  10. The Adaptive Analysis of Visual Cognition using Genetic Algorithms

    PubMed Central

    Cook, Robert G.; Qadri, Muhammad A. J.

    2014-01-01

    Two experiments used a novel, open-ended, and adaptive test procedure to examine visual cognition in animals. Using a genetic algorithm, a pigeon was tested repeatedly from a variety of different initial conditions for its solution to an intermediate brightness search task. On each trial, the animal had to accurately locate and peck a target element of intermediate brightness from among a variable number of surrounding darker and lighter distractor elements. Displays were generated from six parametric variables, or genes (distractor number, element size, shape, spacing, target brightness, distractor brightness). Display composition changed over time, or evolved, as a function of the bird’s differential accuracy within the population of values for each gene. Testing three randomized initial conditions and one set of controlled initial conditions, element size and number of distractors were identified as the most important factors controlling search accuracy, with distractor brightness, element shape, and spacing making secondary contributions. The resulting changes in this multidimensional stimulus space suggested the existence of a set of conditions that the bird repeatedly converged upon regardless of initial conditions. This psychological “attractor” represents the cumulative action of the cognitive operations used by the pigeon in solving and performing this search task. The results are discussed regarding their implications for visual cognition in pigeons and the usefulness of adaptive, subject-driven experimentation for investigating human and animal cognition more generally. PMID:24000905

  11. Self-adaptive algorithm for segmenting skin regions

    NASA Astrophysics Data System (ADS)

    Kawulok, Michal; Kawulok, Jolanta; Nalepa, Jakub; Smolka, Bogdan

    2014-12-01

    In this paper, we introduce a new self-adaptive algorithm for segmenting human skin regions in color images. Skin detection and segmentation is an active research topic, and many solutions have been proposed so far, especially concerning skin tone modeling in various color spaces. Such models are used for pixel-based classification, but its accuracy is limited due to high variance and low specificity of human skin color. In many works, skin model adaptation and spatial analysis were reported to improve the final segmentation outcome; however, little attention has been paid so far to the possibilities of combining these two improvement directions. Our contribution lies in learning a local skin color model on the fly, which is subsequently applied to the image to determine the seeds for the spatial analysis. Furthermore, we also take advantage of textural features for computing local propagation costs that are used in the distance transform. The results of an extensive experimental study confirmed that the new method is highly competitive, especially for extracting the hand regions in color images.

  12. A Novel Clinical Decision Support System Using Improved Adaptive Genetic Algorithm for the Assessment of Fetal Well-Being

    PubMed Central

    Jambek, Asral Bahari; Neoh, Siew-Chin

    2015-01-01

    A novel clinical decision support system is proposed in this paper for evaluating the fetal well-being from the cardiotocogram (CTG) dataset through an Improved Adaptive Genetic Algorithm (IAGA) and Extreme Learning Machine (ELM). IAGA employs a new scaling technique (called sigma scaling) to avoid premature convergence and applies adaptive crossover and mutation techniques with masking concepts to enhance population diversity. Also, this search algorithm utilizes three different fitness functions (two single objective fitness functions and multi-objective fitness function) to assess its performance. The classification results unfold that promising classification accuracy of 94% is obtained with an optimal feature subset using IAGA. Also, the classification results are compared with those of other Feature Reduction techniques to substantiate its exhaustive search towards the global optimum. Besides, five other benchmark datasets are used to gauge the strength of the proposed IAGA algorithm. PMID:25793009

  13. A New Real-coded Genetic Algorithm with an Adaptive Mating Selection for UV-landscapes

    NASA Astrophysics Data System (ADS)

    Oshima, Dan; Miyamae, Atsushi; Nagata, Yuichi; Kobayashi, Shigenobu; Ono, Isao; Sakuma, Jun

    The purpose of this paper is to propose a new real-coded genetic algorithm (RCGA) named Networked Genetic Algorithm (NGA) that intends to find multiple optima simultaneously in deceptive globally multimodal landscapes. Most current techniques such as niching for finding multiple optima take into account big valley landscapes or non-deceptive globally multimodal landscapes but not deceptive ones called UV-landscapes. Adaptive Neighboring Search (ANS) is a promising approach for finding multiple optima in UV-landscapes. ANS utilizes a restricted mating scheme with a crossover-like mutation in order to find optima in deceptive globally multimodal landscapes. However, ANS has a fundamental problem that it does not find all the optima simultaneously in many cases. NGA overcomes the problem by an adaptive parent-selection scheme and an improved crossover-like mutation. We show the effectiveness of NGA over ANS in terms of the number of detected optima in a single run on Fletcher and Powell functions as benchmark problems that are known to have multiple optima, ill-scaledness, and UV-landscapes.

  14. [Comparison of mating calls and adaptive strategies of Amolops wuyiensis and Odorrana tormotus (Anura) in noise-controlled environments].

    PubMed

    Zhang, Fang; Chen, Pan; Zhao, Shu-Yi

    2013-06-01

    In order to understand the acoustic characteristics and adaptive strategies of sympatric male Amolops wuyiensis and male Odorrana tormotus in environments controlled for high noise levels, we recorded and analyzed the advertisement calls produced by individual males during breeding season. The results show that A. wuyiensis produced a single type of call composed of variable syllables (from 3 to 6 syllables) with 2~10 pulses over different time periods. The average values of call duration, dominant frequency and signal noise ratio were 2 198.20 ms, 2 231.90 Hz and 33.00 dB respectively. There were no ultrasonic elements in A. wuyiensis calls and they did not have the basis of ultrasonic communication. The average values of call duration, dominant frequency and signal noise ratio of O. tormotus were 331.80 ms, 6 665.50 Hz and 37.00 dB respectively. Call structure of O. tormotus was consistent with previous studies. The noise did not mask the calls from the male A. wuyiensis and male O. tormotus, which have higher frequencies and amplitudes. To fulfill the intra-species communication in a noise-controlled environment, the A. wuyiensis male, which has a low vocal frequency and long transmission length, varied vocal frequency, composition, and duration, the latter of which serves to attract females. By contrast, the male O. tormotus increased vocal frequency, which reduces the energy expended on intra-species communication.

  15. Evaluating Knowledge Structure-Based Adaptive Testing Algorithms and System Development

    ERIC Educational Resources Information Center

    Wu, Huey-Min; Kuo, Bor-Chen; Yang, Jinn-Min

    2012-01-01

    In recent years, many computerized test systems have been developed for diagnosing students' learning profiles. Nevertheless, it remains a challenging issue to find an adaptive testing algorithm to both shorten testing time and precisely diagnose the knowledge status of students. In order to find a suitable algorithm, four adaptive testing…

  16. Review of alignment and SNP calling algorithms for next-generation sequencing data.

    PubMed

    Mielczarek, M; Szyda, J

    2016-02-01

    Application of the massive parallel sequencing technology has become one of the most important issues in life sciences. Therefore, it was crucial to develop bioinformatics tools for next-generation sequencing (NGS) data processing. Currently, two of the most significant tasks include alignment to a reference genome and detection of single nucleotide polymorphisms (SNPs). In many types of genomic analyses, great numbers of reads need to be mapped to the reference genome; therefore, selection of the aligner is an essential step in NGS pipelines. Two main algorithms-suffix tries and hash tables-have been introduced for this purpose. Suffix array-based aligners are memory-efficient and work faster than hash-based aligners, but they are less accurate. In contrast, hash table algorithms tend to be slower, but more sensitive. SNP and genotype callers may also be divided into two main different approaches: heuristic and probabilistic methods. A variety of software has been subsequently developed over the past several years. In this paper, we briefly review the current development of NGS data processing algorithms and present the available software.

  17. A Self-adaptive Evolutionary Algorithm for Multi-objective Optimization

    NASA Astrophysics Data System (ADS)

    Cao, Ruifen; Li, Guoli; Wu, Yican

    Evolutionary algorithm has gained a worldwide popularity among multi-objective optimization. The paper proposes a self-adaptive evolutionary algorithm (called SEA) for multi-objective optimization. In the SEA, the probability of crossover and mutation,P c and P m , are varied depending on the fitness values of the solutions. Fitness assignment of SEA realizes the twin goals of maintaining diversity in the population and guiding the population to the true Pareto Front; fitness value of individual not only depends on improved density estimation but also depends on non-dominated rank. The density estimation can keep diversity in all instances including when scalars of all objectives are much different from each other. SEA is compared against the Non-dominated Sorting Genetic Algorithm (NSGA-II) on a set of test problems introduced by the MOEA community. Simulated results show that SEA is as effective as NSGA-II in most of test functions, but when scalar of objectives are much different from each other, SEA has better distribution of non-dominated solutions.

  18. Automatic classification of schizophrenia using resting-state functional language network via an adaptive learning algorithm

    NASA Astrophysics Data System (ADS)

    Zhu, Maohu; Jie, Nanfeng; Jiang, Tianzi

    2014-03-01

    A reliable and precise classification of schizophrenia is significant for its diagnosis and treatment of schizophrenia. Functional magnetic resonance imaging (fMRI) is a novel tool increasingly used in schizophrenia research. Recent advances in statistical learning theory have led to applying pattern classification algorithms to access the diagnostic value of functional brain networks, discovered from resting state fMRI data. The aim of this study was to propose an adaptive learning algorithm to distinguish schizophrenia patients from normal controls using resting-state functional language network. Furthermore, here the classification of schizophrenia was regarded as a sample selection problem where a sparse subset of samples was chosen from the labeled training set. Using these selected samples, which we call informative vectors, a classifier for the clinic diagnosis of schizophrenia was established. We experimentally demonstrated that the proposed algorithm incorporating resting-state functional language network achieved 83.6% leaveone- out accuracy on resting-state fMRI data of 27 schizophrenia patients and 28 normal controls. In contrast with KNearest- Neighbor (KNN), Support Vector Machine (SVM) and l1-norm, our method yielded better classification performance. Moreover, our results suggested that a dysfunction of resting-state functional language network plays an important role in the clinic diagnosis of schizophrenia.

  19. Multi-element array signal reconstruction with adaptive least-squares algorithms

    NASA Technical Reports Server (NTRS)

    Kumar, R.

    1992-01-01

    Two versions of the adaptive least-squares algorithm are presented for combining signals from multiple feeds placed in the focal plane of a mechanical antenna whose reflector surface is distorted due to various deformations. Coherent signal combining techniques based on the adaptive least-squares algorithm are examined for nearly optimally and adaptively combining the outputs of the feeds. The performance of the two versions is evaluated by simulations. It is demonstrated for the example considered that both of the adaptive least-squares algorithms are capable of offsetting most of the loss in the antenna gain incurred due to reflector surface deformations.

  20. Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua

    2014-03-01

    This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.

  1. Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm.

    PubMed

    Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua

    2014-03-01

    This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.

  2. Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm.

    PubMed

    Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua

    2014-03-01

    This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm. PMID:24697395

  3. Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm

    SciTech Connect

    Sheng, Zheng; Wang, Jun; Zhou, Bihua; Zhou, Shudao

    2014-03-15

    This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.

  4. The "Juggler" algorithm: a hybrid deformable image registration algorithm for adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Xia, Junyi; Chen, Yunmei; Samant, Sanjiv S.

    2007-03-01

    Fast deformable registration can potentially facilitate the clinical implementation of adaptive radiation therapy (ART), which allows for daily organ deformations not accounted for in radiotherapy treatment planning, which typically utilizes a static organ model, to be incorporated into the fractionated treatment. Existing deformable registration algorithms typically utilize a specific diffusion model, and require a large number of iterations to achieve convergence. This limits the online applications of deformable image registration for clinical radiotherapy, such as daily patient setup variations involving organ deformation, where high registration precision is required. We propose a hybrid algorithm, the "Juggler", based on a multi-diffusion model to achieve fast convergence. The Juggler achieves fast convergence by applying two different diffusion models: i) one being optimized quickly for matching high gradient features, i.e. bony anatomies; and ii) the other being optimized for further matching low gradient features, i.e. soft tissue. The regulation of these 2 competing criteria is achieved using a threshold of a similarity measure, such as cross correlation or mutual information. A multi-resolution scheme was applied for faster convergence involving large deformations. Comparisons of the Juggler algorithm were carried out with demons method, accelerated demons method, and free-form deformable registration using 4D CT lung imaging from 5 patients. Based on comparisons of difference images and similarity measure computations, the Juggler produced a superior registration result. It achieved the desired convergence within 30 iterations, and typically required <90sec to register two 3D image sets of size 256×256×40 using a 3.2 GHz PC. This hybrid registration strategy successfully incorporates the benefits of different diffusion models into a single unified model.

  5. MARGA: multispectral adaptive region growing algorithm for brain extraction on axial MRI.

    PubMed

    Roura, Eloy; Oliver, Arnau; Cabezas, Mariano; Vilanova, Joan C; Rovira, Alex; Ramió-Torrentà, Lluís; Lladó, Xavier

    2014-02-01

    Brain extraction, also known as skull stripping, is one of the most important preprocessing steps for many automatic brain image analysis. In this paper we present a new approach called Multispectral Adaptive Region Growing Algorithm (MARGA) to perform the skull stripping process. MARGA is based on a region growing (RG) algorithm which uses the complementary information provided by conventional magnetic resonance images (MRI) such as T1-weighted and T2-weighted to perform the brain segmentation. MARGA can be seen as an extension of the skull stripping method proposed by Park and Lee (2009) [1], enabling their use in both axial views and low quality images. Following the same idea, we first obtain seed regions that are then spread using a 2D RG algorithm which behaves differently in specific zones of the brain. This adaptation allows to deal with the fact that middle MRI slices have better image contrast between the brain and non-brain regions than superior and inferior brain slices where the contrast is smaller. MARGA is validated using three different databases: 10 simulated brains from the BrainWeb database; 2 data sets from the National Alliance for Medical Image Computing (NAMIC) database, the first one consisting in 10 normal brains and 10 brains of schizophrenic patients acquired with a 3T GE scanner, and the second one consisting in 5 brains from lupus patients acquired with a 3T Siemens scanner; and 10 brains of multiple sclerosis patients acquired with a 1.5T scanner. We have qualitatively and quantitatively compared MARGA with the well-known Brain Extraction Tool (BET), Brain Surface Extractor (BSE) and Statistical Parametric Mapping (SPM) approaches. The obtained results demonstrate the validity of MARGA, outperforming the results of those standard techniques. PMID:24380649

  6. An adaptive algorithm for the detection of microcalcifications in simulated low-dose mammography

    NASA Astrophysics Data System (ADS)

    Treiber, O.; Wanninger, F.; Führ, H.; Panzer, W.; Regulla, D.; Winkler, G.

    2003-02-01

    This paper uses the task of microcalcification detection as a benchmark problem to assess the potential for dose reduction in x-ray mammography. We present the results of a newly developed algorithm for detection of microcalcifications as a case study for a typical commercial film-screen system (Kodak Min-R 2000/2190). The first part of the paper deals with the simulation of dose reduction for film-screen mammography based on a physical model of the imaging process. Use of a more sensitive film-screen system is expected to result in additional smoothing of the image. We introduce two different models of that behaviour, called moderate and strong smoothing. We then present an adaptive, model-based microcalcification detection algorithm. Comparing detection results with ground-truth images obtained under the supervision of an expert radiologist allows us to establish the soundness of the detection algorithm. We measure the performance on the dose-reduced images in order to assess the loss of information due to dose reduction. It turns out that the smoothing behaviour has a strong influence on detection rates. For moderate smoothing, a dose reduction by 25% has no serious influence on the detection results, whereas a dose reduction by 50% already entails a marked deterioration of the performance. Strong smoothing generally leads to an unacceptable loss of image quality. The test results emphasize the impact of the more sensitive film-screen system and its characteristics on the problem of assessing the potential for dose reduction in film-screen mammography. The general approach presented in the paper can be adapted to fully digital mammography.

  7. Using Local Stories as a Call to Action on Climate Change Adaptation and Mitigation in Minnesota

    NASA Astrophysics Data System (ADS)

    Phipps, M.

    2015-12-01

    Climate Generation: A Will Steger Legacy and the University of Minnesota's Regional Sustainability Development Partnerships (RSDP) have developed a novel approach to engaging rural Minnesotans on climate change issues. Through the use of personal, local stories about individuals' paths to action to mitigate and or adapt to climate change, Climate Generation and RSDP aim to spur others to action. Minnesota's Changing Climate project includes 12 Climate Convenings throughout rural Minnesota in a range of communities (tourism-based, agrarian, natural resources-based, university towns) to engage local populations in highly local conversations about climate change, its local impacts, and local solutions currently occurring. Climate Generation and RSDP have partnered with Molly Phipps Consulting to evaluate the efficacy of this approach in rural Minnesota. Data include pre and post convening surveys examining participants' current action around climate change, attitudes toward climate change (using questions from Maibach, Roser-Renouf, and Leiserowitz, 2009), and the strength of their social network to support their current and ongoing work toward mitigating and adapting to climate change. Although the Climate Convenings are tailored to each community, all include a resource fair of local organizations already engaging in climate change mitigation and adaptation activities which participants can participate in, a welcome from a trusted local official, a presentation on the science of climate change, sharing of local climate stories, and break-out groups where participants can learn how to get involved in a particular mitigation or adaptation strategy. Preliminary results have been positive: participants feel motivated to work toward mitigating and adapting to climate change, and more local stories have emerged that can be shared in follow-up webinars and on a project website to continue to inspire others to act.

  8. AIDA: an adaptive image deconvolution algorithm with application to multi-frame and three-dimensional data

    PubMed Central

    Hom, Erik F. Y.; Marchis, Franck; Lee, Timothy K.; Haase, Sebastian; Agard, David A.; Sedat, John W.

    2011-01-01

    We describe an adaptive image deconvolution algorithm (AIDA) for myopic deconvolution of multi-frame and three-dimensional data acquired through astronomical and microscopic imaging. AIDA is a reimplementation and extension of the MISTRAL method developed by Mugnier and co-workers and shown to yield object reconstructions with excellent edge preservation and photometric precision [J. Opt. Soc. Am. A 21, 1841 (2004)]. Written in Numerical Python with calls to a robust constrained conjugate gradient method, AIDA has significantly improved run times over the original MISTRAL implementation. Included in AIDA is a scheme to automatically balance maximum-likelihood estimation and object regularization, which significantly decreases the amount of time and effort needed to generate satisfactory reconstructions. We validated AIDA using synthetic data spanning a broad range of signal-to-noise ratios and image types and demonstrated the algorithm to be effective for experimental data from adaptive optics–equipped telescope systems and wide-field microscopy. PMID:17491626

  9. Estimating Position of Mobile Robots From Omnidirectional Vision Using an Adaptive Algorithm.

    PubMed

    Li, Luyang; Liu, Yun-Hui; Wang, Kai; Fang, Mu

    2015-08-01

    This paper presents a novel and simple adaptive algorithm for estimating the position of a mobile robot with high accuracy in an unknown and unstructured environment by fusing images of an omnidirectional vision system with measurements of odometry and inertial sensors. Based on a new derivation where the omnidirectional projection can be linearly parameterized by the positions of the robot and natural feature points, we propose a novel adaptive algorithm, which is similar to the Slotine-Li algorithm in model-based adaptive control, to estimate the robot's position by using the tracked feature points in image sequence, the robot's velocity, and orientation angles measured by odometry and inertial sensors. It is proved that the adaptive algorithm leads to global exponential convergence of the position estimation errors to zero. Simulations and real-world experiments are performed to demonstrate the performance of the proposed algorithm. PMID:25265622

  10. New Approach for IIR Adaptive Lattice Filter Structure Using Simultaneous Perturbation Algorithm

    NASA Astrophysics Data System (ADS)

    Martinez, Jorge Ivan Medina; Nakano, Kazushi; Higuchi, Kohji

    Adaptive infinite impulse response (IIR), or recursive, filters are less attractive mainly because of the stability and the difficulties associated with their adaptive algorithms. Therefore, in this paper the adaptive IIR lattice filters are studied in order to devise algorithms that preserve the stability of the corresponding direct-form schemes. We analyze the local properties of stationary points, a transformation achieving this goal is suggested, which gives algorithms that can be efficiently implemented. Application to the Steiglitz-McBride (SM) and Simple Hyperstable Adaptive Recursive Filter (SHARF) algorithms is presented. Also a modified version of Simultaneous Perturbation Stochastic Approximation (SPSA) is presented in order to get the coefficients in a lattice form more efficiently and with a lower computational cost and complexity. The results are compared with previous lattice versions of these algorithms. These previous lattice versions may fail to preserve the stability of stationary points.

  11. Estimating Position of Mobile Robots From Omnidirectional Vision Using an Adaptive Algorithm.

    PubMed

    Li, Luyang; Liu, Yun-Hui; Wang, Kai; Fang, Mu

    2015-08-01

    This paper presents a novel and simple adaptive algorithm for estimating the position of a mobile robot with high accuracy in an unknown and unstructured environment by fusing images of an omnidirectional vision system with measurements of odometry and inertial sensors. Based on a new derivation where the omnidirectional projection can be linearly parameterized by the positions of the robot and natural feature points, we propose a novel adaptive algorithm, which is similar to the Slotine-Li algorithm in model-based adaptive control, to estimate the robot's position by using the tracked feature points in image sequence, the robot's velocity, and orientation angles measured by odometry and inertial sensors. It is proved that the adaptive algorithm leads to global exponential convergence of the position estimation errors to zero. Simulations and real-world experiments are performed to demonstrate the performance of the proposed algorithm.

  12. Vectorizable algorithms for adaptive schemes for rapid analysis of SSME flows

    NASA Technical Reports Server (NTRS)

    Oden, J. Tinsley

    1987-01-01

    An initial study into vectorizable algorithms for use in adaptive schemes for various types of boundary value problems is described. The focus is on two key aspects of adaptive computational methods which are crucial in the use of such methods (for complex flow simulations such as those in the Space Shuttle Main Engine): the adaptive scheme itself and the applicability of element-by-element matrix computations in a vectorizable format for rapid calculations in adaptive mesh procedures.

  13. An Adaptive Digital Image Watermarking Algorithm Based on Morphological Haar Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Huang, Xiaosheng; Zhao, Sujuan

    At present, much more of the wavelet-based digital watermarking algorithms are based on linear wavelet transform and fewer on non-linear wavelet transform. In this paper, we propose an adaptive digital image watermarking algorithm based on non-linear wavelet transform--Morphological Haar Wavelet Transform. In the algorithm, the original image and the watermark image are decomposed with multi-scale morphological wavelet transform respectively. Then the watermark information is adaptively embedded into the original image in different resolutions, combining the features of Human Visual System (HVS). The experimental results show that our method is more robust and effective than the ordinary wavelet transform algorithms.

  14. Comparative study of adaptive-noise-cancellation algorithms for intrusion detection systems

    SciTech Connect

    Claassen, J.P.; Patterson, M.M.

    1981-01-01

    Some intrusion detection systems are susceptible to nonstationary noise resulting in frequent nuisance alarms and poor detection when the noise is present. Adaptive inverse filtering for single channel systems and adaptive noise cancellation for two channel systems have both demonstrated good potential in removing correlated noise components prior detection. For such noise susceptible systems the suitability of a noise reduction algorithm must be established in a trade-off study weighing algorithm complexity against performance. The performance characteristics of several distinct classes of algorithms are established through comparative computer studies using real signals. The relative merits of the different algorithms are discussed in the light of the nature of intruder and noise signals.

  15. Heart Motion Prediction Based on Adaptive Estimation Algorithms for Robotic Assisted Beating Heart Surgery

    PubMed Central

    Tuna, E. Erdem; Franke, Timothy J.; Bebek, Özkan; Shiose, Akira; Fukamachi, Kiyotaka; Çavuşoğlu, M. Cenk

    2013-01-01

    Robotic assisted beating heart surgery aims to allow surgeons to operate on a beating heart without stabilizers as if the heart is stationary. The robot actively cancels heart motion by closely following a point of interest (POI) on the heart surface—a process called Active Relative Motion Canceling (ARMC). Due to the high bandwidth of the POI motion, it is necessary to supply the controller with an estimate of the immediate future of the POI motion over a prediction horizon in order to achieve sufficient tracking accuracy. In this paper, two least-square based prediction algorithms, using an adaptive filter to generate future position estimates, are implemented and studied. The first method assumes a linear system relation between the consecutive samples in the prediction horizon. On the contrary, the second method performs this parametrization independently for each point over the whole the horizon. The effects of predictor parameters and variations in heart rate on tracking performance are studied with constant and varying heart rate data. The predictors are evaluated using a 3 degrees of freedom test-bed and prerecorded in-vivo motion data. Then, the one-step prediction and tracking performances of the presented approaches are compared with an Extended Kalman Filter predictor. Finally, the essential features of the proposed prediction algorithms are summarized. PMID:23976889

  16. Multiple Adaptive Neuro-Fuzzy Inference System with Automatic Features Extraction Algorithm for Cervical Cancer Recognition

    PubMed Central

    Subhi Al-batah, Mohammad; Mat Isa, Nor Ashidi; Klaib, Mohammad Fadel; Al-Betar, Mohammed Azmi

    2014-01-01

    To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC)) to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE) algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS) is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL) and high-grade squamous intraepithelial lesion (HSIL). The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy. PMID:24707316

  17. Multiple adaptive neuro-fuzzy inference system with automatic features extraction algorithm for cervical cancer recognition.

    PubMed

    Al-batah, Mohammad Subhi; Isa, Nor Ashidi Mat; Klaib, Mohammad Fadel; Al-Betar, Mohammed Azmi

    2014-01-01

    To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC)) to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE) algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS) is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL) and high-grade squamous intraepithelial lesion (HSIL). The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy. PMID:24707316

  18. Binocular self-calibration performed via adaptive genetic algorithm based on laser line imaging

    NASA Astrophysics Data System (ADS)

    Apolinar Muñoz Rodríguez, J.; Mejía Alanís, Francisco Carlos

    2016-07-01

    An accurate technique to perform binocular self-calibration by means of an adaptive genetic algorithm based on a laser line is presented. In this calibration, the genetic algorithm computes the vision parameters through simulated binary crossover (SBX). To carry it out, the genetic algorithm constructs an objective function from the binocular geometry of the laser line projection. Then, the SBX minimizes the objective function via chromosomes recombination. In this algorithm, the adaptive procedure determines the search space via line position to obtain the minimum convergence. Thus, the chromosomes of vision parameters provide the minimization. The approach of the proposed adaptive genetic algorithm is to calibrate and recalibrate the binocular setup without references and physical measurements. This procedure leads to improve the traditional genetic algorithms, which calibrate the vision parameters by means of references and an unknown search space. It is because the proposed adaptive algorithm avoids errors produced by the missing of references. Additionally, the three-dimensional vision is carried out based on the laser line position and vision parameters. The contribution of the proposed algorithm is corroborated by an evaluation of accuracy of binocular calibration, which is performed via traditional genetic algorithms.

  19. A novel algorithm for real-time adaptive signal detection and identification

    SciTech Connect

    Sleefe, G.E.; Ladd, M.D.; Gallegos, D.E.; Sicking, C.W.; Erteza, I.A.

    1998-04-01

    This paper describes a novel digital signal processing algorithm for adaptively detecting and identifying signals buried in noise. The algorithm continually computes and updates the long-term statistics and spectral characteristics of the background noise. Using this noise model, a set of adaptive thresholds and matched digital filters are implemented to enhance and detect signals that are buried in the noise. The algorithm furthermore automatically suppresses coherent noise sources and adapts to time-varying signal conditions. Signal detection is performed in both the time-domain and the frequency-domain, thereby permitting the detection of both broad-band transients and narrow-band signals. The detection algorithm also provides for the computation of important signal features such as amplitude, timing, and phase information. Signal identification is achieved through a combination of frequency-domain template matching and spectral peak picking. The algorithm described herein is well suited for real-time implementation on digital signal processing hardware. This paper presents the theory of the adaptive algorithm, provides an algorithmic block diagram, and demonstrate its implementation and performance with real-world data. The computational efficiency of the algorithm is demonstrated through benchmarks on specific DSP hardware. The applications for this algorithm, which range from vibration analysis to real-time image processing, are also discussed.

  20. Adaptive Load-Balancing Algorithms using Symmetric Broadcast Networks

    NASA Technical Reports Server (NTRS)

    Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    In a distributed computing environment, it is important to ensure that the processor workloads are adequately balanced, Among numerous load-balancing algorithms, a unique approach due to Das and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three efficient SBN-based dynamic load-balancing algorithms, and implement them on an SGI Origin2000. A thorough experimental study with Poisson distributed synthetic loads demonstrates that our algorithms are effective in balancing system load. By optimizing completion time and idle time, the proposed algorithms are shown to compare favorably with several existing approaches.

  1. Efficient Algorithm for Optimizing Adaptive Quantum Metrology Processes

    NASA Astrophysics Data System (ADS)

    Hentschel, Alexander; Sanders, Barry C.

    2011-12-01

    Quantum-enhanced metrology infers an unknown quantity with accuracy beyond the standard quantum limit (SQL). Feedback-based metrological techniques are promising for beating the SQL but devising the feedback procedures is difficult and inefficient. Here we introduce an efficient self-learning swarm-intelligence algorithm for devising feedback-based quantum metrological procedures. Our algorithm can be trained with simulated or real-world trials and accommodates experimental imperfections, losses, and decoherence.

  2. Efficient algorithm for optimizing adaptive quantum metrology processes.

    PubMed

    Hentschel, Alexander; Sanders, Barry C

    2011-12-01

    Quantum-enhanced metrology infers an unknown quantity with accuracy beyond the standard quantum limit (SQL). Feedback-based metrological techniques are promising for beating the SQL but devising the feedback procedures is difficult and inefficient. Here we introduce an efficient self-learning swarm-intelligence algorithm for devising feedback-based quantum metrological procedures. Our algorithm can be trained with simulated or real-world trials and accommodates experimental imperfections, losses, and decoherence.

  3. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm.

    PubMed

    Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang

    2016-01-01

    Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938

  4. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm.

    PubMed

    Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang

    2016-01-01

    Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter.

  5. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm

    PubMed Central

    Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang

    2016-01-01

    Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938

  6. Assessing the Reliability of Computer Adaptive Testing Branching Algorithms Using HyperCAT.

    ERIC Educational Resources Information Center

    Shermis, Mark D.; And Others

    The reliability of four branching algorithms commonly used in computer adaptive testing (CAT) was examined. These algorithms were: (1) maximum likelihood (MLE); (2) Bayesian; (3) modal Bayesian; and (4) crossover. Sixty-eight undergraduate college students were randomly assigned to one of the four conditions using the HyperCard-based CAT program,…

  7. SIMULATION OF DISPERSION OF A POWER PLANT PLUME USING AN ADAPTIVE GRID ALGORITHM. (R827028)

    EPA Science Inventory

    A new dynamic adaptive grid algorithm has been developed for use in air quality modeling. This algorithm uses a higher order numerical scheme––the piecewise parabolic method (PPM)––for computing advective solution fields; a weight function capable o...

  8. SIMULATION OF DISPERSION OF A POWER PLANT PLUME USING AN ADAPTIVE GRID ALGORITHM

    EPA Science Inventory

    A new dynamic adaptive grid algorithm has been developed for use in air quality modeling. This algorithm uses a higher order numerical scheme?the piecewise parabolic method (PPM)?for computing advective solution fields; a weight function capable of promoting grid node clustering ...

  9. SIMULATION OF A REACTING POLLUTANT PUFF USING AN ADAPTIVE GRID ALGORITHM

    EPA Science Inventory

    A new dynamic solution adaptive grid algorithm DSAGA-PPM, has been developed for use in air quality modeling. In this paper, this algorithm is described and evaluated with a test problem. Cone-shaped distributions of various chemical species undergoing chemical reactions are rota...

  10. Research of adaptive threshold edge detection algorithm based on statistics canny operator

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Wang, Huaisuo; Huang, Hua

    2015-12-01

    The traditional Canny operator cannot get the optimal threshold in different scene, on this foundation, an improved Canny edge detection algorithm based on adaptive threshold is proposed. The result of the experiment pictures indicate that the improved algorithm can get responsible threshold, and has the better accuracy and precision in the edge detection.

  11. Parallelization of an Adaptive Multigrid Algorithm for Fast Solution of Finite Element Structural Problems

    SciTech Connect

    Crane, N K; Parsons, I D; Hjelmstad, K D

    2002-03-21

    Adaptive mesh refinement selectively subdivides the elements of a coarse user supplied mesh to produce a fine mesh with reduced discretization error. Effective use of adaptive mesh refinement coupled with an a posteriori error estimator can produce a mesh that solves a problem to a given discretization error using far fewer elements than uniform refinement. A geometric multigrid solver uses increasingly finer discretizations of the same geometry to produce a very fast and numerically scalable solution to a set of linear equations. Adaptive mesh refinement is a natural method for creating the different meshes required by the multigrid solver. This paper describes the implementation of a scalable adaptive multigrid method on a distributed memory parallel computer. Results are presented that demonstrate the parallel performance of the methodology by solving a linear elastic rocket fuel deformation problem on an SGI Origin 3000. Two challenges must be met when implementing adaptive multigrid algorithms on massively parallel computing platforms. First, although the fine mesh for which the solution is desired may be large and scaled to the number of processors, the multigrid algorithm must also operate on much smaller fixed-size data sets on the coarse levels. Second, the mesh must be repartitioned as it is adapted to maintain good load balancing. In an adaptive multigrid algorithm, separate mesh levels may require separate partitioning, further complicating the load balance problem. This paper shows that, when the proper optimizations are made, parallel adaptive multigrid algorithms perform well on machines with several hundreds of processors.

  12. Mean-shift tracking algorithm based on adaptive fusion of multi-feature

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Xiao, Yanghui; Wang, Ende; Feng, Junhui

    2015-10-01

    The classic mean-shift tracking algorithm has achieved success in the field of computer vision because of its speediness and efficiency. However, classic mean-shift tracking algorithm would fail to track in some complicated conditions such as some parts of the target are occluded, little color difference between the target and background exists, or sudden change of illumination and so on. In order to solve the problems, an improved algorithm is proposed based on the mean-shift tracking algorithm and adaptive fusion of features. Color, edges and corners of the target are used to describe the target in the feature space, and a method for measuring the discrimination of various features is presented to make feature selection adaptive. Then the improved mean-shift tracking algorithm is introduced based on the fusion of various features. For the purpose of solving the problem that mean-shift tracking algorithm with the single color feature is vulnerable to sudden change of illumination, we eliminate the effects by the fusion of affine illumination model and color feature space which ensures the correctness and stability of target tracking in that condition. Using a group of videos to test the proposed algorithm, the results show that the tracking correctness and stability of this algorithm are better than the mean-shift tracking algorithm with single feature space. Furthermore the proposed algorithm is more robust than the classic algorithm in the conditions of occlusion, target similar with background or illumination change.

  13. Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.

    PubMed

    Mei, Gang; Xu, Nengxiong; Xu, Liangliang

    2016-01-01

    This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm. PMID:27610308

  14. Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.

    PubMed

    Mei, Gang; Xu, Nengxiong; Xu, Liangliang

    2016-01-01

    This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm.

  15. Stochastic Leader Gravitational Search Algorithm for Enhanced Adaptive Beamforming Technique

    PubMed Central

    Darzi, Soodabeh; Islam, Mohammad Tariqul; Tiong, Sieh Kiong; Kibria, Salehin; Singh, Mandeep

    2015-01-01

    In this paper, stochastic leader gravitational search algorithm (SL-GSA) based on randomized k is proposed. Standard GSA (SGSA) utilizes the best agents without any randomization, thus it is more prone to converge at suboptimal results. Initially, the new approach randomly choses k agents from the set of all agents to improve the global search ability. Gradually, the set of agents is reduced by eliminating the agents with the poorest performances to allow rapid convergence. The performance of the SL-GSA was analyzed for six well-known benchmark functions, and the results are compared with SGSA and some of its variants. Furthermore, the SL-GSA is applied to minimum variance distortionless response (MVDR) beamforming technique to ensure compatibility with real world optimization problems. The proposed algorithm demonstrates superior convergence rate and quality of solution for both real world problems and benchmark functions compared to original algorithm and other recent variants of SGSA. PMID:26552032

  16. Establishing a Dynamic Self-Adaptation Learning Algorithm of the BP Neural Network and Its Applications

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng; Xiang, Suying; Zhu, Pengfei; Wu, Min

    2015-12-01

    In order to avoid the inherent deficiencies of the traditional BP neural network, such as slow convergence speed, that easily leading to local minima, poor generalization ability and difficulty in determining the network structure, the dynamic self-adaptive learning algorithm of the BP neural network is put forward to improve the function of the BP neural network. The new algorithm combines the merit of principal component analysis, particle swarm optimization, correlation analysis and self-adaptive model, hence can effectively solve the problems of selecting structural parameters, initial connection weights and thresholds and learning rates of the BP neural network. This new algorithm not only reduces the human intervention, optimizes the topological structures of BP neural networks and improves the network generalization ability, but also accelerates the convergence speed of a network, avoids trapping into local minima, and enhances network adaptation ability and prediction ability. The dynamic self-adaptive learning algorithm of the BP neural network is used to forecast the total retail sale of consumer goods of Sichuan Province, China. Empirical results indicate that the new algorithm is superior to the traditional BP network algorithm in predicting accuracy and time consumption, which shows the feasibility and effectiveness of the new algorithm.

  17. Formulation and implementation of nonstationary adaptive estimation algorithm with applications to air-data reconstruction

    NASA Technical Reports Server (NTRS)

    Whitmore, S. A.

    1985-01-01

    The dynamics model and data sources used to perform air-data reconstruction are discussed, as well as the Kalman filter. The need for adaptive determination of the noise statistics of the process is indicated. The filter innovations are presented as a means of developing the adaptive criterion, which is based on the true mean and covariance of the filter innovations. A method for the numerical approximation of the mean and covariance of the filter innovations is presented. The algorithm as developed is applied to air-data reconstruction for the space shuttle, and data obtained from the third landing are presented. To verify the performance of the adaptive algorithm, the reconstruction is also performed using a constant covariance Kalman filter. The results of the reconstructions are compared, and the adaptive algorithm exhibits better performance.

  18. Simple and Effective Algorithms: Computer-Adaptive Testing.

    ERIC Educational Resources Information Center

    Linacre, John Michael

    Computer-adaptive testing (CAT) allows improved security, greater scoring accuracy, shorter testing periods, quicker availability of results, and reduced guessing and other undesirable test behavior. Simple approaches can be applied by the classroom teacher, or other content specialist, who possesses simple computer equipment and elementary…

  19. Adaptive inpainting algorithm based on DCT induced wavelet regularization.

    PubMed

    Li, Yan-Ran; Shen, Lixin; Suter, Bruce W

    2013-02-01

    In this paper, we propose an image inpainting optimization model whose objective function is a smoothed l(1) norm of the weighted nondecimated discrete cosine transform (DCT) coefficients of the underlying image. By identifying the objective function of the proposed model as a sum of a differentiable term and a nondifferentiable term, we present a basic algorithm inspired by Beck and Teboulle's recent work on the model. Based on this basic algorithm, we propose an automatic way to determine the weights involved in the model and update them in each iteration. The DCT as an orthogonal transform is used in various applications. We view the rows of a DCT matrix as the filters associated with a multiresolution analysis. Nondecimated wavelet transforms with these filters are explored in order to analyze the images to be inpainted. Our numerical experiments verify that under the proposed framework, the filters from a DCT matrix demonstrate promise for the task of image inpainting.

  20. An adaptive grid-based all hexahedral meshing algorithm based on 2-refinement.

    SciTech Connect

    Edgel, Jared; Benzley, Steven E.; Owen, Steven James

    2010-08-01

    Most adaptive mesh generation algorithms employ a 3-refinement method. This method, although easy to employ, provides a mesh that is often too coarse in some areas and over refined in other areas. Because this method generates 27 new hexes in place of a single hex, there is little control on mesh density. This paper presents an adaptive all-hexahedral grid-based meshing algorithm that employs a 2-refinement method. 2-refinement is based on dividing the hex to be refined into eight new hexes. This method allows a greater control on mesh density when compared to a 3-refinement procedure. This adaptive all-hexahedral meshing algorithm provides a mesh that is efficient for analysis by providing a high element density in specific locations and a reduced mesh density in other areas. In addition, this tool can be effectively used for inside-out hexahedral grid based schemes, using Cartesian structured grids for the base mesh, which have shown great promise in accommodating automatic all-hexahedral algorithms. This adaptive all-hexahedral grid-based meshing algorithm employs a 2-refinement insertion method. This allows greater control on mesh density when compared to 3-refinement methods. This algorithm uses a two layer transition zone to increase element quality and keeps transitions from lower to higher mesh densities smooth. Templates were introduced to allow both convex and concave refinement.

  1. Simulation of Biochemical Pathway Adaptability Using Evolutionary Algorithms

    SciTech Connect

    Bosl, W J

    2005-01-26

    The systems approach to genomics seeks quantitative and predictive descriptions of cells and organisms. However, both the theoretical and experimental methods necessary for such studies still need to be developed. We are far from understanding even the simplest collective behavior of biomolecules, cells or organisms. A key aspect to all biological problems, including environmental microbiology, evolution of infectious diseases, and the adaptation of cancer cells is the evolvability of genomes. This is particularly important for Genomes to Life missions, which tend to focus on the prospect of engineering microorganisms to achieve desired goals in environmental remediation and climate change mitigation, and energy production. All of these will require quantitative tools for understanding the evolvability of organisms. Laboratory biodefense goals will need quantitative tools for predicting complicated host-pathogen interactions and finding counter-measures. In this project, we seek to develop methods to simulate how external and internal signals cause the genetic apparatus to adapt and organize to produce complex biochemical systems to achieve survival. This project is specifically directed toward building a computational methodology for simulating the adaptability of genomes. This project investigated the feasibility of using a novel quantitative approach to studying the adaptability of genomes and biochemical pathways. This effort was intended to be the preliminary part of a larger, long-term effort between key leaders in computational and systems biology at Harvard University and LLNL, with Dr. Bosl as the lead PI. Scientific goals for the long-term project include the development and testing of new hypotheses to explain the observed adaptability of yeast biochemical pathways when the myosin-II gene is deleted and the development of a novel data-driven evolutionary computation as a way to connect exploratory computational simulation with hypothesis

  2. Adaptive merit function in SPGD algorithm for beam combining

    NASA Astrophysics Data System (ADS)

    Yang, Guo-qing; Liu, Li-sheng; Jiang, Zhen-hua; Wang, Ting-feng; Guo, Jin

    2016-09-01

    The beam pointing is the most crucial issue for beam combining to achieve high energy laser output. In order to meet the turbulence situation, a beam pointing method that cooperates with the stochastic parallel gradient descent (SPGD) algorithm is proposed. The power-in-the-bucket ( PIB) is chosen as the merit function, and its radius changes gradually during the correction process. The linear radius and the exponential radius are simulated. The results show that the exponential radius has great promise for beam pointing.

  3. Sequential Insertion Heuristic with Adaptive Bee Colony Optimisation Algorithm for Vehicle Routing Problem with Time Windows.

    PubMed

    Jawarneh, Sana; Abdullah, Salwani

    2015-01-01

    This paper presents a bee colony optimisation (BCO) algorithm to tackle the vehicle routing problem with time window (VRPTW). The VRPTW involves recovering an ideal set of routes for a fleet of vehicles serving a defined number of customers. The BCO algorithm is a population-based algorithm that mimics the social communication patterns of honeybees in solving problems. The performance of the BCO algorithm is dependent on its parameters, so the online (self-adaptive) parameter tuning strategy is used to improve its effectiveness and robustness. Compared with the basic BCO, the adaptive BCO performs better. Diversification is crucial to the performance of the population-based algorithm, but the initial population in the BCO algorithm is generated using a greedy heuristic, which has insufficient diversification. Therefore the ways in which the sequential insertion heuristic (SIH) for the initial population drives the population toward improved solutions are examined. Experimental comparisons indicate that the proposed adaptive BCO-SIH algorithm works well across all instances and is able to obtain 11 best results in comparison with the best-known results in the literature when tested on Solomon's 56 VRPTW 100 customer instances. Also, a statistical test shows that there is a significant difference between the results.

  4. Sequential Insertion Heuristic with Adaptive Bee Colony Optimisation Algorithm for Vehicle Routing Problem with Time Windows.

    PubMed

    Jawarneh, Sana; Abdullah, Salwani

    2015-01-01

    This paper presents a bee colony optimisation (BCO) algorithm to tackle the vehicle routing problem with time window (VRPTW). The VRPTW involves recovering an ideal set of routes for a fleet of vehicles serving a defined number of customers. The BCO algorithm is a population-based algorithm that mimics the social communication patterns of honeybees in solving problems. The performance of the BCO algorithm is dependent on its parameters, so the online (self-adaptive) parameter tuning strategy is used to improve its effectiveness and robustness. Compared with the basic BCO, the adaptive BCO performs better. Diversification is crucial to the performance of the population-based algorithm, but the initial population in the BCO algorithm is generated using a greedy heuristic, which has insufficient diversification. Therefore the ways in which the sequential insertion heuristic (SIH) for the initial population drives the population toward improved solutions are examined. Experimental comparisons indicate that the proposed adaptive BCO-SIH algorithm works well across all instances and is able to obtain 11 best results in comparison with the best-known results in the literature when tested on Solomon's 56 VRPTW 100 customer instances. Also, a statistical test shows that there is a significant difference between the results. PMID:26132158

  5. Sequential Insertion Heuristic with Adaptive Bee Colony Optimisation Algorithm for Vehicle Routing Problem with Time Windows

    PubMed Central

    Jawarneh, Sana; Abdullah, Salwani

    2015-01-01

    This paper presents a bee colony optimisation (BCO) algorithm to tackle the vehicle routing problem with time window (VRPTW). The VRPTW involves recovering an ideal set of routes for a fleet of vehicles serving a defined number of customers. The BCO algorithm is a population-based algorithm that mimics the social communication patterns of honeybees in solving problems. The performance of the BCO algorithm is dependent on its parameters, so the online (self-adaptive) parameter tuning strategy is used to improve its effectiveness and robustness. Compared with the basic BCO, the adaptive BCO performs better. Diversification is crucial to the performance of the population-based algorithm, but the initial population in the BCO algorithm is generated using a greedy heuristic, which has insufficient diversification. Therefore the ways in which the sequential insertion heuristic (SIH) for the initial population drives the population toward improved solutions are examined. Experimental comparisons indicate that the proposed adaptive BCO-SIH algorithm works well across all instances and is able to obtain 11 best results in comparison with the best-known results in the literature when tested on Solomon’s 56 VRPTW 100 customer instances. Also, a statistical test shows that there is a significant difference between the results. PMID:26132158

  6. Adaptive Sampling Algorithms for Probabilistic Risk Assessment of Nuclear Simulations

    SciTech Connect

    Diego Mandelli; Dan Maljovec; Bei Wang; Valerio Pascucci; Peer-Timo Bremer

    2013-09-01

    Nuclear simulations are often computationally expensive, time-consuming, and high-dimensional with respect to the number of input parameters. Thus exploring the space of all possible simulation outcomes is infeasible using finite computing resources. During simulation-based probabilistic risk analysis, it is important to discover the relationship between a potentially large number of input parameters and the output of a simulation using as few simulation trials as possible. This is a typical context for performing adaptive sampling where a few observations are obtained from the simulation, a surrogate model is built to represent the simulation space, and new samples are selected based on the model constructed. The surrogate model is then updated based on the simulation results of the sampled points. In this way, we attempt to gain the most information possible with a small number of carefully selected sampled points, limiting the number of expensive trials needed to understand features of the simulation space. We analyze the specific use case of identifying the limit surface, i.e., the boundaries in the simulation space between system failure and system success. In this study, we explore several techniques for adaptively sampling the parameter space in order to reconstruct the limit surface. We focus on several adaptive sampling schemes. First, we seek to learn a global model of the entire simulation space using prediction models or neighborhood graphs and extract the limit surface as an iso-surface of the global model. Second, we estimate the limit surface by sampling in the neighborhood of the current estimate based on topological segmentations obtained locally. Our techniques draw inspirations from topological structure known as the Morse-Smale complex. We highlight the advantages and disadvantages of using a global prediction model versus local topological view of the simulation space, comparing several different strategies for adaptive sampling in both

  7. A geometry-based adaptive unstructured grid generation algorithm for complex geological media

    NASA Astrophysics Data System (ADS)

    Bahrainian, Seyed Saied; Dezfuli, Alireza Daneh

    2014-07-01

    In this paper a novel unstructured grid generation algorithm is presented that considers the effect of geological features and well locations in grid resolution. The proposed grid generation algorithm presents a strategy for definition and construction of an initial grid based on the geological model, geometry adaptation of geological features, and grid resolution control. The algorithm is applied to seismotectonic map of the Masjed-i-Soleiman reservoir. Comparison of grid results with the “Triangle” program shows a more suitable permeability contrast. Immiscible two-phase flow solutions are presented for a fractured porous media test case using different grid resolutions. Adapted grid on the fracture geometry gave identical results with that of a fine grid. The adapted grid employed 88.2% less CPU time when compared to the solutions obtained by the fine grid.

  8. An adaptive numeric predictor-corrector guidance algorithm for atmospheric entry vehicles

    NASA Astrophysics Data System (ADS)

    Spratlin, Kenneth Milton

    1987-05-01

    An adaptive numeric predictor-corrector guidance is developed for atmospheric entry vehicles which utilize lift to achieve maximum footprint capability. Applicability of the guidance design to vehicles with a wide range of performance capabilities is desired so as to reduce the need for algorithm redesign with each new vehicle. Adaptability is desired to minimize mission-specific analysis and planning. The guidance algorithm motivation and design are presented. Performance is assessed for application of the algorithm to the NASA Entry Research Vehicle (ERV). The dispersions the guidance must be designed to handle are presented. The achievable operational footprint for expected worst-case dispersions is presented. The algorithm performs excellently for the expected dispersions and captures most of the achievable footprint.

  9. Detection of Human Impacts by an Adaptive Energy-Based Anisotropic Algorithm

    PubMed Central

    Prado-Velasco, Manuel; Ortiz Marín, Rafael; del Rio Cidoncha, Gloria

    2013-01-01

    Boosted by health consequences and the cost of falls in the elderly, this work develops and tests a novel algorithm and methodology to detect human impacts that will act as triggers of a two-layer fall monitor. The two main requirements demanded by socio-healthcare providers—unobtrusiveness and reliability—defined the objectives of the research. We have demonstrated that a very agile, adaptive, and energy-based anisotropic algorithm can provide 100% sensitivity and 78% specificity, in the task of detecting impacts under demanding laboratory conditions. The algorithm works together with an unsupervised real-time learning technique that addresses the adaptive capability, and this is also presented. The work demonstrates the robustness and reliability of our new algorithm, which will be the basis of a smart falling monitor. This is shown in this work to underline the relevance of the results. PMID:24157505

  10. Performance study of LMS based adaptive algorithms for unknown system identification

    SciTech Connect

    Javed, Shazia; Ahmad, Noor Atinah

    2014-07-10

    Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.

  11. Performance study of LMS based adaptive algorithms for unknown system identification

    NASA Astrophysics Data System (ADS)

    Javed, Shazia; Ahmad, Noor Atinah

    2014-07-01

    Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.

  12. A novel pseudoderivative-based mutation operator for real-coded adaptive genetic algorithms

    PubMed Central

    Kanwal, Maxinder S; Ramesh, Avinash S; Huang, Lauren A

    2013-01-01

    Recent development of large databases, especially those in genetics and proteomics, is pushing the development of novel computational algorithms that implement rapid and accurate search strategies. One successful approach has been to use artificial intelligence and methods, including pattern recognition (e.g. neural networks) and optimization techniques (e.g. genetic algorithms). The focus of this paper is on optimizing the design of genetic algorithms by using an adaptive mutation rate that is derived from comparing the fitness values of successive generations. We propose a novel pseudoderivative-based mutation rate operator designed to allow a genetic algorithm to escape local optima and successfully continue to the global optimum. Once proven successful, this algorithm can be implemented to solve real problems in neurology and bioinformatics. As a first step towards this goal, we tested our algorithm on two 3-dimensional surfaces with multiple local optima, but only one global optimum, as well as on the N-queens problem, an applied problem in which the function that maps the curve is implicit. For all tests, the adaptive mutation rate allowed the genetic algorithm to find the global optimal solution, performing significantly better than other search methods, including genetic algorithms that implement fixed mutation rates. PMID:24627784

  13. Adaptive control and noise suppression by a variable-gain gradient algorithm

    NASA Technical Reports Server (NTRS)

    Merhav, S. J.; Mehta, R. S.

    1987-01-01

    An adaptive control system based on normalized LMS filters is investigated. The finite impulse response of the nonparametric controller is adaptively estimated using a given reference model. Specifically, the following issues are addressed: The stability of the closed loop system is analyzed and heuristically established. Next, the adaptation process is studied for piecewise constant plant parameters. It is shown that by introducing a variable-gain in the gradient algorithm, a substantial reduction in the LMS adaptation rate can be achieved. Finally, process noise at the plant output generally causes a biased estimate of the controller. By introducing a noise suppression scheme, this bias can be substantially reduced and the response of the adapted system becomes very close to that of the reference model. Extensive computer simulations validate these and demonstrate assertions that the system can rapidly adapt to random jumps in plant parameters.

  14. Adaptation algorithms for satellite communication systems equipped with hybrid reflector antennas

    NASA Astrophysics Data System (ADS)

    Kartsan, I. N.; Zelenkov, P. V.; Tyapkin, V. N.; Dmitriev, D. D.; Goncharov, A. E.

    2015-10-01

    This paper reviews adaptation algorithms influenced by active interferences in satellite communication systems. A multi-beam antenna is suggested as an adaptive system; it is built on the basis of a hybrid reflector antenna with a 19-element array feed element, which incorporates a modified algorithm for radiation pattern synthesis used for suppressing targeted interferences. As a criterion for this synthesis, antenna gains are used at fixed points. As a result, the size of the objective function and time required for the synthesis can be significantly limited.

  15. Quadratic adaptive algorithm for solving cardiac action potential models.

    PubMed

    Chen, Min-Hung; Chen, Po-Yuan; Luo, Ching-Hsing

    2016-10-01

    An adaptive integration method is proposed for computing cardiac action potential models accurately and efficiently. Time steps are adaptively chosen by solving a quadratic formula involving the first and second derivatives of the membrane action potential. To improve the numerical accuracy, we devise an extremum-locator (el) function to predict the local extremum when approaching the peak amplitude of the action potential. In addition, the time step restriction (tsr) technique is designed to limit the increase in time steps, and thus prevent the membrane potential from changing abruptly. The performance of the proposed method is tested using the Luo-Rudy phase 1 (LR1), dynamic (LR2), and human O'Hara-Rudy dynamic (ORd) ventricular action potential models, and the Courtemanche atrial model incorporating a Markov sodium channel model. Numerical experiments demonstrate that the action potential generated using the proposed method is more accurate than that using the traditional Hybrid method, especially near the peak region. The traditional Hybrid method may choose large time steps near to the peak region, and sometimes causes the action potential to become distorted. In contrast, the proposed new method chooses very fine time steps in the peak region, but large time steps in the smooth region, and the profiles are smoother and closer to the reference solution. In the test on the stiff Markov ionic channel model, the Hybrid blows up if the allowable time step is set to be greater than 0.1ms. In contrast, our method can adjust the time step size automatically, and is stable. Overall, the proposed method is more accurate than and as efficient as the traditional Hybrid method, especially for the human ORd model. The proposed method shows improvement for action potentials with a non-smooth morphology, and it needs further investigation to determine whether the method is helpful during propagation of the action potential. PMID:27639239

  16. Comparison of adaptive algorithms for the control of tonal disturbances in mechanical systems

    NASA Astrophysics Data System (ADS)

    Zilletti, M.; Elliott, S. J.; Cheer, J.

    2016-09-01

    This paper presents a study on the performance of adaptive control algorithms designed to reduce the vibration of mechanical systems excited by a harmonic disturbance. The mechanical system consists of a mass suspended on a spring and a damper. The system is equipped with a force actuator in parallel with the suspension. The control signal driving the actuator is generated by adjusting the amplitude and phase of a sinusoidal reference signal at the same frequency as the excitation. An adaptive feedforward control algorithm is used to adapt the amplitude and phase of the control signal, to minimise the mean square velocity of the mass. Two adaptation strategies are considered in which the control signal is either updated after each period of the oscillation or at every time sample. The first strategy is traditionally used in vibration control in helicopters for example; the second strategy is normally referred to as the filtered-x least mean square algorithm and is often used to control engine noise in cars. The two adaptation strategies are compared through a parametric study, which investigates the influence of the properties of both the mechanical system and the control system on the convergence speed of the two algorithms.

  17. Segmentation of heterogeneous or small FDG PET positive tissue based on a 3D-locally adaptive random walk algorithm.

    PubMed

    Onoma, D P; Ruan, S; Thureau, S; Nkhali, L; Modzelewski, R; Monnehan, G A; Vera, P; Gardin, I

    2014-12-01

    A segmentation algorithm based on the random walk (RW) method, called 3D-LARW, has been developed to delineate small tumors or tumors with a heterogeneous distribution of FDG on PET images. Based on the original algorithm of RW [1], we propose an improved approach using new parameters depending on the Euclidean distance between two adjacent voxels instead of a fixed one and integrating probability densities of labels into the system of linear equations used in the RW. These improvements were evaluated and compared with the original RW method, a thresholding with a fixed value (40% of the maximum in the lesion), an adaptive thresholding algorithm on uniform spheres filled with FDG and FLAB method, on simulated heterogeneous spheres and on clinical data (14 patients). On these three different data, 3D-LARW has shown better segmentation results than the original RW algorithm and the three other methods. As expected, these improvements are more pronounced for the segmentation of small or tumors having heterogeneous FDG uptake.

  18. Classical and adaptive control algorithms for the solar array pointing system of the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Ianculescu, G. D.; Klop, J. J.

    1992-01-01

    Classical and adaptive control algorithms for the solar array pointing system of the Space Station Freedom are designed using a continuous rigid body model of the solar array gimbal assembly containing both linear and nonlinear dynamics due to various friction components. The robustness of the design solution is examined by performing a series of sensitivity analysis studies. Adaptive control strategies are examined in order to compensate for the unfavorable effect of static nonlinearities, such as dead-zone uncertainties.

  19. Evaluation of an adaptive filtering algorithm for CT cardiac imaging with EKG modulated tube current

    NASA Astrophysics Data System (ADS)

    Li, Jianying; Hsieh, Jiang; Mohr, Kelly; Okerlund, Darin

    2005-04-01

    We have developed an adaptive filtering algorithm for cardiac CT scans with EKG-modulated tube current to optimize resolution and noise for different cardiac phases and to provide safety net for cases where end-systole phase is used for coronary imaging. This algorithm has been evaluated using patient cardiac CT scans where lower tube currents are used for the systolic phases. In this paper, we present the evaluation results. The results demonstrated that with the use of the proposed algorithm, we could improve image quality for all cardiac phases, while providing greater noise and streak artifact reduction for systole phases where lower CT dose were used.

  20. Adaptive randomized algorithms for analysis and design of control systems under uncertain environments

    NASA Astrophysics Data System (ADS)

    Chen, Xinjia

    2015-05-01

    We consider the general problem of analysis and design of control systems in the presence of uncertainties. We treat uncertainties that affect a control system as random variables. The performance of the system is measured by the expectation of some derived random variables, which are typically bounded. We develop adaptive sequential randomized algorithms for estimating and optimizing the expectation of such bounded random variables with guaranteed accuracy and confidence level. These algorithms can be applied to overcome the conservatism and computational complexity in the analysis and design of controllers to be used in uncertain environments. We develop methods for investigating the optimality and computational complexity of such algorithms.

  1. Adaptive algorithm for active control of high-amplitude acoustic field in resonator

    NASA Astrophysics Data System (ADS)

    Červenka, M.; Bednařík, M.; Koníček, P.

    2008-06-01

    This work is concerned with suppression of nonlinear effects in piston-driven acoustic resonators by means of two-frequency driving technique. An iterative adaptive algorithm is proposed to calculate parameters of the driving signal in order that amplitude of the second harmonics of the acoustic pressure is minimized. Functionality of the algorithm is verified firstly by means of numerical model and secondly, it is used in real computer-controlled experiment. The numerical and experimental results show that the proposed algorithm can be successfully used for generation of high-amplitude shock-free acoustic field in resonators.

  2. Multiobjective Image Color Quantization Algorithm Based on Self-Adaptive Hybrid Differential Evolution

    PubMed Central

    Xia, Xuewen

    2016-01-01

    In recent years, some researchers considered image color quantization as a single-objective problem and applied heuristic algorithms to solve it. This paper establishes a multiobjective image color quantization model with intracluster distance and intercluster separation as its objectives. Inspired by a multipopulation idea, a multiobjective image color quantization algorithm based on self-adaptive hybrid differential evolution (MoDE-CIQ) is then proposed to solve this model. Two numerical experiments on four common test images are conducted to analyze the effectiveness and competitiveness of the multiobjective model and the proposed algorithm. PMID:27738423

  3. An Adaptive Weighting Algorithm for Interpolating the Soil Potassium Content

    PubMed Central

    Liu, Wei; Du, Peijun; Zhao, Zhuowen; Zhang, Lianpeng

    2016-01-01

    The concept of spatial interpolation is important in the soil sciences. However, the use of a single global interpolation model is often limited by certain conditions (e.g., terrain complexity), which leads to distorted interpolation results. Here we present a method of adaptive weighting combined environmental variables for soil properties interpolation (AW-SP) to improve accuracy. Using various environmental variables, AW-SP was used to interpolate soil potassium content in Qinghai Lake Basin. To evaluate AW-SP performance, we compared it with that of inverse distance weighting (IDW), ordinary kriging, and OK combined with different environmental variables. The experimental results showed that the methods combined with environmental variables did not always improve prediction accuracy even if there was a strong correlation between the soil properties and environmental variables. However, compared with IDW, OK, and OK combined with different environmental variables, AW-SP is more stable and has lower mean absolute and root mean square errors. Furthermore, the AW-SP maps provided improved details of soil potassium content and provided clearer boundaries to its spatial distribution. In conclusion, AW-SP can not only reduce prediction errors, it also accounts for the distribution and contributions of environmental variables, making the spatial interpolation of soil potassium content more reasonable. PMID:27051998

  4. An Adaptive Weighting Algorithm for Interpolating the Soil Potassium Content

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Du, Peijun; Zhao, Zhuowen; Zhang, Lianpeng

    2016-04-01

    The concept of spatial interpolation is important in the soil sciences. However, the use of a single global interpolation model is often limited by certain conditions (e.g., terrain complexity), which leads to distorted interpolation results. Here we present a method of adaptive weighting combined environmental variables for soil properties interpolation (AW-SP) to improve accuracy. Using various environmental variables, AW-SP was used to interpolate soil potassium content in Qinghai Lake Basin. To evaluate AW-SP performance, we compared it with that of inverse distance weighting (IDW), ordinary kriging, and OK combined with different environmental variables. The experimental results showed that the methods combined with environmental variables did not always improve prediction accuracy even if there was a strong correlation between the soil properties and environmental variables. However, compared with IDW, OK, and OK combined with different environmental variables, AW-SP is more stable and has lower mean absolute and root mean square errors. Furthermore, the AW-SP maps provided improved details of soil potassium content and provided clearer boundaries to its spatial distribution. In conclusion, AW-SP can not only reduce prediction errors, it also accounts for the distribution and contributions of environmental variables, making the spatial interpolation of soil potassium content more reasonable.

  5. Adaptive motion artifact reducing algorithm for wrist photoplethysmography application

    NASA Astrophysics Data System (ADS)

    Zhao, Jingwei; Wang, Guijin; Shi, Chenbo

    2016-04-01

    Photoplethysmography (PPG) technology is widely used in wearable heart pulse rate monitoring. It might reveal the potential risks of heart condition and cardiopulmonary function by detecting the cardiac rhythms in physical exercise. However the quality of wrist photoelectric signal is very sensitive to motion artifact since the thicker tissues and the fewer amount of capillaries. Therefore, motion artifact is the major factor that impede the heart rate measurement in the high intensity exercising. One accelerometer and three channels of light with different wavelengths are used in this research to analyze the coupled form of motion artifact. A novel approach is proposed to separate the pulse signal from motion artifact by exploiting their mixing ratio in different optical paths. There are four major steps of our method: preprocessing, motion artifact estimation, adaptive filtering and heart rate calculation. Five healthy young men are participated in the experiment. The speeder in the treadmill is configured as 12km/h, and all subjects would run for 3-10 minutes by swinging the arms naturally. The final result is compared with chest strap. The average of mean square error (MSE) is less than 3 beats per minute (BPM/min). Proposed method performed well in intense physical exercise and shows the great robustness to individuals with different running style and posture.

  6. An adaptive ant colony system algorithm for continuous-space optimization problems.

    PubMed

    Li, Yan-jun; Wu, Tie-jun

    2003-01-01

    Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is proposed in this paper to tackle continuous-space optimization problems, using a new objective-function-based heuristic pheromone assignment approach for pheromone update to filtrate solution candidates. Global optimal solutions can be reached more rapidly by self-adjusting the path searching behaviors of the ants according to objective values. The performance of the proposed algorithm is compared with a basic ant colony algorithm and a Square Quadratic Programming approach in solving two benchmark problems with multiple extremes. The results indicated that the efficiency and reliability of the proposed algorithm were greatly improved. PMID:12656341

  7. Modified fast frequency acquisition via adaptive least squares algorithm

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra (Inventor)

    1992-01-01

    A method and the associated apparatus for estimating the amplitude, frequency, and phase of a signal of interest are presented. The method comprises the following steps: (1) inputting the signal of interest; (2) generating a reference signal with adjustable amplitude, frequency and phase at an output thereof; (3) mixing the signal of interest with the reference signal and a signal 90 deg out of phase with the reference signal to provide a pair of quadrature sample signals comprising respectively a difference between the signal of interest and the reference signal and a difference between the signal of interest and the signal 90 deg out of phase with the reference signal; (4) using the pair of quadrature sample signals to compute estimates of the amplitude, frequency, and phase of an error signal comprising the difference between the signal of interest and the reference signal employing a least squares estimation; (5) adjusting the amplitude, frequency, and phase of the reference signal from the numerically controlled oscillator in a manner which drives the error signal towards zero; and (6) outputting the estimates of the amplitude, frequency, and phase of the error signal in combination with the reference signal to produce a best estimate of the amplitude, frequency, and phase of the signal of interest. The preferred method includes the step of providing the error signal as a real time confidence measure as to the accuracy of the estimates wherein the closer the error signal is to zero, the higher the probability that the estimates are accurate. A matrix in the estimation algorithm provides an estimate of the variance of the estimation error.

  8. STAR adaptation of QR algorithm. [program for solving over-determined systems of linear equations

    NASA Technical Reports Server (NTRS)

    Shah, S. N.

    1981-01-01

    The QR algorithm used on a serial computer and executed on the Control Data Corporation 6000 Computer was adapted to execute efficiently on the Control Data STAR-100 computer. How the scalar program was adapted for the STAR-100 and why these adaptations yielded an efficient STAR program is described. Program listings of the old scalar version and the vectorized SL/1 version are presented in the appendices. Execution times for the two versions applied to the same system of linear equations, are compared.

  9. Adaptive Image Denoising by Mixture Adaptation

    NASA Astrophysics Data System (ADS)

    Luo, Enming; Chan, Stanley H.; Nguyen, Truong Q.

    2016-10-01

    We propose an adaptive learning procedure to learn patch-based image priors for image denoising. The new algorithm, called the Expectation-Maximization (EM) adaptation, takes a generic prior learned from a generic external database and adapts it to the noisy image to generate a specific prior. Different from existing methods that combine internal and external statistics in ad-hoc ways, the proposed algorithm is rigorously derived from a Bayesian hyper-prior perspective. There are two contributions of this paper: First, we provide full derivation of the EM adaptation algorithm and demonstrate methods to improve the computational complexity. Second, in the absence of the latent clean image, we show how EM adaptation can be modified based on pre-filtering. Experimental results show that the proposed adaptation algorithm yields consistently better denoising results than the one without adaptation and is superior to several state-of-the-art algorithms.

  10. Identification of robust adaptation gene regulatory network parameters using an improved particle swarm optimization algorithm.

    PubMed

    Huang, X N; Ren, H P

    2016-01-01

    Robust adaptation is a critical ability of gene regulatory network (GRN) to survive in a fluctuating environment, which represents the system responding to an input stimulus rapidly and then returning to its pre-stimulus steady state timely. In this paper, the GRN is modeled using the Michaelis-Menten rate equations, which are highly nonlinear differential equations containing 12 undetermined parameters. The robust adaption is quantitatively described by two conflicting indices. To identify the parameter sets in order to confer the GRNs with robust adaptation is a multi-variable, multi-objective, and multi-peak optimization problem, which is difficult to acquire satisfactory solutions especially high-quality solutions. A new best-neighbor particle swarm optimization algorithm is proposed to implement this task. The proposed algorithm employs a Latin hypercube sampling method to generate the initial population. The particle crossover operation and elitist preservation strategy are also used in the proposed algorithm. The simulation results revealed that the proposed algorithm could identify multiple solutions in one time running. Moreover, it demonstrated a superior performance as compared to the previous methods in the sense of detecting more high-quality solutions within an acceptable time. The proposed methodology, owing to its universality and simplicity, is useful for providing the guidance to design GRN with superior robust adaptation. PMID:27323043

  11. New hybrid adaptive neuro-fuzzy algorithms for manipulator control with uncertainties- comparative study.

    PubMed

    Alavandar, Srinivasan; Nigam, M J

    2009-10-01

    Control of an industrial robot includes nonlinearities, uncertainties and external perturbations that should be considered in the design of control laws. In this paper, some new hybrid adaptive neuro-fuzzy control algorithms (ANFIS) have been proposed for manipulator control with uncertainties. These hybrid controllers consist of adaptive neuro-fuzzy controllers and conventional controllers. The outputs of these controllers are applied to produce the final actuation signal based on current position and velocity errors. Numerical simulation using the dynamic model of six DOF puma robot arm with uncertainties shows the effectiveness of the approach in trajectory tracking problems. Performance indices of RMS error, maximum error are used for comparison. It is observed that the hybrid adaptive neuro-fuzzy controllers perform better than only conventional/adaptive controllers and in particular hybrid controller structure consisting of adaptive neuro-fuzzy controller and critically damped inverse dynamics controller.

  12. Design of scheduling and rate-adaptation algorithms for adaptive HTTP streaming

    NASA Astrophysics Data System (ADS)

    Hesse, Stephan

    2013-09-01

    In adaptive HTTP streaming model, the HTTP server stores multiple representations of media content, encoded at different rates. It is the function of a streaming client to select and retrieve segments of appropriate representations to enable continuous media playback under varying network conditions. In this paper we describe design of a control mechanism enabling such a selection and retrieval of media data during streaming session. We also describe the architecture of a streaming client for adaptive HTTP streaming and provide simulation data illustrating the effectiveness of the proposed control mechanism for handling bandwidth fluctuations typical for TCP traffic.

  13. Adaptive switching detection algorithm for iterative-MIMO systems to enable power savings

    NASA Astrophysics Data System (ADS)

    Tadza, N.; Laurenson, D.; Thompson, J. S.

    2014-11-01

    This paper attempts to tackle one of the challenges faced in soft input soft output Multiple Input Multiple Output (MIMO) detection systems, which is to achieve optimal error rate performance with minimal power consumption. This is realized by proposing a new algorithm design that comprises multiple thresholds within the detector that, in real time, specify the receiver behavior according to the current channel in both slow and fast fading conditions, giving it adaptivity. This adaptivity enables energy savings within the system since the receiver chooses whether to accept or to reject the transmission, according to the success rate of detecting thresholds. The thresholds are calculated using the mutual information of the instantaneous channel conditions between the transmitting and receiving antennas of iterative-MIMO systems. In addition, the power saving technique, Dynamic Voltage and Frequency Scaling, helps to reduce the circuit power demands of the adaptive algorithm. This adaptivity has the potential to save up to 30% of the total energy when it is implemented on Xilinx®Virtex-5 simulation hardware. Results indicate the benefits of having this "intelligence" in the adaptive algorithm due to the promising performance-complexity tradeoff parameters in both software and hardware codesign simulation.

  14. A High Fuel Consumption Efficiency Management Scheme for PHEVs Using an Adaptive Genetic Algorithm

    PubMed Central

    Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah

    2015-01-01

    A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974

  15. A source reconstruction algorithm based on adaptive hp-FEM for bioluminescence tomography.

    PubMed

    Han, Runqiang; Liang, Jimin; Qu, Xiaochao; Hou, Yanbin; Ren, Nunu; Mao, Jingjing; Tian, Jie

    2009-08-17

    As a novel modality of molecular imaging, bioluminescence tomography (BLT) is used to in vivo observe and measure the biological process at cellular and molecular level in small animals. The core issue of BLT is to determine the distribution of internal bioluminescent sources from optical measurements on external surface. In this paper, a new algorithm is presented for BLT source reconstruction based on adaptive hp-finite element method. Using adaptive mesh refinement strategy and intelligent permissible source region, we can obtain more accurate information about the location and density of sources, with the robustness, stability and efficiency improved. Numerical simulations and physical experiment were both conducted to verify the performance of the proposed algorithm, where the optical data on phantom surface were obtained via Monte Carlo simulation and CCD camera detection, respectively. The results represent the merits and potential of our algorithm for BLT source reconstruction.

  16. A high fuel consumption efficiency management scheme for PHEVs using an adaptive genetic algorithm.

    PubMed

    Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah

    2015-01-01

    A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day.

  17. Optimized adaptation algorithm for HEVC/H.265 dynamic adaptive streaming over HTTP using variable segment duration

    NASA Astrophysics Data System (ADS)

    Irondi, Iheanyi; Wang, Qi; Grecos, Christos

    2016-04-01

    Adaptive video streaming using HTTP has become popular in recent years for commercial video delivery. The recent MPEG-DASH standard allows interoperability and adaptability between servers and clients from different vendors. The delivery of the MPD (Media Presentation Description) files in DASH and the DASH client behaviours are beyond the scope of the DASH standard. However, the different adaptation algorithms employed by the clients do affect the overall performance of the system and users' QoE (Quality of Experience), hence the need for research in this field. Moreover, standard DASH delivery is based on fixed segments of the video. However, there is no standard segment duration for DASH where various fixed segment durations have been employed by different commercial solutions and researchers with their own individual merits. Most recently, the use of variable segment duration in DASH has emerged but only a few preliminary studies without practical implementation exist. In addition, such a technique requires a DASH client to be aware of segment duration variations, and this requirement and the corresponding implications on the DASH system design have not been investigated. This paper proposes a segment-duration-aware bandwidth estimation and next-segment selection adaptation strategy for DASH. Firstly, an MPD file extension scheme to support variable segment duration is proposed and implemented in a realistic hardware testbed. The scheme is tested on a DASH client, and the tests and analysis have led to an insight on the time to download next segment and the buffer behaviour when fetching and switching between segments of different playback durations. Issues like sustained buffering when switching between segments of different durations and slow response to changing network conditions are highlighted and investigated. An enhanced adaptation algorithm is then proposed to accurately estimate the bandwidth and precisely determine the time to download the next

  18. A self-adaptive genetic algorithm to estimate JA model parameters considering minor loops

    NASA Astrophysics Data System (ADS)

    Lu, Hai-liang; Wen, Xi-shan; Lan, Lei; An, Yun-zhu; Li, Xiao-ping

    2015-01-01

    A self-adaptive genetic algorithm for estimating Jiles-Atherton (JA) magnetic hysteresis model parameters is presented. The fitness function is established based on the distances between equidistant key points of normalized hysteresis loops. Linearity function and logarithm function are both adopted to code the five parameters of JA model. Roulette wheel selection is used and the selection pressure is adjusted adaptively by deducting a proportional which depends on current generation common value. The Crossover operator is established by combining arithmetic crossover and multipoint crossover. Nonuniform mutation is improved by adjusting the mutation ratio adaptively. The algorithm is used to estimate the parameters of one kind of silicon-steel sheet's hysteresis loops, and the results are in good agreement with published data.

  19. Enhanced detectability of small objects in correlated clutter using an improved 2-D adaptive lattice algorithm.

    PubMed

    Ffrench, P A; Zeidler, J H; Ku, W H

    1997-01-01

    Two-dimensional (2-D) adaptive filtering is a technique that can be applied to many image processing applications. This paper will focus on the development of an improved 2-D adaptive lattice algorithm (2-D AL) and its application to the removal of correlated clutter to enhance the detectability of small objects in images. The two improvements proposed here are increased flexibility in the calculation of the reflection coefficients and a 2-D method to update the correlations used in the 2-D AL algorithm. The 2-D AL algorithm is shown to predict correlated clutter in image data and the resulting filter is compared with an ideal Wiener-Hopf filter. The results of the clutter removal will be compared to previously published ones for a 2-D least mean square (LMS) algorithm. 2-D AL is better able to predict spatially varying clutter than the 2-D LMS algorithm, since it converges faster to new image properties. Examples of these improvements are shown for a spatially varying 2-D sinusoid in white noise and simulated clouds. The 2-D LMS and 2-D AL algorithms are also shown to enhance a mammogram image for the detection of small microcalcifications and stellate lesions.

  20. Maximal use of minimal libraries through the adaptive substituent reordering algorithm.

    PubMed

    Liang, Fan; Feng, Xiao-jiang; Lowry, Michael; Rabitz, Herschel

    2005-03-31

    This paper describes an adaptive algorithm for interpolation over a library of molecules subjected to synthesis and property assaying. Starting with a coarse sampling of the library compounds, the algorithm finds the optimal substituent orderings on all of the functionalized scaffold sites to allow for accurate property interpolation over all remaining compounds in the full library space. A previous paper introduced the concept of substituent reordering and a smoothness-based criterion to search for optimal orderings (Shenvi, N.; Geremia, J. M.; Rabitz, H. J. Phys. Chem. A 2003, 107, 2066). Here, we propose a data-driven root-mean-squared (RMS) criteria and a combined RMS/smoothness criteria as alternative methods for the discovery of optimal substituent orderings. Error propagation from the property measurements of the sampled compounds is determined to provide confidence intervals on the interpolated molecular property values, and a substituent rescaling technique is introduced to manage poorly designed/sampled libraries. Finally, various factors are explored that can influence the applicability and interpolation quality of the algorithm. An adaptive methodology is proposed to iteratively and efficiently use laboratory experiments to optimize these algorithmic factors, so that the accuracy of property predictions is maximized. The enhanced algorithm is tested on copolymer and transition metal complex libraries, and the results demonstrate the capability of the algorithm to accurately interpolate various properties of both molecular libraries.

  1. A self adaptive hybrid enhanced artificial bee colony algorithm for continuous optimization problems.

    PubMed

    Shan, Hai; Yasuda, Toshiyuki; Ohkura, Kazuhiro

    2015-06-01

    The artificial bee colony (ABC) algorithm is one of popular swarm intelligence algorithms that inspired by the foraging behavior of honeybee colonies. To improve the convergence ability, search speed of finding the best solution and control the balance between exploration and exploitation using this approach, we propose a self adaptive hybrid enhanced ABC algorithm in this paper. To evaluate the performance of standard ABC, best-so-far ABC (BsfABC), incremental ABC (IABC), and the proposed ABC algorithms, we implemented numerical optimization problems based on the IEEE Congress on Evolutionary Computation (CEC) 2014 test suite. Our experimental results show the comparative performance of standard ABC, BsfABC, IABC, and the proposed ABC algorithms. According to the results, we conclude that the proposed ABC algorithm is competitive to those state-of-the-art modified ABC algorithms such as BsfABC and IABC algorithms based on the benchmark problems defined by CEC 2014 test suite with dimension sizes of 10, 30, and 50, respectively.

  2. A self adaptive hybrid enhanced artificial bee colony algorithm for continuous optimization problems.

    PubMed

    Shan, Hai; Yasuda, Toshiyuki; Ohkura, Kazuhiro

    2015-06-01

    The artificial bee colony (ABC) algorithm is one of popular swarm intelligence algorithms that inspired by the foraging behavior of honeybee colonies. To improve the convergence ability, search speed of finding the best solution and control the balance between exploration and exploitation using this approach, we propose a self adaptive hybrid enhanced ABC algorithm in this paper. To evaluate the performance of standard ABC, best-so-far ABC (BsfABC), incremental ABC (IABC), and the proposed ABC algorithms, we implemented numerical optimization problems based on the IEEE Congress on Evolutionary Computation (CEC) 2014 test suite. Our experimental results show the comparative performance of standard ABC, BsfABC, IABC, and the proposed ABC algorithms. According to the results, we conclude that the proposed ABC algorithm is competitive to those state-of-the-art modified ABC algorithms such as BsfABC and IABC algorithms based on the benchmark problems defined by CEC 2014 test suite with dimension sizes of 10, 30, and 50, respectively. PMID:25982071

  3. An improved cooperative adaptive cruise control (CACC) algorithm considering invalid communication

    NASA Astrophysics Data System (ADS)

    Wang, Pangwei; Wang, Yunpeng; Yu, Guizhen; Tang, Tieqiao

    2014-05-01

    For the Cooperative Adaptive Cruise Control (CACC) Algorithm, existing research studies mainly focus on how inter-vehicle communication can be used to develop CACC controller, the influence of the communication delays and lags of the actuators to the string stability. However, whether the string stability can be guaranteed when inter-vehicle communication is invalid partially has hardly been considered. This paper presents an improved CACC algorithm based on the sliding mode control theory and analyses the range of CACC controller parameters to maintain string stability. A dynamic model of vehicle spacing deviation in a platoon is then established, and the string stability conditions under improved CACC are analyzed. Unlike the traditional CACC algorithms, the proposed algorithm can ensure the functionality of the CACC system even if inter-vehicle communication is partially invalid. Finally, this paper establishes a platoon of five vehicles to simulate the improved CACC algorithm in MATLAB/Simulink, and the simulation results demonstrate that the improved CACC algorithm can maintain the string stability of a CACC platoon through adjusting the controller parameters and enlarging the spacing to prevent accidents. With guaranteed string stability, the proposed CACC algorithm can prevent oscillation of vehicle spacing and reduce chain collision accidents under real-world circumstances. This research proposes an improved CACC algorithm, which can guarantee the string stability when inter-vehicle communication is invalid.

  4. Transform Domain Robust Variable Step Size Griffiths' Adaptive Algorithm for Noise Cancellation in ECG

    NASA Astrophysics Data System (ADS)

    Hegde, Veena; Deekshit, Ravishankar; Satyanarayana, P. S.

    2011-12-01

    The electrocardiogram (ECG) is widely used for diagnosis of heart diseases. Good quality of ECG is utilized by physicians for interpretation and identification of physiological and pathological phenomena. However, in real situations, ECG recordings are often corrupted by artifacts or noise. Noise severely limits the utility of the recorded ECG and thus needs to be removed, for better clinical evaluation. In the present paper a new noise cancellation technique is proposed for removal of random noise like muscle artifact from ECG signal. A transform domain robust variable step size Griffiths' LMS algorithm (TVGLMS) is proposed for noise cancellation. For the TVGLMS, the robust variable step size has been achieved by using the Griffiths' gradient which uses cross-correlation between the desired signal contaminated with observation or random noise and the input. The algorithm is discrete cosine transform (DCT) based and uses symmetric property of the signal to represent the signal in frequency domain with lesser number of frequency coefficients when compared to that of discrete Fourier transform (DFT). The algorithm is implemented for adaptive line enhancer (ALE) filter which extracts the ECG signal in a noisy environment using LMS filter adaptation. The proposed algorithm is found to have better convergence error/misadjustment when compared to that of ordinary transform domain LMS (TLMS) algorithm, both in the presence of white/colored observation noise. The reduction in convergence error achieved by the new algorithm with desired signal decomposition is found to be lower than that obtained without decomposition. The experimental results indicate that the proposed method is better than traditional adaptive filter using LMS algorithm in the aspects of retaining geometrical characteristics of ECG signal.

  5. Genetic algorithm approach for adaptive power and subcarrier allocation in multi-user OFDM systems

    NASA Astrophysics Data System (ADS)

    Reddy, Y. B.; Naraghi-Pour, Mort

    2007-04-01

    In this paper, a novel genetic algorithm application is proposed for adaptive power and subcarrier allocation in multi-user Orthogonal Frequency Division Multiplexing (OFDM) systems. To test the application, a simple genetic algorithm was implemented in MATLAB language. With the goal of minimizing the overall transmit power while ensuring the fulfillment of each user's rate and bit error rate (BER) requirements, the proposed algorithm acquires the needed allocation through genetic search. The simulations were tested for BER 0.1 to 0.00001, data rate of 256 bit per OFDM block and chromosome length of 128. The results show that genetic algorithm outperforms the results in [3] in subcarrier allocation. The convergence of GA model with 8 users and 128 subcarriers performs better in power requirement compared to that in [4] but converges more slowly.

  6. Self-adaptive predictor-corrector algorithm for static nonlinear structural analysis

    NASA Technical Reports Server (NTRS)

    Padovan, J.

    1981-01-01

    A multiphase selfadaptive predictor corrector type algorithm was developed. This algorithm enables the solution of highly nonlinear structural responses including kinematic, kinetic and material effects as well as pro/post buckling behavior. The strategy involves three main phases: (1) the use of a warpable hyperelliptic constraint surface which serves to upperbound dependent iterate excursions during successive incremental Newton Ramphson (INR) type iterations; (20 uses an energy constraint to scale the generation of successive iterates so as to maintain the appropriate form of local convergence behavior; (3) the use of quality of convergence checks which enable various self adaptive modifications of the algorithmic structure when necessary. The restructuring is achieved by tightening various conditioning parameters as well as switch to different algorithmic levels to improve the convergence process. The capabilities of the procedure to handle various types of static nonlinear structural behavior are illustrated.

  7. Error bounds of adaptive dynamic programming algorithms for solving undiscounted optimal control problems.

    PubMed

    Liu, Derong; Li, Hongliang; Wang, Ding

    2015-06-01

    In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms.

  8. A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.

    PubMed

    Pau, George S H; Almgren, Ann S; Bell, John B; Lijewski, Michael J

    2009-11-28

    In this paper, we present a second-order accurate adaptive algorithm for solving multi-phase, incompressible flow in porous media. We assume a multi-phase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting, the total velocity, defined to be the sum of the phase velocities, is divergence free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single-grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behaviour of the method.

  9. A Parallel Second-Order Adaptive Mesh Algorithm for Incompressible Flow in Porous Media

    SciTech Connect

    Pau, George Shu Heng; Almgren, Ann S.; Bell, John B.; Lijewski, Michael J.

    2008-04-01

    In this paper we present a second-order accurate adaptive algorithm for solving multiphase, incompressible flows in porous media. We assume a multiphase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting the total velocity, defined to be the sum of the phase velocities, is divergence-free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids areadvanced multiple steps to reach the same time as the coarse grids and the data atdifferent levels are then synchronized. The single grid algorithm is described briefly,but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behavior of the method.

  10. An adaptive metamodel-based global optimization algorithm for black-box type problems

    NASA Astrophysics Data System (ADS)

    Jie, Haoxiang; Wu, Yizhong; Ding, Jianwan

    2015-11-01

    In this article, an adaptive metamodel-based global optimization (AMGO) algorithm is presented to solve unconstrained black-box problems. In the AMGO algorithm, a type of hybrid model composed of kriging and augmented radial basis function (RBF) is used as the surrogate model. The weight factors of hybrid model are adaptively selected in the optimization process. To balance the local and global search, a sub-optimization problem is constructed during each iteration to determine the new iterative points. As numerical experiments, six standard two-dimensional test functions are selected to show the distributions of iterative points. The AMGO algorithm is also tested on seven well-known benchmark optimization problems and contrasted with three representative metamodel-based optimization methods: efficient global optimization (EGO), GutmannRBF and hybrid and adaptive metamodel (HAM). The test results demonstrate the efficiency and robustness of the proposed method. The AMGO algorithm is finally applied to the structural design of the import and export chamber of a cycloid gear pump, achieving satisfactory results.

  11. A structured multi-block solution-adaptive mesh algorithm with mesh quality assessment

    NASA Technical Reports Server (NTRS)

    Ingram, Clint L.; Laflin, Kelly R.; Mcrae, D. Scott

    1995-01-01

    The dynamic solution adaptive grid algorithm, DSAGA3D, is extended to automatically adapt 2-D structured multi-block grids, including adaption of the block boundaries. The extension is general, requiring only input data concerning block structure, connectivity, and boundary conditions. Imbedded grid singular points are permitted, but must be prevented from moving in space. Solutions for workshop cases 1 and 2 are obtained on multi-block grids and illustrate both increased resolution of and alignment with the solution. A mesh quality assessment criteria is proposed to determine how well a given mesh resolves and aligns with the solution obtained upon it. The criteria is used to evaluate the grid quality for solutions of workshop case 6 obtained on both static and dynamically adapted grids. The results indicate that this criteria shows promise as a means of evaluating resolution.

  12. Algorithm for localized adaptive diffuse optical tomography and its application in bioluminescence tomography

    NASA Astrophysics Data System (ADS)

    Naser, Mohamed A.; Patterson, Michael S.; Wong, John W.

    2014-04-01

    A reconstruction algorithm for diffuse optical tomography based on diffusion theory and finite element method is described. The algorithm reconstructs the optical properties in a permissible domain or region-of-interest to reduce the number of unknowns. The algorithm can be used to reconstruct optical properties for a segmented object (where a CT-scan or MRI is available) or a non-segmented object. For the latter, an adaptive segmentation algorithm merges contiguous regions with similar optical properties thereby reducing the number of unknowns. In calculating the Jacobian matrix the algorithm uses an efficient direct method so the required time is comparable to that needed for a single forward calculation. The reconstructed optical properties using segmented, non-segmented, and adaptively segmented 3D mouse anatomy (MOBY) are used to perform bioluminescence tomography (BLT) for two simulated internal sources. The BLT results suggest that the accuracy of reconstruction of total source power obtained without the segmentation provided by an auxiliary imaging method such as x-ray CT is comparable to that obtained when using perfect segmentation.

  13. Parallel paving: An algorithm for generating distributed, adaptive, all-quadrilateral meshes on parallel computers

    SciTech Connect

    Lober, R.R.; Tautges, T.J.; Vaughan, C.T.

    1997-03-01

    Paving is an automated mesh generation algorithm which produces all-quadrilateral elements. It can additionally generate these elements in varying sizes such that the resulting mesh adapts to a function distribution, such as an error function. While powerful, conventional paving is a very serial algorithm in its operation. Parallel paving is the extension of serial paving into parallel environments to perform the same meshing functions as conventional paving only on distributed, discretized models. This extension allows large, adaptive, parallel finite element simulations to take advantage of paving`s meshing capabilities for h-remap remeshing. A significantly modified version of the CUBIT mesh generation code has been developed to host the parallel paving algorithm and demonstrate its capabilities on both two dimensional and three dimensional surface geometries and compare the resulting parallel produced meshes to conventionally paved meshes for mesh quality and algorithm performance. Sandia`s {open_quotes}tiling{close_quotes} dynamic load balancing code has also been extended to work with the paving algorithm to retain parallel efficiency as subdomains undergo iterative mesh refinement.

  14. Adaptive vector quantization of MR images using online k-means algorithm

    NASA Astrophysics Data System (ADS)

    Shademan, Azad; Zia, Mohammad A.

    2001-12-01

    The k-means algorithm is widely used to design image codecs using vector quantization (VQ). In this paper, we focus on an adaptive approach to implement a VQ technique using the online version of k-means algorithm, in which the size of the codebook is adapted continuously to the statistical behavior of the image. Based on the statistical analysis of the feature space, a set of thresholds are designed such that those codewords corresponding to the low-density clusters would be removed from the codebook and hence, resulting in a higher bit-rate efficiency. Applications of this approach would be in telemedicine, where sequences of highly correlated medical images, e.g. consecutive brain slices, are transmitted over a low bit-rate channel. We have applied this algorithm on magnetic resonance (MR) images and the simulation results on a sample sequence are given. The proposed method has been compared to the standard k-means algorithm in terms of PSNR, MSE, and elapsed time to complete the algorithm.

  15. Adaptive-mesh-based algorithm for fluorescence molecular tomography using an analytical solution.

    PubMed

    Wang, Daifa; Song, Xiaolei; Bai, Jing

    2007-07-23

    Fluorescence molecular tomography (FMT) has become an important method for in-vivo imaging of small animals. It has been widely used for tumor genesis, cancer detection, metastasis, drug discovery, and gene therapy. In this study, an algorithm for FMT is proposed to obtain accurate and fast reconstruction by combining an adaptive mesh refinement technique and an analytical solution of diffusion equation. Numerical studies have been performed on a parallel plate FMT system with matching fluid. The reconstructions obtained show that the algorithm is efficient in computation time, and they also maintain image quality.

  16. An adaptive inverse iteration algorithm using interpolating multiwavelets for structural eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Wang, Youming; Chen, Xuefeng; He, Zhengjia

    2011-02-01

    Structural eigenvalues have been broadly applied in modal analysis, damage detection, vibration control, etc. In this paper, the interpolating multiwavelets are custom designed based on stable completion method to solve structural eigenvalue problems. The operator-orthogonality of interpolating multiwavelets gives rise to highly sparse multilevel stiffness and mass matrices of structural eigenvalue problems and permits the incremental computation of the eigenvalue solution in an efficient manner. An adaptive inverse iteration algorithm using the interpolating multiwavelets is presented to solve structural eigenvalue problems. Numerical examples validate the accuracy and efficiency of the proposed algorithm.

  17. Anticipation versus adaptation in Evolutionary Algorithms: The case of Non-Stationary Clustering

    NASA Astrophysics Data System (ADS)

    González, A. I.; Graña, M.; D'Anjou, A.; Torrealdea, F. J.

    1998-07-01

    From the technological point of view is usually more important to ensure the ability to react promptly to changing environmental conditions than to try to forecast them. Evolution Algorithms were proposed initially to drive the adaptation of complex systems to varying or uncertain environments. In the general setting, the adaptive-anticipatory dilemma reduces itself to the placement of the interaction with the environment in the computational schema. Adaptation consists of the estimation of the proper parameters from present data in order to react to a present environment situation. Anticipation consists of the estimation from present data in order to react to a future environment situation. This duality is expressed in the Evolutionary Computation paradigm by the precise location of the consideration of present data in the computation of the individuals fitness function. In this paper we consider several instances of Evolutionary Algorithms applied to precise problem and perform an experiment that test their response as anticipative and adaptive mechanisms. The non stationary problem considered is that of Non Stationary Clustering, more precisely the adaptive Color Quantization of image sequences. The experiment illustrates our ideas and gives some quantitative results that may support the proposition of the Evolutionary Computation paradigm for other tasks that require the interaction with a Non-Stationary environment.

  18. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    USGS Publications Warehouse

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  19. A DVH-guided IMRT optimization algorithm for automatic treatment planning and adaptive radiotherapy replanning

    SciTech Connect

    Zarepisheh, Masoud; Li, Nan; Long, Troy; Romeijn, H. Edwin; Tian, Zhen; Jia, Xun; Jiang, Steve B.

    2014-06-15

    Purpose: To develop a novel algorithm that incorporates prior treatment knowledge into intensity modulated radiation therapy optimization to facilitate automatic treatment planning and adaptive radiotherapy (ART) replanning. Methods: The algorithm automatically creates a treatment plan guided by the DVH curves of a reference plan that contains information on the clinician-approved dose-volume trade-offs among different targets/organs and among different portions of a DVH curve for an organ. In ART, the reference plan is the initial plan for the same patient, while for automatic treatment planning the reference plan is selected from a library of clinically approved and delivered plans of previously treated patients with similar medical conditions and geometry. The proposed algorithm employs a voxel-based optimization model and navigates the large voxel-based Pareto surface. The voxel weights are iteratively adjusted to approach a plan that is similar to the reference plan in terms of the DVHs. If the reference plan is feasible but not Pareto optimal, the algorithm generates a Pareto optimal plan with the DVHs better than the reference ones. If the reference plan is too restricting for the new geometry, the algorithm generates a Pareto plan with DVHs close to the reference ones. In both cases, the new plans have similar DVH trade-offs as the reference plans. Results: The algorithm was tested using three patient cases and found to be able to automatically adjust the voxel-weighting factors in order to generate a Pareto plan with similar DVH trade-offs as the reference plan. The algorithm has also been implemented on a GPU for high efficiency. Conclusions: A novel prior-knowledge-based optimization algorithm has been developed that automatically adjust the voxel weights and generate a clinical optimal plan at high efficiency. It is found that the new algorithm can significantly improve the plan quality and planning efficiency in ART replanning and automatic treatment

  20. Adjoint-Based Algorithms for Adaptation and Design Optimizations on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.

    2006-01-01

    Schemes based on discrete adjoint algorithms present several exciting opportunities for significantly advancing the current state of the art in computational fluid dynamics. Such methods provide an extremely efficient means for obtaining discretely consistent sensitivity information for hundreds of design variables, opening the door to rigorous, automated design optimization of complex aerospace configuration using the Navier-Stokes equation. Moreover, the discrete adjoint formulation provides a mathematically rigorous foundation for mesh adaptation and systematic reduction of spatial discretization error. Error estimates are also an inherent by-product of an adjoint-based approach, valuable information that is virtually non-existent in today's large-scale CFD simulations. An overview of the adjoint-based algorithm work at NASA Langley Research Center is presented, with examples demonstrating the potential impact on complex computational problems related to design optimization as well as mesh adaptation.

  1. An adaptive displacement estimation algorithm for improved reconstruction of thermal strain.

    PubMed

    Ding, Xuan; Dutta, Debaditya; Mahmoud, Ahmed M; Tillman, Bryan; Leers, Steven A; Kim, Kang

    2015-01-01

    Thermal strain imaging (TSI) can be used to differentiate between lipid and water-based tissues in atherosclerotic arteries. However, detecting small lipid pools in vivo requires accurate and robust displacement estimation over a wide range of displacement magnitudes. Phase-shift estimators such as Loupas' estimator and time-shift estimators such as normalized cross-correlation (NXcorr) are commonly used to track tissue displacements. However, Loupas' estimator is limited by phase-wrapping and NXcorr performs poorly when the SNR is low. In this paper, we present an adaptive displacement estimation algorithm that combines both Loupas' estimator and NXcorr. We evaluated this algorithm using computer simulations and an ex vivo human tissue sample. Using 1-D simulation studies, we showed that when the displacement magnitude induced by thermal strain was >λ/8 and the electronic system SNR was >25.5 dB, the NXcorr displacement estimate was less biased than the estimate found using Loupas' estimator. On the other hand, when the displacement magnitude was ≤λ/4 and the electronic system SNR was ≤25.5 dB, Loupas' estimator had less variance than NXcorr. We used these findings to design an adaptive displacement estimation algorithm. Computer simulations of TSI showed that the adaptive displacement estimator was less biased than either Loupas' estimator or NXcorr. Strain reconstructed from the adaptive displacement estimates improved the strain SNR by 43.7 to 350% and the spatial accuracy by 1.2 to 23.0% (P < 0.001). An ex vivo human tissue study provided results that were comparable to computer simulations. The results of this study showed that a novel displacement estimation algorithm, which combines two different displacement estimators, yielded improved displacement estimation and resulted in improved strain reconstruction.

  2. Spatio-temporal adaptation algorithm for two-dimensional reacting flows

    NASA Astrophysics Data System (ADS)

    Pervaiz, Mehtab M.; Baron, Judson R.

    1988-01-01

    A spatio-temporal adaptive algorithm for solving the unsteady Euler equations with chemical source terms is presented. Quadrilateral cells are used in two spatial dimensions which allow for embedded meshes tracking moving flow features with spatially varying time-steps which are multiples of global minimum time-steps. Blast wave interactions corresponding to a perfect gas (frozen) and a Lighthill dissociating gas (nonequilibrium) are considered for circular arc cascade and 90 degree bend duct geometries.

  3. An Adaptive Displacement Estimation Algorithm for Improved Reconstruction of Thermal Strain

    PubMed Central

    Ding, Xuan; Dutta, Debaditya; Mahmoud, Ahmed M.; Tillman, Bryan; Leers, Steven A.; Kim, Kang

    2014-01-01

    Thermal strain imaging (TSI) can be used to differentiate between lipid and water-based tissues in atherosclerotic arteries. However, detecting small lipid pools in vivo requires accurate and robust displacement estimation over a wide range of displacement magnitudes. Phase-shift estimators such as Loupas’ estimator and time-shift estimators like normalized cross-correlation (NXcorr) are commonly used to track tissue displacements. However, Loupas’ estimator is limited by phase-wrapping and NXcorr performs poorly when the signal-to-noise ratio (SNR) is low. In this paper, we present an adaptive displacement estimation algorithm that combines both Loupas’ estimator and NXcorr. We evaluated this algorithm using computer simulations and an ex-vivo human tissue sample. Using 1-D simulation studies, we showed that when the displacement magnitude induced by thermal strain was >λ/8 and the electronic system SNR was >25.5 dB, the NXcorr displacement estimate was less biased than the estimate found using Loupas’ estimator. On the other hand, when the displacement magnitude was ≤λ/4 and the electronic system SNR was ≤25.5 dB, Loupas’ estimator had less variance than NXcorr. We used these findings to design an adaptive displacement estimation algorithm. Computer simulations of TSI using Field II showed that the adaptive displacement estimator was less biased than either Loupas’ estimator or NXcorr. Strain reconstructed from the adaptive displacement estimates improved the strain SNR by 43.7–350% and the spatial accuracy by 1.2–23.0% (p < 0.001). An ex-vivo human tissue study provided results that were comparable to computer simulations. The results of this study showed that a novel displacement estimation algorithm, which combines two different displacement estimators, yielded improved displacement estimation and results in improved strain reconstruction. PMID:25585398

  4. Incrementing data quality of multi-frequency echograms using the Adaptive Wiener Filter (AWF) denoising algorithm

    NASA Astrophysics Data System (ADS)

    Peña, M.

    2016-10-01

    Achieving acceptable signal-to-noise ratio (SNR) can be difficult when working in sparsely populated waters and/or when species have low scattering such as fluid filled animals. The increasing use of higher frequencies and the study of deeper depths in fisheries acoustics, as well as the use of commercial vessels, is raising the need to employ good denoising algorithms. The use of a lower Sv threshold to remove noise or unwanted targets is not suitable in many cases and increases the relative background noise component in the echogram, demanding more effectiveness from denoising algorithms. The Adaptive Wiener Filter (AWF) denoising algorithm is presented in this study. The technique is based on the AWF commonly used in digital photography and video enhancement. The algorithm firstly increments the quality of the data with a variance-dependent smoothing, before estimating the noise level as the envelope of the Sv minima. The AWF denoising algorithm outperforms existing algorithms in the presence of gaussian, speckle and salt & pepper noise, although impulse noise needs to be previously removed. Cleaned echograms present homogenous echotraces with outlined edges.

  5. Adaptive local backlight dimming algorithm based on local histogram and image characteristics

    NASA Astrophysics Data System (ADS)

    Nadernejad, Ehsan; Burini, Nino; Korhonen, Jari; Forchhammer, Søren; Mantel, Claire

    2013-02-01

    Liquid Crystal Display (LCDs) with Light Emitting Diode (LED) backlight is a very popular display technology, used for instance in television sets, monitors and mobile phones. This paper presents a new backlight dimming algorithm that exploits the characteristics of the target image, such as the local histograms and the average pixel intensity of each backlight segment, to reduce the power consumption of the backlight and enhance image quality. The local histogram of the pixels within each backlight segment is calculated and, based on this average, an adaptive quantile value is extracted. A classification into three classes based on the average luminance value is performed and, depending on the image luminance class, the extracted information on the local histogram determines the corresponding backlight value. The proposed method has been applied on two modeled screens: one with a high resolution direct-lit backlight, and the other screen with 16 edge-lit backlight segments placed in two columns and eight rows. We have compared the proposed algorithm against several known backlight dimming algorithms by simulations; and the results show that the proposed algorithm provides better trade-off between power consumption and image quality preservation than the other algorithms representing the state of the art among feature based backlight algorithms.

  6. Phase-distortion correction based on stochastic parallel proportional-integral-derivative algorithm for high-resolution adaptive optics

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Wu, Ke-nan; Gao, Hong; Jin, Yu-qi

    2015-02-01

    A novel optimization method, stochastic parallel proportional-integral-derivative (SPPID) algorithm, is proposed for high-resolution phase-distortion correction in wave-front sensorless adaptive optics (WSAO). To enhance the global search and self-adaptation of stochastic parallel gradient descent (SPGD) algorithm, residual error and its temporal integration of performance metric are added in to incremental control signal's calculation. On the basis of the maximum fitting rate between real wave-front and corrector, a goal value of metric is set as the reference. The residual error of the metric relative to reference is transformed into proportional and integration terms to produce adaptive step size updating law of SPGD algorithm. The adaptation of step size leads blind optimization to desired goal and helps escape from local extrema. Different from conventional proportional-integral -derivative (PID) algorithm, SPPID algorithm designs incremental control signal as PI-by-D for adaptive adjustment of control law in SPGD algorithm. Experiments of high-resolution phase-distortion correction in "frozen" turbulences based on influence function coefficients optimization were carried out respectively using 128-by-128 typed spatial light modulators, photo detector and control computer. Results revealed the presented algorithm offered better performance in both cases. The step size update based on residual error and its temporal integration was justified to resolve severe local lock-in problem of SPGD algorithm used in high -resolution adaptive optics.

  7. An adaptive image enhancement technique by combining cuckoo search and particle swarm optimization algorithm.

    PubMed

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928

  8. An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions

    SciTech Connect

    Li, Weixuan; Lin, Guang

    2015-03-21

    Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes’ rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle these challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.

  9. An adaptive image enhancement technique by combining cuckoo search and particle swarm optimization algorithm.

    PubMed

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  10. An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions

    SciTech Connect

    Li, Weixuan; Lin, Guang

    2015-08-01

    Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes' rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle these challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.

  11. An Adaptive Image Enhancement Technique by Combining Cuckoo Search and Particle Swarm Optimization Algorithm

    PubMed Central

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928

  12. An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions

    DOE PAGES

    Li, Weixuan; Lin, Guang

    2015-03-21

    Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes’ rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle thesemore » challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.« less

  13. Spin-adapted density matrix renormalization group algorithms for quantum chemistry

    NASA Astrophysics Data System (ADS)

    Sharma, Sandeep; Chan, Garnet Kin-Lic

    2012-03-01

    We extend the spin-adapted density matrix renormalization group (DMRG) algorithm of McCulloch and Gulacsi [Europhys. Lett. 57, 852 (2002)], 10.1209/epl/i2002-00393-0 to quantum chemical Hamiltonians. This involves using a quasi-density matrix, to ensure that the renormalized DMRG states are eigenfunctions of hat{S}^2, and the Wigner-Eckart theorem, to reduce overall storage and computational costs. We argue that the spin-adapted DMRG algorithm is most advantageous for low spin states. Consequently, we also implement a singlet-embedding strategy due to Tatsuaki [Phys. Rev. E 61, 3199 (2000)], 10.1103/PhysRevE.61.3199 where we target high spin states as a component of a larger fictitious singlet system. Finally, we present an efficient algorithm to calculate one- and two-body reduced density matrices from the spin-adapted wavefunctions. We evaluate our developments with benchmark calculations on transition metal system active space models. These include the Fe2S2, [Fe2S2(SCH3)4]2-, and Cr2 systems. In the case of Fe2S2, the spin-ladder spacing is on the microHartree scale, and here we show that we can target such very closely spaced states. In [Fe2S2(SCH3)4]2-, we calculate particle and spin correlation functions, to examine the role of sulfur bridging orbitals in the electronic structure. In Cr2 we demonstrate that spin-adaptation with the Wigner-Eckart theorem and using singlet embedding can yield up to an order of magnitude increase in computational efficiency. Overall, these calculations demonstrate the potential of using spin-adaptation to extend the range of DMRG calculations in complex transition metal problems.

  14. [An adaptive scaling hybrid algorithm for reduction of CT artifacts caused by metal objects].

    PubMed

    Chen, Yu; Luo, Hai; Zhou, He-qin

    2009-03-01

    A new adaptively hybrid filtering algorithm is proposed to reduce the artifacts caused by metal in CT image. Firstly, the method is used to preprocess the projection data of metal region and is reconstruct by filtered back projection (FBP) method. Then the expectation maximization algorithm (EM) is performed on the iterative original metal project data. Finally, a compensating procedure is applied to the reconstructed metal region. The simulation result has demonstrated that the proposed algorithm can remove the metal artifacts and keep the structure information of metal object effectively. It ensures that the tissues around the metal will not be distorted. The method is also computational efficient and effective for the CT images which contains several metal objects.

  15. An adaptive immune optimization algorithm with dynamic lattice searching operation for fast optimization of atomic clusters

    NASA Astrophysics Data System (ADS)

    Wu, Xia; Wu, Genhua

    2014-08-01

    Geometrical optimization of atomic clusters is performed by a development of adaptive immune optimization algorithm (AIOA) with dynamic lattice searching (DLS) operation (AIOA-DLS method). By a cycle of construction and searching of the dynamic lattice (DL), DLS algorithm rapidly makes the clusters more regular and greatly reduces the potential energy. DLS can thus be used as an operation acting on the new individuals after mutation operation in AIOA to improve the performance of the AIOA. The AIOA-DLS method combines the merit of evolutionary algorithm and idea of dynamic lattice. The performance of the proposed method is investigated in the optimization of Lennard-Jones clusters within 250 atoms and silver clusters described by many-body Gupta potential within 150 atoms. Results reported in the literature are reproduced, and the motif of Ag61 cluster is found to be stacking-fault face-centered cubic, whose energy is lower than that of previously obtained icosahedron.

  16. A biomimetic adaptive algorithm and low-power architecture for implantable neural decoders.

    PubMed

    Rapoport, Benjamin I; Wattanapanitch, Woradorn; Penagos, Hector L; Musallam, Sam; Andersen, Richard A; Sarpeshkar, Rahul

    2009-01-01

    Algorithmically and energetically efficient computational architectures that operate in real time are essential for clinically useful neural prosthetic devices. Such devices decode raw neural data to obtain direct control signals for external devices. They can also perform data compression and vastly reduce the bandwidth and consequently power expended in wireless transmission of raw data from implantable brain-machine interfaces. We describe a biomimetic algorithm and micropower analog circuit architecture for decoding neural cell ensemble signals. The decoding algorithm implements a continuous-time artificial neural network, using a bank of adaptive linear filters with kernels that emulate synaptic dynamics. The filters transform neural signal inputs into control-parameter outputs, and can be tuned automatically in an on-line learning process. We provide experimental validation of our system using neural data from thalamic head-direction cells in an awake behaving rat.

  17. A Biomimetic Adaptive Algorithm and Low-Power Architecture for Implantable Neural Decoders

    PubMed Central

    Rapoport, Benjamin I.; Wattanapanitch, Woradorn; Penagos, Hector L.; Musallam, Sam; Andersen, Richard A.; Sarpeshkar, Rahul

    2010-01-01

    Algorithmically and energetically efficient computational architectures that operate in real time are essential for clinically useful neural prosthetic devices. Such devices decode raw neural data to obtain direct control signals for external devices. They can also perform data compression and vastly reduce the bandwidth and consequently power expended in wireless transmission of raw data from implantable brain-machine interfaces. We describe a biomimetic algorithm and micropower analog circuit architecture for decoding neural cell ensemble signals. The decoding algorithm implements a continuous-time artificial neural network, using a bank of adaptive linear filters with kernels that emulate synaptic dynamics. The filters transform neural signal inputs into control-parameter outputs, and can be tuned automatically in an on-line learning process. We provide experimental validation of our system using neural data from thalamic head-direction cells in an awake behaving rat. PMID:19964345

  18. A family of variable step-size affine projection adaptive filter algorithms using statistics of channel impulse response

    NASA Astrophysics Data System (ADS)

    Shams Esfand Abadi, Mohammad; AbbasZadeh Arani, Seyed Ali Asghar

    2011-12-01

    This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean square error (MSE), and low computational complexity features. We demonstrate the good performance of the proposed algorithms through several simulations in system identification scenario.

  19. Grouping in auditory temporal perception and vocal production is mutually adapted: the case of wriggling calls of mice.

    PubMed

    Gaub, Simone; Ehret, Günter

    2005-12-01

    Auditory Gestalt perception by grouping of species-specific vocalizations to a perceptual stream with a defined meaning is typical for human speech perception but has not been studied in non-human mammals so far. Here we use synthesized models of vocalizations (series of wriggling calls) of mouse pups (Mus domesticus) and show that their mothers perceive the call series as a meaningful Gestalt for the release of instinctive maternal behavior, if the inter-call intervals have durations of 100-400 ms. Shorter or longer inter-call intervals significantly reduce the maternal responsiveness. We also show that series of natural wriggling calls have inter-call intervals mainly in the range of 100-400 ms. Thus, series of natural wriggling calls of pups match the time-domain auditory filters of their mothers in order to be optimally perceived and recognized. A similar time window exists for the production of human speech and the perception of series of sounds by humans. Neural mechanisms for setting the boundaries of the time window are discussed.

  20. An adaptive support driven reweighted L1-regularization algorithm for fluorescence molecular tomography.

    PubMed

    Shi, Junwei; Liu, Fei; Pu, Huangsheng; Zuo, Simin; Luo, Jianwen; Bai, Jing

    2014-11-01

    Fluorescence molecular tomography (FMT) is a promising in vivo functional imaging modality in preclinical study. When solving the ill-posed FMT inverse problem, L1 regularization can preserve the details and reduce the noise in the reconstruction results effectively. Moreover, compared with the regular L1 regularization, reweighted L1 regularization is recently reported to improve the performance. In order to realize the reweighted L1 regularization for FMT, an adaptive support driven reweighted L1-regularization (ASDR-L1) algorithm is proposed in this work. This algorithm has two integral parts: an adaptive support estimate and the iteratively updated weights. In the iteratively reweighted L1-minimization sub-problem, different weights are equivalent to different regularization parameters at different locations. Thus, ASDR-L1 can be considered as a kind of spatially variant regularization methods for FMT. Physical phantom and in vivo mouse experiments were performed to validate the proposed algorithm. The results demonstrate that the proposed reweighted L1-reguarization algorithm can significantly improve the performance in terms of relative quantitation and spatial resolution.

  1. Should the parameters of a BCI translation algorithm be continually adapted?

    PubMed

    McFarland, Dennis J; Sarnacki, William A; Wolpaw, Jonathan R

    2011-07-15

    People with or without motor disabilities can learn to control sensorimotor rhythms (SMRs) recorded from the scalp to move a computer cursor in one or more dimensions or can use the P300 event-related potential as a control signal to make discrete selections. Data collected from individuals using an SMR-based or P300-based BCI were evaluated offline to estimate the impact on performance of continually adapting the parameters of the translation algorithm during BCI operation. The performance of the SMR-based BCI was enhanced by adaptive updating of the feature weights or adaptive normalization of the features. In contrast, P300 performance did not benefit from either of these procedures. PMID:21571004

  2. A New Modified Artificial Bee Colony Algorithm with Exponential Function Adaptive Steps

    PubMed Central

    Mao, Wei; Li, Hao-ru

    2016-01-01

    As one of the most recent popular swarm intelligence techniques, artificial bee colony algorithm is poor at exploitation and has some defects such as slow search speed, poor population diversity, the stagnation in the working process, and being trapped into the local optimal solution. The purpose of this paper is to develop a new modified artificial bee colony algorithm in view of the initial population structure, subpopulation groups, step updating, and population elimination. Further, depending on opposition-based learning theory and the new modified algorithms, an improved S-type grouping method is proposed and the original way of roulette wheel selection is substituted through sensitivity-pheromone way. Then, an adaptive step with exponential functions is designed for replacing the original random step. Finally, based on the new test function versions CEC13, six benchmark functions with the dimensions D = 20 and D = 40 are chosen and applied in the experiments for analyzing and comparing the iteration speed and accuracy of the new modified algorithms. The experimental results show that the new modified algorithm has faster and more stable searching and can quickly increase poor population diversity and bring out the global optimal solutions. PMID:27293426

  3. A New Modified Artificial Bee Colony Algorithm with Exponential Function Adaptive Steps.

    PubMed

    Mao, Wei; Lan, Heng-You; Li, Hao-Ru

    2016-01-01

    As one of the most recent popular swarm intelligence techniques, artificial bee colony algorithm is poor at exploitation and has some defects such as slow search speed, poor population diversity, the stagnation in the working process, and being trapped into the local optimal solution. The purpose of this paper is to develop a new modified artificial bee colony algorithm in view of the initial population structure, subpopulation groups, step updating, and population elimination. Further, depending on opposition-based learning theory and the new modified algorithms, an improved S-type grouping method is proposed and the original way of roulette wheel selection is substituted through sensitivity-pheromone way. Then, an adaptive step with exponential functions is designed for replacing the original random step. Finally, based on the new test function versions CEC13, six benchmark functions with the dimensions D = 20 and D = 40 are chosen and applied in the experiments for analyzing and comparing the iteration speed and accuracy of the new modified algorithms. The experimental results show that the new modified algorithm has faster and more stable searching and can quickly increase poor population diversity and bring out the global optimal solutions. PMID:27293426

  4. “Queremos Aprender”: Latino Immigrants’ Call to Integrate Cultural Adaptation with Best Practice Knowledge in a Parenting Intervention

    PubMed Central

    Parra Cardona, José; Holtrop, Kendal; Córdova, David; Escobar-Chew, Ana Rocio; Horsford, Sheena; Tams, Lisa; Villarruel, Francisco A.; Villalobos, Graciela; Dates, Brian; Anthony, James C.; Fitzgerald, Hiram E.

    2015-01-01

    Despite the unique and challenging circumstances confronting Latino immigrant families, debate still exists as to the need to culturally adapt evidence-based interventions for dissemination with this population. Following the grounded theory approach, the current qualitative investigation utilized focus group interviews with 83 Latino immigrant parents to explore the relevance of culturally adapting an evidence-based parenting intervention to be disseminated within this population. Findings from this study indicate that Latino immigrant parents want to participate in a culturally adapted parenting intervention as long as it is culturally relevant, respectful, and responsive to their life experiences. Research results also suggest that the parenting skills participants seek to enhance are among those commonly targeted by evidence-based parenting interventions. This study contributes to the cultural adaptation/fidelity balance debate by highlighting the necessity of exploring ways to develop culturally adapted interventions characterized by high cultural relevance, as well as high fidelity to the core components that have established efficacy for evidence-based parenting interventions. PMID:19579906

  5. Nonlinear fitness space structure adaptation and principal component analysis in genetic algorithms: an application to x-ray reflectivity analysis

    NASA Astrophysics Data System (ADS)

    Tiilikainen, J.; Tilli, J.-M.; Bosund, V.; Mattila, M.; Hakkarainen, T.; Airaksinen, V.-M.; Lipsanen, H.

    2007-01-01

    Two novel genetic algorithms implementing principal component analysis and an adaptive nonlinear fitness-space-structure technique are presented and compared with conventional algorithms in x-ray reflectivity analysis. Principal component analysis based on Hessian or interparameter covariance matrices is used to rotate a coordinate frame. The nonlinear adaptation applies nonlinear estimates to reshape the probability distribution of the trial parameters. The simulated x-ray reflectivity of a realistic model of a periodic nanolaminate structure was used as a test case for the fitting algorithms. The novel methods had significantly faster convergence and less stagnation than conventional non-adaptive genetic algorithms. The covariance approach needs no additional curve calculations compared with conventional methods, and it had better convergence properties than the computationally expensive Hessian approach. These new algorithms can also be applied to other fitting problems where tight interparameter dependence is present.

  6. A comparison of two adaptive algorithms for the control of active engine mounts

    NASA Astrophysics Data System (ADS)

    Hillis, A. J.; Harrison, A. J. L.; Stoten, D. P.

    2005-08-01

    This paper describes work conducted in order to control automotive active engine mounts, consisting of a conventional passive mount and an internal electromagnetic actuator. Active engine mounts seek to cancel the oscillatory forces generated by the rotation of out-of-balance masses within the engine. The actuator generates a force dependent on a control signal from an algorithm implemented with a real-time DSP. The filtered-x least-mean-square (FXLMS) adaptive filter is used as a benchmark for comparison with a new implementation of the error-driven minimal controller synthesis (Er-MCSI) adaptive controller. Both algorithms are applied to an active mount fitted to a saloon car equipped with a four-cylinder turbo-diesel engine, and have no a priori knowledge of the system dynamics. The steady-state and transient performance of the two algorithms are compared and the relative merits of the two approaches are discussed. The Er-MCSI strategy offers significant computational advantages as it requires no cancellation path modelling. The Er-MCSI controller is found to perform in a fashion similar to the FXLMS filter—typically reducing chassis vibration by 50-90% under normal driving conditions.

  7. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors.

    PubMed

    Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel

    2016-03-28

    Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA.

  8. Reconstruction of sparse-view X-ray computed tomography using adaptive iterative algorithms.

    PubMed

    Liu, Li; Lin, Weikai; Jin, Mingwu

    2015-01-01

    In this paper, we propose two reconstruction algorithms for sparse-view X-ray computed tomography (CT). Treating the reconstruction problems as data fidelity constrained total variation (TV) minimization, both algorithms adapt the alternate two-stage strategy: projection onto convex sets (POCS) for data fidelity and non-negativity constraints and steepest descent for TV minimization. The novelty of this work is to determine iterative parameters automatically from data, thus avoiding tedious manual parameter tuning. In TV minimization, the step sizes of steepest descent are adaptively adjusted according to the difference from POCS update in either the projection domain or the image domain, while the step size of algebraic reconstruction technique (ART) in POCS is determined based on the data noise level. In addition, projection errors are used to compare with the error bound to decide whether to perform ART so as to reduce computational costs. The performance of the proposed methods is studied and evaluated using both simulated and physical phantom data. Our methods with automatic parameter tuning achieve similar, if not better, reconstruction performance compared to a representative two-stage algorithm.

  9. Adaptive Inverse Hyperbolic Tangent Algorithm for Dynamic Contrast Adjustment in Displaying Scenes

    NASA Astrophysics Data System (ADS)

    Yu, Cheng-Yi; Ouyang, Yen-Chieh; Wang, Chuin-Mu; Chang, Chein-I.

    2010-12-01

    Contrast has a great influence on the quality of an image in human visual perception. A poorly illuminated environment can significantly affect the contrast ratio, producing an unexpected image. This paper proposes an Adaptive Inverse Hyperbolic Tangent (AIHT) algorithm to improve the display quality and contrast of a scene. Because digital cameras must maintain the shadow in a middle range of luminance that includes a main object such as a face, a gamma function is generally used for this purpose. However, this function has a severe weakness in that it decreases highlight contrast. To mitigate this problem, contrast enhancement algorithms have been designed to adjust contrast to tune human visual perception. The proposed AIHT determines the contrast levels of an original image as well as parameter space for different contrast types so that not only the original histogram shape features can be preserved, but also the contrast can be enhanced effectively. Experimental results show that the proposed algorithm is capable of enhancing the global contrast of the original image adaptively while extruding the details of objects simultaneously.

  10. The Research of Solution to the Problems of Complex Task Scheduling Based on Self-adaptive Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Zhu, Li; He, Yongxiang; Xue, Haidong; Chen, Leichen

    Traditional genetic algorithms (GA) displays a disadvantage of early-constringency in dealing with scheduling problem. To improve the crossover operators and mutation operators self-adaptively, this paper proposes a self-adaptive GA at the target of multitask scheduling optimization under limited resources. The experiment results show that the proposed algorithm outperforms the traditional GA in evolutive ability to deal with complex task scheduling optimization.

  11. Using patient-specific phantoms to evaluate deformable image registration algorithms for adaptive radiation therapy.

    PubMed

    Stanley, Nick; Glide-Hurst, Carri; Kim, Jinkoo; Adams, Jeffrey; Li, Shunshan; Wen, Ning; Chetty, Indrin J; Zhong, Hualiang

    2013-11-04

    The quality of adaptive treatment planning depends on the accuracy of its underlying deformable image registration (DIR). The purpose of this study is to evaluate the performance of two DIR algorithms, B-spline-based deformable multipass (DMP) and deformable demons (Demons), implemented in a commercial software package. Evaluations were conducted using both computational and physical deformable phantoms. Based on a finite element method (FEM), a total of 11 computational models were developed from a set of CT images acquired from four lung and one prostate cancer patients. FEM generated displacement vector fields (DVF) were used to construct the lung and prostate image phantoms. Based on a fast-Fourier transform technique, image noise power spectrum was incorporated into the prostate image phantoms to create simulated CBCT images. The FEM-DVF served as a gold standard for verification of the two registration algorithms performed on these phantoms. The registration algorithms were also evaluated at the homologous points quantified in the CT images of a physical lung phantom. The results indicated that the mean errors of the DMP algorithm were in the range of 1.0 ~ 3.1 mm for the computational phantoms and 1.9 mm for the physical lung phantom. For the computational prostate phantoms, the corresponding mean error was 1.0-1.9 mm in the prostate, 1.9-2.4mm in the rectum, and 1.8-2.1 mm over the entire patient body. Sinusoidal errors induced by B-spline interpolations were observed in all the displacement profiles of the DMP registrations. Regions of large displacements were observed to have more registration errors. Patient-specific FEM models have been developed to evaluate the DIR algorithms implemented in the commercial software package. It has been found that the accuracy of these algorithms is patient dependent and related to various factors including tissue deformation magnitudes and image intensity gradients across the regions of interest. This may suggest that

  12. An adaptive multi-level simulation algorithm for stochastic biological systems

    SciTech Connect

    Lester, C. Giles, M. B.; Baker, R. E.; Yates, C. A.

    2015-01-14

    Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, “Multi-level Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics,” SIAM Multiscale Model. Simul. 10(1), 146–179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the

  13. Adaptation of a Fast Optimal Interpolation Algorithm to the Mapping of Oceangraphic Data

    NASA Technical Reports Server (NTRS)

    Menemenlis, Dimitris; Fieguth, Paul; Wunsch, Carl; Willsky, Alan

    1997-01-01

    A fast, recently developed, multiscale optimal interpolation algorithm has been adapted to the mapping of hydrographic and other oceanographic data. This algorithm produces solution and error estimates which are consistent with those obtained from exact least squares methods, but at a small fraction of the computational cost. Problems whose solution would be completely impractical using exact least squares, that is, problems with tens or hundreds of thousands of measurements and estimation grid points, can easily be solved on a small workstation using the multiscale algorithm. In contrast to methods previously proposed for solving large least squares problems, our approach provides estimation error statistics while permitting long-range correlations, using all measurements, and permitting arbitrary measurement locations. The multiscale algorithm itself, published elsewhere, is not the focus of this paper. However, the algorithm requires statistical models having a very particular multiscale structure; it is the development of a class of multiscale statistical models, appropriate for oceanographic mapping problems, with which we concern ourselves in this paper. The approach is illustrated by mapping temperature in the northeastern Pacific. The number of hydrographic stations is kept deliberately small to show that multiscale and exact least squares results are comparable. A portion of the data were not used in the analysis; these data serve to test the multiscale estimates. A major advantage of the present approach is the ability to repeat the estimation procedure a large number of times for sensitivity studies, parameter estimation, and model testing. We have made available by anonymous Ftp a set of MATLAB-callable routines which implement the multiscale algorithm and the statistical models developed in this paper.

  14. An adaptive multi-level simulation algorithm for stochastic biological systems

    NASA Astrophysics Data System (ADS)

    Lester, C.; Yates, C. A.; Giles, M. B.; Baker, R. E.

    2015-01-01

    Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, "Multi-level Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics," SIAM Multiscale Model. Simul. 10(1), 146-179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the

  15. Rainfall Estimation over the Nile Basin using an Adapted Version of the SCaMPR Algorithm

    NASA Astrophysics Data System (ADS)

    Habib, E. H.; Kuligowski, R. J.; Elshamy, M. E.; Ali, M. A.; Haile, A.; Amin, D.; Eldin, A.

    2011-12-01

    Management of Egypt's Aswan High Dam is critical not only for flood control on the Nile but also for ensuring adequate water supplies for most of Egypt since rainfall is scarce over the vast majority of its land area. However, reservoir inflow is driven by rainfall over Sudan, Ethiopia, Uganda, and several other countries from which routine rain gauge data are sparse. Satellite-derived estimates of rainfall offer a much more detailed and timely set of data to form a basis for decisions on the operation of the dam. A single-channel infrared algorithm is currently in operational use at the Egyptian Nile Forecast Center (NFC). This study reports on the adaptation of a multi-spectral, multi-instrument satellite rainfall estimation algorithm (Self-Calibrating Multivariate Precipitation Retrieval, SCaMPR) for operational application over the Nile Basin. The algorithm uses a set of rainfall predictors from multi-spectral Infrared cloud top observations and self-calibrates them to a set of predictands from Microwave (MW) rain rate estimates. For application over the Nile Basin, the SCaMPR algorithm uses multiple satellite IR channels recently available to NFC from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). Microwave rain rates are acquired from multiple sources such as SSM/I, SSMIS, AMSU, AMSR-E, and TMI. The algorithm has two main steps: rain/no-rain separation using discriminant analysis, and rain rate estimation using stepwise linear regression. We test two modes of algorithm calibration: real-time calibration with continuous updates of coefficients with newly coming MW rain rates, and calibration using static coefficients that are derived from IR-MW data from past observations. We also compare the SCaMPR algorithm to other global-scale satellite rainfall algorithms (e.g., 'Tropical Rainfall Measuring Mission (TRMM) and other sources' (TRMM-3B42) product, and the National Oceanographic and Atmospheric Administration Climate Prediction Center (NOAA

  16. RZA-NLMF algorithm-based adaptive sparse sensing for realizing compressive sensing

    NASA Astrophysics Data System (ADS)

    Gui, Guan; Xu, Li; Adachi, Fumiyuki

    2014-12-01

    Nonlinear sparse sensing (NSS) techniques have been adopted for realizing compressive sensing in many applications such as radar imaging. Unlike the NSS, in this paper, we propose an adaptive sparse sensing (ASS) approach using the reweighted zero-attracting normalized least mean fourth (RZA-NLMF) algorithm which depends on several given parameters, i.e., reweighted factor, regularization parameter, and initial step size. First, based on the independent assumption, Cramer-Rao lower bound (CRLB) is derived as for the performance comparisons. In addition, reweighted factor selection method is proposed for achieving robust estimation performance. Finally, to verify the algorithm, Monte Carlo-based computer simulations are given to show that the ASS achieves much better mean square error (MSE) performance than the NSS.

  17. A parallel dynamic load balancing algorithm for 3-D adaptive unstructured grids

    NASA Technical Reports Server (NTRS)

    Vidwans, A.; Kallinderis, Y.; Venkatakrishnan, V.

    1993-01-01

    Adaptive local grid refinement and coarsening results in unequal distribution of workload among the processors of a parallel system. A novel method for balancing the load in cases of dynamically changing tetrahedral grids is developed. The approach employs local exchange of cells among processors in order to redistribute the load equally. An important part of the load balancing algorithm is the method employed by a processor to determine which cells within its subdomain are to be exchanged. Two such methods are presented and compared. The strategy for load balancing is based on the Divide-and-Conquer approach which leads to an efficient parallel algorithm. This method is implemented on a distributed-memory MIMD system.

  18. Fast intersections on nested tetrahedrons (FINT): An algorithm for adaptive finite element based distributed parameter estimation.

    PubMed

    Lee, Jae Hoon; Joshi, Amit; Sevick-Muraca, Eva M

    2008-01-01

    A variety of biomedical imaging techniques such as optical and fluorescence tomography, electrical impedance tomography, and ultrasound imaging can be cast as inverse problems, wherein image reconstruction involves the estimation of spatially distributed parameter(s) of the PDE system describing the physics of the imaging process. Finite element discretization of imaged domain with tetrahedral elements is a popular way of solving the forward and inverse imaging problems on complicated geometries. A dual-adaptive mesh-based approach wherein, one mesh is used for solving the forward imaging problem and the other mesh used for iteratively estimating the unknown distributed parameter, can result in high resolution image reconstruction at minimum computation effort, if both the meshes are allowed to adapt independently. Till date, no efficient method has been reported to identify and resolve intersection between tetrahedrons in independently refined or coarsened dual meshes. Herein, we report a fast and robust algorithm to identify and resolve intersection of tetrahedrons within nested dual meshes generated by 8-similar subtetrahedron subdivision scheme. The algorithm exploits finite element weight functions and gives rise to a set of weight functions on each vertex of disjoint tetrahedron pieces that completely cover up the intersection region of two tetrahedrons. The procedure enables fully adaptive tetrahedral finite elements by supporting independent refinement and coarsening of each individual mesh while preserving fast identification and resolution of intersection. The computational efficiency of the algorithm is demonstrated by diffuse photon density wave solutions obtained from a single- and a dual-mesh, and by reconstructing a fluorescent inclusion in simulated phantom from boundary frequency domain fluorescence measurements.

  19. An Adaptive Reputation-Based Algorithm for Grid Virtual Organization Formation

    NASA Astrophysics Data System (ADS)

    Cui, Yongrui; Li, Mingchu; Ren, Yizhi; Sakurai, Kouichi

    A novel adaptive reputation-based virtual organization formation is proposed. It restrains the bad performers effectively based on the consideration of the global experience of the evaluator and evaluates the direct trust relation between two grid nodes accurately by consulting the previous trust value rationally. It also consults and improves the reputation evaluation process in PathTrust model by taking account of the inter-organizational trust relationship and combines it with direct and recommended trust in a weighted way, which makes the algorithm more robust against collusion attacks. Additionally, the proposed algorithm considers the perspective of the VO creator and takes required VO services as one of the most important fine-grained evaluation criterion, which makes the algorithm more suitable for constructing VOs in grid environments that include autonomous organizations. Simulation results show that our algorithm restrains the bad performers and resists against fake transaction attacks and badmouth attacks effectively. It provides a clear advantage in the design of a VO infrastructure.

  20. An adaptive guidance algorithm for an aerodynamically assisted orbital plane change maneuver. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Blissit, J. A.

    1986-01-01

    Using analysis results from the post trajectory optimization program, an adaptive guidance algorithm is developed to compensate for density, aerodynamic and thrust perturbations during an atmospheric orbital plane change maneuver. The maneuver offers increased mission flexibility along with potential fuel savings for future reentry vehicles. Although designed to guide a proposed NASA Entry Research Vehicle, the algorithm is sufficiently generic for a range of future entry vehicles. The plane change analysis provides insight suggesting a straight-forward algorithm based on an optimized nominal command profile. Bank angle, angle of attack, and engine thrust level, ignition and cutoff times are modulated to adjust the vehicle's trajectory to achieve the desired end-conditions. A performance evaluation of the scheme demonstrates a capability to guide to within 0.05 degrees of the desired plane change and five nautical miles of the desired apogee altitude while maintaining heating constraints. The algorithm is tested under off-nominal conditions of + or -30% density biases, two density profile models, + or -15% aerodynamic uncertainty, and a 33% thrust loss and for various combinations of these conditions.

  1. Adaptive Fault Detection on Liquid Propulsion Systems with Virtual Sensors: Algorithms and Architectures

    NASA Technical Reports Server (NTRS)

    Matthews, Bryan L.; Srivastava, Ashok N.

    2010-01-01

    Prior to the launch of STS-119 NASA had completed a study of an issue in the flow control valve (FCV) in the Main Propulsion System of the Space Shuttle using an adaptive learning method known as Virtual Sensors. Virtual Sensors are a class of algorithms that estimate the value of a time series given other potentially nonlinearly correlated sensor readings. In the case presented here, the Virtual Sensors algorithm is based on an ensemble learning approach and takes sensor readings and control signals as input to estimate the pressure in a subsystem of the Main Propulsion System. Our results indicate that this method can detect faults in the FCV at the time when they occur. We use the standard deviation of the predictions of the ensemble as a measure of uncertainty in the estimate. This uncertainty estimate was crucial to understanding the nature and magnitude of transient characteristics during startup of the engine. This paper overviews the Virtual Sensors algorithm and discusses results on a comprehensive set of Shuttle missions and also discusses the architecture necessary for deploying such algorithms in a real-time, closed-loop system or a human-in-the-loop monitoring system. These results were presented at a Flight Readiness Review of the Space Shuttle in early 2009.

  2. A nonlinear model reference adaptive inverse control algorithm with pre-compensator

    NASA Astrophysics Data System (ADS)

    Xiao, Bin; Yang, Tie-Jun; Liu, Zhi-Gang

    2005-12-01

    In this paper, the reduced-order modeling (ROM) technology and its corresponding linear theory are expanded from the linear dynamic system to the nonlinear one, and H ∞ control theory is employed in the frequency domain to design some nonlinear system s pre-compensator in some special way. The adaptive model inverse control (AMIC) theory coping with nonlinear system is improved as well. Such is the model reference adaptive inverse control with pre-compensator (PCMRAIC). The aim of that algorithm is to construct a strategy of control as a whole. As a practical example of the application, the numerical simulation has been given on matlab software packages. The numerical result is given. The proposed strategy realizes the linearization control of nonlinear dynamic system. And it carries out a good performance to deal with the nonlinear system.

  3. A hybrid skull-stripping algorithm based on adaptive balloon snake models

    NASA Astrophysics Data System (ADS)

    Liu, Hung-Ting; Sheu, Tony W. H.; Chang, Herng-Hua

    2013-02-01

    Skull-stripping is one of the most important preprocessing steps in neuroimage analysis. We proposed a hybrid algorithm based on an adaptive balloon snake model to handle this challenging task. The proposed framework consists of two stages: first, the fuzzy possibilistic c-means (FPCM) is used for voxel clustering, which provides a labeled image for the snake contour initialization. In the second stage, the contour is initialized outside the brain surface based on the FPCM result and evolves under the guidance of the balloon snake model, which drives the contour with an adaptive inward normal force to capture the boundary of the brain. The similarity indices indicate that our method outperformed the BSE and BET methods in skull-stripping the MR image volumes in the IBSR data set. Experimental results show the effectiveness of this new scheme and potential applications in a wide variety of skull-stripping applications.

  4. Experimental Evaluation of a Braille-Reading-Inspired Finger Motion Adaptive Algorithm.

    PubMed

    Ulusoy, Melda; Sipahi, Rifat

    2016-01-01

    Braille reading is a complex process involving intricate finger-motion patterns and finger-rubbing actions across Braille letters for the stimulation of appropriate nerves. Although Braille reading is performed by smoothly moving the finger from left-to-right, research shows that even fluent reading requires right-to-left movements of the finger, known as "reversal". Reversals are crucial as they not only enhance stimulation of nerves for correctly reading the letters, but they also show one to re-read the letters that were missed in the first pass. Moreover, it is known that reversals can be performed as often as in every sentence and can start at any location in a sentence. Here, we report experimental results on the feasibility of an algorithm that can render a machine to automatically adapt to reversal gestures of one's finger. Through Braille-reading-analogous tasks, the algorithm is tested with thirty sighted subjects that volunteered in the study. We find that the finger motion adaptive algorithm (FMAA) is useful in achieving cooperation between human finger and the machine. In the presence of FMAA, subjects' performance metrics associated with the tasks have significantly improved as supported by statistical analysis. In light of these encouraging results, preliminary experiments are carried out with five blind subjects with the aim to put the algorithm to test. Results obtained from carefully designed experiments showed that subjects' Braille reading accuracy in the presence of FMAA was more favorable then when FMAA was turned off. Utilization of FMAA in future generation Braille reading devices thus holds strong promise.

  5. Experimental Evaluation of a Braille-Reading-Inspired Finger Motion Adaptive Algorithm

    PubMed Central

    2016-01-01

    Braille reading is a complex process involving intricate finger-motion patterns and finger-rubbing actions across Braille letters for the stimulation of appropriate nerves. Although Braille reading is performed by smoothly moving the finger from left-to-right, research shows that even fluent reading requires right-to-left movements of the finger, known as “reversal”. Reversals are crucial as they not only enhance stimulation of nerves for correctly reading the letters, but they also show one to re-read the letters that were missed in the first pass. Moreover, it is known that reversals can be performed as often as in every sentence and can start at any location in a sentence. Here, we report experimental results on the feasibility of an algorithm that can render a machine to automatically adapt to reversal gestures of one’s finger. Through Braille-reading-analogous tasks, the algorithm is tested with thirty sighted subjects that volunteered in the study. We find that the finger motion adaptive algorithm (FMAA) is useful in achieving cooperation between human finger and the machine. In the presence of FMAA, subjects’ performance metrics associated with the tasks have significantly improved as supported by statistical analysis. In light of these encouraging results, preliminary experiments are carried out with five blind subjects with the aim to put the algorithm to test. Results obtained from carefully designed experiments showed that subjects’ Braille reading accuracy in the presence of FMAA was more favorable then when FMAA was turned off. Utilization of FMAA in future generation Braille reading devices thus holds strong promise. PMID:26849058

  6. Control algorithms of liquid crystal phased arrays used as adaptive optic correctors

    NASA Astrophysics Data System (ADS)

    Dayton, David; Gonglewski, John; Browne, Stephen

    2006-08-01

    Multi-segment liquid crystal phased arrays have been demonstrated as adaptive optics elements for correction of atmospheric turbulence. High speed dual-frequency nematic liquid crystal has sufficient bandwidth to keep up with moderate atmospheric Greenwood frequencies. However the segmented piston correction only spatial nature of the devices requires novel approaches to control algorithms especially when used with Shack-Hartmann wave front sensors. In this presentation we explore approaches and their effects on closed loop Strehl ratios. A Zernike modal based approach has produced the best results. The presentation will contain results from experiments with a Meadowlark optics liquid crystal device.

  7. On the definition of adapted audio/video profiles for high-quality video calling services over LTE/4G

    NASA Astrophysics Data System (ADS)

    Ndiaye, Maty; Quinquis, Catherine; Larabi, Mohamed Chaker; Le Lay, Gwenael; Saadane, Hakim; Perrine, Clency

    2014-01-01

    During the last decade, the important advances and widespread availability of mobile technology (operating systems, GPUs, terminal resolution and so on) have encouraged a fast development of voice and video services like video-calling. While multimedia services have largely grown on mobile devices, the generated increase of data consumption is leading to the saturation of mobile networks. In order to provide data with high bit-rates and maintain performance as close as possible to traditional networks, the 3GPP (The 3rd Generation Partnership Project) worked on a high performance standard for mobile called Long Term Evolution (LTE). In this paper, we aim at expressing recommendations related to audio and video media profiles (selection of audio and video codecs, bit-rates, frame-rates, audio and video formats) for a typical video-calling services held over LTE/4G mobile networks. These profiles are defined according to targeted devices (smartphones, tablets), so as to ensure the best possible quality of experience (QoE). Obtained results indicate that for a CIF format (352 x 288 pixels) which is usually used for smartphones, the VP8 codec provides a better image quality than the H.264 codec for low bitrates (from 128 to 384 kbps). However sequences with high motion, H.264 in slow mode is preferred. Regarding audio, better results are globally achieved using wideband codecs offering good quality except for opus codec (at 12.2 kbps).

  8. An Adaptive Defect Weighted Sampling Algorithm to Design Pseudoknotted RNA Secondary Structures

    PubMed Central

    Zandi, Kasra; Butler, Gregory; Kharma, Nawwaf

    2016-01-01

    Computational design of RNA sequences that fold into targeted secondary structures has many applications in biomedicine, nanotechnology and synthetic biology. An RNA molecule is made of different types of secondary structure elements and an important RNA element named pseudoknot plays a key role in stabilizing the functional form of the molecule. However, due to the computational complexities associated with characterizing pseudoknotted RNA structures, most of the existing RNA sequence designer algorithms generally ignore this important structural element and therefore limit their applications. In this paper we present a new algorithm to design RNA sequences for pseudoknotted secondary structures. We use NUPACK as the folding algorithm to compute the equilibrium characteristics of the pseudoknotted RNAs, and describe a new adaptive defect weighted sampling algorithm named Enzymer to design low ensemble defect RNA sequences for targeted secondary structures including pseudoknots. We used a biological data set of 201 pseudoknotted structures from the Pseudobase library to benchmark the performance of our algorithm. We compared the quality characteristics of the RNA sequences we designed by Enzymer with the results obtained from the state of the art MODENA and antaRNA. Our results show our method succeeds more frequently than MODENA and antaRNA do, and generates sequences that have lower ensemble defect, lower probability defect and higher thermostability. Finally by using Enzymer and by constraining the design to a naturally occurring and highly conserved Hammerhead motif, we designed 8 sequences for a pseudoknotted cis-acting Hammerhead ribozyme. Enzymer is available for download at https://bitbucket.org/casraz/enzymer. PMID:27499762

  9. An Adaptive Defect Weighted Sampling Algorithm to Design Pseudoknotted RNA Secondary Structures.

    PubMed

    Zandi, Kasra; Butler, Gregory; Kharma, Nawwaf

    2016-01-01

    Computational design of RNA sequences that fold into targeted secondary structures has many applications in biomedicine, nanotechnology and synthetic biology. An RNA molecule is made of different types of secondary structure elements and an important RNA element named pseudoknot plays a key role in stabilizing the functional form of the molecule. However, due to the computational complexities associated with characterizing pseudoknotted RNA structures, most of the existing RNA sequence designer algorithms generally ignore this important structural element and therefore limit their applications. In this paper we present a new algorithm to design RNA sequences for pseudoknotted secondary structures. We use NUPACK as the folding algorithm to compute the equilibrium characteristics of the pseudoknotted RNAs, and describe a new adaptive defect weighted sampling algorithm named Enzymer to design low ensemble defect RNA sequences for targeted secondary structures including pseudoknots. We used a biological data set of 201 pseudoknotted structures from the Pseudobase library to benchmark the performance of our algorithm. We compared the quality characteristics of the RNA sequences we designed by Enzymer with the results obtained from the state of the art MODENA and antaRNA. Our results show our method succeeds more frequently than MODENA and antaRNA do, and generates sequences that have lower ensemble defect, lower probability defect and higher thermostability. Finally by using Enzymer and by constraining the design to a naturally occurring and highly conserved Hammerhead motif, we designed 8 sequences for a pseudoknotted cis-acting Hammerhead ribozyme. Enzymer is available for download at https://bitbucket.org/casraz/enzymer. PMID:27499762

  10. An Adaptive Defect Weighted Sampling Algorithm to Design Pseudoknotted RNA Secondary Structures.

    PubMed

    Zandi, Kasra; Butler, Gregory; Kharma, Nawwaf

    2016-01-01

    Computational design of RNA sequences that fold into targeted secondary structures has many applications in biomedicine, nanotechnology and synthetic biology. An RNA molecule is made of different types of secondary structure elements and an important RNA element named pseudoknot plays a key role in stabilizing the functional form of the molecule. However, due to the computational complexities associated with characterizing pseudoknotted RNA structures, most of the existing RNA sequence designer algorithms generally ignore this important structural element and therefore limit their applications. In this paper we present a new algorithm to design RNA sequences for pseudoknotted secondary structures. We use NUPACK as the folding algorithm to compute the equilibrium characteristics of the pseudoknotted RNAs, and describe a new adaptive defect weighted sampling algorithm named Enzymer to design low ensemble defect RNA sequences for targeted secondary structures including pseudoknots. We used a biological data set of 201 pseudoknotted structures from the Pseudobase library to benchmark the performance of our algorithm. We compared the quality characteristics of the RNA sequences we designed by Enzymer with the results obtained from the state of the art MODENA and antaRNA. Our results show our method succeeds more frequently than MODENA and antaRNA do, and generates sequences that have lower ensemble defect, lower probability defect and higher thermostability. Finally by using Enzymer and by constraining the design to a naturally occurring and highly conserved Hammerhead motif, we designed 8 sequences for a pseudoknotted cis-acting Hammerhead ribozyme. Enzymer is available for download at https://bitbucket.org/casraz/enzymer.

  11. Adaptive ILC algorithms of nonlinear continuous systems with non-parametric uncertainties for non-repetitive trajectory tracking

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Dong; Lv, Mang-Mang; Ho, John K. L.

    2016-07-01

    In this article, two adaptive iterative learning control (ILC) algorithms are presented for nonlinear continuous systems with non-parametric uncertainties. Unlike general ILC techniques, the proposed adaptive ILC algorithms allow that both the initial error at each iteration and the reference trajectory are iteration-varying in the ILC process, and can achieve non-repetitive trajectory tracking beyond a small initial time interval. Compared to the neural network or fuzzy system-based adaptive ILC schemes and the classical ILC methods, in which the number of iterative variables is generally larger than or equal to the number of control inputs, the first adaptive ILC algorithm proposed in this paper uses just two iterative variables, while the second even uses a single iterative variable provided that some bound information on system dynamics is known. As a result, the memory space in real-time ILC implementations is greatly reduced.

  12. Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm

    NASA Technical Reports Server (NTRS)

    Mitra, Sunanda; Pemmaraju, Surya

    1992-01-01

    Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.

  13. Strategies to overcome photobleaching in algorithm-based adaptive optics for nonlinear in-vivo imaging.

    PubMed

    Caroline Müllenbroich, M; McGhee, Ewan J; Wright, Amanda J; Anderson, Kurt I; Mathieson, Keith

    2014-01-01

    We have developed a nonlinear adaptive optics microscope utilizing a deformable membrane mirror (DMM) and demonstrated its use in compensating for system- and sample-induced aberrations. The optimum shape of the DMM was determined with a random search algorithm optimizing on either two photon fluorescence or second harmonic signals as merit factors. We present here several strategies to overcome photobleaching issues associated with lengthy optimization routines by adapting the search algorithm and the experimental methodology. Optimizations were performed on extrinsic fluorescent dyes, fluorescent beads loaded into organotypic tissue cultures and the intrinsic second harmonic signal of these cultures. We validate the approach of using these preoptimized mirror shapes to compile a robust look-up table that can be applied for imaging over several days and through a variety of tissues. In this way, the photon exposure to the fluorescent cells under investigation is limited to imaging. Using our look-up table approach, we show signal intensity improvement factors ranging from 1.7 to 4.1 in organotypic tissue cultures and freshly excised mouse tissue. Imaging zebrafish in vivo, we demonstrate signal improvement by a factor of 2. This methodology is easily reproducible and could be applied to many photon starved experiments, for example fluorescent life time imaging, or when photobleaching is a concern.

  14. An efficient self-adaptive model for chaotic image encryption algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoling; Ye, Guodong

    2014-12-01

    In this paper, an efficient self-adaptive model for chaotic image encryption algorithm is proposed. With the help of the classical structure of permutation-diffusion and double simple two-dimensional chaotic systems, an efficient and fast encryption algorithm is designed. However, different from most of the existing methods which are found insecure upon chosen-plaintext or known-plaintext attack in the process of permutation or diffusion, the keystream generated in both operations of our method is dependent on the plain-image. Therefore, different plain-images will have different keystreams in both processes even just only a bit is changed in the plain-image. This design can solve the problem of fixed chaotic sequence produced by the same initial conditions but for different images. Moreover, the operation speed is high because complex mathematical methods, such as Runge-Kutta method, of solving the high-dimensional partial differential equations are avoided. Numerical experiments show that the proposed self-adaptive method can well resist against chosen-plaintext and known-plaintext attacks, and has high security and efficiency.

  15. Optical Cluster-Finding with an Adaptive Matched-Filter Technique: Algorithm and Comparison with Simulations

    SciTech Connect

    Dong, Feng; Pierpaoli, Elena; Gunn, James E.; Wechsler, Risa H.

    2007-10-29

    We present a modified adaptive matched filter algorithm designed to identify clusters of galaxies in wide-field imaging surveys such as the Sloan Digital Sky Survey. The cluster-finding technique is fully adaptive to imaging surveys with spectroscopic coverage, multicolor photometric redshifts, no redshift information at all, and any combination of these within one survey. It works with high efficiency in multi-band imaging surveys where photometric redshifts can be estimated with well-understood error distributions. Tests of the algorithm on realistic mock SDSS catalogs suggest that the detected sample is {approx} 85% complete and over 90% pure for clusters with masses above 1.0 x 10{sup 14}h{sup -1} M and redshifts up to z = 0.45. The errors of estimated cluster redshifts from maximum likelihood method are shown to be small (typically less that 0.01) over the whole redshift range with photometric redshift errors typical of those found in the Sloan survey. Inside the spherical radius corresponding to a galaxy overdensity of {Delta} = 200, we find the derived cluster richness {Lambda}{sub 200} a roughly linear indicator of its virial mass M{sub 200}, which well recovers the relation between total luminosity and cluster mass of the input simulation.

  16. Optimization and vibration suppression of adaptive composite panels using genetic algorithm and disturbance observer technique

    NASA Astrophysics Data System (ADS)

    Yan, Su; Ghasemi-Nejhad, Mehrdad N.

    2003-07-01

    In this paper, a model of the adaptive composite panel surfaces with piezoelectric patches is built using the Rayleigh-Ritz method based on the laminate theory. The interia and stiffness of the actuators are considered in the developed model. An optimal actuator location has been proved to be desirable since the piezoelectric actuators often have limitations of delivering large power oiutputs. Due to its effectiveness in seraching optimal design parameters and obtaining globally optimal solutions, the genetic algorithm has been applied to find optimal locations of piezoelectric actuators for the vibration control of a smart composite beam. In addition, the effects of population size, the crossover probability, and the mutation probability on the convergence of the genetic algorithm are investigated. Meanwhile, linear quadric regulator (LQR) and disturbance observer (DOB) are employed for the vibration suppression of the optimized adaptive composite beam (ACB). The experimental results show the robustness of the DOB, which can successfully suppress the vibrations of the cantilevered ACB according to the optimization results in an uncertain system.

  17. Adaptive filter design based on the LMS algorithm for delay elimination in TCR/FC compensators.

    PubMed

    Hooshmand, Rahmat Allah; Torabian Esfahani, Mahdi

    2011-04-01

    Thyristor controlled reactor with fixed capacitor (TCR/FC) compensators have the capability of compensating reactive power and improving power quality phenomena. Delay in the response of such compensators degrades their performance. In this paper, a new method based on adaptive filters (AF) is proposed in order to eliminate delay and increase the response of the TCR compensator. The algorithm designed for the adaptive filters is performed based on the least mean square (LMS) algorithm. In this design, instead of fixed capacitors, band-pass LC filters are used. To evaluate the filter, a TCR/FC compensator was used for nonlinear and time varying loads of electric arc furnaces (EAFs). These loads caused occurrence of power quality phenomena in the supplying system, such as voltage fluctuation and flicker, odd and even harmonics and unbalancing in voltage and current. The above design was implemented in a realistic system model of a steel complex. The simulation results show that applying the proposed control in the TCR/FC compensator efficiently eliminated delay in the response and improved the performance of the compensator in the power system.

  18. Adaptive filter design based on the LMS algorithm for delay elimination in TCR/FC compensators.

    PubMed

    Hooshmand, Rahmat Allah; Torabian Esfahani, Mahdi

    2011-04-01

    Thyristor controlled reactor with fixed capacitor (TCR/FC) compensators have the capability of compensating reactive power and improving power quality phenomena. Delay in the response of such compensators degrades their performance. In this paper, a new method based on adaptive filters (AF) is proposed in order to eliminate delay and increase the response of the TCR compensator. The algorithm designed for the adaptive filters is performed based on the least mean square (LMS) algorithm. In this design, instead of fixed capacitors, band-pass LC filters are used. To evaluate the filter, a TCR/FC compensator was used for nonlinear and time varying loads of electric arc furnaces (EAFs). These loads caused occurrence of power quality phenomena in the supplying system, such as voltage fluctuation and flicker, odd and even harmonics and unbalancing in voltage and current. The above design was implemented in a realistic system model of a steel complex. The simulation results show that applying the proposed control in the TCR/FC compensator efficiently eliminated delay in the response and improved the performance of the compensator in the power system. PMID:21193194

  19. Convergence study of various non-quadratic adaptive algorithms in the equalization of impulsive DS-CDMA channel

    NASA Astrophysics Data System (ADS)

    Jimaa, Shihab A.; Jadah, Mohamed E.

    2005-10-01

    This paper investigates the performance of using various non-quadratic adaptive algorithms in the adaptation of a non-linear receiver, coupled with a second-order phase tracking subsystem, for asynchronous DS-CDMA communication system impaired by double-spread multipath channel and Gaussian mixture impulsive noise. These algorithms are the lower order (where the power of the cost function is lower than 2), the least-mean mixed norm (where a mixed-norm function is introduced, which combines the LMS and the LMF functions), and the least mean square-fourth switching (where this algorithm switches between LMS and LMF depending on the value of the error). The non-linear receiver comprises feed-forward filter (FFF), feedback filter (FBF), and an equalizer/second order phase locked loop (PLL). The investigations study the effect of using the proposed algorithms on the performance of the non-linear receiver in terms of the mean-square error (MSE) and bit-error-rate (BER). Computer simulation results indicate that the least-mean mixed proposed receiver's algorithm gives the fastest convergence rate and similar BER performance, in comparison with the NLMS adaptive receiver. Furthermore, extensive computer simulation tests have been carried out to determine the optimum values of the step-size, the power of the cost function, and the adaptation parameter of the proposed algorithms. Results show that the optimum values of the step-size for the lower-order, least-mean square fourth, least-mean mixed norm, and the NLMS algorithms are 5x10 -4, 10 -6, 5x10 -4, and 0.01, respectively. The optimum value of the power of the lower-order algorithm is 1.9 and the optimum value of the adaptation parameter of the least-mean mixed algorithm is 0.9.

  20. Self-adapting root-MUSIC algorithm and its real-valued formulation for acoustic vector sensor array

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhang, Guo-jun; Xue, Chen-yang; Zhang, Wen-dong; Xiong, Ji-jun

    2012-12-01

    In this paper, based on the root-MUSIC algorithm for acoustic pressure sensor array, a new self-adapting root-MUSIC algorithm for acoustic vector sensor array is proposed by self-adaptive selecting the lead orientation vector, and its real-valued formulation by Forward-Backward(FB) smoothing and real-valued inverse covariance matrix is also proposed, which can reduce the computational complexity and distinguish the coherent signals. The simulation experiment results show the better performance of two new algorithm with low Signal-to-Noise (SNR) in direction of arrival (DOA) estimation than traditional MUSIC algorithm, and the experiment results using MEMS vector hydrophone array in lake trails show the engineering practicability of two new algorithms.

  1. Online adaptive policy learning algorithm for H∞ state feedback control of unknown affine nonlinear discrete-time systems.

    PubMed

    Zhang, Huaguang; Qin, Chunbin; Jiang, Bin; Luo, Yanhong

    2014-12-01

    The problem of H∞ state feedback control of affine nonlinear discrete-time systems with unknown dynamics is investigated in this paper. An online adaptive policy learning algorithm (APLA) based on adaptive dynamic programming (ADP) is proposed for learning in real-time the solution to the Hamilton-Jacobi-Isaacs (HJI) equation, which appears in the H∞ control problem. In the proposed algorithm, three neural networks (NNs) are utilized to find suitable approximations of the optimal value function and the saddle point feedback control and disturbance policies. Novel weight updating laws are given to tune the critic, actor, and disturbance NNs simultaneously by using data generated in real-time along the system trajectories. Considering NN approximation errors, we provide the stability analysis of the proposed algorithm with Lyapunov approach. Moreover, the need of the system input dynamics for the proposed algorithm is relaxed by using a NN identification scheme. Finally, simulation examples show the effectiveness of the proposed algorithm. PMID:25095274

  2. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors.

    PubMed

    Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel

    2016-01-01

    Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA. PMID:27043559

  3. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors

    PubMed Central

    Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel

    2016-01-01

    Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA. PMID:27043559

  4. A local anisotropic adaptive algorithm for the solution of low-Mach transient combustion problems

    NASA Astrophysics Data System (ADS)

    Carpio, Jaime; Prieto, Juan Luis; Vera, Marcos

    2016-02-01

    A novel numerical algorithm for the simulation of transient combustion problems at low Mach and moderately high Reynolds numbers is presented. These problems are often characterized by the existence of a large disparity of length and time scales, resulting in the development of directional flow features, such as slender jets, boundary layers, mixing layers, or flame fronts. This makes local anisotropic adaptive techniques quite advantageous computationally. In this work we propose a local anisotropic refinement algorithm using, for the spatial discretization, unstructured triangular elements in a finite element framework. For the time integration, the problem is formulated in the context of semi-Lagrangian schemes, introducing the semi-Lagrange-Galerkin (SLG) technique as a better alternative to the classical semi-Lagrangian (SL) interpolation. The good performance of the numerical algorithm is illustrated by solving a canonical laminar combustion problem: the flame/vortex interaction. First, a premixed methane-air flame/vortex interaction with simplified transport and chemistry description (Test I) is considered. Results are found to be in excellent agreement with those in the literature, proving the superior performance of the SLG scheme when compared with the classical SL technique, and the advantage of using anisotropic adaptation instead of uniform meshes or isotropic mesh refinement. As a more realistic example, we then conduct simulations of non-premixed hydrogen-air flame/vortex interactions (Test II) using a more complex combustion model which involves state-of-the-art transport and chemical kinetics. In addition to the analysis of the numerical features, this second example allows us to perform a satisfactory comparison with experimental visualizations taken from the literature.

  5. Dimensionality Reduction in Complex Medical Data: Improved Self-Adaptive Niche Genetic Algorithm

    PubMed Central

    Zhu, Min; Xia, Jing; Yan, Molei; Cai, Guolong; Yan, Jing; Ning, Gangmin

    2015-01-01

    With the development of medical technology, more and more parameters are produced to describe the human physiological condition, forming high-dimensional clinical datasets. In clinical analysis, data are commonly utilized to establish mathematical models and carry out classification. High-dimensional clinical data will increase the complexity of classification, which is often utilized in the models, and thus reduce efficiency. The Niche Genetic Algorithm (NGA) is an excellent algorithm for dimensionality reduction. However, in the conventional NGA, the niche distance parameter is set in advance, which prevents it from adjusting to the environment. In this paper, an Improved Niche Genetic Algorithm (INGA) is introduced. It employs a self-adaptive niche-culling operation in the construction of the niche environment to improve the population diversity and prevent local optimal solutions. The INGA was verified in a stratification model for sepsis patients. The results show that, by applying INGA, the feature dimensionality of datasets was reduced from 77 to 10 and that the model achieved an accuracy of 92% in predicting 28-day death in sepsis patients, which is significantly higher than other methods. PMID:26649071

  6. Dimensionality Reduction in Complex Medical Data: Improved Self-Adaptive Niche Genetic Algorithm.

    PubMed

    Zhu, Min; Xia, Jing; Yan, Molei; Cai, Guolong; Yan, Jing; Ning, Gangmin

    2015-01-01

    With the development of medical technology, more and more parameters are produced to describe the human physiological condition, forming high-dimensional clinical datasets. In clinical analysis, data are commonly utilized to establish mathematical models and carry out classification. High-dimensional clinical data will increase the complexity of classification, which is often utilized in the models, and thus reduce efficiency. The Niche Genetic Algorithm (NGA) is an excellent algorithm for dimensionality reduction. However, in the conventional NGA, the niche distance parameter is set in advance, which prevents it from adjusting to the environment. In this paper, an Improved Niche Genetic Algorithm (INGA) is introduced. It employs a self-adaptive niche-culling operation in the construction of the niche environment to improve the population diversity and prevent local optimal solutions. The INGA was verified in a stratification model for sepsis patients. The results show that, by applying INGA, the feature dimensionality of datasets was reduced from 77 to 10 and that the model achieved an accuracy of 92% in predicting 28-day death in sepsis patients, which is significantly higher than other methods.

  7. A new spectral variable selection pattern using competitive adaptive reweighted sampling combined with successive projections algorithm.

    PubMed

    Tang, Guo; Huang, Yue; Tian, Kuangda; Song, Xiangzhong; Yan, Hong; Hu, Jing; Xiong, Yanmei; Min, Shungeng

    2014-10-01

    The competitive adaptive reweighted sampling-successive projections algorithm (CARS-SPA) method was proposed as a novel variable selection approach to process multivariate calibration. The CARS was first used to select informative variables, and then SPA to refine the variables with minimum redundant information. The proposed method was applied to near-infrared (NIR) reflectance data of nicotine in tobacco lamina and NIR transmission data of active ingredient in pesticide formulation. As a result, fewer but more informative variables were selected by CARS-SPA than by direct CARS. In the system of pesticide formulation, a multiple linear regression (MLR) model using variables selected by CARS-SPA provided a better prediction than the full-range partial least-squares (PLS) model, successive projections algorithm (SPA) model and uninformative variables elimination-successive projections algorithm (UVE-SPA) processed model. The variable subsets selected by CARS-SPA included the spectral ranges with sufficient chemical information, whereas the uninformative variables were hardly selected.

  8. An environment-adaptive management algorithm for hearing-support devices incorporating listening situation and noise type classifiers.

    PubMed

    Yook, Sunhyun; Nam, Kyoung Won; Kim, Heepyung; Hong, Sung Hwa; Jang, Dong Pyo; Kim, In Young

    2015-04-01

    In order to provide more consistent sound intelligibility for the hearing-impaired person, regardless of environment, it is necessary to adjust the setting of the hearing-support (HS) device to accommodate various environmental circumstances. In this study, a fully automatic HS device management algorithm that can adapt to various environmental situations is proposed; it is composed of a listening-situation classifier, a noise-type classifier, an adaptive noise-reduction algorithm, and a management algorithm that can selectively turn on/off one or more of the three basic algorithms-beamforming, noise-reduction, and feedback cancellation-and can also adjust internal gains and parameters of the wide-dynamic-range compression (WDRC) and noise-reduction (NR) algorithms in accordance with variations in environmental situations. Experimental results demonstrated that the implemented algorithms can classify both listening situation and ambient noise type situations with high accuracies (92.8-96.4% and 90.9-99.4%, respectively), and the gains and parameters of the WDRC and NR algorithms were successfully adjusted according to variations in environmental situation. The average values of signal-to-noise ratio (SNR), frequency-weighted segmental SNR, Perceptual Evaluation of Speech Quality, and mean opinion test scores of 10 normal-hearing volunteers of the adaptive multiband spectral subtraction (MBSS) algorithm were improved by 1.74 dB, 2.11 dB, 0.49, and 0.68, respectively, compared to the conventional fixed-parameter MBSS algorithm. These results indicate that the proposed environment-adaptive management algorithm can be applied to HS devices to improve sound intelligibility for hearing-impaired individuals in various acoustic environments. PMID:25284135

  9. An environment-adaptive management algorithm for hearing-support devices incorporating listening situation and noise type classifiers.

    PubMed

    Yook, Sunhyun; Nam, Kyoung Won; Kim, Heepyung; Hong, Sung Hwa; Jang, Dong Pyo; Kim, In Young

    2015-04-01

    In order to provide more consistent sound intelligibility for the hearing-impaired person, regardless of environment, it is necessary to adjust the setting of the hearing-support (HS) device to accommodate various environmental circumstances. In this study, a fully automatic HS device management algorithm that can adapt to various environmental situations is proposed; it is composed of a listening-situation classifier, a noise-type classifier, an adaptive noise-reduction algorithm, and a management algorithm that can selectively turn on/off one or more of the three basic algorithms-beamforming, noise-reduction, and feedback cancellation-and can also adjust internal gains and parameters of the wide-dynamic-range compression (WDRC) and noise-reduction (NR) algorithms in accordance with variations in environmental situations. Experimental results demonstrated that the implemented algorithms can classify both listening situation and ambient noise type situations with high accuracies (92.8-96.4% and 90.9-99.4%, respectively), and the gains and parameters of the WDRC and NR algorithms were successfully adjusted according to variations in environmental situation. The average values of signal-to-noise ratio (SNR), frequency-weighted segmental SNR, Perceptual Evaluation of Speech Quality, and mean opinion test scores of 10 normal-hearing volunteers of the adaptive multiband spectral subtraction (MBSS) algorithm were improved by 1.74 dB, 2.11 dB, 0.49, and 0.68, respectively, compared to the conventional fixed-parameter MBSS algorithm. These results indicate that the proposed environment-adaptive management algorithm can be applied to HS devices to improve sound intelligibility for hearing-impaired individuals in various acoustic environments.

  10. A novel algorithm for calling mRNA m6A peaks by modeling biological variances in MeRIP-seq data

    PubMed Central

    Cui, Xiaodong; Meng, Jia; Zhang, Shaowu; Chen, Yidong; Huang, Yufei

    2016-01-01

    Motivation: N6-methyl-adenosine (m6A) is the most prevalent mRNA methylation but precise prediction of its mRNA location is important for understanding its function. A recent sequencing technology, known as Methylated RNA Immunoprecipitation Sequencing technology (MeRIP-seq), has been developed for transcriptome-wide profiling of m6A. We previously developed a peak calling algorithm called exomePeak. However, exomePeak over-simplifies data characteristics and ignores the reads’ variances among replicates or reads dependency across a site region. To further improve the performance, new model is needed to address these important issues of MeRIP-seq data. Results: We propose a novel, graphical model-based peak calling method, MeTPeak, for transcriptome-wide detection of m6A sites from MeRIP-seq data. MeTPeak explicitly models read count of an m6A site and introduces a hierarchical layer of Beta variables to capture the variances and a Hidden Markov model to characterize the reads dependency across a site. In addition, we developed a constrained Newton’s method and designed a log-barrier function to compute analytically intractable, positively constrained Beta parameters. We applied our algorithm to simulated and real biological datasets and demonstrated significant improvement in detection performance and robustness over exomePeak. Prediction results on publicly available MeRIP-seq datasets are also validated and shown to be able to recapitulate the known patterns of m6A, further validating the improved performance of MeTPeak. Availability and implementation: The package ‘MeTPeak’ is implemented in R and C ++, and additional details are available at https://github.com/compgenomics/MeTPeak Contact: yufei.huang@utsa.edu or xdchoi@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307641

  11. Using adaptive genetic algorithms in the design of morphological filters in textural image processing

    NASA Astrophysics Data System (ADS)

    Li, Wei; Haese-Coat, Veronique; Ronsin, Joseph

    1996-03-01

    An adaptive GA scheme is adopted for the optimal morphological filter design problem. The adaptive crossover and mutation rate which make the GA avoid premature and at the same time assure convergence of the program are successfully used in optimal morphological filter design procedure. In the string coding step, each string (chromosome) is composed of a structuring element coding chain concatenated with a filter sequence coding chain. In decoding step, each string is divided into 3 chains which then are decoded respectively into one structuring element with a size inferior to 5 by 5 and two concatenating morphological filter operators. The fitness function in GA is based on the mean-square-error (MSE) criterion. In string selection step, a stochastic tournament procedure is used to replace the simple roulette wheel program in order to accelerate the convergence. The final convergence of our algorithm is reached by a two step converging strategy. In presented applications of noise removal from texture images, it is found that with the optimized morphological filter sequences, the obtained MSE values are smaller than those using corresponding non-adaptive morphological filters, and the optimized shapes and orientations of structuring elements take approximately the same shapes and orientations as those of the image textons.

  12. Tensor dissimilarity based adaptive seeding algorithm for DT-MRI visualization with streamtubes

    NASA Astrophysics Data System (ADS)

    Weldeselassie, Yonas T.; Hamarneh, Ghassan; Weiskopf, Daniel

    2007-03-01

    In this paper, we propose an adaptive seeding strategy for visualization of diffusion tensor magnetic resonance imaging (DT-MRI) data using streamtubes. DT-MRI is a medical imaging modality that captures unique water diffusion properties and fiber orientation information of the imaged tissues. Visualizing DT-MRI data using streamtubes has the advantage that not only the anisotropic nature of the diffusion is visualized but also the underlying anatomy of biological structures is revealed. This makes streamtubes significant for the analysis of fibrous tissues in medical images. In order to avoid rendering multiple similar streamtubes, an adaptive seeding strategy is employed which takes into account similarity of tensors in a given region. The goal is to automate the process of generating seed points such that regions with dissimilar tensors are assigned more seed points compared to regions with similar tensors. The algorithm is based on tensor dissimilarity metrics that take into account both diffusion magnitudes and directions to optimize the seeding positions and density of streamtubes in order to reduce the visual clutter. Two recent advances in tensor calculus and tensor dissimilarity metrics are utilized: the Log-Euclidean and the J-divergence. Results show that adaptive seeding not only helps to cull unnecessary streamtubes that would obscure visualization but also do so without having to compute the culled streamtubes, which makes the visualization process faster.

  13. Adaptive polarimetric sensing for optimum radar signature classification using a genetic search algorithm.

    PubMed

    Sadjadi, Firooz A

    2006-08-01

    An automated technique for adaptive radar polarimetric pattern classification is described. The approach is based on a genetic algorithm that uses a probabilistic pattern separation distance function and searches for those transmit and receive states of polarization sensing angles that optimize this function. Seven pattern separation distance functions--the Rayleigh quotient, the Bhattacharyya, divergence, Kolmogorov, Matusta, Kullback-Leibler distances, and the Bayesian probability of error--are used on real, fully polarimetric synthetic aperture radar target signatures. Each of these signatures is represented as functions of transmit and receive polarization ellipticity angles and the angle of polarization ellipse. The results indicate that, based on the majority of the distance functions used, there is a unique set of state of polarization angles whose use will lead to improved classification performance.

  14. Adaptive RSOV filter using the FELMS algorithm for nonlinear active noise control systems

    NASA Astrophysics Data System (ADS)

    Zhao, Haiquan; Zeng, Xiangping; He, Zhengyou; Li, Tianrui

    2013-01-01

    This paper presents a recursive second-order Volterra (RSOV) filter to solve the problems of signal saturation and other nonlinear distortions that occur in nonlinear active noise control systems (NANC) used for actual applications. Since this nonlinear filter based on an infinite impulse response (IIR) filter structure can model higher than second-order and third-order nonlinearities for systems where the nonlinearities are harmonically related, the RSOV filter is more effective in NANC systems with either a linear secondary path (LSP) or a nonlinear secondary path (NSP). Simulation results clearly show that the RSOV adaptive filter using the multichannel structure filtered-error least mean square (FELMS) algorithm can further greatly reduce the computational burdens and is more suitable to eliminate nonlinear distortions in NANC systems than a SOV filter, a bilinear filter and a third-order Volterra (TOV) filter.

  15. Non-equilibrium molecular dynamics simulation of nanojet injection with adaptive-spatial decomposition parallel algorithm.

    PubMed

    Shin, Hyun-Ho; Yoon, Woong-Sup

    2008-07-01

    An Adaptive-Spatial Decomposition parallel algorithm was developed to increase computation efficiency for molecular dynamics simulations of nano-fluids. Injection of a liquid argon jet with a scale of 17.6 molecular diameters was investigated. A solid annular platinum injector was also solved simultaneously with the liquid injectant by adopting a solid modeling technique which incorporates phantom atoms. The viscous heat was naturally discharged through the solids so the liquid boiling problem was avoided with no separate use of temperature controlling methods. Parametric investigations of injection speed, wall temperature, and injector length were made. A sudden pressure drop at the orifice exit causes flash boiling of the liquid departing the nozzle exit with strong evaporation on the surface of the liquids, while rendering a slender jet. The elevation of the injection speed and the wall temperature causes an activation of the surface evaporation concurrent with reduction in the jet breakup length and the drop size.

  16. Quantitative analysis of terahertz spectra for illicit drugs using adaptive-range micro-genetic algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Ma, Yong; Lu, Zheng; Peng, Bei; Chen, Qin

    2011-08-01

    In the field of anti-illicit drug applications, many suspicious mixture samples might consist of various drug components—for example, a mixture of methamphetamine, heroin, and amoxicillin—which makes spectral identification very difficult. A terahertz spectroscopic quantitative analysis method using an adaptive range micro-genetic algorithm with a variable internal population (ARVIPɛμGA) has been proposed. Five mixture cases are discussed using ARVIPɛμGA driven quantitative terahertz spectroscopic analysis in this paper. The devised simulation results show agreement with the previous experimental results, which suggested that the proposed technique has potential applications for terahertz spectral identifications of drug mixture components. The results show agreement with the results obtained using other experimental and numerical techniques.

  17. Demonstration of the use of ADAPT to derive predictive maintenance algorithms for the KSC central heat plant

    NASA Technical Reports Server (NTRS)

    Hunter, H. E.

    1972-01-01

    The Avco Data Analysis and Prediction Techniques (ADAPT) were employed to determine laws capable of detecting failures in a heat plant up to three days in advance of the occurrence of the failure. The projected performance of algorithms yielded a detection probability of 90% with false alarm rates of the order of 1 per year for a sample rate of 1 per day with each detection, followed by 3 hourly samplings. This performance was verified on 173 independent test cases. The program also demonstrated diagnostic algorithms and the ability to predict the time of failure to approximately plus or minus 8 hours up to three days in advance of the failure. The ADAPT programs produce simple algorithms which have a unique possibility of a relatively low cost updating procedure. The algorithms were implemented on general purpose computers at Kennedy Space Flight Center and tested against current data.

  18. Flight Testing of the Space Launch System (SLS) Adaptive Augmenting Control (AAC) Algorithm on an F/A-18

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; VanZwieten, Tannen S.; Hanson, Curtis E.; Wall, John H.; Miller, Chris J.; Gilligan, Eric T.; Orr, Jeb S.

    2014-01-01

    The Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an adaptive augmenting control (AAC) algorithm for launch vehicles that improves robustness and performance on an as-needed basis by adapting a classical control algorithm to unexpected environments or variations in vehicle dynamics. This was baselined as part of the Space Launch System (SLS) flight control system. The NASA Engineering and Safety Center (NESC) was asked to partner with the SLS Program and the Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP) to flight test the AAC algorithm on a manned aircraft that can achieve a high level of dynamic similarity to a launch vehicle and raise the technology readiness of the algorithm early in the program. This document reports the outcome of the NESC assessment.

  19. A graph based algorithm for adaptable dynamic airspace configuration for NextGen

    NASA Astrophysics Data System (ADS)

    Savai, Mehernaz P.

    The National Airspace System (NAS) is a complicated large-scale aviation network, consisting of many static sectors wherein each sector is controlled by one or more controllers. The main purpose of the NAS is to enable safe and prompt air travel in the U.S. However, such static configuration of sectors will not be able to handle the continued growth of air travel which is projected to be more than double the current traffic by 2025. Under the initiative of the Next Generation of Air Transportation system (NextGen), the main objective of Adaptable Dynamic Airspace Configuration (ADAC) is that the sectors should change to the changing traffic so as to reduce the controller workload variance with time while increasing the throughput. Change in the resectorization should be such that there is a minimal increase in exchange of air traffic among controllers. The benefit of a new design (improvement in workload balance, etc.) should sufficiently exceed the transition cost, in order to deserve a change. This leads to the analysis of the concept of transition workload which is the cost associated with a transition from one sectorization to another. Given two airspace configurations, a transition workload metric which considers the air traffic as well as the geometry of the airspace is proposed. A solution to reduce this transition workload is also discussed. The algorithm is specifically designed to be implemented for the Dynamic Airspace Configuration (DAC) Algorithm. A graph model which accurately represents the air route structure and air traffic in the NAS is used to formulate the airspace configuration problem. In addition, a multilevel graph partitioning algorithm is developed for Dynamic Airspace Configuration which partitions the graph model of airspace with given user defined constraints and hence provides the user more flexibility and control over various partitions. In terms of air traffic management, vertices represent airports and waypoints. Some of the major

  20. Robust image transmission using a new joint source channel coding algorithm and dual adaptive OFDM

    NASA Astrophysics Data System (ADS)

    Farshchian, Masoud; Cho, Sungdae; Pearlman, William A.

    2004-01-01

    In this paper we consider the problem of robust image coding and packetization for the purpose of communications over slow fading frequency selective channels and channels with a shaped spectrum like those of digital subscribe lines (DSL). Towards this end, a novel and analytically based joint source channel coding (JSCC) algorithm to assign unequal error protection is presented. Under a block budget constraint, the image bitstream is de-multiplexed into two classes with different error responses. The algorithm assigns unequal error protection (UEP) in a way to minimize the expected mean square error (MSE) at the receiver while minimizing the probability of catastrophic failure. In order to minimize the expected mean square error at the receiver, the algorithm assigns unequal protection to the value bit class (VBC) stream. In order to minimizes the probability of catastrophic error which is a characteristic of progressive image coders, the algorithm assigns more protection to the location bit class (LBC) stream than the VBC stream. Besides having the advantage of being analytical and also numerically solvable, the algorithm is based on a new formula developed to estimate the distortion rate (D-R) curve for the VBC portion of SPIHT. The major advantage of our technique is that the worst case instantaneous minimum peak signal to noise ratio (PSNR) does not differ greatly from the averge MSE while this is not the case for the optimal single stream (UEP) system. Although both average PSNR of our method and the optimal single stream UEP are about the same, our scheme does not suffer erratic behavior because we have made the probability of catastrophic error arbitarily small. The coded image is sent via orthogonal frequency division multiplexing (OFDM) which is a known and increasing popular modulation scheme to combat ISI (Inter Symbol Interference) and impulsive noise. Using dual adaptive energy OFDM, we use the minimum energy necessary to send each bit stream at a

  1. An Adaptive Wavelet-Based Denoising Algorithm for Enhancing Speech in Non-stationary Noise Environment

    NASA Astrophysics Data System (ADS)

    Wang, Kun-Ching

    Traditional wavelet-based speech enhancement algorithms are ineffective in the presence of highly non-stationary noise because of the difficulties in the accurate estimation of the local noise spectrum. In this paper, a simple method of noise estimation employing the use of a voice activity detector is proposed. We can improve the output of a wavelet-based speech enhancement algorithm in the presence of random noise bursts according to the results of VAD decision. The noisy speech is first preprocessed using bark-scale wavelet packet decomposition (BSWPD) to convert a noisy signal into wavelet coefficients (WCs). It is found that the VAD using bark-scale spectral entropy, called as BS-Entropy, parameter is superior to other energy-based approach especially in variable noise-level. The wavelet coefficient threshold (WCT) of each subband is then temporally adjusted according to the result of VAD approach. In a speech-dominated frame, the speech is categorized into either a voiced frame or an unvoiced frame. A voiced frame possesses a strong tone-like spectrum in lower subbands, so that the WCs of lower-band must be reserved. On the contrary, the WCT tends to increase in lower-band if the speech is categorized as unvoiced. In a noise-dominated frame, the background noise can be almost completely removed by increasing the WCT. The objective and subjective experimental results are then used to evaluate the proposed system. The experiments show that this algorithm is valid on various noise conditions, especially for color noise and non-stationary noise conditions.

  2. A high precision phase reconstruction algorithm for multi-laser guide stars adaptive optics

    NASA Astrophysics Data System (ADS)

    He, Bin; Hu, Li-Fa; Li, Da-Yu; Xu, Huan-Yu; Zhang, Xing-Yun; Wang, Shao-Xin; Wang, Yu-Kun; Yang, Cheng-Liang; Cao, Zhao-Liang; Mu, Quan-Quan; Lu, Xing-Hai; Xuan, Li

    2016-09-01

    Adaptive optics (AO) systems are widespread and considered as an essential part of any large aperture telescope for obtaining a high resolution imaging at present. To enlarge the imaging field of view (FOV), multi-laser guide stars (LGSs) are currently being investigated and used for the large aperture optical telescopes. LGS measurement is necessary and pivotal to obtain the cumulative phase distortion along a target in the multi-LGSs AO system. We propose a high precision phase reconstruction algorithm to estimate the phase for a target with an uncertain turbulence profile based on the interpolation. By comparing with the conventional average method, the proposed method reduces the root mean square (RMS) error from 130 nm to 85 nm with a 30% reduction for narrow FOV. We confirm that such phase reconstruction algorithm is validated for both narrow field AO and wide field AO. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194) and State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  3. A memory structure adapted simulated annealing algorithm for a green vehicle routing problem.

    PubMed

    Küçükoğlu, İlker; Ene, Seval; Aksoy, Aslı; Öztürk, Nursel

    2015-03-01

    Currently, reduction of carbon dioxide (CO2) emissions and fuel consumption has become a critical environmental problem and has attracted the attention of both academia and the industrial sector. Government regulations and customer demands are making environmental responsibility an increasingly important factor in overall supply chain operations. Within these operations, transportation has the most hazardous effects on the environment, i.e., CO2 emissions, fuel consumption, noise and toxic effects on the ecosystem. This study aims to construct vehicle routes with time windows that minimize the total fuel consumption and CO2 emissions. The green vehicle routing problem with time windows (G-VRPTW) is formulated using a mixed integer linear programming model. A memory structure adapted simulated annealing (MSA-SA) meta-heuristic algorithm is constructed due to the high complexity of the proposed problem and long solution times for practical applications. The proposed models are integrated with a fuel consumption and CO2 emissions calculation algorithm that considers the vehicle technical specifications, vehicle load, and transportation distance in a green supply chain environment. The proposed models are validated using well-known instances with different numbers of customers. The computational results indicate that the MSA-SA heuristic is capable of obtaining good G-VRPTW solutions within a reasonable amount of time by providing reductions in fuel consumption and CO2 emissions. PMID:25056743

  4. An Adaptive Multigrid Algorithm for Simulating Solid Tumor Growth Using Mixture Models

    PubMed Central

    Wise, S.M.; Lowengrub, J.S.; Cristini, V.

    2010-01-01

    In this paper we give the details of the numerical solution of a three-dimensional multispecies diffuse interface model of tumor growth, which was derived in (Wise et al., J. Theor. Biol. 253 (2008)) and used to study the development of glioma in (Frieboes et al., NeuroImage 37 (2007) and tumor invasion in (Bearer et al., Cancer Research, 69 (2009)) and (Frieboes et al., J. Theor. Biol. 264 (2010)). The model has a thermodynamic basis, is related to recently developed mixture models, and is capable of providing a detailed description of tumor progression. It utilizes a diffuse interface approach, whereby sharp tumor boundaries are replaced by narrow transition layers that arise due to differential adhesive forces among the cell-species. The model consists of fourth-order nonlinear advection-reaction-diffusion equations (of Cahn-Hilliard-type) for the cell-species coupled with reaction-diffusion equations for the substrate components. Numerical solution of the model is challenging because the equations are coupled, highly nonlinear, and numerically stiff. In this paper we describe a fully adaptive, nonlinear multigrid/finite difference method for efficiently solving the equations. We demonstrate the convergence of the algorithm and we present simulations of tumor growth in 2D and 3D that demonstrate the capabilities of the algorithm in accurately and efficiently simulating the progression of tumors with complex morphologies. PMID:21076663

  5. An Adaptive Multigrid Algorithm for Simulating Solid Tumor Growth Using Mixture Models.

    PubMed

    Wise, S M; Lowengrub, J S; Cristini, V

    2011-01-01

    In this paper we give the details of the numerical solution of a three-dimensional multispecies diffuse interface model of tumor growth, which was derived in (Wise et al., J. Theor. Biol. 253 (2008)) and used to study the development of glioma in (Frieboes et al., NeuroImage 37 (2007) and tumor invasion in (Bearer et al., Cancer Research, 69 (2009)) and (Frieboes et al., J. Theor. Biol. 264 (2010)). The model has a thermodynamic basis, is related to recently developed mixture models, and is capable of providing a detailed description of tumor progression. It utilizes a diffuse interface approach, whereby sharp tumor boundaries are replaced by narrow transition layers that arise due to differential adhesive forces among the cell-species. The model consists of fourth-order nonlinear advection-reaction-diffusion equations (of Cahn-Hilliard-type) for the cell-species coupled with reaction-diffusion equations for the substrate components. Numerical solution of the model is challenging because the equations are coupled, highly nonlinear, and numerically stiff. In this paper we describe a fully adaptive, nonlinear multigrid/finite difference method for efficiently solving the equations. We demonstrate the convergence of the algorithm and we present simulations of tumor growth in 2D and 3D that demonstrate the capabilities of the algorithm in accurately and efficiently simulating the progression of tumors with complex morphologies. PMID:21076663

  6. Refinement and evaluation of helicopter real-time self-adaptive active vibration controller algorithms

    NASA Technical Reports Server (NTRS)

    Davis, M. W.

    1984-01-01

    A Real-Time Self-Adaptive (RTSA) active vibration controller was used as the framework in developing a computer program for a generic controller that can be used to alleviate helicopter vibration. Based upon on-line identification of system parameters, the generic controller minimizes vibration in the fuselage by closed-loop implementation of higher harmonic control in the main rotor system. The new generic controller incorporates a set of improved algorithms that gives the capability to readily define many different configurations by selecting one of three different controller types (deterministic, cautious, and dual), one of two linear system models (local and global), and one or more of several methods of applying limits on control inputs (external and/or internal limits on higher harmonic pitch amplitude and rate). A helicopter rotor simulation analysis was used to evaluate the algorithms associated with the alternative controller types as applied to the four-bladed H-34 rotor mounted on the NASA Ames Rotor Test Apparatus (RTA) which represents the fuselage. After proper tuning all three controllers provide more effective vibration reduction and converge more quickly and smoothly with smaller control inputs than the initial RTSA controller (deterministic with external pitch-rate limiting). It is demonstrated that internal limiting of the control inputs a significantly improves the overall performance of the deterministic controller.

  7. Adaptive Algorithm for Soil Mosture Retrieval in Agricultural and Mountainous Areas with High Resolution ASAR Images

    NASA Astrophysics Data System (ADS)

    Notarnicola, C.; Paloscia, S.; Pettinato, S.; Preziosa, G.; Santi, E.; Ventura, B.

    2010-12-01

    In this paper, extensive data sets of SAR images and related ground truth on three areas characterized by very different surface features have been analyzed in order to understand the ENVISAT/ASAR responses to different soil, environmental and seasonal conditions. The comparison of the backscattering coefficients in dependence of soil moisture values for all the analyzed datasets indicates the same sensitivity to soil moisture variations but with different biases, which may depend on soil characteristics, vegetation presence and roughness effect. A further comparison with historical data collected on bare soils with comparable roughness at the same frequency, polarization and incidence angle, confirmed that the different surface features affect the bias of the relationship, while the backscattering sensitivity to the SMC remains quite constant. These different biases values have been used to determine an adaptive term to be added in the electromagnetic formulation of the backscattering responses from natural surfaces, obtained by using the Integral Equation Model (IEM). The simulated data from this model have been then used to train a neural network as inversion algorithm. The paper will present the results from this new technique in comparison to neural network and Bayesian algorithms trained on one area and then tested on the other ones.

  8. A high precision phase reconstruction algorithm for multi-laser guide stars adaptive optics

    NASA Astrophysics Data System (ADS)

    He, Bin; Hu, Li-Fa; Li, Da-Yu; Xu, Huan-Yu; Zhang, Xing-Yun; Wang, Shao-Xin; Wang, Yu-Kun; Yang, Cheng-Liang; Cao, Zhao-Liang; Mu, Quan-Quan; Lu, Xing-Hai; Xuan, Li

    2016-09-01

    Adaptive optics (AO) systems are widespread and considered as an essential part of any large aperture telescope for obtaining a high resolution imaging at present. To enlarge the imaging field of view (FOV), multi-laser guide stars (LGSs) are currently being investigated and used for the large aperture optical telescopes. LGS measurement is necessary and pivotal to obtain the cumulative phase distortion along a target in the multi-LGSs AO system. We propose a high precision phase reconstruction algorithm to estimate the phase for a target with an uncertain turbulence profile based on the interpolation. By comparing with the conventional average method, the proposed method reduces the root mean square (RMS) error from 130 nm to 85 nm with a 30% reduction for narrow FOV. We confirm that such phase reconstruction algorithm is validated for both narrow field AO and wide field AO. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194) and State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  9. A memory structure adapted simulated annealing algorithm for a green vehicle routing problem.

    PubMed

    Küçükoğlu, İlker; Ene, Seval; Aksoy, Aslı; Öztürk, Nursel

    2015-03-01

    Currently, reduction of carbon dioxide (CO2) emissions and fuel consumption has become a critical environmental problem and has attracted the attention of both academia and the industrial sector. Government regulations and customer demands are making environmental responsibility an increasingly important factor in overall supply chain operations. Within these operations, transportation has the most hazardous effects on the environment, i.e., CO2 emissions, fuel consumption, noise and toxic effects on the ecosystem. This study aims to construct vehicle routes with time windows that minimize the total fuel consumption and CO2 emissions. The green vehicle routing problem with time windows (G-VRPTW) is formulated using a mixed integer linear programming model. A memory structure adapted simulated annealing (MSA-SA) meta-heuristic algorithm is constructed due to the high complexity of the proposed problem and long solution times for practical applications. The proposed models are integrated with a fuel consumption and CO2 emissions calculation algorithm that considers the vehicle technical specifications, vehicle load, and transportation distance in a green supply chain environment. The proposed models are validated using well-known instances with different numbers of customers. The computational results indicate that the MSA-SA heuristic is capable of obtaining good G-VRPTW solutions within a reasonable amount of time by providing reductions in fuel consumption and CO2 emissions.

  10. Adaptation of the CVT algorithm for catheter optimization in high dose rate brachytherapy

    SciTech Connect

    Poulin, Eric; Fekete, Charles-Antoine Collins; Beaulieu, Luc; Létourneau, Mélanie; Fenster, Aaron; Pouliot, Jean

    2013-11-15

    Purpose: An innovative, simple, and fast method to optimize the number and position of catheters is presented for prostate and breast high dose rate (HDR) brachytherapy, both for arbitrary templates or template-free implants (such as robotic templates).Methods: Eight clinical cases were chosen randomly from a bank of patients, previously treated in our clinic to test our method. The 2D Centroidal Voronoi Tessellations (CVT) algorithm was adapted to distribute catheters uniformly in space, within the maximum external contour of the planning target volume. The catheters optimization procedure includes the inverse planning simulated annealing algorithm (IPSA). Complete treatment plans can then be generated from the algorithm for different number of catheters. The best plan is chosen from different dosimetry criteria and will automatically provide the number of catheters and their positions. After the CVT algorithm parameters were optimized for speed and dosimetric results, it was validated against prostate clinical cases, using clinically relevant dose parameters. The robustness to implantation error was also evaluated. Finally, the efficiency of the method was tested in breast interstitial HDR brachytherapy cases.Results: The effect of the number and locations of the catheters on prostate cancer patients was studied. Treatment plans with a better or equivalent dose distributions could be obtained with fewer catheters. A better or equal prostate V100 was obtained down to 12 catheters. Plans with nine or less catheters would not be clinically acceptable in terms of prostate V100 and D90. Implantation errors up to 3 mm were acceptable since no statistical difference was found when compared to 0 mm error (p > 0.05). No significant difference in dosimetric indices was observed for the different combination of parameters within the CVT algorithm. A linear relation was found between the number of random points and the optimization time of the CVT algorithm. Because the

  11. Application of an adaptive blade control algorithm to a gust alleviation system

    NASA Technical Reports Server (NTRS)

    Saito, S.

    1984-01-01

    The feasibility of an adaptive control system designed to alleviate helicopter gust induced vibration was analytically investigated for an articulated rotor system. This control system is based on discrete optimal control theory, and is composed of a set of measurements (oscillatory hub forces and moments), an identification system using a Kalman filter, a control system based on the minimization of the quadratic performance function, and a simulation system of the helicopter rotor. The gust models are step and sinusoidal vertical gusts. Control inputs are selected at the gust frequency, subharmonic frequency, and superharmonic frequency, and are superimposed on the basic collective and cyclic control inputs. The response to be reduced is selected to be that at the gust frequency because this is the dominant response compared with sub- and superharmonics. Numerical calculations show that the adaptive blade pitch control algorithm satisfactorily alleviates the hub gust response. Almost 100 percent reduction of the perturbation thrust response to a step gust and more than 50 percent reduction to a sinusoidal gust are achieved in the numerical simulations.

  12. Application of an adaptive blade control algorithm to a gust alleviation system

    NASA Technical Reports Server (NTRS)

    Saito, S.

    1983-01-01

    The feasibility of an adaptive control system designed to alleviate helicopter gust induced vibration was analytically investigated for an articulated rotor system. This control system is based on discrete optimal control theory, and is composed of a set of measurements (oscillatory hub forces and moments), an identification system using a Kalman filter, a control system based on the minimization of the quadratic performance function, and a simulation system of the helicopter rotor. The gust models are step and sinusoidal vertical gusts. Control inputs are selected at the gust frequency, subharmonic frequency, and superharmonic frequency, and are superimposed on the basic collective and cyclic control inputs. The response to be reduced is selected to be that at the gust frequency because this is the dominant response compared with sub- and superharmonics. Numerical calculations show that the adaptive blade pitch control algorithm satisfactorily alleviates the hub gust response. Almost 100% reduction of the perturbation thrust response to a step gust and more than 50% reduction to a sinusoidal gust are achieved in the numerical simulations.

  13. An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization.

    PubMed

    Islam, Sk Minhazul; Das, Swagatam; Ghosh, Saurav; Roy, Subhrajit; Suganthan, Ponnuthurai Nagaratnam

    2012-04-01

    Differential evolution (DE) is one of the most powerful stochastic real parameter optimizers of current interest. In this paper, we propose a new mutation strategy, a fitness-induced parent selection scheme for the binomial crossover of DE, and a simple but effective scheme of adapting two of its most important control parameters with an objective of achieving improved performance. The new mutation operator, which we call DE/current-to-gr_best/1, is a variant of the classical DE/current-to-best/1 scheme. It uses the best of a group (whose size is q% of the population size) of randomly selected solutions from current generation to perturb the parent (target) vector, unlike DE/current-to-best/1 that always picks the best vector of the entire population to perturb the target vector. In our modified framework of recombination, a biased parent selection scheme has been incorporated by letting each mutant undergo the usual binomial crossover with one of the p top-ranked individuals from the current population and not with the target vector with the same index as used in all variants of DE. A DE variant obtained by integrating the proposed mutation, crossover, and parameter adaptation strategies with the classical DE framework (developed in 1995) is compared with two classical and four state-of-the-art adaptive DE variants over 25 standard numerical benchmarks taken from the IEEE Congress on Evolutionary Computation 2005 competition and special session on real parameter optimization. Our comparative study indicates that the proposed schemes improve the performance of DE by a large magnitude such that it becomes capable of enjoying statistical superiority over the state-of-the-art DE variants for a wide variety of test problems. Finally, we experimentally demonstrate that, if one or more of our proposed strategies are integrated with existing powerful DE variants such as jDE and JADE, their performances can also be enhanced.

  14. Correlation Wave-Front Sensing Algorithms for Shack-Hartmann-Based Adaptive Optics using a Point Source

    SciTech Connect

    Poynee, L A

    2003-05-06

    Shack-Hartmann based Adaptive Optics system with a point-source reference normally use a wave-front sensing algorithm that estimates the centroid (center of mass) of the point-source image 'spot' to determine the wave-front slope. The centroiding algorithm suffers for several weaknesses. For a small number of pixels, the algorithm gain is dependent on spot size. The use of many pixels on the detector leads to significant propagation of read noise. Finally, background light or spot halo aberrations can skew results. In this paper an alternative algorithm that suffers from none of these problems is proposed: correlation of the spot with a ideal reference spot. The correlation method is derived and a theoretical analysis evaluates its performance in comparison with centroiding. Both simulation and data from real AO systems are used to illustrate the results. The correlation algorithm is more robust than centroiding, but requires more computation.

  15. Fast adaptive OFDM-PON over single fiber loopback transmission using dynamic rate adaptation-based algorithm for channel performance improvement

    NASA Astrophysics Data System (ADS)

    Kartiwa, Iwa; Jung, Sang-Min; Hong, Moon-Ki; Han, Sang-Kook

    2014-03-01

    In this paper, we propose a novel fast adaptive approach that was applied to an OFDM-PON 20-km single fiber loopback transmission system to improve channel performance in term of stabilized BER below 2 × 10-3 and higher throughput beyond 10 Gb/s. The upstream transmission is performed through light source-seeded modulation using 1-GHz RSOA at the ONU. Experimental results indicated that the dynamic rate adaptation algorithm based on greedy Levin-Campello could be an effective solution to mitigate channel instability and data rate degradation caused by the Rayleigh back scattering effect and inefficient resource subcarrier allocation.

  16. Adapting iterative algorithms for solving large sparse linear systems for efficient use on the CDC CYBER 205

    NASA Technical Reports Server (NTRS)

    Kincaid, D. R.; Young, D. M.

    1984-01-01

    Adapting and designing mathematical software to achieve optimum performance on the CYBER 205 is discussed. Comments and observations are made in light of recent work done on modifying the ITPACK software package and on writing new software for vector supercomputers. The goal was to develop very efficient vector algorithms and software for solving large sparse linear systems using iterative methods.

  17. EEG/ERP adaptive noise canceller design with controlled search space (CSS) approach in cuckoo and other optimization algorithms.

    PubMed

    Ahirwal, M K; Kumar, Anil; Singh, G K

    2013-01-01

    This paper explores the migration of adaptive filtering with swarm intelligence/evolutionary techniques employed in the field of electroencephalogram/event-related potential noise cancellation or extraction. A new approach is proposed in the form of controlled search space to stabilize the randomness of swarm intelligence techniques especially for the EEG signal. Swarm-based algorithms such as Particles Swarm Optimization, Artificial Bee Colony, and Cuckoo Optimization Algorithm with their variants are implemented to design optimized adaptive noise canceler. The proposed controlled search space technique is tested on each of the swarm intelligence techniques and is found to be more accurate and powerful. Adaptive noise canceler with traditional algorithms such as least-mean-square, normalized least-mean-square, and recursive least-mean-square algorithms are also implemented to compare the results. ERP signals such as simulated visual evoked potential, real visual evoked potential, and real sensorimotor evoked potential are used, due to their physiological importance in various EEG studies. Average computational time and shape measures of evolutionary techniques are observed 8.21E-01 sec and 1.73E-01, respectively. Though, traditional algorithms take negligible time consumption, but are unable to offer good shape preservation of ERP, noticed as average computational time and shape measure difference, 1.41E-02 sec and 2.60E+00, respectively.

  18. Wireless rake-receiver using adaptive filter with a family of partial update algorithms in noise cancellation applications

    NASA Astrophysics Data System (ADS)

    Fayadh, Rashid A.; Malek, F.; Fadhil, Hilal A.; Aldhaibani, Jaafar A.; Salman, M. K.; Abdullah, Farah Salwani

    2015-05-01

    For high data rate propagation in wireless ultra-wideband (UWB) communication systems, the inter-symbol interference (ISI), multiple-access interference (MAI), and multiple-users interference (MUI) are influencing the performance of the wireless systems. In this paper, the rake-receiver was presented with the spread signal by direct sequence spread spectrum (DS-SS) technique. The adaptive rake-receiver structure was shown with adjusting the receiver tap weights using least mean squares (LMS), normalized least mean squares (NLMS), and affine projection algorithms (APA) to support the weak signals by noise cancellation and mitigate the interferences. To minimize the data convergence speed and to reduce the computational complexity by the previous algorithms, a well-known approach of partial-updates (PU) adaptive filters were employed with algorithms, such as sequential-partial, periodic-partial, M-max-partial, and selective-partial updates (SPU) in the proposed system. The simulation results of bit error rate (BER) versus signal-to-noise ratio (SNR) are illustrated to show the performance of partial-update algorithms that have nearly comparable performance with the full update adaptive filters. Furthermore, the SPU-partial has closed performance to the full-NLMS and full-APA while the M-max-partial has closed performance to the full-LMS updates algorithms.

  19. Guided filter and adaptive learning rate based non-uniformity correction algorithm for infrared focal plane array

    NASA Astrophysics Data System (ADS)

    Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian

    2016-05-01

    Imaging non-uniformity of infrared focal plane array (IRFPA) behaves as fixed-pattern noise superimposed on the image, which affects the imaging quality of infrared system seriously. In scene-based non-uniformity correction methods, the drawbacks of ghosting artifacts and image blurring affect the sensitivity of the IRFPA imaging system seriously and decrease the image quality visibly. This paper proposes an improved neural network non-uniformity correction method with adaptive learning rate. On the one hand, using guided filter, the proposed algorithm decreases the effect of ghosting artifacts. On the other hand, due to the inappropriate learning rate is the main reason of image blurring, the proposed algorithm utilizes an adaptive learning rate with a temporal domain factor to eliminate the effect of image blurring. In short, the proposed algorithm combines the merits of the guided filter and the adaptive learning rate. Several real and simulated infrared image sequences are utilized to verify the performance of the proposed algorithm. The experiment results indicate that the proposed algorithm can not only reduce the non-uniformity with less ghosting artifacts but also overcome the problems of image blurring in static areas.

  20. A novel kernel extreme learning machine algorithm based on self-adaptive artificial bee colony optimisation strategy

    NASA Astrophysics Data System (ADS)

    Ma, Chao; Ouyang, Jihong; Chen, Hui-Ling; Ji, Jin-Chao

    2016-04-01

    In this paper, we propose a novel learning algorithm, named SABC-MKELM, based on a kernel extreme learning machine (KELM) method for single-hidden-layer feedforward networks. In SABC-MKELM, the combination of Gaussian kernels is used as the activate function of KELM instead of simple fixed kernel learning, where the related parameters of kernels and the weights of kernels can be optimised by a novel self-adaptive artificial bee colony (SABC) approach simultaneously. SABC-MKELM outperforms six other state-of-the-art approaches in general, as it could effectively determine solution updating strategies and suitable parameters to produce a flexible kernel function involved in SABC. Simulations have demonstrated that the proposed algorithm not only self-adaptively determines suitable parameters and solution updating strategies learning from the previous experiences, but also achieves better generalisation performances than several related methods, and the results show good stability of the proposed algorithm.

  1. House calls.

    PubMed

    Unwin, Brian K; Tatum, Paul E

    2011-04-15

    House calls provide a unique perspective on patients' environment and health problems. The demand for house calls is expected to increase considerably in future decades as the U.S. population ages. Although study results have been inconsistent, house calls involving multidisciplinary teams may reduce hospital readmissions and long-term care facility stays. Common indications for house calls are management of acute or chronic illnesses, and palliative care. Medicare beneficiaries must meet specific criteria to be eligible for home health services. The INHOMESSS mnemonic provides a checklist for components of a comprehensive house call. In addition to performing a clinical assessment, house calls may involve observing the patient performing daily activities, reconciling medication discrepancies, and evaluating home safety. House calls can be integrated into practice with careful planning, including clustering house calls by geographic location and coordinating visits with other health care professionals and agencies.

  2. Robust fundamental frequency estimation in sustained vowels: Detailed algorithmic comparisons and information fusion with adaptive Kalman filtering

    PubMed Central

    Tsanas, Athanasios; Zañartu, Matías; Little, Max A.; Fox, Cynthia; Ramig, Lorraine O.; Clifford, Gari D.

    2014-01-01

    There has been consistent interest among speech signal processing researchers in the accurate estimation of the fundamental frequency (F0) of speech signals. This study examines ten F0 estimation algorithms (some well-established and some proposed more recently) to determine which of these algorithms is, on average, better able to estimate F0 in the sustained vowel /a/. Moreover, a robust method for adaptively weighting the estimates of individual F0 estimation algorithms based on quality and performance measures is proposed, using an adaptive Kalman filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117 synthetic realistic phonations obtained using a sophisticated physiological model of speech production and (b) a database of 65 recordings of human phonations where the glottal cycles are calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F0 estimates, and the proposed KF approach resulted in a ∼16% improvement in accuracy over the best single F0 estimation algorithm. These findings may be useful in speech signal processing applications where sustained vowels are used to assess vocal quality, when very accurate F0 estimation is required. PMID:24815269

  3. Robust fundamental frequency estimation in sustained vowels: detailed algorithmic comparisons and information fusion with adaptive Kalman filtering.

    PubMed

    Tsanas, Athanasios; Zañartu, Matías; Little, Max A; Fox, Cynthia; Ramig, Lorraine O; Clifford, Gari D

    2014-05-01

    There has been consistent interest among speech signal processing researchers in the accurate estimation of the fundamental frequency (F(0)) of speech signals. This study examines ten F(0) estimation algorithms (some well-established and some proposed more recently) to determine which of these algorithms is, on average, better able to estimate F(0) in the sustained vowel /a/. Moreover, a robust method for adaptively weighting the estimates of individual F(0) estimation algorithms based on quality and performance measures is proposed, using an adaptive Kalman filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117 synthetic realistic phonations obtained using a sophisticated physiological model of speech production and (b) a database of 65 recordings of human phonations where the glottal cycles are calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F(0) estimates, and the proposed KF approach resulted in a ∼16% improvement in accuracy over the best single F(0) estimation algorithm. These findings may be useful in speech signal processing applications where sustained vowels are used to assess vocal quality, when very accurate F(0) estimation is required. PMID:24815269

  4. A Fast, Locally Adaptive, Interactive Retrieval Algorithm for the Analysis of DIAL Measurements

    NASA Astrophysics Data System (ADS)

    Samarov, D. V.; Rogers, R.; Hair, J. W.; Douglass, K. O.; Plusquellic, D.

    2010-12-01

    Differential absorption light detection and ranging (DIAL) is a laser-based tool which is used for remote, range-resolved measurement of particular gases in the atmosphere, such as carbon-dioxide and methane. In many instances it is of interest to study how these gases are distributed over a region such as a landfill, factory, or farm. While a single DIAL measurement only tells us about the distribution of a gas along a single path, a sequence of consecutive measurements provides us with information on how that gas is distributed over a region, making DIAL a natural choice for such studies. DIAL measurements present a number of interesting challenges; first, in order to convert the raw data to concentration it is necessary to estimate the derivative along the path of the measurement. Second, as the distribution of gases across a region can be highly heterogeneous it is important that the spatial nature of the measurements be taken into account. Finally, since it is common for the set of collected measurements to be quite large it is important for the method to be computationally efficient. Existing work based on Local Polynomial Regression (LPR) has been developed which addresses the first two issues, but the issue of computational speed remains an open problem. In addition to the latter, another desirable property is to allow user input into the algorithm. In this talk we present a novel method based on LPR which utilizes a variant of the RODEO algorithm to provide a fast, locally adaptive and interactive approach to the analysis of DIAL measurements. This methodology is motivated by and applied to several simulated examples and a study out of NASA Langley Research Center (LaRC) looking at the estimation of aerosol extinction in the atmosphere. A comparison study of our method against several other algorithms is also presented. References Chaudhuri, P., Marron, J.S., Scale-space view of curve estimation, Annals of Statistics 28 (2000) 408-428. Duong, T., Cowling

  5. Real-time MRI-guided hyperthermia treatment using a fast adaptive algorithm.

    PubMed

    Stakhursky, Vadim L; Arabe, Omar; Cheng, Kung-Shan; Macfall, James; Maccarini, Paolo; Craciunescu, Oana; Dewhirst, Mark; Stauffer, Paul; Das, Shiva K

    2009-04-01

    ratio of integral temperature in the tumor to integral temperature in normal tissue) by up to six-fold, compared to the first iteration. The integrated MR-HT treatment algorithm successfully steered the focus of heating into the desired target volume for both the simple homogeneous and the more challenging muscle equivalent phantom with tumor insert models of human extremity sarcomas after 16 and 2 iterations, correspondingly. The adaptive method for MR thermal image guided focal steering shows promise when tested in phantom experiments on a four-antenna phased array applicator.

  6. Multi-focus image fusion algorithm based on adaptive PCNN and wavelet transform

    NASA Astrophysics Data System (ADS)

    Wu, Zhi-guo; Wang, Ming-jia; Han, Guang-liang

    2011-08-01

    Being an efficient method of information fusion, image fusion has been used in many fields such as machine vision, medical diagnosis, military applications and remote sensing. In this paper, Pulse Coupled Neural Network (PCNN) is introduced in this research field for its interesting properties in image processing, including segmentation, target recognition et al. and a novel algorithm based on PCNN and Wavelet Transform for Multi-focus image fusion is proposed. First, the two original images are decomposed by wavelet transform. Then, based on the PCNN, a fusion rule in the Wavelet domain is given. This algorithm uses the wavelet coefficient in each frequency domain as the linking strength, so that its value can be chosen adaptively. Wavelet coefficients map to the range of image gray-scale. The output threshold function attenuates to minimum gray over time. Then all pixels of image get the ignition. So, the output of PCNN in each iteration time is ignition wavelet coefficients of threshold strength in different time. At this moment, the sequences of ignition of wavelet coefficients represent ignition timing of each neuron. The ignition timing of PCNN in each neuron is mapped to corresponding image gray-scale range, which is a picture of ignition timing mapping. Then it can judge the targets in the neuron are obvious features or not obvious. The fusion coefficients are decided by the compare-selection operator with the firing time gradient maps and the fusion image is reconstructed by wavelet inverse transform. Furthermore, by this algorithm, the threshold adjusting constant is estimated by appointed iteration number. Furthermore, In order to sufficient reflect order of the firing time, the threshold adjusting constant αΘ is estimated by appointed iteration number. So after the iteration achieved, each of the wavelet coefficient is activated. In order to verify the effectiveness of proposed rules, the experiments upon Multi-focus image are done. Moreover

  7. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU.

    PubMed

    Xu, Hailong; Cui, Xiaowei; Lu, Mingquan

    2016-01-01

    Nowadays, software-defined radio (SDR) has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS) adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU) are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP) and Space-Frequency Adaptive Processing (SFAP) are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications. PMID:26978363

  8. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU.

    PubMed

    Xu, Hailong; Cui, Xiaowei; Lu, Mingquan

    2016-03-11

    Nowadays, software-defined radio (SDR) has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS) adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU) are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP) and Space-Frequency Adaptive Processing (SFAP) are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications.

  9. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU

    PubMed Central

    Xu, Hailong; Cui, Xiaowei; Lu, Mingquan

    2016-01-01

    Nowadays, software-defined radio (SDR) has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS) adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU) are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP) and Space-Frequency Adaptive Processing (SFAP) are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications. PMID:26978363

  10. Vibration suppression in cutting tools using collocated piezoelectric sensors/actuators with an adaptive control algorithm

    SciTech Connect

    Radecki, Peter P; Farinholt, Kevin M; Park, Gyuhae; Bement, Matthew T

    2008-01-01

    The machining process is very important in many engineering applications. In high precision machining, surface finish is strongly correlated with vibrations and the dynamic interactions between the part and the cutting tool. Parameters affecting these vibrations and dynamic interactions, such as spindle speed, cut depth, feed rate, and the part's material properties can vary in real-time, resulting in unexpected or undesirable effects on the surface finish of the machining product. The focus of this research is the development of an improved machining process through the use of active vibration damping. The tool holder employs a high bandwidth piezoelectric actuator with an adaptive positive position feedback control algorithm for vibration and chatter suppression. In addition, instead of using external sensors, the proposed approach investigates the use of a collocated piezoelectric sensor for measuring the dynamic responses from machining processes. The performance of this method is evaluated by comparing the surface finishes obtained with active vibration control versus baseline uncontrolled cuts. Considerable improvement in surface finish (up to 50%) was observed for applications in modern day machining.

  11. Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems.

    PubMed

    Liu, Derong; Wei, Qinglai

    2014-03-01

    This paper is concerned with a new discrete-time policy iteration adaptive dynamic programming (ADP) method for solving the infinite horizon optimal control problem of nonlinear systems. The idea is to use an iterative ADP technique to obtain the iterative control law, which optimizes the iterative performance index function. The main contribution of this paper is to analyze the convergence and stability properties of policy iteration method for discrete-time nonlinear systems for the first time. It shows that the iterative performance index function is nonincreasingly convergent to the optimal solution of the Hamilton-Jacobi-Bellman equation. It is also proven that any of the iterative control laws can stabilize the nonlinear systems. Neural networks are used to approximate the performance index function and compute the optimal control law, respectively, for facilitating the implementation of the iterative ADP algorithm, where the convergence of the weight matrices is analyzed. Finally, the numerical results and analysis are presented to illustrate the performance of the developed method. PMID:24807455

  12. Intelligent Modeling Combining Adaptive Neuro Fuzzy Inference System and Genetic Algorithm for Optimizing Welding Process Parameters

    NASA Astrophysics Data System (ADS)

    Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.

    2011-04-01

    Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.

  13. Cascaded adaptive-mask algorithm for twin-image removal and its application to digital holograms of ice crystals.

    PubMed

    Raupach, Sebastian M F

    2009-01-10

    An iterative Gerchberg-Saxton-type algorithm with a support constraint for twin-image removal from reconstructed Gabor inline holograms of single plane objects is described. It is applied to simulated holograms and to holograms of ice crystals recorded in the laboratory and in atmospheric clouds in situ. The algorithm is characterized by a distinction between object and background region and an iterative adaption of the object mask. Applying the algorithm to recorded inline holograms of atmospheric objects, the twin-image artifacts are removed successfully, for the first time allowing for a proper access to the in situ phase information on atmospheric ice crystals. It is also demonstrated that, after application of the algorithm, previously indiscernible internal object features can become visible for large Fresnel numbers.

  14. Blind Adaptive Interference Suppression Based on Set-Membership Constrained Constant-Modulus Algorithms With Dynamic Bounds

    NASA Astrophysics Data System (ADS)

    de Lamare, Rodrigo C.; Diniz, Paulo S. R.

    2013-03-01

    This work presents blind constrained constant modulus (CCM) adaptive algorithms based on the set-membership filtering (SMF) concept and incorporates dynamic bounds {for interference suppression} applications. We develop stochastic gradient and recursive least squares type algorithms based on the CCM design criterion in accordance with the specifications of the SMF concept. We also propose a blind framework that includes channel and amplitude estimators that take into account parameter estimation dependency, multiple access interference (MAI) and inter-symbol interference (ISI) to address the important issue of bound specification in multiuser communications. A convergence and tracking analysis of the proposed algorithms is carried out along with the development of analytical expressions to predict their performance. Simulations for a number of scenarios of interest with a DS-CDMA system show that the proposed algorithms outperform previously reported techniques with a smaller number of parameter updates and a reduced risk of overbounding or underbounding.

  15. An efficient algorithm for the inverse problem in elasticity imaging by means of variational r-adaption.

    PubMed

    Arnold, Alexander; Bruhns, Otto T; Mosler, Jörn

    2011-07-21

    A novel finite element formulation suitable for computing efficiently the stiffness distribution in soft biological tissue is presented in this paper. For that purpose, the inverse problem of finite strain hyperelasticity is considered and solved iteratively. In line with Arnold et al (2010 Phys. Med. Biol. 55 2035), the computing time is effectively reduced by using adaptive finite element methods. In sharp contrast to previous approaches, the novel mesh adaption relies on an r-adaption (re-allocation of the nodes within the finite element triangulation). This method allows the detection of material interfaces between healthy and diseased tissue in a very effective manner. The evolution of the nodal positions is canonically driven by the same minimization principle characterizing the inverse problem of hyperelasticity. Consequently, the proposed mesh adaption is variationally consistent. Furthermore, it guarantees that the quality of the numerical solution is improved. Since the proposed r-adaption requires only a relatively coarse triangulation for detecting material interfaces, the underlying finite element spaces are usually not rich enough for predicting the deformation field sufficiently accurately (the forward problem). For this reason, the novel variational r-refinement is combined with the variational h-adaption (Arnold et al 2010) to obtain a variational hr-refinement algorithm. The resulting approach captures material interfaces well (by using r-adaption) and predicts a deformation field in good agreement with that observed experimentally (by using h-adaption).

  16. An efficient algorithm for the inverse problem in elasticity imaging by means of variational r-adaption

    NASA Astrophysics Data System (ADS)

    Arnold, Alexander; Bruhns, Otto T.; Mosler, Jörn

    2011-07-01

    A novel finite element formulation suitable for computing efficiently the stiffness distribution in soft biological tissue is presented in this paper. For that purpose, the inverse problem of finite strain hyperelasticity is considered and solved iteratively. In line with Arnold et al (2010 Phys. Med. Biol. 55 2035), the computing time is effectively reduced by using adaptive finite element methods. In sharp contrast to previous approaches, the novel mesh adaption relies on an r-adaption (re-allocation of the nodes within the finite element triangulation). This method allows the detection of material interfaces between healthy and diseased tissue in a very effective manner. The evolution of the nodal positions is canonically driven by the same minimization principle characterizing the inverse problem of hyperelasticity. Consequently, the proposed mesh adaption is variationally consistent. Furthermore, it guarantees that the quality of the numerical solution is improved. Since the proposed r-adaption requires only a relatively coarse triangulation for detecting material interfaces, the underlying finite element spaces are usually not rich enough for predicting the deformation field sufficiently accurately (the forward problem). For this reason, the novel variational r-refinement is combined with the variational h-adaption (Arnold et al 2010) to obtain a variational hr-refinement algorithm. The resulting approach captures material interfaces well (by using r-adaption) and predicts a deformation field in good agreement with that observed experimentally (by using h-adaption).

  17. Variable is better than invariable: sparse VSS-NLMS algorithms with application to adaptive MIMO channel estimation.

    PubMed

    Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki

    2014-01-01

    Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics. PMID:25089286

  18. Variable is better than invariable: sparse VSS-NLMS algorithms with application to adaptive MIMO channel estimation.

    PubMed

    Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki

    2014-01-01

    Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics.

  19. Variable Is Better Than Invariable: Sparse VSS-NLMS Algorithms with Application to Adaptive MIMO Channel Estimation

    PubMed Central

    Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki

    2014-01-01

    Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics. PMID:25089286

  20. Development of a deformable dosimetric phantom to verify dose accumulation algorithms for adaptive radiotherapy

    PubMed Central

    Zhong, Hualiang; Adams, Jeffrey; Glide-Hurst, Carri; Zhang, Hualin; Li, Haisen; Chetty, Indrin J.

    2016-01-01

    Adaptive radiotherapy may improve treatment outcomes for lung cancer patients. Because of the lack of an effective tool for quality assurance, this therapeutic modality is not yet accepted in clinic. The purpose of this study is to develop a deformable physical phantom for validation of dose accumulation algorithms in regions with heterogeneous mass. A three-dimensional (3D) deformable phantom was developed containing a tissue-equivalent tumor and heterogeneous sponge inserts. Thermoluminescent dosimeters (TLDs) were placed at multiple locations in the phantom each time before dose measurement. Doses were measured with the phantom in both the static and deformed cases. The deformation of the phantom was actuated by a motor driven piston. 4D computed tomography images were acquired to calculate 3D doses at each phase using Pinnacle and EGSnrc/DOSXYZnrc. These images were registered using two registration software packages: VelocityAI and Elastix. With the resultant displacement vector fields (DVFs), the calculated 3D doses were accumulated using a mass-and energy congruent mapping method and compared to those measured by the TLDs at four typical locations. In the static case, TLD measurements agreed with all the algorithms by 1.8% at the center of the tumor volume and by 4.0% in the penumbra. In the deformable case, the phantom's deformation was reproduced within 1.1 mm. For the 3D dose calculated by Pinnacle, the total dose accumulated with the Elastix DVF agreed well to the TLD measurements with their differences <2.5% at four measured locations. When the VelocityAI DVF was used, their difference increased up to 11.8%. For the 3D dose calculated by EGSnrc/DOSXYZnrc, the total doses accumulated with the two DVFs were within 5.7% of the TLD measurements which are slightly over the rate of 5% for clinical acceptance. The detector-embedded deformable phantom allows radiation dose to be measured in a dynamic environment, similar to deforming lung tissues, supporting

  1. Development of a deformable dosimetric phantom to verify dose accumulation algorithms for adaptive radiotherapy.

    PubMed

    Zhong, Hualiang; Adams, Jeffrey; Glide-Hurst, Carri; Zhang, Hualin; Li, Haisen; Chetty, Indrin J

    2016-01-01

    Adaptive radiotherapy may improve treatment outcomes for lung cancer patients. Because of the lack of an effective tool for quality assurance, this therapeutic modality is not yet accepted in clinic. The purpose of this study is to develop a deformable physical phantom for validation of dose accumulation algorithms in regions with heterogeneous mass. A three-dimensional (3D) deformable phantom was developed containing a tissue-equivalent tumor and heterogeneous sponge inserts. Thermoluminescent dosimeters (TLDs) were placed at multiple locations in the phantom each time before dose measurement. Doses were measured with the phantom in both the static and deformed cases. The deformation of the phantom was actuated by a motor driven piston. 4D computed tomography images were acquired to calculate 3D doses at each phase using Pinnacle and EGSnrc/DOSXYZnrc. These images were registered using two registration software packages: VelocityAI and Elastix. With the resultant displacement vector fields (DVFs), the calculated 3D doses were accumulated using a mass-and energy congruent mapping method and compared to those measured by the TLDs at four typical locations. In the static case, TLD measurements agreed with all the algorithms by 1.8% at the center of the tumor volume and by 4.0% in the penumbra. In the deformable case, the phantom's deformation was reproduced within 1.1 mm. For the 3D dose calculated by Pinnacle, the total dose accumulated with the Elastix DVF agreed well to the TLD measurements with their differences <2.5% at four measured locations. When the VelocityAI DVF was used, their difference increased up to 11.8%. For the 3D dose calculated by EGSnrc/DOSXYZnrc, the total doses accumulated with the two DVFs were within 5.7% of the TLD measurements which are slightly over the rate of 5% for clinical acceptance. The detector-embedded deformable phantom allows radiation dose to be measured in a dynamic environment, similar to deforming lung tissues, supporting

  2. EMINIM: An Adaptive and Memory-Efficient Algorithm for Genotype Imputation

    PubMed Central

    Kang, Hyun Min; Zaitlen, Noah A.

    2010-01-01

    Abstract Genome-wide association studies have proven to be a highly successful method for identification of genetic loci for complex phenotypes in both humans and model organisms. These large scale studies rely on the collection of hundreds of thousands of single nucleotide polymorphisms (SNPs) across the genome. Standard high-throughput genotyping technologies capture only a fraction of the total genetic variation. Recent efforts have shown that it is possible to “impute” with high accuracy the genotypes of SNPs that are not collected in the study provided that they are present in a reference data set which contains both SNPs collected in the study as well as other SNPs. We here introduce a novel HMM based technique to solve the imputation problem that addresses several shortcomings of existing methods. First, our method is adaptive which lets it estimate population genetic parameters from the data and be applied to model organisms that have very different evolutionary histories. Compared to previous methods, our method is up to ten times more accurate on model organisms such as mouse. Second, our algorithm scales in memory usage in the number of collected markers as opposed to the number of known SNPs. This issue is very relevant due to the size of the reference data sets currently being generated. We compare our method over mouse and human data sets to existing methods, and show that each has either comparable or better performance and much lower memory usage. The method is available for download at http://genetics.cs.ucla.edu/eminim. PMID:20377463

  3. Adaptive Guidance and Control Algorithms applied to the X-38 Reentry Mission

    NASA Astrophysics Data System (ADS)

    Graesslin, M.; Wallner, E.; Burkhardt, J.; Schoettle, U.; Well, K. H.

    International Space Station's Crew Return/Rescue Vehicle (CRV) is planned to autonomously return the complete crew of 7 astronauts back to earth in case of an emergency. As prototype of such a vehicle, the X-38, is being developed and built by NASA with European participation. The X-38 is a lifting body with a hyper- sonic lift to drag ratio of about 0.9. In comparison to the Space Shuttle Orbiter, the X-38 has less aerodynamic manoeuvring capability and less actuators. Within the German technology programme TETRA (TEchnologies for future space TRAnsportation systems) contributing to the X-38 program, guidance and control algorithms have been developed and applied to the X-38 reentry mission. The adaptive guidance concept conceived combines an on-board closed-loop predictive guidance algorithm with flight load control that temporarily overrides the attitude commands of the predictive component if the corre- sponding load constraints are violated. The predictive guidance scheme combines an optimization step and a sequence of constraint restoration cycles. In order to satisfy on-board computation limitations the complete scheme is performed only during the exo-atmospheric flight coast phase. During the controlled atmospheric flight segment the task is reduced to a repeatedly solved targeting problem based on the initial optimal solution, thus omitting in-flight constraints. To keep the flight loads - especially the heat flux, which is in fact a major concern of the X-38 reentry flight - below their maximum admissible values, a flight path controller based on quadratic minimization techniques may override the predictive guidance command for a flight along the con- straint boundary. The attitude control algorithms developed are based on dynamic inversion. This methodology enables the designer to straightforwardly devise a controller structure from the system dynamics. The main ad- vantage of this approach with regard to reentry control design lies in the fact that

  4. Temporal-adaptive Euler/Navier-Stokes algorithm for unsteady aerodynamic analysis of airfoils using unstructured dynamic meshes

    NASA Technical Reports Server (NTRS)

    Kleb, William L.; Batina, John T.; Williams, Marc H.

    1990-01-01

    A temporal adaptive algorithm for the time-integration of the two-dimensional Euler or Navier-Stokes equations is presented. The flow solver involves an upwind flux-split spatial discretization for the convective terms and central differencing for the shear-stress and heat flux terms on an unstructured mesh of triangles. The temporal adaptive algorithm is a time-accurate integration procedure which allows flows with high spatial and temporal gradients to be computed efficiently by advancing each grid cell near its maximum allowable time step. Results indicate that an appreciable computational savings can be achieved for both inviscid and viscous unsteady airfoil problems using unstructured meshes without degrading spatial or temporal accuracy.

  5. NORSAR Final Scientific Report Adaptive Waveform Correlation Detectors for Arrays: Algorithms for Autonomous Calibration

    SciTech Connect

    Gibbons, S J; Ringdal, F; Harris, D B

    2009-04-16

    Correlation detection is a relatively new approach in seismology that offers significant advantages in increased sensitivity and event screening over standard energy detection algorithms. The basic concept is that a representative event waveform is used as a template (i.e. matched filter) that is correlated against a continuous, possibly multichannel, data stream to detect new occurrences of that same signal. These algorithms are therefore effective at detecting repeating events, such as explosions and aftershocks at a specific location. This final report summarizes the results of a three-year cooperative project undertaken by NORSAR and Lawrence Livermore National Laboratory. The overall objective has been to develop and test a new advanced, automatic approach to seismic detection using waveform correlation. The principal goal is to develop an adaptive processing algorithm. By this we mean that the detector is initiated using a basic set of reference ('master') events to be used in the correlation process, and then an automatic algorithm is applied successively to provide improved performance by extending the set of master events selectively and strategically. These additional master events are generated by an independent, conventional detection system. A periodic analyst review will then be applied to verify the performance and, if necessary, adjust and consolidate the master event set. A primary focus of this project has been the application of waveform correlation techniques to seismic arrays. The basic procedure is to perform correlation on the individual channels, and then stack the correlation traces using zero-delay beam forming. Array methods such as frequency-wavenumber analysis can be applied to this set of correlation traces to help guarantee the validity of detections and lower the detection threshold. In principle, the deployment of correlation detectors against seismically active regions could involve very large numbers of very specific detectors. To

  6. Model parameter adaption-based multi-model algorithm for extended object tracking using a random matrix.

    PubMed

    Li, Borui; Mu, Chundi; Han, Shuli; Bai, Tianming

    2014-01-01

    Traditional object tracking technology usually regards the target as a point source object. However, this approximation is no longer appropriate for tracking extended objects such as large targets and closely spaced group objects. Bayesian extended object tracking (EOT) using a random symmetrical positive definite (SPD) matrix is a very effective method to jointly estimate the kinematic state and physical extension of the target. The key issue in the application of this random matrix-based EOT approach is to model the physical extension and measurement noise accurately. Model parameter adaptive approaches for both extension dynamic and measurement noise are proposed in this study based on the properties of the SPD matrix to improve the performance of extension estimation. An interacting multi-model algorithm based on model parameter adaptive filter using random matrix is also presented. Simulation results demonstrate the effectiveness of the proposed adaptive approaches and multi-model algorithm. The estimation performance of physical extension is better than the other algorithms, especially when the target maneuvers. The kinematic state estimation error is lower than the others as well. PMID:24763252

  7. An Adaptive Compensation Algorithm for Temperature Drift of Micro-Electro-Mechanical Systems Gyroscopes Using a Strong Tracking Kalman Filter

    PubMed Central

    Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan

    2015-01-01

    We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to −2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation. PMID:25985165

  8. A new adaptive algorithm for automated feature extraction in exponentially damped signals for health monitoring of smart structures

    NASA Astrophysics Data System (ADS)

    Qarib, Hossein; Adeli, Hojjat

    2015-12-01

    In this paper authors introduce a new adaptive signal processing technique for feature extraction and parameter estimation in noisy exponentially damped signals. The iterative 3-stage method is based on the adroit integration of the strengths of parametric and nonparametric methods such as multiple signal categorization, matrix pencil, and empirical mode decomposition algorithms. The first stage is a new adaptive filtration or noise removal scheme. The second stage is a hybrid parametric-nonparametric signal parameter estimation technique based on an output-only system identification technique. The third stage is optimization of estimated parameters using a combination of the primal-dual path-following interior point algorithm and genetic algorithm. The methodology is evaluated using a synthetic signal and a signal obtained experimentally from transverse vibrations of a steel cantilever beam. The method is successful in estimating the frequencies accurately. Further, it estimates the damping exponents. The proposed adaptive filtration method does not include any frequency domain manipulation. Consequently, the time domain signal is not affected as a result of frequency domain and inverse transformations.

  9. Model parameter adaption-based multi-model algorithm for extended object tracking using a random matrix.

    PubMed

    Li, Borui; Mu, Chundi; Han, Shuli; Bai, Tianming

    2014-04-24

    Traditional object tracking technology usually regards the target as a point source object. However, this approximation is no longer appropriate for tracking extended objects such as large targets and closely spaced group objects. Bayesian extended object tracking (EOT) using a random symmetrical positive definite (SPD) matrix is a very effective method to jointly estimate the kinematic state and physical extension of the target. The key issue in the application of this random matrix-based EOT approach is to model the physical extension and measurement noise accurately. Model parameter adaptive approaches for both extension dynamic and measurement noise are proposed in this study based on the properties of the SPD matrix to improve the performance of extension estimation. An interacting multi-model algorithm based on model parameter adaptive filter using random matrix is also presented. Simulation results demonstrate the effectiveness of the proposed adaptive approaches and multi-model algorithm. The estimation performance of physical extension is better than the other algorithms, especially when the target maneuvers. The kinematic state estimation error is lower than the others as well.

  10. A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system

    PubMed Central

    Li, Chaohong; Sredar, Nripun; Ivers, Kevin M.; Queener, Hope; Porter, Jason

    2010-01-01

    We present a direct slope-based correction algorithm to simultaneously control two deformable mirrors (DMs) in a woofer-tweeter adaptive optics system. A global response matrix was derived from the response matrices of each deformable mirror and the voltages for both deformable mirrors were calculated simultaneously. This control algorithm was tested and compared with a 2-step sequential control method in five normal human eyes using an adaptive optics scanning laser ophthalmoscope. The mean residual total root-mean-square (RMS) wavefront errors across subjects after adaptive optics (AO) correction were 0.128 ± 0.025 μm and 0.107 ± 0.033 μm for simultaneous and 2-step control, respectively (7.75-mm pupil). The mean intensity of reflectance images acquired after AO convergence was slightly higher for 2-step control. Radially-averaged power spectra calculated from registered reflectance images were nearly identical for all subjects using simultaneous or 2-step control. The correction performance of our new simultaneous dual DM control algorithm is comparable to 2-step control, but is more efficient. This method can be applied to any woofer-tweeter AO system. PMID:20721058

  11. An adaptive compensation algorithm for temperature drift of micro-electro-mechanical systems gyroscopes using a strong tracking Kalman filter.

    PubMed

    Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan

    2015-01-01

    We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to -2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation. PMID:25985165

  12. An adaptive compensation algorithm for temperature drift of micro-electro-mechanical systems gyroscopes using a strong tracking Kalman filter.

    PubMed

    Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan

    2015-05-13

    We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to -2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation.

  13. On solving the 3-D phase field equations by employing a parallel-adaptive mesh refinement (Para-AMR) algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Xiong, S. M.

    2015-05-01

    An algorithm comprising adaptive mesh refinement (AMR) and parallel (Para-) computing capabilities was developed to efficiently solve the coupled phase field equations in 3-D. The AMR was achieved based on a gradient criterion and the point clustering algorithm introduced by Berger (1991). To reduce the time for mesh generation, a dynamic regridding approach was developed based on the magnitude of the maximum phase advancing velocity. Local data at each computing process was then constructed and parallel computation was realized based on the hierarchical grid structure created during the AMR. Numerical tests and simulations on single and multi-dendrite growth were performed and results show that the proposed algorithm could shorten the computing time for 3-D phase field simulation for about two orders of magnitude and enable one to gain much more insight in understanding the underlying physics during dendrite growth in solidification.

  14. A proposed adaptive step size perturbation and observation maximum power point tracking algorithm based on photovoltaic system modeling

    NASA Astrophysics Data System (ADS)

    Huang, Yu

    Solar energy becomes one of the major alternative renewable energy options for its huge abundance and accessibility. Due to the intermittent nature, the high demand of Maximum Power Point Tracking (MPPT) techniques exists when a Photovoltaic (PV) system is used to extract energy from the sunlight. This thesis proposed an advanced Perturbation and Observation (P&O) algorithm aiming for relatively practical circumstances. Firstly, a practical PV system model is studied with determining the series and shunt resistances which are neglected in some research. Moreover, in this proposed algorithm, the duty ratio of a boost DC-DC converter is the object of the perturbation deploying input impedance conversion to achieve working voltage adjustment. Based on the control strategy, the adaptive duty ratio step size P&O algorithm is proposed with major modifications made for sharp insolation change as well as low insolation scenarios. Matlab/Simulink simulation for PV model, boost converter control strategy and various MPPT process is conducted step by step. The proposed adaptive P&O algorithm is validated by the simulation results and detail analysis of sharp insolation changes, low insolation condition and continuous insolation variation.

  15. Studying the Effect of Adaptive Momentum in Improving the Accuracy of Gradient Descent Back Propagation Algorithm on Classification Problems

    NASA Astrophysics Data System (ADS)

    Rehman, Muhammad Zubair; Nawi, Nazri Mohd.

    Despite being widely used in the practical problems around the world, Gradient Descent Back-propagation algorithm comes with problems like slow convergence and convergence to local minima. Previous researchers have suggested certain modifications to improve the convergence in gradient Descent Back-propagation algorithm such as careful selection of input weights and biases, learning rate, momentum, network topology, activation function and value for 'gain' in the activation function. This research proposed an algorithm for improving the working performance of back-propagation algorithm which is 'Gradient Descent with Adaptive Momentum (GDAM)' by keeping the gain value fixed during all network trials. The performance of GDAM is compared with 'Gradient Descent with fixed Momentum (GDM)' and 'Gradient Descent Method with Adaptive Gain (GDM-AG)'. The learning rate is fixed to 0.4 and maximum epochs are set to 3000 while sigmoid activation function is used for the experimentation. The results show that GDAM is a better approach than previous methods with an accuracy ratio of 1.0 for classification problems like Wine Quality, Mushroom and Thyroid disease.

  16. A feature extraction method of the particle swarm optimization algorithm based on adaptive inertia weight and chaos optimization for Brillouin scattering spectra

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjun; Zhao, Yu; Fu, Xinghu; Xu, Jinrui

    2016-10-01

    A novel particle swarm optimization algorithm based on adaptive inertia weight and chaos optimization is proposed for extracting the features of Brillouin scattering spectra. Firstly, the adaptive inertia weight parameter of the velocity is introduced to the basic particle swarm algorithm. Based on the current iteration number of particles and the adaptation value, the algorithm can change the weight coefficient and adjust the iteration speed of searching space for particles, so the local optimization ability can be enhanced. Secondly, the logical self-mapping chaotic search is carried out by using the chaos optimization in particle swarm optimization algorithm, which makes the particle swarm optimization algorithm jump out of local optimum. The novel algorithm is compared with finite element analysis-Levenberg Marquardt algorithm, particle swarm optimization-Levenberg Marquardt algorithm and particle swarm optimization algorithm by changing the linewidth, the signal-to-noise ratio and the linear weight ratio of Brillouin scattering spectra. Then the algorithm is applied to the feature extraction of Brillouin scattering spectra in different temperatures. The simulation analysis and experimental results show that this algorithm has a high fitting degree and small Brillouin frequency shift error for different linewidth, SNR and linear weight ratio. Therefore, this algorithm can be applied to the distributed optical fiber sensing system based on Brillouin optical time domain reflection, which can effectively improve the accuracy of Brillouin frequency shift extraction.

  17. Computed Tomography Images De-noising using a Novel Two Stage Adaptive Algorithm

    PubMed Central

    Fadaee, Mojtaba; Shamsi, Mousa; Saberkari, Hamidreza; Sedaaghi, Mohammad Hossein

    2015-01-01

    In this paper, an optimal algorithm is presented for de-noising of medical images. The presented algorithm is based on improved version of local pixels grouping and principal component analysis. In local pixels grouping algorithm, blocks matching based on L2 norm method is utilized, which leads to matching performance improvement. To evaluate the performance of our proposed algorithm, peak signal to noise ratio (PSNR) and structural similarity (SSIM) evaluation criteria have been used, which are respectively according to the signal to noise ratio in the image and structural similarity of two images. The proposed algorithm has two de-noising and cleanup stages. The cleanup stage is carried out comparatively; meaning that it is alternately repeated until the two conditions based on PSNR and SSIM are established. Implementation results show that the presented algorithm has a significant superiority in de-noising. Furthermore, the quantities of SSIM and PSNR values are higher in comparison to other methods. PMID:26955565

  18. A dynamically adaptive multigrid algorithm for the incompressible Navier-Stokes equations: Validation and model problems

    NASA Technical Reports Server (NTRS)

    Thompson, C. P.; Leaf, G. K.; Vanrosendale, J.

    1991-01-01

    An algorithm is described for the solution of the laminar, incompressible Navier-Stokes equations. The basic algorithm is a multigrid based on a robust, box-based smoothing step. Its most important feature is the incorporation of automatic, dynamic mesh refinement. This algorithm supports generalized simple domains. The program is based on a standard staggered-grid formulation of the Navier-Stokes equations for robustness and efficiency. Special grid transfer operators were introduced at grid interfaces in the multigrid algorithm to ensure discrete mass conservation. Results are presented for three models: the driven-cavity, a backward-facing step, and a sudden expansion/contraction.

  19. Optimizing weather radar observations using an adaptive multiquadric surface fitting algorithm

    NASA Astrophysics Data System (ADS)

    Martens, Brecht; Cabus, Pieter; De Jongh, Inge; Verhoest, Niko

    2013-04-01

    .e. the observed scaling factors C(xα)) on a distance aαK by introducing an offset parameter K, which results in slightly different equations to calculate a and a0. The described technique is currently being used by the Flemish Environmental Agency in an online forecasting system of river discharges within Flanders (Belgium). However, rescaling the radar data using the described algorithm is not always giving rise to an improved weather radar product. Probably one of the main reasons is the parameters K and ? which are implemented as constants. It can be expected that, among others, depending on the characteristics of the rainfall, different values for the parameters should be used. Adaptation of the parameter values is achieved by an online calibration of K and ? at each time step (every 15 minutes), using validated rain gauge measurements as ground truth. Results demonstrate that rescaling radar images using optimized values for K and ? at each time step lead to a significant improvement of the rainfall estimation, which in turn will result in higher quality discharge predictions. Moreover, it is shown that calibrated values for K and ? can be obtained in near-real time. References Cole, S. J., and Moore, R. J. (2008). Hydrological modelling using raingauge- and radar-based estimators of areal rainfall. Journal of Hydrology, 358(3-4), 159-181. Hardy, R.L., (1971) Multiquadric equations of topography and other irregular surfaces, Journal of Geophysical Research, 76(8): 1905-1915. Moore, R. J., Watson, B. C., Jones, D. A. and Black, K. B. (1989). London weather radar local calibration study. Technical report, Institute of Hydrology.

  20. Characterization of adaptive statistical iterative reconstruction algorithm for dose reduction in CT: A pediatric oncology perspective

    SciTech Connect

    Brady, S. L.; Yee, B. S.; Kaufman, R. A.

    2012-09-15

    Purpose: This study demonstrates a means of implementing an adaptive statistical iterative reconstruction (ASiR Trade-Mark-Sign ) technique for dose reduction in computed tomography (CT) while maintaining similar noise levels in the reconstructed image. The effects of image quality and noise texture were assessed at all implementation levels of ASiR Trade-Mark-Sign . Empirically derived dose reduction limits were established for ASiR Trade-Mark-Sign for imaging of the trunk for a pediatric oncology population ranging from 1 yr old through adolescence/adulthood. Methods: Image quality was assessed using metrics established by the American College of Radiology (ACR) CT accreditation program. Each image quality metric was tested using the ACR CT phantom with 0%-100% ASiR Trade-Mark-Sign blended with filtered back projection (FBP) reconstructed images. Additionally, the noise power spectrum (NPS) was calculated for three common reconstruction filters of the trunk. The empirically derived limitations on ASiR Trade-Mark-Sign implementation for dose reduction were assessed using (1, 5, 10) yr old and adolescent/adult anthropomorphic phantoms. To assess dose reduction limits, the phantoms were scanned in increments of increased noise index (decrementing mA using automatic tube current modulation) balanced with ASiR Trade-Mark-Sign reconstruction to maintain noise equivalence of the 0% ASiR Trade-Mark-Sign image. Results: The ASiR Trade-Mark-Sign algorithm did not produce any unfavorable effects on image quality as assessed by ACR criteria. Conversely, low-contrast resolution was found to improve due to the reduction of noise in the reconstructed images. NPS calculations demonstrated that images with lower frequency noise had lower noise variance and coarser graininess at progressively higher percentages of ASiR Trade-Mark-Sign reconstruction; and in spite of the similar magnitudes of noise, the image reconstructed with 50% or more ASiR Trade-Mark-Sign presented a more

  1. An adaptive integrated algorithm for noninvasive fetal ECG separation and noise reduction based on ICA-EEMD-WS.

    PubMed

    Liu, Guangchen; Luan, Yihui

    2015-11-01

    High-resolution fetal electrocardiogram (FECG) plays an important role in assisting physicians to detect fetal changes in the womb and to make clinical decisions. However, in real situations, clear FECG is difficult to extract because it is usually overwhelmed by the dominant maternal ECG and other contaminated noise such as baseline wander, high-frequency noise. In this paper, we proposed a novel integrated adaptive algorithm based on independent component analysis (ICA), ensemble empirical mode decomposition (EEMD), and wavelet shrinkage (WS) denoising, denoted as ICA-EEMD-WS, for FECG separation and noise reduction. First, ICA algorithm was used to separate the mixed abdominal ECG signal and to obtain the noisy FECG. Second, the noise in FECG was reduced by a three-step integrated algorithm comprised of EEMD, useful subcomponents statistical inference and WS processing, and partial reconstruction for baseline wander reduction. Finally, we evaluate the proposed algorithm using simulated data sets. The results indicated that the proposed ICA-EEMD-WS outperformed the conventional algorithms in signal denoising. PMID:26429348

  2. DARAL: A Dynamic and Adaptive Routing Algorithm for Wireless Sensor Networks.

    PubMed

    Estévez, Francisco José; Glösekötter, Peter; González, Jesús

    2016-01-01

    The evolution of Smart City projects is pushing researchers and companies to develop more efficient embedded hardware and also more efficient communication technologies. These communication technologies are the focus of this work, presenting a new routing algorithm based on dynamically-allocated sub-networks and node roles. Among these features, our algorithm presents a fast set-up time, a reduced overhead and a hierarchical organization, which allows for the application of complex management techniques. This work presents a routing algorithm based on a dynamically-allocated hierarchical clustering, which uses the link quality indicator as a reference parameter, maximizing the network coverage and minimizing the control message overhead and the convergence time. The present work based its test scenario and analysis in the density measure, considered as a node degree. The routing algorithm is compared with some of the most well known routing algorithms for different scenario densities. PMID:27347962

  3. DARAL: A Dynamic and Adaptive Routing Algorithm for Wireless Sensor Networks

    PubMed Central

    Estévez, Francisco José; Glösekötter, Peter; González, Jesús

    2016-01-01

    The evolution of Smart City projects is pushing researchers and companies to develop more efficient embedded hardware and also more efficient communication technologies. These communication technologies are the focus of this work, presenting a new routing algorithm based on dynamically-allocated sub-networks and node roles. Among these features, our algorithm presents a fast set-up time, a reduced overhead and a hierarchical organization, which allows for the application of complex management techniques. This work presents a routing algorithm based on a dynamically-allocated hierarchical clustering, which uses the link quality indicator as a reference parameter, maximizing the network coverage and minimizing the control message overhead and the convergence time. The present work based its test scenario and analysis in the density measure, considered as a node degree. The routing algorithm is compared with some of the most well known routing algorithms for different scenario densities. PMID:27347962

  4. On the estimation algorithm used in adaptive performance optimization of turbofan engines

    NASA Technical Reports Server (NTRS)

    Espana, Martin D.; Gilyard, Glenn B.

    1993-01-01

    The performance seeking control algorithm is designed to continuously optimize the performance of propulsion systems. The performance seeking control algorithm uses a nominal model of the propulsion system and estimates, in flight, the engine deviation parameters characterizing the engine deviations with respect to nominal conditions. In practice, because of measurement biases and/or model uncertainties, the estimated engine deviation parameters may not reflect the engine's actual off-nominal condition. This factor has a necessary impact on the overall performance seeking control scheme exacerbated by the open-loop character of the algorithm. The effects produced by unknown measurement biases over the estimation algorithm are evaluated. This evaluation allows for identification of the most critical measurements for application of the performance seeking control algorithm to an F100 engine. An equivalence relation between the biases and engine deviation parameters stems from an observability study; therefore, it is undecided whether the estimated engine deviation parameters represent the actual engine deviation or whether they simply reflect the measurement biases. A new algorithm, based on the engine's (steady-state) optimization model, is proposed and tested with flight data. When compared with previous Kalman filter schemes, based on local engine dynamic models, the new algorithm is easier to design and tune and it reduces the computational burden of the onboard computer.

  5. Acceleration amplitude-phase regulation for electro-hydraulic servo shaking table based on LMS adaptive filtering algorithm

    NASA Astrophysics Data System (ADS)

    Yao, Jianjun; Di, Duotao; Jiang, Guilin; Gao, Shuang

    2012-10-01

    Electro-hydraulic servo shaking table usually requires good control performance for acceleration replication. The poles of the electro-hydraulic servo shaking table are placed by three-variable control method using pole placement theory. The system frequency band is thus extended and the system stability is also enhanced. The phase delay and amplitude attenuation phenomenon occurs in electro-hydraulic servo shaking table corresponding to an acceleration sinusoidal input. The method for phase delay and amplitude attenuation elimination based on LMS adaptive filtering algorithm is proposed here. The task is accomplished by adjusting the weights using LMS adaptive filtering algorithm when there exits phase delay and amplitude attenuation between the input and its corresponding acceleration response. The reference input is weighted in such a way that it makes the system output track the input efficiently. The weighted input signal is inputted to the control system such that the output phase delay and amplitude attenuation are all cancelled. The above concept is used as a basis for the development of amplitude-phase regulation (APR) algorithm. The method does not need to estimate the system model and has good real-time performance. Experimental results demonstrate the efficiency and validity of the proposed APR control scheme.

  6. A dynamic control algorithm based on physiological parameters and wearable interfaces for adaptive ventricular assist devices.

    PubMed

    Tortora, G; Fontana, R; Argiolas, S; Vatteroni, M; Dario, P; Trivella, M G

    2015-08-01

    In this work we present an innovative algorithm for the dynamic control of ventricular assist devices (VADs), based on the acquisition of continuous physiological and functional parameters such as heart rate, blood oxygenation, temperature, and patient movements. Such parameters are acquired by wearable devices (MagIC & Winpack) and sensors implanted close to the VAD. The aim of the proposed algorithm is to dynamically control the hydraulic power of the VAD as a function of the detected parameters, patient's activity and emotional status. In this way, the cardiac dynamics regulated by the proposed autoregulation control algorithm for sensorized VADs, thus providing new therapy approaches for heart failure. PMID:26737403

  7. A dynamic control algorithm based on physiological parameters and wearable interfaces for adaptive ventricular assist devices.

    PubMed

    Tortora, G; Fontana, R; Argiolas, S; Vatteroni, M; Dario, P; Trivella, M G

    2015-08-01

    In this work we present an innovative algorithm for the dynamic control of ventricular assist devices (VADs), based on the acquisition of continuous physiological and functional parameters such as heart rate, blood oxygenation, temperature, and patient movements. Such parameters are acquired by wearable devices (MagIC & Winpack) and sensors implanted close to the VAD. The aim of the proposed algorithm is to dynamically control the hydraulic power of the VAD as a function of the detected parameters, patient's activity and emotional status. In this way, the cardiac dynamics regulated by the proposed autoregulation control algorithm for sensorized VADs, thus providing new therapy approaches for heart failure.

  8. Adaptive Grouping Cloud Model Shuffled Frog Leaping Algorithm for Solving Continuous Optimization Problems.

    PubMed

    Liu, Haorui; Yi, Fengyan; Yang, Heli

    2016-01-01

    The shuffled frog leaping algorithm (SFLA) easily falls into local optimum when it solves multioptimum function optimization problem, which impacts the accuracy and convergence speed. Therefore this paper presents grouped SFLA for solving continuous optimization problems combined with the excellent characteristics of cloud model transformation between qualitative and quantitative research. The algorithm divides the definition domain into several groups and gives each group a set of frogs. Frogs of each region search in their memeplex, and in the search process the algorithm uses the "elite strategy" to update the location information of existing elite frogs through cloud model algorithm. This method narrows the searching space and it can effectively improve the situation of a local optimum; thus convergence speed and accuracy can be significantly improved. The results of computer simulation confirm this conclusion.

  9. Adaptive Grouping Cloud Model Shuffled Frog Leaping Algorithm for Solving Continuous Optimization Problems

    PubMed Central

    Liu, Haorui; Yi, Fengyan; Yang, Heli

    2016-01-01

    The shuffled frog leaping algorithm (SFLA) easily falls into local optimum when it solves multioptimum function optimization problem, which impacts the accuracy and convergence speed. Therefore this paper presents grouped SFLA for solving continuous optimization problems combined with the excellent characteristics of cloud model transformation between qualitative and quantitative research. The algorithm divides the definition domain into several groups and gives each group a set of frogs. Frogs of each region search in their memeplex, and in the search process the algorithm uses the “elite strategy” to update the location information of existing elite frogs through cloud model algorithm. This method narrows the searching space and it can effectively improve the situation of a local optimum; thus convergence speed and accuracy can be significantly improved. The results of computer simulation confirm this conclusion. PMID:26819584

  10. Higher-Order, Space-Time Adaptive Finite Volume Methods: Algorithms, Analysis and Applications

    SciTech Connect

    Minion, Michael

    2014-04-29

    The four main goals outlined in the proposal for this project were: 1. Investigate the use of higher-order (in space and time) finite-volume methods for fluid flow problems. 2. Explore the embedding of iterative temporal methods within traditional block-structured AMR algorithms. 3. Develop parallel in time methods for ODEs and PDEs. 4. Work collaboratively with the Center for Computational Sciences and Engineering (CCSE) at Lawrence Berkeley National Lab towards incorporating new algorithms within existing DOE application codes.

  11. Algorithms for adaptive control of two-arm flexible manipulators under uncertainty

    NASA Technical Reports Server (NTRS)

    Skowronski, J. M.

    1987-01-01

    A nonlinear extension of model reference adaptive control (MRAC) technique is used to guide a double arm nonlinearizable robot manipulator with flexible links, driven by actuators collocated with joints subject to uncertain payload and inertia. The objective is to track a given simple linear and rigid but compatible dynamical model in real, possible stipulated time and within stipulated degree of accuracy of convergence while avoiding collision of the arms. The objective is attained by a specified signal adaptive feedback controller and by adaptive laws, both given in closed form. A case of 4 DOF manipulator illustrates the technique.

  12. Adaptive algorithms of position and energy reconstruction in Anger-camera type detectors: experimental data processing in ANTS

    NASA Astrophysics Data System (ADS)

    Morozov, A.; Defendi, I.; Engels, R.; Fraga, F. A. F.; Fraga, M. M. F. R.; Gongadze, A.; Guerard, B.; Jurkovic, M.; Kemmerling, G.; Manzin, G.; Margato, L. M. S.; Niko, H.; Pereira, L.; Petrillo, C.; Peyaud, A.; Piscitelli, F.; Raspino, D.; Rhodes, N. J.; Sacchetti, F.; Schooneveld, E. M.; Solovov, V.; Van Esch, P.; Zeitelhack, K.

    2013-05-01

    The software package ANTS (Anger-camera type Neutron detector: Toolkit for Simulations), developed for simulation of Anger-type gaseous detectors for thermal neutron imaging was extended to include a module for experimental data processing. Data recorded with a sensor array containing up to 100 photomultiplier tubes (PMT) or silicon photomultipliers (SiPM) in a custom configuration can be loaded and the positions and energies of the events can be reconstructed using the Center-of-Gravity, Maximum Likelihood or Least Squares algorithm. A particular strength of the new module is the ability to reconstruct the light response functions and relative gains of the photomultipliers from flood field illumination data using adaptive algorithms. The performance of the module is demonstrated with simulated data generated in ANTS and experimental data recorded with a 19 PMT neutron detector. The package executables are publicly available at http://coimbra.lip.pt/~andrei/

  13. A new adaptive self-tuning Fourier coefficients algorithm for periodic torque ripple minimization in permanent magnet synchronous motors (PMSM).

    PubMed

    Gómez-Espinosa, Alfonso; Hernández-Guzmán, Víctor M; Bandala-Sánchez, Manuel; Jiménez-Hernández, Hugo; Rivas-Araiza, Edgar A; Rodríguez-Reséndiz, Juvenal; Herrera-Ruíz, Gilberto

    2013-03-19

    A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM) Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component's harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple.

  14. A new adaptive self-tuning Fourier coefficients algorithm for periodic torque ripple minimization in permanent magnet synchronous motors (PMSM).

    PubMed

    Gómez-Espinosa, Alfonso; Hernández-Guzmán, Víctor M; Bandala-Sánchez, Manuel; Jiménez-Hernández, Hugo; Rivas-Araiza, Edgar A; Rodríguez-Reséndiz, Juvenal; Herrera-Ruíz, Gilberto

    2013-01-01

    A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM) Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component's harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple. PMID:23519345

  15. Adaptive implicit-explicit finite element algorithms for fluid mechanics problems

    NASA Technical Reports Server (NTRS)

    Tezduyar, T. E.; Liou, J.

    1988-01-01

    The adaptive implicit-explicit (AIE) approach is presented for the finite-element solution of various problems in computational fluid mechanics. In the AIE approach, the elements are dynamically (adaptively) arranged into differently treated groups. The differences in treatment could be based on considerations such as the cost efficiency, the type of spatial or temporal discretization employed, the choice of field equations, etc. Several numerical tests are performed to demonstrate that this approach can achieve substantial savings in CPU time and memory.

  16. DNApi: A De Novo Adapter Prediction Algorithm for Small RNA Sequencing Data

    PubMed Central

    Tsuji, Junko; Weng, Zhiping

    2016-01-01

    With the rapid accumulation of publicly available small RNA sequencing datasets, third-party meta-analysis across many datasets is becoming increasingly powerful. Although removing the 3´ adapter is an essential step for small RNA sequencing analysis, the adapter sequence information is not always available in the metadata. The information can be also erroneous even when it is available. In this study, we developed DNApi, a lightweight Python software package that predicts the 3´ adapter sequence de novo and provides the user with cleansed small RNA sequences ready for down stream analysis. Tested on 539 publicly available small RNA libraries accompanied with 3´ adapter sequences in their metadata, DNApi shows near-perfect accuracy (98.5%) with fast runtime (~2.85 seconds per library) and efficient memory usage (~43 MB on average). In addition to 3´ adapter prediction, it is also important to classify whether the input small RNA libraries were already processed, i.e. the 3´ adapters were removed. DNApi perfectly judged that given another batch of datasets, 192 publicly available processed libraries were “ready-to-map” small RNA sequence. DNApi is compatible with Python 2 and 3, and is available at https://github.com/jnktsj/DNApi. The 731 small RNA libraries used for DNApi evaluation were from human tissues and were carefully and manually collected. This study also provides readers with the curated datasets that can be integrated into their studies. PMID:27736901

  17. SIMULATING MAGNETOHYDRODYNAMICAL FLOW WITH CONSTRAINED TRANSPORT AND ADAPTIVE MESH REFINEMENT: ALGORITHMS AND TESTS OF THE AstroBEAR CODE

    SciTech Connect

    Cunningham, Andrew J.; Frank, Adam; Varniere, Peggy; Mitran, Sorin; Jones, Thomas W.

    2009-06-15

    A description is given of the algorithms implemented in the AstroBEAR adaptive mesh-refinement code for ideal magnetohydrodynamics. The code provides several high-resolution shock-capturing schemes which are constructed to maintain conserved quantities of the flow in a finite-volume sense. Divergence-free magnetic field topologies are maintained to machine precision by collating the components of the magnetic field on a cell-interface staggered grid and utilizing the constrained transport approach for integrating the induction equations. The maintenance of magnetic field topologies on adaptive grids is achieved using prolongation and restriction operators which preserve the divergence and curl of the magnetic field across collocated grids of different resolutions. The robustness and correctness of the code is demonstrated by comparing the numerical solution of various tests with analytical solutions or previously published numerical solutions obtained by other codes.

  18. Simulation of mid-infrared clutter rejection. 1: One-dimensional LMS spatial filter and adaptive threshold algorithms.

    PubMed

    Longmire, M S; Milton, A F; Takken, E H

    1982-11-01

    Several 1-D signal processing techniques have been evaluated by simulation with a digital computer using high-spatial-resolution (0.15 mrad) noise data gathered from back-lit clouds and uniform sky with a scanning data collection system operating in the 4.0-4.8-microm spectral band. Two ordinary bandpass filters and a least-mean-square (LMS) spatial filter were evaluated in combination with a fixed or adaptive threshold algorithm. The combination of a 1-D LMS filter and a 1-D adaptive threshold sensor was shown to reject extreme cloud clutter effectively and to provide nearly equal signal detection in a clear and cluttered sky, at least in systems whose NEI (noise equivalent irradiance) exceeds 1.5 x 10(-13) W/cm(2) and whose spatial resolution is better than 0.15 x 0.36 mrad. A summary gives highlights of the work, key numerical results, and conclusions.

  19. Novel adaptive playout algorithm for voice over IP applications and performance assessment over WANs

    NASA Astrophysics Data System (ADS)

    Hintoglu, Mustafa H.; Ergul, Faruk R.

    2001-07-01

    Special purpose hardware and application software have been developed to implement and test Voice over IP protocols. The hardware has interface units to which ISDN telephone sets can be connected. It has Ethernet and RS-232 interfaces for connections to LANs and controlling PCs. The software has modules which are specific to telephone operations and simulation activities. The simulator acts as a WAN environment, generating delays in delivering speech packets according to delay distribution specified. By using WAN simulator, different algorithms can be tested and their performances can be compared. The novel algorithm developed correlates silence periods with received voice packets and delays play out until confidence is established that a significant phrase or sentence is stored in the playout buffer. The performance of this approach has been found to be either superior or comparable to performances of existing algorithms tested. This new algorithm has the advantage that at least a complete phrase or sentence is played out, thereby increasing the intelligibility considerably. The penalty of having larger delays compared to published algorithms operating under bursty traffic conditions is compensated by higher quality of service offered. In the paper, details of developed system and obtained test results will be presented.

  20. Differential sampling for fast frequency acquisition via adaptive extended least squares algorithm

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra

    1987-01-01

    This paper presents a differential signal model along with appropriate sampling techinques for least squares estimation of the frequency and frequency derivatives and possibly the phase and amplitude of a sinusoid received in the presence of noise. The proposed algorithm is recursive in mesurements and thus the computational requirement increases only linearly with the number of measurements. The dimension of the state vector in the proposed algorithm does not depend upon the number of measurements and is quite small, typically around four. This is an advantage when compared to previous algorithms wherein the dimension of the state vector increases monotonically with the product of the frequency uncertainty and the observation period. Such a computational simplification may possibly result in some loss of optimality. However, by applying the sampling techniques of the paper such a possible loss in optimality can made small.

  1. Three-dimensional localization of fluorescent spots with adapted MUSIC algorithm

    NASA Astrophysics Data System (ADS)

    Scholz, Bernhard; Pfister, Marcus

    2003-10-01

    We present a novel method, space-space MUSIC (MUltiple SIgnal Classification), to localize three-dimensionally focal fluorophore-tagged lesions activated subsequently by different laser source posi-tions from multi-sensor fluorescence data obtained from a single measurement plane. Matches between a signal subspace derived from the measured data and data from model spots allow 3D determination of the centers-of-gravity of fluorescence regions. Simulated spots in bounded, inho-mogeneous media could be localized accurately. The algorithm has shown to be robust against patient-dependent parameters, such as optical background parameters. The algorithm does also not consider medium boundaries.

  2. Irradiation of the prostate and pelvic lymph nodes with an adaptive algorithm

    SciTech Connect

    Hwang, A. B.; Chen, J.; Nguyen, T. B.; Gottschalk, A. G.; Roach, M. R. III; Pouliot, J.

    2012-02-15

    Purpose: The simultaneous treatment of pelvic lymph nodes and the prostate in radiotherapy for prostate cancer is complicated by the independent motion of these two target volumes. In this work, the authors study a method to adapt intensity modulated radiation therapy (IMRT) treatment plans so as to compensate for this motion by adaptively morphing the multileaf collimator apertures and adjusting the segment weights. Methods: The study used CT images, tumor volumes, and normal tissue contours from patients treated in our institution. An IMRT treatment plan was then created using direct aperture optimization to deliver 45 Gy to the pelvic lymph nodes and 50 Gy to the prostate and seminal vesicles. The prostate target volume was then shifted in either the anterior-posterior direction or in the superior-inferior direction. The treatment plan was adapted by adjusting the aperture shapes with or without re-optimizing the segment weighting. The dose to the target volumes was then determined for the adapted plan. Results: Without compensation for prostate motion, 1 cm shifts of the prostate resulted in an average decrease of 14% in D-95%. If the isocenter is simply shifted to match the prostate motion, the prostate receives the correct dose but the pelvic lymph nodes are underdosed by 14% {+-} 6%. The use of adaptive morphing (with or without segment weight optimization) reduces the average change in D-95% to less than 5% for both the pelvic lymph nodes and the prostate. Conclusions: Adaptive morphing with and without segment weight optimization can be used to compensate for the independent motion of the prostate and lymph nodes when combined with daily imaging or other methods to track the prostate motion. This method allows the delivery of the correct dose to both the prostate and lymph nodes with only small changes to the dose delivered to the target volumes.

  3. An intelligent computational algorithm based on neural network for spatial data mining in adaptability evaluation

    NASA Astrophysics Data System (ADS)

    Miao, Zuohua; Xu, Hong; Chen, Yong; Zeng, Xiangyang

    2009-10-01

    Back-propagation neural network model (BPNN) is an intelligent computational model based on stylebook learning. This model is different from traditional adaptability symbolic logic reasoning method based on knowledge and rules. At the same time, BPNN model has shortcoming such as: slowly convergence speed and partial minimum. During the process of adaptability evaluation, the factors were diverse, complicated and uncertain, so an effectual model should adopt the technique of data mining method and fuzzy logical technology. In this paper, the author ameliorated the backpropagation of BPNN and applied fuzzy logical theory for dynamic inference of fuzzy rules. Authors also give detail description on training and experiment process of the novel model.

  4. A Fuzzy Genetic Algorithm Approach to an Adaptive Information Retrieval Agent.

    ERIC Educational Resources Information Center

    Martin-Bautista, Maria J.; Vila, Maria-Amparo; Larsen, Henrik Legind

    1999-01-01

    Presents an approach to a Genetic Information Retrieval Agent Filter (GIRAF) that filters and ranks documents retrieved from the Internet according to users' preferences by using a Genetic Algorithm and fuzzy set theory to handle the imprecision of users' preferences and users' evaluation of the retrieved documents. (Author/LRW)

  5. The application of Firefly algorithm in an Adaptive Emergency Evacuation Centre Management (AEECM) for dynamic relocation of flood victims

    NASA Astrophysics Data System (ADS)

    ChePa, Noraziah; Hashim, Nor Laily; Yusof, Yuhanis; Hussain, Azham

    2016-08-01

    Flood evacuation centre is defined as a temporary location or area of people from disaster particularly flood as a rescue or precautionary measure. Gazetted evacuation centres are normally located at secure places which have small chances from being drowned by flood. However, due to extreme flood several evacuation centres in Kelantan were unexpectedly drowned. Currently, there is no study done on proposing a decision support aid to reallocate victims and resources of the evacuation centre when the situation getting worsens. Therefore, this study proposes a decision aid model to be utilized in realizing an adaptive emergency evacuation centre management system. This study undergoes two main phases; development of algorithm and models, and development of a web-based and mobile app. The proposed model operates using Firefly multi-objective optimization algorithm that creates an optimal schedule for the relocation of victims and resources for an evacuation centre. The proposed decision aid model and the adaptive system can be applied in supporting the National Security Council's respond mechanisms for handling disaster management level II (State level) especially in providing better management of the flood evacuating centres.

  6. Ultimately accurate SRAF replacement for practical phases using an adaptive search algorithm based on the optimal gradient method

    NASA Astrophysics Data System (ADS)

    Maeda, Shimon; Nosato, Hirokazu; Matsunawa, Tetsuaki; Miyairi, Masahiro; Nojima, Shigeki; Tanaka, Satoshi; Sakanashi, Hidenori; Murakawa, Masahiro; Saito, Tamaki; Higuchi, Tetsuya; Inoue, Soichi

    2010-04-01

    SRAF (Sub Resolution Assist Feature) technique has been widely used for DOF enhancement. Below 40nm design node, even in the case of using the SRAF technique, the resolution limit is approached due to the use of hyper NA imaging or low k1 lithography conditions especially for the contact layer. As a result, complex layout patterns or random patterns like logic data or intermediate pitch patterns become increasingly sensitive to photo-resist pattern fidelity. This means that the need for more accurate resolution technique is increasing in order to cope with lithographic patterning fidelity issues in low k1 lithography conditions. To face with these issues, new SRAF technique like model based SRAF using an interference map or inverse lithography technique has been proposed. But these approaches don't have enough assurance for accuracy or performance, because the ideal mask generated by these techniques is lost when switching to a manufacturable mask with Manhattan structures. As a result it might be very hard to put these things into practice and production flow. In this paper, we propose the novel method for extremely accurate SRAF placement using an adaptive search algorithm. In this method, the initial position of SRAF is generated by the traditional SRAF placement such as rule based SRAF, and it is adjusted by adaptive algorithm using the evaluation of lithography simulation. This method has three advantages which are preciseness, efficiency and industrial applicability. That is, firstly, the lithography simulation uses actual computational model considering process window, thus our proposed method can precisely adjust the SRAF positions, and consequently we can acquire the best SRAF positions. Secondly, because our adaptive algorithm is based on optimal gradient method, which is very simple algorithm and rectilinear search, the SRAF positions can be adjusted with high efficiency. Thirdly, our proposed method, which utilizes the traditional SRAF placement, is

  7. An analysis of the multiple model adaptive control algorithm. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Greene, C. S.

    1978-01-01

    Qualitative and quantitative aspects of the multiple model adaptive control method are detailed. The method represents a cascade of something which resembles a maximum a posteriori probability identifier (basically a bank of Kalman filters) and a bank of linear quadratic regulators. Major qualitative properties of the MMAC method are examined and principle reasons for unacceptable behavior are explored.

  8. Real time algorithm invariant to natural lighting with LBP techniques through an adaptive thresholding implemented in GPU processors

    NASA Astrophysics Data System (ADS)

    Orjuela-Vargas, S. A.; Triana-Martinez, J.; Yañez, J. P.; Philips, W.

    2014-03-01

    Video analysis in real time requires fast and efficient algorithms to extract relevant information from a considerable number, commonly 25, of frames per second. Furthermore, robust algorithms for outdoor visual scenes may retrieve correspondent features along the day where a challenge is to deal with lighting changes. Currently, Local Binary Pattern (LBP) techniques are widely used for extracting features due to their robustness to illumination changes and the low requirements for implementation. We propose to compute an automatic threshold based on the distribution of the intensity residuals resulting from the pairwise comparisons when using LBP techniques. The intensity residuals distribution can be modelled by a Generalized Gaussian Distribution (GGD). In this paper we compute the adaptive threshold using the parameters of the GGD. We present a CUDA implementation of our proposed algorithm. We use the LBPSYM technique. Our approach is tested on videos of four different urban scenes with mobilities captured during day and night. The extracted features can be used in a further step to determine patterns, identify objects or detect background. However, further research must be conducted for blurring correction since the scenes at night are commonly blurred due to artificial lighting.

  9. Broad-area search for targets in SAR imagery with context-adaptive algorithms

    NASA Astrophysics Data System (ADS)

    Patterson, Tim J.; Fairchild, Scott R.

    1996-06-01

    This paper describes an ATR system based on gray scale morphology which has proven very effective in performing broad area search for targets of interest. Gray scale morphology is used to extract several distinctive sets of features which combine intensity and spatial information. Results of direct comparisons with other algorithms are presented. In a series of tests which were scored independently the morphological approach has shown superior results. An automated training systems based on a combination of genetic algorithms and classification and regression trees is described. Further performance gains are expected by allowing context sensitive selection of parameter sets for the morphological processing. Context is acquired from the image using texture measures to identify the local clutter environment. The system is designed to be able to build new classifiers on the fly to match specific image to image variations.

  10. Optree: a learning-based adaptive watershed algorithm for neuron segmentation.

    PubMed

    Uzunbaş, Mustafa Gökhan; Chen, Chao; Metaxas, Dimitris

    2014-01-01

    We present a new algorithm for automatic and interactive segmentation of neuron structures from electron microscopy (EM) images. Our method selects a collection of nodes from the watershed mergng tree as the proposed segmentation. This is achieved by building a onditional random field (CRF) whose underlying graph is the merging tree. The maximum a posteriori (MAP) prediction of the CRF is the output segmentation. Our algorithm outperforms state-of-the-art methods. Both the inference and the training are very efficient as the graph is tree-structured. Furthermore, we develop an interactive segmentation framework which selects uncertain regions for a user to proofread. The uncertainty is measured by the marginals of the graphical model. Based on user corrections, our framework modifies the merging tree and thus improves the segmentation globally. PMID:25333106

  11. An adaptive prefilter algorithm for real-time cyclic security analysis

    SciTech Connect

    Harsan, H. |; Hadjsaid, N.; Pruvot, P.

    1995-12-31

    Security analysis is an important task in modern power system control centers. Security considerations must allow for both active power problems (thermal limits) and reactive power problems involving nodal voltages (isolation and stability limits). There is a definite need for new methods capable of ensuring that system security limits will not be exceeded when abnormal conditions arise, applicable in the real time environment. In this paper, a general algorithm for automating cyclic security analysis is discussed. The algorithm developed uses data obtained from previous security analysis and filters out non-dangerous contingencies with reduced computation time. The proposed method may be used to improve speed-up of existing contingency algorithms. Tests have been performed, on the French 225--400 kV grid containing 462 nodes and 855 branches. For this system 96 real states were analyzed over a 24-hour-period in 15-minute-steps. These states were recorded on 19 January 1994 on the French grid. The tests confirm that the approach is both applicable and accurate.

  12. Algorithms for adaptive stochastic control for a class of linear systems

    NASA Technical Reports Server (NTRS)

    Toda, M.; Patel, R. V.

    1977-01-01

    Control of linear, discrete time, stochastic systems with unknown control gain parameters is discussed. Two suboptimal adaptive control schemes are derived: one is based on underestimating future control and the other is based on overestimating future control. Both schemes require little on-line computation and incorporate in their control laws some information on estimation errors. The performance of these laws is studied by Monte Carlo simulations on a computer. Two single input, third order systems are considered, one stable and the other unstable, and the performance of the two adaptive control schemes is compared with that of the scheme based on enforced certainty equivalence and the scheme where the control gain parameters are known.

  13. TRIM: A finite-volume MHD algorithm for an unstructured adaptive mesh

    SciTech Connect

    Schnack, D.D.; Lottati, I.; Mikic, Z.

    1995-07-01

    The authors describe TRIM, a MHD code which uses finite volume discretization of the MHD equations on an unstructured adaptive grid of triangles in the poloidal plane. They apply it to problems related to modeling tokamak toroidal plasmas. The toroidal direction is treated by a pseudospectral method. Care was taken to center variables appropriately on the mesh and to construct a self adjoint diffusion operator for cell centered variables.

  14. A 3-D adaptive mesh refinement algorithm for multimaterial gas dynamics

    SciTech Connect

    Puckett, E.G. ); Saltzman, J.S. )

    1991-08-12

    Adaptive Mesh Refinement (AMR) in conjunction with high order upwind finite difference methods has been used effectively on a variety of problems. In this paper we discuss an implementation of an AMR finite difference method that solves the equations of gas dynamics with two material species in three dimensions. An equation for the evolution of volume fractions augments the gas dynamics system. The material interface is preserved and tracked from the volume fractions using a piecewise linear reconstruction technique. 14 refs., 4 figs.

  15. The adaptive dynamic community detection algorithm based on the non-homogeneous random walking

    NASA Astrophysics Data System (ADS)

    Xin, Yu; Xie, Zhi-Qiang; Yang, Jing

    2016-05-01

    With the changing of the habit and custom, people's social activity tends to be changeable. It is required to have a community evolution analyzing method to mine the dynamic information in social network. For that, we design the random walking possibility function and the topology gain function to calculate the global influence matrix of the nodes. By the analysis of the global influence matrix, the clustering directions of the nodes can be obtained, thus the NRW (Non-Homogeneous Random Walk) method for detecting the static overlapping communities can be established. We design the ANRW (Adaptive Non-Homogeneous Random Walk) method via adapting the nodes impacted by the dynamic events based on the NRW. The ANRW combines the local community detection with dynamic adaptive adjustment to decrease the computational cost for ANRW. Furthermore, the ANRW treats the node as the calculating unity, thus the running manner of the ANRW is suitable to the parallel computing, which could meet the requirement of large dataset mining. Finally, by the experiment analysis, the efficiency of ANRW on dynamic community detection is verified.

  16. Near-lossless image compression by adaptive prediction: new developments and comparison of algorithms

    NASA Astrophysics Data System (ADS)

    Aiazzi, Bruno; Alparone, Luciano; Baronti, Stefano

    2003-01-01

    This paper describes state-of-the-art approaches to near-lossless image compression by adaptive causal DPCM and presents two advanced schemes based on crisp and fuzzy switching of predictors, respectively. The former relies on a linear-regression prediction in which a different predictor is employed for each image block. Such block-representative predictors are calculated from the original data set through an iterative relaxation-labeling procedure. Coding time are affordable thanks to fast convergence of training. Decoding is always performed in real time. The latter is still based on adaptive MMSE prediction in which a different predictor at each pixel position is achieved by blending a number of prototype predictors through adaptive weights calculated from the past decoded samples. Quantization error feedback loops are introduced into the basic lossless encoders to enable user-defined upper-bounded reconstruction errors. Both schemes exploit context modeling of prediction errors followed by arithmetic coding to enhance entropy coding performances. A thorough performance comparison on a wide test image set show the superiority of the proposed schemes over both up-to-date encoders in the literature and new/upcoming standards.

  17. A vehicle ABS adaptive sliding-mode control algorithm based on the vehicle velocity estimation and tyre/road friction coefficient estimations

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangwen; Xu, Yong; Pan, Ming; Ren, Fenghua

    2014-04-01

    A sliding-mode observer is designed to estimate the vehicle velocity with the measured vehicle acceleration, the wheel speeds and the braking torques. Based on the Burckhardt tyre model, the extended Kalman filter is designed to estimate the parameters of the Burckhardt model with the estimated vehicle velocity, the measured wheel speeds and the vehicle acceleration. According to the estimated parameters of the Burckhardt tyre model, the tyre/road friction coefficients and the optimal slip ratios are calculated. A vehicle adaptive sliding-mode control (SMC) algorithm is presented with the estimated vehicle velocity, the tyre/road friction coefficients and the optimal slip ratios. And the adjustment method of the sliding-mode gain factors is discussed. Based on the adaptive SMC algorithm, a vehicle's antilock braking system (ABS) control system model is built with the Simulink Toolbox. Under the single-road condition as well as the different road conditions, the performance of the vehicle ABS system is simulated with the vehicle velocity observer, the tyre/road friction coefficient estimator and the adaptive SMC algorithm. The results indicate that the estimated errors of the vehicle velocity and the tyre/road friction coefficients are acceptable and the vehicle ABS adaptive SMC algorithm is effective. So the proposed adaptive SMC algorithm can be used to control the vehicle ABS without the information of the vehicle velocity and the road conditions.

  18. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  19. Toward adaptive radiotherapy for head and neck patients: Uncertainties in dose warping due to the choice of deformable registration algorithm

    SciTech Connect

    Veiga, Catarina Royle, Gary; Lourenço, Ana Mónica; Mouinuddin, Syed; Herk, Marcel van; Modat, Marc; Ourselin, Sébastien; McClelland, Jamie R.

    2015-02-15

    Purpose: The aims of this work were to evaluate the performance of several deformable image registration (DIR) algorithms implemented in our in-house software (NiftyReg) and the uncertainties inherent to using different algorithms for dose warping. Methods: The authors describe a DIR based adaptive radiotherapy workflow, using CT and cone-beam CT (CBCT) imaging. The transformations that mapped the anatomy between the two time points were obtained using four different DIR approaches available in NiftyReg. These included a standard unidirectional algorithm and more sophisticated bidirectional ones that encourage or ensure inverse consistency. The forward (CT-to-CBCT) deformation vector fields (DVFs) were used to propagate the CT Hounsfield units and structures to the daily geometry for “dose of the day” calculations, while the backward (CBCT-to-CT) DVFs were used to remap the dose of the day onto the planning CT (pCT). Data from five head and neck patients were used to evaluate the performance of each implementation based on geometrical matching, physical properties of the DVFs, and similarity between warped dose distributions. Geometrical matching was verified in terms of dice similarity coefficient (DSC), distance transform, false positives, and false negatives. The physical properties of the DVFs were assessed calculating the harmonic energy, determinant of the Jacobian, and inverse consistency error of the transformations. Dose distributions were displayed on the pCT dose space and compared using dose difference (DD), distance to dose difference, and dose volume histograms. Results: All the DIR algorithms gave similar results in terms of geometrical matching, with an average DSC of 0.85 ± 0.08, but the underlying properties of the DVFs varied in terms of smoothness and inverse consistency. When comparing the doses warped by different algorithms, we found a root mean square DD of 1.9% ± 0.8% of the prescribed dose (pD) and that an average of 9% ± 4% of

  20. Extended Adaptive Biasing Force Algorithm. An On-the-Fly Implementation for Accurate Free-Energy Calculations.

    PubMed

    Fu, Haohao; Shao, Xueguang; Chipot, Christophe; Cai, Wensheng

    2016-08-01

    Proper use of the adaptive biasing force (ABF) algorithm in free-energy calculations needs certain prerequisites to be met, namely, that the Jacobian for the metric transformation and its first derivative be available and the coarse variables be independent and fully decoupled from any holonomic constraint or geometric restraint, thereby limiting singularly the field of application of the approach. The extended ABF (eABF) algorithm circumvents these intrinsic limitations by applying the time-dependent bias onto a fictitious particle coupled to the coarse variable of interest by means of a stiff spring. However, with the current implementation of eABF in the popular molecular dynamics engine NAMD, a trajectory-based post-treatment is necessary to derive the underlying free-energy change. Usually, such a posthoc analysis leads to a decrease in the reliability of the free-energy estimates due to the inevitable loss of information, as well as to a drop in efficiency, which stems from substantial read-write accesses to file systems. We have developed a user-friendly, on-the-fly code for performing eABF simulations within NAMD. In the present contribution, this code is probed in eight illustrative examples. The performance of the algorithm is compared with traditional ABF, on the one hand, and the original eABF implementation combined with a posthoc analysis, on the other hand. Our results indicate that the on-the-fly eABF algorithm (i) supplies the correct free-energy landscape in those critical cases where the coarse variables at play are coupled to either each other or to geometric restraints or holonomic constraints, (ii) greatly improves the reliability of the free-energy change, compared to the outcome of a posthoc analysis, and (iii) represents a negligible additional computational effort compared to regular ABF. Moreover, in the proposed implementation, guidelines for choosing two parameters of the eABF algorithm, namely the stiffness of the spring and the mass

  1. Extended Adaptive Biasing Force Algorithm. An On-the-Fly Implementation for Accurate Free-Energy Calculations.

    PubMed

    Fu, Haohao; Shao, Xueguang; Chipot, Christophe; Cai, Wensheng

    2016-08-01

    Proper use of the adaptive biasing force (ABF) algorithm in free-energy calculations needs certain prerequisites to be met, namely, that the Jacobian for the metric transformation and its first derivative be available and the coarse variables be independent and fully decoupled from any holonomic constraint or geometric restraint, thereby limiting singularly the field of application of the approach. The extended ABF (eABF) algorithm circumvents these intrinsic limitations by applying the time-dependent bias onto a fictitious particle coupled to the coarse variable of interest by means of a stiff spring. However, with the current implementation of eABF in the popular molecular dynamics engine NAMD, a trajectory-based post-treatment is necessary to derive the underlying free-energy change. Usually, such a posthoc analysis leads to a decrease in the reliability of the free-energy estimates due to the inevitable loss of information, as well as to a drop in efficiency, which stems from substantial read-write accesses to file systems. We have developed a user-friendly, on-the-fly code for performing eABF simulations within NAMD. In the present contribution, this code is probed in eight illustrative examples. The performance of the algorithm is compared with traditional ABF, on the one hand, and the original eABF implementation combined with a posthoc analysis, on the other hand. Our results indicate that the on-the-fly eABF algorithm (i) supplies the correct free-energy landscape in those critical cases where the coarse variables at play are coupled to either each other or to geometric restraints or holonomic constraints, (ii) greatly improves the reliability of the free-energy change, compared to the outcome of a posthoc analysis, and (iii) represents a negligible additional computational effort compared to regular ABF. Moreover, in the proposed implementation, guidelines for choosing two parameters of the eABF algorithm, namely the stiffness of the spring and the mass

  2. Genetic algorithms

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  3. An Adaptive Niching Genetic Algorithm using a niche size equalization mechanism

    NASA Astrophysics Data System (ADS)

    Nagata, Yuichi

    Niching GAs have been widely investigated to apply genetic algorithms (GAs) to multimodal function optimization problems. In this paper, we suggest a new niching GA that attempts to form niches, each consisting of an equal number of individuals. The proposed GA can be applied also to combinatorial optimization problems by defining a distance metric in the search space. We apply the proposed GA to the job-shop scheduling problem (JSP) and demonstrate that the proposed niching method enhances the ability to maintain niches and improve the performance of GAs.

  4. Execution time supports for adaptive scientific algorithms on distributed memory machines

    NASA Technical Reports Server (NTRS)

    Berryman, Harry; Saltz, Joel; Scroggs, Jeffrey

    1990-01-01

    Optimizations are considered that are required for efficient execution of code segments that consists of loops over distributed data structures. The PARTI (Parallel Automated Runtime Toolkit at ICASE) execution time primitives are designed to carry out these optimizations and can be used to implement a wide range of scientific algorithms on distributed memory machines. These primitives allow the user to control array mappings in a way that gives an appearance of shared memory. Computations can be based on a global index set. Primitives are used to carry out gather and scatter operations on distributed arrays. Communications patterns are derived at runtime, and the appropriate send and receive messages are automatically generated.

  5. Adaptive sequential algorithms for detecting targets in a heavy IR clutter

    NASA Astrophysics Data System (ADS)

    Tartakovsky, Alexander G.; Kligys, Skirmantas; Petrov, Anton

    1999-10-01

    Cruise missiles over land and sea cluttered background are serious threats to search and track systems. In general, these threats are stealth in both the IR and radio frequency bands. That is, their thermal IR signature and their radar cross section can be quite small. This paper discusses adaptive sequential detection methods which exploit 'track- before-detect' technology for detection glow-SNR targets in IR search and track (IRST) systems. Despite the fact that we focus on an IRST against cruise missiles over land and sea cluttered backgrounds, the results are applicable to other sensors and other kinds of targets.

  6. Convergence Properties of a Class of Probabilistic Adaptive Schemes Called Sequential Reproductive Plans. Psychology and Education Series, Technical Report No. 210.

    ERIC Educational Resources Information Center

    Martin, Nancy

    Presented is a technical report concerning the use of a mathematical model describing certain aspects of the duplication and selection processes in natural genetic adaptation. This reproductive plan/model occurs in artificial genetics (the use of ideas from genetics to develop general problem solving techniques for computers). The reproductive…

  7. Cerebellar-inspired algorithm for adaptive control of nonlinear dielectric elastomer-based artificial muscle

    PubMed Central

    Assaf, Tareq; Rossiter, Jonathan M.; Porrill, John

    2016-01-01

    Electroactive polymer actuators are important for soft robotics, but can be difficult to control because of compliance, creep and nonlinearities. Because biological control mechanisms have evolved to deal with such problems, we investigated whether a control scheme based on the cerebellum would be useful for controlling a nonlinear dielectric elastomer actuator, a class of artificial muscle. The cerebellum was represented by the adaptive filter model, and acted in parallel with a brainstem, an approximate inverse plant model. The recurrent connections between the two allowed for direct use of sensory error to adjust motor commands. Accurate tracking of a displacement command in the actuator's nonlinear range was achieved by either semi-linear basis functions in the cerebellar model or semi-linear functions in the brainstem corresponding to recruitment in biological muscle. In addition, allowing transfer of training between cerebellum and brainstem as has been observed in the vestibulo-ocular reflex prevented the steady increase in cerebellar output otherwise required to deal with creep. The extensibility and relative simplicity of the cerebellar-based adaptive-inverse control scheme suggests that it is a plausible candidate for controlling this type of actuator. Moreover, its performance highlights important features of biological control, particularly nonlinear basis functions, recruitment and transfer of training. PMID:27655667

  8. A fast adaptive convex hull algorithm on two-dimensional processor arrays with a reconfigurable BUS system

    NASA Technical Reports Server (NTRS)

    Olariu, S.; Schwing, J.; Zhang, J.

    1991-01-01

    A bus system that can change dynamically to suit computational needs is referred to as reconfigurable. We present a fast adaptive convex hull algorithm on a two-dimensional processor array with a reconfigurable bus system (2-D PARBS, for short). Specifically, we show that computing the convex hull of a planar set of n points taken O(log n/log m) time on a 2-D PARBS of size mn x n with 3 less than or equal to m less than or equal to n. Our result implies that the convex hull of n points in the plane can be computed in O(1) time in a 2-D PARBS of size n(exp 1.5) x n.

  9. An efficient total variation algorithm for super-resolution in fetal brain MRI with adaptive regularization.

    PubMed

    Tourbier, Sébastien; Bresson, Xavier; Hagmann, Patric; Thiran, Jean-Philippe; Meuli, Reto; Cuadra, Meritxell Bach

    2015-09-01

    Although fetal anatomy can be adequately viewed in new multi-slice MR images, many critical limitations remain for quantitative data analysis. To this end, several research groups have recently developed advanced image processing methods, often denoted by super-resolution (SR) techniques, to reconstruct from a set of clinical low-resolution (LR) images, a high-resolution (HR) motion-free volume. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has been quite attracted by Total Variation energies because of their ability in edge preserving but only standard explicit steepest gradient techniques have been applied for optimization. In a preliminary work, it has been shown that novel fast convex optimization techniques could be successfully applied to design an efficient Total Variation optimization algorithm for the super-resolution problem. In this work, two major contributions are presented. Firstly, we will briefly review the Bayesian and Variational dual formulations of current state-of-the-art methods dedicated to fetal MRI reconstruction. Secondly, we present an extensive quantitative evaluation of our SR algorithm previously introduced on both simulated fetal and real clinical data (with both normal and pathological subjects). Specifically, we study the robustness of regularization terms in front of residual registration errors and we also present a novel strategy for automatically select the weight of the regularization as regards the data fidelity term. Our results show that our TV implementation is highly robust in front of motion artifacts and that it offers the best trade-off between speed and accuracy for fetal MRI recovery as in comparison with state-of-the art methods.

  10. An efficient total variation algorithm for super-resolution in fetal brain MRI with adaptive regularization.

    PubMed

    Tourbier, Sébastien; Bresson, Xavier; Hagmann, Patric; Thiran, Jean-Philippe; Meuli, Reto; Cuadra, Meritxell Bach

    2015-09-01

    Although fetal anatomy can be adequately viewed in new multi-slice MR images, many critical limitations remain for quantitative data analysis. To this end, several research groups have recently developed advanced image processing methods, often denoted by super-resolution (SR) techniques, to reconstruct from a set of clinical low-resolution (LR) images, a high-resolution (HR) motion-free volume. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has been quite attracted by Total Variation energies because of their ability in edge preserving but only standard explicit steepest gradient techniques have been applied for optimization. In a preliminary work, it has been shown that novel fast convex optimization techniques could be successfully applied to design an efficient Total Variation optimization algorithm for the super-resolution problem. In this work, two major contributions are presented. Firstly, we will briefly review the Bayesian and Variational dual formulations of current state-of-the-art methods dedicated to fetal MRI reconstruction. Secondly, we present an extensive quantitative evaluation of our SR algorithm previously introduced on both simulated fetal and real clinical data (with both normal and pathological subjects). Specifically, we study the robustness of regularization terms in front of residual registration errors and we also present a novel strategy for automatically select the weight of the regularization as regards the data fidelity term. Our results show that our TV implementation is highly robust in front of motion artifacts and that it offers the best trade-off between speed and accuracy for fetal MRI recovery as in comparison with state-of-the art methods. PMID:26072252

  11. Problem solving with genetic algorithms and Splicer

    NASA Technical Reports Server (NTRS)

    Bayer, Steven E.; Wang, Lui

    1991-01-01

    Genetic algorithms are highly parallel, adaptive search procedures (i.e., problem-solving methods) loosely based on the processes of population genetics and Darwinian survival of the fittest. Genetic algorithms have proven useful in domains where other optimization techniques perform poorly. The main purpose of the paper is to discuss a NASA-sponsored software development project to develop a general-purpose tool for using genetic algorithms. The tool, called Splicer, can be used to solve a wide variety of optimization problems and is currently available from NASA and COSMIC. This discussion is preceded by an introduction to basic genetic algorithm concepts and a discussion of genetic algorithm applications.

  12. Assessing and Adapting LiDAR-Derived Pit-Free Canopy Height Model Algorithm for Sites with Varying Vegetation Structure

    NASA Astrophysics Data System (ADS)

    Scholl, V.; Hulslander, D.; Goulden, T.; Wasser, L. A.

    2015-12-01

    Spatial and temporal monitoring of vegetation structure is important to the ecological community. Airborne Light Detection and Ranging (LiDAR) systems are used to efficiently survey large forested areas. From LiDAR data, three-dimensional models of forests called canopy height models (CHMs) are generated and used to estimate tree height. A common problem associated with CHMs is data pits, where LiDAR pulses penetrate the top of the canopy, leading to an underestimation of vegetation height. The National Ecological Observatory Network (NEON) currently implements an algorithm to reduce data pit frequency, which requires two height threshold parameters, increment size and range ceiling. CHMs are produced at a series of height increments up to a height range ceiling and combined to produce a CHM with reduced pits (referred to as a "pit-free" CHM). The current implementation uses static values for the height increment and ceiling (5 and 15 meters, respectively). To facilitate the generation of accurate pit-free CHMs across diverse NEON sites with varying vegetation structure, the impacts of adjusting the height threshold parameters were investigated through development of an algorithm which dynamically selects the height increment and ceiling. A series of pit-free CHMs were generated using three height range ceilings and four height increment values for three ecologically different sites. Height threshold parameters were found to change CHM-derived tree heights up to 36% compared to original CHMs. The extent of the parameters' influence on modelled tree heights was greater than expected, which will be considered during future CHM data product development at NEON. (A) Aerial image of Harvard National Forest, (B) standard CHM containing pits, appearing as black speckles, (C) a pit-free CHM created with the static algorithm implementation, and (D) a pit-free CHM created through varying the height threshold ceiling up to 82 m and the increment to 1 m.

  13. Towards adaptive radiotherapy for head and neck patients: validation of an in-house deformable registration algorithm

    NASA Astrophysics Data System (ADS)

    Veiga, C.; McClelland, J.; Moinuddin, S.; Ricketts, K.; Modat, M.; Ourselin, S.; D'Souza, D.; Royle, G.

    2014-03-01

    The purpose of this work is to validate an in-house deformable image registration (DIR) algorithm for adaptive radiotherapy for head and neck patients. We aim to use the registrations to estimate the "dose of the day" and assess the need to replan. NiftyReg is an open-source implementation of the B-splines deformable registration algorithm, developed in our institution. We registered a planning CT to a CBCT acquired midway through treatment for 5 HN patients that required replanning. We investigated 16 different parameter settings that previously showed promising results. To assess the registrations, structures delineated in the CT were warped and compared with contours manually drawn by the same clinical expert on the CBCT. This structure set contained vertebral bodies and soft tissue. Dice similarity coefficient (DSC), overlap index (OI), centroid position and distance between structures' surfaces were calculated for every registration, and a set of parameters that produces good results for all datasets was found. We achieve a median value of 0.845 in DSC, 0.889 in OI, error smaller than 2 mm in centroid position and over 90% of the warped surface pixels are distanced less than 2 mm of the manually drawn ones. By using appropriate DIR parameters, we are able to register the planning geometry (pCT) to the daily geometry (CBCT).

  14. Improving TCP throughput performance on high-speed networks with a receiver-side adaptive acknowledgment algorithm

    NASA Astrophysics Data System (ADS)

    Yeung, Wing-Keung; Chang, Rocky K. C.

    1998-12-01

    A drastic TCP performance degradation was reported when TCP is operated on the ATM networks. This deadlock problem is 'caused' by the high speed provided by the ATM networks. Therefore this deadlock problem is shared by any high-speed networking technologies when TCP is run on them. The problems are caused by the interaction of the sender-side and receiver-side Silly Window Syndrome (SWS) avoidance algorithms because the network's Maximum Segment Size (MSS) is no longer small when compared with the sender and receiver socket buffer sizes. Here we propose a new receiver-side adaptive acknowledgment algorithm (RSA3) to eliminate the deadlock problems while maintaining the SWS avoidance mechanisms. Unlike the current delayed acknowledgment strategy, the RSA3 does not rely on the exact value of MSS an the receiver's buffer size to determine the acknowledgement threshold.Instead the RSA3 periodically probes the sender to estimate the maximum amount of data that can be sent without receiving acknowledgement from the receiver. The acknowledgment threshold is computed as 35 percent of the estimate. In this way, deadlock-free TCP transmission is guaranteed. Simulation studies have shown that the RSA3 even improves the throughput performance in some non-deadlock regions. This is due to a quicker response taken by the RSA3 receiver. We have also evaluated different acknowledgment thresholds. It is found that the case of 35 percent gives the best performance when the sender and receiver buffer sizes are large.

  15. Real-time atmospheric imaging and processing with hybrid adaptive optics and hardware accelerated lucky-region fusion (LRF) algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Jony Jiang; Carhart, Gary W.; Beresnev, Leonid A.; Aubailly, Mathieu; Jackson, Christopher R.; Ejzak, Garrett; Kiamilev, Fouad E.

    2014-09-01

    Atmospheric turbulences can significantly deteriorate the performance of long-range conventional imaging systems and create difficulties for target identification and recognition. Our in-house developed adaptive optics (AO) system, which contains high-performance deformable mirrors (DMs) and the fast stochastic parallel gradient decent (SPGD) control mechanism, allows effective compensation of such turbulence-induced wavefront aberrations and result in significant improvement on the image quality. In addition, we developed advanced digital synthetic imaging and processing technique, "lucky-region" fusion (LRF), to mitigate the image degradation over large field-of-view (FOV). The LRF algorithm extracts sharp regions from each image obtained from a series of short exposure frames and fuses them into a final improved image. We further implemented such algorithm into a VIRTEX-7 field programmable gate array (FPGA) and achieved real-time video processing. Experiments were performed by combining both AO and hardware implemented LRF processing technique over a near-horizontal 2.3km atmospheric propagation path. Our approach can also generate a universal real-time imaging and processing system with a general camera link input, a user controller interface, and a DVI video output.

  16. Low complexity Reed-Solomon-based low-density parity-check design for software defined optical transmission system based on adaptive puncturing decoding algorithm

    NASA Astrophysics Data System (ADS)

    Pan, Xiaolong; Liu, Bo; Zheng, Jianglong; Tian, Qinghua

    2016-08-01

    We propose and demonstrate a low complexity Reed-Solomon-based low-density parity-check (RS-LDPC) code with adaptive puncturing decoding algorithm for elastic optical transmission system. Partial received codes and the relevant column in parity-check matrix can be punctured to reduce the calculation complexity by adaptive parity-check matrix during decoding process. The results show that the complexity of the proposed decoding algorithm is reduced by 30% compared with the regular RS-LDPC system. The optimized code rate of the RS-LDPC code can be obtained after five times iteration.

  17. 3D Continuum Radiative Transfer. An adaptive grid construction algorithm based on the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Niccolini, G.; Alcolea, J.

    Solving the radiative transfer problem is a common problematic to may fields in astrophysics. With the increasing angular resolution of spatial or ground-based telescopes (VLTI, HST) but also with the next decade instruments (NGST, ALMA, ...), astrophysical objects reveal and will certainly reveal complex spatial structures. Consequently, it is necessary to develop numerical tools being able to solve the radiative transfer equation in three dimensions in order to model and interpret these observations. I present a 3D radiative transfer program, using a new method for the construction of an adaptive spatial grid, based on the Monte Claro method. With the help of this tools, one can solve the continuum radiative transfer problem (e.g. a dusty medium), computes the temperature structure of the considered medium and obtain the flux of the object (SED and images).

  18. Adaptive MANET multipath routing algorithm based on the simulated annealing approach.

    PubMed

    Kim, Sungwook

    2014-01-01

    Mobile ad hoc network represents a system of wireless mobile nodes that can freely and dynamically self-organize network topologies without any preexisting communication infrastructure. Due to characteristics like temporary topology and absence of centralized authority, routing is one of the major issues in ad hoc networks. In this paper, a new multipath routing scheme is proposed by employing simulated annealing approach. The proposed metaheuristic approach can achieve greater and reciprocal advantages in a hostile dynamic real world network situation. Therefore, the proposed routing scheme is a powerful method for finding an effective solution into the conflict mobile ad hoc network routing problem. Simulation results indicate that the proposed paradigm adapts best to the variation of dynamic network situations. The average remaining energy, network throughput, packet loss probability, and traffic load distribution are improved by about 10%, 10%, 5%, and 10%, respectively, more than the existing schemes.

  19. Methodological aspects of an adaptive multidirectional pattern search to optimize speech perception using three hearing-aid algorithms

    NASA Astrophysics Data System (ADS)

    Franck, Bas A. M.; Dreschler, Wouter A.; Lyzenga, Johannes

    2004-12-01

    In this study we investigated the reliability and convergence characteristics of an adaptive multidirectional pattern search procedure, relative to a nonadaptive multidirectional pattern search procedure. The procedure was designed to optimize three speech-processing strategies. These comprise noise reduction, spectral enhancement, and spectral lift. The search is based on a paired-comparison paradigm, in which subjects evaluated the listening comfort of speech-in-noise fragments. The procedural and nonprocedural factors that influence the reliability and convergence of the procedure are studied using various test conditions. The test conditions combine different tests, initial settings, background noise types, and step size configurations. Seven normal hearing subjects participated in this study. The results indicate that the reliability of the optimization strategy may benefit from the use of an adaptive step size. Decreasing the step size increases accuracy, while increasing the step size can be beneficial to create clear perceptual differences in the comparisons. The reliability also depends on starting point, stop criterion, step size constraints, background noise, algorithms used, as well as the presence of drifting cues and suboptimal settings. There appears to be a trade-off between reliability and convergence, i.e., when the step size is enlarged the reliability improves, but the convergence deteriorates. .

  20. Edge preserved enhancement of medical images using adaptive fusion-based denoising by shearlet transform and total variation algorithm

    NASA Astrophysics Data System (ADS)

    Gupta, Deep; Anand, Radhey Shyam; Tyagi, Barjeev

    2013-10-01

    Edge preserved enhancement is of great interest in medical images. Noise present in medical images affects the quality, contrast resolution, and most importantly, texture information and can make post-processing difficult also. An enhancement approach using an adaptive fusion algorithm is proposed which utilizes the features of shearlet transform (ST) and total variation (TV) approach. In the proposed method, three different denoised images processed with TV method, shearlet denoising, and edge information recovered from the remnant of the TV method and processed with the ST are fused adaptively. The result of enhanced images processed with the proposed method helps to improve the visibility and detectability of medical images. For the proposed method, different weights are evaluated from the different variance maps of individual denoised image and the edge extracted information from the remnant of the TV approach. The performance of the proposed method is evaluated by conducting various experiments on both the standard images and different medical images such as computed tomography, magnetic resonance, and ultrasound. Experiments show that the proposed method provides an improvement not only in noise reduction but also in the preservation of more edges and image details as compared to the others.

  1. The Sequential Empirical Bayes Method: An Adaptive Constrained-Curve Fitting Algorithm for Lattice QCD

    SciTech Connect

    Ying Chen; Shao-Jing Dong; Terrence Draper; Ivan Horvath; Keh-Fei Liu; Nilmani Mathur; Sonali Tamhankar; Cidambi Srinivasan; Frank X. Lee; Jianbo Zhang

    2004-05-01

    We introduce the ''Sequential Empirical Bayes Method'', an adaptive constrained-curve fitting procedure for extracting reliable priors. These are then used in standard augmented-{chi}{sup 2} fits on separate data. This better stabilizes fits to lattice QCD overlap-fermion data at very low quark mass where a priori values are not otherwise known. Lessons learned (including caveats limiting the scope of the method) from studying artificial data are presented. As an illustration, from local-local two-point correlation functions, we obtain masses and spectral weights for ground and first-excited states of the pion, give preliminary fits for the a{sub 0} where ghost states (a quenched artifact) must be dealt with, and elaborate on the details of fits of the Roper resonance and S{sub 11}(N{sup 1/2-}) previously presented elsewhere. The data are from overlap fermions on a quenched 16{sup 3} x 28 lattice with spatial size La = 3.2 fm and pion mass as low as {approx}180 MeV.

  2. MAESTRO: An Adaptive Low Mach Number Hydrodynamics Algorithm for Stellar Flows

    NASA Astrophysics Data System (ADS)

    Nonaka, Andrew; Almgren, A. S.; Bell, J. B.; Malone, C. M.; Zingale, M.

    2010-01-01

    Many astrophysical phenomena are highly subsonic, requiring specialized numerical methods suitable for long-time integration. We present MAESTRO, a low Mach number stellar hydrodynamics code that can be used to simulate long-time, low-speed flows that would be prohibitively expensive to model using traditional compressible codes. MAESTRO is based on an equation set that we have derived using low Mach number asymptotics; this equation set does not explicitly track acoustic waves and thus allows a significant increase in the time step. MAESTRO is suitable for two- and three-dimensional local atmospheric flows as well as three-dimensional full-star flows, and uses adaptive mesh refinement (AMR) to locally refine grids in regions of interest. Our initial scientific applications include the convective phase of Type Ia supernovae and Type I X-ray Bursts on neutron stars. The work at LBNL was supported by the SciDAC Program of the DOE Office of Advanced Scientific Computing Research under the DOE under contract No. DE-AC02-05CH11231. The work at Stony Brook was supported by the DOE/Office of Nuclear Physics, grant No. DE-FG02-06ER41448. We made use of the Jaguar via a DOE INCITE allocation at the OLCF at ORNL and Franklin at NERSC at LBNL.

  3. Interactive Genetic Algorithm - An Adaptive and Interactive Decision Support Framework for Design of Optimal Groundwater Monitoring Plans

    NASA Astrophysics Data System (ADS)

    Babbar-Sebens, M.; Minsker, B. S.

    2006-12-01

    that met the DM's preference criteria, therefore allowing the expert to select among several strong candidate designs depending on her/his LTM budget, c) two of the methodologies - Case-Based Micro Interactive Genetic Algorithm (CBMIGA) and Interactive Genetic Algorithm with Mixed Initiative Interaction (IGAMII) - were also able to assist in controlling human fatigue and adapt to the DM's learning process.

  4. The collapsed cone algorithm for 192Ir dosimetry using phantom-size adaptive multiple-scatter point kernels

    NASA Astrophysics Data System (ADS)

    Carlsson Tedgren, Åsa; Plamondon, Mathieu; Beaulieu, Luc

    2015-07-01

    The aim of this work was to investigate how dose distributions calculated with the collapsed cone (CC) algorithm depend on the size of the water phantom used in deriving the point kernel for multiple scatter. A research version of the CC algorithm equipped with a set of selectable point kernels for multiple-scatter dose that had initially been derived in water phantoms of various dimensions was used. The new point kernels were generated using EGSnrc in spherical water phantoms of radii 5 cm, 7.5 cm, 10 cm, 15 cm, 20 cm, 30 cm and 50 cm. Dose distributions derived with CC in water phantoms of different dimensions and in a CT-based clinical breast geometry were compared to Monte Carlo (MC) simulations using the Geant4-based brachytherapy specific MC code Algebra. Agreement with MC within 1% was obtained when the dimensions of the phantom used to derive the multiple-scatter kernel were similar to those of the calculation phantom. Doses are overestimated at phantom edges when kernels are derived in larger phantoms and underestimated when derived in smaller phantoms (by around 2% to 7% depending on distance from source and phantom dimensions). CC agrees well with MC in the high dose region of a breast implant and is superior to TG43 in determining skin doses for all multiple-scatter point kernel sizes. Increased agreement between CC and MC is achieved when the point kernel is comparable to breast dimensions. The investigated approximation in multiple scatter dose depends on the choice of point kernel in relation to phantom size and yields a significant fraction of the total dose only at distances of several centimeters from a source/implant which correspond to volumes of low doses. The current implementation of the CC algorithm utilizes a point kernel derived in a comparatively large (radius 20 cm) water phantom. A fixed point kernel leads to predictable behaviour of the algorithm with the worst case being a source/implant located well within a patient

  5. Adaptive algorithms to map how brain trauma affects anatomical connectivity in children

    NASA Astrophysics Data System (ADS)

    Dennis, Emily L.; Prasad, Gautam; Babikian, Talin; Kernan, Claudia; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C.; Asarnow, Robert F.; Thompson, Paul M.

    2015-12-01

    Deficits in white matter (WM) integrity occur following traumatic brain injury (TBI), and often persist long after the visible scars have healed. Heterogeneity in injury types and locations can complicate analyses, making it harder to discover common biomarkers for tracking recovery. Here we apply a newly developed adaptive connectivity method, EPIC (evolving partitions to improve connectomics) to identify differences in structural connectivity that persist longitudinally. This data comes from a longitudinal study, in which we scanned participants (aged 8-19 years) with anatomical and diffusion MRI in both the post-acute and chronic phases (1-6 months and 13-19 months post-injury). To identify patterns of abnormal connectivity, we trained a model on data from 32 TBI patients in the post-acute phase and 45 well-matched healthy controls, reducing an initial 68x68 connectivity matrix to a 14x14 matrix. We then applied this reduced parcellation to the chronic data in participants who had returned for their chronic assessment (21 TBI and 26 healthy controls) and tested for group differences. We found significant differences in two connections, comprising callosal fibers and long anterior-posterior fibers, with the TBI group showing increased fiber density relative to controls. Longitudinal analysis revealed that these were connections that were decreasing over time in the healthy controls, as is a common developmental phenomenon, but they were increasing in the TBI group. While we cannot definitively tell why this may occur with our current data, this study provides targets for longitudinal tracking, and poses questions for future investigation.

  6. A double-loop structure in the adaptive generalized predictive control algorithm for control of robot end-point contact force.

    PubMed

    Wen, Shuhuan; Zhu, Jinghai; Li, Xiaoli; Chen, Shengyong

    2014-09-01

    Robot force control is an essential issue in robotic intelligence. There is much high uncertainty when robot end-effector contacts with the environment. Because of the environment stiffness effects on the system of the robot end-effector contact with environment, the adaptive generalized predictive control algorithm based on quantitative feedback theory is designed for robot end-point contact force system. The controller of the internal loop is designed on the foundation of QFT to control the uncertainty of the system. An adaptive GPC algorithm is used to design external loop controller to improve the performance and the robustness of the system. Two closed loops used in the design approach realize the system׳s performance and improve the robustness. The simulation results show that the algorithm of the robot end-effector contacting force control system is effective. PMID:24973336

  7. A double-loop structure in the adaptive generalized predictive control algorithm for control of robot end-point contact force.

    PubMed

    Wen, Shuhuan; Zhu, Jinghai; Li, Xiaoli; Chen, Shengyong

    2014-09-01

    Robot force control is an essential issue in robotic intelligence. There is much high uncertainty when robot end-effector contacts with the environment. Because of the environment stiffness effects on the system of the robot end-effector contact with environment, the adaptive generalized predictive control algorithm based on quantitative feedback theory is designed for robot end-point contact force system. The controller of the internal loop is designed on the foundation of QFT to control the uncertainty of the system. An adaptive GPC algorithm is used to design external loop controller to improve the performance and the robustness of the system. Two closed loops used in the design approach realize the system׳s performance and improve the robustness. The simulation results show that the algorithm of the robot end-effector contacting force control system is effective.

  8. The Zigbee wireless ECG measurement system design with a motion artifact remove algorithm by using adaptive filter and moving weighted factor

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeokjun; Oh, Sechang; Varadan, Vijay K.

    2012-04-01

    The Electrocardiogram(ECG) signal is one of the bio-signals to check body status. Traditionally, the ECG signal was checked in the hospital. In these days, as the number of people who is interesting with periodic their health check increase, the requirement of self-diagnosis system development is being increased as well. Ubiquitous concept is one of the solutions of the self-diagnosis system. Zigbee wireless sensor network concept is a suitable technology to satisfy the ubiquitous concept. In measuring ECG signal, there are several kinds of methods in attaching electrode on the body called as Lead I, II, III, etc. In addition, several noise components occurred by different measurement situation such as experimenter's respiration, sensor's contact point movement, and the wire movement attached on sensor are included in pure ECG signal. Therefore, this paper is based on the two kinds of development concept. The first is the Zibee wireless communication technology, which can provide convenience and simpleness, and the second is motion artifact remove algorithm, which can detect clear ECG signal from measurement subject. The motion artifact created by measurement subject's movement or even respiration action influences to distort ECG signal, and the frequency distribution of the noises is around from 0.2Hz to even 30Hz. The frequencies are duplicated in actual ECG signal frequency, so it is impossible to remove the artifact without any distortion of ECG signal just by using low-pass filter or high-pass filter. The suggested algorithm in this paper has two kinds of main parts to extract clear ECG signal from measured original signal through an electrode. The first part is to extract motion noise signal from measured signal, and the second part is to extract clear ECG by using extracted motion noise signal and measured original signal. The paper suggests several techniques in order to extract motion noise signal such as predictability estimation theory, low pass filter

  9. Synchronization analysis and control of three eccentric rotors in a vibrating system using adaptive sliding mode control algorithm

    NASA Astrophysics Data System (ADS)

    Kong, Xiangxi; Zhang, Xueliang; Chen, Xiaozhe; Wen, Bangchun; Wang, Bo

    2016-05-01

    In this paper, self- and controlled synchronizations of three eccentric rotors (ERs) in line driven by induction motors rotating in the same direction in a vibrating system are investigated. The vibrating system is a typical underactuated mechanical-electromagnetic coupling system. The analysis and control of the vibrating system convert to the synchronization motion problem of three ERs. Firstly, the self-synchronization motion of three ERs is analyzed according to self-synchronization theory. The criterions of synchronization and stability of self-synchronous state are obtained by using a modified average perturbation method. The significant synchronization motion of three ERs with zero phase differences cannot be implemented according to self-synchronization theory through analysis and simulations. To implement the synchronization motion of three ERs with zero phase differences, an adaptive sliding mode control (ASMC) algorithm based on a modified master-slave control strategy is employed to design the controllers. The stability of the controllers is verified by using Lyapunov theorem. The performances of the controlled synchronization system are presented by simulations to demonstrate the effectiveness of controllers. Finally, the effects of reference speed and non-zero phase differences on the controlled system are discussed to show the strong robustness of the proposed controllers. Additionally, the dynamic responses of the vibrating system in different synchronous states are analyzed.

  10. New intensity-hue-saturation pan-sharpening method based on texture analysis and genetic algorithm-adaption

    NASA Astrophysics Data System (ADS)

    Masoudi, Rasoul; Kabiri, Peyman

    2014-01-01

    Pansharpening aims to fuse a low-resolution multispectral image with a high-resolution panchromatic image to create a multispectral image with high spatial and spectral resolution. The intensity-hue-saturation (IHS) fusion method transforms an image from RGB space to IHS space. This paper reports a method to improve the spectral resolution of a final multispectral image. The proposed method implies two modifications on the basic IHS method to improve the sharpness of the final image. First, the paper proposes a method based on a genetic algorithm to find the weight of each band of multispectral image in the fusion process. Later on, a texture-based technique is proposed to save the spectral information of the final image with respect to the texture boundaries. Spectral quality metrics in terms of SAM, SID, Q-average, RASE, RMSE, CC, ERGAS and UIQI are used in our experiments. Experimental results on IKONOS and QuickBird data show that the proposed method is more efficient than the original IHS-based fusion approach and some of its extensions, such as IKONOS IHS, edge-adaptive IHS and explicit band coefficient IHS, in preserving spectral information of multispectral images.

  11. Using Smos Passive Microwave Data to Develop Smap Freeze/thaw Algorithms Adapted for the Canadian Subarctic

    NASA Astrophysics Data System (ADS)

    Kalantari, P.; Bernier, M.; McDonal, K. C.; Poulin, J.

    2015-12-01

    Seasonal terrestrial Freeze/Thaw cycle in Northern Quebec Tundra (Nunavik) was determined and evaluated with passive microwave observations. SMOS time series data were analyzed to examine seasonal variations of soil freezing, and to assess the impact of land cover on the Freeze/Thaw cycle. Furthermore, the soil freezing maps derived from SMOS observations were compared to field survey data in the region near Umiujaq. The objective is to develop algorithms to follow the seasonal cycle of freezing and thawing of the soil adapted to Canadian subarctic, a territory with a high complexity of land cover (vegetation, soil, and water bodies). Field data shows that soil freezing and thawing dates vary much spatially at the local scale in the Boreal Forest and the Tundra. The results showed a satisfactory pixel by pixel mapping for the daily soil state monitoring with a > 80% success rate with in situ data for the HH and VV polarizations, and for different land cover. The average accuracies are 80% and 84% for the soil freeze period, and soil thaw period respectively. The comparison is limited because of the small number of validation pixels.

  12. Application of adaptive neuro-fuzzy inference system and cuckoo optimization algorithm for analyzing electro chemical machining process

    NASA Astrophysics Data System (ADS)

    Teimouri, Reza; Sohrabpoor, Hamed

    2013-12-01

    Electrochemical machining process (ECM) is increasing its importance due to some of the specific advantages which can be exploited during machining operation. The process offers several special privileges such as higher machining rate, better accuracy and control, and wider range of materials that can be machined. Contribution of too many predominate parameters in the process, makes its prediction and selection of optimal values really complex, especially while the process is programmized for machining of hard materials. In the present work in order to investigate effects of electrolyte concentration, electrolyte flow rate, applied voltage and feed rate on material removal rate (MRR) and surface roughness (SR) the adaptive neuro-fuzzy inference systems (ANFIS) have been used for creation predictive models based on experimental observations. Then the ANFIS 3D surfaces have been plotted for analyzing effects of process parameters on MRR and SR. Finally, the cuckoo optimization algorithm (COA) was used for selection solutions in which the process reaches maximum material removal rate and minimum surface roughness simultaneously. Results indicated that the ANFIS technique has superiority in modeling of MRR and SR with high prediction accuracy. Also, results obtained while applying of COA have been compared with those derived from confirmatory experiments which validate the applicability and suitability of the proposed techniques in enhancing the performance of ECM process.

  13. Design and Implementation of a Smart LED Lighting System Using a Self Adaptive Weighted Data Fusion Algorithm

    PubMed Central

    Sung, Wen-Tsai; Lin, Jia-Syun

    2013-01-01

    This work aims to develop a smart LED lighting system, which is remotely controlled by Android apps via handheld devices, e.g., smartphones, tablets, and so forth. The status of energy use is reflected by readings displayed on a handheld device, and it is treated as a criterion in the lighting mode design of a system. A multimeter, a wireless light dimmer, an IR learning remote module, etc. are connected to a server by means of RS 232/485 and a human computer interface on a touch screen. The wireless data communication is designed to operate in compliance with the ZigBee standard, and signal processing on sensed data is made through a self adaptive weighted data fusion algorithm. A low variation in data fusion together with a high stability is experimentally demonstrated in this work. The wireless light dimmer as well as the IR learning remote module can be instructed directly by command given on the human computer interface, and the reading on a multimeter can be displayed thereon via the server. This proposed smart LED lighting system can be remotely controlled and self learning mode can be enabled by a single handheld device via WiFi transmission. Hence, this proposal is validated as an approach to power monitoring for home appliances, and is demonstrated as a digital home network in consideration of energy efficiency.

  14. Surface quality monitoring for process control by on-line vibration analysis using an adaptive spline wavelet algorithm

    NASA Astrophysics Data System (ADS)

    Luo, G. Y.; Osypiw, D.; Irle, M.

    2003-05-01

    The dynamic behaviour of wood machining processes affects the surface finish quality of machined workpieces. In order to meet the requirements of increased production efficiency and improved product quality, surface quality information is needed for enhanced process control. However, current methods using high price devices or sophisticated designs, may not be suitable for industrial real-time application. This paper presents a novel approach of surface quality evaluation by on-line vibration analysis using an adaptive spline wavelet algorithm, which is based on the excellent time-frequency localization of B-spline wavelets. A series of experiments have been performed to extract the feature, which is the correlation between the relevant frequency band(s) of vibration with the change of the amplitude and the surface quality. The graphs of the experimental results demonstrate that the change of the amplitude in the selective frequency bands with variable resolution (linear and non-linear) reflects the quality of surface finish, and the root sum square of wavelet power spectrum is a good indication of surface quality. Thus, surface quality can be estimated and quantified at an average level in real time. The results can be used to regulate and optimize the machine's feed speed, maintaining a constant spindle motor speed during cutting. This will lead to higher level control and machining rates while keeping dimensional integrity and surface finish within specification.

  15. Thickness distribution of a cooling pyroclastic flow deposit: Optimization using InSAR, FEMs, and an adaptive mesh algorithm

    NASA Astrophysics Data System (ADS)

    Masterlark, T.; Lu, Z.; Rykhus, R.

    2003-12-01

    We construct finite element models (FEMs) of a pyroclastic flow deposit (PFD) emplaced during the 1986 eruption of Augustine volcano, Alaska. Interferometric synthetic aperture radar (InSAR) imagery documents the consistent contraction of the PFD during 1992-2000. Three-dimensional problem domains of the FEMs include an elastic substrate overlain by a thermoelastic material representing the PFD. The geometry of the substrate is determined from a digital elevation model (DEM) and bathymetry data. The thickness of the PFD is initially determined from the difference between post- and pre-eruptive DEMs. Systematic prediction errors suggest the PFD thickness distribution, estimated from the DEM difference, is inaccurate. We combine InSAR images, FEMs, and an adaptive mesh algorithm to re-estimate the geometry of the PFD and optimize the thickness distribution for the PFD. Prediction errors from the FEM that includes an optimized PFD geometry are reduced by 20% with respect to those from an FEM that includes a PFD geometry derived from the DEM difference.

  16. Real-time implementation of a speech digitization algorithm combining time-domain harmonic scaling and adaptive residual coding, volume 1

    NASA Astrophysics Data System (ADS)

    Melsa, J. L.; Mills, J. D.; Arora, A. A.

    1983-06-01

    This report describes the results of a fifteen-month study of the real-time implementation of algorithm combining time-domain harmonic scaling and Adaptive Residual Coding at a transmission bit rate of 16 kb/s. The modifications of this encoding algorithm as originally presented by Melsa and Pande to allow real-time implementation are described in detail. A non real-time FORTRAN simulation using a sixteen-bit word length was developed and tested to establish feasibility. The hardware implementation of a full-duplex, real-time system has demonstrated that this algorithm is capable of producing toll quality speech digitization. This report has been divided into two volumes. The first volume discusses the algorithm modifications and FORTRAN simulation. The details of the hardware implementation, schematics for the system and operating instructions are included in Volume 2 of this final report.

  17. WDM Multicast Tree Construction Algorithms and Their Comparative Evaluations

    NASA Astrophysics Data System (ADS)

    Makabe, Tsutomu; Mikoshi, Taiju; Takenaka, Toyofumi

    We propose novel tree construction algorithms for multicast communication in photonic networks. Since multicast communications consume many more link resources than unicast communications, effective algorithms for route selection and wavelength assignment are required. We propose a novel tree construction algorithm, called the Weighted Steiner Tree (WST) algorithm and a variation of the WST algorithm, called the Composite Weighted Steiner Tree (CWST) algorithm. Because these algorithms are based on the Steiner Tree algorithm, link resources among source and destination pairs tend to be commonly used and link utilization ratios are improved. Because of this, these algorithms can accept many more multicast requests than other multicast tree construction algorithms based on the Dijkstra algorithm. However, under certain delay constraints, the blocking characteristics of the proposed Weighted Steiner Tree algorithm deteriorate since some light paths between source and destinations use many hops and cannot satisfy the delay constraint. In order to adapt the approach to the delay-sensitive environments, we have devised the Composite Weighted Steiner Tree algorithm comprising the Weighted Steiner Tree algorithm and the Dijkstra algorithm for use in a delay constrained environment such as an IPTV application. In this paper, we also give the results of simulation experiments which demonstrate the superiority of the proposed Composite Weighted Steiner Tree algorithm compared with the Distributed Minimum Hop Tree (DMHT) algorithm, from the viewpoint of the light-tree request blocking.

  18. A self-learning call admission control scheme for CDMA cellular networks.

    PubMed

    Liu, Derong; Zhang, Yi; Zhang, Huaguang

    2005-09-01

    In the present paper, a call admission control scheme that can learn from the network environment and user behavior is developed for code division multiple access (CDMA) cellular networks that handle both voice and data services. The idea is built upon a novel learning control architecture with only a single module instead of two or three modules in adaptive critic designs (ACDs). The use of adaptive critic approach for call admission control in wireless cellular networks is new. The call admission controller can perform learning in real-time as well as in offline environments and the controller improves its performance as it gains more experience. Another important contribution in the present work is the choice of utility function for the present self-learning control approach which makes the present learning process much more efficient than existing learning control methods. The performance of our algorithm will be shown through computer simulation and compared with existing algorithms. PMID:16252828

  19. On the use of multi-algorithm, genetically adaptive multi-objective method for multi-site calibration of the SWAT model

    SciTech Connect

    Zhang, Xuesong; Srinivasan, Raghavan; Van Liew, M.

    2010-04-15

    With the availability of spatially distributed data, distributed hydrologic models are increasingly used for simulation of spatially varied hydrologic processes to understand and manage natural and human activities that affect watershed systems. Multi-objective optimization methods have been applied to calibrate distributed hydrologic models using observed data from multiple sites. As the time consumed by running these complex models is increasing substantially, selecting efficient and effective multi-objective optimization algorithms is becoming a nontrivial issue. In this study, we evaluated a multi-algorithm, genetically adaptive multi-objective method (AMALGAM) for multi-site calibration of a distributed hydrologic model—Soil and Water Assessment Tool (SWAT), and compared its performance with two widely used evolutionary multi-objective optimization (EMO) algorithms (i.e. Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Non-dominated Sorted Genetic Algorithm II (NSGA-II)). In order to provide insights into each method’s overall performance, these three methods were tested in four watersheds with various characteristics. The test results indicate that the AMALGAM can consistently provide competitive or superior results compared with the other two methods. The multi-method search framework of AMALGAM, which can flexibly and adaptively utilize multiple optimization algorithms, makes it a promising tool for multi-site calibration of the distributed SWAT. For practical use of AMALGAM, it is suggested to implement this method in multiple trials with relatively small number of model runs rather than run it once with long iterations. In addition, incorporating different multiobjective optimization algorithms and multi-mode search operators into AMALGAM deserves further research.

  20. Development of an Adaptive Multi-Method Algorithm for Automatic Picking of First Arrival Times: Application to Near Surface Seismic Data

    NASA Astrophysics Data System (ADS)

    Khalaf, A.; Camerlynck, C. M.; Schneider, A. C.; Florsch, N.

    2015-12-01

    Accurate picking of first arrival times plays an important role in many seismic studies, particularly in seismic tomography and reservoirs or aquifers monitoring. Many techniques have been developed for picking first arrivals automatically or semi-automatically, but most of them were developed for seismological purposes which does not attain the accuracy objectives due to the complexity of near surface structures, and to usual low signal-to-noise ratio. We propose a new adaptive algorithm for near surface data based on three picking methods, combining multi-nested windows (MNW), Higher Order Statistics (HOS), and Akaike Information Criterion (AIC). They exploit the benefits of integrating many properties, which reveal the presence of first arrivals, to provide an efficient and robust first arrivals picking. This strategy mimics the human first-break picking, where at the beginning the global trend is defined. Then the exact first-breaks are searched in the vicinity of the now defined trend. In a multistage algorithm, three successive phases are launched, where each of them characterize a specific signal property. Within each phase, the potential picks and their error range are automatically estimated, and then used sequentially as leader in the following phase picking. The accuracy and robustness of the implemented algorithm are successfully validated on synthetic and real data which have special challenges for automatic pickers. The comparison of resulting P-wave arrival times with those picked manually, and other algorithms of automatic picking, demonstrated the reliable performance of the new scheme under different noisy conditions. All parameters of our multi-method algorithm are auto-adaptive thanks to the integration in series of each sub-algorithm results in the flow. Hence, it is nearly a parameter-free algorithm, which is straightforward to implement and demands low computational resources.

  1. Adaptive thresholding algorithm based on SAR images and wind data to segment oil spills along the northwest coast of the Iberian Peninsula.

    PubMed

    Mera, David; Cotos, José M; Varela-Pet, José; Garcia-Pineda, Oscar

    2012-10-01

    Satellite Synthetic Aperture Radar (SAR) has been established as a useful tool for detecting hydrocarbon spillage on the ocean's surface. Several surveillance applications have been developed based on this technology. Environmental variables such as wind speed should be taken into account for better SAR image segmentation. This paper presents an adaptive thresholding algorithm for detecting oil spills based on SAR data and a wind field estimation as well as its implementation as a part of a functional prototype. The algorithm was adapted to an important shipping route off the Galician coast (northwest Iberian Peninsula) and was developed on the basis of confirmed oil spills. Image testing revealed 99.93% pixel labelling accuracy. By taking advantage of multi-core processor architecture, the prototype was optimized to get a nearly 30% improvement in processing time.

  2. Evolutionary pattern search algorithms

    SciTech Connect

    Hart, W.E.

    1995-09-19

    This paper defines a class of evolutionary algorithms called evolutionary pattern search algorithms (EPSAs) and analyzes their convergence properties. This class of algorithms is closely related to evolutionary programming, evolutionary strategie and real-coded genetic algorithms. EPSAs are self-adapting systems that modify the step size of the mutation operator in response to the success of previous optimization steps. The rule used to adapt the step size can be used to provide a stationary point convergence theory for EPSAs on any continuous function. This convergence theory is based on an extension of the convergence theory for generalized pattern search methods. An experimental analysis of the performance of EPSAs demonstrates that these algorithms can perform a level of global search that is comparable to that of canonical EAs. We also describe a stopping rule for EPSAs, which reliably terminated near stationary points in our experiments. This is the first stopping rule for any class of EAs that can terminate at a given distance from stationary points.

  3. Adaptive classification on brain-computer interfaces using reinforcement signals.

    PubMed

    Llera, A; Gómez, V; Kappen, H J

    2012-11-01

    We introduce a probabilistic model that combines a classifier with an extra reinforcement signal (RS) encoding the probability of an erroneous feedback being delivered by the classifier. This representation computes the class probabilities given the task related features and the reinforcement signal. Using expectation maximization (EM) to estimate the parameter values under such a model shows that some existing adaptive classifiers are particular cases of such an EM algorithm. Further, we present a new algorithm for adaptive classification, which we call constrained means adaptive classifier, and show using EEG data and simulated RS that this classifier is able to significantly outperform state-of-the-art adaptive classifiers.

  4. Real-time implementation of a speech digitization algorithm combining time-domain harmonic scaling and adaptive residual coding, volume 2

    NASA Astrophysics Data System (ADS)

    Melsa, J. L.; Mills, J. D.; Arora, A. A.

    1983-06-01

    This report describes the results of a fifteen month study of the real-time implementation of an algorithm combining time-domain harmonic scaling and Adaptive Residual Coding at a transmission bit rate of 16 kb/s. The modifications of this encoding algorithm as originally presented by Melso and Pande to allow real-time implementation are described in detail. A non real-time FORTRAN simulation using a sixteen-bit word length was developed and tested to establish feasibility. The hardware implementation of a full-duplex, real-time system has demonstrated that this algorithm is capable of producing toll quality speech digitization. This report has been divided into two volumes. The second volume discusses details of the hardware implementation, schematics for the system and operating instructions.

  5. A de-noising algorithm based on wavelet threshold-exponential adaptive window width-fitting for ground electrical source airborne transient electromagnetic signal

    NASA Astrophysics Data System (ADS)

    Ji, Yanju; Li, Dongsheng; Yu, Mingmei; Wang, Yuan; Wu, Qiong; Lin, Jun

    2016-05-01

    The ground electrical source airborne transient electromagnetic system (GREATEM) on an unmanned aircraft enjoys considerable prospecting depth, lateral resolution and detection efficiency, etc. In recent years it has become an important technical means of rapid resources exploration. However, GREATEM data are extremely vulnerable to stationary white noise and non-stationary electromagnetic noise (sferics noise, aircraft engine noise and other human electromagnetic noises). These noises will cause degradation of the imaging quality for data interpretation. Based on the characteristics of the GREATEM data and major noises, we propose a de-noising algorithm utilizing wavelet threshold method and exponential adaptive window width-fitting. Firstly, the white noise is filtered in the measured data using the wavelet threshold method. Then, the data are segmented using data window whose step length is even logarithmic intervals. The data polluted by electromagnetic noise are identified within each window based on the discriminating principle of energy detection, and the attenuation characteristics of the data slope are extracted. Eventually, an exponential fitting algorithm is adopted to fit the attenuation curve of each window, and the data polluted by non-stationary electromagnetic noise are replaced with their fitting results. Thus the non-stationary electromagnetic noise can be effectively removed. The proposed algorithm is verified by the synthetic and real GREATEM signals. The results show that in GREATEM signal, stationary white noise and non-stationary electromagnetic noise can be effectively filtered using the wavelet threshold-exponential adaptive window width-fitting algorithm, which enhances the imaging quality.

  6. Real-Time Very Large-Scale Integration Recognition System with an On-Chip Adaptive K-Means Learning Algorithm

    NASA Astrophysics Data System (ADS)

    Hou, Zuoxun; Ma, Yitao; Zhu, Hongbo; Zheng, Nanning; Shibata, Tadashi

    2013-04-01

    A very large-scale integration (VLSI) recognition system equipped with an on-chip learning capability has been developed for real-time processing applications. This system can work in two functional modes of operation: adaptive K-means learning mode and recognition mode. In the adaptive K-means learning mode, the variance ratio criterion (VRC) has been employed to evaluate the quality of K-means classification results, and the evaluation algorithm has been implemented on the chip. As a result, it has become possible for the system to autonomously determine the optimum number of clusters (K). In the recognition mode, the nearest-neighbor search algorithm is very efficiently carried out by the fully parallel architecture employed in the chip. In both modes of operation, many hardware resources are shared and the functionality is flexibly altered by the system controller designed as a finite-state machine (FSM). The chip is implemented on Altera Cyclone II FPGA with 46K logic cells. Its operating clock is 25 MHz and the processing times for adaptive learning and recognition with 256 64-dimension feature vectors are about 0.42 ms and 4 µs, respectively. Both adaptive K-means learning and recognition functions have been verified by experiments using the image data from the COIL-100 (Columbia University Object Image Library) database.

  7. Adaptive VFH

    NASA Astrophysics Data System (ADS)

    Odriozola, Iñigo; Lazkano, Elena; Sierra, Basi

    2011-10-01

    This paper investigates the improvement of the Vector Field Histogram (VFH) local planning algorithm for mobile robot systems. The Adaptive Vector Field Histogram (AVFH) algorithm has been developed to improve the effectiveness of the traditional VFH path planning algorithm overcoming the side effects of using static parameters. This new algorithm permits the adaptation of planning parameters for the different type of areas in an environment. Genetic Algorithms are used to fit the best VFH parameters to each type of sector and, afterwards, every section in the map is labelled with the sector-type which best represents it. The Player/Stage simulation platform has been chosen for making all sort of tests and to prove the new algorithm's adequateness. Even though there is still much work to be carried out, the developed algorithm showed good navigation properties and turned out to be softer and more effective than the traditional VFH algorithm.

  8. Definition and Analysis of a System for the Automated Comparison of Curriculum Sequencing Algorithms in Adaptive Distance Learning

    ERIC Educational Resources Information Center

    Limongelli, Carla; Sciarrone, Filippo; Temperini, Marco; Vaste, Giulia

    2011-01-01

    LS-Lab provides automatic support to comparison/evaluation of the Learning Object Sequences produced by different Curriculum Sequencing Algorithms. Through this framework a teacher can verify the correspondence between the behaviour of different sequencing algorithms and her pedagogical preferences. In fact the teacher can compare algorithms…

  9. An effective hybrid self-adapting differential evolution algorithm for the joint replenishment and location-inventory problem in a three-level supply chain.

    PubMed

    Wang, Lin; Qu, Hui; Chen, Tao; Yan, Fang-Ping

    2013-01-01

    The integration with different decisions in the supply chain is a trend, since it can avoid the suboptimal decisions. In this paper, we provide an effective intelligent algorithm for a modified joint replenishment and location-inventory problem (JR-LIP). The problem of the JR-LIP is to determine the reasonable number and location of distribution centers (DCs), the assignment policy of customers, and the replenishment policy of DCs such that the overall cost is minimized. However, due to the JR-LIP's difficult mathematical properties, simple and effective solutions for this NP-hard problem have eluded researchers. To find an effective approach for the JR-LIP, a hybrid self-adapting differential evolution algorithm (HSDE) is designed. To verify the effectiveness of the HSDE, two intelligent algorithms that have been proven to be effective algorithms for the similar problems named genetic algorithm (GA) and hybrid DE (HDE) are chosen to compare with it. Comparative results of benchmark functions and randomly generated JR-LIPs show that HSDE outperforms GA and HDE. Moreover, a sensitive analysis of cost parameters reveals the useful managerial insight. All comparative results show that HSDE is more stable and robust in handling this complex problem especially for the large-scale problem. PMID:24453822

  10. Self-tuning control algorithm design for vehicle adaptive cruise control system through real-time estimation of vehicle parameters and road grade

    NASA Astrophysics Data System (ADS)

    Marzbanrad, Javad; Tahbaz-zadeh Moghaddam, Iman

    2016-09-01

    The main purpose of this paper is to design a self-tuning control algorithm for an adaptive cruise control (ACC) system that can adapt its behaviour to variations of vehicle dynamics and uncertain road grade. To this aim, short-time linear quadratic form (STLQF) estimation technique is developed so as to track simultaneously the trend of the time-varying parameters of vehicle longitudinal dynamics with a small delay. These parameters are vehicle mass, road grade and aerodynamic drag-area coefficient. Next, the values of estimated parameters are used to tune the throttle and brake control inputs and to regulate the throttle/brake switching logic that governs the throttle and brake switching. The performance of the designed STLQF-based self-tuning control (STLQF-STC) algorithm for ACC system is compared with the conventional method based on fixed control structure regarding the speed/distance tracking control modes. Simulation results show that the proposed control algorithm improves the performance of throttle and brake controllers, providing more comfort while travelling, enhancing driving safety and giving a satisfactory performance in the presence of different payloads and road grade variations.

  11. Adaptation and optimization of basic operations for an unstructured mesh CFD algorithm for computation on massively parallel accelerators

    NASA Astrophysics Data System (ADS)

    Bogdanov, P. B.; Gorobets, A. V.; Sukov, S. A.

    2013-08-01

    The design of efficient algorithms for large-scale gas dynamics computations with hybrid (heterogeneous) computing systems whose high performance relies on massively parallel accelerators is addressed. A high-order accurate finite volume algorithm with polynomial reconstruction on unstructured hybrid meshes is used to compute compressible gas flows in domains of complex geometry. The basic operations of the algorithm are implemented in detail for massively parallel accelerators, including AMD and NVIDIA graphics processing units (GPUs). Major optimization approaches and a computation transfer technique are covered. The underlying programming tool is the Open Computing Language (OpenCL) standard, which performs on accelerators of various architectures, both existing and emerging.

  12. Adaptive Multi-Objective Sub-Pixel Mapping Framework Based on Memetic Algorithm for Hyperspectral Remote Sensing Imagery

    NASA Astrophysics Data System (ADS)

    Zhong, Y.; Zhang, L.

    2012-07-01

    Sub-pixel mapping technique can specify the location of each class within the pixels based on the assumption of spatial dependence. Traditional sub-pixel mapping algorithms only consider the spatial dependence at the pixel level. The spatial dependence of each sub-pixel is ignored and sub-pixel spatial relation is lost. In this paper, a novel multi-objective sub-pixel mapping framework based on memetic algorithm, namely MSMF, is proposed. In MSMF, the sub-pixel mapping is transformed to a multi-objective optimization problem, which maximizing the spatial dependence index (SDI) and Moran's I, synchronously. Memetic algorithm is utilized to solve the multi-objective problem, which combines global search strategies with local search heuristics. In this framework, the sub-pixel mapping problem can be solved using different evolutionary algorithms and local algorithms. In this paper, memetic algorithm based on clonal selection algorithm (CSA) and random swapping as an example is designed and applied simultaneously in the proposed MSMF. In MSMF, CSA inherits the biologic properties of human immune systems, i.e. clone, mutation, memory, to search the possible sub-pixel mapping solution in the global space. After the exploration based on CSA, the local search based on random swapping is employed to dynamically decide which neighbourhood should be selected to stress exploitation in each generation. In addition, a solution set is used in MSMF to hold and update the obtained non-dominated solutions for multi-objective problem. Experimental results demonstrate that the proposed approach outperform traditional sub-pixel mapping algorithms, and hence provide an effective option for sub-pixel mapping of hyperspectral remote sensing imagery.

  13. Adaptive step-size algorithm for Fourier beam-propagation method with absorbing boundary layer of auto-determined width

    DOE PAGES

    Learn, R.; Feigenbaum, E.

    2016-05-27

    Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. Furthermore, the second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.

  14. Parallel processors and nonlinear structural dynamics algorithms and software

    NASA Technical Reports Server (NTRS)

    Belytschko, Ted; Gilbertsen, Noreen D.; Neal, Mark O.; Plaskacz, Edward J.

    1989-01-01

    The adaptation of a finite element program with explicit time integration to a massively parallel SIMD (single instruction multiple data) computer, the CONNECTION Machine is described. The adaptation required the development of a new algorithm, called the exchange algorithm, in which all nodal variables are allocated to the element with an exchange of nodal forces at each time step. The architectural and C* programming language features of the CONNECTION Machine are also summarized. Various alternate data structures and associated algorithms for nonlinear finite element analysis are discussed and compared. Results are presented which demonstrate that the CONNECTION Machine is capable of outperforming the CRAY XMP/14.

  15. Development of adaptive noise reduction filter algorithm for pediatric body images in a multi-detector CT

    NASA Astrophysics Data System (ADS)

    Nishimaru, Eiji; Ichikawa, Katsuhiro; Okita, Izumi; Ninomiya, Yuuji; Tomoshige, Yukihiro; Kurokawa, Takehiro; Ono, Yutaka; Nakamura, Yuko; Suzuki, Masayuki

    2008-03-01

    Recently, several kinds of post-processing image filters which reduce the noise of computed tomography (CT) images have been proposed. However, these image filters are mostly for adults. Because these are not very effective in small (< 20 cm) display fields of view (FOV), we cannot use them for pediatric body images (e.g., premature babies and infant children). We have developed a new noise reduction filter algorithm for pediatric body CT images. This algorithm is based on a 3D post-processing in which the output pixel values are calculated by nonlinear interpolation in z-directions on original volumetric-data-sets. This algorithm does not need the in-plane (axial plane) processing, so the spatial resolution does not change. From the phantom studies, our algorithm could reduce SD up to 40% without affecting the spatial resolution of x-y plane and z-axis, and improved the CNR up to 30%. This newly developed filter algorithm will be useful for the diagnosis and radiation dose reduction of the pediatric body CT images.

  16. A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM)

    PubMed Central

    Gómez-Espinosa, Alfonso; Hernández-Guzmán, Víctor M.; Bandala-Sánchez, Manuel; Jiménez-Hernández, Hugo; Rivas-Araiza, Edgar A.; Rodríguez-Reséndiz, Juvenal; Herrera-Ruíz, Gilberto

    2013-01-01

    Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component's harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple. PMID:23519345

  17. TH-E-BRE-11: Adaptive-Beamlet Based Finite Size Pencil Beam (AB-FSPB) Dose Calculation Algorithm for Independent Verification of IMRT and VMAT

    SciTech Connect

    Park, C; Arhjoul, L; Yan, G; Lu, B; Li, J; Liu, C

    2014-06-15

    Purpose: In current IMRT and VMAT settings, the use of sophisticated dose calculation procedure is inevitable in order to account complex treatment field created by MLCs. As a consequence, independent volumetric dose verification procedure is time consuming which affect the efficiency of clinical workflow. In this study, the authors present an efficient Pencil Beam based dose calculation algorithm that minimizes the computational procedure while preserving the accuracy. Methods: The computational time of Finite Size Pencil Beam (FSPB) algorithm is proportional to the number of infinitesimal identical beamlets that constitute the arbitrary field shape. In AB-FSPB, the dose distribution from each beamlet is mathematically modelled such that the sizes of beamlets to represent arbitrary field shape are no longer needed to be infinitesimal nor identical. In consequence, it is possible to represent arbitrary field shape with combinations of different sized and minimal number of beamlets. Results: On comparing FSPB with AB-FSPB, the complexity of the algorithm has been reduced significantly. For 25 by 25 cm2 squared shaped field, 1 beamlet of 25 by 25 cm2 was sufficient to calculate dose in AB-FSPB, whereas in conventional FSPB, minimum 2500 beamlets of 0.5 by 0.5 cm2 size were needed to calculate dose that was comparable to the Result computed from Treatment Planning System (TPS). The algorithm was also found to be GPU compatible to maximize its computational speed. On calculating 3D dose of IMRT (∼30 control points) and VMAT plan (∼90 control points) with grid size 2.0 mm (200 by 200 by 200), the dose could be computed within 3∼5 and 10∼15 seconds. Conclusion: Authors have developed an efficient Pencil Beam type dose calculation algorithm called AB-FSPB. The fast computation nature along with GPU compatibility has shown performance better than conventional FSPB. This completely enables the implantation of AB-FSPB in the clinical environment for independent

  18. Adaptive quarter-pel motion estimation and motion vector coding algorithm for the H.264/AVC standard

    NASA Astrophysics Data System (ADS)

    Jung, Seung-Won; Park, Chun-Su; Ha, Le Thanh; Ko, Sung-Jea

    2009-11-01

    We present an adaptive quarter-pel (Qpel) motion estimation (ME) method for H.264/AVC. Instead of applying Qpel ME to all macroblocks (MBs), the proposed method selectively performs Qpel ME in an MB level. In order to reduce the bit rate, we also propose a motion vector (MV) encoding technique that adaptively selects a different variable length coding (VLC) table according to the accuracy of the MV. Experimental results show that the proposed method can achieve about 3% average bit rate reduction.

  19. Adaption of the MODIS aerosol retrieval algorithm using airborne spectral surface reflectance measurements over urban areas: a case study

    NASA Astrophysics Data System (ADS)

    Jäkel, E.; Mey, B.; Levy, R.; Gu, X.; Yu, T.; Li, Z.; Althausen, D.; Heese, B.; Wendisch, M.

    2015-12-01

    MODIS (MOderate-resolution Imaging Spectroradiometer) retrievals of aerosol optical depth (AOD) are biased over urban areas, primarily because the reflectance characteristics of urban surfaces are different than that assumed by the retrieval algorithm. Specifically, the operational "dark-target" retrieval is tuned towards vegetated (dark) surfaces and assumes a spectral relationship to estimate the surface reflectance in blue and red wavelengths. From airborne measurements of surface reflectance over the city of Zhongshan, China, were collected that could replace the assumptions within the MODIS retrieval algorithm. The subsequent impact was tested upon two versions of the operational algorithm, Collections 5 and 6 (C5 and C6). AOD retrieval results of the operational and modified algorithms were compared for a specific case study over Zhongshan to show minor differences between them all. However, the Zhongshan-based spectral surface relationship was applied to a much larger urban sample, specifically to the MODIS data taken over Beijing between 2010 and 2014. These results were compared directly to ground-based AERONET (AErosol RObotic NETwork) measurements of AOD. A significant reduction of the differences between the AOD retrieved by the modified algorithms and AERONET was found, whereby the mean difference decreased from 0.27±0.14 for the operational C5 and 0.19±0.12 for the operational C6 to 0.10±0.15 and -0.02±0.17 by using the modified C5 and C6 retrievals. Since the modified algorithms assume a higher contribution by the surface to the total measured reflectance from MODIS, consequently the overestimation of AOD by the operational methods is reduced. Furthermore, the sensitivity of the MODIS AOD retrieval with respect to different surface types was investigated. Radiative transfer simulations were performed to model reflectances at top of atmosphere for predefined aerosol properties. The reflectance data were used as input for the retrieval methods. It

  20. Item Selection in Computerized Adaptive Testing: Improving the a-Stratified Design with the Sympson-Hetter Algorithm

    ERIC Educational Resources Information Center

    Leung, Chi-Keung; Chang, Hua-Hua; Hau, Kit-Tai

    2002-01-01

    Item exposure control, test-overlap minimization, and the efficient use of item pool are some of the important issues in computerized adaptive testing (CAT) designs. The overexposure of some items and high test-overlap rate may cause both item and test security problems. Previously these problems associated with the maximum information (Max-I)…

  1. Development of a Synthetic Adaptive Neuro-Fuzzy Prediction Model for Tumor Motion Tracking in External Radiotherapy by Evaluating Various Data Clustering Algorithms.

    PubMed

    Ghorbanzadeh, Leila; Torshabi, Ahmad Esmaili; Nabipour, Jamshid Soltani; Arbatan, Moslem Ahmadi

    2016-04-01

    In image guided radiotherapy, in order to reach a prescribed uniform dose in dynamic tumors at thorax region while minimizing the amount of additional dose received by the surrounding healthy tissues, tumor motion must be tracked in real-time. Several correlation models have been proposed in recent years to provide tumor position information as a function of time in radiotherapy with external surrogates. However, developing an accurate correlation model is still a challenge. In this study, we proposed an adaptive neuro-fuzzy based correlation model that employs several data clustering algorithms for antecedent parameters construction to avoid over-fitting and to achieve an appropriate performance in tumor motion tracking compared with the conventional models. To begin, a comparative assessment is done between seven nuero-fuzzy correlation models each constructed using a unique data clustering algorithm. Then, each of the constructed models are combined within an adaptive sevenfold synthetic model since our tumor motion database has high degrees of variability and that each model has its intrinsic properties at motion tracking. In the proposed sevenfold synthetic model, best model is selected adaptively at pre-treatment. The model also updates the steps for each patient using an automatic model selectivity subroutine. We tested the efficacy of the proposed synthetic model on twenty patients (divided equally into two control and worst groups) treated with CyberKnife synchrony system. Compared to Cyberknife model, the proposed synthetic model resulted in 61.2% and 49.3% reduction in tumor tracking error in worst and control group, respectively. These results suggest that the proposed model selection program in our synthetic neuro-fuzzy model can significantly reduce tumor tracking errors. Numerical assessments confirmed that the proposed synthetic model is able to track tumor motion in real time with high accuracy during treatment. PMID:25765021

  2. Methodology to automatically detect abnormal values of vital parameters in anesthesia time-series: Proposal for an adaptable algorithm.

    PubMed

    Lamer, Antoine; Jeanne, Mathieu; Marcilly, Romaric; Kipnis, Eric; Schiro, Jessica; Logier, Régis; Tavernier, Benoît

    2016-06-01

    Abnormal values of vital parameters such as hypotension or tachycardia may occur during anesthesia and may be detected by analyzing time-series data collected during the procedure by the Anesthesia Information Management System. When crossed with other data from the Hospital Information System, abnormal values of vital parameters have been linked with postoperative morbidity and mortality. However, methods for the automatic detection of these events are poorly documented in the literature and differ between studies, making it difficult to reproduce results. In this paper, we propose a methodology for the automatic detection of abnormal values of vital parameters. This methodology uses an algorithm allowing the configuration of threshold values for any vital parameters as well as the management of missing data. Four examples illustrate the application of the algorithm, after which it is applied to three vital signs (heart rate, SpO2, and mean arterial pressure) to all 2014 anesthetic records at our institution. PMID:26817405

  3. Control algorithms for aerobraking in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Ward, Donald T.; Shipley, Buford W., Jr.

    1991-01-01

    The Analytic Predictor Corrector (APC) and Energy Controller (EC) atmospheric guidance concepts were adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. Changes are made to the APC to improve its robustness to density variations. These changes include adaptation of a new exit phase algorithm, an adaptive transition velocity to initiate the exit phase, refinement of the reference dynamic pressure calculation and two improved density estimation techniques. The modified controller with the hybrid density estimation technique is called the Mars Hybrid Predictor Corrector (MHPC), while the modified controller with a polynomial density estimator is called the Mars Predictor Corrector (MPC). A Lyapunov Steepest Descent Controller (LSDC) is adapted to control the vehicle. The LSDC lacked robustness, so a Lyapunov tracking exit phase algorithm is developed to guide the vehicle along a reference trajectory. This algorithm, when using the hybrid density estimation technique to define the reference path, is called the Lyapunov Hybrid Tracking Controller (LHTC). With the polynomial density estimator used to define the reference trajectory, the algorithm is called the Lyapunov Tracking Controller (LTC). These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. The MHPC, MPC, LHTC, and LTC show dramatic improvements in robustness over the APC and EC.

  4. GARLig: a fully automated tool for subset selection of large fragment spaces via a self-adaptive genetic algorithm.

    PubMed

    Pfeffer, Patrick; Fober, Thomas; Hüllermeier, Eyke; Klebe, Gerhard

    2010-09-27

    In combinatorial chemistry, molecules are assembled according to combinatorial principles by linking suitable reagents or decorating a given scaffold with appropriate substituents from a large chemical space of starting materials. Often the number of possible combinations greatly exceeds the number feasible to handle by an in-depth in silico approach or even more if it should be experimentally synthesized. Therefore, powerful tools to efficiently enumerate large chemical spaces are required. They can be provided by genetic algorithms, which mimic Darwinian evolution. GARLig (genetic algorithm using reagents to compose ligands) has been developed to perform subset selection in large chemical compound spaces subject to target-specific 3D-scoring criteria. GARLig uses different scoring schemes, such as AutoDock4 Score, GOLDScore, and DrugScore(CSD), as fitness functions. Its genetic parameters have been optimized to characterize combinatorial libraries with respect to the binding to various targets of pharmaceutical interest. A large tripeptide library of 20(3) members has been used to profile amino acid frequencies in putative substrates for trypsin, thrombin, factor Xa, and plasmin. A peptidomimetic scaffold assembled from a selection of a 25(3) building block was used to test the performance of the evolutionary algorithm in suggesting potent inhibitors of the enzyme cathepsin D. In a final case study, our program was used to characterize and rank a combinatorial drug-like library comprising 33,750 potential thrombin inhibitors. These case studies demonstrate that GARLig finds experimentally confirmed potent leads by processing a significantly smaller subset of the fully enumerated combinatorial library. Furthermore, the profiles of amino acids computed by the genetic algorithm match the observed amino acid frequencies found by screening peptide libraries in substrate cleavage assays.

  5. Improvement of the performances of the genetic algorithms by using an adaptive search space reduction and the transformation

    NASA Astrophysics Data System (ADS)

    Yousfi, L.; Mansouri, N.

    2008-06-01

    The aim of this paper is the identification of the parameters in systems modeled by nonlinear differential equations. The proposed method is based on Genetic algorithms with domain's reduction and transformation strategies. The studied problems are successively solved using transformation technique, domain's reduction and a combination of the two strategies. The results obtained, using all these methods are comparables. The good results obtained by transformation seem to be related to the great degree of diversity that the mechanism introduces in population.

  6. Autonomous real-time adaptive management of soil salinity using a receding horizon control algorithm: a pilot-scale demonstration.

    PubMed

    Park, Yeonjeong; Harmon, Thomas C

    2011-10-01

    Soil salinization is a potentially negative side effect of irrigation with reclaimed water. While optimization schemes have been applied to soil salinity control, these have typically failed to take advantage of real-time sensor feedback. This study incorporates current soil observation technologies into the optimal feedback-control scheme known as Receding Horizon Control (RHC) to enable successful autonomous control of soil salinization. RHC uses real-time sensor measurements, physically-based state prediction models, and optimization algorithms to drive field conditions to a desired environmental state by manipulating application rate or irrigation duration/frequency. A simulation model including the Richards equation coupled to energy and solute transport equations is employed as a state estimator. Vertical multi-sensor arrays installed in the soil provide initial conditions and continuous feedback to the control scheme. An optimization algorithm determines the optimal irrigation rate or frequency subject to imposed constraints protective of soil salinization. A small-scale field test demonstrates that the RHC scheme is capable of autonomously maintaining specified salt levels at a prescribed soil depth. This finding suggests that, given an adequately structured and trained simulation model, sensor networks, and optimization algorithms can be integrated using RHC to autonomously achieve water reuse and agricultural objectives while managing soil salinization.

  7. A call center primer.

    PubMed

    Durr, W

    1998-01-01

    Call centers are strategically and tactically important to many industries, including the healthcare industry. Call centers play a key role in acquiring and retaining customers. The ability to deliver high-quality and timely customer service without much expense is the basis for the proliferation and expansion of call centers. Call centers are unique blends of people and technology, where performance indicates combining appropriate technology tools with sound management practices built on key operational data. While the technology is fascinating, the people working in call centers and the skill of the management team ultimately make a difference to their companies. PMID:10182518

  8. Automatic ionospheric layers detection: Algorithms analysis

    NASA Astrophysics Data System (ADS)

    Molina, María G.; Zuccheretti, Enrico; Cabrera, Miguel A.; Bianchi, Cesidio; Sciacca, Umberto; Baskaradas, James

    2016-03-01

    Vertical sounding is a widely used technique to obtain ionosphere measurements, such as an estimation of virtual height versus frequency scanning. It is performed by high frequency radar for geophysical applications called "ionospheric sounder" (or "ionosonde"). Radar detection depends mainly on targets characteristics. While several targets behavior and correspondent echo detection algorithms have been studied, a survey to address a suitable algorithm for ionospheric sounder has to be carried out. This paper is focused on automatic echo detection algorithms implemented in particular for an ionospheric sounder, target specific characteristics were studied as well. Adaptive threshold detection algorithms are proposed, compared to the current implemented algorithm, and tested using actual data obtained from the Advanced Ionospheric Sounder (AIS-INGV) at Rome Ionospheric Observatory. Different cases of study have been selected according typical ionospheric and detection conditions.

  9. Adaptive training algorithm for robot-assisted upper-arm rehabilitation, applicable to individualised and therapeutic human-robot interaction

    PubMed Central

    2013-01-01

    Background Rehabilitation robotics is progressing towards developing robots that can be used as advanced tools to augment the role of a therapist. These robots are capable of not only offering more frequent and more accessible therapies but also providing new insights into treatment effectiveness based on their ability to measure interaction parameters. A requirement for having more advanced therapies is to identify how robots can 'adapt’ to each individual’s needs at different stages of recovery. Hence, our research focused on developing an adaptive interface for the GENTLE/A rehabilitation system. The interface was based on a lead-lag performance model utilising the interaction between the human and the robot. The goal of the present study was to test the adaptability of the GENTLE/A system to the performance of the user. Methods Point-to-point movements were executed using the HapticMaster (HM) robotic arm, the main component of the GENTLE/A rehabilitation system. The points were displayed as balls on the screen and some of the points also had a real object, providing a test-bed for the human-robot interaction (HRI) experiment. The HM was operated in various modes to test the adaptability of the GENTLE/A system based on the leading/lagging performance of the user. Thirty-two healthy participants took part in the experiment comprising of a training phase followed by the actual-performance phase. Results The leading or lagging role of the participant could be used successfully to adjust the duration required by that participant to execute point-to-point movements, in various modes of robot operation and under various conditions. The adaptability of the GENTLE/A system was clearly evident from the durations recorded. The regression results showed that the participants required lower execution times with the help from a real object when compared to just a virtual object. The 'reaching away’ movements were longer to execute when compared to the 'returning

  10. Multi-source feature extraction and target recognition in wireless sensor networks based on adaptive distributed wavelet compression algorithms

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2008-04-01

    Proposed distributed wavelet-based algorithms are a means to compress sensor data received at the nodes forming a wireless sensor network (WSN) by exchanging information between neighboring sensor nodes. Local collaboration among nodes compacts the measurements, yielding a reduced fused set with equivalent information at far fewer nodes. Nodes may be equipped with multiple sensor types, each capable of sensing distinct phenomena: thermal, humidity, chemical, voltage, or image signals with low or no frequency content as well as audio, seismic or video signals within defined frequency ranges. Compression of the multi-source data through wavelet-based methods, distributed at active nodes, reduces downstream processing and storage requirements along the paths to sink nodes; it also enables noise suppression and more energy-efficient query routing within the WSN. Targets are first detected by the multiple sensors; then wavelet compression and data fusion are applied to the target returns, followed by feature extraction from the reduced data; feature data are input to target recognition/classification routines; targets are tracked during their sojourns through the area monitored by the WSN. Algorithms to perform these tasks are implemented in a distributed manner, based on a partition of the WSN into clusters of nodes. In this work, a scheme of collaborative processing is applied for hierarchical data aggregation and decorrelation, based on the sensor data itself and any redundant information, enabled by a distributed, in-cluster wavelet transform with lifting that allows multiple levels of resolution. The wavelet-based compression algorithm significantly decreases RF bandwidth and other resource use in target processing tasks. Following wavelet compression, features are extracted. The objective of feature extraction is to maximize the probabilities of correct target classification based on multi-source sensor measurements, while minimizing the resource expenditures at

  11. Multi-band locally-adaptive contrast enhancement algorithm with built-in noise and artifact suppression mechanisms

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Sascha D.; Schirris, Johan; de With, Peter H. N.

    2008-01-01

    For real-time imaging in surveillance applications, visibility of details is of primary importance to ensure customer confidence. Usually, image quality is improved by enhancing contrast and sharpness. Many complex scenes require local contrast improvements that should bring details to the best possible visibility. However, local enhancement methods mainly suffer from ringing artifacts and noise over-enhancement. In this paper, we present a new multi-window real-time high-frequency enhancement scheme, in which gain is a non-linear function of the detail energy. Our algorithm simultaneously controls perceived sharpness, ringing artifacts (contrast) and noise, resulting in a good balance between visibility of details and non-disturbance of artifacts. The overall quality enhancement is based on a careful selection of the filter types for the multi-band decomposition and a detailed analysis of the signal per frequency band. The advantage of the proposed technique is that detail gains can be set much higher than usual and the algorithm will reduce them only at places where it is really needed.

  12. Adaptive scene-based correction algorithm for removal of residual fixed pattern noise in microgrid image data

    NASA Astrophysics Data System (ADS)

    Ratliff, Bradley M.; LeMaster, Daniel A.

    2012-06-01

    Pixel-to-pixel response nonuniformity is a common problem that affects nearly all focal plane array sensors. This results in a frame-to-frame fixed pattern noise (FPN) that causes an overall degradation in collected data. FPN is often compensated for through the use of blackbody calibration procedures; however, FPN is a particularly challenging problem because the detector responsivities drift relative to one another in time, requiring that the sensor be recalibrated periodically. The calibration process is obstructive to sensor operation and is therefore only performed at discrete intervals in time. Thus, any drift that occurs between calibrations (along with error in the calibration sources themselves) causes varying levels of residual calibration error to be present in the data at all times. Polarimetric microgrid sensors are particularly sensitive to FPN due to the spatial differencing involved in estimating the Stokes vector images. While many techniques exist in the literature to estimate FPN for conventional video sensors, few have been proposed to address the problem in microgrid imaging sensors. Here we present a scene-based nonuniformity correction technique for microgrid sensors that is able to reduce residual fixed pattern noise while preserving radiometry under a wide range of conditions. The algorithm requires a low number of temporal data samples to estimate the spatial nonuniformity and is computationally efficient. We demonstrate the algorithm's performance using real data from the AFRL PIRATE and University of Arizona LWIR microgrid sensors.

  13. Adaptive Sampling Proxy Application

    2012-10-22

    ASPA is an implementation of an adaptive sampling algorithm [1-3], which is used to reduce the computational expense of computer simulations that couple disparate physical scales. The purpose of ASPA is to encapsulate the algorithms required for adaptive sampling independently from any specific application, so that alternative algorithms and programming models for exascale computers can be investigated more easily.

  14. Adaptive re-tracking algorithm for retrieval of water level variations and wave heights from satellite altimetry data for middle-sized inland water bodies

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Lebedev, Sergey; Soustova, Irina; Rybushkina, Galina; Papko, Vladislav; Baidakov, Georgy; Panyutin, Andrey

    One of the recent applications of satellite altimetry originally designed for measurements of the sea level [1] is associated with remote investigation of the water level of inland waters: lakes, rivers, reservoirs [2-7]. The altimetry data re-tracking algorithms developed for open ocean conditions (e.g. Ocean-1,2) [1] often cannot be used in these cases, since the radar return is significantly contaminated by reflection from the land. The problem of minimization of errors in the water level retrieval for inland waters from altimetry measurements can be resolved by re-tracking satellite altimetry data. Recently, special re-tracking algorithms have been actively developed for re-processing altimetry data in the coastal zone when reflection from land strongly affects echo shapes: threshold re-tracking, The other methods of re-tracking (threshold re-tracking, beta-re-tracking, improved threshold re-tracking) were developed in [9-11]. The latest development in this field is PISTACH product [12], in which retracking bases on the classification of typical forms of telemetric waveforms in the coastal zones and inland water bodies. In this paper a novel method of regional adaptive re-tracking based on constructing a theoretical model describing the formation of telemetric waveforms by reflection from the piecewise constant model surface corresponding to the geography of the region is considered. It was proposed in [13, 14], where the algorithm for assessing water level in inland water bodies and in the coastal zone of the ocean with an error of about 10-15 cm was constructed. The algorithm includes four consecutive steps: - constructing a local piecewise model of a reflecting surface in the neighbourhood of the reservoir; - solving a direct problem by calculating the reflected waveforms within the framework of the model; - imposing restrictions and validity criteria for the algorithm based on waveform modelling; - solving the inverse problem by retrieving a tracking point

  15. Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska: Optimization using InSAR, FEMs, and an adaptive mesh algorithm

    USGS Publications Warehouse

    Masterlark, Timothy; Lu, Zhiming; Rykhus, Russ

    2006-01-01

    Interferometric synthetic aperture radar (InSAR) imagery documents the consistent subsidence, during the interval 1992-1999, of a pyroclastic flow deposit (PFD) emplaced during the 1986 eruption of Augustine Volcano, Alaska. We construct finite element models (FEMs) that simulate thermoelastic contraction of the PFD to account for the observed subsidence. Three-dimensional problem domains of the FEMs include a thermoelastic PFD embedded in an elastic substrate. The thickness of the PFD is initially determined from the difference between post- and pre-eruption digital elevation models (DEMs). The initial excess temperature of the PFD at the time of deposition, 640 ??C, is estimated from FEM predictions and an InSAR image via standard least-squares inverse methods. Although the FEM predicts the major features of the observed transient deformation, systematic prediction errors (RMSE=2.2 cm) are most likely associated with errors in the a priori PFD thickness distribution estimated from the DEM differences. We combine an InSAR image, FEMs, and an adaptive mesh algorithm to iteratively optimize the geometry of the PFD with respect to a minimized misfit between the predicted thermoelastic deformation and observed deformation. Prediction errors from an FEM, which includes an optimized PFD geometry and the initial excess PFD temperature estimated from the least-squares analysis, are sub-millimeter (RMSE=0.3 mm). The average thickness (9.3 m), maximum thickness (126 m), and volume (2.1 ?? 107 m3) of the PFD, estimated using the adaptive mesh algorithm, are about twice as large as the respective estimations for the a priori PFD geometry. Sensitivity analyses suggest unrealistic PFD thickness distributions are required for initial excess PFD temperatures outside of the range 500-800 ??C. ?? 2005 Elsevier B.V. All rights reserved.

  16. Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska: Optimization using InSAR, FEMs, and an adaptive mesh algorithm

    NASA Astrophysics Data System (ADS)

    Masterlark, Timothy; Lu, Zhong; Rykhus, Russell

    2006-02-01

    Interferometric synthetic aperture radar (InSAR) imagery documents the consistent subsidence, during the interval 1992-1999, of a pyroclastic flow deposit (PFD) emplaced during the 1986 eruption of Augustine Volcano, Alaska. We construct finite element models (FEMs) that simulate thermoelastic contraction of the PFD to account for the observed subsidence. Three-dimensional problem domains of the FEMs include a thermoelastic PFD embedded in an elastic substrate. The thickness of the PFD is initially determined from the difference between post- and pre-eruption digital elevation models (DEMs). The initial excess temperature of the PFD at the time of deposition, 640 °C, is estimated from FEM predictions and an InSAR image via standard least-squares inverse methods. Although the FEM predicts the major features of the observed transient deformation, systematic prediction errors (RMSE = 2.2 cm) are most likely associated with errors in the a priori PFD thickness distribution estimated from the DEM differences. We combine an InSAR image, FEMs, and an adaptive mesh algorithm to iteratively optimize the geometry of the PFD with respect to a minimized misfit between the predicted thermoelastic deformation and observed deformation. Prediction errors from an FEM, which includes an optimized PFD geometry and the initial excess PFD temperature estimated from the least-squares analysis, are sub-millimeter (RMSE = 0.3 mm). The average thickness (9.3 m), maximum thickness (126 m), and volume (2.1 × 10 7 m 3) of the PFD, estimated using the adaptive mesh algorithm, are about twice as large as the respective estimations for the a priori PFD geometry. Sensitivity analyses suggest unrealistic PFD thickness distributions are required for initial excess PFD temperatures outside of the range 500-800 °C.

  17. Solving the chemical master equation by a fast adaptive finite state projection based on the stochastic simulation algorithm.

    PubMed

    Sidje, R B; Vo, H D

    2015-11-01

    The mathematical framework of the chemical master equation (CME) uses a Markov chain to model the biochemical reactions that are taking place within a biological cell. Computing the transient probability distribution of this Markov chain allows us to track the composition of molecules inside the cell over time, with important practical applications in a number of areas such as molecular biology or medicine. However the CME is typically difficult to solve, since the state space involved can be very large or even countably infinite. We present a novel way of using the stochastic simulation algorithm (SSA) to reduce the size of the finite state projection (FSP) method. Numerical experiments that demonstrate the effectiveness of the reduction are included.

  18. Memory-efficient table look-up optimized algorithm for context-based adaptive variable length decoding in H.264/advanced video coding

    NASA Astrophysics Data System (ADS)

    Wang, Jianhua; Cheng, Lianglun; Wang, Tao; Peng, Xiaodong

    2016-03-01

    Table look-up operation plays a very important role during the decoding processing of context-based adaptive variable length decoding (CAVLD) in H.264/advanced video coding (AVC). However, frequent table look-up operation can result in big table memory access, and then lead to high table power consumption. Aiming to solve the problem of big table memory access of current methods, and then reduce high power consumption, a memory-efficient table look-up optimized algorithm is presented for CAVLD. The contribution of this paper lies that index search technology is introduced to reduce big memory access for table look-up, and then reduce high table power consumption. Specifically, in our schemes, we use index search technology to reduce memory access by reducing the searching and matching operations for code_word on the basis of taking advantage of the internal relationship among length of zero in code_prefix, value of code_suffix and code_lengh, thus saving the power consumption of table look-up. The experimental results show that our proposed table look-up algorithm based on index search can lower about 60% memory access consumption compared with table look-up by sequential search scheme, and then save much power consumption for CAVLD in H.264/AVC.

  19. Null Steering of Adaptive Beamforming Using Linear Constraint Minimum Variance Assisted by Particle Swarm Optimization, Dynamic Mutated Artificial Immune System, and Gravitational Search Algorithm

    PubMed Central

    Sieh Kiong, Tiong; Tariqul Islam, Mohammad; Ismail, Mahamod; Salem, Balasem

    2014-01-01

    Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to reduce the interference by placing null at the interference sources. It is difficult to improve and optimize the LCMV beamforming technique through conventional empirical approach. To provide a solution to this problem, artificial intelligence (AI) technique is explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated artificial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique in order to improve the weights of LCMV. The simulation result demonstrates that received signal to interference and noise ratio (SINR) of target user can be significantly improved by the integration of PSO, DM-AIS, and GSA in LCMV through the suppression of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more effective technique in LCMV beamforming optimization as compared to the PSO technique. The algorithms were implemented using Matlab program. PMID:25147859

  20. Null steering of adaptive beamforming using linear constraint minimum variance assisted by particle swarm optimization, dynamic mutated artificial immune system, and gravitational search algorithm.

    PubMed

    Darzi, Soodabeh; Kiong, Tiong Sieh; Islam, Mohammad Tariqul; Ismail, Mahamod; Kibria, Salehin; Salem, Balasem

    2014-01-01

    Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to reduce the interference by placing null at the interference sources. It is difficult to improve and optimize the LCMV beamforming technique through conventional empirical approach. To provide a solution to this problem, artificial intelligence (AI) technique is explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated artificial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique in order to improve the weights of LCMV. The simulation result demonstrates that received signal to interference and noise ratio (SINR) of target user can be significantly improved by the integration of PSO, DM-AIS, and GSA in LCMV through the suppression of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more effective technique in LCMV beamforming optimization as compared to the PSO technique. The algorithms were implemented using Matlab program.

  1. New algorithms for field-theoretic block copolymer simulations: Progress on using adaptive-mesh refinement and sparse matrix solvers in SCFT calculations

    NASA Astrophysics Data System (ADS)

    Sides, Scott; Jamroz, Ben; Crockett, Robert; Pletzer, Alexander

    2012-02-01

    Self-consistent field theory (SCFT) for dense polymer melts has been highly successful in describing complex morphologies in block copolymers. Field-theoretic simulations such as these are able to access large length and time scales that are difficult or impossible for particle-based simulations such as molecular dynamics. The modified diffusion equations that arise as a consequence of the coarse-graining procedure in the SCF theory can be efficiently solved with a pseudo-spectral (PS) method that uses fast-Fourier transforms on uniform Cartesian grids. However, PS methods can be difficult to apply in many block copolymer SCFT simulations (eg. confinement, interface adsorption) in which small spatial regions might require finer resolution than most of the simulation grid. Progress on using new solver algorithms to address these problems will be presented. The Tech-X Chompst project aims at marrying the best of adaptive mesh refinement with linear matrix solver algorithms. The Tech-X code PolySwift++ is an SCFT simulation platform that leverages ongoing development in coupling Chombo, a package for solving PDEs via block-structured AMR calculations and embedded boundaries, with PETSc, a toolkit that includes a large assortment of sparse linear solvers.

  2. Laser Raman detection of platelets for early and differential diagnosis of Alzheimer’s disease based on an adaptive Gaussian process classification algorithm

    NASA Astrophysics Data System (ADS)

    Luo, Yusheng; Du, Z. W.; Yang, Y. J.; Chen, P.; Tian, Q.; Shang, X. L.; Liu, Z. C.; Yao, X. Q.; Wang, J. Z.; Wang, X. H.; Cheng, Y.; Peng, J.; Shen, A. G.; Hu, J. M.

    2013-04-01

    Early and differential diagnosis of Alzheimer’s disease (AD) has puzzled many clinicians. In this work, laser Raman spectroscopy (LRS) was developed to diagnose AD from platelet samples from AD transgenic mice and non-transgenic controls of different ages. An adaptive Gaussian process (GP) classification algorithm was used to re-establish the classification models of early AD, advanced AD and the control group with just two features and the capacity for noise reduction. Compared with the previous multilayer perceptron network method, the GP showed much better classification performance with the same feature set. Besides, spectra of platelets isolated from AD and Parkinson’s disease (PD) mice were also discriminated. Spectral data from 4 month AD (n = 39) and 12 month AD (n = 104) platelets, as well as control data (n = 135), were collected. Prospective application of the algorithm to the data set resulted in a sensitivity of 80%, a specificity of about 100% and a Matthews correlation coefficient of 0.81. Samples from PD (n = 120) platelets were also collected for differentiation from 12 month AD. The results suggest that platelet LRS detection analysis with the GP appears to be an easier and more accurate method than current ones for early and differential diagnosis of AD.

  3. Adaptive handoff algorithms based on self-organizing neural networks to enhance the quality of service of nonstationary traffic in heirarchical cellular networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2000-03-01

    Third-generation (3G) wireless networks, based on a hierarchical cellular structure, support tiered levels of multimedia services. These services can be categorized as real-time and delay-sensitive, or non-real-time and delay- insensitive. Each call carries demand for one or more services in parallel; each with a guaranteed quality of service (QoS). Roaming is handled by handoff procedures between base stations (BSs) and the mobile subscribers (MSs) within the network. Metrics such as the probabilities of handoff failure, dropped calls and blocked calls; handoff transition time; and handoff rate are used to evaluate the handoff schemes, which also directly affects QoS. Previous researchers have proposed a fuzzy logic system (FLS) with neural encoding of the rule base and probabilistic neural network to solve the handoff decision as a pattern recognition problem in the set of MS signal measurements and mobility amid fading path uncertainties. Both neural approaches evalute only voice traffic in a closed, single- layer network of uniform cells. This paper proposed a new topology-preserving, self-organizing neural network (SONN) for both handoff and admission control as part of an overall resource allocation (RA) problem to support QoS in a three- layer, wideband CDMA HCS with dynamic loading of multimedia services. MS profiles include simultaneous service requirements, which are mapped to a new set of variables, defined in terms of the network radio resources (RRs). Simulations of the new SONN-based algorithms under various operating scenarios of MS mobility, dynamic loading, active set size, and RR bounds, using published traffic models of 3G services, compare their performance with earlier approaches.

  4. An adaptive algorithm for detection of multiple-type, positively stained nuclei in IHC images with minimal prior information: application to OLIG2 staining gliomas

    NASA Astrophysics Data System (ADS)

    Akakin, Hatice C.; Gokozan, Hamza; Otero, Jose; Gurcan, Metin N.

    2015-03-01

    We propose a method to detect and segment the oligodendrocytes and gliomas in OLIG2 immunoperoxidase stained tissue sections. Segmentation of cell nuclei is essential for automatic, fast, accurate and consistent analysis of pathology images. In general, glioma cells and oligodendrocytes mostly differ in shape and size within the tissue slide. In OLIG2 stained tissue images, gliomas are represented with irregularly shaped nuclei with varying sizes and brown shades. On the other hand, oligodendrocytes have more regular round nuclei shapes and are smaller in size when compared to glioma cells found in oligodendroglioma, astrocytomas, or oligoastrocytomas. The first task is to detect the OLIG2 positive cell regions within a region of interest image selected from a whole slide. The second task is to segment each cell nucleus and count the number of cell nuclei. However, the cell nuclei belonging to glioma cases have particularly irregular nuclei shapes and form cell clusters by touching or overlapping with each other. In addition to this clustered structure, the shading of the brown stain and the texture of the nuclei differ slightly within a tissue image. The final step of the algorithm is to classify glioma cells versus oligodendrocytes. Our method starts with color segmentation to detect positively stained cells followed by the classification of single individual cells and cell clusters by K-means clustering. Detected cell clusters are segmented with the H-minima based watershed algorithm. The novel aspects of our work are: 1) the detection and segmentation of multiple-type, positively-stained nuclei by incorporating only minimal prior information; and 2) adaptively determining clustering parameters to adjust to the natural variation in staining as well as the underlying cellular structure while accommodating multiple cell types in the image. Performance of the algorithm to detect individual cells is evaluated by sensitivity and precision metrics. Promising

  5. Calling All Trainers.

    ERIC Educational Resources Information Center

    Carolan, Mary D.; Doyle, John C.

    1998-01-01

    Describes how to establish and operate a call center that handles customer service, telemarketing, collections, and other customer-focused areas. Discusses the advantages of a call center, the new opportunities that will arise as a result of emerging technologies, and the challenges of recruiting, training, and retaining personnel. (JOW)

  6. Enhancement tuning and control for high dynamic range images in multi-scale locally adaptive contrast enhancement algorithms

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Sascha D.; Schirris, Johan; de With, Peter H. N.

    2009-01-01

    For real-time imaging in surveillance applications, visibility of details is of primary importance to ensure customer confidence. If we display High Dynamic-Range (HDR) scenes whose contrast spans four or more orders of magnitude on a conventional monitor without additional processing, results are unacceptable. Compression of the dynamic range is therefore a compulsory part of any high-end video processing chain because standard monitors are inherently Low- Dynamic Range (LDR) devices with maximally two orders of display dynamic range. In real-time camera processing, many complex scenes are improved with local contrast enhancements, bringing details to the best possible visibility. In this paper, we show how a multi-scale high-frequency enhancement scheme, in which gain is a non-linear function of the detail energy, can be used for the dynamic range compression of HDR real-time video camera signals. We also show the connection of our enhancement scheme to the processing way of the Human Visual System (HVS). Our algorithm simultaneously controls perceived sharpness, ringing ("halo") artifacts (contrast) and noise, resulting in a good balance between visibility of details and non-disturbance of artifacts. The overall quality enhancement, suitable for both HDR and LDR scenes, is based on a careful selection of the filter types for the multi-band decomposition and a detailed analysis of the signal per frequency band.

  7. SU-E-J-109: Evaluation of Deformable Accumulated Parotid Doses Using Different Registration Algorithms in Adaptive Head and Neck Radiotherapy

    SciTech Connect

    Xu, S; Liu, B

    2015-06-15

    Purpose: Three deformable image registration (DIR) algorithms are utilized to perform deformable dose accumulation for head and neck tomotherapy treatment, and the differences of the accumulated doses are evaluated. Methods: Daily MVCT data for 10 patients with pathologically proven nasopharyngeal cancers were analyzed. The data were acquired using tomotherapy (TomoTherapy, Accuray) at the PLA General Hospital. The prescription dose to the primary target was 70Gy in 33 fractions.Three DIR methods (B-spline, Diffeomorphic Demons and MIMvista) were used to propagate parotid structures from planning CTs to the daily CTs and accumulate fractionated dose on the planning CTs. The mean accumulated doses of parotids were quantitatively compared and the uncertainties of the propagated parotid contours were evaluated using Dice similarity index (DSI). Results: The planned mean dose of the ipsilateral parotids (32.42±3.13Gy) was slightly higher than those of the contralateral parotids (31.38±3.19Gy)in 10 patients. The difference between the accumulated mean doses of the ipsilateral parotids in the B-spline, Demons and MIMvista deformation algorithms (36.40±5.78Gy, 34.08±6.72Gy and 33.72±2.63Gy ) were statistically significant (B-spline vs Demons, P<0.0001, B-spline vs MIMvista, p =0.002). And The difference between those of the contralateral parotids in the B-spline, Demons and MIMvista deformation algorithms (34.08±4.82Gy, 32.42±4.80Gy and 33.92±4.65Gy ) were also significant (B-spline vs Demons, p =0.009, B-spline vs MIMvista, p =0.074). For the DSI analysis, the scores of B-spline, Demons and MIMvista DIRs were 0.90, 0.89 and 0.76. Conclusion: Shrinkage of parotid volumes results in the dose increase to the parotid glands in adaptive head and neck radiotherapy. The accumulated doses of parotids show significant difference using the different DIR algorithms between kVCT and MVCT. Therefore, the volume-based criterion (i.e. DSI) as a quantitative evaluation of

  8. Reducing interferences in wireless communication systems by mobile agents with recurrent neural networks-based adaptive channel equalization

    NASA Astrophysics Data System (ADS)

    Beritelli, Francesco; Capizzi, Giacomo; Lo Sciuto, Grazia; Napoli, Christian; Tramontana, Emiliano; Woźniak, Marcin

    2015-09-01

    Solving channel equalization problem in communication systems is based on adaptive filtering algorithms. Today, Mobile Agents (MAs) with Recurrent Neural Networks (RNNs) can be also adopted for effective interference reduction in modern wireless communication systems (WCSs). In this paper MAs with RNNs are proposed as novel computing algorithms for reducing interferences in WCSs performing an adaptive channel equalization. The method to provide it is so called MAs-RNNs. We perform the implementation of this new paradigm for interferences reduction. Simulations results and evaluations demonstrates the effectiveness of this approach and as better transmission performance in wireless communication network can be achieved by using the MAs-RNNs based adaptive filtering algorithm.

  9. Genetic algorithm-artificial neural network and adaptive neuro-fuzzy inference system modeling of antibacterial activity of annatto dye on Salmonella enteritidis.

    PubMed

    Yolmeh, Mahmoud; Habibi Najafi, Mohammad B; Salehi, Fakhreddin

    2014-01-01

    Annatto is commonly used as a coloring agent in the food industry and has antimicrobial and antioxidant properties. In this study, genetic algorithm-artificial neural network (GA-ANN) and adaptive neuro-fuzzy inference system (ANFIS) models were used to predict the effect of annatto dye on Salmonella enteritidis in mayonnaise. The GA-ANN and ANFIS were fed with 3 inputs of annatto dye concentration (0, 0.1, 0.2 and 0.4%), storage temperature (4 and 25°C) and storage time (1-20 days) for prediction of S. enteritidis population. Both models were trained with experimental data. The results showed that the annatto dye was able to reduce of S. enteritidis and its effect was stronger at 25°C than 4°C. The developed GA-ANN, which included 8 hidden neurons, could predict S. enteritidis population with correlation coefficient of 0.999. The overall agreement between ANFIS predictions and experimental data was also very good (r=0.998). Sensitivity analysis results showed that storage temperature was the most sensitive factor for prediction of S. enteritidis population. PMID:24566279

  10. Bee algorithm and adaptive neuro-fuzzy inference system as tools for QSAR study toxicity of substituted benzenes to Tetrahymena pyriformis.

    PubMed

    Zarei, Kobra; Atabati, Morteza; Kor, Kamalodin

    2014-06-01

    A quantitative structure-activity relationship (QSAR) was developed to predict the toxicity of substituted benzenes to Tetrahymena pyriformis. A set of 1,497 zero- to three-dimensional descriptors were used for each molecule in the data set. A major problem of QSAR is the high dimensionality of the descriptor space; therefore, descriptor selection is one of the most important steps. In this paper, bee algorithm was used to select the best descriptors. Three descriptors were selected and used as inputs for adaptive neuro-fuzzy inference system (ANFIS). Then the model was corrected for unstable compounds (the compounds that can be ionized in the aqueous solutions or can easily metabolize under some conditions). Finally squared correlation coefficients were obtained as 0.8769, 0.8649 and 0.8301 for training, test and validation sets, respectively. The results showed bee-ANFIS can be used as a powerful model for prediction of toxicity of substituted benzenes to T. pyriformis. PMID:24638918

  11. CALL on Mac.

    ERIC Educational Resources Information Center

    Fukuzawa, Jeannette L.; Lubin, Jan M.

    Five computer programs for the Macintosh that are geared for Computer-Assisted Language Learning (CALL) are described. All five programs allow the teacher to input material. The first program allows entry of new vocabulary lists including definition, a sentence in which the exact word is used, a fill-in-the-blank exercise, and the word's phonetics…

  12. When Crises Call

    ERIC Educational Resources Information Center

    Kisch, Marian

    2012-01-01

    Natural disasters, as well as crises of the man-made variety, call on leaders of school districts to manage scenarios impossible to predict and for which no amount of training can adequately prepare. One thing all major crises hold in common is their far-reaching effects, which can run the gamut from personal safety and mental well-being to the…

  13. Artificial Intelligence and CALL.

    ERIC Educational Resources Information Center

    Underwood, John H.

    The potential application of artificial intelligence (AI) to computer-assisted language learning (CALL) is explored. Two areas of AI that hold particular interest to those who deal with language meaning--knowledge representation and expert systems, and natural-language processing--are described and examples of each are presented. AI contribution…

  14. Wake-Up Call.

    ERIC Educational Resources Information Center

    Sartorius, Tara Cady

    2002-01-01

    Focuses on the artist, Laquita Thomson, whose inspiration are the stars and space. Discusses her series called, "Celestial Happenings: Stars Fell on Alabama." Describes one event that inspired an art work when a meteor crashed into an Alabama home. Includes lessons for various subject areas. (CMK)

  15. Contour adaptation.

    PubMed

    Anstis, Stuart

    2013-01-01

    It is known that adaptation to a disk that flickers between black and white at 3-8 Hz on a gray surround renders invisible a congruent gray test disk viewed afterwards. This is contrast adaptation. We now report that adapting simply to the flickering circular outline of the disk can have the same effect. We call this "contour adaptation." This adaptation does not transfer interocularly, and apparently applies only to luminance, not color. One can adapt selectively to only some of the contours in a display, making only these contours temporarily invisible. For instance, a plaid comprises a vertical grating superimposed on a horizontal grating. If one first adapts to appropriate flickering vertical lines, the vertical components of the plaid disappears and it looks like a horizontal grating. Also, we simulated a Cornsweet (1970) edge, and we selectively adapted out the subjective and objective contours of a Kanisza (1976) subjective square. By temporarily removing edges, contour adaptation offers a new technique to study the role of visual edges, and it demonstrates how brightness information is concentrated in edges and propagates from them as it fills in surfaces.

  16. Low kilovoltage peak (kVp) with an adaptive statistical iterative reconstruction algorithm in computed tomography urography: evaluation of image quality and radiation dose

    PubMed Central

    Zhou, Zhiguo; Chen, Haixi; Wei, Wei; Zhou, Shanghui; Xu, Jingbo; Wang, Xifu; Wang, Qingguo; Zhang, Guixiang; Zhang, Zhuoli; Zheng, Linfeng

    2016-01-01

    Purpose: The purpose of this study was to evaluate the image quality and radiation dose in computed tomography urography (CTU) images acquired with a low kilovoltage peak (kVp) in combination with an adaptive statistical iterative reconstruction (ASiR) algorithm. Methods: A total of 45 subjects (18 women, 27 men) who underwent CTU with kV assist software for automatic selection of the optimal kVp were included and divided into two groups (A and B) based on the kVp and image reconstruction algorithm: group A consisted of patients who underwent CTU with a 80 or 100 kVp and whose images were reconstructed with the 50% ASiR algorithm (n=32); group B consisted of patients who underwent CTU with a 120 kVp and whose images were reconstructed with the filtered back projection (FBP) algorithm (n=13). The images were separately reconstructed with volume rendering (VR) and maximum intensity projection (MIP). Finally, the image quality was evaluated using an image score, CT attenuation, image noise, the contrast-to-noise ratio (CNR) of the renal pelvis-to-abdominal visceral fat and the signal-to-noise ratio (SNR) of the renal pelvis. The radiation dose was assessed using volume CT dose index (CTDIvol), dose-length product (DLP) and effective dose (ED). Results: For groups A and B, the subjective image scores for the VR reconstruction images were 3.9±0.4 and 3.8±0.4, respectively, while those for the MIP reconstruction images were 3.8±0.4 and 3.6±0.6, respectively. No significant difference was found (p>0.05) between the two groups’ image scores for either the VR or MIP reconstruction images. Additionally, the inter-reviewer image scores did not significantly differ (p>0.05). The mean attenuation of the bilateral renal pelvis in group A was significantly higher than that in group B (271.4±57.6 vs. 221.8±35.3 HU, p<0.05), whereas the image noise in group A was significantly lower than that in group B (7.9±2.1 vs. 10.5±2.3 HU, p<0.05). The CNR and SNR in group A were

  17. Algorithms and Algorithmic Languages.

    ERIC Educational Resources Information Center

    Veselov, V. M.; Koprov, V. M.

    This paper is intended as an introduction to a number of problems connected with the description of algorithms and algorithmic languages, particularly the syntaxes and semantics of algorithmic languages. The terms "letter, word, alphabet" are defined and described. The concept of the algorithm is defined and the relation between the algorithm and…

  18. Just call it "treatment".

    PubMed

    Friedmann, Peter D; Schwartz, Robert P

    2012-01-01

    Although many in the addiction treatment field use the term "medication-assisted treatment" to describe a combination of pharmacotherapy and counseling to address substance dependence, research has demonstrated that opioid agonist treatment alone is effective in patients with opioid dependence, regardless of whether they receive counseling. The time has come to call pharmacotherapy for such patients just "treatment". An explicit acknowledgment that medication is an essential first-line component in the successful management of opioid dependence. PMID:23186149

  19. Automated call tracking systems

    SciTech Connect

    Hardesty, C.

    1993-03-01

    User Services groups are on the front line with user support. We are the first to hear about problems. The speed, accuracy, and intelligence with which we respond determines the user`s perception of our effectiveness and our commitment to quality and service. To keep pace with the complex changes at our sites, we must have tools to help build a knowledge base of solutions, a history base of our users, and a record of every problem encountered. Recently, I completed a survey of twenty sites similar to the National Energy Research Supercomputer Center (NERSC). This informal survey reveals that 27% of the sites use a paper system to log calls, 60% employ homegrown automated call tracking systems, and 13% use a vendor-supplied system. Fifty-four percent of those using homegrown systems are exploring the merits of switching to a vendor-supplied system. The purpose of this paper is to provide guidelines for evaluating a call tracking system. In addition, insights are provided to assist User Services groups in selecting a system that fits their needs.

  20. A hybrid artificial bee colony algorithm for numerical function optimization

    NASA Astrophysics Data System (ADS)

    Alqattan, Zakaria N.; Abdullah, Rosni

    2015-02-01

    Artificial Bee Colony (ABC) algorithm is one of the swarm intelligence algorithms; it has been introduced by Karaboga in 2005. It is a meta-heuristic optimization search algorithm inspired from the intelligent foraging behavior of the honey bees in nature. Its unique search process made it as one of the most competitive algorithm with some other search algorithms in the area of optimization, such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). However, the ABC performance of the local search process and the bee movement or the solution improvement equation still has some weaknesses. The ABC is good in avoiding trapping at the local optimum but it spends its time searching around unpromising random selected solutions. Inspired by the PSO, we propose a Hybrid Particle-movement ABC algorithm called HPABC, which adapts the particle movement process to improve the exploration of the original ABC algorithm. Numerical benchmark functions were used in order to experimentally test the HPABC algorithm. The results illustrate that the HPABC algorithm can outperform the ABC algorithm in most of the experiments (75% better in accuracy and over 3 times faster).